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Preface

Mobile Robotics is an active research area where researchers from all over the world find
new technologies to improve mobile robots intelligence and areas of application. Today ro-
bots navigate autonomously in office environments as well as outdoors. They show their
ability to beside mechanical and electronic barriers in building mobile platforms, perceiving
the environment and deciding on how to act in a given situation are crucial problems. In this
book we focused on these two areas of mobile robotics, Perception and Navigation.

Perception includes all means of collecting information about the robot itself and it's envi-
ronment. To make robots move in their surrounding and interact with their environment in
a reasonable way, it is crucial to understand the actual situation the robot faces.

Robots use sensors to measure properties of the environment and interpret these measure-
ments to gather knowledge needed for save interaction. Sensors used in the work described
in the articles in this book include computer vision, range finders, sonars and tactile sensors
and the way those sensors can be used to allow the robot the perception of it's environment
and enabling it to safely accomplishing it’s task. There is also a number of contributions that
show how measurements from different sensors can be combined to gather more reliable
and accurate information as a single sensor could provide, this is especially efficient when
sensors are complementary on their strengths and weaknesses.

As for many robot tasks mobility is an important issue, robots have to navigate their envi-
ronments in a safe and reasonable way. Navigation describes, in the field of mobile robotics,
techniques that allow a robot to use information it has gathered about the environment to
reach goals that are given a priory or derived from a higher level task description in an ef-
fective and efficient way.

The main question of navigation is how to get from where we are to where we want to be.
Researchers work on that question since the early days of mobile robotics and have devel-
oped many solutions to the problem considering different robot environments. Those in-
clude indoor environments, as well is in much larger scale outdoor environments and under
water navigation.

Beside the question of global navigation, how to get from A to B navigation in mobile robot-
ics has local aspects. Depending on the architecture of a mobile robot (differential drive, car
like, submarine, plain, etc.) the robot’s possible actions are constrained not only by the ro-
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bots” environment but by its dynamics. Robot motion planning takes these dynamics into
account to choose feasible actions and thus ensure a safe motion.

This book gives a wide overview over different navigation techniques describing both navi-
gation techniques dealing with local and control aspects of navigation as well es those han-
dling global navigation aspects of a single robot and even for a group of robots.

As not only this book shows, mobile robotics is a living and exciting field of research com-
bining many different ideas and approaches to build mechatronical systems able to interact
with their environment.

Editor
Sascha Kolski
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Robot Egomotion from the Deformation of
Active Contours

Guillem ALENYA and Carme TORRAS
Institut de Robotica i Informatica Industrial (CSIC-UPC) Barcelona, Catalonia, Spain

1.Introduction

Traditional sources of information for image-based computer vision algorithms have been
points, lines, corners, and recently SIFT features (Lowe, 2004), which seem to represent at
present the state of the art in feature definition. Alternatively, the present work explores the
possibility of using tracked contours as informative features, especially in applications not
requiring high precision as it is the case of robot navigation.

In the past two decades, several approaches have been proposed to solve the robot positioning
problem. These can be classified into two general groups (Borenstein et al., 1997): absolute and
relative positioning. Absolute positioning methods estimate the robot position and orientation
in the workspace by detecting some landmarks in the robot environment. Two subgroups can
be further distinguished depending on whether they use natural landmarks (Betke and Gurvits,
1997; Sim and Dudek, 2001) or artificial ones (Jang et al., 2002; Scharstein and Briggs, 2001).
Approaches based on natural landmarks exploit distinctive features already present in the
environment. Conversely, artificial landmarks are placed at known locations in the workspace
with the sole purpose of enabling robot navigation. This is expensive in terms of both presetting
of the environment and sensor resolution.

Relative positioning methods, on the other hand, compute the robot position and orientation
from an initial configuration, and, consequently, are often referred to as motion estimation
methods. A further distinction can also be established here between incremental and non-
incremental approaches. Among the former are those based on odometry and inertial
sensing, whose main shortcoming is that errors are cumulative.

Here we present a motion estimation method that relies on natural landmarks. It is not
incremental and, therefore, doesn’t suffer from the cumulative error drawback. It uses the
images provided by a single camera. It is well known that in the absence of any
supplementary information, translations of a monocular vision system can be recovered up
to a scale factor. The camera model is assumed to be weak-perspective. The assumed
viewing conditions in this model are, first, that the object points are near the projection ray
(can be accomplished with a camera having a small field of view), and second, that the
depth variation of the viewed object is small compared to its distance to the camera This
camera model has been widely used before (Koenderink and van Doorn, 1991; Shapiro et al.,
1995; Brandt, 2005).
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Active contours are a usual tool for image segmentation in medical image analysis. The
ability of fastly tracking active contours was developed by Blake (Blake and Isard, 1998) in
the framework of dynamics learning and deformable contours. Originally, the tracker was
implemented with a Kalman filter and the active contour was parameterized as a b-spline in
the image plane. Considering non-deformable objects, Martinez (Martinez, 2000)
demonstrated that contours could be suitable to recover robot ego-motion qualitatively, as
required in the case of a walking robot (Martinez and Torras, 2001). In these works,
initialization of the b-spline is manually performed by an operator. When corners are
present, the use of a corner detector (Harris and Stephens, 1988) improves the initial
adjustment. Automatic initialization techniques have been proposed (Cham and Cipolla,
1999) and tested with good results. Since we are assuming weak perspective, only affine
deformations of the initial contour will be allowed by the tracker and, therefore, the
initialization process is importantas it determines the family of affine shapes that the
contour will be allowed to adjust to.

We are interested in assessing the accuracy of the motion recovery algorithm by analyzing
the estimation errors and associated uncertainties computed while the camera moves. We
aim to determine which motions are better sensed and which situations are more favorable
to minimize estimation errors. Using Monte Carlo simulations, we will be able to assign an
uncertainty value to each estimated motion, obtaining also a quality factor. Moreover, a real
experiment with a robotized fork-lift will be presented, where we compare our results with
the motion measured by a positioning laser. Later, we will show how the information from
an inertial sensor can complement the visual information within the tracking algorithm. An
experiment with a four-person transport robot illustrates the obtained results.

2. Mapping contour deformations to camera motions

2.1. Parameterisation of contour deformation

Under weak-perspective conditions (i.e., when the depth variation of the viewed object is
small compared to its distance to the camera), every 3D motion of the object projects as an
affine deformation in the image plane.

The affinity relating two views is usually computed from a set of point matches (Koenderink
and van Doorn, 1991; Shapiro et al., 1995). Unfortunately, point matching can be
computationally very costly, it being still one of the key bottlenecks in computer vision. In
this work an active contour (Blake and Isard, 1998) fitted to a target object is used instead.
The contour, coded as a b-spline (Foley et al., 1996), deforms between views leading to
changes in the location of the control points.

It has been formerly demonstrated (Blake and Isard, 1998; Martinez and Torras, 2001, 2003)
that the difference in terms of control points Q’-Q that quantifies the deformation of the
contour can be written as a linear combination of six vectors. Using matrix notation

Q- Q=WS @

where i o )
we ([ [ [3)-e] [e]-[3])

and S is a vector with the six coefficients of the linear combination. This so-called shape
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vector
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encodes the affinity between two views d’(s) and d (s) of the planar contour:

d' (s)=Md (s) + t, 4
where M = [M, ] and t = (t, 1,) are, respectively, the matrix and vector defining the affinity
in the plane.

Different deformation subspaces correspond to constrained robot motions. In the case of a
planar robot, with 3 degrees of freedom, the motion space is parametrized with two
translations (T, T-) and one rotation (8,). Obviously, the remaining component motions are
not possible with this kind of robot. Forcing these constraints in the equations of the affine
deformation of the contour, a new shape space can be deduced. This corresponds to a shape
matrix having also three dimensions.

However, for this to be so, the target object should be centered in the image. Clearly, the
projection of a vertically non-centered object when the camera moves towards will translate
also vertically in the image plane. Consequently, the family of affine shapes that the contour
is allowed to adjust to should include vertical displacements. The resulting shape matrix can

then be expressed as
ffr] o o2 S I
w (\[u_'[L]'[uD_-[Q;,_)' 6)
and the shape vector as

A — 10
S=ltety, My =1, M2 —1)". ©)

2.2. Recovery of 3Dmotion

The contour is tracked along the image sequence with a Kalman filter (Blake and Isard,
1998) and, for each frame, the shape vector and its associated covariance matrix are updated.
The affinity coded by the shape vector relates to the 3D camera motion in the following way
(Blake and Isard, 1998; Martinez and Torras, 2001, 2003):

ZaRy + T: | Rn Ra 7)
i 1 ZaRia+ T |
Zofun+T: | ZoBn+Ty |” (8)

where Ri]. are the elements of the 3D rotation matrix R, T; are the elements of the 3D
translation vector T, and #; is the distance from the viewed object to the camera in the
initial position.

We will see next how the 3D rotation and translation are obtained from the M = [M, ] and t
= (ty t,) defining the affinity. Representing the rotation matrix in Euler angles form,

R = Rolg ) Ru(6 ) Re (). (9)
equation (7) can be rewritten as
M LR |zl R |2 (8 Ry |2 i0)
Tl + T 2|2 i 2l
Za ; 1 0 ‘
- mk‘h"r’l [I] .':lst?] Raa(4)
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where R |2 denotes de 2 X 2 submatrix of R. Then,

om0 1g -
MM --“,;‘Irrl-u r_”“_‘la- Rzlz ™ () (10)

where
(T ¥
L=(ZmrT) -

T
This last equation shows that 6 can be calculated from the eigenvalues of the matrix MM ,
which we will name (A4, 12):

I (11

(] 1
where 1, is the largest eigenvalue. The angle @ can be extracted from the eigenvectors of

T
MM ; the eigenvector v, with larger value corresponds to the first column of R,|):

= [Jﬁ : (12)
Isolating Rz | 2(ip)from equation (10),
Relaly) = (Ru+ %) Ll' _-Lf]_ﬂ] Refa(—¢)M. 13)
and observing, in equation (10), that
Rut 7 =

sin i can be found, and then .
Once the angles 0, ¢ , i are known, the rotation matrix R can be derived from equation (9).
The scaled translation in direction Z is calculated as

T, 1

— — e .

£ WAy ) (14)

The rest of components of the 3D translation can be derived from tand Rusing equation (8):

Ty ty

= =0 =Ry,

Z A (15)
Ty Iy

s e i (16)

Using the equations above, the deformation of the contour parameterized as a planar
affinity permits deriving the camera motion in 3D space. Note that, to simplify the
derivation, the reference system has been assumed to be centered on the object.

3. Precision of motion recovery

3.1. Rotation representation and systematic error
As shown in equation (9), rotation is codified as a sequence of Euler angles R = R, () Ry (0)

R. (). Typically, this representation has the problem of the Gimbal lock: when two axes are
aligned there is a problem of indetermination.
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Fig. 1. Histogram of the computed rotation values for 5000 trials adding Gaussian
noise with o = 0.5pixels to the contour control points.(a) In the ZXZ representation,
small variations of the pose correspond to discontinuous values in the rotation

components R.(@) and R.(p). (b) In contrast, the same rotations in the ZYX
representation yield continuous values.

This happens when the second rotation Rx(f) is near the null rotation. As a result,
small variations in the camera pose do not lead to continuous values in the rotation
representation (see R,(¢) and R,(y) in Fig. 1(a)). Using this representation, means and

covariances cannot be coherently computed. In our system this could happen
frequently, for example at the beginning of any motion, or when the robot is moving
towards the target object with small rotations.

We propose to change the representation to a roll-pitch-yaw codification. It is frequently used
in the navigation field, it being also called heading-attitude-bank (Sciavicco and Siciliano,
2000). We use the form

eyl sged + cslsd  sPs — cgslicg

R =R, (PR, (0)R() = [—spcd cypop — sypshap cipsd + sipse| 17)
=f e
where sy and cy denote the sinus and cosinus of y, respectively. The inverse solution is.
# = atan2{ Rz, Rz} (18)
B = asinl — Ky ) (19)

¥ = atan2{ R, Ry ). (20)
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Fig. 2. Systematic error in the R, component. Continuous line for values obtained with Monte
Carlo simulation and dotted line for true values. The same is applicable to the R, component.

Typically, in order to represent all the rotation space the elemental rotations should be
restricted to lie in the [0..27]rad range for  and ¢ , and in [0..71]rad for 6.

Indeed, tracking a planar object by rotating the camera about X or Y further than /2rad has
no sense, as in such position all control points lie on a single line and the shape information
is lost. Also, due to the Necker reversal ambiguity, it is not possible to determine the sign of
the rotations about these axes. Consequently, without loss of generality, we can restrict the
range of the rotations Rx( @ )and Ry(f) to lie in the range /i.2| rad and let Rz(w) in [0..27] rad.
With this representation, the Gimbal lock has been displaced to cos(d) = 0, but 6 = /2 is out
of the range in our application.

With the above-mentioned sign elimination, a bias is introduced for small Rx(¢)and
Ry(0) rotations. In the presence of noise and when the performed camera rotation is
small, negative rotations will be estimated positive. Thus, the computation of a mean
pose, as presented in the next section, will be biased. Figure 2(a) plots the results of an
experiment where the camera performs a rotation from 0 to 20°about the X axis of a
coordinate system located at the target. Clearly, the values Ry(¢)) computed by the
Monte Carlo simulation are closer to the true ones as the amount of rotation increases.
Figure 2(b) summarizes the resulting errors. This permits evaluating the amount of
systematic error introduced by the rotation representation.

In sum, the proposed rotation space is significantly reduced, but we have shown that it is
enough to represent all possible real situations. Also, with this representation the Gimbal lock is
avoided in the range of all possible data. As can be seen in Figure 1(b), small variations in the
pose lead to small variations in the rotation components. Consequently, means and covariances
can be coherently computed with Monte Carlo estimation. A bias is introduced when small
rotations about X and Y are performed, which disappears when the rotations become more
significant. This is not a shortcoming in real applications.

3.2. Assessing precision through Monte Carlo simulation
The synthetic experiments are designed as follows. A set of control points on the 3D planar
object is chosen defining the b-spline parameterisation of its contour.
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Fig. 3. Original contour projection (continuous line) and contour projection after motion
(dotted line)for the experiments detailed in the text.

The control points of the b-spline are projected using a perspective camera model yielding
the control points in the image plane (Fig. 3). Although the projection is performed with a
complete perspective camera model, the recovery algorithm assumes a weak-perspective
camera. Therefore, the perspective effects show up in the projected points (like in a real
situation) but the affinity is not able to model them (only approximates the set of points as
well as possible), so perspective effects are modelled as affine deformations introducing
some error in the recovered motion. For these experiments the camera is placed at 5000mm
and the focal distance is set to 50mm.

Several different motions are applied to the camera depending on the experiment. Once the
camera is moved, Gaussian noise with zero mean and ¢ = 0.5 is added to the new projected
control points to simulate camera acquisition noise. We use the algorithm presented in
Section 2.2 to obtain an estimate of the 3D pose for each perturbed contour in the Monte
Carlo simulation. 5000 perturbed samples are taken. Next, the statistics are calculated from
the obtained set of pose estimations.

3.2.1. Precision in the recovery of a single translation or rotation

Here we would like to determine experimentally the performance (mean error and
uncertainty) of the pose recovery algorithm for each camera component motion, that
is, translations T, T, and T,, and rotations R;, R, and R.. The first two experiments
involve lateral camera translations parallel to the X or Y axes. With the chosen camera
configuration, the lateral translation of the camera up to 250mm takes the projection of
the target from the image center to the image bound. The errors in the estimations are
presented in Figure 4(a) and 4(c), and as expected are the same for both translations.
Observe that while the camera is moving away from the initial position, the error in
the recovered translation increases, as well as the corresponding uncertainty. The
explanation is that the weak-perspective assumptions are less satisfied when the target
is not centered. However, the maximum error in the mean is about 0.2%, and the worst
standard deviation is 0.6%, therefore lateral translations are quite correctly recovered.
As shown in (Alberich-Carramifiana et al., 2006), the sign of the error depends on the
target shape and the orientation of the axis of rotation.
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The third experiment involves a translation along the optical axis Z. From the initial distance Zo=
5000 the camera is translated to Z = 1500, that is a translation of —3500mm. The errors and the
confidence values are shown in Figure 4(e). As the camera approaches the target, the mean error
and its standard deviation decrease. This is in accordance with how the projection works! As
expected, the precision of the translation estimates is worse for this axis than for X and Y.

The next two experiments involve rotations of the camera about the target. In the first, the camera
is rotated about the X and Y axes of a coordinate system located at the target. Figure 4(b) and 4(d)
show the results. As expected, the obtained results are similar for these two experiments. We use
the alternative rotation representation presented in Section 3.1, so the values R, and R, are
restricted. As detailed there, all recovered rotations are estimated in the same side of the null
rotation, thus introducing a bias. This is not a limitation in practice since, as will be shown in
experiments with real images, the noise present in the tracking step masks these small rotations,
and the algorithm is unable to distinguish rotations of less than about 10° anyway.

The last experiment in this section involves rotations of the camera about Z. As expected, the
computed errors (Fig. 4(f)) show that this component is accurately recovered, as the errors in the
mean are negligible and the corresponding standard deviation keeps also close to zero.

4. Performance in real experiments

The mobile robot used in this experiment is a Still EGV-10 modified forklift (see Fig. 5). This
is a manually-guided vehicle with aids in the traction. To robotize it, a motor was added in
the steering axis with all needed electronics. The practical experience was carried out in a
warehouse of the brewer company DAMM in El Prat del Llobregat, Barcelona. During the
experience, the robot was guided manually. A logger software recorded the following
simultaneous signals: the position obtained by dynamic triangulation using a laser-based
goniometer, the captured reflexes, and the odometry signals provided by the encoders. At
the same frequency, a synchronism signal was sent to the camera and a frame was captured.
A log file was created with the obtained information. This file permitted multiple processing
to extract the results for the performance assessment and comparison of different estimation
techniques (Alenya et al., 2005). Although this experiment was designed in two steps: data
collection and data analysis, the current implementations of both algorithms run in real
time, that is, 20 fps for the camera subsystem and 8 Hz for the laser subsystem.

In the presented experiment the set of data to be analyzed by the vision subsystem consists
of 200 frames. An active contour was initialized manually on an information board
appearing in the first frame of the chosen sequence (Fig. 6). The tracking algorithm finds the
most suitable affine deformation of the defined contour that fits the target in the next frame,
yielding an estimated affine deformation (Blake and Isard, 1998). Generally, this is
expressed in terms of a shape vector (6), from which the corresponding Euclidean 3D
transformation is derived: a translation vector (equations 14-16)and a rotation matrix
(equations 9-13). Note that, in this experiment, as the robot moves on a plane, the reduced 4-
dimensionalshape vector (6) was used.

The resolution in millimeters corresponding to a pixel depends on the distance of the object to the
camera. When the target is near the camera, small variations in depth are easily sensed. Otherwise,
when the target is far from the camera, larger motions are required to be sensed by the camera.
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Fig. 4. Mean error (solid lines) and 20 deviation (dashed lines) for pure motions along
and about the 6 coordinate axes of a camera placed at 5000mm and focal length 50mm.
Errors in T, and T, translations are equivalent, small while centered and increasing
while uncentered, and translation is worst recovered for T, (although it gets better
while approximating). Errors for small R, and R, rotations are large, as contour
deformation in the image is small, while for large transformations errors are less
significant. The error in R; rotations is negligible.

The tracking process produces a new deformation for each new frame, from which 3D
motion parameters are obtained. If the initial distance Zy to the target object can be
estimated, a metric reconstruction of motion can be accomplished. In the present
experiment, the value of the initial depth was estimated with the laser sensor, as the target
(the information board) was placed in the same wall as some catadioptric marks, yielding a
value of 7.7m. The performed motion was a translation of approximately 3.5m along the
heading direction of the robot perturbed by small turnings.
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Fig. 5. Still EGV-10robotized forklift used in a warehouse for realexperimentation.
Odometry, laser positioningandmonocular vision data were recollected.

{a) frame;, . (b} fFrome e {e) Framegy

Fig. 6. Real experiment to compute a large translation while slightly oscillating. An active
contour is fitted to an information board and used as target to compute egomotion.

The computed T,, T, and T, values can be seen in Fig. 7(a). Observe that, although the ¢,
component is included in the shape vector, the recovered T, motion stays correctly at zero.
Placing the computed values for the X and Z translations in correspondence in the actual
motion plane, the robot trajectory can be reconstructed (Fig. 7(b)).
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Fig. 7. (a)Evolution of the recovered T, T, and T, components (in millimeters). (b)
Computed trajectory (in millimeters)in the XZ plane.

Extrinsic parameters from the laser subsystem and the vision subsystem are needed to be
able to compare the obtained results. They provide the relative position between both
acquisition reference frames, which is used to put in correspondence both position
estimations. Two catadrioptic landmarks used by the laser were placed in the same plane as
a natural landmark used by the vision tracker. A rough estimation of the needed calibration
parameters (d; and d,) was obtained with measures taken from controlled motion of the
robot towards this plane, yielding the values of 30 mm and 235 mm, respectively. To perform
the reference frame transformation the following equations were used:

Xeam = * — (sin(gp) = dy) + (cos(p) = d,),
Veam = ¥ — (sin{1p) * dy) + 'i'w—"[d‘] +dy).

While laser measurements are global, the vision system ones are relative to the initial
position taken as reference (Martiinez and Torras, 2001). To compare both estimations, laser
measurements have been transformed to express measurement increments.

The compared position estimations are shown in Fig. 8 (a), where the vision estimation is
subtracted from the laser estimation to obtain the difference for each time step.

Congruent with previous results (see Sec 3.2) the computed difference in the Z direction is more
noisy, as estimations from vision for translations in such direction are more ill conditioned than for
the X or Y directions. In all, it is remarkable that the computed difference is only about 3%.

The computed differences in X are less noisy, but follow the robot motion. Observe that, for
larger heading motions, the difference between both estimations is also larger. This has been
explained before and it is caused by the uncentered position of the object projection, which

violates one of the weak-perspective assumptions.
a1} Jlli'l
im s X o
riry Tk So0a
p 2|
a0 2200
(L=
[ 1]
IIHIE
9 x|
[ H‘“,

=2 AL :
oA b0 BB IR D3 4 ) §EE B Ihoe =T BN (G0 SO0 WH IMe

Ll (L]

Fig. 8. Comparison between the results obtained with the visual egomotion recovery algorithm
and laser positioning estimation. (a) Difference in millimeters between translation estimates
provided by the laser and the vision subsystems for each frame. (b) Trajectories in millimeters in
the XZ plane. The black line corresponds to the laser trajectory, the blue dashed line to the laser-
estimated camera trajectory, and the green dotted one to the vision-computed camera trajectory.



12 Mobile Robots, Perception & Navigation

Finally, to compare graphically both methods, the obtained translations are represented in
the XZ plane (Fig. 8(b)).

This experiment shows that motion estimation provided by the proposed algorithm has a
reasonably precision, enough for robot navigation. To be able to compare both estimations it has
been necessary to provide to the vision algorithm the initial distance to the target object (Zo) and
the calibration parameters of the camera (f). Obviously, in absence of this information the
recovered poses are scaled. With scaled poses it is still possible to obtain some useful information
for robot navigation, for example the time to contact (Martinez and Torras, 2001). The camera
internal parameters can be estimated through a previous calibration process, or online with
autocalibration methods. We are currently investigating the possibility of estimating initial
distance to the object with depth-from-defocus and depth-from-zoom algorithms.

5. Using inertial information to improve tracking

We give now a more detailed description of some internals of the tracking algorithm. The objective
of tracking is to follow an object contour along a sequence of images. Due to its representation as a
b-spline, the contour is divided naturally into sections, each one between two consecutive nodes.
For the tracking, some interest points are defined equidistantly along each contour section. Passing
through each point and normal to the contour, a line segment is defined. The search for edge
elements (called “edgels”) is performed only for the pixels under these normal segments, and the
result is the Kalman measurement step. This allows the system to be quick, since only local image
processing is carried out, avoiding the use of high-cost image segmentation algorithms.

Once edge elements along all search segments are located, the Kalman filter estimates the
resulting shape vector, which is always an affine deformation of the initial contour.

The length of the search segments is determined by the covariance estimated in the preceding
frame by the Kalman filter. This is done by projecting the covariance matrix into the line normal to
the contour at the given point. If tracking is finding good affine transformations that explain
changes in the image, the covariance decreases and the search segments shrank. On the one hand,
this is a good strategy as features are searched more locally and noise in image affects less the
system. But, on the other hand, this solution is not the best for tracking large changes in image
projection. Thus, in this section we will show how to use inertial information to adapt the length of
the different segments at each iteration (Alenya etal., 2004).

5.1. Scaling covariance according to inertial data
Large changes in contour projection can be produced by quick camera motions. As
mentioned above, a weak-perspective model is used for camera modeling. To fit the model,
the camera field-of-view has to be narrow. In such a situation, distant objects may produce
important changes in the image also in the case of small camera motions.
For each search segment normal to the contour, the scale factor is computed as
E=/NT(HPHT)N 1)
where N are the normal line coordinates, H is the measurement vector and P is the 6 x 6 top
corner of the covariance matrix. Detailed information can be found in (Blake and Isard, 1998).
Note that, as covariance is changing at every frame, the search scale has to be recalculated
also for each frame. It is also worth noting that this technique produces different search
ranges depending on the orientation of the normal, taking into account the directional
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estimation of covariance of the Kalman filter.

In what follows, we explain how inertial information is used to adapt the search ranges
locally on the contour by taking into account the measured dynamics. Consider a 3 d.o.f.
inertial sensor providing coordinates (x, y, 8). To avoid having to perform a coordinate
transformation between the sensor and the camera, the sensor is placed below the camera
with their reference frames aligned. In this way, the X and Y coordinates of the inertial
sensor map to the Z and X camera coordinates respectively, and rotations take place about
the same axis. Sensed motion can be expressed then as a translation

T [ o ] ) 22)

costy 0 sinmy
= [ | 1]

sintg 0 cosmy

and a rotation

(23)
Combining equations (7, 8) with equations (22, 23), sensed data can be expressed in shape
space as

£o o T
e Tl ————— 24)
Zq]
My = =—————=Rn =10
AT ZoRp+ Tz 2
Z.'\]
Mis = ——FKis =1}
BT ZoRn+ T 2
Z Z
My = - LRy = L
ZgRaz + T, Lycos g + 1, (25)
1 1
=== — (ZoR13 + Ty) = = - (—=Zosinwg + v
' ZgRy 4+ T et Loeosvy b WSl (26)

1
T — i |l'§ - —_ .h
2= g, (GRn +Ty) =0

As the objective is to scale covariance, denominators can be eliminated in equations (24 -26).
These equations can be rewritten in shape vector form as

T (h 0 My—-1 Mp-100)=
[ =Zpsintg+0y 0 =0; Zp(l=—cosmy)=ov; 0 0)
For small rotational velocities, sin v,can be approximated by v,and, thus,
S=(-Zgmpt+oy 0 —v; Zymf2—v, 0 0) 7)

The inertial sensor gives the X direction data in the range [Vxmin.. Vxmax]. To simplify the
notation, let us consider a symmetric sensor, |Uxmin|=|Vxmax|. Sensor readings can be
rescaled to provide values in the range [Vxmin.. Vxmax]. A value vy provided by the inertial
sensor can be rescaled using
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| Uxmx = Upmin =

= Pxamin

Uxinax (28)
Following the same reasoning, shape vector parameters can be rescaled. For the first
component we have

Ty = |”.‘[

iy = Z0Tomax + Vxwmx (9)
and the expression
= Fis f - -
h= |‘I iw + Hmin = “Il,lrI. + Hmin (30)
iy

Inertial information can be added now by scaling the current covariance sub-matrix by a
matrix representing the scaled inertial data as follows

E= .v."nﬂ (HVPVTHT) N

(31)
where Vis the scaled measurement matrix for the inertial sensing system defined as
t ] - 0 _.F t FIri'u.ll
L] fes i
V= My —1 . Tuy, : Miisin
Mz -1 . fazy M
Mz .f:"-’u E'Illur'u (32)
0 = My _Fl“:1 Maymin

For testing purposes, all minimum and maximum values have been set to 1 and 2,
respectively.

Fig. 9. Robucab mobile robot platform transporting four people.
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5.2.Experiments enhancing vision with inertial sensing
For this experimentation, we use a Robu Cab Mobile Robot from Robosoft. As can be seen in
Fig. 9, it is a relatively big mobile vehicle with capacity for up to four people. It can be used
in two modes: car-like navigation and bi-directional driving.
For simplicity of the control system, the car-like driving option is used, but better
results should be obtained under bi-directional driving mode as the maximum turning
angle would increase. In this vehicle we mount a monocular vision system with the
described 6 d.o.f. tracking system. A Gyrostar inertial sensor, from Murata, is used to
measure rotations about the Y axis. To measure X and Z linear accelerations, an ADXL
dual accelerometer from Analog Devices is used. All these sensors are connected to a
dedicated board with an AVR processor used to make A/D conversions, PWM de-
coding and time integration. It has also a thermometer for thermal data correction.
This “intelligent” sensor provides not only changes in velocity, but also mean velocity
and position. Drift, typical in this kind of computations, is reset periodically with the
information obtained by fusion of the other sensors. This board shares memory with a
MPC555 board, which is connected through a CAN bus to the control and vision
processing PC. All the system runs under a real-time Linux kernel in a Pentium 233
MHz industrial box. A novel approach to distributed programming (Pomiers, 2002)
has been used to program robot control as well as for the intercommunication of
controll and vision processes, taking advantage of the real time operating system.
Although it might look as if the robot moves on a plane, its motions are in 6 parameter
space, mainly due to floor rugosity and vehicle dampers, and therefore the whole 6D
shape vector is used.
In this experiment the robot is in autonomous driving mode, following a filoguided path. In
this way, the trajectory can be easily repeated, thus allowing us to perform several
experiments with very similar conditions. The path followed consists of a straight line
segment, a curve and another straight line.
First, the algorithm without inertial information is used. On the first straight segment, the contour
is well followed, but as can be seen in Figure 10(a), when turning takes place and the contour
moves quicker in the image plane, it loses the real object and the covariance trace increases.
Second, the algorithm including inertial information in the tracker is used. In this
experiment, tracking does not lose the target and finishes the sequence giving good
recovered pose values. As can be seen in the covariance representation in Figure 10(b),
covariance increases at the beginning of the turning, but decreases quickly, showing that
tracking has fixed the target despite its quick translation across the image.
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Figure 10: Covariance trace resulting from tracking without using inertial information (a)
and using it (b).
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6.Conclusions and future work

A method for estimating mobile robot egomotion has been presented, which relies on
tracking contours in real-time images acquired with a monocular vision system. The
deformation of the contour due to camera motion is codified as a 6-dimensional affine shape
vector, and the algorithm to recover 3D motion information is presented.

The precision of the algorithm is analyzed through Monte Carlo simulations. The
results obtained are congruent with intuition. Lateral camera translations T, and T,
produce greater changes in pixels, so they are better recovered than the translation T,
along the optical axis. Rotations R, about the projection axis cause large changes in the
image, and are better recovered than the other two pure rotations, R; and R,. Esti-
mated variances differ largely for the various motions. The largest errors and
variances occur when the contour projection is un centered in the image, as weak-
perspective assumptions are violated. If the distance to the target is small, more
precision is attained, but perspective effects appear. Small rotations out of the plane
are badly estimated, but as the rotation increases the error and the variance diminish.
Rotations in the plane are correctly recovered with small variance.

A real experiment performed in a brewer warehouse has been used to validate the motion
estimation algorithm and to compare it with laser positioning. Contrarily to the laser
estimation procedure, a natural landmark was used and no previous intervention was
needed. A relatively small deviation (about 3%) between vision and laser motion
estimations was obtained. This supports vision-based egomotion estimation as a promising
alternative in situations with relatively low-precision demands.

Synthetic experiments suggest that the target should be centered in the image to keep the
weak-perspective assumptions and attain more precision. Real experiments show that the
range of applicability of the proposed algorithm is limited as the contour should be kept
within the image along all the sequence. One solution is to switch from one target contour to
another when the former disappears from the image. Another solution we will explore in
future work is to keep the target into the image with the use of a pan-and-tilt camera. This
will allow larger robot motions.

We have also noticed that the size of the target projection in the image should be kept into a
rasonable margins to be able to track and deduce valid information. The range of
approaching translations in the experiments in the warehouse was 4 -5Sme-ters. This is also a
limitation. We are exploring the use of a zooming camera to maintain the size of the
projection onto the image constant. This presents some challenges, as changing the zoom
complicates the pan and tilt control. Depending on the initial distance, that we assume
unknow, different control gains should be applied.

We have described how inertial information can be expressed in shape space terms.
We have used this to improve tracking and to provide more robustness to the Kalman
filter used to estimate shape deformation. These two sources of information naturally
complement one another, as inertial is suitable for quick motions whereas vision is
better suited for slow and large motions. The real experiment presented, using also
natural landmarks, illustrates that with the reactivity provided by the inertial informa-
tion, the tracking algorithm is able to extract motion information in sequences where
before itwas not.

In the future we will explore how to take advantadge of the inertial information also in the



Robot Egomotion from the Deformation of Active Contours 17

measurement step of the Kalman filter, as inertial data can be seen also as another
estimation of the performed motion. This is possible because in this paper we have derived
the link between 3D motion and shape deformation. We can generalize this to more sensors,
fusing their supplied data in shape space.
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1. Abstract

Classical Geometry, as conceived by Euclid, was a plataform from which Mathematics
started to build its actual form. However, since the XIX century, it was a language that
was not evolving as the same pase as the others branches of Physics and Mathematics.
In this way, analytic, non-Euclidean and projective geometries, matrix theory, vector
calculus, complex numbers, rigid and conformal transformations, ordinary and partial
differential equations, to name some, are different mathematical tools which are used
nowadays to model and solve almost any problem in robotic vision, but the presence of
the classical geometric theory in such solutions is only implicit. However, over the last
four decades a new mathematical framework has been developed as a new lenguage
where not only the classical geometry is included, but where many of these
mathematical systems will be embedded too. Instead of using different notation and
theory for each of those systems, we will simplify the whole study introducing the
CGA, a unique mathematical framework where all those systems are embedded,
gaining in principle clarity and simplicity. Moreover, incidence algebra operations as
union and intersection of subspaces, are also included in this system through the meet
and join operations. In this regard, CGA appears promising for dealing with
kinematics, dynamics and projective geometric problems in one and only one
mathematical framework.

In this chapter we propose simulated and real tasks for perception-action systems, treated
in a unify way and using only operations and geometrical entities of this algebra. We
propose applications to follow geometric primitives or ruled sufaces with an arm’s robot
for shape understanding and object manipulation, as well as applications in visual
grasping. But we believe that the use of CGA can be of great advantage in visually guided
robotics using stereo vision, range data, laser, omnidirectional or odometry based
systems.

Keywords: Computer vision; Clifford (geometric) algebra; projective and affine geometry;
spheres projective geometry; incidence algebra; 3D rigid motion; ruled surfaces; directed
distance; visually guided robotics.
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2. Introduction

The Occam’s razor, a mediaeval logical principle, said that ‘when you have two competing
theories which make exactly the same predictions, the one that is simpler is the better’. From
this perspective the CGA is a single mathematical framework that unify and include
different systems as matrix algebra, projective geometry, conformal transformations and
differential forms. This chapter is an introduction to the communities of computer vision
and robotics of this novel computational framework, called Conformal Geometric Algebra
(CGA). This subject has been also treated in a wide scope in [4].

Our mathematical approach appears promising for the development of perception action
cycle systems, see Figure 1. The subjects of this chapter are an improvement to previous
works [3, 5, 6, 7, 13], because using the CGA we are now including the group of
transformations in our computations and expanding our study to more complex surfaces,
the ruled surfaces. Other authors have used Grassmann-Cayley algebra in computer vision
[14] and robotics [19], but while they can express in this standard mathematical system the
key ideas of projective geometry, such as the meet, join, duality and projective split, it lacks
of an inner (contractive) product and of the group of transformations, which cannot be
included in a very simple and natural way to the system.
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Fig. 1. Abstraction of the perception action cycle.

In fact, in the 1960’s CGA take up again a proposal ‘seeded’ in the XIX century about build a
global mathematical framework, which would include the main mathematical systems of
that era: matrices and determinants; vector calculus; complex numbers; conformal
transformations; Euclidean and projective spaces; differential forms; differential geometry;
ordinary and partial differential equations.
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In this chapter we put a lot of effort to explain clearly the CGA, illustrating the
computations in great detail. Using the same ideas showed in this chapter, another practical
tasks of visual guided robotics could be implemented for 3D motion estimation, body - eye
calibration, 3D reconstruction, navigation, reaching and grasping 3D objects, etc. Thus, the
idea is to introduce a suitable computational framework to the computer vision and robotic
communities, which can be of great advantage for future applications in stereo vision, range
data, laser, omnidirectional and odometry based systems.

CGA is the fusion of the Clifford Geometric Algebra (GA) and the non-Euclidean
Hyperbolic Geometry. Historically, GA and CGA has not been taken into consideration
seriously by the scientific community, but now and after the work of David Hestenes [10]
and Pertti Lounesto [15] it has been taking a new scope of perspectives, not only
theoretically, but for new and innovative applications to physics, computer vision, robotics
and neural computing. One of the critics against CGA is the wrong idea that this system can
manipulate only basic entities (points, lines, planes and spheres) and therefore it won’t be
useful to model general two and three dimensional objects, curves, surfaces or any other
nonlinear entity required to solve a problem of a perception action system in robotics and
computer vision. However, in this chapter we present the CGA, with its algebra of incidence
[12] and rigid-motion transformations, to obtain several practical techniques in the
resolution of problems of perception action systems including ruled surfaces: 3D motion
guidance of very non-linear curves; reaching and 3D object manipulation on very non-linear
surfaces.

There are several interest points to study ruled surfaces: as robots and mechanisms are
moving, any line attached to them will be tracing out a ruled surface or some other high
nonlinear 3D-curve; the industry needs to guide the arm of robots with a laser welding to
joint two ruled surfaces; reaching and manipulating 3D-objects is one of the main task in
robotics, and it is usual that these objects have ruled surfaces or revolution surfaces; to
guide a robot’s arm over a critical 2D or 3D-curve or any other configuration constraint, and
so forth.

The organization of this chapter paper is as follows: section two presents a brief
introduction to conformal geometric algebra. Section three explains how the affine plane is
embedded in the CGA. Section four shows how to generate the rigid transformations. In
section five we present the way that several ruled surfaces or complex three dimensional
curves can be generated in a very simple way using CGA. Section six shows how motors are
usuful to obtain the Barret Hand™ forward kinematics. Section seven presents the real and
simulated applications to follow geometric primitives and ruled surfaces for shape
understanding and object manipulation, and section eight the applications to visual
grasping identification. Conclusion are given in section nine.

2. Geometric Algebra

In general, a geometric algebra G, is a 27-dimensional non-commutative algebra generated
from a n-dimensional vector space V. Let us denote as Gy, this algebra where p, g, r denote
the signature p, g, r of the algebra. If p # 0and g = r = 0, we have the standard Euclidean
space and metric, if only r # 0 the metric is pseudoeuclidean and if r # 0 the metric is
degenerate. See [17, 11] for a more detailed introduction to conformal geometric algebra.

We will use the letter e to denote the vector basis ei. In a geometric algebra Gp,q,r, the
geometric product of two basis vectors is defined as
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2.1 Conformal Geometric Algebra

The geometric algebra of a 3D Euclidean space Gz, has a point basis and the motor algebra
Gsp1 a line basis. In the latter geometric algebra the lines expressed in terms of Pliicker
coordinates can be used to represent points and planes as well. The reader can find a
comparison of representations of points, lines and planes using Gz 0,0 and Gs ;1 in [8].
Interesting enough in the case of the conformal geometric algebra we find that the unit
element is the sphere which allows us to represent the other geometric primitives in its
terms. To see how this is possible we begin giving an introduction in conformal geometric
algebra following the same formulation presented in [11] and show how the Euclidean
vector space R is represented in R"+11. Let {ey,.., e, e+e-} be a vector basis with the following
properties

a2 -
e = 1, i=1l.n
) 1 2
) @
ey = =£l, ®)
B8y = gire_=epre_=10 fi= 1 T @)
Note that this basis is not written in bold. A null basis {eo,e.} can be introduced by
g = {f’—.—_)l”-!-) . (5)
Bz = €=+ &4, )
with the properties
PE = [’:; =0} @Cun-en=-=1. (7)

A unit pseudoscalar £ & B!'! which represents the so-called Minkowski plane is defined by
B=ehep=e4 Ae_ =epe_. ®)

X Canfiosmal Point -

Fig. 2. (a) The Null Cone and the Horosphere for 1-D, and the conformal and stereographic
representation of a 1-D vector. (b) Surface levels A, B and C denoting spheres of radius
positive, zero and negative, respectively.

One of the results of the non-Euclidean geometry demonstrated by Nikolai Lobachevsky in
the XIX century is that in spaces with hyperbolic structure we can find subsets which are
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isomorphic to a Euclidean space. In order to do this, Lobachevsky introduced two

constraints, to the now called conformal point m. = F"“T!-L See Figure 2(a). The first
constraint is the homogeneous representation, normalizing the vector x. such that
W - g . ©9)
and the second constraint is such that the vector must be a null vector,thatis,
== (10)

Thus, conformal points are required to lie in the intersection surface, denoted "', between

the null cone Kw-+1 and the hyperplane i ., e
N = N"*'NP(ew. o) 1
= {x.#?:"”"|x:"'—ﬂ,x.-f\ = —1}. (1

The constraint (11) define an isomorphic mapping between the Euclidean and the Conformal space.
Thus, for each conformal point @ = %**!! there is a unique Euclidean point ¢ [£" and unique
scalars a, f such that the mapping X, + #, = X, + cey + Je .. Then, the standard form of a
conformal point x. is
1 4
@ = X + SXi€x + €0 (12)
Note that a conformal point x. and be splitted as

|
T, =X + 5Xo€o + 80 = (T AEE + (£ - E)E. (13)
We can gain further insight into the geometrical meaning of the null vectors by analyzing

the isomorphism given by equation (13). For instance by setting x. = 0 we find that ey
represents the origin of R (hence the name). Similarly, dividing this equation by

|
X, e =——X, gives
2
x. ot e, pag)m DLy La By a L L 0y
T — 5 (% + 3%de +20) Attt a) = A+ e+ 17) 1)
Thus we conclude that e, represents the point at infinity.
The dual of a multivector A € Gn is defined by
A'=AL" (16)

where In = ej.., is the unit pseudoscalar of Gn and the inverse of a multivector An, if it exists,
is defined by the equation A-1A=1.
Duality give us the opportunity to define the meet M v N between two multivectors M and
N ,using one of the following equivalent expressions

mectiM,Ny=zMvyvN=M"-N=M " nN". (17)
Geometrically, this operation will give us the intersection between geometric primitives
through the intersection of their generated subspaces. See [12].

2.2 Spheres and planes

The equation of a sphere of radius p centered at point pe € R can be written as
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(Xe = pe)” = p°. (18)
Since .y, = =4{x. = ¥.)?, we can rewrite the formula above in terms of homogeneous
coordinates as
2 po= = 19)
Since x. ‘e, = — 1 we can factor the expression above and then
=+ (P, 1 o) =10, (20)
which finally yields the simplified equation for the sphere as
T, -8=1, (21)
where
&= p %.;"- o = P+ 4 r‘—J- ? (22)

is the equation of the sphere. From this equation and (13) we can see that a conformal point
is just a sphere with zero radius. The vector s has the properties

L =0, (23)
foo ) = =1, (24)
From these properties, we conclude that the sphere s is a point lying on the hyperplane xc .
e = — 1, but outside the null cone x2= 0. In particular, all points on the hyperplane outside

the horosphere determine spheres with positive radius, points lying on the horosphere
define spheres of zero radius (i.e. points), and points lying inside the horosphere have
imaginary radius. Finally, note that spheres of the same radius form a surface which is
parallel to the horosphere.
Alternatively, spheres can be dualized and represented as (n + 1)-vectors s*= s[-land then
using the main convolution I of I defined as

[=(—1)3n+2ntlip = -1 (25)

we can express the constraints of equations (23) and (24) as

@ = vyt mp®,
Boo "8 = By (8°1)= (8o A8 ) ==1. (26)
The equation for the sphere now becomes
. N8 =0, (27)
The advantage of the dual form is that the sphere can be directly computed from four points
(in3D) as

8" =@, Adp, Ay, A

i (28)
If we replace one of these points for the point at infinity we get
=2y ATy A Xy, A, (29)
Developing the products, we get
T =Ty ATy ATy Mg = Xy AXy ANy Al + ([, =2, ) A (X, =%, ))E,  (30)

which is the equation of the plane passing through the points x.1, x.2 and X.3. We can easily
see that X1 A X2 A X3 is a pseudoscalar representing the volume of the parallelepiped with
sides xe1, xe;and xes3.Also, since (xe1— xez) and (xe3— Xez) are two vectors on the plane, the
expression ((Xa— X2) A (X3~ X2))* is the normal to the plane. Therefore planes are spheres
passing through the point at infinity.
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2.3 Geometric identities, duals and incidence algebra operations
A circle z can be regarded as the intersection of two spheres s; and s. This means that for
each point on the circle x, € z they lie on both spheres, that is, x. € s;and x, € s». Assuming
that s; and s; are linearly independent, we can write for x. € z
(2,18 )8 = (2. 83)8) =x,. (8 Ad3) =2 2=10, 31)
this result tells us that since x. lies on both spheres, z=(s1 A s1) should be the intersection of
the spheres or a circle. It is easy to see that the intersection with a third sphere leads to a
point pair. We have derived algebraically that the wedge of two linearly independent
spheres yields to their intersecting circle (see Figure 3), this topological relation between two
spheres can be also conveniently described using the dual of the meet operation, namely
z=(z")" = (8] Va3)" = a1nhas, (32)
this new equation says that the dual of a circle can be computed via the meet of two spheres
in their dual form. This equation confirms geometrically our previous algebraic
computation of equation (31).
The dual form of the circle (in 3D) can be expressed by three points lying on it as
z" =% NTpy Ny, 33)

seeFigure3.a.

Fig. 3. a) Circle computed using three points, note its stereographic projection. b) Circle
computed using the meet of two spheres.

Similar to the case of planes show in equation (29), lines can be defined by circles passing
through the point at infinity as

U=z, Ao, Ao (34)

This can be demonstrated by developing the wedge products as in the case of the planes to
yield

Loy Ny Mo =Ny MUy N e + [Xey = X, | A E, (35)
from where it is evident that the expression x1 A X is a bivector representing the plane
where the line is contained and (x.— x.:) is the direction of the line.
The dual of a point p is a sphere s. The intersection of four spheres yields a point, see Figure
4.b . The dual relationships between a point and its dual, the sphere, are:

8" =p AP AR AR <= P o= 8 BN 08y (36)
where the points are denoted as p;and the spheres s; for i =1, 2, 3, 4. A summary of the basic
geometric entities and their duals is presented in Table 1.
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There is another very useful relationship between a (r — 2)-dimensional sphere A, and the
sphere s (computed as the dual of a point s). If from the sphere A, we can compute the
hyperplane A1 = €. A A, # 0, we can express the meet between the dual of the point
s(a sphere) and the hyperplane A,+; getting the sphere A, of one dimension lower
(=18 " NMNA g =(81)- Ay =84, = A, (37)
This result is telling us an interesting relationship: that the sphere A, and the hyperplane
A4 are related via the point s (dual of the sphere s¥), thus we then rewrite the equation (37)
as follows
8= A,.AIHII T (38)
Using the equation (38) and given the plane 7 (A+1) and the circle z(A,) we can compute the sphere
s=zmr L (39)
Similarly we can compute another important geometric relationship called the pair of points
using the equation (38) directly
s= PPL-1, (40)

Fig. 4. a) Conformal point generated by projecting a point of the affine plane to the unit
sphere. b) Point generated by the meet of four spheres.

Entlty Representatbon Grade | Dual Representatlon | Grade
Sphere g=p+ 5(P° — 0 e + o 1 8 =ansbrend 1
Fok | T=x%+ 3%, +en 1| z" =sAsghazhay | 4
we=nlp = dea
Plane n=(a=-bra=-c) 1 7t = e hafbie 4
d = (asbre)le
L=mhx;
L & _::Ii.hlu F\E:inh' @ L™ = e hank i
m = (a’rb)
Cirele == 8 e 2 = =anrbie 3
Polnt Pair PP =g h8yM8 3 PP = anb 2
PP =anL 2

Table 1. Entities in conformal geometric algebra.

Now using this result given the line Land the sphere s we can compute the pair of points PP
(see Figure 5.b)
PP=sL=s A L. (41)
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3. The 3D Affine Plane

In the previous section we described the general properties of the conformal framework.
However, sometimes we would like to use only the projective plane of the conformal
framework but not the null cone of this space. This will be the case when we use only rigid
transformations and then we will limit ourselves to the Affine Plane which is a n + 1
dimensional subspace of the Hyperplane of reference P(e.,¢o).

We have chosen to work in the algebra Gy ;. Since we deal with homogeneous points the
particular choice of null vectors does not affect the properties of the conformal geometry.

Points in the affine plane xe R¢lare formed as follows
it

" = x, + e, (42)

4 - o
£ 2
£ ri - :‘_. | b k
:\"‘ -Ii-r\ Y _,.} .'-,-

Fig. 5. a) The meet of a sphere and a plane. b) Pair of points resulting from the meet between
a line and a sphere.

where x, € R3. From this equation we note that ¢ represents the origin (by setting x. = 0),

similarly, e represents the point at infinity. Then the normalization property is now
expressed as

E et = —1. (43)

In this framework, the conformal mapping equation is expressed as

» 1 »
r.o=X. 4 .J-“." o g =" 4 Ux;.« s (44)

For the case when we will be working on the affine plane exclusively, we will be mainly
concerned with a simplified version of the rejection. Noting that E= ex A €= ex A €, We
write a equation for rejection as follows

Pilz:) = (. ANE)E=(2ANE): E=(f Ato)to+ (B A L) £a,
X, LV S T (45)
Now, since the points in the affine plane have the form x*= xe + €0, we conclude that
' =z Nea) - By, (46)

is the mapping from the horosphere to the affine plane.

3.1 Lines and Planes
The lines and planes in the affine plane are expressed in a similar fashion to their conformal
counterparts as the join of 2 and 3 points, respectively

oo

L' = iy .'-'-i:u. (47)
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" = =zfAxiAzx]. 48)

Note that unlike their conformal counterparts, the line is a bivector and the plane is a
trivector. As seen earlier, these equations produce a moment-direction representation thus

L =¢ d+ B, (49)
where d is a vector representing the direction of the line and B is a bivector representing the
moment of the line. Similarlywehavethat

Tle= e.n + degzs (50)
where n is the normal vector to the plane and 6 is a scalar representing the distance from the
plane to the origin. Note that in any case, the direction and normal can be retrieved with d =
e, -L7and n = e,, ‘I3, respectively.
In this framework, the intersection or meet has a simple expression too. Let
A" = af A . Aaf and Be= B /e A DY then the meet is defined as

A'NB" = A" (B" - T4,p"), (51)

where I aa vpa is either erze, €236, €316.,0T €1236x, according to which basis vectors span the
largest common space of Azand Be.

3.2 Directed distance

¥ = {a-a b= a.)

e of
Propection

/ ifr =irl.-“ Ayt e a b a i a.)

I mteD

] =

Fig. 6. a) Line in 2D affine space. b) Plane in the 3D affine space (note that the 3D space is
“lifted” by a null vector e.

It is well known from vector analysis the so-called Hessian normal form, a convenient
representation to specify lines and planes using their distance from the origin (the Hesse
distance or Directed distance). In this section we are going to show how CGA can help us to
obtain the Hesse distance for more general simplexes and not only for lines and planes.
Figure 6(a) and (b) depict a line and a plane, respectively, that will help us to develop our
equations. Let Akbe a k-line (or plane), then it consist of a momentum Mk of degree k and of a
direction Dk-lof degree k — 1. For instance, given three Euclidean points aj,asa; their 2-
simplex define a dual 3-plane in CGA that canbe expressedas

A =D = M3+ Dy =ay A as Aag + (2 — ay) Alag —aq )ep. (52)
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Then, the directed distance of this plane, denoted as pk, can be obtained taking the inner
product between the unit direction D¥-land the moment M . Indeed, from (52) and using
expressions (1) to (7), we get the direction

from @ e, = D¥land then its unitary expression Dt-1 dividing Dt1 by its magnitude.
Schematically,

o

k k T IS U I )
R o k-1 (53)

Finally the directed distance pk of Akis
p* = DF1. A%, 60

where the dot operation basically takes place between the direction D¥1and the momentum
of Ak. Obviously, the directed distance vector p touches orthogonally the k-plane Ak, and as
we mentioned at the beginning of k this subsection, the magnitude p equals the Hesse
distance. For sake of simplicity, in Figures (6.a) and (6.b) only Dk1- Lk and Dk1- Ok are
respectively shown.
Now, having this point from the first object, we can use it to compute the directed distance
from the k-plane Ak parallel to the object Bkas follows

dlA*, BY) = d[D*=" . A%, B*] = d|{eac - A*)- A*, BY), (55)

4, Rigid Transformations

We can express rigid transformations in conformal geometry carrying out reflections
between planes.

4.1 Reflection

The reflection of conformal geometric entities help us to do any other transformation. The
reflection of a point x respect to the plane 7 is equal x minus twice the direct distance
between the point and plane see the image (7), that is x = x = 2(7 - x)7! to simplify this
expression recalling the property of Clifford product of vectors 2(b - a)= ab + ba.

s e

Fig. 7. Reflection of a point x respect to the plane 7.
The reflection could be written
x'=x- (mx —xm)m, (56)
x"=x = mxmr = xmrl (57)
x' = —mor L (58)

For any geometric entity Q, the reflection respect to the plane i is given by

Q'=nQrt (59
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4.2 Translation
The translation of conformal entities can be by carrying out two reflections in parallel planes
m and 7, see the image (8), that is

@ = I:.:Fn'.]]{‘lﬂlml 1,—._| 1y (60)
S e,
' 1 x
I (nedegjn =14 =l = oo (61)
With a =2dn.
=0 e sl
%, % .‘;.:‘
S
LA

Fig. 8. Reflection about parallel planes.

4.3 Rotation
The rotation is the product of two reflections between nonparallel planes see image (9)
=1 =1,
%!
X
x " & X

/

@ = Re(mam)QRela] ns") (62)
e o,

Fig. 9. Reflection about nonparallel planes.

Or computing the conformal product of the normals of the planes.
I ol . i (63)
Ry = radry = Clont ) Sin 3 W=eg"1

With [ = n2  nl,and 0 twice the angle between-the planes m and ;. The screw motion called
motor related to an arbitrary axis L is M = TRT

4.4 Kinematic Chains
The direct kinematics for serial robot arms is a succession of motors and it is valid for
points, lines, planes, circles and spheres.

Q' = ni = 1J[M:Qni = 1] Mu-is1 (64)

5. Ruled Surfaces

Conics, ellipsoids, helicoids, hyperboloid of one sheet are entities which can not be directly
described in CGA, however, can be modeled with its multivectors. In particular, a ruled
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surface is a surface generated by the displacement of a straight line (called generatrix) along
a directing curve or curves (called directrices). The plane is the simplest ruled surface, but
now we are interested in nonlinear surfaces generated as ruled surfaces. For example, a
circular cone is a surface generated by a straight line through a fixed point and a point in a
circle. It is well known that the intersection of a plane with the cone can generate the conics.
See Figure 10. In [17] the cycloidal curves can be generated by two coupled twists. In this
section we are going to see how these and other curves and surfaces can be obtained using
only multivectors of CGA.

Fig. 10. (a) Hyperbola as the meet of a cone and a plane. (b) The helicoid is generated by the
rotation and translation of a line segment. In CGA the motor is the desired multivector.

5.1 Cone and Conics
A circular cone is described by a fixed point vy (vertex), a dual circle zo= oA a1 A a2

(directrix) and a rotor R (0, I), 0 € [0, 27) rotating the straight line L(vo,a0)= vo A @0 A €,
(generatrix) along the axis of the cone lo= zo - ... Then, the cone w is generated as

w =R {8l Livg. ao) R (8. [s). 8 € [0,27) (67)
A conic curve can be obtained with the meet (17) of a cone and a plane. See Figure 10(a).
5.2 Cycloidal Curves
The family of the cycloidal curves can be generated by the rotation and translation of one or

two circles. For example, the cycloidal family of curves generated by two circles of radius
roand rq are expressed by, see Figure 11, the motor

M = TRiT*R, (68)
where
T =T ((ro+ r1)(sin(@)er+ cos(0)es)) (69)
il = I ir.'l
" (70)

Rz = Ry(6) (71)
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Then, each conformal point x is transformed as MxM.

5.3 Helicoid
We can obtain the ruled surface called helicoid rotating a ray segment in a similar way as
the spiral of Archimedes. So, if the axis e; is the directrix of the rays and it is orthogonal to
them, then the translator that we need to apply is a multiple of 0, the angle of rotation. See
Figure 10(b).

Fig. 11. The motor M = TR1T*R», defined by two rotors and one translator, can generate the
family of the cycloidal curves varying the multivectors R; and T.

5.4 Sphere and Cone

Let us see an example of how the algebra of incidence using CGA simplify the algebra. The
intersection of a cone and a sphere in general position, that is, the axis of the cone does not
pass through the center of the sphere, is the three dimensional curve of all the euclidean
points (x, y, z) such that x and y satisfy the quartic equation

) 1 o 1 a y 9 - g T
(1 + o Lrgr + (1 + F:' = Dol X5 UG+ - l'l' Lzg(x® +9°)/ e (72)
and ¥, y and z the quadratic equation

(= x0)+(y — yo)2+(z — z0)>= 1. (73)

See Figure 12. In CGA the set of points g of the intersection can be expressed as the meet (17)
of the dual sphere s and the cone w, (67), defined in terms of its generatrix L,that is

g= (") [R8.0o) Livg, aa )R (0.0)]. 0 € [0.22). (74)

Thus, in CGA we only need (74) to express the intersection of a sphere and a cone,
meanwhile in euclidean geometry it is necessary to use (72) and (73).

Fig. 12. Intersection as the meet of a sphere and a cone.
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5.5 Hyperboloid of one sheet
The rotation of a line over a circle can generate a hyperboloid of one sheet. Figure 13(a).

Fig. 13. (a) Hyperboloid as the rotor of a line. (b) The Pliicker conoid as a ruled surface.

5.6 Ellipse and Ellipsoid
The ellipse is a curve of the family of the cycloid and with a translator and a dilator we can
obtain an ellipsoid.

5.7 Pliicker Conoid

The cylindroid or Plucker conoid is a ruled surface. See Figure 13(b). This ruled surface is
like the helicoid where the translator parallel to the axis e; is of magnitude, a multiple of
cos(8)sin(0). The intersection curve of the conoid with a sphere will be obtained as the meet of
both surfaces. Figure 14(a) and (b).

Fig. 14. The intersection between the Pliicker conoid and a sphere.

6. Barrett Hand Forward Kinematics

The direct kinematics involves the computation of the position and orientation of the robot
end-effector given the parameters of the joints. The direct kinematics can be easily
computed if the lines of the screws’ axes are given [2].
In order to introduce the kinematics of the Barrett Hand™ we will show the kinematic of
one finger, assuming that it is totally extended. Note that such an hypothetical position is
not reachable in normal operation.
Let x1, X2 be points-vectors describing the position of each joint of the finger and x3, the end
of the finger in the Euclidean space, see the Figure 15. If Ay, A123and Dy, are denoting the
dimensions of the finger’s components

X10 = Awer + A1e2 + Duwes, (75)



34 Mobile Robots, Perception & Navigation

X20 = Awel + (Al + A2)52 + Duyes, (76)
X30 = Awer + (Al +Ar+ A3)32 + Dues. (77)

Fig. 15. Barrett hand hypothetical position.

Once we have defined these points it is quite simple to calculate the axes L1 20,30,which will
be used as motor’s axis. As you can see at the Figure 15,

L1, = —Awle2 A ex) +e1n, (78)
Loo=(X10 A €1 A €)1 (79)
Lap = (x20 A e A ew) L. (80)

When the hand is initialized the fingers moves away to the home position, this is the angle
@2 = 2.46° by the joint two and the angle ®3 = 500 degrees by the joint three. In order to
move the finger from this hypothetical position to its home position the appropriate
transformation is as follows:

Mo = cos (02/2) = sin(®2/2)La, (81)
M3, = cos (D3/2) — sin(D/2)La,. (82)

Once we have gotten the transformations, then we apply them to the points x2, and x3, in
order to get the points x, and x3 that represents the points in its home position, also the line
L3 is the line of motor axis in home position.

Fra = _'I.Jr-_).,.f'g,,_ffg,.. (83)
£ = .‘I.I[gr,.‘l.lr:gr,..l":l...\-}:;,..{?-_g.-,.. (84)
Ly = MaLsoMae. (85)

The point x1 = x1, is not affected by the transformation, the same for the lines L; = L1, and L»
= Ly, see Figure 16. Since the rotation angles of both axis L2 and L3 are related, we will use
fractions of the angle g1 to describe their individual rotation angles. The motors of each joint
are computed using ,i__\rh to rotate around L;, #r“ around L, and %m around L3, these

specific angle coefficients where taken from the Barrett Hand user manual.
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Fig. 16. Barrett hand at home position.

M = cos(qa/35) + sin(qa/35)L1, (86)
M> = cos(q1/250)— sin(q1/250) Lo, (87)
M3 = cos(q1/750)— sin(q1/750)Ls. (88)
The position of each point is related to the angles g1 and g4 as follows:
&, = Mundh, (89)
o = My Maxa MM, (90)
xh = M MaMaxaMaMo M. 1)

7. Application I: Following Geometric Primitives and Ruled Surfaces for
Shape Understanding and Object Manipulation

In this section we will show how to perform certain object manipulation tasks in the context
of conformal geometric algebra. First, we will solve the problem of positioning the gripper
of the arm in a certain position of space disregarding the grasping plane or the gripper’s
alignment. Then, we will illustrate how the robotic arm can follow linear paths.

7.1 Touching a point

In order to reconstruct the point of interest, we make a back-projection of two rays extended
from two views of a given scene (see Figure 17). These rays will not intersect in general, due
to noise. Hence, we compute the directed distance between these lines and use the the
middle point as target. Once the 3D point pt is computed with respect to the cameras’
framework, we transform it to the arm'’s coordinate system.

Once we have a target point with respect to the arm’s framework, there are three cases to
consider. There might be several solutions (see Figs. 18.a and 19.a), a single solution (see
Figure 18.b), or the point may be impossible to reach (Figure 19.b).

In order to distinguish between these cases, we create a sphere §; = p, — §d7¢.. centered at
the point p: and intersect it with the bounding sphere 5. = p, :,Irh 4 ils)*e.. of the other
joints (see Figures 18.a and 18.b), producing the circle z; =S, A S:.

If the spheres S; and S, intersect, then we have a solution circle z; which represents all the
possible positions the point p, (see Figure 18) may have in order to reach the target. If the
spheres are tangent, then there is only one point of intersection and a single solution to the
problem as shown in Figure 18.b.
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: =
Fig. 17. Point of interest in both cameras (pt).

If the spheres do not intersect, then there are two possibilities. The first case is that S; is
outside the sphere S.. In this case, there is no solution since the arm cannot reach the
point p; as shown in Figure 19.b. On the other hand, if the sphere St is inside Se, then
we have a sphere of solutions. In other words, we can place the point p> anywhere
inside St as shown in Figure 19.a. For this case, we arbitrarily choose the upper point of
the sphere St.

&5
¥

Fig. 18. a) S, and S; meet (infinite solutions) b) S, and S; are tangent (single solution).

In the experiment shown in Figure 20.a, the sphere St is placed inside the bounding sphere
Se, therefore the point selected by the algorithm is the upper limit of the sphere as shown in
Figures 20.a and 20.b. The last joint is completely vertical.

7.2 Line of intersection of two planes

In the industry, mainly in the sector dedicated to car assembly, it is often required to weld
pieces. However, due to several factors, these pieces are not always in the same position,
complicating this task and making this process almost impossible to automate. In many
cases the requirement is to weld pieces of straight lines when no points on the line are
available. This is the problem to solve in the following experiment.

Since we do not have the equation of the line or the points defining this line we are going
to determine it via the intersection of two planes (the welding planes). In order to
determine each plane, we need three points. The 3D coordinates of the points are
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triangulated using the stereo vision system of the robot yielding a configuration like the
one shown in Figure 21.

Once the 3D coordinates of the points in space have been computed, we can find now each
plane as 7% = x; A M AX3Aer and 17 = xT AX2AX3 A€’% The line of intersection is
computed via the meet operator I = " N 7. In Figure 22.a we show a simulation of the arm
following the line produced by the intersection of these two planes.

Once the line of intersection I is computed, it suffices with translating it on the plane y =

I A e (see Figure 22.b) using the translator Ty = 1+yeze., in the direction of e; (the y axis) a

distance y. Furthermore, we build the translator T> = 1+dseze.,, with the same direction (¢2),
but with a separation ds which corresponds to the size of the gripper. Once the translators
have been computed, we find the lines I’ and I”” by translating the line I with ' _ 7, [

and |" = T I'T, "

= T ' —
{ 1 ] p T L o i R
A 5 J H - =
ﬁ:. = =

%

8,
5

Fig. 19. a) St inside Se produces infinite solutions, b) St outside Se, no possible solution.

Fig. 20. a) Simulation of the robotic arm touching a point. b) Robot “Geometer” touching a
point with its arm.

The next step after computing the lines, is to find the points p; and p» which represent the
places where the arm will start and finish its motion, respectively. These points were given
manually, but they may be computed with the intersection of the lines I and I”” with a plane
that defines the desired depth. In order to make the motion over the line, we build a
translator Tr = 1-Ale, with the same direction as I as shown in Figure 22.b. Then, this

translator is applied to the points p> = Trp> TL_1 and p; = TLprL_l in an iterative fashion to
yield a displacement AL on the robotic arm.

By placing the end point over the lines and p> over the translated line, and by following the
path with a translator in the direction of [ we get a motion over | as seen in the image
sequence of Figure 23.
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7.3 Following a spherical path

This experiment consists in following the path of a spherical object at a certain fixed
distance from it. For this experiment, only four points on the object are available (see Figure
24.a).

After acquiring the four 3D points, we compute the sphere §* =x1 Ax2 Ax3 Ax% In order
to place the point p» in such a way that the arm points towards the sphere, the sphere was

expanded using two different dilators. This produces a sphere that contains $* and ensures

that a fixed distance between the arm and S* is preserved, as shown in Figure 24.b.
The dilators are computed as follows

D. = et |||I-+'E. (92)

Dy = e~k fatyie)E (93)
The spheres S; and S, are computed by dilating St:

& = DS, (94)

S D807 (99)

Guiding lines for the robotic arm produced by the intersection, meet, of the planes and
vertical translation.
We decompose each sphere in its parametric form as

p, = M(g)M(od)p, M, 'Inflﬁ'u', i), (96)
P2 = Malp)Ma{o)p,, M3 (¢)M5" (). (97)

Where p; is any point on the sphere. In order to simplify the problem, we select the upper

point on the sphere. To perform the motion on the sphere, we vary the parameters @ and ¢
and compute the corresponding pt and p, using equations (96) and (97). The results of the
simulation are shown in Figure 25.a, whereas the results of the real experiment can be seen
in Figures 25.b and 25.c.

jr- = - — I
Fig. 21. Images acquired by the binocular system of the robot “Geometer” showing the
points on each plane.
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I

K

Fig. 22. a. Simulation of the arm following the path of a line produced by the intersection of
two planes. b.

7.4 Following a 3D-curve in ruled surfaces

As another simulated example using ruled surfaces consider a robot arm laser welder. See
Figure 26. The welding distance has to be kept constant and the end-effector should follow a
3D-curve w on the ruled surface guided only by the directrices di, d> and a guide line L.
From the generatrices we can always generate the nonlinear ruled surface, and then with
the meet with another surface we can obtain the desired 3D-curve. We tested our

simulations with several ruled surfaces, obtaining expressions of high nonlinear surfaces
and 3D-curves, that with the standard vector and matrix analysis it would be very difficult
to obtain them.

Fig. 24. a) Points over the sphere as seen by the robot “Geometer”. b) Guiding spheres for
the arm’s motion.

8. Aplications IlI: Visual Grasping Identification

In our example considering that the cameras can only see the surface of the observed
objects, thus we will consider them as bi-dimensional surfaces which are embedded in a 3D
space, and are described by the function
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Hist) = h, (s, they + h, (5 8es + h (5. )eg (98)
where s and t are real parameters in the range [0, 1]. Such parameterization allows us to
work with different objects like points, conics, quadrics, or even more complex objects like
cups, glasses, etc. The table 2 shows some parameterized objects.

Particle F= 3 4 des 4 bea

Cylinder H = coa(t ey + ain(Fleg 4 seg

Plane H‘—Jr| + sea 4+ (ds + 4f + Z)eg
Table 2. Parameterized Objects.

Due to that our objective is to grasp such objects with the Barrett Hand, we must consider
that it has only three fingers, so the problem consists in finding three “touching points” for
which the system is in equilibrium during the grasping; this means that the sum of the
forces equals to zero, and also the sum of the moments. For this case, we consider that there
exists friction in each “touching point”.

If the friction is being considered, we can claim that over the surface H(s, f) a set of forces
exist which can be applied. Such forces are inside a cone which have the normal N(s, t) of
the surface as its axis (as shown in Fig. 27). Its radius depends on the friction’s coefficient
[[F = F,| = —=ul|F,|) where Fnu = (F - N(s, #))N(s, t) is the normal component of F. The
angle 0 for the incidence of F with respect to the normal can be calculated using the wedge
product, and should be smaller than a fixed 6y

|F A Nis.t)] : 99
et {
FN.f) = lani#,) ( )

Fig. 25. a) Simulation of the motion over a sphere. b) and c¢) Two of the images in the
sequence of the real experiment.

Fig. 26. A laser welding following a 3D-curve w on a ruled surface defined by the directrices
dy and dp. The 3D-curve w is the meet between the ruled surface and a plane containing the
line L.

We know the surface of the object, so we can compute its normal vector in each point using
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N(st) = (100)

AH(s)  AH(s1)
ils il

In surfaces with lower friction, the angle 0 is very small, then the value of F tends to its
projection over the normal (F ~ Fn). To maintain equilibrium, the sum of the forces must be
zero lx: MEN N (s, ) = 0) This fact restricts the points over the surface in which it can
be applied the forces. This number of points is even more reduced if we are confronted with
the case when considering the unit normal { f 1 W(s;.1;) = 0)the forces over the object
are equal. Additionally, to maintain the equilibrium, it must be accomplished that the sum
of the moments is zero

]
His t) A N(s.t) =0
le (101)

The points on the surface having the same directed distance to the center of mass of the
object fulfill H(s, f) A N(s, t) = 0. Due to the normal in such points crosses the center of mass
(Cu), it does not produce any moment. Before determining the external and internal points,
we must compute the center of mass as follows

S

Cm = / [ H (&, F)dsds (102)
Once that C,, is calculated we can establish next constraint

(H(s, ) =Cu) " N(s, ) =0 (103)

The values s and ¢ satisfying (103) form a subspace called grasping space. They accomplish
that the points represented by H(s, t) are critical on the surface (being maximums,
minimums or inflections). In this work we will not consider other grasping cases like when
they do not utilize extreme points other when friction cones are being considered. This
issues will be treated in future work. The equation (103) is hard to fulfill due to the noise,
and it is necessary to consider a cone of vectors. So, we introduce an angle called a,

(H(s.1) - Cw) AN(s, )|

[H{s, 1) = Cp) N(s,t)

< tan{o) (104)

Mis1)

His.1)

Fig. 27. The friction cone.
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bt

Fig. 28. Object and his normal vectors.

Fig. 29. Object relative position.

We use equation (104) instead of (103), because it allows us to deal with errors or data lost.
The constraint imposing that the three forces must be equal is hard to fulfill because it
implies that the three points must be symmetric with respect to the mass center. When such
points are not present, we can relax the constraint to allow that only two forces are equal in
order to fulfill the hand’s kinematics equations. Then, the normals N(s1, t1) and N(sy, 2) must
be symmetric with respect to N(ss, t3).

N(s3, t3)N(s1, 11)N(s3, t3)™1 = N(s2, t2) (105)

Once the three grasping points (P1 = H(s1, t1), P2 = H(sy, t2), P3 = H(ss, t3)) are calculated, it is
really easy to determine the angles at the joints in each finger. To determine the angle of the
spread (g4 = f) for example we use

(P = Cm) « (o — pa) (PL = Cm) A (Cr — pa)l
- .gin = - -
= | O = s = | 10 = pa

cos [ =

(106)

or it is possible to implement a control law which will allow to move the desired finger
without the need of solving any kind of inverse kinematics equations [1]. Given the
differential kinematics equation

] - v .y ] T oy ¥ ri'-
Xry=[ qXi- Lo+ g5 Xy Ly —FX4- L] | [ u'.l. ] (107)
If we want to reach the point H(sy, 1), we require that the suitable velocity at the very end of
the finger should be proportional to the error at each instance |, = —(.7( X§ = His1.11))

This velocity is mapped into the phase space by means of using the Jacobian inverse. Here
we use simply the pseudo-inverse with ji = (=X} LY+ =X} Liand o= — £ X} L]
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Applying this control rule, one can move any of the fingers at a desired position above an
object, so that an adequate grasp is accomplish.
B g |

Fig. 30. Grasping some objects.

9. Conclusion

In this chapter the authors have used a single non-standard mathematical framework, the
Conformal Geometric Algebra, in order to simplify the set of data structures that we usually
use with the traditional methods. The key idea is to define and use a set of products in CGA
that will be enough to generate conformal transformations, manifolds as ruled surfaces and
develop incidence algebra operations, as well as solve equations and obtain directed
distances between different kinds of geometric primitives. Thus, within this approach, all
those different mathematical entities and tasks can be done simultaneously, without the
necessity of abandoning the system.

Using conformal geometric algebra we even show that it is possible to find three grasping
points for each kind of object, based on the intrinsic information of the object. The hand’s
kinematic and the object structure can be easily related to each other in order to manage a
natural and feasible grasping where force equilibrium is always guaranteed. These are only
some applications that could show to the robotic and computer vision communities the
useful insights and advantages of the CGA, and we invite them to adopt, explore and
implement new tasks with this novel framework, expanding its horizon to new possibilities
for robots equipped with stereo systems, range data, laser, omnidirectional and odometry.
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One Approach to the Fusion of
Inertial Navigation and
Dynamic Vision

Stevica Graovac
School of Electrical Engineering, University of Belgrade
Serbia

1. Introduction

The integration of different types of navigation systems is frequently used in the automatic
motion control systems due to the fact that particular errors existing in anyone of them are
usually of different physical natures. The autonomous navigation systems are always
preferred from many of reasons and the inertial navigation systems (INS) are traditionally
considered as the main representative of this class. The integration of such systems based on
the inertial sensors (rate gyros and linear accelerometers) and other navigation systems is
very popular nowadays, especially as a combination with global positioning systems [Farrel
& Barth, 1999], [Grewal et al., 2001]. The vision based navigation systems (VNS) are also of
autonomous type and there is a reasonable intention to make the fusion of these two
systems in some type of integrated INS/VNS system. This paper is oriented toward the
possibility of fusion of data originated from a strap-down INS on one side, and from a
dynamic vision based navigation system (DVNS), on the other. Such an approach offers the
wide area of potential applications including the mobile robots and a number of
automatically controlled ground, submarine, and aerial vehicles.

The most usual approach in navigation systems integration is of “optimal filter” type
(typical INS/ VNS examples are given in [Kaminer et al., 1999] and [Roumeliotis et al., 2002])
In such an approach one of the systems is considered as the main one and the other supplies
less frequently made measurements (corrupted by the noise, but still considered as the more
precise) used in order to estimate in an optimal fashion the navigation states as well as the
error parameters of the main system’s sensors.

The approach adopted in this paper considers both systems in an equal way. It is based on
the weighted averaging of their outputs, allowing some degrees of freedom in this
procedure regarding to the actually estimated likelihood of their data. These estimates are
based on reasoning related to the physical nature of system errors. The errors characterizing
one typical strap-down INS are of slowly varying oscillatory nature and induced by the
inaccuracies of inertial sensors. On the other hand, the errors in any VNS are mainly due to
a finite resolution of a TV camera, but there is a significant influence of the actual scene
structure and visibility conditions, also. In other words, it could be said that the accuracy of
an INS is gradually decreasing in time while it is not affected by the fact where the moving
object actually is. The accuracy of a DVNS is generally better in all situations where the
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recognizable referent landmarks are inside the camera’s field of view, occupying larger
extent of it. Because the DVNS is based on processing of a sequence of images, the larger
relative motion of the landmarks in two consecutive frames is preferable too.

Having in minds these basic features of INS and DVNS, their integration could be
considered in two basic ways:

1. AnINSis a kind of “master” navigation system while the corrections produced
by DVNS are made in time when a moving object is passing the landmarks
located around the trajectory. This approach is typically applicable in case of
the flight control of remotely piloted vehicles and in the similar “out-door”
applications;

2. A VNS is a basic navigation system assuming that the reference scene objects
always exist in the scene, while an INS provides the required data related to the
absolute motion of an object during the interval between two frames. This
approach is oriented toward mobile robot “in-door” applications as well as in case
of automatic motion control of the road vehicles.

The next chapter of paper introduces the fundamentals of INS and VNS in the extent
required to understand their integration. In Chapter 3. the general case of suggested
fusion procedure is presented. A number of particular implementation schemes
including reduced set of sensors and/or reduced amount of calculations could be
specified based on this general case. The next two chapters consist of the illustrative
examples of application: A vision aided INS in the simulated case of remotely piloted
vehicle’s flight (Chapter 4), [Graovac, 2004]; and a VNS assisted by the acceleration
measurements provided by an INS, for the robot control applications (Chapter 5),
[Graovac, 2002].

The results related to “out-door” applications are obtained using the full 6-DOF simulation
of object’s motion and the model of the INS work. The computer-generated images of
terrain and ground landmarks have been used during the tests of a DVNS algorithm. These
images have been additionally corrupted by noise and textured. The “in-door” applications
are illustrated using the laboratory experiments with an educational robot equipped with a
TV camera.

2. Basic Concepts of INS and VNS

2.1 Fundamentals of an INS
Estimation of a position of moving object, z, =[x, », :,|’, relative to an inertial coordinate

frame (ICF) could be done according to the basic navigation equations as

V| [4xa] [0] [Va(0)
Va |=| 4y |+ 0], | 74(0)
Vﬂ Az 4 Va (0)

AL
y 1= Vy/ =V
z 1 v zZl

Acceleration vector in ICF A4 7 » on the right hand side, is obtained by transformation of the

=7,(0)

@

acceleration measurement vector 4,. These measurements are made by a triad of linear

accelerometers rigidly fixed to the body of moving object and they are referenced to the body
fixed coordinate frame (BCF):
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4w B Ay @)
Ay =| Ay | =Ty pAp =Ty p| Ayg
Az Azp

Matrix transform Ty, is defined via Euler angles of pitch, yaw, and roll (8,y,¢) as
T5 =T W) O (9)- ®)
where Ti, To, Ts, represent the elementary matrix transformations due to rotation around

coordinate axes. Actual values of Euler angles are obtained by numerical integration of a set
of differential equations:

Wyy COsP— @y sing

’
§l=
174 sec @y y sin g+ @y, cos@)

@yy + tan 9@y sin @ + @y, cos :p)} @)

where @yy,wyy,wy;, represent the projections of the angular velocity of a moving object in

ICF onto the axes of BCF. These are measured by the set of rate gyros rigidly fixed to the
body of the moving object.

The measurements of linear accelerations and angular velocities in BCF are inaccurate due
to slowly varying bias introduced by a number of physical phenomena inside the inertial
instruments. These are results of the complex motion of an object (with six degrees of
freedom) as well as of sensor imperfections. Sensor signals are additionally corrupted by
high frequency measurement noise caused by internal imperfections and by external
influences due to the air turbulence, vibrations of vehicle, etc. A specific type of error
associated to this particular mechanization (known as a strap-down inertial navigation system -
SDINS) in case of flying object is a result of rectification introduced by multiplication shown
in (2). The elements of matrix Ty as well as of vector j, include the oscillatory components

on natural frequency of body oscillations.
The inertial instruments analyzed here are of medium quality (typically used for the flight
stabilization purposes). The numerical data illustrating their accuracy are:
Rate gyros: Bandwidth - 80 Hz;

Bias - 100/ hour; G-sensitive drift - 100/hour/g;

Scale factor error - 1%;

Measurement noise: white, Gaussian, zero mean value, ¢ =10/s;
Accelerometers: Bandwidth - 150 Hz;

Bias - 0.1 m/s?; Resolution - 0.05 m/s?;

Scale factor error - 1%;

Measurement noise: white, Gaussian, zero mean value, g =0.1 m/s?
The accuracy of an INS was analyzed using the complete 6-DOF horizontal flight
simulation. As a way of on-line accuracy improvement, the Kalman filter was applied in
order to make the filtration of rate gyro signals. This one was based on the linearized
dynamic models in pitch and yaw channels. The results of the Kalman filter application in
the estimation of pitch rate and pitch angle during the interval of ten seconds of horizontal
flight are illustrated in Figure 1.

2.2 Fundamentals of a Dynamic Vision Based Navigation

The linear position of a moving object carrying a TV camera on-board relative to the
environmental elements can be reconstructed either from one frame or from a sequence of
frames. In the first case, a number of characteristic scene objects' features should be
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extracted. The other approach, known as a dynamic vision, generally allows usage of a lower
number of extracted and tracked features. If some additional information about linear and
angular velocities or about angular orientation are known, the task can be radically
simplified, allowing the tracking of just one reference object's feature [Frezza et al., 1994],
[Menon et al., 1993]. In both cases, if the absolute position of a reference object in ICF is a
priori known, the whole method can be interpreted as a reconstruction of the absolute
position of a moving object - visual navigation.
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Fig. 1. The effects of application of Kalman filter in the estimation of pitch rate and pitch
angle.

