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Preface

Mobile Robotics is an active research area where researchers from all over the world find 
new technologies to improve mobile robots intelligence and areas of application. Today ro-
bots navigate autonomously in office environments as well as outdoors. They show their 
ability to beside mechanical and electronic barriers in building mobile platforms, perceiving 
the environment and deciding on how to act in a given situation are crucial problems. In this 
book we focused on these two areas of mobile robotics, Perception and Navigation.  

Perception includes all means of collecting information about the robot itself and it’s envi-
ronment. To make robots move in their surrounding and interact with their environment in 
a reasonable way, it is crucial to understand the actual situation the robot faces.  

Robots use sensors to measure properties of the environment and interpret these measure-
ments to gather knowledge needed for save interaction. Sensors used in the work described 
in the articles in this book include computer vision, range finders, sonars and tactile sensors 
and the way those sensors can be used to allow the robot the perception of it’s environment 
and enabling it to safely accomplishing it’s task. There is also a number of contributions that 
show how measurements from different sensors can be combined to gather more reliable 
and accurate information as a single sensor could provide, this is especially efficient when 
sensors are complementary on their strengths and weaknesses. 

As for many robot tasks mobility is an important issue, robots have to navigate their envi-
ronments in a safe and reasonable way. Navigation describes, in the field of mobile robotics, 
techniques that allow a robot to use information it has gathered about the environment to 
reach goals that are given a priory or derived from a higher level task description in an ef-
fective and efficient way. 

The main question of navigation is how to get from where we are to where we want to be. 
Researchers work on that question since the early days of mobile robotics and have devel-
oped many solutions to the problem considering different robot environments. Those in-
clude indoor environments, as well is in much larger scale outdoor environments and under 
water navigation. 

Beside the question of global navigation, how to get from A to B navigation in mobile robot-
ics has local aspects. Depending on the architecture of a mobile robot (differential drive, car 
like, submarine, plain, etc.) the robot’s possible actions are constrained not only by the ro-
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bots’ environment but by its dynamics. Robot motion planning takes these dynamics into 
account to choose feasible actions and thus ensure a safe motion. 

This book gives a wide overview over different navigation techniques describing both navi-
gation techniques dealing with local and control aspects of navigation as well es those han-
dling global navigation aspects of a single robot and even for a group of robots. 

As not only this book shows, mobile robotics is a living and exciting field of research com-
bining many different ideas and approaches to build mechatronical systems able to interact 
with their environment. 

Editor
Sascha Kolski 
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Robot Egomotion from the Deformation of 
Active Contours 

Guillem ALENYA and Carme TORRAS  
Institut de Robòtica i Informàtica Industrial (CSIC-UPC) Barcelona, Catalonia, Spain 

1.Introduction

Traditional sources of information for image-based computer vision algorithms have been 
points, lines, corners, and recently SIFT features (Lowe, 2004), which seem to represent at 
present the state of the art in feature definition. Alternatively, the present work explores the 
possibility of using tracked contours as informative features, especially in applications not 
requiring high precision as it is the case of robot navigation.  
In the past two decades, several approaches have been proposed to solve the robot positioning 
problem. These can be classified into two general groups (Borenstein et al., 1997): absolute and 
relative positioning. Absolute positioning methods estimate the robot position and orientation 
in the workspace by detecting some landmarks in the robot environment. Two subgroups can 
be further distinguished depending on whether they use natural landmarks (Betke and Gurvits, 
1997; Sim and Dudek, 2001) or artificial ones (Jang et al., 2002; Scharstein and Briggs, 2001). 
Approaches based on natural landmarks exploit distinctive features already present in the 
environment. Conversely, artificial landmarks are placed at known locations in the workspace 
with the sole purpose of enabling robot navigation. This is expensive in terms of both presetting 
of the environment and sensor resolution.  
Relative positioning methods, on the other hand, compute the robot position and orientation 
from an initial configuration, and, consequently, are often referred to as motion estimation 
methods. A further distinction can also be established here between incremental and non-
incremental approaches. Among the former are those based on odometry and inertial 
sensing, whose main shortcoming is that errors are cumulative.  
Here we present a motion estimation method that relies on natural landmarks. It is not 
incremental and, therefore, doesn’t suffer from the cumulative error drawback. It uses the 
images provided by a single camera. It is well known that in the absence of any 
supplementary information, translations of a monocular vision system can be recovered up 
to a scale factor. The camera model is assumed to be weak-perspective. The assumed 
viewing conditions in this model are, first, that the object points are near the projection ray 
(can be accomplished with a camera having a small field of view), and second, that the 
depth variation of the viewed object is small compared to its distance to the camera This 
camera model has been widely used before (Koenderink and van Doorn, 1991; Shapiro et al., 
1995; Brandt, 2005).  
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Active contours are a usual tool for image segmentation in medical image analysis. The 
ability of fastly tracking active contours was developed by Blake (Blake and Isard, 1998) in 
the framework of dynamics learning and deformable contours. Originally, the tracker was 
implemented with a Kalman filter and the active contour was parameterized as a b-spline in 
the image plane. Considering non-deformable objects, Martinez (Martínez, 2000) 
demonstrated that contours could be suitable to recover robot ego-motion qualitatively, as 
required in the case of a walking robot (Martínez and Torras, 2001). In these works, 
initialization of the b-spline is manually performed by an operator. When corners are 
present, the use of a corner detector (Harris and Stephens, 1988) improves the initial 
adjustment. Automatic initialization techniques have been proposed (Cham and Cipolla, 
1999) and tested with good results. Since we are assuming weak perspective, only affine 
deformations of the initial contour will be allowed by the tracker and, therefore, the 
initialization process is importantas it determines the family of affine shapes that the 
contour will be allowed to adjust to.  
We are interested in assessing the accuracy of the motion recovery algorithm by analyzing 
the estimation errors and associated uncertainties computed while the camera moves. We 
aim to determine which motions are better sensed and which situations are more favorable 
to minimize estimation errors. Using Monte Carlo simulations, we will be able to assign an 
uncertainty value to each estimated motion, obtaining also a quality factor. Moreover, a real 
experiment with a robotized fork-lift will be presented, where we compare our results with 
the motion measured by a positioning laser. Later, we will show how the information from 
an inertial sensor can complement the visual information within the tracking algorithm. An 
experiment with a four-person transport robot illustrates the obtained results.

2. Mapping contour deformations to camera motions
2.1. Parameterisation of contour deformation
Under weak-perspective conditions (i.e., when the depth variation of the viewed object is 
small compared to its distance to the camera), every 3D motion of the object projects as an 
affine deformation in the image plane.  
The affinity relating two views is usually computed from a set of point matches (Koenderink 
and van Doorn, 1991; Shapiro et al., 1995). Unfortunately, point matching can be 
computationally very costly, it being still one of the key bottlenecks in computer vision. In 
this work an active contour (Blake and Isard, 1998) fitted to a target object is used instead. 
The contour, coded as a b-spline (Foley et al., 1996), deforms between views leading to 
changes in the location of the control points.  
It has been formerly demonstrated (Blake and Isard, 1998; Martínez and Torras, 2001, 2003) 
that the difference in terms of control points Q’-Q that quantifies the deformation of the 
contour can be written as a linear combination of  six vectors. Using matrix notation  
 Q - Q=WS (1)

where

and S is a vector with the six coefficients of the linear combination. This so-called shape 
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vector

 (3) 
 encodes the affinity between two views d’(s) and d (s) of the planar contour:  
 d  (s) = Md (s) + t,  (4) 
where M = [Mi,j] and t = (tx, ty) are, respectively, the matrix and vector defining the affinity 
in the plane.  
Different deformation subspaces correspond to constrained robot motions. In the case of a 
planar robot, with 3 degrees of freedom, the motion space is parametrized with two 
translations (Tx, Tz) and one rotation ( y). Obviously, the remaining component motions are 
not possible with this kind of robot. Forcing these constraints in the equations of the affine 
deformation of the contour, a new shape space can be deduced. This corresponds to a shape 
matrix having also three dimensions.
However, for this to be so, the target object should be centered in the image. Clearly, the 
projection of a vertically non-centered object when the camera moves towards will translate 
also vertically in the image plane. Consequently, the family of affine shapes that the contour 
is allowed to adjust to should include vertical displacements. The resulting shape matrix can 
then be expressed as

 (5) 
and the shape vector as  

 (6) 

2.2. Recovery of 3Dmotion
The contour is tracked along the image sequence with a Kalman filter (Blake and Isard, 
1998) and, for each frame, the shape vector and its associated covariance matrix are updated. 
The affinity coded by the shape vector relates to the 3D camera motion in the following way 
(Blake and Isard, 1998; Martínez and Torras, 2001, 2003):  

 (7) 

(8)
where Rij are the elements of the 3D rotation matrix R, Ti are the elements of the 3D 
translation vector T, and is the distance from the viewed object to the camera in the 
initial position.  
We will see next how the 3D rotation and translation are obtained from the M = [Mi,j] and t
= (tx, ty) defining the affinity. Representing the rotation matrix in Euler angles form,  

 (9) 
equation (7) can be rewritten as  
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2.2. Recovery of 3Dmotion
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(8)
where Rij are the elements of the 3D rotation matrix R, Ti are the elements of the 3D 
translation vector T, and is the distance from the viewed object to the camera in the 
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equation (7) can be rewritten as  
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where R|2 denotes de 2 X 2 submatrix of R. Then,  

 (10) 

where

This last equation shows that can be calculated from the eigenvalues of the matrix MM
T
,

which we will name ( 1, 2):

(11)

where 1 is the largest eigenvalue. The angle φ can be extracted from the eigenvectors of 

MM
T
; the eigenvector v1 with larger value corresponds to the first column of 

(12)

Isolating Rz|2( )from equation (10),

 (13) 
and observing, in equation (10), that  

sin can be found, and then .
Once the angles , φ , are known, the rotation matrix R can be derived from equation (9).  
The scaled translation in direction Z is calculated as  

(14)

The rest of components of the 3D translation can be derived from tand Rusing equation (8): 

(15)

(16)

Using the equations above, the deformation of the contour parameterized as a planar 
affinity permits deriving the camera motion in 3D space. Note that, to simplify the 
derivation, the reference system has been assumed to be centered on the object. 

3. Precision of motion recovery
3.1. Rotation representation and systematic error
As shown in equation (9), rotation is codified as a sequence of Euler angles R = Rz (φ ) Rx ( )
Rz ( ). Typically, this representation has the problem of the Gimbal lock: when two axes are 
aligned there is a problem of indetermination.  
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Fig. 1. Histogram of the computed rotation values for 5000 trials adding Gaussian 
noise with = 0.5pixels to the contour control points.(a) In the ZXZ representation, 
small variations of the pose correspond to discontinuous values in the rotation 
components Rz(φ ) and Rz( ). (b) In contrast, the same rotations in the ZYX 
representation yield continuous values.  

This happens when the second rotation Rx( ) is near the null rotation. As a result, 
small variations in the camera pose do not lead to continuous values in the rotation 
representation (see Rz(φ ) and Rz( ) in Fig. 1(a)). Using this representation, means and 
covariances cannot be coherently computed. In our system this could happen 
frequently, for example at the beginning of any motion, or when the robot is moving 
towards the target object with small rotations.  
We propose to change the representation to a roll-pitch-yaw codification. It is frequently used 
in the navigation field, it being also called heading-attitude-bank (Sciavicco and Siciliano, 
2000). We use the form  

 (17) 

where s and c denote the sinus and cosinus of , respectively. The inverse solution is.  
 (18) 

(19)

(20)
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Fig. 2. Systematic error in the Rx component. Continuous line for values obtained with Monte 
Carlo simulation and dotted line for true values. The same is applicable to the Ry component.  

Typically, in order to represent all the rotation space the elemental rotations should be 
restricted to lie in the [0..2 ]rad range for and φ , and in [0.. ]rad for .
Indeed, tracking a planar object by rotating the camera about X or Y further than /2rad has
no sense, as in such position all control points lie on a single line and the shape information 
is lost. Also, due to the Necker reversal ambiguity, it is not possible to determine the sign of 
the rotations about these axes. Consequently, without loss of generality, we can restrict the 
range of the rotations Rx(φ )and Ry( ) to lie in the range rad and let Rz( ) in [0..2 ] rad.
With this representation, the Gimbal lock has been displaced to cos( ) = 0, but = /2 is out 
of the range in our application.  
With the above-mentioned sign elimination, a bias is introduced for small Rx(φ )and 
Ry( ) rotations. In the presence of noise and when the performed camera rotation is 
small, negative rotations will be estimated positive. Thus, the computation of a mean 
pose, as presented in the next section, will be biased. Figure 2(a) plots the results of an 
experiment where the camera performs a rotation from 0 to 20°about the X axis of a 
coordinate system located at the target. Clearly, the values Rx(φ ) computed by the 
Monte Carlo simulation are closer to the true ones as the amount of rotation increases. 
Figure 2(b) summarizes the resulting errors. This permits evaluating the amount of 
systematic error introduced by the rotation representation.  
In sum, the proposed rotation space is significantly reduced, but we have shown that it is 
enough to represent all possible real situations. Also, with this representation the Gimbal lock is 
avoided in the range of all possible data. As can be seen in Figure 1(b), small variations in the 
pose lead to small variations in the rotation components. Consequently, means and covariances 
can be coherently computed with Monte Carlo estimation. A bias is introduced when small 
rotations about X and Y are performed, which disappears when the rotations become more 
significant. This is not a shortcoming in real applications.  

3.2. Assessing precision through Monte Carlo simulation
The synthetic experiments are designed as follows. A set of control points on the 3D planar 
object is chosen defining the b-spline parameterisation of its contour.  
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Fig. 3. Original contour projection (continuous line) and contour projection after motion 
(dotted line)for the experiments detailed in the text.  

The control points of the b-spline are projected using a perspective camera model yielding 
the control points in the image plane (Fig. 3). Although the projection is performed with a 
complete perspective camera model, the recovery algorithm assumes a weak-perspective 
camera. Therefore, the perspective effects show up in the projected points (like in a real 
situation) but the affinity is not able to model them (only approximates the set of points as 
well as possible), so perspective effects are modelled as affine deformations introducing 
some error in the recovered motion. For these experiments the camera is placed at 5000mm 
and the focal distance is set to 50mm.
Several different motions are applied to the camera depending on the experiment. Once the 
camera is moved, Gaussian noise with zero mean and = 0.5 is added to the new projected 
control points to simulate camera acquisition noise. We use the algorithm presented in 
Section 2.2 to obtain an estimate of the 3D pose for each perturbed contour in the Monte 
Carlo simulation. 5000 perturbed samples are taken. Next, the statistics are calculated from 
the obtained set of pose estimations.  

3.2.1. Precision in the recovery of a single translation or rotation
Here we would like to determine experimentally the performance (mean error and 
uncertainty) of the pose recovery algorithm for each camera component motion, that 
is, translations Tx, Ty and Tz, and rotations Rx, Ry and Rz. The first two experiments 
involve lateral camera translations parallel to the X or Y axes. With the chosen camera 
configuration, the lateral translation of the camera up to 250mm takes the projection of 
the target from the image center to the image bound. The errors in the estimations are 
presented in Figure 4(a) and 4(c), and as expected are the same for both translations. 
Observe that while the camera is moving away from the initial position, the error in 
the recovered translation increases, as well as the corresponding uncertainty. The 
explanation is that the weak-perspective assumptions are less satisfied when the target 
is not centered. However, the maximum error in the mean is about 0.2%, and the worst 
standard deviation is 0.6%, therefore lateral translations are quite correctly recovered. 
As shown in (Alberich-Carramiñana et al., 2006), the sign of the error depends on the 
target shape and the orientation of the axis of rotation.  
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The third experiment involves a translation along the optical axis Z. From the initial distance Z0 =
5000 the camera is translated to Z = 1500, that is a translation of —3500mm. The errors and the 
confidence values are shown in Figure 4(e). As the camera approaches the target, the mean error 
and its standard deviation decrease. This is in accordance with how the projection works1 As 
expected, the precision of the translation estimates is worse for this axis than for X and Y.
The next two experiments involve rotations of the camera about the target. In the first, the camera 
is rotated about the X and Y axes of a coordinate system located at the target. Figure 4(b) and 4(d) 
show the results. As expected, the obtained results are similar for these two experiments. We use 
the alternative rotation representation presented in Section 3.1, so the values Rx and Ry are
restricted. As detailed there, all recovered rotations are estimated in the same side of the null 
rotation, thus introducing a bias. This is not a limitation in practice since, as will be shown in 
experiments with real images, the noise present in the tracking step masks these small rotations, 
and the algorithm is unable to distinguish rotations of less than about 10° anyway.  
The last experiment in this section involves rotations of the camera about Z. As expected, the 
computed errors (Fig. 4(f)) show that this component is accurately recovered, as the errors in the 
mean are negligible and the corresponding standard deviation keeps also close to zero.  

4. Performance in real experiments

The mobile robot used in this experiment is a Still EGV-10 modified forklift (see Fig. 5). This 
is a manually-guided vehicle with aids in the traction. To robotize it, a motor was added in 
the steering axis with all needed electronics. The practical experience was carried out in a 
warehouse of the brewer company DAMM in El Prat del Llobregat, Barcelona. During the 
experience, the robot was guided manually. A logger software recorded the following 
simultaneous signals: the position obtained by dynamic triangulation using a laser-based 
goniometer, the captured reflexes, and the odometry signals provided by the encoders. At 
the same frequency, a synchronism signal was sent to the camera and a frame was captured.  
A log file was created with the obtained information. This file permitted multiple processing 
to extract the results for the performance assessment and comparison of different estimation 
techniques (Alenyà et al., 2005). Although this experiment was designed in two steps: data 
collection and data analysis, the current implementations of both algorithms run in real 
time, that is, 20 fps for the camera subsystem and 8 Hz for the laser subsystem.  
In the presented experiment the set of data to be analyzed by the vision subsystem consists 
of 200 frames. An active contour was initialized manually on an information board 
appearing in the first frame of the chosen sequence (Fig. 6). The tracking algorithm finds the 
most suitable affine deformation of the defined contour that fits the target in the next frame, 
yielding an estimated affine deformation (Blake and Isard, 1998). Generally, this is 
expressed in terms of a shape vector (6), from which the corresponding Euclidean 3D 
transformation is derived: a translation vector (equations 14-16)and a rotation matrix 
(equations 9-13). Note that, in this experiment, as the robot moves on a plane, the reduced 4-
dimensionalshape vector (6) was used.  

__________________
1
The resolution in millimeters corresponding to a pixel depends on the distance of the object to the 

camera. When the target is near the camera, small variations in depth are easily sensed. Otherwise, 
when the target is far from the camera, larger motions are required to be sensed by the camera.  
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Fig. 4. Mean error (solid lines) and 2 deviation (dashed lines) for pure motions along 
and about the 6 coordinate axes of a camera placed at 5000mm and focal length 50mm.
Errors in Tx and Ty translations are equivalent, small while centered and increasing 
while uncentered, and translation is worst recovered for Tz (although it gets better 
while approximating). Errors for small Rx and Ry rotations are large, as contour 
deformation in the image is small, while for large transformations errors are less 
significant. The error in Rz rotations is negligible.  

The tracking process produces a new deformation for each new frame, from which 3D 
motion parameters are obtained. If the initial distance Z0 to the target object can be 
estimated, a metric reconstruction of motion can be accomplished. In the present 
experiment, the value of the initial depth was estimated with the laser sensor, as the target 
(the information board) was placed in the same wall as some catadioptric marks, yielding a 
value of 7.7m. The performed motion was a translation of approximately 3.5m along the 
heading direction of the robot perturbed by small turnings.
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Fig. 5. Still EGV-10robotized forklift used in a warehouse for realexperimentation. 
Odometry, laser positioningandmonocular vision data were recollected.  

Fig. 6. Real experiment to compute a large translation while slightly oscillating. An active 
contour is fitted to an information board and used as target to compute egomotion.  

The computed Tx, Ty and Tz values can be seen in Fig. 7(a). Observe that, although the ty

component is included in the shape vector, the recovered Ty motion stays correctly at zero. 
Placing the computed values for the X and Z translations in correspondence in the actual 
motion plane, the robot trajectory can be reconstructed (Fig. 7(b)).  
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Fig. 7. (a)Evolution of the recovered Tx, Ty and Tz components (in millimeters). (b) 
Computed trajectory (in millimeters)in the XZ plane.

Extrinsic parameters from the laser subsystem and the vision subsystem are needed to be 
able to compare the obtained results. They provide the relative position between both 
acquisition reference frames, which is used to put in correspondence both position 
estimations. Two catadrioptic landmarks used by the laser were placed in the same plane as 
a natural landmark used by the vision tracker. A rough estimation of the needed calibration 
parameters (dx and dy) was obtained with measures taken from controlled motion of the 
robot towards this plane, yielding the values of 30 mm and 235 mm, respectively. To perform 
the reference frame transformation the following equations were used:  

While laser measurements are global, the vision system ones are relative to the initial 
position taken as reference (Martíınez and Torras, 2001). To compare both estimations, laser 
measurements have been transformed to express measurement increments.  
The compared position estimations are shown in Fig. 8 (a), where the vision estimation is 
subtracted from the laser estimation to obtain the difference for each time step.  
Congruent with previous results (see Sec 3.2) the computed difference in the Z direction is more 
noisy, as estimations from vision for translations in such direction are more ill conditioned than for 
the X or Y directions. In all, it is remarkable that the computed difference is only about 3%.  
The computed differences in X are less noisy, but follow the robot motion. Observe that, for 
larger heading motions, the difference between both estimations is also larger. This has been 
explained before and it is caused by the uncentered position of the object projection, which 
violates one of the weak-perspective assumptions.  

Fig. 8. Comparison between the results obtained with the visual egomotion recovery algorithm 
and laser positioning estimation. (a) Difference in millimeters between translation estimates 
provided by the laser and the vision subsystems for each frame. (b) Trajectories in millimeters in 
the XZ plane. The black line corresponds to the laser trajectory, the blue dashed line to the laser-
estimated camera trajectory, and the green dotted one to the vision-computed camera trajectory.  
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Finally, to compare graphically both methods, the obtained translations are represented in 
the XZ plane (Fig. 8(b)).  
This experiment shows that motion estimation provided by the proposed algorithm has a 
reasonably precision, enough for robot navigation. To be able to compare both estimations it has 
been necessary to provide to the vision algorithm the initial distance to the target object (Z0) and 
the calibration parameters of the camera (f). Obviously, in absence of this information the 
recovered poses are scaled. With scaled poses it is still possible to obtain some useful information 
for robot navigation, for example the time to contact (Martínez and Torras, 2001). The camera 
internal parameters can be estimated through a previous calibration process, or online with 
autocalibration methods. We are currently investigating the possibility of estimating initial 
distance to the object with depth-from-defocus and depth-from-zoom algorithms.  

5. Using inertial information to improve tracking
We give now a more detailed description of some internals of the tracking algorithm. The objective 
of tracking is to follow an object contour along a sequence of images. Due to its representation as a 
b-spline, the contour is divided naturally into sections, each one between two consecutive nodes. 
For the tracking, some interest points are defined equidistantly along each contour section. Passing 
through each point and normal to the contour, a line segment is defined. The search for edge 
elements (called “edgels”) is performed only for the pixels under these normal segments, and the 
result is the Kalman measurement step. This allows the system to be quick, since only local image 
processing is carried out, avoiding the use of high-cost image segmentation algorithms.  
Once edge elements along all search segments are located, the Kalman filter estimates the 
resulting shape vector, which is always an affine deformation of the initial contour.  
The length of the search segments is determined by the covariance estimated in the preceding 
frame by the Kalman filter. This is done by projecting the covariance matrix into the line normal to 
the contour at the given point. If tracking is finding good affine transformations that explain 
changes in the image, the covariance decreases and the search segments shrank. On the one hand, 
this is a good strategy as features are searched more locally and noise in image affects less the 
system. But, on the other hand, this solution is not the best for tracking large changes in image 
projection. Thus, in this section we will show how to use inertial information to adapt the length of 
the different segments at each iteration (Alenyà etal., 2004).  

5.1. Scaling covariance according to inertial data
Large changes in contour projection can be produced by quick camera motions. As 
mentioned above, a weak-perspective model is used for camera modeling. To fit the model, 
the camera field-of-view has to be narrow. In such a situation, distant objects may produce 
important changes in the image also in the case of small camera motions. 
For each search segment normal to the contour, the scale factor is computed as  

 (21) 
where N are the normal line coordinates, H is the measurement vector and P is the 6 x 6 top 
corner of the covariance matrix. Detailed information can be found in (Blake and Isard, 1998).  
Note that, as covariance is changing at every frame, the search scale has to be recalculated 
also for each frame. It is also worth noting that this technique produces different search 
ranges depending on the orientation of the normal, taking into account the directional 
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estimation of covariance of the Kalman filter.  
In what follows, we explain how inertial information is used to adapt the search ranges 
locally on the contour by taking into account the measured dynamics. Consider a 3 d.o.f. 
inertial sensor providing coordinates (x, y, ). To avoid having to perform a coordinate 
transformation between the sensor and the camera, the sensor is placed below the camera 
with their reference frames aligned. In this way, the X and Y coordinates of the inertial 
sensor map to the Z and X camera coordinates respectively, and rotations take place about 
the same axis. Sensed motion can be expressed then as a translation  

 (22) 

and a rotation 

 (23) 
Combining equations (7, 8) with equations (22, 23), sensed data can be expressed in shape 
space as  

(24)

 (25) 

 (26) 

As the objective is to scale covariance, denominators can be eliminated in equations (24 -26). 
These equations can be rewritten in shape vector form as  

For small rotational velocities, sin v can be approximated by v and, thus,

 (27) 
The inertial sensor gives the X direction data in the range [vxmin.. vxmax]. To simplify the 
notation, let us consider a symmetric sensor, |vxmin|=|vxmax|. Sensor readings can be 
rescaled to provide values in the range [vxmin.. vxmax]. A value vx provided by the inertial 
sensor can be rescaled using  
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 (28) 
Following the same reasoning, shape vector parameters can be rescaled. For the first 
component we have  

 (29) 
and the expression

 (30) 

Inertial information can be added now by scaling the current covariance sub-matrix by a 
matrix representing the scaled inertial data as follows  

 (31) 
where Vis the scaled measurement matrix for the inertial sensing system defined as  

 (32)

For testing purposes, all minimum and maximum values have been set to 1 and 2, 
respectively.

Fig. 9. Robucab mobile robot platform transporting four people.  

Robot Egomotion from the Deformation of Active Contours 15

5.2.Experiments enhancing vision with inertial sensing
For this experimentation, we use a Robu Cab Mobile Robot from Robosoft. As can be seen in 
Fig. 9, it is a relatively big mobile vehicle with capacity for up to four people. It can be used 
in two modes: car-like navigation and bi-directional driving.  
For simplicity of the control system, the car-like driving option is used, but better 
results should be obtained under bi-directional driving mode as the maximum turning 
angle would increase. In this vehicle we mount a monocular vision system with the 
described 6 d.o.f. tracking system. A Gyrostar inertial sensor, from Murata, is used to 
measure rotations about the Y axis. To measure X and Z linear accelerations, an ADXL 
dual accelerometer from Analog Devices is used. All these sensors are connected to a 
dedicated board with an AVR processor used to make A/D conversions, PWM de-
coding and time integration. It has also a thermometer for thermal data correction. 
This ’intelligent’ sensor provides not only changes in velocity, but also mean velocity 
and position. Drift, typical in this kind of computations, is reset periodically with the 
information obtained by fusion of the other sensors. This board shares memory with a 
MPC555 board, which is connected through a CAN bus to the control and vision 
processing PC. All the system runs under a real-time Linux kernel in a Pentium 233 
MHz industrial box. A novel approach to distributed programming (Pomiers, 2002) 
has been used to program robot control as well as for the intercommunication of 
controll and vision processes, taking advantage of the real time operating system.  
Although it might look as if the robot moves on a plane, its motions are in 6 parameter 
space, mainly due to floor rugosity and vehicle dampers, and therefore the whole 6D 
shape vector is used.  
In this experiment the robot is in autonomous driving mode, following a filoguided path. In 
this way, the trajectory can be easily repeated, thus allowing us to perform several 
experiments with very similar conditions. The path followed consists of a straight line 
segment, a curve and another straight line.  
First, the algorithm without inertial information is used. On the first straight segment, the contour 
is well followed, but as can be seen in Figure 10(a), when turning takes place and the contour 
moves quicker in the image plane, it loses the real object and the covariance trace increases.  
Second, the algorithm including inertial information in the tracker is used. In this 
experiment, tracking does not lose the target and finishes the sequence giving good 
recovered pose values. As can be seen in the covariance representation in Figure 10(b), 
covariance increases at the beginning of the turning, but decreases quickly, showing that 
tracking has fixed the target despite its quick translation across the image.  

Figure 10: Covariance trace resulting from tracking without using inertial information (a) 
and using it (b). 
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6.Conclusions and future work
A method for estimating mobile robot egomotion has been presented, which relies on 
tracking contours in real-time images acquired with a monocular vision system. The 
deformation of the contour due to camera motion is codified as a 6-dimensional affine shape 
vector, and the algorithm to recover 3D motion information is presented.  
The precision of the algorithm is analyzed through Monte Carlo simulations. The 
results obtained are congruent with intuition. Lateral camera translations Tx and Ty

produce greater changes in pixels, so they are better recovered than the translation Tz

along the optical axis. Rotations Rz about the projection axis cause large changes in the 
image, and are better recovered than the other two pure rotations, Rx and Ry. Esti-
mated variances differ largely for the various motions. The largest errors and 
variances occur when the contour projection is un centered in the image, as weak-
perspective assumptions are violated. If the distance to the target is small, more 
precision is attained, but perspective effects appear. Small rotations out of the plane 
are badly estimated, but as the rotation increases the error and the variance diminish. 
Rotations in the plane are correctly recovered with small variance.  
A real experiment performed in a brewer warehouse has been used to validate the motion 
estimation algorithm and to compare it with laser positioning. Contrarily to the laser 
estimation procedure, a natural landmark was used and no previous intervention was 
needed. A relatively small deviation (about 3%) between vision and laser motion 
estimations was obtained. This supports vision-based egomotion estimation as a promising 
alternative in situations with relatively low-precision demands.  
Synthetic experiments suggest that the target should be centered in the image to keep the 
weak-perspective assumptions and attain more precision. Real experiments show that the 
range of applicability of the proposed algorithm is limited as the contour should be kept 
within the image along all the sequence. One solution is to switch from one target contour to 
another when the former disappears from the image. Another solution we will explore in 
future work is to keep the target into the image with the use of a pan-and-tilt camera. This 
will allow larger robot motions.  
We have also noticed that the size of the target projection in the image should be kept into a 
rasonable margins to be able to track and deduce valid information. The range of 
approaching translations in the experiments in the warehouse was 4 5me-ters. This is also a 
limitation. We are exploring the use of a zooming camera to maintain the size of the 
projection onto the image constant. This presents some challenges, as changing the zoom 
complicates the pan and tilt control. Depending on the initial distance, that we assume 
unknow, different control gains should be applied.  
We have described how inertial information can be expressed in shape space terms. 
We have used this to improve tracking and to provide more robustness to the Kalman 
filter used to estimate shape deformation. These two sources of information naturally 
complement one another, as inertial is suitable for quick motions whereas vision is 
better suited for slow and large motions. The real experiment presented, using also 
natural landmarks, illustrates that with the reactivity provided by the inertial informa-
tion, the tracking algorithm is able to extract motion information in sequences where 
before itwas not.
In the future we will explore how to take advantadge of the inertial information also in the 
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measurement step of the Kalman filter, as inertial data can be seen also as another 
estimation of the performed motion. This is possible because in this paper we have derived 
the link between 3D motion and shape deformation. We can generalize this to more sensors, 
fusing their supplied data in shape space.  
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1. Abstract 
Classical Geometry, as conceived by Euclid, was a plataform from which Mathematics 
started to build its actual form. However, since the XIX century, it was a language that 
was not evolving as the same pase as the others branches of Physics and Mathematics. 
In this way, analytic, non-Euclidean and projective geometries, matrix theory, vector 
calculus, complex numbers, rigid and conformal transformations, ordinary and partial 
differential equations, to name some, are different mathematical tools which are used 
nowadays to model and solve almost any problem in robotic vision, but the presence of 
the classical geometric theory in such solutions is only implicit. However, over the last 
four decades a new mathematical framework has been developed as a new lenguage 
where not only the classical geometry is included, but where many of these 
mathematical systems will be embedded too. Instead of using different notation and 
theory for each of those systems, we will simplify the whole study introducing the 
CGA, a unique mathematical framework where all those systems are embedded, 
gaining in principle clarity and simplicity. Moreover, incidence algebra operations as 
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grasping. But we believe that the use of CGA can be of great advantage in visually guided 
robotics using stereo vision, range data, laser, omnidirectional or odometry based 
systems. 

Keywords: Computer vision; Clifford (geometric) algebra; projective and affine geometry; 
spheres projective geometry; incidence algebra; 3D rigid motion; ruled surfaces; directed 
distance; visually guided robotics. 



20 Mobile Robots, Perception & Navigation

2. Introduction 
The Occam’s razor, a mediaeval logical principle, said that ‘when you have two competing 
theories which make exactly the same predictions, the one that is simpler is the better’. From 
this perspective the CGA is a single mathematical framework that unify and include 
different systems as matrix algebra, projective geometry, conformal transformations and 
differential forms. This chapter is an introduction to the communities of computer vision 
and robotics of this novel computational framework, called Conformal Geometric Algebra 
(CGA). This subject has been also treated in a wide scope in [4].  
Our mathematical approach appears promising for the development of perception action 
cycle systems, see Figure 1. The subjects of this chapter are an improvement to previous 
works [3, 5, 6, 7, 13], because using the CGA we are now including the group of 
transformations in our computations and expanding our study to more complex surfaces, 
the ruled surfaces. Other authors have used Grassmann–Cayley algebra in computer vision 
[14] and robotics [19], but while they can express in this standard mathematical system the 
key ideas of projective geometry, such as the meet, join, duality and projective split, it lacks 
of an inner (contractive) product and of the group of transformations, which cannot be 
included in a very simple and natural way to the system.  

Fig. 1. Abstraction of the perception action cycle. 

In fact, in the 1960’s CGA take up again a proposal ‘seeded’ in the XIX century about build a 
global mathematical framework, which would include the main mathematical systems of 
that era: matrices and determinants; vector calculus; complex numbers; conformal 
transformations; Euclidean and projective spaces; differential forms; differential geometry; 
ordinary and partial differential equations. 
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In this chapter we put a lot of effort to explain clearly the CGA, illustrating the 
computations in great detail. Using the same ideas showed in this chapter, another practical 
tasks of visual guided robotics could be implemented for 3D motion estimation, body  eye 
calibration, 3D reconstruction, navigation, reaching and grasping 3D objects, etc. Thus, the 
idea is to introduce a suitable computational framework to the computer vision and robotic 
communities, which can be of great advantage for future applications in stereo vision, range 
data, laser, omnidirectional and odometry based systems.  
CGA is the fusion of the Clifford Geometric Algebra (GA) and the non-Euclidean 
Hyperbolic Geometry. Historically, GA and CGA has not been taken into consideration 
seriously by the scientific community, but now and after the work of David Hestenes [10] 
and Pertti Lounesto [15] it has been taking a new scope of perspectives, not only 
theoretically, but for new and innovative applications to physics, computer vision, robotics 
and neural computing. One of the critics against CGA is the wrong idea that this system can 
manipulate only basic entities (points, lines, planes and spheres) and therefore it won’t be 
useful to model general two and three dimensional objects, curves, surfaces or any other 
nonlinear entity required to solve a problem of a perception action system in robotics and 
computer vision. However, in this chapter we present the CGA, with its algebra of incidence 
[12] and rigid-motion transformations, to obtain several practical techniques in the 
resolution of problems of perception action systems including ruled surfaces: 3D motion 
guidance of very non-linear curves; reaching and 3D object manipulation on very non-linear 
surfaces. 
There are several interest points to study ruled surfaces: as robots and mechanisms are 
moving, any line attached to them will be tracing out a ruled surface or some other high 
nonlinear 3D-curve; the industry needs to guide the arm of robots with a laser welding to 
joint two ruled surfaces; reaching and manipulating 3D-objects is one of the main task in 
robotics, and it is usual that these objects have ruled surfaces or revolution surfaces; to 
guide a robot’s arm over a critical 2D or 3D-curve or any other configuration constraint, and 
so forth.  
The organization of this chapter paper is as follows: section two presents a brief 
introduction to conformal geometric algebra. Section three explains how the affine plane is 
embedded in the CGA. Section four shows how to generate the rigid transformations. In 
section five we present the way that several ruled surfaces or complex three dimensional 
curves can be generated in a very simple way using CGA. Section six shows how motors are 
usuful to obtain the Barret Hand™ forward kinematics. Section seven presents the real and 
simulated applications to follow geometric primitives and ruled surfaces for shape 
understanding and object manipulation, and section eight the applications to visual 
grasping identification. Conclusion are given in section nine.  

2. Geometric Algebra 
In general, a geometric algebra Gn is a 2n-dimensional non-commutative algebra generated 
from a n-dimensional vector space Vn. Let us denote as Gp,q,r this algebra where p, q, r denote 
the signature p, q, r of the algebra. If p  0and q = r = 0, we have the standard Euclidean 
space and metric, if only r  0 the metric is pseudoeuclidean and if r  0 the metric is 
degenerate. See [17, 11] for a more detailed introduction to conformal geometric algebra. 
We will use the letter e to denote the vector basis ei. In a geometric algebra Gp,q,r, the 
geometric product of two basis vectors is defined as
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 (1) 

2.1 Conformal Geometric Algebra 
The geometric algebra of a 3D Euclidean space G3,0,0 has a point basis and the motor algebra 
G3,0,1 a line basis. In the latter geometric algebra the lines expressed in terms of Plücker 
coordinates can be used to represent points and planes as well. The reader can find a 
comparison of representations of points, lines and planes using G3,0,0 and G3,0,1 in [8]. 
Interesting enough in the case of the conformal geometric algebra we find that the unit 
element is the sphere which allows us to represent the other geometric primitives in its 
terms. To see how this is possible we begin giving an introduction in conformal geometric 
algebra following the same formulation presented in [11] and show how the Euclidean 
vector space Rn is represented in Rn+1,1. Let {e1,.., en,e+,e } be a vector basis with the following 
properties

 (2) 

 (3) 

 (4) 
Note that this basis is not written in bold. A null basis {e0,e } can be introduced by 

 (5) 

 (6) 
with the properties 

 (7) 
A unit pseudoscalar  which represents the so-called Minkowski plane is defined by  

(8)

Fig. 2. (a) The Null Cone and the Horosphere for 1-D, and the conformal and stereographic 
representation of a 1-D vector. (b) Surface levels A, B and C denoting spheres of radius 
positive, zero and negative, respectively.  

One of the results of the non-Euclidean geometry demonstrated by Nikolai Lobachevsky in 
the XIX century is that in spaces with hyperbolic structure we can find subsets which are 
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isomorphic to a Euclidean space. In order to do this, Lobachevsky introduced two 
constraints, to the now called conformal point . See Figure 2(a). The first 
constraint is the homogeneous representation, normalizing the vector xc such that 

 (9) 
and the second constraint is such that the vector must be a null vector,thatis,  

 (10) 
Thus, conformal points are required to lie in the intersection surface, denoted , between 
the null cone and the hyperplane :

 (11) 

The constraint (11) define an isomorphic mapping between the Euclidean and the Conformal space. 
Thus, for each conformal point  there is a unique Euclidean point  and unique 
scalars , such that the mapping . Then, the standard form of a 
conformal point xc is

 (12) 

Note that a conformal point xc and be splitted as 
 (13) 

We can gain further insight into the geometrical meaning of the null vectors by analyzing 
the isomorphism given by equation (13). For instance by setting xe = 0 we find that e0

represents the origin of Rn (hence the name). Similarly, dividing this equation by 

2
0 2

1
ec xex −=⋅ gives  

(14)
   
Thus we conclude that e represents the point at infinity. 
The dual of a multivector A  Gn is defined by  

 (16) 
where In  e12···n is the unit pseudoscalar of Gn and the inverse of a multivector An, if it exists, 
is defined by the equation A 1A=1.
Duality give us the opportunity to define the meet M  N between two multivectors M and 
N ,using one of the following equivalent expressions 

 (17) 
Geometrically, this operation will give us the intersection between geometric primitives 
through the intersection of their generated subspaces. See [12].  