The dynamic vision method has been applied in this paper. Supposing that external
information about linear and angular velocities of a moving object exists (supplied by an
INS), the number of tracked features is reduced to one. In the case of an autonomously
guided flying vehicle, typical ground reference objects could be bridges, airport runways,
cross-roads, distinguishable buildings, or other large stationary landmarks located at known
absolute positions. The task of a VNS consists in extracting the image of landmark itself and
after that, calculating the position of some easily recognizable characteristic point (e.g., a
corner). If the image of a whole landmark occupies just a small portion of the complete
image, it is more reasonable to calculate the position of its centroid instead.

Primary detection (recognition) of a landmark is the most critical step. It is supposed that
this task is accomplished using a bank of reference landmark images made separately in
advance, under different aspects, from different distances, and under different visibility
conditions. Once primary automatic detection has been done, the subsequent recognition is
highly simplified. The recognized pattern from the actual image becomes the reference one
for the next one, and so on.
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In an ideal case, the only required information is regarding the shift of the characteristic
point between two consecutive images. The existence of image noise and different other
reasons may cause an erroneous calculation of a characteristic point location inside the
picture. In order to minimize these effects, a greater number of characteristic points and/or
consecutive frames should be analyzed.

Dynamic equations describing the stated approach are the following:

Xy 0 -wy o |x v X2 (5)
d _ {f"l}_ X
—|x; |=| o3 0 - |x|+|vy | = x; #0
dt ya] |55

X3 -, @ 0 | x;

V3 -"1
State vector 3=[y, r, x;J7represents the position of a reference point with respect to viewer

=

frame, while coefficient vectors v =[v; v, v;]  and G =[w, w, ;] represent
relative linear and angular velocities, also expressed in the coordinate frame fixed to the
moving object. Measured outputs of this nonlinear dynamic system consist of two
projections of the reference point onto the image plane (picture coordinate frame - PCF) which
is perpendicular to the x; axis, at a conventional distance f=1 from the origin. If the relative
positions are known, the task consists of motion parameter estimation (coefficient vectors
identification). If the motion parameters are known, the task is of state estimation nature
(structure reconstruction). The second case is considered here.

If in some following moment of time (e.g., in the next frame) the state vector has the value
[y +Ay, x,+Ax, x;+Ax], there would exist the shift of an image of reference point in PCF

given as

A Aw Ay (6)

Ax;
Ay =f 2 1 Y2
X1 +Ax Xy +Axy X1 +Ax

Xp +Ax -

The variation of position A¥=[Ax, Ax, Ax,] is produced by the linear motion of a moving
object a5, as well as by its change of angular orientation, defined now by matrix
transformation 7,,, +a7,,, instead of the previous T;,p. After appropriate geometrical
recalculations it could be shown that the variation of the relative linear position is
represented as

Ax =T¢ [ATI/BTITB (TCI;C + i)_ Ty 5 + ATy )A;CIJ' Y
where the linear position of the camera relative to the center of gravity of a moving object is
denoted as 7 , while the angular orientation of a camera relative to the BCF axes is
represented via transformation matrix 7,.. Both these parameters are known because they
are either constant ones or can be measured easily.
After division of both sides of (7), one obtains

Axy /x; 1 h/x Axg [x; (8)
Axy [x) |=TcAT; BTIT/RTCT nlf +TCAT//BT/T/B L/x |=Tc(Ty 5 + ATy 5) Avy /%)
Axy [x) »lf I3/x) Azp /x)

Supposing that 7., f, and I are known and that 1,,, and 1, . +AT;,, are supplied externally
as well as AX; (e.g., by an INS), the task of VNS consists in determining the pair of

coordinates in PCF (y1, 12) and at least one of the displacement components (6). Combining
three scalar equations (8) with the proper one in (6), it is now possible to determine four

unknown variables (Ax,,Ax,,Ax;,x,). Once X; is calculated, one can reconstruct the remaining
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two components of the relative position vector (x, and x3) from the output part of (5). The

knowledge of relative position vector x and of the absolute position of the characteristic
point in ICF is sufficient to reconstruct the absolute position of a moving object.

The crucial problem from an image processing point of view is how to determine the
locations of characteristic points in PCF as accurately as possible. There exist a number of
methods of distinguishing objects of interest inside the image. Practically all of them are
application dependent. Various sequences of image enhancement/digital filtration
procedures, segmentation approaches using multilevel gray or binarized picture,
morphological filtration algorithms, etc. making these procedures, must be carefully chosen
according to the actual scene contents.

Computer generated images of ground landmarks are used throughout this work. A
relatively simple correlation technique consisting of matching of actual image contents and
a reference pattern has appeared as the most robust one. It is based on calculation of a sum
of absolute differences of light intensities inside the window scanning across the image. The
feature has been defined as the light intensity distribution inside the rectangular window of

n; =N, n, pixels around the characteristic point. The displacement of characteristic point

(Ay;,Ay,) is calculated by maximizing the similarity of the actual image and the previous

one, i.e., minimizing the criterion given as a sum of absolute values of differences (MAD) of
light intensity In:

L :fz‘lw()’l +AYL Y, +AY,) - 1.\/71(."1«."2)‘ ' ©
The efficiency of the stated algorithm will be illustrated using the sequence of textured
images of a bridge. The nearest holder has been used as a reference object while its crossing
with the left edge of a runway was selected as a characteristic point (Figure 2.) Figure 3.
illustrates matching results obtained for the multiple level gray and binarized pictures. The
brightest points inside the black window are pointing to the locations of maximal similarity.
The reference window was of dimensions 25 X 25 pixels. Higher sharpness of candidate area
in case (a) suggests that one could expect better results if the multiple level gray pictures
were used.

i -.-'i"'
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Fig. 2. Sequence of textured images of a bridge used as a landmark.

When the sequence of frames shown in Figure 2. was used for navigation purposes, the
results given in Table 1. have been obtained. It is supposed that the angular position of the
camera is constant during the observed time period (yaw angle, 12°, pitch angle, -5, roll
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angle, 0°). The linear velocities of the moving object are exactly known and constant also (Vx
=500 m/s, Vy =100 m/s, and Vz = 0 m/s). Position estimates given in Table 1. were
obtained using the pairs of frames 1-2, 1-3, and 2-3.

(@) (b)
Fig. 3. Extraction of a characteristic point inside: (a) multiple level gray and (b) binarized
picture.

Position in frame 1. Position in frame 2.
Exact Estimate Exact Estimate
Based on pairl- | Based on pairl- Based on pair2-3
2 3
X (m) 600 606 535 400 357
Y (m) 200 199 187 160 152
Z (m) 100 100 94 100 96

Table 1. Moving object position estimation using dynamic vision from sequence shown in
Figure 2.

2.3 Fundamentals of an Autonomous VNS

The fundamental step in an autonomous VNS based on the processing of just one image
consists of the calculation of the relative distance and angular orientation of a camera
relative to the reference object (landmark) located in a horizontal plane of ICF (Figure 4.)
[Kanatani, 1993].

Fig. 4. Reference object in the field of view of TV camera.
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Supposing a landmark of rectangular shape of known dimensions and the cross-section of
its diagonals as a reference point adopted as the origin of ICF, the position of the camera
relative to this point could be obtained from just one image by the following algorithm:
1. Calculate the normalized vectors for all four projections in PCF of corners A, B, C,
and D. Each one of these m-vectors is a vector representing projection of the
appropriate point 5 =[1 y, ]T , divided by its Euclidean norm.

i2
2. Calculate the normalized vectors for all four projections of the edges AB, BC, CD,
DA, as the normalized cross-products of m-vectors above. Elements of these n-
vectors specify the equations of image lines encompassing the projections of the
appropriate pair of corners.
3. Calculate the m-vectors of vanishing points P and Q, as cross-products of n-vectors
above, representing the projections of parallel edges of a reference object.

1.  Calculate the n-vectors of diagonals AC and BD as in case of image lines
representing the edges (2).
2. Calculate the m-vector ;; o of the point at the cross-section of diagonals O, as in
case of vanishing points (3).
3. Choosing any one of the corners as the point at known distance d from the
reference point O, calculate the scene depth:
H myéps -d . (10)

“Toer iy —igers o]

representing the distance between camera's sensitive element and the reference
point O. The m-vectors 7, and j;, are related to the reference point O and the

chosen corner I. The m-vectors of vanishing points 7;,and i, are at the same

time the basis vectors of reference coordinate frame with its origin at O. The ort of
direction perpendicular to the plane containing the reference rectangle is
obtained as ;, =, Xifig -

4. Calculate the position of a camera relative to the reference point as
R=—|R|-Tping- (1)

where 7,-[5, ¢, &I =|p g ,gpx,hQ]T represents the transformation matrix

12
due to rotation of the frame fixed to a camera (BCF) in respect to the coordinate
frame fixed to the reference object (ICF).

The above explained algorithm reflects just a geometrical aspect of a problem. Much more

computational efforts are associated with the image processing aspect, i.e., with the problem

how to distinguish the reference object and its characteristic points from the actual contents
of an image. It should be noted that the final effect of this process consists of some

deteriorated accuracy in the determination of image coordinates of the reference points. A

lot of scene dependent conditions affect the extraction as well as some system parameters

(image noise, level quantization, space resolution). An image noise is dominantly associated

to TV camera itself and it is usually considered as a zero-mean, Gaussian, white noise with

specified standard deviation (expressed in number of intensity quanta). The later two
systematic sources of inaccuracy are due to the process of image digitization. While the
effects of the finite word length of a video A/D converter are of the same nature as the
effects of image noise, the finite space resolution has the direct influence onto the final
accuracy of position estimation, even when the reference object is ideally extracted. The
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finite number of picture elements, pixels, along the horizontal and vertical directions inside
the image, makes the limits for the final accuracy. However, this effect is strongly coupled
with the size of camera's field of view and the actual distance between a camera and the
reference point. The error expressed in pixels has its angular and linear equivalents in
dependence on these parameters.

The redundancy in geometrical computations is generally suggested for the VNS accuracy
improvement. Instead of a theoretically minimal number of considered points required for
some calculation, the number of points is increased and some appropriate optimization
procedure is usually used in order to filter out the effects of noise in determination of a
location of any particular characteristic point. For example, instead of starting with the
determination of the positions of corners in above mentioned algorithm, one can start with
the detection of edges and find the equations of image lines by the best fitting procedure
considering the whole set of edge points (not by using just two of them as before). Now the
m-vectors of corners are obtained as cross-products of the appropriate n-vectors and the
remainder of algorithm is the same. Similarly, the final accuracy can be significantly
improved if one repeats the explained algorithm using different corners as reference ones
and finds the weighted average of results. All these methods used for the accuracy
improvement increase the overall computational effort. Therefore, it is of a great importance
to find the way how to obtain the same or better accuracy using a less number of considered
points or the less complex image processing algorithms.

3. Principles of Data Fusion

Main conclusions related to the quality of information about linear and angular positions of
a moving object relative to ICF, obtained by INS and VNS separately, are the following;:
The accuracy of the SDINS based algorithm
e depends on a slowly varying bias (drift) and a measurement noise of inertial
Sensors;
e decreases in time due to cumulative effect produced by these errors;
e depends on errors in initial condition estimation (angular and linear positions and
velocities);
e could be improved by recursive optimal state estimation; and
e is affected by slowly varying bias introduced by rectification.
The accuracy of the VNS based algorithm
e depends on the reference object's visibility conditions;
e depends on TV image noise as well as on quantization made by video signal
digitization;
e depends on the relative size of a reference object inside the field of view (increases
while the moving object approaches the reference one);
e depends on the shift(s) of the characteristic point(s) between two consecutive
frames and increases in the case of larger ones; and
e could be improved by increasing the number of tracked points and/or analyzed
frames.
Having in mind the fact that the error sources inside these two systems are different and
independent, the possibility of their fusion is considered. The combined algorithm of linear
and angular position estimation is based on a suitable definition of a criterion specifying the
likelihood of partial estimations.
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It is supposed in the general case that both algorithms are active simultaneously and
autonomously. Autononous estimations from one algorithm are being passed to another one
in order to obtain new (assisted) estimations. Resultant estimation on the level of a combined
algorithm is always obtained as the weighted average value of separate ones. The weighting
factors are calculated according to the adopted criteria about partial estimation likelihood.
The following formalism has been adopted:

the transformation matrix connecting BCF and ICF, generally noted as 7//5 will be
represented just as T7;

all vectors representing angular and linear velocities and linear positions are
relative to ICF;

lower indexes I and V are referencing the estimated variables to the estimation
originating system (I - inertial, V - visual);

autonomously estimated variables are noted by upper index ';

upper index " stands for the estimate based on the information obtained from other
system (assisted one);

The general procedure consists of the following steps:

1.

SDINS generates its autonomous estimates of angular rate vector g,
transformation matrix 7y, linear velocity vector '/, and space position ¥, .
Based on T and a priori known position of a reference object in ICF, VNS

searches the field of view inside the expected region. It finds the image of the
reference object and calculates the coordinates of characteristic points in PCF.
Adopting ¥ as a priori known initial position estimation (scene structure), VNS
identifies from the sequence of frames the angular rate vector @ and linear
velocity vector 7.

Adopting the estimations & and J/ as accurate ones and on the basis of

landmark's image position measurements in the sequence of frames, VNS
estimates the position vector 3.

VNS autonomously generates its estimation of y and 7’ by tracking of more

characteristic points in one frame.
INS takes the estimation 77 from VNS and applying it onto the vector of measured

accelerations in BCF and by double integration calculates the new estimation of
position 7.
Inside INS, the resultant moving object position estimate is obtained as

X =K%y + (1=K )R] - 12)
Inside VNS, the resultant moving object position estimate is obtained as

Yp = Ky %) + (1=K )57 - (13)

The resultant estimates on the level of a combined algorithm are obtained as

=K Ep (1=K, S

&=K, @) +(1-K, )y, - (14)

V=KV +(1-K, Wy

T=K,T/+(1-K,)T}
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One can note that inside the VNS part, autonomous estimation of linear and angular
velocities has been omitted, supposing that in "out-door" applications a lot of points and
frames must be used for this purpose, introducing a computational burden this way. For
"in-door" applications, where it is possible to process just a relatively small number of
points, there exists the reason to produce these estimates also. Based on this additional
information, the calculation in the INS part could be extended in order to include 77 (based

on @) and another calculation of ¥, (based on J}/), increasing the total number of position

estimates in INS from two to four.

Besides the general limitations regarding the computing time required to implement this
combined algorithm, as the most important step, one should analyze the likelihood of
partial estimates. As the practical measure of decreasing of computing time, one can always
consider the possibility to exclude some of the steps 1. - 9. completely, especially if it is a
priori possible to predict that their results would be of insufficient accuracy.

Generally speaking, the choice of weighting factors in (14) is a critical step in the whole
combined algorithm. It is possible by an improper choice to obtain the resultant estimates
worse than in the case of application of a separate algorithm (better among two). While the
specification of weighting factor variations is in large extent application dependent, there
exists the interest to define some basic principles and adaptation mechanisms, having in
mind the nature of errors in INS and VNS. In the particular case of extremely short working
time of inertial sensors and good visibility conditions, one can specify constant values of
weighting factors, but in the general case it is more adequate to assume that accuracy of
separate estimates is changeable and that values of weighting factors should be adapted
accordingly.

The first principle regards to the general conclusions about the overall accuracy of INS and
VNS stated above. While the accuracy of position estimates in INS is always decreasing in
time, the evaluation of accuracy of results obtained by VNS is more complex. As the first,
there exists the possibility that this algorithm could not be applied at all (e.g., when a
reference object is outside the field of view, for the case when it could not be distinguished
uniquely between a few potential ones, etc.) This situation is not possible in an INS except in
case that some of the inertial sensors completely failed. As a second, assuming that moving
object equipped by a TV camera approaches the reference one in time, it is realistic to expect
that overall accuracy increases. However, this increasing is not a continuous one. While by
approaching, the relative errors really are smaller for the fixed value of absolute error in
determination of characteristic points' coordinates in PCF (expressed in pixels), one can not
guarantee that the last ones could not be larger in the next frame. For example, partial
occluding of a reference object after it has been detected and tracked in a number of frames
could deteriorate the accuracy in large extent. According to this reason, it is assumed that
the accuracy of VNS estimates increases in time linearly, from a minimal to maximal one.
Simultaneously, using the mechanism of monitoring of VNS estimates, the basic principle is
corrected occasionally.

There follows the procedure of adaptation of weighting factor K; :

1. Before the reliable detection of a reference object inside VNS it is set to: Ky=1.

2. Reliable detection criterion is based on similarity measure between the actual scene
contents and the memorized reference pattern. Based on the estimated linear
position and transformation matrix obtained by INS, the part of algorithm
belonging to VNS makes the required rescaling and rotating of memorized pattern.
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It is required that in the window of specified dimension, the value of functional L
in the MAD algorithm (Eq. 9) should be lower than the specified threshold value,
in N frames continuously. Let’s assume that inside the window of dimension 25 X
25, the threshold value is Lyqx = 5. In this case, if the average absolute difference in
light intensities for 625 observed points is less than approximately two quanta, it is
supposed that the reference object is detected. After that it is assumed that both
autonomous and assisted estimations could be calculated in VNS reliably.

3. VNS starts with tracking of characteristic points of a reference object. The
autonomous estimates 3, and T, as well as the assisted ones ( X @ and [7;) are

being calculated. The scene content inside the window around the characteristic
point becomes the reference pattern for the next frame analysis.

4. After reliable detection of the reference object in VNS, weighting factor K; starts to
decrease linearly in time.

5. The minimal value of this factor K, should be specified for any particular
application.

6. The time required for K; to reach the minimal value is calculated in the VNS part at
the beginning of tracking. This calculation based on initial data obtained by INS
(position, angular and linear velocities) gives the estimated time of existence of a
reference object inside the TV camera's field of view. It is assumed that the moving
object approaches the reference one.

7. The similarity measure L is monitored during the tracking of characteristic points.
If in the actual frame this one is larger than in the previous one, weighting factor K;
holds the previous value.

8. If at any of the frames the similarity measure is worse than the critical one used as
a criterion of reliable detection (L > Ly.«), weighting factor K is to be reset to value
1 and a detection procedure of a whole reference object is repeated again (back to
step 1.).

9.  If the conditions of losing the reference object from the field of view are the regular
ones (the estimated time of existence has been expired), weighting factor K is also
reset to the value 1, but the new acquisition of the actual reference object is not
going to start. VNS starts a state of waiting on the new reference object recognition.

As it is obvious, parameters like window dimensions, similarity measure threshold, Ly, number
of frames used for reliable detection, and minimal value of weighting factor for INS estimates (it
is at the same time the maximal value of weighting factor for VNS estimates), should be
considered as the free ones. They should be carefully specified for the particular application.

It can be noted that in the described procedure the INS part is considered as "master" while
the VNS algorithm autonomously evaluates the accuracy of its own estimates at the primary
level (correlation between the actual window contents and the actual reference pattern). The
described procedure regards to the most general case: flight of a moving object along the
specified trajectory with the existence of a number of reference ground objects as
landmarks. All cases where the reference object is always present in the field of view are
considered as particular ones. For these cases it is reasonable to consider the maximal value
of weighting factor K; as free parameter also (to adopt it as less than 1).

In the expressions (12) and (13) there are the weighting factors affecting autonomous and
assisted estimates inside both parts of the algorithm. The way of their adaptation should be
considered also.
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The position estimate in INS is expressed via (12). If the detection of a reference object in
VNS does not exist (K; = 1), the only available estimate is the autonomous one (Kj; = 1). As
the assisted estimation ¥/ is obtained applying the transformation matrix 77 onto the

accelerometers' outputs directly, validity of this matrix affects the weighting factor for the
assisted estimate. The simple validity measure for the transformation matrix is its
deviation from orthogonality. If its determinant det7; is outside the specified tolerances
(e.g., 1£0.1), it is reasonable to assume that this estimate is not valid and to reject it (Ki; =
1). If 77 is approximately orthogonal, two cases are possible in general. In the first one,
the estimates X and ¥ are close (e.g., differences between all coordinates are below the
specified values). According to that, Ki; decreases linearly from the value of 1 to 0.5
minimally, depending on det7’. The minimal value (equal weighting of autonomous and
assisted estimations) is approached when det7’ is inside the small tolerances (e.g.,

1+0.01). The second possibility is that 77 is approximately orthogonal, but the differences

’

between estimations X

and 3/ are outside the specified tolerances. This is the case when

one can assume that the likelihood of an assisted estimate is higher than that of the
autonomous one. As a result of this Ky should also decrease as previously, but now from

maximal value of 1 to  Kjuin < 0.5, depending again on the value of det Tv . Whatever
weight is assigned to 37 one should note that the resultant position estimate in INS is
always dominantly dictated by inertial instruments. At this step, just position increments
are being calculated in the combined manner, while the initial conditions are determined
by previous results of INS only.

The expression (13) defines the fusion of data on the VNS level. The basic condition for its
application is the reliably detected reference object (K; < 1). If the autonomous VNS
estimate of angular position is bad (i.e., det7’ is outside the specified tolerances) the
autonomous linear position estimate ¥/, is going to be bad also, and accordingly, weighting
factor Kyy takes the minimal value close to zero. While det T approaches the value 1, this
weighting factor increases linearly up to the maximal value Kyyiusx. It should be noted again
that whatever weighting is assigned to 55,’,’, calculations in the VNS part are basically
dependent on the angular position estimate. Possible invalid estimates % due to

accumulated inertial sensors’ errors are of no importance here, having in mind that
calculation of 3/ is based on actual filtered signals g and /.

4. Simulation Results — Vision Aided INS

The part of an airport runway was considered as a reference ground landmark in vicinity of
nominal trajectory. The middle point of a nearer edge is located at known position
%ro =[50000 500 o] in ICF. The interval from t = 77s to t = 83s, in which the existence of a
landmark could be expected inside the field of view, is predicted on the basis of known
fixed parameters of an electro-optical system: angular position of camera relative to BCF
(le, & &= [100 _50 00]7 , focal length, f =1, field of view width, ¢ =15°). Acquisition of
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a reference object is done during the first second of this interval (ten frames). The assumed
image of a landmark is obtained using erroneous data from INS. These data are obtained
after optimal filtration of the rate gyro signals made inside INS and the linear position
errors on observed interval are quantitatively represented in Figure 5.
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Fig. 5. Position errors of unaided INS during correction interval.

The quality of pitch angle estimation made by INS is illustrated in Figure 6.
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Fig. 6. The exact and estimated values of pitch angle during the correction interval.

Since the estimated values of pitch angle have been obtained using one possible realization
of simulated sensor noise, their generation for the purposes of combined navigation method
illustration is made using statistical properties of observed time history. The parameters

calculated from Figure 6. are: mean value, 1§ = 9.6 mrad, and standard deviation, Oy =
Sr

0.59 mrad. Approximately the same standard deviations have been obtained for other two
Euler angles, while their mean vales are equal to zero. The transformation matrix To is
generated using the Euler angle estimates generated stochastically.

The fact that in the first frame there is a difference between the actual image of reference
object and the expected one is illustrated in Figure 7.

The window of dimensions 25x25 pixels around the lower left corner of a runway was
used as a reference pattern. During the first ten frames inside a correction interval,
maximum similarity measures formed as a sum of light intensity absolute differences are
shown in Figure 8.

Minimum values of MAD criterion are lower than the adopted threshold value of Ly =5 in
five consecutive frames at t = 78 s. It is assumed that the acquisition phase was finished at
this time. The next step consists in calculation of the expected time of presence of the
characteristic point inside the field of view. It is equal to 5 s for this particular example
(under the assumption that linear and angular velocities would be constant). Figure 9.
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illustrates the expected contents of the field of view in the interval of next five seconds after
the approval of acquisition.

actual image
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Fig. 7. The expected and actual images of a reference object at the beginning of correction
interval.
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Fig. 8. Maximums of similarity measures during the first second of acquisition interval.

Fig. 9. Expected motion of a reference object during the interval of correction.
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According to this, the variation of weighting factor K; is defined as

1-78). (15)

The effects of the combined algorithm will be illustrated in the final portion of the correction
interval. The last five frames are shown in Figure 10.

t=824s t=826s t=828s
Fig. 10. Sequence of runway images at the end of correction interval.

t=822s

The exact and estimated positions of a moving object are given in Table 2.

t=82.2s t=824s t=82.6s t=82.8s
x [m] z [m] x [m] z [m] x[m] | z[m] x [m] z [m]
Exact 48022 200 48135 200 48250 200 48364 200
INS 48295 267 48409 267 48525 267 48640 267
VNS 47997 205 48204 199 48236 203 48362 200
Comb. 48070 220 48247 213 48286 214 48400 209

Table 2. The exact and estimated positions of an object in ICF.

The same results are shown graphically in Figure 11.
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Fig. 11. Comparison of position estimations at the end of correction interval: (a) - range, INS
versus exact, (b) - range, VNS versus exact, (c) - range, combined versus exact, (d) - height,
exact (circle), INS (square), VNS (cross), combined (star).
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As it is obvious from (a), the error in INS is very slowly increasing. From (b) one can see
very accurate estimates of VNS while quantization errors as well as errors in determination
of characteristic point location occasionally introduce some larger position errors (t = 82.4 s).
Because of maximal weighting of VNS estimations at the end of the correction interval,
beneficial effects of combined algorithm are obvious from (c). Analyzing the results of
height estimation (d) one can conclude that the VNS algorithm is extremely accurate,
making the results of combined algorithm satisfactory also (suggesting that it is possible to
assume an even lower minimum value than Kp;, = 0.1).

5. Simulation Results — VNS Assisted by INS

5.1 The Definition of Navigation Tasks

Two particular “in door” navigation tasks have been specified in order to compare the
results of application of an autonomous VNS and a dynamic vision navigation
algorithm representing a VNS assisted by the acceleration measurements produced by
reduced INS:

(Task A): Moving object has got three linear degrees of freedom. In forward direction it
moves with the constant velocity (10 m/s). The camera is mounted as forward looking. The
initial position of object is assumed as 5 m out of navigation line in lateral direction and 5 m
above. The navigation line consists of sequence of rectangular shapes located in the ground
plane. The dimension of these landmarks is 1.5 m X 0.15 m with 1.5 m distance between
them. The linear velocities in lateral (V,) and vertical (V) directions are controlled and
limited to 5 m/s maximally. As a result of a navigation algorithm the actual commanded
values of these velocities are calculated as proportional to the estimated distance from
center-line of navigation line. The task consists in approaching the navigation line in lateral
direction and following of it further. At the same time, a moving object should approach the
ground plane (camera at the fixed distance of 1 m above) and continue to move at this
height.

t=00s t=06s t=12s t=18s
Fig. 12. Sequence of navigation line views (A).

The contents of camera's field of view are computer generated. Figure 12. illustrates the
sequence of frames generated at 0.6 s inter-frame interval assuming the ideal work of the
VNS algorithm (noise-free images, infinite resolution, without camera vibrations).

(Task B): This task consists of the planar motion control - tracking and following of the
curved navigation line. This line consists from two connected circular segments. Their
dimensions have been adopted according to the available equipment (see 5.3). Eight
approximately rectangular black landmarks of known dimensions are equidistantly placed
along the line. A TV camera is forward looking and mounted at 50 mm above the ground
plane (Figure 13.)
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This navigation task consists in the following:

1) Determine the distance from a camera to the reference point belonging to the
landmark;

2) Determine the orientation of the landmark in the ground plane; 3) Generate the
commands for the translation up to the point above the tracked one and for the
rotation of a camera around the vertical axis in order to follow the sequence of
landmarks.

The autonomous VNS algorithm uses two nearer marker corners for the calculation of scene
depth. The determination of marker orientation requires that all four marker's corners
should be visible in one frame. If the analyzed marker is partially visible, the algorithm
automatically rejects it and analyzes the next one.

In the algorithm based on dynamic vision the linear velocity components are obtained via
integration of the accelerometers' signals. In comparison to the autonomous VNS algorithm,
the advantage is in the fact that it is enough to track just one landmark corner here. On the
other hand, at least two consecutive frames containing the tracked point are required in
order to estimate the distance. As a result of this, any selection of the reference point must
be preceded by the prediction whether this one would be visible in the next frame. The
other disadvantage resulting from the same reason consists of the fact that the navigation
should be initialized by a priori known motion in order to acquire the initial information
about marker position and after that to adjust the control action according to it. In other
words, in comparison to autonomous VNS there will be always "one frame delay" whenever
the tracked point is changed.

Additionally, while the autonomous VNS algorithm has the ability of autonomous
estimation of landmark’s orientation (needed in order to improve the conditions of
landmark distinguishing), there is no such possibility in the case of a combined algorithm.
As a result of this, the command for rotational motion is generated here on the basis of a
ratio of velocity components and the camera is oriented in direction of a velocity vector
(which is directed toward the tracked point - direct guidance).

5.2 Simulation Methodology

The estimated positions of characteristic points in the image plane are obtained as the ideal
ones additionally corrupted by white, Gaussian, zero-mean noise with standard deviation
sigma =1 pixel. The camera vibrations are also simulated as a noisy process. The pitch, yaw,
and roll angles are simulated as white, Gaussian, zero-mean noise with standard deviation
sigma = 10.

For the task (B) the algorithm explained in Section 4.3 is applied always for the nearest,
completely visible element of a navigation line (four corner points). The algorithm
presented in Section 4.2 is based on the tracking of one of the corners of the same part of
navigation line as in the previous case.

5.3 Experimental Rig Set-up

The experimental acquisition of images is done using the educational robot "Kestrel" with
three degrees of freedom in linear and one degree of freedom in rotational motion, driven
by step motors, equipped with CCD TV camera (KAPPA CF16/4 P) and using the frame
grabber with resolution of 512 X 512 pixels ("Targa")

A photograph of the experimental rig set-up is shown in Figure 13.
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Fig. 13. Experimental rig set-up.

The initial sequence of frames produced by a TV camera during the navigation task (B) is
presented in Figure 14.

Fig. 14. Experimental sequence of frames produced during the navigation task (B).

The processing phases for the first frame of Figure 15. are illustrated in Figure 15.
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(a) (b) (c)

Fig. 15. Results of a processing of frame (1) from Figure 14.

(a) Result of a preprocessing (equalization of image histogram, noise elimination,
sharpening); (b) Result of a segmentation based on intensity level; (c) Result of a
morphological filtration (cleaning of edges, erosion, dilatation); (d) Inverted result of the
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image processing superimposed to the original image in order to notice the differences
between the actual landmark and determined one.

5.4 Results

The results obtained by the application of algorithms of the autonomous VNS and with
assistance of the linear acceleration measurements (dynamic vision) for the task (A) under
the methodology defined at 5.2 are shown in Figures 16. and 17. The dashed lines
represent in both cases the ideal trajectories obtained for the ideal position estimates
(exactly calculated positions of characteristic points, infinite space resolution). The solid
lines illustrate the trajectories obtained by the simulated application of described
algorithms (through circular symbols representing the actual positions of moving object).
The square symbols are used to mark the positions estimated by the navigation
algorithms.
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Fig. 16. Simulation results obtained using an autonomous VNS algorithm (A).
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Fig. 17. Simulation results obtained using the dynamic vision algorithm (A).

Comparing these results one can conclude that the trajectories obtained in lateral directions
are of similar quality. The advantage of the dynamic vision algorithm is noticeable in the
case of navigation in vertical direction. Superior quality of position estimates made that the
reaching of the final height of 1 m is much "softer" in comparison with the result obtained
via autonomous VNS (landing velocity of 1 m/s in comparison to 3.1 m/s). The inherent
disadvantage of a dynamic vision algorithm consisting of "one frame delay" is slightly
visible. Its repercussion is the requirement to include in image processing algorithm the
additional prediction whether the considered marker would be present in the next frame in
the field of view. In spite of this, the image processing part of algorithm remains here less
time consuming in the comparison to the autonomous VNS algorithm.

The results illustrating navigation task (B) for both autonomous VNS algorithm and
combined one are as follows.

Figure 18. illustrates very good results in the estimation of landmarks” angular orientations
obtained via autonomous VNS algorithm. The solid line through the circular symbols
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represents the actual average values of orientation angle while the dashed line through the
square symbols represents the estimated ones.

Vi Irad)
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Fig. 18. Estimates of landmarks’ angular orientations obtained by the autonomous VNS
algorithm (B).

As a result of these accurate estimates, the landmarks are always visible in approximately
the same way in a camera's field of view. The trajectory obtained as a result of navigation
line following in this case is presented in Figure 19. The initial location was 60 mm behind
the coordinate origin. The autonomous VNS algorithm generates the commands positioning
the moving object at the location behind the next landmark, at the same distance and along
the direction of its orientation. Circular symbols represent the positions of tracked corners of
eight landmarks while the square ones represent the consecutive positions of a moving
object.
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Fig. 19. Following of the navigation line by the autonomous VNS algorithm (B).
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In the case of a combined algorithm it is more appropriate to track the further corners of the
nearest landmark (they should be present in the field of view in two or more frames). At the
very beginning, the motion is started in pre-specified direction in order to acquire the
information about the position of a tracked point in the first two frames. After that, the
commands moving the object above the tracked point are generated, while the camera is
rotated in order to be oriented in direction of a motion. When the new object of "upper left
corner" type is detected inside the image, its relative position is calculated in two next
frames and the new commands for the linear and angular motion are generated.

Figure 20. illustrates the result of application of a combined algorithm in navigation task

(B).
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Fig. 20. Following of the navigation line by the dynamic vision algorithm (B).

Due to more meaningful changes in the image contents, one can not recognize here the
regularity characterizing the previous case. On the other hand, the reduced amount of
calculations allows the higher sampling frequency. As a result of this, a quality of following
of the navigation line was slightly better in comparison to the result shown in Figure 19.

6. Conclusion

The algorithm of fusion of data originating from the strap-down inertial navigation system
(INS) and the dynamic vision based visual navigation system (VNS) has been suggested for
the general case when the appropriate landmarks are in the field of a TV camera’s view. The
procedure is of weighted averaging type, allowing the adjustment of weighting factors
having in mind the physical nature of errors characterizing both systems and according to
the self-evaluation of some intermediate estimates made inside the VNS. The overall
procedure could be reasonably reduced according to the particular application and to some
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a priori knowledge about the possible system errors by excluding some of the possible
autonomous or assisted estimates.

Two particular examples have been used in order to illustrate this approach. In the first one,
typical for the aerial vehicle motion control, the scenario was constructed under the realistic
assumptions about the technical realization of a system, visibility conditions, and the noise
levels inside the inertial sensors and in a TV image. It can be concluded that the INS
position estimates could be efficiently improved by using the assisted estimates produced
by the VNS. While for the height corrections in the INS one can always use a barometric
sensor as a simpler solution, the actual benefits of this type of combined algorithm are
mostly in the improvements of the position estimates in a horizontal plane (range, lateral
deviation from nominal trajectory).

The second example is typical for the mobile robot applications as well as for the automatic
motion control of the road vehicles. It represents the integration of a VNS and a reduced
INS (just the acceleration measurements integrated in order to enable a dynamic vision
based algorithm). This system has shown the advantages in comparison to the autonomous
VNS. These consist mainly in the reductions of the computations regarding the
distinguishing of the characteristic points of a reference object as well as in some
improvements of a position estimation accuracy also (as a consequence of a relaxing the
overall accuracy dependence on the results of image processing part of algorithm only).
Finally, it should be pointed out that a VNS algorithm assisted by the INS data requires no a
priori information about the shape and dimensions of the reference objects, which is
beneficial also.

The analyzed examples are relatively simple ones but still meaningful for the vehicular
motion control applications. More complex tasks including the rotational degrees of
freedom should be considered as the more general cases of a fusion of VNS and INS, where
the set of inertial instruments can be extended by using of the rate gyros. This way, the
complex and noise sensitive procedures of determining of an angular orientation of a
mobile robot or a vehicle, based on a machine vision alone, can be replaced by the usage of
the inertial sensors' data. The future research is going to be oriented in this way.
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1. Introduction

The goal of our research is to give mobile robots the ability to deal with real world instructions
outdoors such as “Go down to the big tree and turn left.” Inherent in such a paradigm is the
robot being able to recognize a “big tree” and do it in unstructured environments without too
many pre-mapped fixed landmarks. Ultimately we envision mobile robots that unobtrusively
mix in with pedestrian traffic and hence traveling primarily at a walking pace. With regard to
sensors this is a different problem from robots designed to drive on roadways, since the
necessary range of sensors is tied to the speed of the robot. It's also important to note that
small mobile robots that are intended to mix with pedestrian traffic must normally travel at
the same speed as the pedestrians, even if they occasionally scurry quickly down a deserted
alley or slow way down to traverse a tricky obstacle, because people resent having to go
around a slow robot while they are also easily startled by machines such as Segways that
overtake them without warning. At walking speeds the range of sonar at about 50kHz is
optimal, and there are none of the safety concerns one might have with lidar, for example. This
type of sonar is precisely what bats use for echolocation; the goal of our research is to employ
sonar sensors to allow mobile robots to recognize objects in the everyday environment based
on simple signal processing algorithms tied to the physics of how the sonar backscatters from
various objects. Our primary interest is for those sensors that can function well outdoors
without regard to lighting conditions or even in the absence of daylight. We have built several
3D sonar scanning systems packaged as sensor heads on mobile robots, so that we are able to
traverse the local environment and easily acquire 3D sonar scans of typical objects and
structures. Of course sonar of the type we're exploring is not new. As early as 1773 it was
observed that bats could fly freely in a dark room and pointed out that hearing was an
important component of bats” orientation and obstacle avoidance capabilities (Au, 1993). By
1912 it was suggested that bats use sounds inaudible to humans to detect objects (Maxim,
1912) but it wasn't until 1938 that Griffin proved that bats use ultrasound to detect objects
(Griffin, 1958).

More recently, Roman Kuc and his co-workers (Barshan & Kuc, 1992; Kleeman & Kuc, 1995)
developed a series of active wide-beam sonar systems that mimic the sensor configuration
of echolocating bats, which can distinguish planes, corners and edges necessary to navigate
indoors. Catherine Wykes and her colleagues (Chou & Wykes, 1999) have built a prototype
integrated ultrasonic/vision sensor that uses an off-the-shelf CCD camera and a four-
element sonar phased array sensor that enables the camera to be calibrated using data from
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the ultrasonic sensor. Leslie Kay (Kay, 2000) has developed and commercialized high-
resolution octave band air sonar for spatial sensing and object imaging by blind persons.
Phillip McKerrow and his co-workers (McKerrow & Harper, 1999; Harper & McKerrow,
2001; Ratner & McKerrow, 2003) have been focused on outdoor navigation and recognition
of leafy plants with sonar. Other research groups are actively developing algorithms for the
automatic interpretation of sensor data (Leonard & Durrant-Whyte, 1992; Crowley, 1985;
Dror et al., 1995; Jeon & Kim, 2001). Our goal is to bring to bear a high level knowledge of
the physics of sonar backscattering and then to apply sophisticated discrimination methods
of the type long established in other fields (Rosenfeld & Kak, 1982; Theodoridis &
Koutroumbas, 1998; Tou, 1968).

In section 2 we describe an algorithm to distinguish big trees, little trees and round metal
poles based on the degree of asymmetry in the backscatter as the sonar beam is swept across
them. The asymmetry arises from lobulations in the tree cross section and/or roughness of
the bark. In section 3 we consider extended objects such as walls, fences and hedges of
various types which may be difficult to differentiate under low light conditions. We key on
features such as side peaks due to retroreflectors formed by the pickets and posts which can
be counted via a deformable template signal processing scheme. In section 4 we discuss the
addition of thermal infrared imagery to the sonar information and the use of Bayesian
methods that allow us to make use of a priori knowledge of the thermal conduction and
radiation properties of common objects under a variety of weather conditions. In section 5
we offer some conclusions and discuss future research directions.

2. Distinguishing Trees & Poles Via Ultrasound Backscatter Asymmetry

In this section we describe an algorithm to automatically distinguish trees from round metal
poles with a sonar system packaged on a mobile robot. A polynomial interpolation of the
square root of the backscattered signal energy vs. scan angle is first plotted. Asymmetry and
fitting error are then extracted for each sweep across the object, giving a single point in an
abstract phase space. Round metal poles are nearer to the origin than are trees, which scatter
the sonar more irregularly due to lobulations and/or surface roughness. Results are shown
for 20 trees and 10 metal poles scanned on our campus.

Stepper IR Camera

Motors

Ultrasound
Transducer

Fig. 1. Diagram of the scanner head. The dotted lines represent the two axes that the camera
and ultrasound transducer rotate about.
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Fig. 1 above shows a schematic of our biaxial sonar scan head. Although a variety of
transducers can be used, all of the results shown here use narrow-beam AR50-8 transducers
from Airmar (Milford, NH) which we’ve modified by machining a concavity into the
matching layer in order to achieve beam half-widths of less than 8°. The transducers are
scanned over perpendicular arcs via stepper motors, one of which controls rotation about
the horizontal axis while the other controls rotation about the vertical axis. A custom motor
controller board is connected to the computer via serial interface. The scanning is paused
briefly at each orientation while a series of sonar tonebursts is generated and the echoes are
recorded, digitized and archived on the computer. Fig. 2 shows the scanner mounted atop a
mobile robotic platform which allows out-of-doors scanning around campus.

g o ALV

Fig. 2. Mobile robotic platform with computer-controlled scanner holding ultrasound
transducer.

At the frequency range of interest both the surface features (roughness) and overall shape of
objects affect the back-scattered echo. Although the beam-width is too broad to image in the
traditional sense, as the beam is swept across a finite object variations in the beam profile
give rise to characteristically different responses as the various scattering centers contribute
constructively and destructively. Here we consider two classes of cylindrical objects outside,
trees and smooth circular poles. In this study we scanned 20 trees and 10 poles, with up to
ten different scans of each object recorded for off-line analysis (Gao, 2005; Gao & Hinders,
2005).

All data was acquired at 50kHz via the mobile apparatus shown in Figs. 1 and 2. The beam
was swept across each object for a range of elevation angles and the RF echoes
corresponding to the horizontal fan were digitized and recorded for off-line analysis. For
each angle in the horizontal sweep we calculate the square root of signal energy in the back-
scattered echo by low-pass filtering, rectifying, and integrating over the window
corresponding to the echo from the object. For the smooth circular metal poles we find, as
expected, that the backscatter energy is symmetric about a central maximum where the
incident beam axis is normal to the surface. Trees tend to have a more complicated response
due to non-circular cross sections and/or surface roughness of the bark. Rough bark can
give enhanced backscatter for grazing angles where the smooth poles give very little
response. We plot the square root of the signal energy vs. angular step and fit a 5th order
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polynomial to it. Smooth circular poles always give a symmetric (bell-shaped) central
response whereas rough and/ or irregular objects often give responses less symmetric about
the central peak. In general, one sweep over an object is not enough to tell a tree from a pole.
We need a series of scans for each object to be able to robustly classify them. This is
equivalent to a robot scanning an object repeatedly as it approaches. Assuming that the
robot has already adjusted its path to avoid the obstruction, each subsequent scan gives a
somewhat different orientation to the target. Multiple looks at the target thus increase the
robustness of our scheme for distinguishing trees from poles because trees have more
variations vs. look angle than do round metal poles.
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Fig. 3. Square root of signal energy plots of pole P1 when the sensor is (S1) 75cm (S2) 100cm
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Fig. 3 shows the square root of signal energy plots of pole P1 (a 14 cm diameter circular
metal lamppost) from different distances and their 5th order polynomial interpolations.
Each data point was obtained by low-pass filtering, rectifying, and integrating over the
window corresponding to the echo from the object to calculate the square root of the signal
energy as a measure of backscatter strength. For each object 16 data points were calculated
as the beam was swept across it. The polynomial fits to these data are shown by the solid
curve for 9 different scans. All of the fits in Fig. 3 are symmetric (bell-shaped) near the
central scan angle, which is characteristic of a smooth circular pole. Fig. 4 shows the square
root of signal energy plots of tree T14, a 19 cm diameter tree which has a relatively smooth
surface. Nine scans are shown from different distances along with their 5th order
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polynomial interpolations. Some of these are symmetric (bell-shaped) and some are not,
which is characteristic of a round smooth-barked tree.
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Fig. 5 on the following page shows the square root of signal energy plots of tree T18, which
is a 30 cm diameter tree with a rough bark surface. Nine scans are shown, from different
distances, along with their 5th order polynomial interpolations. Only a few of the rough-
bark scans are symmetric (bell-shaped) while most are not, which is characteristic of a rough
and/or non-circular tree. We also did the same procedure for trees T15-T17, T19, T20 and
poles P2, P3, P9, P10. We find that if all the plots are symmetric bell-shaped it can be
confidently identified as a smooth circular pole. If some are symmetric bell-shaped while
some are not, it can be identified as a tree.

Of course our goal is to have the computer distinguish trees from poles automatically based
on the shapes of square root of signal energy plots. The feature vector x we choose contains
two elements: Asymmetry and Deviation. If we let x; represent Asymmetry and x, represent
Deviation, the feature vector can be written as x=[x; x,]. For example, Fig. 6 on the
following page is the square root of signal energy plot of pole P1 when the distance is
200cm. For x; we use Full-Width Half Maximum (FWHM) to define asymmetry. We cut the
full width half-maximum into two to get the left width L1 and right width L2. Asymmetry is
defined as the difference between L1 and L2 divided by FWHM, which is |LI-
L2|/|L1+L2|. The Deviation x, we define as the average distance from the experimental
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data point to the fitted data point at the same x-axis location, divided by the total height of
the fitted curve H. In this case, there are 16 experimental data points, so Deviation =
(|d1|+{d2[+...+|d16])/(16H). For the plot above, we get Asymmetry=0.0333, which means the
degree of asymmetry is small. We also get Deviation=0.0467, which means the degree of

deviation is also small.
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For the square root of energy plot of tree T14 in Fig. 7, its Asymmetry will be bigger than the
more bell-shaped plots. Trees T1-T4, T8, T11-T13 have rough surfaces (tree group No.1)
while trees T5-T7, T9-T10 have smooth surfaces (tree group No.2). The pole group contains
poles P4-P8. Each tree has two sweeps of scans while each pole has four sweeps of scans.
We plot the Asymmetry-Deviation phase plane in Fig. 8. Circles are for the pole group while
stars indicate tree group No.l and dots indicate tree group No.2. We find circles
representing the poles are usually within [0,0.2] on the Asymmetry axis. Stars representing
the rough surface trees (tree group No.1) are spread widely in Asymmetry from 0 to 1. Dots
representing the smooth surface trees (tree group No.2) are also within [0,0.2] on the
Asymmetry axis. Hence, we conclude that two scans per tree may be good enough to tell a
rough tree from a pole, but not to distinguish a smooth tree from a pole.

We next acquired a series of nine or more scans from different locations relative to each
object, constructed the square root of signal energy plots from the data, extracted the
Asymmetry and Deviation features from each sweep of square root of signal energy plots
and then plotted them in the phase plane. If all of the data points for an object are located
within a small Asymmetry region, we say it’s a smooth circular pole. If some of the results
are located in the small Asymmetry region and some are located in the large Asymmetry
region, we can say it’s a tree. If all the dots are located in the large Asymmetry region, we
say it’s a tree with rough surface.

Our purpose is to classify the unknown cylindrical objects by the relative location of their
feature vectors in a phase plane, with a well-defined boundary to segment the tree group
from the pole group. First, for the series of points of one object in the Asymmetry-Deviation
scatter plot, we calculate the average point of the series of points and find the average
squared Euclidean distance from the points to this average point. We then calculate the
Average Squared Euclidean Distance from the points to the average point and call it
Average Asymmetry. We combine these two features into a new feature vector and plot it
into an Average Asymmetry-Average Squared Euclidean Distance phase plane. We then get
a single point for each tree or pole, as shown in Fig. 9. Stars indicate the trees and circles
indicate poles. We find that the pole group clusters in the small area near the origin (0,0)
while the tree group is spread widely but away from the origin. Hence, in the Average
Asymmetry-Average Squared Euclidean Distance phase plane, if an object’s feature vector
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is located in the small area near the origin, which is within [0,0.1] in Average Asymmetry
and within [0,0.02] in Average Squared Euclidean Distance, we can say it’s a pole. If it is
located in the area away from the origin, which is beyond the set area, we can say it’s a tree.
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Fig. 8. Asymmetry-Deviation phase plane of the pole group and two tree groups. Circles indidate

poles, dots indicate smaller smooth bark trees, and stars indicate the larger rough bark trees.
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Fig. 9. Average Asymmetry-Average Squared Euclidean Distance phase plane of trees T14-
T20 and poles P1-P3, P9 and P10.

3. Distinguishing Walls, Fences & Hedges with Deformable Templates

In this section we present an algorithm to distinguish several kinds of brick walls, picket
fences and hedges based on the analysis of backscattered sonar echoes. The echo data are
acquired by our mobile robot with a 50kHz sonar computer-controlled scanning system
packaged as its sensor head (Figs. 1 and 2). For several locations along a wall, fence or
hedge, fans of backscatter sonar echoes are acquired and digitized as the sonar transducer is
swept over horizontal arcs. Backscatter is then plotted vs. scan angle, with a series of N-
peak deformable templates fit to this data for each scan. The number of peaks in the best-
fitting N-peak template indicates the presence and location of retro-reflectors, and allows
automatic categorization of the various fences, hedges and brick walls.
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In general, one sweep over an extended object such as a brick wall, hedge or picket fence is
not sufficient to identify it (Gao, 2005). As a robot is moving along such an object, however,
it is natural to assume that several scans can be taken from different locations. For objects
such as picket fences, for example, there will be a natural periodicity determined by post
spacing. Brick walls with architectural features (buttresses) will similarly have a well-
defined periodicity that will show up in the sonar backscatter data. Defining one spatial unit
for each object in this way, five scans with equal distances typically cover a spatial unit. Fig.
10 shows typical backscatter plots for a picket fence scanned from inside (the side with the
posts). Each data point was obtained by low-pass filtering, rectifying, and integrating over
the window corresponding to the echo from the object to calculate the square root of the
signal energy as a measure of backscatter. Each step represents 1° of scan angle with zero
degrees perpendicular to the fence. Note that plot (a) has a strong central peak, where the
robot is lined up with a square post that reflects strongly for normal incidence. There is
some backscatter at the oblique angles of incidence because the relatively broad sonar beam
(spot size typically 20 to 30 cm diameter) interacts with the pickets (4.5 cm in width, 9 cm on
center) and scatters from their corners and edges. The shape of this single-peak curve is thus
a characteristic response for a picket fence centered on a post.
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Fig. 10. Backscatter plots for a picket fence scanned from the inside, with (a) the robot centered
on a post, (b) at 25% of the way along a fence section so that at zero degrees the backscatter is
from the pickets, but at a scan angle of about -22.5 degrees the retroreflector made by the post
and the adjacent pickets causes a secondary peak. (c) at the middle of the fence section, such
that the retroreflectors made by each post show up at the extreme scan angles.
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Plot (b) in Fig. 10 shows not only a central peak but also a smaller side peak. The central
peak is from the pickets while the side peak is from the right angle made by the side surface
of the post (13 x 13 cm) and the adjacent pickets, which together form a retro-reflector. The
backscatter echoes from a retro-reflector are strong for a wide range of the angle of
incidence. Consequently, a side peak shows up when the transducer is facing a
retroreflector, and the strength and spacing of corresponding side peaks carries information
about features of extended objects. Note that a picket fence scanned from the outside will be
much less likely to display such side peaks because the posts will tend to be hidden by the
pickets. Plot (c) in Fig. 10 also displays a significant central peak. However, its shape is a
little different from the first and second plots. Here when the scan angle is far from the
central angle the backscatter increases, which indicates a retro-reflector, i.e. the corner made
by the side surface of a post is at both extreme edges of the scan.

Fig. 11 shows two typical backscatter plots for a metal fence with brick pillars. The brick
pillars are 41 cm square and the metal pickets are 2 cm in diameter spaced 11 cm on center,
with the robot scanning from 100cm away. Plot (a) has a significant central peak because the
robot is facing the square brick pillar. The other has no apparent peaks because the robot is
facing the metal fence between the pillars. The round metal pickets have no flat surfaces and
no retro-reflectors are formed by the brick pillars. The chaotic nature of the backscatter is
due to the broad beam of the sonar interacting with multiple cylindrical scatterers, which
are each comparable in size to the sonar wavelength. In this “Mie-scattering” regime the
amount of constructive or destructive interference from the multiple scatterers changes for
each scan angle. Also, note that the overall level of the backscatter for the bottom plot is
more than a factor of two smaller than when the sonar beam hits the brick pillar squarely.
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Fig. 11. Backscatter plots of a unit of the metal fence with brick pillar with the robot facing

(a) brick pillar and (b) the metal fencing, scanned at a distance of 100cm.

Fig. 12 shows typical backscatter plots for brick walls. Plot (a) is for a flat section of brick
wall, and looks similar to the scan centered on the large brick pillar in Fig. 11. Plot (b) is for
a section of brick wall with a thick buttress at the extreme right edge of the scan. Because the
buttress extends out 10 cm from the plane of the wall, it makes a large retroreflector which
scatters back strongly at about 50 degrees in the plot. Note that this size of this side-peak
depends strongly on how far the buttress extends out from the wall. We've also scanned
walls with regularly-spaced buttresses that extend out only 2.5 cm (Gao, 2005) and found
that they behave similarly to the thick-buttress walls, but with correspondingly smaller side
peaks.
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Fig. 12 Backscatter plots of a unit of brick wall with thick buttress with the robot at a
distance of 100cm facing (a) flat section of wall and (b) section including retroreflecting
buttress at extreme left scan angle.
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Fig. 13 Backscatter plot of a unit of hedge.

Fig. 13 shows a typical backscatter plot for a trimmed hedge. Note that although the level of
the backscatter is smaller than for the picket fence and brick wall, the peak is also much
broader. As expected the foliage scatters the sonar beam back over a larger range of angles.

Backscatter data of this type was recorded for a total of seven distinct objects: the wood
picket fence described above from inside (side with posts), that wood picket fence from
outside (no posts), the metal fence with brick pillars described above, a flat brick wall, a
trimmed hedge, and brick walls with thin (2.5 cm) and thick (10 cm) buttresses, respectively
(Gao, 2005; Gao & Hinders, 2006). For those objects with spatial periodicity formed by posts
or buttresses, 5 scans were taken over such a unit. The left- and right-most scans were
centered on the post or buttress, and then three scans were taken evenly spaced in between.
For typical objects scanned from 100 cm away with +/- 50 degrees scan angle the middle
scans just see the retroreflectors at the extreme scan angles, while the scans 25% and 75%
along the unit length only have a single side peak from the nearest retro-reflector. For those
objects without such spatial periodicity a similar unit length was chosen for each with five
evenly spaced scans taken as above. Analyzing the backscatter plots constructed from this
data, we concluded that the different objects each have a distinct sequence of backscatter
plots, and that it should be possible to automatically distinguish such objects based on
characteristic features in these backscatter plots. We have implemented a deformable
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template matching scheme to use this backscattering behaviour to differentiate the seven
types of objects.

A deformable template is a simple mathematically defined shape that can be fit to the data
of interest without losing its general characteristics (Gao, 2005). For example, for a one-peak
deformable template, its peak location may change when fitting to different data, but it
always preserves its one peak shape characteristic. For each backscatter plot we next create a
series of deformable N-peak templates (N=1, 2, 3... Nmax) and then quantify how well the
templates fit for each N. Obviously a 2-peak template (N=2) will fit best to a backscatter plot
with two well-defined peaks. After consideration of a large number of backscatter vs. angle
plots of the types in the previous figures, we have defined a general sequence of deformable
templates in the following manner.

For one-peak templates we fit quintic functions to each of the two sides of the peak, located
at x,, each passing through the peak as well as the first and last data points, respectively.
Hence, the left part of the one-peak template is defined by the

B(x,)~ B(x)

X, =X

function y = ¢;(x—x; )° + B(x;) which passes through the peak givingc =

Here B(x) is the value of the backscatter at angle x. Therefore, the one-peak template

function defined over the range from x = x; to x = x, is

B(x,) - B(x1)

y:pis(x_xL)erB(xL)' (1a)

(x p XL )

The right part of the one peak template is defined similarly over the range between x = x, to

Bl\x, |- Blx

X = xg ie. the functiony=c, (x —Xp )5 +B(xg), with ¢, given as ¢; = L(SR)
(x p YR )

Therefore, the one-peak template function of the right part is
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For the double-peak template, the two selected peaks x,; and x,,; as well as the location of the

valley x, between the two backscatter peaks separate the double-peak template into four

regions with x,,<x,<x,,. The double peak template is thus comprised of four parts, defined

as second-order functions between the peaks and quintic functions outbound of the two
peaks.
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In the two middle regions, shapes of quadratic functions are more similar to the backscatter
plots. Therefore, quadratic functions are chosen to form the template instead of quintic
functions. Fig. 14 shows a typical backscatter plot for a picket fence as well as the
corresponding single- and double-peak templates. The three, four, five, ..., -peak template
building follows the same procedure, with quadratic functions between the peaks and
quintic functions outboard of the first and last peaks.
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Fig. 14. Backscatter plots of the second scan of a picket fence and its (a) one-peak template
(b) two-peak template
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In order to characterize quantitatively how well the N-peak templates each fit a given
backscatter plot, we calculate the sum of the distances from the backscatter data to the
template at the same scan angle normalized by the total height H of the backscatter plot and
the number of scan angles. For each backscatter plot, this quantitative measure of goodness
of fit (Deviation) to the template is calculated automatically for N=1 to N=9 depending
upon how many distinct peaks are identified by our successive enveloping and peak-
picking algorithm (Gao, 2005). We can then calculate Deviation vs. N and fit a 4th order
polynomial to each. Where the deviation is smallest indicates the N-peak template which
fits best. We do this on the polynomial fit rather than on the discrete data points in order to
automate the process, i.e. we differentiate the Deviation vs. N curve and look for zero
crossings by setting a threshold as the derivative approaches zero from the negative side.
This corresponds to the deviation decreasing with increasing N and approaching the
minimum deviation, i.e. the best-fit N-peak template.

Because the fit is a continuous curve we can consider non-integer N, i.e. the derivative value
of the 4th order polynomial fitting when the template value is N+0.5. This describes how the
4th order polynomial fitting changes from N-peak template fitting to (N+1)-peak template
fitting. If it is positive or a small negative value, it means that in going from the N-peak
template to the (N+1)-peak template, the fitting does not improve much and the N-peak
template is taken to be better than the (N+1)-peak template. Accordingly, we first set a
threshold value and calculate these slopes at both integer and half-integer values of N. The
threshold value is set to be -0.01 based on experience with data sets of this type, although
this threshold could be considered as an adjustable parameter. We then check the value of
the slopes in order. The N-peak-template is chosen to be the best-fit template when the slope
at (N+0.5) is bigger than the threshold value of -0.01 for the first time.

We also set some auxiliary rules to better to pick the right number of peaks. The first rule
helps the algorithm to key on retroreflectors and ignore unimportant scattering centers: if
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the height ratio of a particular peak to the highest peak is less than 0.2, it is not counted as a
peak. Most peaks with a height ratio less than 0.2 are caused by small scattering centers
related to the rough surface of the objects, not by a retro-reflector of interest. The second
rule is related to the large size of the sonar beam: if the horizontal difference of two peaks is
less than 15 degrees, we merge them into one peak. Most of the double peaks with angular
separation less than 15 degrees are actually caused by the same major reflector interacting
with the relatively broad sonar beam. Two 5-dimensional feature vectors for each object are
next formed. The first is formed from the numbers of the best fitting templates, i.e. the best
N for each of the five scans of each object. The second is formed from the corresponding
Deviation for each of those five scans. For example, for a picket fence scanned from inside,
the two 5-dimensional feature vectors are N=[1,2,3,2,1] and D=[0.0520, 0.0543, 0.0782, 0.0686,
0.0631]. For a flat brick wall, they are N=[1,1,1,1,1] and D=[0.0549, 0.0704, 0.0752, 0.0998,
0.0673].

The next step is to determine whether an unknown object can be classified based on these
two 5-dimensional feature vectors. Feature vectors with higher dimensions (>3) are difficult
to display visually, but we can easily deal with them in a hyper plane. The Euclidean
distance of a feature vector in the hyper plane from an unknown object to the feature vector
of a known object is thus calculated and used to determine if the unknown object is similar
to any of the objects we already know.

For both 5-dimensional feature vectors of an unknown object, we first calculate their
Euclidean distances to the corresponding template feature vectors of a picket fence. AN1 =
| Nunknown - Npicketfence | is the Euclidean distance between the N vector of the unknown
object Nunknown to the N vector of the picket fence Npicketfence. Similarly, AD1 = | Nunknown -
Npicketfence | is the Euclidean distance between the D vectors of the unknown object Nunknown
and the picket fence Npickettence. We then calculate these distances to the corresponding
feature vectors of a flat brick wall AN2, AD2, their distances to the two feature vectors of a
hedge AN3, AD3 and so on.

The unknown object is then classified as belonging to the kinds of objects whose two
feature vectors are nearest to it, which means both AN and AD are small. Fig. 15 is an
array of bar charts showing these Euclidean distances of two feature vectors of a
unknown objects to the two feature vectors of seven objects we already know. The
horizontal axis shows different objects numbered according to“1” for picket fence
scanned from the inside “2” for a flat brick wall“3” for a trimmed hedge “4” for a brick
wall with thin buttress “5” for a brick wall with thick buttress “6” for a metal fence with
brick pillar and“7” for the picket fence scanned from the outside. The vertical axis shows
the Euclidean distances of feature vectors of an unknown object to the 7 objects
respectively. For each, the height of black bar and grey bar at object No.1 represent AN1
and 10AD1 respectively while the height of black bar and grey bar at object No.2
represent AN2 and 10AD2 respectively, and so on. In the first chart both the black bar and
grey bar are the shortest when comparing to the N, D vectors of a picket fence scanned
from inside. Therefore, we conclude that this unknown object is a picket fence scanned
from inside, which it is. Note that the D values have been scaled by a factor of ten to make
the bar charts more readable. The second bar chart in Fig. 15 has both the black bar and
grey bar the shortest when comparing to N, D vectors of object No.l—picket fence
scanned from inside, which is what it is. The third bar chart in Fig. 15 has both the black
bar and grey bar shortest when comparing to N, D vectors of object No.2 —flat brick wall
and object No.4 —brick wall with thin buttress. That means the most probable kinds of the
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unknown object are flat brick wall or brick wall with thin buttress. Actually it is a flat
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Fig. 15. AN (black bar) and 10AD (gray bar) for fifteen objects compared to the seven
known ob]ects 1 plcket fence from inside, 2 ﬂat brick wall, 3 hedge, 4 brick wall with thin
buttress, 5 brick wall with thick buttress, 6 metal fence with brick pillar, 7 picket fence
from outside.

Table 1 displays the results of automatically categorizing two additional scans of each
of these seven objects. In the table, the + symbols indicate the correct choices and the x
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symbols indicate the few incorrect choices. Note that in some cases the two feature
vector spaces did not agree on the choice, and so two choices are indicated. Data sets
1A and 1B are both picket fences scanned from inside. They are correctly categorized as
object No.1. Data sets 2A and 2B are from flat brick walls. They are categorized as either
object No.2 (flat brick wall) or object No.4 (brick wall with thin buttress) which are
rather similar objects. Data sets 3A and 3B are from hedges and are correctly
categorized as object No.3. Data sets 4A and 4B are from brick walls with thin buttress.
4A is categorized as object No.2 (flat brick wall) or object No.4 (brick wall with thin
buttress). Data sets 5A and 5B are from brick walls with thick buttress. Both are
correctly categorized as object No.5. Data sets 6A and 6B are from metal fences with
brick pillars. 6B is properly categorized as object No.6. 6B is categorized as either object
No.6 (metal fence with brick pillar) or as object No.2 (flat brick wall). Data sets 7A and
7B are from picket fences scanned from outside, i.e. the side without the posts. 7A is
mistaken as object No.5 (brick wall with thick buttress) while 7B is mistaken as object
No.1 (picket fence scanned from inside). Of the fourteen new data sets, eight are
correctly categorized via agreement with both feature vectors, four are correctly
categorized by one of the two feature vector, and two are incorrectly categorized. Both
of the incorrectly categorized data sets are from picket fence scanned from outside,
presumably due to the lack of any significant retro-reflectors, but with an otherwise
complicated backscattering behavior.

1A | 24 | 34 | 44 | 54 | 64 | 7TA | 1B | 2B | 3B | 4B | 5B | 6B | 7B

Table 1. Results categorizing 2 additional data sets for each object.

4. Thermal Infrared Imaging as a Mobile Robot Sensor

In the previous sections we have used 50 kHz features in the ultrasound backscattering to
distinguish common objects. Here we discuss the use of thermal infrared imaging as a
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complementary technique. Note that both ultrasound and infrared are independent of
lighting conditions, and so are appropriate for use both day and night. The technology
necessary for infrared imaging has only recently become sufficiently portable, robust and
inexpensive to imagine exploiting this full-field sensing modality for small mobile robots.
We have mounted an infrared camera on one of our mobile robots and begun to
systematically explore the behavior of the classes of outdoor objects discussed in the
previous sections.

Our goal is simple algorithms that extract features from the infrared imagery in order to
complement what can be done with the 50 kHz ultrasound. For this preliminary study,
infrared imagery was captured on a variety of outdoor objects during a four-month period,
at various times throughout the days and at various illumination/temperature conditions.
The images were captured using a Raytheon ControlIR 2000B long-wave (7-14 micron)
infrared thermal imaging video camera with a 50 mm focal length lens at a distance of 2.4
meters from the given objects. The analog signals with a 320X240 pixel resolution were
converted to digital signals using a GrabBeelll USB Video Grabber, all mounted on board a
mobile robotic platform similar to Fig. 2. The resulting digital frames were processed offline
in MATLAB. Table 1 below provides the times, visibility conditions, and ambient
temperature during each of the nine sessions. During each session, the infrared images were
captured on each object at three different viewing angles: normal incidence, 45 degrees from
incidence, and 60 degrees from incidence. A total of 27 infrared images were captured on
each object during the nine sessions.

Date Time Span Visibility Temp. (°F)
8 Mar 06 0915-1050 Sunlight, Clear Skies 49.1
8 Mar 06 1443-1606 Sunlight, Clear Skies 55.0
8 Mar 06 1847-1945 No Sunlight, Clear Skies 49.2
10 Mar 06 1855-1950 No Sunlight, Clear Skies 63.7
17 Mar 06 0531-0612 No Sunlight-Sunrise, Slight Overcast 46.1
30 May 06 1603-1700 Sunlight, Clear Skies 87.8
30 May 06 2050-2145 No Sunlight, Partly Cloudy 79.6
2 Jun 06 0422-0513 No Sunlight, Clear Skies 74.2
6 Jun 06 1012-1112 Sunlight, Partly Cloudy 68.8

Table 2. Visibility conditions and temperatures for the nine sessions of capturing infrared
images of the nine stationary objects.

The infrared images were segmented to remove the image background, with three center
segments and three periphery segments prepared for each. A Retinex algorithm (Rahman,
2002) was used to enhance the details in the image, and a highpass Gaussian filter (Gonzalez
et al.,, 2004) was applied to attenuate the lower frequencies and sharpen the image. By
attenuating the lower frequencies that are common to most natural objects, the remaining
higher frequencies help to distinguish one object from another. Since the discrete Fourier
transform used to produce the spectrum assumes the frequency pattern of the image is
periodic, a high-frequency drop-off occurs at the edges of the image. These “edge effects”
result in unwanted intense horizontal and vertical artifacts in the spectrum, which are
suppressed via the edgetaper function in MATLAB. The final preprocessing step is to apply
a median filter that denoises the image without reducing the previously established
sharpness of the image.
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s {
Fig. 16 Cedar Tree visible (left) and Infrared (right) Images.

Fig. 16 shows the visible and infrared images of a center segment of the cedar tree captured at
1025 hours on 8 March 2006. The details in the resulting preprocessed image are enhanced and
sharpened due to Retinex, highpass Gaussian filter, and median filter. We next 2D Fouier
transform the preprocessed image and take the absolute value to obtain the spectrum, which is
then transformed to polar coordinates with angle measured in a clockwise direction from the
polar axis and increasing along the columns in the spectrum’s polar matrix. The linear radius
(i.e., frequencies) in polar coordinates increases down the rows of the polar matrix. Fig. 17
display the spectrum and polar spectrum of the same center segment of the cedar tree.

Fig. 17 Frequency Spectrum (left) and Polar Spectrum (right) of cedar tree center segment.

Sparsity provides a measure of how well defined the edge directions are on an object (Luo &
Boutell, 2005) useful for distinguishing between “manmade” and natural objects in visible
imagery. Four object features generated in our research were designed in a similar manner. First,
the total energy of the frequencies along the spectral radius was computed for angles from 45 to
224 degrees. This range of angle values ensures that the algorithm captures all possible directions
of the frequencies on the object in the scene. A histogram with the angle values along the abscissa
and total energy of the frequencies on the ordinate is smoothed using a moving average filter.
The values along the ordinate are scaled to obtain frequency energy values ranging from 0 to 1
since we are only interested in how well the edges are defined about the direction of the
maximum frequency energy, not the value of the frequency energy. The resulting histogram is
plotted as a curve with peaks representing directions of maximum frequency energy. The full
width at 80% of the maximum (FW(0.80)M) value on the curve is used to indicate the amount of
variation in frequency energy about a given direction. Four features are generated from the
resulting histogram defined by the terms: sparsity and direction. The sparsity value provides a
measure of how well defined the edge directions are on an object. The value for sparsity is the
ratio of the global maximum scaled frequency energy to the FW(0.80)M along a given interval in
the histogram. Thus, an object with well defined edges along one given direction will display a
curve in the histogram with a global maximum and small FW(0.80)M, resulting in a larger
sparsity value compared to an object with edges that vary in direction. To compute the feature
values, the intervals from 45 to 134 degrees and from 135 to 224 degrees were created along the
abscissa of the histogram to optimally partition the absolute vertical and horizontal components
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in the spectrum. The sparsity value along with its direction are computed for each of the
partitioned intervals. A value of zero is provided for both the sparsity and direction if there is no
significant frequency energy present in the given interval to compute the FW(0.80)M.

By comparing the directions (in radians) of the maximum scaled frequency energy along each
interval, four features are generated: Sparsity about Maximum Frequency Energy (1.89 for tree
vs. 2.80 for bricks), Direction of Maximum Frequency Energy (3.16 for tree vs. 1.57 for bricks),
Sparsity about Minimum Frequency Energy (0.00 for tree vs. 1.16 for bricks), Direction of
Minimum Frequency Energy (0.00 for tree vs. 3.14 for bricks). Fig. 19 below compares the scaled
frequency energy histograms for the cedar tree and brick wall (Fig. 18), respectively.

Fig. 18. Brick Wall Infrared (left) and Visible (ri:c;:ht) Ifnagﬂes.

As we can see in the histogram plot of the cedar tree (Fig. 19, left) the edges are more well
defined in the horizontal direction, as expected. Furthermore, the vertical direction presents
no significant frequency energy. On the other hand, the results for the brick wall (Fig. 19,
right) imply edge directions that are more well defined in the vertical direction. The brick
wall results in a sparsity value and direction associated with minimum frequency energy.
Consequently, these particular results would lead to features that could allow us to
distinguish the cedar tree from the brick wall.

Curvature provides a measure to distinguish cylindrical shaped objects from flat objects
(Sakai & Finkel, 1995) since the ratio of the average peak frequency between the periphery
and the center of an object in an image is strongly correlated with the degree of surface
curvature. Increasing texture compression in an image yields higher frequency peaks in the
spectrum. Consequently, for a cylindrically shaped object, we should see more texture
compression and corresponding higher frequency peaks in the spectrum of the object’s
periphery compared to the object’s center.

Scaled Smoothed Frequency Energy (Cedar) Scaled Smoothed Frequency Energy (Brick Wall)

Fig. 19. Cedar (left) and Brick Wall (right) histogram plots.

To compute the curvature feature value for a given object, we first segment 80x80 pixel regions
at the periphery and center of an object’s infrared image. The average peak frequency in the
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horizontal direction is computed for both the periphery and center using the frequency
spectrum. Since higher frequencies are the primary contributors in determining curvature, we
only consider frequency peaks at frequency index values from 70 to 100. The curvature feature
value is computed as the ratio of the average horizontal peak frequency in the periphery to
that of the center. Fig. 20 compares the spectra along the horizontal of both the center and
periphery segments for the infrared image of a cedar tree and a brick wall, respectively.

Cedar along Horizontal
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Brick Wall along Horizontal
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Fig. 20 Cedar (left) and Brick Wall (right) Center vs. Periphery Frequency Energy Spectrum
along Horizontal. The computed curvature value for the cedar tree is 2.14, while the
computed curvature for the brick wall is 1.33.

As we can see in the left plot of Fig. 20 above, the periphery of the cedar tree’s infrared image
has more energy at the higher frequencies compared to the center, suggesting that the object
has curvature away from the observer. As we can see in the right plot of Fig. 20 above, there is
not a significant difference between the energy in the periphery and center of the brick wall’s
infrared image, suggesting that the object does not have curvature.

5. Summary and Future Work

We have developed a set of automatic algorithms that use sonar backscattering data to
distinguish extended objects in the campus environment by taking a sequence of scans of each
object, plotting the corresponding backscatter vs. scan angle, extracting abstract feature vectors
and then categorizing them in various phase spaces. We have chosen to perform the analysis
with multiple scans per object as a balance between data processing requirements and
robustness of the results. Although our current robotic scanner is parked for each scan and then
moves to the next scan location before scanning again, it is not difficult to envision a similar
mobile robotic platform that scans continuously while moving. It could then take ten or even a
hundred scans while approaching a tree or while moving along a unit of a fence, for example.
Based on our experience with such scans, however, we would typically expect only the
characteristic variations in backscattering behavior described above. Hence, we would envision
scans taken continuously as the robot moves towards or along an object, and once the dominant
features are identified, the necessary backscatter plots could be processed in the manner
described in the previous sections, with the rest of the data safely purged from memory.

Our reason for performing this level of detailed processing is a scenario where an
autonomous robot is trying to identify particular landmark objects, presumably under low-
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light or otherwise visually obscured conditions where fences, hedges and brick walls can be
visually similar. Alternatively, we envision a mobile robot with limited on board processing
capability such that the visual image stream must be deliberately degraded by either
reducing the number of pixels or the bits per pixel in order to have a sufficient video frame
rate. In either case the extended objects considered here might appear very similar in the
visual image stream. Hence, our interest is in the situation where the robot knows the
obstacle is there and has already done some preliminary classification of it, but now needs a
more refined answer. It could need to distinguish a fence or wall from a hedge since it could
plow through hedge but would be damaged by a wrought iron fence or a brick wall. It may
know it is next to a picket fence, but cannot tell whether it’s on the inside or outside of the
fence. Perhaps it has been given instructions to “turn left at the brick wall” and the “go
beyond the big tree” but doesn’t have an accurate enough map of the campus or more likely
the landmark it was told to navigate via does not show up on its on-board map.

We have now added thermal infrared imaging to our mobile robots, and have begun the
systematic process of identifying exploitable features. After preprocessing, feature vectors
are formed to give unique representations of the signal data produced by a given object.
These features are chosen to have minimal variation with changes in the viewing angle
and/or distance between the object and sensor, temperature, and visibility. Fusion of the
two sensor outputs then happens according to the Bayesian scheme diagrammed in Fig. 21
below, which is the focus of our ongoing work.

Bayesian Multi-Sensor Data Fusion
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Fig. 21. Bayesian multi-sensor data fusion architecture using ultrasound and infrared sensors.
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1. Introduction

Obstacle detection is an essential task for mobile robots. This subject has been investigated for
many years by researchers and a lot of obstacle detection systems have been proposed so far. Yet
designing an accurate and totally robust and reliable system remains a challenging task, above all
in outdoor environments. The DARPA Grand Challenge (Darpa, 2005) proposed efficient systems
based on sensors redundancy, but these systems are expensive since they include a large set of
sensors and computers: one can not consider to implement such systems on low cost robots. Thus,
a new challenge is to reduce the number of sensors used while maintaining a high level of
performances. Then, many applications will become possible, such as Advance Driving Assistance
Systems (ADAS) in the context of Intelligent Transportation Systems (ITS).

Thus, the purpose of this chapter is to present new techniques and tools to design an
accurate, robust and reliable obstacle detection system in outdoor environments based on a
minimal number of sensors. So far, experiments and assessments of already developed
systems show that using a single sensor is not enough to meet the requirements: at least two
complementary sensors are needed. In this chapter a stereovision sensor and a 2D laser
scanner are considered.

In Section 2, the ITS background under which the proposed approaches have been
developed is introduced. The remaining of the chapter is dedicated to technical aspects.
Section 3 deals with the stereovision framework: it is based on a new technique (the so-
called “v-disparity” approach) that efficiently tackles most of the problems usually met
when using stereovision-based algorithms for detecting obstacles. This technique makes few
assumptions about the environment and allows a generic detection of any kind of obstacles;
it is robust against adverse lightning and meteorological conditions and presents a low
sensitivity towards false matches. Target generation and characterization are detailed.
Section 4 focus on the laser scanner raw data processing performed to generate targets from
lasers points and estimate their positions, sizes and orientations. Once targets have been
generated, a multi-objects association algorithm is needed to estimate the dynamic state of
the objects and to monitor appearance and disappearance of tracks. Section 5 intends to
present such an algorithm based on the Dempster-Shaffer belief theory. Section 6 is about
fusion between stereovision and laser scanner. Different possible fusion schemes are
introduced and discussed. Section 7 is dedicated to experimental results. Eventually, section
8 deals with trends and future research.
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2. Intelligent Transportation Systems Background

In the context of Intelligent Transportation Systems and Advanced Driving Assistance Systems
(ADAS), onboard obstacle detection is a critical task. It must be performed in real time, robustly
and accurately, without any false alarm and with a very low (ideally nil) detection failure rate.
First, obstacles must be detected and positioned in space; additional information such as height,
width and depth can be interesting in order to classify obstacles (pedestrian, car, truck, motorbike,
etc.) and predict their dynamic evolution. Many applications aimed at improving road safety
could be designed on the basis of such a reliable perception system: Adaptative Cruise Control
(ACCQ), Stop'n'Go, Emergency braking, Collision Mitigation. Various operating modes can be
introduced for any of these applications, from the instrumented mode that only informs the driver of
the presence and position of obstacles, to the regulated mode that take control of the vehicle through
activators (brake, throttle, steering wheel). The warning mode is an intermediate interesting mode
that warn the driver of an hazard and is intended to alert the driver in advance to start a
manoeuver before the accident occurs.

Various sensors can be used to perform obstacle detection. 2D laser scanner (Mendes 2004)
provides centimetric positioning but some false alarms can occur because of the dynamic
pitching of the vehicle (from time to time, the laser plane collides with the ground surface
and then laser points should not be considered to belong to an obstacle). Moreover, width
and depth (when the side of the object is visible) of obstacles can be estimated but height
cannot. Stereovision can also be used for obstacle detection (Bertozzi, 1998 ; Koller, 1994 ;
Franke, 2000 ; Williamson, 1998). Using stereovision, height and width of obstacles can be
evaluated. The pitch value can also be estimated. However, positioning and width
evaluation are less precise than the ones provided by laser scanner.

Fusion algorithms have been proposed to detect obstacles using various sensors at the same
time (Gavrila, 2001 ; Mobus, 2004 ; Steux, 2002). The remaining of the chapter presents tools
designed to perform fusion between 2D laser scanner and stereovision that takes into
account their complementary features.

3. Stereovision Framework

3.1 The "v-disparity" framework
This section deals with the stereovision framework. Firstly a modeling of the stereo sensor,
of the ground and of the obstacles is presented. Secondly details about a possible
implementation are given.
Modeling of the stereo sensor: The two image planes of the stereo sensor are supposed to
belong to the same plane and are at the same height above the ground (see Fig. 1). This camera
geometry means that the epipolar lines are parallel. The parameters shown on Fig. 1 are:

-0 s the angle between the optical axis of the cameras and the horizontal,

-h is the height of the cameras above the ground,

-b is the distance between the cameras (i.e. the stereoscopic base).
(R,) is the absolute coordinate system, and O, lies on the ground. In the camera coordinate
system (Ri) (iequals ! (left) or r (right) ), the position of a point in the image plane is given
by its coordinates (u;v;). The image coordinates of the projection of the optical center will be
denoted by (uo,v0), assumed to be at the center of the image. The intrinsic parameters of the
camera are f (the focal length of the lens), t, and #, (the size of pixels in u and v). We also use
a,=f/t, and a,~=f/t,, With the cameras in current use we can make the following
approximation: ay~ay=a.
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Using the pin-hole camera model, a projection on the image plane of a point P(X,Y,Z) in (R,)
is expressed by:

X
u—a?+u0 (1)
v:0t§+v0

On the basis of Fig. 1, the transformation from the absolute coordinate system to the right
camera coordinate system is achieved by the combination of a vector translation (7 = —4Y and
b= (b/ 2))? ) and a rotation around X, by an angle of -6 . The combination of a vector
translation (7 =—#Y and b = —(b/2) X ) and a rotation around X, by an angle of -6 is the
transformation from the absolute coordinate system to the left camera coordinate system.

Lefl bage

L PXY.Za

£ : focal lenght of the lens

.
&, 2 sime of the pixelyinu '

te - size of the pisels in v Za

Fig. 1. The stereoscopic sensor and used coordinate systems.

Since the epipolar lines are parallel, the ordinate of the projection of the point P on the left or
right image is v, = v; = v, where:

lvosin6+acos0J(Y+h)+lvocost9—asinHJZ @)
V=
(Y +h)sin @+ Z cos @
Moreover, the disparity 4 of the point P is:
A=u,~u, = N — ®)
" (Y+h)sin@+Zcosd

Modeling of the ground: In what follows the ground is modeled as a plane with equation:
Z=aY+d. If the ground is horizontal, the plane to consider is the plane with equation Y=0.
Modeling of the obstacles: In what follows any obstacle is characterized by a vertical plane
with equation Z = d.

Thus, all planes of interest (ground and obstacles) can be characterized by a single equation:
Z=aY+d.
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The image of planes of interest in the "v-disparity" image: From (2) and (3), the plane with
the equation Z = aY+d in (R,) is projected along the straight line of equation (1) in the "v-
disparity" image:

afasin @+ cos6) @

" b (v—v, J(acos @ +sin )+

“ah—d ah—d
N.B.: when a = 0 in equation (1), the equation for the projection of the vertical plane with the
equation Z = d is obtained:

A, :S(Vo—v)sinéHS(xcosH ®)

When a—w, the equation of the projection of the horizontal plane with the equation Y = 0 is
obtained:

A¢1=%(V—vo)cose+%asine (6)

Thus, planes of interest are all projected as straight lines in the “v-disparity” image.