2.2 Spheres and planes 
The equation of a sphere of radius centered at point pe Rn can be written as  
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 (18) 
Since , we can rewrite the formula above in terms of homogeneous 
coordinates as  

 (19) 
Since xc · e = 1 we can factor the expression above and then  

(20)
which finally yields the simplified equation for the sphere as  

 (21) 
where

 (22) 
is the equation of the sphere. From this equation and (13) we can see that a conformal point 
is just a sphere with zero radius. The vector s has the properties 

 (23) 
 (24) 

From these properties, we conclude that the sphere s is a point lying on the hyperplane xc . 
e = 1, but outside the null cone x2= 0. In particular, all points on the hyperplane outside 
the horosphere determine spheres with positive radius, points lying on the horosphere 
define spheres of zero radius (i.e. points), and points lying inside the horosphere have 
imaginary radius. Finally, note that spheres of the same radius form a surface which is 
parallel to the horosphere. 
Alternatively, spheres can be dualized and represented as (n + 1)-vectors s*= sI 1and then 
using the main convolution I of I defined as 

 (25) 
we can express the constraints of equations (23) and (24) as 

 (26) 
The equation for the sphere now becomes  

(27)
The advantage of the dual form is that the sphere can be directly computed from four points 
(in 3D) as  

(28)
If we replace one of these points for the point at infinity we get 

(29)
Developing the products, we get 

(30)
which is the equation of the plane passing through the points xe1, xe2 and xe3. We can easily 
see that xe1 ∧ xe2 ∧ xe3 is a pseudoscalar representing the volume of the parallelepiped with 
sides xe1, xe2and xe3.Also, since (xe1 xe2) and (xe3 xe2) are two vectors on the plane, the 
expression ((xe1 xe2) ∧ (xe3 xe2)) is the normal to the plane. Therefore planes are spheres 
passing through the point at infinity. 
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2.3 Geometric identities, duals and incidence algebra operations  
A circle z can be regarded as the intersection of two spheres s1 and s2. This means that for 
each point on the circle xc  z they lie on both spheres, that is, xc  s1and xc  s2. Assuming 
that s1 and s2 are linearly independent, we can write for xc  z

 (31)  
this result tells us that since xc lies on both spheres, z=(s1 ∧  s1) should be the intersection of 
the spheres or a circle. It is easy to see that the intersection with a third sphere leads to a 
point pair. We have derived algebraically that the wedge of two linearly independent 
spheres yields to their intersecting circle (see Figure 3), this topological relation between two 
spheres can be also conveniently described using the dual of the meet operation, namely  

(32)
this new equation says that the dual of a circle can be computed via the meet of two spheres 
in their dual form. This equation confirms geometrically our previous algebraic 
computation of equation (31).  
The dual form of the circle (in 3D) can be expressed by three points lying on it as  

  (33) 
seeFigure3.a.

Fig. 3. a) Circle computed using three points, note its stereographic projection. b) Circle 
computed using the meet of two spheres. 

Similar to the case of planes show in equation (29), lines can be defined by circles passing 
through the point at infinity as  

(34)
This can be demonstrated by developing the wedge products as in the case of the planes to 
yield  

  (35) 
from where it is evident that the expression xe1 ∧  xe2 is a bivector representing the plane 
where the line is contained and (xe2  xe1) is the direction of the line.  
The dual of a point p is a sphere s. The intersection of four spheres yields a point, see Figure 
4.b . The dual relationships between a point and its dual, the sphere, are:  

(36)
where the points are denoted as pi and the spheres si for i =1, 2, 3, 4. A summary of the basic 
geometric entities and their duals is presented in Table 1.  
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There is another very useful relationship between a (r 2)-dimensional sphere Ar and the 
sphere s (computed as the dual of a point s). If from the sphere Ar we can compute the 
hyperplane  we can express the meet between the dual of the point 
s(a sphere) and the hyperplane Ar+1 getting the sphere Ar of one dimension lower 

 (37) 
This result is telling us an interesting relationship: that the sphere Ar and the hyperplane 
Ar+1 are related via the point s (dual of the sphere s*), thus we then rewrite the equation (37) 
as follows

  (38) 
Using the equation (38) and given the plane (Ar+1) and the circle z(Ar) we can compute the sphere  
 s= z 1. (39)
Similarly we can compute another important geometric relationship called the pair of points 
using the equation (38) directly  
 s= PPL 1. (40)

Fig. 4. a) Conformal point generated by projecting a point of the affine plane to the unit 
sphere. b) Point generated by the meet of four spheres.  

Table 1. Entities in conformal geometric algebra. 

Now using this result given the line Land the sphere s we can compute the pair of points PP 
(see Figure 5.b)  
 PP= sL= s ∧ L. (41)
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3. The 3D Affine Plane 
In the previous section we described the general properties of the conformal framework. 
However, sometimes we would like to use only the projective plane of the conformal 
framework but not the null cone of this space. This will be the case when we use only rigid 
transformations and then we will limit ourselves to the Affine Plane which is a n + 1 
dimensional subspace of the Hyperplane of reference P(e ,e0).
We have chosen to work in the algebra G4,1. Since we deal with homogeneous points the 
particular choice of null vectors does not affect the properties of the conformal geometry. 
Points in the affine plane x R4,1are formed as follows  

 (42) 

Fig. 5. a) The meet of a sphere and a plane. b) Pair of points resulting from the meet between 
a line and a sphere.  

where xe R3. From this equation we note that e0 represents the origin (by setting xe = 0), 
similarly, e represents the point at infinity. Then the normalization property is now 
expressed as 

  (43) 
In this framework, the conformal mapping equation is expressed as 

 (44) 
For the case when we will be working on the affine plane exclusively, we will be mainly 
concerned with a simplified version of the rejection. Noting that E= e ∧  e0= e ∧  e, we 
write a equation for rejection as follows  
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Now, since the points in the affine plane have the form xa = xe + e0, we conclude that  

 (46) 
is the mapping from the horosphere to the affine plane. 

3.1 Lines and Planes  
The lines and planes in the affine plane are expressed in a similar fashion to their conformal 
counterparts as the join of 2 and 3 points, respectively  
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  (48) 
Note that unlike their conformal counterparts, the line is a bivector and the plane is a 
trivector. As seen earlier, these equations produce a moment-direction representation thus  

 (49) 
where d is a vector representing the direction of the line and B is a bivector representing the 
moment of the line. Similarlywehavethat  

a = e n + e123 (50)
where n is the normal vector to the plane and is a scalar representing the distance from the 
plane to the origin. Note that in any case, the direction and normal can be retrieved with d = 
e  · La and n = e  · a, respectively.  
In this framework, the intersection or meet has a simple expression too. Let 

and Ba =  then the meet is defined as

 (51) 
where I¯ Aa Ba is either e12e , e23e , e31e ,or e123e , according to which basis vectors span the 
largest common space of Aa and Ba .

3.2 Directed distance  

Fig. 6. a) Line in 2D affine space. b) Plane in the 3D affine space (note that the 3D space is 
“lifted” by a null vector e.

It is well known from vector analysis the so-called Hessian normal form, a convenient 
representation to specify lines and planes using their distance from the origin (the Hesse 
distance or Directed distance). In this section we are going to show how CGA can help us to 
obtain the Hesse distance for more general simplexes and not only for lines and planes. 
Figure 6(a) and (b) depict a line and a plane, respectively, that will help us to develop our 
equations. Let Ak be a k-line (or plane), then it consist of a momentum M k of degree k and of a 
direction Dk 1of degree k 1. For instance, given three Euclidean points a1,a2,a3 their 2-
simplex define a dual 3-plane in CGA that canbe expressedas  

(52)
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Then, the directed distance of this plane, denoted as pk , can be obtained taking the inner 
product between the unit direction Dk 1and the moment M k . Indeed, from (52) and using 
expressions (1) to (7), we get the direction  
from e = Dk 1and then its unitary expression Dk 1 dividing Dk 1 by its magnitude. 
Schematically,  

 (53) 

Finally the directed distance pk of Ak is

 (54)  
where the dot operation basically takes place between the direction Dk 1and the momentum 
of Ak . Obviously, the directed distance vector p touches orthogonally the k-plane Ak, and as 
we mentioned at the beginning of k this subsection, the magnitude p equals the Hesse 
distance. For sake of simplicity, in Figures (6.a) and (6.b) only Dk 1· Lk and Dk 1· k are
respectively shown.  
Now, having this point from the first object, we can use it to compute the directed distance 
from the k-plane Ak parallel to the object Bk as follows  

 (55) 

4. Rigid Transformations  
We can express rigid transformations in conformal geometry carrying out reflections 
between planes.  

4.1 Reflection  
The reflection of conformal geometric entities help us to do any other transformation. The 
reflection of a point x respect to the plane is equal x minus twice the direct distance 
between the point and plane see the image (7), that is x = x 2(  · x) 1 to simplify this 
expression recalling the property of Clifford product of vectors 2(b· a)= ab + ba.

Fig. 7. Reflection of a point x respect to the plane .

The reflection could be written  
 x’ = x ( x  x ) 1, (56)
 x’ = x x 1  x 1 (57)
 x’ = x 1. (58)
For any geometric entity Q, the reflection respect to the plane is given by 
 Q’ = Q 1 (59)
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4.2 Translation  
The translation of conformal entities can be by carrying out two reflections in parallel planes 

1 and 2 see the image (8), that is  

 (60)  

 (61) 

With a =2dn.

Fig. 8. Reflection about parallel planes.  

4.3 Rotation  
The rotation is the product of two reflections between nonparallel planes see image (9)  

Fig. 9. Reflection about nonparallel planes.  

 (62) 

Or computing the conformal product of the normals of the planes.  
 (63)  

With l = n2 ^ n1,and twice the angle between the planes 2 and 1. The screw motion called
motor related to an arbitrary axis L is M = TRT

4.4 Kinematic Chains  
The direct kinematics for serial robot arms is a succession of motors and it is valid for 
points, lines, planes, circles and spheres.

 (64) 

5. Ruled Surfaces 
Conics, ellipsoids, helicoids, hyperboloid of one sheet are entities which can not be directly 
described in CGA, however, can be modeled with its multivectors. In particular, a ruled 
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surface is a surface generated by the displacement of a straight line (called generatrix) along 
a directing curve or curves (called directrices). The plane is the simplest ruled surface, but 
now we are interested in nonlinear surfaces generated as ruled surfaces. For example, a 
circular cone is a surface generated by a straight line through a fixed point and a point in a 
circle. It is well known that the intersection of a plane with the cone can generate the conics. 
See Figure 10. In [17] the cycloidal curves can be generated by two coupled twists. In this 
section we are going to see how these and other curves and surfaces can be obtained using 
only multivectors of CGA.  

Fig. 10. (a) Hyperbola as the meet of a cone and a plane. (b) The helicoid is generated by the 
rotation and translation of a line segment. In CGA the motor is the desired multivector. 

5.1 Cone and Conics  
A circular cone is described by a fixed point v0 (vertex), a dual circle z0= a0 ∧  a1 ∧  a2

(directrix) and a rotor R ( , l), [0, 2 ) rotating the straight line L(v0,a0)= v0 ∧ a0 ∧ e ,
(generatrix) along the axis of the cone l0= z0· e . Then, the cone w is generated as

 (67) 

A conic curve can be obtained with the meet (17) of a cone and a plane. See Figure 10(a).  

5.2 Cycloidal Curves 
The family of the cycloidal curves can be generated by the rotation and translation of one or 
two circles. For example, the cycloidal family of curves generated by two circles of radius 
r0and r1 are expressed by, see Figure 11, the motor  
 M = TR1T4R2 (68)  
where
 T = T ((r0+ r1)(sin( )e1+ cos( )e2)) (69)  

 (70)  

 R2 = R2( ) (71)  
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Then, each conformal point x is transformed as MxM.

5.3 Helicoid 
We can obtain the ruled surface called helicoid rotating a ray segment in a similar way as 
the spiral of Archimedes. So, if the axis e3 is the directrix of the rays and it is orthogonal to 
them, then the translator that we need to apply is a multiple of , the angle of rotation. See 
Figure 10(b).  

Fig. 11. The motor M = TR1T*R2, defined by two rotors and one translator, can generate the 
family of the cycloidal curves varying the multivectors Ri and T.

5.4 Sphere and Cone  
Let us see an example of how the algebra of incidence using CGA simplify the algebra. The 
intersection of a cone and a sphere in general position, that is, the axis of the cone does not 
pass through the center of the sphere, is the three dimensional curve of all the euclidean 
points (x, y, z) such that x and y satisfy the quartic equation  

 (72)  

and x, y and z the quadratic equation  

 (x  x0)2+(y  y0)2+(z  z0)2= r. (73)

See Figure 12. In CGA the set of points q of the intersection can be expressed as the meet (17) 
of the dual sphere s and the cone w, (67), defined in terms of its generatrix L,that is  

 (74)  

Thus, in CGA we only need (74) to express the intersection of a sphere and a cone, 
meanwhile in euclidean geometry it is necessary to use (72) and (73).  

Fig. 12. Intersection as the meet of a sphere and a cone. 
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5.5 Hyperboloid of one sheet  
The rotation of a line over a circle can generate a hyperboloid of one sheet. Figure 13(a).  

Fig. 13. (a) Hyperboloid as the rotor of a line. (b) The Plücker conoid as a ruled surface. 

5.6 Ellipse and Ellipsoid 
The ellipse is a curve of the family of the cycloid and with a translator and a dilator we can 
obtain an ellipsoid.  

5.7 Plücker Conoid 
The cylindroid or Pl¨ucker conoid is a ruled surface. See Figure 13(b). This ruled surface is 
like the helicoid where the translator parallel to the axis e3 is of magnitude, a multiple of 
cos( )sin( ). The intersection curve of the conoid with a sphere will be obtained as the meet of 
both surfaces. Figure 14(a) and (b). 

Fig. 14. The intersection between the Plücker conoid and a sphere. 

6. Barrett Hand Forward Kinematics 
The direct kinematics involves the computation of the position and orientation of the robot 
end-effector given the parameters of the joints. The direct kinematics can be easily 
computed if the lines of the screws’ axes are given [2]. 
In order to introduce the kinematics of the Barrett HandTM we will show the kinematic of 
one finger, assuming that it is totally extended. Note that such an hypothetical position is 
not reachable in normal operation. 
Let x1o, x2o be points-vectors describing the position of each joint of the finger and x3o the end 
of the finger in the Euclidean space, see the Figure 15. If Aw, A1,2,3 and Dw are denoting the 
dimensions of the finger’s components 
 x1o = Awe1 + A1e2 + Dwe3, (75)
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 x2o = Awe1 + (A1 + A2)e2 + Dwe3, (76)
 x3o = Awe1 + (A1 + A2 + A3)e2 + Dwe3. (77)

Fig. 15. Barrett hand hypothetical position. 

Once we have defined these points it is quite simple to calculate the axes L1o,2o,3o,which will 
be used as motor’s axis. As you can see at the Figure 15, 
 L1o = Aw(e2 ∧  e ) + e12, (78)
 L2o = (x1o ∧  e1 ∧  e ) Ic, (79)
 L3o = (x2o ∧  e1 ∧  e ) Ic. (80)
When the hand is initialized the fingers moves away to the home position, this is the angle 

2 = 2.46o by the joint two and the angle 3 = 50o degrees by the joint three. In order to 
move the finger from this hypothetical position to its home position the appropriate 
transformation is as follows: 

 M2o = cos ( 2/2)  sin( 2/2)L2o (81)

 M3o = cos ( 3/2)  sin( 3/2)L3o. (82)

Once we have gotten the transformations, then we apply them to the points x2o and x3o in
order to get the points x2 and x3 that represents the points in its home position, also the line 
L3 is the line of motor axis in home position. 

(83)

(84)

 (85) 
The point x1 = x1o is not affected by the transformation, the same for the lines L1 = L1o and L2

= L2o see Figure 16. Since the rotation angles of both axis L2 and L3 are related, we will use 
fractions of the angle q1 to describe their individual rotation angles. The motors of each joint 
are computed using  to rotate around L1,  around L2 and  around L3, these 
specific angle coefficients where taken from the Barrett Hand user manual. 
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Fig. 16. Barrett hand at home position. 
 M1 = cos(q4/35) + sin(q4/35)L1, (86)

 M2 = cos(q1/250)  sin(q1/250)L2, (87)

 M3 = cos(q1/750)  sin(q1/750)L3. (88)
The position of each point is related to the angles q1 and q4 as follows: 

(89)

(90)

(91)

7. Application I: Following Geometric Primitives and Ruled Surfaces for 
Shape Understanding and Object Manipulation 
In this section we will show how to perform certain object manipulation tasks in the context 
of conformal geometric algebra. First, we will solve the problem of positioning the gripper 
of the arm in a certain position of space disregarding the grasping plane or the gripper’s 
alignment. Then, we will illustrate how the robotic arm can follow linear paths. 

7.1 Touching a point 
In order to reconstruct the point of interest, we make a back-projection of two rays extended 
from two views of a given scene (see Figure 17). These rays will not intersect in general, due 
to noise. Hence, we compute the directed distance between these lines and use the the 
middle point as target. Once the 3D point pt is computed with respect to the cameras’ 
framework, we transform it to the arm’s coordinate system. 
Once we have a target point with respect to the arm’s framework, there are three cases to 
consider. There might be several solutions (see Figs. 18.a and 19.a), a single solution (see 
Figure 18.b), or the point may be impossible to reach (Figure 19.b). 
In order to distinguish between these cases, we create a sphere  centered at 
the point pt and intersect it with the bounding sphere  of the other 
joints (see Figures 18.a and 18.b), producing the circle zs = Se ∧ St.
If the spheres St and Se intersect, then we have a solution circle zs which represents all the 
possible positions the point p2 (see Figure 18) may have in order to reach the target. If the 
spheres are tangent, then there is only one point of intersection and a single solution to the 
problem as shown in Figure 18.b. 
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Fig. 16. Barrett hand at home position. 
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(89)

(90)

(91)
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36 Mobile Robots, Perception & Navigation

Fig. 17. Point of interest in both cameras (pt).

If the spheres do not intersect, then there are two possibilities. The first case is that St is 
outside the sphere Se. In this case, there is no solution since the arm cannot reach the 
point pt as shown in Figure 19.b. On the other hand, if the sphere St is inside Se, then 
we have a sphere of solutions. In other words, we can place the point p2 anywhere 
inside St as shown in Figure 19.a. For this case, we arbitrarily choose the upper point of 
the sphere St.

Fig. 18. a) Se and St meet (infinite solutions) b) Se and St are tangent (single solution). 

In the experiment shown in Figure 20.a, the sphere St is placed inside the bounding sphere 
Se, therefore the point selected by the algorithm is the upper limit of the sphere as shown in 
Figures 20.a and 20.b. The last joint is completely vertical. 

7.2 Line of intersection of two planes 
In the industry, mainly in the sector dedicated to car assembly, it is often required to weld 
pieces. However, due to several factors, these pieces are not always in the same position, 
complicating this task and making this process almost impossible to automate. In many 
cases the requirement is to weld pieces of straight lines when no points on the line are 
available. This is the problem to solve in the following experiment. 
Since we do not have the equation of the line or the points defining this line we are going 
to determine it via the intersection of two planes (the welding planes). In order to 
determine each plane, we need three points. The 3D coordinates of the points are 
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triangulated using the stereo vision system of the robot yielding a configuration like the 
one shown in Figure 21. 
Once the 3D coordinates of the points in space have been computed, we can find now each 
plane as * = x1 ∧ x2 ∧ x3 ∧ e , and ’* = x’1 ∧ x’2 ∧ x’3 ∧ e’ . The line of intersection is 
computed via the meet operator l = ’ . In Figure 22.a we show a simulation of the arm 
following the line produced by the intersection of these two planes. 
Once the line of intersection l is computed, it suffices with translating it on the plane =
l ∧  e2 (see Figure 22.b) using the translator T1 = 1+ e2e , in the direction of e2 (the y axis) a 
distance . Furthermore, we build the translator T2 = 1+d3e2e with the same direction (e2),
but with a separation d3 which corresponds to the size of the gripper. Once the translators 
have been computed, we find the lines l’ and l’’ by translating the line l with  , 
and .

Fig. 19. a) St inside Se produces infinite solutions, b) St outside Se, no possible solution. 

Fig. 20. a) Simulation of the robotic arm touching a point. b) Robot “Geometer” touching a 
point with its arm. 

The next step after computing the lines, is to find the points pt and p2 which represent the 
places where the arm will start and finish its motion, respectively. These points were given 
manually, but they may be computed with the intersection of the lines l’ and l’’ with a plane 
that defines the desired depth. In order to make the motion over the line, we build a 
translator TL = 1 Lle with the same direction as l as shown in Figure 22.b. Then, this 

translator is applied to the points p2 = TLp2
1−

LT and pt = TLpt
1−

LT in an iterative fashion to 
yield a displacement L on the robotic arm.  
By placing the end point over the lines and p2 over the translated line, and by following the 
path with a translator in the direction of l we get a motion over l as seen in the image 
sequence of Figure 23. 
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7.3 Following a spherical path 
This experiment consists in following the path of a spherical object at a certain fixed 
distance from it. For this experiment, only four points on the object are available (see Figure 
24.a).
After acquiring the four 3D points, we compute the sphere S = x1 ∧ x2 ∧ x3 ∧ x4. In order 
to place the point p2 in such a way that the arm points towards the sphere, the sphere was 
expanded using two different dilators. This produces a sphere that contains S and ensures 

that a fixed distance between the arm and S is preserved, as shown in Figure 24.b. 
The dilators are computed as follows 

(92)

(93)
The spheres S1 and S2 are computed by dilating St:

(94)
(95)

Guiding lines for the robotic arm produced by the intersection, meet, of the planes and 
vertical translation. 
We decompose each sphere in its parametric form as 

(96)

(97)

Where ps is any point on the sphere. In order to simplify the problem, we select the upper 
point on the sphere. To perform the motion on the sphere, we vary the parameters and
and compute the corresponding pt and p2 using equations (96) and (97). The results of the 
simulation are shown in Figure 25.a, whereas the results of the real experiment can be seen 
in Figures 25.b and 25.c. 

Fig. 21. Images acquired by the binocular system of the robot “Geometer” showing the 
points on each plane. 
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Fig. 22. a. Simulation of the arm following the path of a line produced by the intersection of 
two planes. b. 

7.4 Following a 3D-curve in ruled surfaces 
As another simulated example using ruled surfaces consider a robot arm laser welder. See 
Figure 26. The welding distance has to be kept constant and the end-effector should follow a 
3D-curve w on the ruled surface guided only by the directrices d1, d2 and a guide line L.
From the generatrices we can always generate the nonlinear ruled surface, and then with 
the meet with another surface we can obtain the desired 3D-curve. We tested our 
simulations with several ruled surfaces, obtaining expressions of high nonlinear surfaces 
and 3D-curves, that with the standard vector and matrix analysis it would be very difficult 
to obtain them. 

Fig. 23. Image swquence of a linear-path motion. 

Fig. 24. a) Points over the sphere as seen by the robot “Geometer”. b) Guiding spheres for 
the arm’s motion. 

8. Aplications II: Visual Grasping Identification 
In our example considering that the cameras can only see the surface of the observed 
objects, thus we will consider them as bi-dimensional surfaces which are embedded in a 3D 
space, and are described by the function 
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 (98) 
where s and t are real parameters in the range [0, 1]. Such parameterization allows us to 
work with different objects like points, conics, quadrics, or even more complex objects like 
cups, glasses, etc. The table 2 shows some parameterized objects. 

Table 2. Parameterized Objects. 

Due to that our objective is to grasp such objects with the Barrett Hand, we must consider 
that it has only three fingers, so the problem consists in finding three “touching points” for 
which the system is in equilibrium during the grasping; this means that the sum of the 
forces equals to zero, and also the sum of the moments. For this case, we consider that there 
exists friction in each “touching point”. 
If the friction is being considered, we can claim that over the surface H(s, t) a set of forces 
exist which can be applied. Such forces are inside a cone which have the normal N(s, t) of 
the surface as its axis (as shown in Fig. 27). Its radius depends on the friction’s coefficient 

, where Fn = (F · N(s, t))N(s, t) is the normal component of F. The 
angle for the incidence of F with respect to the normal can be calculated using the wedge 
product, and should be smaller than a fixed 

 (99) 

Fig. 25. a) Simulation of the motion over a sphere. b) and c) Two of the images in the 
sequence of the real experiment. 

Fig. 26. A laser welding following a 3D-curve w on a ruled surface defined by the directrices 
d1 and d2. The 3D-curve w is the meet between the ruled surface and a plane containing the 
line L.

We know the surface of the object, so we can compute its normal vector in each point using 
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 (100) 

In surfaces with lower friction, the angle is very small, then the value of F tends to its 
projection over the normal (F  Fn). To maintain equilibrium, the sum of the forces must be 
zero . This fact restricts the points over the surface in which it can 
be applied the forces. This number of points is even more reduced if we are confronted with 
the case when considering the unit normal  the forces over the object 
are equal. Additionally, to maintain the equilibrium, it must be accomplished that the sum 
of the moments is zero 

 (101) 

The points on the surface having the same directed distance to the center of mass of the 
object fulfill H(s, t) ∧  N(s, t) = 0. Due to the normal in such points crosses the center of mass 
(Cm), it does not produce any moment. Before determining the external and internal points, 
we must compute the center of mass as follows 

(102)

Once that Cm is calculated we can establish next constraint 

 (H(s, t)  Cm) ^ N(s, t) = 0  (103) 

The values s and t satisfying (103) form a subspace called grasping space. They accomplish 
that the points represented by H(s, t) are critical on the surface (being maximums, 
minimums or inflections). In this work we will not consider other grasping cases like when 
they do not utilize extreme points other when friction cones are being considered. This 
issues will be treated in future work. The equation (103) is hard to fulfill due to the noise, 
and it is necessary to consider a cone of vectors. So, we introduce an angle called ,

 (104) 

Fig. 27. The friction cone. 
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Fig. 28. Object and his normal vectors. 

Fig. 29. Object relative position. 

We use equation (104) instead of (103), because it allows us to deal with errors or data lost. 
The constraint imposing that the three forces must be equal is hard to fulfill because it 
implies that the three points must be symmetric with respect to the mass center. When such 
points are not present, we can relax the constraint to allow that only two forces are equal in 
order to fulfill the hand’s kinematics equations. Then, the normals N(s1, t1) and N(s2, t2) must 
be symmetric with respect to N(s3, t3). 

 N(s3, t3)N(s1, t1)N(s3, t3) 1 = N(s2, t2)  (105) 

Once the three grasping points (P1 = H(s1, t1), P2 = H(s2, t2), P3 = H(s3, t3)) are calculated, it is 
really easy to determine the angles at the joints in each finger. To determine the angle of the 
spread (q4 = ) for example we use 

 (106) 

or it is possible to implement a control law which will allow to move the desired finger 
without the need of solving any kind of inverse kinematics equations [1]. Given the 
differential kinematics equation 

  (107) 

If we want to reach the point H(s1, t1), we require that the suitable velocity at the very end of 
the finger should be proportional to the error at each instance .
This velocity is mapped into the phase space by means of using the Jacobian inverse. Here 
we use simply the pseudo-inverse with j1 = and j2 =
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Applying this control rule, one can move any of the fingers at a desired position above an 
object, so that an adequate grasp is accomplish. 

Fig. 30. Grasping some objects. 

9. Conclusion 
In this chapter the authors have used a single non–standard mathematical framework, the 
Conformal Geometric Algebra, in order to simplify the set of data structures that we usually 
use with the traditional methods. The key idea is to define and use a set of products in CGA 
that will be enough to generate conformal transformations, manifolds as ruled surfaces and 
develop incidence algebra operations, as well as solve equations and obtain directed 
distances between different kinds of geometric primitives. Thus, within this approach, all 
those different mathematical entities and tasks can be done simultaneously, without the 
necessity of abandoning the system. 
Using conformal geometric algebra we even show that it is possible to find three grasping 
points for each kind of object, based on the intrinsic information of the object. The hand‘s 
kinematic and the object structure can be easily related to each other in order to manage a 
natural and feasible grasping where force equilibrium is always guaranteed. These are only 
some applications that could show to the robotic and computer vision communities the 
useful insights and advantages of the CGA, and we invite them to adopt, explore and 
implement new tasks with this novel framework, expanding its horizon to new possibilities 
for robots equipped with stereo systems, range data, laser, omnidirectional and odometry. 
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1. Introduction 
The integration of different types of navigation systems is frequently used in the automatic 
motion control systems due to the fact that particular errors existing in anyone of them are 
usually of different physical natures. The autonomous navigation systems are always 
preferred from many of reasons and the inertial navigation systems (INS) are traditionally 
considered as the main representative of this class. The integration of such systems based on 
the inertial sensors (rate gyros and linear accelerometers) and other navigation systems is 
very popular nowadays, especially as a combination with global positioning systems [Farrel 
& Barth, 1999], [Grewal et al., 2001]. The vision based navigation systems (VNS) are also of 
autonomous type and there is a reasonable intention to make the fusion of these two 
systems in some type of integrated INS/VNS system. This paper is oriented toward the 
possibility of fusion of data originated from a strap-down INS on one side, and from a 
dynamic vision based navigation system (DVNS), on the other.  Such an approach offers the 
wide area of potential applications including the mobile robots and a number of 
automatically controlled ground, submarine, and aerial vehicles.  
The most usual approach in navigation systems integration is of “optimal filter” type 
(typical INS/VNS examples are given in [Kaminer et al., 1999] and [Roumeliotis et al., 2002]) 
In such an approach one of the systems is considered as the main one and the other supplies 
less frequently made measurements (corrupted by the noise, but still considered as the more 
precise) used in order to estimate in an optimal fashion the navigation states as well as the 
error parameters of the main system’s sensors. 
The approach adopted in this paper considers both systems in an equal way. It is based on 
the weighted averaging of their outputs, allowing some degrees of freedom in this 
procedure regarding to the actually estimated likelihood of their data. These estimates are 
based on reasoning related to the physical nature of system errors. The errors characterizing 
one typical strap-down INS are of slowly varying oscillatory nature and induced by the 
inaccuracies of inertial sensors. On the other hand, the errors in any VNS are mainly due to 
a finite resolution of a TV camera, but there is a significant influence of the actual scene 
structure and visibility conditions, also. In other words, it could be said that the accuracy of 
an INS is gradually decreasing in time while it is not affected by the fact where the moving 
object actually is. The accuracy of a DVNS is generally better in all situations where the 
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1. Introduction 
The integration of different types of navigation systems is frequently used in the automatic 
motion control systems due to the fact that particular errors existing in anyone of them are 
usually of different physical natures. The autonomous navigation systems are always 
preferred from many of reasons and the inertial navigation systems (INS) are traditionally 
considered as the main representative of this class. The integration of such systems based on 
the inertial sensors (rate gyros and linear accelerometers) and other navigation systems is 
very popular nowadays, especially as a combination with global positioning systems [Farrel 
& Barth, 1999], [Grewal et al., 2001]. The vision based navigation systems (VNS) are also of 
autonomous type and there is a reasonable intention to make the fusion of these two 
systems in some type of integrated INS/VNS system. This paper is oriented toward the 
possibility of fusion of data originated from a strap-down INS on one side, and from a 
dynamic vision based navigation system (DVNS), on the other.  Such an approach offers the 
wide area of potential applications including the mobile robots and a number of 
automatically controlled ground, submarine, and aerial vehicles.  
The most usual approach in navigation systems integration is of “optimal filter” type 
(typical INS/VNS examples are given in [Kaminer et al., 1999] and [Roumeliotis et al., 2002]) 
In such an approach one of the systems is considered as the main one and the other supplies 
less frequently made measurements (corrupted by the noise, but still considered as the more 
precise) used in order to estimate in an optimal fashion the navigation states as well as the 
error parameters of the main system’s sensors. 
The approach adopted in this paper considers both systems in an equal way. It is based on 
the weighted averaging of their outputs, allowing some degrees of freedom in this 
procedure regarding to the actually estimated likelihood of their data. These estimates are 
based on reasoning related to the physical nature of system errors. The errors characterizing 
one typical strap-down INS are of slowly varying oscillatory nature and induced by the 
inaccuracies of inertial sensors. On the other hand, the errors in any VNS are mainly due to 
a finite resolution of a TV camera, but there is a significant influence of the actual scene 
structure and visibility conditions, also. In other words, it could be said that the accuracy of 
an INS is gradually decreasing in time while it is not affected by the fact where the moving 
object actually is. The accuracy of a DVNS is generally better in all situations where the 
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recognizable referent landmarks are inside the camera’s field of view, occupying larger 
extent of it. Because the DVNS is based on processing of a sequence of images, the larger 
relative motion of the landmarks in two consecutive frames is preferable too. 
Having in minds these basic features of INS and DVNS, their integration could be 
considered in two basic ways: 

1. An INS is a kind of “master” navigation system while the corrections produced 
by DVNS are made in time when a moving object is passing the landmarks 
located around the trajectory. This approach is typically applicable in case of 
the flight control of remotely piloted vehicles and in the similar “out-door” 
applications; 

2. A VNS is a basic navigation system assuming that the reference scene objects 
always exist in the scene, while an INS provides the required data related to the 
absolute motion of an object during the interval between two frames. This 
approach is oriented toward mobile robot “in-door” applications as well as in case 
of automatic motion control of the road vehicles. 

The next chapter of paper introduces the fundamentals of INS and VNS in the extent 
required to understand their integration. In Chapter 3. the general case of suggested 
fusion procedure is presented. A number of particular implementation schemes 
including reduced set of sensors and/or reduced amount of calculations could be 
specified based on this general case. The next two chapters consist of the illustrative 
examples of application: A vision aided INS in the simulated case of remotely piloted 
vehicle’s flight (Chapter 4), [Graovac, 2004]; and a VNS assisted by the acceleration 
measurements provided by an INS, for the robot control applications (Chapter 5), 
[Graovac, 2002]. 
The results related to “out-door” applications are obtained using the full 6-DOF simulation 
of object’s motion and the model of the INS work. The computer-generated images of 
terrain and ground landmarks have been used during the tests of a DVNS algorithm. These 
images have been additionally corrupted by noise and textured. The “in-door” applications 
are illustrated using the laboratory experiments with an educational robot equipped with a 
TV camera.  

2. Basic Concepts of INS and VNS 
2.1 Fundamentals of an INS 
Estimation of a position of moving object, [ ]TIIII zyxR = , relative to an inertial coordinate 
frame (ICF) could be done according to the basic navigation equations as 
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Acceleration vector in ICF IA , on the right hand side, is obtained by transformation of the 
acceleration measurement vector BA . These measurements are made by a triad of linear 
accelerometers rigidly fixed to the body of moving object and they are referenced to the body 
fixed coordinate frame (BCF):
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Matrix transform TI / B is defined via Euler angles of pitch, yaw, and roll ( )φψϑ ,,  as 
( ) ( ) ( )φϑψ TTT

BI TTTT 123/ = . (3) 
where T1, T2, T3, represent the elementary matrix transformations due to rotation around 
coordinate axes. Actual values of Euler angles are obtained by numerical integration of a set 
of differential equations: 
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where ,,, VZVYVX ωωω  represent the projections of the angular velocity of a moving object in 
ICF onto the axes of BCF. These are measured by the set of rate gyros rigidly fixed to the 
body of the moving object. 
The measurements of linear accelerations and angular velocities in BCF are inaccurate due 
to slowly varying bias introduced by a number of physical phenomena inside the inertial 
instruments. These are results of the complex motion of an object (with six degrees of 
freedom) as well as of sensor imperfections. Sensor signals are additionally corrupted by 
high frequency measurement noise caused by internal imperfections and by external 
influences due to the air turbulence, vibrations of vehicle, etc. A specific type of error 
associated to this particular mechanization (known as a strap-down inertial navigation system - 
SDINS) in case of flying object is a result of rectification introduced by multiplication shown 
in (2). The elements of matrix TI/B as well as of vector BA  include the oscillatory components 
on natural frequency of body oscillations. 
The inertial instruments analyzed here are of medium quality (typically used for the flight 
stabilization purposes). The numerical data illustrating their accuracy are: 
Rate gyros:    Bandwidth - 80 Hz;   
 Bias - 100/hour;  G-sensitive drift - 100/hour/g;  
 Scale factor error - 1%;  
 Measurement noise: white, Gaussian, zero mean value, σ = 10/s;
Accelerometers:  Bandwidth - 150 Hz;   
 Bias - 0.1 m/s2; Resolution - 0.05 m/s2;
 Scale factor error - 1%; 
 Measurement noise: white, Gaussian, zero mean value, σ = 0.1   m/s2;
The accuracy of an INS was analyzed using the complete 6-DOF horizontal flight 
simulation. As a way of on-line accuracy improvement, the Kalman filter was applied in 
order to make the filtration of rate gyro signals. This one was based on the linearized 
dynamic models in pitch and yaw channels. The results of the Kalman filter application in 
the estimation of pitch rate and pitch angle during the interval of ten seconds of horizontal 
flight are illustrated in Figure 1. 

2.2 Fundamentals of a Dynamic Vision Based Navigation 
The linear position of a moving object carrying a TV camera on-board relative to the 
environmental elements can be reconstructed either from one frame or from a sequence of 
frames. In the first case, a number of characteristic scene objects' features should be 
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recognizable referent landmarks are inside the camera’s field of view, occupying larger 
extent of it. Because the DVNS is based on processing of a sequence of images, the larger 
relative motion of the landmarks in two consecutive frames is preferable too. 
Having in minds these basic features of INS and DVNS, their integration could be 
considered in two basic ways: 

1. An INS is a kind of “master” navigation system while the corrections produced 
by DVNS are made in time when a moving object is passing the landmarks 
located around the trajectory. This approach is typically applicable in case of 
the flight control of remotely piloted vehicles and in the similar “out-door” 
applications; 

2. A VNS is a basic navigation system assuming that the reference scene objects 
always exist in the scene, while an INS provides the required data related to the 
absolute motion of an object during the interval between two frames. This 
approach is oriented toward mobile robot “in-door” applications as well as in case 
of automatic motion control of the road vehicles. 

The next chapter of paper introduces the fundamentals of INS and VNS in the extent 
required to understand their integration. In Chapter 3. the general case of suggested 
fusion procedure is presented. A number of particular implementation schemes 
including reduced set of sensors and/or reduced amount of calculations could be 
specified based on this general case. The next two chapters consist of the illustrative 
examples of application: A vision aided INS in the simulated case of remotely piloted 
vehicle’s flight (Chapter 4), [Graovac, 2004]; and a VNS assisted by the acceleration 
measurements provided by an INS, for the robot control applications (Chapter 5), 
[Graovac, 2002]. 
The results related to “out-door” applications are obtained using the full 6-DOF simulation 
of object’s motion and the model of the INS work. The computer-generated images of 
terrain and ground landmarks have been used during the tests of a DVNS algorithm. These 
images have been additionally corrupted by noise and textured. The “in-door” applications 
are illustrated using the laboratory experiments with an educational robot equipped with a 
TV camera.  

2. Basic Concepts of INS and VNS 
2.1 Fundamentals of an INS 
Estimation of a position of moving object, [ ]TIIII zyxR = , relative to an inertial coordinate 
frame (ICF) could be done according to the basic navigation equations as 
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Acceleration vector in ICF IA , on the right hand side, is obtained by transformation of the 
acceleration measurement vector BA . These measurements are made by a triad of linear 
accelerometers rigidly fixed to the body of moving object and they are referenced to the body 
fixed coordinate frame (BCF):
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Matrix transform TI / B is defined via Euler angles of pitch, yaw, and roll ( )φψϑ ,,  as 
( ) ( ) ( )φϑψ TTT
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where T1, T2, T3, represent the elementary matrix transformations due to rotation around 
coordinate axes. Actual values of Euler angles are obtained by numerical integration of a set 
of differential equations: 
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where ,,, VZVYVX ωωω  represent the projections of the angular velocity of a moving object in 
ICF onto the axes of BCF. These are measured by the set of rate gyros rigidly fixed to the 
body of the moving object. 
The measurements of linear accelerations and angular velocities in BCF are inaccurate due 
to slowly varying bias introduced by a number of physical phenomena inside the inertial 
instruments. These are results of the complex motion of an object (with six degrees of 
freedom) as well as of sensor imperfections. Sensor signals are additionally corrupted by 
high frequency measurement noise caused by internal imperfections and by external 
influences due to the air turbulence, vibrations of vehicle, etc. A specific type of error 
associated to this particular mechanization (known as a strap-down inertial navigation system - 
SDINS) in case of flying object is a result of rectification introduced by multiplication shown 
in (2). The elements of matrix TI/B as well as of vector BA  include the oscillatory components 
on natural frequency of body oscillations. 
The inertial instruments analyzed here are of medium quality (typically used for the flight 
stabilization purposes). The numerical data illustrating their accuracy are: 
Rate gyros:    Bandwidth - 80 Hz;   
 Bias - 100/hour;  G-sensitive drift - 100/hour/g;  
 Scale factor error - 1%;  
 Measurement noise: white, Gaussian, zero mean value, σ = 10/s;
Accelerometers:  Bandwidth - 150 Hz;   
 Bias - 0.1 m/s2; Resolution - 0.05 m/s2;
 Scale factor error - 1%; 
 Measurement noise: white, Gaussian, zero mean value, σ = 0.1   m/s2;
The accuracy of an INS was analyzed using the complete 6-DOF horizontal flight 
simulation. As a way of on-line accuracy improvement, the Kalman filter was applied in 
order to make the filtration of rate gyro signals. This one was based on the linearized 
dynamic models in pitch and yaw channels. The results of the Kalman filter application in 
the estimation of pitch rate and pitch angle during the interval of ten seconds of horizontal 
flight are illustrated in Figure 1. 