The “v-disparity” framework can be generalized to extract planes presenting roll with
respect to the stereoscopic sensor. This extension allows to extract any plane in the scene.
More details are given in (Labayrade, 2003 a).

3.2 Exemple of implementation

"v-disparity" image construction: A disparity map is supposed to have been computed from the
stereo image pair (see Fig. 2 left). This disparity map is computed taking into account the
epipolar geometry; for instance the primitives used can be horizontal local maxima of the
gradient; matching can be local and based on normalized correlation around the local maxima (in
order to obtain additional robustness with respect to global illumination changes).

The “v-disparity” image is line by line the histogram of the occurring disparities (see Fig. 2
right). In what follows it will be denoted as Iya.

Case of a flat-earth ground geometry: robust determination of the plane of the ground:
Since the obstacles are defined as objects located above the ground surface, the
corresponding surface must be estimated before performing obstacle detection.

disparity A

Fig. 2. Construction of the grey level ”v-disparity” image from the disparity map. All the
pixels from the disparity map are accumulated along scanning lines.
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When the ground is planar, with for instance the following mean parameter values of the
stereo sensor:

-0=85°
h=14m,
b=1m,

the plane of the ground is projected in I,x as a straight line with mean slope 0.70. The
longitudinal profile of the ground is therefore a straight line in I,x. Robust detection of this
straight line can be achieved by applying a robust 2D processing to I,a. The Hough
transform can be used for example.

Case of a non flat-earth ground geometry: The ground is modeled as a succession of
parts of planes. As a matter of fact, its projection in I, is a piecewise linear curve.
Computing the longitudinal profile of the ground is then a question of extracting a
piecewise linear curve in I, 4. Any robust 2D processing can be used. For instance it is still
possible to use the Hough Transform. The k highest Hough Transform values are retained
(k can be taken equal to 5) and correspond to k straight lines in I,+. The piecewise linear
curve researched is either the upper (when approaching a downhill gradient) or the lower
(when approaching a uphill gradient) envelope of the family of the k straight lines
generated. To choose between these two envelope, the following process ca be performed.
I,4 is investigated along both curves extracted and a score is computed for each: for each
pixel on the curve, the corresponding grey level in I, is accumulated. The curve is chosen
with respect to the best score obtained. Fig. 3 shows how this curve is extracted. From left
to right the following images are presented: an image of the stereo pair corresponding to a
non flat ground geometry when approaching an uphill gradient; the corresponding I,4
image; the associated Hough Transform image (the white rectangle show the research
area of the k highest values); the set of the k straight lines generated; the computed

envelopes, and the resulting ground profile extracted.
Fig. 3. Extracting the longitudinal profile of the ground in the case of a non planar geometry
(see in text for details).

Evaluation of the obstacle position and height: With the mean parameter values of the
stereo sensor given above for example, the plane of an obstacle is projected in I, as a
straight line nearly vertical above the previously extracted ground surface. Thus, the
extraction of vertical straight lines in I is equivalent to the detection of obstacles. In this
purpose, an histogram that accumulates all the grey values of the pixels for each column of
the I,» image can be built; then maxima in this histogram are looked for. It is then possible to
compute the ordinate of the contact point between the obstacle and the ground surface
(intersection between the ground profile and the obstacle line in the “v-disparity” image, see
Fig. 4). The distance D between the vehicle and the obstacle is then given by:

blo:cosf—(v, —v,)sin 8) @)
A

D=
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where v, is the ordinate of the ground-obstacle contact line in the image.

The height of the obstacle is given by the height of the straight line segment in the “v-
disparity” image (see Fig. 4). The lateral position and left and right border of the obstacle
can be estimated by similar processing in the “u-disparity” image (The “u-disparity” image
is column by column the histogram of the occurring disparities). Thus, a target detected by
stereovision is characterized by its (X,Z) coordinates, its height and its width.

Moreover, a dynamic estimation of the sensor pitch 8 can be obtained from the horizon line,
at each fame processed:

0= arctan(wj ®)
o

where vpor is the ordinate of the horizon line. Since the horizon line belongs to the ground
surface and is located at infinite distance (which corresponds to nil disparity), vior is the
ordinate of the point located on the ground profile for a nil disparity (see Fig. 4).

dispanty A disparity A
—

i| Ohstacle
|| |* profile

Heigth of
obstacle

Grovmd-obstacle contact Ime

Ground proﬁlel"'

Fig. 4. Extracting obstacles and deducin 3 obstacle-ground contact line and horizon line.

Practical good properties of the algorithm: It should be noticed that the algorithm is able to
detect any kind of obstacles. Furthermore, all the information in the disparity map is
exploited and the accumulation performed increases the density of the alignments in Ioa.
Any matching error that occur when the disparity map is computed causes few problems as
the probability that the points involved will generate coincidental alignments in I, is low.
As a matter of fact, the algorithm is able to perform accurate detection even in the event of a
lot of noise or matching errors, and when there is only a few correct matches or a few
amount of correct data in the images: in particular in night condition when the majority of
the pixels are very dark. Eventually, the algorithm works whatever the process used for
computing the disparity map (see (Scharstein, 2001)) or for processing the "v-disparity"
image. Eventually, as detailed in (Labayrade, 2003 b), it is possible in a two-stages process to
improve the disparity map and remove a lot of false matches.

4. Laser Scanner Raw Data Processing

The 2D laser scanner provides a set of laser impacts on the scanned plane: each laser point is
characterized by an incidence angle and a distance which corresponds to the distance of the
nearest object in this direction (see Fig. 6). From these data, a set of clusters must be built,
each cluster corresponding to an object in the observed scene.
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Initially, the first laser impact defines the first cluster. For all other laser points, the goal is
to know if they are a membership of the existent cluster or if they belong to a new cluster. In
the literature, a great set of distance functions can be found for this purpose. The chosen
distance D;; must comply with the following criteria

Firstly, this function D;; must give a result scaled between 0 and 1. The value 0 indicates

that the measurement i is a member of the cluster j,
Secondly, the result must be above 1 if the measurement is out of the cluster j,
Finally, this distance must have the properties of the distance functions.

Fig. 5. Clustering of a measurement.

The distance function must also use both cluster and measurement covariance matrices.
Basically, the chosen function computes an inner distance with a normalisation part build
from the sum of the outer distances of a cluster and a measurement. Only the outer distance
uses the covariance matrix:

N -p)x-p) )

o= o, i), 3)

In the normalisation part, the point X,, represent the border point of a cluster i (centre p).
This point is localised on the straight line between the cluster i (centre p) and the
measurement j (centre X). The same border measurement is used with the cluster. The
computation of X, and Xx is made with the covariance matrices Ry and P,. P, and R, are
respectively the cluster covariance matrix and the measurement covariance matrix. The
measurement covariance matrix is given from its polar covariance representation (Blackman
1999) with py the distance and 6 the angle:

R { 7, 0} (10)

where, using a first order expansion:
2 _ 52 2 2 5 2¢in 2,
0, =0, 08’6, +0, p,>sin*6,

X

2 _ 2 i 2 2 2
0, =0, sin’f, + 0, p,*cos*6, 11)
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1.
o‘fm = Esm 26, [o‘f70 - 0‘50 Po 2]
05 and 2 are the variances in both distance and angle of each measurement provided by
0 0

the laser scanner. From this covariance matrix, the eigenvalues o and the eigenvectors V are
extracted. A set of equations for both ellipsoid cluster and measurement modelling and line
between the cluster centre i and the laser measurement X is then deduced:
x:V“\/cTzcos‘IJ+VlZ o,%sin¥
y=V, Jo?cos‘i’ +V_40o,?sin¥
y=ax+b

(12)

The solution of this set of equations gives:

—Joz v, -ar
W = arctan 0 [2,1 a 1.1]}
Niess [Vz,z _aVl,z]
v e |ZF ) 7 with (13)
22
From (13), two solutions are possible:

¥
NG

sin ¥
cosV+rm
X =P o2 (14)
Lo [sin‘l’wz}

and
Then equation (9) is used with X, to know if a laser point belongs to a cluster.

Fig. 6. Example of a result of autonomous clustering (a laser point is symbolized by a little
circle, and a cluster is symbolized by a black ellipse).

Fig. 5 gives a visual interpretation of the used distance for the clustering process. Fig. 6 gives
an example of a result of autonomous clustering from laser scanner data. Each cluster is
characterized by its position, its orientation, and its size along the two axes.
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5. Multi-Objects Association

Once targets have been generated from stereovision or from laser scanner, a multi-objects
association algorithm is needed to estimate the dynamic state of the obstacles and to
monitor appearance and disappearance of tracks. The position of previously perceived
objects is predicted at the current time using Kalman Filtering. These predicted objects are
already known objects and will be denoted in what follows by Y;. Perceived objects at the
current time will be denoted by X;. The proposed multi-objects association algorithm is
based on the belief theory introduced by Shafer (Shafer, 1976).

5.1 Generalities

In a general framework, the problem consist in identifying an object designated by a
generic variable X among a set of hypotheses Yi. One of these hypotheses is supposed
to be the solution. The current problem consists in associating perceived objects X; to
known objects Y;. Belief theory allows to assess the veracity of P; propositions
representing the matching of the different objects.

A magnitude allowing the characterization of a proposition must be defined. This
magnitude is the basic belief assignment (mass mg( )) defined on [0,1]. This mass is very
close to the probabilistic mass with the difference that it is not only shared on single
elements but on all elements of the definition referential 2°= { A/AcO} = {Z Y, Y2,..., Yu,
Y1UY2,...,0}. This referential is built through the frame of discernment @ ={,.7,.---,7,}, which
regroups all admissible hypotheses, that in addition must be exclusive. (YinY;=0, Vi #j).
This distribution is a function of the knowledge about the source to model. The whole mass
obtained is called “basic belief assignment”. The sum of these masses is equal to 1 and the
mass corresponding to the impossible case (&) must be equal to 0.

5.2. Generalized combination and multi-objects association

In order to succeed in generalizing the Dempster combination rule and thus reducing its
combinatorial complexity, the reference frame of definition is limited with the constraint
that a perceived object can be connected with one and only one known object.
For example, for a detected object, in order to associate among three known objects, frame
of discernment is:

0={Y,,Y,.Y,.*}

where Y, means that"Xand Y, are supposed to be the same object"

In order to be sure that the frame of discernment is really exhaustive, a last hypothesis
noted “*” is added. This one can be interpreted as an association of a perceived object
with any of the known objects. In fact each Y; represents a local view of the world and
the “*” represents the rest of the world. In this context, means well: “an object is
associated with nothing in the local knowledge set”.

The total ignorance is represented by the hypothesis @ which is the disjunction of all
the hypotheses of the frame of discernment. The conflict is given by the hypothesis &

g
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which corresponds to the empty set (since the hypotheses are exclusive, their
intersections is empty).
A distribution of masses made up of the masses is obtained:

m, (¥, : mass associated with the proposition « X; and Y;. are supposed to be the

' same object »,
m, (¥): mass associated with the proposition « X; and Yj. are not supposed to be
. the same object »,

m, (©, ) Mass representing ignorance,

m.‘ * - mass representing the reject: X; is in relation with nothing.
In this mass distribution, the first index i denotes the processed perceived objects and the
second index j the known objects (predictions). If one index is replaced by a dot, then the
mass is applied to all perceived or known objects according to the location of this dot.
Moreover, if an iterative combination is used, the mass m_(*) is not part of the initial mass
set and appears only after the first combination. It replaceé the conjunction of the combined
masses (7). By observing the behaviour of the iterative combination with n mass sets, a
general behaviour can be seen which enables to express the final mass set according to the
initial mass sets. This enables to compute directly the final masses without any recurrent
stage. For the construction of these combination rules, the work and a first formalism given
in (Rombaut, 1998) is used. The use of an initial mass set generator using the strong
hypothesis: “an object can not be in the same time associated and not associated to another object”
allows to obtain new rules. These rules firstly reduce the influence of the conflict (the
combination of two identical mass sets will not produce a conflict) and secondly the
complexity of the combination. The rules become:

m, (Y,) = 0 if H, (15)
m (V) = Ko v)E i H, (16)
E, = (l_m:_k(yk))

with H, = Jj,m, (Y, ): 0 17)
H, =3 V/,m,v,(Y,)¢0

m, () = 0 i H, (18)

m® = K [Im,0) i, (19)

im, 20

with { H, = Elj,ml_,(Y/)io ( )
H, o  Yim,)=0

m_(0) = K, -E.E, if H, (21)

m (0) = K, -E, if H, 22)

m (6) = K, -(E,-E,) ifH, (23)
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j=ln

with < o _ (2 4)

H, P Jell-n] m,, (1) #0

H, o Vje [l nl ml_/(Y[)¢0

K H, =3 Vj€[1~"}'l], ml./(y/):o
o 1 L 25)

i, 1-m, () E+E,
E, = [16-m,,(x,)
J=ln

with (26)

E, = zmi./(y/)'H(l_mr.ﬂ(YA))

P k=1on
k#j

From each mass set, two matrices pand M7 are built which give the belief that a perceived

object is associated with a known object and conversely. The sum of the elements of each
column is equal to 1 because of the re-normalization.
The resulting frames of discernment are:

o, ={r, .7, .1, .¥., }
and 9; = {Xr.l’X:.Z’“"X: m’Xr.“ }

The first index represents the perceived object and the second index the known object. The
index “*” is the notion of “emptiness” or more explicitly “nothing”. With this hypothesis, it
can be deduced if an object has appeared or disappeared.

The following stage consists in establishing the best decision on association using these two
matrices obtained previously. Since a referential of definition built with singleton
hypotheses is used, except for ® and ¥, the use of credibilistic measure will not add any
useful information. This redistribution will simply reinforce the fact that a perceived object
is really in relation with a known object. This is why the maximum of belief on each column
of the two belief matrices is used as the decision criterion:

d(Y,) = Max[MC] 27)
This rule answers the question “which is the known object Y; in relation with the perceived object
X;”? The same rule is available for the known objects:

d(X )= Maf MS)] (28)
Unfortunately, a problem appears when the decision obtained from a matrix is ambiguous
(this ambiguity quantifies the duality and the uncertainty of a relation) or when the

decisions between the two belief matrices are in conflict (this conflict represents antagonism
between two relations resulting each one from a different belief matrix). Both problems of
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conflicts and ambiguities are solved by using an assignment algorithm known under the
name of the Hungarian algorithm (Kuhn, 1955 ; Ahuja, 1993). This algorithm has the
advantage of ensuring that the decision taken is not “ good” but “the best”. By the “best”, we
mean that if a known object has some defective or poor sensor to perceive it, then it is
unlikely to know what this object corresponds to, and therefore ensuring that the association
is good is a difficult task. But among all the available possibilities, we must certify that the
decision is the “best” of all possible decisions.

Once the multi-objects association has been performed, the Kalman filter associated to each
object is updated using the new position of the object, and so the dynamic state of each
object is estimated.

6. Fusion

So far, the chapter has described the way in which the two sensors (stereovision and 2D
laser scanner) are independently used to perform obstacle detection. Tables 1 and 2 remind
the advantages and drawbacks of each sensor.

Detection
range

Obstacle position
accuracy

Frequency

False alarms
occurrence

Stereovision

Short to
medium range
(up to 50 m).

Decreases when
the obstacle
distance increases.

Video
rate.

frame

When the
disparity map is
of poor quality.

Laser scanner

Medium to
long range (up
to 120 m).

Usually a few cm.
Independent  to
the obstacle
distance.

Usually higher
than the
stereovision.

When the laser
plane  collides
with the ground
surface.

Table 1. Features of the stereovision and 2D laser scanner sensors.

Detection
failure
occurrence
Adverse lighting
conditions, very
low obstacles

(<30 cm).

When the laser
plane passes
above obstacle.

Ground geometry Width, height, depth,

orientation

Provide ground
geometry, including
roll, pitch,
longitudinal profile.

Provide width and height

Stereovision

Provide orientation, width and
depth (when the side of the
obstacle is visible)

Cannot provide

Laser Scanner ground geometry.

Table 2. Features of the stereovision and 2D laser scanner sensors (continued).

From Tables 1 and 2, some remarks can be made. Laser scanner and stereovision are
complementary sensors: laser scanner is more accurate but a lot of false alarms can occur
when the laser plane collides with the ground (see Fig. 7); stereovision is less accurate but
can distinguish the ground from an obstacle, because it can provide a 3D modelling of the
scene. The question is then to know how the data provided by stereovision and laser
scanner can be combined and/or fused together in order to obtain the best results.
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1) \ b
Fig. 7. “v-disparity” view of the laser scanner plane. a) An obstacle is detected. b) The ground
is viewed as an obstacle, due to sensor pitch.

In this section we discuss several possible cooperative fusion schemes.

6.1 Laser scanner raw data filtering and clustering

The idea is here to use the geometric description of the ground provided by stereovision in
order to filter the laser raw data or clustered objects which could be the result of the collision
of the laser plane with the ground surface.
Two possibilities are available :
. Strategy 1: firstly, remove laser points that could be the result of the collision of the
laser plane with the ground surface from the laser raw data; secondly, cluster laser
points from the filtered raw data (see Fig. 8),
. Strategy 2: firstly, cluster impacts from the laser raw data; secondly, remove clustered
objects that collide partially or totally the ground surface (see Fig. 9).

| Laser |—l- La%eT scarmer Tans data ¥

Filteriigg ol the Laser scanuer raw data §

| ShereoTision |_|.| Grennd geomery

| Chastering of the filtered Laser scanswer raswe data |-Q—| Filtered laser scanmer raw data |

!

| Clustersd obgects (0L, width, depil) |

Fig. 8. Laser scanner raw data filtering and clustering. Strategy 1.

Lanes 'l-| Laser scasuwer raw dala ]—I‘ Clusbening of the Laser scannes raw data I

| Sherecvision —p| Ground geomnetry | | Clustered clbyeces (2, wadth, depth) I

: ]

| Pidtering of the clustered obpects |

L3
| Feltered clustered olgects (LI wilth, depth) |

Fig. 9. Laser scanner raw data filtering and clustering. Strategy 2.
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6.2 Simple redundant fusion

At this step, filtered objects from laser scanner and stereovision are available. The idea of the
first fusion strategy is very simple. It consists in introducing redundancy by matching the
set of obstacles detected by stereovision with the set of obstacles detected by laser scanner. If
an obstacle detected by laser scanner is located at the same position than an obstacle
detected by stereovision, this obstacle is supposed to be real, otherwise it is removed from
the set of obstacles (see Fig. 10). However this scheme provide no information about the
dynamic states (velocities, etc.) of the obstacles.

Filtmmed cilses te. From L seaser

¥, Z, wadth, depth)
i w epehi rl

niathung o anobject from
aeeTeoerEnon s Te A X.T
otherwie 1115 removed

Pased clgects (3 Z,
weadth, drpib, heght|

Fuliered obeects fpomm steresnsson
b SN -]

Fig. 10. Simple redundant fusion.

6.3 Fusion with global association

More complex strategies consist in introducing global association, using the algorithm
presented in section 5. The idea consists in: a) performing multi-obstacles tracking and
association for each sensor in order to obtain multi-tracks for each sensor; b) performing
multi-track association between the tracks from the stereovision and the tracks from the
laser scanner; c) fusing the tracks together in order to increase their certainty. Fig. 11
presents a fusion scheme including tracking and association for both stereovision and laser
scanner sensor, and global fusion.

Whulti Association between s T taire [ —
Elbered. ohjecks and tracks b| FelmanBlieingof

A 4

Filiered ohjects from lazes
searner (3, Z, width, dapth)

Tracks from Laser scanmer (34,

Z. width. depth, certainty)

Mult: Azsociation betweer filtersd

Global aszociztion and fusion
between Laser racks and
steres acks

objects and tracks

Fig. 11. Fusion with tracking and global association.

From our experiments, it seems that the tracking is difficult to perform for the stereovision
tracks when the obstacles are beyond 15 meters, because of the unaccuracy of the
positioning provided by the stereovision and resulting in noisy speed used in the linear
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Kalman filter. Another strategy is then to perform multi-obstacles tracking and association
for the single laser scanner, and then to check whether an obstacle has been detected by the
stereovision at the tracked positions. If so, the certainty about the track is increased. Fig. 12
presents the corresponding fusion scheme.

Fig. 13 shows another scheme which consists in using the stereovision only to confirm the
existence of an obstacle tracked by the laser scanner: the stereovision detection is performed
only at the positions corresponding to objects detected by the laser scanner, in order to save
computational time (indeed the stereovision will only be performed in the part of the image
corresponding to the position of obstacles detected by laser scanner). Then the existence of
an obstacle is confirmed if the stereovision detects an obstacle at the corresponding position.
This scheme presents the advantage to work with complex ground geometry since this
geometry can be estimated locally around the position of the tracked laser objects.

For each fusion scheme, the resulting positioning of each obstacle is the centimetric
positioning provided by laser scanner. The estimated velocity is estimated through a linear
Kalman filter applied on laser clustered data. Orientation, width and depth come from laser
scanner, and height comes from stereovision.

Filtarad objacts from laser

seammar (3, Z, width, depth)

m:mlt E:z:_a:caliml:_:hl\w. Kalman Filiering of
Altered chbjects and tracks lasar Hacks
&

Tracks fram Jaser scarmer (X,
2 width, depth, castainty)

A 4
Multi Assodiation and fusion
bebween lazer tracks and stereo
tracks

Eiltesed objests brom
[E——

Fig. 12. Fusion with tracking of laser objects.

Filtered objects from laser Ohjects confimmation
scanner (¥, Z, widdh, depth) from stereovision

!

Filtered objects from laser
scanmer confirmead by
stereovision (X, Z width, depth)

!

Nulti Association between filtered | Kalman Filtering of laser
objects and Tacks acks

Tracks from laser scanner (0 Z, f

width depth certainty)

Fig. 13. Fusion with laser scanner tracking and confirmation by stereovision.
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6.5 Stereovision-based obstacle confirmation criteria

To confirm the existence of an obstacle in a region of interest given by the projection of a
laser-tracked object onto the image, three approaches can be used.

Number of obstacle-pixels: The first approach consists in classifying the pixels of the region
of interest. A local ground profile is first extracted using the “v-disparity” iamge.
Afterwards, the (u;,A,v) coordinates of each pixel are analyzed to determine whether it
belongs to the ground surface. If not, the pixel is classified as an obstacle-pixel. At the end of
this process, every pixel in the region of interest has been classified as ground or obstacle.
The number of obstacle-pixels gives a confidence on the existence of an object over the
ground surface. Therefore, an obstacle is confirmed if the confidence is above a threshold.
The obstacle-pixels criterion has the advantage to avoid any assumption on the obstacles to
detect. Moreover, this method gives a confidence, in an intuitive way. However, as it considers
each pixel individually, it can be strongly influenced by errors in the disparity map.

Prevailing alignment orientation: Assuming that the obstacles are seen as vertical planes by the
stereoscopic sensor, an other confirmation criterion can be defined (Fig. 4 and 7 a). The prevailing
alignment of pixels in the local “v-disparity” image is extracted using the Hough transform. The
confirmation of the track depends on the orientation of this alignment: a quite vertical alignment
corresponds to an obstacle. Other alignments correspond to the ground surface. The Prevailing
Alignment criterion relies on a global approach in the region of interest (alignment seeking). This
makes it more robust with respect to the errors in the disparity map.

Laser points altitude: Many false detections are due to the intersection of the laser plane
with the ground (see Fig. 4). The knowledge of the longitudinal ground geometry allows to
deal with such errors. Therefore, the local profile of the ground is estimated through “v-
disparity” framework. The altitude of the laser points is then compared to the altitude of the
local ground surface. An obstacle is confirmed if this altitude is high enough.

7. Experimental Results
7.1 Experimental protocol

The algorithm has been implemented on one of the experimental vehicle of LIVIC to assess their
behaviour in real conditions. The stereoscopic sensor is composed of two Sony™ 8500C cameras
featuring Computar™ Auto Iris 8.5 mm focal length. Quarter PAL 8 bits gray-scale images are
grabbed every 40 ms. The baseline is b =1 m, the height h = 1.4 m and the pitch 0 = 5°. The laser
sensor is a Sick™ scanner which measures 201 points every 26 ms, with a scanning angular field
of view of 100 °. It is positioned horizontally 40 cm over the ground surface. The whole algorithm
runs at video frame rate on a dual Intel Xeon™ 1.8 GHz personal computer.

7.2 Results

The main objective is to obtain a correct detection rate and almost no false detections.
Several aspects must be highlighted: the global performances (rates of non detections and
false detections), the robustness of the criteria with respect to errors in the local disparity
map, and the ability to work with various types of obstacles.

False detections: To assess the false detection rate, the test vehicle has been driven on a very
bumpy and dent parking area to obtain a large number of false detections due to the
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intersection of the laser plane with the ground surface. The results are reported in Table 3
(7032 images have been processed).

False detections are globally correctly invalidated using the obstacle-pixels and prevailing
alignment criteria. The laser points altitude criterion provides more false

Laser Number of Prevailing alignment | Laser points
scanner | obstacle-pixels orientation altitude
False Detections 781 3 10 167

Table 3. Number of false detections with the different criteria.

detections than expected, because of its high sensibility to the calibration errors between
stereovision and laser scanner. Indeed, a slight error in the positioning of the scanner
relative to the cameras can lead to a serious error in laser points projection, especially at long
ranges. The other criteria are not dramatically affected by this issue. Most of the remaining
false detection occur when the local ground surface is uniform, without any texture
allowing to match pixels. So they can be removed using simple heuristics as: no obstacle can
be confirmed without enough information in the region of interest. It hardly affects the
detection rate, and the false detection rate of obstacle-pixels criterion almost falls to zero.
The main source of errors for the prevailing alignment algorithm comes from cases where
the ground surface has non relevant texture, but where the region of interest contains a
small part of a nearby object (wall, vehicle, . . .).

Detection failure: The rate of correct laser detections that have been confirmed by the
different criteria has been assessed. To check, at the same time, that it can indifferently deal
with various kinds of obstacles, this test has been realized with two different obstacles: a
vehicle followed by the instrumented vehicle (1268 images processed), and a pedestrian
crossing the road at various distances (1780 images processed). The confirmation rate of
each criterion (number of obstacles detected by the laser / number of obstacles confirmed)
for these two scenarios is reported in Table 4. The three criteria can successfully confirm
most of the detections with both kinds of obstacles.

Number of obstacle- | Prevailing alignment Laser points
pixels orientation altitude
Car 97.4 % 98.5 % 95.2 %
Pedestrian 91.9 % 94.9 % 97.8 %

Table 4. Rate of correct detection successfully confirmed.

Conclusion of the comparison: None of the presented obstacle confirmation criteria
really outperforms the others. The obstacle-pixels is based on an intuitive approach and
can deal with any types of obstacles. But it is seriously influenced by the quality of the
disparity map. The more global feature of the prevailing alignment criterion makes it
more robust to this kind of errors.

The laser points altitude is not sufficiently reliable to be exploited alone. Thus an efficient
architecture for the application consists in using the laser points altitude to invalidate some
false laser targets before the tracking step. Then the tracked obstacles are confirmed using
obstacle-pixels criterion.

Performances of the perception system embedded in a collision-mitigation system: a
collision mitigation system has been designed on the basis of the fusion scheme described
above. This collision mitigation system can be divided into three sub-systems and a decision
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unit that interconnects these sub-systems. The first sub-system is the very obstacle detection
system, implementing the number of obstacle-pixels criteria for confirmation; the second
sub-system is a warning area generation system that predict the path the vehicle will follow
and that uses an odometer and an inertial sensor. The decision unit checks whether an
obstacle is located in the warning area, and whether its Time To Collision (i.e. distance /
relative speed) is under 1 second; if so, a warning message is sent to the third sub-system.
The third sub-system is an automatic braking system, based on an additional brake circuit
activated when a warning message is received.

The detection rate has been tested on test tracks on the basis of different driving scenarios,
including cross roads and suddenly appearing obstacles. The detection rate is 98.9 %.

Then, to assess the false alarm rate, this collision mitigation system has been tested in real
driving conditions, on different road types: freeway, highways, rural roads and downtown.
All these tests took place on the French road network around Paris. The automatic braking
system was turned off and only the warning messages were checked. In normal driving
situations, an automatic system should never be launched. Each time an emergency braking
would have been launched is thus considered as a false alarm. The tests have been carried
out under various meteorological situations: sunny, cloudy, rainy, and under various traffic
situations: low traffic to dense traffic.

403 km have been ridden on freeways. The velocity was up to 36 m / s. No false alarm was
observed during these tests. Fig. 14 (a) and (b) presents some typical freeway situations
under which the system has been tested. 78 km have been ridden on highways and 116 km
on rural roads. The velocity was up to 25 m / s. No false alarm was observed during these
tests. Fig. 14 (c) (d) presents some typical highway situations, and Fig. 14 (e) (f) some rural
road situations under which the system has been tested. The downtown tests are certainly
the most challenging tests since the context is the more complex. 140 km have been ridden in
downtown and in urban areas. The velocity was up to 14 m/s. A false alarm was observed
twice. The first one is due to a matching error during association, and the second one is due
to a false target detected by stereovision on a uphill gradient portion. Fig. 15 presents some
typical urban situations under which the system has been tested.

For the 737 km ridden, two false alarms were observed. The false alarm rate is thus 2.7 false
alarms for 1000 km. No false alarm was observed either on freeways or on highways and
rural roads. The two remaining false alarms were observed in downtown. Thus, the false
alarm rate in downtown is thus 1.4 false alarm for 100 km. These results are quite promising,
even if the false alarm rate must be reduced by a factor of about 1000 before the system can
be envisaged to be put in the hands of common driver.

ANTNE

Fig. 14. Typical images of freeway and rural road situations. (a) truck following on a
freeway, dense traffic - (b) freeway with low traffic - (c)(d) peri-urban highway - (e)(f) rural
road with tight uphill gradient.
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8. Trends and Future Research

Experiments of the proposed system give the feeling that an accurate and totally robust and
reliable obstacle detection system can be designed on the basis of the techniques described
in this chapter. Some tuning of the different modules are required to still improve the
performances: for instance, combination of various confirmation criteria should allow to
avoid any false alarm. Yet, some issues still need to be tackled, such as the auto-calibration
of the set of sensors. Moreover, laser scanner remain a quite.

g {h
Fig. 15. Typical images of urban situations. (a) pedestrian crossing - (b) road works - (c) car driving

out of parking lot - (d) car and bus traffic - (¢) narrow road and tight curve - (f) tight curve, non flat
road - (g) dense traffic - (h) road with high roll - (i) narrow paved road, tight curve.

Expensive device. Designing a medium range cheap obstacle detection system featuring high
performances is still a challenge for the next years but should be possible. The key could be to use
only the stereovision sensor and to implement various competitive stereovision algorithms
designed to confirm each other. On a global view, a first algorithm could generate a set of targets
that would be tracked along time and confirmed by the other algorithms. The confirmation criteria
presented above could be used for this purpose. To reach acceptable accuracy, sub-pixel analysis
should be used. Auto-calibration techniques are also required, above all for long baseline stereo
sensors. Since stereovision algorithms require massive computations, real-time performance could
be achieved only at the cost of a dedicated powerful chipset. Once designed, such a chipset should
be not expansive to produce. Thus, a breakthrough in the field of robotics is foreseeable and would
result in many applications that can not be considered nowadays because of the dissuasive cost of
state-of-the-art obstacle detection systems.
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Optical Three-axis Tactile Sensor

Ohka, M.
Graduate School of Information Science, Nagoya University
Japan

1. Introduction

The three-axis tactile sensor has attracted the greatest anticipation for improving
manipulation because a robot must detect the distribution not only of normal force but also
of tangential force applied to its finger surfaces (Ohka, M. et al., 1994). Material and stability
recognition capabilities are advantages of a robotic hand equipped with the three-axis tactile
sensor (Takeuchi, S. et al., 1994). In peg-in-hole, a robot can compensate for its lack of
degrees of freedom by optimum grasping force, allowing an object to move between two
fingers using measured shearing force occurring on the finger surfaces (Brovac, B. at al.,
1996). Also, a micro-robot would be required to remove any object attached to the inside a
blood-vessel or pipe wall (Guo, S. et al., 1996; Mineta, T. et al., 2001; Yoshida, K. et al., 2002).
It therefore becomes necessary to measure not only the normal force but also the shearing
force.

Principle of the three-axis tactile sensor is described in this chapter. The authors have
produced three kinds of three-axis tactile sensor: one columnar and four conical feelers type,
none columnar feeler type for micro robots and a hemispherical type for humanoid robotic
hands. Finally, a tactile information processing is presented to apply it to robotic object-
recognition. The information processing method is based on a mathematical model
formulated according to human tactile sensation.

2. Principle of Three-axis Tactile Sensor

2.1 Optical tactile sensor

Tactile sensors have been developed using measurements of strain produced in sensing
materials that are detected using physical quantities such as electric resistance and capacity,
magnetic intensity, voltage and light intensity (Nicholls, H. R., 1992). The optical tactile
sensor shown in Fig. 1, which is one of these sensors, comprises an optical waveguide plate,
which is made of transparent acrylic and is illuminated along its edge by a light source
(Mott, D. H. et al., 1984; Tanie, K. et al., 1986; Nicholls, H. R., 1990; Maekawa, H. et al., 1992).
The light directed into the plate remains within it due to the total internal reflection
generated, since the plate is surrounded by air having a lower refractive index than the
plate. A rubber sheet featuring an array of conical feelers is placed on the plate to keep the
array surface in contact with the plate. If an object contacts the back of the rubber sheet,
resulting in contact pressure, the feelers collapse, and at the points where these feelers
collapse, light is diffusely reflected out of the reverse surface of the plate because the rubber
has a higher refractive index than the plate. The distribution of contact pressure is calculated
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from the bright areas viewed from the reverse surface of the plate.

The sensitivity of the optical tactile sensor can be adjusted by texture morphology and
hardness of the sheet. The texture can be easily made fine with a mold suited for micro-
machining because the texture is controlled by adjusting the process of pouring the rubber
into the mold. This process enables the production of a micro-tactile sensor with high
density and sensitivity by using the abovementioned principle of the optical tactile sensor.
However, this method can detect only distributed pressure applied vertically to the sensing
surface and needs a new idea to sense the shearing force. In this chapter, the original optical
tactile sensor is called a uni-axial optical tactile sensor.

If we produce molds with complex structures to make rubber sheets comprising two types
of feeler arrays attached to opposite sides of the rubber sheet, it will be possible to improve
the uni-axial tactile sensor for use in three-axis tactile sensors (Ohka, M. et al., 1995, 1996,
2004). One of these types is a sparse array of columnar feelers that make contact with the
object to be recognized; the other is a dense array of conical feelers that maintain contact
with the waveguide plate. Because each columnar feeler is arranged on several conical
feelers so that it presses against conical feelers under the action of an applied force, three
components of the force vector are identified by distribution of the conical feelers’ contact-
areas.

Besides of the abovementioned three-axis tactile sensor comprised of two kinds of feelers,
there is another design for ease of miniaturization. In the three-axis tactile sensor, the optical
uni-axial tactile sensor is adopted as the sensor hardware and three-axis force is determined
by image data processing of conical feeler's contact-areas to detect three-axis force (Ohka,
M. et al., 1999, 2005a). In the algorithm, an array of conical feelers is adopted as the texture
of the rubber sheet. If combined normal and shearing forces are applied to the sensing
surface, the conical feelers make contact with the acrylic board and are subjected to
compressive and shearing deformation. The gray-scale value of the image of contact area is
distributed as a bell shape, and since it is proportional to pressure caused on the contact
area, it is integrated over the contact area to calculate the normal force. Lateral strain in the
rubber sheet is caused by the horizontal component of the applied force and it makes the
contact area with the conical feelers move horizontally. The horizontal displacement of the
contact area is proportional to the horizontal component of the applied force, and is
calculated as a centroid of the gray-scale value. Since the horizontal movement of the
centroid has two degrees of freedom, both horizontal movement and contact area are used
to detect the three components of the applied force.
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Fig. 1. Principle of an optical uni-axis tactile sensor.
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2.2 One Columnar and Four Conical Feelers Type

The schematic view shown in Fig. 2 demonstrates the structure of the tactile sensor
equipped with sensing elements having one columnar and four conical feelers (Ohka, M. et
al., 1995, 1996, 2004). This sensor consists of a rubber sheet, an acrylic plate, a CCD camera
(Cony Electronics Co., CN602) and a light source. Two arrays of columnar feelers and
conical feelers are attached to the detecting surface and the reverse surface of the sensor,
respectively. The conical feelers and columnar feelers are made of silicon rubber (Shin-Etsu
Silicon Co., KE1404 and KE119, respectively). Their Young's moduli are 0.62 and 3.1 MPa,
respectively.

The sensing element of this tactile sensor comprises one columnar feeler and four conical
feelers as shown in Fig. 3(a). The conical feelers and columnar feeler are made of silicon
rubber. Four conical feelers are arranged at the bottom of each columnar feeler. If F,, F,and
F, are applied to press against these four conical feelers, the vertices of the conical feelers
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collapse as shown in Fig. 3 (b). The F, , F, and F, were proportional to the x -directional area-
difference, A, the A, -directional area-difference, A, and the area- sum, A, respectively. The
parameters A,, A, and A, are defined below.

Ax=S51—- 52— 53+ 54 1
Ay=51+5-5-5; 2
A=51+ 52+ 53+ 54 ®)

Under combined force, the conical feelers are compressed by the vertical component of the
applied force and each cone height shrinks. Consequently, the moment of inertia of the arm
length decreases while increasing the vertical force. Therefore, the relationship between the
area-difference and the horizontal force should be modified according to the area-sum:

Fo=la,, —a,4.)4,

x

Ji-'lr =t — 4, A_. }.‘IJ_
F.=da_ A,

“)

Fig. 4 .Robot equipped with the three-axis tactile sensor.

where, F,, F,and F, are components of three-axis force applied to the sensing-element’s tip.
ano, apand ap are constants determined by calibration tests.

The three-axis tactile sensor was mounted on a manipulator with five degrees of freedom as
shown in Fig. 4, and the robot rubbed a brass plate with the tactile sensor to evaluate the
tactile sensor. The robotic manipulator brushed against the brass plate with step-height 6 =
0.1 mm to obtain the experimental results shown in Fig. 5. Figures 5(a), (b) and (c) show
variations in Fz , Fx and the friction coefficient, pi , respectively. The abscissa of each figure
is the horizontal displacement of the robotic manipulator. As shown in these figures, Fz and
Fx jump at the step-height position. Although these parameters are convenient for
presenting the step-height, the variation in Fz is better than that in Fx because it does not
has a concave portion, which does not exist on the brass surface. Therefore Fz is adopted as
the parameter to represent step-height.

It is noted that variation in the friction coefficient, u , is almost flat while the robot was
rubbing the tactile sensor on the brass plate at the step-height. This indicates that the tactile
sensor can detect the distribution of the coefficient of friction because that coefficient should
be uniform over the entire surface.
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2.3 None Columnar Feeler Type Three-axis Tactile Sensor for Micro Robots

In order to miniaturize the three-axis tactile sensor, the optical uni-axial tactile sensor is
adopted as the sensor hardware because of simplicity and three-axis force is determined by
image data processing of conical feeler’s contact-areas to detect three-axis force (Ohka, M. et
al., 1999, 2005a). The three-axis force detection principle of this sensor is shown in Fig. 6. To
provide a definition for the force direction, a Cartesian coordinate frame is added to the
figure. If the base of the conical feeler accepts three-axis force, it contacts the acrylic board,
which accepts both compressive and shearing deformation. Because the light scatters on the
contact area, the gray-scale value of the contact image acquired by the CCD camera
distributes as a bell shape, in which the gray-scale intensity is highest at the centroid and
decreases with increasing distance from the centroid.

It is found that the gray-scale g(x, y) of the contact image is proportional to the contact
pressure p(x, y) caused by the contact between the conical feeler and the acrylic board, That is,
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P(x,y)=Cg (v, y), ©)

where C and g(x, y) are the conversion factor and the gray-scale distribution, respectively.
If S is designated as the contact area of the acrylic board and the conical feeler, the vertical
force, F, is obtained by integrating the pressure over the contact area as follows:

F.= 'f plx, yiay.
©)
If Eq. (5) is substituted for Eq. (6),
Fom ]'r'y:.r, YWl = G, )

£
where the integration of g(x, y) over the contact area is denoted as G.
Next, to formulate horizontal components of the force vector Frand F,, x- and y- coordinates
of the centroid of gray-scale value, (X¢, Yc) are calculated by

[_L‘{ ¥, VS
Xy =t—— 8)
I,;H.r. AT
and
Igt.r. vy
Vg =im— —. 9
: j_ul x, yfS ©)

.
In the integrations, the integration area S can be enlarged as long as it does not invade
adjacent contact areas, because g(x, y) occupies almost no space outside contact area. Since
the shearing force induces axial strain in the silicon rubber sheet, the contact area of the
conical feeler moves in the horizontal direction. The x- and y-components of the movement
are denoted as u, and u,, respectively. They are variations in the

abovementioned Xgand Yg:

(7}

, (10)

1) « (0}
-}ﬁ 4

. =Xs" -Xg

N, =Y, (11)
where the superscripts (t) and (0)represent current and initial steps, respectively.
If friction between the silicon rubber and the acrylic board is ignored, x- and y-

directional forces, Fy and F, are calculated as follows:
Fo=K u,, (12)

F.o=Kun,, (13)
where K, and K, are x- and y-directional spring constants of the rubber sheet, respectively.
Here we examine the relationship between the gray-scale value of the contact image and
contact pressure on the contact area to validate the sensing principle for normal force. In the
investigation FEM software (ABAQUS/Standard, Hibbitt, Karlsson & Sorensen, Inc.) was
used and contact analysis between the conical feeler and the acrylic board was performed.
Figure 7(a) shows a mesh model of the conical feeler generated on the basis of the obtained
morphologic data; actually, the conical feeler does not have a perfect conical shape, as shown
in Fig. 7(a). The radius and height of the conical feeler are 150 and 100 p m, respectively.
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The Young's modulus of the silicon rubber sheet was presumed to be 0.476 Mpa. The
Poisson’s ratio was assumed to be 0.499 because incompressibility of rubber, which is
assumed in mechanical analysis for rubber, holds for the value of Poisson’s ratio. Only one
quarter of the conical feeler was analyzed because the conical feeler is assumed to be
symmetric with respect to the z-axis. Normal displacements on cutting planes of x-z and y-z
were constrained to satisfy the symmetrical deformation, and the acrylic board was



118 Mobile Robots, Perception & Navigation

modeled as a rigid element with full constraint. The three-dimensional (3-D) model was
used for a precise simulation in which a normal force was applied to the top surface of the
conical feeler. In the previous explanation about the principle of shearing force detection,
we derived Egs. (12) and (13) while ignoring the friction between the conical feeler and the
acrylic board. In this section, we analyze the conical feeler's movement while taking into
account the friction to modify Egs. (12) and (13). Figure 7(b) shows a 2-D model with which
we examine the deformation mechanism and the conical feeler movement under the
combined loading of normal and shearing forces.

In the 2-D model, the same height and radius values for the conical feeler are adopted as
those of the previous 3-D model. The thickness of the rubber sheet is 300 p m and both sides
of the rubber sheet are constrained. Young’s modulus and Poisson’s ratio are also adopted
at the same values as those of the previous 3-D model. The acrylic board was modeled as a
rigid element with full constraint as well. The coefficient of friction between the conical
feeler and the acrylic board is assumed to be 1.0 because this is a common value for the
coefficient of friction between rubber and metal. The critical shearing force, Tmax , which
means the limitation value for no slippage occurring, is presumed to be 0.098 Mpa.
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Fig. 8. Relationship between horizontal feeler movement and horizontal line force.
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Combined loadings of normal and shearing forces were applied to the upper surface of the
rubber sheet. The conical feeler's movement, u, was calculated with Eq. (10) while
maintaining the vertical component of line force f;, a constant value, and increasing the
horizontal component of line force f,, where the components of line forces f, and f; are x- and
z-directional force components per depth length, respectively. Since the conical feeler’s
movement is calculated as movement of the gray-scale’s centroid in the later experiments, in
this section it is calculated as the movement of the distributed pressure’s centroid.

Figure 8 shows the relationships that exist between the movement of the centroid of the
distributed pressure, uy, and the horizontal component of the line force, f;. As shown in that
figure, there are bi-linear relationships where the inclination is small in the range of the low-
horizontal line force and becomes large in the range of the high-horizontal line force,
exceeding a threshold. This threshold depends on the vertical line force and increases with
increasing vertical line force, because the bi-linear relationship moves to the right with an
increase in the vertical line force.

The abovementioned bi-linear relationship can be explained with the Coulomb friction law
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and elastic deformation of the conical feeler accepting both normal and shearing forces. That
is, the conical feeler accepts shearing deformation while contacting the acrylic board when
shearing stress arising between the acrylic board and conical feeler does not exceed a
resolved shearing stress. At this stage of deformation, since the contact area changes from a
circular to a pear shape, the centroid of distributed pressure moves in accordance with this
change in contact shape. The inclination of the relationship between u, and f; is small in the
range of a low loading level due to the tiny displacement occurring in the abovementioned
deformation stage. In the subsequent stage, when the shearing stress exceeds the resolved
shearing stress Tmax, then according to the increase of the lateral force, the friction state
switches over from static to dynamic and the conical feeler moves markedly due to slippage
occurring between the conical feeler and the acrylic board. The inclination of u, -fy,
therefore, increases more in the range of a high shearing force level than in the range of a
low shearing force.
Taking into account the abovementioned deformation mechanism, we attempt to modify
Egs. (12) and (13). First, we express the displacement of centroid movement at the beginning
of slippage as ux1. If ux = unis adopted as the threshold, the relationship between u, and F; is
expressed as the following two linear lines:

F = f;\"'r'r (b, <20}, (14)

Fo=K i, =)+ By (v, 2u,), (15)

where f; is the tangential directional spring constant of the conical feeler.
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Fig. 9. Relationship between threshold of horizontal line force and vertical line force.
Second, the relationship between the horizontal line force at bending point fi1 and the
vertical line force, f,, is shown in Fig. 9. As is evident from this figure, fi1 versus f; is almost
linear in the region covering f, =10 mN/mm. In the present paper, we assume the obtained
relationship approximates a solid linear line in Fig. 9. If we denote horizontal force
corresponding to u,1 as Fi1, Fu1 is expressed as following equation:

F,=aF +y, (16)

where a, and y, are constants identified from F, versus Fyi.
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An experimental tactile sensing system is shown in Fig. 10. Light emitted from a light source
in the bore scope is introduced into one side of the acrylic board, functioning as an optical
waveguide. Distributed light spots caused by contact with conical feelers on the rubber
sheet and the acrylic board are detected by the CCD camera through the bore scope and are
accumulated into the frame memory board built into the computer. The normal force
applied to the sensing surface of the tactile sensor is measured by an electric scale
(resolution: 0.1 mN) and is sent to the computer through an RS232C interface. The shearing
force is measured by a load cell created through our own work. The load cell consists of a
pair of parallel flat springs with four strain gauges plastered to their surfaces and was
calibrated with the electric scale. Two-dimensional force is applied to the sensing surface of
the tactile sensor with the adjustment of a precision feed screw of the X-Z stage.

In order to evaluate Egs. (14) to (16), after applying the initial normal force onto the sensing
surface, Fx was increased in a stepwise manner while maintaining a constant normal force.
Upon each increase in force, the centroid of gray-scale values within the aforementioned
sub-window was calculated and the displacement of the centroid from the initial position
was called u,. In Fig. 11, the ordinate and abscissa represent the horizontal force, Fy, and the
centroid displacement, u,, respectively. As is evident from Fig. 11, the low- and high-load
regions exhibit different sensitivity coefficients. This is a similar inclination to the simulated
results discussed in Fig. 8.

Finally, we show variation in G under a stepwise increase of Fr and constant F; in Fig. 12 to
determine whether the relationship between G and F, is not influenced by a variation in F;.
In fact, Fig. 12 indicates that G maintains a constant value even if F, increases. Figure 13
shows a comparison between relationships of G -F, with shearing force and without
shearing force. In Fig. 13 the solid circles represent the relationship with the shearing force
obtained from Fig. 12, and it is clear that both of the relationships almost coincide in Fig. 13.
Since the magnitude of the shearing force has no influence on the sensitivity characteristic in
the normal direction, it is possible to identify the shearing force and normal force
independently.
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2.4 Hemispherical Three-axis Tactile Sensor for Robotic Fingers
On the basis of the aforementioned two examples of three-axis tactile sensors, a
hemispherical tactile sensor was developed for general-purpose use. The hemispherical
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tactile sensor is mounted on the fingertips of a multi-fingered hand (Ohka, M. et al., 2006).
Figure 14 shows a schematic view of the present tactile processing system to explain the
sensing principle. In this tactile sensor, the optical waveguide dome is used instead of the
waveguide plate, which is used in the previously described tactile sensors. The light emitted
from the light source is directed into the optical waveguide dome.
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Fig. 15. Sensing element of eight feeler type.
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Fig. 16. Fingertip including the three-axis tactile sensor.
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Fig. 17. Address of sensing elements

The sensing element presented in this paper comprises a columnar feeler and eight conical
feelers as shown in Fig. 15. The sensing elements are made of silicone rubber, as shown in
Fig. 14, and are designed to maintain contact with the conical feelers and the acrylic dome
and to make the columnar feelers touch an object. Each columnar feeler features a flange to
fit the flange into a counter-bore portion in the fixing dome to protect the columnar feeler
from horizontal displacement caused by shearing force.
When three components of force, the vectors F,, F, and F,, are applied to the tip of the
columnar feeler, contact between the acrylic board and the conical feelers is measured as a
distribution of gray-scale values, which are transmitted to the computer. Since the contact
mechanism between the acrylic dome and conical feelers is difference from the case of flat
acrylic board, relationships between the shearing force and centroid displacement and
between the normal force and integrated gray scale value cannot be approximated with
linear functions as shown in Egs. (7), (12) and (13). The F, F,and
F.values are calculated using the integrated gray-scale value G and horizontal displacement
of the centroid of the gray-scale distribution u=u. i+ u,j as follows:

F,= f (ux)/

By =f(w), 17)

F=g(G),
where i and j are orthogonal base vectors of the x- and y-axes of a Cartesian coordinate,
respectively; f(x) and g(x) are approximate none-linear curves estimated in calibration
experiments.
We are currently designing a multi-fingered robotic hand for general-purpose use in
robotics. The robotic hand includes links, fingertips equipped with the three-axis tactile
sensor, and micro-actuators (YR-KA01-A000, Yasukawa). Each micro-actuator consists of an
AC servo-motor, a harmonic drive, and an incremental encoder, and is developed
particularly for application to a multi-fingered hand. Since the tactile sensors should be
fitted to the multi-fingered hand, we are developing a fingertip to include a hemispherical
three-axis tactile sensor. That is, the fingertip and the three-axis tactile sensor are united as
shown in Fig. 16.
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The acrylic dome is illuminated along its edge by optical fibers connected to a light source.
Image data consisting of bright spots caused by the feelers’ collapse are retrieved by an
optical fiber-scope connected to the CCD camera as shown in Fig. 17.
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To evaluate the sensing characteristics of sensing elements distributed on the hemispherical
dome, we need to measure the variation within the integrated gray-scale values generated
by the sensor elements. Figure 18 shows examples of variation in the integrated gray-scale
value caused by increases in the normal force for sensors #00, #01, #05, #09, #17, #25 and
#33. As the figure indicates, the gradient of the relationship between the integrated gray-

scale value and applied force increases with an increase in @; that is, the sensitivity depends
upon the latitude on the hemisphere. Dome brightness is inhomogeneous because the edge
of the dome is illuminated and light converges on the parietal region of the dome. The

brightness is represented as a function of the latitude @, and since the sensitivity is uniquely

determined by the latitude, it is easy to modify the sensitivity according to @.

The relationship between the integrated gray-scale value and applied force has high
repeatability. Experimental results from 1,000 repetitions on #00 are superimposed in Fig. 19,
which shows that all the curves coincide with each. The deviation among them is within 2%.
Normal force Fy and shearing force Fs applied to the sensing elements are calculated using
the following formulas.

Fy=Fcos 0 (18)
Fs=Fsin0 (19)

With Eq. (18) we obtained the variation in the integrated gray-scale values and applied
normal force. Figure 20 displays the relationship for #00. Even if the inclination is varied
from -30° to 300, the relationship coincides within a deviation of 3.7%.

When force is applied to the tip of the sensing element located in the parietal region under several
0 s, relationships between the displacement of the centroid and the shearing-force component
calculated by Eq. (19) are obtained as shown in Fig. 21. Although the inclination of the applied
force is varied in the range from 15¢ to 60, the curves converge into a single one. Therefore, the
applied shearing force is obtained independently from displacement of the centroid.
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3. Human mimicking Tactile Sensing

3.1 Human Tactile Sensation
Human beings can recognize subtle roughness of surfaces by touching the surfaces with
their fingers. Moreover, the surface sensing capability of human beings maintains a



126 Mobile Robots, Perception & Navigation

relatively high precision outside the laboratory. If we can implement the mechanisms of
human tactile sensation to robots, it will be possible to enhance the robustness of robotic
recognition precision and also to apply the sensation to surface inspection outside the
laboratory. Human tactile recognition is utilized as a model of robotic tactile regognition
(Ohka, M. et al., 2005b). Human tactile recognition ability has been examined using
psychophysical experiments and microneurography. Consequently, mechanoreceptors of
skin are classified into four types according to response speed and receptive field size
(Vallbo, A. B. & Johansson R. S., 1984). In the present paper, we focus our discussion on FA I
(First adapting type I unit) because FA I responds to surface roughness. In regard to
remarks related to FA I obtained by the authors and other researchers, remarks used for the
present formulation are summarized as follows:
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Fig. 22. Modeling of fast adaptive Type I mechanoreceptive unit.

(1) FA I responds to the first-order differential coefficient of mechanical stimulus
varying with time (Moss-Salentijin, L., 1992; Miyaoka, T., 1994).

(2) Acquirable physical stimuli of FA I are surface roughness of several tens of
microns in amplitude, and mechanical vibration of several microns in amplitude
and several tens of Hz in frequency (Miyaoka, T., 1994).

(3) Human subjects feel moving fine step height more strongly at high scanning
speeds than at low scanning speeds (Kawamura, T. et al., 1998)

(4) The mechanoreceptors related to FA I are Meissner’s corpuscles(Moss-Salentijin, L.,
1992; Miyaoka, T., 1994).

3.2 Neuron model

Neurophysiology studies have clarified that the mechanoreceptive units comprise a few
mechanoreceptors accepting mechanical stimuli and a sensory nerve fiber transmitting
sensory signals. In the present paper, a neuron processing the sensory signals is treated as
an element of the unit in order to consider the unit as comprising mechanoreceptors, a
sensory nerve fiber and a neuron in the brain. If we make a model of the tactile nerve
system on the basis of neural network models, it is easy to incorporate the above-mentioned
human tactile mechanism into robotics.

The McCulloch-Pitts model (McCulloch, W. & Pitts, W., 1943) is adopted here as the
mechanoreceptive unit, while the afore-mentioned remarks on human tactile sensations are
formulated to obtain expressions of the fine surface roughness recognition mechanism.
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Figure 22 shows a neural network related to the tactile sensory system. When mechanical
stimuli are applied to the surface of the skin, the mechanoreceptors accept the stimuli and
emit a voltage signal. The signal is transmitted to a dendrite extending from a neuron
through a synaptic connection. The arrival of the output signal from the mechanoreceptor
effects a change in the membrane potential inside neuron. If several signals from
mechanoreceptors arrive almost simultaneously at the neuron, these signals are
superimposed in the neuron and summation of these signals change the membrane
potential. This effect is called spatial summation and is modeled first.

The neuron accepts n-signals x1, X2, ... , X emitted from n-mechanoreceptors distributed in
the skin. The weight of the synaptic connection between i-th mechanoreceptor and the
neuron is represented as w;. Taking into account the spatial summation, the membrane
potential, u is calculated as
= Z WX, .

el (20)
The mechanoreceptor seems to detect the time derivative of skin deformation according to
Remark (1) in the previous section, where it is assumed that the mechanoreceptor detects
the strain rate caused in the skin and that it emits signals proportional to the magnitude of
the strain rate. Namely, the output of the i-th mechanoreceptor, x; of Eq.
(20) is calculated by the following expression,

—4 (@)

where ¢;is the compressive strain of the i-th mechanoreceptor and  is a coefficient.

When an output signal emitted from the mechanoreceptor arrives to the neuron, a change
occurs in the membrane potential. If the next signal arrives at the neuron before the change
attenuates and vanishes, the next signal is superimposed on the residual of the preceding
signal. This effect is called time summation (Amari, T., 1978) and is formulated as convolution
integral of w; (t—t") x (t') with respect to ¢ ' from the past to the present ¢ if the weight of
synaptic connection between the i-th mechanoreceptor and the neuron is represented as w;
t ') at time t' . Consequently, by incorporating the time summation into Eq. (20), the
membrane potential u is calculated as

a A
L} L} L)
U= z J w (=1, ()t 22)
i=l
Influence of signal arrival on the membrane potential degreases with late of the signal
arrival. This effect is expressed as degreasing the synaptic potential, w; (t). However, there
are no available data on variation in the synaptic potential. In the present paper, it is
assumed that w; (f) varies as square wave; namely it takes a constant value during 0 to T sec,
after which it takes 0.

L0=r<r

0,r<0 23)
It is known that neurons have the threshold effect where the neuron emits an output if the
membrane potential, u expressed as Eq. (24), exceeds a threshold, /1 . The output is a pulse signal

and the pulse density of the signal is proportional to the difference between membrane potential
u and threshold /1 . The pulse density of the signal is expressed as z , while the threshold function,

W, ()=
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¢ (g) is designated to formulate the threshold effect. The pulse density, z is,

s=gli=h) 24)
q.q20
dlg)= .
'::l,¢410 (25)

As mentioned above, data processing of the mechanoreceptive type FA I unit is formulated
using a mathematical model for neuron-incorporated spatial and time summations. In the
following sections, we confirm these expressions are by numerical simulation using FEM
analysis of a human finger and experiments using an articulated robot installed in the
present neural model.

3.3 Simulation

As mentioned in Remark (4), the mechanoreceptor of FA I appears to be Meissner’s
corpuscle. In order to evaluate the present mathematical model derived in the preceding
section, we performed a series of FEM analyses using a mesh model as shown in Fig. 23. In
the present mesh model, a human finger is expressed as a half cylinder. Normal strain, e,
arises at the existing potion of Meissner’s corpuscle, calculated when the finger is slid along
a flat surface having s fine step height. We selected 6=5, 7.5, 10 , 12.5 and 15 p m as the
step heights to compare experimental results obtained by psychophysical experiments.

It is possible that viscoelastic deformation of the skin causes the scanning speed effect
described in Remark (3). In this paper, we adopt the first-order Prony series model
(ABAQUS Theory manual, 1998) which is equivalent to the three-element solid, as the
viscoelestic model to approximate the skin’s viscoelastic behavior.
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Fig. 23. Mesh model for contact analysis.
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Human skin is composed of three layers: the epidermis, the dermis, and the hypodermis.
Young's moduli of these three layers are assumed to be 0.14, 0.034 and 0.080 Mpa (Maeno,
T. et al,, 1998). On the other hand, the Poisson ratios of all layers are assumed to take same
value of 0.45 because there are no reports concerned with it. Moreover, this value is
reasonable if the skin has similar mechanical characteristics to rubber. Since there are no
data on the ratio of the shearing modulus’s initial value to its terminal value and the ratio
between the bulk modulus’ initial value and its terminal value for human skin, a common
value of 0.5 for the three layers is assumed and a value of 12.9 msec (Oka, H. & Irie, T., 1993)
is adopted as the time constant.

The present mesh model was compressed upon a flat rigid surface having a fine step height
and slid over the surface. Then, we obtained the y-directional normal strain, g, in the
Meissner’s corpuscle, shown by a solid square in Fig. 23. The mesh element of Meissner’s
corpuscle is located 0.5 mm below the skin surface. The width and height of the element are
40 p m and 50 p m, respectively.

In the present loading history, the modeled finger was initially moved 1 mm in the negative
perpendicular direction and compressed upon the flat surface. Subsequently, it was slid 10
mm in the horizontal direction. Any compressive deformation produced during the first
step of the loading history should be diminished to allow evaluation of the stimulus of the
fine step height caused by the scanning motion only. Therefore, after contact was
established between the finger and the rigid flat surface, the finger was stabilized for 1 sec to
diminish the effect of compressive deformation. Furthermore, we selected v = 20 mm/s and
40mm/s for the finger sliding speed to simplify comparison between simulated and
experimental results of psychophysical experiments conducted in our previous works. We
selected 0 for the coefficient of friction between the finger and the rigid surface.
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Fig. 24. Variation under compressive strain.

Next, we substituted the normal strain, ¢, obtained from the above-mentioned FEM analysis,
into Eq. (21) by putting &, to &. Subsequently, Egs. (20)-(25) were calculated to obtain
simulated signals emitted by FA I. Although the constants included in Egs. (20)-(24),a,n, T
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and / should be determined by neurophysical experiments, we could not obtain such data.
We assumed the values of these constants as follows. Here, a, the proportionality constant
of relationship between output signal and stimulus magnitude, was presumed to be a =1
Vsec. We were attempting to evaluate the simulation by normalizing outputs of the present
model with the highest peak value among the outputs of different conditions. Since the
plane strain condition was assumed in the present simulation, it was equivalent to a
simulation of Meissner’s corpuscles aligned in the depth direction of this sheet and having
the same characteristics. To abbreviate the present analysis, the variance among
mechanoreceptive units was ignored and n = 1 was presumed. Since the afore-mentioned
dependence of speed on step height recognition seems closely related to temporal
summation, we calculated several time constants within a range of 1= 10 ~300 msec.
Following that, we selected the best T that could best fit our experimental results. Since
threshold /1 does not affect our simulated results, we summed 1 =0V.

Figure 24 shows the variation in normal strain of the position of Meissner’s corpuscle as
depicted in Fig. 23. Since the finger remains stational for 1 sec to erase the history of the
initial compressive strain, the variation remains at an almost constant value following the
transient variation occurring at the initial stage. Then, when the fine step height comes near
the position of Meissner’s corpuscle, two prominent spikes arise. The figure also indicates
that the magnitude of the spike increases with an increase in step height.
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Fig. 25. Variation in normalized pulse density.

As mentioned in the previous section, we calculated several time constants within a range of
=10 ~300 msec. First, we will examine variation in normalized pulse density at T= 300
msec. The strain rate calculated from the normal strain shown in Fig. 24 is substituted into
the present mathematical model presented by Egs. (20)-(25) to obtain the pulse density, z .
Since we designated a=1 as a value of the constant included in Eq. (2), the obtained pulse
density z does not have any physical meaning. Hence, a comparison between calculated
results under different conditions should be performed with a ratio. Here, the calculated
pulse density is normalized as a peak of the calculated pulse density below v = 40 mm/s,
and 6= 15 p m is designated 1. In Fig. 25 the results are normalized according to the above-
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mentioned procedure.

For both v = 20 mm/s and 40 mm/s, results show that normalized pulse density increases
with the reach of the mechanoreceptor to fine step heights, and that their maximum values
increase with an increase in step height, & . In order to examine the influence of a finger’s
sliding speed and step height on pulse density, we obtained the maximum value for each
simulation condition. Figure 26 illustrates the relationship between maximum pulse density
and step height for v = 20 mm/s and 40mm/s.

The figure shows that the maximum pulse density is proportional to step height. If we
compare pulse densities of different finger sliding speeds at the same step height to examine
the influence of a finger’s sliding speed on pulse density, we find the pulse density at a high
finger speed is higher than at a low finger speed.

Next, to estimate a proper value of T, we performed the same calculations (except for the
value of 1) under the same calculation conditions as the calculation shown in Fig. 25.
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Fig. 26. Relationship between model output and step-height.

To obtain a conversion factor from the pulse density to the accepted step height, we
obtained regression coefficients of calculated results for v = 20 and 40 mm/sec and adopted
the mean value of the regression coefficient as the conversion factor. After employing this
factor, the ordinate of Fig. 26 was transformed to an accepted step height, relationships
between simulated step height and accepted step height were obtained, as shown in Fig. 27.
The symbols in Fig. 27 show our experimental results (Ohka, M. Et al., 2004) obtained from
a series of psychophysical experiments. This figure demonstrates that even if human
subjects recognize the same step height, they feel that a given step height is higher at a high
finger speed than at a low speed. Furthermore, on comparing calculated results with
experimental results, we find that the calculated results coincide well with the experimental
results below t =300 msec.

3.4 Application to robotics
The robotic manipulator shown in Fig. 4 rubbed a brass plate with the tactile sensor’s
sensing surface to obtain surface data of the brass plate. To enable the robotic manipulator
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to traverse the brass plate correctly, it is possible to adjust the horizontal datum of the brass
plate with three screws attached to it at intervals of 120°. We prepared three brass plates
having step heights of 6= 05.0 , 0.1 , 0.2 mm, and one brass plate having no step height (6 =
0 mm).

During the surface scanning test,

(1) we maintained contact between the tactile sensor’s sensing surface and brass plate,
and had the sensing surface press on the brass plate to apply an initial vertical
force to the sensing element;

(2) the robotic manipulator traversed the brass plate in horizontal movement of 10
mm.

As a result, we obtained AU, = U, — U,, which is the difference between the current vertical
displacement and the initial vertical displacement, U.o.
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Figure 28 shows variation in the vertical displacement measured by the sensing
element. The abscissa and ordinate of Fig. 28 are the local x-coordinates of the robotic
manipulator’s end-effecter and the difference between the current vertical displacement
and initial vertical displacement, AU, respectively. The origin of the abscissa
corresponds to the position where the robotic manipulator applied the initial vertical
force to the tactile sensor. Figure 28 shows that AU, jumps at the step-height position,
and that the jump heights increase with increasing step height. Furthermore, according
to Fig. 28, the experimental results vary according to the step: if the step-height
magnitudes of the experimental results are examined, it is found that the ratio is about
1:2:5, a ratio that approximates the ratio of the step heights formed on the brass plates
(1:2:4). Therefore, the sensor can detect step heights formed on the surface of an object.
However, if we intend to measure the step height from variations in the vertical
displacement AU , then the initial displacement U, should be constant because it is
used as a datum for step-height measurement. In the case of robotics, the sensing
surface of the tactile sensor often repeats touching and detaching from the object
surface. Furthermore, there is no guarantee that the sensing surface faces parallel to the
object surface; for step-height sensing, it is preferable that the step height is estimated
from the current values.

As a candidate for the current physical quantity excluding the vertical displacement, U, we

attempt to consider the time derivative of vertical displacement, U . - Figure 29 shows the
variation in U .. The abscissa represents the time elapsed from begin of the scan just z after

initial load is applied. In Fig. 29, U . has a peak value corresponding to the position of step

height. Since U, is determined from the current value obtained from the measurement, it
appears more suitable than AU, for robotic real-time step-height recognition, though it
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depends on the value of U,. However, since U/, contains many noise components, it is

difficult to discriminate step heights of & = 0.05 mm and 0.1 mm. Therefore, U _ holds no
advantage for fine discrimination of step height.
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Fig. 30. Variation in pulse density

Next, the present model was incorporated into the robotic manipulator’s surface-recognition
system. The variation in the time derivative of vertical displacement of the present tactile

sensor in Fig. 29, U , is divided by a representative length of the tactile sensor to obtain the

strain rate substituted into Eq. (21). The strain rate becomes an input signal of the present
model and is used to derive pulse density, z with Eq. (24). In this calculation, we employed
the following constants included in the model: a=1 Vsec, n =1, t=3 sec, h=0 V.

In estimating the time constant, T, we considered the difference of time consumption for
data processing between human tactile sensation and robotic tactile recognition. Namely,
since image-data processing is required to obtain tactile data in the present tactile sensor,
sampling time is rather long at 0.5 sec. In contrast, FA I's band of tactile frequency is
approximately several tens of Hz, and is one digit larger that the tactile sensor’s band.
Therefore, in calculating the present model, we used a value ten times larger than the 1= 300
msec in Fig. 27.

Figure 30 illustrates the output of the present model. In this figure , the ordinate shows a
normalized pulse density with its maximum value at a step height of 0.2 mm, while
variation in the normalized pulse density, Z shows a single peak value. Furthermore, it is
easy to distinguish the difference between the cases of 6 = 0.05 mm and 0.1 mm due to the
noise-filtering effect of the present model. This discrimination was impossible in Fig. 29. As
a result, we confirm that the present model is effective for robotic recognition of fine surface
step heights in real time.
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4. Conclusion

In this chapter, mechanism and evaluation of the optical three-axis tactile sensor are
described to show sensing characteristics on three components of force vector applied to the
sensing element. Then, recognition method for subtle convex portions of flat plate is
presented to show effective of the present method using a series of experiments.

In future work, the author plans to mount the present three-axis tactile sensors on a micro
and robotic fingers to perform verification experiments and will perform edge tracing of
an object and object manipulation. In these experiments, the presented recognition
method will be effective to determine subtle concave and convex portions located on any
surfaces.
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Vision Based Tactile Sensor Using Transparent
Elastic Fingertip for Dexterous Handling

Goro Obinata, Ashish Dutta, Norinao Watanabe and Nobuhiko Moriyama
Nagoya University
Japan

1. Introduction

Humans have the ability to sense the weight and friction coefficient of the grasped object
with their distributed tactile receptors. The ability makes it possible for humans to prevent
from the slippage of manipulated object or collapsing the object. Such dexterous handlings
are achieved by feeding back the signals from the receptors to muscle control system
through neural networks. Therefore, it may be a key point for establishing dexterous
handlings of robots when we try to mimic skilled human functions.

For tactile sensing of robots, several methods and sensors have been proposed by using
electrical resistance, capacitance, electromagnetic component, piezoelectric component,
ultrasonic component, optical component, and strain gauge (Shinoda, 2002), (Lee &
Nicholls, 1999). There exist many problems of these sensors to be solved for establishing
practical ones. For an example, the sensor which consists of elastic body and strain gauges
requires a lot of gauges and the wiring. Moreover, the signal processing is not simple to
obtain the values of the contact forces and the friction coefficients (Maeno et al, 1998). On
the other hand, optical sensors have been introduced because wiring is not required in the
contact part to the object (Ohka et al, 2004), (Ferrier & Brockett, 2000), (Kamiyama et al,
2003). The introduction of optical sensor makes the size small and the wiring simple.
However, the sensing of friction coefficient is not considered in those papers. Piezoelectric
sensors have a certain potential to solve the problems of size and wiring but there has not
been a practical solution yet for measuring friction coefficient.

It is required for establishing dexterous handlings of robots to provide a purpose-built
sensor for the measurement of friction coefficients between robot hand and the target
surfaces. So as to avoid multiple usage of tactile sensors, we have proposed a new design of
tactile sensors for multiple measuring of contact information including friction coefficient
(Obinata et al, 2005).

2. Vision Based Tactile Sensor

We have proposed a vision-based sensor for multiple measuring of contact information
including friction coefficient. The system consists of a CCD camera, LED lights, acrylic plate,
and elastic body. The elastic body, which is made of transparent silicon rubber and has grid
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pattern or dotted pattern on the spherical surface as shown in Fig.2, is to contact the object.
The CCD camera is to take pictures of the spherical surface from the flat surface side of the
elastic body. The experimental setup is shown in Fig.3. We can apply not only arbitrary
normal and tangential forces but also moments around normal axis of contact with the
sliding mechanisms.

CCD camer -

/ LED Light
,_ - : acrylic plate

Fig. 2. Examples of shape and pattern on the surface of the elastic body.

| CCD  camera

normal foree I[

~ LED Light
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0 = tangential force

i ——
transparent slastic hody "[ 0

Fig. 3. Experimental setup for the sensor.
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3. Measurement of Contact Force and Moment
3.1 Normal force

The relation between contact radius and normal contact force has been analyzed in cases of
hemispherical surface (Xydas & Kao, 1999). The result provides the following relation:

a=cN” @
where 4 is radius of contact area, C is a constant depending upon the material, y is a
constant depending upon the shape, N is normal force. This means that the normal force
can be obtained from the contact area once the values of C and y are determined. The
picture of Fig.4 is an example when only a normal force is applied. We can estimate the
contact area from the difference of brightness of each pixel; that is, we can obtain the
estimation of the normal force. The dotted circle in the picture shows the estimated contact
area with a certain threshold of the brightness. The experimental results are summarized as
shown in Fig.5. The obtained values agree with the relation (1). The solid line in Fig.5
shows the curve with ¢ = 4.35 and y=0.17. We can estimate normal contact forces based on
this relation using the proposed sensor.

threshold line for
contact area

radius of contact (mm)

0 T T T T T T |

0 2 4 6 8 10 12 14
normal force (N)

Fig. 5. Relation of radius of contact area to the applied normal force.
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3.2 Tangential force

The picture in Fig.6 shows an example when normal and tangential forces are simultaneously
applied. Central four dots on the surface of the elastic body were colored with red as shown in
Fig.7, and are used as the origin and axes of the coordinate frame while identifying the
displacements of all dots from the pre-contact positions. When the four dots are included in the
contact area, the displacements of the four dots allow us to determine the direction of applied
tangential force. We recognized that the displacements depend on the applied normal forces. On
the other hand, the contact radius is independent on the tangential forces; thus, we estimate at
first the normal force from the contact radius, and then estimate the tangential force with the
estimated normal force. We found out the method for eliminating the dependency of

threshold line for

contact area . .
direction

oftangential

Fig. 6. Example of the picture.
(both normal and tangential forces are simultaneously applied).
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Fig. 7. Colored four dots on the surface of elastic body.
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tangential force on the normal force by cut and try. Multiplying the ratio of contact radius
to the measured displacements in tangential direction yields the normalized displacements.
Then the relation between the normalized displacements and the tangential forces becomes
one to one correspondence which is nearly expressed by one curve. The result of the
normalization is summarized in Fig.8. Based on the relation, we can estimate the
magnitudes of the applied tangential forces.
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Fig. 8. Relation between normalized displacement and tangential force.

3.3 Moment

We can identify all dots on the surface of sensor in the coordinate frame defined by the
colored dots. This fact allows us to obtain the vectors corresponding to the all dots which
start from the positions of pre-contact phase and end at the positions of post-contact phase.

eenter of

-l retalicm

Fig. 9. Vectors for dots and center of rotation.

nomalized angle
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Fig.10. Relation between normalized rotation angle and applied moment.
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We can estimate the center of rotation from the vectors when a moment is applied. Then, we can
calculate the rotation angle from the position of the center and the vectors by using appropriate
technique, for an example, least square method. The picture in Fig.9 shows how to estimate the
center of rotation, for the example. We recognized that the estimated angles depend on the
applied normal forces. We used the same method as the case of tangential force to eliminate the
dependency; that is, the obtained angles were normalized by multiplying the ratio of contact
radius. However, the result has a relatively large deviation and is summarized in Fig.10.

4. Estimation of Friction Coefficient

So as to prevent from the slippage of the manipulated object, we need to obtain the conditions of
contact surface between the gripper and the object. The coefficient of static friction is important
for handling the object without slipping. When the contact occurs between curved surface and
flat surface, the pressure between the two surfaces distributes in the contact area. If the pressure
of contact surface takes a lower value than the constant which is determined by both the surface
conditions and the materials, the relative motion in tangential direction is possible in the area.
This leads that the pressure distribution between the gripper and the object divides the contact
area into two parts in general. In one part of contact surface, the relative motion in tangential

Jl , nommal foree: A
;| 1 (] T

inrigiend

/ ligpagr regiom
stick region; F < nN
/ mcipient slippage region
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Fig.11 Schematic view of finger contact and definition of incipient slippage region.

direction is possible. We call the part as incipient slippage region. In the other part, the
relative motion is impossible. This always occurs when human contact the object with
fingertips. Several receptors in cutaneous sensory system of human distinguish these two
areas. This means that human can sense the degree of slippage without macroscopic
slippage occurring. The schematic view of finger contact and the definition of the two
regions are illustrated in Fig.11. If we distinguish the two parts from the picture of CCD
camera with our sensor, we can estimate the degree of slippage from the ratio of area of the
incipient region to the total contact area. The ratio is defined by.

A @)
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where s, is stick area, S, is contact area, y, is radius of stick area, and r. is radius of

contact area. We call this ratio as stick ratio, and it relates to the friction coefficient. In
the case of spherical and flat surfaces, the incipient slippage occurs in peripheral part of
contact. So as to confirm the phenomenon experimentally with spherical and flat
surfaces, we add a displacement sensor and a force sensor to the experimental setup of
Fig.3. The force sensor measures directly the applied tangential force. The
displacement sensor measures the movement of object. First, we identified the
positions of all dots when only a normal force was applied. Next, we applied small
additional force in tangential direction and increased the magnitude gradually. The
dots in stick region moved in the direction, and the displacements were almost
equivalent to that of the object. Note that macroscopic slippage did not occur at this
moment while the surface in stick region moved with the object since the body of sensor
is elastic. On the other hand, the dots in incipient slippage region moved a shorter
distance in tangential direction because slippage occurred in the region. The relation
between the initial distances of dots and the displacements for three cases of different
tangential forces is shown in Fig.12. It should be noted that the radius of stick region
decreased as the applied tangential force increased. When the radius reaches to zero,
macroscopic slippage will occur. This leads to the possibility of estimating the degree
of slippage from the displacements of central and peripheral dots. We propose a
method for estimating stick ratio only from measurements of the sensor. The method
uses the relative displacements of peripheral dots to the central dot. The radius of stick
region can be determined by comparing the relative displacements with the threshold.
In order to show the effectiveness of the proposed method, we carried out another
experiments under different friction coefficients. We controlled the friction coefficient
by using talcum powder on the contact surface and obtained the relation of the friction
coefficients to the estimated stick ratios. The values of friction coefficient were
determined with the ratio of the tangential force to the normal force at occurrence of the
macroscopic slippage. We express the result with five lines in Fig.13. Each line
corresponds to each friction coefficient. The lower stick ratio with the same
displacement
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Fig. 12. Identifying incipient slippage region.
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Fig.13. Estimated stick ratio in different friction coefficients.

of central dot means the lower friction coefficient. Although the proposed method cannot
estimate smaller stick ratio under 0.1, we can use the estimated value to prevent from
slippage because we can keep it over a certain value by feedback control of the contact
force.

5. Control System for Robot Grippers Using Tactile Sensor

In this section, we describe the control system design for robot grippers to prevent
from the slippage of the manipulated object. The feedback signal from the proposed
tactile sensor is used to control the grip strength for stable handling of the object. The
control system consists of the tactile sensor with image processing software, a voice
coil motor, and a simple proportional controller with gain K, which is shown as the
block diagram in Fig.14. The reference s is the set point for the stick area 5 . The
controller amplifies the deviation 5§ by K, and transmit the calculated value to the
voice coil motor. The voice coil motor generates the grip force under the control. The
generated force is in proportion to the current in the voice coil motor. This feedback
mechanism keeps the stick area around the set point. The experimental results of this
control system are given by Fig.15. The tangential forces were applied manually; so,
the curves in Fig.15 are not typical functions of time. The manipulated variables of
control system correspond to curves in “current” of the second row which are in
proportion to the generated normal forces. The current of one ampere is
corresponding to the force of 3.5 N. The estimated stick ratios were normalized by the
initial contact area and shows that a macroscopic slippage occurred while the control
did not work. Moreover, it is shown in the figure that the control resulted in keeping
the values of estimated stick ratio around the set point 0.5. This proves prevention
from slippage by the control. It should be noted that the control system works only
using signals from the tactile sensor.
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Fig. 15. Result of stick area control: Comparison between with and without control.

6. Comparison between the vision based sensor and a PVDF sensor

In this section a brief comparison is made between the proposed vision based tactile sensor
and a fingertip shear force sensor made of poly-vinylidene fluoride (PVDF). Several earlier
researchers have used thin piezo-electric films to sense the vibrations produced by object
slip at the fingertip. However these sensors cannot measure the shear force that is essential
for control of the fingertip normal force, and hence a new PVDF shear force sensor has been
developed. The PVDF sensor works on the principle of directional properties of poled
polymers. Poling is done with the application of a high DC voltage to orient the molecular
dipoles in a particular direction. This causes the polymer to respond independently to forces
in the three principle directions, as explained in (Furukawa, 1989). A small sensor was
developed using poled PVDF of size 10 x 15 mm as shown in Fig. 16. The PVDF film is
metallic coated on both sides on which thin wires are attached to collect the charge
generated by the applied forces. The polymer film is placed in between two layers of rubber
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(1 mm thick) and the whole composite assembly is placed on an aluminum ‘finger’ of
thickness 5 mm. This prevents the polymer from bending. The three layers are bonded
together by means of epoxy adhesive. Details of the polymer used are as follows:

material : PVDF, MONO

polarization class: 1-A

thickness : 25 micro-m

metallization : Ni, Cu both sides as electrode

dielectric constant : d31 # d33 (where 3 refers to the poling direction)

E=3.5Gpa
The sensor was placed on one finger (similar to Fig. 16) of a two-finger robot gripper and
calibrated for different shear forces acting along the x-direction. Calibration result is as shown in
Fig. 17. Several experiments were performed in which the sensor was used to grasp an object
with a desired normal force and then a shear force was slowly applied to the object, to cause it to
slip. Figure 18(a) shows that as the shear force increases it is recorded by the sensor. The shear
force remains almost constant while slip occurs, until the object goes out of the grip. This same
phenomenon is also shown in Fig. 18(b), where the shear force increase is recorded until slip
occurs. Slip is recorded as a disturbance until the grip fails. From these figures it is not possible to
accurately predict micro slip until macro slip takes place. Hence it is also not possible to take
corrective control action to prevent macro slip. Other differences between the two sensors are, the
signals obtained from PVDF sensor is noisy and requires signal processing and also
measurement of a moment is not possible. The merit of the PVDF sensor appears to be its small
size, weight and low cost. This comparison highlights the various advantages of the vision based
tactile sensor over other types of piezo-sensors proposed so far.
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N applied to the object (normal force 0.9 N)

7. Conclusion

We have explained on a new tactile sensor for measuring multi-dimensional force and
moment of contact. The structure of sensor is simple because the method is vision-based.
The method to obtain the values of force and moment has been confirmed by several
experiments. It is shown that the accurate estimation of contact force and moment is
possible with the proposed sensor although there is a trade-off between the resolution and
the computational time. There exist small interpositions between the tangential force, the
moment and the normal force while measuring. Clear understanding the interposition
between applied forces and moments will be required in further research. We defined the
stick ratio as an index for indicating the degree of slippage. We have also proposed a new
method to estimate the stick ratio for preventing from slippage of manipulated object.
The exact relation of the defined stick ratio or the estimated stick ratio to the exact friction
coefficient is an important problem to be solved. We demonstrated the control system for
keeping the estimated stick ratio around a set point. Moreover, we have given a
comparison with a piezoelectric sensor because it may be another candidate to cope with
several practical requirements. The purpose-built integrated circuit for the image
processing of this vision-based sensor may be required to achieve high speed control
against disturbances in high frequency band. It is shown that the proposed sensor has the
potential for dexterous handling like human.
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1. Introduction

Visual perception systems are fundamental for robotic systems, as they represent an
affordable interface to obtain information on different objects in the environment for a robot,
and because they emulate the most commonly used sense in humans for world perception.
Many techniques can be used to identify an object within an image. Some of these
techniques are color object identification, shape detection and pattern matching. Each one of
these techniques has different advantages; however, color based techniques are usually
preferred in real-time systems, as they require less computing power than other approaches.
Color object identification is composed by two phases: image segmentation, and object
identification. The goal of the first phase is to identify all regions of the image that belong to
the same object of interest. These regions are analyzed by the second phase in order to
extract features of interest from these objects like geometry and relative distances and to
infer the presence of a specific object.

Color image segmentation relies highly in the identification of a set of colors. Hence, color
classification, which consists on identifying a pixel as a member of a color class, is essential
for this process. In this chapter a technique for color image classification and its application
for color segmentation will be explained in detail.

This chapter will start by presenting a set of general concepts on image processing, which will
simplify the understanding of the rest of the chapter. Then, in Section 3, some of the existing
approaches used for color image classification, as well as some of their advantages and drawbacks,
will be described. Section 4 will describe an efficient technique for accurate color classification of
images using implicit surfaces. In Section 5, it will be explained a color segmentation technique
based on custom tolerance of color classification. Finally some applications will be presented in
Section 6, and conclusions and future work will be discussed in Section 7.

2. Background on Image Processing

2.1 Images and pixels

An image is the graphic representation of something, usually from a 3D world, in a 2D space.
That image can be defined as a function, f{x, ), where x and y are spatial coordinates, and the
value of f denotes the intensity in such coordinates. In particular, image processing is concerned
with digital images, which contain a discrete number of x, i locations and of f values. Therefore, a



150 Mobile Robots, Perception & Navigation

digital image is composed of a finite set of elements, each with a particular position and an
associated value or set of values. Each one of these elements is referred as picture element, or
pixel. Hence, a digital image can be considered as a two-dimensional array of pixels.

The number of values used to describe a pixel depends on how much information is used to
encode the color for such elements of the image. In the case of grayscale images, a single
value is used to describe the intensity of the pixel. In the case of color images, three values
are usually required, fi, fo, f3, indicating the intensity of different color components (i. e.
primary colors) that combined will produce the color perceived by our eyes. These
components will depend on the used color space.

2.2 Color spaces

A color space, also known as color signal, defines a set of attributes that uniquely identify a
color. Color spaces are then important, as they set the distribution that colors present for
different objects, which is fundamental in color classification and color segmentation. In
addition, each color space provides with features that may be better suited for specific
problems, such as varying lighting conditions or noisy environments.

Color spaces can be classified in linear and non-linear (Forsyth & Ponce, 2002). Linear color
spaces are based on a set of primary colors, and describe colors in terms of a weighed sum
of the intensities of these primary colors.

For instance, the RGB color space used in computer monitors describes colors in terms of
three primary colors: red, green and blue. A linear combination of these components will
produce all the colors that can be shown in such screens.

Another linear color space is YUV, or YCrCb. In this color space, the Y component express
the brightness of the pixel, while the U and V components define their chromaticity, in
terms of the amounts of blue and red, respectively. This color space is common in video
cameras. Color distribution in both RGB and YCrCb color spaces is shown in Figure 1.

In contrast, non-linear color spaces can include more properties of color spaces that may help
humans or different image processing techniques to better describe colors. Properties used in
these spaces include tone, saturation, and intensity or brightness. Tone can be defined as the
property that describes the way a color changes from other colors, Saturation describes how a
color is faded by a white light, and Intensity or Brightness specifies how bright the pixel is, no
matter the color. An example of a non-linear color space is HSL, which describe colors in terms
of Hue (denoting tone), Saturation and Lightness (describing Intensity).

C

a)

Fig. 1. Color distribution in different color spaces. a) RGB color space. b) YCrCb color space.
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2.3 Color image segmentation

Color image segmentation can be defined as the process of decomposing an image into regions
with certain meaning according to the contents and the application for that specific image
(Watt & Policarpo, 1998). Here, a region is a set of connected pixels sharing a set of attributes.
Classic segmentation techniques can be divided in global approaches, region-based
approaches, and edge-based approaches.

Global, or threshold, approaches rely in the knowledge of pixel attributes. Thus, it is
required to provide with a set of attributes that bind the classes that must be identified
within an image. In the case of color images, this approach uses the color space as a 3D
domain over which a set of groups or clusters will be identified for each color class. This
technique is simple and efficient, but depends heavily on a good threshold definition.
Region-based approach consists in dividing an image in a set of regions that present similar
properties. Techniques using this approach usually start by growing a region from an initial
pixel, or seed, and expanding this region according to a set of homogeneity criteria. This
approach presents two general problems. First, an initial seed should be picked, and this
requires an additional process. And second, it is usually hard to define and parameterize the
homogeneity criteria. An incorrectly defined homogeneity criterion may lead to flooding
problems, where regions grow over the visible boundaries of the region, or to prematurely
stop the growth process.

The edge-based approach uses edge detection to find a closed boundary that defines what lies
inside and outside a region. The hypothesis in which this approach relies is that pixels in the
boundary between two regions should be considerably different, regarding properties such as
color or intensity. However, problems are produced in blurry areas of an image, where colors
are not very contrasting. In addition, a problem with this approach is that failures are common
when detecting closed boundaries, as borders are usually discontinuous.

3. Different approaches for color classification

A set of pixels forming a specific color image correspond to a specific set (or cloud) of points
in the color space. Color classification needs to pre-define the geometry of sub-space (class),
in which all contained points share the same property. Simpler the geometry of subspace is,
easier the classification of pixels is but with a high risk of misclassified pixels.

There are many existing techniques to define, create and calibrate different color classes
used to segment an image. Most of them try to fulfill two basic assumptions. First, resulting
color classes should precisely define objects in the environment, having good generalization
properties for conditions not considered in the class definition, but avoiding excessive
generalization that may produce false positives. Second, color classes should be reliable
enough to identify objects under variable light conditions. Definition of a color class is a
complex task that usually involves adjusting a volume to a cloud of samples obtained from
pixels belonging to objects of such color class. This presents a clustering problem, which
may be solved either by using traditional or simplified methods. Specifically, by using
simplified methods, less processing power from a mobile robot is need, allowing its use for
online classification and calibration. The use of thresholds for color classification is a process
that involves partitioning a color space. As presented by Castleman (Castleman, 1996),
different objects on an image belong to individual groups or clusters of points in a histogram
defined on the color space. These groups of points represent the samples from which color
classes will be constructed and defined.
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Fig. 2. Top left: Parallelepiped subspace, Top right: Ellipsoid subspace, Bottom left: Conic
subspace, Bottom right: Paraboloid subspace

Color class construction process starts by taking color samples from objects in the
environment. This sampling process consists on extracting the components of the color
signal for each pixel in the objects, using images captured by the camera of the mobile robot
for which the color classification is intended. These images are obtained trying to include
most of the possible external conditions that the robot may find. Classic choices of sub-
spaces geometries are shown in Figure 2.

One of the simplest techniques to define a color subspace is by setting a pair of thresholds for
each component of a color signal. Knowing that linear color space is Cartesian, the subspace
defined by these six thresholds (two for each coordinate) will produce a parallelepiped. The
implementation of this approach produces a fast classification of pixels in the image (Bruce et
al., 2000). The main advantage of this method lies on its simplicity and speed to define color
subspaces, which is important if an online recalibration is expected. The most important
drawback is that this volume adjusts poorly to the cloud of samples, leading to a poor
classification of pixels and reduced generalization capabilities. This is due to a high risk of
overlapping when many colors classes are needed, causing misclassification on pixels. A
sample classification produced by this type of threshold is shown in Figure 3.a. As a result, a
different subspace is need to better fit points of each color. Quadric surfaces are evaluated as
a better option. These surfaces adapt more precisely to the apparent geometry of clouds of
samples, for the particular color spaces used in this research. While a cloud of points in a
color space has some spatial characteristics, the same has other spatial characteristic when
other color space is considered. Different color spaces may benefit from other subspaces
representations, as the shape of a color class may change according to the attributes
analyzed for a color. In order to exemplify quadric subspaces, both RGB and YUV color
spaces were used in the color image of Figure 3. Cones are a logical choice in RGB color
space. If a vector is traced passing through the origin, it will intersect a set of values with the
same chrominance, but with a different brightness. By using this vector to create a cone, the
tolerance of the contained range will include a set of similar tones of the classified color. The
radius of the cone will define the maximum threshold that the color class will allow. A sample
conic threshold is shown in Figure 3.b.

However, when samples are close to the origin of the color space —when colors become very
dark—, samples are more susceptible of being affected by image noise. A similar quadric
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subspace that avoids the classification of samples near the origin is a paraboloid. While its shape
largely resembles a cone, providing similar color classification capabilities, a variation in the base
of the paraboloid denotes a criterion to discard dark samples subject to noise. The focus of the
paraboloid will be calculated according to the mean value of the cloud of samples, and may be
modified to include or discard dark samples. Paraboloid thresholds may be seen in Figure 3.c.
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Fig. 3. Use of different bounding subspaces as color classes for classification of yellow in
different color spaces. From left to right: Original image, Pixels from the original image
classified as yellow, 3D representation of the color subspace. a) YUV Parallelepiped color
class. b) RGB Cone color class. c) RGB Paraboloid color class. d) YUV Ellipsoid color class.
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Again, an issue that both of these approaches may find is their difficulties in
classification of highlights or bright areas. By creating an ellipsoidal primitive, color
regions are bounded more precisely, discarding highlights that may also be caused by
noise. The use of ellipsoids adapt stylishly to different color space, such as RGB and
YUV, as they provide a more precise approximation to the final color class. This is
shown in Figure 3.d.

4. Color Image Classification through Implicit Surfaces

Though techniques based on quadric subspaces produced better results than the use of
simple parallelepiped subspaces, the resulting classification still haves some areas of
improvement.

First, the bounding quality of the surfaces to the cloud of samples depends highly on
the distribution of the classified color in the selected color space. For instance, cones
and paraboloids are more accurate describing color distribution in the RGB color space
than in the YUV color space. However, ellipsoids produce better results in both color
spaces.

Second, even when the color space is suited for a quadric subspace, its may not adjust as
tightly as desired to a color class, which may lead to some classification problems. This is
because shape of clouds of samples is affected by light incidence and reflection.

Hence, a better technique of classification was proposed in (Alvarez et al., 2004) to overcome
some of these drawbacks. This new approach is based on a technique used for 3D object
reconstruction (Lim et al., 1995), and the use of implicit surfaces as the threshold that
bounds and defines color classes.

4.1 Implicit Surfaces

Formally, implicit surfaces are 2D geometric shapes existing in the 3D space, and defined
according to a particular mathematical expression (Bloomenthal, 1997). Usually, this implies
a function f that defines a surface. When f is equal to a certain threshold for a given point,
this point lies on the surface, while when a point is below this threshold, it is contained by
this surface.

An implicit surface is usually characterized by a skeleton and a blending function. The
skeleton is a set of primitive elements—such as points and lines— that define individual
implicit functions which will be the base for the final surface. The blending function defines
the way in which these primitives will be combined to produce the final surface.

Implicit surfaces were selected for color classification as they easily allow evaluating when a
sample lies inside or outside the volume defined by such surface, providing a natural
interface for color classification. Besides, they present the property of being able to blend
with other surfaces in order to produce a single one. In this way, a set of relatively sparse
samples may produce a continuous surface containing all the intermediate regions to
produce a single color class. Similarly, if groups of samples within a color class are very
distant from each other, the surface will split, but the resulting clusters will still belong to
the same class.

In this way, it is possible to adjust a surface to a cloud of samples if we can properly
distribute a set of primitives, of correct dimensions, that work as the skeleton of our surface;
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similarly to the work from Lim et al. (Lim et al., 1995) to reconstruct a 3D object from a set of
points from its surface.

4.2 Construction Algorithm

This algorithm starts from a set of images from which a user selects a set of samples for a
given color class. Then, a number of spherical primitives are uniformly distributed along the
cloud of samples, to later apply the k-means algorithm to adjust their position. Once
distributed, the radius of each primitive is estimated according to the standard deviation of
samples related to each primitive. Finally, these primitives are blend to produce the final
surface, or color class. The resulting color class will then be translated into a look-up table,
in order to produce an efficient online color classification. Another option is to use the
resulting surface function as the classifier, defining a threshold for this function as a
tolerance criterion to add or exclude samples.

4.3 Generation of Primitives

Once a set of color samples has been selected, a set of primitives should be distributed
among this cloud. An initial naive approach could be the use of Delaunay tetrahedralization
(Langetepe & Zachmann, 2006), which produces a set of tetrahedrons that connects every
sample in the cloud. Adding a spherical primitive in the center of each tetrahedron would
then produce a relatively close approximation of the sampled data. However, the resulting
number of primitives would be extremely large, and discarding small tetrahedrons would
produce a poor approximation of the surface.

Instead (Lim et al., 1995) propose to start the surface reconstruction by minimizing a cost
function, expressed as a sum of squared terms. This cost function represents the error
between the implicit surface, including the desired features of this surface, and the points
from which it is constructed. Some functions may include the distance between the surface
and the points, the curvature, the normal vectors of the surface, or the radius of the
primitives. However, minimization of such function is neither simple nor fast, and this
method is suited for samples from the surface rather than within the surface. A possible
solution would include extracting the samples on the surface, but discarding samples within
the surface would eliminate potentially valuable information for the process. Instead,
(Alvarez et al., 2004) propose a different approach using the k-means algorithm.

The k-means algorithm, as defined by Bishop (Bishop, 1996), divide a set of n point samples
(1, x2, ... x) in a set of k disjoint, non-hierarchic sets (Q1 ... Q), through the minimization of
a distance criterion d. Usually, Euclidian distance metric is used, which produces spherical
clusters that, in this case, suit well as primitives for an implicit function. The k-means
algorithm is a minimization problem of a cost function:

=52 ey, )
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g ( x_/) is the closer cluster to point x;
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The total cloud of samples is seen as a large cluster that will be approximated by a number

of small clusters, defined by k primitives. The k-means algorithm distributes the primitives

in the volume used by the cloud samples, iteratively adjusting its position to provide each

cluster with a subset of the samples.

The proposed k-means algorithm is summarized as follow.

Step1. An arbitrary set of clusters (primitives) is distributed randomly along the cloud of
samples.

Step 2. Calculate the distance metrics from each sample (x1, x2, ... x,) to the center of each
primitive (cy, ... cx).

Step 3. Relate each sample to the closest primitive.

Step 4. Recalculate the center of primitives as the average of all of the samples related with
such primitive.

Step 5. Repeat iteratively steps 2-4 until the change in the position of all centers lies below
a certain threshold e.

This process guarantees that each sample will belong to a group or primitive, and that the

distribution will converge to a local minimum of (1).

Once the primitives have been distributed using the k-means algorithm, the radius for each

primitive is estimated as follow. For each group, the standard deviation from the center of

the primitive to all samples is calculated. The radius of the primitive is then set as a multiple

of this standard deviation according to the confidence interval expected.

4.4 Construction of the color class
Once the spherical primitives are defined, centers and radius are known, they will be
combined into a implicit surface, as proposed in (Lim et al., 1995).
The implicit function for each spherical primitive i is defined as:
2
Si(P)= ch')
" )

where
P is an arbitrary point in the color space.

This function has the following properties:

f(P)<r for points P inside the surface
f(P)>T for points P outside the surface
f(P)=T for points P on the surface

Here, I is the threshold, which may be understood as a scale parameter for the sphere. For
example, if I' is set to 1 the original scale of the spherical primitive will be considered.
Primitives are then joined into a unique implicit function, using a blending function to
construct the final implicit surface. Here, a function presented by Ricci (Ricci, 1973) is used
to blend the primitives:

1
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where
p is the blending degree
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When p tends to infinity, this function converges to the absolute minimum. Graphically, this
parameter controls how tight will the surface fit the primitives that compose it; when p
tends to infinity, the function converges to the original set of primitives.

From the implicit function f, it is possible to precompute the color class and store it into a
look-up table, which will permit a fast mechanism to perform online classification.
However, the implicit surface function could also be used as the classifier, defining a
threshold as required. Doing so will allow this approach to be more dynamic, and to adjust
during the execution of online classification.

Moreover, the implicit function f can be seen as a possibility function, which provides more
information about the classified sample other than its class, but also the degree of similarity
between the sample and the color class, resembling a Gaussian mixture. Using other criteria
—like Mahalanobis distance—would add different characteristics to this approach, which
might be useful for certain application areas.

An example result for the yellow color class using this approach is shown in Figure 4.

*u
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Fig. 4. Color classification using the implicit surfaces technique. Shape on the left is the
resulting implicit surface for the yellow color class.

One advantage of the implicit surfaces technique is the simplicity to modify the scale
parameter I' for spherical primitives, and the blending degree p, in order to modify the
amount of samples identified as part of a color class. By modifying these thresholds, a set of
self-contained color classes is obtained. Classes with different thresholds may be used for
different segmentation stages on the same process.

5. Multilevel Classification for Image Segmentation

In general, segmentation techniques consume a lot of computer power by processing every
pixel on an image, increasing the possibilities of recognizing external noise as possible
objects of interest.

To avoid processing the entire image, Seed Region Growth algorithms (or SRG, for short) use only a
set of pixels or seeds which are very likely to be part of an object of interest (von Hundelshausen &
Rojas, 2003; Wasik & Saffiotti, 2002). Then, these seeds are used to grow regions of interest based on
a homogeneity criterion, such as contrast between neighboring pixels. However, these techniques
require a good homogeneity criterion to avoid flooding problems.

A good way to analyze a small set of pixels with high probabilities of being part of an object
of interest is to use information on the camera position and orientation to only evaluate
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pixels located in areas of the image where objects can be present, and discard areas where
no object can be located. In particular, the use of scanlines, which are perpendicular to the
horizon, discards objects above a certain height and provide different resolutions for image
scanning, according to the expected distance to objects (Jiingel, 2004). However, this method
alone may discard information that might be found obtaining complete regions.

The presented approach combines the advantages of scanlines and SRG algorithms by using
a multilevel color classification (Alvarez et al., 2005). This classification takes advantage of
the custom threshold of the implicit surfaces presented in section 4.

First, a set of scanlines will be used to extract a set of color seeds. Pixels on scanlines will be
identified using a small threshold color class to reduce the number of identified pixels.
Then, extracted seeds will be used by a region growth algorithm to identify regions of
interest. The SRG algorithm will use a color class with a bigger threshold to better
characterize entire regions.

5.1 Seed Extraction through Scanlines

According to the approach from Jiingel (Jiingel, 2004), a set of vertical scanlines will be used
to locate objects of interest within an image. Density of these lines will be different
according to their distance to the camera. When a line is closer to the horizon, pixels on it
will probably represent objects farther from the camera. As the line moves downward away
from the horizon, pixels in the scanline will probably belong to objects closer to the camera,
so a smaller line density should be sufficient to locate these objects.

In order to obtain the horizon for the camera on each picture, the kinematic model of the
camera should be known. This is highly dependent on the nature of the robot system and
cannot be generalized, but by obtaining this kinematic model, a lot of undesired data can be
discarded from the processing pipeline.

Once the horizon is known, a scan pattern is projected on the image. The scan pattern
consists on a set of lines, perpendicular to the horizon, that start above the horizon and go
down the interest area. Distance between scanlines depends on the projected size of objects
on the screen. As the projected size of objects grows as they get closer to the camera,
scanlines should become sparser as they get below the horizon. An intertwined pattern of
short and long scanlines will deal with this varying scanline density. An example of this
pattern is shown in Figure 5.a. Pixels found in these scanlines will be classified according to
a color class with a low threshold, as seen in Figure 5.b.

a) b)
Fig. 5. a) Scan pattern projected on a custom image. Scanline density is higher as pixels get
closer to the horizon (dotted line). b) Seeds extracted from evaluating pixels on scanlines
using a low-threshold color class.
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The scanline algorithm avoids processing the entire image, reducing the number of
processed pixels. In addition, this routine discards pixels above a certain height, eliminating
possible sources of noise.

5.2 Seed Region Growth

Seed Region Growth is a region based technique used to perform image segmentation
(Wasik & Saffiotti, 2002). A seed is selected from this initial set of color seeds. In our
approach, the initial set of color seeds is obtained from the scanline seed extraction.

The selected seed is assigned to a new region, and this region is grown on a neighborhood.
Usually, a 4-pixel neighborhood is selected, although an 8-pixel neighborhood can
sometimes be used. When a neighboring pixel already belongs to the current region, it is
ignored. If not, this pixel is evaluated through the homogeneity criterion to find if it belongs
to the current region. If it does, this new pixel is added as a new seed for this region.
Growth continues until there are no new seeds for the current region. Once a region is
complete, a new seed is selected from the initial seed set, and new regions are created until
no more initial seeds are found.

The homogeneity criterion, as mentioned before, is that the new pixel belongs to the same a
high-threshold color class than the initial seed. This avoids color flooding in areas with
similar contrast.

6. Applications and Results

The present technique was applied in the 4-legged league of the Robocup competition
(www.robocup.org). The basic idea behind this league is to make four autonomous legged
mobile robots to play soccer. This league uses a standard robot, Sony’s AIBO ERS-7 robot, to
guarantee a common hardware platform for each team, prohibiting the addition of
additional hardware equipment for this robot. The soccer field is color tagged, providing
specific colored and sized objects to allow the robot to identify the object type and location,
and then to infer its position on the field.

Rules of this league state that the robot should play autonomously on the soccer field, so
every decision must be taken based on an efficient evaluation of the environment based
on the information from the built-in camera. The robot provides a maximum camera
resolution of 208x160pixels, producing 25 frames per second. This image should be
processed by an internal MIPS R7000 CPU at 576 Mhz, which should also deal with the
control of all the motors of the robot and the general strategy of the soccer game. The
vision algorithm should be very efficient in order to deal with as many images as
possible.

An application to acquire samples from environment objects and build the color classes
was programmed using the proposed algorithm. A screenshot from this application is
shown in Figure 6. This application allows the selection of pixels from images to create
clouds of samples for each desired color. The efficiency of the classification approach
allows that, interactively, after selecting new samples from the image, the color class is
updated, producing the implicit surface on the right area of the application, and
classifying pixels on the image in the lower left area of the application. However, in order
to produce a more efficient online classification, the application produces a look-up table
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that will reduce the online color classification step to a single query in a 3D array for each
pixel.

Fig. 6. Tool for color image classification.

The produced primitives and the resulting implicit surfaces fit tightly the samples used in
the segmentation process, producing a precise representation of the color class. The
blending degree can be also modified interactively.

Figure 7 provides an example on how changes on this parameter affect the result of the
color class and of the classification itself. Smaller blending degree produces robust color
identification, while larger blending degree produces more precise results. This attribute,
together with the threshold for the primitive radius, is useful to resolve overlapping
between nearby color classes, and provides better control on the class tolerance.

Fig. 7. Implicit surface with different blending degree, and associated segmentation for
yellow in a sample image. a) p=2,b) p=1.5,c) p=1.

Color classification was also tested under different lighting conditions comparing the results
with the parallelepiped threshold technique. Images processed with the implicit surface
approach are better identifying colors, even under extreme illumination changes. This test is
shown in Figure 8. In addition, this figure also shows the color subspace produced by the
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color class. The parallelepiped threshold approach produces some misclassification
problems that are visible in the lower images from Figure 8.

In addition to a higher tolerance to illumination changes, the proposed approach could be
extended to dynamically adapt the color subspace, by using a region growth approach as
the one presented here in the segmentation algorithm.

The multilevel classification technique improved the efficiency of previous techniques while
producing a better quality image segmentation, and higher tolerance to illumination
changes. The evaluation of this algorithm was simulated on a Pentium IV at 1.6 Ghz
desktop computer, using real information from the robot.

The seed extraction process used a set of color classes with a 0.5 threshold value. As the
entire regions for the field lines and the field itself are not required, this step is used to
identify lines and borders of the field, and these colors are discarded from the region
growth step. The first step of this simulation takes an average of 16 ms.

Fig. 8. Tolerance to changing lighting conditions. The yellow color is being classified and
replaced by blue. Upper row: Color classification using an implicit surface threshold
under different lighting conditions. Lower row, middle: Color subspace used for the
images on the upper row. Lower row, left and right: Color classification using
parallelepiped thresholds.

Once the seeds are extracted, the region growth stage is executed, using a set of color classes
with a 1.0 threshold value. This step takes an average of 24 ms.
Some results of both steps of the segmentation are seen in Figure 9.

7. Conclusions and Future Work

The presented color classification technique shows a good approximation for color
subspaces without the need of transforming the color signal of pixels. The produced implicit
surface binds tightly the cloud of color samples, reducing possible overlapping problems
with other color classes. The use of a look-up table was an efficient method that allows the
classification of a single pixel with a single lookup on a 3D array.

In addition, evaluation of this algorithm under varying lighting conditions showed a better
color classification than that produced by other color classification methods. The main
reason behind this benefit is the tight approximation of the color class to the cloud of
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samples; as overlapping problems are reduced, a larger number of samples with different
color intensities and tones may be selected to produce the color class.

Fig. 9. Top row: Results of scanlines seed extraction stage. Bottom row: Results of region
growth stage.

Implicit surface was shown as a well suited threshold surface for color classification, as it is
simple to identify whether a color lies inside or outside the color class by just evaluating the
value of the implicit function. In addition, once the parameters for the primitives of the
implicit surface have been estimated, the tolerance to noise and to changing lighting
condition can be easily customized by changing both the blending degree and the primitive
threshold for the desired color class, requiring no further execution of the entire
classification process.

While the entire classification process has not yet been implemented to be executed by a
mobile robot, its offline classification process runs at interactive times. This may allow the
later implementation of this technique on a mobile robot to dynamically modify color
classes using some similarity criteria.

The presented color image segmentation technique combines the advantages of different
techniques reducing, at the same time, some of their drawbacks. The use of scanlines
reduces the number of pixels evaluated by the classification and segmentation process,
and helps to discard external noise due to objects outside the areas of interest of the
image.

Using a high-threshold color class as homogeneity criterion for the region growth algorithm
provides with a greater control on the growth process, avoiding flooding problems on low-
contrast boundaries.

Besides, the use of region growth completes the information extracted from scanlines. Pixels
found for a region are the same that would be obtained by processing the entire image, but
scanlines avoid processing pixels with no useful information, improving the efficiency of
the segmentation phase.
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In addition, scanlines should only find one pixel from an object to identify it, as the SRG
step will identify the rest of the pixel. This reduces the required number of scanlines to
obtain a good image segmentation.

Many possible improvements can be considered. First, the k-means algorithm requires an
initial number of primitives. It would be desirable that the number of primitives would also
adapt to the nature of the color class. For this purpose, different initialization algorithms
may be incorporated to produce better results.

Another possible improvement lies on the nature of the primitives. Spherical clusters are
well suited as an initial approach, as Euclidean distance is a simple metric to evaluate
distance to a cluster. However, different distance metrics may provide with ellipsoidal or
other-shaped clusters, which may produce as a result the use of less primitives and possibly
a tighter adaptation of the color class to the samples.

In addition, the online adjustment of the implicit surface threshold may be used by an
online dynamic color classification technique that will adapt to varying lighting conditions.
The required samples for this segmentation may be obtained from the region growth
algorithm. When new pixels are included into a region, the dynamic classification algorithm
would add these pixels to the cloud of samples for a given color class. Then, after receiving
a set of pixels, the color classification process would be executed and the color class
updated, producing a new classification suitable for current illumination conditions. This
mechanism would also require an additional step to discard invalid samples and to validate
new samples, either by the frequency of a sample, its last appearance on a frame, or its
distance to the previous color class. This technique would produce a reliable, non-
supervised color segmentation technique that could adapt constantly to different conditions
from the environment.

8. References

Alvarez, R; Millan, E; Swain-Oropeza, R. & Aceves-Lopez, A. (2004). Color image
classification through fitting of implicit surfaces, 9th Ibero-American Conf. on
Artificial Intelligence (IBERAMIA), Lecture Notes in Computer Science, Vol. 3315
(January 2004), pp. 677 - 686, ISSN 0302-9743.

Alvarez, R,; Millan, E. & Swain-Oropeza, R. (2005). Multilevel Seed Region Growth
Segmentation. MICAI 2005: Advances in Artificial Intelligence, 4th Mexican
International Conference on Artificial Intelligence, Lecture Notes in Artificial
Intelligence, Alexander F. Gelbukh, Alvaro de Albornoz, Hugo Terashima-Marin,
Ed., pp. 359 - 368, Springer, ISBN 3540298967, Berlin / Heidelberg.

Bishop, C. M. (1996) Neural networks for pattern recognition, Oxford University Press, ISBN:
0198538642, United States

Bloomenthal, J. & Wyvill, B. (1997) Introduction to Implicit Surfaces, Morgan Kaufmann
Publishers Inc, ISBN: 155860233X.

Bruce, J.; Balch, T. & Veloso, M. M. (2000). Fast and inexpensive color image segmentation
for interactive robots, IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS “00), Vol. 3, (October 2000), pp. 2061-2066, ISSN 0932-8092.

Castleman, K. (1996). Digital image processing, Prentice Hall, ISBN: 0132114674

Forsyth, D. & Ponce, J. (2002). Computer Vision: A Modern Approach, Prentice Hall, ISBN:
0130851981, United States



164 Mobile Robots, Perception & Navigation

Jiingel, M. (2004). Using layered color precision for a self-calibrating vision system. RoboCup
2004: Robot Soccer World Cup VIII, Lecture Notes in Artificial Intelligence, Daniele
Nardi, Martin Riedmiller, Claude Sammut, José Santos-Victor, Ed., pp. 209-220,
Springer, ISBN 3540250468, Berlin / Heidelberg.

Langetepe, E. & Zachmann, G. (2006). Geometric data structures for computer graphics, A. K.
Peters, Ltd., ISBN: 1568812353, United States.

Lim, C. T,; Turkiyyah, G. M.; Ganter, M. A. & Storti, D. W. (1995). Implicit reconstruction of
solids from cloud point sets, Proceedings of the third ACM symposium on Solid
modeling and applications, pp. 393-402, ISBN: 0-89791-672-7, Salt Lake City, Utah,
United States, 1995, ACM Press.

Ricci, A. (1973) A constructive geometry for computer graphics, The Computer Journal, Vol.
16, No. 2, (May 1973), pp. 157-160, ISSN: 0010-4620.

Von Hundelshausen, F. & Rojas, R. (2003). Tracking regions. RoboCup 2003: Robot Soccer
World Cup VII, Lecture Notes in Computer Science, Daniel Polani, Brett Browning,
Andrea Bonarini, Kazuo Yoshida, Ed., pp 250-261, Springer, ISBN: 3540224432,
Berlin / Heidelberg.

Wasik, Z. & Saffiotti, A. (2002). Robust color segmentation for the Robocup domain.
International Conference on Pattern Recognition, pp. 651-654, ISBN: 076951695X,
Quebec City, Canada.

Watt, A., & Policarpo, F. (1998). The computer image, Addison Wesley, ISBN: 0201422980



9

Intelligent Global Vision for
Teams of Mobile Robots

Jacky Baltes and John Anderson

Autonomous Agents Laboratory, Department of Computer Science,
University of Manitoba

Winnipeg, Canada

1. Introduction: Global Vision

Vision is the richest of all human senses: we acquire most of our perceptual information
through vision, and perform much of our own vision processing with little conscious effort. In
contrast, dealing intelligently with the enormous volume of data that vision produces is one of
the biggest challenges to robotics. Identifying an object of interest in a random camera image is
a difficult problem, even in domains where the number of possible objects is constrained, such
as robotic soccer. This difficulty increases in magnitude when attributes of interest involve
change such as movement, and thus require both state information and examining change in
visual images over time. Visual analysis also involves many subtle problems, from very low-
level issues such as identifying colours under changing lighting conditions, to higher-level
problems such as tracing the path of an object under conditions of partial occlusion, or
distinguishing two objects that are next to one another but appear as one larger object.
Humans deal with vision through very specialized massively-parallel hardware, coupled
with a broad range of commonsense knowledge. Neither of these is currently feasible to
apply to a mobile robot platform. While mobile processors are becoming more powerful, we
are still far below what is required to process vision at a human level, and common-sense
knowledge has always been one of the most difficult problems associated with artificial
intelligence. Vision on mobile robots is thus largely about producing heuristic solutions that
are adequate for the problem domain and allow the available hardware to process vision at
the frame rate required.

Vision in robots may be divided into two types. The first of these, local vision, involves
providing a first-person perspective using a camera attached to the robot itself. Local vision
shares many of the same problems that humans deal with in visual analysis, such as
determining whether motion in a visual stream is due to the motion of objects captured by
the camera, or the motion of the agent itself (ego motion). In a local vision setting, each
member of a team of robots receives its own unique camera feed and be responsible for
analyzing and responding to that feed.

There are a number of reasons why local vision may not be preferable in a given
application, the foremost of which is the heavy requirement for computational resources.
When each robot must perform its own visual processing, it must be able to carry enough
on-board processing to do so, which may not be possible in smaller robots or applications
with competing resource needs. The fact that each robot is entirely responsible for its own
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vision will also mean that there will be significant redundancy in processing across a team
of robots in many applications as well. Local vision may also be undesirable in applications
where a large number of very simple robots may be able to do the job of a few complex
robots, in environments where shared vision is amenable (that is, where a unique
perspective for each individual is unnecessary), and in educational environments where it is
desirable to separate the problems of computer vision from the rest of robotics. In these
domains, the second form of vision, global vision, is often preferred. Global vision provides a
single third-party view to all members of a robot team, analogous to the view of a
commentator in a soccer game.

Global vision shares many of the problems associated with local vision. Objects of interest
must be identified and tracked, which requires dealing with changes in appearance due to
lighting variation and perspective. Since objects may not be identifiable in every frame,
tracking objects across different frames is often necessary even if the objects are not mobile.
The problem of identifying objects that are juxtaposed being viewed as one larger object
rather than several distinct objects, and other problems related to the placement and motion
of objects in the environment, are also common.

In domains such as robotic soccer, where pragmatic real-time global vision is large part of the
application, many of the more difficult problems associated with global vision have been dealt
with through the introduction of artificial assumptions that greatly simplify the situation. The
cost of such assumptions is that of generality: such systems can only operate where the
assumptions they rely upon can be made. For example, global vision systems for robotic
soccer (e.g. (Bruce & Veloso, 2003; Browning et al., 2002; Simon et al., 2001; Ball et al., 2004))
generally require a camera to be mounted perfectly overhead in order to provide a simple
geometric perspective (and thus ensure that any object is the same size in the image no matter
where in the field of view it appears), simplify tracking, and eliminate complex problems such
as occlusion between agents. If a camera cannot be placed perfectly overhead, these systems
cannot be used. Such systems also typically recognize individuals by arrangements of
coloured patches, where the colours (for the patches and other items such as the ball) must be
pre-defined, necessitating constant camera recalibration as lighting changes. Such systems can
thus only operate in environments where lighting remains relatively consistent.

While such systems will always be applicable in narrow domains where these assumptions
can be made to hold, the generality lost in continuing to adhere to these assumptions serves
to limit the applicability of these approaches to harder problems. Moreover, these systems
bear little resemblance to human vision: children playing with remote-controlled devices,
for example, do not have to climb to the ceiling and look down from overhead. Similarly,
human vision does not require significant restrictions lighting consistency, nor any
specialized markings on objects to be tracked. In order to advance the state of the art in
robotics and artificial intelligence, we must begin to make such systems more generally
intelligent. The most obvious first steps in this direction are considering the assumptions
necessary to make a global vision system operate, and then to find ways of removing these.
Our approach to real time computer vision arises from a desire to remove these
assumptions and produce a more intelligent approach to global vision for teams of robots,
not only for the sake of technological advancement, but from a pragmatic standpoint as
well. For example, a system that does not assume that a camera has a perfect overhead
mount is not only more generally useful, but requires less set-up time in that a perfect
overhead mount does not need to be made. Similarly, an approach that can function in a
wide range of lighting conditions saves the time and expense of providing specialized
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lighting for a robotic domain. Over the past six years, we have developed a series of real-
time global vision systems that, while designed for the robotic soccer domain, are also
generally useful anywhere global vision can be used. These systems have been used in
RoboCup and FIRA robotic soccer competitions by ourselves and other teams, and have also
been employed in such applications as robotic education and imitation learning. All are
open source, and can be easily obtained by the reader for use or as a basis for further
research work (Baltes & Anderson, 2006).

Each of the systems we have developed deals with some of the assumptions normally
associated with global vision systems, and thus produces a more generally intelligent
approach. This chapter overviews the work necessary to deal with these assumptions, and
outlines challenges that remain. We begin by examining the steps necessary to deal with a
more general camera position, how objects can be tracked when the camera is not perfectly
overhead, and how an overhead view can be reconstructed from an oblique camera capture.
This necessitates dealing with objects that are occluded temporarily as robots move around on
the field, and also requires dealing with three dimensions rather than two (since the height of
an object is significant when the view is not a perfect overhead one). We then turn to dealing
with assumptions about the objects being tracked, in order to minimize the need for
recalibration over time, and to make global vision less vulnerable to problems of lighting
variability. We examine the possibility of tracking objects using only the appearance of the
object itself, rather than specialized markers, and discuss the use of machine learning to teach
a global vision system about the objects it should be tracking. Finally, we examine removing
the assumption that specific colours can be calibrated and tracked at all, in order to produce a
vision system that does not rely on perfect colour calibration to recognize objects.

2. Doraemon: Real-Time Object Tracking from an Oblique View

Doraemon (Anderson & Baltes, 2002; Baltes, 2002) is a global vision system that allows objects
to be tracked from an oblique camera angle as well as from an overhead view. The system acts
as a server, taking frames from a camera, and producing a description of the objects tracked in
frames at regular intervals, sending these over a network to clients (agents controlling robots,
for example) subscribing to this information stream. Fig. 1 is a sample visual frame used as
input to Doraemon to illustrate the problems involved in interpreting visual images without
using a perfect overhead viewpoint. The image is disproportionate in height because it is one
raw field from the interlaced video stream provided by the camera. It is easy to see that colour
features are hard to extract, in part because the shape of coloured patches are elongated by the
visual perspective, and in part because colour is not consistent across the entire image.

Fig. 1. A sample visual frame taken from an oblique angle.
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Fig. 2. Tsai Camera Calibration used in Doraemon.

In order to be able to track images from an oblique angle, a calibration must be provided
that allows an appropriate translation from a particular pixel in a visual frame to a
coordinate system in the real world. The calibration process used by Doraemon, described
in detail in (Anderson & Baltes, 2002), utilizes the well-established Tsai camera calibration
(Tsai, 1986), which can compute a camera calibration from a single image. This method
computes six external parameters (the x, y , and z coordinates of the camera position, and
angles of roll, pitch and yaw) and six internal parameters using a set of calibration points
from an image with known world coordinates. This requires a set of coordinates to be
imposed on the world via a sample visual image. Since Tsai calibration normally requires at
least 15 calibration points (i.e. points with known x,y coordinates), a calibration carpet with
a repetitive grid pattern is used to easily provide a significant number of points. The known
grid size is input to the system, and the coloured squares can be then be selected by the user
and the calibration points obtained from the square centers (Fig. 2). Even using an oblique
view of the playing field, the calibration results in object errors of less than 1 cm. To make
calibration more flexible, we also define a rotation matrix on the field that allows the
calibration to be adjusted (for example if the camera shifts during play) without having to
recalibrate using the carpet.

Objects in Doraemon are identified by the size and arrangement of coloured patches. The
simplest objects may be simply a single coloured area of a given size - e.g. a ball might be
described as an orange item 5cm in diameter. More sophisticated items (e.g. individual
robots) are identified using unique arrangement of coloured patches on the top surface, as
seen in Fig. 1 (e.g. a blue patch for the front of all robots on one team, with an arrangement
of other colours uniquely identifying each team member). The system is thus heavily
dependent on accurate colour models. Doraemon uses a sophisticated 12 parameter colour
model that is based on red (R), green (G), and blue (B) channels as well as the difference
channels red-green (R-G), red-blue (R-B), and green-blue (G-B). The channel differences are
less sensitive to lighting variations than the raw channels, and allow more robust colour
recognition than the raw channels alone. While there are other models that are less sensitive
to brightness, (for example, HSI), this approach attempts to balance sensitivity with
computational resources. The channel differences are similar to the hue values used in HSI,
for example, while this model is less computationally expensive.

Colours of interest are defined using a colour calibration procedure, during which areas of
the visual image intended to be matched to a particular named colour are selected. This
reliance on colour, like that of other global and local vision systems, limits generality and
forces recalibration to be performed when lighting conditions change. Moving beyond this



Intelligent Global Vision for Teams of Mobile Robots 169

dependence on colour will be described in Sections 3 and 4. Once colours are defined,
camera images can be colour thresholded and particular colour patches can be recognized in
an image.

The size of any patch of colour can be determined by its position on the field, since the
perspective of the field is known through calibration. This still requires a model describing
the arrangements of the coloured patches marking objects as well as their heights above the
playing field, since, for example, an object that is 50cm tall will have markers of the same
height appear differently in the camera image than that of an object that is flush with the
playing field surface. The descriptions of the size, colour, arrangement, and height of objects
to be recognized are described in a configuration file.

Each frame is colour thresholded and the recognized patches are matched against the size
and configuration information provided. Not every object will be recognized in every
frame, since lighting fluctuations, for example, may make some spots difficult to recognize
across the entire field area. To compensate for this, the locations of recognized objects in
previous frames are used both to infer likely positions in future frames and to calculate the
speed and orientation of motion of tracked objects.

Occlusion in robotic soccer is normally not an issue for tracking robots, even with an
oblique camera, since the markers are on top of the robots and are thus the highest points on
the field. Occlusion certainly happens when tracking the ball, however, and is also possible
in any tracking scenario where obstacles on the field could be taller than robots. There is
also the possibility that robots may abut one another, presenting a display of coloured
patches that is similar to a different robot altogether, or presented in such a way that no one
robot is easily recognizable. These situations are dealt with by tracking objects over time as
well - an object may be lost temporarily as it passes behind an obstacle, or may be more
momentarily unrecognized due to abutting other tracked objects - because objects are
intended to be in motion, such losses will be momentary as new information allows them to
be disambiguated.

Doraemon transmits information about tracked objects (position, orientation, velocity) in
ASCII over Ethernet to any client interested in receiving it. A sample message is shown in
Fig. 3.

7 6188 0.000290976 ; #defined objects, frame#, time diff. from last frame
1605.82 -708.394 1321.44 ; x, y, z coordinates of camera
2 spotl Found 1232.5 416.374 0 0 0 0 ;information about each defined object
2 spot2 Found 1559.22 417.359 000 0
2 spot3 Found 1260.55 812.189000 0
2 spot4 Found 902.726 1002.43 000 0
2 spot5 Found 746.045 735.631 000 0
1 balll Found 1677.99 1205.55 50 0 -2.75769 1.19908
0 car54 Found 1783.53 873.531 100 2.63944 1.47684 -6.49056
Fig. 3. A sample ASCII message from Doraemon.

The first line of each message contains the number of objects that video server is configured
to track, followed by the video frame number and time difference in seconds between this
message and the previous one. The next line contains the x, y, and z coordinates of the
camera, and following this is a line for each object being tracked. Each of those lines consists
of a numeric object class (e.g. a ball, robot, etc.), the unique defined identifier for the object,
whether the object was located in the current frame or not, the x, y, and z coordinates of the
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object, the orientation of the object in radians, and the velocity of the object in mm/second
in the x and y dimensions.

Doraemon was later extended (Baltes & Anderson, 2005) to provide its own reconstructed
overhead view through interpolation, which allows the perspective distortion created by the
oblique camera angle to be corrected, allowing objects to be more accurately tracked. While
this interpolation does slow down the vision process, it provides a remarkable improvement
in image quality. As an example, Fig. 4 shows Doraemon’s reconstruction of the oblique
view shown in Fig. 1.

Doraemon takes several steps beyond global vision systems that maintain a fixed overhead
camera in terms of being able to deal with the real world. It is quick to calibrate and simple to
recalibrate when this is necessary (e.g. due to camera shift or changing lighting during use).
However, there are still significant assumptions about the domain that affect the system’s
generality. Doraemon is heavily dependent on good colour models, something that is not
easy to maintain consistently over time in real-world domains without recalibration, and
relies on a fairly naive model for dealing with occlusion. Dealing with these assumptions is
the subject of the remaining sections in this chapter.

Fig.4.  Doraemon’s overhead reconstruction (using average gradient interpolation) of the
camera image shown in Fig. 1.

3. Ergo: Removing Dependence on Predefined Colours

The reliance on colour thresholding by both Doraemon and related systems places some
severe restrictions on the applicability of a global vision system. Not only are lighting
variations a problem, but the colours themselves must be chosen so that there is enough
separation between them to allow them to be distinguished across the entire field of play,
and the quality of the camera used is also a major issue. In practice, even with the extra
colour channels employed by Doraemon tracking is practically limited to around 6 different
colours by these restrictions.

To increase the applicability of global vision to a broader array of real-world tasks, as well
as to increase the robustness of the system in robotic soccer, we focussed on two major
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changes in approach: the use of motion detection to focus on areas of interest in the field,
and different methods of marking objects that deemphasize the use of colour. These and
other extensions were combined into a new generation of global vision software, known as
Ergo (Furgale et al., 2005).

One additional pragmatic step was also necessary in Ergo in order to attain a comparable
frame rate as that employed in the original Doraemon: the resolution of interpolated images
was decreased, in order that interpolation did not inordinately slow down visual analysis.
The result of this introduced an additional challenge, in that a typical 5cm soccer ball would
now occupy only a 1-4 pixel range in the reduced resolution, allowing a ball to easily be
interpreted as noise (Fig. 5).

Rather than performing direct colour thresholding of camera images, Ergo thresholds for
motion across pixels in each frame compared to a background image. A number of common
thresholding techniques (using pixel intensity and distance in colour space, with global and
local thresholds) were experimented with under poor lighting conditions and with common
domain elements such as the presence of field lines and aliasing between camera frames.
None of the common approaches were adequate in avoiding losing information from dark
parts of the image while removing noise from lighter portions. In the end, an adaptation of
A background estimation (Manzanera & Richefeu, 2004) was employed, which provides a
computationally inexpensive means of recursively estimating the average colour and
variance of each pixel in a camera image.

Fig. 5. Captured field and corresponding low-resolution interpolated image in Ergo. Note
that the ball is easily visible in the upper image, but blends with noise on the field lines in
the lower.
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Detecting motion involves setting a threshold above which variation across pixels will be
considered to be motion. In experimenting with this, it was found that increasing a global
threshold enough that all noise would be eliminated also had the effect of eliminating any
object of the size of a typical robotic soccer ball, since the size of such an object in the image
(<=4 pixels) is easily interpreted as noise. To deal with this, a means was required to
consider variation more locally and eliminate noise, while still being able to pick up the
motion of small objects, and so a combination of local and global thresholding was
employed. A threshold is set for each pixel by examining the variance for each pixel in the
background image, then applying a convolution (1) in order to consider a pixel’s variance
across its 9-pixel neighbourhood. This local threshold is then scaled by a global threshold.
To detect motion, each incoming image has its sum-squared error calculated across all pixels
against the background image, the same convolution is applied to the result, and each value
is compared to its corresponding pre-computed threshold. The use of the convolution has
the effect of blending motion in small areas to eliminate noise, while making the movement
of small objects such as the ball more obvious by also considering small changes in
neighbouring pixels.
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This thresholding process causes motion to be separated from the background, after which
the region growing algorithm of Bruce et al. (2000) is employed to generate a list of regions
to match against the descriptions of objects that Ergo is tracking.

Since Doraemon relied on patterns of coloured blobs to identify moving objects such as
robots, a change in pattern representation was necessary in Ergo in order to remove the
dependence on predefined colours. The two basic requirements of a representation are the
determination of identity and orientation (since the remaining item of interest, velocity, can
be obtained through knowing these over time). Previous research (Bruce & Veloso, 2003)
has shown that asymmetrical patterns can be used to allow a range of objects can be
identified with fewer colours, and these ideas were extended to develop a representation
and associated matching mechanism for tracking objects while minimizing the need for
predefined colours.

@

Fig. 6. A new approach to labeling objects for tracking (Furgale et al., 2005): fixed black areas
allow orientation to be recognized, while white and non-white values in locations 1-6
represent identity
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The marking approach designed for Ergo divides the marker for a robot (or similar moving
object) into a circular series of wedges (Fig. 6). Two black wedges are the same on all robots,
allowing a tracking algorithm to determine the labelled object’s orientation. The remaining
six wedges are marked with white and non-white (i.e. any colour other than white or black)
to allow the determination of identity. Marking only two of these segments would allow up
to twenty-one individuals to be identified uniquely (the centre is left open for a possible
team identifier if desired).

An associated algorithm for identifying objects assumes that such a marking system is in
use, and begins with a set of hypotheses of objects of interest, based on the regions of the
camera image that have been flagged as motion. The original image is reinterpolated with a
higher resolution in (only) three concentric circular strips of pixels (each 64 pixels long)
around the centre of each region of motion. This allows enough high-resolution interpolated
area to more accurately determine the marking pattern without the computational demands
of large-scale interpolation. The mean is taken across these to reduce noise and error,
resulting in a single array of 64 elements, providing an encoding for that region of motion
that can be matched against the labeled pattern described above. To be able to match the
pattern in this strip, two boundaries must be determined in this strip: the boundary between
black and the marker that is neither black nor white, and the boundary between that and
white. These boundaries are determined using a histogram of intensity values produced as
part of the reinterpolation. The black-other threshold can be approximated based on the fact
that any point near the centre will be 25% black. The other-white boundary is arrived at by
starting a marker at the top of the range of the histogram, and then iteratively replacing that
with that average of the weighted sum of the histogram counts above other-white and those
below other-white. It is possible to avoid this process based on the pattern if a known
pattern is being searched for, so it is not required in all cases.

Once these thresholds are available, the identification algorithm begins by looking at for the
two black regions, and the average of the centre between these is the orientation. These
wedges also provide the plane on which the pattern, and based on that plane the recorded
centre of the object is refined. The remaining parts of the interpolated strip are then
partitioned relative to the black wedges and the identification pattern can then be
determined by counting the number of white wedges and the number of wedges that are
neither white nor black.

This identification algorithm is very effective and computationally minimal, but is
complicated in application by two factors. First, the list of regions of motion may be
significantly larger than the number of objects to be tracked (due to extraneous movement
by other objects, for example): large enough that this algorithm cannot process them all in
real time in the data directed manner that would be ideal. Second, successful identification
of an object relies on an accurate centre point.

If two or more moving objects appear in close proximity to one another (or even partly
occlude one another), motion analysis will view this as one large region of motion, with a
centre that will not be helpful in identifying anything. This algorithm thus needs to be
applied in a more goal-directed manner, and have some means of dealing with clumps of
objects.

Ergo deals with these problems by tracking objects across images, which provides for a
goal directed application of this algorithm. Prior to motion analysis, every object found in
the previous frame predicts its position in the next image based on velocity and time
difference. Some objects may thus be found very quickly, since their centre point will be
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predicted and can easily be confirmed using the identification algorithm. The area in the
image occupied by object recognized during this phase is masked during motion analysis.
This masking serves two purposes: it produces no hypothesis, since the object has already
been dealt with, but it also may serve to remove one of a group of objects that may appear
together in a moving region. Masking the area will then leave a smaller region and a
smaller number of grouped objects (possibly only one, which can then be handled as any
other object would).

For the remaining unrecognized objects, the region most closely predicted by each is
selected. If an appropriate-sized region is found near the predicted location, it is passed to
the identification algorithm, along with the hypothesized identity to speed up the
identification process. This step, along with those detailed above, turns the identification
process into a largely goal-directed one, and the vast majority of objects in any frame are
recognized in this manner. Data-directed processing is still required, however, to deal with
any objects that remain unidentified at this point.

There are realistically two possibilities for the remaining objects: a region of motion is
outside the predicted area for the object, or it is part of a clump of objects occupying a
larger region. To deal with the former, Ergo examines the sizes of all unexplained
regions of motion, and if it is a size that could suitably match an object of interest, it is
passed to the identification algorithm. In the case of multiple objects occupying the same
space, the regions of interest will be those that are too large for any one object. If any of
these regions were to contain more than one object, at least one recognizable object will
be touching the edge of the region, and so the edge is where recognition efforts are
focussed.

To analyze regions that could be multiple robots, extra samples are taken one object-radius
in from the region’s edge and obtain a set of encodings that should cross the centre of at
least one object if multiple objects are in the region. From this, those that are at least one
object diameter long are chosen, and the identification algorithm above is run on each of
these using each pixel as the potential centre of the object. If any object is identified, it is
masked from the region in the next frame, allowing further objects to be distinguished in
subsequent frames. This could be repeated in the analysis of the same frame to distinguish
further objects, but since Ergo can determine likely positions of unrecognized objects just as
Doraemon could in frames where some objects were unrecognized, this strikes a balance
toward computational efficiency.

Not every object is large enough to be labeled using the scheme shown in Fig. 7, nor do all
objects need an encoding to uniquely identify them. In robotic soccer, for example, the
ball is physically unique, and its nature does not require a pattern for identification. The
use of motion tracking to distinguish an element as small as the ball has already been
described.

In frames where this motion tracking does not allow the ball to be found, the ball’s location
is predicted from the previous frame, and an area eight times the ball’s size is scanned for
regions of the correct size and dimension after colour thresholding. Colour thresholding
here is simply used to distinguish regions at all given that motion detection has failed, and
no predefined colours are employed.

These techniques allow Ergo to perform well under very challenging conditions. Fig. 7
illustrates a screenshot from an extreme example, with lighting positioned across the
viewing area, causing a wide disparity in brightness, and significant shadowing. Motion
tracking is shown in the upper right, and the system output in the bottom of the image. All
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robots are identified except for one completely hidden in shadow, and the other in complete
glare from the lighting source.

Mame Type & ¥ dx oy theta Found
1 lued Robor & 1073 384,00 <0, 01 0,03 &l d 100%
Rebot 4 128095 117271 001 0,00 W76 100%
3 |bluez Robaot 3 214956 73963 Q.00 Q.00 <146 Q5% I
A Blued Robat-1 137365 210,70 -0.00 -0:00 225 1005
5 |wellowd Robot B 2330,39 320.E2 .02 0,02 -2.32 i
B vellowl] Rebot -1 B43.32 29347 -0,00 0,00 033 1A 1
7 Iyellow? Robot 1 232083, 309.00 0.0 =000 -1.29
B |yellowd Rebor-1 14203 93563 0,00 .40 .69 1002%

Fig. 7. Using Ergo under very poor lighting conditions (Furgale et al., 2005).

Ergo has gone a long way in making a global vision system more applicable to real-world
situations, in that it has both removed the need for a fixed overhead camera as well as any
predefined colours, and thus can operate across a much broader range of condition s than
previous systems. There are still assumptions it operates under, the largest being that a
pattern can be used to consistently identify objects that need to be tracked. In the
remainder of this chapter, we will explore the possibility of tracking objects without such
patterns.

4, Removing Dependence on Predefined Patterns

The ability to move beyond predefined colours or patterns for identifying objects is important
in vision, for a number of reasons. From an immediate practical standpoint, scalability is
always an issue. Even when using patterns without colour, there is a very finite amount of
variation that can fit on a small pattern and be recognized reliably at a distance. While there
are alternative approaches, such as just as arranging objects in predefined patterns before any
movement begins and then tracking motion, such approaches can only operate for a short time
before robots are misidentified as they move about. Once misidentified, there is no easy way
to re-establish identity without stopping to do this manually.

The issue of generality is much more significant in the long term than scalability, however.
While patterns are employed by humans during visual tracking (e.g. in soccer, teams wear
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structured uniforms involving both colour and pattern to distinguish themselves visually
for the benefit of players and spectators), such patterns do not have to be pre-programmed.
We need only watch an ongoing soccer game for few seconds to understand the pattern and
be able to track it without any significant conscious effort. Humans can also switch between
activities quickly, while equally quickly adapting to the details necessary for visual tracking
in the new domain.

In order to make a computer vision system truly intelligent, we must work toward this
level of generality by removing assumptions of predefined patterns and demonstrating
similar adaptability to that observed in human vision. In order for this to be achieved in a
vision system, one of two things must happen: either additional sources of information
must be exploited to make up for that provided by assumed patterns, or the system must
be able to adapt to patterns itself over time. Both of these are significantly beyond the
level of production vision systems at the present time, and represent some of the core
ideas for improving this technology in future. In the following subsections, we present
recent work in both of these areas, and then conclude by summarizing some of the issues
yet remaining.

4.1 Object Tracking Based on Control Information

There are numerous techniques used by humans that can be exploited in an intelligent
system for visually tracking objects. One of the most powerful can be seen any time a
group of children operate remote-controlled vehicles. If the vehicles all look alike, a child
quickly realizes that the one he or she is controlling can be identified by its response to
the control commands being sent. While vision alone can be used to track the vehicle
under control after it has been identified, when it is lost (e.g. has crossed paths with
several other identical vehicles), this control information can be used to re-identify the
vehicle. Such information can also be used to further confirm identity throughout the
control process.

In recent years we have been working toward extending the abilities of our global vision
systems by intelligently applying such control information. The original versions of
Doraemon and Ergo both maintain the identity and velocity of objects being tracked, in the
form of a hypothesis with an associated measure of likelihood. As already discussed in
Sections 2 and 3, this information is used to predict the future positions of moving objects in
subsequent frames, to allow a more goal-directed tracking process and to account for objects
when they cannot be recognized in every frame. If objects are no longer visually distinct, in
that there is no predefined identification pattern, there may also no longer be any way to
obtain orientation information visually in a single frame (depending on whether markings
are present to provide such information). However, the addition of control information
affords a better predictor of future object locations, because control commands are
presumably the single most important factor in future movement. This same control
information can also indirectly supply orientation information if it is not otherwise
available, since the orientation is also obtainable based on the object’s response to
commands. Control information is still imperfect, since commands may not be carried out
correctly or even be received properly by a mobile device, and unpredictable events
(collisions, outside forces) can affect objects” future positions as well. However, such
information should provide enough information to reliably support object tracking even
where objects are not otherwise visually distinct, much as it does for humans operating
remote controlled vehicles.
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Fig. 8. Situations easily resolved using control information. Left: identification is simple
given control command (dotted line) and velocity (arrow). Right: Two robots appear to
cross paths unless control information is known.
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In some situations, making use of control information is straightforward. Consider the situation
depicted in the left side of Fig. 8. Here, three robots are depicted with current orientation
indicated with an arrow, and the motion that would result from the current command shown by
a dotted line. Assuming they are identical, they can easily be differentiated in subsequent frames,
since the motion each will exhibit is very distinct. If a trail is maintained over time, there are
equally straightforward situations that would not be obvious using vision alone. In the right side
of Fig. 8, for example, two robots turn near one another, leading to the appearance of crossed
paths. Using vision alone, misidentification during and after the turn is very likely, but this is
easily resolved if the intended turns are known.

Fig. 9. A situation where control information alone cannot resolve object identities.

In other situations, this is not the case. Fig. 9, for example, shows the same robots as the left
side of Fig. 8, but with different intended movements. Here, the two robots on the right
cannot be differentiated based on control information, since they will both be moving
similarly. The robot on the left in the same image can only be identified if orientation is
known, since all robots are turning clockwise.

It can be seen from the latter example that current control information alone is not enough
for reliable recognition. Even in a simple situation such as the first case, intended motion
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still may not be seen in future frames, because of the external factors. An obstacle might
prevent movement, robots might collide, a command might not be received, or the robot
might not even be perceived in the next frame. Control commands are a valuable source of
information, but we must deal with the fact that they are uncertain. If the result of each
individual command is viewed as a separate piece of evidence supporting identity,
situations such as that shown in Fig. 9 can be resolved using accumulated evidence over
time (that is, an accumulated trace or trail supplied by an object’s ongoing movement).

To extend our global vision systems to deal with the uncertainty involved with using
command information, we experimented with moving from the ad hoc approach used in our
production systems to a Bayesian approach (Baltes & Anderson, 2003a). This approach
accumulates evidence in the form of traces of robot movement over time, and reasons
probabilistically about the identities of robots given the traces of movement seen. The
system uses evidence accumulated over a window of 100 frames, and computes an ongoing
maximum likelihood hypothesis (har) for each tracked object. The trace of the motion
consists of the position, orientation, and state of the object, where state is one of turning
clockwise, turning counter-clockwise, moving straight, or stopped.

P(D|h)-P(h) @

P(h| D)= )

Bayes’ formula (2, where P(l| D) is the posterior probability of hypothesis h given the
observation D, P(D | h) is the prior probability of observing data D given hypothesis &, and
P(h) is the prior probability of hypothesis h) is used to compute the maximum posterior
hypothesis for each robot’s identity given prior observations.

In this application, the hypotheses are the form Commands for robot 1 are observed as trace 1,
Commands for robot 2 are observed as trace 2, etc., where a trace is a set of positions and states
over time. All traces are assumed to be equally likely, and so the prior probability P(h) can
be assumed to be uniform and thus ignored.

The system determines the maximum likelihood (ML) assignment of identities to robots that
maximizes the posterior probability:

hyp, = robotl = (tracel,commandl),...= argmax,_, P(D | h) (3)

To apply this calculation, P(D|h) was determined through empirical observation to be
approximately 0.7. In other words, the system detects and labels a stationary robot as
stopped in 70% of the cases. To further simplify the calculation of the probabilities of the
match of a command sequence and a motion trace, we assume that the probabilities of
observing any feature are statistically independent.

The system computes the likelihood of all possible command traces to all observed traces
and chooses the identity assignment that maximizes the likelihood for all robots. This
approach was shown to work well in the soccer domain with a window of 100 frames and a
small team of robots. The probability calculation as it stands is computationally expensive,
which will result in limitations if scaled to teams of significant size, and so a significant
element of future work will entail making such an approach efficient enough to use for large
teams in real time. It is also possible that other applications might not require such a large
evidential window, and thus may be less computationally demanding.

This is only one example of exploiting information to substitute for a pre-defined pattern. It
is possible that other equally valuable sources remain to be discovered, and that this
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approach could be used in conjunction with other specific means of exploiting information
as well. In terms of generality, however, it is still reasonably specific, in that it assumes there
is a manageable range of discrete commands whose effects could be understood and
recognized by vision system. While object tracking in human vision for specific domains
such as soccer does appear to include information analogous to that exploited here (in the
form of what a player would be expected to do given the object and rules of the game, for
example), a more general approach to object tracking would be able to move beyond this
knowledge as well.

4.2 Inferring Orientation Without Prior Knowledge

Completely removing any type of predefined marker results in an object recognition
problem that is an order of magnitude more difficult than those described thus far, since
features for recognition must be discovered as part of the recognition process itself. These
features may at times be shadowed or otherwise occluded, making the discovery of such
features more difficult than the recognition process itself. However, a system that has the
ability to discover useful patterns will be more generally applicable than any current
system, and may also be more robust, in that subtle patterns can be used by such a system
that would be very difficult to even attempt to represent in an object description.

The fact that what is being offered to the system is a set of subtle features spread across
noisy images points to the potential for using a more decentralized approach that can
consider recognition across the image as a whole, as opposed to representing specific
features. The natural choice for such a task is a neural-net based approach: the robustness
this approach in the face of noisy and uncertain data is well-known (Mitchell, 1997).

Neural nets have been used extensively for image processing tasks in the presence of noise,
from close-range applications such as face recognition (Mohamed, 2002) to remote sensing
applications such as oil spill detection or land classification (Kubat et al., 1998; Schaale &
Furrer, 1995). It is important to consider such prior work in the context of applications such
as that described in this chapter. Recognizing a face, detecting an oil spill, or classifying
vegetation from single image, for example, is a much simpler recognition problem than
dealing with the subtler issues of ongoing tracking over time that have been presented in
the previous sections. Neural networks have also been applied, though less extensively, to
tracking information over time (e.g. (Cote & Tatnall, 1997)), and this also supports their use
as a viable choice in real-time robot tracking.

At this point in time, there are no systems that can recognize and track moving objects in real
time (i.e. in the same fashion as Doraemon and Ergo) adaptively and with no prior knowledge.
In working toward this goal, however, we have been working with a subset of the general
object recognition problem - recognizing orientation alone, using only images of robots as
opposed to pre-defined markings - as a means to gauge the applicability of neural nets to this
particular task and as a foothold for more general future work (Baltes & Anderson, 2003b).
Rather than using an artificial set of high-resolution images to train a network, we used actual
data that was obtained by Doraemon. The original Doraemon was modified (as a preliminary
test for larger-scale motion detection in the development of Ergo) to examine the difference
between frames in order to note likely locations for the coloured patterns the system tracks.
Where a strong difference is noted, the sub-area of the image (64 x 32 pixels) is stored and the
direction of change noted as a basis for the matching described in Section 2. These sub-images
can be viewed on the interface in an enlarged fashion for colour calibration purposes, but in
this case, this internal portion of the system serves to be able to gather a set of close-up images
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of robots over time. A set of training data annotated with estimated orientation can be thus be
recorded if it can be assumed that the robot is always facing forward when moving. Examples
of these annotated images from training datasets are shown in Fig. 10. Note that lines on the
field, as well as the fact that the images are quite small, both serve to promote noise. A training
set of 200 images of each of two robot types was created (each network was ultimately trained
to recognize orientation in only one type of robot).
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Fig 10. Sample images taken and annotated by Doraemon. The left image is a remote
controlled toy car; the right is a robot built from a Lego MindStorms kit.

The network employed to track robot orientations without patterns is a 3-layered feed-
forward backpropagation network, as shown in Fig. 11. Since the robot-sized images from
Doraemon will be ultimately used as input for visual recognition of orientation, the input
layer must ultimately receive these images. However, an RGB image of 64 x 32 pixels results
in 6144 individual colour-separated pixels. A neural net constructed with this many input
nodes was attempted, but performance was found to be poor and training extremely slow,
necessitating sub-sampling of the original image to allow fewer input nodes. This was done
by averaging over each 4 x 4 pixel neighbourhood, resulting in 384 input nodes. The hidden
layer is 32 nodes, or approximately 10% of the input layer. The number of hidden nodes was
arrived at by experimentation (Baltes & Anderson, 2003b): using a learning rate of 0.3 and a
momentum term of 0.2, a network with a 32 node hidden layer was the first that could learn
100% of a sample dataset after 2000 epochs (compared to 88% after 5000 epochs for the next
best performing network topology, with 24 hidden nodes). The output layer is an encoding
of the orientation angle discretized into 5-degree steps, resulting in 72 output nodes. The
highest-strength output node is taken as the orientation classification.

For a test data set, we used one robot as a test subject and caused it to drive at random
across the same field on which the training data were gathered. This introduced the same
lines and other noise that were present in the training images. In addition, we placed
stationary robots on the field so that the system was exposed to more varied examples of
robot images, and to avoid overfitting.

To evaluate learning performance, we employed mean squared error (MSE), a common
measure of error employed with neural nets. Mean squared error is the sum of the squared
errors (SSE) over the output units, over the entire set of training examples (i.e. over one
epoch), divided by the number of training patterns in the epoch. That is, MSE is the mean
error for a given pattern.

One interesting element in object recognition using a sub-symbolic approach such as a neural
network is the relative utility of the designer attempting to emphasize or likely useful
information in images beforehand, as opposed to simply allowing the approach to operate
completely unbiased. Since the edges in an image of a robot contain much information that is
useful for orientation classification, we attempted to contrast the recognition process using the
images already described, with one employing sub-sampled images that had 2 x 2 Sobel edge
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detection performed on them. Fig. 12 illustrates the edge maps created by performing edge
detection on the images in Fig. 10. Since edge detection also removes colour information from
the original image, fewer input nodes were needed in this case.
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Fig. 11. The Neural Network Architecture.

Fig. 12. Training images from Fig. 10 after 2 x 2 Sobel edge detection.

We ran a comparison on this network once the optimal number of hidden units was decided
upon, comparing the accuracy and speed of learning using the toy car training data under
three different input representations: 4 x 4 sub-sampled colour images described above, 2 x
2 sub-sampled edge-detected images, and 2 x 2 sub-sampled grey scale images. The third
representation was chosen in order to see the effect of removing colour information alone.
As in preliminary experimentation, a learning rate of 0.3 and a momentum term of 0.2 were
used. In all cases, training data was randomly reshuffled after each epoch to avoid over-
fitting the neural network to the specific sequence of training images.

The results of this (Fig. 13) showed that the representation made little difference. Although
edge detected images allowed faster MSE improvement over the first few hundred epochs
ultimate performance was worse than other representations. The differences are not
statistically significant, however, and all finish with an MSE of approximately 0.10.
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Fig. 13. Evolution of the MSE over training epochs under different input representations,
using the toy car image training set.

The neural networks were then tested on accuracy of orientation classification. The results
were also similar by representation. The network trained using colour images was able to
classify 99% of all images within 5 degrees, while grey-scale or edge map trained networks
classified 97% of all images correctly. There was no correlation between missed images over
representations: that is, different images were misclassified by the three different
representations.

Similar testing was done with Lego MindStorms robots, which as can be seen in Fig. 10,
have more distinct visual features. This lead to networks trained with colour and grey-scale
images to finish training much earlier than edge-detected images (Fig. 14). These two
alternatives both terminated training early with 100% accuracy, while the network trained
with edge-detected images still had only 93% accuracy after 5000 epochs.

These results seem to indicate that preprocessing and basic feature selection is not useful for
a neural network, and may in fact decrease the performance. While this seems counter-
intuitive, in retrospect the training images themselves seem to indicate that orientation is
often about noting small pieces of evidence being combined into a consistent view, as
opposed to extracting features such as edges. Edge-detection, while emphasizing some
elements, loses many small details, especially with subjects such as the Lego robots, where
much detail is present. Each pixel provides a small amount of information, but its
relationship to other pixels makes this information important, and this relationship is
diluted by preprocessing such as edge detection. This was fairly obvious in some cases:
some images had shadows along one side, where this shadow was incorporated into the
robot shape via edge detection, for example. Artificial neural networks, on the other hand,
are especially well-suited to combining large amounts of input into a consistent view to deal
with elements such as shadows.
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Fig. 14. Evolution of the MSE over training epochs under different input representations,
using the Lego robot image training set.

We also examined the ability of these networks to generalize, by extracting 20 images (10%)
at random from the set of 200 training images. After training the network on the training set
minus these 20 images, the 20 unseen images were tested. These results were not as
encouraging: the network as trained was unable to generalize well. Further investigation
showed that the generalization ability was limited because there were few training
examples for 5-degree turns compared to larger values.

These efforts focus on only one sub-problem of object recognition: orientation. The results
could certainly be used in a production vision system, but this is still far from dealing with
the larger identification and tracking problem. However, the results presented here do show
that artificial neural networks are a promising approach to this problem.

One issue that will require significant work is that of training time. The work here was
performed on a dual 1900+ MP Athlon system with 1 GB of RAM, and a training run took
approximately 30 minutes. It is certainly conceivable to allow 30 minutes of observation
before a system is used in some applications, but this would be unacceptable in others.
Current neural network technology requires significant training time, and being able to
classify images with very little training will ultimately require significant breakthroughs in
many areas outside of computer vision. Another concern is the computational requirements
of the neural network after training. Once trained, this same system could process a
classification in around 0.07 msec, however, which would be fast enough to apply to a 5-on-
5 robotic soccer game. Scaling this to larger teams would require additional resources or
significant improvements in efficiency. One possibility to improve speed would be to
extrapolate a small set of rules that approximate some of the knowledge in the neural net.
Applying these in conjunction with a simpler network may be faster than calculating the
output of the entire network employed here.
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5. Conclusion

This chapter has reviewed some of the issues involved in creating pragmatic global vision
systems. We have discussed the assumptions on which traditional systems are based,
pointed out how these differ with the observed abilities of human vision, and described
how these assumptions limit the applicability and generality of existing systems. We then
described techniques that allow some of these assumptions to be discarded, and the
embodiment of these techniques in our production global vision systems, Doraemon and
Ergo.

Both Doraemon and Ergo are used in a number of ways. Doraemon has been in use every
year by a number of teams from around the world in the F-180 (small-size) league at
RoboCup. Ergo is the current global vision system in use in our own laboratories, and is
currently being employed in a number of projects, such as imitation learning in groups of
robots (Allen, 2007).

We have also described some of our recent work toward creating much more general global
vision systems that take advantage of additional knowledge or adaptability in order to
avoid the need for any type of predefined markings on objects. The latter work is very
preliminary, but shows the potential for improved techniques to eventually be the basis for
more general vision systems.

In working toward such generality today, there are a number of very important areas of
immediate future work. Existing approaches to global vision are well-understood and
immediately deployable. The fact that they rely heavily on elements such as the ability to
recognize colour patches, for example, means that anything that can be done to improve
these abilities will serve to improve existing systems. While systems such as Doraemon are
already exploiting much in terms of maximizing flexibility while still assuming colours can
be defined and matched, future work may still improve this further.

Any small steps that can be performed to wean existing systems away from their
traditional assumptions will serve as a backbone for further future work. While Ergo is a
significant improvement over the abilities of Doraemon, for example, it still conforms to
some traditional assumptions in terms of relying on predefined patterns, and instead
exploits different mechanisms to be more flexible and offer a better performance in a
wider array of domains. There will be many similar steps as we move to more general
vision systems.

Any single tracking or identification technique has its limitations, and just as neither Ergo
nor Doraemon use a single mechanism to identify and track objects, future systems will
require a synergy of techniques. Attempting to leverage the strengths of techniques off of
one another will always be an important part of future work in this area. In our own work,
we are currently attempting to employ the addition of control knowledge to the sub-
symbolic orientation recognition described in Section 4.2. For example, if we are uncertain
of a robot's location and orientation at the current time, we can start with the robot's last
known location/ orientation at previous time, and constrain the potential solution set by the
likely outcome of the most recent command sent to the robot.

The iterative steps taken in improving global vision are in turn a useful source of future
work in improving application areas as well. For example, the work on recognizing
orientation without markers described in Section 4.2 was undertaken as convenient sub-
problem of the overall vision task useful in robotic soccer, in order to track a team’s own
players for control purposes. The ability to infer robots' orientation without prior
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knowledge, however, also allows a team to infer the orientation and identity of the
opponent's robots. This in turn can allow for more sophisticated tactical decision making
than would otherwise be possible. For example, robots that have a strong kicking device can
be extremely dangerous. If an opponent’s robot is oriented away from the current locus of
activity, the situation is not as dangerous.

In both current and ongoing work, there is also a great need for improvements to
computational efficiency. While computer power is always improving, the demands of more
sophisticated techniques will always exceed this. While we have attempted in Ergo, for
example, to have as much of the matching be done in a goal-directed fashion, data-directed
processing is still required, and so there is still ample opportunity for improving the frame-
rate in ergo through improvements in pattern-matching efficiency. In using control
information to anticipate future movement, techniques that do not require the calculation of
all possible robot assignments to all traces would be an enormous improvement.

Finally, it should be noted that despite the fact that we have emphasized global vision in
this chapter, the techniques employed in object tracking and identification by Doraemon,
Ergo, and the other work described here are all equally applicable to local vision. If I have a
local vision robot playing a soccer game, the robot still must be able to track its teammates
and opponents across its field of vision, and update an internal model of the state of play in
order to make intelligent decisions. Thus advancement in technology in one area is
immediately applicable to the other. Although it does not compare to the limitations of
human vision, omni-vision (that is, vision based on a 360° image, usually done with a
camera and a parabolic mirror) has become largely a standard in some local vision robotic
soccer leagues, most notably the RoboCup middle-sized league. Such vision ultimately
allows a reconstruction on a local basis that bears a strong analogy to global vision,
especially once a camera is not placed overhead and issues such as occlusion and complex
geometry come into play.

If readers are interested in using the work described here in their own future work, open-
source code for Doraemon, Ergo, and other systems is available (Baltes & Anderson, 2006).
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Contour Extraction and
Compression-Selected Topics

Andrzej Dziech
AGH Universisty of Science and Technology, Telecommunication Dept.,
Cracow, Poland

The subject of this chapter is to describe selected topics on contour extraction,
approximation and compression in spatial domain. Contours are treated as important image
structure required in many applications, for example in analysis of medical image,
computer vision, robot guidance, pattern recognition etc. Contour compression plays
important role in many practical tasks associated with contour and image processing.

The main approach solving the problem of contour compression is based on polygonal
approximation. In this chapter the traditional and new methods for contour approximation
in spatial domain are presented. These methods are often much faster than the methods of
compression based on transform coding. In order to extract the contours from the image
some algorithms have been developed. The selected well known methods for contour
extraction and edge detection as well as the new algorithms are also presented in this
chapter. The author is grateful to his Ph.D. students A. Ukasha and B. Fituri for their
contribution in preparation of this chapter.

1. Contour Analysis and Extraction

Contours and line drawings have been an important area in image data processing. In many
applications, e.g., weather maps and geometric shapes, it is necessary to store and transmit
large amounts of contours and line drawings and process the information by computers.
Several approaches have been used to extract and encode the boundary points of contours
and line drawings. The extracted data is then used for further processing and applications.
Contour approximation and compression are some of the processing operations performed
on contours and has been considered by several authors.

In encoding contours and line drawings, efficient data compression and good reconstruction
are both usually required. Freeman proposed an eight-directional encoding scheme for
contour lines. The proposed chain code is obtained by superimposing a rectangular grid on
the curve and then quantizing the curve to the nearest one of the eight possible grid points.
The chain encoding scheme represents contour lines by 3 bits/link, where a link is defined
as one of the eight possible straight-line segments between two adjacent quantized points.
Efforts have been made to improve the coding efficiency. Freeman proposed a chain
difference coding scheme which assigned variable-length codewords to the difference
between two consecutive links. This coding scheme represents contour lines by about 2 to
2.1 bits/link on average.
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The purpose of this subchapter is to investigate selected methods for contour extraction. At
the beginning some relationship between the image and contours that can be extracted from
the image, are briefly described.

In the simplest case, an image may consist of a single object or several separated objects of
relatively high intensity. This allows figure/ground separation by thresholding. In order to
create the two-valued binary image a simple threshold may be applied so that all the pixels
in the image plane are classified into object and background pixels. A binary image function
can then be constructed such that pixels above the threshold are foreground (“1”) and below
the threshold are background (“0”).

Binary images are images whose pixels have only two possible intensity values. They are
normally displayed as black and white. Numerically, the two values are used 0 for black
and 1 for white. In the analysis of the objects in images it is essential that we can distinguish
between the objects of interest and “the rest”. This latter group is also referred to as the
background. The techniques that are used to find the objects of interest are usually referred
to as segmentation techniques - segmenting the foreground from background.

In general there are two basic approaches for shape representation: by contours and by
regions. Polygonal approximation, chain code, geometric primitives, parametric curves,
Fourier descriptors and Hough transform are the examples of contour based shape
representation methods. These methods share some common characteristics [1]:

(1) Shape information extraction: the representation would facilitate some contour
characteristics comprehension.

(2) Data compression: data compression rates can vary in wide range depending on the
method of compression and the structure of contours

(3) Noise elimination: digital curves can be corrupted with noise and/or undesirable
details treated as redundancy elements. The method should filter the noise and
redundancies.

(4) Curvature evaluation: this step is important in contour description. The major
difficulty is due to the discrete nature of the curve, making the majority of the
methods noisy and scale dependent. There are psychological results showing that
curvature plays a fundamental role in human shape perception.

The most typical contour representations are illustrated below [2]:
1) Generalized representation (@,/).

Fig. 1.1 shows the contour representation using the (g,/) generalized chain coding scheme.

Fig. 1.1 Generalized representation of contour.
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2) Polar representation (a,/) .
Fig. 1.2 shows the contour representation using the (a,/) polar chain coding scheme.

f.:m““‘*i
A

Fig. 1.2 Polar representation.

3) Cartesian representation
Cartesian representation of contour is shown in Fig. 1.3

E

Fig. 1.3 Cartesian representation.

Cartesian representation leads to decomposition of two-dimensional contour (y, x) into two
one -dimensional signals x(n) and y(n), where n is a variable representing the current length
of contour, as it is shown below

One of the widely used procedures related to contour tracing is proposed by Freeman [3] .
This procedure is based on an eight- or four-directional chain encoding scheme as shown in
Fig. 1.5. An 8-directional chain-coding uses eight possible directions to represent all possible
line segments connecting nearest neighbours according to the 8-connectivity scheme as
shown in Fig. 1.5a. 4-directional chain-coding uses four possible directions to represent all
possible line segments connecting nearest neighbours according to the 4-connectivity
scheme as shown in Fig. 1.5b.

This scheme describes arbitrary geometric configurations in a simple and efficient method.
The chain code is obtained by superimposing a rectangular grid on the curve and then
quantizing the curve to the nearest grid point. The Freeman chain code may subsequently
be described in cartesian or polar systems.
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Fig. 1.5 Freeman chain code.

Completely enclosed boundary regions can be coded with a simple modification to the basic
chain coding. The outer boundary is first chain coded in a normal manner when this
boundary has been closed ,a code group 0401 is inserted in the chain code, and an "invisible
line" connecting the two boundaries is encoded. When the second boundary is reached, the
code group 0402 is inserted in the chain code to indicate the end of the invisible line. The
inner boundary is then chain coded in a normal manner. The prefix 04 of the "invisible line"
code and the "visible line" code designates the rarely occurring event of a right shift
followed by a left shift. This prefix is also used with other codes to indicate a variety of
special cases.