2.2 Fundamentals of a Dynamic Vision Based Navigation 
The linear position of a moving object carrying a TV camera on-board relative to the 
environmental elements can be reconstructed either from one frame or from a sequence of 
frames. In the first case, a number of characteristic scene objects' features should be 
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extracted. The other approach, known as a dynamic vision, generally allows usage of a lower 
number of extracted and tracked features. If some additional information about linear and 
angular velocities or about angular orientation are known, the task can be radically 
simplified, allowing the tracking of just one reference object's feature [Frezza et al., 1994], 
[Menon et al., 1993]. In both cases, if the absolute position of a reference object in ICF is a 
priori known, the whole method can be interpreted as a reconstruction of the absolute 
position of a moving object - visual navigation. 

t [s]

q [rad/s]

20 21 22 23 24 25 26 27 28 29 30
-0.15

-0.1

-0.05

0

0.05

0.1

20 21 22 23 24 25 26 27 28 29 30
0

0.01

0.02

0.03

0.04

filtered 

t [s]
measured 

θ [rad]

based on row 
measurements

optimally 
estimated

Fig. 1. The effects of application of Kalman filter in the estimation of pitch rate and pitch 
angle.

The dynamic vision method has been applied in this paper. Supposing that external 
information about linear and angular velocities of a moving object exists (supplied by an 
INS), the number of tracked features is reduced to one. In the case of an autonomously 
guided flying vehicle, typical ground reference objects could be bridges, airport runways, 
cross-roads, distinguishable buildings, or other large stationary landmarks located at known 
absolute positions. The task of a VNS consists in extracting the image of landmark itself and 
after that, calculating the position of some easily recognizable characteristic point (e.g., a 
corner). If the image of a whole landmark occupies just a small portion of the complete 
image, it is more reasonable to calculate the position of its centroid instead.  
Primary detection (recognition) of a landmark is the most critical step. It is supposed that 
this task is accomplished using a bank of reference landmark images made separately in 
advance, under different aspects, from different distances, and under different visibility 
conditions. Once primary automatic detection has been done, the subsequent recognition is 
highly simplified. The recognized pattern from the actual image becomes the reference one 
for the next one, and so on. 
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In an ideal case, the only required information is regarding the shift of the characteristic 
point between two consecutive images. The existence of image noise and different other 
reasons may cause an erroneous calculation of a characteristic point location inside the 
picture. In order to minimize these effects, a greater number of characteristic points and/or 
consecutive frames should be analyzed. 
Dynamic equations describing the stated approach are the following: 
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State vector [ ]Txxxx 321= represents the position of a reference point with respect to viewer 
frame, while coefficient vectors [ ]Tvvvv 321= and [ ]T

321 ωωωω =  represent 
relative linear and angular velocities, also expressed in the coordinate frame fixed to the 
moving object. Measured outputs of this nonlinear dynamic system consist of two 
projections of the reference point onto the image plane (picture coordinate frame - PCF) which 
is perpendicular to the x1 axis, at a conventional distance  f = 1 from the origin. If the relative 
positions are known, the task consists of motion parameter estimation (coefficient vectors 
identification). If the motion parameters are known, the task is of state estimation nature 
(structure reconstruction). The second case is considered here. 
 If in some following moment of time (e.g., in the next frame) the state vector has the value 
[ ]Txxxxxx 332211 Δ+Δ+Δ+ , there would exist the shift of an image of reference point in PCF 
given as 
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The variation of position [ ]321 xxxx ΔΔΔ=Δ  is produced by the linear motion of a moving 
object IxΔ  as well as by its change of angular orientation, defined now by matrix 
transformation BIBI TT // Δ+  instead of the previous BIT / . After appropriate geometrical 
recalculations it could be shown that the variation of the relative linear position is 
represented as  

( ) ( )[ ]IBIBI
T

C
T

BIBIC xTTlxTTTTx ΔΔ+−+Δ=Δ //// . (7) 
where the linear position of the camera relative to the center of gravity of a moving object is 
denoted as l , while the angular orientation of a camera relative to the BCF axes is 
represented via transformation matrix CT . Both these parameters are known because they 
are either constant ones or can be measured easily. 
After division of both sides of (7), one obtains 
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Supposing that CT , f, and l are known and that BIT /  and BIBI TT // Δ+  are supplied externally 
as well as IxΔ (e.g., by an INS), the task of VNS consists in determining the pair of 
coordinates in PCF (y1, y2) and at least one of the displacement components (6). Combining 
three scalar equations (8) with the proper one in (6), it is now possible to determine four 
unknown variables ( )1321 ,,, xxxx ΔΔΔ . Once 1x  is calculated, one can reconstruct the remaining 
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extracted. The other approach, known as a dynamic vision, generally allows usage of a lower 
number of extracted and tracked features. If some additional information about linear and 
angular velocities or about angular orientation are known, the task can be radically 
simplified, allowing the tracking of just one reference object's feature [Frezza et al., 1994], 
[Menon et al., 1993]. In both cases, if the absolute position of a reference object in ICF is a 
priori known, the whole method can be interpreted as a reconstruction of the absolute 
position of a moving object - visual navigation. 
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Fig. 1. The effects of application of Kalman filter in the estimation of pitch rate and pitch 
angle.

The dynamic vision method has been applied in this paper. Supposing that external 
information about linear and angular velocities of a moving object exists (supplied by an 
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after that, calculating the position of some easily recognizable characteristic point (e.g., a 
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In an ideal case, the only required information is regarding the shift of the characteristic 
point between two consecutive images. The existence of image noise and different other 
reasons may cause an erroneous calculation of a characteristic point location inside the 
picture. In order to minimize these effects, a greater number of characteristic points and/or 
consecutive frames should be analyzed. 
Dynamic equations describing the stated approach are the following: 
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State vector [ ]Txxxx 321= represents the position of a reference point with respect to viewer 
frame, while coefficient vectors [ ]Tvvvv 321= and [ ]T

321 ωωωω =  represent 
relative linear and angular velocities, also expressed in the coordinate frame fixed to the 
moving object. Measured outputs of this nonlinear dynamic system consist of two 
projections of the reference point onto the image plane (picture coordinate frame - PCF) which 
is perpendicular to the x1 axis, at a conventional distance  f = 1 from the origin. If the relative 
positions are known, the task consists of motion parameter estimation (coefficient vectors 
identification). If the motion parameters are known, the task is of state estimation nature 
(structure reconstruction). The second case is considered here. 
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The variation of position [ ]321 xxxx ΔΔΔ=Δ  is produced by the linear motion of a moving 
object IxΔ  as well as by its change of angular orientation, defined now by matrix 
transformation BIBI TT // Δ+  instead of the previous BIT / . After appropriate geometrical 
recalculations it could be shown that the variation of the relative linear position is 
represented as  
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where the linear position of the camera relative to the center of gravity of a moving object is 
denoted as l , while the angular orientation of a camera relative to the BCF axes is 
represented via transformation matrix CT . Both these parameters are known because they 
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Supposing that CT , f, and l are known and that BIT /  and BIBI TT // Δ+  are supplied externally 
as well as IxΔ (e.g., by an INS), the task of VNS consists in determining the pair of 
coordinates in PCF (y1, y2) and at least one of the displacement components (6). Combining 
three scalar equations (8) with the proper one in (6), it is now possible to determine four 
unknown variables ( )1321 ,,, xxxx ΔΔΔ . Once 1x  is calculated, one can reconstruct the remaining 



50 Mobile Robots, Perception & Navigation 

two components of the relative position vector ( 2x and 3x ) from the output part of (5). The 
knowledge of relative position vector x  and of the absolute position of the characteristic 
point in ICF is sufficient to reconstruct the absolute position of a moving object. 
The crucial problem from an image processing point of view is how to determine the 
locations of characteristic points in PCF as accurately as possible. There exist a number of 
methods of distinguishing objects of interest inside the image. Practically all of them are 
application dependent. Various sequences of image enhancement/digital filtration 
procedures, segmentation approaches using multilevel gray or binarized picture, 
morphological filtration algorithms, etc. making these procedures, must be carefully chosen 
according to the actual scene contents.  
 Computer generated images of ground landmarks are used throughout this work. A 
relatively simple correlation technique consisting of matching of actual image contents and 
a reference pattern has appeared as the most robust one. It is based on calculation of a sum 
of absolute differences of light intensities inside the window scanning across the image. The 
feature has been defined as the light intensity distribution inside the rectangular window of 

T X Yn n n=  pixels around the characteristic point. The displacement of characteristic point 

),( 21 yy ΔΔ  is calculated by maximizing the similarity of the actual image and the previous 
one, i.e., minimizing the criterion given as a sum of absolute values of differences (MAD) of 
light intensity IN:

−−Δ+Δ+= ),(),( 2112211
1 yyIyyyyIL NNnT

. (9) 

The efficiency of the stated algorithm will be illustrated using the sequence of textured 
images of a bridge. The nearest holder has been used as a reference object while its crossing 
with the left edge of a runway was selected as a characteristic point (Figure 2.) Figure 3. 
illustrates matching results obtained for the multiple level gray and binarized pictures. The 
brightest points inside the black window are pointing to the locations of maximal similarity. 
The reference window was of dimensions 25 X 25 pixels. Higher sharpness of candidate area 
in case (a) suggests that one could expect better results if the multiple level gray pictures 
were used. 

 1)  2)  3) 
Fig. 2. Sequence of textured images of a bridge used as a landmark. 

When the sequence of frames shown in Figure 2. was used for navigation purposes, the 
results given in Table 1. have been obtained. It is supposed that the angular position of the 
camera is constant during the observed time period (yaw angle, 12o, pitch angle, -5o, roll 
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angle, 0o). The linear velocities of the moving object are exactly known and constant also (VX

= 500 m/s,  VY = 100 m/s, and VZ = 0 m/s). Position estimates given in Table 1. were 
obtained using the pairs of frames 1-2, 1-3, and 2-3. 

 (a) (b) 
Fig. 3. Extraction of a characteristic point inside:  (a) multiple level gray and (b) binarized 
picture.

Position in frame 1. Position in frame 2.
Exact Estimate Exact Estimate

Based on pair1-
2

Based on pair1-
3

Based on pair2-3 

X (m) 600 606 535 400 357
Y (m) 200 199 187 160 152
Z (m) 100 100 94 100 96

Table 1. Moving object position estimation using dynamic vision from sequence shown in 
Figure 2. 

2.3 Fundamentals of an Autonomous VNS 
The fundamental step in an autonomous VNS based on the processing of just one image 
consists of the calculation of the relative distance and angular orientation of a camera 
relative to the reference object (landmark) located in a horizontal plane of ICF (Figure 4.) 
[Kanatani, 1993]. 
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Fig. 4. Reference object in the field of view of TV camera. 
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angle, 0o). The linear velocities of the moving object are exactly known and constant also (VX

= 500 m/s,  VY = 100 m/s, and VZ = 0 m/s). Position estimates given in Table 1. were 
obtained using the pairs of frames 1-2, 1-3, and 2-3. 
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2.3 Fundamentals of an Autonomous VNS 
The fundamental step in an autonomous VNS based on the processing of just one image 
consists of the calculation of the relative distance and angular orientation of a camera 
relative to the reference object (landmark) located in a horizontal plane of ICF (Figure 4.) 
[Kanatani, 1993]. 
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Supposing a landmark of rectangular shape of known dimensions and the cross-section of 
its diagonals as a reference point adopted as the origin of ICF, the position of the camera 
relative to this point could be obtained from just one image by the following algorithm: 

1. Calculate the normalized vectors for all four projections in PCF of corners A, B, C, 
and D. Each one of these m-vectors is a vector representing projection of the 
appropriate point [ ]1 21 T

i i iy y y= , divided by its Euclidean norm. 

2. Calculate the normalized vectors for all four projections of the edges AB, BC, CD, 
DA, as the normalized cross-products of m-vectors above. Elements of these n-
vectors specify the equations of image lines encompassing the projections of the 
appropriate pair of corners. 

3. Calculate the m-vectors of vanishing points P and Q, as cross-products of n-vectors 
above, representing the projections of parallel edges of a reference object.  

1. Calculate the n-vectors of diagonals AC and BD as in case of image lines 
representing the edges (2).

2. Calculate the m-vector 
Om  of the point at the cross-section of diagonals O, as in 

case of vanishing points (3). 
3. Choosing any one of the corners as the point at known distance d from the 

reference point O, calculate the scene depth: 

OIIIIO

II
memmem

dem
R

⋅−⋅
⋅

=
33

3 . (10) 

representing the distance between camera's sensitive element and the reference 
point O. The m-vectors Om  and 

Im  are related to the reference point O and the 
chosen corner I. The m-vectors of vanishing points 

Pm and
Qm  are at the same 

time the basis vectors of reference coordinate frame with its origin at O. The ort of 
direction perpendicular to the plane containing the reference rectangle is 
obtained as  QPI mme ×=3 .

4. Calculate the position of a camera relative to the reference point as 
OOmTRR ⋅−= . (11) 

where [ ] [ ]TQPQP
T

IIIO mmmmeeeT ×== 321  represents the transformation matrix 
due to rotation of the frame fixed to a camera (BCF) in respect to the coordinate 
frame fixed to the reference object (ICF). 

The above explained algorithm reflects just a geometrical aspect of a problem. Much more 
computational efforts are associated with the image processing aspect, i.e., with the problem 
how to distinguish the reference object and its characteristic points from the actual contents 
of an image. It should be noted that the final effect of this process consists of some 
deteriorated accuracy in the determination of image coordinates of the reference points. A 
lot of scene dependent conditions affect the extraction as well as some system parameters 
(image noise, level quantization, space resolution). An image noise is dominantly associated 
to TV camera itself and it is usually considered as a zero-mean, Gaussian, white noise with 
specified standard deviation (expressed in number of intensity quanta). The later two 
systematic sources of inaccuracy are due to the process of image digitization. While the 
effects of the finite word length of a video A/D converter are of the same nature as the 
effects of image noise, the finite space resolution has the direct influence onto the final 
accuracy of position estimation, even when the reference object is ideally extracted. The 
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finite number of picture elements, pixels, along the horizontal and vertical directions inside 
the image, makes the limits for the final accuracy. However, this effect is strongly coupled 
with the size of camera's field of view and the actual distance between a camera and the 
reference point. The error expressed in pixels has its angular and linear equivalents in 
dependence on these parameters. 
The redundancy in geometrical computations is generally suggested for the VNS accuracy 
improvement. Instead of a theoretically minimal number of considered points required for 
some calculation, the number of points is increased and some appropriate optimization 
procedure is usually used in order to filter out the effects of noise in determination of a 
location of any particular characteristic point. For example, instead of starting with the 
determination of the positions of corners in above mentioned algorithm, one can start with 
the detection of edges and find the equations of image lines by the best fitting procedure 
considering the whole set of edge points (not by using just two of them as before). Now the 
m-vectors of corners are obtained as cross-products of the appropriate n-vectors and the 
remainder of algorithm is the same. Similarly, the final accuracy can be significantly 
improved if one repeats the explained algorithm using different corners as reference ones 
and finds the weighted average of results. All these methods used for the accuracy 
improvement increase the overall computational effort. Therefore, it is of a great importance 
to find the way how to obtain the same or better accuracy using a less number of considered 
points or the less complex image processing algorithms.  

3. Principles of Data Fusion 
Main conclusions related to the quality of information about linear and angular positions of 
a moving object relative to ICF, obtained by INS and VNS separately, are the following: 
The accuracy of the SDINS based algorithm 

• depends on a slowly varying bias (drift) and a measurement noise of inertial 
sensors; 

• decreases in time due to cumulative effect produced by these errors; 
• depends on errors in initial condition estimation (angular and linear positions and 

velocities); 
• could be improved by recursive optimal state estimation; and 
• is affected by slowly varying bias introduced by rectification. 

The accuracy of the VNS based algorithm 
• depends on the reference object's visibility conditions; 
• depends on TV image noise as well as on quantization made by video signal 

digitization; 
• depends on the relative size of a reference object inside the field of view (increases 

while the moving object approaches the reference one);  
• depends on the shift(s) of the characteristic point(s) between two consecutive 

frames and increases in the case of larger ones; and 
• could be improved by increasing the number of tracked points and/or analyzed 

frames.
Having in mind the fact that the error sources inside these two systems are different and 
independent, the possibility of their fusion is considered. The combined algorithm of linear 
and angular position estimation is based on a suitable definition of a criterion specifying the 
likelihood of partial estimations. 



52 Mobile Robots, Perception & Navigation 

Supposing a landmark of rectangular shape of known dimensions and the cross-section of 
its diagonals as a reference point adopted as the origin of ICF, the position of the camera 
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deteriorated accuracy in the determination of image coordinates of the reference points. A 
lot of scene dependent conditions affect the extraction as well as some system parameters 
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to TV camera itself and it is usually considered as a zero-mean, Gaussian, white noise with 
specified standard deviation (expressed in number of intensity quanta). The later two 
systematic sources of inaccuracy are due to the process of image digitization. While the 
effects of the finite word length of a video A/D converter are of the same nature as the 
effects of image noise, the finite space resolution has the direct influence onto the final 
accuracy of position estimation, even when the reference object is ideally extracted. The 
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finite number of picture elements, pixels, along the horizontal and vertical directions inside 
the image, makes the limits for the final accuracy. However, this effect is strongly coupled 
with the size of camera's field of view and the actual distance between a camera and the 
reference point. The error expressed in pixels has its angular and linear equivalents in 
dependence on these parameters. 
The redundancy in geometrical computations is generally suggested for the VNS accuracy 
improvement. Instead of a theoretically minimal number of considered points required for 
some calculation, the number of points is increased and some appropriate optimization 
procedure is usually used in order to filter out the effects of noise in determination of a 
location of any particular characteristic point. For example, instead of starting with the 
determination of the positions of corners in above mentioned algorithm, one can start with 
the detection of edges and find the equations of image lines by the best fitting procedure 
considering the whole set of edge points (not by using just two of them as before). Now the 
m-vectors of corners are obtained as cross-products of the appropriate n-vectors and the 
remainder of algorithm is the same. Similarly, the final accuracy can be significantly 
improved if one repeats the explained algorithm using different corners as reference ones 
and finds the weighted average of results. All these methods used for the accuracy 
improvement increase the overall computational effort. Therefore, it is of a great importance 
to find the way how to obtain the same or better accuracy using a less number of considered 
points or the less complex image processing algorithms.  

3. Principles of Data Fusion 
Main conclusions related to the quality of information about linear and angular positions of 
a moving object relative to ICF, obtained by INS and VNS separately, are the following: 
The accuracy of the SDINS based algorithm 

• depends on a slowly varying bias (drift) and a measurement noise of inertial 
sensors; 

• decreases in time due to cumulative effect produced by these errors; 
• depends on errors in initial condition estimation (angular and linear positions and 

velocities); 
• could be improved by recursive optimal state estimation; and 
• is affected by slowly varying bias introduced by rectification. 

The accuracy of the VNS based algorithm 
• depends on the reference object's visibility conditions; 
• depends on TV image noise as well as on quantization made by video signal 

digitization; 
• depends on the relative size of a reference object inside the field of view (increases 

while the moving object approaches the reference one);  
• depends on the shift(s) of the characteristic point(s) between two consecutive 

frames and increases in the case of larger ones; and 
• could be improved by increasing the number of tracked points and/or analyzed 

frames.
Having in mind the fact that the error sources inside these two systems are different and 
independent, the possibility of their fusion is considered. The combined algorithm of linear 
and angular position estimation is based on a suitable definition of a criterion specifying the 
likelihood of partial estimations. 
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It is supposed in the general case that both algorithms are active simultaneously and 
autonomously. Autonomous estimations from one algorithm are being passed to another one 
in order to obtain new (assisted) estimations. Resultant estimation on the level of a combined 
algorithm is always obtained as the weighted average value of separate ones. The weighting 
factors are calculated according to the adopted criteria about partial estimation likelihood. 
The following formalism has been adopted:  

• the transformation matrix connecting BCF and ICF, generally noted as BIT /  will be 
represented just as TI;

• all vectors representing angular and linear velocities and linear positions are 
relative to ICF;  

• lower indexes I and V are referencing the estimated variables to the estimation 
originating system (I - inertial, V - visual);  

• autonomously estimated variables are noted by upper index ' ;  
• upper index " stands for the estimate based on the information obtained from other 

system (assisted one); 
The general procedure consists of the following steps: 

1. SDINS generates its autonomous estimates of angular rate vector 
Iω′ ,

transformation matrix 
IT ′ , linear velocity vector 

IV ′ , and space position 
Ix′ .

2. Based on 
Ix′ ,

IT ′ , and a priori known position of a reference object in ICF, VNS 
searches the field of view inside the expected region. It finds the image of the 
reference object and calculates the coordinates of characteristic points in PCF. 

3. Adopting
Ix′  as a priori known initial position estimation (scene structure), VNS 

identifies from the sequence of frames the angular rate vector 
Vω′′  and linear 

velocity vector 
VV ′′ .

4. Adopting the estimations 
Iω′  and 

IV ′  as accurate ones and on the basis of 
landmark's image position measurements in the sequence of frames, VNS 
estimates the position vector 

Vx′′ .
5. VNS autonomously generates its estimation of 

Vx′  and 
VT ′  by tracking of more 

characteristic points in one frame. 
6. INS takes the estimation 

VT ′  from VNS and applying it onto the vector of measured 
accelerations in BCF and by double integration calculates the new estimation of 
position

Ix′′ .
7. Inside INS, the resultant moving object position estimate is obtained as 

( ) IIIIIIIR xKxKx ′′−+′= 1 . (12) 

8. Inside VNS, the resultant moving object position estimate is obtained as 

( ) VVVVVVVR xKxKx ′′−+′= 1 . (13) 

9. The resultant estimates on the level of a combined algorithm are obtained as 
( )
( )
( )
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One can note that inside the VNS part, autonomous estimation of linear and angular 
velocities has been omitted, supposing that in "out-door" applications a lot of points and 
frames must be used for this purpose, introducing a computational burden this way. For 
"in-door" applications, where it is possible to process just a relatively small number of 
points, there exists the reason to produce these estimates also. Based on this additional 
information, the calculation in the INS part could be extended in order to include 

IT ′′  (based 

on
Vω′ ) and another calculation of 

Ix  (based on 
VV ′ ), increasing the total number of position 

estimates in INS from two to four. 
Besides the general limitations regarding the computing time required to implement this 
combined algorithm, as the most important step, one should analyze the likelihood of 
partial estimates. As the practical measure of decreasing of computing time, one can always 
consider the possibility to exclude some of the steps 1. - 9. completely, especially if it is a 
priori possible to predict that their results would be of insufficient accuracy. 
Generally speaking, the choice of weighting factors in (14) is a critical step in the whole 
combined algorithm. It is possible by an improper choice to obtain the resultant estimates 
worse than in the case of application of a separate algorithm (better among two). While the 
specification of weighting factor variations is in large extent application dependent, there 
exists the interest to define some basic principles and adaptation mechanisms, having in 
mind the nature of errors in INS and VNS. In the particular case of extremely short working 
time of inertial sensors and good visibility conditions, one can specify constant values of 
weighting factors, but in the general case it is more adequate to assume that accuracy of 
separate estimates is changeable and that values of weighting factors should be adapted 
accordingly. 
The first principle regards to the general conclusions about the overall accuracy of INS and 
VNS stated above. While the accuracy of position estimates in INS is always decreasing in 
time, the evaluation of accuracy of results obtained by VNS is more complex. As the first, 
there exists the possibility that this algorithm could not be applied at all (e.g., when a 
reference object is outside the field of view, for the case when it could not be distinguished 
uniquely between a few potential ones, etc.) This situation is not possible in an INS except in 
case that some of the inertial sensors completely failed. As a second, assuming that moving 
object equipped by a TV camera approaches the reference one in time, it is realistic to expect 
that overall accuracy increases. However, this increasing is not a continuous one. While by 
approaching, the relative errors really are smaller for the fixed value of absolute error in 
determination of characteristic points' coordinates in PCF (expressed in pixels), one can not 
guarantee that the last ones could not be larger in the next frame. For example, partial 
occluding of a reference object after it has been detected and tracked in a number of frames 
could deteriorate the accuracy in large extent. According to this reason, it is assumed that 
the accuracy of VNS estimates increases in time linearly, from a minimal to maximal one. 
Simultaneously, using the mechanism of monitoring of VNS estimates, the basic principle is 
corrected occasionally. 
There follows the procedure of adaptation of weighting factor KI : 

1. Before the reliable detection of a reference object inside VNS it is set to:  KI = 1. 
2. Reliable detection criterion is based on similarity measure between the actual scene 

contents and the memorized reference pattern. Based on the estimated linear 
position and transformation matrix obtained by INS, the part of algorithm 
belonging to VNS makes the required rescaling and rotating of memorized pattern. 
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It is supposed in the general case that both algorithms are active simultaneously and 
autonomously. Autonomous estimations from one algorithm are being passed to another one 
in order to obtain new (assisted) estimations. Resultant estimation on the level of a combined 
algorithm is always obtained as the weighted average value of separate ones. The weighting 
factors are calculated according to the adopted criteria about partial estimation likelihood. 
The following formalism has been adopted:  

• the transformation matrix connecting BCF and ICF, generally noted as BIT /  will be 
represented just as TI;

• all vectors representing angular and linear velocities and linear positions are 
relative to ICF;  

• lower indexes I and V are referencing the estimated variables to the estimation 
originating system (I - inertial, V - visual);  

• autonomously estimated variables are noted by upper index ' ;  
• upper index " stands for the estimate based on the information obtained from other 

system (assisted one); 
The general procedure consists of the following steps: 
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Iω′ ,

transformation matrix 
IT ′ , linear velocity vector 

IV ′ , and space position 
Ix′ .

2. Based on 
Ix′ ,

IT ′ , and a priori known position of a reference object in ICF, VNS 
searches the field of view inside the expected region. It finds the image of the 
reference object and calculates the coordinates of characteristic points in PCF. 

3. Adopting
Ix′  as a priori known initial position estimation (scene structure), VNS 

identifies from the sequence of frames the angular rate vector 
Vω′′  and linear 

velocity vector 
VV ′′ .
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Iω′  and 

IV ′  as accurate ones and on the basis of 
landmark's image position measurements in the sequence of frames, VNS 
estimates the position vector 

Vx′′ .
5. VNS autonomously generates its estimation of 

Vx′  and 
VT ′  by tracking of more 

characteristic points in one frame. 
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VT ′  from VNS and applying it onto the vector of measured 
accelerations in BCF and by double integration calculates the new estimation of 
position

Ix′′ .
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( ) IIIIIIIR xKxKx ′′−+′= 1 . (12) 
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One can note that inside the VNS part, autonomous estimation of linear and angular 
velocities has been omitted, supposing that in "out-door" applications a lot of points and 
frames must be used for this purpose, introducing a computational burden this way. For 
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points, there exists the reason to produce these estimates also. Based on this additional 
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IT ′′  (based 

on
Vω′ ) and another calculation of 

Ix  (based on 
VV ′ ), increasing the total number of position 

estimates in INS from two to four. 
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accordingly. 
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guarantee that the last ones could not be larger in the next frame. For example, partial 
occluding of a reference object after it has been detected and tracked in a number of frames 
could deteriorate the accuracy in large extent. According to this reason, it is assumed that 
the accuracy of VNS estimates increases in time linearly, from a minimal to maximal one. 
Simultaneously, using the mechanism of monitoring of VNS estimates, the basic principle is 
corrected occasionally. 
There follows the procedure of adaptation of weighting factor KI : 

1. Before the reliable detection of a reference object inside VNS it is set to:  KI = 1. 
2. Reliable detection criterion is based on similarity measure between the actual scene 

contents and the memorized reference pattern. Based on the estimated linear 
position and transformation matrix obtained by INS, the part of algorithm 
belonging to VNS makes the required rescaling and rotating of memorized pattern. 
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It is required that in the window of specified dimension, the value of functional L
in the MAD algorithm (Eq. 9) should be lower than the specified threshold value, 
in N frames continuously. Let’s assume that inside the window of dimension 25 ×
25, the threshold value is Lmax = 5. In this case, if the average absolute difference in 
light intensities for 625 observed points is less than approximately two quanta, it is 
supposed that the reference object is detected. After that it is assumed that both 
autonomous and assisted estimations could be calculated in VNS reliably. 

3. VNS starts with tracking of characteristic points of a reference object. The 
autonomous estimates 

Vx′  and 
VT ′  as well as the assisted ones (

Vx′′ ,
Vω′′ , and 

VV ′′ ) are 
being calculated. The scene content inside the window around the characteristic 
point becomes the reference pattern for the next frame analysis. 

4. After reliable detection of the reference object in VNS, weighting factor KI starts to 
decrease linearly in time. 

5. The minimal value of this factor KImin should be specified for any particular 
application. 

6. The time required for KI to reach the minimal value is calculated in the VNS part at 
the beginning of tracking. This calculation based on initial data obtained by INS 
(position, angular and linear velocities) gives the estimated time of existence of a 
reference object inside the TV camera's field of view. It is assumed that the moving 
object approaches the reference one.  

7. The similarity measure L is monitored during the tracking of characteristic points. 
If in the actual frame this one is larger than in the previous one, weighting factor KI

holds the previous value. 
8. If at any of the frames the similarity measure is worse than the critical one used as 

a criterion of reliable detection (L > Lmax), weighting factor KI is to be reset to value 
1 and a detection procedure of a whole reference object is repeated again (back to 
step 1.). 

9. If the conditions of losing the reference object from the field of view are the regular 
ones (the estimated time of existence has been expired), weighting factor KI is also 
reset to the value 1, but the new acquisition of the actual reference object is not 
going to start. VNS starts a state of waiting on the new reference object recognition. 

As it is obvious, parameters like window dimensions, similarity measure threshold, Lmax, number 
of frames used for reliable detection, and minimal value of weighting factor for INS estimates (it 
is at the same time the maximal value of weighting factor for VNS estimates), should be 
considered as the free ones. They should be carefully specified for the particular application. 
It can be noted that in the described procedure the INS part is considered as "master" while 
the VNS algorithm autonomously evaluates the accuracy of its own estimates at the primary 
level (correlation between the actual window contents and the actual reference pattern). The 
described procedure regards to the most general case: flight of a moving object along the 
specified trajectory with the existence of a number of reference ground objects as 
landmarks. All cases where the reference object is always present in the field of view are 
considered as particular ones. For these cases it is reasonable to consider the maximal value 
of weighting factor KI  as free parameter also (to adopt it as less than 1). 
In the expressions (12) and (13) there are the weighting factors affecting autonomous and 
assisted estimates inside both parts of the algorithm. The way of their adaptation should be 
considered also. 
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The position estimate in INS is expressed via (12). If the detection of a reference object in 
VNS does not exist (KI = 1), the only available estimate is the autonomous one (KII = 1). As 
the assisted estimation 

Ix′′  is obtained applying the transformation matrix 
VT ′  onto the 

accelerometers' outputs directly, validity of this matrix affects the weighting factor for the 
assisted estimate. The simple validity measure for the transformation matrix is its 
deviation from orthogonality. If its determinant det

VT ′  is outside the specified tolerances 
(e.g., 1.01 ± ), it is reasonable to assume that this estimate is not valid and to reject it (KII = 
1). If 

VT ′  is approximately orthogonal, two cases are possible in general. In the first one, 
the estimates 

Ix′  and 
Ix′′  are close (e.g., differences between all coordinates are below the 

specified values). According to that, KII decreases linearly from the value of 1 to 0.5 
minimally, depending on det

VT ′ . The minimal value (equal weighting of autonomous and 
assisted estimations) is approached when det

VT ′  is inside the small tolerances (e.g., 

01.01± ). The second possibility is that 
VT ′  is approximately orthogonal, but the differences 

between estimations 
Ix′  and 

Ix′′  are outside the specified tolerances. This is the case when 
one can assume that the likelihood of an assisted estimate is higher than that of the 
autonomous one. As a result of this KII should also decrease as previously, but now from 

maximal value of 1 to   KIImin < 0.5, depending again on the value of det '
vT

VT ′

. Whatever 
weight is assigned to 

Ix′′  one should note that the resultant position estimate in INS is 
always dominantly dictated by inertial instruments. At this step, just position increments 
are being calculated in the combined manner, while the initial conditions are determined 
by previous results of INS only.  
The expression (13) defines the fusion of data on the VNS level. The basic condition for its 
application is the reliably detected reference object (KI  <  1). If the autonomous VNS 
estimate of angular position is bad (i.e., det

VT ′  is outside the specified tolerances) the 
autonomous linear position estimate 

Vx′  is going to be bad also, and accordingly, weighting 
factor KVV takes the minimal value close to zero. While det

VT ′  approaches the value 1, this 
weighting factor increases linearly up to the maximal value KVVmax. It should be noted again 
that whatever weighting is assigned to Vx′′ , calculations in the VNS part are basically 
dependent on the angular position estimate. Possible invalid estimates 

Ix′  due to 
accumulated inertial sensors’ errors are of no importance here, having in mind that 
calculation of 

Vx′′  is based on actual filtered signals 
Iω′  and 

IV ′ .

4. Simulation Results – Vision Aided INS 
The part of an airport runway was considered as a reference ground landmark in vicinity of 
nominal trajectory. The middle point of a nearer edge is located at known position 

[ ]TROx 050050000=  in ICF. The interval from t = 77s to t = 83s, in which the existence of a 
landmark could be expected inside the field of view, is predicted on the basis of known 
fixed parameters of an electro-optical system: angular position of camera relative to BCF 
( [ ] [ ]TT 000

321 0510 −=εεε , focal length, f = 1, field of view width, 0
max 15=ε ). Acquisition of 
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reset to the value 1, but the new acquisition of the actual reference object is not 
going to start. VNS starts a state of waiting on the new reference object recognition. 

As it is obvious, parameters like window dimensions, similarity measure threshold, Lmax, number 
of frames used for reliable detection, and minimal value of weighting factor for INS estimates (it 
is at the same time the maximal value of weighting factor for VNS estimates), should be 
considered as the free ones. They should be carefully specified for the particular application. 
It can be noted that in the described procedure the INS part is considered as "master" while 
the VNS algorithm autonomously evaluates the accuracy of its own estimates at the primary 
level (correlation between the actual window contents and the actual reference pattern). The 
described procedure regards to the most general case: flight of a moving object along the 
specified trajectory with the existence of a number of reference ground objects as 
landmarks. All cases where the reference object is always present in the field of view are 
considered as particular ones. For these cases it is reasonable to consider the maximal value 
of weighting factor KI  as free parameter also (to adopt it as less than 1). 
In the expressions (12) and (13) there are the weighting factors affecting autonomous and 
assisted estimates inside both parts of the algorithm. The way of their adaptation should be 
considered also. 
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The position estimate in INS is expressed via (12). If the detection of a reference object in 
VNS does not exist (KI = 1), the only available estimate is the autonomous one (KII = 1). As 
the assisted estimation 

Ix′′  is obtained applying the transformation matrix 
VT ′  onto the 

accelerometers' outputs directly, validity of this matrix affects the weighting factor for the 
assisted estimate. The simple validity measure for the transformation matrix is its 
deviation from orthogonality. If its determinant det

VT ′  is outside the specified tolerances 
(e.g., 1.01 ± ), it is reasonable to assume that this estimate is not valid and to reject it (KII = 
1). If 

VT ′  is approximately orthogonal, two cases are possible in general. In the first one, 
the estimates 

Ix′  and 
Ix′′  are close (e.g., differences between all coordinates are below the 

specified values). According to that, KII decreases linearly from the value of 1 to 0.5 
minimally, depending on det

VT ′ . The minimal value (equal weighting of autonomous and 
assisted estimations) is approached when det

VT ′  is inside the small tolerances (e.g., 

01.01± ). The second possibility is that 
VT ′  is approximately orthogonal, but the differences 

between estimations 
Ix′  and 

Ix′′  are outside the specified tolerances. This is the case when 
one can assume that the likelihood of an assisted estimate is higher than that of the 
autonomous one. As a result of this KII should also decrease as previously, but now from 

maximal value of 1 to   KIImin < 0.5, depending again on the value of det '
vT

VT ′

. Whatever 
weight is assigned to 

Ix′′  one should note that the resultant position estimate in INS is 
always dominantly dictated by inertial instruments. At this step, just position increments 
are being calculated in the combined manner, while the initial conditions are determined 
by previous results of INS only.  
The expression (13) defines the fusion of data on the VNS level. The basic condition for its 
application is the reliably detected reference object (KI  <  1). If the autonomous VNS 
estimate of angular position is bad (i.e., det

VT ′  is outside the specified tolerances) the 
autonomous linear position estimate 

Vx′  is going to be bad also, and accordingly, weighting 
factor KVV takes the minimal value close to zero. While det

VT ′  approaches the value 1, this 
weighting factor increases linearly up to the maximal value KVVmax. It should be noted again 
that whatever weighting is assigned to Vx′′ , calculations in the VNS part are basically 
dependent on the angular position estimate. Possible invalid estimates 

Ix′  due to 
accumulated inertial sensors’ errors are of no importance here, having in mind that 
calculation of 

Vx′′  is based on actual filtered signals 
Iω′  and 

IV ′ .

4. Simulation Results – Vision Aided INS 
The part of an airport runway was considered as a reference ground landmark in vicinity of 
nominal trajectory. The middle point of a nearer edge is located at known position 

[ ]TROx 050050000=  in ICF. The interval from t = 77s to t = 83s, in which the existence of a 
landmark could be expected inside the field of view, is predicted on the basis of known 
fixed parameters of an electro-optical system: angular position of camera relative to BCF 
( [ ] [ ]TT 000

321 0510 −=εεε , focal length, f = 1, field of view width, 0
max 15=ε ). Acquisition of 



58 Mobile Robots, Perception & Navigation 

a reference object is done during the first second of this interval (ten frames). The assumed 
image of a landmark is obtained using erroneous data from INS. These data are obtained 
after optimal filtration of the rate gyro signals made inside INS and the linear position 
errors on observed interval are quantitatively represented in Figure 5. 
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Fig. 5. Position errors of unaided INS during correction interval. 

The quality of pitch angle estimation made by INS is illustrated in Figure 6. 
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Fig. 6. The exact and estimated values of pitch angle during the correction interval. 

Since the estimated values of pitch angle have been obtained using one possible realization 
of simulated sensor noise, their generation for the purposes of combined navigation method 
illustration is made using statistical properties of observed time history. The parameters 

calculated from Figure 6. are: mean value, 
srϑ̂  = 9.6 mrad, and standard deviation, ϑσ  = 

0.59 mrad. Approximately the same standard deviations have been obtained for other two 
Euler angles, while their mean vales are equal to zero. The transformation matrix TO is 
generated using the Euler angle estimates generated stochastically. 
The fact that in the first frame there is a difference between the actual image of reference 
object and the expected one is illustrated in Figure 7. 
The window of dimensions 2525 ×  pixels around the lower left corner of a runway was 
used as a reference pattern. During the first ten frames inside a correction interval, 
maximum similarity measures formed as a sum of light intensity absolute differences are 
shown in Figure 8.  
Minimum values of MAD criterion are lower than the adopted threshold value of Lmax = 5 in 
five consecutive frames at t = 78 s. It is assumed that the acquisition phase was finished at 
this time. The next step consists in calculation of the expected time of presence of the 
characteristic point inside the field of view. It is equal to 5 s for this particular example 
(under the assumption that linear and angular velocities would be constant). Figure 9. 

One Approach to the Fusion of Inertial Navigation and Dynamic Vision 59

illustrates the expected contents of the field of view in the interval of next five seconds after 
the approval of acquisition. 

Fig. 7. The expected and actual images of a reference object at the beginning of correction 
interval.

Fig. 8. Maximums of similarity measures during the first second of acquisition interval. 

Fig. 9. Expected motion of a reference object during the interval of correction. 
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a reference object is done during the first second of this interval (ten frames). The assumed 
image of a landmark is obtained using erroneous data from INS. These data are obtained 
after optimal filtration of the rate gyro signals made inside INS and the linear position 
errors on observed interval are quantitatively represented in Figure 5. 
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Since the estimated values of pitch angle have been obtained using one possible realization 
of simulated sensor noise, their generation for the purposes of combined navigation method 
illustration is made using statistical properties of observed time history. The parameters 

calculated from Figure 6. are: mean value, 
srϑ̂  = 9.6 mrad, and standard deviation, ϑσ  = 

0.59 mrad. Approximately the same standard deviations have been obtained for other two 
Euler angles, while their mean vales are equal to zero. The transformation matrix TO is 
generated using the Euler angle estimates generated stochastically. 
The fact that in the first frame there is a difference between the actual image of reference 
object and the expected one is illustrated in Figure 7. 
The window of dimensions 2525 ×  pixels around the lower left corner of a runway was 
used as a reference pattern. During the first ten frames inside a correction interval, 
maximum similarity measures formed as a sum of light intensity absolute differences are 
shown in Figure 8.  
Minimum values of MAD criterion are lower than the adopted threshold value of Lmax = 5 in 
five consecutive frames at t = 78 s. It is assumed that the acquisition phase was finished at 
this time. The next step consists in calculation of the expected time of presence of the 
characteristic point inside the field of view. It is equal to 5 s for this particular example 
(under the assumption that linear and angular velocities would be constant). Figure 9. 
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illustrates the expected contents of the field of view in the interval of next five seconds after 
the approval of acquisition. 

Fig. 7. The expected and actual images of a reference object at the beginning of correction 
interval.