-Length of a chain: The length of an 8-directional chain code may be found using the
following relation:

L=T(n, +n,2)
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where n, -number of even valued elements (chains)
n, --number of odd valued elements (chains)

T- scale factor proportional to grid spacing.

-Inverse chain: The inverse chain of an 8-directional chain code may be obtained using the
following relation:

¢ l=c, @4
where @ -addition mod 8

Example:
-For the curve shown

(a) write the Freeman chain code using the 8-directional scheme.
(b) Find the length of the chain code.
(c) Find the inverse of the chain code.

Fig. 1.6 Chain encoding example

(a) In the Figure below is shown the tracing of the curve using the 8-dierectional scheme.

The chain code is obtained as: (21010001212)
(b) The length of the chain code, assuming T=1, is :

L=T(n, +n,2) =1(7+4~2 )=12.657
(c) The inverse of the code is: . cfl =c¢; @ 4 =(65454445656)
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1.1 OCF and MSCE Methods of Contour Extraction

The separation of objects from their background referred to as segmentation of gray scale
images and as contour tracing (or boundary following) for binary images, often provide
important features in pattern recognition and scene analysis and is used in variety of other
applications, for example, recognition of human faces from essential contours.

In general contour extraction from two-dimensional images may be accomplished in two
operations: 1)Edge detection; 2)Contour tracing.

1) Edge detection: The aim of edge detection is to identify and enhance edges (pixels)
belonging to boundaries of object of interest in the original image. An edge element is
defined as a picture element which lies on the boundary between objects or regions of
different intensities or gray levels. Many edge detection methods have been proposed for
detecting and enhancing edges in digital images. Most of these methods are implemented as
some form of gradient operators. Some images can be characterized as containing some
objects of interest of reasonably uniform brightness placed against a background of differing
brightness. Typical examples include handwritten and typewritten text, and airplanes on
the a runway. For such images, brightness is a distinguishing feature that can be utilized to
locate the object. This method is termed as luminance thresholding.

2) Contour tracing: The contour tracing algorithm traces the contour and extracts the contour
information which is then passed to subsequent processing. One of the most widely used
procedures to follow contours and line drawings is that of Freeman, which provides a code
that possesses some manipulative properties. The Freeman chain code can subsequently be
described in cartesian or polar systems.

The problem of contour extraction from 2D-digital image has been studied by many
researchers, and a large number of contour extraction methods have been developed. Most
of the developed methods can be assigned to either of two major classes known as
sequential methods or Object Contour Following (OCF), and parallel methods or Multiple
Step Contour Extraction (MSCE). In Fig.1.6 is shown a block diagram of the contour
extraction and processing from gray level images.

A brief description of the two main classes of contour extraction methods, OCF and MSCE, is given.

Grey-level

Binary image

Contour
extraction

Contour
description

‘Freeman‘ ‘Canesian‘ ‘ Polar ‘

Processing

Fig. 1.6 Contour extraction and processing from gray level images.
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Two main approaches can be used for the extraction of object contours. The Object Contour
Following (OCF) and Multiple Step Contour Extraction ( MSCE ). The OCF methods,
sequentially detect and extract object contour edges. By sequential methods, it is meant that
the result at a point is dependent upon the result of the previously processed points. The
MSCE methods are referred to as parallel schemes for object contour extraction. By parallel,
it is meant that the decision of whether or not a point is on an edge is made on the basis of
the gray level of the point and its neighbours. So, the edge detection operator in principle
can be applied simultaneously everywhere in the picture. It should be noted that the
definitions of sequential and parallel schemes are used with respect to edge detection. To
produce a closed boundary, the extracted edges have to be connected together to form a
closed curve.

(i) Object Contour Following( OCF )

The OCF methods, which are also called Bug Following, can be used to trace (follow) the
contour edges of a 2-D digital image. The idea of these methods is illustrated in Fig.1.7. The
extraction procedure consists of finding a starting point and then cross the edge between the
white and black regions, record the co-ordinates of the black pixel then turn left
continuously until a white pixel is found, record the black pixel co-ordinates as the next
contour edge point. Start turning right until a black pixel is found. Terminate this procedure
when the starting point of the contour is reached again.

Starting ,

1
point
A
L e
i 0

3 M

S ey

Fig. 1.7 The Object Contour Follower.

(ii) Multiple Step Contour Extraction ( MSCE )

The key feature of MSCE methods is that the gradient between two pixels with different
gray scale levels represents the difference between the two pixels, and the gradient will be
zero for the pixels with the same gray scale level. A threshold value will determine if the
gradient is interpreted as an object edge or not. An additional procedure is used to improve
the overall contour structure by joining all disjoined edges and thinning the thick edges.



194 Mobile Robots, Perception & Navigation

Fig.1.8 shows the steps required for extracting object contours by the MSCE methods.
Although the method of gradient operator for generating edge elements is parallel, the
method of connecting ( tracing ) these extracted edge elements is sequential.

Find gradient between pixels Gradient Operators
( Edge Detection ) |_~Compass Operators

Uses 2 X2 or3 X 3 Window | |Laplacian Operators
MSCE
Multiple Step —'| Trace the contour
Contour Extraction Joining disjoined linesi
Additional operations

Thinning thick lines |

Fig. 1.8 Block Diagram of The Multiple Step Contour Extraction.

The three main steps of the MSCE methods are: edge detection, contour tracing and the
additional procedures for joining disjoined lines, and thinning thick lines.

a) Edge Detection

Local discontinuities in image luminance or gray levels are called luminance edges. Global
discontinuities are called boundary segments. Edges characterise object boundaries. They
are used for segmentation and identification of objects in images. Edge points can be
thought of as pixel locations with abrupt gray level change. For example, it is reasonable to
define edge points in binary images as black pixels ( object pixels ) with at least one white
nearest neighbour pixel ( background pixel ). Most techniques used for edge detection are
limited to processing over the 2x2 or 3x3 windows shown in Fig. 1.9a and Fig. 1.9b

respectively.
Note that the same pixel numbering will be used with all edge detection operators.
. . i
1 i+l
i| Pap | PGLY) Po| PP
1| PG+1) | PG i | P7 PG Ps
Ps | Ps| Py

Fig. 1.9a Pixel numbering for 2x2 edge Fig. 1.9b Pixel numbering for 3x3 edge
detecting operators. detecting operators.

b) Gradient Operators:

These operators measure the gradient of the image G( i, j ) in two orthogonal directions,
horizontal, and vertical directions. Except with the case of Roberts cross operator where the
gradient is taken across the diagonals.

The gradient is given by :

G(i, /)=y gr i, )+ g (i, ) (1.1)
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where gy : is the gradient in the vertical direction.
gn : is the gradient in the horizontal direction.
Instead of using the square root gradient given by Eq.(1.1), the gradient is often
approximated using the absolute gradient given by the following equation :

GG, /) =] gy /) [ +] 2n (0. )| (12)
Eq.(1.2) is easier to perform and to implement in digital hardware.
The Roberts , Sobel , Prewitt [26] operators, showing the horizontal and vertical masks
(diagonal masks in case of Roberts cross) together with the necessary equations for finding
the gradient, are introduced next, as an example of edge detection using gradient operators.

Roberts cross gradient operator :
Roberts has used a simple window of 2x2 to introduce the square-root difference operator
given in Fig.1.10, it is often called Roberts cross gradient operator. The edge detection is
carried out using Eq.(1.1), where :

gv=P(i,j)-P(it+1,j+1) (1.3)
gn=P(i, j+1)- P(i+1,j) (14)
i i

j o | j |l
01 1 |0

Fig. 1.10 Roberts cross gradient operator.

Sobel gradient operator :

The masks which are used by Sobel for finding the gradient of an image are shown in Fig.
1.11. The corresponding equation used for calculating the gradient is given by Eq.(1.1),
where :

gv=(P2+2P3+Py)- (Po+2P;+Ps) (1.5)
gh=Po+2P1+Py)-(Ps+2P5+Py) (1.6)
i i
-1 (-2 -1 -1 10 |1
ilo]llfo i 2 ]2
1|2 (1 -1 |0 |1
Horizontal mask. Vertical mask.

Fig. 1.11 Sobel gradient operator.

Laplacian operators :
Three different Laplacian operators [26][27], with the necessary equations for calculating the
gradient, are shown in Fig.1.12. For images with smooth changes in gray level values the
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Laplacian operators give better results than the previous operators. But it is more sensitive
to noise, and produces double edges.

i i i
112 1 -1 -1 0f-1]0
i 2 2 i Fel -1 i [- -1
112 1 I S T | 0f-1]0

a b c

Fig. 1.12 Three different types of Laplacian operators.

For the operator of Fig. 1.12a -c the edges are detected by calculating the gradients between
pixels using the following formulas respectively :

G (i,j)=4F(i,j)+(Po+P2+Ps+Ps)-(P1+P3+P5+P7) (1.7)
G (i,j)=8F(i,j)-(Po+Py+P,+P3+Py+P5+Ps+P7) (1.8)
G(i,j)=4F(i,j)-(P1+P;+P5+P7) (1.9

To compare the performance of the selected gradient operators, the binary image of Fig.
1.13a is used. The detected edges obtained by applying different gradient operators are
shown in Fig. 1.13b-h.
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(8) (h)
(a) Original image, (b) Prewitt gradient Operator, (c) Roberts cross
gradient operator, (d) Sobel gradient operator, (e) Prewitt compass
operator, (f - h ) Three types of Laplacian operators

Fig. 1.13 Different edge detection results on a real binary image.

1.2 Object-oriented Contour Extraction OCE
This algorithm is based on 4x4 pixels window structure to extract the object contours by the
four central pixels which are processed simultaneously. The algorithm uses the features of
both OCF and MSCE methods to overcome most of the disadvantages they have.
It features a parallel implement and an effective suppression of noises. It can be realized in
real-time [18].
The following three steps are needed for the extraction procedure:
Step1: The image is framed with zeros.
Step2: Eight rules of edge extraction are applied and are coded using 8-directional chain-
code as shown in Listing 1.1.
Listing 1.1
Implementation of the eight rules for contour extraction (4x4 windows)

ali,jre—0;i

forim23.....1 |

|

irb(ij+ 1) and b{i+1,j+1) and [bi,j+2) or b{i+1,j+2)]

then afig+1) € an.;-lmrl" { edge 0}
irbie+1 ) and Blij+1) and b{i+1j+1)

then afiji+1) € afi,i 1or2' { edge 1}
il bl gy and bli+] 1) and [i+2,)) or b{i+2 j+1}]

then a(i+1 j+1)+=a(i+1,j+1) or2’ { edge 2 }
if bii,j) and b(i+1 j) and bii+1,j+1)

then a{i+1,j+1)4—afi+1,j+1)or2’ | edge 3 }
i h{ig) and bl jyand [B{j-15or Bt Li-13]

then a(i+1J) ¢ ali+l jor2” { edge 4}
il biig) and b(i+1 ) and biij+1)

then afi+1,j) <= ali+1,j) or2? { edge 5}
irbi,jy and bij+1pand [BG-1,7por Wi-1,j+11]

then afi,j) ¢ a(i,j) or 2" | edpe 6 }
i bii,j) and b(ij+1)and b{i+1j+1)

then afi,j) < ali,j) or 2 | edge 7 }
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where:

b(i,j) is the binary value of a pixel point (i,j) and 2k (k:0-7) is the extracted edge code.
Step3: The extracted contour edges are sorted and stored or optimized according to the
application requirements. The extraction procedure is shown in Fig. 1.14.

Frame the image
with zeros

Object Onented [ Apply cight rules

Contour Extraction of extraction

| Apply cight rules
of extraction

Fig. 1.14 Object-oriented Contour Extraction (OCE).

The problem in the OCE procedure is that contours extracted from the objects near the
image boundary, i.e. objects within one pixel distance from the image border, are not closed
and that is why the image should be framed with two background pixels to ensure the
closure of the contours. Fig. (1.15a) shows that the extracted edges do not form closed
contours; while Fig. (1.15b) shows that after framing the image with at least two
underground pixels all extracted contours are closed.

Fig. 1.15 OCE procedure (a) Without correcting the first step and (b) After correcting the
first step.

1.3 Single Step Parallel Contour Extraction ‘SSPCE’ (3x3 windows)

There are two algorithms; the first one [35] [35] uses 8-connectivity scheme between pixels,
and 8-Directional Freeman chain coding [3] scheme is used to distinguish all eight possible
line segments connecting nearest neighbors. This algorithm uses the same principle of
extraction rules as in the OCE algorithm. The second algorithm [35] uses the 4-connectivity
scheme between pixels, and 4-Directional Freeman chain coding scheme is used to
distinguish all four possible line segments. Both algorithms use an 3x3 pixels window
structure to extract the object contours by using the central pixel to find the possible edge
direction which connect the central pixel with one of the remaining pixels surrounding it.
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The first algorithm gives exactly the same extracted contours as the OCE algorithms but is
much faster ; while the second algorithm gives similar contours, but not identical and is also
faster . Consider now the first algorithm in details.
The edges can be extracted by applying the definition that an object contour edge is a
straight line connecting two neighboring pixels which have both a common neighboring
object pixel and a common neighboring underground pixel [33]. By this definition, no edges
can be extracted from the three following cases:

1-  If all nine pixels are object pixels; i.e. the window is inside an object region.

2-  If all nine pixels are background pixels; i.e. the window is inside a background region.
If the center pixel is an object pixel surrounded by background pixels; i.e. it is most probable
that the center pixel in this case is a point noise caused by image digitalization.
So, this algorithm uses the same principle and steps of extraction rules as the OCE algorithm
using 3x3 window. The eight rules of edge extraction are applied and are coded using 8-
directional chain-code as shown in Listing 1.2.

Listing 1.2 (3x3 windows)
Implementation of the eight rules for contour extraction (3x3 windows)

i) e=0i=12.....N:

fori=23,...M-1;j

i

if (i) and b(i+1,j) and [bij+1) or bii+13+13] and [ not [biij-17 or bii+1j-1)]]
then afi ) ¢—afijyer2” { edge O }
ifbiij) and bii+1,j) and b{i+1,j-1) and [ not [b{ij-13]]

then afij) < u.u,”tarzl { edge 1}
irb(i,j) and b{ij-1) and [b(i+1,j) or b{i+1,j-1)] and [ not [b{i-1,j) or bii-1,j-13]]

then adi )} ¢ ulij)or2* { edge 2}
if bii,i) and biij-1) and bii-1j-13 and [ not [b{i=1j1]]

then afij) ¢ u.{i,”t:r?.1 { edge 3 }
i biig) and b(i-1,jp and [biij-13 or bii-1,j-1)] and [ oot [biij+1) or b{i-1,j+13]]
then afij) < afijor2’ { edge 4 }
i b(ig) and b(i-1 30 and bii-1 1) and [ not [b{ij+1)]]

then afi,j) <—afij) ar2? { edge 5 }
b0 and b(ig+1) and [bii-13) or b{i-1,7+1)] and [ not [b(is1 ) or bi+1,j+1)]]
then alij) +— afij) or 2° { edge 6}
i bii) and b{ig+ 1) and Bii+104 1) and | not [bi+ 1]

then :Iti,i'lli—;l.{i.i'llnrz- { odge 7}
H

1.4 Contour Extraction Based on 2x2 Windows
This algorithm is mainly used for gray scale images . It uses a smaller window for contour
extraction than its predecessors, i.e. 2x2 window shown in Fig. 1.16.

£ | A

P

Fig. 1.16 Pixel numbering for 2x2 windows.
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The processed pixel is the darker one. Two buffers are required for a real time contour
extraction system. First buffer is used for the storage of a previously processed image line
and the second one keeps pixel values of the currently processed image line.
The algorithm uses the 8-connectivity scheme, and the extracted edges are coded by using
of the 8-directional chain coding. It does not require any storage of the scanned (processed)
image.
The three main steps of the algorithm are:

e  Frame the image with zeros,

e Extract contour edges using the eight rules

e  Sort the extracted contour edges.
The eight rules of edge extraction are applied and are coded using 8-directional chain-code
as shown in Listing 1.3.

Listing 1.3
Implementation of the eight rules for contour extraction (2x2 windows)

ali 01 =12. N:j=12....N;
fori=23,.  N-1;j=23,. NI

:[{h:i-],j] = b{i,i) 1 { bi-1jh# bi-13-1) ) [ (b(i-1,50# blij-1) )
then afi-1j) ¢ afi-1j) Ub{i-1j) U 2° [edge 0 )

if ( b(i-1) = biij1) ) 11 (b1 = bii-1j-1) )

then afi-1j) ¢ afi-1j) U b{i-Lj) U 2' |edge1)

i ( blij1) = bli) ) (B = bE-10 ) N (b= bi-1,-1))
then afif) < a(i)) Ubp U 27 |edge2|

if ( bii-1-1) = b(ij) } [T {b{ij)# bii-14) )

then a(ij) <= afij) U biij) L) 2 |edge3)

i ( bij1) = bii-1,-1 3 ) 11 (10 b)) N (biij-1) b))
then afij-1) ¢ a(ij-1) U b1 U 2 edged |

if  b(ij1) = b(i-1) ) n { b1 = biig) )

then a(ij-1) < a(ij-1) Ub(ij-1) U 2* [edge5)

BF ( Bi=1,j=1) = B{i=1j) )y { Bli=Lj=1) # bije1) ) (bi=1.j=1) = b))
then afi-1j-1) 4 afi-Lj-1)\ bii-1j-1)' 2" [edged

if { b{i-Lj-1) = biij) o ( bi-Lj-1) # Wij-1))

then afi-1,j-1) +a(i-1,j-1)w b{i-1,j-1) 2’ | edge 7|

|

The algorithm does not require the storage of the scanned image, i.e. it can be used for real
time applications.

1.5 Comparison of Contour Extraction Algorithms (Different Windows)
The comparison is made between the following three algorithms:
o Contour extraction CE referred to as the third algorithm (or 2x2 windows).
e SSPCE method; it will be referred to as the second algorithm (or 3x3 windows).
e OCE method; it will be referred to as the third algorithm (or 4x4 windows).
The comparison is performed with respect to the number of operation and number of
contour edges. The binary test images are illustrated in Fig. 1.17.
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©
Fig. 1.17 Binary images (a) Circle (b) Square (c) E letter.
The comparison between the three algorithms with respect to the number of operations
versus the number of edges for Circle, Square and E letter contours respectively is shown in
Tab. 1.1, Tab. 1.2 and Tab. 1.3

NE 20 30 40 50 60 AE
I algor. (NO) | 276497 | 276581 | 276666 | 276748 | 276835 | 277060
2% algor. (NO) | 89810 89894 | 89979 | 90061 | 90148 | 90373

37 algor. (NO) | 1063018 | 1065092 | T065167 | 1,065239 | 1065316 | 1,065514

NE - Number of Edges, AE - All Edges and NO is the Number of Operations,
Table 3.1 Comparison between the algorithms for Circle image.

NE 50 100 150 200 AE
1 algor. (NO) 447287 447687 448087 448487 450351
ond algor. (NO) 446898 447298 447698 448098 448442
3rd algor. (NO) 1, 726850 1, 727200 1, 727550 1, 727900 1, 728201

NE - Number of Edges, AE - All Edges and NO is the Number of Operations,
Table3.2 Comparison between the algorithms for Square image

NE 20 60 100 125 150 AE
1 algor. (NO) 109410 109732 110053 110254 110454 110718
ond algor. (NO) 56629 56951 57272 57473 57673 57937
3rd algor. (NO) 407648 407930 408211 408387 408562 408793

NE - Number of Edges, AE - All Edges and NO is the Number of Operations,

Table 3.3 Comparison between the algorithms for E letter image.
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Extracted contours Extracted contours Extracted contours
using first algorithm using second algorithm using third algorithm
Fig. 1.18 Extracted contours using the three different algorithms.

The first column of Fig. 1.18 shows the extracted contours by the first algorithm. The second
column shows the extracted contours by the second algorithm and the third one- the
extracted contours by the third algorithm.

The comparison between the three algorithms with respect to the number of operations
versus the number of edges for the binary images is illustrated in Fig. 1.19
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Fig. 1.19 Number of operations versus number of edges for the all algorithms for the shapes
of (a) Circle (b) Square (c) E letter.

The results presented in Fig.1.19 show that the fastest algorithm is dependent on the
structure of contour.

2. Methods of Contour Approximation and Compression in Spatial Domain

In many applications of contour processing and analysis it is desirable to obtain a
polygonal approximation of an object under consideration. In this chapter we briefly
consider the algorithms that have been introduced for polygonal approximation of
extracted contours. The algorithm presented by Ramer uses the maximum distance of the
curve from the approximating polygon as a fit criterion [45]. There exist algorithms
referred to as the Triangle family of contour approximation . The first algorithm is based
on the ratio between the height and length triangle distances for each segment, and this
ratio is used as the fit criterion of the algorithm which is referred to as height over length
triangle ratios algorithm [46] and [47]. The second algorithm is based on the height
triangle distance for each segment as the fit criterion of the algorithm which is referred to
as height length triangle algorithm. The third algorithms is related to the square of the
height triangle distance for each segment as the fit criterion of the algorithm which is
referred to as height square length triangle algorithm. The fourth algorithm is associated
with the area for each triangle segment as the fit criterion of the algorithm which is
referred to as the area triangle algorithm.

2.1 Polygonal approximation

A digitized picture in a 2D array of points is often desired to be approximated by polygonal
lines with the smallest number of sides, under the given error tolerance E.

There are several algorithms available for determining the number and location of the
vertices and also to compute the polygonal approximation of a contour. The Ramer
method is based on the polygonal approximation scheme. The simplest approach for the
polygonal approximation is a recursive process (Splitting methods). Splitting methods is
performed by first drawing a line from one point on the boundary to another. Then, we
compute the perpendicular distance from each point along the segment to the line. If this
exceeds some threshold, we break the line at the point of greatest error. We then repeat
the process recursively for each of the two new lines until we don't need to break any
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more. For a closed contour, we can find the two points that lie farthest apart and fit two
lines between them, one for one side and one for the other. Then, we can apply the
recursive splitting procedure to each side. First, use a single straight line to connect the
end points. Then find the edge point with the greatest distance from this straight line.
Then split the straight line in two straight lines that meet at this point. Repeat this process
with each of the two new lines. Recursively repeat this process until the maximum
distance of any point to the poly-line falls below a certain threshold. Finally draw the
lines between the vertices of an edge of the reconstructed contour to obtain the polygonal
approximating contour.

The approximation of arbitrary two-dimensional curves by polygons is an important
technique in image processing. For many applications, the apparent ideal procedure is to
represent lines and boundaries by means of polygons with a minimum number of vertices
and satisfying a given fit criterion. An approximation algorithm is presented which uses an
iterative method to produce a small - but not minimum - number of vertices that lie on the
given curve. The maximum distance of the curve from the approximated polygon is chosen
as the fit criterion.

Analysis of multiple views of the same scene is an area of active research in computer
vision. The study of the structure of points and lines in two views received much attention
in the eighties and early nineties [38], [39] and [40]. Studies on the constraints existent in
three and more views have followed since then [41], [42], [43] and [44]. These multiview
studies have concentrated on how geometric primitives like points, lines and planes are
related across views. Specifically, the algebraic constraints satisfied by the projections of
such primitives in different views have been a focus of intense studies.

Polygonal approximation is illustrated in Fig. 2.1

YOOO -

Fig. 2.1 Polygonal approximation.

Some practical methods for contour approximation are analyzed below.

2.2 Ramer Method
The algorithm is based on the maximum distance of the curve from the approximating
polygon, and this distance is used as the fit criterion. The algorithm produces a polygon
with a small number of edges for arbitrary two-dimensional digitized curves. The segment
of the curve is approximated by a straight-line segment connecting its initial and terminus.
If the fit is not fulfilling, the curve segment is terminated into two segments at the curve
point most distant from the straight-line segment. This loop is repeated until each curve
segment can be approximated by a straight-line segment through its endpoints. The termini
of all these curve segments then are the vertices of a polygon that satisfies the given
maximum-distance approximation criterion.

This type of polygonal curve representation exhibits two important disadvantages. First
the polygons contain a very large number of edges and, therefore, are not in as compact a
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form as possible. Second, the length of the edges is comparable in size to the noise
introduced by quantization.

The idea is illustrated in the following Figures (see Fig. 2.2 to Fig. 2.11).
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Fig. 2.2 The original contour.
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Fig. 2.3 The curve segment of straight line 7.
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Fig. 2.4 Computation of the perpendicular distance between points in the curve segment
and a line segment .
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Fig. 2.8 Computation of the perpendicular distance between points in the curve segment
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Fig. 2.11 The Original and approximated contours.

2.3 Triangle Methods of Contour Compression

The proposed algorithms belong to a family of polygonal methods of approximation. An
input contour for the algorithms is extracted from 256 x 256 grey-scale images using Single
Step Parallel Contour Extraction (SSPCE) method [34].

The approximation procedure starts at the time, when the first and last points of a segment
are determined. The proposed criterion can be modified depending on contour
representation methods. The most popular contour description methods are Freeman's
chain coding, polar and Cartesian descriptions. Freeman chain coding can be used to
distinguish all possible connections for both 8-connectivity and 4-connectivity schemes. A
commonly used chain coding representation is the 8-Directional chain coding which uses
eight possible directions to present all possible line segments connecting the nearest
neighbors according to the 8-connectivity scheme. The contour extraction by these
algorithms is based on (3 x 3) pixels window.

The Triangle family contains four methods of contour compression which are very similar
to each other and the first method will be described in details in the following section.

A) Height Over Length Triangle Ratio Method

The algorithm refers to a quite new polygonal approximating method called the height over
length ratio triangle method [46] and [47].

The idea of this method consists in segmentation of the contour points to get a triangle
shape. The ratio of the height of the triangle (/1) and the length of the base of the triangle (b)
is then compared with the given threshold value as follows:

(hIb)<th 41)

Where:

th - given threshold value.

The first point of each segment is called the starting point (SP) and the last one is called the
ending point (EP). To calculate these values a simple trigonometric formula is used.

If the ratio value is smaller than the threshold according to Eqgs. (4.1) the EP of the triangle is
stored and SP is shifted to the EP, then a new segment is drawn. Otherwise the second point
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(B) is stored and the SP is shifted to the B point of the triangle. Then a new segment is
drawn. The stored points determine the vertices of an edge of the approximating polygon.
The algorithm scans contour points only once i.e. it does not require the storage of the
analysed contour points. The original points of the contour are discarded as soon as they are
processed. Only the co-ordinates of the starting point of the contour segment, and the last
processed point are stored. The idea of the proposed algorithm is illustrated in Fig. 2.12. A
flowchart of the proposed algorithm is depicted in Fig. 2.13.

EP
Fig. 2.12 Illustration of the basic triangle for the proposed algorithm where / and b are
height and length of the triangle respectively.
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Fig. 2.13 Flowchart of the proposed algorithm.

where:
VA - sequence of indices of the final vertices;
CC - sequence of the input for the contour;
SP - starting point;
EP - ending point;
h,b and th - as mentioned before (see Fig.4.13 and Eqs.4.1);
f - length between each two points of the triangle.

B) Height Triangle Method
The second algorithm refers to a recent polygonal approximating method called the height
triangle method. The idea of this method is very similar to the previous algorithm. The only
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difference is that the threshold is compared with the height of the triangle (shadow region
in Fig. 2.13).

The third algorithm refers to a polygonal approximating method called the height square
triangle method. The idea of this method is very similar to the previous algorithm. The
difference is that the threshold is compared with the square height of the triangle (shadow
region in Fig. 2.13).

The fourth algorithm refers to a recent polygonal approximating method called the triangle
area method. In this case the threshold is compared with the area of the triangle (shadow
region in Fig. 2.13).

2.4 Comparison Between the Triangle Family and Ramer Algorithms
The computational complexity is one of the most important factors in evaluating a given
method of approximation. High computational complexity leads to high implementation
cost. The MSE (Mean Square Error) and SNR (Signal to Noise Ratio) criterions versus
compression ratio are also used to evaluate the distortion.
The comparison is done for some test contours (Italy & Rose) which was extracted by using
the “SSPCE” (Single Step Parallel Contour Extraction). The comparison is made between the
following five algorithms:

e Height over length triangle (hb) method; it will be referred to as the first algorithm.

e Height triangle (h) method; it will be referred as the second algorithm.

o Height square triangle (hs) method; it will be referred as the third algorithm.

e Area triangle (area) method; it will be referred as the fourth algorithm.

e Ramer method; it will be referred as the fifth algorithm.
To visualise the experimental results a set of two test contours was selected. Selected
contours are shown in Fig. 2.14.

a) . b)

Fig. 2.14 Test contours: a) Italy b) Rose.

The comparison of the compression abilities versus the MSE & SNR are shown in the Fig.
2.15 & Fig. 2.16 respectively.



Contour Extraction and Compression-Selected Topics

211

Ttaly

MSE

CR [%]
(@) (b)
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Fig. 2.16 SNR versus compression ratio for (a) Italy contour (b) Rose contour.

Comparison of the compression abilities versus the number of operations is presented in

Fig. 2.17.
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Fig. 2.17 NO versus compression ratio for (a) Italy contour (b) Rose contour.

The plots show that SNR using the Ramer algorithm is close to the triangle family methods
for the rose contour; the reconstruction quality by the triangle family algorithms are very
similar but the (hs) method is much better for complicated contour as in Rose contour. The
number of operations is very similar between the triangle family algorithms at high
compression. The triangle family algorithms are many times faster than that of Ramer
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method. The compression ratio using triangle family methods can be even greater than 97%
without significant lose of quality of compressed contour, but the complexity is much less
than that of the Ramer algorithm.
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1. Introduction

Two different approaches to the mobile robot localization problem exist: relative and
absolute. The first one is based on the data provided by sensors measuring the dynamics of
variables internal to the vehicle; absolute localization requires sensors measuring some
parameters of the environment in which the robot is operating. If the environment is only
partially known, the construction of appropriate ambient maps is also required. The actual
trend is to exploit the complementary nature of these two kinds of sensorial information to
improve the precision of the localization procedure (see e.g. (Bemporad et al., 2000; Bonci et
al., 2004; Borenstein et al., 1997; Durrant-Whyte, 1988; Gu et al., 2002; Ippoliti et al., 2004)) at
expense of an increased cost and computational complexity. The aim is to improve the
mobile robot autonomy by enhancing its capability of localization with respect to the
surrounding environment.

In this framework the research interests have been focused on multi-sensor systems because
of the limitations inherent any single sensory device that can only supply partial
information on the environment, thus limiting the ability of the robot to localize itself. The
methods and algorithms proposed in the literature for an efficient integration of multiple-
sensor information differ according to the a priori information on the environment, which
may be almost known and static, or almost unknown and dynamic.

In this chapter both relative and absolute approaches of mobile robot localization are
investigated and compared. With reference to relative localization, the purpose of this
chapter is to propose and to compare three different algorithms for the mobile robot
localization only using internal sensors like odometers and gyroscopes. The measurement
systems for mobile robot localization only based on relative or dead-reckoning methods,
such as encoders and gyroscopes, have the considerable advantage of being totally self-
contained inside the robot, relatively simple to use and able to guarantee a high data rate. A
drawback of these systems is that they integrate the relative increments and the localization
errors may considerably grow over time if appropriate sensor-fusion algorithms are not
used (De Cecco, 2003). Here, different methods are analysed and tested. The best
performance has been obtained in the stochastic framework where the localization problem
has been formulated as a state estimation problem and the Extended Kalman Filtering (EKF)
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is used. The EKF fuses together odometric and gyroscopic data. A difference with respect to
other EKF based techniques is that the approach followed here derives the dynamical
equation of the state-space form from the kinematic model of the robot, while the measure
equation is derived from the numerical integration equations of the encoder increments.
This allows to fuse together all the available informative content which is carried both by the
robot dynamics and by the acquired measures.
As previously mentioned, any relative localization algorithm is affected by a continuous
growth in the integrated measurement error. This inconvenience can be reduced by
periodically correcting the internal measures with the data provided by absolute sensors
like sonar, laser, GPS, vision systems (Jarvis, 1992; Talluri & Aggarwal, 1992, Zhuang &
Tranquilla, 1995; Mar & Leu, 1996; Arras et al., 2000; Yi et al., 2000; Panzieri et al., 2002). To
this purpose, a localization algorithm based on a measure apparatus composed of a set of
proprioceptive and exteroceptive sensors, is here proposed and evaluated. The fusion of
internal and external sensor data is again realized through a suitably defined EKF driven by
encoder, gyroscope and laser measures.
The developed algorithms provide efficient solutions to the localization problem, where
their appealing features are:

e The possibility of collecting all the available information and uncertainties of a

different kind into a meaningful state-space representation,

e The recursive structure of the solution,

e  The modest computational effort.
Significant experimental results of all proposed algorithms are presented here, and their
comparison concludes this chapter.

2. The sensors equipment

In this section the considered sensor devices are introduced and characterized.

2.1 Odometric measures
Consider a unicycle-like mobile robot with two driving wheels, mounted on the left and right
sides of the robot, with their common axis passing through the center of the robot (see Fig. 1).

¥ A

@] X

Fig. 1. The scheme of the unicycle robot.
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Localization of this mobile robot in a two-dimensional space requires the knowledge of
coordinates x and j of the midpoint between the two driving wheels and of the angle
between the main axis of the robot and the X -direction. The kinematic model of the
unicycle robot is described by the following equations:

x(1)=v(r)cos6(r) ]
y(t)=v(t)sin6(r) )
8(1)= (1) ©)

where y(¢) and (/) are, respectively, the displacement velocity and the angular velocity

of the robot and are expressed by:

V(t)zw,(t);rw,(t)r @)
w(,)zwr )

where ¢ (7) and () are the angular velocities of the right and left wheels, respectively,

7 is the wheel radius and d s the distance between the wheels.

Assuming constant @, (1) and @ (r) overa sufficiently small sampling period Az =1, —¢,,

the position and orientation of the robot at time instant #,; can be expressed as:

sin 20c) 84 _
*(t) :x(tk)+v(zk)Atchos[e(zk)+%] ©)
y(tM)=y(tk)+V(tk)AtkWsin(9(tk)+%] )
() =0(t, )2+ o(t,)Ar, ®)
where (5, ) Ar, and @(1,) Ay, are:
(), = 200 2 h), )
a(1,) A, =M,_ (10)

The terms Ag,(2) and Ag (1) are the incremental distances covered on the interval Az, by
the right and left wheels of the robot respectively. Denote by y (1) and y, (z,) the measures
of Aq, (,k) and Ag, ( tk) respectively, provided by the encoders attached to wheels, one has

v, (6)=24q, (1) +s,(1) (11)
yi(t)=Aq, () +s,(1,) (12)

where 5, (") and g, () are the measurement errors, which are modelled as independent,
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. . [ 00— N{oel). o) - w{oel )
zero mean, gaussian white sequences (Wang, 1988). It

follows that the really available values »,(8) and v, (1) of 7 (1), and a(t,) A,

respectively are given by:

(1) = 220 s 1) 1)
ra0) =22 ) 9

where 5 () and p () are independent, zero mean, gaussian white sequences

()~ Foatln(h-Nlod)) o by (9 and (10), o,=(0}+07) /4 and

o,=(0; +07) /d2

2.2 The Fiber optic gyroscope measures

The operative principle of a Fiber Optic Gyroscope (FOG) is based on the Sagnac effect. The
FOG is made of a fiber optic loop, fiber optic components, a photo-detector and a
semiconductor laser. The phase difference of the two light beams traveling in opposite
directions around the fiber optic loop is proportional to the rate of rotation of the fiber optic
loop. The rate information is internally integrated to provide the absolute measurements of
orientation. A FOG does not require frequent maintenance and have a longer lifetime of the
conventional mechanical gyroscopes. In a FOG the drift is also low. A complete analysis of
the accuracy and performances of this internal sensor has been developed in (Killian, 1994;
Borenstein & Feng, 1996; Zhu et al., 2000; Chung et al., 2001). This internal sensor represents
a simple low cost solution for producing accurate pose estimation of a mobile robot. The
FOG readings are denoted by v, ()= 6, ()+m,() where 0, () is the true value and () is

. . . [me01 - w{oed) )
an independent, zero mean, gaussian white sequence .

2.3 Laser scanner measures

The distance readings by the Laser Measurement System (LMS) are related to the in-door
environment model and to the configuration of the mobile robot.

Denote with / the distance between the center of the laser scanner and the origin O’ of the
coordinate system (¢, x’,y”) fixed to the mobile robot, as reported in Fig. 2.

Laser henm

¥’

Fig. 2. Laser scanner displacement.
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At the sampling time ¢ , the position x , y and orientation g of the center of the laser

scanner, referred to the inertial coordinate system (0, X, Y) , have the following form:

x, (1) =x(t,)+1cosO(z,) (15)
yo(t)=y(4) +1sin0(1,) (16)
17)

6,(4,)=06(1)
The walls and the obstacles in an in-door environment are represented by a proper set of

planes orthogonal to the plane XY of the inertial coordinate system. Each plane P/,
je {1,2,“.” } (where n, is the number of planes which describe the indoor environment),

is represented by the triplet p/, p/ and p/, where p/ is the normal distance of the plane
from the origin O, p/ is the angle between the normal line to the plane and the X -direction
and P/ isa binary variable, P/e{-11}, which defines the face of the plane reflecting the

laser beam. In such a notation, the expectation of the 7-th (i=12,...,n,) laser reading

d/ (1) relative to the present distance of the center of the laser scanner from the plane P/,

has the following expression (see Fig. 3):

()= P/ (P -x, ()eos ) -y, 1, sin /) 1s)
cos 6/
where
o =F-0 09)
with 9”e[4,,6,] given by (see Fig. 4):
0,*:95+67,—§4 (20

s ,.A.,np},is denoted by IT.

The vector composed of geometric parameters P/, p/ and P/ je {1 2
3 Lazer heam Plane PI

1

1

1 Laser
]

1
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Fig. 3. Laser scanner measure.
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Fig. 4. Laser scanner field of view for plane P’.
The laser readings by (,) are denoted by v, ()=d/()+n,() where g/ () is the true value
expressed by (18) and 7 () is an independent, zero mean, gaussian white sequence

| i)~ A7)

3. Relative approaches for mobile robot localization

The purpose of this section is to propose and to compare three different algorithms for the mobile
robot localization only using internal sensors like odometers and gyroscopes. The first method
(Algorithm 1) is the simplest one and is merely based on a numerical integration of the raw
encoder data; the second method (Algorithm 2) replaces the gyroscopic data into the equations
providing the numerical integration of the increments provided by the encoders. The third
method (Algorithm 3) operates in a stochastic framework where the uncertainty originates by the
measurement noise and by the robot model inaccuracies. In this context the right approach is to
formulate the localization problem as a state estimation problem and the appropriate tool is the
EKF (see e.g. (Barshan & Durrant-Whyte, 1995; Garcia et al., 1995; Kobayashi et al., 1995; Jetto et al.,
1999; Sukkarieh et al., 1999; Roumeliotis & Bekey, 2000; Antoniali & Oriolo, 2001; Dissanayake et
al., 2001)). Hence, Algorithm 3 is a suitably defined EKF fusing together odometric and gyroscopic
data. In the developed solution, the dynamical equation of the state-space form of the robot
kinematic model, has been considered. The numerical integration equations of the encoder
increments have been considered for deriving the measure equation. This allows to fuse together
all the available informative content which is carried both by the robot dynamics and by the
acquired measures.

3.1 Algorithm 1
Equations (6)-(8) have been used to estimate the position and orientation of the mobile robot
at time ¢ replacing the true values of V(1) A, and a(t,)At, with their measures » (%)

and y (7)) respectively, provided by the encoders. An analysis of the accuracy of this
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estimation procedure has been developed in (Wang, 1988; Martinelli, 2002), where it is
shown that the incremental errors on the encoder readings especially affect the estimate of
the orientation ¢z, ) and reduce its applicability to short trajectories.

3.2 Algorithm 2
This algorithm is based on the ascertainment that the angular measure ), (7 ) provided by

the FOG is much more reliable than the orientation estimate obtainable with Algorithm 1.
Hence, at each time instant, Algorithm 2 provides an estimate of the robot position and
orientation ‘:X(lkﬂ)’y(tkﬂ)’ye (tk+l):| / where Yo (tk+l) is the FOG reading, x(t’(+1) and y(tkﬂ)

are computed through equations (6), (7), replacing v (1) A, with its measure »,(t) 6(z)
with vo (%) and E)(tk)Atk with Vot ) —Ye (tk) :

3.3 Algorithm 3

This algorithm operates in a stochastic framework exploiting the same measures of
Algorithm 2. A state-space approach is adopted with the purpose of defining a more
general method merging the information carried by the kinematic model with that
provided by the sensor equipment. The estimation algorithm is an EKF defined on the
basis of a state equation derived from (1)-(3) and of a measure equation inglobing the
incremental measures of the encoders y (7)) and the angular measure of the gyroscope

y,(z,)- This is a difference with respect to other existing EKF based approaches,

(Barshan & Durrant-Whyte, 1995; Kobayashi et al., 1995; Sukkarieh et al., 1999;
Roumeliotis & Bekey, 2000; Antoniali & Oriolo, 2001; Dissanayake et al., 2001b), where
equations (1)-(3) are not exploited and the dynamical equation of the state-space model
is derived from the numerical integration of the encoder measures.

Denote with x (7):= [x(,)7y(,),g(t)]r the true robot state and with ¢/ (¢):= [V(,)’w(,)]r the

robot control input. For future manipulations it is convenient to partition x(;) as
X(r)=[X, (,)’g(,)]f, with x, (1):= [x(t),y(t)]r‘ The kinematic model of the robot can be
written in the compact form of the following stochastic differential equation

dx ()=F(X(1),U(t))dr+dn(t) (21)
where F( X(t),U(t)) represents the set of equations (1)-(3) and n(1) is a Wiener process

such that E(d?]( 1)dn( ,)T) =Q - Its weak mean square derivative dn(t)/de is a white noise

~N10.2) : . . oL .
process = ! representing the model inaccuracies (parameter uncertainties, slippage,

dragging). It is assumed that Q=01 where | denote the nxn identity matrix. The

diagonal form of @ understands the hypothesis that model (21) describes the true dynamics

of the three state variables with nearly the same degree of approximation and with
independent errors.
Let At =T be the constant sampling period and denote t, by kT, assume



222 Mobile Robots, Perception & Navigation

U(1)=U(kT)=U(k) for ;e [kT (k+1) T] and denote by X (k) and by )Q(k k) the
current state and its filtered estimate respectively at time instant t, = kT - Linearization
of (15) about U(k-1) and X(k,k) and subsequent discretization w1th period T results
in the following equation

X (k+1)= 4, (k) X (k)+L(k)U (k) +D (k) +W (k) 22

Partitioning vectors and matrices on the right hand side of equation (22) according to the
partition of the state vector one has

Ad(k):eXP(A(k)T)=l:jin Elli; j1<2,((z)):l’L(k)=|:Ll(k):|, D(k)=|:§l(k)):| (23)

2.1

0 0 —v(k—1)sind(k,k)

_|9F (X (1).U(r)) - . (24)
A(k)._|:a/\/(t):|X(1))?(k,A)_g 8 V(k—l)c(;)s@(k,k)
U)=u(k)
[roo] _ —v(k=1)sin(k,k)T (25)
A (k){O 1]_12’ Ao (k)_{v(k—l)cosé(k,k)T}
A21,(k)=[0 0]= Az.z,(k)zl (26)
LK) Tcosf(k,k) —0.5v(k—1)Tsind(k,k) #)=[0 7] @7)
l T'siné ( X OSV(k—l)Tzcosé(k,k) ’
Tv (k=1)6(k,k)sin@(k,k) D, (k) =0 (28)
~Tv (k=1)8(k.k)cosO(k.k)|
W (k)= exp( (K)[(k+1)zT-7]) T:{Wiiiﬂ (29)

with w7 (k)e R, W, (k)e R', £=0,1,2,..
The integral term J (k) given (29) has to be intended as a stochastic Wiener integral, its

covariance matrix is E[W(k) W(k)T} =0, (k) =07 (k)0 (k) where

= _ Ql,l (k) Ql,z (k) (30)
ew {Qz,l(k) Qz_z(k)}
T+V2(k71)§sinzé(k,k) —VZ(k—l)?cosé(k,k)siné(k,k) (31)

0, (k) = 73 R . 7 A
- (k- 1)?cosa(k,k)sin 0(k,k) T+v (k- 1)?0032 0(k,k)
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7% .~
—V(k—l)7sin9(k,k) (32)
.
0, (k): 2 > QZ.I(k):Ql.z(k) s O, (k):T~

—V(k—l)%cosé(k,k)

Denote by 7 (k)= ‘: 2, (k)2 ( k):IT the measurement vector at time instant k7, the elements of
Z(k) are: z(k)=y,(t) z(k)=y,(t) where »,(4) is the measure related to the
increments provided by the encoders through equations (9) and (13), y,(z,) is the angular
measure provided by the FOG. The observation noise V(k)=[77,,(k),779(k)]r is a white
sequence ~VILEL where p= diag[of,,oj} The diagonal form of R follows by the
independence of the encoder and FOG measures. As previously mentioned, the measure
z, (k) provided by the FOG is much more reliable than z,(k), s0 that “r 5':. This gives

rise to a nearly singular filtering problem, where singularity of R arises due to the very
high accuracy of a measure. In this case a lower order non singular EKF can be derived

assuming that the original R is actually singular (Anderson & Moore, 1979). In the present
problem, assuming ¢ =0, the nullity of R is m=1 and the original singular EKF of order

n=3 can be reduced to a non singular problem of order n—m=2, considering the third
component (k) of the state vector y (k) coinciding with the known deterministic signal

z, (k)= 6, (k)- Under this assumption, only X, (k) needs be estimated as a function of 7 ()-
As the measures 7 (.) provided by the encoders are in terms of increments, it is convenient to
define the following extended state ¥ (k)= [ X, (k) x, (k- 1),}7 in order to define a measure
equation where the additive gaussian noise is white. The dynamic state-space equation for ¥ (k)
is directly derived from (22), taking into account that, by the assumption on ;, (.), in all vectors
and matrices defined in (25)-(32), the term § (k,k) must be replaced by 6, (k)-

The following equation is obtained

X (k+1)=A4(k) X (k)+L(k)U(k)+B(k)8,(k)+D(k)+W (k) (33)

where
aw-[y o] reo= 50 s ) o
D(k){’)(')(kq, W(k){W(l)(")} (35)

0, being the (%)) null matrix.
Equations (6), (7) and (13) and the way the state vector X (k) is defined imply that the
z,(k)=y,(z,) can be indifferently expressed as
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2 (k) =[@(k) " 0.~a (k)™ 0] X (k) +7, (k) (36)
2 (k) =[0.8k)",0.8(k)" | X (k)+, (k) (37
where
sin 2L a(1,)Ar (38)
a(kT):= (tk)itk cos[e(tk)+#j
2
sin ol )& a(t,)Ar (39)
B(KT) ‘:T)zmksin{ﬁ(tk)+#J
2

with a(t)r, =6 ( 1) —6,(1) and o(t,)= 6, (%) The measure equations (36) and (37) can

g
be combined to obtain a unique equation where 7 (k) is expressed as a function both of

x(k+1)—x(k) and of y(k+1)-y(k)- As the amount of observation noise is the same,

equations (36) and (37) are averaged, obtaining
7 (k)= C, (k) X (k) +v, (k) (40)

where ¢ (i) [ /2 Bk /2’ —a(k /2 ~B(k /2} and v, (k):=7, (k)- Equations (33)

and (40) represent the hnearlzed, discretized state-space form to which the classical EKF
algorithm has been applied.

3.4 Experimental results

The experimental tests have been performed on the TGR Explorer powered wheelchair
(TGR Bologna, 2000) in an indoor environment. This mobile base has two driving wheels
and a steering wheel. The odometric system is composed by two optical encoders connected
to independent passive wheels aligned with the axes of the driving wheels, as shown in Fig.
5. A sampling time of (.45 has been used.

Fig. 5. TGR Explorer with \ data acqulsltlon system for FOG sensor and incremental encoders.
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The odometric data are the incremental measures that at each sampling interval are
provided by the encoders attached to the right and left passive wheels. The incremental
optical encoders SICOD mod. F3-1200-824-BZ-K-CV-01 have been used to collect the
odometric data. Each encoder has 1200 pulses/rev. and a resolution of 0.0013 rad. These
measures are directly acquired by the low level controller of the mobile base. The gyroscopic
measures on the absolute orientation have been acquired in a digital form by a serial port on
the on-board computer. The fiber optic gyroscope HITACHI mod. HOFG-1 was used for
measuring the angle & of the mobile robot. The main characteristics of this FOG are
reported in the Table 1. While the used FOG measures the rotational rates with a very high
accuracy, the internal integration of angular rates to derive the heading angle can suffer
from drift (Barshan & Durrant-Whyte, 1995; Komoriya & Oyama, 1994). Because of the low
rate integration drift of the used FOG (see Table 1), the drift is not accounted for in the
proposed experiments where the robot task duration is on the order of several minutes. For
longer task duration the rate integration drift can be compensated as proposed in (Ojeda et
al., 2000) or can be periodically reset by a proper docking system or an absolute sensing
mechanism (Barshan & Durrant-Whyte, 1995).

Rotation Rate -1.0472 to +1.0472 rad/s
Angle Measurement Range -6.2832 to +6.2832 rad
Random Walk <0.0018rad/\h

Zero Drift (Rate Integration) <0.00175rad / h
Non-linearity of Scale Factor within +1.0%

Time Constant Typ. 20 ms

Response Time Typ. 20 ms

Data Output Interval Min. 10 ms

Warm-up Time Typ.6.0s

Table 1. Characteristics of the HITACHI gyroscope mod. HFOG - 1.

The navigation module developed for the considered mobile base interacts with the user in
order to involve her/him in the guidance of the vehicle without limiting the functionality
and the security of the system. The user sends commands to the navigation module through
the user interface and the module translates the user commands in the low level command
for the driving wheels. Two autonomy levels are developed to perform a simple filtering or
to introduce some local corrections of the user commands on the basis of the environment
information acquired by a set of sonar sensors (for more details see (Fioretti et al., 2000)).
The navigation system is connected directly with the low level controller and with the Fiber
Optic Gyroscope by analog and digital converters and serial port RS232, respectively.

All the experiments have been performed making the mobile base track relatively long trajectories.
In the indoor environment of our Department a closed trajectory of 108 m length, characterized by
a lot of orientation changes has been considered. The trajectory has been imposed by the user
interface with the end configuration coincident with the start configuration. In order to quantify
the accuracy of the proposed localization algorithms, six markers have been introduced along the
trajectory. The covariance matrix R of the observation noise y(.) has been determined by an
analysis of the sensor characteristics. The detected estimate errors in correspondence of the marker



226 Mobile Robots, Perception & Navigation

configurations (the distance between the marker and the corresponding estimated configuration)
of the mobile base with Algorithm 1 have been reported in the first row of Table 2. This algorithm
fails to successfully localize the robot, because as it was predictable, the results exhibit a very large
drift and the estimated trajectory is totally wrong after few meters of travel.

With reference to the same experimental path, the trajectory estimated by Algorithm 2 is
more accurate with respect to that estimated by Algorithm 1. Algorithm 2 successfully
removes the integration error present in the odometry. The goodness of the estimated
trajectory is quantified by the numerical values of the estimation errors in correspondence of
the markers. These values are reported in the second row of Table 2.

The experimental results obtained by Algorithm 3 are relatively close to those of Algorithm
2. The improvement introduced by Algorithm 3 can be evaluated looking at the numerical
values reported in the third row of Table 2.

Markers
Mk1 Mk2 Mk3 Mk4 MKk5 Mké6 stop
Algorithm 1 0.014 0.143 0.690 4.760 1.868 3.770 6.572
Algorithm 2 0.012 0.041 0.042 0.164 0.142 0.049 0.187
Algorithm 3 0.012 0.037 0.035 0.150 0.106 0.030 0.161

Table 2. Estimation errors (in meters) in correspondence of the marker configurations
(distance between the marker and the corresponding estimated configuration).

3.5 Comments

The performed experimental tests show that the simple odometric localization is not
satisfactory, making it necessary the introduction of another internal sensor. A fiber optic
gyroscope showed to be a key tool for obtaining a significant improvement in the accuracy
of the estimated trajectory. Algorithm 2 is very similar to Algorithm 1, the only difference is
that Algorithm 2 exploits the gyroscopic measures. This is enough to produce a huge
improvement of the estimated trajectory, thus confirming the validity of Equations (6), (7)
provided that an accurate estimate of the robot orientation is available.

Algorithm 3 uses the same measures of Algorithm 2 but operates in the stochastic framework of
the Kalman filtering theory. The novelty of the proposed EKF is that its formulation explicitly
includes both the information carried by the model of the robot and the information carried by
the observations. This introduces a further improvement with respect to Algorithm 2 and a very
high degree of accuracy in the estimated trajectory is achieved. The main merit of Algorithm 3 is
that it operates in a state-space form where sensor and model uncertainties are intrinsically taken
into account. This makes the estimator more robust with respect to possible uncertain physical
parameters and/or not exactly known initial conditions. Taking also into account its modest
computational burden, Algorithm 3 appears to be the most appealing among the three
localization procedures here proposed.

4. Absolute approaches for mobile robot localization

The purpose of this section is to propose and to experimentally evaluate a localization algorithm
based on a measure apparatus composed of a set of internal and external sensors of a different
nature and characterized by a highly different degree of accuracy. The sensor equipment
includes odometric, gyroscopic and laser measures.

The main technical novelty of this section is the integration in a stochastic framework of
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the new set of measures. Both the information carried by the kinematic model of the
robot and that carried by the dynamic equations of the odometry are exploited. The
nearly singular filtering problem arising from the very high accuracy of angular
measure has been explicitly taken into account. An exteroceptive laser sensor is
integrated for reducing the continuous growth in the integrated error affecting any
relative localization algorithm, such as the Algorithm 3.

4.1 Algorithm 4
The algorithm operates in a stochastic framework as Algorithm 3, and is based on the
ascertainment that the angular measure ), (7 ) provided by the FOG is much accurate than

the other measures. This gives rise to a nearly singular filtering problem which can be
solved by a lower order non singular Extended Kalman Filter, as described in subsection 3.3.
The EKEF is defined on the basis of a state equation derived from (1)-(3) and of a measure
equation containing the incremental measures of the encoders y (1) and the distance

measures v, () i=12...n, provided by the laser scanner from the P’/ plane,
je {1’2’“.’,,’)}. The angular measure of the gyroscope ) (y,) is assumed coincident to the
third component o(k) of the state vector X (k)-

Let Z(k) be the measurement vector at time instant k7. Its dimension is not constant,

depending on the number of sensory measures that are actually used at each time instant.
The measure vector Z (k) is composed by two subvectors Z, (k)= [ 2, (k)2 ( k):'r and

2,(0)=[21 (k). (K), 2, (k)] where the elements of - 7,(k) are: ()=, (k)
z, (k)s Vo (k)/ where yv(k) is the measure related to the increments provided by the
encoders through equations (9) and (13), y, (k) is the angular measure provided by the
FOG. The elements of Z,(k) are: z, (k)=d/ (k)+n, (k) i=12,....,n,, je {1’2’“"%}, with
d’ (k) givenby (18) and " 1= 21971 The environment map provides the information needed

to detect which is the plane P/ in front of the laser.
The observation noise V(k)=[ﬂv (k),m, (k),m, (k)’_“,,]n\ (k)]r, is a white sequence

- N[®R) . .
| "where R .= b]ockd]ag[RI,Rz] , with R = diaglio-f,o';:' and R2 = diag[o‘f,o‘f,---,o‘i :I

The diagonal form of R follows by the independence of the encoder, FOG and laser
scanner measures.

The components of the extended state vector ¥ (k) and the last 7 components of vector
Z (k) are related by a non linear measure equation which depends on the environment
geometric parameter vector []. The dimension n (k) is not constant, depending on the

number of laser scanner measures that are actually used at each time, this number depends
on enviroment and robot configuration.
Linearization of the measure equation relating Z, (k) and X’(k) about the current estimate
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of ¥ (k) results in:

Z, (k) =C, (k) X (k) +7, (k) (41)
where y, (k) =[771 (k). (K)o, (k)] is a white noise sequence ~ 1"} and
G (k):: |:cl (k)l ,Cy (k)] ,"',C,,‘(k)(k)l} “2)
with
j
c,(k):ciaj [—cosP/,~sinP/,0,0], i=12,....n, (k), je{l.2...0n,} (43)
and
0/ =P -0,-6+% (44)
P =h 6,70+

Equations (33), (40) and (41) represent the linearized, discretized state-space form to which
the classical EKF algorithm has been applied.

4.2 Laser scanner readings selection

To reduce the probability of an inadequate interpretation of erroneous sensor data, a
method is introduced to deal with the undesired interferences produced by the presence of
unknown obstacles on the environment or by incertitude on the sensor readings. Notice that
for the problem handled here both the above events are equally distributed. A simple and
efficient way to perform this preliminary measure selection is to compare the actual sensor
readings with their expected values. Measures are discharged if the difference exceeds a
time-varying threshold. This is here done in the following way: at each step, for each
measure z,_(k) of the laser scanner, the residual % (k) =z,,,(k)—d/ (k) represents the

difference between the actual sensor measure 2., (k) and its expected value 4/,
i=1,2,...,n,(k), j=12, ity which is computed by (18) on the basis of the current estimate

FAE) - (05 [k])

of the vector state X (k)- As , the current value 2., (k) is accepted if

‘7/‘_ ( k)‘ <2/ s, (k) (Jetto et al., 1999). Namely, the variable threshold is chosen as two times the

standard deviation of the innovation process.

4.3 Experimental results

The experimental tests have been performed in an indoor environment using the same TGR
Explorer powered wheelchair (TGR Bologna, 2000), described in Section 3.4.

The laser scanner measures have been acquired by the SICK LMS mod. 200 installed on the
vehicle. The main characteristics of the LMS are reported in Table 3.

Aperture Angle 3.14 rad

Angular Resolution 0.0175/ 0.0088/ 0.0044 rad
Response Time 0.013/ 0.026/ 0.053 s
Resolution 0.010 m
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Systematic Error + 0.015m
Statistic Error (1 Sigma) 0.005 m
Laser Class 1
Max. Distance 80 m
Transfer Rate 9.6/ 19.2/ 38.4/ 500 kBaud

Table 3. Laser.

A characterization study of the Sick LMS 200 laser scanner has been performed as proposed
in (Ye & Borenstein, 2002). Different experiments have been carried out to analyze the effects
of data transfer rate, drift, optical properties of the target surfaces and incidence angle of the
laser beam. Based on empirical data a mathematical model of the scanner errors has been
obtained. This model has been used as a calibration function to reduce measurement errors.
The TGR Explorer powered wheelchair with data acquisition system for FOG sensor,
incremental encoders, sonar sensors and laser scanner is shown in Fig. 5.

Fig. 6. Sample of the estimated trajectory. The dots are the actually used laser scanner measures.
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A significative reduction of the wrong readings produced by the presence of unknown
obstacles has been realized by the selection of the laser scanner measures using the
procedure described in the previous subsection .

Different experiments have been performed making the mobile base track short and
relatively long and closed trajectories. Fig. 6 illustrates a sample of the obtained results; the
dots in the figure, are the actually used laser scanner measures. In the indoor environment
of our Department, represented by a suitable set of planes orthogonal to the plane XY of
the inertial system, a trajectory of 118 m length, characterized by orientation changes, has
been imposed by the user interface. The starting and final positions have been measured,
while six markers specify different middle positions; this permits to compute the distance
and angle errors between the marker and the corresponding estimated configuration.

In these tests, the performances of Algorithm 4 have been compared with those ones of the
Algorithm 3, which is the most appealing among the three relative procedures here
analyzed. Table 4 summarizes the distance and angle errors between the marker and the
corresponding configurations estimated by the two algorithms.

Markers
Mk1 Mk2 Mk3 Mk4 MKk5 Mké stop
P Error 0.1392 0.095 0.2553 | 0.1226 0.2004 0.0301 | 0.3595
% A6 0.49 0.11 0.85 0.58 1.39 0.84 2.66
- Error 0.0156 0.0899 | 0.0659 | 0.1788 0.0261 0.0601 | 0.0951
Yy
b A6 0.59 0.05 0.45 0.07 0.72 0.12 1.55

Table 4. Estimation errors (in meters) in correspondence of the marker configurations
(distance between the marker and the corresponding estimated configuration) and
corresponding angular errors (in degrees).

Other significant sets of experiments have been performed inside a room, considering a
short trajectory of 20 m characterized by different orientation changes (see Fig. 7).

Fig. 7. Sample of the estimated trajectory inside the room, where dots indicate the laser measures.
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The room has been modelled very carefully, permitting a precise evaluation of the distance
and angle errors between the final position and the corresponding configuration estimated
by the Algorithm 4; Table 5 resumes these results.

final position
error 0.0061
AG 0.27

Alg 4

Table 5. Estimation distance errors (in meters) and corresponding angular errors (in degrees).

In order to investigate further the efficiency of the developed Algorithm 4 and to evaluate its
correction performances, it has been imposed a wrong initial position (see Table 6 and Fig. 8).

error of initial position | error of final position

error 0.2236 0.0152
A6 15 0.73

Table 6. Distance (in meters) and angle (in degrees) errors introduced on the initial position
and corresponding errors on the final position.
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Fig. 8. Estimated trajectory with a wrong initial positioning.

As a result, it has been seen that the Algorithm 4 is able to correct possible errors on the
initial positioning, as confirmed by the results reported in Table 6.

4.4 Comments

As shown by the developed experimental tests (see Table 4), Algorithm 4 permits to obtain a
much more reliable and accurate positioning than that one obtained by Algorithm 3. Note
that estimation errors on the final position of the Algorithm 3 are due to the angle drift
introduced by the gyroscope.

Additionally, Algorithm 4 improves the positioning accuracy in spite of a wrong initial
positioning. Table 6 shows as the possible errors introduced by a wrong initial pose, have
been efficiently corrected by the Extended Kalman Filter.
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5. Concluding remarks

This chapter has presented a concise look at the problems and methods relative to the
mobile robot localization. Both the relative and absolute approaches have been discussed.
Relative localization has the main advantage of using a sensor equipment which is totally
self-contained in the robot. It is relatively simple to be used and guarantees a high data rate.
The main drawback is that the localization errors may considerably grow over time.
The three corresponding algorithms which have been proposed only use odometric and
gyroscopic measures. The experimental tests relative to Algorithm 1 show that the
incremental errors of the encoder readings heavily affect the orientation estimate, thus
reducing the applicability of the algorithm to short trajectories. A significant improvement is
introduced by Algorithm 2 where the odometric measures are integrated with the angular
measures provided by a gyroscope.
Algorithm 3 uses the same measures of Algorithm 2 but operates in a stochastic framework.
The localization problem is formulated as a state estimation problem and a very accurate
estimate of the robot localization is obtained through a suitably defined EKF. A further
notable improvement is provided by the fusion of the internal measures with absolute laser
measures. This is clearly evidenced by Algorithm 4 where an EKF is again used.
A novelty of the EKF algorithms used here is that the relative state-space forms include all
the available information, namely both the information carried by the vehicle dynamics and
by the sensor readings. The appealing features of this approach are:

e The possibility of collecting all the available information and uncertainties of a

different kind in the compact form of a meaningful state-space representation,

e The recursive structure of the solution,

e The modest computational effort.
Other previous, significant experimental tests have been performed at our Department using
sonar measures instead of laser readings (Bonci et al., 2004; Ippoliti et al., 2004). Table 7 reports a
comparison of the results obtained with Algorithm 3, Algorithm 4, and the algorithm (Algorithm
4(S)) based on an EKF fusing together odometric, gyroscopic and sonar measures. The
comparative evaluation refers to the same relatively long trajectory used for Algorithm 4.

Alg3 Alg4 Alg 4(S)
error 0.8079 0.0971 0.1408
AG 2.4637 0.7449 1.4324

Table 7. Estimation errors (in meters) in correspondence of the final vehicle configuration
(distance between the actual and the corresponding estimated configuration) and
corresponding angular errors (in degrees).

Table 7 evidences that in spite of a higher cost with respect to the sonar system, the
localization procedure based on odometric, inertial and laser measures does really seem to
be an effective tool to deal with the mobile robot localization problem.

A very interesting and still open research field is the Simultaneous Localization and Map
Building (SLAM) problem. It consists in defining a map of the unknown environment and
simultaneously using this map to estimate the absolute location of the vehicle. An efficient
solution of this problem appears to be of a dominant importance because it would definitely
confer autonomy to the vehicle. The SLAM problem has been deeply investigated in
(Leonard et al., 1990; Levitt & Lawton, 1990; Cox, 1991; Barshan & Durrant-Whyte, 1995;
Kobayashi et al., 1995; Thrun et al., 1998; Sukkarieh et al., 1999; Roumeliotis & Bekey, 2000;
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Antoniali & Orialo, 2001; Castellanos et al., 2001; Dissanayake et al., 2001a; Dissanayake et
al., 2001b; Zunino & Christensen, 2001; Guivant et al., 2002; Williams et al., 2002; Zalama et
al., 2002; Rekleitis et al., 2003)). The algorithms described in this chapter, represent a solid
basis of theoretical background and practical experience from which the numerous
questions raised by SLAM problem can be solved, as confirmed by the preliminary results in
(Ippoliti et al., 2004; Ippoliti et al., 2005).
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1. Introduction

As new technological achievements take place in the robotic hardware field, an increased
level of intelligence is required as well. The most fundamental intelligent task for a mobile
robot is the ability to plan a valid path from its initial to terminal configurations while
avoiding all obstacles located on its way.

The robot motion planning problem came into existence in early 70’s and evolved to a vast
and active research discipline as it is today. Numerous solution methods have been
developed for robot motion planning since then, many of them being variations of a few
general approaches: Roadmap, Cell Decomposition, Potential Fields, mathematical
programming, and heuristic methods. Most classes of motion planning problems can be
solved using these approaches, which are broadly surveyed in (Latombe, 1991), (Hwang &
Ahuja, 1992), and (Choset et al., 2005).

This chapter introduces two new offline path planning models which are founded on the
Roadmap and Potential Fields classic motion planning approaches. These approaches have
their unique characteristics and strategies for solving motion planning problems. In fact,
each one has its own advantage that excels others in certain aspects. For instance, the
Visibility Graph yields the shortest path; but its computational time exceeds other methods.
Or, while the Voronoi Diagram plans the safest path and is easy to calculate in 2D, it often
produces overly lengthy paths, and yields poor results in higher space dimensions. On the
other hand, Potential Fields are easy to compute and are suitable for high dimensional
problems, but they suffer from the local minima problem, and the oscillating paths
generated near narrow passages of configuration space reduce their efficiency. A brief
review on these underlying methods is given in this section.

In order to benefit from the strong aspects of these classic path planning methods and
compensate their drawbacks, a policy of combining these basic approaches into single
architectures is adopted. In devising the new planners it is intended to aggregate the
superiorities of these methods and work out efficient and reliable composite algorithms for
robot motion planning.

1.1 Roadmap Methods

The Roadmap approach involves retracting or reducing the robot’s free Configuration space
(Cfee) onto a network of one-dimensional lines (i.e. a graph). Motion planning is then
reduced to a graph-searching problem. At first, two paths are constructed from the start and
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goal positions to the roadmap, one for each. Then a path is planned between these points on
the roadmap. The correctness of the solution strongly depends on the connectivity of the
roadmap representing the entire C-space. If the roadmap does not represent the entire C-
space, a solution path may be missed.

The Visibility Graph is the collection of lines in the free space that connects a feature of an
object to that of another. In its principal form, these features are vertices of polygonal
obstacles, and there are O(n2) edges in the visibility graph, which can be constructed in
O(n?) time and space in 2D, where 7 is the number of features (Hwang & Ahuja, 1992).

The Reduced Generalized Visibility Graph can be constructed in O(n3) time and its search
performed in O(n2) time. The shortest path can be found in O(n2logn) time using the A*
algorithm with the Euclidean distance to the goal as the heuristic function (Latombe, 1991).
Works such as (Oommen et al., 1987) and (Yeung & Bekey, 1987) have employed this
approach for path planning.

The Voronoi Diagram is defined as the set of points that are equidistant from two or more
object features. Let the set of input features be denoted as sy, s, ..., s.. For each feature s;, a
distance function D;(x) = Dist(s;, x) is defined. Then the Voronoi region of s; is the set V; = {x|
Di(x) < Dj(x) V j # i }. The Voronoi diagram partitions the space into such regions. When the
edges of convex obstacles are taken as features and the C-space is in %%, The Voronoi
diagram of the Cp, consists of a finite collection of straight line segments and parabolic
curve segments, referred to as Medial Axis, or more often, Generalized Voronoi Diagram
(GVD).

In an R* space, the k-equidistant face is the set of points equidistant to objects Cy, ..., Cy such
that each point is closer to objects Cy, ..., Ci than any other object. The Generalized Voronoi
Graph (GVG) is the collection of m-equidistant faces (i.e. generalized Voronoi edges) and
m+l-equidistant faces (i.e. generalized Voronoi vertices, or, meet points). The GVD is the
locus of points equidistant to fwo obstacles, whereas the GVG is the locus of points
equidistant to m obstacles. Therefore, in R", the GVD is m-1-dimensional, and the GVG, 1-
dimensional. In planar case, the GVG and GVD coincide (Aurenhammer & Klein, 2000).

The Voronoi diagram is attractive in two respects: there are only O(r) edges in the Voronoi
diagram, and it can be efficiently constructed in Q(nlogn) time, where # is the number of
features. The Voronoi diagram can be searched for the shortest path in O(n2) time by using
the Dijkstra’s method. Another advantage of Voronoi method is the fact that the object’s
initial connectedness is directly transferred to the diagram (Hwang & Ahuja, 1992). In
(Canny, 1985) and (Choset & Burdick, 2000) the Voronoi diagram is used for planning robot
paths.

For higher-dimensional spaces than 2D, both the Visibility graph and the Voronoi diagram
have higher complexities, and it is not obvious what to select for the features. For example,
the Voronoi diagram among polyhedra is a collection of 2D faces, which is not a 1D
roadmap (Agarwal et al., 1998).

The Silhouette method has been developed at early stages of the motion planning discipline,
and is complex to implement. Its time complexity is in O(2"), where m is the dimension of
the C-space, and is mostly used in theoretical algorithms analyzing complexity, rather than
developing practical algorithms. A path found from the silhouette curves makes the robot
slide along obstacle boundaries (Canny, 1988).

Probabilistic Roadmaps use randomization to construct a graph in C-space. Roadmap nodes
correspond to collision-free configurations of the robot. Two nodes are connected by an
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edge if a path between the two corresponding configurations can be found by a ‘local
planning” method. Queries are processed by connecting the initial and goal configurations
to the roadmap, and then finding a path in the roadmap between these two connection
points (Kavraki et al., 1996).

1.2 The Potential Fields Method
A robot in Potential Fields method is treated as a point represented in configuration space,
and as a particle under the influence of an artificial potential field U whose local variations
reflect the ‘structure” of the free space (Khatib, 1986). In order to make the robot attracted
toward its goal configuration while being repulsed from the obstacles, U is constructed as
the sum of two elementary potential functions; attractive potential associated with the goal
configuration gga and repulsive potential associated with the C-obstacle region. Motion
planning is performed in an iterative fashion. At each iteration, the artificial force induced
by the potential function at the current configuration is regarded as the most appropriate
direction of motion, and path planning proceeds along this direction by some increment.
The most serious problem with the Potential Fields method is the presence of local minima
caused by the interaction of attractive and repulsive potentials, which results in a cyclic
motion. The routine method for getting free is to take a random step outwards the
minimum well. Other drawbacks are (Koren & Borenstein, 1991):

- No passage between closely spaced obstacles.

- Oscillations in the presence of obstacles or in narrow passages.

- Non-smooth movements of the robot when trying to extricate from a local

minimum.
- Overlapping of different obstacles’ repulsive potentials when they are adjacent to
each other.

- Difficulty in defining potential parameters properly.
Nevertheless, the Potential Fields method remains as a major path-planning approach,
especially when high degrees of freedoms are involved. This approach has improved later
through a number of works such as (Sato, 1993), (Brook & Khatib, 1999) and (Alvarez et al.,
2003) to overcome the problem of getting trapped in local minima.
The next sections of this chapter introduce two new composite models for robot path
planning, called V-P Hybrid, and V-V-P Compound. They are apt to cover the shortcomings
of their original methods and are efficient both in time complexity and path quality.
Although originally devised for two-dimensional workspaces, they can be extended
straightforwardly to 3D spaces. Experiments have shown their strength in solving a wide
variety of problems.

2. The V-P Hybrid Model

In this section we present a new algorithm, called V-P Hybrid, where the concepts of
Voronoi diagram and Potential fields are combined to integrate the advantages of each. In
this approach, the initial path planning problem is decomposed to a number of smaller
tasks, having intermediate milestones as temporary start and goal points. Through this
iterative process the global path is incrementally constructed.

For the path planning task, a number of assumptions are made: (i) the map of workspace is
known a priori, (i) the obstacles are static, and (iii) the robot is considered a point. For real
world applications, the latter assumption can be attained by expanding the obstacles using
the Minkowski Set Difference method.
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The algorithm’s major steps are:
(1) Preprocessing Phase; consisted of constructing a Pruned Generalized Voronoi Graph of the
workspace, and then applying a Potential Field to it. This operation yields a network of
Voronoi valleys (Sec. 2.1).
(2) Search Phase; consisted of implementing a bidirectional steepest descent - mildest ascent
search method to navigate through the network of Voronoi valleys. The search phase is
designed to progressively build up a start-to-goal path (Sec. 2.2).
Before explaining the details of the composite model, a mathematical representation of some
variables is given:

- n : Total number of obstacles’ vertices.

- s : The Start configuration.

- g:The Goal configuration.

- G = (V, E): The Generalized Voronoi Graph (GVG) of the Cs. with the set of

vertices (nodes) V(G) and edges E(G).

- E(v, w): The edge connecting vertices v and w, V v, w € V(G).

- N(v) = {w| E(v, w) # &} : Neighboring vertices of the vertex v.

- E(v): The set of all edges at vertex v.

- d(v) = | E() | : The degree of vertex v, equal to the number of passing edges.

2.1 Preprocessing Phase

The V-P Hybrid model starts solving the problem by constructing the Generalized Voronoi
Graph (GVG) of the C-space. The Start and Goal configurations are then connected to the
main Voronoi graph through shortest lines which are also included in the diagram. Fig. 1(a)
provides an example of GVG.

Procedure PRUNE(G, s, g)
P={v[ve V(G)\ {s g} dv) =1}
if (P = ) then Stop
V(G) — V(G)\ P
E(G) <~ E(G)\ E(v, N(v)),v € P
PRUNE(G, s, 8)

end

Fig. 1. (a) Generalized Voronoi Graph (GVG). (b) Algorithm for pruning the GVG.

The main reason for incorporating the Voronoi concept in the Hybrid algorithm is its
property of lying on the maximum clearance from the obstacles. This property helps the
robot to navigate at a safe distance from obstacles, making it less prone to be trapped in
local minimum wells.

The next step is to exclude redundant or unpromising edges from the GVG. This is done
through the pruning operation, where the Voronoi edges which either touch obstacle
boundaries or have vertices with a degree (d(v)) equal to 1 are iteratively truncated. The
pruning procedure is explained in Fig. 1(b). Also, the result of this operation performed on
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the example of Fig. 1(a) is portrayed in Fig. 2. The resulting subgraph is called Prumned
Generalized Voronoi Graph, or simply PGVG.

Note that the hypersensitivity of Voronoi diagram to minor inaccuracies in workspace
definition which may lead to redundant edges (as in the lower-right disjoint obstacle in Fig.
2(a)) is resolved after running the pruning procedure.

The pruning operation is an important stage in the Hybrid algorithm since it truncates all
paths toward collision with obstacles and dead-end traps, and therefore reduces the search
space drastically. The resulting graph is a ‘lean” network of interconnected Voronoi vertices,
including the Start and Goal nodes.

itI5H
Iﬁ‘

Fig. 2. The construction of the Pruned Generahzed Voronoi Graph in two iterations.

The last step of the preprocessing phase is constructing a potential field for guiding
the robot toward its goal. Unlike the conventional Potential Fields concept where
there are two kinds of attractive and repulsive potentials associated with goal and
obstacles respectively, the V-P hybrid algorithm makes use of only attractive
potentials, related to the goal and the PGVG. By this, we avoid some known problems
of the standard Potential Fields method concerning the calculation of repulsive forces
for each obstacle and their integration into a single function, which usually gives rise
to complexities due to overlapping and parameter setting (Koren & Bornstein, 1991).
This reduces the computational time and memory significantly. Moreover, the
problem of narrow corridors, where most Potential Field algorithms give way is fixed
in this version.

To apply these potentials, we graduate the configuration space into a grid of fine-enough
resolution. For every grid point (x;, ;) the potential can then be numerically calculated in a
very short time.

As mentioned, the path planning process is decomposed into intermediate stages. So, each
stage has its own temporary goal point, gwmp. The attractive potential of the goal is exerted
through a paraboloid function with a nadir at the temporary goal by:
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U, ()= &[(x Xy )2 + (y . ﬂ )

where & is a scaling factor.

The next attractive potential applies to the PGVG. Because the GVG keeps a safe distance
from obstacles the robot will hardly collide with them. Besides, since we prune the GVG
such that all Voronoi edges toward obstacles (mainly leading to dead-ends) are eliminated
from the graph, the possibility of the robot to get trapped in local minima reduces
drastically. So we try to “encourage” the robot to move along the edges of PGVG. This is
done by associating an attractive potential with the points on PGVG, which generates a
network of deep “valleys” located at the maximum distance from obstacles, with a width of
one gridpoint (Fig. 3(a)). The (virtual) robot will safely navigate at the bottom of PGVG
valleys. The following function gives the desired result, in which s is the depth of valley:

- if (x,,y;)e PGVG @

U y)=
rova (% ¥1) {0 otherwise.
The Upcyc field is calculated only once and remains constant till the end of the path
planning. Instead, the attractive potential of the (temporary) goal is calculated at each
iteration and is added to the Upgyc to yield the total potential used for the Search phase by
UTotul = Ug + UPGVG (3)

The resulting manifold is depicted in Fig. 3(b) for a typical temporary goal point. Note that
due to the numerical nature of the model, working with these complex functions is
extremely easy, and just a simple addition of corresponding grid values is sufficient.

Fig. 3. (a) PGVG potential valleys for the sample problem (here the width of canals are
intentionally aggrandized for a better view). (b) the total potential manifold as the sum of
PGVG valleys and goal attractive potentials.

Since the PGVG is a connected roadmap, a path connecting the Start and Goal points (which
are located at the bottom of PGVG valleys) certainly exists.

This combination of potentials provides a straightforward and guaranteed attraction from
start to goal point. The potential associated with the goal absorbs every point to itself, as the
gradient direction at every configuration points to the goal. Note that repulsive potentials
are not calculated and consequently all the problems related to them are avoided.
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The parameters of the functions such as the valley depth and concavity of the paraboloid
should be selected carefully to make sure that the robot will not “escape” from valleys and
surmount the obstacles, which are implicitly defined by their high potentials compared to
the deeper valleys.

It should be mentioned that the obtained total potential field may still have local minima
(e.g. the V-shaped channel left to the center in Fig. 3(b)), but due to the applied search
method they are resolved.

2.2 Search Phase

To search within the potential manifold, a bidirectional approach is adopted. First, two
trajectory sets, Traj(s) and Traj(g), spanned from the Start (s) and Goal (g) points
respectively, are initialized to keep the track of planned paths. Then through an iterative
process, the PGVG valleys are being navigated alternately by Traj(s) and Traj(g). At each
iteration first Traj(s) and then Traj(g) extend toward the endpoints of each other. Whenever
a trajectory reaches a junction (i.e. a Voronoi vertex) it stops extending more, and the
expansion is shifted to the other trajectory. The trajectories meet on the halfway and are
concatenated into a single start-to-goal trajectory.

The bidirectional nature of the search requires that for each iteration, the PGVG manifold be
numerically added to a paraboloid centered on an intermediate goal point. For instance,
when extending Traj(s), the temporary goal is to reach the endpoint of Traj(g), which is
located on a junction of PGVG valleys.

To maintain the movement of the robot in each iteration, the method of descent search is
employed, which is the simplest and fastest searching method in numerical contexts.

The neighborhood of each cell is defined to be 2-neighbors, that is, the points lying in the
range of (x+1, y+1) for the point (x, y). The number of neighbors of a cell is thus 32 -1 = 8. For
a k-dimensional space, it would be 3k -1.

The searching begins at Start point, with examining all its neighboring gridpoints. The
descent search selects a neighboring cell with the lowest potential among all neighbors as
the next configuration. The simple steepest descent method, however, is prone to stop at a
local minimum. To cope with this problem, taking ascending steps (or, “hill climbing”) is
devised for exiting from local minimums. The amount of ascension is kept minimal.
Therefore, the concept used here is a “steepest descent, mildest ascent” motion. The hill
climbing movement is comparable to the random walk in the randomized planning
(Barraquand et al., 1992). Upon reaching a junction, the next edge to navigate is the one
having the lowest potential value at that point.

In order to prevent the robot from looping (i.e. infinitely fluctuating between two
neighboring cells), we assign to all visited grid cells a relatively higher potential, but still
lower than the potentials of points not on the PGVG. Therefore, the robot will not return
immediately to a local minimum after it has been once there, simply because it is not a local
minimum anymore. The height to which a visited point is elevated is suggested to be less
than 1/3 of the valley depth (Fig. 4). This will allow traversing an edge for three times (as in
correcting a wrong route) without diverting from the PGVG edges.

The process of the steepest descent - mildest ascent search applied to the example in Fig. 2(c)
is shown in Figs. 5(a)-(d). Fig. 5(b) shows iteration 1, navigating from Start toward Goal. The
Traj(s) stops at the first encountered junction (or Voronoi vertex). Fig. 5(c) shows iteration 1,
navigating from the Goal point towards the temporary goal, which is now the endpoint of
Traj(s). The Traj(g) stops at the first encountered junction, which becomes the new
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temporary goal. Fig. 5(d) illustrates iteration 2, navigating from endpoint of Traj(s) toward
the temporary goal. The two trajectories Traj(s) and Traj(g) are now get connected, and the
Search phase is completed. Note the changes in depth of valleys as they are being filled.

Fig. 4. Valley-filling operation: the potential valley is being filled as the trajectory proceeds.

© (d)

Fig. 5. The process of searching in the V-P Hybrid model is completed in two iterations.

2.3 Experiments

In order to test and evaluate the V-P Hybrid algorithm, 20 problems with obstacles differing
in number and shape (including convex, concave, and maze-like problems) were designed
and solved by three different methods: the V-P Hybrid, the classical Potential Fields, and the
A* Search. Experiments were run on a PC with a 1.4 GHz processor using MATLAB.
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Table 1 shows the average values of path lengths (in equal units), CPU time (in seconds) and
the number of evaluated grid points computed for the test problems via different

approaches. The average length of optimal paths was 27.46 units.

Parameter

Potential Field
Algorithm

A* Search
Algorithm

V-P Hybrid
Algorithm

Path Length

33.49

30.67

33.62

Search CPU Time

1.0375

19.40

0.0715

2664.2

331.8

Total Examined Grid points 2513

Table 1. Experimental results.

An advantage of the V-P Hybrid algorithm over the classical Potential Fields method is its
completeness. While the Potential Fields approach is not guaranteed to generate a valid
path (Latombe, 1991), the V-P algorithm is exact, i.e. it finds a path if one exists. Since the
Goal should be connected to the PGVG at the Preprocessing phase, the algorithm will report
any failure in this stage, and so is complete.

The V-P Hybrid algorithm has also resolved a number of problems inherent in the
conventional Potential Fields method. The local minimum problem is settled by
implementing the steepest descent - mildest ascent search method and utilizing the PGVG.
Problems due to obstacle potentials and narrow passages are totally fixed.

The Voronoi diagram-Potential Field Hybrid algorithm averagely spent much less time
for searching the C-space than the Potential Field method (around 15 times faster). Also
the number of examined grid-points was reduced about 7.5 times for the Hybrid
algorithm. We ascribe these results to the efficient abstraction of workspace due to the
pruning procedure where most local minimum wells are excluded from the search space.
The number of Voronoi vertices is also reduced effectively. The pruning procedure
together with the fast searching of Voronoi valleys made the V-P model successful in
solving complex and labyrinthine, maze-like workspaces. In sparse environments the
Potential Fields found slightly shorter paths, but for maze-like problems the Hybrid
algorithm outperformed.

The time complexity of A* search is O(n2) (Latombe, 1991). A* is complete and optimal,
but its space complexity is still prohibitive. The A* search employs a heuristic function for
estimating the cost to reach the goal. For our experimentation a Euclidean straight-line
distance was used as the heuristic. The Hybrid algorithm searched the grid space very
much faster than A* search (270 times), examining around 8 times less points than it. This
is because of the lower time complexity order of the Hybrid method compared to the
O(n?) of A*. However, the quality of the path generated by A* is better than the Hybrid
model by %10. The Hybrid algorithm also outperforms the Dijkstra’s algorithm which has
an O(n?) time complexity. The time complexity of the V-P Hybrid algorithm is discussed
below.

2.4 Time Complexity Analysis
For a time complexity analysis of the V-P Hybrid algorithm, its two phases must be
analyzed separately. Time complexities of constructing and pruning the Voronoi graph, as
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well as the potential field calculation determine the computational burden of the
Preprocessing phase. To evaluate this, we first need to study the problem’s size. The
following two lemmas deal with this issue:

Lemma 1.The Voronoi diagram has O(n) many edges and vertices, in which n is the

number of Voronoi sites.
Lemma 2.The average number of edges in the boundary of a Voronoi region is bounded
by 6.

Proofs to these lemmas are provided in (Aurenhammer & Klein, 2000). The proofs are
originally developed for the case of points or convex objects taken as Voronoi sites.
However, since due to the pruning procedure any non-convex obstacle is located in a
unique connected Voronoi region, the above lemmas hold true for non-convex cases as
well.
The direct consequence of the Lemma 1 is that the Hybrid algorithm must perform O(n)
neighborhood checks for pruning the Voronoi Graph. Therefore, considering that the
construction of the Generalized Voronoi Diagram takes O(nlogn) time, we conclude that the
Pruned Generalized Voronoi Diagram is built in O(nlogn) time.
For the potential field calculation, since we do not need to calculate the potential values for
all gridpoints, save for those located on the PGVG, it is essential to have an estimate for the
number of gridpoints on the PGVG.
Assuming that after graduating the C-space the PGVG edges are divided into small
intervals of size A, each PGVG edge with vertices v and w will have grid points equal to

o= |E(o,) Considering the O(n) edges of the C-space, the number of all grid points would
A

be O(exn) = O(n), which also gives the complexity of potential field calculation.

For obtaining an average-space complexity, the average length of the PGVG edges should
be computed. Let m be the total number of configuration gridpoints, o the number of
configuration gridpoints occupied by obstacles, and b the number of obstacles. Then the
average number of C-points around an obstacle (Voronoi region) is (m-0)/b. Since the
average number of edges around each obstacle is bounded by 6 (Lemma 2), we will assume

that the typical shape of the region is hexagonal, with the surface area of S = 3\/5612 /2,
where g is the edge of the hexagon (Fig. 6). By setting this surface area equal to the average
number of C-points in a Voronoi region, we get

u=11/2*/§(’”"’) =062,/ S)
sV b

Since o < m in (4), we conclude that the average length of a Voronoi edge in terms of its
number of gridpoints is in O(\/E). This means that the number of points whose potentials

are to be computed is in O(\/; ), where m is the total number of gridpoints.

The above space complexity can also be used for calculating the time complexity of the
Search phase. Since only the gridpoints on the PGVG need to be searched, and the average
number of these points is O(y/m), the Search phase averagely will take O(y/m) time to
navigate the PGVG and accomplish the search. This result is superior to the conventional

Potential Field's search which contains a neighborhood checking operation and is carried on
in O(m), m being the number of C-points (Latombe, 1991).
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Fig. 6. A typical problem with hexagonal Voronoi regions.

To conclude, the Preprocessing phase of the algorithm takes O(nlogn) time (1 being the total
number of obstacle vertices), which is due to construction of the GVG. The remaining
components of the algorithm, i.e. the pruning, potential calculation, and potential search
procedures all have linear or sub-linear time complexities. Since these components are
executed sequentially, the most time-consuming operation will be bound to O(nlogn) time,
which is the total time complexity.

3. The V-V-P Compound Model

Since the paths generated by the V-P Hybrid model are a subset of the Generalized Voronoi
Graph of the workspace, they have lengths identical to the ones generated by the Voronoi
Diagram method. The Voronoi paths are longer than the optimal Visibility Graph-based
paths, especially in sparse environments. Aiming to improve the quality of generated paths,
another composite algorithm is proposed (Masehian & Amin-Naseri, 2004) where three
methods of Voronoi Diagram, Visibility graph, and Potential Fields are integrated in a
single architecture, called V-V-P Compound model.

The Compound model provides a parametric tradeoff between the safest and shortest paths
and generally yields shorter paths than the Voronoi and Potential field methods, and faster
than the Visibility graph. In the proposed model, positive attributes of these three path
planning techniques have been combined in order to benefit from the advantages of each.
To accomplish this, they are tailored and associated with a number of complementary
procedures to generate a valid and high quality path. Hence, the Compound algorithm
borrows its name, V-V-P, from these basic techniques, although the outcome is a new and
different model as a whole.

An overview of the model is as follows: after constructing the PGVG, a network of broad
freeways is developed through a new concept based on medial axis, named OMID. A
potential function is then assigned to the freeways to form an obstacle-free network of
valleys. Afterwards we take advantage of a bidirectional search, where the Visibility Graph
and Potential Field modules execute alternately from both Start and Goal configurations. A
steepest descent - mildest ascent search technique is used for local planning and avoiding
local minima. The assumptions on which the model is principally developed are the same as
for the V-P Hybrid model; that is, the workspace is considered two-dimensional, and the
map of workspace is known a priori. Similar to the Hybrid model, the Compound model
has also two major stages: the Preprocessing phase and the Search phase. The Search phase
contains two modules: Visibility, and Potential Field, which are executed alternately, as
illustrated in Fig. 7.
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The main differences between the V-V-P Compound and V-P Hybrid models are the width
of the potential valleys and their filling technique. Additionally, the V-V-P model employs a
Visibility module to obtain shorter paths than the V-P model. The description of algorithm’s
phases is presented in the next subsections.
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Fig. 7. The overall process of problem solving in the V-V-P path planning model. Each
iteration in search phase is comprised of two sequentially executed modules, Visibility
and Potential Field. The gradually darkening shades imply the completion of a
solution.

3.1 Preprocessing Phase
This phase establishes an obstacle-free area for robot navigation. The main steps are:

P1) Constructing the PGVG of the workspace (as described in Sec. 2.1).
P2) Forming an obstacle-free C-space region based on PGVG points.

P3) Associating an attractive (negative) potential to that region. The result is an obstacle-
free network of valleys as the robot’s navigation area.

As noted in Sec. 1.1, the Generalized Voronoi Graph is also known as Medial Axis (MA).

Voronoi diagram lies on the maximum clearance of objects. Although this property offers

some advantages regarding to path safety, it makes the path longer, especially in

workspaces where the obstacles are located quite far from each other. Besides, the generated

path usually has sharp angles at Voronoi vertices, making it ineffective for robots with

nonholonomic or rotational constraints.

In order to compensate these shortcomings, unlike the 1-pixel-wide valleys in the V-P

model, a network of “wider” channels is built based on PGVG. These channels are “dilated”

Voronoi edges that provide sufficient space for the robot to plan shorter paths and

maneuver freely. Due to the varying sizes of inter-obstacle free spaces, the widths of these

channels must vary from region to region.

For constructing this obstacle-free network of channels the Maximal Inscribed Disc (MID)

concept is incorporated. First some definitions are presented:

A Locally Maximal Disc (LMD) of the point x € Ce. is the set of points such that:

LMD(x) ={q| |- g < Min|}x - 9Cpe

s q€ Cfree} ’ (5)

and denotes a disc centered at x and tangent to the nearest obstacle boundary (0Cp).
The Maximal Inscribed Disc (MID) is defined as:
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MID(x) :{LMD(x)‘ TLMD(x) > YLMD(y), X€ MA A y € N(x)}/ (6)

in which the rrmp(y is the radius of the LMD(x), and N(x) is the neighborhood of x.

For the Compound model, only the radii of all MIDs centered on PGVG points are
calculated. Also, in order to maintain a safe distance from obstacle borders, MIDs radii are
multiplied by a lessening factor o (o € [0, 1]), to produce oMIDs defined as:

aMID(x) ={ LMD(x)| fimpen = 00X Fupes), x€ MA,0 < r <1} @)
All OMIDs are integrated in a connected region called Region([IMID). The
Region(JMID) of a C-space is the union of all CIMIDs centered on the medial axis:

Ve MA

Region(otMID):{ U onMID(x)} ®)

The Region(aMID) is obstacle-free and non-convex, and reflects the topology of the Cpe.. An
interesting property of the o is that it offers a balance between the Roadmap and full Cp.
concepts. If we set =0, the Region(aMID) will turn into the medial axis roadmap. For a. =1,
the region’s borders will be tangent to obstacles. Based on experiments, we recommend o €
[0.5,0.8].

The Region(oMID) for the workspace of Fig. 2(c) is calculated and depicted in Fig. 8(a). Fig. 8
also indicates the property of Region(o

MID) in smoothening the Voronoi roadmap’s sharp corners and local irregularities.

.(a) - . (b)
Fig. 8. (a) The Region(oMID) is comprised of aMIDs centered on the medial axis. Here the o
is set to 0.6. (b) Attractive potentials associated with the Region(aMID).

Similar to the Hybrid model, the Compound model also creates a network of navigable

valleys. It assigns attractive potentials to the points lying in Region(aMID):

if (x;,y;)€ Region(oaMID) ©)
otherwise.

-s
Ulx, )=
(. v:) {0
The preprocessing phase terminates with the construction of potential valleys.

3.2 Search Phase
This phase is designed to progressively build up a Start-to-Goal path. The initial problem is
decomposed to a number of smaller path planning tasks, having intermediate milestones as
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temporary start and goal points. Through this iterative process the solution path is
incrementally constructed, and the algorithm becomes capable to resolve more complex
problems.

Similar to the V-P Hybrid, the global search process is performed bidirectionally. Again we
initialize the two trajectories Traj(s) and Traj(g), and set Traj(s) = {s} and Traj(g) = {g} for the
beginning.

The main modules included in this phase are Visibility and Potential Field, which are
executed iteratively until the construction of the final path. The termination condition is
satisfied when Traj(s) and Traj(g) are either being seen or get in touch with each other. We
characterize ‘being seen’ as being able to draw a straight line in free space to connect the
two trajectories” endpoints.

The following subsections describe the Visibility and Potential Field modules.

3.2.1 Visibility Module

Each iteration of the Search phase starts with a Visibility scan performed concurrently for
both endpoints of Traj(s) and Traj(g). For this purpose, a “ray sweeping” technique is used
to collect information about the surrounding valley borders and probably the opposite
trajectory.

The aim of this procedure is to determine whether the opposite trajectory is visible from the
current point or not. If it is visible, then the Search phase is over. If not, we have to find the
boundary vertices as seen from the current point, as described below.

By applying a polar coordinate system with the origin defined on the vantage point (e.g.
endpoint of Traj(s)), the radial Euclidean distances to valley borders (9Cj.) are calculated for
[0, 2n] and integrated in an array (i.e. Visibility Polygon). Fig. 9(a) shows the Cg. valleys and
the point (g) considered for visibility scan in a sample problem. Fig. 9(b) shows the distance
of that point from its surroundings.

@ (b)
Fig. 9. (a) Visible configurations (visibility polygon) as a result of a visibility scan performed
for the point 4. (b) The polar representation of radial distances (i.e. ray magnitudes) of the
point g from Cs., boundary (9C.).
Subsequent to the calculation of distances (p) between the vantage point and dCy, for any
angle (0 € [0, 2n]), this data is mapped into Cartesian coordinates (Fig. 10(a)).
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Since the Cp. boundary generally has a complex geometrical shape and lacks definite
vertices as in polygonal objects, we take advantage of the ray sweeping data to determine
the boundary points being tangent to any ray emanated from the vision source point. A ray
is tangent to 0Cjy. if in the neighborhood of their contact point the interior of Cs, lies entirely
on a single side of it.

In order to find the tangent rays and their touching boundary points, we apply a difference
function for successive adjacent rays. We define the Ray Difference variables as
Ap,=p,,, —P, for 8¢ [0, 2n] and collect them in an array plotted in Fig. 10(b). By applying

a notch filter, the peaks of the Ray Difference array are determined. These peaks imply
abrupt and large differences in successive ray magnitudes and therefore indicate the points
where sweeping rays leave (positive peaks) or meet (negative peaks) a convex contour on
9Cfye, based on anticlockwise rotation of rays.

The boundary points corresponding to the tangent rays are treated as boundary vertices
visible from the vantage point, 4. These points are called Critical points and form the set R(g)
(see step S1(d)). The tangent rays and critical points are shown in Fig. 11.
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Fig. 10. (a) The Cartesian representation for the ray magnitudes of Fig. 9. (b) Magnitude
difference of sweeping rays for successive angles. The three peaks show tangent rays.
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Fig. 11. The tangent rays and their corresponding boundary vertices (critical points).
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By concurrently implementing the visibility scan for both ends of Traj(s) and Traj(g), we
discover that either there exists a line which connects the two trajectories (and lies entirely
in Cpe), or none of them is within the scope of the other’s endpoint. If the first case holds
then the search phase terminates. For the latter case, critical points of the two sets R(p) and
R(q) are calculated and matched to find the closest pair, one point from each. These points
determine the two positions which the two trajectories must extend toward.

The following steps are taken for the Visibility module:

S1) Performing Visibility scan. The scan is concurrently implemented for the endpoints of
both Traj(s) and Traj(g).

Suppose that the visibility scan operation is performed from p and g, the endpoints of Traj(s)

and Traj(g), respectively. Consequently, four incidences may occur (Fig. 12):

_I|'I

@ (b) © @

Fig. 12. Four different combinations of Traj(s) and Traj(g) in visibility scan. The visibility

envelope is shown in grey.

(@) A subset of points in Traj(g) is visible from p, but no point from Traj(s) is visible
from g (Fig. 12(a)). In this case, by a straight line, connect p to a visible point in
Traj(g), say q', which is nearest to the Goal (i.e. has the smallest ordinal rank in
Traj(g) among the visible points), and truncate all elements in Traj(g) located after
q'. Note that the Goal point might be visible itself, which in that case point p is
directly connected to the g (Fig. 12(c)).

(b) A subset of points in Traj(s) is visible from g, but no point from Traj(g) is visible
from p (Fig. 12(b)). This is the reverse of the previous case, so act similarly, but
swap p and g, and also Traj(s) and Traj(g).

() Subsets of points in both Traj(g) and Traj(s) are visible from p and g, respectively
(Fig. 12(c)). In this case, define the following criterion C as:

’

C =Min{spq’g

8qp's|} (10)
= Min{[Traj(s) +|[p-4'| +|q"€ Traj(g)].|Traj(g)| + |a - ] +[p" e Traj(s)}

’

where | Traj(s) | means the cardinality (or length) of Traj(s), is the Euclidean

p-q
distance of p and ¢, and |qg'e Traj(g) | indicates the ordinal position of ¢' in Traj(g)
(i.e. the distance of 4' to g via the Traj(g)). Among pq' and gp', the line providing the
minimum value for the above criterion will be selected to connect Traj(s) and
Traj(g). Again truncate the elements of the trajectory located after the connection
point p' or q', according to the drawn line.

(d) If none of the Traj(s) and Traj(g) are visible to each other’s endpoints, then for both
p and g, determine those rays that are tangent to visible Cps boundary. Note that
this boundary is at a safe distance from actual obstacles’ edges. The intersection of
these rays and the free space’s boundary produces two sets of Critical Points, R(p)
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and R(g). Fig. 12(d) shows the result of visibility scan from g, which consequently
renders 4 visible obstacle vertices in R(q) = {1, 2, 3, 4}.

Now among all combinations of the elements of R(p) and R(g), select the closest x
and y pair meeting the following condition:

{9V x ue Rp)y,ve R@); x-yl < lu-of) (11)

where ||+ shows Euclidean distance. The total number of combinations to be
evaluated is |R(p) |x|R(q)|, where |e| is the cardinality of sets. This operation
determines the mutually best points that Traj(s) and Traj(g) must extend toward via
two straight lines.

S2) Map the line segment(s) found in step S1 to the configuration space grid. Through
a fine-enough discretizing operation, new points are added to Traj(s) and/or Traj(g).

If any of the cases (a), (b), or (c) in step S1 holds, then terminate the Search phase and go to
step S10 (Sec. 3.2.2). For the case (d) continue with the next step.

S3) Since all the points in Traj(s) and Traj(g) lie on the bottom of roadmap valleys, in
order to mark the valleys as traversed, increase the potentials of trajectory points
and their surroundings to ‘fill’ the width of valleys (Sec. 3.2.2). This is an effective
operation for preventing the planner from searching the C.., exhaustively.

3.2.2 Potential Field Module

The bidirectional nature of the V-V-P algorithm requires that for each iteration, the valley
potentials manifold be numerically added to a paraboloid with a nadir on a temporary goal
point (see step S4). For instance, when extending Traj(s), the temporary goal is the endpoint
of Traj(g), and vice versa. To apply the paraboloid potential, we graduate the configuration
space in a fine-enough resolution, then assigning every grid cell as (x;, v;), the potential is
calculated numerically. Fig. 13(a) shows the Potential Field manifold superimposed on the
‘flat’ valley potentials manifold.

As soon as new points are appended to the trajectories, the navigated valleys must be
distinguished by ‘elevating’ their potentials in order to prevent the robot to re-traverse them
later (Fig. 13(b)).

(@) (b)
Fig. 13. (a) The Potential Field manifold (upper object) is constructed by numerically adding
a paraboloid function defined in (1) to the valley potentials manifold (lower object). (b) A
scene from an intermediate iteration in potential search. Trajectory points are shown black
and the medial axis points are in white.
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The valley filling technique is somehow a “micro-visibility” process; it marks the
neighboring configurations as ‘seen’, and excludes them from the search space. This process
is analogous to walking in a long corridor while trying to get out by reaching an open door
or a junction. Naturally one does not consider the tiles across the corridor and near his feet
as promising cells leading to a desired destination. Rather, he deems those points as
traversed (though physically not indeed), and continues his wall-following motion. This is
done in filling technique by ‘elevating’ the potentials of those cells, making them less
attractive. Since in a steepest descent context the robot occupies the cell with the least
potential value across the valley, the filling procedure does not affect the path length
adversely.

The filling procedure is applied immediately after a new point is appended to a trajectory.
So it is performed in a layer-by-layer manner. Suppose that a point p is just being added to
an existing trajectory array (Fig. 14(a)). In order to ‘mark’ and elevate the potentials of
visited cells across the G, valley, we must find a line passing from p and perpendicular to
the local direction of the channel. To do this, the point p must be connected to its nearest
point g on the medial axis (skeleton) of the valley. By interpolation and extrapolation, the
cells along this line are found and increased in potential. The amount of this increase is
proposed to be about 1/3 of the valley depth (i.e. s in (9)). Fig. 14 shows three consecutive
iterations of filling operation.

(b) ©

Fig. 14. Three iterations from the valley filling process. As new points (black dots) are
appended to the trajectory, the cells across the channel are elevated in potential, so that the
planner is encouraged to move along the valley’s main direction. Points on the medial axis
are shown white, except for the point 4 which is nearest to trajectory’s endpoint p (shown in
black). The elevated rack is highlighted in each iteration.

For a better understanding of the role of this process, imagine that an attractive potential
(i.e. a local minimum) is located in the upper-end of the narrow channel in Fig. 14(a).
Then according to the steepest descent search, the trajectory points should move towards it,
which is of course hopeless. However, the elevated barrier created in each iteration blocks
this motion, and forces the planner to take a mildest ascent step and run off the fatal
situation.

For channels of uniform width this method fills the cells thoroughly and compactly, but it
may cause porosities in curved and bent valleys, or leave unfilled areas behind, as in Figs.
14 or 15(b). The case in Fig. 15(b) arises from the fact that for two successive trajectory points
their respective nearest medial axis points are not adjacent. Although this does not cause a
serious problem most of the time, we will present a variation to this procedure to overcome
such conditions:
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First a square (or rectangular) frame with a symmetrical center on the medial point g is
defined (the dashed line in Fig. 15(c)). This frame is partitioned into two hyper-planes by the
connecting line pg. The hyper-plane that contains the penultimate trajectory point is
therefore the ‘backward’ region which may contain some unfilled cells. Then, the potentials
of the cells confined within the frame and valley border are elevated. The magnitude of this
frame can be set such that all the unfilled cells can be covered. However, a size equal to the
valley width in that point suffices. The still unfilled area at the right of Fig. 15(c) will not
cause any problem since it is far from trajectory points.

Fig.15. An unfilled area is originated from the fact that for two successive trajectory
points, their respective nearest medial axis points are not adjacent. To resolve this problem,
a frame is defined around the medial point g (drawn by dashed line), and the unfilled area
confined within this frame is elevated in potential.

The implemented valley filling routine provides some advantages for the model:

(1) It reduces the potential searching time significantly by discarding the
configurations in Cp, which have normal vectors pointing toward a local
minimum, and so obviates the random or ‘Brownian” movements.

(2) This technique enables the planner to perform a ‘hill climbing’ operation for coping
with the attraction of a nearby local minimum, and as such, is a subtle way to
avoid exhaustively filling up dead-end or saddle point regions and the consequent
path smoothing operations (Barraquand et al., 1992).

For more clarification, suppose that the planner incrementally builds up a search tree and
adopts a ‘best-first’ strategy to find the goal point. This task becomes time-consuming when
the tree has many branches. The valley filling process curtails most of the non-promising
branches and directs the planner along an effective branch leading to another valley. In
other words, this technique converts a “breadth-first’ or ‘best-first’ search into a ‘depth-first’
search.

Experiments showed that the valley filling process aids the robot considerably especially in
departing from deep local minimum wells.

Now the Potential Field module is executed according to the following steps. It is applied in
two directions: first the Traj(s) is extended (steps S4 to S6), then Traj(g) is stretched out (step
S7 to 99).

S4) Setting the endpoint of Traj(g) as the temporary goal (gimp), construct an attractive
field by the paraboloid function introduced in (1). Then add this potential to the
potential of Region(oMID) calculated in step P3 (Sec. 3.1).

S5) Now the steepest descent - mildest ascent search is performed with setting the
endpoint of Traj(s) as temporary start and the endpoint of Traj(g) as temporary goal
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point. This step contains a gradient search for selecting the next gridcell to proceed.

New points are appended to Traj(s). Also, in order to provide a mechanism for

escaping from local minima, perform the valley filling procedure.

56) Repeat the step S5 until one of the following situations take place:

(a) If before the occurrence of case (b) below, the endpoint of Traj(s) meets any
point in opposite trajectory Traj(g), the search phase is completed. First
truncate the elements of Traj(g) located after the connection point, then go to
step S10.

(b) The gridcell wavefront distance between the endpoint of Traj(s) and the free
space boundary, 0Cs.., exceeds a certain limit, i.e. |END(Traj(s)) = 0Cpee| > d.
Through experimentations d = 3 was found appropriate.

The steepest descent search for Traj(s) is now terminated and the searching process is
shifted to steps S7 to S9, where Traj(g) is being extended towards Traj(s).

S7) This step is similar to step S4, except that the paraboloid which is added to the
Region(oMID) valleys has a minimum on the endpoint of Traj(s).

S8) Setting the endpoints of Traj(g) and Traj(s) as temporary start and goal points
respectively, perform a steepest descent - mildest ascent search, as well as the
valley filling procedure, as described in step S5.

S9) Repeat the step S8 until either of the following cases happen:

(a) If before the occurrence of case (b) below, the endpoint of Traj(g) meets any
point in Traj(s), the search phase is completed. Truncate the elements of Traj(s)
located after the connection point, then go to step S10.

(b) If the gridcell wavefront distance between the endpoint of Traj(g) and the dCe.
exceeds a certain limit, i.e. |END(Traj(g)) - dCsee| > 3, terminate the Potential
Field module and start the next iteration from step S1, the Visibility module.

510) Reverse the order of elements in Traj(g) and concatenate it to the endpoint of
Traj(s). As a result, a single start-to-goal trajectory is achieved which is the final
output of the V-V-P algorithm.

3.3 An Example

Now the algorithm’s path planning technique is demonstrated through solving a problem
illustrated in Fig. 16(a).

After preparing the valley potentials (Fig. 16(b)), the Search phase is accomplished in 3
iterations. The bidirectional progression of trajectories is clearly shown in Figs. 17(a)-(c). The
Cree Tegion is light-colored, and the ‘filled” area has a darker shade. Fig. 17(a) indicates the
development of Traj(s) (upper-right), and Traj(g) (lower-left) trajectories in iteration 1, by
first performing a visibility scan, then a Potential Field search. The visibility scan matches
with case S1(d), where none of the two trajectories is in the scope of another. Hence, 6
possible pairs of critical points ((2 for g) x (3 for s)) are evaluated and the closest pair is
selected as the destination of trajectories. The filling procedure is then implemented for the
drawn lines (darker area in Cpe.) according to step S3.

The Potential Field module now starts with performing a steepest descent - mildest ascent
search from the endpoint of Traj(s) toward the endpoint of Traj(g), the temporary goal. This
requires a superimposition of a paraboloid function with a minimum on END(Tr4j(g)) on
the ‘flat’ potential manifold in Fig. 16(b) (as described in step S4). This search generates
points directed to the temporary goal, elevates the potentials across the current valley, and
stops after a few repetitions upon detaching enough from the dCp.. (case S6(b)). These points
are appended to Traj(s).



Composite Models for Mobile Robot Offline Path Planning 257

@ )
Fig. 16. (a) The PGVG and Region(aMID) (Step P2). (b) Obstacle-free network of valley
potentials (Step P3).

@
Fig. 17. The first, second and third iterations of the Search phase. The black lines show
tangent rays for visibility scan, and white points are generated by potential search.

The same operation is carried on from END(Traj(g)) to the new endpoint of Traj(s), which
now includes recently added potential search points. Note that in Fig. 17(a), due to the
filling operations executed before and during the Potential Field module, the steepest
descent search does not fill the nearby minimum well, and thus avoids entrapment in the
local minimum around the Goal point. Rather, it utilizes the mildest ascent concept, and
exhibits a hill climbing behavior. This case shows the importance and effectiveness of the
filling procedure, which helps the planner substantially through the whole process. Fig
17(b) illustrates the second iteration, which is performed in the same fashion as the first
iteration. Note the wall-following function of the potential module before detachment from
Cree border.

Fig. 17(c) displays the case S1(c) occurred in the third iteration, where both trajectories are
being seen by each other’s endpoints. By applying the criterion (10) it becomes evident that
the endpoint of Traj(s) must be connected to a visible point in Traj(g) closest to g. The
remaining points to the end of Traj(g) are truncated afterwards. Eventually the reversely-
ordered Traj(g) is concatenated to the Traj(s) and yields the final path from Start to Goal
(Fig. 18(a)).

Another example is presented in Fig. 18(b) to display the shape of the generated path for a
maze-like problem. The meeting point of the approaching trajectories is shown by a color
contrast. The search took 7 seconds and five iterations.
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Fig. 18. (a) The final start-to-goal path. (b) Maze-like problem solved by the V-V-P algorithm.

3.4 Time Complexity

As discussed in the Sec. 2.4, the time complexity of constructing the PGVG is O(nlogn). The
time required for establishing the Region(JMID) depends on the total length of PGVG
edges, which is in O(n). The time required to calculate the valley potentials is constant for
each gridpoint lying in Region(CJMID). Hence, the total time complexity for the
preprocessing phase is in the order of O(nlogn).

The Search phase has the Visibility and Potential Field modules which are executed for k
iterations. In the worst-case, k is bounded by half the number of all edges, which is in
O(n/2) = O(n). During the Search phase, the visibility radial sweep operation has constant
time complexity and depends on the number of radial rays. The number of potential valleys
is in O(n), which is affected by the O(n) number of Voronoi edges, 1 being the total number
of obstacle vertices. The time complexity for the Potential Field searching operation is O(m)
in the total number of gridpoints (m), and is independent of the number and shape of the
obstacles (Latombe 1991). Therefore, the time complexity of the Search phase is in the order
of O(m).

3.5 Comparisons

In order to compare the V-V-P model with the Visibility Graph, Voronoi diagram, and
Potential Fields methods, we solved the 20 problems mentioned in Sec. 2.3 by these methods
and calculated the lengths of produced paths. Path lengths were normalized via a uniform
scale to set up a proper benchmark for comparison. The value of [J in V-V-P algorithm was
set to 0.7. The Preprocessing phase of the Compound model took about 9 seconds averagely,
and the Search phase finished within 6 seconds on average. The experiments were run in
MATLAB using a 1.4 GHz processor. A comparison of path lengths, as well as time
complexities of the preprocessing and search procedures of all tested methods is provided
in Table 2.

The results show that the V-V-P Compound takes advantage of the superiorities of its
parent methods; that is, low construction time from the GVG, low search time from the PF,
and short paths from the VG. It provides an effective balance between computational speed
and path quality. The extent of this tradeoff is determined by selecting different values for
o€ (0, 1), after which the V-V-P method assumes the properties of either the Visibility, or
Voronoi methods, or an intermediate state.
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Path planning f| Preprocessing Searching Relative

method Time complexity path length
Time complexity Search method

Voronoi Dijkstra
Diagrams on graph nodes

Potential Improved numerical

Fields navigation function

VlSIblll’fy A*
Graph on graph nodes

V-P Steepest descent —
Hybrid mildest ascent

V-V-P Steepest descent -
Compound mildest ascent

@ After post-processing and path smoothing

Table 2. Time complexity and path quality comparison for five path planning approaches.

It is worth noting that similar to the V-P Hybrid method (Sec. 2.4), the V-V-P Compound
algorithm has the property of completeness.

3.6 Extension to Higher Spaces

The V-V-P algorithm has the potential to be extended to three and higher dimensional
spaces. Though the full n-dimensional implementation of the algorithm is among our future
research, we will briefly discuss here the possibility of its extension to 3D.

Recall that the Generalized Voronoi Graph (GVG) in n-D space is the locus of points being
equidistant from n or more obstacle features. Figs. 19(a)-(b) demonstrate a 3D environment
and its GVG. The GVG is constructed incrementally using an algorithm which is the 3D
version of our work presented in (Masehian et al., 2003).

Due to the one-dimensional nature of the GVG roadmap, the pruning procedure is still
applicable to 3D context. Fig. 19(c) depicts the result of pruning the GVG in Fig. 19(a), after
fixing Start and Goal positions. Similar to the 2D case, the pruning procedure reduces the
search space considerably in 3D.

The Maximal Inscribed Discs can easily be generalized to 3D space, resulting in Maximal
Inscribed Balls (MIBs), which are spheres centered on the GVG and tangent to 3 or more
obstacle boundaries. In the same manner, we can extend the concept of aMID to aMIB,
and the concept of Region(aMID) to Region(aMIB). The Region(oMIB) is a network of
“tube-like” obstacle-free navigable channels. Fig. 19(d) illustrates the Region([IMIB)
with o = 0.5. Greater values for o cause “fatter” tubes, and freer space for robot’s
maneuvering.

The visibility scan in 3D can be applied via “sweep surfaces” instead of sweep rays in the
2D method. The robot should scan the space inside the Region(oMIB) to find “tangent
surfaces”. The Potential calculations for gridpoints is still tractable in 3D workspace, and the



260 Mobile Robots, Perception & Navigation

search phase can be performed similar to the 2D V-V-P method; the Visibility and Potential
Field modules will execute alternately, and the valley filling procedure will change to “tube
filling”. Therefore, the V-V-P and V-P models are extendable to at least 3D C-spaces.

© G
Fig. 19. (a) Front view, and, (b) Back view of the medial axis (GVG) of a 3D workspace. (c)
The PGVG of the same workspace. (d) The Region(o.MIB).

4. Summary and Future work

This chapter introduces two new offline path planning models which are based on the
Roadmap and Potential Fields classic motion planning approaches. It is shown that how
some relatively old methods can combine and yield new models.

The first path planning model is established based on two traditional methods: the Voronoi
Diagrams and Potential Fields, and so is called V-P Hybrid model. The model integrates the
advantages of Voronoi diagram’s safest distance and Potential Fields” search simplicity
properties. After constructing the Generalized Voronoi Graph roadmap for the workspace,
it is reduced to the Pruned Generalized Voronoi Graph (PGVG) through a pruning
procedure. The PGVG decreases the search time effectively. An attractive potential is then
applied to the resulting roadmap, which yields a new version of Potential Fields method,
since it implicitly models the obstacles by attractive potentials rather than repulsive ones.
The search technique developed for finding the trajectory is a bidirectional steepest descent
- mildest ascent stage-by-stage method, which is complete, and performs much faster than
the classical Potential Fields or Dijkstra’s methods.
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The second model is a generalization of the V-P Hybrid model: it integrates three main
approaches: Voronoi Diagrams, Visibility Graph, and Potential Fields, and is called V-V-P
Compound path planner. After constructing the PGVG roadmap, a broad freeway net
(called Region(IMID)) is developed based on the Maximal Inscribed Discs concept. A
potential function is then assigned to this net to form an obstacle-free network of valleys.
Afterwards, a bidirectional search technique is used where the Visibility Graph and
Potential Fields modules execute alternately from both start and goal configurations. The
steepest descent — mildest ascent search method is used for valley filling and local planning
to avoid local minima. This Compound model provides a parametric tradeoff between
safest and shortest paths, and generally yields shorter paths than the Voronoi and Potential
Fields methods, and faster solutions than the Visibility Graph.

Different implementations of the presented algorithms exhibited these models’ competence
in solving path planning problems in complex and maze-like environments. Comparisons
with classical Potential Fields and A* methods showed that composite methods usually
perform faster and explore far less grid-points.

The developed composite path planning models can however be extended in numerous
directions to accommodate more general assumptions. Here we mention two possible
extensions which are achievable in the future versions of the models:

(1) Both methods are basically developed for point robots. This assumption is not
realistic and requires an extra preprocessing step for obstacle expanding through
the Minkowski Set Difference technique. Moreover, the robot is bound to have
mere translational movements, and not rotational. The models can be modified to
accommodate arbitrary-shaped robots with rotational ability.

(2) The developed models handle single-robot problems. The potential valleys in both
V-P and V-V-P models may provide a framework for multiple robots motion
planning. Especially, the Visibility component of the Compound model can be
readily applied to mobile robots teams with vision capabilities.
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1. Introduction

In the last years, one of the applications of service robots with a greater social impact has
been the assistance to elderly or disabled people. In these applications, assistant robots must
robustly navigate in structured indoor environments such as hospitals, nursing homes or
houses, heading from room to room to carry out different nursing or service tasks.

Although the state of the art in navigation systems is very wide, there are not systems that
simultaneously satisfy all the requirements of this application. Firstly, it must be a very
robust navigation system, because it is going to work in highly dynamic environments and
to interact with non-expert users. In second place, and to ensure the future commercial
viability of this kind of prototypes, it must be a system very easy to export to new working
domains, not requiring a previous preparation of the environment or a long, hard and
tedious configuration process. Most of the actual navigation systems propose “ad-hoc”
solutions that only can be applied in very specific conditions and environments. Besides,
they usually require an artificial preparation of the environment and are not capable of
automatically recover general localization failures.

In order to contribute to this research field, the Electronics Department of the
University of Alcala has been working on a robotic assistant called SIRA, within the
projects SIRAPEM (Spanish acronym of Robotic System for Elderly Assistance) and
SIMCA (Cooperative multi-robot assistance system). The main goal of these projects is
the development of robotic aids that serve primary functions of tele-presence, tele-
medicine, intelligent reminding, safeguarding, mobility assistance and social
interaction. Figure 1 shows a simplified diagram of the SIRAPEM global architecture,
based on a commercial platform (the PeopleBot robot of ActivMedia Robotics) endowed
with a differential drive system, encoders, bumpers, two sonar rings (high and low),
loudspeakers, microphone and on-board PC. The robot has been also provided with a
PTZ color camera, a tactile screen and wireless Ethernet link. The system architecture
includes several human-machine interaction systems, such as voice (synthesis and
recognition speech) and touch screen for simple command selection.
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Fig. 1. Global architecture of the SIRAPEM System

This chapter describes the navigation module of the SIRAPEM project, including
localization, planning and learning systems. A suitable framework to cope with all the
requirements of this application is Partially Observable Markov Decision Processes
(POMDPs). These models use probabilistic reasoning to deal with uncertainties, and a
topological representation of the environment to reduce memory and time requirements of
the algorithms. For the proposed global navigation system, in which the objective is the
guidance to a goal room and some low-level behaviors perform local navigation, a
topological discretization is appropriate to facilitate the planning and learning tasks.
POMDP models provide solutions to localization, planning and learning in the robotics
context, and have been used as probabilistic reasoning method in the three modules of the
navigation system of SIRA. The main contributions of the navigation architecture of SIRA,
regarding other similar ones (that we'll be referenced in next section), are the following:

e Addition of visual information to the Markov model, not only as observation, but
also for improving state transition detection. This visual information reduces
typical perceptual aliasing of proximity sensors, accelerating the process of global
localization when initial pose is unknown.
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¢ Development of a new planning architecture that selects actions to combine several
objectives, such as guidance to a goal room, localization to reduce uncertainty, and
environment exploration.

e Development of a new exploration and learning strategy that takes advantage of
human-machine interaction to robustly and quickly fast learn new working
environments.

The chapter is organized as follows. Section 2 places this work within the context of
previous similar ones. A brief overview of POMDPs foundations is presented as
background in section 3. Section 4 describes the proposed Markov model while section
5 shows the global architecture of the navigation system. The localization module is
described in section 6, the two layers of the planning system are shown in section 7 and
the learning and exploration module are explained in section 8. Finally, we show some
experimental results (section 9), whereas a final discussion and conclusion summarizes
the chapter (sections 10 and 11).

2. Related Previous Work

Markov models, and particularly POMDPs, have already been widely used in robotics, and
especially in robot navigation. The robots DERVISH (Nourbakhsh et al., 1995), developed in
the Stanford University, and Xavier (Koenig & Simmons, 1998), in the Carnegie Mellon
University, were the first robots successfully using this kind of navigation strategies for
localization and action planning. Other successful robots guided with POMDPs are those
proposed by (Zanichelli, 1999) or (Asoh et al., 1996). In the nursing applications field, in
which robots interact with people and uncertainty is pervasive, robots such as Flo (Roy et
al., 2000) or Pearl (Montemerlo et al., 2002) use POMDDPs at all levels of decision making,
and not only in low-level navigation routines.

However, in all these successful navigation systems, only proximity sensors are used to
perceive the environment. Due to the typical high perceptual aliasing of these sensors in
office environments, using only proximity sensors makes the Markov model highly non-
observable, and the initial global localization stage is rather slow.

On the other hand, there are quite a lot of recent works using appearance-based methods for
robot navigation with visual information. Some of these works, such as (Gechter et al., 2001)
and (Regini et al., 2002), incorporate POMDP models as a method for taking into account
previous state of the robot to evaluate its new pose, avoiding the teleportation phenomena.
However, these works are focused on visual algorithms, and very slightly integrate them
into a complete robot navigation architecture. So, the above referenced systems don’t
combine any other sensorial system, and use the POMDP only for localizing the robot, and
not for planning or exploring.

This work is a convergence point between these two research lines, proposing a complete
navigation architecture that adds visual information to proximity sensors to improve
previous navigation results, making more robust and faster the global localization task.
Furthermore, a new Markov model is proposed that better adapts to environment topology,
being completely integrated with a planning system that simultaneously contemplates
several navigation objectives.

Regarding the learning system, most of the related works need a previous “hand-made”
introduction of the Markov model of a new environment. Learning a POMDP involves two main
issues: (1) obtaining its topology (structure), and (2) adjusting the parameters (probabilities) of the
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model. The majority of the works deals with the last problem, using the well-known EM
algorithm to learn the parameters of a Markov model whose structure is known (Thrun et al,,
1998; Koenig and Simmons, 1996). However, because computational complexity of the learning
process increases exponentially as the number of states increases, these methods are still time
consuming and its working ability is limited to learn reduced environments. In this work, the
POMDP model can be easily obtained for new environments by means of human-robot
cooperation, being an optimal solution for assistant robots endowed with human-machine
interfaces. The topological representation of the environment is intuitive enough to be easily
defined by the designer. The uncertainties and observations that constitute the parameters of the
Markov model are learned by the robot using a modification of the EM algorithm that exploits
slight user supervision and topology constraints to highly reduce memory requirements and
computational cost of the standard EM algorithm.

3. POMDPs Review

Although there is a wide literature about POMDPs theory (Papadimitriou & Tsitsiklis, 1987;
Puterman, 1994; Kaelbling et al., 1996) in this section some terminology and main
foundations are briefly introduced as theoretical background of the proposed work.
A Markov Decision Process (MDP) is a model for sequential decision making, formally
defined as a tuple /S,A, T,R}, where,
e S isa finite set of states (s€S).
e A isafinite set of actions (1€A).
o T={p(s’|sa) V (s5'€S aeA)} is a state transition model which specifies a
conditional probability distribution of posterior state s’ given prior state s and
action executed a.
o R={r(sa) V (seS aecA)} is the reward function, that determines the immediate
utility (as a function of an objective) of executing action a at state s.
A MDP assumes the Markov property, which establishes that actual state and action are the
only information needed to predict next state:
p(sm | Sor80/Sys al""!stla() = p(SM | Sua() (1)
In a MDP, the actual state s is always known without uncertainty. So, planning in a MDP is
the problem of action selection as a function of the actual state (Howard, 1960). A MDP
solution is a policy a=7(s), which maps states into actions and so determines which action
must be executed at each state. An optimal policy a=7*(s) is that one that maximizes future
rewards. Finding optimal policies for MDPs is a well known problem in the artificial
intelligent field, to which several exact and approximate solutions (such as the “value
iteration” algorithm) have been proposed (Howard, 1960; Puterman, 1994).
Partially Observable Markov Decision Processes (POMDPs) are used under domains where
there is not certainty about the actual state of the system. Instead, the agent can do
observations and use them to compute a probabilistic distribution over all possible states.
So, a POMDP adds:
e O, afinite set of observations (0€O)
o ={p(o]|s) Vo0e0, seS} is an observation model which specifies a conditional
probability distribution over observations given the actual state s.
Because in this case the agent has not direct access to the current state, it uses actions and
observations to maintain a probability distribution over all possible states, known as the
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“belief distribution”, Bel(S). A POMDP is still a markovian process in terms of this
probability distribution, which only depends on the prior belief, prior action, and current
observation. This belief must be updated whenever a new action or perception is carried
out. When an action a is executed, the new probabilities become:

Belporir (8 =5) =K+ Tp(¥5,2): Belyioes)  Vs'e'S @

seS

where K is a normalization factor to ensure that the probabilities all sum one. When a sensor
report o is received, the probabilities become:

Belygyierion (S =5) =K - (0] 5) - Bel,yi0, (5) Vse S ®)

In a POMDP, a policy a=mBel) maps beliefs into actions. However, what in a MDP was a
discrete state space problem, now is a high-dimensional continuous space. Although there
are numerous studies about finding optimal policies in POMDPs (Cassandra, 1994;
Kaelbling et al.,1998), the size of state spaces and real-time constraints make them infeasible
to solve navigation problems in robotic contexts. This work uses an alternative approximate
solution for planning in POMDP-based navigation contexts, dividing the problem into two
layers and applying some heuristic strategies for action selection.

In the context of robot navigation, the states of the Markov model are the locations (or nodes) of a
topological representation of the environment. Actions are local navigation behaviors that the
robot can execute to move from one state to another, and observations are perceptions of the
environment that the robot can extract from its sensors. In this case, the Markov model is
partially observable because the robot may never know exactly which state it is in.

4. Markov Model for Global Navigation

A POMDP model for robot navigation is constructed from two sources of information: the
topology of the environment, and some experimental or learned information about action
and sensor errors and uncertainties.
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Fig. 2. Topological graph of an environment map.
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Taking into account that the final objective of the SIRAPEM navigation system is to direct
the robot from one room to another to perform guiding or service tasks, we discretize the
environment into coarse-grained regions (nodes) of variable size in accordance with the
topology of the environment, in order to make easier the planning task. As it's shown in
figure 2 for a virtual environment, only one node is assigned to each room, while the
corridor is discretized into thinner regions. The limits of these regions correspond to any
change in lateral features of the corridor (such as a new door, opening or piece of wall). This
is a suitable discretization method in this type of structured environments, since nodes are
directly related to topological locations in which the planning module may need to change
the commanded action.

4.1. The elements of the Markov model: states, actions and observations

States (S) of the Markov model are directly related to the nodes of the topological graph. A
single state corresponds to each room node, while four states are assigned to each corridor
node, one for each of the four orientations the robot can adopt.
The actions (A) selected to produce transitions from one state to another correspond to local
navigation behaviors of the robot. We assume imperfect actions, so the effect of an action
can be different of the expected one (this will be modeled by the transition model T). These
actions are:

(1) “Go out room” (ao): to traverse door using sonar an visual information in room

states,

(2) “Enter room” (ag): only defined in corridor states oriented to a door,

(3) “Turn right” (ar): to turn 90° to the right,

(4) “Turn Left” (ar): to turn 90° to the left,

(5) “Follow Corridor” (ag): to continue through the corridor to the next state, and

(6) “No Operation” (ano): used as a directive in the goal state.

Finally, the observations (O) in our model come from the two sensorial systems of the robot:
sonar and vision. Markov models provide a natural way to combine multisensorial
information, as it will be shown in section 4.2.1. In each state, the robot makes three kind of
observations:

(1) “Abstract Sonar Observation” (0aso). Each of the three nominal directions around the
robot (left, front and right) is classified as “free” or “occupied” using sonar
information, and an abstract observation is constructed from the combination of
the percepts in each direction (thus, there are eight possible abstract sonar
observations, as it's shown in figure 3.a).

(2) “Landmark Visual Observation” (oLvo). Doors are considered as natural visual
landmarks, because they exist in all indoor environments and can be easily
segmented from the image using color (previously trained) and some geometrical
restrictions. This observation is the number of doors (in lateral walls of the
corridor) extracted from the image (see figure 3.b), and it reduces the perceptual
aliasing of sonar by distinguishing states at the beginning from states at the end of
a corridor. However, in long corridors, doors far away from the robot can’t be
easily segmented from the image (this is the case of image 2 of figure 3.b), and this
is the reason because we introduce a third visual observation.

(3) “Depth Visual Observation” (opvo). As human-interaction robots have tall bodies
with the camera on the top, it’s possible to detect the vanishing ceiling lines, and
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classify its length into a set of discrete values (in this case, we use four

quantification levels, as it’s shown in figure 3.b). This is a less sensitive to noise

observation than using floor vanishing lines (mainly to occlusions due to people

walking through the corridor), and provides complementary information to orvo.
Figure 3.b shows two scenes of the same corridor from different positions, and their
corresponding orvo and opvo observations. It's shown that these are obtained by means of very
simple image processing techniques (color segmentation for orvo and edge detection for opvo),
and have the advantage, regarding correlation techniques used in (Gechter et al., 2001) or (Regini
etal, 2002), that they are less sensitive to slight pose deviations within the same node.
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Fig. 3. Observations of the proposed Markov model.

4.2. Visual information utility and improvements

Visual observations increase the robustness of the localization system by reducing
perceptual aliasing. On the other hand, visual information also improves state transition
detection, as it's shown in the following subsections.

4.2.1. Sensor fusion to improve observability

Using only sonar to perceive the environment makes the Markov model highly non-
observable due to perceptual aliasing. Furthermore, the “Abstract Sonar Observation” is
highly dependent on doors state (opened or closed). The addition of the visual
observations proposed in this work augments the observability of states. For example,
corridor states with an opened door on the left and a wall on the right produces the same
abstract sonar observation (0aso=1) independently if they are at the beginning or at the
end of the corridor. However, the number of doors seen from the current state (orvo)
allows to distinguish between these states.

POMDPs provide a natural way for using multisensorial fusion in their observation models
(p(o]s) probabilities). In this case, o is a vector composed by the three observations proposed
in the former subsection. Because these are independent observations, the observation
model can be simplified in the following way:

P(0])=P(0,450:0110,0p10 | 5) = P(0 450 | 5) P(Oy0 | ) POy | 5) (4)
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4.2.2. Visual information to improve state transition detection

To ensure that when the robot is in a corridor, it only adopts the four allowed directions
without large errors, it's necessary that, during the execution of a “Follow Corridor” action,
the robot becomes aligned with the corridor longitudinal axis. So, when the robot stands up
to a new corridor, it aligns itself with a subtask that uses visual vanishing points, and during
corridor following, it uses sonar buffers to detect the walls and construct a local model of
the corridor. Besides, an individual “Follow Corridor” action terminates when the robot
eaches a new state of the corridor. Detecting these transitions only with sonar readings is
very critical when doors are closed.

To solve this problem, we add visual information to detect door frames as natural
landmarks of state transitions (using color segmentation and some geometrical restrictions).
The advantage of this method is that the image processing step is fast and easy, being only
necessary to process two lateral windows of the image as it’s shown in figure 4.

Laterzl windows for transition detection

¥

Left frame detection

Image plana

Fig. 4. State transition detection by means of visual information.

Whenever a vertical transition from wall to door color (or vice versa) is detected in a lateral
window, the distance to travel as far as that new state is obtained from the following
formula, using a pin-hole model of the camera (see figure 4):

d=—L —k. ©)
tg(or)

where [ is the distance of the robot to the wall in the same side as the detected door frame
(obtained from sonar readings) and o is the visual angle of the door frame. As the detected
frame is always in the edge of the image, the visual angle o only depends on the focal
distance of the camera, that is constant for a fixed zoom (and known from camera
specifications). After covering distance d (measured with relative odometry readings), the
robot reaches the new state. This transition can be confirmed (fused) with sonar if the door
is opened. Another advantage of this transition detection approach is that no assumptions
are made about doors or corridor widths.
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4.3. Action and observation uncertainties

Besides the topology of the environment, it's necessary to define some action and
observation uncertainties to generate the final POMDP model (transition and observation
matrixes). A first way of defining these uncertainties is by introducing some experimental
“hand-made” rules (this method is used in (Koenig & Simmons, 1998) and (Zanichelli,
1999)). For example, if a “Follow” action (ar) is commanded, the expected probability of
making a state transition (F) is 70%, while there is a 10% probability of remaining in the
same state (N=no action), a 10% probability of making two successive state transitions (FF),
and a 10% probability of making three state transitions (FFF). Experience with this method
has shown it to produce reliable navigation. However, a limitation of this method is that
some uncertainties or parameters of the transition and observation models are not intuitive
for being estimated by the user. Besides, results are better when probabilities are learned to
more closely reflect the actual environment of the robot. So, our proposed learning module
adjusts observation and transition probabilities with real data during an initial exploration
stage, and maintains these parameters updated when the robot is performing another
guiding or service tasks. This module, that also makes easier the installation of the system in
new environments, is described in detail in section 8.

5. Navigation System Architecture

The problem of acting in partially observable environments can be decomposed into two
components: a state estimator, which takes as input the last belief state, the most recent
action and the most recent observation, and returns an updated belief state, and a policy,
which maps belief states into actions. In robotics context, the first component is robot
localization and the last one is task planning.

Figure 5 shows the global navigation architecture of the SIRAPEM project, formulated as a
POMDP model. At each process step, the planning module selects a new action as a command
for the local navigation module, that implements the actions of the POMDP as local navigation
behaviors. As a result, the robot modifies its state (location), and receives a new observation from
its sensorial systems. The last action executed, besides the new observation perceived, are used
by the localization module to update the belief distribution Bel(S).
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Fig. 5. Global architecture of the navigation system.
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After each state transition, and once updated the belief, the planning module chooses the next
action to execute. Instead of using an optimal POMDP policy (that involves high computational
times), this selection is simplified by dividing the planning module into two layers:

e A local policy, that assigns an optimal action to each individual state (as in the
MDP case). This assignment depends on the planning context. Three possible
contexts have been considered: (1) guiding (the objective is to reach a goal room
selected by the user to perform a service or guiding task), (2) localizing (the
objective is to reduce location uncertainty) and (3) exploring (the objective is to
learn or adjust observations and uncertainties of the Markov model).

e A global policy, that using the current belief and the local policy, selects the best action
by means of different heuristic strategies proposed by (Kaelbling et al., 1996).

This proposed two-layered planning architecture is able to combine several contexts of the
local policy to simultaneously integrate different planning objectives, as will be shown in
subsequent sections.

Finally, the learning module (Lopez et al., 2004) uses action and observation data to learn
and adjust the observations and uncertainties of the Markov model.

6. Localization and Uncertainty Evaluation

The localization module updates the belief distribution after each state transition, using the
well known Markov localization equations (2) and (3).

In the first execution step, the belief distribution can be initialized in one of the two following
ways: (a) If initial state of the robot is known, that state is assigned probability 1 and the rest 0, (b)
If initial state is unknown, a uniform distribution is calculated over all states.

Although the planning system chooses the action based on the entire belief distribution, in
some cases it’s necessary to evaluate the degree of uncertainty of that distribution (this is,
the locational uncertainty). A typical measure of discrete distributions uncertainty is the
entropy. The normalized entropy (ranging from 0 to 1) of the belief distribution is:

> Bel(s)- log(Bel(s))
H(Bel) = =5 ©)
log(n,)
where 1, is the number of states of the Markov model. The lower the value, the more certain
the distribution. This measure has been used in all previous robotic applications for
characterizing locational uncertainty (Kaelbling, 1996; Zanichelli, 1999).
However, this measure is not appropriate for detecting situations in which there are a few
maximums of similar value, being the rest of the elements zero, because it's detected as a
low entropy distribution. In fact, even being only two maximums, that is a not good result
for the localization module, because they can correspond to far locations in the environment.
A more suitable choice should be to use a least square measure respect to ideal delta
distribution, that better detects the convergence of the distribution to a unique maximum
(and so, that the robot is globally localized). However, we propose another approximate
measure that, providing similar results to least squares, is faster calculated by using only the
two first maximum values of the distribution (it's also less sensitive when uncertainty is
high, and more sensitive to secondary maximums during the tracking stage). This is the
normalized divergence factor, calculated in the following way:
1 (A + P )~ @)
2-n -1

D(Bel)=1-
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where d,.., is the difference between first and second maximum values of the distribution,
and pua the absolute value of the first maximum. Again, a high value indicates that the
distribution converges to a unique maximum. In the results section we’ll show that this new
measure provides much better results when planning in some kind of environments.

7. Planning under Uncertainty

A POMDP model is a MDP model with probabilistic observations. Finding optimal policies in the
MDP case (that is a discrete space model) is easy and quickly for even very large models.
However, in the POMDP case, finding optimal control strategies is computationally intractable for
all but the simplest environments, because the beliefs space is continuous and high-dimensional.
There are several recent works that use a hierarchical representation of the environment, with
different levels of resolution, to reduce the number of states that take part in the planning
algorithms (Theocharous & Mahadevan, 2002; Pineau & Thrun, 2002). However, these methods
need more complex perception algorithms to distinguish states at different levels of abstraction,
and so they need more prior knowledge about the environment and more complex learning
algorithms. On the other hand, there are also several recent approximate methods for solving
POMDPs, such as those that use a compressed belief distribution to accelerate algorithms (Roy,
2003) or the “point-based value iteration algorithm’ (Pineau et al., 2003) in which planning is
performed only on a sampled set of reachable belief points.

The solution adopted in this work is to divide the planning problem into two steps: the first
one finds an optimal local policy for the underlying MDP (a*=7*(s), or to simplify notation,
a*(s)), and the second one uses a number of simple heuristic strategies to select a final action
(2*(Bel)) as a function of the local policy and the belief. This structure is shown in figure 6
and described in subsequent subsections.

PLANNING SYSTEM

Action
BelS) _ [ Global POMDP on

» Policy a*(E;)
a*(s)

Context Selection
a*(s) ag*(s)

Guidance Localization
Context Context

k Local MDP Policies

Goal room

\ 4

a*(s)

Exploration
Context

Fig. 6. Planning system architecture, consisting of two layers: (1) Global POMDP policy and
(2) Local MDP policies.

7.1. Contexts and local policies

The objective of the local policy is to assign an optimal action (a%(s)) to each individual state
s. This assignment depends on the planning context. The use of several contexts allows the
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robot to simultaneously achieve several planning objectives. The localization and guidance
contexts try to simulate the optimal policy of a POMDP, which seamlessly integrates the two
concerns of acting in order to reduce uncertainty and to achieve a goal. The exploration
context is to select actions for learning the parameters of the Markov model.

In this subsection we show the three contexts separately. Later, they will be automatically
selected or combined by the ‘context selection” and ‘global policy’ modules (figure 6).

7.1.1. Guidance Context

This local policy is calculated whenever a new goal room is selected by the user. Its main objective
is to assign to each individual state s, an optimal action (ac*(s)) to guide the robot to the goal.

One of the most well known algorithms for finding optimal policies in MDPs is "value iteration’
(Bellman, 1957). This algorithm assigns an optimal action to each state when the reward function
r(s,a) is available. In this application, the information about the utility of actions for reaching the
destination room is contained in the graph. So, a simple path searching algorithm can effectively
solve the underlying MDP, without any intermediate reward function.

So, a modification of the A* search algorithm (Winston, 1984) is used to assign a preferred
heading to each node of the topological graph, based on minimizing the expected total
number of nodes to traverse (shorter distance criterion cannot be used because the graph
has not metric information). The modification of the algorithm consists of inverting the
search direction, because in this application there is not an initial node (only a destination
node). Figure 7 shows the resulting node directions for goal room 2 on the graph of
environment of figure 2.
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Fig. 7. Node directions for “Guidence” (to room 2) and “Localization” contexts for
environment of figure 2.

Later, an optimal action is assigned to the four states of each node in the following way: a “follow”
(aF) action is assigned to the state whose orientation is the same as the preferred heading of the
node, while the remaining states are assigned actions that will turn the robot towards that heading
(ar or ag). Finally, a “no operation” action (ano) is assigned to the goal room state.

Besides optimal actions, when a new goal room is selected, Q(s,a) values are assigned to
each (s,a) pair. In the MDPs theory, Q-values (Lovejoi, 1991) characterize the utility of
executing each action at each state, and will be used by one of the global heuristic policies
shown in next subsection. To simplify Q-values calculation, the following criterion has been
used: Q(s,a)=1 if action a is optimal at state s, Q(s,a)=-1 (negative utility) if actions a is not
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defined at state s, and Q(s,a)=-0.5 for the remaining cases (actions that disaligns the robot
from the preferred heading).

7.1.2. Localization Context

This policy is used to guide the robot to “Sensorial Relevant States” (SRSs) that reduce
positional uncertainty, even if that requires moving it away from the goal temporarily. This
planning objective was not considered in previous similar robots, such as DERVISH
(Nourbakhsh et al., 1995) or Xavier (Koenig & Simmons, 1998), or was implemented by
means of fixed sequences of movements (Cassandra, 1994) that don’t contemplate
environment relevant places to reduce uncertainty.
In an indoor environment, it’s usual to find different zones that produce not only the same
observations, but also the same sequence of observations as the robot traverses them by
executing the same actions (for example, symmetric corridors). SRSs are states that break a
sequence of observations that can be found in another zone of the graph.
Because a state can be reached from different paths and so, with different histories of
observations, SRSs are not characteristic states of the graph, but they depend on the starting
state of the robot. This means that each starting state has its own SRS. To simplify the
calculation of SRSs, and taking into account that the more informative states are those
aligned with corridors, it has been supposed that in the localization context the robot is
going to execute sequences of “follow corridor” actions. So, the moving direction along the
corridor to reach a SRS as soon as possible must be calculated for each state of each corridor.
To do this, the “Composed Observations” (COs) of these states are calculated from the
graph and the current observation model © in the following way:
CO(s) =100 0py5(S) +10 0,0 (S) + 0,50 (S)
®)
with 05,0 (s) = argmax(p(0opys |5) )
Opvo
Ouo(s) = arg max(p(owo | S) )
Owo
0,40 (5) = argmax(p(0s5 15) )
Oaso

Later, the nearest SRS for each node is calculated by studying the sequence of COs obtained
while moving in both corridor directions. Then, a preferred heading (among them that align
the robot with any connected corridor) is assigned to each node. This heading points at the
corridor direction that, by a sequence of “Follow Corridor” actions, directs the robot to the
nearest SRS (figure 7 shows the node directions obtained for environment of figure 2). And
finally, an optimal action is assigned to the four states of each corridor node to align the
robot with this preferred heading (as it was described in the guidance context section). The
optimal action assigned to room states is always “Go out room” (ao).

So, this policy (a*(s)) is only environment dependent and is automatically calculated from
the connections of the graph and the ideal observations of each state.

7.1.3. Exploration Context

The objective of this local policy is to select actions during the exploration stage, in order to
learn transition and observation probabilities. As in this stage the Markov model is
unknown (the belief can’t be calculated), there is not distinction between local and global
policies, whose common function is to select actions in a reactive way to explore the
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environment. As this context is strongly connected with the learning module, it will be
explained in section 8.

7.2. Global heuristic policies

The global policy combines the probabilities of each state to be the current state (belief
distribution Bel(S)) with the best action assigned to each state (local policy a*(s)) to select the
final action to execute, a*(Bel). Once selected the local policy context (for example guidance
context, a*(s)=ac*(s)), some heuristic strategies proposed by (Kaelbling et al., 1996) can be
used to do this final selection.

The simpler one is the “Most Likely State” (MLS) global policy that finds the state with the
highest probability and directly executes its local policy:

a,,s(Bel)=a* (arg max(Bel(s))) ©)

The “Voting” global policy first computes the “probability mass” of each action (V(a))
(probability of action a being optimal) according to the belief distribution, and then selects
the action that is most likely to be optimal (the one with highest probability mass):

V(a)= ZB@Z(S) Yae A

aror=a

(10)

a,,(Bel)=arg max(V(a))

vot

This method is less sensitive to locational uncertainty, because it takes into account all states,
not only the most probable one.
Finally, the Qupp global policy is a more refined version of the voting policy, in which the
votes of each state are apportioned among all actions according to their Q-values:

V(a) ;Bel(s) Q°(s) VaeA 1)
(Bel) =arg max(V(a))

A0upp

This is in contrast to the “winner take all” behavior of the voting method, taking into
account negative effect of actions.

Although there is some variability between these methods, for the most part all of them do
well when initial state of the robot is known, and only the tracking problem is present. If
initial state is unknown, the performance of the methods highly depends on particular
configuration of starting states. However, MLS or Qwmpp global policies may cycle through
the same set of actions without progressing to the goal when only guidance context is used.
Properly combination of guidance and localization context highly improves the performance
of these methods during global localization stage.

7.3. Automatic context selection or combination

Apart from the exploration context, this section considers the automatic context selection
(see figure 6) as a function of the locational uncertainty. When uncertainty is high,
localization context is useful to gather information, while with low uncertainty, guidance
context is the appropriate one. In some cases, however, there is benign high uncertainty in
the belief state; that is, there is confusion among states that requires the same action. In these
cases, it's not necessary to commute to localization context. So, an appropriate measure of
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uncertainty is the “normalized divergence factor” of the probability mass distribution,
D(V(a)), (see eq. 7).

The “thresholding-method” for context selection uses a threshold ¢ for the divergence factor
D. Only when divergence is over that threshold (high uncertainty), localization context is
used as local policy:

a+(s)=]9e ) I D<o (12)
a,(s) si D260

However, the “weighting-method” combines both contexts using divergence as weighting factor.
To do this, probability mass distributions for guidance and localization contexts (Vg(a) and Vi(a))
are computed separately, and the weighted combined to obtain the final probability mass V(a). As
in the voting method, the action selected is the one with highest probability mass:

V(a)=(1-D)-V,(a)+D -V, (s) (13)
a* (Bel) = argmax(V (a))

8. Learning the Markov Model of a New Environment

The POMDP model of a new environment is constructed from two sources of information:

e The topology of the environment, represented as a graph with nodes and
connections. This graph fixes the states (s € S) of the model, and establishes the
ideal transitions among them by means of logical connectivity rules.

e An uncertainty model, that characterizes the errors or ambiguities of actions and
observations, and together with the graph, makes possible to generate the
transition T and observation ¢ matrixes of the POMDP.

Taking into account that a reliable graph is crucial for the localization and planning systems to
work properly, and the topological representation proposed in this work is very close to human
environment perception, we propose a manual introduction of the graph. To do this, the
SIRAPEM system incorporates an application to help the user to introduce the graph of the
environment (this step is needed only once when the robot is installed in a new working domain,
because the graph is a static representation of the environment).

GRAPH DEFINITION

AHHERE KN H T AT,

Total number of nodes: 32
Humber of rooms: 14
Labels of rcoms: ROOM 0 (node 0) : “dinning rocm A"
ROOM 1 (node 1) : “gymnasium”
ROOM 13 ({node 13): "bedroom 1017
Connections (c=ceorrider, w=wall, r=rcom)
HODE 14: Right: cl5
Up: W
Left: rl
Down W
NODE 33: Right: c3Z
Up: W
Left: ro
Down: W

Fig. 8. Example of graph definition for the environment of Fig. 2.
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After numbering the nodes of the graph (the only condition to do this is to assign the lower
numbers to room nodes, starting with 0), the connections in the four directions of each corridor
node must be indicated. Figure 8 shows an example of the “Graph definition” application (for the
environment of figure 2), that also allows to associate a label to each room. These labels will be
identified by the voice recognition interface and used as user commands to indicate goal rooms.
Once defined the graph, the objective of the learning module is to adjust the parameters
of the POMDP model (entries of transition and observation matrixes). Figure 9 shows
the steps involved in the POMDP generation of a new working environment. The graph
introduced by the designer, together with some predefined initial uncertainty rules are
used to generate an initial POMDP. This initial POMDP, described in next subsection,
provides enough information for corridor navigation during an exploration stage,
whose objective is to collect data in an optimum manner to adjust the settable
parameters with minimum memory requirements and ensuring a reliable convergence
of the model to fit real environment data (this is the “active learning” stage). Besides,
during normal working of the navigation system (performing guiding tasks), the
learning module carries on working (“passive learning” stage), collecting actions and
observations to maintain the parameters updated in the face of possible changes.

DESIGNER

,

Topological graph Initial
definition Uncertainty Rules

Initial POMDP
compilation

Active Learning
(EXPLORATION)

Parameter fitting

Parameter fitting

Usual working mode

(guidance to Passive Learning

goal rooms)

Fig.9. Steps for the introduction and learning of the Markov model of a new environment.

8.1. Settable parameters and initial POMDP compilation

A method used to reduce the amount of training data needed for convergence of the EM
algorithm is to limit the number of model parameters to be learned. There are two reasons
because some parameters can be excluded off the training process:
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e Some parameters are only robot dependent, and don’t change from one
environment to another. Examples of this case are the errors in turn actions (that
are nearly deterministic due to the accuracy of odometry sensors in short turns), or
errors of sonars detecting “free” when “occupied” or vice versa.

e Other parameters directly depend on the graph and some general uncertainty rules,
being possible to learn the general rules instead of its individual entries in the model
matrixes. This means that the learning method constrains some probabilities to be
identical, and updates a probability using all the information that applies to any
probability in its class. For example, the probability of losing a transition while
following a corridor can be supposed to be identical for all states in the corridor, being
possible to learn the general probability instead of the particular ones.

Taking these properties into account, table 1 shows the uncertainty rules used to generate
the initial POMDP in the SIRAPEM system.

TRANSITION MODEL UNCERTAINTIES
{F=Follow, L=Left, R=Right, O=0ut, E=Enter,N=Na action)

Command Effect of Command (%o probabilities)
ar N=10| F=70 | FF =10 |FFF=10
3 N=5 L=2] LL =5
ar MN=5 R =50 RR=75
o N=5 0 =85 OF = 10
2 N=10 E=00

DBSERVATION MODEL UNCERTAINTIES

ASD Model

Cpen door probabitty (for all dears) e
Prob, of detecting somsthing being nothing 10 %
Prob. of detecting nothing being something 5%
LVO Model

Foom states Uniform distribution over

aun={0.1.2}
Coridar states perpendicular to conidor | Uniform distribution over

direction and oriented to a door

owp={0,1,2}

Corridor states cerpendicular to corridor
direction and orient=d wo & wall

Uniform distribution
OVET Dy ={0,1}

Comidor states aligned with corridor
direction

Uniform distribution

aver oy,
DVO Model
Room states Delta distribution

in opuo=0

Corridor states perpendicular to conidor Delta distribution
direction in Opyn=0
Cormridor states aligned with corridar Uniform distribution
direction oWET Opun

Table 1. Predefined uncertainty rules for constructing the initial POMDP model.

Figure 10 shows the process of initial POMDP compilation. Firstly, the compiler
automatically assigns a number (ns) to each state of the graph as a function of the number of
the node to which it belongs (n) and its orientation within the node (head={0(right), 1(up),
2(left), 3(down)}) in the following way (n_rooms being the number of room nodes):
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Room states: ns=n
Corridor states: ns=n_rooms+(n-n_rooms)*4+head

POMDP COMPILER
Topological
gragh
States assignment T S
> Transition model .~
Predefined generation > T
uncertainty rules
—*  Obsarvation madal 9
» genaration =
X a,=Go Dut Reom X ar=Enter Room . ar=Follow Corridor
S"olzsass?a 5"'01234 56 7 8 . 55...22212425152?2529._.
ofs 0 0 0 O OO O D .
i(o 5 00 0 2 0 0 0 16|90 0 0 0 O 0 O O O 22 0 0 0 70 0 O
2|0 05000000 i7|0 0 0 0 0 0 000 23 o0 000 Q0O
3000 50 OO0O0O0 180 0 0 0 O O O O O 24 0 0 o000 0
4(0 000 & Q0000 190 %0 0 0 © 0 0O O O 25/.. 2 0 0O O O O O O
5|0 00005000 /(000000000 26 000 010 0O 0
6(0 0 0 0O D OOS5 O O 2110 D 0O 0O O O O O O 27 o 0000000
(o000 O O OG5 D 2210200 02 0 OO0 D 28 0 07 00 010
g(o 000 ODOOTOD0S 230 D 0O 0O O O O O O 29 o 00000 TO0TUD
a.=Turm Left . ax=Turn Right
A $ . 1415 16 17 18 19 20 21 .. . F . 1415 16 17 18 19 20 21 ..
14 59 5 00000 14 50 590000
15 O 5% 5 0000 15 90 5 0 5 0 0 0 0
16 E 0 5%0000 i6 55 00000
17w 59 5 0 5 0 0 0 D . 1¥l.. 0 5 % 5 0 0 0 0 .
18 00005 5%G50D 18 o005 0 5 50
19 00 O0O0O0OS535E 13 0 0 0 0% 5 0 5
0 00005 O 5 50 20 00005 %50
21 O 000059505 21 o000 5 95
as0 plowso |5) wo plocves) ovo ploovols)
s o1 2 3 4 5 6 7 s 01 2 3 4 5 6 5 o1 2 3
140 4 0 0 4 8 0 9 14|15 16 16 16 16 16 160 14|25 25 25 25
15/2 0 42 4 2 0 46 4 15(s0s0 00 0 O O 15100 0 o
160 2 0 2 2 43 2 40 16|16 16 16 16 16 16 160 1625 25 25 25
17(2 2 424 0 0 4 4 17(33 33 33 0 0 0 O 17|1000 0 O
18/2 42 0 4 2 46 0 4 18[16 15 16 16 16 16 160 18|25 25 25 25
19(40 4 44 4 4 0 4 0 19(33033 33 0 0 0 O 191000 0 0
2002 2 0 0 42 46 4 4 20|16 16 16 16 16 16 160 20|25 25 25 25
21|14 0782 9 0 0 9 0 21|50 50 0 0 0 0 O 21(1000 0 O

Fig. 10. Initial POMDP compilation, and structure of the resulting transition and observation
matrixes. Parameters over gray background will be adjusted by the learning system.
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Finally, the compiler generates the initial transition and observation matrixes using the
predefined uncertainty rules. Settable parameters are shown over gray background in figure
10, while the rest of them will be excluded of the training process. The choice of settable
parameters is justified in the following way:

e Transition probabilities. Uncertainties for actions “Turn Left” (ar), “Turn Right” (ar),
“Go out room” (ap) and “Enter room” (ag) depends on odometry and the developed
algorithms, and can be considered environment independent. However, the “Follow
corridor” (ar) action highly depends on the ability of the vision system to segment
doors color, that can change from one environment to another. As a pessimistic
initialization rule, we use a 70% probability of making the ideal “follow” transition
(F), and 10% probabilities for autotransition (N), and two (FF) or three (FFF)
successive transitions, while the rest of possibilities are 0. However, these
probabilities will be adjusted by the learning system to better fit real environment
conditions. In this case, instead of learning each individual transition probability, the
general rule (values for N, F, FF and FFF) will be trained (so, transitions that initially
are 0 will be kept unchanged). The new learned values are used to recompile the
rows of the transition matrix corresponding to corridor states aligned with corridor
directions (the only ones in which the “Follow Corridor” action is defined).

e  Observation probabilities. The Abstract Sonar Observation can be derived from the
graph, the state of doors, and a model of the sonar sensor characterizing its
probability of perceiving “occupied” when “free” or vice versa. The last one is no
environment dependent, and the state of doors can change with high frequency.
So, the initial model contemplates a 50% probability for states “closed” and
“opened” of all doors. During the learning process, states containing doors will be
updated to provide the system with some memory about past state of doors.
Regarding the visual observations, it's obvious that they are not intuitive for being
predefined by the user or deduced from the graph. So, in corridor states aligned
with corridor direction, the initial model for both visual observations consists of a
uniform distribution, and the probabilities will be later learned from robot
experience during corridor following in the exploration stage.

As a resume, the parameters to be adjusted by the learning system are:

e The general rules N, F, FF and FFF for the “Follow Corridor” action. Their initial
values are shown in table L.

e the probabilities for the Abstract Sonar Observation of corridor states in which there is a
door in left, right or front directions (to endow the system with some memory about
past door states, improving the localization system results). Initially, it's supposed a
50% probability for “opened” and “closed” states. In this case, the adjustment will use a
low gain because the state of doors can change with high frequency.

e The probabilities for the Landmark Visual Observation and Deep Visual
Observation of corridor states aligned with corridor direction, that are initialized as
uniform distributions.

8.2. Training data collection

Learning Markov models of partially observable environments is a hard problem, because it
involves inferring the hidden state at each step from observations, as well as estimating the
transition and observation models, while these two procedures are mutually dependent.
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The EM algorithm (in Hidden Markov Models context known as Baum-Welch algorithm) is
an expectation-maximization algorithm for learning the parameters (entries of the transition
and observation probabilistic models) of a POMDP from observations (Bilmes, 1997). The
input for applying this method is an execution trace, containing the sequence of actions-
observations executed and collected by the robot at each execution step t=1...T (T is the total
number of steps of the execution trace):

trace=[0,,a,,0,,a,,...,0,,@,,..-/07,,3r,,0; | (14)

The EM algorithm is a hill-climbing process that iteratively alternates two steps to converge
to a POMDP that locally best fits the trace. In the E-Step (expectation step), probabilistic
estimates for the robot states (locations) at the various time steps are estimated based on the
currently available POMDP parameters (in the first iteration, they can be uniform matrixes).
In the M-Step (maximization step), the maximum likelihood parameters are estimated based
on the states computed in the E-step. Iterative application of both steps leads to a refinement
of both, state estimation, and POMDP parameters.

The limitations of the standard EM algorithm are well known. One of them is that it converges to a
local optimum, and so, the initial POMDP parameters have some influence on the final learned
POMDP. But the main disadvantage of this algorithm is that it requires a large amount of training
data. As the degrees of freedom (settable parameters) increase, so does the need for training data.
Besides, in order to the algorithm to converge properly, and taking into account that EM is in
essence a frequency-counting method, the robot needs to traverse several times de whole
environment to obtain the training data. Given the relative slow speed at which mobile robots can
move, it's desirable that the learning method learns good POMDP models with as few corridor
traversals as possible. There are some works proposing alternative approximations of the
algorithm to lighten this problem, such as (Koening & Simmons, 1996) or (Liu et al., 2001). We
propose a new method that takes advantage of human-robot interfaces of assistant robots and the
specific structure of the POMDP model to reduce the amount of data needed for convergence.

To reduce the memory requirements, we take advantage of the strong topological
restrictions of our POMDP model in two ways:

e All the parameters to be learned (justified in the last subsection) can be obtained
during corridor following by sequences of “Follow Corridor” actions. So, it’s not
necessary to alternate other actions in the execution traces, apart from turn actions
needed to start the exploration of a new corridor (that in any case will be excluded
off the execution trace).

e States corresponding to different corridors (and different directions within the
same corridor) can be broken up from the global POMDP to obtain reduced sub-
POMDPs. So, a different execution trace will be obtained for each corridor and each
direction, and only the sub-POMDP corresponding to the involved states will be
used to calculate de EM algorithm, reducing in this way the memory requirements.

As it was shown in figure 9, there are two learning modes, that also differ in the way in
which data is collected: the active learning mode during an initial exploration stage, and the
passive learning mode during normal working of the navigation system.
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8.2.1. Supervised active learning. Corridors exploration

The objective of this exploration stage is to obtain training data in an optimized way to
facilitate the initial adjustment of POMDP parameters, reducing the amount of data of
execution traces, and the number of corridor traversals needed for convergence. The
distinctive features of this exploration process are:

e The objective of the robot is to explore (active learning), and so, it independently
moves up and down each corridor, collecting a different execution trace for each
direction. Each corridor is traversed the number of times needed for the proper
convergence of the EM algorithm (in the results section it will be demonstrated that
the number of needed traversals ranges from 3 to 5).

e We introduce some user supervision in this stage, to ensure and accelerate
convergence with a low number of corridor traversals. This supervision can be
carried out by a non expert user, because it consists in answering some questions
the robot formulates during corridor exploration, using the speech system of the
robot. To start the exploration, the robot must be placed in any room of the corridor
to be explored, whose label must be indicated with a talk as the following:

Robot: I'm going to start the exploration. ; Which is the initial room?
Supervisor: dinning room A

Robot: Am I in dinning room A?

Supervisor: yes

With this information, the robot initializes its belief Bel(S) as a delta distribution centered in
the known initial state. As the initial room is known, states corresponding to the corridor to
be explored can be extracted from the graph, and broken up from the general POMDP as its
shown in figure 11. After executing an “Out Room” action, the robot starts going up and
down the corridor, collecting the sequences of observations for each direction in two
independent traces (trace 1 and trace 2 of figure 11). Taking advantage of the speech system,
some “certainty points” (CPs) are introduced in the traces, corresponding to initial and final
states of each corridor direction. To obtain these CPs, the robot asks the user “Is this the end
state of the corridor?” when the belief of that final state is higher than a threshold (we use a
value of 0.4). If the answer is “yes”, a CP is introduced in the trace (flag cp=1 in figure 11),
the robot executes two successive turns to change direction, and introduces a new CP
corresponding to the initial state of the opposite direction. If the answer is “no”, the robot
continues executing “Follow Corridor” actions. This process is repeated until traversing the
corridor a predefined number of times.

Figure 11 shows an example of exploration of the upper horizontal corridor of the
environment of figure 2, with the robot initially in room 13. As it's shown, an
independent trace is stored for each corridor direction, containing a header with the
number of real states contained in the corridor, its numeration in the global POMDP,
and the total number execution steps of the trace. The trace stores, for each execution
step, the reading values of ASO, LVO and DVO, the “cp” flag indicating CPs, and their
corresponding “known states”. These traces are the inputs for the EM-CBP algorithm
shown in the next subsection.
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Fig. 11. Example of exploration of one of the corridors of the environment of figure 2
(involved nodes, states of the two execution traces, and stored data).