Fig. 8. Maximums of similarity measures during the first second of acquisition interval. 

Fig. 9. Expected motion of a reference object during the interval of correction. 
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According to this, the variation of weighting factor KI  is defined as 

( )78
5

1.011 −−−= tK I .  (15) 

The effects of the combined algorithm will be illustrated in the final portion of the correction 
interval. The last five frames are shown in Figure 10. 

 t = 82.2 s t = 82.4 s t = 82.6 s t = 82.8 s t = 83.0 s
Fig. 10. Sequence of runway images at the end of correction interval. 

The exact and estimated positions of a moving object are given in Table 2. 

t = 82.2 s t = 82.4 s t = 82.6 s t = 82.8 s
x [m] z [m] x [m] z [m] x [m] z [m] x [m] z [m]

Exact 48022 200 48135 200 48250 200 48364 200
INS 48295 267 48409 267 48525 267 48640 267
VNS 47997 205 48204 199 48236 203 48362 200

Comb. 48070 220 48247 213 48286 214 48400 209
Table 2. The exact and estimated positions of an object in ICF. 

The same results are shown graphically in Figure 11. 
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Fig. 11. Comparison of position estimations at the end of correction interval: (a) - range, INS 
versus exact, (b) - range, VNS versus exact, (c) - range, combined versus exact, (d) - height, 
exact (circle), INS (square), VNS (cross), combined (star). 
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As it is obvious from (a), the error in INS is very slowly increasing. From (b) one can see 
very accurate estimates of VNS while quantization errors as well as errors in determination 
of characteristic point location occasionally introduce some larger position errors (t = 82.4 s). 
Because of maximal weighting of VNS estimations at the end of the correction interval, 
beneficial effects of combined algorithm are obvious from (c). Analyzing the results of 
height estimation (d) one can conclude that the VNS algorithm is extremely accurate, 
making the results of combined algorithm satisfactory also (suggesting that it is possible to 
assume an even lower minimum value than KImin = 0.1).  

5. Simulation Results – VNS Assisted by INS 
5.1 The Definition of Navigation Tasks 
Two particular “in door” navigation tasks have been specified in order to compare the 
results of application of an autonomous VNS and a dynamic vision navigation 
algorithm representing a VNS assisted by the acceleration measurements produced by 
reduced INS: 
(Task A): Moving object has got three linear degrees of freedom. In forward direction it 
moves with the constant velocity (10 m/s). The camera is mounted as forward looking. The 
initial position of object is assumed as 5 m out of navigation line in lateral direction and 5 m 
above. The navigation line consists of sequence of rectangular shapes located in the ground 
plane. The dimension of these landmarks is 1.5 m X 0.15 m with 1.5 m distance between 
them. The linear velocities in lateral (Vy) and vertical (Vz) directions are controlled and 
limited to 5 m/s maximally. As a result of a navigation algorithm the actual commanded 
values of these velocities are calculated as proportional to the estimated distance from 
center-line of navigation line. The task consists in approaching the navigation line in lateral 
direction and following of it further. At the same time, a moving object should approach the 
ground plane (camera at the fixed distance of 1 m above) and continue to move at this 
height. 

t = 0.0 s t = 0.6 s t = 1.2 s t = 1.8 s 
Fig. 12. Sequence of navigation line views (A).

The contents of camera's field of view are computer generated. Figure 12. illustrates the 
sequence of frames generated at 0.6 s inter-frame interval assuming the  ideal work of the 
VNS algorithm (noise-free images, infinite resolution, without camera vibrations). 
 (Task B): This task consists of the planar motion control - tracking and following of the 
curved navigation line. This line consists from two connected circular segments. Their 
dimensions have been adopted according to the available equipment (see 5.3). Eight 
approximately rectangular black landmarks of known dimensions are equidistantly placed 
along the line. A TV camera is forward looking and mounted at 50 mm above the ground 
plane (Figure 13.) 
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According to this, the variation of weighting factor KI  is defined as 

( )78
5

1.011 −−−= tK I .  (15) 

The effects of the combined algorithm will be illustrated in the final portion of the correction 
interval. The last five frames are shown in Figure 10. 

 t = 82.2 s t = 82.4 s t = 82.6 s t = 82.8 s t = 83.0 s
Fig. 10. Sequence of runway images at the end of correction interval. 

The exact and estimated positions of a moving object are given in Table 2. 

t = 82.2 s t = 82.4 s t = 82.6 s t = 82.8 s
x [m] z [m] x [m] z [m] x [m] z [m] x [m] z [m]

Exact 48022 200 48135 200 48250 200 48364 200
INS 48295 267 48409 267 48525 267 48640 267
VNS 47997 205 48204 199 48236 203 48362 200

Comb. 48070 220 48247 213 48286 214 48400 209
Table 2. The exact and estimated positions of an object in ICF. 

The same results are shown graphically in Figure 11. 
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Fig. 11. Comparison of position estimations at the end of correction interval: (a) - range, INS 
versus exact, (b) - range, VNS versus exact, (c) - range, combined versus exact, (d) - height, 
exact (circle), INS (square), VNS (cross), combined (star). 
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As it is obvious from (a), the error in INS is very slowly increasing. From (b) one can see 
very accurate estimates of VNS while quantization errors as well as errors in determination 
of characteristic point location occasionally introduce some larger position errors (t = 82.4 s). 
Because of maximal weighting of VNS estimations at the end of the correction interval, 
beneficial effects of combined algorithm are obvious from (c). Analyzing the results of 
height estimation (d) one can conclude that the VNS algorithm is extremely accurate, 
making the results of combined algorithm satisfactory also (suggesting that it is possible to 
assume an even lower minimum value than KImin = 0.1).  

5. Simulation Results – VNS Assisted by INS 
5.1 The Definition of Navigation Tasks 
Two particular “in door” navigation tasks have been specified in order to compare the 
results of application of an autonomous VNS and a dynamic vision navigation 
algorithm representing a VNS assisted by the acceleration measurements produced by 
reduced INS: 
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initial position of object is assumed as 5 m out of navigation line in lateral direction and 5 m 
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plane. The dimension of these landmarks is 1.5 m X 0.15 m with 1.5 m distance between 
them. The linear velocities in lateral (Vy) and vertical (Vz) directions are controlled and 
limited to 5 m/s maximally. As a result of a navigation algorithm the actual commanded 
values of these velocities are calculated as proportional to the estimated distance from 
center-line of navigation line. The task consists in approaching the navigation line in lateral 
direction and following of it further. At the same time, a moving object should approach the 
ground plane (camera at the fixed distance of 1 m above) and continue to move at this 
height. 

t = 0.0 s t = 0.6 s t = 1.2 s t = 1.8 s 
Fig. 12. Sequence of navigation line views (A).

The contents of camera's field of view are computer generated. Figure 12. illustrates the 
sequence of frames generated at 0.6 s inter-frame interval assuming the  ideal work of the 
VNS algorithm (noise-free images, infinite resolution, without camera vibrations). 
 (Task B): This task consists of the planar motion control - tracking and following of the 
curved navigation line. This line consists from two connected circular segments. Their 
dimensions have been adopted according to the available equipment (see 5.3). Eight 
approximately rectangular black landmarks of known dimensions are equidistantly placed 
along the line. A TV camera is forward looking and mounted at 50 mm above the ground 
plane (Figure 13.) 
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This navigation task consists in the following: 
1) Determine the distance from a camera to the reference point belonging to the 

landmark; 
2) Determine the orientation of the landmark in the ground plane; 3) Generate the 

commands for the translation up to the point above the tracked one and for the 
rotation of a camera around the vertical axis in order to follow the sequence of 
landmarks. 

The autonomous VNS algorithm uses two nearer marker corners for the calculation of scene 
depth. The determination of marker orientation requires that all four marker's corners 
should be visible in one frame. If the analyzed marker is partially visible, the algorithm 
automatically rejects it and analyzes the next one. 
In the algorithm based on dynamic vision the linear velocity components are obtained via 
integration of the accelerometers' signals. In comparison to the autonomous VNS algorithm, 
the advantage is in the fact that it is enough to track just one landmark corner here. On the 
other hand, at least two consecutive frames containing the tracked point are required in 
order to estimate the distance. As a result of this, any selection of the reference point must 
be preceded by the prediction whether this one would be visible in the next frame. The 
other disadvantage resulting from the same reason consists of the fact that the navigation 
should be initialized by a priori known motion in order to acquire the initial information 
about marker position and after that to adjust the control action according to it. In other 
words, in comparison to autonomous VNS there will be always "one frame delay" whenever 
the tracked point is changed.  
Additionally, while the autonomous VNS algorithm has the ability of autonomous 
estimation of landmark’s orientation (needed in order to improve the conditions of 
landmark distinguishing), there is no such possibility in the case of a combined algorithm. 
As a result of this, the command for rotational motion is generated here on the basis of a 
ratio of velocity components and the camera is oriented in direction of a velocity vector 
(which is directed toward the tracked point - direct guidance).

5.2 Simulation Methodology 
The estimated positions of characteristic points in the image plane are obtained as the ideal 
ones additionally corrupted by white, Gaussian, zero-mean noise with standard deviation 
sigma = 1 pixel. The camera vibrations are also simulated as a noisy process. The pitch, yaw, 
and roll angles are simulated as white, Gaussian, zero-mean noise with standard deviation 
sigma = 10.   
For the task (B) the algorithm explained in Section 4.3 is applied always for the nearest, 
completely visible element of a navigation line (four corner points). The algorithm 
presented in Section 4.2 is based on the tracking of one of the corners of the same part of 
navigation line as in the previous case.  

5.3 Experimental Rig Set-up 
The experimental acquisition of images is done using the educational robot "Kestrel" with 
three degrees of freedom in linear and one degree of freedom in rotational motion, driven 
by step motors, equipped with CCD TV camera (KAPPA CF16/4 P) and using the frame 
grabber with resolution of 512 X 512 pixels ("Targa")  
A photograph of the experimental rig set-up is shown in Figure 13. 
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Fig. 13. Experimental rig set-up. 

The initial sequence of frames produced by a TV camera during the navigation task (B) is 
presented in Figure 14.  

Fig. 14. Experimental sequence of frames produced during the navigation task (B).

The processing phases for the first frame of Figure 15. are illustrated in Figure 15. 

(a) (b) (c) (d)
Fig. 15. Results of a processing of frame (1) from Figure 14. 

(a) Result of a preprocessing (equalization of image histogram, noise elimination, 
sharpening); (b) Result of a segmentation based on intensity level; (c) Result of a 
morphological filtration (cleaning of edges, erosion, dilatation); (d) Inverted result of the 
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image processing superimposed to the original image in order to notice the differences 
between the actual landmark and determined one. 

5.4 Results 
The results obtained by the application of algorithms of the autonomous VNS and with 
assistance of the linear acceleration measurements (dynamic vision) for the task (A) under 
the methodology defined at 5.2 are shown in Figures 16. and 17. The dashed lines 
represent in both cases the ideal trajectories obtained for the ideal position estimates 
(exactly calculated positions of characteristic points, infinite space resolution). The solid 
lines illustrate the trajectories obtained by the simulated  application of described 
algorithms (through circular symbols representing the actual positions of moving object). 
The square symbols are used to mark the positions estimated by the navigation 
algorithms. 
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Fig. 16. Simulation results obtained using an autonomous VNS algorithm (A).
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Fig. 17. Simulation results obtained using the dynamic vision algorithm (A).

Comparing these results one can conclude that the trajectories obtained in lateral directions 
are of similar quality. The advantage of the dynamic vision algorithm is noticeable in the 
case of navigation in vertical direction. Superior quality of position estimates made that the 
reaching of the final height of 1 m is much "softer" in comparison with the result obtained 
via autonomous VNS (landing velocity of 1 m/s in comparison to 3.1 m/s). The inherent 
disadvantage of a dynamic vision algorithm consisting of "one frame delay" is slightly 
visible.  Its repercussion is the requirement to include in image processing algorithm the 
additional prediction whether the considered marker would be present in the next frame in 
the field of view. In spite of this, the image processing part of algorithm remains here less 
time consuming in the comparison to the autonomous VNS algorithm. 
The results illustrating navigation task (B) for both autonomous VNS algorithm and 
combined one are as follows. 
Figure 18. illustrates very good results in the estimation of landmarks’ angular orientations 
obtained via autonomous VNS algorithm. The solid line through the circular symbols 
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represents the actual average values of orientation angle while the dashed line through the 
square symbols represents the estimated ones. 
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Fig. 18. Estimates of landmarks’ angular orientations obtained by the autonomous VNS 
algorithm (B).

As a result of these accurate estimates, the landmarks are always visible in approximately 
the same way in a camera's field of view. The trajectory obtained as a result of navigation 
line following in this case is presented in Figure 19. The initial location was 60 mm behind 
the coordinate origin. The autonomous VNS algorithm generates the commands positioning 
the moving object at the location behind the next landmark, at the same distance and along 
the direction of its orientation. Circular symbols represent the positions of tracked corners of 
eight landmarks while the square ones represent the consecutive positions of a moving 
object.
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Fig. 19. Following of the navigation line by the autonomous VNS algorithm (B).
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Fig. 17. Simulation results obtained using the dynamic vision algorithm (A).

Comparing these results one can conclude that the trajectories obtained in lateral directions 
are of similar quality. The advantage of the dynamic vision algorithm is noticeable in the 
case of navigation in vertical direction. Superior quality of position estimates made that the 
reaching of the final height of 1 m is much "softer" in comparison with the result obtained 
via autonomous VNS (landing velocity of 1 m/s in comparison to 3.1 m/s). The inherent 
disadvantage of a dynamic vision algorithm consisting of "one frame delay" is slightly 
visible.  Its repercussion is the requirement to include in image processing algorithm the 
additional prediction whether the considered marker would be present in the next frame in 
the field of view. In spite of this, the image processing part of algorithm remains here less 
time consuming in the comparison to the autonomous VNS algorithm. 
The results illustrating navigation task (B) for both autonomous VNS algorithm and 
combined one are as follows. 
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represents the actual average values of orientation angle while the dashed line through the 
square symbols represents the estimated ones. 
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Fig. 18. Estimates of landmarks’ angular orientations obtained by the autonomous VNS 
algorithm (B).

As a result of these accurate estimates, the landmarks are always visible in approximately 
the same way in a camera's field of view. The trajectory obtained as a result of navigation 
line following in this case is presented in Figure 19. The initial location was 60 mm behind 
the coordinate origin. The autonomous VNS algorithm generates the commands positioning 
the moving object at the location behind the next landmark, at the same distance and along 
the direction of its orientation. Circular symbols represent the positions of tracked corners of 
eight landmarks while the square ones represent the consecutive positions of a moving 
object.
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Fig. 19. Following of the navigation line by the autonomous VNS algorithm (B).
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In the case of a combined algorithm it is more appropriate to track the further corners of the 
nearest landmark (they should be present in the field of view in two or more frames). At the 
very beginning, the motion is started in pre-specified direction in order to acquire the 
information about the position of a tracked point in the first two frames. After that, the 
commands moving the object above the tracked point are generated, while the camera is 
rotated in order to be oriented in direction of a motion. When the new object of "upper left 
corner" type is detected inside the image, its relative position is calculated in two next 
frames and the new commands for the linear and angular motion are generated. 
Figure 20. illustrates the result of application of a combined algorithm in navigation task 
(B).
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 Fig. 20. Following of the navigation line by the dynamic vision algorithm (B).

Due to more meaningful changes in the image contents, one can not recognize here the 
regularity characterizing the previous case. On the other hand, the reduced amount of 
calculations allows the higher sampling frequency. As a result of this, a quality of following 
of the navigation line was slightly better in comparison to the result shown in Figure 19. 

6. Conclusion 
The algorithm of fusion of data originating from the strap-down inertial navigation system 
(INS) and the dynamic vision based visual navigation system (VNS) has been suggested for 
the general case when the appropriate landmarks are in the field of a TV camera’s view. The 
procedure is of weighted averaging type, allowing the adjustment of weighting factors 
having in mind the physical nature of errors characterizing both systems and according to 
the self-evaluation of some intermediate estimates made inside the VNS. The overall 
procedure could be reasonably reduced according to the particular application and to some 

One Approach to the Fusion of Inertial Navigation and Dynamic Vision 67

a priori knowledge about the possible system errors by excluding some of the possible 
autonomous or assisted estimates. 
Two particular examples have been used in order to illustrate this approach. In the first one, 
typical for the aerial vehicle motion control, the scenario was constructed under the realistic 
assumptions about the technical realization of a system, visibility conditions, and the noise 
levels inside the inertial sensors and in a TV image. It can be concluded that the INS 
position estimates could be efficiently improved by using the assisted estimates produced 
by the VNS. While for the height corrections in the INS one can always use a barometric 
sensor as a simpler solution, the actual benefits of this type of combined algorithm are 
mostly in the improvements of the position estimates in a horizontal plane (range, lateral 
deviation from nominal trajectory).  
The second example is typical for the mobile robot applications as well as for the automatic 
motion control of the road vehicles. It represents the integration of a VNS and a reduced 
INS (just the acceleration measurements integrated in order to enable a dynamic vision 
based algorithm). This system has shown the advantages in comparison to the autonomous 
VNS. These consist mainly in the reductions of the computations regarding the 
distinguishing of the characteristic points of a reference object as well as in some 
improvements of a position estimation accuracy also (as a consequence of a relaxing the 
overall accuracy dependence on the results of image processing part of algorithm only). 
Finally, it should be pointed out that a VNS algorithm assisted by the INS data requires no a 
priori information about the shape and dimensions of the reference objects, which is 
beneficial also. 
The analyzed examples are relatively simple ones but still meaningful for the vehicular 
motion control applications. More complex tasks including the rotational degrees of 
freedom should be considered as the more general cases of a fusion of VNS and INS, where 
the set of inertial instruments can be extended by using of the rate gyros. This way, the 
complex and noise sensitive procedures of determining of an angular orientation of a 
mobile robot or a vehicle, based on a machine vision alone, can be replaced by the usage of 
the inertial sensors' data.  The future research is going to be oriented in this way. 
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1. Introduction 
The goal of our research is to give mobile robots the ability to deal with real world instructions 
outdoors such as “Go down to the big tree and turn left.” Inherent in such a paradigm is the 
robot being able to recognize a “big tree” and do it in unstructured environments without too 
many pre-mapped fixed landmarks. Ultimately we envision mobile robots that unobtrusively 
mix in with pedestrian traffic and hence traveling primarily at a walking pace. With regard to 
sensors this is a different problem from robots designed to drive on roadways, since the 
necessary range of sensors is tied to the speed of the robot. It’s also important to note that 
small mobile robots that are intended to mix with pedestrian traffic must normally travel at 
the same speed as the pedestrians, even if they occasionally scurry quickly down a deserted 
alley or slow way down to traverse a tricky obstacle, because people resent having to go 
around a slow robot while they are also easily startled by machines such as Segways that 
overtake them without warning. At walking speeds the range of sonar at about 50kHz is 
optimal, and there are none of the safety concerns one might have with lidar, for example. This 
type of sonar is precisely what bats use for echolocation; the goal of our research is to employ 
sonar sensors to allow mobile robots to recognize objects in the everyday environment based 
on simple signal processing algorithms tied to the physics of how the sonar backscatters from 
various objects. Our primary interest is for those sensors that can function well outdoors 
without regard to lighting conditions or even in the absence of daylight. We have built several 
3D sonar scanning systems packaged as sensor heads on mobile robots, so that we are able to 
traverse the local environment and easily acquire 3D sonar scans of typical objects and 
structures. Of course sonar of the type we’re exploring is not new. As early as 1773 it was 
observed that bats could fly freely in a dark room and pointed out that hearing was an 
important component of bats’ orientation and obstacle avoidance capabilities (Au, 1993). By 
1912 it was suggested that bats use sounds inaudible to humans to detect objects (Maxim, 
1912) but it wasn’t until 1938 that Griffin proved that bats use ultrasound to detect objects 
(Griffin, 1958).  
More recently, Roman Kuc and his co-workers (Barshan & Kuc, 1992; Kleeman & Kuc, 1995) 
developed a series of active wide-beam sonar systems that mimic the sensor configuration 
of echolocating bats, which can distinguish planes, corners and edges necessary to navigate 
indoors. Catherine Wykes and her colleagues (Chou & Wykes, 1999) have built a prototype 
integrated ultrasonic/vision sensor that uses an off-the-shelf CCD camera and a four-
element sonar phased array sensor that enables the camera to be calibrated using data from 
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the ultrasonic sensor. Leslie Kay (Kay, 2000) has developed and commercialized high-
resolution octave band air sonar for spatial sensing and object imaging by blind persons. 
Phillip McKerrow and his co-workers (McKerrow & Harper, 1999; Harper & McKerrow, 
2001; Ratner & McKerrow, 2003) have been focused on outdoor navigation and recognition 
of leafy plants with sonar. Other research groups are actively developing algorithms for the 
automatic interpretation of sensor data (Leonard & Durrant-Whyte, 1992; Crowley, 1985; 
Dror et al., 1995; Jeon & Kim, 2001). Our goal is to bring to bear a high level knowledge of 
the physics of sonar backscattering and then to apply sophisticated discrimination methods 
of the type long established in other fields (Rosenfeld & Kak, 1982; Theodoridis & 
Koutroumbas, 1998; Tou, 1968).  
In section 2 we describe an algorithm to distinguish big trees, little trees and round metal 
poles based on the degree of asymmetry in the backscatter as the sonar beam is swept across 
them. The asymmetry arises from lobulations in the tree cross section and/or roughness of 
the bark. In section 3 we consider extended objects such as walls, fences and hedges of 
various types which may be difficult to differentiate under low light conditions. We key on 
features such as side peaks due to retroreflectors formed by the pickets and posts which can 
be counted via a deformable template signal processing scheme. In section 4 we discuss the 
addition of thermal infrared imagery to the sonar information and the use of Bayesian 
methods that allow us to make use of a priori knowledge of the thermal conduction and 
radiation properties of common objects under a variety of weather conditions. In section 5 
we offer some conclusions and discuss future research directions. 

2. Distinguishing Trees & Poles Via Ultrasound Backscatter Asymmetry
In this section we describe an algorithm to automatically distinguish trees from round metal 
poles with a sonar system packaged on a mobile robot. A polynomial interpolation of the 
square root of the backscattered signal energy vs. scan angle is first plotted. Asymmetry and 
fitting error are then extracted for each sweep across the object, giving a single point in an 
abstract phase space. Round metal poles are nearer to the origin than are trees, which scatter 
the sonar more irregularly due to lobulations and/or surface roughness. Results are shown 
for 20 trees and 10 metal poles scanned on our campus. 

Fig. 1. Diagram of the scanner head. The dotted lines represent the two axes that the camera 
and ultrasound transducer rotate about. 

Ultrasound 
Transducer

IR Camera Stepper 
Motors 

Sonar Sensor Interpretation and Infrared Image Fusion for Mobile Robotics 71

Fig. 1 above shows a schematic of our biaxial sonar scan head. Although a variety of 
transducers can be used, all of the results shown here use narrow-beam AR50-8 transducers 
from Airmar (Milford, NH) which we’ve modified by machining a concavity into the 
matching layer in order to achieve beam half-widths of less than 8°. The transducers are 
scanned over perpendicular arcs via stepper motors, one of which controls rotation about 
the horizontal axis while the other controls rotation about the vertical axis. A custom motor 
controller board is connected to the computer via serial interface. The scanning is paused 
briefly at each orientation while a series of sonar tonebursts is generated and the echoes are 
recorded, digitized and archived on the computer. Fig. 2 shows the scanner mounted atop a 
mobile robotic platform which allows out-of-doors scanning around campus.

Fig. 2. Mobile robotic platform with computer-controlled scanner holding ultrasound 
transducer.

At the frequency range of interest both the surface features (roughness) and overall shape of 
objects affect the back-scattered echo. Although the beam-width is too broad to image in the 
traditional sense, as the beam is swept across a finite object variations in the beam profile 
give rise to characteristically different responses as the various scattering centers contribute 
constructively and destructively. Here we consider two classes of cylindrical objects outside, 
trees and smooth circular poles. In this study we scanned 20 trees and 10 poles, with up to 
ten different scans of each object recorded for off-line analysis (Gao, 2005; Gao & Hinders, 
2005).
All data was acquired at 50kHz via the mobile apparatus shown in Figs. 1 and 2. The beam 
was swept across each object for a range of elevation angles and the RF echoes 
corresponding to the horizontal fan were digitized and recorded for off-line analysis. For 
each angle in the horizontal sweep we calculate the square root of signal energy in the back-
scattered echo by low-pass filtering, rectifying, and integrating over the window 
corresponding to the echo from the object. For the smooth circular metal poles we find, as 
expected, that the backscatter energy is symmetric about a central maximum where the 
incident beam axis is normal to the surface. Trees tend to have a more complicated response 
due to non-circular cross sections and/or surface roughness of the bark. Rough bark can 
give enhanced backscatter for grazing angles where the smooth poles give very little 
response. We plot the square root of the signal energy vs. angular step and fit a 5th order 
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polynomial to it. Smooth circular poles always give a symmetric (bell-shaped) central 
response whereas rough and/or irregular objects often give responses less symmetric about 
the central peak. In general, one sweep over an object is not enough to tell a tree from a pole. 
We need a series of scans for each object to be able to robustly classify them. This is 
equivalent to a robot scanning an object repeatedly as it approaches. Assuming that the 
robot has already adjusted its path to avoid the obstruction, each subsequent scan gives a 
somewhat different orientation to the target. Multiple looks at the target thus increase the 
robustness of our scheme for distinguishing trees from poles because trees have more 
variations vs. look angle than do round metal poles.

Fig. 3. Square root of signal energy plots of pole P1 when the sensor is (S1) 75cm (S2) 100cm 
(S3) 125cm (S4) 150cm (S5) 175cm (S6) 200cm (S7) 225cm (S8) 250cm (S9) 275cm from the pole. 

Fig. 3 shows the square root of signal energy plots of pole P1 (a 14 cm diameter circular 
metal lamppost) from different distances and their 5th order polynomial interpolations. 
Each data point was obtained by low-pass filtering, rectifying, and integrating over the 
window corresponding to the echo from the object to calculate the square root of the signal 
energy as a measure of backscatter strength. For each object 16 data points were calculated 
as the beam was swept across it. The polynomial fits to these data are shown by the solid 
curve for 9 different scans. All of the fits in Fig. 3 are symmetric (bell-shaped) near the 
central scan angle, which is characteristic of a smooth circular pole. Fig. 4 shows the square 
root of signal energy plots of tree T14, a 19 cm diameter tree which has a relatively smooth 
surface. Nine scans are shown from different distances along with their 5th order 
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polynomial interpolations. Some of these are symmetric (bell-shaped) and some are not, 
which is characteristic of a round smooth-barked tree. 

Fig. 4. Square root of signal energy plots of tree T14 when the sensor is (S1) 75cm (S2) 100cm 
(S3) 125cm (S4) 150cm (S5) 175cm (S6) 200cm (S7) 225cm (S8) 250cm (S9) 275cm from the tree. 

Fig. 5 on the following page shows the square root of signal energy plots of tree T18, which 
is a 30 cm diameter tree with a rough bark surface. Nine scans are shown, from different 
distances, along with their 5th order polynomial interpolations. Only a few of the rough-
bark scans are symmetric (bell-shaped) while most are not, which is characteristic of a rough 
and/or non-circular tree. We also did the same procedure for trees T15-T17, T19, T20 and 
poles P2, P3, P9, P10. We find that if all the plots are symmetric bell-shaped it can be 
confidently identified as a smooth circular pole. If some are symmetric bell-shaped while 
some are not, it can be identified as a tree. 
Of course our goal is to have the computer distinguish trees from poles automatically based 
on the shapes of square root of signal energy plots. The feature vector x we choose contains 
two elements: Asymmetry and Deviation. If we let x1 represent Asymmetry and x2 represent 
Deviation, the feature vector can be written as x=[x1, x2]. For example, Fig. 6 on the 
following page is the square root of signal energy plot of pole P1 when the distance is 
200cm. For x1 we use Full-Width Half Maximum (FWHM) to define asymmetry. We cut the 
full width half-maximum into two to get the left width L1 and right width L2. Asymmetry is 
defined as the difference between L1 and L2 divided by FWHM, which is |L1-
L2|/|L1+L2|. The Deviation x2 we define as the average distance from the experimental 
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data point to the fitted data point at the same x-axis location, divided by the total height of 
the fitted curve H. In this case, there are 16 experimental data points, so Deviation = 
(|d1|+|d2|+...+|d16|)/(16H). For the plot above, we get Asymmetry=0.0333, which means the 
degree of asymmetry is small. We also get Deviation=0.0467, which means the degree of 
deviation is also small. 

Fig. 5. Square root of signal energy plots of tree T18 when the sensor is (S1) 75cm (S2) 100cm 
(S3) 125cm (S4) 150cm (S5) 175cm (S6) 200cm (S7) 225cm (S8) 250cm (S9) 275cm from the tree. 

Fig. 6. Square root of signal energy plot of pole P1at a distance of 200cm. 
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Fig. 7. Square root of signal energy plot of tree T14 at a distance of 100cm. 

For the square root of energy plot of tree T14 in Fig. 7, its Asymmetry will be bigger than the 
more bell-shaped plots. Trees T1-T4, T8, T11-T13 have rough surfaces (tree group No.1) 
while trees T5-T7, T9-T10 have smooth surfaces (tree group No.2). The pole group contains 
poles P4-P8. Each tree has two sweeps of scans while each pole has four sweeps of scans. 
We plot the Asymmetry-Deviation phase plane in Fig. 8. Circles are for the pole group while 
stars indicate tree group No.1 and dots indicate tree group No.2. We find circles 
representing the poles are usually within [0,0.2] on the Asymmetry axis. Stars representing 
the rough surface trees (tree group No.1) are spread widely in Asymmetry from 0 to 1. Dots 
representing the smooth surface trees (tree group No.2) are also within [0,0.2] on the 
Asymmetry axis. Hence, we conclude that two scans per tree may be good enough to tell a 
rough tree from a pole, but not to distinguish a smooth tree from a pole.  
We next acquired a series of nine or more scans from different locations relative to each 
object, constructed the square root of signal energy plots from the data, extracted the 
Asymmetry and Deviation features from each sweep of square root of signal energy plots 
and then plotted them in the phase plane. If all of the data points for an object are located 
within a small Asymmetry region, we say it’s a smooth circular pole. If some of the results 
are located in the small Asymmetry region and some are located in the large Asymmetry 
region, we can say it’s a tree. If all the dots are located in the large Asymmetry region, we 
say it’s a tree with rough surface.  
Our purpose is to classify the unknown cylindrical objects by the relative location of their 
feature vectors in a phase plane, with a well-defined boundary to segment the tree group 
from the pole group. First, for the series of points of one object in the Asymmetry-Deviation 
scatter plot, we calculate the average point of the series of points and find the average 
squared Euclidean distance from the points to this average point. We then calculate the 
Average Squared Euclidean Distance from the points to the average point and call it 
Average Asymmetry. We combine these two features into a new feature vector and plot it 
into an Average Asymmetry-Average Squared Euclidean Distance phase plane. We then get 
a single point for each tree or pole, as shown in Fig. 9. Stars indicate the trees and circles 
indicate poles. We find that the pole group clusters in the small area near the origin (0,0) 
while the tree group is spread widely but away from the origin. Hence, in the Average 
Asymmetry-Average Squared Euclidean Distance phase plane, if an object’s feature vector 
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Fig. 7. Square root of signal energy plot of tree T14 at a distance of 100cm. 
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a single point for each tree or pole, as shown in Fig. 9. Stars indicate the trees and circles 
indicate poles. We find that the pole group clusters in the small area near the origin (0,0) 
while the tree group is spread widely but away from the origin. Hence, in the Average 
Asymmetry-Average Squared Euclidean Distance phase plane, if an object’s feature vector 
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is located in the small area near the origin, which is within [0,0.1] in Average Asymmetry 
and within [0,0.02] in Average Squared Euclidean Distance, we can say it’s a pole. If it is 
located in the area away from the origin, which is beyond the set area, we can say it’s a tree. 

Fig. 8. Asymmetry-Deviation phase plane of the pole group and two tree groups. Circles indidate 
poles, dots indicate smaller smooth bark trees, and stars indicate the larger rough bark trees.  

Fig. 9. Average Asymmetry-Average Squared Euclidean Distance phase plane of trees T14-
T20 and poles P1-P3, P9 and P10. 

3. Distinguishing Walls, Fences & Hedges with Deformable Templates 
In this section we present an algorithm to distinguish several kinds of brick walls, picket 
fences and hedges based on the analysis of backscattered sonar echoes. The echo data are 
acquired by our mobile robot with a 50kHz sonar computer-controlled scanning system 
packaged as its sensor head (Figs. 1 and 2). For several locations along a wall, fence or 
hedge, fans of backscatter sonar echoes are acquired and digitized as the sonar transducer is 
swept over horizontal arcs. Backscatter is then plotted vs. scan angle, with a series of N-
peak deformable templates fit to this data for each scan. The number of peaks in the best-
fitting N-peak template indicates the presence and location of retro-reflectors, and allows 
automatic categorization of the various fences, hedges and brick walls. 
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In general, one sweep over an extended object such as a brick wall, hedge or picket fence is 
not sufficient to identify it (Gao, 2005). As a robot is moving along such an object, however, 
it is natural to assume that several scans can be taken from different locations. For objects 
such as picket fences, for example, there will be a natural periodicity determined by post 
spacing. Brick walls with architectural features (buttresses) will similarly have a well-
defined periodicity that will show up in the sonar backscatter data. Defining one spatial unit 
for each object in this way, five scans with equal distances typically cover a spatial unit. Fig. 
10 shows typical backscatter plots for a picket fence scanned from inside (the side with the 
posts). Each data point was obtained by low-pass filtering, rectifying, and integrating over 
the window corresponding to the echo from the object to calculate the square root of the 
signal energy as a measure of backscatter. Each step represents 1º of scan angle with zero 
degrees perpendicular to the fence. Note that plot (a) has a strong central peak, where the 
robot is lined up with a square post that reflects strongly for normal incidence. There is 
some backscatter at the oblique angles of incidence because the relatively broad sonar beam 
(spot size typically 20 to 30 cm diameter) interacts with the pickets (4.5 cm in width, 9 cm on 
center) and scatters from their corners and edges. The shape of this single-peak curve is thus 
a characteristic response for a picket fence centered on a post.  

Fig. 10. Backscatter plots for a picket fence scanned from the inside, with (a) the robot centered 
on a post, (b) at 25% of the way along a fence section so that at zero degrees the backscatter is 
from the pickets, but at a scan angle of about –22.5 degrees the retroreflector made by the post 
and the adjacent pickets causes a secondary peak. (c) at the middle of the fence section, such 
that the retroreflectors made by each post show up at the extreme scan angles. 

(a) (b)

(c)
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not sufficient to identify it (Gao, 2005). As a robot is moving along such an object, however, 
it is natural to assume that several scans can be taken from different locations. For objects 
such as picket fences, for example, there will be a natural periodicity determined by post 
spacing. Brick walls with architectural features (buttresses) will similarly have a well-
defined periodicity that will show up in the sonar backscatter data. Defining one spatial unit 
for each object in this way, five scans with equal distances typically cover a spatial unit. Fig. 
10 shows typical backscatter plots for a picket fence scanned from inside (the side with the 
posts). Each data point was obtained by low-pass filtering, rectifying, and integrating over 
the window corresponding to the echo from the object to calculate the square root of the 
signal energy as a measure of backscatter. Each step represents 1º of scan angle with zero 
degrees perpendicular to the fence. Note that plot (a) has a strong central peak, where the 
robot is lined up with a square post that reflects strongly for normal incidence. There is 
some backscatter at the oblique angles of incidence because the relatively broad sonar beam 
(spot size typically 20 to 30 cm diameter) interacts with the pickets (4.5 cm in width, 9 cm on 
center) and scatters from their corners and edges. The shape of this single-peak curve is thus 
a characteristic response for a picket fence centered on a post.  

Fig. 10. Backscatter plots for a picket fence scanned from the inside, with (a) the robot centered 
on a post, (b) at 25% of the way along a fence section so that at zero degrees the backscatter is 
from the pickets, but at a scan angle of about –22.5 degrees the retroreflector made by the post 
and the adjacent pickets causes a secondary peak. (c) at the middle of the fence section, such 
that the retroreflectors made by each post show up at the extreme scan angles. 
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Plot (b) in Fig. 10 shows not only a central peak but also a smaller side peak. The central 
peak is from the pickets while the side peak is from the right angle made by the side surface 
of the post (13 x 13 cm) and the adjacent pickets, which together form a retro-reflector. The 
backscatter echoes from a retro-reflector are strong for a wide range of the angle of 
incidence. Consequently, a side peak shows up when the transducer is facing a 
retroreflector, and the strength and spacing of corresponding side peaks carries information 
about features of extended objects. Note that a picket fence scanned from the outside will be 
much less likely to display such side peaks because the posts will tend to be hidden by the 
pickets. Plot (c) in Fig. 10 also displays a significant central peak. However, its shape is a 
little different from the first and second plots. Here when the scan angle is far from the 
central angle the backscatter increases, which indicates a retro-reflector, i.e. the corner made 
by the side surface of a post is at both extreme edges of the scan. 
Fig. 11 shows two typical backscatter plots for a metal fence with brick pillars. The brick 
pillars are 41 cm square and the metal pickets are 2 cm in diameter spaced 11 cm on center, 
with the robot scanning from 100cm away. Plot (a) has a significant central peak because the 
robot is facing the square brick pillar. The other has no apparent peaks because the robot is 
facing the metal fence between the pillars. The round metal pickets have no flat surfaces and 
no retro-reflectors are formed by the brick pillars. The chaotic nature of the backscatter is 
due to the broad beam of the sonar interacting with multiple cylindrical scatterers, which 
are each comparable in size to the sonar wavelength. In this “Mie-scattering” regime the 
amount of constructive or destructive interference from the multiple scatterers changes for 
each scan angle. Also, note that the overall level of the backscatter for the bottom plot is 
more than a factor of two smaller than when the sonar beam hits the brick pillar squarely. 

Fig. 11. Backscatter plots of a unit of the metal fence with brick pillar with the robot facing 
(a) brick pillar and (b) the metal fencing, scanned at a distance of 100cm. 

Fig. 12 shows typical backscatter plots for brick walls. Plot (a) is for a flat section of brick 
wall, and looks similar to the scan centered on the large brick pillar in Fig. 11. Plot (b) is for 
a section of brick wall with a thick buttress at the extreme right edge of the scan. Because the 
buttress extends out 10 cm from the plane of the wall, it makes a large retroreflector which 
scatters back strongly at about 50 degrees in the plot. Note that this size of this side-peak 
depends strongly on how far the buttress extends out from the wall. We’ve also scanned 
walls with regularly-spaced buttresses that extend out only 2.5 cm (Gao, 2005) and found 
that they behave similarly to the thick-buttress walls, but with correspondingly smaller side 
peaks.

(a) (b)
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Fig. 12 Backscatter plots of a unit of brick wall with thick buttress with the robot at a 
distance of 100cm facing (a) flat section of wall and (b) section including retroreflecting 
buttress at extreme left scan angle. 

Fig. 13 Backscatter plot of a unit of hedge. 

Fig. 13 shows a typical backscatter plot for a trimmed hedge. Note that although the level of 
the backscatter is smaller than for the picket fence and brick wall, the peak is also much 
broader. As expected the foliage scatters the sonar beam back over a larger range of angles. 
Backscatter data of this type was recorded for a total of seven distinct objects: the wood 
picket fence described above from inside (side with posts), that wood picket fence from 
outside (no posts), the metal fence with brick pillars described above, a flat brick wall, a 
trimmed hedge, and brick walls with thin (2.5 cm) and thick (10 cm) buttresses, respectively 
(Gao, 2005; Gao & Hinders, 2006). For those objects with spatial periodicity formed by posts 
or buttresses, 5 scans were taken over such a unit. The left- and right-most scans were 
centered on the post or buttress, and then three scans were taken evenly spaced in between. 
For typical objects scanned from 100 cm away with +/- 50 degrees scan angle the middle 
scans just see the retroreflectors at the extreme scan angles, while the scans 25% and 75% 
along the unit length only have a single side peak from the nearest retro-reflector. For those 
objects without such spatial periodicity a similar unit length was chosen for each with five 
evenly spaced scans taken as above. Analyzing the backscatter plots constructed from this 
data, we concluded that the different objects each have a distinct sequence of backscatter 
plots, and that it should be possible to automatically distinguish such objects based on 
characteristic features in these backscatter plots. We have implemented a deformable 
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Plot (b) in Fig. 10 shows not only a central peak but also a smaller side peak. The central 
peak is from the pickets while the side peak is from the right angle made by the side surface 
of the post (13 x 13 cm) and the adjacent pickets, which together form a retro-reflector. The 
backscatter echoes from a retro-reflector are strong for a wide range of the angle of 
incidence. Consequently, a side peak shows up when the transducer is facing a 
retroreflector, and the strength and spacing of corresponding side peaks carries information 
about features of extended objects. Note that a picket fence scanned from the outside will be 
much less likely to display such side peaks because the posts will tend to be hidden by the 
pickets. Plot (c) in Fig. 10 also displays a significant central peak. However, its shape is a 
little different from the first and second plots. Here when the scan angle is far from the 
central angle the backscatter increases, which indicates a retro-reflector, i.e. the corner made 
by the side surface of a post is at both extreme edges of the scan. 
Fig. 11 shows two typical backscatter plots for a metal fence with brick pillars. The brick 
pillars are 41 cm square and the metal pickets are 2 cm in diameter spaced 11 cm on center, 
with the robot scanning from 100cm away. Plot (a) has a significant central peak because the 
robot is facing the square brick pillar. The other has no apparent peaks because the robot is 
facing the metal fence between the pillars. The round metal pickets have no flat surfaces and 
no retro-reflectors are formed by the brick pillars. The chaotic nature of the backscatter is 
due to the broad beam of the sonar interacting with multiple cylindrical scatterers, which 
are each comparable in size to the sonar wavelength. In this “Mie-scattering” regime the 
amount of constructive or destructive interference from the multiple scatterers changes for 
each scan angle. Also, note that the overall level of the backscatter for the bottom plot is 
more than a factor of two smaller than when the sonar beam hits the brick pillar squarely. 

Fig. 11. Backscatter plots of a unit of the metal fence with brick pillar with the robot facing 
(a) brick pillar and (b) the metal fencing, scanned at a distance of 100cm. 

Fig. 12 shows typical backscatter plots for brick walls. Plot (a) is for a flat section of brick 
wall, and looks similar to the scan centered on the large brick pillar in Fig. 11. Plot (b) is for 
a section of brick wall with a thick buttress at the extreme right edge of the scan. Because the 
buttress extends out 10 cm from the plane of the wall, it makes a large retroreflector which 
scatters back strongly at about 50 degrees in the plot. Note that this size of this side-peak 
depends strongly on how far the buttress extends out from the wall. We’ve also scanned 
walls with regularly-spaced buttresses that extend out only 2.5 cm (Gao, 2005) and found 
that they behave similarly to the thick-buttress walls, but with correspondingly smaller side 
peaks.
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Fig. 12 Backscatter plots of a unit of brick wall with thick buttress with the robot at a 
distance of 100cm facing (a) flat section of wall and (b) section including retroreflecting 
buttress at extreme left scan angle. 

Fig. 13 Backscatter plot of a unit of hedge. 

Fig. 13 shows a typical backscatter plot for a trimmed hedge. Note that although the level of 
the backscatter is smaller than for the picket fence and brick wall, the peak is also much 
broader. As expected the foliage scatters the sonar beam back over a larger range of angles. 
Backscatter data of this type was recorded for a total of seven distinct objects: the wood 
picket fence described above from inside (side with posts), that wood picket fence from 
outside (no posts), the metal fence with brick pillars described above, a flat brick wall, a 
trimmed hedge, and brick walls with thin (2.5 cm) and thick (10 cm) buttresses, respectively 
(Gao, 2005; Gao & Hinders, 2006). For those objects with spatial periodicity formed by posts 
or buttresses, 5 scans were taken over such a unit. The left- and right-most scans were 
centered on the post or buttress, and then three scans were taken evenly spaced in between. 
For typical objects scanned from 100 cm away with +/- 50 degrees scan angle the middle 
scans just see the retroreflectors at the extreme scan angles, while the scans 25% and 75% 
along the unit length only have a single side peak from the nearest retro-reflector. For those 
objects without such spatial periodicity a similar unit length was chosen for each with five 
evenly spaced scans taken as above. Analyzing the backscatter plots constructed from this 
data, we concluded that the different objects each have a distinct sequence of backscatter 
plots, and that it should be possible to automatically distinguish such objects based on 
characteristic features in these backscatter plots. We have implemented a deformable 
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template matching scheme to use this backscattering behaviour to differentiate the seven 
types of objects.  
A deformable template is a simple mathematically defined shape that can be fit to the data 
of interest without losing its general characteristics (Gao, 2005). For example, for a one-peak 
deformable template, its peak location may change when fitting to different data, but it 
always preserves its one peak shape characteristic. For each backscatter plot we next create a 
series of deformable N-peak templates (N=1, 2, 3… Nmax) and then quantify how well the 
templates fit for each N. Obviously a 2-peak template (N=2) will fit best to a backscatter plot 
with two well-defined peaks. After consideration of a large number of backscatter vs. angle 
plots of the types in the previous figures, we have defined a general sequence of deformable 
templates in the following manner.  
For one-peak templates we fit quintic functions to each of the two sides of the peak, located 
at xp, each passing through the peak as well as the first and last data points, respectively. 
Hence, the left part of the one-peak template is defined by the 
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For the double-peak template, the two selected peaks xp1 and xp2 as well as the location of the 
valley xv between the two backscatter peaks separate the double-peak template into four 
regions with xp1<xv<xp2. The double peak template is thus comprised of four parts, defined 
as second-order functions between the peaks and quintic functions outbound of the two 
peaks.
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In the two middle regions, shapes of quadratic functions are more similar to the backscatter 
plots. Therefore, quadratic functions are chosen to form the template instead of quintic 
functions. Fig. 14 shows a typical backscatter plot for a picket fence as well as the 
corresponding single- and double-peak templates. The three, four, five, …, -peak template 
building follows the same procedure, with quadratic functions between the peaks and 
quintic functions outboard of the first and last peaks. 

Fig. 14. Backscatter plots of the second scan of a picket fence and its (a) one-peak template 
(b) two-peak template 

In order to characterize quantitatively how well the N-peak templates each fit a given 
backscatter plot, we calculate the sum of the distances from the backscatter data to the 
template at the same scan angle normalized by the total height H of the backscatter plot and 
the number of scan angles. For each backscatter plot, this quantitative measure of goodness 
of fit (Deviation) to the template is calculated automatically for N=1 to N=9 depending 
upon how many distinct peaks are identified by our successive enveloping and peak-
picking algorithm (Gao, 2005). We can then calculate Deviation vs. N and fit a 4th order 
polynomial to each. Where the deviation is smallest indicates the N-peak template which 
fits best. We do this on the polynomial fit rather than on the discrete data points in order to 
automate the process, i.e. we differentiate the Deviation vs. N curve and look for zero 
crossings by setting a threshold as the derivative approaches zero from the negative side. 
This corresponds to the deviation decreasing with increasing N and approaching the 
minimum deviation, i.e. the best-fit N-peak template.  
Because the fit is a continuous curve we can consider non-integer N, i.e. the derivative value 
of the 4th order polynomial fitting when the template value is N+0.5. This describes how the 
4th order polynomial fitting changes from N-peak template fitting to (N+1)-peak template 
fitting. If it is positive or a small negative value, it means that in going from the N-peak 
template to the (N+1)-peak template, the fitting does not improve much and the N-peak 
template is taken to be better than the (N+1)-peak template. Accordingly, we first set a 
threshold value and calculate these slopes at both integer and half-integer values of N. The 
threshold value is set to be -0.01 based on experience with data sets of this type, although 
this threshold could be considered as an adjustable parameter. We then check the value of 
the slopes in order. The N-peak-template is chosen to be the best-fit template when the slope 
at (N+0.5) is bigger than the threshold value of -0.01 for the first time.  
We also set some auxiliary rules to better to pick the right number of peaks. The first rule 
helps the algorithm to key on retroreflectors and ignore unimportant scattering centers: if 
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template matching scheme to use this backscattering behaviour to differentiate the seven 
types of objects.  
A deformable template is a simple mathematically defined shape that can be fit to the data 
of interest without losing its general characteristics (Gao, 2005). For example, for a one-peak 
deformable template, its peak location may change when fitting to different data, but it 
always preserves its one peak shape characteristic. For each backscatter plot we next create a 
series of deformable N-peak templates (N=1, 2, 3… Nmax) and then quantify how well the 
templates fit for each N. Obviously a 2-peak template (N=2) will fit best to a backscatter plot 
with two well-defined peaks. After consideration of a large number of backscatter vs. angle 
plots of the types in the previous figures, we have defined a general sequence of deformable 
templates in the following manner.  
For one-peak templates we fit quintic functions to each of the two sides of the peak, located 
at xp, each passing through the peak as well as the first and last data points, respectively. 
Hence, the left part of the one-peak template is defined by the 
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For the double-peak template, the two selected peaks xp1 and xp2 as well as the location of the 
valley xv between the two backscatter peaks separate the double-peak template into four 
regions with xp1<xv<xp2. The double peak template is thus comprised of four parts, defined 
as second-order functions between the peaks and quintic functions outbound of the two 
peaks.
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In the two middle regions, shapes of quadratic functions are more similar to the backscatter 
plots. Therefore, quadratic functions are chosen to form the template instead of quintic 
functions. Fig. 14 shows a typical backscatter plot for a picket fence as well as the 
corresponding single- and double-peak templates. The three, four, five, …, -peak template 
building follows the same procedure, with quadratic functions between the peaks and 
quintic functions outboard of the first and last peaks. 

Fig. 14. Backscatter plots of the second scan of a picket fence and its (a) one-peak template 
(b) two-peak template 

In order to characterize quantitatively how well the N-peak templates each fit a given 
backscatter plot, we calculate the sum of the distances from the backscatter data to the 
template at the same scan angle normalized by the total height H of the backscatter plot and 
the number of scan angles. For each backscatter plot, this quantitative measure of goodness 
of fit (Deviation) to the template is calculated automatically for N=1 to N=9 depending 
upon how many distinct peaks are identified by our successive enveloping and peak-
picking algorithm (Gao, 2005). We can then calculate Deviation vs. N and fit a 4th order 
polynomial to each. Where the deviation is smallest indicates the N-peak template which 
fits best. We do this on the polynomial fit rather than on the discrete data points in order to 
automate the process, i.e. we differentiate the Deviation vs. N curve and look for zero 
crossings by setting a threshold as the derivative approaches zero from the negative side. 
This corresponds to the deviation decreasing with increasing N and approaching the 
minimum deviation, i.e. the best-fit N-peak template.  
Because the fit is a continuous curve we can consider non-integer N, i.e. the derivative value 
of the 4th order polynomial fitting when the template value is N+0.5. This describes how the 
4th order polynomial fitting changes from N-peak template fitting to (N+1)-peak template 
fitting. If it is positive or a small negative value, it means that in going from the N-peak 
template to the (N+1)-peak template, the fitting does not improve much and the N-peak 
template is taken to be better than the (N+1)-peak template. Accordingly, we first set a 
threshold value and calculate these slopes at both integer and half-integer values of N. The 
threshold value is set to be -0.01 based on experience with data sets of this type, although 
this threshold could be considered as an adjustable parameter. We then check the value of 
the slopes in order. The N-peak-template is chosen to be the best-fit template when the slope 
at (N+0.5) is bigger than the threshold value of -0.01 for the first time.  
We also set some auxiliary rules to better to pick the right number of peaks. The first rule 
helps the algorithm to key on retroreflectors and ignore unimportant scattering centers: if 
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the height ratio of a particular peak to the highest peak is less than 0.2, it is not counted as a 
peak. Most peaks with a height ratio less than 0.2 are caused by small scattering centers 
related to the rough surface of the objects, not by a retro-reflector of interest. The second 
rule is related to the large size of the sonar beam: if the horizontal difference of two peaks is 
less than 15 degrees, we merge them into one peak. Most of the double peaks with angular 
separation less than 15 degrees are actually caused by the same major reflector interacting 
with the relatively broad sonar beam. Two 5-dimensional feature vectors for each object are 
next formed. The first is formed from the numbers of the best fitting templates, i.e. the best 
N for each of the five scans of each object. The second is formed from the corresponding 
Deviation for each of those five scans. For example, for a picket fence scanned from inside, 
the two 5-dimensional feature vectors are N=[1,2,3,2,1] and D=[0.0520, 0.0543, 0.0782, 0.0686, 
0.0631]. For a flat brick wall, they are N=[1,1,1,1,1] and D=[0.0549, 0.0704, 0.0752, 0.0998, 
0.0673].
The next step is to determine whether an unknown object can be classified based on these 
two 5-dimensional feature vectors. Feature vectors with higher dimensions (>3) are difficult 
to display visually, but we can easily deal with them in a hyper plane. The Euclidean 
distance of a feature vector in the hyper plane from an unknown object to the feature vector 
of a known object is thus calculated and used to determine if the unknown object is similar 
to any of the objects we already know.  
For both 5-dimensional feature vectors of an unknown object, we first calculate their 
Euclidean distances to the corresponding template feature vectors of a picket fence. N1 = 
|Nunknown - Npicketfence| is the Euclidean distance between the N vector of the unknown 
object Nunknown to the N vector of the picket fence Npicketfence. Similarly, D1 = | Nunknown - 
Npicketfence | is the Euclidean distance between the D vectors of the unknown object Nunknown
and the picket fence Npicketfence. We then calculate these distances to the corresponding 
feature vectors of a flat brick wall N2, D2, their distances to the two feature vectors of a 
hedge N3, D3 and so on. 
The unknown object is then classified as belonging to the kinds of objects whose two 
feature vectors are nearest to it, which means both N and D are small. Fig. 15 is an 
array of bar charts showing these Euclidean distances of two feature vectors of a 
unknown objects to the two feature vectors of seven objects we already know. The 
horizontal axis shows different objects numbered according to“1” for picket fence 
scanned from the inside “2” for a flat brick wall“3” for a trimmed hedge “4” for a brick 
wall with thin buttress “5” for a brick wall with thick buttress “6” for a metal fence with 
brick pillar and“7” for the picket fence scanned from the outside. The vertical axis shows 
the Euclidean distances of feature vectors of an unknown object to the 7 objects 
respectively. For each, the height of black bar and grey bar at object No.1 represent N1
and 10 D1 respectively while the height of black bar and grey bar at object No.2 
represent N2 and 10 D2 respectively, and so on. In the first chart both the black bar and 
grey bar are the shortest when comparing to the N, D vectors of a picket fence scanned 
from inside. Therefore, we conclude that this unknown object is a picket fence scanned 
from inside, which it is. Note that the D values have been scaled by a factor of ten to make 
the bar charts more readable. The second bar chart in Fig. 15 has both the black bar and 
grey bar the shortest when comparing to N, D vectors of object No.1 picket fence 
scanned from inside, which is what it is. The third bar chart in Fig. 15 has both the black 
bar and grey bar shortest when comparing to N, D vectors of object No.2 flat brick wall 
and object No.4 brick wall with thin buttress. That means the most probable kinds of the 
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unknown object are flat brick wall or brick wall with thin buttress. Actually it is a flat 
brick wall.  

Fig. 15. N (black bar) and 10 D (gray bar) for fifteen objects compared to the seven 
known objects: 1 picket fence from inside, 2 flat brick wall, 3 hedge, 4 brick wall with thin 
buttress, 5 brick wall with thick buttress, 6 metal fence with brick pillar, 7 picket fence 
from outside.  

Table 1 displays the results of automatically categorizing two additional scans of each 
of these seven objects. In the table, the + symbols indicate the correct choices and the x 
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unknown object are flat brick wall or brick wall with thin buttress. Actually it is a flat 
brick wall.  

Fig. 15. N (black bar) and 10 D (gray bar) for fifteen objects compared to the seven 
known objects: 1 picket fence from inside, 2 flat brick wall, 3 hedge, 4 brick wall with thin 
buttress, 5 brick wall with thick buttress, 6 metal fence with brick pillar, 7 picket fence 
from outside.  
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symbols indicate the few incorrect choices. Note that in some cases the two feature 
vector spaces did not agree on the choice, and so two choices are indicated. Data sets 
1A and 1B are both picket fences scanned from inside. They are correctly categorized as 
object No.1. Data sets 2A and 2B are from flat brick walls. They are categorized as either 
object No.2 (flat brick wall) or object No.4 (brick wall with thin buttress) which are 
rather similar objects. Data sets 3A and 3B are from hedges and are correctly 
categorized as object No.3. Data sets 4A and 4B are from brick walls with thin buttress. 
4A is categorized as object No.2 (flat brick wall) or object No.4 (brick wall with thin 
buttress). Data sets 5A and 5B are from brick walls with thick buttress. Both are 
correctly categorized as object No.5. Data sets 6A and 6B are from metal fences with 
brick pillars. 6B is properly categorized as object No.6. 6B is categorized as either object 
No.6 (metal fence with brick pillar) or as object No.2 (flat brick wall). Data sets 7A and 
7B are from picket fences scanned from outside, i.e. the side without the posts. 7A is 
mistaken as object No.5 (brick wall with thick buttress) while 7B is mistaken as object 
No.1 (picket fence scanned from inside). Of the fourteen new data sets, eight are 
correctly categorized via agreement with both feature vectors, four are correctly 
categorized by one of the two feature vector, and two are incorrectly categorized. Both 
of the incorrectly categorized data sets are from picket fence scanned from outside, 
presumably due to the lack of any significant retro-reflectors, but with an otherwise 
complicated backscattering behavior. 

1A 2A 3A 4A 5A 6A 7A 1B 2B 3B 4B 5B 6B 7B

1 +       +      X

2  +  X X   +      

3   +       +     

4 X  +     X  +    

5     +  X     +   

6      +       +  

7               

Table 1. Results categorizing 2 additional data sets for each object. 

4. Thermal Infrared Imaging as a Mobile Robot Sensor 
In the previous sections we have used 50 kHz features in the ultrasound backscattering to 
distinguish common objects. Here we discuss the use of thermal infrared imaging as a 
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complementary technique. Note that both ultrasound and infrared are independent of 
lighting conditions, and so are appropriate for use both day and night. The technology 
necessary for infrared imaging has only recently become sufficiently portable, robust and 
inexpensive to imagine exploiting this full-field sensing modality for small mobile robots. 
We have mounted an infrared camera on one of our mobile robots and begun to 
systematically explore the behavior of the classes of outdoor objects discussed in the 
previous sections.  
Our goal is simple algorithms that extract features from the infrared imagery in order to 
complement what can be done with the 50 kHz ultrasound. For this preliminary study, 
infrared imagery was captured on a variety of outdoor objects during a four-month period, 
at various times throughout the days and at various illumination/temperature conditions. 
The images were captured using a Raytheon ControlIR 2000B long-wave (7-14 micron) 
infrared thermal imaging video camera with a 50 mm focal length lens at a distance of 2.4 
meters from the given objects. The analog signals with a 320X240 pixel resolution were 
converted to digital signals using a GrabBeeIII USB Video Grabber, all mounted on board a 
mobile robotic platform similar to Fig. 2. The resulting digital frames were processed offline 
in MATLAB. Table 1 below provides the times, visibility conditions, and ambient 
temperature during each of the nine sessions. During each session, the infrared images were 
captured on each object at three different viewing angles: normal incidence, 45 degrees from 
incidence, and 60 degrees from incidence. A total of 27 infrared images were captured on 
each object during the nine sessions. 

Date Time Span Visibility Temp. (oF)
8 Mar 06 0915-1050 Sunlight, Clear Skies 49.1 
8 Mar 06 1443-1606 Sunlight, Clear Skies 55.0 
8 Mar 06 1847-1945 No Sunlight, Clear Skies 49.2 
10 Mar 06 1855-1950 No Sunlight, Clear Skies 63.7 
17 Mar 06 0531-0612 No Sunlight-Sunrise, Slight Overcast 46.1 
30 May 06 1603-1700 Sunlight, Clear Skies 87.8 
30 May 06 2050-2145 No Sunlight, Partly Cloudy 79.6 
2 Jun 06 0422-0513 No Sunlight, Clear Skies 74.2 
6 Jun 06 1012-1112 Sunlight, Partly Cloudy 68.8 

Table 2. Visibility conditions and temperatures for the nine sessions of capturing infrared 
images of the nine stationary objects. 

The infrared images were segmented to remove the image background, with three center 
segments and three periphery segments prepared for each. A Retinex algorithm (Rahman, 
2002) was used to enhance the details in the image, and a highpass Gaussian filter (Gonzalez 
et al., 2004) was applied to attenuate the lower frequencies and sharpen the image. By 
attenuating the lower frequencies that are common to most natural objects, the remaining 
higher frequencies help to distinguish one object from another. Since the discrete Fourier 
transform used to produce the spectrum assumes the frequency pattern of the image is 
periodic, a high-frequency drop-off occurs at the edges of the image. These “edge effects” 
result in unwanted intense horizontal and vertical artifacts in the spectrum, which are 
suppressed via the edgetaper function in MATLAB. The final preprocessing step is to apply 
a median filter that denoises the image without reducing the previously established 
sharpness of the image. 
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complementary technique. Note that both ultrasound and infrared are independent of 
lighting conditions, and so are appropriate for use both day and night. The technology 
necessary for infrared imaging has only recently become sufficiently portable, robust and 
inexpensive to imagine exploiting this full-field sensing modality for small mobile robots. 
We have mounted an infrared camera on one of our mobile robots and begun to 
systematically explore the behavior of the classes of outdoor objects discussed in the 
previous sections.  
Our goal is simple algorithms that extract features from the infrared imagery in order to 
complement what can be done with the 50 kHz ultrasound. For this preliminary study, 
infrared imagery was captured on a variety of outdoor objects during a four-month period, 
at various times throughout the days and at various illumination/temperature conditions. 
The images were captured using a Raytheon ControlIR 2000B long-wave (7-14 micron) 
infrared thermal imaging video camera with a 50 mm focal length lens at a distance of 2.4 
meters from the given objects. The analog signals with a 320X240 pixel resolution were 
converted to digital signals using a GrabBeeIII USB Video Grabber, all mounted on board a 
mobile robotic platform similar to Fig. 2. The resulting digital frames were processed offline 
in MATLAB. Table 1 below provides the times, visibility conditions, and ambient 
temperature during each of the nine sessions. During each session, the infrared images were 
captured on each object at three different viewing angles: normal incidence, 45 degrees from 
incidence, and 60 degrees from incidence. A total of 27 infrared images were captured on 
each object during the nine sessions. 
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Table 2. Visibility conditions and temperatures for the nine sessions of capturing infrared 
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The infrared images were segmented to remove the image background, with three center 
segments and three periphery segments prepared for each. A Retinex algorithm (Rahman, 
2002) was used to enhance the details in the image, and a highpass Gaussian filter (Gonzalez 
et al., 2004) was applied to attenuate the lower frequencies and sharpen the image. By 
attenuating the lower frequencies that are common to most natural objects, the remaining 
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periodic, a high-frequency drop-off occurs at the edges of the image. These “edge effects” 
result in unwanted intense horizontal and vertical artifacts in the spectrum, which are 
suppressed via the edgetaper function in MATLAB. The final preprocessing step is to apply 
a median filter that denoises the image without reducing the previously established 
sharpness of the image. 
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Fig. 16 Cedar Tree visible (left) and Infrared (right) Images. 

Fig. 16 shows the visible and infrared images of a center segment of the cedar tree captured at 
1025 hours on 8 March 2006. The details in the resulting preprocessed image are enhanced and 
sharpened due to Retinex, highpass Gaussian filter, and median filter. We next 2D Fouier 
transform the preprocessed image and take the absolute value to obtain the spectrum, which is 
then transformed to polar coordinates with angle measured in a clockwise direction from the 
polar axis and increasing along the columns in the spectrum’s polar matrix. The linear radius 
(i.e., frequencies) in polar coordinates increases down the rows of the polar matrix. Fig. 17 
display the spectrum and polar spectrum of the same center segment of the cedar tree. 

Fig. 17 Frequency Spectrum (left) and Polar Spectrum (right) of cedar tree center segment. 

Sparsity provides a measure of how well defined the edge directions are on an object (Luo & 
Boutell, 2005) useful for distinguishing between “manmade” and natural objects in visible 
imagery. Four object features generated in our research were designed in a similar manner. First, 
the total energy of the frequencies along the spectral radius was computed for angles from 45 to 
224 degrees. This range of angle values ensures that the algorithm captures all possible directions 
of the frequencies on the object in the scene. A histogram with the angle values along the abscissa 
and total energy of the frequencies on the ordinate is smoothed using a moving average filter. 
The values along the ordinate are scaled to obtain frequency energy values ranging from 0 to 1 
since we are only interested in how well the edges are defined about the direction of the 
maximum frequency energy, not the value of the frequency energy. The resulting histogram is 
plotted as a curve with peaks representing directions of maximum frequency energy. The full 
width at 80% of the maximum (FW(0.80)M) value on the curve is used to indicate the amount of 
variation in frequency energy about a given direction. Four features are generated from the 
resulting histogram defined by the terms: sparsity and direction. The sparsity value provides a 
measure of how well defined the edge directions are on an object. The value for sparsity is the 
ratio of the global maximum scaled frequency energy to the FW(0.80)M along a given interval in 
the histogram. Thus, an object with well defined edges along one given direction will display a 
curve in the histogram with a global maximum and small FW(0.80)M, resulting in a larger 
sparsity value compared to an object with edges that vary in direction. To compute the feature 
values, the intervals from 45 to 134 degrees and from 135 to 224 degrees were created along the 
abscissa of the histogram to optimally partition the absolute vertical and horizontal components 
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in the spectrum. The sparsity value along with its direction are computed for each of the 
partitioned intervals. A value of zero is provided for both the sparsity and direction if there is no 
significant frequency energy present in the given interval to compute the FW(0.80)M.  
By comparing the directions (in radians) of the maximum scaled frequency energy along each 
interval, four features are generated: Sparsity about Maximum Frequency Energy (1.89 for tree 
vs. 2.80 for bricks), Direction of Maximum Frequency Energy (3.16 for tree vs. 1.57 for bricks), 
Sparsity about Minimum Frequency Energy (0.00 for tree vs. 1.16 for bricks), Direction of 
Minimum Frequency Energy (0.00 for tree vs. 3.14 for bricks).  Fig. 19 below compares the scaled 
frequency energy histograms for the cedar tree and brick wall (Fig. 18), respectively. 

Fig. 18. Brick Wall Infrared (left) and Visible (right) Images. 

As we can see in the histogram plot of the cedar tree (Fig. 19, left) the edges are more well 
defined in the horizontal direction, as expected. Furthermore, the vertical direction presents 
no significant frequency energy. On the other hand, the results for the brick wall (Fig. 19, 
right) imply edge directions that are more well defined in the vertical direction. The brick 
wall results in a sparsity value and direction associated with minimum frequency energy. 
Consequently, these particular results would lead to features that could allow us to 
distinguish the cedar tree from the brick wall.  
Curvature provides a measure to distinguish cylindrical shaped objects from flat objects 
(Sakai & Finkel, 1995) since the ratio of the average peak frequency between the periphery 
and the center of an object in an image is strongly correlated with the degree of surface 
curvature. Increasing texture compression in an image yields higher frequency peaks in the 
spectrum. Consequently, for a cylindrically shaped object, we should see more texture 
compression and corresponding higher frequency peaks in the spectrum of the object’s 
periphery compared to the object’s center. 

0.5 1 1.5 2 2.5 3 3.5 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scaled Smoothed Frequency Energy (Cedar)

0.5 1 1.5 2 2.5 3 3.5 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scaled Smoothed Frequency Energy (Brick Wall)

Fig. 19. Cedar (left) and Brick Wall (right) histogram plots. 

To compute the curvature feature value for a given object, we first segment 80x80 pixel regions 
at the periphery and center of an object’s infrared image. The average peak frequency in the 
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of the frequencies on the object in the scene. A histogram with the angle values along the abscissa 
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The values along the ordinate are scaled to obtain frequency energy values ranging from 0 to 1 
since we are only interested in how well the edges are defined about the direction of the 
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plotted as a curve with peaks representing directions of maximum frequency energy. The full 
width at 80% of the maximum (FW(0.80)M) value on the curve is used to indicate the amount of 
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in the spectrum. The sparsity value along with its direction are computed for each of the 
partitioned intervals. A value of zero is provided for both the sparsity and direction if there is no 
significant frequency energy present in the given interval to compute the FW(0.80)M.  
By comparing the directions (in radians) of the maximum scaled frequency energy along each 
interval, four features are generated: Sparsity about Maximum Frequency Energy (1.89 for tree 
vs. 2.80 for bricks), Direction of Maximum Frequency Energy (3.16 for tree vs. 1.57 for bricks), 
Sparsity about Minimum Frequency Energy (0.00 for tree vs. 1.16 for bricks), Direction of 
Minimum Frequency Energy (0.00 for tree vs. 3.14 for bricks).  Fig. 19 below compares the scaled 
frequency energy histograms for the cedar tree and brick wall (Fig. 18), respectively. 

Fig. 18. Brick Wall Infrared (left) and Visible (right) Images. 

As we can see in the histogram plot of the cedar tree (Fig. 19, left) the edges are more well 
defined in the horizontal direction, as expected. Furthermore, the vertical direction presents 
no significant frequency energy. On the other hand, the results for the brick wall (Fig. 19, 
right) imply edge directions that are more well defined in the vertical direction. The brick 
wall results in a sparsity value and direction associated with minimum frequency energy. 
Consequently, these particular results would lead to features that could allow us to 
distinguish the cedar tree from the brick wall.  
Curvature provides a measure to distinguish cylindrical shaped objects from flat objects 
(Sakai & Finkel, 1995) since the ratio of the average peak frequency between the periphery 
and the center of an object in an image is strongly correlated with the degree of surface 
curvature. Increasing texture compression in an image yields higher frequency peaks in the 
spectrum. Consequently, for a cylindrically shaped object, we should see more texture 
compression and corresponding higher frequency peaks in the spectrum of the object’s 
periphery compared to the object’s center. 
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Fig. 19. Cedar (left) and Brick Wall (right) histogram plots. 

To compute the curvature feature value for a given object, we first segment 80x80 pixel regions 
at the periphery and center of an object’s infrared image. The average peak frequency in the 
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horizontal direction is computed for both the periphery and center using the frequency 
spectrum. Since higher frequencies are the primary contributors in determining curvature, we 
only consider frequency peaks at frequency index values from 70 to 100. The curvature feature 
value is computed as the ratio of the average horizontal peak frequency in the periphery to 
that of the center. Fig. 20 compares the spectra along the horizontal of both the center and 
periphery segments for the infrared image of a cedar tree and a brick wall, respectively.  

70 75 80 85 90 95 100
1

2

3

4

5

6

7
Cedar along Horizontal

Frequency

A
m

pl
itu

de

Center
Periphery

70 75 80 85 90 95 100

0.8

1

1.2

1.4

1.6

1.8

2
Brick Wall along Horizontal

Frequency

A
m

pl
itu

de

Center
Periphery

Fig. 20 Cedar (left) and Brick Wall (right) Center vs. Periphery Frequency Energy Spectrum 
along Horizontal. The computed curvature value for the cedar tree is 2.14, while the 
computed curvature for the brick wall is 1.33. 

As we can see in the left plot of Fig. 20 above, the periphery of the cedar tree’s infrared image 
has more energy at the higher frequencies compared to the center, suggesting that the object 
has curvature away from the observer. As we can see in the right plot of Fig. 20 above, there is 
not a significant difference between the energy in the periphery and center of the brick wall’s 
infrared image, suggesting that the object does not have curvature. 

5. Summary and Future Work 
We have developed a set of automatic algorithms that use sonar backscattering data to 
distinguish extended objects in the campus environment by taking a sequence of scans of each 
object, plotting the corresponding backscatter vs. scan angle, extracting abstract feature vectors 
and then categorizing them in various phase spaces. We have chosen to perform the analysis 
with multiple scans per object as a balance between data processing requirements and 
robustness of the results. Although our current robotic scanner is parked for each scan and then 
moves to the next scan location before scanning again, it is not difficult to envision a similar 
mobile robotic platform that scans continuously while moving. It could then take ten or even a 
hundred scans while approaching a tree or while moving along a unit of a fence, for example. 
Based on our experience with such scans, however, we would typically expect only the 
characteristic variations in backscattering behavior described above. Hence, we would envision 
scans taken continuously as the robot moves towards or along an object, and once the dominant 
features are identified, the necessary backscatter plots could be processed in the manner 
described in the previous sections, with the rest of the data safely purged from memory. 
Our reason for performing this level of detailed processing is a scenario where an 
autonomous robot is trying to identify particular landmark objects, presumably under low-
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light or otherwise visually obscured conditions where fences, hedges and brick walls can be 
visually similar. Alternatively, we envision a mobile robot with limited on board processing 
capability such that the visual image stream must be deliberately degraded by either 
reducing the number of pixels or the bits per pixel in order to have a sufficient video frame 
rate. In either case the extended objects considered here might appear very similar in the 
visual image stream. Hence, our interest is in the situation where the robot knows the 
obstacle is there and has already done some preliminary classification of it, but now needs a 
more refined answer. It could need to distinguish a fence or wall from a hedge since it could 
plow through hedge but would be damaged by a wrought iron fence or a brick wall. It may 
know it is next to a picket fence, but cannot tell whether it’s on the inside or outside of the 
fence. Perhaps it has been given instructions to “turn left at the brick wall” and the “go 
beyond the big tree” but doesn’t have an accurate enough map of the campus or more likely 
the landmark it was told to navigate via does not show up on its on-board map. 
We have now added thermal infrared imaging to our mobile robots, and have begun the 
systematic process of identifying exploitable features. After preprocessing, feature vectors 
are formed to give unique representations of the signal data produced by a given object. 
These features are chosen to have minimal variation with changes in the viewing angle 
and/or distance between the object and sensor, temperature, and visibility. Fusion of the 
two sensor outputs then happens according to the Bayesian scheme diagrammed in Fig. 21 
below, which is the focus of our ongoing work. 
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the landmark it was told to navigate via does not show up on its on-board map. 
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are formed to give unique representations of the signal data produced by a given object. 
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1. Introduction 
Obstacle detection is an essential task for mobile robots. This subject has been investigated for 
many years by researchers and a lot of obstacle detection systems have been proposed so far. Yet 
designing an accurate and totally robust and reliable system remains a challenging task, above all 
in outdoor environments. The DARPA Grand Challenge (Darpa, 2005) proposed efficient systems 
based on sensors redundancy, but these systems are expensive since they include a large set of 
sensors and computers: one can not consider to implement such systems on low cost robots. Thus, 
a new challenge is to reduce the number of sensors used while maintaining a high level of 
performances. Then, many applications will become possible, such as Advance Driving Assistance 
Systems (ADAS) in the context of Intelligent Transportation Systems (ITS).  
Thus, the purpose of this chapter is to present new techniques and tools to design an 
accurate, robust and reliable obstacle detection system in outdoor environments based on a 
minimal number of sensors. So far, experiments and assessments of already developed 
systems show that using a single sensor is not enough to meet the requirements: at least two 
complementary sensors are needed. In this chapter a stereovision sensor and a 2D laser 
scanner are considered. 
In Section 2, the ITS background under which the proposed approaches have been 
developed is introduced. The remaining of the chapter is dedicated to technical aspects. 
Section 3 deals with the stereovision framework: it is based on a new technique (the so-
called “v-disparity” approach) that efficiently tackles most of the problems usually met 
when using stereovision-based algorithms for detecting obstacles. This technique makes few 
assumptions about the environment and allows a generic detection of any kind of obstacles; 
it is robust against adverse lightning and meteorological conditions and presents a low 
sensitivity towards false matches. Target generation and characterization are detailed. 
Section 4 focus on the laser scanner raw data processing performed to generate targets from 
lasers points and estimate their positions, sizes and orientations. Once targets have been 
generated, a multi-objects association algorithm is needed to estimate the dynamic state of 
the objects and to monitor appearance and disappearance of tracks. Section 5 intends to 
present such an algorithm based on the Dempster-Shaffer belief theory. Section 6 is about 
fusion between stereovision and laser scanner. Different possible fusion schemes are 
introduced and discussed. Section 7 is dedicated to experimental results. Eventually, section 
8 deals with trends and future research. 
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minimal number of sensors. So far, experiments and assessments of already developed 
systems show that using a single sensor is not enough to meet the requirements: at least two 
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In Section 2, the ITS background under which the proposed approaches have been 
developed is introduced. The remaining of the chapter is dedicated to technical aspects. 
Section 3 deals with the stereovision framework: it is based on a new technique (the so-
called “v-disparity” approach) that efficiently tackles most of the problems usually met 
when using stereovision-based algorithms for detecting obstacles. This technique makes few 
assumptions about the environment and allows a generic detection of any kind of obstacles; 
it is robust against adverse lightning and meteorological conditions and presents a low 
sensitivity towards false matches. Target generation and characterization are detailed. 
Section 4 focus on the laser scanner raw data processing performed to generate targets from 
lasers points and estimate their positions, sizes and orientations. Once targets have been 
generated, a multi-objects association algorithm is needed to estimate the dynamic state of 
the objects and to monitor appearance and disappearance of tracks. Section 5 intends to 
present such an algorithm based on the Dempster-Shaffer belief theory. Section 6 is about 
fusion between stereovision and laser scanner. Different possible fusion schemes are 
introduced and discussed. Section 7 is dedicated to experimental results. Eventually, section 
8 deals with trends and future research. 
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2. Intelligent Transportation Systems Background 
In the context of Intelligent Transportation Systems and Advanced Driving Assistance Systems 
(ADAS), onboard obstacle detection is a critical task. It must be performed in real time, robustly 
and accurately, without any false alarm and with a very low (ideally nil) detection failure rate. 
First, obstacles must be detected and positioned in space; additional information such as height, 
width and depth can be interesting in order to classify obstacles (pedestrian, car, truck, motorbike, 
etc.) and predict their dynamic evolution. Many applications aimed at improving road safety 
could be designed on the basis of such a reliable perception system: Adaptative Cruise Control 
(ACC), Stop’n’Go, Emergency braking, Collision Mitigation. Various operating modes can be 
introduced for any of these applications, from the instrumented mode that only informs the driver of 
the presence and position of obstacles, to the regulated mode that take control of the vehicle through 
activators (brake, throttle, steering wheel). The warning mode is an intermediate interesting mode 
that warn the driver of an hazard and is intended to alert the driver in advance to start a 
manoeuver before the accident occurs. 
Various sensors can be used to perform obstacle detection. 2D laser scanner (Mendes 2004) 
provides centimetric positioning but some false alarms can occur because of the dynamic 
pitching of the vehicle (from time to time, the laser plane collides with the ground surface 
and then laser points should not be considered to belong to an obstacle). Moreover, width 
and depth (when the side of the object is visible) of obstacles can be estimated but height 
cannot. Stereovision can also be used for obstacle detection (Bertozzi, 1998 ; Koller, 1994 ; 
Franke, 2000 ; Williamson, 1998). Using stereovision, height and width of obstacles can be 
evaluated. The pitch value can also be estimated. However, positioning and width 
evaluation are less precise than the ones provided by laser scanner.  
Fusion algorithms have been proposed to detect obstacles using various sensors at the same 
time (Gavrila, 2001 ; Mobus, 2004 ; Steux, 2002). The remaining of the chapter presents tools 
designed to perform fusion between 2D laser scanner and stereovision that takes into 
account their complementary features.  

3. Stereovision Framework 
3.1 The "v-disparity" framework 
This section deals with the stereovision framework. Firstly a modeling of the stereo sensor, 
of the ground and of the obstacles is presented. Secondly details about a possible 
implementation are given.
Modeling of the stereo sensor: The two image planes of the stereo sensor are supposed to 
belong to the same plane and are at the same height above the ground (see Fig. 1). This camera 
geometry means that the epipolar lines are parallel. The parameters shown on Fig. 1 are: 

· s the angle between the optical axis of the cameras and the horizontal, 
·h is the height of the cameras above the ground, 
·b is the distance between the cameras (i.e. the stereoscopic base). 

(Ra) is the absolute coordinate system, and Oa lies on the ground.  In the camera coordinate 
system (Rci)  ( i equals l (left) or r (right) ), the position of a point in the image plane is given 
by its coordinates (ui,vi). The image coordinates of the projection of the optical center will be 
denoted by (u0,v0), assumed to be at the center of the image. The intrinsic parameters of the 
camera are f (the focal length of the lens), tu and tv (the size of pixels in u and v). We also use 

u=f/tu and v=f/tv. With the cameras in current use we can make the following 
approximation: u v= .
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Using the pin-hole camera model, a projection on the image plane of a point P(X,Y,Z) in (Ra)
is expressed by: 
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On the basis of Fig. 1, the transformation from the absolute coordinate system to the right 
camera coordinate system is achieved by the combination of a vector translation ( Yht −= and 

( )Xbb 2/= ) and a rotation around X , by an angle of –θ . The combination of a vector 
translation ( Yht −= and ( )Xbb 2/−= ) and a rotation around X , by an angle of –θ  is the 
transformation from the absolute coordinate system to the left camera coordinate system. 

Fig. 1. The stereoscopic sensor and used coordinate systems. 