8.2.2. Unsupervised passive learning

The objective of the passive learning is to keep POMDP parameters updated during the
normal working of the navigation system. These parameters can change, mainly the state of
doors (that affects the Abstract Sonar Observation), or the lighting conditions (that can
modify the visual observations or the uncertainties of “Follow Corridor” actions). Because
during the normal working of the system (passive learning), actions are not selected to
optimize execution traces (but to guide the robot to goal rooms), the standard EM algorithm
must be applied. Execution traces are obtained by storing sequences of actions and
observations during the navigation from one room to another. Because they usually
correspond to only one traversal of the route, sensitivity of the learning algorithm must be
lower in this passive stage, as it’s explained in the next subsection.
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Fig. 12. Extraction of the local POMDP corresponding to one direction of the corridor to be
explored.

8.3. The EM-CBP Algorithm

The EM with Certainty Break Points (EM-CBP) algorithm proposed in this section can be
applied only in the active exploration stage, with the optimized execution traces. In this
learning mode, an execution trace corresponds to one of the directions of a corridor, and
involves only “Follow Corridor” actions.

The first step to apply the EM-CBP to a trace is to extract the local POMDP corresponding to
the corridor direction from the global POMDDP, as it’s shown in figure 12. To do this, states
are renumbering from 0 to n-1 (n being the number of real states of the local POMDP). The
local transition model T; contains only the matrix corresponding to the “Follow Corridor”
action (probabilities p(s’|s,ar), whose size for the local POMDP is (n-1)x(n-1), and can be
constructed from the current values of N, F, FF and FFF uncertainty rules (see figure 12).
The local observation model ¥ also contains only the involved states, extracted from the
global POMDP, as it’s shown in figure 12.
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The main distinguishing feature of the EM with Certainty Break Points algorithm is that it
inserts delta distributions in alfa and beta (and so, gamma) distributions of the standard EM
algorithm, corresponding to time steps with certainty points. This makes the algorithm to
converge in a more reliable and fast way with shorter execution traces (and so, less corridor
traversals) than the standard EM algorithm, as will be demonstrate in the results section.
Figure 13 shows the pseudocode of the EM-CBP algorithm. The expectation and
maximization steps are iterated until convergence of the estimated parameters. The
stopping criteria is that all the settable parameters remain stable between iterations (with
probability changes lower than 0.05 in our experiments).

The update equations shown in figure 13 (items 2.4 and 2.5) differ from the standard EM in
that they use Baye’s rule (Dirichlet distributions) instead of frequencies. This is because,
although both methods produce asymptotically the same results for long execution traces,
frequency-based estimates are not very reliable if the sample size is small. So, we use the
factor K (K>0) to indicate the confidence in the initial probabilities (the higher the value, the
higher the confidence, and so, the lower the variations in the parameters). The original re-
estimation formulas are a special case with K=0. Similarly, leaving the transition
probabilities unchanged is a special case with K—eo.
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Fig. 13. Pseudocode of the EM-CBP algorithm.
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In practice, we use different values of K for the different settable parameters. For example,
as visual observations are uniformly initialized, we use K=0 (or low values) to allow
convergence with a low number of iterations. However, the adjustment of Abstract Sonar
Observations corresponding to states with doors must be less sensitive (we use K=100),
because the state of doors can easily change, and all the probabilities must be contemplated
with relative high probability. During passive learning we also use a high value of K
(K=500), because in this case the execution traces contain only one traversal of the route, and
some confidence about previous values must be admitted.

The final step of the EM-CBP algorithm is to return the adjusted parameters from the local
POMDP to the global one. This is carried out by simple replacing the involved rows of the
global POMDP with their corresponding rows of the learned local POMDP.

9. Results

To validate the proposed navigation system and test the effect of the different involved
parameters, some experimental results are shown. Because some statistics must be extracted and
it's also necessary to validate the methods in real robotic platforms and environments, two kind of
experiments are shown. Firstly, we show some results obtained with a simulator of the robot in
the virtual environment of figure 2, in order to extract some statistics without making long tests
with the real robotic platform. Finally, we’ll show some experiments carried out with the real
robot of the SIRAPEM project in one of the corridors of the Electronics Department.

9.1. Simulation results

The simulation platform used in these experiments (figure 14) is based on “Saphira” commercial
software (Konolige & Myers, 1998) provided by ActivMedia Robotics, that includes a very realistic
robot simulator, that very closely reproduces real robot movements and ultrasound noisy
measures on a user defined map. A visual 3D simulator using OpenGL software has been added
to incorporate visual observations. Besides, to test the algorithms in extreme situations, we have
incorporated to the simulator some methods to increase the non-ideal effect of actions, and noise
in observations (indeed, these are higher that in real environment tests). So, simulation results can
be reliably extrapolated to extract realistic conclusions about the system.
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There are some things that make one world more difficult to navigate than another. One of them
is its degree of perceptual aliasing, that substantially affects the agent’s ability for localization and
planning. The localization and two-layered planning architecture proposed in this work
improves the robustness of the system in typical “aliased” environments, by properly combining
two planning contexts: guidance and localization. As an example to demonstrate this, we use the
virtual aliased environment shown in figure 2, in which there are two identical corridors. Firstly,
we show some results about the learning system, then some results concerning only the
localization system are shown and finally we include the planning module in some guidance
experiments to compare the different planning strategies.

9.1.1. Learning results

The objective of the first simulation experiment is to learn the Markov model of the sub-
POMDP corresponding to the upper horizontal corridor of the environment of figure 2,
going from left to right (so, using only the trace 1 of the corridor). Although the global graph
yields a POMDP with 94 states, the local POMDP corresponding to states for one direction
of that corridor has 7 states (renumbered from 0 to 6), and so, the sizes of the local matrixes
are: 7x7 for the transition matrix p(s’|s,ar), 7x4 for the Deep Visual Observation matrix
p(opvo|s), and 7x8 for the Abstract Sonar Observation matrix p(oaso|s). The Landmark
Visual Observation has been excluded off the simulation experiments to avoid overloading
the results, providing similar results to the Deep Visual Observation. In all cases, the initial
POMDP was obtained using the predefined uncertainty rules of table 1. The simulator
establishes that the “ideal” model (the learned model should converge to it) is that shown in
table 2. It shows the “ideal” D.V.O. and A.S.O. for each local state (A.S.O. depends on doors
states), and the simulated non-ideal effect of “Follow Corridor” action, determined by
uncertainty rules N=10%, F=80%, FF=5% and FFF=5%.

we | QPOHOAHEHE®
DVO: 4 4 3 3 2 1 1
ASO:; 5 51 54 5 |5,140, 5 2,0

Follow Corridor rules: N=10%, F=80%, FF=5%, FFF=5%

Table 2. Ideal local model to be learned for upper horizontal corridor of figure 2.

In the first experiment, we use the proposed EM-CBP algorithm to simultaneously learn the
“follow corridor” transition rules, D.V.O. observations, and A.S.O. observations (all doors
were closed in this experiment, being the worst case, because the A.S.O doesn’t provide
information for localization during corridor following). The corridor was traversed 5 times
to obtain the execution trace, that contains a CP at each initial and final state of the corridor,
obtained by user supervision. Figure 15 shows the learned model, that properly fits the ideal
parameters of table 2. Because K is large for A.S.O. probabilities adjustment, the learned
model still contemplates the probability of doors being opened. The graph on the right of
figure 15 shows a comparison between the real states that the robot traversed to obtain the
execution trace, and the estimated states using the learned model, showing that the model
properly fits the execution trace.

Figure 16 shows the same results using the standard EM algorithm, without certainty
points. All the conditions are identical to the last experiment, but the execution trace was
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obtained by traversing the corridor 5 times with different and unknown initial and final
positions. It's shown that the learned model is much worse, and its ability to describe the
execution trace is much lower.
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Fig. 16. Learned model for upper corridor of figure 2 using the standard EM algorithm.

Table 3 shows some statistical results (each experiment was repeated ten times) about the
effect of the number of corridor traversals contained in the execution trace, and the state of
doors, using the EM-CBP and the standard EM algorithms. Although there are several
measures to determine how well the learning method converges, in this table we show the
percentage of faults in estimating the states of the execution trace. Opened doors clearly
improve the learned model, because they provide very useful information to estimate states
in the expectation step of the algorithm (so, it's a good choice to open all doors during the
active exploration stage). As it's shown, using the EM-CBP method with all doors opened
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provides very good models even with only one corridor traversal. With closed doors, the
EM-CBP needs between 3 and 5 traversals to obtain good models, while standard EM needs
around 10 to produce similar results. In our experiments, we tested that the number of
iterations for convergence of the algorithm is independent of all these conditions (number of
corridor traversals, state of doors, etc.), ranging from 7 to 12.

EM-CBP Standard EM

N° of corridor All doors All doors All doors All doors
traversals closed opened closed opened

1 37.6 % 6.0 % 57.0 % 10.2 %

2 19.5 % 0.6 % 33.8 % 52 %

3 13.7 % 0.5 % 322 % 0.8 %

5 129 % 0.0 % 23.9 % 0.1 %

10 6.7 % 0.0 % 12.6 % 0.0 %

Table 3. Statistical results about the effect of corridor traversals and state of doors.

9.1.2. Localization results

Two are the main contributions of this work to Markov localization in POMDP navigation
systems. The first one is the addition of visual information to accelerate the global localization
stage from unknown initial position, and the second one is the usage of a novel measure to better
characterize locational uncertainty. To demonstrate them, we executed the trajectory shown in
figure 17.a, in which the “execution steps” of the POMDP process are numbered from 0 to 11. The
robot was initially at node 14 (with unknown initial position), and a number of “Follow corridor”
actions were executed to reach the end of the corridor, then it executes a “Turn Left” action and
continues through the new corridor until reaching room 3 door.

In the first experiments, all doors were opened, ensuring a good transition detection. This is the
best assumption for only sonar operation. Two simulations were executed in this case: the first one
using only sonar information for transition detection and observation, and the second one adding
visual information. As the initial belief is uniform, and there is an identical corridor to that in
which the robot is, the belief must converge to two maximum hypotheses, one for each corridor.
Only when the robot reaches node 20 (that is an SRS) is possible to eliminate this locational
uncertainty, appearing a unique maximum in the distribution, and starting the “tracking stage”.
Figure 17.b shows the real state assigned probability evolution during execution steps for the two
experiments. Until step 5 there are no information to distinguish corridors, but it can be seen that
with visual information the robot is better and sooner localized within the corridor. Figure 17.c
shows entropy and divergence of both experiments. Both measures detect a lower uncertainty
with visual information, but it can be seen that divergence better characterizes the convergence to
a unique maximum, and so, the end of the global localization stage. So, with divergence it's easier
to establish a threshold to distinguish “global localization” and “tracking” stages.

Figures 17.d and 17.e show the results of two new simulations in which doors 13, 2 and 4
were closed. Figure 17.d shows how using only sonar information some transitions are lost
(the robots skips positions 3 , 9 and 10 of figure 17.a). This makes much worse the
localization results. However, adding visual information no transitions are lost, and results
are very similar to that of figure 17.b.

So, visual information makes the localization more robust, reducing perceptual aliasing of
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states in the same corridor, and more independent of doors state. Besides, the proposed
divergence uncertainty measure better characterizes the positional uncertainty that the
typical entropy used in previous works.
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9.1.3. Planning Results

The two layered planning architecture proposed in this work improves the robustness of the
system in “aliased” environments, by properly combining the two planning contexts: guidance
and localization. To demonstrate this, we show the results after executing some simulations in the
same fictitious environment of figure 17.a. In all the experiments the robot was initially at room
state 0, and the commanded goal room state was 2. However, the only initial knowledge of the
robot about its position is that it’s a room state ( initial belief is a uniform distribution over room
states). So, after the “go out room” action execution, and thanks to the visual observations, the
robot quickly localizes itself within the corridor, but due to the environment aliasing, it doesn’t
know in which corridor it is. So, it should use the localization context to reach nodes 20 or 27 of
figure 2, that are sensorial relevant nodes to reduce uncertainty.

ONLY GUIDANCE CONTEXT
N° Actions Final H Final D Final State 2
MLS 6 0.351 0.754 54.3%
Voting 17 0.151 0.098 63.8%
Qwmpr 15 0.13 0.095 62.3%
GUIDANCE AND LOCALIZATION CONTEXTS (always with voting global method)
N° Actions Final H Final D Final State 2
H(V(a)) threshold 14 0.13 0.05 83.5%
D(V(a)) threshold 13 0.12 0.04 100%
Weighted D(V(a)) 13 0.12 0.04 100%

Table 4. Comparison of the planning strategies in the virtual environment of figure 17.a.

Table 4 shows some statistical results (average number of actions to reach the goal, final
values of entropy and divergence and skill percentage on reaching the correct room) after
repeating each experiment a number of times. Methods combining guidance and
localization contexts are clearly better, because they direct the robot to node 20 before acting
to reach the destination, eliminating location uncertainty, whereas using only guidance
context has a unpredictable final state between rooms 2 and 11. On the other hand, using the
divergence factor proposed in this work, instead of entropy, improves the probability of
reaching the correct final state, because it better detects the convergence to a unique
maximum (global localization).

9.2. Real robot results

To validate the navigation system in larger corridors and real conditions, we show the results
obtained with SIRA navigating in one of the corridors of the Electronics Department of the
University of Alcala. Figure 19 shows the corridor map and its corresponding graph with 71 states.
The first step to install the robot in this environment was to introduce the graph and explore
the corridor to learn the Markov model. The local POMDP of each corridor direction
contains 15 states. To accelerate convergence, all doors were kept opened during the active
exploration stage. We evaluated several POMDP models, obtained in different ways:

e The initial model generated by the POMDP compiler, in which visual observations

of corridor aligned states are initialized with uniform distributions.
e A “hand-made” model, in which visual observations were manually obtained
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(placing the robot in the different states and reading the observations).
e Several learned POMDP models (using the EM-CBP algorithm), with different
number of corridor traversals (from one to nine) during exploration.

Two “evaluation trajectories” were executed using these different models to localize the robot. In
the first one, the robot crossed the corridor with unknown initial position and all doors opened, and
in the second one, all doors were closed. The localization system was able to global localize the
robot in less than 5 execution steps in both cases with all models. However, the uncertainty of the
belief distribution was higher with worse models. Figure 18 shows the mean entropy of the belief
distribution for all the evaluation trajectories. The “initial POMDP model” is the worst, because it
doesn’t incorporate information about visual observations. The learned model with one corridor
traversal is not better that the “hand-made” one, but from two traversals, the obtained entropy and
easy installation justifies the usage of the learning module. It can also be deduced that a good
number of corridor traversals ranges from 2 to 4 in this case, because later adjustments of the model
can be carried out during “active exploration”. Because all doors were opened during exploration,
as the number of corridor traversals increases, so does the evidence about opened doors in the
model and so, the uncertainty in the “evaluation trajectory” with opened doors decreases, while in
that with closed doors increases. So, the model adapts this kind of environment changes.
The time required for exploring one corridor with three traversals was about 5 minutes
(with a medium speed of 0.3 m/s). The computation time of the EM-CBP algorithm, using
the onboard PC of the robot (a 850MHz Pentium III) was 62 ms. These times are much lower
that the ones obtained in Thrun’s work (Thrun et al., 1998 b), in which for learning a metric
map of an environment of 60x60 meters (18 times larger than our corridor), an exploration
time of 15 minutes and computation time of 41 minutes were necessary.

B Evalsnn mrscwey wmud all deers apesed
m Evulestions maprwey wid oll doon dlowd

Indtsal POMDH {after compdaton) [

Lo rrexdel with | corider avessal |
L proied with 2 evarider travemals
Lo recxdel with 3 corider raversals
Lo rrecxel with 4 conrider ravensals |20
Lsnmied proied with 5 evarider travemals
Lsnmiad pried with & earidor trvemals
Lesamed model with § oomidor raversals)

Lo recsdel with B corider raversals) =

Lo rrecxdel with ® corider raversals

a a1 n2 na na ns oE ay og

Men dzmapy
Fig. 18. Comparison of the mean entropy of the belief distribution using different models for
the corridor to localize the robot in two evaluation trajectories.
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Fig. 19. Topological graph model for a corridor of the Electronics Department, and executed
trajectory from room 2 to room 4 (process evolution shown in table 5).

Once shown the results of the learning process, a guidance example is included in which
robot was initially in room 2 with unknown initial room state, and room 4 was commanded
as goal state (see figure 19).

Process execution step 0 1 | 2|3 41 56 |7 8 | 9 | 10 | 1| 12713
Real robot state (node + dir) 2 | 16T| 16 16T | 165 17[18— | 195]20— 21— | 215 ][22 [22) | 4
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o corresponding state (node-+dir) 7|~ T"*ff"‘e 16 167 e T
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and corresponding state (node+dir) g1 | over | 180,210 2955, |
20 | rooms 16 - -
1858 18 % 245 244 5
. 18 18— 19
1 I =l e R e R R o ] =

Divergence of Bel(S) (D(Bel)) 0.961 | 0.940 | 0.453|0.453 | 0.113 | 0.290 | 0.067 [ 0.055 | 0.082 | 0.453 | 0.473 | 0.231 | 0.100| 0.097

Most voted action in GUIDANCE o L R R F F F F F F F R E N
context (and votes in %) 91% | 51% | 80% | 80% | 95%| 98 % | 100 %| 100 % [100 % | 74 % | 62% | 97 % | 93 % | 94 %
Divergence of V(a) (D(V)) 0.148 | 0.801| 0.327 [ 0.327 | 0.081 [ 0.032 | 0 0 0 | 0414 |0.621| 0.049| 0.114] 0.098
Context (LOCALIZ. if D(V)>0.5) GUIDE| LOCAL | GUIDE | GUIDE| GUIDE | GUIDE| GUIDE | GUIDE |GUIDE | GUIDE | LOCAL| GUIDE | GUIDE |GUIDE
Most voted action in LOCALIZ. L F

context if activated (votes in %) 62 % 67 %

Action command selected o) L R R F F F 3 F F F R E N
Real effect (transition) of action ‘ 0 ‘ L ‘ R ‘ R ‘ F ‘ F ‘ F ‘ F ‘ F ‘ N l F ‘ R l E

Table 3. Experimental results navigating towards room 4 with unknown initial room state
(real initial room 2)

In this example, guidance and localization contexts are combined using thresholding
method with divergence of probability mass as uncertainty measure. Table 5 shows, for each
execution step, the real robot state (indicated by means of node number and direction), the
first and second most likely states, and divergence of the belief D(Bel). It also shows the
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most voted action in guidance context and the divergence of its probability mass
distribution D(V). When the last one is higher than 0.5, the most voted action of localization
context is used. Finally, it shows the action command selected at each process step, and the
real effect (transition) of actions from step to step.

It can be seen that after going out the room, localization context is activated and the
robot turns left, in the opposite direction of the destination, but to the best direction to
reduce uncertainty. After this movement, uncertainty is reduced, and starts the
movement to room 4. The trajectory shown with dotted line in figure 10 was obtained
from odometry readings, and show the real movement of the robot. As a global
conclusion, divergence factor and context combination reduces the number of steps the
robot is “lost”, and so the goal reaching time.

10. Discussion and Future Work

The proposed navigation system, based on a topological representation of the world, allows
the robot to robustly navigate in corridor and structured environments. This is a very
practical issue in assistance applications, in which robots must perform guidance missions
from room to room in environments typically structured in corridors and rooms, such as
hospitals or nursing homes. Although the topological map consists of very simple and
reduced information about the environment, a set of robust local navigation behaviors (the
actions of the model) allow the robot to locally move in corridors, reacting to sensor
information and avoiding collisions, without any previous metric information.

Another important subject in robot navigation is robustness in dynamic environments.
It is demonstrated that topological representations are more robust to dynamic changes
of the environment (people, obstacles, doors state, etc.) because they are not modelled
in the map. In this case, in which local navigation is also based on an extracted local
model of the corridor, the system is quite robust to people traversing the corridor.
People are another source of uncertainty in actions and observations, which is
successfully treated by the probabilistic transition and observation models. Regarding
doors state, the learning module adapts the probabilities to its real state, making the
system more robust to this dynamic aspect of the environment.

In order to improve the navigation capabilities of the proposed system, we are working on
several future work lines. The first one is to enlarge the action and observation sets to
navigate in more complex or generic environments. For example, to traverse large halls or
unstructured areas, a “wall-following” or “trajectory-following” action would be useful.
Besides, we are also working on the incorporation of new observations from new sensors,
such as a compass (to discriminate the four orientations of the graph) and a wireless signal
strength sensor. Enlarging the model doesn’t affect the proposed global navigation
algorithms. Regarding the learning system, future work is focused on automatically learning
the POMDP structure from real data, making even easier the installation process.

Another current research lines are the extension of localization, planning and learning
probabilistic algorithms to multi-robot cooperative systems (SIMCA project) and the
use of hierarchical topological models to expand the navigation system to larger
structured environments.

11. Conclusion

This chapter shows a new navigation architecture for acting in uncertain domains, based on
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a POMDP model incorporating simple visual information. This new sensor provides better
information to state transition and observation models, making possible a faster global
localization when the initial position of the robot is unknown and a more robust navigation.
This chapter also shows a new planning architecture for acting in uncertain domains.
Instead of using POMDP exact solutions, we propose an alternative two-level layered
architecture that simplifies the selection of the final action, combining several planning
objectives. As local policies we propose a guidance context, whose objective is to reach the
goal, and a localization context to reduce location uncertainty when necessary. As global
policies, we have adopted some heuristic strategies proposed in previous works. Regarding
the learning system, a new method based on a modification of EM algorithm and human-
robot cooperation reduces the number of needed corridor traversals. We have demonstrated
the validity of this architecture in highly aliased environments and in a real environment
using the robot prototype of the SIRAPEM project.
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1. Introduction

Reliable localisation is an essential component of any autonomous vehicle system. The basic
navigation loop is based on dead reckoning sensors that predict high frequency vehicle
manoeuvres and low frequency absolute sensors that bound positioning errors. The
problem of localisation given a map of the environment or estimating the map knowing the
vehicle position has been addressed and solved using a number of different approaches. A
related problem is when neither, the map nor the vehicle position is known. In this case the
vehicle, with known kinematics, starts in an unknown location in an unknown environment
and proceeds to incrementally build a navigation map of the environment while
simultaneously using this map to update its location. In this problem, vehicle and map
estimates are highly correlated and cannot be obtained independently of one another. This
problem is usually known as Simultaneous Localisation and Map Building (SLAM).

As an incremental algorithm, the SLAM in large outdoor environments must address
several particular problems: the perception of the environment and the nature of features
searched or observables with the available sensors, the number of features needed to
successfully localise, the type of representation used for the features, a real time
management of the map and the fusion algorithm, the consistency of the SLAM process and
the data association between features mapped and observations. A good insight into the
SLAM problem can be found in Durrant-Whyte & Bailey (2006).

This chapter presents recent contributions in the areas of perception, representation and
data fusion, focusing on solutions that address the real time problem in large outdoor
environments. Topics such as DenseSLAM, Robust Navigation and non-Gaussian
Observations in SLAM are summarised and illustrated with real outdoor tests.

2. Detailed environment representation

One of the main issues of the SLAM problem is how to interpret and synthesize the external
sensory information into a representation of the environment that can be used by the mobile
robot to operate autonomously. Traditionally, SLAM algorithms have relied on sparse
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environment representations: maps built up of isolated landmarks observed in the
environment (Guivant et al., 2002; Neira & Tardds, 2001). However, for autonomous
navigation, a more detailed representation of the environment is necessary, and the classic
feature-based representation fails to provide a robot with sufficient information. While a
dense representation is desirable, it has not been possible for SLAM paradigms.

The next generation of autonomous systems will be required to operate in more complex
environments. A sparse representation formed only by isolated landmarks will in general
not fulfil the necessities of an autonomous vehicle, and a more detailed representation will
be needed for tasks such as place recognition or path planning. Furthermore, not only is a
dense representation of the environment required, but also an algorithm that is able to
obtain multi-layered maps, where each layer represents a different property of the
environment, such as occupancy, traversability, elevation, etc (Lacroix et al., 2002).

2.1 DenseSLAM

Mapping techniques that are able to handle vehicle uncertainty such as EKF-SLAM are not
able to obtain dense representations due to the extremely high computational burden
involved. On the other hand, mapping algorithms that are able to obtain detailed
representations such as Occupancy Grids (Elfes, 1989) are known to have problems coping
with vehicle pose uncertainty. The concept of DenseSLAM was introduced in (Nieto et al.,
2004) as the process of simultaneous vehicle localisation and dense map building.

DenseSLAM is then a more ambitious problem than classic feature-based SLAM. A
solution for DenseSLAM will have to deal with computational and consistency issues,
arising from the dual purpose of trying to obtain a dense representation while
simultaneously doing localisation.

This section presents the Hybrid Metric Maps. The Hybrid Metric Maps (HYMMs) algorithm
(Guivant et al., 2004; Nieto et al.,, 2004) presents a novel solution for addressing the mapping
problem with unknown robot pose. The HYMM is a mapping algorithm that combines feature
maps with other metric sensory information. The approach permits the localisation of the robot
and at the same time constructs a detailed environment representation (DenseSLAM). 1t is also a
powerful technique to solve several practical problems (Masson et al., 2005)

Rather than incorporating all the sensory information into a global map, the algorithm
maintains a features map and represents the rest of the sensed data in local maps
defined relative to the feature positions. A joint state vector with the vehicle pose and
the feature positions is maintained and the dense maps are stored in a separate data
structure. When new observations are received, the state vector is augmented with the
feature positions and the rest of the information is fused into the local regions. The
main difference between feature-based SLAM and DenseSLAM is that feature-based
SLAM incorporates the features into the map and neglects the rest of the information,
whereas DenseSLAM has the ability to maintain all the sensory information to build a
detailed environment representation.

The algorithm works as follows. When the robot starts to navigate, it will extract
features from the environment that will be incorporated in the state vector. The feature
map will be used to partition the global map into smaller regions, Fig. 1 illustrates this
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process. The dense sensory information will be represented in these local regions. Fig.
2 shows a hypothetical dense map. The figure shows the division of the global map
into smaller regions and the dense multi-layer maps obtained by DenseSLAM. Each of
these layers depicts different environment properties. The global dense map consists of
a set of local maps defined relative to the feature positions. Fig. 3 shows a basic flow
diagram of the algorithm.

The main characteristic of DenseSLAM is the local representation used to fuse the dense
information. The motivation behind the relative representation is to reduce correlations
between states. Using this relative representation, the states represented in a local frame
become strongly correlated and the states represented in different frames become weakly
correlated. This is the key which allows the decorrelation of the dense maps with the rest of
the system making the representation tractable.

Since the observations of the world are taken relative to the vehicle pose, any environment
representation created will be correlated with the vehicle pose. Augmenting the state vector
with all the information rendered by the sensors and maintaining the correlations is
infeasible due to the computational burden involved. Therefore, DenseSLAM incorporates a
set of landmarks in the state vector and the rest of the sensed data is decorrelated and stored
in a separate data structure.

(@]
Landmarks
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) Local Regions: Divisions

//

0

Fig. 1. Landmarks map (‘o) and a particular partition of the global map in local regions. As
shown, not all the landmarks are needed as vertex points in the regions definition.

The approximation made by the algorithm consists of representing the dense information in the
local regions without including the correlations between the locally represented information and
the rest of the system. These correlations will be zero only when there is full correlation between
the local property (expressed in global coordinates) and the features that define the respective
local frame (assuming the same uncertainty magnitude), so their relative positions are perfectly
known. Although it can be proved that in a SLAM process the map becomes fully correlated in
the limit (Gibbens et al., 2000), in practice only high correlation is achieved. However, it can be
demonstrated that the assumptions made by the HYMM framework are, in practice, very good
approximations for SLAM problems. The next paragraphs explain two well known properties of
SLAM that justify the approximations made in the HYMMs.
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Fig. 2. Hypothetical multi-layer dense map. The ' represent the landmark positions and the
map layers depict different environment properties captured by the sensors.
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Fig. 3. HYMM algorithm flow diagram. When a sensor frame is obtained, first a feature extraction
algorithm is applied and the features extracted are added to the feature-based SLAM. Then the
algorithm looks for new local regions (LR) and fuses all the sensory information in the respective
local frames. z{ represents the observations associated with features and z;’ the rest of the

observations (dense maps). x  represents the vehicle position and x/ the feature map.

Geographically close objects have high correlation: If a set of observed objects is geographically close
from the vehicle viewpoint, then the error due to the vehicle pose uncertainty will be a common
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component of these estimated objects’ positions. This is a typical situation in SLAM where the
vehicle accumulates uncertainty in its estimated position and incorporates observations that are
used to synthesize a map. Due to this fact the estimates of objects that are geographically close will
present similar uncertainties (high cross-correlations). Any update of a particular object will imply
a similar update of any object sufficiently close to the first one. Figure 4 shows an example of a
typical SLAM map. The figure shows a landmarks map with its uncertainty bounds. It can be seen
that landmarks that are geographically close have very similar uncertainty.

The relative representation stores close objects in local coordinate frames and then permits the
reduction of correlation to the rest of the map (Guivant & Nebot, 2003): Assume a landmark can
be represented in a local frame in the following way.

x" =h(x,,z,x,) @

where xL represents the relative landmark position, x, the vehicle position, z the observations
and x; the posmon of the landmarks that define the local frame (base landmarks)
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Fig. 4: Map Correlation: The figures show that geographically close objects possess similar
uncertainty. Figure (a) shows how the landmarks that are being observed have similar
uncertainty to the robot pose. (b) shows how the estimated landmarks” means are updated after
the vehicle closes the loop. The dots represent landmark position estimates over time. High
correlation in geographically close objects is one of the SLAM characteristics; because the vehicle
will observe close objects at similar instants it will propagate similar uncertainty to the objects.

Taking into account that the observation errors are independent of the vehicle position, the
cross-correlation between the vehicle and the landmark in the local frame will be:
T T
P, =P, Vh] +P,Vh| @
where P, represents the vehicle states covariance, P, the cross-correlation between the
vehicle states and the base landmarks position estimated and Vh, =& is the Jacobian

matrix of h with respect to the state xi.

Taking for example the one dimensional case, Equation (1) becomes:
xf=hx,,zx,)=x,+2-x, ®3)

Applying Equation (3) to (2):

(1)+P,(-1)=P,-P, @

Equation (4) shows that if the magnitudes of P, and the covariance of the base landmarks

Py are similar, when the robot is highly correlated with the base landmarks there will be

vl uv vb



304 Mobile Robots, Perception & Navigation

almost no correlation between the robot position and the local landmark (P,.) and then no
correlation between the relative landmark and the rest of the map. Since the relative and the
base landmarks are geographically close, whenever the robot observes the local landmark it
will be highly correlated with the base landmarks. This fact will reduce the correlation
between the local landmark and the robot and therefore the correlation between the local
landmark and the rest of the map will be reduced as well.
A more direct way of observing the decorrelation effect will be by evaluating the cross-
correlation between a landmark in the global frame with a landmark represented in a
local frame and comparing this with the cross-correlation of the same two landmarks,
both represented in the global frame. In a similar manner to Equation (2), the cross-
covariance matrix between the j-th landmark and a locally represented landmark can
be evaluated in the following way:

P, =P,Vh! +P_Vh/, ©)

ib

where the prefix j means the j-th landmark, b the base landmarks that define the local frame, L
the locally represented landmark and G the position of the local landmark in the global frame.
Then given Pj, Pjc and the transforming function from the global to the local frame h, it is
possible to evaluate the cross-correlation between the local landmark and the j landmark in the
map. Although the effect of decorrelation happens regardless of the particular local
representation used, finding an expression to demonstrate that Py, << P will be dependent on
the local representation used. Equation (5) shows that for a particular local representation h, the
decorrelation effect between the local object and the rest of the map will depend on the cross
correlation between the rest of the map and the base landmarks and the cross-correlation
between the rest of the map and the local represented object in the global frame.

Fig. 5 (a) shows the simulation environment utilised to illustrate the decorrelation effect. In the
example, a local region is defined using three landmarks and another landmark is locally
represented in this local frame. The i-th landmark is then represented in the local frame after a few
observations which ensures high correlation with the base landmarks. After that, the landmark is
not observed again, as it actually occurs with the dense sensory information (it is assumed that is
not possible to observe exactly the same point of the environment more than once). The blue solid
line in Fig. 5 (a) shows the local frame axis and the red dotted line the local landmark position x,, .
The cyan dashed line joins the local represented landmark x;; with a global landmark x . The
cross-correlation between x . and the local i-th landmark will be evaluated when the i landmark is
represented in the local frame xt, and whenitis represented in the global frame x&
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Fig. 5: Decorrelation effect: (a) shows a zoom of the navigation environment where three
landmarks were used to define a local region and one landmark (red dashed line) was
represented in this local frame. (b) shows the correlation between the landmark
represented in the global frame and the base landmarks. (c) shows the decorrelation effect;
when the landmark is represented in local coordinates (blue line) the cross-correlation with
other landmarks is considerably reduced in respect to the correlation between other
landmarks and the landmark in global coordinates (red line). (d) shows the landmark
deviation when it is represented in local (blue line) and global (red line) coordinates.

Fig. 5 (b) shows the evolution in time of the correlation coefficient of the i landmark
represented in global coordinates xS, with the landmarks used to define the local frame.

The solid line depicts the cross-correlation in the east axis and the dashed line in the north
axis. The different colours represent the cross-correlation with the different base landmarks.
As can be seen, the landmark x& possesses high correlation with the base landmarks. This is

due to the geographical proximity between the landmarks. Fig. 5 (c) shows the correlations
between X% and X, in red, and the correlations between the j landmark and the landmark i

represented in the local frame x', (Equation (5)) in blue. The correlation was reduced from

almost one when the landmark was represented in global coordinates, to almost zero when
the landmark was represented in the local frame.

Finally Fig. 5 (d) shows the variance of the landmark i. The blue line depicts the variance
when the landmark is in the local frame and the red line when it is in global. Because of the
high correlation between x5 and the base landmarks, the uncertainty in their relative

position is very low, and so is the variance of x..

In summary the relative representation used by DenseSLAM permits the local represented
information to be decorrelated with the rest of the system. This permits the incorporation of
more information without increasing the computational cost.

2.2 DenseSLAM: Applications

This section shows how the detailed multi-dimensional environment description obtained
by DenseSLAM can be used to improve the vehicle navigation process. Two particular
applications are shown. (i) Complex landmarks can be extracted and incorporated as they
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become identified using the dense representation. (ii) The dense maps can be used to
estimate the variations in time of the areas explored by the robot which can be used to
discriminate whether a region has potential dynamic objects.

High Level Landmarks (HLLs): One of the main problems in SLAM algorithms is the error
accumulation due to non-linearities in the system. This error accumulation can be reduced if
more information is added into the localisation map, since the vehicle error will remain
smaller. Among the reasons to avoid including more landmarks is the computational
burden required to maintain the map. However, in many situations, even when the
computational cost may not be a problem, the difficulties of finding stable and easily detectable
features cause the algorithm to use only a small number of landmarks for the localisation
process, which results in a major accumulation of errors due to non-linearities.

DenseSLAM yields a rich environment representation, which gives the possibility of adding
landmarks extracted from the dense maps into the landmarks map. In many situations an
object cannot be detected using the measurements taken from only one vantage point. This
can be due to a variety of reasons: occlusion between objects, the size of the object in relation
to the sensor field of view, an inappropriate feature model, or just because the nature of the
sensor makes the estimation of the landmark location impossible from only one vantage
point (e.g. wide-beam sonar; Leonard J. et al. 2002, McKerrow P. 1993). Estimating partially
observable features has been an important research topic in computer vision using stereo
vision and bearing only information, where the initialisation of the feature position is a
significant problem. The problem of partially observable features has also been studied for
localisation and SLAM applications. In Leonard et al. (2002) an approach is presented that
delays the decision to incorporate the observations as map landmarks. Consistent estimation
is achieved by adding the past vehicle positions to the state vector and combining the
observations from multiple points of view until there is enough information to validate a
feature. In McKerrow (1993), intersection of constant depth range of ultrasonic sensors is
used to determine the location of features from multiple vantage points.

Having a comprehensive representation of the environment will enable a delayed
processing to determine whether part of the map can qualify as a landmark. The rich
representation obtained by DenseSLAM will enable postprocessing capabilities to
continuously detect high-level landmarks using the dense map layers. The newly detected
landmarks can then be added to the feature map. This approach has the potential of
incorporating a large number of landmark models, some of them to be applied online at the
time the observations are taken and the rest to run in the background when computer
resources become available. The landmarks can then be incorporated into the features map.
High Level Landmarks representation. The only condition for the incorporation of a HLL is
to represent the information in the same form as the feature map. For example, if EKF-
SLAM is used, the HLLs have to be represented in state vector form.

The HLLs could be represented using geometric parameters. Experimental results of SLAM using
trees as landmarks are presented in (Guivant et al., 2002). An EKF is run which estimates the trees’
parameters, which consist of the centre and the diameter of the trees’ trunks. In Thrun (2001) an
algorithm is presented that employs expectation maximization to fit a low-complexity planar
model to 3D data collected by range finders and a panoramic camera. After this model is obtained,
its parameters could be added to the state vector to representa HLL.

Fig. 6 shows an example of HLLs. In the example, the HLLs are represented as a local
coordinate system and a template which is defined relative to the local axes. The templates
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are formed with the information extracted from the dense maps. Scan correlation can be
used to generate observations of the landmarks (see Nieto et al. 2005, for more details).

4

(@) (b)
Fig. 6: The figure examples of HLLs extracted from the dense maps. (a) shows a HLL
represented extracted from an occupancy grid map and (b) a HLL extracted from a Sum of
Gaussian dense map.

Dynamic Environments: Most of the mapping algorithms assume the world is static (Thrun,
2002). Dynamic environments require an extension of the typical representation used for
static environments. That extension should allow for modelling the temporal evolution of
the environment. Dynamic objects can induce serious errors in the robot localisation process.
Only a few approaches that include moving objects have been presented so far. The next
paragraphs review some of them.

A SLAM algorithm with generic objects (static and dynamic) is presented in (Chieh-Chih Wang,
2004). Similar to classic SLAM, the approach calculates the joint posterior over the robot and
object’s pose, but unlike traditional SLAM it includes also the object’s motion model. The
problem is shown to be computationally intractable and so a simplified version called SLAM with
Detection and Tracking of Moving Objects (SLAM with DATMO) is presented (Chieh-Chih Wang et
al., 2003). The latest algorithm decomposes the estimation process into two separate problems: (i)
the SLAM problem, using static landmarks as the classic approach, and (ii) the detection and
tracking of moving objects, using the robot pose estimated by the SLAM algorithm. This
simplification makes updating both the SLAM and the tracking algorithm possible in real-time
since they are now considered two independent filters.

In Hahnel et al. (2003) an algorithm for mapping in dynamic environments is presented. The
aim of the approach is to determine which measurements correspond to dynamic objects and
then filter them out for the mapping process. The approach uses the EM algorithm; the
expectation step computes an estimate of which measurements might correspond to static
objects. These estimates are then used in the maximization step to determine the position of
the robot and the map.

An approach called Robot Object Mapping Algorithm (ROMA) is presented in Biswas et al. (2003).
The main goal is to identify non-stationary objects and model their time varying locations. The
approach assumes that objects move sufficiently slowly that they can safely be assumed static for
the time it takes to build an occupancy grid map of the whole area explored by the robot.
Assuming the robot is able to acquire static occupancy grid maps at different times, changes in
the environment are detected using a differencing technique. The algorithm learns models of the
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objects using EM. The expectation step calculates the correspondences between objects at
different points in time and the maximisation step uses these correspondences to generate
refined object models, represented by occupancy grid maps.

The algorithms presented in Chieh-Chih Wang et al. (2003) and Montemerlo et al. (2002)
have one thing in common; they rely on pre-defined models of the specific objects they aim
to track. ROMA, however, is able to learn about the shape of the objects, but the algorithm
presents a number of limitations. Objects have to move slowly (it is not able to cope with
fast-moving objects such as people), it is assumed the robot is able to obtain static maps at
different times. The results presented include only four different objects in an environment
where these objects can be perfectly segmented from a laser scan. The extension to a real
environment with a larger number of objects may not be possible and will be
computationally very expensive.

If navigation is the primary objective, the accurate shape of objects, or even their
classification may not be important in general. What may be more useful is an algorithm
able to identify observations that may be coming from objects that are not static and
eliminate them from the list of observations to be used for the navigation process.
Furthermore the algorithm could identify areas where it is more likely to find dynamic
objects (e.g. a corridor where people walk) and then avoid their use or give a low priority to
observations coming from objects in those areas.

The rich environment representation obtained by DenseSLAM allows a map layer
identifying the most likely areas to possess dynamic objects to be built. As shown in Biswas
et al,, (2003), dynamic objects can be identified by differentiation of maps taken at different
times. There are two different classes of object motions in a dynamic environment; slow
motion, as for example the motion of a bin, which will be static during most of the day but
will eventually be moved; and fast motion, such as people. Using DenseSLAM, and
applying a straightforward differentiation, it is possible to identify regions with dynamic
objects for either fast or slow motion objects.

One of the main problems with the differentiation is that maps obtained at different times
will have different uncertainty. If a global map is maintained and two maps acquired at
different times want to be differentiated, the uncertainty in the maps will make the
matching process very difficult.

In DenseSLAM the global map is divided into smaller regions, so the whole map can be
differentiated by applying differentiation between the corresponding local regions. As a
consequence, the differentiation process will be prone only to local errors (which were
shown to be much smaller than the global ones) eliminating detection errors due to the
uncertainty between maps acquired at different moments.

A particular case where the DenseSLAM representation will not present advantages over
other approaches is in decentralised multi-robot mapping. If multiple robots are used to
map an area, each robot will form the map using different local regions. If the objective is to
detect dynamic objects by fusing the maps built by different robots, a global map will have
to be used and DenseSLAM loses advantages with respect to other approaches.

Fast motion can be captured by differentiation, in a similar way to slow motion. The main
difference is that the differentiation is done over shorter periods of time and only in the
region under the sensor view. As in the detection of objects with slow motion, using
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DenseSLAM the differentiation is done using local regions instead of the global map. The
motion detection will be included in a map layer as will the other properties captured by the
sensors, then the global position of the dynamic map will be updated together with the
other map properties (colour, occupancy, etc.).

It is important to note that fast motion detection can be also done with other
techniques that are able to create a dense map in proximity to the vehicle position. The
advantage of DenseSLAM is that the dense representation is already obtained,
therefore, the detection of moving objects is a straightforward procedure that does not
add computational cost.

2.3 Experimental Results

This section presents experimental results of DenseSLAM in an outdoor environment. The
environment is a large area of 120 by 200 metres and the run is approximately 1 km long.
The experimental platform used for the experiments is a conventional Holden UTE
equipped with Sick lasers, a linear variable differential transformer sensor for the steering
mechanism, back wheel velocity encoder, inertial unit and GPS.

In order to test the DenseSLAM algorithm, the GPS information was fused with the feature-
based SLAM to obtain a laser image of the environment that is used as a reference to
compare with the estimates by DenseSLAM. Fig. 7 shows the laser image obtained with the
GPS information and the final map obtained with DenseSLAM. The dense map was
obtained by fusing the raw laser observations into the local regions. The figure also shows
the landmark positions.
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Fig. 7: Final map obtained with DenseSLAM. The light points represent the laser image
obtained using GPS and SLAM. The dark points depict the dense map estimated by
DenseSLAM.
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Fig. 8 shows a zoom of the top part of the run. Fig. 8 (a) shows the result obtained by
DenseSLAM before closing the loop. The figure also shows the laser image used as a
reference. The error in the estimated map before closing the loop can be easily observed. Fig.
8 (b) shows the result after closing the first loop. Although there is still some residual error,
it is clear how the estimated map has been corrected. Looking at Fig. 8 (b) it can be seen that
there is some remaining uncertainty in these landmarks even after the loop is closed. This is
because the vehicle does not return to the top part of the run after closing the first loop. As a
result, the error in that region is not reduced as much as in the bottom part of the run.
Nevertheless, an important correction in all the regions has still been made.
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Fig. 8: The lighter points represent the laser image obtained using GPS/SLAM. The darker
points represent the final map obtained with DenseSLAM. Figure (a) shows the result before
closing the loop, and (b) after the loop is closed.

3. Fundamental issues when working in large areas

Most EKF implementations generate state estimations with mono-modal probability
distributions and are not capable of handling multi-modal probability distributions.
Multi-modal distributions are typical when closing large loops, that is, revisiting
known places after a large exploration period. It is at this stage where the standard
SLAM based on Kalman filters is especially fragile to incorrect association of
landmarks (Neira & Tardoés, 2001). Other data fusion algorithms, such as the ones that
use particle filter (Montemerlo et al., 2002), can address this problem since they
naturally deal with multi-hypothesis problems.

In Masson (2003) is proposed a robust data fusion algorithm, which uses a hybrid
architecture. The algorithm uses Compressed EKF (CEKF in Guivant & Nebot, 2003) under
normal conditions to perform SLAM. At a certain time the system may not be able to
perform the association task due to large errors in vehicle pose estimation. This is an
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indication that the filter cannot continue working assuming a mono-modal probability
density distribution. At this time, we have the CEKF estimated mean and deviation of the
states representing the vehicle pose and landmark positions. With the currently estimated
map, a decorrelated map is built using a coordinate transform and a decorrelation
procedure (Guivant & Nebot, 2002). A particle filter (Gordon et al., 1993) is initialised using
the available statistics and is then used to resolve the position of the vehicle as a localisation
problem. Once the multi-hypothesis problem is solved, the CEKF is restarted with the states
values back propagated to the time when the data association problem was detected. Then
the CEKF resumes operation until a new potential data association problem is detected.
There are several important implementation issues that need to be taken into account to
maximise the performance of the hybrid architecture proposed. The solutions they need to
consider are the uncertainties in vehicle, map and sensor to maximise the number of
particles in the most likely position of the vehicle.

The SLAM algorithm builds a map while the vehicle explores a new area. The map
states will be, in most cases, highly correlated in a local area. In order to use the particle
filter to solve the localisation problem, a two dimensional map probability density
distribution needs to be synthesised from an originally strongly correlated #
dimension map. The decorrelation procedure is implemented in two steps. The map,
originally represented in global coordinates is now represented in a local frame defined
by the states of two beacons that are highly correlated to all the local landmarks. The
other local landmarks are then referenced to this new base. A conservative bound
matrix can be obtained as a diagonal matrix with bigger diagonal components and
deleting the cross-correlation terms (Guivant & Nebot, 2002).

In most practical cases the local map is very large when compared to the sensor field of
view. Most of the landmarks are usually beyond the range of the sensor. It is then possible
to select only the wvisible beacons from the entire map by considering the estimated
uncertainties. This will significantly reduce the computation complexity for the evaluation
of the likelihood for each predicted particle. The boundaries of the reduced map are fixed
based on the beacons that are close to the vehicle location, the particle positions, the
observation and their respective uncertainty. Only a few beacons are within the field of view
of any of the particles. The other beacons are not considered to be part of the reduced map.
As the number of particles affects both the computational requirements and the convergence of
the algorithm, it is necessary to select an appropriate set of particles to represent the a priori
density function at time Ty, that is, the time when the data association fails. Since the particle
filters work with samples of a distribution rather than its analytic expression it is possible to
select the samples based on the most probable initial pose of the rover. A good initial distribution
is a set of particles that is dense in at least a small sub-region that contains the true states value.
The initial distribution should be based in the position and standard deviations reported by the
CEKEF, and in at least one observation in a sub-region that contains this true state’s value. In
Lenser & Veloso (2000) a localisation approach is presented that replaces particles with low
probability with others based on the observations. Although this algorithm is very efficient it
considers that the identity of that landmark is given (known data association). This is true in
some applications such as the one addressed in this work but not common in natural outdoor
environments where landmarks have similar aspects and the presence of spurious objects or new
landmarks is common. Here, the data association is implicitly done by the localisation algorithm.
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The multi-hypotheses considered are defined by the uncertainty of the robot pose estimation. In
addition the method presented is able to deal with false observations. Spurious observations and
landmarks that do not belong to the map are naturally rejected by the localiser. The technique
presented considers the information from a set of observations to select particles only in the
initial distribution and combined with the CEKF estimates as was mentioned previously. In fact,
this localisation filter is a Monte Carlo Localisation.

The initial distribution is created from range/bearing observations of a set of landmarks.
This probability distribution is dominant in a region that presents a shape similar to a set of
helical cylinders in the space (x,y,q). Each helix centre corresponds to a hypothetical

landmark position with its radio defined by the range observation. The landmarks
considered are only the ones that the vehicle can see from the location reported by the CEKF
and within the range and field of view of the sensors.

Although it is recognised that some observations will not be due to landmarks, all range and
bearing observations in a single scan are used to build the initial distribution. Even though a set of
families of helices will introduce more particles than a single family of helices (one observation), it
will be more robust in the presence of spurious observations. By considering that the
range/bearing observations are perfect then the dominant region becomes a discontinuous one
dimensional curve (family of helices) C, in the three dimensional space (x, v, p)

x=x(7)=x;+2,-cos(7)

i

N N y=y(7)=y,+z, sin(7) (6)
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These regions can be reduced by adjusting the variation of 7according to the uncertainty in
@. Assuming the presence of noise in the observations and in the landmark positions

z,=2,4Y,, 23=2,+¥; @)
X=Xit7» Yi=Yity,
this family of helices becomes a family of cylindrical regions surrounding the helices. The helical
cylinder section can be adjusted by evaluating its sensitivity to the noise sources A7

The same assumptions can be made for the case of using bearing only observations. Although
this method can be more efficient than the standard uniform o Gaussian distribution it is still
very demanding in the number of particles. A more efficient algorithm can be designed
considering two observations at a time. With no data association a pair of observations will
generate a family of curved cylinders to cover all possible hypotheses. This initialisation is
significantly less expensive than a uniform distributed sample in a large rectangular region in
the (x,y,¢) space or even a Gaussian distribution in this region. In the case of range only
observations, the initialisation is very similar to the range and bearing problem. In this case the
main difference is in the evaluation of the orientation (Masson et al., 2003).

Finally, two main issues need to be addressed to implement the switching strategy between the
CEKF and the SIR filter. The first problem involves the detection of a potential data association
failure while running the CEKF. This is implemented by monitoring the estimated error in vehicle
and local map states and the results of the standard data association process. The second issue is the
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reliable determination that the particle filter has resolved the multi-hypothesis problem and is ready
to send the correct position to the CEKF back propagating its results. This problem is addressed by
analysing the evolution of the estimated standard deviations. The filter is assumed to converge
when the estimated standard deviation error becomes less than two times the noise in the
propagation error model for x, y and ¢. The convergence of the filter is guaranteed by the fact that
the weights are bounded (Masson et al., 2003) above at any instant of time (Crisan & Doucet, 2000).
The following are results obtained using the hybrid architecture in an outdoor environment
populated by trees that are used as the most relevant features to build a navigation map
(Guivant et al., 2002). Full details of the vehicle and sensor model used for this experiment
are available in Nebot (2002).

The CEKF filter is used to navigate when no potential data association faults are detected. When
a data association failure is detected the particle filter is initialised according to the procedure
presented in section 4.2 and is run until convergence is reached. At this point the filter reports the
corrections to the CEKF that continues the SLAM process using EKF based methods.
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Fig. 9: (a) Experimental run implementing SLAM using all the available information. (b) A
zoomed area. A diamond and a square show the start and end position respectively of the
particle filter correction. The dots represent the RTK GPS information.

The algorithms were tested in an environment with areas of different feature density as
shown in Fig. 9. In this experiment we logged GPS, laser and dead reckoning information.
The GPS used is capable of providing position information with 2 cm accuracy. This
accuracy is only available in open areas and is shown in Fig. 9 with a thick line. The vehicle
started at the point labelled "Starting Position" and the filter used GPS, laser and dead
reckoning to perform SLAM (Guivant et al., 2002) until it reached the location at coordinates
(-30,60) where GPS is no longer available. The SLAM remained operating using Laser and
dead-reckoning information only. High accuracy GPS was again available close to the end of
the run and will be essential to demonstrate the consistency and performance of the hybrid
navigation architecture proposed.



314 Mobile Robots, Perception & Navigation

The stars and encircled stars in Fig. 9 (a) represent the natural features incorporated into the
map and the selected landmarks whose deviations are shown in Fig. 10(a) respectively. A
diamond and a square represent the starting and ending position resulting from the particle
filter correction and are clearly shown in Fig. 9 (b). The beacons that produce the association
failure are the squared stars marked as C in the figure.

Fig. 10(b) presents the vehicle position estimated error. It can be seen that the error was very
small when the system was operating with GPS, time < 200ms. It is then maintained below
0.5 m while in the area with high feature density. The error then started to increase before
reaching point "A" since the laser cannot detect any known feature. At this time (320 sec) a
new feature was incorporated but with large uncertainty as shown in Fig. 10(a). Then a
known landmark was detected and since it can be associated correctly, the error in vehicle
and landmark position dramatically decreased as expected.
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Fig. 10: Standard deviation (a) of selected beacons in the map and (b) of the car positions
over time. These beacons are shown as rounded stars in Fig. 9.

A different situation is presented in Fig. 9 (b) that corresponds to the area marked as
zoomed area in Fig. 9 (a). Once the laser stopped seeing the previous known
landmarks the error built up again to the point where the system can no longer
associate the detected landmarks to a single known landmark. The location of the
vehicle at this time is represented as a diamond at coordinates (45,45) in this figure. In
this case the system has to activate the Monte Carlo localiser to generate the
relocalisation results shown as a square at coordinates (47,45) in the same figure.
Examples of the Monte Carlo filter initialisation are shown in Fig. 11. Fig. 11(a) shows
the initialisation for the range and bearing case. The figure clearly shows the helical
shape of the initial distributions. The arrows represent the position and orientation of
the vehicle and the stars the beacons present in the map. The initialisation for the case
of bearing only is also shown in Fig. 11(b).
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Fig. 11. Initialisation of the particle filter (a) using range and bearing information and (b)
using bearing only information

The relocalisation result is then reported to the CEKF to continue with the SLAM process for
the rest of the run. At the end of the trajectory high accuracy GPS was again available (thick
line). It can be clearly seen, specially in Fig. 9 (b), that the estimated vehicle pose just before
GPS became available is very close to the high accuracy GPS position reported. This
demonstrates the performance and consistency of the hybrid architecture proposed.

3.1 Assimilation of non-Gaussian observations

A pure SLAM algorithm is based in measures relative to the vehicle. Nevertheless a practical
application of localisation must fuse all the available sources of information that are available,
included absolute information. This is a fundamental issue in navigation. Although many pure
SLAM algorithms can work in large areas they could also benefit from absolute position
information such as GPS. In many applications, it is not possible to obtain GPS information for
long periods of time. However, at some locations this sensor will be able to report navigation data
with an estimated error. It is clearly important to be able to incorporate this information to
improve the localisation estimates and at the same time enable the SLAM algorithm to explore and
incorporate new features while bounding the absolute pose error with the absolute information.

In order to add this information in a consistent manner some important issues need to be
considered. The quality of the models and the relative navigation information used in SLAM
algorithms could lead to very large innovations errors when the absolute information is fused.
This occurs after long periods of navigation when only relative information is used (pure SLAM).
A strong correction will make the linearisation of the models not valid generating incorrect update
of covariance. The innovations may not be large but can generate strong updates in the covariance
matrix. This can potentially introduce serious numerical errors. In order to prevent these
problems, it is possible to treat new absolute information as L observations such that the total
information introduced becomes equivalent to a single update (Guivant et al., 2002). In this case,
the filter will perform L updates with the observation value and modified noise covariance. The
sequential updates generate the same results as the single update but alleviate numerical problems
arising from large covariance updates.
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Even so, there is another potential issue that must be considered with some sensors. A typical
measurement obtained from a GPS occurs when it operates in environments where there are forest
and/ or buildings. In open places GPS operation is usually satisfactory but is not the case in forest or
urban canyons. The problem arises from total unavailability of satellite signals to partial occlusion
and performance degradation due to multi path effects. Others sensors such as compasses present
similar behaviour in static and dynamic environments where magnetic field perturbations affect the
sensor operation. However there is no doubt that both sensors can provide useful information to
contribute in the localisation process. In the case of range only and bearing only sensors, one
measurement generates a non-Gaussian distribution and the way to deal with it is delaying the
fusion collecting several measures and recording the vehicle pose (Bailey, 2002; Sola et al., 2005).
Essentially, these kinds of sensors could introduce non-Gaussian noise and some could also
introduced noise correlated in time. In the case of the GPS in autonomous mode for
example, the uncertainty will be introduced as a result of many factors such as satellite
availability, satellites distribution, signal reflections, multi-path, atmospheric distortion, etc.
It is obvious that this cannot be modelled as Gaussian, nor white. Similarly the compass
usually presents biased noise due to distortion in the magnetic field, and the change
depends on time and geographical position. An unknown and changing bias that varies
according to the position, orientation or time represents a difficult modelling problem.
Additional to the non-Gaussian or time correlated nature of the noise, the probability distribution
of the uncertainty in the observations could be unknown or only partially known. Estimators such
the EKF and also any Bayesian filters cannot deal with those measurements. The improper use of
them can produce inconsistent estimations. For example, if the noise is not white and this is
ignored assuming that the measurements are independent, then the estimates will be over-
confident. As a conservative policy these correlated measurements could be ignored to avoid
inconsistent results. However in many practical applications those measurements are crucial
sources of information and should be considered in a consistent way.
Consider the following situation. At time k there exists a Gaussian estimation and an
available observation. This one is neither Gaussian, nor white and with partially known
probability distribution, or any of these situations.
Initially it is assumed that the observation involves only one state variable and that all its
probability is concentrated in an interval a < x < b. The shape of the probability distribution inside
that interval is completely unknown and subsequent measurements are not independent, i.e.
statistical dependence exists between k and k+1. However even under that undesirable condition it
is possible to extract information from such observations. The effect of these observations will
improve the full estimates state vector and will reduce the covariance matrix. In fact, a new
Gaussian probability distribution is obtained. The rest of this section explains how to obtain a
conservative and consistent update.
The summary of the proposed update process is the following. At time k the estimator
produces a Gaussian estimate of the states x = {x, y, ¢, m} in the form of a joint probability
distribution py+1(x), where {x, y, ¢} is the pose of the vehicle and {m} are the states of the
landmarks’ positions. A bearing observation of ¢ is performed and with it a marginal
probability p,+1(¢) is obtained. With the update of the marginal probability of the observed
state, a total update of the joint probability py+1(x) is obtained.
With the non-Gaussian, non-white and partially known probability observation, a new
couple (3,5, ) is estimated. This pair completely defines the marginal Gaussian density
(9-9)°
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The non zero cross-correlation terms in the covariance matrix means that all the states are
connected. Then, with this new couple (g, ) it is necessary to carry out a virtual update

with the purpose of transmitting the new information acquired to the whole density px+1(x)
whose expression is
1

Prjr (%)= W

As a result of this update a new joint Gaussian density is obtained, and the normal
estimation process is pursued.

In general (Guivant & Masson, 2005), for an arbitrary density p(¢) that concentrates all its
energy inside the interval (a, b), a Gaussian density with expected value b is a better
approximation to p(¢) than any other Gaussian density with expected value greater than b if
the better previous estimation obtained is greater than b. In particular, this is better than
discarding the observation. The same happens with Gaussian densities whose expected
value is smaller than a and it is independent of the form that take p(¢) inside the interval (a,
b). Consequently, the mean & of the new density it is selected as
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where c is the mean of the better previous estimate. The deviation of this new Gaussian
must be obtained by solving the following implicit equation
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Then, unless the mean is updated, the deviation is always improved. This is an important
result because it is always necessary to maintain the absolute error between the true value
and the mean of the Gaussian bounded. This condition guarantees a secure condition for the
EKF as estimator. If the mean value estimated is near the true value the filter will perform
almost as a linear estimator. In particular, the Jacobians will be calculated properly. In
several cases, the filter could behave in a consistent way. But, given great deviations, the
Jacobians evaluated at the mean value will be different from the one calculated at the true
value. This fact is widely known in the EKF estimation theory.

At this point the calculation was focused on the marginal density p(¢). However the full
probability density is a Gaussian multi-dimensional density. The covariance matrix is a full
matrix and this shows the correlation between the states of the vehicle and the map. It was
shown (Gibbens et al., 2000) that neglecting this correlations leads to non-consistent estimations.
A virtual update is a form to update the full covariance matrix. The desired update over the
individual deviation o, is known. With it, it is possible to obtain the complete update without
violating conditions of consistency of the estimation. The updated covariance will be

Pk+1| k+1 = Pk+1‘ k— AP (16)
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where Py «(5i,) is the row vector i, of the predicted covariance matrix, Py+1| k(i) is the
column vector i, Ao, is the improvement in the deviation incorporating the non Gaussian

observation and 0,1 the deviation predicted in the state ¢.

Fig. 12 shows the proposed approach when it is applied in a SLAM process where non-Gaussian
observations come from compass measurements. Details about the vehicle model and the SLAM
algorithm could be referred from (Guivant et al., 2002). In this experiment GPS, laser, compass and
dead reckoning information was available. The GPS used is capable of providing position
information with 2 cm of accuracy when it works in RTK mode. This quality is only available in
relatively open areas and is shown in Fig. 12 by using a thick line. The vehicle started at the point
labelled 1. An EKF performs SLAM by using all the available information (thin line). When the
vehicle arrives at point 2, there is no GPS information and the laser and compass are intentionally
disconnected until the vehicle reaches point 3. The reason for this is to allow the uncertainty to
grow and clearly show the impact of the algorithm. In Fig. 12 (a), at point 4, it could be seen how
the estimator goes far away from the real path that can be seen in Fig. 12 (b). In this last case, the
filter uses the non-Gaussian observation of the compass to correct the mean and covariance.

@ - o

Fig. 12. Figure (a) shows results from a standard SLAM algorithm which does not use the
available compass measurements. At point 4 the data association fails. Figure (b) shows the
result from a SLAM process which does use the available compass measurements and at
point 4 the data association is successful.

4. Conclusion

A solution to the SLAM problem is necessary to make a robot truly autonomous. For this
reason, SLAM has been one of the main research topics in robotics, especially during the last
fifteen years. While the structure of the problem is today well known, there are still many
open problems, particularly when working in outdoor environments. We presented here
some of the latest SLAM algorithms that address the problem of localisation and mapping in
large outdoor areas.
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1. Introduction

Among the underwater robotic systems that are currently available, remotely operated
vehicles (ROVs) are the most commonly used underwater robotic systems. A ROV is an
underwater vehicle that is controlled from a mother-ship by human operators. Sometimes a
ROV is equipped with one or more robotic manipulators to perform underwater tasks.
These robotic manipulators are also controlled by human operators from a remote site (e.g.,
mother-ship) and are known as tele-manipulators. Although the impact of ROVs with tele-
manipulators is significant, they suffer from high operating cost because of the need for a
mother-ship and experienced crews, operator fatigue and high energy consumption because
of the drag generated by the tether by which the ROV is connected to the ship. The
performance of such a system is limited by the skills, coordination and endurance of the
operators. Not only that, communication delays between the master and the slave site (i.e.,
the mother-ship and the ROV) can severely degrade the performance.

In order to overcome some of the above-mentioned problems, autonomous underwater
vehicles (AUVs) are developed. However, an AUV alone cannot interact with the
environment. It requires autonomous robotic manipulator(s) attached to it so that the
combined system can perform some useful underwater tasks that require physical contact
with the environment. Such a system, where one or more arms are mounted on an AUV, is
called an autonomous underwater vehicle-manipulator system (UVMS).

One of the main research problems in underwater robotics is how to design an autonomous
controller for a UVMS. Since there is no human operator involved in the control of a UVMS,
the task planning has become an important aspect for smooth operation of such a system.
Task planning implies the design of strategies for task execution. In other words, a task
planning algorithm provides a set of desired (i.e., reference) trajectories for the position and
force variables, which are used by the controller to execute a given task. Task planning can
be divided into motion planning and force planning. In this research, we focus on the
design of motion planning algorithms for a UVMS.

The motion planning of a UVMS is a difficult problem because of several reasons. First, a
UVMS is a kinematically redundant system. A kinematically redundant system is one which
has more than 6 degrees-of-freedom (DOF) in a 3-D space. Commonly, in a UVMS, the AUV
has 6 DOF. Therefore, the introduction of a manipulator, which can have n DOF, makes the
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combined system kinematically redundant. Such a system admits infinite number of joint
space solutions for a given Cartesian space coordinates, and thus makes the problem of
motion planning a difficult one. Second, a UVMS is composed of two dynamic subsystems,
one for the vehicle and one for the manipulator, whose bandwidths are vastly different. The
dynamic response of the vehicle is much slower than that of the manipulator. Any
successful motion planning algorithm must consider this different dynamic bandwidth
property of the UVMS. There are several other factors such as the uncertainty in the
underwater environment, lack of accurate hydrodynamic models, and the dynamic
interactions between the vehicle and the manipulator to name a few, which makes the
motion planning for a UVMS a challenging problem.

In robotics, trajectory planning is one of the most challenging problems (Klein & Huang,
1983). Traditionally, trajectory planning problem is formulated as a kinematic problem and
therefore the dynamics of the robotic system is neglected (Paul, 1979). Although the
kinematic approach to the trajectory planning has yielded some very successful results, they
are essentially incomplete as the planner does not consider the system’s dynamics while
generating the reference trajectory. As a result, the reference trajectory may be kinematically
admissible but may not be dynamically feasible.

Researchers, in the past several years, have developed various trajectory planning methods
for robotic systems considering different kinematic and dynamic criteria such as obstacle
avoidance, singularity avoidance, time minimization, torque optimization, energy
optimization, and other objective functions. A robotic system that has more than 6 dof
(degrees-of-freedom) is termed as kinematically redundant system. For a kinematically
redundant system, the mapping between task-space trajectory and the joint-space trajectory
is not unique. It admits infinite number of joint-space solutions for a given task-space
trajectory. However, there are various mathematical tools such as Moore-Penrose
Generalized Inverse, which map the desired Cartesian trajectory into the corresponding
joint-space trajectory for a kinematically redundant system. Researchers have developed
various trajectory planning methods for redundant systems (Klein & Huang, 1983; Zhou &
Nguyen, 1997; Siciliano, 1993; Antonelli & Chiaverini, 1998; shi & McKay, 1986). Kinematic
approach of motion planning has been reported in the past. Among them, Zhou and
Nguyen (Zhou & Nguyen, 1997) formulated optimal joint-space trajectories for
kinematically redundant manipulators by applying Pontryagin’s Maximum Principle.
Siciliano (Siciliano, 1993) has proposed an inverse kinematic approach for motion planning
of redundant spacecraft-manipulator system. Antonelli and Chiaverini (Antonelli &
Chiaverini, 1998) have used pseudoinverse method for task-priority redundancy resolution
for an autonomous Underwater Vehicle-Manipulator System (UVMS) using a kinematic
approach.

Several researchers, on the other hand, have considered dynamics of the system for
trajectory planning. Among them, Vukobratovic and Kircanski (Vukobratovic &
Kircanski, 1984) proposed an inverse problem solution to generate nominal joint-space
trajectory considering the dynamics of the system. Bobrow (Bobrow, 1989) presented the
Cartesian path of the manipulator with a B-spline polynomial and then optimized the
total path traversal time satisfying the dynamic equations of motion. Shiller and
Dubowsky (Shiller & Dubowsky, 1989) presented a time-optimal motion planning method
considering the dynamics of the system. Shin and McKay (Shin & McKay, 1986) proposed
a dynamic programming approach to minimize the cost of moving a robotic manipulator.
Hirakawa and Kawamura (Hirakawa & Kawamura, 1997) have proposed a method to
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solve trajectory generation problem for redundant robot manipulators using the
variational approach with B-spline function to minimize the consumed electrical energy.
Saramago and Steffen (Saramago & Steffen, 1998) have formulated off-line joint-space
trajectories to optimize traveling time and minimize mechanical energy of the actuators
using spline functions. Zhu et al. (Zhu et al. , 1999) have formulated real-time collision free
trajectory by minimizing an energy function. Faiz and Agrawal (Faiz & Agrawal, 2000)
have proposed a trajectory planning scheme that explicitly satisfy the dynamic equations
and the inequality constraints prescribed in terms of joint variables. Recently, Macfarlane
and Croft (Macfarlane & Croft, 2003) have developed and implemented a jerk-bounded
trajectory for an industrial robot using concatenated quintic polynomials. Motion
planning of land-based mobile robotic systems has been reported by several researchers.
Among them, Brock and Khatib (Brock & Khatib, 1999) have proposed a global dynamic
window approach that combines planning and real-time obstacle avoidance algorithms to
generate motion for mobile robots. Huang et al. (Huang et al., 2000) have presented a
coordinated motion planning approach for a mobile manipulator considering system
stability and manipulation. Yamamoto and Fukuda (Yamamoto & Fukuda, 2002)
formulated trajectories considering kinematic and dynamic manipulability measures for
two mobile robots carrying a common object while avoiding a collision by changing their
configuration dynamically. Recently, Yamashita et al. (Yamashita et al., 2003) have
proposed a motion planning method for multiple mobile robots for cooperative
transportation of a large object in a 3D environment. To reduce the computational burden,
they have divided the motion planner into a global path planner and a local manipulation
planner then they have designed it and integrated it. All the previously mentioned
researches have performed trajectory planning for either space robotic or land-based
robotic systems. On the other hand, very few works on motion/trajectory planning of
underwater robotic systems have been reported so far. Among them, Yoerger and Slotine
(Yoerger & Slotin, 1985) formulated a robust trajectory control approach for underwater
robotic vehicles. Spangelo and Egeland (Spangelo & Egeland, 1994) developed an energy-
optimum trajectory for underwater vehicles by optimizing a performance index
consisting of a weighted combination of energy and time consumption by the system.
Recently, Kawano and Ura (Kawano & Ura, 2002) have proposed a motion planning
algorithm for nonholonomic autonomous underwater vehicle in disturbance using
reinforcement learning (Q-learning) and teaching method. Sarkar and Podder (Sarkar &
Podder, 2001) have presented a coordinated motion planning algorithm for a UVMS to
minimize the hydrodynamic drag. Note that UVMS always implies an autonomous
UVMS here.

However, majority of the trajectory planning methods available in the literature that
considered the dynamics of the system are formulated for land-based robots. They have
either optimized some objective functions related to trajectory planning satisfying
dynamic equations or optimized energy functions. Moreover, for the land-based robotic
system, the dynamics of the system is either homogeneous or very close to homogeneous.
On the other hand, most of the trajectory planning methods that have been developed for
space and underwater robotic systems use the pseudoinverse approach that neglects the
dynamics of the system (Siciliano, 1993; Antonelli & Chiaverini, 1998; Sarkar & Podder,
2001).

In this research, we propose a new trajectory planning methodology that generates a
kinematically admissible and dynamically feasible trajectory for kinematically
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redundant systems whose subsystems have greatly different dynamic responses. We
consider the trajectory planning of underwater robotic systems as an application to the
proposed theoretical development. In general, a UVMS is composed of a 6 dof
Autonomous Underwater Vehicles (AUV) and one (or more) n dof robotic
manipulator(s). Commonly, the dynamic response of the AUV is an order of
magnitude slower than that of the manipulator(s). Therefore, a UVMS is a
kinematically redundant heterogeneous dynamic system for which the trajectory
planning methods available in the literature are not directly applicable. For example,
when the joint-space description of a robotic system is determined using
pseudoinverse, all joints are implicitly assumed to have same or similar dynamic
characteristics. Therefore, the traditional trajectory planning approaches may generate
such reference trajectories that either the UVMS may not be able to track them or while
tracking, it may consume exorbitant amount of energy which is extremely precious for
autonomous operation in oceanic environment.

Here, we present a new unified motion planning algorithm for a UVMS, which incorporates
four other independent algorithms. This algorithm considers the variability in dynamic
bandwidth of the complex UVMS system and generates not only kinematically admissible
but also dynamically feasible reference trajectories. Additionally, this motion planning
algorithm exploits the inherent kinematic redundancy of the whole system and provides
reference trajectories that accommodates other important criteria such as thruster/actuator
faults and saturations, and also minimizes hydrodynamic drag. All these performance
criteria are very important for autonomous underwater operation. They provide a fault-
tolerant and reduced energy consuming autonomous operation framework. We have
derived dynamic equations of motion for UVMS using a new approach Quasi-Lagrange
formulation and also considered thruster dynamics. Effectiveness of the proposed unified
motion planning algorithm has been verified by extensive computer simulation and some
experiments.

2. UVMS Dynamics

The dynamics of a UVMS is highly coupled, nonlinear and time-varying. There are
several methods such as the Newton-Euler method, the Lagrange method and Kane's
method to derive dynamic equations of motion. The Newton-Euler approach is a
recursive formulation and is less useful for controller design (Kane & Lavinson, 1985;
Fu et al., 1988; Craig, 1989). Kane’s method is a powerful approach and it generates the
equations of motion in analytical forms, which are useful for control. However, we
choose to develop the dynamic model using the Lagrange approach because of two
reasons. First, it is a widely known approach in other fields of robotics and thus will be
accessible to a larger number of researchers. Second, this is an energy-based approach
that can be easily extended to include new subsystems (e.g., inclusion of another
manipulator).

There is a problem, however, to use the standard form of the Lagrange equation to
derive the equations of motion of a UVMS. When the base of the manipulator is not
fixed in an inertial frame, which is the case for a UVMS, it is convenient to express the
Lagrangian not in terms of the velocities expressed in the inertial frame but in terms
of velocities expressed in a body attached frame. Moreover, for feedback control, it is
more convenient to work with velocity components about body-fixed axes, as sensors
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measure motions and actuators apply torques in terms of components about the
body-fixed reference frame. However, the components of the body-fixed angular
velocity vector cannot be integrated to obtain actual angular displacement. As a
consequence of this, we cannot use the Lagrange equation directly to derive the
dynamic equations of motion in the body-fixed coordinate frame. This problem is
circumvented by applying the Quasi-Lagrange approach. The Quasi-Lagrange
approach was used earlier to derive the equations of motion of a space structure
(Vukobratovic & Kircanski, 1984). Fossen mentioned the use of the same approach to
model an AUV (Fossen, 1984).

However, this is the first time that a UVMS is modeled using the Quasi-Lagrange approach.
This formulation is attractive because it is similar to the widely used standard Lagrange
formulation, but it generates the equations of motion in the body-attached, non-inertial
reference frame, which is needed in this case.

We, for convenience, commonly use two reference frames to describe underwater robotic
systems. These two frames are namely the earth-fixed frame (denoted by XYZ) and the
body-fixed frame (denoted by X,Y, Zv), as shown in Fig. 1.

The dynamic equations of motion of a UVMS can be expressed as follows:

M, (4, ) +Cy (g, wyw+D,(q,, wyw+G,(7) =7, @
where the subscript ‘b" denotes the corresponding parameters in the body-fixed frames of
the vehicle and the manipulator. M, (q,)e R is the inertia matrix including the
added mass and C,(q,.,w)e RExE) is the centrifugal and Coriolis matrix including terms
due to added mass. D,(q,., w)e Qe+ s the drag matrix, G(q)e R6* is the vector of
restoring forces and 7, e R is the vector of forces and moments acting on the UVMS.
The displacement vector q= [%,%]T , where q, =g s qs I', and 4 = [q7,....,qw]T-
9.9, and q, are the linear (surge, sway, and heave) displacements of the vehicle along X,

Y, and Z axes, respectively, expressed in the earth-fixed frame. 4,4, and g, are the angular

(roll, pitch, and yaw) displacements of the vehicle about X, Y and Z axes, respectively,

expressed in the earth-fixed frame. N D - the angular displacements of joint 1,

joint 2, ....... , joint n of the manipulator in link-fixed frames. The quasi velocity vector
w=[w Lo W ", where w,,w, and w, are the linear velocities of the vehicle

along X,/ Y, and Z, axes respectively, expressed in the body-fixed frame. 4 Ws and ¢ o
are the angular velocities of the vehicle about X , Y, ,and z_ axes, respectively, expressed in

the body-fixed frame. Wy, W ey W, ATE the angular velocities of manipulator joint 1,

joint 2, .... ., joint n, expressed in the link-fixed frame. A detailed derivation of Equation (1)
is given in (Podder, 2000).
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CG = Center of Gravity
CB = Center of Buoyancy

Inertial
frame

z

Fig. 1. Coordinate frames for underwater vehicle-manipulator system.

Equation (1) is represented in the body-fixed frame of the UVMS because it is convenient to
measure and control the motion of the UVMS with respect to the moving frame. However,
the integration of the angular velocity vector does not lead to the generalized coordinates
denoting the orientation of the UVMS. In general, we can relate the derivative of the
generalized coordinates and the velocity vector in the body-fixed frame by the following
linear transformation:

§=Buw @
The transformation matrix B in Equation (2) is given by:
B @) @)
B(q) _ Texs it , Bl — Il , B2 = [I] (3)
O B, o J,
nx6 w31t (64 )x(6+n)

where the linear velocity transformation matrix, J1 , and the angular velocity transformation
matrix, J2, are given as:
c,C, -S5,C,+S5,5,C, S,5,+S5C,Cq

J, =S5 C,Ci+S5,5.S, —S,Cq+5:5,C, @)
-5, S,Cy C,C;

1 ST, C,T; 5

J.=|0 G, -5, ©)

0 5,/C; C,/Cs

Here S;, C; and T; represent sin(q;), cos(q;) and fan(q;), respectively, and I is the identity
matrix. Note that there is an Euler angle (roll, pitch, yaw) singularity in ], when the pitch

angle (g,)is an odd multiple of +90°. Generally, the pitch angle in practical operation is
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restricted to ‘q5‘<90”. However, if we need to avoid singularity altogether, unit

quarternions can be used to represent orientation (Fossen, 1984).

3. Dynamics-Based Trajectory Planning Algorithm

Most of the trajectory planning methods found in literature is formulated for land-based
robots where the dynamics of the system is homogeneous or very close to homogeneous.
The study of UVMS becomes more complicated because of the heterogeneous dynamics and
dynamic coupling between two different bandwidth subsystems. From practical point of
view it is very difficult and expensive to move a heavy and large body with higher
frequency as compared to a lighter and smaller body. The situation becomes worse in the
case of underwater systems because of the presence of heavier liquid (water) which
contributes significant amount of drag forces. Therefore, it will be more meaningful if we
can divide the task into several segments depending on the natural frequencies of the
subsystems. This will enable the heterogeneous dynamic system to execute the trajectory
not only kinematically admissibly but also dynamically feasibly.

Here we present a trajectory planning algorithm that accounts for different bandwidth
characteristic of a dynamic system. First, we present the algorithm for a general -
bandwidth dynamic system. Then we improvise this algorithm for application to a UVMS.

3.1 Theoretical Development

Let us assume that we know the natural frequency of each subsystem of the heterogeneous
dynamic system. This will give us a measure of the dynamic response of each subsystem.
Let these frequenciesbe ¢, i =1,2,----- ,5-

We approximate the task-space trajectories using Fourier series and represent it in terms of
the summation of several frequencies in ascending order.

Xyoa(t) = foa(t) = ay + iu, cos(rrmt/L)+ ibr sin(rzt /L) ©)

where g g ,b are the coefficients of Fourier series and are represented as ¢x1 column
07 %rs %y

vectors, r/2L is the frequency of the series and 2L is the time period.

Now we truncate the series at a certain value of r (assuming 7 = P, to be sufficiently large)

so that it can represent the task-space trajectories reasonably. We rewrite the task-space
trajectory in the following form:

Xy oa )= foat) = fr(t)+ f(E)+-o +fp, ) )
where £, (t)=a, +a, cos(xt /L) +b, sin(xt /L), and fi(t)=a;cos(jmt/L)+b;sin(jxt/L)
for j=23,.,p,-

We then use these truncated series as the reference task-space trajectories and map them

into the desired (reference) joint-space trajectories by using weighted pseudoinverse
method as follows:

‘74, =I;{,Xd, ®)

iy =TI, (jéd] _F]d]) O
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where ; are the joint-space velocities and ;  are the joint-space accelerations

corresponding to the task-space velocities 5 = j( £,(8)/dt and task-space accelerations
" j

X, = dz(fi(t))/dtz for j=12,..,p,- ]+, = ijllT(]Wfl]T)*l are the weighted pseudoinverse

w

of Jacobians and W, = diag(h B, ) 3T€ diagonal weight matrices.

1) 70 ’

In our proposed scheme we use weighted pseudoinverse technique in such a way that it can
act as a filter to remove the propagation of undesirable frequency components from the
task-space trajectories to the corresponding joint-space trajectories for a particular
subsystem. This we do by putting suitable zeros in the diagonal entries of the W, matrices

in Equation (8) and Equation (9). We leave the other elements of W as unity. We have

developed two cases for such a frequency-wise decomposition as follows:

Case I - Partial Decomposition:

In this case, the segments of the task-space trajectories having frequencies &, (@, < @,) Will

be allocated to all subsystems that have natural frequencies greater than @), up to the

maximum bandwidth subsystem. To give an example, for a UVMS, the lower frequencies
will be shared by both the AUV and the manipulator, whereas the higher frequencies will
be solely taken care of by the manipulator.

Case 1I- Total Decomposition:

In this case, we partition the total system into several frequency domains, starting from the
low frequency subsystem to the very high frequency subsystem. We then allocate a
particular frequency component of the task-space trajectories to only those subsystems that
belong to the frequency domain just higher than the task-space component to generate joint-
space trajectories. For a UVMS, this means that the lower frequencies will be taken care of
by the vehicle alone and the higher frequencies by the manipulator alone.

To improvise the general algorithm for a (6+1) dof UVMS, we decompose the task-space
trajectories into two components as follows:

fO=fu®+ fu(t) (10)
where fu®)=a,+ ia, cos(rzt /L) +i{:br sin(rzt /L)’ fn(t)= yzzu,, cos(rrt /L) +

ib” sin(rzt /L) T and r, (r,=p,) are suitable finite positive integers. Here,
r=r+1

£, (t) consists of lower frequency terms and £, (¢) has the higher frequency terms.