Since the epipolar lines are parallel, the ordinate of the projection of the point P on the left or 
right image is vr = vl = v, where: 
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Moreover, the disparity Δ  of the point P is: 
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Modeling of the ground: In what follows the ground is modeled as a plane with equation: 
Z=aY+d. If the ground is horizontal, the plane to consider is the plane with equation Y=0.
Modeling of the obstacles: In what follows any obstacle is characterized by a vertical plane 
with equation Z = d.
Thus, all planes of interest (ground and obstacles) can be characterized by a single equation: 
Z = aY+d. 
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2. Intelligent Transportation Systems Background 
In the context of Intelligent Transportation Systems and Advanced Driving Assistance Systems 
(ADAS), onboard obstacle detection is a critical task. It must be performed in real time, robustly 
and accurately, without any false alarm and with a very low (ideally nil) detection failure rate. 
First, obstacles must be detected and positioned in space; additional information such as height, 
width and depth can be interesting in order to classify obstacles (pedestrian, car, truck, motorbike, 
etc.) and predict their dynamic evolution. Many applications aimed at improving road safety 
could be designed on the basis of such a reliable perception system: Adaptative Cruise Control 
(ACC), Stop’n’Go, Emergency braking, Collision Mitigation. Various operating modes can be 
introduced for any of these applications, from the instrumented mode that only informs the driver of 
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activators (brake, throttle, steering wheel). The warning mode is an intermediate interesting mode 
that warn the driver of an hazard and is intended to alert the driver in advance to start a 
manoeuver before the accident occurs. 
Various sensors can be used to perform obstacle detection. 2D laser scanner (Mendes 2004) 
provides centimetric positioning but some false alarms can occur because of the dynamic 
pitching of the vehicle (from time to time, the laser plane collides with the ground surface 
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designed to perform fusion between 2D laser scanner and stereovision that takes into 
account their complementary features.  

3. Stereovision Framework 
3.1 The "v-disparity" framework 
This section deals with the stereovision framework. Firstly a modeling of the stereo sensor, 
of the ground and of the obstacles is presented. Secondly details about a possible 
implementation are given.
Modeling of the stereo sensor: The two image planes of the stereo sensor are supposed to 
belong to the same plane and are at the same height above the ground (see Fig. 1). This camera 
geometry means that the epipolar lines are parallel. The parameters shown on Fig. 1 are: 

· s the angle between the optical axis of the cameras and the horizontal, 
·h is the height of the cameras above the ground, 
·b is the distance between the cameras (i.e. the stereoscopic base). 

(Ra) is the absolute coordinate system, and Oa lies on the ground.  In the camera coordinate 
system (Rci)  ( i equals l (left) or r (right) ), the position of a point in the image plane is given 
by its coordinates (ui,vi). The image coordinates of the projection of the optical center will be 
denoted by (u0,v0), assumed to be at the center of the image. The intrinsic parameters of the 
camera are f (the focal length of the lens), tu and tv (the size of pixels in u and v). We also use 

u=f/tu and v=f/tv. With the cameras in current use we can make the following 
approximation: u v= .
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Using the pin-hole camera model, a projection on the image plane of a point P(X,Y,Z) in (Ra)
is expressed by: 
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On the basis of Fig. 1, the transformation from the absolute coordinate system to the right 
camera coordinate system is achieved by the combination of a vector translation ( Yht −= and 

( )Xbb 2/= ) and a rotation around X , by an angle of –θ . The combination of a vector 
translation ( Yht −= and ( )Xbb 2/−= ) and a rotation around X , by an angle of –θ  is the 
transformation from the absolute coordinate system to the left camera coordinate system. 

Fig. 1. The stereoscopic sensor and used coordinate systems. 

Since the epipolar lines are parallel, the ordinate of the projection of the point P on the left or 
right image is vr = vl = v, where: 
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Moreover, the disparity Δ  of the point P is: 
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Modeling of the ground: In what follows the ground is modeled as a plane with equation: 
Z=aY+d. If the ground is horizontal, the plane to consider is the plane with equation Y=0.
Modeling of the obstacles: In what follows any obstacle is characterized by a vertical plane 
with equation Z = d.
Thus, all planes of interest (ground and obstacles) can be characterized by a single equation: 
Z = aY+d. 
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The image of planes of interest in the "v-disparity" image: From (2) and (3), the plane with 
the equation Z = aY+d in (Ra) is projected along the straight line of equation (1) in the "v-
disparity" image: 
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N.B.: when a = 0 in equation (1), the equation for the projection of the vertical plane with the 
equation Z = d is obtained: 
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When a , the equation of the projection of the horizontal plane with the equation Y = 0 is 
obtained:
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Thus, planes of interest are all projected as straight lines in the “v-disparity” image. 
The “v-disparity” framework can be generalized to extract planes presenting roll with 
respect to the stereoscopic sensor. This extension allows to extract any plane in the scene. 
More details are given in (Labayrade, 2003 a).

3.2 Exemple of implementation 

"v-disparity" image construction: A disparity map is supposed to have been computed from the 
stereo image pair (see Fig. 2 left). This disparity map is computed taking into account the 
epipolar geometry; for instance the primitives used can be horizontal local maxima of the 
gradient; matching can be local and based on normalized correlation around the local maxima (in 
order to obtain additional robustness with respect to global illumination changes).
The “v-disparity” image is line by line the histogram of the occurring disparities (see Fig. 2 
right). In what follows it will be denoted as Iv .
Case of a flat-earth ground geometry: robust determination of the plane of the ground: 
Since the obstacles are defined as objects located above the ground surface, the 
corresponding surface must be estimated before performing obstacle detection. 

Fig. 2. Construction of the grey level ”v-disparity” image from the disparity map. All the 
pixels from the disparity map are accumulated along scanning lines. 
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When the ground is planar, with for instance the following mean parameter values of the 
stereo sensor: 

· = 8.5°, 
·h = 1.4 m, 
·b = 1 m,  

the plane of the ground is projected in Iv  as a straight line with mean slope 0.70. The 
longitudinal profile of the ground is therefore a straight line in Iv . Robust detection of this 
straight line can be achieved by applying a robust 2D processing to Iv . The Hough 
transform can be used for example. 
Case of a non flat-earth ground geometry: The ground is modeled as a succession of 
parts of planes. As a matter of fact, its projection in IvΔ is a piecewise linear curve. 
Computing the longitudinal profile of the ground is then a question of extracting a 
piecewise linear curve in IvΔ. Any robust 2D processing can be used. For instance it is still 
possible to use the Hough Transform. The k highest Hough Transform values are retained 
(k can be taken equal to 5) and correspond to k straight lines in IvΔ. The piecewise linear 
curve researched is either the upper (when approaching a downhill gradient) or the lower 
(when approaching a uphill gradient) envelope of the family of the k straight lines 
generated. To choose between these two envelope, the following process ca be performed. 
IvΔ is investigated along both curves extracted and a score is computed for each: for each 
pixel on the curve, the corresponding grey level in IvΔ is accumulated. The curve is chosen 
with respect to the best score obtained. Fig. 3 shows how this curve is extracted. From left 
to right the following images are presented: an image of the stereo pair corresponding to a 
non flat ground geometry when approaching an uphill gradient; the corresponding IvΔ
image; the associated Hough Transform image (the white rectangle show the research 
area of the k highest values); the set of the k straight lines generated; the computed 
envelopes, and the resulting ground profile extracted. 

Fig. 3. Extracting the longitudinal profile of the ground in the case of a non planar geometry 
(see in text for details). 

Evaluation of the obstacle position and height: With the mean parameter values of the 
stereo sensor given above for example, the plane of an obstacle is projected in Iv  as a 
straight line nearly vertical above the previously extracted ground surface. Thus, the 
extraction of vertical straight lines in Iv  is equivalent to the detection of obstacles. In this 
purpose, an histogram that accumulates all the grey values of the pixels for each column of 
the Iv  image can be built; then maxima in this histogram are looked for. It is then possible to 
compute the ordinate of the contact point between the obstacle and the ground surface 
(intersection between the ground profile and the obstacle line in the “v-disparity” image, see 
Fig. 4). The distance D between the vehicle and the obstacle is then given by: 

( )( )
Δ
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where vr is the ordinate of the ground-obstacle contact line in the image. 
The height of the obstacle is given by the height of the straight line segment in the “v-
disparity” image (see Fig. 4). The lateral position and left and right border of the obstacle 
can be estimated by similar processing in the “u-disparity” image (The “u-disparity” image 
is column by column the histogram of the occurring disparities). Thus, a target detected by 
stereovision is characterized by its (X,Z) coordinates, its height and its width. 
Moreover, a dynamic estimation of the sensor pitch θ can be obtained from the horizon line, 
at each fame processed: 

−=
α

θ horvv0arctan  (8) 

where vhor  is the ordinate of the horizon line. Since the horizon line belongs to the ground 
surface and is located at infinite distance (which corresponds to nil disparity), vhor is the 
ordinate of the point located on the ground profile for a nil disparity (see Fig. 4). 

Fig. 4. Extracting obstacles and deducing obstacle-ground contact line and horizon line. 

Practical good properties of the algorithm:  It should be noticed that the algorithm is able to 
detect any kind of obstacles. Furthermore, all the information in the disparity map is 
exploited and the accumulation performed increases the density of the alignments in Iv .
Any matching error that occur when the disparity map is computed causes few problems as 
the probability that the points involved will generate coincidental alignments in Iv  is low. 
As a matter of fact, the algorithm is able to perform accurate detection even in the event of a 
lot of noise or matching errors, and when there is only a few correct matches or a few 
amount of correct data in the images: in particular in night condition when the majority of 
the pixels are very dark. Eventually, the algorithm works whatever the process used for 
computing the disparity map (see (Scharstein, 2001)) or for processing the "v-disparity" 
image. Eventually, as detailed in (Labayrade, 2003 b), it is possible in a two-stages process to 
improve the disparity map and remove a lot of false matches. 

4. Laser Scanner Raw Data Processing 
The 2D laser scanner provides a set of laser impacts on the scanned plane: each laser point is 
characterized by an incidence angle and a distance which corresponds to the distance of the 
nearest object in this direction (see Fig. 6). From these data, a set of clusters must be built, 
each cluster corresponding to an object in the observed scene.  
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Initially, the first laser impact defines the first cluster. For all other laser points, the goal  is 
to know if they are a membership of the existent cluster or if they belong to a new cluster. In 
the literature, a great set of distance functions can be found for this purpose.  The chosen 
distance Di,j must comply with the following criteria 

Firstly, this function Di,j must give a result scaled between 0 and 1. The value 0 indicates 
that the measurement i is a member of the cluster j,

Secondly, the result must be above 1 if the measurement is out of the cluster j,
Finally, this distance must have the properties of the distance functions. 

Fig. 5. Clustering of a measurement. 

The distance function must also use both cluster and measurement covariance matrices. 
Basically, the chosen function computes an inner distance with a normalisation part build 
from the sum of the outer distances of a cluster and a measurement. Only the outer distance 
uses the covariance matrix: 

( )( )
( ) ( )XXX

XX
D

X

t

ji −+−
−−

=
μ

μμ

μ
,

         (9) 

In the normalisation part, the point Xμ  represent the border point of a cluster i (centre μ). 
This point is localised on the straight line between the cluster i (centre μ) and the 
measurement j (centre X). The same border measurement is used with the cluster. The 
computation of Xμ  and XX  is made with the covariance matrices Rx and Pμ. Pμ and Rx are 
respectively the cluster covariance matrix and the measurement covariance matrix. The 
measurement covariance matrix is given from its polar covariance representation (Blackman 
1999) with ρ0 the distance and θ0 the angle:  
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where vr is the ordinate of the ground-obstacle contact line in the image. 
The height of the obstacle is given by the height of the straight line segment in the “v-
disparity” image (see Fig. 4). The lateral position and left and right border of the obstacle 
can be estimated by similar processing in the “u-disparity” image (The “u-disparity” image 
is column by column the histogram of the occurring disparities). Thus, a target detected by 
stereovision is characterized by its (X,Z) coordinates, its height and its width. 
Moreover, a dynamic estimation of the sensor pitch θ can be obtained from the horizon line, 
at each fame processed: 

−=
α

θ horvv0arctan  (8) 

where vhor  is the ordinate of the horizon line. Since the horizon line belongs to the ground 
surface and is located at infinite distance (which corresponds to nil disparity), vhor is the 
ordinate of the point located on the ground profile for a nil disparity (see Fig. 4). 

Fig. 4. Extracting obstacles and deducing obstacle-ground contact line and horizon line. 

Practical good properties of the algorithm:  It should be noticed that the algorithm is able to 
detect any kind of obstacles. Furthermore, all the information in the disparity map is 
exploited and the accumulation performed increases the density of the alignments in Iv .
Any matching error that occur when the disparity map is computed causes few problems as 
the probability that the points involved will generate coincidental alignments in Iv  is low. 
As a matter of fact, the algorithm is able to perform accurate detection even in the event of a 
lot of noise or matching errors, and when there is only a few correct matches or a few 
amount of correct data in the images: in particular in night condition when the majority of 
the pixels are very dark. Eventually, the algorithm works whatever the process used for 
computing the disparity map (see (Scharstein, 2001)) or for processing the "v-disparity" 
image. Eventually, as detailed in (Labayrade, 2003 b), it is possible in a two-stages process to 
improve the disparity map and remove a lot of false matches. 

4. Laser Scanner Raw Data Processing 
The 2D laser scanner provides a set of laser impacts on the scanned plane: each laser point is 
characterized by an incidence angle and a distance which corresponds to the distance of the 
nearest object in this direction (see Fig. 6). From these data, a set of clusters must be built, 
each cluster corresponding to an object in the observed scene.  

Obstacle Detection Based on Fusion Between Stereovision and 2D Laser Scanner 97 

Initially, the first laser impact defines the first cluster. For all other laser points, the goal  is 
to know if they are a membership of the existent cluster or if they belong to a new cluster. In 
the literature, a great set of distance functions can be found for this purpose.  The chosen 
distance Di,j must comply with the following criteria 

Firstly, this function Di,j must give a result scaled between 0 and 1. The value 0 indicates 
that the measurement i is a member of the cluster j,

Secondly, the result must be above 1 if the measurement is out of the cluster j,
Finally, this distance must have the properties of the distance functions. 

Fig. 5. Clustering of a measurement. 

The distance function must also use both cluster and measurement covariance matrices. 
Basically, the chosen function computes an inner distance with a normalisation part build 
from the sum of the outer distances of a cluster and a measurement. Only the outer distance 
uses the covariance matrix: 

( )( )
( ) ( )XXX

XX
D

X

t

ji −+−
−−

=
μ

μμ

μ
,

         (9) 

In the normalisation part, the point Xμ  represent the border point of a cluster i (centre μ). 
This point is localised on the straight line between the cluster i (centre μ) and the 
measurement j (centre X). The same border measurement is used with the cluster. The 
computation of Xμ  and XX  is made with the covariance matrices Rx and Pμ. Pμ and Rx are 
respectively the cluster covariance matrix and the measurement covariance matrix. The 
measurement covariance matrix is given from its polar covariance representation (Blackman 
1999) with ρ0 the distance and θ0 the angle:  

= 22

22

000

000

yyx

yxx
xR

σσ
σσ        (10) 

where, using a first order expansion: 

00
2

0
22 ²sin²²cos

000
θρσθσσ θρ +=x

00
2

0
22 ²cos²²sin

000
θρσθσσ θρ +=y

(11)



98 Mobile Robots, Perception & Navigation 

[ ]²2sin
2
1

0
22

0
2

0000
ρσσθσ θρ −=yx

2
0ρσ and 2

0θσ are the variances in both distance and  angle of each measurement provided by 

the laser scanner. From this covariance matrix, the eigenvalues σ and the eigenvectors V are 
extracted. A set of equations for both ellipsoid cluster and measurement modelling and line 
between the cluster centre μ and the laser measurement X is then deduced: 
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and
Then equation (9) is used with Xμ to know if a laser point belongs to a cluster.  

Fig.  6. Example of a result of autonomous clustering (a laser point is symbolized by a little 
circle, and a cluster is symbolized by a black ellipse). 

Fig. 5 gives a visual interpretation of the used distance for the clustering process. Fig. 6 gives 
an example of a result of autonomous clustering from laser scanner data. Each cluster is 
characterized by its position, its orientation, and its size along the two axes. 
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5. Multi-Objects Association 

Once targets have been generated from stereovision or from laser scanner, a multi-objects 
association algorithm is needed to estimate the dynamic state of the obstacles and to 
monitor appearance and disappearance of tracks. The position of previously perceived 
objects is predicted at the current time using Kalman Filtering. These predicted objects are 
already known objects and will be denoted in what follows by Yj. Perceived objects at the 
current time will be denoted by Xi. The proposed multi-objects association algorithm is 
based on the belief theory introduced by Shafer (Shafer, 1976). 

5.1 Generalities 

In a general framework, the problem consist in identifying an object designated by a 
generic variable X among a set of hypotheses Yi. One of these hypotheses is supposed 
to be the solution. The current problem consists in associating perceived objects Xi to 
known objects Yj. Belief theory allows to assess the veracity of Pi propositions 
representing the matching of the different objects.  
A magnitude allowing the characterization of a proposition must be defined. This 
magnitude is the basic belief assignment (mass mΘ( )) defined on [0,1]. This mass is very 
close to the probabilistic mass with the difference that it is not only shared on single 
elements but on all elements of the definition referential 2Θ= { A/A⊆Θ} = {∅, Y1, Y2 ,..., Yn,
Y1∪Y2 ,…,Θ}. This referential is built through the frame of discernment { }nYYY ,,, 21=Θ , which 
regroups all admissible hypotheses, that in addition must be exclusive. (Yi∩Yj=∅, ∀ i ≠ j).
This distribution is a function of the knowledge about the source to model. The whole mass 
obtained is called “basic belief assignment”. The sum of these masses is equal to 1 and the 
mass corresponding to the impossible case m(∅) must be equal to 0. 

5.2. Generalized combination and multi-objects association  

In order to succeed in generalizing the Dempster combination rule and thus reducing its 
combinatorial complexity, the reference frame of definition is limited with the constraint 
that a perceived object can be connected with one and only one known object.  
For example, for a detected object, in order to associate among three known objects,  frame 
of discernment is: 

{ }
"objectsamethebetosupposedareYandX" that meansYwhere

,*Y,Y,Y

ii

321=

In order to be sure that the frame of discernment is really exhaustive, a last hypothesis 
noted “*” is added.  This one can be interpreted as an association of a perceived object 
with any of the known objects. In fact each Yj represents a local view of the world and 
the “*” represents the rest of the world.  In this context, “*” means well: “an object is 
associated with nothing in the local knowledge set”.
The total ignorance is represented by the hypothesis Θ which is the disjunction of all 
the hypotheses of the frame of discernment.  The conflict is given by the hypothesis ∅
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This distribution is a function of the knowledge about the source to model. The whole mass 
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{ }
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,*Y,Y,Y
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321=

In order to be sure that the frame of discernment is really exhaustive, a last hypothesis 
noted “*” is added.  This one can be interpreted as an association of a perceived object 
with any of the known objects. In fact each Yj represents a local view of the world and 
the “*” represents the rest of the world.  In this context, “*” means well: “an object is 
associated with nothing in the local knowledge set”.
The total ignorance is represented by the hypothesis Θ which is the disjunction of all 
the hypotheses of the frame of discernment.  The conflict is given by the hypothesis ∅
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which corresponds to the empty set (since the hypotheses are exclusive, their 
intersections is empty). 
A distribution of masses made up of the masses is obtained:  

)(, jji Ym : mass associated with the proposition « Xi and Yj. are supposed to be the 
same object », 

)(, jji Ym : mass associated with the proposition « Xi and Yj. are not supposed to be 
the same object », 

)( ,, jijim Θ : mass representing ignorance, 
(*),.im : mass representing the reject: Xi is in relation with nothing. 

In this mass distribution, the first index i denotes the processed perceived objects and the 
second index j the known objects (predictions). If one index is replaced by a dot, then the 
mass is applied to all perceived or known objects according to the location of this dot. 
Moreover, if an iterative combination is used, the mass (*),.im  is not part of the initial mass 
set and appears only after the first combination. It replaces the conjunction of the combined 
masses )(, jji Ym . By observing the behaviour of the iterative combination with n mass sets, a 
general behaviour can be seen which enables to express the final mass set according to the 
initial mass sets. This enables to compute directly the final masses without any recurrent 
stage. For the construction of these combination rules, the work and a first formalism given 
in (Rombaut, 1998) is used. The use of an initial mass set generator using the strong 
hypothesis: “an object can not be in the same time associated and not associated to another object”
allows to obtain new rules. These rules firstly reduce the influence of the conflict (the 
combination of two identical mass sets will not produce a conflict) and secondly the 
complexity of the combination. The rules become: 
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( ) ( ) 343,.,. HifEEKm ii −⋅=θ         (23) 
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From each mass set, two matrices cr
i ,.Μ and cr

j.,Μ  are built which give the belief that a perceived 
object is associated with a known object and conversely. The sum of the elements of each 
column is equal to 1 because of the re-normalization.  
The resulting frames of discernment are: 

{ }jjnjjj YYYY *,,,2,1., ,,,,=Θ

and    { },*,2,1,,. ,,,, imiiii XXXX=Θ

The first index represents the perceived object and the second index the known object. The 
index “*” is the notion of “emptiness” or more explicitly “nothing”. With this hypothesis, it 
can be deduced if an object has appeared or disappeared.  
The following stage consists in establishing the best decision on association using these two 
matrices obtained previously. Since a referential of definition built with singleton 
hypotheses is used, except for Θ and *, the use of credibilistic measure will not add any 
useful information. This redistribution will simply reinforce the fact that a perceived object 
is really in relation with a known object. This is why the maximum of belief on each column 
of the two belief matrices is used as the decision criterion:  

][)( ,,.
Cr

jiji MMaxYd =          (27) 

This rule answers the question “which is the known object Yj in relation with the perceived object 
Xi”? The same rule is available for the known objects: 

][)( ,.,
Cr

ji
i

j MMaxXd =                                 (28) 

Unfortunately, a problem appears when the decision obtained from a matrix is ambiguous 
(this ambiguity quantifies the duality and the uncertainty of a relation) or when the 
decisions between the two belief matrices are in conflict (this conflict represents antagonism 
between two relations resulting each one from a different belief matrix). Both problems of 
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conflicts and ambiguities are solved by using an assignment algorithm known under the 
name of the Hungarian algorithm (Kuhn, 1955 ; Ahuja, 1993). This algorithm has the 
advantage of ensuring that the decision taken is not “ good” but “the best”. By the “best”, we 
mean that if a known object has some defective or poor sensor to perceive it, then it is 
unlikely to know what this object corresponds to, and therefore ensuring that the association 
is good is a difficult task. But among all the available possibilities, we must certify that the 
decision is the “best” of all possible decisions.  
Once the multi-objects association has been performed, the Kalman filter associated to each 
object is updated using the new position of the object, and so the dynamic state of each 
object is estimated. 

6. Fusion 
So far, the chapter has described the way in which the two sensors (stereovision and 2D 
laser scanner) are independently used to perform obstacle detection. Tables 1 and 2 remind 
the advantages and drawbacks of each sensor. 

Detection
range

Obstacle position 
accuracy 

Frequency False alarms 
occurrence 

Stereovision 
Short to 
medium range 
(up to 50 m). 

Decreases when 
the obstacle 
distance increases.

Video frame 
rate.

When the 
disparity map is 
of poor quality. 

Laser scanner 

Medium to 
long range (up 
to 120 m). 

Usually a few cm. 
Independent to 
the obstacle 
distance. 

Usually higher 
than the 
stereovision. 

When the laser 
plane collides 
with the ground 
surface.

Table 1. Features of the stereovision and 2D laser scanner sensors. 

Detection
failure

occurrence 

Ground geometry Width, height, depth, 
orientation

Stereovision 

Adverse lighting 
conditions, very 
low obstacles 
(<30 cm). 

Provide ground 
geometry, including 
roll, pitch, 
longitudinal profile.

Provide width and height 

Laser Scanner 
When the laser 
plane passes 
above obstacle. 

Cannot provide 
ground geometry. 

Provide orientation, width and 
depth (when the side of the 
obstacle is visible) 

Table 2. Features of the stereovision and 2D laser scanner sensors (continued). 

From Tables 1 and 2, some remarks can be made. Laser scanner and stereovision are 
complementary sensors: laser scanner is more accurate but a lot of false alarms can occur 
when the laser plane collides with the ground (see Fig. 7); stereovision is less accurate but 
can distinguish the ground from an obstacle, because it can provide a 3D modelling of the 
scene. The question is then to know how the data provided by stereovision and laser 
scanner can be combined and/or fused together in order to obtain the best results.  

Obstacle Detection Based on Fusion Between Stereovision and 2D Laser Scanner 103 

Fig. 7. “v-disparity” view of the laser scanner plane. a) An obstacle is detected. b) The ground 
is viewed as an obstacle, due to sensor pitch. 
In this section we discuss several possible cooperative fusion schemes.  

6.1 Laser scanner raw data filtering and clustering 

The idea is here to use the geometric description of the ground provided by stereovision in 
order to filter the laser raw data or clustered objects which could be the result of the collision 
of the laser plane with the ground surface. 
Two possibilities are available : 

. Strategy 1: firstly, remove laser points that could be the result of the collision of the 
laser plane with the ground surface from the laser raw data; secondly, cluster laser 
points from the filtered raw data (see Fig. 8), 

. Strategy 2: firstly, cluster impacts from the laser raw data; secondly, remove clustered 
objects that collide partially or totally the ground surface (see Fig. 9).  

Fig. 8. Laser scanner raw data filtering and clustering. Strategy 1. 

Fig. 9. Laser scanner raw data filtering and clustering. Strategy 2. 
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Fig. 9. Laser scanner raw data filtering and clustering. Strategy 2. 
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6.2 Simple redundant fusion  

At this step, filtered objects from laser scanner and stereovision are available. The idea of the 
first fusion strategy is very simple. It consists in introducing redundancy by matching the 
set of obstacles detected by stereovision with the set of obstacles detected by laser scanner. If 
an obstacle detected by laser scanner is located at the same position than an obstacle 
detected by stereovision, this obstacle is supposed to be real, otherwise it is removed from 
the set of obstacles (see Fig. 10). However this scheme provide no information about the 
dynamic states (velocities, etc.) of the obstacles. 

Fig. 10. Simple redundant fusion. 

6.3 Fusion with global association 

More complex strategies consist in introducing global association, using the algorithm 
presented in section 5. The idea consists in: a) performing multi-obstacles tracking and 
association for each sensor in order to obtain multi-tracks for each sensor; b) performing 
multi-track association between the tracks from the stereovision and the tracks from the 
laser scanner; c) fusing the tracks together in order to increase their certainty. Fig. 11 
presents a fusion scheme including tracking and association for both stereovision and laser 
scanner sensor,  and global fusion. 

Fig. 11. Fusion with tracking and global association. 

From our experiments, it seems that the tracking is difficult to perform for the stereovision 
tracks when the obstacles are beyond 15 meters, because of the unaccuracy of the 
positioning provided by the stereovision and resulting in noisy speed used in the linear 
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Kalman filter. Another strategy is then to perform multi-obstacles tracking and association 
for the single laser scanner, and then to check whether an obstacle has been detected by the 
stereovision at the tracked positions. If so, the certainty about the track is increased. Fig. 12 
presents the corresponding fusion scheme.  
Fig. 13 shows another scheme which consists in using the stereovision only to confirm the 
existence of an obstacle tracked by the laser scanner: the stereovision detection is performed 
only at the positions corresponding to objects detected by the laser scanner, in order to save 
computational time (indeed the stereovision will only be performed in the part of the image 
corresponding to the position of obstacles detected by laser scanner). Then the existence of 
an obstacle is confirmed if the stereovision detects an obstacle at the corresponding position. 
This scheme presents the advantage to work with complex ground geometry since this 
geometry can be estimated locally around the position of the tracked laser objects. 
For each fusion scheme, the resulting positioning of each obstacle is the centimetric 
positioning provided by laser scanner. The estimated velocity is estimated through a linear 
Kalman filter applied on laser clustered data. Orientation, width and depth come from laser 
scanner, and  height comes from stereovision. 

Fig. 12. Fusion with tracking of laser objects. 

Fig. 13. Fusion with laser scanner tracking and confirmation by stereovision. 
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6.5 Stereovision-based obstacle confirmation criteria 

To confirm the existence of an obstacle in a region of interest given by the projection of a 
laser-tracked object onto the image, three approaches can be used. 
Number of obstacle-pixels: The first approach consists in classifying the pixels of the region 
of interest. A local ground profile is first extracted using the “v-disparity” iamge. 
Afterwards, the (ur, ,v) coordinates of each pixel are analyzed to determine whether it 
belongs to the ground surface. If not, the pixel is classified as an obstacle-pixel. At the end of 
this process, every pixel in the region of interest has been classified as ground or obstacle. 
The number of obstacle-pixels gives a confidence on the existence of an object over the 
ground surface. Therefore, an obstacle is confirmed if the confidence is above a threshold. 
The obstacle-pixels criterion has the advantage to avoid any assumption on the obstacles to 
detect. Moreover, this method gives a confidence, in an intuitive way. However, as it considers 
each pixel individually, it can be strongly influenced by errors in the disparity map. 
Prevailing alignment orientation: Assuming that the obstacles are seen as vertical planes by the 
stereoscopic sensor, an other confirmation criterion can be defined (Fig. 4 and 7 a). The prevailing 
alignment of pixels in the local “v-disparity” image is extracted using the Hough transform. The 
confirmation of the track depends on the orientation of this alignment: a quite vertical alignment 
corresponds to an obstacle. Other alignments correspond to the ground surface. The Prevailing 
Alignment criterion relies on a global approach in the region of interest (alignment seeking). This 
makes it more robust with respect to the errors in the disparity map. 
Laser points altitude: Many false detections are due to the intersection of the laser plane 
with the ground (see Fig. 4). The knowledge of the longitudinal ground geometry allows to 
deal with such errors. Therefore, the local profile of the ground is estimated through “v-
disparity” framework. The altitude of the laser points is then compared to the altitude of the 
local ground surface. An obstacle is confirmed if this altitude is high enough. 

7. Experimental Results
7.1 Experimental protocol 

The algorithm has been implemented on one of the experimental vehicle of LIVIC to assess their 
behaviour in real conditions. The stereoscopic sensor is composed of two SonyTM 8500C cameras 
featuring ComputarTM Auto Iris 8.5 mm focal length. Quarter PAL 8 bits gray-scale images are 
grabbed every 40 ms. The baseline is b = 1 m, the height h = 1.4 m and the pitch  = 5°. The laser 
sensor is a SickTM scanner which measures 201 points every 26 ms, with a scanning angular field 
of view of 100 °. It is positioned horizontally 40 cm over the ground surface. The whole algorithm 
runs at video frame rate on a dual Intel XeonTM 1.8 GHz personal computer. 

7.2 Results

The main objective is to obtain a correct detection rate and almost no false detections. 
Several aspects must be highlighted: the global performances (rates of non detections and 
false detections), the robustness of the criteria with respect to errors in the local disparity 
map, and the ability to work with various types of obstacles. 
False detections: To assess the false detection rate, the test vehicle has been driven on a very 
bumpy and dent parking area to obtain a large number of false detections due to the 
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intersection of the laser plane with the ground surface. The results are reported in Table 3 
(7032 images have been processed). 
False detections are globally correctly invalidated using the obstacle-pixels and prevailing 
alignment criteria. The laser points altitude criterion provides more false 

 Laser 
scanner

Number of 
obstacle-pixels 

Prevailing alignment 
orientation

Laser points 
altitude

False Detections 781 3 10 167 
Table 3. Number of false detections with the different criteria. 

detections than expected, because of its high sensibility to the calibration errors between 
stereovision and laser scanner. Indeed, a slight error in the positioning of the scanner 
relative to the cameras can lead to a serious error in laser points projection, especially at long 
ranges. The other criteria are not dramatically affected by this issue. Most of the remaining 
false detection occur when the local ground surface is uniform, without any texture 
allowing to match pixels. So they can be removed using simple heuristics as: no obstacle can 
be confirmed without enough information in the region of interest. It hardly affects the 
detection rate, and the false detection rate of obstacle-pixels criterion almost falls to zero. 
The main source of errors for the prevailing alignment algorithm comes from cases where 
the ground surface has non relevant texture, but where the region of interest contains a 
small part of a nearby object (wall, vehicle, . . . ). 
Detection failure: The rate of correct laser detections that have been confirmed by the 
different criteria has been assessed. To check, at the same time, that it can indifferently deal 
with various kinds of obstacles, this test has been realized with two different obstacles: a 
vehicle followed by the instrumented vehicle (1268 images processed), and a pedestrian 
crossing the road at various distances (1780 images processed). The confirmation rate of 
each criterion (number of obstacles detected by the laser / number of obstacles confirmed) 
for these two scenarios is reported in Table 4. The three criteria can successfully confirm 
most of the detections with both kinds of obstacles.) d) 

 Number of obstacle-
pixels

Prevailing alignment 
orientation

Laser points 
altitude

Car 97.4 % 98.5 % 95.2 % 
Pedestrian 91.9 % 94.9 % 97.8 % 

Table 4. Rate of correct detection successfully confirmed. 

Conclusion of the comparison: None of the presented obstacle confirmation criteria 
really outperforms the others. The obstacle-pixels is based on an intuitive approach and 
can deal with any types of obstacles. But it is seriously influenced by the quality of the 
disparity map. The more global feature of the prevailing alignment criterion makes it 
more robust to this kind of errors. 
The laser points altitude is not sufficiently reliable to be exploited alone. Thus an efficient 
architecture for the application consists in using the laser points altitude to invalidate some 
false laser targets before the tracking step. Then the tracked obstacles are confirmed using 
obstacle-pixels criterion. 
Performances of the perception system embedded in a collision-mitigation system: a
collision mitigation system has been designed on the basis of the fusion scheme described 
above. This collision mitigation system can be divided into three sub-systems and a decision 
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6.5 Stereovision-based obstacle confirmation criteria 
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intersection of the laser plane with the ground surface. The results are reported in Table 3 
(7032 images have been processed). 
False detections are globally correctly invalidated using the obstacle-pixels and prevailing 
alignment criteria. The laser points altitude criterion provides more false 
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architecture for the application consists in using the laser points altitude to invalidate some 
false laser targets before the tracking step. Then the tracked obstacles are confirmed using 
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Performances of the perception system embedded in a collision-mitigation system: a
collision mitigation system has been designed on the basis of the fusion scheme described 
above. This collision mitigation system can be divided into three sub-systems and a decision 
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unit that interconnects these sub-systems. The first sub-system is the very obstacle detection 
system, implementing the number of obstacle-pixels criteria for confirmation; the second 
sub-system is a warning area generation system that predict the path the vehicle will follow 
and that uses an odometer and an inertial sensor. The decision unit checks whether an 
obstacle is located in the warning area, and whether its Time To Collision (i.e. distance / 
relative speed) is under 1 second; if so, a warning message is sent to the third sub-system. 
The third sub-system is an automatic braking system, based on an additional brake circuit 
activated when a warning message is received. 
The detection rate has been tested on test tracks on the basis of different driving scenarios, 
including cross roads and suddenly appearing obstacles. The detection rate is 98.9 %. 
Then, to assess the false alarm rate, this collision mitigation system has been tested in real 
driving conditions, on different road types: freeway, highways, rural roads and downtown. 
All these tests took place on the French road network around Paris. The automatic braking 
system was turned off and only the warning messages were checked. In normal driving 
situations, an automatic system should never be launched. Each time an emergency braking 
would have been launched is thus considered as a false alarm. The tests have been carried 
out under various meteorological situations: sunny, cloudy, rainy, and under various traffic 
situations: low traffic to dense traffic. 
403 km have been ridden on freeways. The velocity was up to 36 m / s. No false alarm was 
observed during these tests. Fig. 14 (a) and (b) presents some typical freeway situations 
under which the system has been tested. 78 km have been ridden on highways and 116 km 
on rural roads. The velocity was up to 25 m / s. No false alarm was observed during these 
tests. Fig. 14 (c) (d) presents some typical highway situations, and Fig. 14 (e) (f) some rural 
road situations under which the system has been tested. The downtown tests are certainly 
the most challenging tests since the context is the more complex. 140 km have been ridden in 
downtown and in urban areas. The velocity was up to 14 m/s. A false alarm was observed 
twice. The first one is due to a matching error during association, and the second one is due 
to a false target detected by stereovision on a uphill gradient portion. Fig. 15 presents some 
typical urban situations under which the system has been tested.  
For the 737 km ridden, two false alarms were observed. The false alarm rate is thus 2.7 false 
alarms for 1000 km. No false alarm was observed either on freeways or on highways and 
rural roads. The two remaining false alarms were observed in downtown. Thus, the false 
alarm rate in downtown is thus 1.4 false alarm for 100 km. These results are quite promising, 
even if the false alarm rate must be reduced by a factor of about 1000 before the system can 
be envisaged to be put in the hands of common driver. 

Fig. 14. Typical images of freeway and rural road situations. (a) truck following on a 
freeway, dense traffic - (b) freeway with low traffic - (c)(d) peri-urban highway - (e)(f) rural 
road with tight uphill gradient. 
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8. Trends and Future Research 
Experiments of the proposed system give the feeling that an accurate and totally robust and 
reliable obstacle detection system can be designed on the basis of the techniques described 
in this chapter. Some tuning of the different modules are required to still improve the 
performances: for instance, combination of various confirmation criteria should allow to 
avoid any false alarm. Yet, some issues still need to be tackled, such as the  auto-calibration  
of   the  set  of  sensors.   Moreover,  laser  scanner  remain  a  quite. 

Fig. 15. Typical images of urban situations. (a) pedestrian crossing - (b) road works - (c) car driving 
out of parking lot - (d) car and bus traffic - (e) narrow road and tight curve - (f) tight curve, non flat 
road - (g) dense traffic - (h) road with high roll - (i) narrow paved road, tight curve. 

Expensive device. Designing a medium range cheap obstacle detection system featuring high 
performances is still a challenge for the next years but should be possible. The key could be to use 
only the stereovision sensor and to implement various competitive stereovision algorithms 
designed to confirm each other. On a global view, a first algorithm could generate a set of targets 
that would be tracked along time and confirmed by the other algorithms. The confirmation criteria 
presented above could be used for this purpose. To reach acceptable accuracy, sub-pixel analysis 
should be used. Auto-calibration techniques are also required, above all for long baseline stereo 
sensors. Since stereovision algorithms require massive computations, real-time performance could 
be achieved only at the cost of a dedicated powerful chipset. Once designed, such a chipset should 
be not expansive to produce. Thus, a breakthrough in the field of robotics is foreseeable and would 
result in many applications that can not be considered nowadays because of the dissuasive cost of 
state-of-the-art obstacle detection systems. 
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1. Introduction 
The three-axis tactile sensor has attracted the greatest anticipation for improving 
manipulation because a robot must detect the distribution not only of normal force but also 
of tangential force applied to its finger surfaces (Ohka, M. et al., 1994). Material and stability 
recognition capabilities are advantages of a robotic hand equipped with the three-axis tactile 
sensor (Takeuchi, S. et al., 1994). In peg-in-hole, a robot can compensate for its lack of 
degrees of freedom by optimum grasping force, allowing an object to move between two 
fingers using measured shearing force occurring on the finger surfaces (Brovac, B. at al., 
1996). Also, a micro-robot would be required to remove any object attached to the inside a 
blood-vessel or pipe wall (Guo, S. et al., 1996; Mineta, T. et al., 2001; Yoshida, K. et al., 2002). 
It therefore becomes necessary to measure not only the normal force but also the shearing 
force.
Principle of the three-axis tactile sensor is described in this chapter. The authors have 
produced three kinds of three-axis tactile sensor: one columnar and four conical feelers type, 
none columnar feeler type for micro robots and a hemispherical type for humanoid robotic 
hands. Finally, a tactile information processing is presented to apply it to robotic object-
recognition. The information processing method is based on a mathematical model 
formulated according to human tactile sensation. 