Now, the mapping between the task-space variables and the joint-space variables are
performed as

"1'111 :I;v, (’?d, _jxd1) (11)
Ga, :J;VZ (jédz _dez) (12)

Ga =G4 T4, (13)
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where W, e REEn) are the weight matrices, e RE* are the joint-space accelerations
and Jr =W JT(Jw,'J")" for (i=1,2). We have considered the weight matrices for two

types of decompositions as follows:
For Case I - Partial decomposition:

W, =diag(hy , hy,...., hg,.,) (14)
W, = diag(0,....,0,h, ..., hg.,) (15)
For Case II- Total decomposition:
W, = diag(h, ,....,h 0,....,0) (16)
W, = diag(0,....0,lt; ,..... h.,) 17)

The weight design is further improved by incorporating the system’s damping into the
trajectory generation for UVMS. A significant amount of energy is consumed by the
damping in the underwater environment. Hydrodynamic drag is one of the main
components of such damping. Thus, if we decompose the motion in the joint-space in such a
way that it is allocated in an inverse ratio to some measure of damping, the resultant
trajectory is expected to consume less energy while tracking the same task-space trajectory.
Thus, we incorporate the damping into the trajectory generation by designing the diagonal
elements of the weight matrix as ho=f({) where ¢ (i=1,......,6+n) is the damping ratio of
the particular dynamic subsystem which can be found out using multi-body vibration
analysis techniques (James et al., 1989). A block diagram of the proposed scheme has been
shown in Fig. 2.

Joint-Space UVMS states
Trajectory
for Lower +
Frequency Part Resultant I Di
. N q ct
Task-Space Fourier Joint- UVMS ) nerse > et
Trajectory Dy ition Space Controller DY{‘EHI\TSS of Dysa\;l;\;lcss of
Joint-Space Trajectory
Trajectory
for Higher +
Frequency Part UVMS states

Fig. 2. Dynamics-based planning scheme.

3.2 Implementation Issues

It is to be noted that in the proposed dynamics-based method we have decomposed the
task-space trajectory into two domains where the lower frequency segments of the task-
space trajectories are directed to either the heavier subsystem, i.e., the vehicle in Case II, or
to both the heavier and lighter subsystems, i.e., the vehicle and the manipulator as in Case I.
The high frequency segments of the task-space trajectories, on the other hand, are always
allocated to the lighter subsystem, i.e., the manipulator. These allocations of task-space
trajectories have been mapped to corresponding joint-space trajectories by utilizing
weighted pseudoinverse technique where the heterogeneous dynamics of the UVMS have
been taken into consideration. Then, these reference joint-space trajectories are followed by
the individual joint/ dof to execute the end-effector’s trajectories.

There are two basic issues of this proposed algorithm that must be discussed before it can be
implemented. They are: given a nonlinear, multi degree-of-freedom (7-DOF) dynamic
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system having different frequency bandwidth subsystems, how to find the 1) natural
frequencies of each subsystem, and 2) the damping ratios of each subsystem. We briefly
point out the required steps that are needed to obtain these system dynamic parameters: (1)
Linearize the dynamic equations, (2) Find the eigenvalues and eigenvectors from the
undamped homogeneous equations, (3) Find the orthogonal modal matrix (P), (4) Find the
generalized mass matrix (P* MP), (5) Find the generalized stiffness matrix (P"KP), (6) Find
the weighted modal matrix (P ), (7) Using Rayleigh damping equation find a proportional
damping matrix, and (8) Decouple the dynamic equations by using D .

After all these operations, we will obtain (6+n) decoupled equations similar to that of a
single-dof system instead of (6+n) coupled equations. From this point on, finding the
natural frequencies (g,) and the damping ratios ({,) are straightforward. A detailed

discussion on these steps can be found in advanced vibration textbook (James et al.,
1989).

3.3 Results and Discussion

We have conducted extensive computer simulations to investigate the performance of the
proposed Drag Minimization (DM) algorithm. The UVMS used for the simulation consists
of a 6 dof vehicle and a 3 dof planar manipulator working in the vertical plane. The vehicle
is ellipsoidal in shape with length, width and height 2.0mm, 1.0m and 1.0m, respectively. The
mass of the vehicle is 1073.0Kg. The links are cylindrical and each link is 1.0m long. The radii
of link 1, 2 and 3 are 0.1m, 0.08m and 0.07m, respectively. The link masses (oil filled) are
32.0Kg, 21.0Kg and 16.0Kg, respectively. We have compared our results with that of the
conventional Pseudoinverse (PI) method (i.e., without the null-space term), which is a
standard method for resolving kinematic redundancy.

3.3.1 Trajectory

We have chosen a square path in xy (horizontal) plane for the computer simulation. We
have assumed that each side of the square path is tracked in equal time. The geometric path
and the task-space trajectories are given in Fig. 3.

A Y X Ya
1 2 12 3 12 1
A
Y > ki 0 , kr o R
‘ L4 n Ld “ Ll
e X X time « time
4 1 4 1 v 4
p 3 — t=2L ; — t=2L R
- 47 »\ «
Kz !

Fig. 3. Task-space geometric path and trajectories.
The task-space trajectories can be represented as
4kt/L-k  if 0<t<L/2
if L/2<t<L (18)
Sk—4kt/L  if L<t<3L/2
-k if 3BL/2<t<2L

x(t)=f(t)=
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k if0<t<L/2

D f (e 3k—4kt/L if L/2<t<L (19

yO=£0=1 _y if L<t<3L/2

4kt /L-7k  if BL/2<t<2L
Z(t)=£.(t)=0 (20)
The Fourier series for the above trajectories are as follows:
fi)=ay + iu,j cos(rmt /L) +i b, sin(rzt /L) (21)
r=1 =1

where ‘j” implies the coefficients for x, y or z; k is a constant and 2L is the time period. The
Fourier coefficients are:

Ao, =—a, =k, a,=-a, = 4k/(r)* (cosrm—1)and p = -b,, = 8k/(rx)* sin(rz/2)-

For this simulation, we have taken k= 1m, i.e., the path is 2m square, L=5 and maximum
frequency at which the Fourier series is truncated is r=p, =30. The frequency of the

manipulator is 10 times higher than that of the vehicle. We have taken the natural frequency
of the vehicle as 0.15 cycles per second and the manipulator to be 10 time faster than the
vehicle. We have segmented the task-space trajectories as

fn(t)=ay; +ay; cos(zt /L)+b,; sin(zt /L) (22)
fn(t)= %u,_/. cos(rﬂt/L)+SzD: b, sin(rzt /L) (23)

We have compared our results from the proposed dynamics-based trajectory planning
method with that from the conventional straight-line trajectory planning method using
regular pseudoinverse technique. In conventional method, the trajectory is designed in three
sections: the main section (intermediate section), which is a straight line, is preceded and
followed by two short parabolic sections (Fu et al., 1988; Craig, 1989). The simulation time is
10.0sec, which is required to complete the square path in XY (horizontal) plane. The total
length of the path is 8.0m; the average speed is about 1.6knot. This speed is more than
JASON vehicle (speed = 1.0knot) but less than SAUVIM system (designed speed = 3.0knot).
We have presented results from computer simulations in Fig. 4 through Fig. 9. Results for Case
I (Partial Decomposition) are plotted in Fig. 5 through Fig. 7 and that of for Case II (Total
Decomposition) are provided in Fig. 8 through Fig. 9. It is observed from Fig. 4 and 5 that the
end-effector tracks the task-space paths and trajectories quite accurately. The errors are very
small. The joint-space trajectories are plotted in Fig. 6. It is observed that the proposed
dynamics-based method restricts the motion of the heavy subsystem and allows greater
motion of the lighter subsystem to track the trajectory. It is also noticed that the motion of the
heavy subsystem is smoother. The errors in joint-space trajectory are almost zero.

Simulation results for surge-sway motion, power requirement and energy consumption for
conventional straight-line method are plotted in the left column and that of for proposed
dynamics-based method are plotted in the right column in Fig. 7. Top two plots of Fig. 7
show the differences in surge-sway movements for two methods. In case of the conventional
method, the vehicle changes the motion very sharply as compared to the motion generated
from the dynamics-based method. It may so happen that this type of sharp movements may
be beyond the capability of the heavy dynamic subsystem and consequently large errors in
trajectory tracking may occur. Moreover, the vehicle will experience large velocity and
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acceleration in conventional method that result in higher power requirement and energy
consumption, as we observe in Fig. 7.

i e ——— . o) Doprasmas Baomd isinal

@ 10 T : 14 1
Fig. 4. Task-space geometric paths, (a) Conventional Straight-line planning method and (b)

Dynamics-Based planning method for Case I. The actual path is denoted by solid line and
the desired path is denoted by dashed line.

We have also presented simulation results for Case II (Total Decomposition) in Fig. 8 and 9.
From Fig. 8 it is observed that even though the vehicle has moved more as compared to the
conventional straight-line planning method, the motion is smooth. This type of motion is more
realistic for a heavy subsystem like the vehicle here and it also avoids large acceleration of the
vehicle. On the other hand, the movement of the manipulator is smaller but sharper than that
of the conventional method. In the plots in the left column of Fig. 9 it is shown that the end-
effector tracks the task-space trajectories quite accurately. The second plot on the right column
of this figure shows that the power requirement of the UVMS is less in Case II of the proposed
dynamics-based method as compared to that of in conventional method.
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Fig. 5. Task-space trajectories: Conventional Straight-line planning method (left column)
and Dynamics-Based planning method for Case I (right column). Desired trajectories are
denoted by dashed lines and actual trajectories are denoted by dashed lines.
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Fig. 6. Joint-space trajectories: Dynamics-Based planning method for Case I (solid/blue line)
and Conventional Straight- line planning method (dashed/red line).

For Case II, we can say even though the reduction of energy consumption is not much,
however, the movement is smooth that can be practically executed. The power requirement
is also less as compared to the conventional straight-line planning method.
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Fig. 7. X-Y motion of the center of gravity, power and energy consumption of the UVMS.
Left column for Conventional Straight-line planning method and right column for
Dynamics-Based planning method for Case I (partial decomposition).
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Fig. 8. Joint-space trajectories: Dynamics-Based planning method (solid/blue line) for Case
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4. Fault Tolerant Decomposition Algorithm

A UVMS is expected to function in a hazardous and unstructured underwater environment.
A thruster/actuator fault can occur due to various reasons. There are different methods to
detect and isolate these faults. Without going into the details of the possible nature of
thruster/actuator faults and how they can be detected and isolated, we assume in this work
that we can detect and isolate thruster/actuator faults when they occur. In general, there are
more thrusters and actuators than what is minimally required for the specific dof that a
UVMS is designed for. Here, we develop an algorithm to exploit the thruster and actuator
redundancy to accommodate thruster/actuator faults during operation.

4.1 Theoretical Development
In order to relate the generalized force vector 7, with the individual thruster/actuator

force/torque, let us consider a UVMS which has p thrusters and actuators where, in general,
p=(6+n)- In such a case, we can write

7, =EF, (4)
where Ee RE™% thruster configuration matrix andF e ¥ is the reference thruster and

actuator forces and torques. The thruster configuration matrix is a constant matrix that
depends on the geometric locations of the thrusters and actuators.
Substituting Equation (24) into Equation (1) and performing algebraic manipulation we get

w=M,"(EF, -§,) (25)
where £ =C,(q,, w)w+D,(q,, w)w+G,()-
Differentiation of Equation (2) leads to the following acceleration relationship:

§j=Bw+Bw (26)
Now, from Equation (25) and Equation (26) we can write

=nF+x @)
where 77(6+n)><p = BM,;lE and x(mnm =Bw- BMz;lfb '

From Equation (27), using weighted pseudoinverse technique we obtain a least-norm
solution to thruster and actuator forces and torques as

F, =1y, (4 %) (28)
where pr =Wp'(pW1p")? is the weighted pseudoinverse of 7 and
W =diag(hy By yeeeenn. ) is the weight matrix.

Now, we construct a thruster fault matrix, Yy = W, with diagonal entries either 1 or 0 to

capture the fault information of each individual thruster/actuator. If there is any
thruster/actuator fault we introduce 0 into the corresponding diagonal element of ¥/,
otherwise it will be 1. We can also rewrite Equation (28) in terms of thruster fault matrix,
Y, as

E=yn'(yn')"(G-%) @9
Equation (29) provides us the fault tolerant allocation of thruster/actuator force/torque, F, .

More detailed discussion on this topic can be found in (Podder & Sarkar, 2000; Podder et al.,
2001).
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Fig. 10. Fault-tolerant control scheme.

4.2 Experimental Setup

We have conducted both computer simulations and underwater experiments to verify the
proposed fault-tolerant control scheme. We have used ODIN (Omni-Directional Intelligent
Navigator), which is a 6 dof vehicle designed at the University of Hawaii], as our test-bed.
ODIN is a near-spherical AUV that has 4 horizontal thrusters and 4 vertical thrusters as
shown in Fig. 11. We have compared our simulation results with that of actual experiments,
and presented them later in this section.

Fig. 11. Omni-Directional Intelligent Navigator (ODIN) vehicle.

The ODIN has a near-spherical shape with horizontal diameter of 0.63m and vertical
diameter of 0.61m, made of anodized Aluminum (AL 6061-T6). Its dry weight is 125.0Kg and
is slightly positively buoyant. The processor is a Motorola 68040/33MHz working with
VxWorks 5.2 operating systems. The R5232 protocol is used for RF communication. The RF
Modem has operating range up to 480m, operating frequency range 802-928MHz, and
maximum transmission speed 38,400 baud data rate. The power supply is furnished by 24
Lead Gel batteries, where 20 batteries are used for the thrusters and 4 batteries are used for
the CPU. ODIN can perform two hours of autonomous operation.

The actuating system is made of 8 thrusters of which 4 are vertical and 4 are horizontal.
Each thruster has a brushless DC motor weighing approximately 1Kg and can provide a
maximum thrust of approximately 27N. The sensor system is composed of: 1) a pressure
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sensor for measuring depth with an accuracy of 3cm, 2) 8 sonars for position reconstruction
and navigation, each with a range of 0.1-14.4m, and 3) an inertial system for attitude and
velocity measurement. Since the sonars need to be in the water to work properly, the first
100sec of sonar data is not accurate.

The experiments were conducted at the University of Hawaii swimming pool. Several
experiments were performed to verify the proposed control scheme. The thruster faults
were simulated by imposing zero voltages to the relevant thrusters.

4.3 Results and Discussion

We have performed extensive computer simulations and a number of experiments to verify
the proposed planning and control scheme. We present simulation results for two cases to
demonstrate the effectiveness of the proposed method. In Case 1, all thrusters are in

working condition and therefore the thruster fault matrix ¥ becomes an identity matrix. In
Case 2, there are two thrusters that stop working during trajectory tracking operation. In
both the cases, ODIN tries to track the following trajectories: it first moves toward the z-
direction for 120sec to reach a depth of 2m. Then it moves toward the y-direction for another
120.0sec to traverse 2.0m. It subsequently moves towards the x-direction for 120sec to
traverse 2m. Finally it hovers at that position for another 40sec. ODIN follows a trapezoidal
velocity profile during this task. The attitudes are always kept constant at [0° 0° 90°] . For

Case 2, one horizontal thruster (Thruster 6) fails at 260sec and one vertical thruster (Thruster
2) fails at 300sec while tracking the same trajectories as explained in Case 1. In simulations,
we have introduced sensory noise in position and orientation measurements. We have
chosen Gaussian noise of 2mm mean and 1.5mm standard deviation for the surge, sway and
heave position measurements, 0.15degree mean and 0.15degree standard deviation for the
roll, pitch and yaw position measurements for the vehicle.

In Fig. 12, we present results from a trajectory following task when there is no thruster
fault. It can be observed that both the simulation and the experimental results for all the
six trajectories match their respective desired trajectories within reasonable limits. It
should also be noted that the particular sonar system of ODIN requires 100.0sec before it
works properly. Thus, x and y trajectories in experiments have data after 100.0sec.
However, the depth and attitude sensors provide information from the beginning of the
task. In Fig. 13, the same trajectory following task is performed but with thruster faults. In
this case, one horizontal thruster (Thruster 6) fails at 260.0sec (marked as ‘A’) and one
vertical thruster (Thruster 2) fails at 300.0sec (marked as ‘B’). Both the faulty thrusters are
located at the same thruster bracket of the ODIN. Thus, this situation is one of the worst
fault conditions. The simulation results are not affected by the occurrence of faults except
in the case of the yaw trajectory, which produces a small error at the last part of the
trajectory. In experiment, the first fault does not cause any tracking error. There are some
small perturbations after the second fault from which the controller quickly recovers. It
can also be noticed that in case of experiment the tracking performance is better in z-
direction (depth) as compared to other two directions, i.e., x-direction and y-direction.
This happened because of two reasons: 1) less environmental and hydrodynamic
disturbances in z-direction, and 2) the pressure sensor for depth measurement is more
accurate as compared to sonar sensors used to measure x-position and y-position.
However, the orientation of the AUV, which is measured by INS sensors, is reasonably
good.
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Fig. 12. Trajectory tracking with no thruster fault, simulation results in the left and
experimental results in the right. The actual trajectories are denoted by solid lines and the

desired trajectories are denoted by dashed lines.
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Fig. 14. Voltage versus time plots for the vertical thrusters (left) and the horizontal thrusters
(right).

The voltage plots for Case 2 are presented in Fig. 14. It can be seen that voltage for Thruster
6 is zero after 260sec and that of Thruster 2 after 300sec, which imply thruster faults. From
these plots it is observed that in case of simulations all the thruster voltages and in case of

experiment the vertical thruster voltages are within +2v0lt. Whereas, the horizontal

thruster voltages in case of experiment have some spikes greater than £ 200!t . The causes
are as mentioned previously. We also observe that the voltage profile for the vertical
thrusters matches well between simulations and experiments. This match was less obvious
for horizontal thrusters. However, in all the cases, the range and general pattern seem to be
consistent. More details can be found in (Podder et al., 2001).

5. Saturation Limit Algorithm

In the previous section, we have derived Equation (29) for desired thruster/actuator
force/torque allocation that allows the operation of the UVMS with faults. However, it
cannot guarantee that the desired allocated forces/torques will remain within the saturation
limit of the thrusters/actuators. As a result, if some of the forces and torques determined
from those equations are beyond the capacity of the corresponding thrusters and actuators,
the performance of the controller will suffer because of saturation effect.

5.1 Theoretical Development
The saturation problem cannot be solved based on the formulation given by Equations (29).
In order to avoid the saturation effect, the thruster/actuator force/torque must be
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controlled so that it cannot reach the saturation limit. However, in such a case, since the
input to the controller and the output of the controller will be algebraically related, static
state feedback technique will not be able to control the thruster and actuator forces and
torques. We, therefore, propose to use the dynamic state feedback technique (Isidori et al.,
1968; Yun, 1988) to generate thruster forces that are within the saturation limit. The basic
idea of dynamic state feedback is to introduce integrators at the input channel to enlarge the
state space, and then apply the static state feedback on the enlarged system.

However, there is a difference between explicit control of the thruster/actuator
forces/torques so that it can be regulated about a point or can follow a trajectory, and keep
it within a specified range without regulation. The former is a force control problem and the
latter is a saturation problem. We first use the dynamic state feedback technique to enlarge
the state space in the following way.

We differentiate the output Equation (27) to obtain a new input V as follows:

G=nE+i0F +k=nv+y (30)
where  y=pF, +% and VZFt'
Now, we consider the following control law
V=1 [, + Ko (G, - §) + Ko (G, —9) +Ks (g, -] -7 (31
and integration of Equation (31) yields the desired thruster and actuator forces and torques
as

F, = [vdt (32)
where /=W " (n W' n")™, K, is the acceleration gain, K, is the velocity gain and

K, is the position gain; 5, and F, are desired parameters of ;5 and F, respectively. The

diagonal elements of the weight matrix, p, = diag(h,,h,......,h ), are computed from the

thruster/actuator saturation limits as follows:
We define a function of thruster and actuator force and torque variables as

21 k. .-k (33)
H(E)=2—
=G (Pt,’m“ 7Pf‘)(Ff, 7Fi, ,,,,, n)
where F and F, are the upper and lower limits of thrust/torque of the i-th

thruster/actuator, and C, is a positive quantity which is determined from the damping

property of the dynamic system. Then, differentiating Equation (24), we obtain

aH(P,) _ (th““ - thmm )2 (ZFQ - Ff.,mx - Ft“m" ) (34)
aprz - Cz (Ft,mx _Pr, )Z(Pz, - F:Z,mm )2
Then, the diagonal elements of the weight matrix are defined as
h, =1+|0H(F,)/oF| (35)

From the above expression (34), we notice that OH(F,) /apt is equal to zero when the i-th

thruster/actuator is at the middle of its range, and becomes infinity at either limits. Thus, h,

varies from 1 to infinity if the i-th thrust goes from middle of the range to its limit. If the i-th
thrust/torque approaches its limit, then j, becomes very large and the corresponding

element in ;! goes to zero and the i-th thruster/actuator avoids saturation. Depending
upon whether the thruster/actuator is approaching toward or departing from its saturation
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limit, 7; can be redefined as h; =1+[0H(F;)/oF;| when AlQH(F;)/oF;|20 (ie., the

1

thruster/actuator force/torque is approaching toward its limit), and 7%; =1 when

A‘aH(F,-)/aF,-‘SO (i.e, the thruster/actuator force/torque is departing from its limit).

Finally, the desired thruster/actuator force/torque vector, F,;, that is guaranteed to stay

within the saturation limit.
Substituting Equation (31) into Equation (30) and denoting e=g¢, —¢g, we obtain the

following error equation in joint-space
€+ Kié+Kye+Kze=0 (36)

Thus, for positive values of the gains, Kl , K2 and K3, the joint-space errors reduce to

zero asymptotically, as time goes to infinity.
Now, to incorporate both the fault and the saturation information in control Equation (31),

we define a fault-saturation matrix, Ty, =Wg', having diagonal elements either 1/a; or

zero. Whenever there is any thruster/actuator fault, we put that corresponding diagonal
element in I' matrix as zero. If there is no fault in any thruster/actuator, that corresponding
diagonal entry of the fault-saturation matrix will be 1/A; . Thus, it accounts for the

force/torque saturation limits along with the fault information. We can rewrite the Equation
(31) in terms of fault-saturation matrix, I', as

v=Tn" 00" [Gg+ K (Ga - )+ Ko (da -9+ K3(ga — 17 (37)

5.2 Results and Discussion

We present the simulation results for a circular trajectory to demonstrate the effectiveness of
the proposed method. In the simulation, an ODIN type vehicle (with higher thruster
capacity) tries to track a circular path of diameter 2.65m in a horizontal plane in 20sec. The
vehicle attitudes are kept constant at [00 0° 900] . We have considered three different cases
for this circular trajectory tracking task. In Case 1, all thrusters are in working condition. In
Case 2, two of the thrusters (Thruster 1 and 5) develop faults during operation. Case 3 is
similar to Case 2 except, in this case, the thruster saturation limits are imposed. In Case 1, all
thrusters are in working condition and therefore the thruster fault matrix, ¥, becomes an
identity matrix. In Case 2 and 3, Thruster 5 stops functioning after 7sec and Thruster 1 stops
functioning after 12sec. We have simulated it by incorporating zeros for the corresponding
elements in the ¥ matrix.

It should be noted that the chosen circular trajectory tracking task is a much faster task
(average speed = 0.808knot, Fig. 15) compared to the straight-line trajectory tracking task
(average speed = 0.032knot) as discussed in Section 4.3. We wanted to see the performance
of the proposed controller in a high-speed trajectory tracking with both thruster fault and
thruster saturation. We could not risk the expensive ODIN for such a high-speed operation
and thus, we provide only simulation results to demonstrate the efficacy of the proposed
technique. Additionally, we could not experimentally verify the thruster saturation
controller because ODIN was not equipped with any acceleration feedback mechanism.

We present the simulation results for the circular trajectory tracking task considering all the
three cases: with no thruster fault, with thruster fault, and with thruster fault and thruster
saturation in Fig. 15 and 16. We have simulated two thruster faults: one (Thruster 5, marked
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by “A’) at 7sec and the other (Thruster 1, marked by ‘B’) at 12sec, Fig. 16. Both the faulty
thrusters were chosen to be located at the same thruster bracket of the AUV. Thus, this fault
was one of the worst fault conditions. We have imposed the following thruster saturation
limits: +50N for vertical thrusters and 150N for horizontal thrusters. The task-space paths
and trajectories are plotted in Fig. 15. It is observed that the trajectories are tracked quite
accurately in all the three cases. However, the tracking errors are more for the thruster
saturation case.
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Fig. 15. Simulation results: Task-space (Cartesian) paths and trajectories, the solid lines
denote the actual trajectories and the dashed lines denote desired trajectories.

The thruster forces are plotted in Fig. 16. From these plots, we can see that after the first
fault, thrust for Thruster 7 becomes close to —200N . But by implementing the thruster
saturation algorithm, we are able to keep this thrust within the specified limit (150N ). In
this process, the thrusts for Thruster 6 and Thruster 8 reach the saturation limits, but do not
cross it. As a result, we observe larger errors in the trajectory tracking during this time for
the saturation case (Fig. 15). However, the controller brings back the AUV in its desired
trajectories and the errors are gradually reduced to zero.

6. Drag Minimization Algorithm

A UVMS is a kinematically redundant system. Therefore, a UVMS can admit an infinite
number of joint-space solutions for a given task-space coordinates. We exploit this
particular characteristic of a kinematically redundant system not only to coordinate the
motion of a UVMS but also to satisfy a secondary objective criterion that we believe will be
useful in underwater applications.
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Fig. 16. Simulation results: Thrust versus time, no fault (Case 1, denoted by dashed-dot
lines), with faults (Case 2, denoted by dashed lines), and saturation (Case 3, denoted by
solid lines).

The secondary objective criterion that we choose to satisfy in this work is hydrodynamic
drag optimization. Thus, we want to design a motion planning algorithm that generates
trajectories in such a way that the UVMS not only reaches its goal position and orientation
from an initial position and orientation, but also the drag on the UVMS is optimized while it
follows the generated trajectories. Drag is a dissipative force that does not contribute to the
motion. Actually, a UVMS will require a significant amount of energy to overcome the drag.
Since the source of energy for an autonomous UVMS is limited, which generally comes from
the batteries that the UVMS carries with it unlike a ROV and tele-manipulator system where
the mother ship provides the energy, we focus our attention to reduce the drag on the
system. Reduction of drag can also be useful from another perspective. The UVMS can
experience a large reaction force because of the drag. High reaction force can saturate the
controller and thus, degrade the performance of the system. This problem is less severe
when human operators are involved because they can adjust their strength and
coordination according to the situation. However, for an autonomous controller, it is better
to reduce such a large force especially when the force is detrimental to the task.
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6.1 Theoretical Development

Recalling Equation (11) and Equation (13), we can write the complete solution to the joint-
space acceleration as (Ben-Israel & Greville, 1974):

‘7@ :]Itvl (xdl_].qdl)_"(l_]ltvl])él (38)
‘742 :];vz (jédz *quiz)"'(I*];vJ)&z (39)

where the null-space vectors (I-.J,,J )¢: (for i=1,2) will be utilized to minimize the drag
effects on the UVMS.
We define a positive definite scalar potential function p(q,¢), which is a quadratic function
of drag forces as

P(@.4)=D"(q.9) Wp D(q.9) (40)
where D(¢q,¢)e R is the vector of drag forces and Wp e REE s 5 positive
definite weight matrix. Note that a proper choice of this #, matrix can enable us to design
the influence of drag on individual components of the UVMS. Generally, W, is chosen to be

a diagonal matrix so that the cross-coupling terms can be avoided. If it is chosen to be an
identity, then the drag experienced on all dof of the combined system is equally weighted.
However, increasing or decreasing the values of the diagonal elements of the W, matrix,
the corresponding drag contribution of each dof can be regulated. The potential function,
p(g,49) , captures the total hydrodynamic drag on the whole vehicle-manipulator system.
Therefore, the minimization of this function will lead to the reduction of drag on the whole

system.
Now, taking the gradient of the potential function, p(q,q), we obtain
.. dp(q,9)  9Ip(q.q
Vp(g.4) = LA, PG (@)
dq g

We take the gradient, Vp(q,g), as the arbitrary vector, ¢, of Equation (38) and Equation
(39) to minimize the hydrodynamic drag in the following form:

¢ =—x;VpT  for i=1,2. (42)
where k; are arbitrary positive quantities, and the negative sign implies minimization of the

performance criteria. A block diagram of the proposed control scheme is shown in Fig. 17.
More detailed discussion on this drag minimization can be found in (Sarkar & Podder, 2001).

—
Trajectnr | -

Plananing

Fig. 17. Computer torque control scheme for drag minimization method.
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6.2 Results and Discussion

We have conducted extensive computer simulations to investigate the performance of the
proposed Drag Minimization (DM) algorithm. The details of the UVMS used for the
simulation have been provided in Section 3.3. We have chosen a straight-line trajectory
(length = 10m) in the task-space for the simulations. For the chosen trajectory, we have
designed a trapezoidal velocity profile, which imposes a constant acceleration in the
starting phase, followed by a cruise velocity, and then a constant deceleration in the
arrival phase. The initial velocities and accelerations are chosen to be zero and the initial
desired and actual positions and orientations are same. The simulation time is 15.0sec.
Thus, the average speed of the UVMS is 0.67m/s =1.30knot. This speed is chosen to
simulate the average speed of SAUVIM (Semi-Autonomous Underwater Vehicle for
Intervention Mission), a UVMS being designed at the University of Hawaii, which has a
maximum speed of 3knot.

In our simulation, we have introduced sensory noise in position and orientation
measurements. We have chosen Gaussian noise of 1mm mean and 1mm standard
deviation for the surge, sway and heave position measurements, 0.1deg mean and 0.1deg
standard deviation for the roll, pitch and yaw position measurements for the vehicle,
and 0.01deg mean and 0.01deg standard deviation for the joint position measurements
for the manipulator. We have also incorporated a 15% modeling inaccuracy during
computer simulations to reflect the uncertainties that are present in underwater
environment. This inaccuracy has been introduced to observe the effect of both the
uncertainty in the model and the neglected off-diagonal terms of the added mass
matrix.

Thruster dynamics have been incorporated into the simulations using the thruster
dynamic model described later in Section 7.2. The thruster configuration matrix is
obtained from the preliminary design of SAUVIM type UVMS. It has 4 horizontal
thrusters and 4 vertical thrusters. The thruster configuration matrix for the simulated
UVMS is as follows:

! 0 1 0 0 0 0 0 00 0]
0 1 o0 1 0 0 0 0 000
0 0 0 0 -1 -1 -1 -1 000
0 0 0 0 -R3 0 Ry 0 000
E=|0 0 0 0 0 Ry O —-Ry 000 (43)
Ry -R, -Ry R, 0O 0 0 0 000
0 0 0 0 0 0 0 0 100
0 0 0 0 0 0 0 0 010
[0 0 0o 0 0 0 0 0 00 1]

where R, =125m,R;, =175m,R;3=0.75m, and R,4=125m are the perpendicular

distances from the center of the vehicle to the axes of the side and the front horizontal
thrusters, and the side and the front vertical thrusters, respectively. The thrusters for UVMS
are chosen to be DC brushless thrusters, model 2010 from TECNADYNE. The thruster
propeller diameter is 0.204m. It can produce approximately 580N thrust. The weight of each
thruster is 7.9Kg (in water).
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The simulation results are presented in Fig. 18 through Fig. 20. In Fig. 18, we have
plotted both the desired and the actual 3D paths and trajectories. From the plots, it is
observed that the end-effector of the manipulator tracks the desired task-space
trajectories satisfactorily in both the PI and the DM methods. From the joint-space
trajectories in Fig. 19, we can see that even though the UVMS follows the same task-
space trajectories in both PI and DM methods, it does it with different joint-space
configurations. This difference in joint-space configurations contributes to drag
minimization as shown in Fig. 20. The total energy consumption of the UVMS has also
been presented in Fig. 20. We find that the energy consumption is less in DM method as
compared to that of in PI method. From these plots we observe that the drag on the
individual components of UVMS may or may not be always smaller in DM method. But
we can see in Fig. 20 that the total drag (norm of drag) on UVMS is less in DM method
as compared to that of in PI method.
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Fig. 18. Task-space (XYZ) straight-line trajectories of the end-effector of the robot
manipulator, solid lines denote DM (drag minimization) method, dashed lines denote PI
(pseudoinverse) method, and dashed dot lines denote the desired trajectories.

Here we have designed a model-based controller to follow a set of desired trajectories and
presented results from computer simulations to demonstrate the efficacy of this newly
proposed motion planning algorithm. In this context we must mention that a purely model-
based controller may not be ideal for underwater applications. However, since the main
thrust of this study is in motion planning, we have used this model-based controller only to
compare the effectiveness of the proposed Drag Minimization algorithm with that of more
traditionally used Pseudoinverse algorithm.
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Fig. 19. Joint-space positions of the UVMS, solid lines denote DM (drag minimization)
method, dashed lines denote PI (pseudoinverse) method.
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Fig. 20. (a) Norm of drag force, (b) total energy consumption of the UVMS, solid lines
denote DM (drag minimization) method, dashed lines denote PI (pseudoinverse) method.

7. Unified Dynamics-Based Motion Planning Algorithm

7.1 Theoretical Development

A schematic diagram of the proposed unified dynamics-based control scheme is given in
Fig. 21. For a unified dynamics-based algorithm, let us look back to Equations (38) and (39)
along with Equations (40)-(42) which provide us with the reference joint-space trajectories
considering the dynamics-based planning method as well as the drag minimization scheme.
Now, we can obtain all the desired joint-space variables required for the control law (Eq.
(31) or Eq. (37)) by integrating Equation (38) and Equation (39) and making use of Equation
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(13). Then by differentiating it we can obtain the desired third derivative for the joint-space
variables. Thus, we have formulated a unified motion planning algorithm by integrating the
dynamics-based planning algorithm (Eq. (11)-(13)) with fault-tolerant algorithm (Eq. (29)),
saturation algorithm (Eq. (30)-(31)), and drag minimization algorithm (Eq. (38)-(39)).
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Fig. 21. Unified dynamics-based motion planning scheme.

7.2 Thruster Dynamics

The desired thruster force allocation as obtained from Equation (23) can be directly applied
to the dynamic model of the UVMS given by Equation (1) (using Equation (15)) to generate
the actual motion of the system. However, in such a case the dynamics of the thrusters will
be neglected and the results will not accurately reflect the reality. Yoerger et al. (Yoerger et
al., 1990) pointed out that the system dynamics of an underwater vehicle can be greatly
influenced by the dynamics of the thrusters, and neglecting this dynamics may result in a
limited bandwidth controller with limit cycle instability. There are several dynamic models
of marine thrusters (Yoerger et al., 1990; Healey et al., 1995; Whitcomb & Yoerger, 1999) that
can reliably account for thruster dynamics.

In this work we use the model proposed by Healey et al. (Healey et al., 1995) that included a
four-quadrant mapping of the lifts and drag forces of the propeller blades and was coupled
with the motor and fluid system dynamics. This model is given by the following equations:

— . 0.5
Q, =0, sign(Fy)|F| (44)
in =K' F g +K7'K ,(Q-Q,) (45)
Q=1"K, i, - K ;Q-3] (46)

where Q and Q, are the actual and the desired/reference propeller angular velocity,
respectively, and i . is the motor current. The other parameters are: o, = pAr*n? tan(p),
where p is the density of the water, r is the radius of the propeller, A is the thruster duct area,
n is the propeller efficiency, y is the average pitch of the propeller blade, &; is an
experimentally determined constant, K, is the motor torque constant, K, is the motor
viscous friction constant, K 4, is the motor feedback gain, and 3 is the propeller shaft torque.

Neglecting the motor inductance (Healey et al., 1995), the motor input voltage can be written as
Vig =i Ry + Koy Q (47)
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where 7, is the motor input voltage, R, is the motor resistance and K., is the motor

back emf constant.

The propeller torque and the axial thrust are related to the blade lift, L and the drag, D as follows:
3 =0.7rLsin@+ Dcosé (48)
F, 4ot =Lcos@—Dsin@ (49)

t,act
where F, is the propeller shaft thrust, 8 = y— ¢, and « is the angle of attack.

t,act

7.3 Results and Discussion

We have performed extensive computer simulation to investigate the efficacy of the
proposed Unified Dynamics-based Motion Planning (UDMP) algorithm. To verify the
effectiveness of the proposed method, we have compared the results of UDMP approach
with that of Conventional Motion Planning (CMP) method. In conventional method, the
trajectory is designed in three sections: the main section (intermediate section) that is a
straight line is preceded and followed by two short parabolic sections. The UVMS used for
these simulations is same as mentioned in Section 3.3. The simulation time is 10sec that is
required to complete the square path. The total length of the path is 8, thus the average
speed is about 1.6knot. This speed is close to JASON II vehicle (speed=1.5knot).

We have simulated two thruster faults: one horizontal thruster (Thruster 1) and the other one
vertical thruster (Thruster 5). Both the thrusters stop functioning from 6sec. It is to be noted that both
the thrusters are located at the same bracket of the UVMS, which is one of the worst thruster fault
situations. In our simulation, we have considered the following thruster/actuator thrust/torque
saturation limits: +400N  for horizontal thrusters (Thruster 14), £200N for vertical thrusters
(Thruster 5-8), £200N.m for actuator 1, £100N.m for actuator 2 and £50N.m for actuator 3.

To make the simulation close to reality, we have introduced sensory noise in the
measurements of positions and its derivatives. We have considered Gaussian noise of 1
mean and 1 standard deviation in the measurement of linear quantities (in mm unit), and
0.01 mean and 0.05 standard deviation in measurement of angular quantities (in deg unit).
We have considered 10% modeling inaccuracy during computer simulation to reflect the
uncertainties that are present in underwater environment.

y pos [m]
y pos [m]

1) SN —- R =

9 10 11 9 10 11
X pos [m] x pos [m]
Fig. 22. Task-space geometric paths: Conventional Motion Planning (CMP) method in the

left and Unified Dynamics-based Motion Planning (UDMP) method in the right. Doted lines
denote the desired paths and solid lines denote actual paths.

We have presented results from the computer simulations in Fig. 22 through Fig. 26. The results
we have provided here are from Case I: Partial Decomposition of the proposed UDMP method. The
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task-space geometric paths are plotted in Fig. 22, where we can see that the path tracking errors
in our proposed UDMP method are much smaller as compared to that of CMP method. We
have also plotted task-space trajectories in Fig. 23. It is also observed from plots in Fig. 23 that the
end-effector tracks the task-space trajectories quite accurately in UDMP method. The errors are
less in proposed UDMP method as compared to the CMP method. The joint-space trajectories
are plotted in Fig. 24. From these plots it is observed that the proposed UDMP method effectively
reduces the motions of the heavy subsystem (the vehicle) and allows greater and sharper
motions to the lighter subsystem (the manipulator) while tracking the same task-space
trajectories. It is also noticed that the motion of the heavy subsystem is smoother in the proposed
method. We find that these sharper and larger motions of the heavy subsystem in case of CMP
method demand higher driving force that we see in Fig. 25. From the plots in this Fig. (Fig. 25) it
is also observed that in case of UDMP method thrusters 4, 7, 8 and actuator 1 have reached the
saturation limits, but they have not exceeded the limits. On the other hand, in case of CMP
method all the thrusters and actuators have reached the saturation limits, however the saturation
scheme was able to keep them to within the specified limits. Because of this, the path and
trajectory tracking performance in CMP method has been degraded, as we can see in Fig. 22 and
Fig. 23. Thus, the conventional planning method demands more powerful actuation system to
track the same trajectories with reasonable accuracy. We also observe that the thrust 1 and thrust
5 are zero from 6sec as marked by “A” and “B”, respectively (see Fig. 25). These imply they have
developed faults at 6t second and remain non-functional for rest of the time. At this moment we
observe some perturbations in trajectories and paths, however, the proposed UDMP scheme
gradually brings the system to the desired directions and reduces the tracking errors. On the
other hand, after the occurrence of faults the paths and the trajectories are tacked poorly in case
of CMP method, because this algorithm cannot account for the dynamics of the system while
generating the reference trajectories.
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Fig. 23. Task-space trajectories: Conventional Motion Planning method (left column) and
Unified Dynamics-based Motion Planning method (right column). Actual trajectories (solid
lines) are superimposed on desired trajectories (doted lines).
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We have also plotted the simulation results for surge-sway motion, power
requirement and energy consumption of the UVMS in case of CMP method (in the left
column) and that of in case of proposed UDMP method (in the right column) in Fig.
26. Top two plots in this figure show the profile of the surge- sway movements of the
vehicle in the said two methods. In case of the CMP method, the vehicle changes the
motion sharply and moves more as compared to the motion generated from the
UDMP method. It may so happen that, in practice, this type of sharp and fast
movements may be beyond the capability of the heavy dynamic subsystem and
consequently large errors in trajectory tracking will occur. Additionally, this may
cause saturation of the thrusters and the actuators resulting in degradation in
performance. Moreover, the vehicle will experience large velocity and acceleration in
CMP method that result in higher power requirement and energy consumption, as we
observe it in next two sets of plots in Fig. 26. Thus, this investigation reveals that our
proposed Unified Dynamics-Based Motion Planning method is very promising for
autonomous operation of dynamic system composed of several subsystems having
variable dynamic responses.
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Fig. 24. Joint-space trajectories: Unified Dynamics-based Motion Planning method (solid
lines) and Conventional Motion Planning method (dashed lines).



352 Mobile Robots, Perception & Navigation

500 F—aturation T 500 F—saruration T 500 F—saruration T
z z z
z 0 c 0 0
17 7 17
E E 2
£ £ ]
T 500 L_saruration Tmit_| & 500 L_saturation fimit ~ 500 L_saruration fimit
0 5 10 0 5 10 5 10
500 FSaruration Tmr Saturation mit saturation imit
—_ — 200 — 200
£ z ¥ £
T o0 T 2 0
g g g
= -500 L_saturation fimt = 200 |t 1B = 200 [ arurdttha
5 10 0 5 10 0 5 10
200 [ T 200 [ e T . time [sec]
& &
= 0 ® 0
£ £
5 200 |araration T~ 200 | —aruration it
0 5 10 0 5 10
T 200 [ TR T T 100 [T T 5o [ o
) 2 )
— 0 « 0 e« 0
o o o
& B B
& -200 " aruration Timit & 100 [ saruration Timit 5 -50 | aturation Timit
0 5 10 0 5 10 0 5 10
time [sec] time [sec] time [sec]

Fig. 25. Thruster and actuator forces and torques of the UVMS. Unified Dynamics-based
Motion Planning method (solid lines) and Conventional Motion Planning method (dashed
lines). Thruster faults are marked by “A” (Thruster 1) and “B” (Thruster 5).
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8. Conclusions

We have proposed a new unified dynamics-based motion planning algorithm that can
generate both kinematically admissible and dynamically feasible joint-space trajectories
for systems composed of heterogeneous dynamics. We have then extended this
algorithm for an autonomous underwater vehicle-manipulator system, where the
dynamic response of the vehicle is much slower than that of the manipulator. We have
also exploited the kinemetic redundancy to accommodate the thruster/actuator faults
and saturation and also to minimize hydrodynamic drag. We have incorporated
thruster dynamics when modeling the UVMS. Although, some researchers have
exploited kinematic redundancy for optimizing various criteria, but those work have
mainly addressed to problems with land-based robotics or space-robotics. Hardly any
motion planning algorithm has been developed for autonomous underwater vehicle-
manipulator system. In this research, work we have formulated a new unified motion
planning algorithm for a heterogeneous underwater robotic system that has a vastly
different dynamic bandwidth. The results from computer simulation demonstrate the
effectiveness of the proposed method. It shows that the proposed algorithm not only
improves the trajectory tracking performance but also significantly reduce the energy
consumption and the power requirements for the operation of an autonomous UVMS.
We have not presented results from Case 1l (Total Decomposition) because of the length
of the paper. However, these results are comparable to the conventional motion
planning approach. In future, instead of Fourier decomposition, one can try to use
wavelet approach to decompose the task-space trajectory into system’s sub-component
compatible segments.

There are a few drawbacks of this paper as well. We used a model-based control technique
to evaluate our planning algorithm. However, the underwater environment is uncertain and
we need to use adaptive control techniques in future. Although the fault-tolerant control
algorithm has been experimentally verified, the other proposed algorithms need to be
validated by experiments.
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Optimal Velocity Planning of Wheeled Mobile
Robots on Specific Paths in Static and Dynamic
Environments
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1. Introduction

The control system of a mobile robot generally comprises two different modules: a trajectory
planner and a trajectory tracking controller, although some researchers have proposed
algorithms that integrate both tasks.

To completely solve the trajectory planning problem is to define an open-loop path and its
velocity profile from an initial to a final posture, while avoiding any potential obstacles.

In time-optimal planning of a wheeled mobile robot (WMR), the problem is solved by
defining control inputs for the wheels that minimize navigation time from the origin to the
target posture. This goal implies two tasks, which can be carried out simultaneously or
sequentially: path-planning (PP), which involves the computation of the shortest feasible
path; and velocity-planning (VP), which involves the computation of the fastest feasible
velocity profile for the entire domain of the path.

Several approaches have been developed to perform both tasks. The most widely used
approaches are free configuration-time space based methods, (Reinstein & Pin, 1994), but these
algorithms are computationally expensive, even when one is only dealing with PP or VP
separately. To reduce the computational cost, researchers have recently published methods
which do not require computing the C-space obstacles (Wang et al., 2004), as well as methods
that search for a probabilistic road map (LaValle & Kuffner, 2001). Some other approaches that
use intelligent computing-based methods have also been presented, such as those that use
artificial potential fields-based methods (Liu & Wu, 2001), fuzzy logic (Takeshi, 1994), genetic
algorithms (Nerchaou, 1998) or neural networks (Zalama et al., 1995).

In order to find an optimal and feasible solution for the two problems, mechanical,
kinematic and dynamic characteristics of the WMR that limit its motion must be taken into
account, as well as other environmental, task-related and operational issues. These
constraints can be summarized by upper boundary functions of the velocity, acceleration
and deceleration of the WMR. In general, the functions are not constant, nor are they even
continuous. They are therefore nonintegrable constraints, and the time optimal planning is a
nonholonomic problem.

A significant number of nonholonomic constraints, which include not only mechanical and
kinematic but also dynamic characteristics of the WMR, are difficult to deal with when PP
and VP are approached simultaneously. The vast majority of existing algorithms consider
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only kinematic constraints or some dynamic conditions derived from simplified models of
the WMR and/or its environment. But the resulting trajectory may be unexecutable, or
tracked by the robot with high spatial and temporal errors. However, when PP and VP are
approached sequentially, the difficulty of both problems is significantly reduced. Such
approaches make it possible to include more complex constraints for the WMR’s velocity
and acceleration, especially with regards to its kinematic and dynamic characteristics.

To our knowledge, the first references addressing VP with kinematic and dynamic
constraints for WMR is (O'Dunlaing, 1987). This paper, like a number of other algorithms to
solve the VP stage, is based on constant maximum values for robot velocity and
acceleration, set to arbitrary constants which are unrelated to the mechanical characteristics
of the system. More recent works seek to find more efficient bounds for these operating
variables, but never in a global way and always based on simplified dynamic robot models.
(Weiguo et al., 1999) propose a velocity profile planner for WMRs on flat and homogeneous
terrains, where velocity and acceleration are limited only by the outer motor torques and by
the absolute slippage of the vehicle on the ground. (Choi & Kim, 2001) develop another
planner where velocity and acceleration are constrained by dynamic characteristics related
to the performance of the robot's electric motors and its battery's power. (Guarino Lo Bianco
& Romano, 2005) present a VP algorithm for specific paths that generate a continuous
velocity and acceleration profile, both into safety regions limited by upper boundary
functions not described in the paper. The method involves an optimization procedure that
has a significant computational cost.

Some other limitations have been studied, mainly within the framework of projects for
planetary exploration. (Shiller, 1999) deals with some dynamic constraints: sliding
restrictions, understood as the avoidance of absolute vehicle slippage, tip-over and loss of
wheel-ground contact constraints, which are important issues when dealing with irregular
outdoor terrains. The author works with a very simplified robot model, neglecting sideslip
and assuming pure rolling, so wheel deformations and microslippages which can cause
important tracking errors are not quantified. (Cheriff, 1999) also proposes a set of kinematic
and dynamic constraints over the robot’s path, dealing specifically with 3D irregular and
non-homogeneous grounds. The resulting trajectory planner directly incorporates a
complete dynamic WMR model, considering non-linear motions and specifically accounting
for wheel-ground interactions, which makes it necessary to run complex algorithms that
significantly increase computational cost.

(Lepetic et al., 2003) present a VP method that considers dynamic constraints by bounding
the acceleration by the maximum wheel-ground adherence capacity. This maximum is
computed as a function of a constant friction coefficient for every posture and of the weight
borne by the wheel. Load transfer due to lateral forces is considered to calculate the weight
on the wheel, but only as a constant maximum value, derived from a simplified model of the
WMR, that reduces the lateral maximum acceleration to the same value for every posture.
The VP method published by (Krishna et al., 2006) builds a trajectory continuous in space
and velocity, which incorporates environment and sensory constraints by setting a
maximum velocity for the entire path of the robot that is decreased when an obstacle is
detected within its visibility circle. The velocity constraint is computed as a function of the
position and velocity of the obstacle and of a maximum acceleration or deceleration value of
the WMR, established as constant values for every posture.

This chapter deals with time-optimal planning of WMRs when navigating on specific spatial
paths, ie., when the PP is previously concluded. First, the computation of the upper
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boundary functions of its velocity, acceleration and deceleration are described. Then a
method for time-optimal planning is proposed, the main goals of which are:

- To fully exploit velocity, acceleration and deceleration constraints, avoiding the

planning of velocities or accelerations that lead to dangerous motions.

- To plan a feasible trajectory, with continuous velocity and deceleration

- To bound the jerk of the WMR

- To be of low computational cost.
The method firstly deals with velocity planning in static environments and then presents an
algorithm to modify the resulting trajectory to avoid moving obstacles. Special attention is
paid to the efficiency of the second algorithm, an advantage which makes it highly useful
for local and/ or reactive control systems.

2. Problem definition

Problem 1: Given a WMR's path, computed to navigate in a static and known environment,
plan the fastest, feasible and safe trajectory, considering the constraints imposed by the
mechanical configuration, kinematics and dynamics of the robot and by environmental and
task-related issues.

Problem 2: Modify the trajectory quickly and locally to avoid moving obstacles.

A generalized posture of a WMR, parameterizing by the path length, s, can be defined by
the vector g(s) = [X(s), Y(s), 0(s), 5(s)]" - [X(s), Y(s)] is the position and 6(s) the orientation of
the WMR’s guide point on a global frame (Z coordinate is constant by assuming navigation
is on flat ground). §(s) is a function kinematically related to the curvature of the trajectory,
K(s); specifically, it is a function of the steer angles of the wheels of WMRs with steering
wheels or a function of the difference between the angular velocities at the traction wheels
for WMRs with differential drive.

The path, P(s), can be defined by a continuous series of generalized postures from the initial
posture, qo, to the final one, qs. Therefore, if S is the total length of the path:

Ps)={g)}:[0,S] —» R PO)=q,v P(S)=4q, ®

To transform P(s) into a trajectory, a velocity function must be generated for the entire path
domain. It must be defined in positive real space (if the WMR is only required to move
forward, as is the usual case) and planned to make the robot start from a standstill and
arrive at the final posture also with null velocity. That is:

V(s)={w)}:0,8] » R V0)=0vr($)=0 )

Additional conditions are strongly required of V(s) to obtain a feasible trajectory:

1. Continuity, since the kinematics of WMR make it impossible to develop other types
of maneuvers.

2. Confinement into a safety region of the space-velocity plane (sxv), upper limited by
a boundary function of the velocity, Viim(s).

3. Confinement of its first derivative with respect to time, acceleration or deceleration,
into a safety region of the space-acceleration plane (sxa), upper limited by a
boundary function of the acceleration, aLim(s), and lower limited by the negative
value of a boundary function of deceleration drim(s).
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4. Continuity of acceleration or deceleration: this condition ensures that the jerk of the
robot, the second derivative of its velocity, is finite, so that the robot’s movements
are smooth. High jerk is not recommended for WMRs for a number of reasons: it
causes the robot to shake significantly and thus complicates on-board tasks; it
makes tracking control more difficult, since wheel microslippage increases and
wheel behavior becomes less linear (Wong, 2001); and it increases the error of on-
board sensor systems.

5. Additionally, low computational cost is beneficial for the generation of the velocity
profile. This goal is especially pursued when solving problem 2, for the purpose of
possibly incorporating the algorithm into local controls or reactive planners, to
adjust the trajectory in the presence of new unexpected obstacles that appear in the
visibility area of the robot’s sensorial systems (Krishna et al., 2006).

3. Velocity constraints

This section deals with constructive characteristics, kinematic configuration and the
dynamic behaviour of a WMR, as well as operational matters, in order to identify the
constraints that influence the maximum velocity of a WMR's guide point.

For all the constraints detailed in the following subsections, an upper boundary function of
velocity, parametrized by s, can be generated. The function is built by assigning the lowest
upper bound of all the velocity constraints to each posture:

Vim(s) = min{Vanl > Viima e Vlen} Isc [Oa S] ®)

This chapter addresses the case of a WMR guided by steering wheels; in the case of WMRs
with differential drive, the approach will be similar and therefore the constraints can easily
be deduced under the same considerations.

3.1. Construction constraints

Thermal and mechanical characteristics of motors and batteries impose maximum rotational
velocities on the tractive and steering servomotors, om™* and wmmax, respectively (Choi &
Kim 2001). Thus, if & is the reduction ratio of the drive-train and R the wheel’s radius, the
maximum linear velocity of driven wheels on the ground is:
max _g max 4

Viw =50y R ©]
Further, if & is the reduction ratio of the steering-train, the maximum velocity of variation of
the steering angle, i.e. the maximum steering gain, is:

G =,

max
O)Sm

©)

3.2. Kinematic constraints

With regards to kinematic linkages between the driven wheels and the guide point, if dg,max
is the position vector on the ground of the most distant driven wheel with respect to the
guide point, an upper bound for the WMR’s velocity is given by:



Optimal Velocity Planning of Wheeled Mobile Robots on Specific Paths in Static
and Dynamic Environments 361

o |V/R ©)
Vi = VI
Liml tw %_{ + d:‘\‘)\“x

On the other hand, by considering kinematic linkages between the steering wheels and the
guide point, a second boundary function for the velocity is found as:

N )
Lim2 ‘d%s‘

The numerator must be calculated from a kinematic model of the robot, whereas the
denominator can be directly computed from the known spatial path.

3.3. Dynamic constraints

A dynamic model of the robot is needed to generate boundary functions relating to its
dynamic characteristics. Since this model is only used to fully define the VP algorithm,
specifically when defining Viim, avim and dim, but not when computing the trajectory, it can
be as complex as needed for successful results without increasing computational cost. One
may therefore use a model which is not limited by its degrees of freedom, geometric non-
linearities, integration tolerances, etc...

3.3.1. Maximum velocity to bound spatial error

Let the quadratic spatial error of a WMR be the square of the distance from the actual
position of its guide point tracking a trajectory to the position planned by the PP, measured
on the ground plane and parameterised by the normalised arc length, S , defined as the ratio
of s to the total path length, S,ie. S =s/8S.

Let the actual tracked trajectory, which will involve a side-slip angle with a value that is
generally non-zero, be expressed by a two dimensional function on a world reference frame as:

~ . 4 8
PA(s)_[Xﬁ,Yﬁ,Gﬁ,Sﬁ] [0,1]->% ®)

Then, the quadratic spatial error can be calculated by:

E23) = [XE) - Xp ()7 + (V) - Y (5))2 ©)
And the total quadratic spatial error is the integral of (9) over the entire path:
TE2(5) = [E2(3)d5 (10)
S 0o S

If the planned path, P(s) in (1) is particularized for stationary manoeuvres, i.e. with constant
velocity and curvature, the WMR’s planned position in the same world reference frame can

be expressed as a function of S as:

X®), Y()]= [@ %(1 - cos(2n§)} (1)
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The actual tracked trajectory, with side-slip angle Ba and curvature ka, will generally differs
from the planned trajectory and is given by (Prado et al., 2002):

[XB(E),YB (5)} - {K‘ sins , +27%) - sinp A)],Ki[cos([s ) -cos(B , +21)] (12)
A A

Ka and Pa can be approximated by the trajectory obtained as simulation output of a sufficiently
accurate dynamic model or by experimental results. If enough simulations or tests are
performed to characterize the dynamics of the WMR in stationary trajectories, it is possible to
fit ka and Pa to functions of the planned curvature and velocity. Therefore, by substituting (11)
and (12) into (10) and considering the simulation or experimental results to compute xa and
Ba, the total spatial error of the WMR when navigating a whole stationary cycle can be
calculated as a function of the planned V and k. Although it is known that in general the
planned variables V and x do not stay constant at adjacent postures, it is understood that they
will experience smooth variations when smooth paths are planned. Therefore, the error at each
posture will be approximated by the error in (10) computed as described in this section, i.e.
considering neighbourhoods where the V and x are kept constant.

Finally, TE:2 will be upper limited by a magnitude relative to the total area of the circle that
defines the stationary planned trajectory. Therefore, if tols is the percentage of the
admissible tolerance for the spatial error, the following constraint is imposed:

T 2
TE? < P(1—(tol>) ) (13)
When (13) is applied to (10), a velocity constraint Viims for the WMR is obtained.

3.3.2. Maximum velocity to bound temporal error

When a WMR is navigating, it must do more than consider position error; temporal error
can also be important if one wishes to fit or synchronise several objects. Let the temporal
error of a WMR be the time gap between the actual time when the robot arrives at a posture,
ta, and the time when it is planned to arrive, t:

E =t, -t (149)
For a stationary trajectory of length S tracked with actual velocity Va, this error is:
[ - ] (15)
R
vV, Vv

Va in a stationary trajectory can be approximated by the velocity obtained in experimental
tests or simulations of a sufficiently accurate dynamic model of the WMR. As stated for the
spatial error, such outcomes make it possible to express Va as a function of the
characteristics of V and k.

The velocity planner fixes an upper bound for the temporal error associated to each
posture, given by a value relative to the time that the path tracker estimates the robot
will spend in the stationary trajectory, with relative tolerance tsel. Then the following
inequality must be satisfied:

E, <tol, t:tollE (16)
v



Optimal Velocity Planning of Wheeled Mobile Robots on Specific Paths in Static
and Dynamic Environments 363

By substituting (15) in (22), a new upper boundary function Viimsis generated as:

Vi = (tOII +1)VA (17)

3.3.3. Tip-over limitation

Tip-over occurs when the robot’s entire weight shifts to one side of the vehicle, and the other
wheels are about to lose contact. Thus, the robot is at risk of tipping-over when its total
weight is entirely borne by the outer wheel (Shiller, 1999). The extreme situation, depicted in
Fig. 1 for positive x, where h is the height of the centre of gravity (c.g.) of the robot and B,
and B, are the lateral distances between the outer wheel and the c.g. for positive and
negative k, respectively (although generally Bi=By), yields a relation between the lateral
force, Fy, and the vertical force, F, given by:

....... if k>0 (18)
By neglecting gyroscope torques, the lateral force, Fy, on flat grounds is simply the

centrifugal force, while F, is the robot’s weight. Thus, if g is the gravity constant, equation
(18) requires V to be lower than:

Viims = — e if k>0 (19)

3.4. Operational constraints

The need to fit and synchronise the robot's motion with its environment, whether static or
dynamic, makes operational constraints necessary.

B

Fig. 1. Tip-over of the WMR.
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3.4.1. Maximum velocity to prevent collisions
V is limited by a value that ensures the WMR will come to a complete stop at a distance
greater than a safety distance from any obstacle, Lsaee. Such a stop will be performed at the
maximum deceleration, bmax, a constant calculated in section 4. Therefore, the distance run
by the robot until it stops, is:

v: (20)
2b™

When Vs is the maximum estimated velocity of the obstacle towards the robot (0 in static
environments), the distance covered by the object is:

Vauy @1)

S obs =
If Dops is the distance from the robot guide point to the obstacle in completely known
environments, or the radius of vision of the external sensor system in partially known
environments (Krishna et al., 2006), in order to ensure that the robot maintains its safety
distance, it must satisfy:

$+Sgp = Dgps ~Ligre 22)
By replacing (20) and (21) in (22), a new upper limit for the velocity is found as:
Viim = \/(Vobs )? +2b™ (D =La) = Vo 23)

3.4.2. Maximum velocity to approach the target posture
In the same way, in order to ensure safe stopping at the target point of the path, another
upper boundary function is given by:

Vs =42 C,(S=5)b™ (24)

Where C; is an arbitrary constant greater than 1, which reflects a security percentage for
stopping, and S is the total path length.

3.4.3. Environmental constraints

A set of velocity constraints which are solely dependent on the robot's working environment
can be defined as a function which assigns a maximum speed V; to each portion of the path,
with expressions such as:

V, if 0<s<s,
S (25)
Limo = :

Vv, ifs;s<s_,

4. Acceleration and deceleration constraints

The same constructive, kinematic, dynamic and environmental topics which were analysed
for velocity are studied for acceleration and deceleration in this section. From all the
constraints detailed in next subsections an upper boundary function of acceleration, arim,
and deceleration, drim, can be generated as:
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dpn ()= min{dlel I PR dlen} /sc [05 S] (27)

4.1. Constructive constraints

The maximum torques of tractive motors, Tim, steering motors, Tem, and the braking
mechanism, Tpm, dictate the maximum torques achievable at the wheels. If n; and ns are the
efficiency of the drive-train and of the steering-train, these values are given by:

T moeer . g |mo[:&&, T oz Mg o (28)

tw| a tm> sw &s P 4 bwl - &t bm

4.2. Kinematic constraints

As occurs with velocity, the robot's kinematics would make its acceleration be a function of
the acceleration of the wheels. But as is argued in section 4.4, this value is limited
exclusively by the dynamic capabilities relative to the resisting loads.

4.3. Dynamic constraints

4.3.1. Wheel-ground adhesion constraint
In order to avoid slippage, the maximum effort that the wheel-ground contact can support
in a direction j is limited by the wheel-ground friction coefficient,, as:
. |ad
Ll =wE, (29)
U can be assumed to be constant for uniform rubber wheels if slippage does not occur and
terrain characteristics are uniform (Wong, 2001). Fy» is the vertical load borne by the i-th
wheel, which changes with: ground irregularities, transients for non-stationary manoeuvres,
lateral load transference produced by the centrifugal force on curved paths and longitudinal
load transference on accelerated or decelerated paths. The first two phenomena can be
neglected, especially for navigation in industrial environments. Regarding the two dynamic

load transfers, Fy" can be computed as a function of the static weight borne by the i-th
wheel, pr | , as:
wil

Fh = F" |+ Ma+ =~ MV& (30)
L\vl Bwi

Where L, is the vector of longitudinal position of the centre of the i-th wheel with respect

to the c.g. of the WMR and B,,; is the vector of its lateral position.
The maximum lateral effort that can be borne by the steering wheel is computed by

replacing in (29) the sum of (30) extended for those wheels:

a 31
d:lly ZF\:i (1)

i= wheel
steering

F

y

Therefore, if d. is the castor distance, i.e. the longitudinal distance from the rotation axis of
the steering system to the wheel centre, the available steering torque limited by the wheel-
ground adherence capacity is:
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- auzuydc ZF:" (32)

) i=steering

wheel
Regarding driven and braking wheels, by replacing in (29) the sum of (30) for all those
wheels, the longitudinal driven and braking efforts limited by the wheel-ground adherence

capacity are given by the following equations, respectively:

ad ) ad n 33
R[*=n, SR R[fen S (33
i=driven i=braking
‘wheel wheel

4.3.2. Maximum tractive and braking efforts

The maximum acceleration is that which is reached applying the maximum available effort
when rolling, grade and aerodynamic resistances are overcome. For WMRs, aerodynamic
resistance is habitually neglected, because of their low navigation velocity. Therefore, the
maximum acceleration when negotiating a grade j, and with rolling resistance coefficient f,, is:

a™ = g[F/";[; — /. cos[atan(j/100)]-sin[a tan(j/lOO)]} (34)

Fiong |max is the maximum longitudinal effort, limited either by the motors or by the wheel-
ground adherence capacity. Therefore, by introducing the power capacities computed in (28) and
the maximum adhesion of (33) into (34), the following upper boundary functions are defined:

mot

A = ﬁ - min{Z%, F, “ } —g(f, cos[a tan(j/100)]+ sin[a tan(j/100)]) (35)
mot a

dyn =$~min{2%, F, d}—g(fr cosla tan(j/100)]+ sin[a tan(j/100)]) (36)

These are constant functions as long as f; can be considered constant, which occurs when the
operating variables stay within a small interval, which is the most common situation for
WMR motion in industrial environments (Wong, 2001).

4.3.3. Maximum steering efforts

The maximum acceleration available for the steering angle, 6, can be calculated as:
2T,

[ Tres
steer wi

i=steering

wheel (37)

asl™
dt?

I

s

Tsteer | M2 is the maximum steering torque at the wheel, limited either by power of the
steering system, in (28) or by adhesion, in (32); I is the mass moment of inertia of the whole
steering system; and Twies is the self-aligning torques of the i-th wheel.
Looking at the left-hand side of (37), it can be expressed by:
d*s B d?s d’x d?$ (38)
dt®  d* ds* dx?
Thus, the acceleration of & depends on three terms: the acceleration of the trajectory; the
spatial acceleration of curvature, a characteristic directly derived from the spatial path; and
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on the last term, which is a characteristic of the robot that can be approximated from its
kinematic model.

By replacing (38) and in (37) and by isolating the acceleration, a new boundary function is
given by:

ad} MV?|
— 4y i (39)

dz%lcz dz%sz

This upper bound depends on the velocity, which would take the VP to an iteration loop. In order
to avoid this costly procedure, V is substituted by the single-valued upper boundary function of
velocity, Viv(s), defined in section 3, making the acceleration boundary even more restrictive.

: s |mot s
mm{ZTW [™, T

Lim2 —
1

s

5. Velocity Planning in Static Environments
5.1. Path Segmentation

In order to reduce its complexity, the proposed method divides the path into segments
where all of the velocity constraints are continuous and monotone or constant, i.e. where the
velocity of the path can be continuous and monotone or constant when it matches its upper
boundary function. The velocity profile for the entire path is generated sequentially from the
first segment to the last one according to the method describe later on in this section.
A set of p+2 segmentation points, Ps={0, Iss, ... pss, S}, sorted in increasing order, divides P(s)
into p+1 segments, SG={1Sg, ... P*1Sg}, where iSg is the subset of P(s) corresponding to the
domain sc| iIss, iss].
Ps, comprises: the initial point of the path, s=0; its final point, s=S; and every point that
satisfies at least one of the following conditions:
- To be a local extremum of the velocity boundary function: consequently Viim is
monotone over iSg, so that V(s) can also be monotone when it matches Viim.
- To be a point of discontinuity of Viim: at the first stage, the VP algorithm proposed
herein will only deal with the velocity limits at the end points of the segment. Later
it will check if Viim(s) is exceeded at any intermediate point and, in such a case, a
time-consuming iterative process will be carried out. Since any discontinuity of
Viim increases the risk of failing to meet the velocity constraint, they are shifted to
the ends of the segments by selecting them as segmentation points.

5.2. VP of a segment of the path in static environments

The piece of V(s) for iSg is generated from the time-space (txs) function ic(t), which
computes the path length navigated as:

s=lo(t) ;sc [H ss, issJ (40)
Thus, the velocity profile for the segment is:
'V(s) :%(‘G(‘c’l(s)» ;sC ["lss, ‘ss] (41)

io(t) must start at the initial position of iSg and arrive at its final position. If the origin of time
is shifted to the first point of iSg, without loss of generality, and if it is the time taken by the
WMR to navigate iSg, the position boundary conditions are:
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‘6 (0)=""ss 42)
io(1t)=ss

The first derivative of io(t) with respect to time, ic'(t), must also satisfy the velocity
boundary conditions, which are given at the edge points of the segment by:
0 ifi=1

' (0)= "]V={‘_l ,

o'(7t) ifizl
o(()=v=v,,()

The second equation of (43) sets the velocity at the end of iSg to the maximum value
permitted by the Vi at this point, in order to obtain the fastest trajectory; while the first
equation of (43) compels the WMR to start from a standstill for the first segment of the path,
i=1, or ensures continuity between adjacent segments for any other case. Note that 10’ (i1t)
was set to its highest feasible value when planning the previous segment i1Sg.

The cubic polynomial is selected to generate ic(t), since it has just enough parameters to
satisfy the boundary conditions in (42) and (43) and it has inverse, so that (41) can be
computed. Thus, the txs function of the path can be expressed as:

(43)

‘o(t)= ‘o t* + 'o,t* + ‘o,t + ', (44)
By applying (42) and (43) to (44), the boundary conditions can be summed up as:

i

0 0 0 1 [ ss

() (tf it 1 ‘o | | 'ss (45)
0 0 1 o ||'e,| |y

3(f 2% 1 0o [l'e,] [ v

it must be computed to confine iV(s) into the safety zone of the sxv plane limited by

[0<V(s), V(s)=VLim(s)], and its first derivative into the safety zone of the sxa plane limited by
[-drim(s)<V'(s), V'(s)<aLim(s)]; further, it must be computed to ensure the continuity of io(t) up to
its second derivative for the entire domain of the path, specifically between adjacent segments.
The magnitude io”’(t) is important because local extrema of Viim are always located at the
ends of the segments that partition the path. The velocity planned for these points is the
maximum possible, under (43). If a maneuver with positive acceleration is planned for a
segment whose end point is a local maximum of Viin, the velocity boundary will be violated
at the beginning of the next segment. A similar situation would occur for a local minimum
when negative acceleration is planned.

A direct approach to the problem would involve solving a large system of non-linear
inequalities, a process of very high computational cost (Mufioz, 1995). Therefore, a method is
proposed, working mainly with closed mathematical expressions and thereby reducing
computational cost significantly. The method is based on setting the acceleration to zero at
the segmentation points, so that acceleration continuity is ensured and the problem of
failing to meet the velocity constraints just after local extrema of Viim, explained in a
previous paragraph, is overcome,

The maximum acceleration of iSg, iA, is planned to be reached at an intermediate point, it.,
which yields one of the acceleration profiles showed in Fig. 2, therefore:
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Fig. 2. Possible solutions in static environments. A) Acceleration profile; b)Velocity profile;
c)Trajectory.

i A .
i i - o (t)= T t t<it, )
c"'(t)=‘o", (t)n 'c", (t); : |

‘o (t)= iy ('tft) .......... t>'t,

By integrating (46) and calculating the integration constants to satisfy the initial velocity
boundary condition of (43) and to ensure continuity between ic'(t) and ic's(t), the velocity
profile of the segment, also plotted in Fig. 2, is:

i (eily o A ;
o' ()= ]V+2‘t et <t )

¢

A . 2 ‘tc it .
I = t>'t,
-t 2 2

c

o', (t=""v +

Finally io(t) is computed by integrating (47) with the integration constants to satisfy the first
position boundary condition of (42) and to ensure its continuity at it.:

o, (tEss+ vt + ‘—A t* IS (48)
‘o(t)='o,(t) N ‘o, (t); 61 .
2 , B Sk L S I peme (o ,
o, (tE""ss+ vt - ‘A ° L t>'t,
? 6(t-'t.)
The proposed algorithm initially selects it. at the half-way point of iSg. So:
't, = ¢ (49)
2
In this case, by taking into account the second velocity condition in (43) it is found that:
[
o V=T
‘A

In order to arrive at the position given by the second equation of (50), A must be:
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ss— s Ty (51)

Therefore, by replacing (51) in (50), the value of it needed for navigating iSg with the
selected velocity profile is computed as:
itz S 8 (52)

i i-1

v + v

While the maximum acceleration must be:

2 2
a2 (V=) (33)
Tss—""ss
io(t) is fully defined by replacing (49), (52) and (53) in (48). It satisfies the boundary
conditions of position and velocity at the initial and end points of iSg and ensures the
continuity up to its second derivative over both iSg and the entire path domain. But arin(s)
and drim(s) constraints must also be satisfied, hence it is necessary to check that:

d

—'V(s) ay, ()
dt Vsc [Hss, 'ss] )

V240

When ilv<iv, an acceleration maneuver is planned for the segment. So if the acceleration
restriction fails, it occurs because its upper boundary, the first inequality of (54), is violated.
This problem can be solved by decreasing the final velocity to the maximum permitted by
the maximum feasible acceleration in the segment. Thus, the velocity at the end of the
segment is modified to be:

fyr= \/("' v)2 + iA*(i ss— ss) (55)
where the modified acceleration, iA% is computed as:
‘A*=minfa,, (s)/s < | ss, 'ss]} (56)
And the time that the WMR takes to navigate the i-th segment is recomputed as:
= VY 7)

Obviously, iv*<iv, since IA*<iA, and it is not necessary to check the velocity constraint at the
end point of ISg again.

On the other hand, when ilv<iv, a deceleration maneuver is planned for the segment.
Therefore, if the acceleration restriction fails, it occurs because its lower boundary, the
second inequality of (54), is violated. In this case it is not possible to reduce deceleration by
increasing the final velocity, since iv was selected as the maximum permitted by Viim. As a
consequence, it becomes necessary to decrease the initial velocity to the maximum permitted
by the maximum feasible deceleration:

(58)

i-1
gk =

where iA” is computed as:
AT =R = min{dLim (s)/sc[ss, ‘ss]} (59)
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And the new time it takes to navigate the i-th segment is recomputed by:

oy YoV (60)
d
This strategy requires the velocity profile of -1Sg to also be modified by planning i-1v* as the
velocity at its final posture, in order to ensure the continuity of V(s).
The proposed algorithm ensures the velocity constraint will be satisfied at the end points of
iSg, but not along the entire segment. Thus, it must be checked:

'V(s)<V,. (5) Vsc ["‘ss, 'ssJ (61)

If this constraint is violated now, the iterative processes detailed in section 5.3 must be
performed. When iV(s) was computed by the proposed algorithm, inequality (61) failed in
very few cases for the tests carried out with the WMR RAM, mentioned in section 7, and
therefore the iterative strategies were necessary very infrequently. The same results can be
expected for any WMR that works with spatial paths planned as smooth curves (continuous
in curvature), because Vi i, depends on the curvature of the path and its first derivative with
respect to the path length, and these functions are smooth if the spatial path is smooth.

The last task to build io(t) involves undoing the time shifting, i.e., setting the time at the
initial point of ISg equal to the time at the final point of -1Sg. That is:

for i=1 ‘o(t)='o(t) tc[O ‘t] (62)
for i=2top+1 ‘o(t+ )= ‘o(t) ’

Lim

5.3. Velocity profile modification to satisfy velocity constraints in segments.

5.3.1. Acceleration maneuvers

When (61) is not satisfied in iSg and i1v<iv, iV(s) is iteratively slowed down by delaying it.
from the half-way point of iSg to a value it.*, given by:

=Ny Nssas (63)

Then io(t) is recomputed under (48) but substituting it. with it:* and with the maximum
acceleration recomputed to be a value that satisfies the conditions in (42) and (43):
i 2 = v v () (64)
A*=2 - :
3(fss—ss)+ 't (fv= )

And it is substituted with it* computed under (57). N in (63) keeps on increasing and ic(t)
being modified until (61) is satisfied.
By deriving (64) with respect to it
d pro AT .

d't 3(ss—ss)+ 't vy
It is observed that for acceleration maneuvers the derivative is always negative. Thus,
delaying it.*, i.e. increasing it.* in (73), implies reducing the maximum acceleration needed to
satisfy the boundary conditions of the segment, although the time consumed in navigating it
is increased. Hence a long trajectory with low velocity at all points is planned, and the
velocity constraint is satisfied. Obviously, if the acceleration constraint was satisfied before
the modification, it is also verified now and does not need to be checked again.

(65)

v
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5.3.2. Deceleration maneuvers

When (61) is not satisfied in iSg and i1v>iv, a similar strategy to the one described in the
previous section for acceleration maneuvers is applicable, but in this case, in order to plan a
maneuver of lower deceleration, it. is advanced to a value it*, which is given by:

it*=%‘t iN=3,4,5... (66)

Then io(t) is recomputed by (48), substituting it. with it maximum deceleration recomputed by
(64) to be a value that satisfies the conditions in (50) and (51), and substituting it with it computed
under (57). N in (66) keeps on increasing and io(t) being modified until (61) is satisfied.

It can be observed that the derivative of the modified deceleration, id'=-A", given by (65), is
always positive when i1v>iv. Therefore, advancing the control point implies reducing the
maximum deceleration and therefore increasing the time consumed in tracking the trajectory.
Consequently if the deceleration constraint was satisfied before the muodification, it is also
verified now and does not need to be checked again. This modification leads to planning lower
velocities at all points of the segment, except for points that are very close to the end point. Only
when the velocity constraint fails in this region but not at the end point is the proposed method
unable to find a feasible solution. But such a situation is not expected to occur when the spatial
path is planned as smooth curves and the segmentation of section 5.1 is applied.

5.4. Velocity planning algorithm in static environments

The comprehensive algorithm proposed in this chapter for VP in static environments is
summarized in the following flowchart:

1. Compute Vi, (8); sc]|0,S 21. repeat
2. Compute a;, (s); sc|0,S 22. N=N+2.
3. Compute dLim (S) , SC 0, S 23. Advance it,, (63)
4. Create 1?5=(0, 1?5/ - pss, S} 24. Compute iA¥, (64) and it*, (57)
5. VP for ?$g~f0r i=1 top+l d" 25. Compute io(t), (48), with wvalues in
6.  Set position boundary conditions, (42) Error! Reference source not found.
7. Set velocity boundary conditions, (43) oL . .
26. til sat locit traint, (61

8. Compute io(t), (48), with it, (52), itc, (49), 20 "MEil satisfy velocity constraint, (61)

: 27. endif

and iA, (53) 28 ifiiosiv th

9. if acceleration constraint, (54), fails then 29’ ;{]_lv v thent

10. if T'v<'V then
11. Modified io(t) with iv*, (55), iA* (56), and 30 Tepeat

it (57) 31. N=N+2

12. endif 32. Delay it (66)

13. ifi-1v>iv then 33. Compute iA%, (64), and it*, (57)

14. Modified io(t) with i-1v*, (58), iA* (59), 34. Compute ‘o(t), (48), with wvalues in
and it*, (60) (Error! Reference source not found.)

15.  Recompute “1V(s) for #1Sg with new w* , 35. until satisfy velocity constraint (61)
(58) 36. endif

16. end if 37. endif

17. end if 38.  Shift the origin of the time, (62)

18. if velocity constraint, (61), fails then 39. Compute iV(s), (41)

19. if Hly<iv then 40. end for

20. N=1



Optimal Velocity Planning of Wheeled Mobile Robots on Specific Paths in Static
and Dynamic Environments 373

6. Velocity Planning in Dynamic Environments

Crossing points of moving obstacles with the WMR’s path can be represented by a set R=['R
2R ... IR] of rectangular forbidden regions in the sxt plane (Liu & Wu, 2001). Each region kR
is defined by a segment of the space with end points [ksin, *sfn] and an interval of time
limited by [ktini, *tsin], as shown in Fig. 3.

The function io(t), computed previously, is not a valid solution of the VP problem if it
intersects a forbidden region.

|
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Fig. 3. Velocity planning in dynamic environments.

The problem can be solved by planning a slower trajectory that allows the moving obstacle to
cross the robot’s path before it arrives at the crossing region. The opposite solution, to plan a
faster trajectory so that the robot passes through the dangerous space before the obstacle arrives,
it is not possible, since io(t) was built to achieve the highest feasible velocity profile.

A secondary aim of the modification strategy, as stated in section 2, is to achieve a low
computational cost. This is accomplished by both modifying only the segments adjacent to
where the obstacle is found and by avoiding iterative strategies.

If io(t) intersects the forbidden region ¥R, the trajectory is slowed down by dividing iSg into
two subsegments: 'Sg="Sg U “Sg. The first one, 1Sg, plans a velocity profile, , that makes

the WMR avoid the obstacle. The second segment, 2Sg, plans a velocity profile, ?v (1),

that makes the WMR arrive at the final position imposed by the second position boundary
condition of (42) with the velocity imposed by the second velocity boundary condition of
(43).

6.1. Planning the velocity profile to avoid moving obstacles

The first piece of the modified sxt function, i é(t) , is planned to make the WMR avoid kR
by compelling it to pass through its first point at its last time, i.e.:

il(As(ktfm ):k Sini (67)

. ) iy . . . o .
The total time for the subsegment 1Sg, " t, is set equal to i, the time planned for iSg in static
. . . . Loilg . .
environments, and its point of maximum acceleration, ! tc , to the same time as for static
environments, it.. This goal can be achieved by selecting the maximum acceleration in i1Sg so

that "' 6(t) is similar to io(t) computed by (48) but substituting A with a lower
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acceleration, TA , calculated to satisfy (67). This value is given by:

Mo <M ”A:é(ks —"‘ss—”'vktfm) (68)

ini

if ftg, > M ”[\:6("5‘nl — sy ) PO N TN ”{c T +("fc)2 "

The WMR’s position at the end of i1Sg, 'S , is a lower value than is, since a lower
acceleration is used during the same time. Therefore the WMR does not arrive at the final
position condition, iss, given by the second equation of (42), but rather at:

1 i)}
in_ il g, (l t)
S= SS+ v t+7 (69)

ilf

Likewise, the velocity of the WMR at the final posture of i1Sg, Hl V(1) is also a lower value
than iv, so it does not satisfy the final velocity condition of (43), but is rather:

HHE(‘ij (70)
2

c

il a
Lilg

Since 1 §(t)is computed from ic(t) by applying a lower acceleration for the same time and
the velocity and acceleration constraints were successfully checked for ic(t), the two upper

limits are also satisfied by 1 G(t) . But two lower limits can be violated and they must be
checked: the positive magnitude of the velocity and the deceleration constraint:

1s'(1=0 Veclo, " (71)

TA>—max{d, (s) /sc [H ss, ‘§]} (72)

Ifit G(t) fails to meet one of these constraints, the processes detailed in subsections 6.1.1
or 6.1.2 must be carried out, respectively.

The last task to build " G(t) involves setting the time at the initial point of the segment equal
to the time at the final point of the previous segment:

15(t+ t)= "5(1) (73)
Finally, the velocity profile " \Y% ( s) is computed by applying (41).
6.1.1. Modification of the velocity profile to keep velocity positive

When the lower boundary of velocity, (71), is violated, the initial velocity and the maximum
deceleration of i1Sg are modified in order to plan for the WMR to arrive at the end posture at
zero velocity, i.e.:

néy(i E): Blg % — () (74)
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By making "g(t) fulfill (74) while still satisfying (67) to avoid kR, the initial velocity and

maximum acceleration of 1Sg are modified to be LG (t)and il A *
13 (k 1 ) 't
TA*=—6("s,;—'ss —— S
it < WW} (75)
Ll Gk =3(kS