2. Principle of Three-axis Tactile Sensor 
2.1 Optical tactile sensor 
Tactile sensors have been developed using measurements of strain produced in sensing 
materials that are detected using physical quantities such as electric resistance and capacity, 
magnetic intensity, voltage and light intensity (Nicholls, H. R., 1992). The optical tactile 
sensor shown in Fig. 1, which is one of these sensors, comprises an optical waveguide plate, 
which is made of transparent acrylic and is illuminated along its edge by a light source 
(Mott, D. H. et al., 1984; Tanie, K. et al., 1986; Nicholls, H. R., 1990; Maekawa, H. et al., 1992). 
The light directed into the plate remains within it due to the total internal reflection 
generated, since the plate is surrounded by air having a lower refractive index than the 
plate. A rubber sheet featuring an array of conical feelers is placed on the plate to keep the 
array surface in contact with the plate. If an object contacts the back of the rubber sheet, 
resulting in contact pressure, the feelers collapse, and at the points where these feelers 
collapse, light is diffusely reflected out of the reverse surface of the plate because the rubber 
has a higher refractive index than the plate. The distribution of contact pressure is calculated 
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1996). Also, a micro-robot would be required to remove any object attached to the inside a 
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generated, since the plate is surrounded by air having a lower refractive index than the 
plate. A rubber sheet featuring an array of conical feelers is placed on the plate to keep the 
array surface in contact with the plate. If an object contacts the back of the rubber sheet, 
resulting in contact pressure, the feelers collapse, and at the points where these feelers 
collapse, light is diffusely reflected out of the reverse surface of the plate because the rubber 
has a higher refractive index than the plate. The distribution of contact pressure is calculated 
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from the bright areas viewed from the reverse surface of the plate. 
The sensitivity of the optical tactile sensor can be adjusted by texture morphology and 
hardness of the sheet. The texture can be easily made fine with a mold suited for micro-
machining because the texture is controlled by adjusting the process of pouring the rubber 
into the mold. This process enables the production of a micro-tactile sensor with high 
density and sensitivity by using the abovementioned principle of the optical tactile sensor. 
However, this method can detect only distributed pressure applied vertically to the sensing 
surface and needs a new idea to sense the shearing force. In this chapter, the original optical 
tactile sensor is called a uni-axial optical tactile sensor. 
If we produce molds with complex structures to make rubber sheets comprising two types 
of feeler arrays attached to opposite sides of the rubber sheet, it will be possible to improve 
the uni-axial tactile sensor for use in three-axis tactile sensors (Ohka, M. et al., 1995, 1996, 
2004). One of these types is a sparse array of columnar feelers that make contact with the 
object to be recognized; the other is a dense array of conical feelers that maintain contact 
with the waveguide plate. Because each columnar feeler is arranged on several conical 
feelers so that it presses against conical feelers under the action of an applied force, three 
components of the force vector are identified by distribution of the conical feelers’ contact-
areas.
Besides of the abovementioned three-axis tactile sensor comprised of two kinds of feelers, 
there is another design for ease of miniaturization. In the three-axis tactile sensor, the optical 
uni-axial tactile sensor is adopted as the sensor hardware and three-axis force is determined 
by image data processing of conical feeler’s contact-areas to detect three-axis force (Ohka, 
M. et al., 1999, 2005a). In the algorithm, an array of conical feelers is adopted as the texture 
of the rubber sheet. If combined normal and shearing forces are applied to the sensing 
surface, the conical feelers make contact with the acrylic board and are subjected to 
compressive and shearing deformation. The gray-scale value of the image of contact area is 
distributed as a bell shape, and since it is proportional to pressure caused on the contact 
area, it is integrated over the contact area to calculate the normal force. Lateral strain in the 
rubber sheet is caused by the horizontal component of the applied force and it makes the 
contact area with the conical feelers move horizontally. The horizontal displacement of the 
contact area is proportional to the horizontal component of the applied force, and is 
calculated as a centroid of the gray-scale value. Since the horizontal movement of the 
centroid has two degrees of freedom, both horizontal movement and contact area are used 
to detect the three components of the applied force. 

Fig. 1. Principle of an optical uni-axis tactile sensor. 

Optical Three-axis Tactile Sensor 113

Fig.2. One columnar and four conical feeler type three-axis tactile sensor. 

 a) Initial, no force applied b) After force has been applied 
Fig. 3.Three-axis force detection mechanism. 

2.2 One Columnar and Four Conical Feelers Type 
The schematic view shown in Fig. 2 demonstrates the structure of the tactile sensor 
equipped with sensing elements having one columnar and four conical feelers (Ohka, M. et 
al., 1995, 1996, 2004). This sensor consists of a rubber sheet, an acrylic plate, a CCD camera 
(Cony Electronics Co., CN602) and a light source. Two arrays of columnar feelers and 
conical feelers are attached to the detecting surface and the reverse surface of the sensor, 
respectively. The conical feelers and columnar feelers are made of silicon rubber (Shin-Etsu 
Silicon Co., KE1404 and KE119, respectively). Their Young’s moduli are 0.62 and 3.1 MPa, 
respectively.
The sensing element of this tactile sensor comprises one columnar feeler and four conical 
feelers as shown in Fig. 3(a). The conical feelers and columnar feeler are made of silicon 
rubber. Four conical feelers are arranged at the bottom of each columnar feeler. If Fx, Fy and 
Fz are applied to press against these four conical feelers, the vertices of the conical feelers 
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collapse as shown in Fig. 3 (b). The Fx , Fy and Fz were proportional to the x -directional area-
difference, Ax the Ay -directional area-difference, Ay and the area- sum, Az respectively. The 
parameters Ax, Ay and Az are defined below. 
 Ax=S1 S2 S3 + S4 (1)

 Ay = S1 + S2 S3 S4 (2) 

 Az=S1 + S2 + S3 + S4 (3)
Under combined force, the conical feelers are compressed by the vertical component of the 
applied force and each cone height shrinks. Consequently, the moment of inertia of the arm 
length decreases while increasing the vertical force. Therefore, the relationship between the 
area-difference and the horizontal force should be modified according to the area-sum: 

 (4) 

Fig. 4 .Robot equipped with the three-axis tactile sensor. 

where, Fx, Fy and Fz are components of three-axis force applied to the sensing-element’s tip. 
h0 , h and v are constants determined by calibration tests. 

The three-axis tactile sensor was mounted on a manipulator with five degrees of freedom as 
shown in Fig. 4, and the robot rubbed a brass plate with the tactile sensor to evaluate the 
tactile sensor. The robotic manipulator brushed against the brass plate with step-height  = 
0.1 mm to obtain the experimental results shown in Fig. 5. Figures 5(a), (b) and (c) show 
variations in Fz , Fx and the friction coefficient, μ , respectively. The abscissa of each figure 
is the horizontal displacement of the robotic manipulator. As shown in these figures, Fz and 
Fx jump at the step-height position. Although these parameters are convenient for 
presenting the step-height, the variation in Fz is better than that in Fx because it does not 
has a concave portion, which does not exist on the brass surface. Therefore Fz is adopted as 
the parameter to represent step-height.  
It is noted that variation in the friction coefficient, μ , is almost flat while the robot was 
rubbing the tactile sensor on the brass plate at the step-height. This indicates that the tactile 
sensor can detect the distribution of the coefficient of friction because that coefficient should 
be uniform over the entire surface. 
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Fig. 5 Experimental results obtained from surface scanning. 

2.3 None Columnar Feeler Type Three-axis Tactile Sensor for Micro Robots 
In order to miniaturize the three-axis tactile sensor, the optical uni-axial tactile sensor is 
adopted as the sensor hardware because of simplicity and three-axis force is determined by 
image data processing of conical feeler’s contact-areas to detect three-axis force (Ohka, M. et 
al., 1999, 2005a). The three-axis force detection principle of this sensor is shown in Fig. 6. To 
provide a definition for the force direction, a Cartesian coordinate frame is added to the 
figure. If the base of the conical feeler accepts three-axis force, it contacts the acrylic board, 
which accepts both compressive and shearing deformation. Because the light scatters on the 
contact area, the gray-scale value of the contact image acquired by the CCD camera 
distributes as a bell shape, in which the gray-scale intensity is highest at the centroid and 
decreases with increasing distance from the centroid. 
It is found that the gray-scale g(x, y) of the contact image is proportional to the contact 
pressure p(x, y) caused by the contact between the conical feeler and the acrylic board, That is, 
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P(x, y) = Cg (x, y), (5) 

where C and g(x, y) are the conversion factor and the gray-scale distribution, respectively. 
If S is designated as the contact area of the acrylic board and the conical feeler, the vertical 
force, Fz is obtained by integrating the pressure over the contact area as follows: 

 (6) 

If Eq. (5) is substituted for Eq. (6), 

 (7) 

where the integration of g(x, y) over the contact area is denoted as G.
Next, to formulate horizontal components of the force vector Fx and Fy, x- and y- coordinates 
of the centroid of gray-scale value, (XG, YG ) are calculated by 

 (8) 

and

 (9) 

In the integrations, the integration area S can be enlarged as long as it does not invade 
adjacent contact areas, because g(x, y) occupies almost no space outside contact area. Since 
the shearing force induces axial strain in the silicon rubber sheet, the contact area of the 
conical feeler moves in the horizontal direction. The x- and y-components of the movement 
are denoted as ux and uy , respectively. They are variations in the 
abovementioned XG and YG:

, (10) 

 (11) 
where the superscripts (t) and (0)represent current and initial steps, respectively. 
If friction between the silicon rubber and the acrylic board is ignored, x- and y-
directional forces, Fx and Fy are calculated as follows: 

 (12) 

 (13) 
where Kx and Ky are x- and y-directional spring constants of the rubber sheet, respectively. 
Here we examine the relationship between the gray-scale value of the contact image and 
contact pressure on the contact area to validate the sensing principle for normal force. In the 
investigation FEM software (ABAQUS/Standard, Hibbitt, Karlsson & Sorensen, Inc.) was 
used and contact analysis between the conical feeler and the acrylic board was performed. 
Figure 7(a) shows a mesh model of the conical feeler generated on the basis of the obtained 
morphologic data; actually, the conical feeler does not have a perfect conical shape, as shown 
in Fig. 7(a). The radius and height of the conical feeler are 150 and 100 μ m, respectively. 
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Fig. 6. Principle of a none columnar type three-axis tactile sensor. 

Fig. 7. Models for FEM analysis. 

The Young’s modulus of the silicon rubber sheet was presumed to be 0.476 Mpa. The 
Poisson’s ratio was assumed to be 0.499 because incompressibility of rubber, which is 
assumed in mechanical analysis for rubber, holds for the value of Poisson’s ratio. Only one 
quarter of the conical feeler was analyzed because the conical feeler is assumed to be 
symmetric with respect to the z-axis. Normal displacements on cutting planes of x-z and y-z
were constrained to satisfy the symmetrical deformation, and the acrylic board was 
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modeled as a rigid element with full constraint. The three-dimensional (3-D) model was 
used for a precise simulation in which a normal force was applied to the top surface of the 
conical feeler. In the previous explanation about the principle of shearing force detection, 
we derived Eqs. (12) and (13) while ignoring the friction between the conical feeler and the 
acrylic board. In this section, we analyze the conical feeler’s movement while taking into 
account the friction to modify Eqs. (12) and (13). Figure 7(b) shows a 2-D model with which 
we examine the deformation mechanism and the conical feeler movement under the 
combined loading of normal and shearing forces. 
In the 2-D model, the same height and radius values for the conical feeler are adopted as 
those of the previous 3-D model. The thickness of the rubber sheet is 300 μ m and both sides 
of the rubber sheet are constrained. Young’s modulus and Poisson’s ratio are also adopted 
at the same values as those of the previous 3-D model. The acrylic board was modeled as a 
rigid element with full constraint as well. The coefficient of friction between the conical 
feeler and the acrylic board is assumed to be 1.0 because this is a common value for the 
coefficient of friction between rubber and metal. The critical shearing force, max , which 
means the limitation value for no slippage occurring, is presumed to be 0.098 Mpa.  

Fig. 8. Relationship between horizontal feeler movement and horizontal line force. 

Combined loadings of normal and shearing forces were applied to the upper surface of the 
rubber sheet. The conical feeler’s movement, ux, was calculated with Eq. (10) while 
maintaining the vertical component of line force fz, a constant value, and increasing the 
horizontal component of line force fx, where the components of line forces fy and fz are x- and 
z-directional force components per depth length, respectively. Since the conical feeler’s 
movement is calculated as movement of the gray-scale’s centroid in the later experiments, in 
this section it is calculated as the movement of the distributed pressure’s centroid.  
Figure 8 shows the relationships that exist between the movement of the centroid of the 
distributed pressure, ux, and the horizontal component of the line force, fx. As shown in that 
figure, there are bi-linear relationships where the inclination is small in the range of the low-
horizontal line force and becomes large in the range of the high-horizontal line force, 
exceeding a threshold. This threshold depends on the vertical line force and increases with 
increasing vertical line force, because the bi-linear relationship moves to the right with an 
increase in the vertical line force.  
The abovementioned bi-linear relationship can be explained with the Coulomb friction law 
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and elastic deformation of the conical feeler accepting both normal and shearing forces. That 
is, the conical feeler accepts shearing deformation while contacting the acrylic board when 
shearing stress arising between the acrylic board and conical feeler does not exceed a 
resolved shearing stress. At this stage of deformation, since the contact area changes from a 
circular to a pear shape, the centroid of distributed pressure moves in accordance with this 
change in contact shape. The inclination of the relationship between ux and fx is small in the 
range of a low loading level due to the tiny displacement occurring in the abovementioned 
deformation stage. In the subsequent stage, when the shearing stress exceeds the resolved 
shearing stress max, then according to the increase of the lateral force, the friction state 
switches over from static to dynamic and the conical feeler moves markedly due to slippage 
occurring between the conical feeler and the acrylic board. The inclination of ux -fx,
therefore, increases more in the range of a high shearing force level than in the range of a 
low shearing force.
Taking into account the abovementioned deformation mechanism, we attempt to modify 
Eqs. (12) and (13). First, we express the displacement of centroid movement at the beginning 
of slippage as ux1. If ux = ux1is adopted as the threshold, the relationship between ux and Fx is 
expressed as the following two linear lines: 

 (14) 

 (15) 

where x is the tangential directional spring constant of the conical feeler. 

Fig. 9. Relationship between threshold of horizontal line force and vertical line force. 

Second, the relationship between the horizontal line force at bending point fx1 and the 
vertical line force, fz, is shown in Fig. 9. As is evident from this figure, fx1 versus fz is almost 
linear in the region covering fx =10 mN/mm. In the present paper, we assume the obtained 
relationship approximates a solid linear line in Fig. 9. If we denote horizontal force 
corresponding to ux1 as Fx1, Fx1 is expressed as following equation: 

 (16) 

where x and x are constants identified from Fz versus Fx1.
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Fig. 10. A micro three-axis tactile sensor system. 

Fig. 11. Relationship between horizontal displacement of the conical feeler and shearing 
force.

Fig. 12. Variation in integrated gray scale value under applying shearing force. 
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An experimental tactile sensing system is shown in Fig. 10. Light emitted from a light source 
in the bore scope is introduced into one side of the acrylic board, functioning as an optical 
waveguide. Distributed light spots caused by contact with conical feelers on the rubber 
sheet and the acrylic board are detected by the CCD camera through the bore scope and are 
accumulated into the frame memory board built into the computer. The normal force 
applied to the sensing surface of the tactile sensor is measured by an electric scale 
(resolution: 0.1 mN) and is sent to the computer through an RS232C interface. The shearing 
force is measured by a load cell created through our own work. The load cell consists of a 
pair of parallel flat springs with four strain gauges plastered to their surfaces and was 
calibrated with the electric scale. Two-dimensional force is applied to the sensing surface of 
the tactile sensor with the adjustment of a precision feed screw of the X-Z stage. 
In order to evaluate Eqs. (14) to (16), after applying the initial normal force onto the sensing 
surface, Fx was increased in a stepwise manner while maintaining a constant normal force. 
Upon each increase in force, the centroid of gray-scale values within the aforementioned 
sub-window was calculated and the displacement of the centroid from the initial position 
was called ux. In Fig. 11, the ordinate and abscissa represent the horizontal force, Fx, and the 
centroid displacement, ux, respectively. As is evident from Fig. 11, the low- and high-load 
regions exhibit different sensitivity coefficients. This is a similar inclination to the simulated 
results discussed in Fig. 8. 
Finally, we show variation in G under a stepwise increase of Fx and constant Fz in Fig. 12 to 
determine whether the relationship between G and Fz is not influenced by a variation in Fx.
In fact, Fig. 12 indicates that G maintains a constant value even if Fx increases. Figure 13 
shows a comparison between relationships of G -Fz with shearing force and without 
shearing force. In Fig. 13 the solid circles represent the relationship with the shearing force 
obtained from Fig. 12, and it is clear that both of the relationships almost coincide in Fig. 13. 
Since the magnitude of the shearing force has no influence on the sensitivity characteristic in 
the normal direction, it is possible to identify the shearing force and normal force 
independently. 

Fig. 13. Relationship between normal force and integrated gray scale value. 

2.4 Hemispherical Three-axis Tactile Sensor for Robotic Fingers 
On the basis of the aforementioned two examples of three-axis tactile sensors, a 
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Fig. 10. A micro three-axis tactile sensor system. 

Fig. 11. Relationship between horizontal displacement of the conical feeler and shearing 
force.

Fig. 12. Variation in integrated gray scale value under applying shearing force. 
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tactile sensor is mounted on the fingertips of a multi-fingered hand (Ohka, M. et al., 2006). 
Figure 14 shows a schematic view of the present tactile processing system to explain the 
sensing principle. In this tactile sensor, the optical waveguide dome is used instead of the 
waveguide plate, which is used in the previously described tactile sensors. The light emitted 
from the light source is directed into the optical waveguide dome. 

Fig. 14. Principle of the hemisherical tactile sensor system. 

Fig. 15. Sensing element of eight feeler type. 

Fig. 16. Fingertip including the three-axis tactile sensor. 
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Fig. 17. Address of sensing elements 

The sensing element presented in this paper comprises a columnar feeler and eight conical 
feelers as shown in Fig. 15. The sensing elements are made of silicone rubber, as shown in 
Fig. 14, and are designed to maintain contact with the conical feelers and the acrylic dome 
and to make the columnar feelers touch an object. Each columnar feeler features a flange to 
fit the flange into a counter-bore portion in the fixing dome to protect the columnar feeler 
from horizontal displacement caused by shearing force. 
When three components of force, the vectors Fx, Fy and Fz, are applied to the tip of the 
columnar feeler, contact between the acrylic board and the conical feelers is measured as a 
distribution of gray-scale values, which are transmitted to the computer. Since the contact 
mechanism between the acrylic dome and conical feelers is difference from the case of flat 
acrylic board, relationships between the shearing force and centroid displacement and 
between the normal force and integrated gray scale value cannot be approximated with 
linear functions as shown in Eqs. (7), (12) and (13). The Fx Fy and
Fzvalues are calculated using the integrated gray-scale value G and horizontal displacement 
of the centroid of the gray-scale distribution u=ux i+ uy j as follows: 
 Fx = f (ux),
 Fy = f (uy), (17) 
 Fz= g(G),
where i and j are orthogonal base vectors of the x- and y-axes of a Cartesian coordinate, 
respectively; f(x) and g(x) are approximate none-linear curves estimated in calibration 
experiments.
We are currently designing a multi-fingered robotic hand for general-purpose use in 
robotics. The robotic hand includes links, fingertips equipped with the three-axis tactile 
sensor, and micro-actuators (YR-KA01-A000, Yasukawa). Each micro-actuator consists of an 
AC servo-motor, a harmonic drive, and an incremental encoder, and is developed 
particularly for application to a multi-fingered hand. Since the tactile sensors should be 
fitted to the multi-fingered hand, we are developing a fingertip to include a hemispherical 
three-axis tactile sensor. That is, the fingertip and the three-axis tactile sensor are united as 
shown in Fig. 16. 
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The acrylic dome is illuminated along its edge by optical fibers connected to a light source. 
Image data consisting of bright spots caused by the feelers’ collapse are retrieved by an 
optical fiber-scope connected to the CCD camera as shown in Fig. 17.

Fig. 18. Relationship between applied force and gray-scale value. 

Fig. 19. Repeatability of relationship between integrated gray-scale value and applied force. 

Fig. 20. Relationship between integrated gray-scale value and applied normal force at 
several inclinations. 
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To evaluate the sensing characteristics of sensing elements distributed on the hemispherical 
dome, we need to measure the variation within the integrated gray-scale values generated 
by the sensor elements. Figure 18 shows examples of variation in the integrated gray-scale 
value caused by increases in the normal force for sensors #00, #01, #05, #09, #17, #25 and 
#33. As the figure indicates, the gradient of the relationship between the integrated gray-
scale value and applied force increases with an increase in ; that is, the sensitivity depends 
upon the latitude on the hemisphere. Dome brightness is inhomogeneous because the edge 
of the dome is illuminated and light converges on the parietal region of the dome. The 
brightness is represented as a function of the latitude , and since the sensitivity is uniquely 
determined by the latitude, it is easy to modify the sensitivity according to .
The relationship between the integrated gray-scale value and applied force has high 
repeatability. Experimental results from 1,000 repetitions on #00 are superimposed in Fig. 19, 
which shows that all the curves coincide with each. The deviation among them is within 2%. 
Normal force FN and shearing force FS applied to the sensing elements are calculated using 
the following formulas. 

 FN = F cos (18)
 FS = F sin (19)

With Eq. (18) we obtained the variation in the integrated gray-scale values and applied 
normal force. Figure 20 displays the relationship for #00. Even if the inclination is varied 
from -30o to 30o, the relationship coincides within a deviation of 3.7%. 
When force is applied to the tip of the sensing element located in the parietal region under several 
 s, relationships between the displacement of the centroid and the shearing-force component 

calculated by Eq. (19) are obtained as shown in Fig. 21. Although the inclination of the applied 
force is varied in the range from 15o to 60o, the curves converge into a single one. Therefore, the 
applied shearing force is obtained independently from displacement of the centroid. 

Fig. 21. Relationship between displacement of centroid and applied shearing force. 

3. Human mimicking Tactile Sensing 
3.1 Human Tactile Sensation 
Human beings can recognize subtle roughness of surfaces by touching the surfaces with 
their fingers. Moreover, the surface sensing capability of human beings maintains a 
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relatively high precision outside the laboratory. If we can implement the mechanisms of 
human tactile sensation to robots, it will be possible to enhance the robustness of robotic 
recognition precision and also to apply the sensation to surface inspection outside the 
laboratory. Human tactile recognition is utilized as a model of robotic tactile regognition 
(Ohka, M. et al., 2005b). Human tactile recognition ability has been examined using 
psychophysical experiments and microneurography. Consequently, mechanoreceptors of 
skin are classified into four types according to response speed and receptive field size 
(Vallbo, Å. B. & Johansson R. S., 1984). In the present paper, we focus our discussion on FA I 
(First adapting type I unit) because FA I responds to surface roughness. In regard to 
remarks related to FA I obtained by the authors and other researchers, remarks used for the 
present formulation are summarized as follows: 

Fig. 22. Modeling of fast adaptive Type I mechanoreceptive unit. 

(1) FA I responds to the first-order differential coefficient of mechanical stimulus 
varying with time (Moss-Salentijin, L., 1992; Miyaoka, T., 1994). 

(2) Acquirable physical stimuli of FA I are surface roughness of several tens of 
microns in amplitude, and mechanical vibration of several microns in amplitude 
and several tens of Hz in frequency (Miyaoka, T., 1994). 

(3) Human subjects feel moving fine step height more strongly at high scanning 
speeds than at low scanning speeds (Kawamura, T. et al., 1998) 

(4) The mechanoreceptors related to FA I are Meissner’s corpuscles(Moss-Salentijin, L., 
1992; Miyaoka, T., 1994). 

3.2 Neuron model 
Neurophysiology studies have clarified that the mechanoreceptive units comprise a few 
mechanoreceptors accepting mechanical stimuli and a sensory nerve fiber transmitting 
sensory signals. In the present paper, a neuron processing the sensory signals is treated as 
an element of the unit in order to consider the unit as comprising mechanoreceptors, a 
sensory nerve fiber and a neuron in the brain. If we make a model of the tactile nerve 
system on the basis of neural network models, it is easy to incorporate the above-mentioned 
human tactile mechanism into robotics. 
The McCulloch-Pitts model (McCulloch, W. & Pitts, W., 1943) is adopted here as the 
mechanoreceptive unit, while the afore-mentioned remarks on human tactile sensations are 
formulated to obtain expressions of the fine surface roughness recognition mechanism. 
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Figure 22 shows a neural network related to the tactile sensory system. When mechanical 
stimuli are applied to the surface of the skin, the mechanoreceptors accept the stimuli and 
emit a voltage signal. The signal is transmitted to a dendrite extending from a neuron 
through a synaptic connection. The arrival of the output signal from the mechanoreceptor 
effects a change in the membrane potential inside neuron. If several signals from 
mechanoreceptors arrive almost simultaneously at the neuron, these signals are 
superimposed in the neuron and summation of these signals change the membrane 
potential. This effect is called spatial summation and is modeled first. 
The neuron accepts n-signals x1, x2 , … xn emitted from n-mechanoreceptors distributed in 
the skin. The weight of the synaptic connection between i-th mechanoreceptor and the 
neuron is represented as wi. Taking into account the spatial summation, the membrane 
potential, u is calculated as 

 (20) 

The mechanoreceptor seems to detect the time derivative of skin deformation according to 
Remark (1) in the previous section, where it is assumed that the mechanoreceptor detects 
the strain rate caused in the skin and that it emits signals proportional to the magnitude of 
the strain rate. Namely, the output of the i-th mechanoreceptor, xi of Eq. 
(20) is calculated by the following expression, 

 (21) 

where i is the compressive strain of the i-th mechanoreceptor and a is a coefficient.  
When an output signal emitted from the mechanoreceptor arrives to the neuron, a change 
occurs in the membrane potential. If the next signal arrives at the neuron before the change 
attenuates and vanishes, the next signal is superimposed on the residual of the preceding 
signal. This effect is called time summation (Amari, T., 1978) and is formulated as convolution 
integral of wi ( t t  ) x ( t  ) with respect to t  from the past to the present t if the weight of 
synaptic connection between the i-th mechanoreceptor and the neuron is represented as wi (
t ) at time t  . Consequently, by incorporating the time summation into Eq. (20), the 
membrane potential u is calculated as 

 (22) 

Influence of signal arrival on the membrane potential degreases with late of the signal 
arrival. This effect is expressed as degreasing the synaptic potential, wi (t). However, there 
are no available data on variation in the synaptic potential. In the present paper, it is 
assumed that wi (t) varies as square wave; namely it takes a constant value during 0 to  sec, 
after which it takes 0. 

 (23) 

It is known that neurons have the threshold effect where the neuron emits an output if the 
membrane potential, u expressed as Eq. (24), exceeds a threshold, h . The output is a pulse signal 
and the pulse density of the signal is proportional to the difference between membrane potential 
u and threshold h . The pulse density of the signal is expressed as z , while the threshold function, 
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 ( q) is designated to formulate the threshold effect. The pulse density, z is, 
 (24) 

 (25) 
As mentioned above, data processing of the mechanoreceptive type FA I unit is formulated 
using a mathematical model for neuron-incorporated spatial and time summations. In the 
following sections, we confirm these expressions are by numerical simulation using FEM 
analysis of a human finger and experiments using an articulated robot installed in the 
present neural model. 

3.3 Simulation 
As mentioned in Remark (4), the mechanoreceptor of FA I appears to be Meissner’s 
corpuscle. In order to evaluate the present mathematical model derived in the preceding 
section, we performed a series of FEM analyses using a mesh model as shown in Fig. 23. In 
the present mesh model, a human finger is expressed as a half cylinder. Normal strain, z

arises at the existing potion of Meissner’s corpuscle, calculated when the finger is slid along 
a flat surface having s fine step height. We selected =5 7.5 10 12.5 and 15 μ m as the 
step heights to compare experimental results obtained by psychophysical experiments. 
It is possible that viscoelastic deformation of the skin causes the scanning speed effect 
described in Remark (3). In this paper, we adopt the first-order Prony series model 
(ABAQUS Theory manual, 1998) which is equivalent to the three-element solid, as the 
viscoelestic model to approximate the skin’s viscoelastic behavior. 

Fig. 23. Mesh model for contact analysis. 
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Human skin is composed of three layers: the epidermis, the dermis, and the hypodermis. 
Young’s moduli of these three layers are assumed to be 0.14, 0.034 and 0.080 Mpa (Maeno, 
T. et al., 1998). On the other hand, the Poisson ratios of all layers are assumed to take same 
value of 0.45 because there are no reports concerned with it. Moreover, this value is 
reasonable if the skin has similar mechanical characteristics to rubber. Since there are no 
data on the ratio of the shearing modulus’s initial value to its terminal value and the ratio 
between the bulk modulus’ initial value and its terminal value for human skin, a common 
value of 0.5 for the three layers is assumed and a value of 12.9 msec (Oka, H. & Irie, T., 1993) 
is adopted as the time constant. 
The present mesh model was compressed upon a flat rigid surface having a fine step height 
and slid over the surface. Then, we obtained the y-directional normal strain, y in the 
Meissner’s corpuscle, shown by a solid square in Fig. 23. The mesh element of Meissner’s 
corpuscle is located 0.5 mm below the skin surface. The width and height of the element are 
40 μ m and 50 μ m, respectively. 
In the present loading history, the modeled finger was initially moved 1 mm in the negative 
perpendicular direction and compressed upon the flat surface. Subsequently, it was slid 10 
mm in the horizontal direction. Any compressive deformation produced during the first 
step of the loading history should be diminished to allow evaluation of the stimulus of the 
fine step height caused by the scanning motion only. Therefore, after contact was 
established between the finger and the rigid flat surface, the finger was stabilized for 1 sec to 
diminish the effect of compressive deformation. Furthermore, we selected v = 20 mm/s and 
40mm/s for the finger sliding speed to simplify comparison between simulated and 
experimental results of psychophysical experiments conducted in our previous works. We 
selected 0 for the coefficient of friction between the finger and the rigid surface. 

Fig. 24. Variation under compressive strain. 

Next, we substituted the normal strain, z obtained from the above-mentioned FEM analysis, 
into Eq. (21) by putting z to c. Subsequently, Eqs. (20)-(25) were calculated to obtain 
simulated signals emitted by FA I. Although the constants included in Eqs. (20)-(24), a , n ,
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established between the finger and the rigid flat surface, the finger was stabilized for 1 sec to 
diminish the effect of compressive deformation. Furthermore, we selected v = 20 mm/s and 
40mm/s for the finger sliding speed to simplify comparison between simulated and 
experimental results of psychophysical experiments conducted in our previous works. We 
selected 0 for the coefficient of friction between the finger and the rigid surface. 

Fig. 24. Variation under compressive strain. 

Next, we substituted the normal strain, z obtained from the above-mentioned FEM analysis, 
into Eq. (21) by putting z to c. Subsequently, Eqs. (20)-(25) were calculated to obtain 
simulated signals emitted by FA I. Although the constants included in Eqs. (20)-(24), a , n ,
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and h should be determined by neurophysical experiments, we could not obtain such data. 
We assumed the values of these constants as follows. Here, a , the proportionality constant 
of relationship between output signal and stimulus magnitude, was presumed to be a = 1 
Vsec. We were attempting to evaluate the simulation by normalizing outputs of the present 
model with the highest peak value among the outputs of different conditions. Since the 
plane strain condition was assumed in the present simulation, it was equivalent to a 
simulation of Meissner’s corpuscles aligned in the depth direction of this sheet and having 
the same characteristics. To abbreviate the present analysis, the variance among 
mechanoreceptive units was ignored and n = 1 was presumed. Since the afore-mentioned 
dependence of speed on step height recognition seems closely related to temporal 
summation, we calculated several time constants within a range of = 10 300 msec. 
Following that, we selected the best  that could best fit our experimental results. Since 
threshold h does not affect our simulated results, we summed h = 0 V. 
Figure 24 shows the variation in normal strain of the position of Meissner’s corpuscle as 
depicted in Fig. 23. Since the finger remains stational for 1 sec to erase the history of the 
initial compressive strain, the variation remains at an almost constant value following the 
transient variation occurring at the initial stage. Then, when the fine step height comes near 
the position of Meissner’s corpuscle, two prominent spikes arise. The figure also indicates 
that the magnitude of the spike increases with an increase in step height. 

Fig. 25. Variation in normalized pulse density. 

As mentioned in the previous section, we calculated several time constants within a range of 
= 10 300 msec. First, we will examine variation in normalized pulse density at = 300 

msec. The strain rate calculated from the normal strain shown in Fig. 24 is substituted into 
the present mathematical model presented by Eqs. (20)-(25) to obtain the pulse density, z .
Since we designated a= 1 as a value of the constant included in Eq. (2), the obtained pulse 
density z does not have any physical meaning. Hence, a comparison between calculated 
results under different conditions should be performed with a ratio. Here, the calculated 
pulse density is normalized as a peak of the calculated pulse density below v = 40 mm/s, 
and = 15 μ m is designated 1. In Fig. 25 the results are normalized according to the above-
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mentioned procedure. 
For both v = 20 mm/s and 40 mm/s, results show that normalized pulse density increases 
with the reach of the mechanoreceptor to fine step heights, and that their maximum values 
increase with an increase in step height,  . In order to examine the influence of a finger’s 
sliding speed and step height on pulse density, we obtained the maximum value for each 
simulation condition. Figure 26 illustrates the relationship between maximum pulse density 
and step height for v = 20 mm/s and 40mm/s. 
The figure shows that the maximum pulse density is proportional to step height. If we 
compare pulse densities of different finger sliding speeds at the same step height to examine 
the influence of a finger’s sliding speed on pulse density, we find the pulse density at a high 
finger speed is higher than at a low finger speed. 
Next, to estimate a proper value of  , we performed the same calculations (except for the 
value of  ) under the same calculation conditions as the calculation shown in Fig. 25. 

Fig. 26. Relationship between model output and step-height. 

To obtain a conversion factor from the pulse density to the accepted step height, we 
obtained regression coefficients of calculated results for v = 20 and 40 mm/sec and adopted 
the mean value of the regression coefficient as the conversion factor. After employing this 
factor, the ordinate of Fig. 26 was transformed to an accepted step height, relationships 
between simulated step height and accepted step height were obtained, as shown in Fig. 27. 
The symbols in Fig. 27 show our experimental results (Ohka, M. Et al., 2004) obtained from 
a series of psychophysical experiments. This figure demonstrates that even if human 
subjects recognize the same step height, they feel that a given step height is higher at a high 
finger speed than at a low speed. Furthermore, on comparing calculated results with 
experimental results, we find that the calculated results coincide well with the experimental 
results below  = 300 msec. 

3.4 Application to robotics 
The robotic manipulator shown in Fig. 4 rubbed a brass plate with the tactile sensor’s 
sensing surface to obtain surface data of the brass plate. To enable the robotic manipulator 
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mentioned procedure. 
For both v = 20 mm/s and 40 mm/s, results show that normalized pulse density increases 
with the reach of the mechanoreceptor to fine step heights, and that their maximum values 
increase with an increase in step height,  . In order to examine the influence of a finger’s 
sliding speed and step height on pulse density, we obtained the maximum value for each 
simulation condition. Figure 26 illustrates the relationship between maximum pulse density 
and step height for v = 20 mm/s and 40mm/s. 
The figure shows that the maximum pulse density is proportional to step height. If we 
compare pulse densities of different finger sliding speeds at the same step height to examine 
the influence of a finger’s sliding speed on pulse density, we find the pulse density at a high 
finger speed is higher than at a low finger speed. 
Next, to estimate a proper value of  , we performed the same calculations (except for the 
value of  ) under the same calculation conditions as the calculation shown in Fig. 25. 
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To obtain a conversion factor from the pulse density to the accepted step height, we 
obtained regression coefficients of calculated results for v = 20 and 40 mm/sec and adopted 
the mean value of the regression coefficient as the conversion factor. After employing this 
factor, the ordinate of Fig. 26 was transformed to an accepted step height, relationships 
between simulated step height and accepted step height were obtained, as shown in Fig. 27. 
The symbols in Fig. 27 show our experimental results (Ohka, M. Et al., 2004) obtained from 
a series of psychophysical experiments. This figure demonstrates that even if human 
subjects recognize the same step height, they feel that a given step height is higher at a high 
finger speed than at a low speed. Furthermore, on comparing calculated results with 
experimental results, we find that the calculated results coincide well with the experimental 
results below  = 300 msec. 

3.4 Application to robotics 
The robotic manipulator shown in Fig. 4 rubbed a brass plate with the tactile sensor’s 
sensing surface to obtain surface data of the brass plate. To enable the robotic manipulator 
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to traverse the brass plate correctly, it is possible to adjust the horizontal datum of the brass 
plate with three screws attached to it at intervals of 120˚. We prepared three brass plates 
having step heights of = 05.0 0.1 0.2 mm, and one brass plate having no step height (  = 
0 mm). 
During the surface scanning test, 

(1) we maintained contact between the tactile sensor’s sensing surface and brass plate, 
and had the sensing surface press on the brass plate to apply an initial vertical 
force to the sensing element; 

(2) the robotic manipulator traversed the brass plate in horizontal movement of 10 
mm.  

As a result, we obtained Uz = Uz Uz0, which is the difference between the current vertical 
displacement and the initial vertical displacement, Uz0.

Fig. 27. Comparison of simulated results and experimental results. 

Fig. 28. Variation in vertical displacement. 
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Fig. 29. Variation in rate of vertical displacement. 

Figure 28 shows variation in the vertical displacement measured by the sensing 
element. The abscissa and ordinate of Fig. 28 are the local x-coordinates of the robotic 
manipulator’s end-effecter and the difference between the current vertical displacement 
and initial vertical displacement, Uz, respectively. The origin of the abscissa 
corresponds to the position where the robotic manipulator applied the initial vertical 
force to the tactile sensor. Figure 28 shows that Uz jumps at the step-height position, 
and that the jump heights increase with increasing step height. Furthermore, according 
to Fig. 28, the experimental results vary according to the step: if the step-height 
magnitudes of the experimental results are examined, it is found that the ratio is about 
1:2:5, a ratio that approximates the ratio of the step heights formed on the brass plates 
(1:2:4). Therefore, the sensor can detect step heights formed on the surface of an object. 
However, if we intend to measure the step height from variations in the vertical 
displacement Uz , then the initial displacement Uz0 should be constant because it is 
used as a datum for step-height measurement. In the case of robotics, the sensing 
surface of the tactile sensor often repeats touching and detaching from the object 
surface. Furthermore, there is no guarantee that the sensing surface faces parallel to the 
object surface; for step-height sensing, it is preferable that the step height is estimated 
from the current values. 
As a candidate for the current physical quantity excluding the vertical displacement, Uz , we 

attempt to consider the time derivative of vertical displacement, 
.

zU . Figure 29 shows the 

variation in 
.

zU . The abscissa represents the time elapsed from begin of the scan just z after

initial load is applied. In Fig. 29, 
.

zU has a peak value corresponding to the position of step 
height. Since Uz is determined from the current value obtained from the measurement, it 
appears more suitable than Uz for robotic real-time step-height recognition, though it 



132 Mobile Robots, Perception & Navigation

to traverse the brass plate correctly, it is possible to adjust the horizontal datum of the brass 
plate with three screws attached to it at intervals of 120˚. We prepared three brass plates 
having step heights of = 05.0 0.1 0.2 mm, and one brass plate having no step height (  = 
0 mm). 
During the surface scanning test, 

(1) we maintained contact between the tactile sensor’s sensing surface and brass plate, 
and had the sensing surface press on the brass plate to apply an initial vertical 
force to the sensing element; 

(2) the robotic manipulator traversed the brass plate in horizontal movement of 10 
mm.  

As a result, we obtained Uz = Uz Uz0, which is the difference between the current vertical 
displacement and the initial vertical displacement, Uz0.

Fig. 27. Comparison of simulated results and experimental results. 

Fig. 28. Variation in vertical displacement. 

Optical Three-axis Tactile Sensor 133

Fig. 29. Variation in rate of vertical displacement. 

Figure 28 shows variation in the vertical displacement measured by the sensing 
element. The abscissa and ordinate of Fig. 28 are the local x-coordinates of the robotic 
manipulator’s end-effecter and the difference between the current vertical displacement 
and initial vertical displacement, Uz, respectively. The origin of the abscissa 
corresponds to the position where the robotic manipulator applied the initial vertical 
force to the tactile sensor. Figure 28 shows that Uz jumps at the step-height position, 
and that the jump heights increase with increasing step height. Furthermore, according 
to Fig. 28, the experimental results vary according to the step: if the step-height 
magnitudes of the experimental results are examined, it is found that the ratio is about 
1:2:5, a ratio that approximates the ratio of the step heights formed on the brass plates 
(1:2:4). Therefore, the sensor can detect step heights formed on the surface of an object. 
However, if we intend to measure the step height from variations in the vertical 
displacement Uz , then the initial displacement Uz0 should be constant because it is 
used as a datum for step-height measurement. In the case of robotics, the sensing 
surface of the tactile sensor often repeats touching and detaching from the object 
surface. Furthermore, there is no guarantee that the sensing surface faces parallel to the 
object surface; for step-height sensing, it is preferable that the step height is estimated 
from the current values. 
As a candidate for the current physical quantity excluding the vertical displacement, Uz , we 

attempt to consider the time derivative of vertical displacement, 
.

zU . Figure 29 shows the 

variation in 
.

zU . The abscissa represents the time elapsed from begin of the scan just z after

initial load is applied. In Fig. 29, 
.

zU has a peak value corresponding to the position of step 
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depends on the value of Uz0. However, since 
.

zU  contains many noise components, it is 

difficult to discriminate step heights of  = 0.05 mm and 0.1 mm. Therefore, 
.

zU  holds no 
advantage for fine discrimination of step height. 

Fig. 30. Variation in pulse density 

Next, the present model was incorporated into the robotic manipulator’s surface-recognition 
system. The variation in the time derivative of vertical displacement of the present tactile 

sensor in Fig. 29, 
.

zU is divided by a representative length of the tactile sensor to obtain the 
strain rate substituted into Eq. (21). The strain rate becomes an input signal of the present 
model and is used to derive pulse density, z with Eq. (24). In this calculation, we employed 
the following constants included in the model: a= 1 Vsec, n = 1, = 3 sec, h= 0 V. 
In estimating the time constant,  , we considered the difference of time consumption for 
data processing between human tactile sensation and robotic tactile recognition. Namely, 
since image-data processing is required to obtain tactile data in the present tactile sensor, 
sampling time is rather long at 0.5 sec. In contrast, FA I’s band of tactile frequency is 
approximately several tens of Hz, and is one digit larger that the tactile sensor’s band. 
Therefore, in calculating the present model, we used a value ten times larger than the = 300 
msec in Fig. 27. 
Figure 30 illustrates the output of the present model. In this figure the ordinate shows a 
normalized pulse density with its maximum value at a step height of 0.2 mm, while 
variation in the normalized pulse density, Z shows a single peak value. Furthermore, it is 
easy to distinguish the difference between the cases of  = 0.05 mm and 0.1 mm due to the 
noise-filtering effect of the present model. This discrimination was impossible in Fig. 29. As 
a result, we confirm that the present model is effective for robotic recognition of fine surface 
step heights in real time. 
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4. Conclusion 
In this chapter, mechanism and evaluation of the optical three-axis tactile sensor are 
described to show sensing characteristics on three components of force vector applied to the 
sensing element. Then, recognition method for subtle convex portions of flat plate is 
presented to show effective of the present method using a series of experiments. 
In future work, the author plans to mount the present three-axis tactile sensors on a micro 
and robotic fingers to perform verification experiments and will perform edge tracing of 
an object and object manipulation. In these experiments, the presented recognition 
method will be effective to determine subtle concave and convex portions located on any 
surfaces. 
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1. Introduction 

Humans have the ability to sense the weight and friction coefficient of the grasped object 
with their distributed tactile receptors.  The ability makes it possible for humans to prevent 
from the slippage of manipulated object or collapsing the object.  Such dexterous handlings 
are achieved by feeding back the signals from the receptors to muscle control system 
through neural networks.  Therefore, it may be a key point for establishing dexterous 
handlings of robots when we try to mimic skilled human functions. 
For tactile sensing of robots, several methods and sensors have been proposed by using 
electrical resistance, capacitance, electromagnetic component, piezoelectric component, 
ultrasonic component, optical component, and strain gauge (Shinoda, 2002), (Lee & 
Nicholls, 1999).  There exist many problems of these sensors to be solved for establishing 
practical ones.  For an example, the sensor which consists of elastic body and strain gauges 
requires a lot of gauges and the wiring.  Moreover, the signal processing is not simple to 
obtain the values of the contact forces and the friction coefficients (Maeno et al, 1998).  On 
the other hand, optical sensors have been introduced because wiring is not required in the 
contact part to the object (Ohka et al, 2004), (Ferrier & Brockett, 2000), (Kamiyama et al, 
2003).  The introduction of optical sensor makes the size small and the wiring simple.  
However, the sensing of friction coefficient is not considered in those papers.  Piezoelectric 
sensors have a certain potential to solve the problems of size and wiring but there has not 
been a practical solution yet for measuring friction coefficient. 
It is required for establishing dexterous handlings of robots to provide a purpose-built 
sensor for the measurement of friction coefficients between robot hand and the target 
surfaces.  So as to avoid multiple usage of tactile sensors, we have proposed a new design of 
tactile sensors for multiple measuring of contact information including friction coefficient 
(Obinata et al, 2005).   

2. Vision Based Tactile Sensor 

We have proposed a vision-based sensor for multiple measuring of contact information 
including friction coefficient. The system consists of a CCD camera, LED lights, acrylic plate, 
and elastic body.  The elastic body, which is made of transparent silicon rubber and has grid 
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It is required for establishing dexterous handlings of robots to provide a purpose-built 
sensor for the measurement of friction coefficients between robot hand and the target 
surfaces.  So as to avoid multiple usage of tactile sensors, we have proposed a new design of 
tactile sensors for multiple measuring of contact information including friction coefficient 
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2. Vision Based Tactile Sensor 

We have proposed a vision-based sensor for multiple measuring of contact information 
including friction coefficient. The system consists of a CCD camera, LED lights, acrylic plate, 
and elastic body.  The elastic body, which is made of transparent silicon rubber and has grid 
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pattern or dotted pattern on the spherical surface as shown in Fig.2, is to contact the object.  
The CCD camera is to take pictures of the spherical surface from the flat surface side of the 
elastic body.  The experimental setup is shown in Fig.3.  We can apply not only arbitrary 
normal and tangential forces but also moments around normal axis of contact with the 
sliding mechanisms. 

Fig. 1. Structure of vision-based tactile sensor. 

Fig. 2. Examples of shape and pattern on the surface of the elastic body. 

Fig. 3. Experimental setup for the sensor. 
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3. Measurement of Contact Force and Moment 
3.1 Normal force 

The relation between contact radius and normal contact force has been analyzed in cases of 
hemispherical surface (Xydas & Kao, 1999).  The result provides the following relation: 

a cNγ=     (1) 
where a  is radius of contact area, c  is a constant depending upon the material, γ is a 
constant depending upon the shape, N  is normal force.  This means that the normal force 
can be obtained from the contact area once the values of c and γ  are determined.  The 
picture of Fig.4 is an example when only a normal force is applied.  We can estimate the 
contact area from the difference of brightness of each pixel; that is, we can obtain the 
estimation of the normal force.  The dotted circle in the picture shows the estimated contact 
area with a certain threshold of the brightness.  The experimental results are summarized as 
shown in Fig.5.  The obtained values agree with the relation (1).  The solid line in Fig.5 
shows the curve with c = 4.35 and γ = 0.17.  We can estimate normal contact forces based on 
this relation using the proposed sensor. 

Fig. 4. Example of the picture (only a normal force is applied). 
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3.2 Tangential force 

The picture in Fig.6 shows an example when normal and tangential forces are simultaneously 
applied. Central four dots on the surface of the elastic body were colored with red as shown in 
Fig.7, and are used as the origin and axes of the coordinate frame while identifying the 
displacements of all dots from the pre-contact positions. When the four dots are included in the 
contact area, the displacements of the four dots allow us to determine the direction of applied 
tangential force. We recognized that the displacements depend on the applied normal forces.  On 
the other hand, the contact radius is independent on the tangential forces; thus, we estimate at 
first the normal force from the contact radius, and then estimate the tangential force with the 
estimated normal force. We found out the method for eliminating the dependency of  

Fig. 6. Example of the picture. 
(both normal and tangential forces are simultaneously applied). 

Fig. 7. Colored four dots on the surface of elastic body. 

tangential force on the normal force by cut and try.  Multiplying the ratio of contact radius 
to the measured displacements in tangential direction yields the normalized displacements.  
Then the relation between the normalized displacements and the tangential forces becomes 
one to one correspondence which is nearly expressed by one curve.  The result of the 
normalization is summarized in Fig.8.  Based on the relation, we can estimate the 
magnitudes of the applied tangential forces. 
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3.3 Moment 
We can identify all dots on the surface of sensor in the coordinate frame defined by the 
colored dots.  This fact allows us to obtain the vectors corresponding to the all dots which 
start from the positions of pre-contact phase and end at the positions of post-contact phase. 

Fig. 9. Vectors for dots and center of rotation. 
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We can estimate the center of rotation from the vectors when a moment is applied.  Then, we can 
calculate the rotation angle from the position of the center and the vectors by using appropriate 
technique, for an example, least square method.  The picture in Fig.9 shows how to estimate the 
center of rotation, for the example.  We recognized that the estimated angles depend on the 
applied normal forces.  We used the same method as the case of tangential force to eliminate the 
dependency; that is, the obtained angles were normalized by multiplying the ratio of contact 
radius.  However, the result has a relatively large deviation and is summarized in Fig.10. 

4. Estimation of Friction Coefficient 
So as to prevent from the slippage of the manipulated object, we need to obtain the conditions of 
contact surface between the gripper and the object.  The coefficient of static friction is important 
for handling the object without slipping.  When the contact occurs between curved surface and 
flat surface, the pressure between the two surfaces distributes in the contact area.  If the pressure 
of contact surface takes a lower value than the constant which is determined by both the surface 
conditions and the materials, the relative motion in tangential direction is possible in the area.  
This leads that the pressure distribution between the gripper and the object divides the contact 
area into two parts in general.  In one part of contact surface, the relative motion in tangential 

Fig.11 Schematic view of finger contact and definition of incipient slippage region. 

direction is possible. We call the part as incipient slippage region.  In the other part, the 
relative motion is impossible. This always occurs when human contact the object with 
fingertips.  Several receptors in cutaneous sensory system of human distinguish these two 
areas. This means that human can sense the degree of slippage without macroscopic 
slippage occurring. The schematic view of finger contact and the definition of the two 
regions are illustrated in Fig.11. If we distinguish the two parts from the picture of CCD 
camera with our sensor, we can estimate the degree of slippage from the ratio of area of the 
incipient region to the total contact area.  The ratio is defined by. 

ρ = =
2

2
s s

c c

S r
S r

                      (2) 
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where sS  is stick area, cS  is contact area, 
sr  is radius of stick area, and 

cr  is radius of 
contact area.  We call this ratio as stick ratio, and it relates to the friction coefficient.  In 
the case of spherical and flat surfaces, the incipient slippage occurs in peripheral part of 
contact.  So as to confirm the phenomenon experimentally with spherical and flat 
surfaces, we add a displacement sensor and a force sensor to the experimental setup of 
Fig.3.  The force sensor measures directly the applied tangential force.  The 
displacement sensor measures the movement of object.  First, we identified the 
positions of all dots when only a normal force was applied.  Next, we applied small 
additional force in tangential direction and increased the magnitude gradually.  The 
dots in stick region moved in the direction, and the displacements were almost 
equivalent to that of the object.  Note that macroscopic slippage did not occur at this 
moment while the surface in stick region moved with the object since the body of sensor 
is elastic.  On the other hand, the dots in incipient slippage region moved a shorter 
distance in tangential direction because slippage occurred in the region. The relation 
between the initial distances of dots and the displacements for three cases of different 
tangential forces is shown in Fig.12.  It should be noted that the radius of stick region 
decreased as the applied tangential force increased.  When the radius reaches to zero, 
macroscopic slippage will occur.  This leads to the possibility of estimating the degree 
of slippage from the displacements of central and peripheral dots.  We propose a 
method for estimating stick ratio only from measurements of the sensor. The method 
uses the relative displacements of peripheral dots to the central dot.  The radius of stick 
region can be determined by comparing the relative displacements with the threshold.  
In order to show the effectiveness of the proposed method, we carried out another 
experiments under different friction coefficients.  We controlled the friction coefficient 
by using talcum powder on the contact surface and obtained the relation of the friction 
coefficients to the estimated stick ratios.  The values of friction coefficient were 
determined with the ratio of the tangential force to the normal force at occurrence of the 
macroscopic slippage.  We express the result with five lines in Fig.13.  Each line 
corresponds to each friction coefficient.  The lower stick ratio with the same 
displacement 

Fig. 12. Identifying incipient slippage region. 
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Fig.13. Estimated stick ratio in different friction coefficients. 

of central dot means the lower friction coefficient.  Although the proposed method cannot 
estimate smaller stick ratio under 0.1, we can use the estimated value to prevent from 
slippage because we can keep it over a certain value by feedback control of the contact 
force.

5. Control System for Robot Grippers Using Tactile Sensor 
In this section, we describe the control system design for robot grippers to prevent 
from the slippage of the manipulated object.  The feedback signal from the proposed 
tactile sensor is used to control the grip strength for stable handling of the object.  The 
control system consists of the tactile sensor with image processing software, a voice 
coil motor, and a simple proportional controller with gain K, which is shown as the 
block diagram in Fig.14.  The reference *

sS  is the set point for the stick area sS .  The 
controller amplifies the deviation *

s sS S−  by K, and transmit the calculated value to the 
voice coil motor.  The voice coil motor generates the grip force under the control.  The 
generated force is in proportion to the current in the voice coil motor.  This feedback 
mechanism keeps the stick area around the set point.  The experimental results of this 
control system are given by Fig.15.  The tangential forces were applied manually; so, 
the curves in Fig.15 are not typical functions of time.  The manipulated variables of 
control system correspond to curves in “current” of the second row which are in 
proportion to the generated normal forces.  The current of one ampere is 
corresponding to the force of 3.5 N.  The estimated stick ratios were normalized by the 
initial contact area and shows that a macroscopic slippage occurred while the control 
did not work.  Moreover, it is shown in the figure that the control resulted in keeping 
the values of estimated stick ratio around the set point 0.5.  This proves prevention 
from slippage by the control.  It should be noted that the control system works only 
using signals from the tactile sensor. 
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Fig.14. Block diagram of grip force control system.

Fig. 15. Result of stick area control: Comparison between with and without control. 

6. Comparison between the vision based sensor and a PVDF sensor 
In this section a brief comparison is made between the proposed vision based tactile sensor 
and a fingertip shear force sensor made of poly-vinylidene fluoride (PVDF). Several earlier 
researchers have used thin piezo-electric films to sense the vibrations produced by object 
slip at the fingertip. However these sensors cannot measure the shear force that is essential 
for control of the fingertip normal force, and hence a new PVDF shear force sensor has been 
developed. The PVDF sensor works on the principle of directional properties of poled 
polymers. Poling is done with the application of a high DC voltage to orient the molecular 
dipoles in a particular direction. This causes the polymer to respond independently to forces 
in the three principle directions, as explained in (Furukawa, 1989). A small sensor was 
developed using poled PVDF of size 10 x 15 mm as shown in Fig. 16.  The PVDF film is 
metallic coated on both sides on which thin wires are attached to collect the charge 
generated by the applied forces.  The polymer film is placed in between two layers of rubber 
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using signals from the tactile sensor. 
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Fig.14. Block diagram of grip force control system.

Fig. 15. Result of stick area control: Comparison between with and without control. 
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(1 mm thick) and the whole composite assembly is placed on an aluminum ‘finger’ of 
thickness 5 mm. This prevents the polymer from bending. The three layers are bonded 
together by means of epoxy adhesive. Details of the polymer used are as follows:  

material  : PVDF, MONO 
polarization class: 1-A 
thickness : 25 micro-m 
metallization : Ni, Cu both sides as electrode 
dielectric constant : d31  d33  (where 3 refers to the poling direction) 
E=3.5 Gpa 

The sensor was placed on one finger (similar to Fig. 16) of a two-finger robot gripper and 
calibrated for different shear forces acting along the x-direction. Calibration result is as shown in 
Fig. 17.  Several experiments were performed in which the sensor was used to grasp an object 
with a desired normal force and then a shear force was slowly applied to the object, to cause it to 
slip. Figure 18(a) shows that as the shear force increases it is recorded by the sensor.  The shear 
force remains almost constant while slip occurs, until the object goes out of the grip. This same 
phenomenon is also shown in Fig. 18(b), where the shear force increase is recorded until slip 
occurs. Slip is recorded as a disturbance until the grip fails. From these figures it is not possible to 
accurately predict micro slip until macro slip takes place. Hence it is also not possible to take 
corrective control action to prevent macro slip. Other differences between the two sensors are, the 
signals obtained from PVDF sensor is noisy and requires signal processing and also 
measurement of a moment is not possible.  The merit of the PVDF sensor appears to be its small 
size, weight and low cost. This comparison highlights the various advantages of the vision based 
tactile sensor over other types of piezo-sensors proposed so far. 

Fig. 16. Details of PVDF sensor attached to an aluminum finger. 

Fig. 17. Calibration of sensor output verses shear force on object. 
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(a) (b) 
Fig. 18 (a) Shear force of 0.35 N applied to object (normal force 0.45 N),(b) shear force of 0.7 
N applied to the object (normal force 0.9 N) 

7. Conclusion 
We have explained on a new tactile sensor for measuring multi-dimensional force and 
moment of contact.  The structure of sensor is simple because the method is vision-based. 
The method to obtain the values of force and moment has been confirmed by several 
experiments.  It is shown that the accurate estimation of contact force and moment is 
possible with the proposed sensor although there is a trade-off between the resolution and 
the computational time.  There exist small interpositions between the tangential force, the 
moment and the normal force while measuring.  Clear understanding the interposition 
between applied forces and moments will be required in further research.  We defined the 
stick ratio as an index for indicating the degree of slippage.  We have also proposed a new 
method to estimate the stick ratio for preventing from slippage of manipulated object.  
The exact relation of the defined stick ratio or the estimated stick ratio to the exact friction 
coefficient is an important problem to be solved.  We demonstrated the control system for 
keeping the estimated stick ratio around a set point.  Moreover, we have given a 
comparison with a piezoelectric sensor because it may be another candidate to cope with 
several practical requirements.  The purpose-built integrated circuit for the image 
processing of this vision-based sensor may be required to achieve high speed control 
against disturbances in high frequency band.  It is shown that the proposed sensor has the 
potential for dexterous handling like human. 
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1. Introduction 
Visual perception systems are fundamental for robotic systems, as they represent an 
affordable interface to obtain information on different objects in the environment for a robot, 
and because they emulate the most commonly used sense in humans for world perception. 
Many techniques can be used to identify an object within an image. Some of these 
techniques are color object identification, shape detection and pattern matching. Each one of 
these techniques has different advantages; however, color based techniques are usually 
preferred in real-time systems, as they require less computing power than other approaches.
Color object identification is composed by two phases: image segmentation, and object 
identification. The goal of the first phase is to identify all regions of the image that belong to 
the same object of interest. These regions are analyzed by the second phase in order to 
extract features of interest from these objects like geometry and relative distances and to 
infer the presence of a specific object. 
Color image segmentation relies highly in the identification of a set of colors. Hence, color 
classification, which consists on identifying a pixel as a member of a color class, is essential 
for this process. In this chapter a technique for color image classification and its application 
for color segmentation will be explained in detail. 
This chapter will start by presenting a set of general concepts on image processing, which will 
simplify the understanding of the rest of the chapter. Then, in Section 3, some of the existing 
approaches used for color image classification, as well as some of their advantages and drawbacks, 
will be described. Section 4 will describe an efficient technique for accurate color classification of 
images using implicit surfaces. In Section 5, it will be explained a color segmentation technique 
based on custom tolerance of color classification. Finally some applications will be presented in 
Section 6, and conclusions and future work will be discussed in Section 7. 

2. Background on Image Processing 
2.1 Images and pixels 
An image is the graphic representation of something, usually from a 3D world, in a 2D space. 
That image can be defined as a function, f(x, y), where x and y are spatial coordinates, and the 
value of f denotes the intensity in such coordinates. In particular, image processing is concerned 
with digital images, which contain a discrete number of x, y locations and of f values. Therefore, a 
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1. Introduction 
Visual perception systems are fundamental for robotic systems, as they represent an 
affordable interface to obtain information on different objects in the environment for a robot, 
and because they emulate the most commonly used sense in humans for world perception. 
Many techniques can be used to identify an object within an image. Some of these 
techniques are color object identification, shape detection and pattern matching. Each one of 
these techniques has different advantages; however, color based techniques are usually 
preferred in real-time systems, as they require less computing power than other approaches.
Color object identification is composed by two phases: image segmentation, and object 
identification. The goal of the first phase is to identify all regions of the image that belong to 
the same object of interest. These regions are analyzed by the second phase in order to 
extract features of interest from these objects like geometry and relative distances and to 
infer the presence of a specific object. 
Color image segmentation relies highly in the identification of a set of colors. Hence, color 
classification, which consists on identifying a pixel as a member of a color class, is essential 
for this process. In this chapter a technique for color image classification and its application 
for color segmentation will be explained in detail. 
This chapter will start by presenting a set of general concepts on image processing, which will 
simplify the understanding of the rest of the chapter. Then, in Section 3, some of the existing 
approaches used for color image classification, as well as some of their advantages and drawbacks, 
will be described. Section 4 will describe an efficient technique for accurate color classification of 
images using implicit surfaces. In Section 5, it will be explained a color segmentation technique 
based on custom tolerance of color classification. Finally some applications will be presented in 
Section 6, and conclusions and future work will be discussed in Section 7. 

2. Background on Image Processing 
2.1 Images and pixels 
An image is the graphic representation of something, usually from a 3D world, in a 2D space. 
That image can be defined as a function, f(x, y), where x and y are spatial coordinates, and the 
value of f denotes the intensity in such coordinates. In particular, image processing is concerned 
with digital images, which contain a discrete number of x, y locations and of f values. Therefore, a 
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digital image is composed of a finite set of elements, each with a particular position and an 
associated value or set of values. Each one of these elements is referred as picture element, or 
pixel. Hence, a digital image can be considered as a two-dimensional array of pixels. 
The number of values used to describe a pixel depends on how much information is used to 
encode the color for such elements of the image. In the case of grayscale images, a single 
value is used to describe the intensity of the pixel. In the case of color images, three values 
are usually required, f1, f2, f3, indicating the intensity of different color components (i. e. 
primary colors) that combined will produce the color perceived by our eyes. These 
components will depend on the used color space. 

2.2 Color spaces 
A color space, also known as color signal, defines a set of attributes that uniquely identify a 
color. Color spaces are then important, as they set the distribution that colors present for 
different objects, which is fundamental in color classification and color segmentation. In 
addition, each color space provides with features that may be better suited for specific 
problems, such as varying lighting conditions or noisy environments. 
Color spaces can be classified in linear and non-linear (Forsyth & Ponce, 2002). Linear color 
spaces are based on a set of primary colors, and describe colors in terms of a weighed sum 
of the intensities of these primary colors.  
For instance, the RGB color space used in computer monitors describes colors in terms of 
three primary colors: red, green and blue. A linear combination of these components will 
produce all the colors that can be shown in such screens.  
Another linear color space is YUV, or YCrCb. In this color space, the Y component express 
the brightness of the pixel, while the U and V components define their chromaticity, in 
terms of the amounts of blue and red, respectively. This color space is common in video 
cameras. Color distribution in both RGB and YCrCb color spaces is shown in Figure 1. 
In contrast, non-linear color spaces can include more properties of color spaces that may help 
humans or different image processing techniques to better describe colors. Properties used in 
these spaces include tone, saturation, and intensity or brightness. Tone can be defined as the 
property that describes the way a color changes from other colors, Saturation describes how a 
color is faded by a white light, and Intensity or Brightness specifies how bright the pixel is, no 
matter the color. An example of a non-linear color space is HSL, which describe colors in terms 
of Hue (denoting tone), Saturation and Lightness (describing Intensity). 

a) b)
Fig. 1. Color distribution in different color spaces. a) RGB color space. b) YCrCb color space. 
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2.3 Color image segmentation 
Color image segmentation can be defined as the process of decomposing an image into regions 
with certain meaning according to the contents and the application for that specific image 
(Watt & Policarpo, 1998). Here, a region is a set of connected pixels sharing a set of attributes. 
Classic segmentation techniques can be divided in global approaches, region-based 
approaches, and edge-based approaches.  
Global, or threshold, approaches rely in the knowledge of pixel attributes. Thus, it is 
required to provide with a set of attributes that bind the classes that must be identified 
within an image. In the case of color images, this approach uses the color space as a 3D 
domain over which a set of groups or clusters will be identified for each color class. This 
technique is simple and efficient, but depends heavily on a good threshold definition. 
Region-based approach consists in dividing an image in a set of regions that present similar 
properties. Techniques using this approach usually start by growing a region from an initial 
pixel, or seed, and expanding this region according to a set of homogeneity criteria. This 
approach presents two general problems. First, an initial seed should be picked, and this 
requires an additional process. And second, it is usually hard to define and parameterize the 
homogeneity criteria. An incorrectly defined homogeneity criterion may lead to flooding
problems, where regions grow over the visible boundaries of the region, or to prematurely 
stop the growth process. 
The edge-based approach uses edge detection to find a closed boundary that defines what lies 
inside and outside a region. The hypothesis in which this approach relies is that pixels in the 
boundary between two regions should be considerably different, regarding properties such as 
color or intensity. However, problems are produced in blurry areas of an image, where colors 
are not very contrasting. In addition, a problem with this approach is that failures are common 
when detecting closed boundaries, as borders are usually discontinuous. 

3. Different approaches for color classification 
A set of pixels forming a specific color image correspond to a specific set (or cloud) of points 
in the color space. Color classification needs to pre-define the geometry of sub-space (class), 
in which all contained points share the same property. Simpler the geometry of subspace is, 
easier the classification of pixels is but with a high risk of misclassified pixels. 
There are many existing techniques to define, create and calibrate different color classes 
used to segment an image. Most of them try to fulfill two basic assumptions. First, resulting 
color classes should precisely define objects in the environment, having good generalization 
properties for conditions not considered in the class definition, but avoiding excessive 
generalization that may produce false positives. Second, color classes should be reliable 
enough to identify objects under variable light conditions. Definition of a color class is a 
complex task that usually involves adjusting a volume to a cloud of samples obtained from 
pixels belonging to objects of such color class. This presents a clustering problem, which 
may be solved either by using traditional or simplified methods. Specifically, by using 
simplified methods, less processing power from a mobile robot is need, allowing its use for 
online classification and calibration. The use of thresholds for color classification is a process 
that involves partitioning a color space. As presented by Castleman (Castleman, 1996), 
different objects on an image belong to individual groups or clusters of points in a histogram 
defined on the color space. These groups of points represent the samples from which color 
classes will be constructed and defined. 
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2.3 Color image segmentation 
Color image segmentation can be defined as the process of decomposing an image into regions 
with certain meaning according to the contents and the application for that specific image 
(Watt & Policarpo, 1998). Here, a region is a set of connected pixels sharing a set of attributes. 
Classic segmentation techniques can be divided in global approaches, region-based 
approaches, and edge-based approaches.  
Global, or threshold, approaches rely in the knowledge of pixel attributes. Thus, it is 
required to provide with a set of attributes that bind the classes that must be identified 
within an image. In the case of color images, this approach uses the color space as a 3D 
domain over which a set of groups or clusters will be identified for each color class. This 
technique is simple and efficient, but depends heavily on a good threshold definition. 
Region-based approach consists in dividing an image in a set of regions that present similar 
properties. Techniques using this approach usually start by growing a region from an initial 
pixel, or seed, and expanding this region according to a set of homogeneity criteria. This 
approach presents two general problems. First, an initial seed should be picked, and this 
requires an additional process. And second, it is usually hard to define and parameterize the 
homogeneity criteria. An incorrectly defined homogeneity criterion may lead to flooding
problems, where regions grow over the visible boundaries of the region, or to prematurely 
stop the growth process. 
The edge-based approach uses edge detection to find a closed boundary that defines what lies 
inside and outside a region. The hypothesis in which this approach relies is that pixels in the 
boundary between two regions should be considerably different, regarding properties such as 
color or intensity. However, problems are produced in blurry areas of an image, where colors 
are not very contrasting. In addition, a problem with this approach is that failures are common 
when detecting closed boundaries, as borders are usually discontinuous. 

3. Different approaches for color classification 
A set of pixels forming a specific color image correspond to a specific set (or cloud) of points 
in the color space. Color classification needs to pre-define the geometry of sub-space (class), 
in which all contained points share the same property. Simpler the geometry of subspace is, 
easier the classification of pixels is but with a high risk of misclassified pixels. 
There are many existing techniques to define, create and calibrate different color classes 
used to segment an image. Most of them try to fulfill two basic assumptions. First, resulting 
color classes should precisely define objects in the environment, having good generalization 
properties for conditions not considered in the class definition, but avoiding excessive 
generalization that may produce false positives. Second, color classes should be reliable 
enough to identify objects under variable light conditions. Definition of a color class is a 
complex task that usually involves adjusting a volume to a cloud of samples obtained from 
pixels belonging to objects of such color class. This presents a clustering problem, which 
may be solved either by using traditional or simplified methods. Specifically, by using 
simplified methods, less processing power from a mobile robot is need, allowing its use for 
online classification and calibration. The use of thresholds for color classification is a process 
that involves partitioning a color space. As presented by Castleman (Castleman, 1996), 
different objects on an image belong to individual groups or clusters of points in a histogram 
defined on the color space. These groups of points represent the samples from which color 
classes will be constructed and defined. 
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Fig. 2. Top left: Parallelepiped subspace, Top right: Ellipsoid subspace, Bottom left: Conic 
subspace, Bottom right: Paraboloid subspace 

Color class construction process starts by taking color samples from objects in the 
environment. This sampling process consists on extracting the components of the color 
signal for each pixel in the objects, using images captured by the camera of the mobile robot 
for which the color classification is intended. These images are obtained trying to include 
most of the possible external conditions that the robot may find. Classic choices of sub-
spaces geometries are shown in Figure 2. 
One of the simplest techniques to define a color subspace is by setting a pair of thresholds for 
each component of a color signal. Knowing that linear color space is Cartesian, the subspace 
defined by these six thresholds (two for each coordinate) will produce a parallelepiped. The 
implementation of this approach produces a fast classification of pixels in the image (Bruce et 
al., 2000). The main advantage of this method lies on its simplicity and speed to define color 
subspaces, which is important if an online recalibration is expected. The most important 
drawback is that this volume adjusts poorly to the cloud of samples, leading to a poor 
classification of pixels and reduced generalization capabilities. This is due to a high risk of 
overlapping when many colors classes are needed, causing misclassification on pixels. A 
sample classification produced by this type of threshold is shown in Figure 3.a. As a result, a 
different subspace is need to better fit points of each color. Quadric surfaces are evaluated as 
a better option. These surfaces adapt more precisely to the apparent geometry of clouds of 
samples, for the particular color spaces used in this research. While a cloud of points in a 
color space has some spatial characteristics, the same has other spatial characteristic when 
other color space is considered. Different color spaces may benefit from other subspaces 
representations, as the shape of a color class may change according to the attributes 
analyzed for a color. In order to exemplify quadric subspaces, both RGB and YUV color 
spaces were used in the color image of Figure 3. Cones are a logical choice in RGB color 
space. If a vector is traced passing through the origin, it will intersect a set of values with the 
same chrominance, but with a different brightness. By using this vector to create a cone, the 
tolerance of the contained range will include a set of similar tones of the classified color. The 
radius of the cone will define the maximum threshold that the color class will allow. A sample 
conic threshold is shown in Figure 3.b. 
However, when samples are close to the origin of the color space —when colors become very 
dark—, samples are more susceptible of being affected by image noise. A similar quadric 
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subspace that avoids the classification of samples near the origin is a paraboloid. While its shape 
largely resembles a cone, providing similar color classification capabilities, a variation in the base 
of the paraboloid denotes a criterion to discard dark samples subject to noise. The focus of the 
paraboloid will be calculated according to the mean value of the cloud of samples, and may be 
modified to include or discard dark samples. Paraboloid thresholds may be seen in Figure 3.c. 

 a) Parallelepiped color class 

 b) Cone color class 

 c) Paraboloid color class 

 d) Ellipsoid color class 

Fig. 3. Use of different bounding subspaces as color classes for classification of yellow in 
different color spaces. From left to right: Original image, Pixels from the original image 
classified as yellow, 3D representation of the color subspace. a) YUV Parallelepiped color 
class. b) RGB Cone color class. c) RGB Paraboloid color class. d) YUV Ellipsoid color class. 
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implementation of this approach produces a fast classification of pixels in the image (Bruce et 
al., 2000). The main advantage of this method lies on its simplicity and speed to define color 
subspaces, which is important if an online recalibration is expected. The most important 
drawback is that this volume adjusts poorly to the cloud of samples, leading to a poor 
classification of pixels and reduced generalization capabilities. This is due to a high risk of 
overlapping when many colors classes are needed, causing misclassification on pixels. A 
sample classification produced by this type of threshold is shown in Figure 3.a. As a result, a 
different subspace is need to better fit points of each color. Quadric surfaces are evaluated as 
a better option. These surfaces adapt more precisely to the apparent geometry of clouds of 
samples, for the particular color spaces used in this research. While a cloud of points in a 
color space has some spatial characteristics, the same has other spatial characteristic when 
other color space is considered. Different color spaces may benefit from other subspaces 
representations, as the shape of a color class may change according to the attributes 
analyzed for a color. In order to exemplify quadric subspaces, both RGB and YUV color 
spaces were used in the color image of Figure 3. Cones are a logical choice in RGB color 
space. If a vector is traced passing through the origin, it will intersect a set of values with the 
same chrominance, but with a different brightness. By using this vector to create a cone, the 
tolerance of the contained range will include a set of similar tones of the classified color. The 
radius of the cone will define the maximum threshold that the color class will allow. A sample 
conic threshold is shown in Figure 3.b. 
However, when samples are close to the origin of the color space —when colors become very 
dark—, samples are more susceptible of being affected by image noise. A similar quadric 
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subspace that avoids the classification of samples near the origin is a paraboloid. While its shape 
largely resembles a cone, providing similar color classification capabilities, a variation in the base 
of the paraboloid denotes a criterion to discard dark samples subject to noise. The focus of the 
paraboloid will be calculated according to the mean value of the cloud of samples, and may be 
modified to include or discard dark samples. Paraboloid thresholds may be seen in Figure 3.c. 

 a) Parallelepiped color class 

 b) Cone color class 

 c) Paraboloid color class 

 d) Ellipsoid color class 

Fig. 3. Use of different bounding subspaces as color classes for classification of yellow in 
different color spaces. From left to right: Original image, Pixels from the original image 
classified as yellow, 3D representation of the color subspace. a) YUV Parallelepiped color 
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Again, an issue that both of these approaches may find is their difficulties in 
classification of highlights or bright areas. By creating an ellipsoidal primitive, color 
regions are bounded more precisely, discarding highlights that may also be caused by 
noise. The use of ellipsoids adapt stylishly to different color space, such as RGB and 
YUV, as they provide a more precise approximation to the final color class. This is 
shown in Figure 3.d. 

4. Color Image Classification through Implicit Surfaces 
Though techniques based on quadric subspaces produced better results than the use of 
simple parallelepiped subspaces, the resulting classification still haves some areas of 
improvement.
First, the bounding quality of the surfaces to the cloud of samples depends highly on 
the distribution of the classified color in the selected color space. For instance, cones 
and paraboloids are more accurate describing color distribution in the RGB color space 
than in the YUV color space. However, ellipsoids produce better results in both color 
spaces.
Second, even when the color space is suited for a quadric subspace, its may not adjust as 
tightly as desired to a color class, which may lead to some classification problems. This is 
because shape of clouds of samples is affected by light incidence and reflection. 
Hence, a better technique of classification was proposed in (Alvarez et al., 2004) to overcome 
some of these drawbacks. This new approach is based on a technique used for 3D object 
reconstruction (Lim et al., 1995), and the use of implicit surfaces as the threshold that 
bounds and defines color classes. 

4.1 Implicit Surfaces 
Formally, implicit surfaces are 2D geometric shapes existing in the 3D space, and defined 
according to a particular mathematical expression (Bloomenthal, 1997). Usually, this implies 
a function f that defines a surface. When f is equal to a certain threshold for a given point, 
this point lies on the surface, while when a point is below this threshold, it is contained by 
this surface. 
An implicit surface is usually characterized by a skeleton and a blending function. The 
skeleton is a set of primitive elements—such as points and lines— that define individual 
implicit functions which will be the base for the final surface. The blending function defines 
the way in which these primitives will be combined to produce the final surface. 
Implicit surfaces were selected for color classification as they easily allow evaluating when a 
sample lies inside or outside the volume defined by such surface, providing a natural 
interface for color classification. Besides, they present the property of being able to blend 
with other surfaces in order to produce a single one. In this way, a set of relatively sparse 
samples may produce a continuous surface containing all the intermediate regions to 
produce a single color class. Similarly, if groups of samples within a color class are very 
distant from each other, the surface will split, but the resulting clusters will still belong to 
the same class. 
In this way, it is possible to adjust a surface to a cloud of samples if we can properly 
distribute a set of primitives, of correct dimensions, that work as the skeleton of our surface; 
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similarly to the work from Lim et al. (Lim et al., 1995) to reconstruct a 3D object from a set of 
points from its surface. 

4.2 Construction Algorithm 
This algorithm starts from a set of images from which a user selects a set of samples for a 
given color class. Then, a number of spherical primitives are uniformly distributed along the 
cloud of samples, to later apply the k-means algorithm to adjust their position. Once 
distributed, the radius of each primitive is estimated according to the standard deviation of 
samples related to each primitive. Finally, these primitives are blend to produce the final 
surface, or color class. The resulting color class will then be translated into a look-up table, 
in order to produce an efficient online color classification. Another option is to use the 
resulting surface function as the classifier, defining a threshold for this function as a 
tolerance criterion to add or exclude samples. 

4.3 Generation of Primitives 
Once a set of color samples has been selected, a set of primitives should be distributed 
among this cloud. An initial naïve approach could be the use of Delaunay tetrahedralization 
(Langetepe & Zachmann, 2006), which produces a set of tetrahedrons that connects every 
sample in the cloud. Adding a spherical primitive in the center of each tetrahedron would 
then produce a relatively close approximation of the sampled data. However, the resulting 
number of primitives would be extremely large, and discarding small tetrahedrons would 
produce a poor approximation of the surface. 
Instead (Lim et al., 1995) propose to start the surface reconstruction by minimizing a cost 
function, expressed as a sum of squared terms. This cost function represents the error 
between the implicit surface, including the desired features of this surface, and the points 
from which it is constructed. Some functions may include the distance between the surface 
and the points, the curvature, the normal vectors of the surface, or the radius of the 
primitives. However, minimization of such function is neither simple nor fast, and this 
method is suited for samples from the surface rather than within the surface. A possible 
solution would include extracting the samples on the surface, but discarding samples within 
the surface would eliminate potentially valuable information for the process. Instead, 
(Alvarez et al., 2004) propose a different approach using the k-means algorithm.  
The k-means algorithm, as defined by Bishop (Bishop, 1996), divide a set of n point samples 
(x1, x2, … xn) in a set of k disjoint, non-hierarchic sets (Q1 … Qk), through the minimization of 
a distance criterion d. Usually, Euclidian distance metric is used, which produces spherical 
clusters that, in this case, suit well as primitives for an implicit function. The k-means
algorithm is a minimization problem of a cost function: 
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Again, an issue that both of these approaches may find is their difficulties in 
classification of highlights or bright areas. By creating an ellipsoidal primitive, color 
regions are bounded more precisely, discarding highlights that may also be caused by 
noise. The use of ellipsoids adapt stylishly to different color space, such as RGB and 
YUV, as they provide a more precise approximation to the final color class. This is 
shown in Figure 3.d. 

4. Color Image Classification through Implicit Surfaces 
Though techniques based on quadric subspaces produced better results than the use of 
simple parallelepiped subspaces, the resulting classification still haves some areas of 
improvement.
First, the bounding quality of the surfaces to the cloud of samples depends highly on 
the distribution of the classified color in the selected color space. For instance, cones 
and paraboloids are more accurate describing color distribution in the RGB color space 
than in the YUV color space. However, ellipsoids produce better results in both color 
spaces.
Second, even when the color space is suited for a quadric subspace, its may not adjust as 
tightly as desired to a color class, which may lead to some classification problems. This is 
because shape of clouds of samples is affected by light incidence and reflection. 
Hence, a better technique of classification was proposed in (Alvarez et al., 2004) to overcome 
some of these drawbacks. This new approach is based on a technique used for 3D object 
reconstruction (Lim et al., 1995), and the use of implicit surfaces as the threshold that 
bounds and defines color classes. 

4.1 Implicit Surfaces 
Formally, implicit surfaces are 2D geometric shapes existing in the 3D space, and defined 
according to a particular mathematical expression (Bloomenthal, 1997). Usually, this implies 
a function f that defines a surface. When f is equal to a certain threshold for a given point, 
this point lies on the surface, while when a point is below this threshold, it is contained by 
this surface. 
An implicit surface is usually characterized by a skeleton and a blending function. The 
skeleton is a set of primitive elements—such as points and lines— that define individual 
implicit functions which will be the base for the final surface. The blending function defines 
the way in which these primitives will be combined to produce the final surface. 
Implicit surfaces were selected for color classification as they easily allow evaluating when a 
sample lies inside or outside the volume defined by such surface, providing a natural 
interface for color classification. Besides, they present the property of being able to blend 
with other surfaces in order to produce a single one. In this way, a set of relatively sparse 
samples may produce a continuous surface containing all the intermediate regions to 
produce a single color class. Similarly, if groups of samples within a color class are very 
distant from each other, the surface will split, but the resulting clusters will still belong to 
the same class. 
In this way, it is possible to adjust a surface to a cloud of samples if we can properly 
distribute a set of primitives, of correct dimensions, that work as the skeleton of our surface; 
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similarly to the work from Lim et al. (Lim et al., 1995) to reconstruct a 3D object from a set of 
points from its surface. 

4.2 Construction Algorithm 
This algorithm starts from a set of images from which a user selects a set of samples for a 
given color class. Then, a number of spherical primitives are uniformly distributed along the 
cloud of samples, to later apply the k-means algorithm to adjust their position. Once 
distributed, the radius of each primitive is estimated according to the standard deviation of 
samples related to each primitive. Finally, these primitives are blend to produce the final 
surface, or color class. The resulting color class will then be translated into a look-up table, 
in order to produce an efficient online color classification. Another option is to use the 
resulting surface function as the classifier, defining a threshold for this function as a 
tolerance criterion to add or exclude samples. 

4.3 Generation of Primitives 
Once a set of color samples has been selected, a set of primitives should be distributed 
among this cloud. An initial naïve approach could be the use of Delaunay tetrahedralization 
(Langetepe & Zachmann, 2006), which produces a set of tetrahedrons that connects every 
sample in the cloud. Adding a spherical primitive in the center of each tetrahedron would 
then produce a relatively close approximation of the sampled data. However, the resulting 
number of primitives would be extremely large, and discarding small tetrahedrons would 
produce a poor approximation of the surface. 
Instead (Lim et al., 1995) propose to start the surface reconstruction by minimizing a cost 
function, expressed as a sum of squared terms. This cost function represents the error 
between the implicit surface, including the desired features of this surface, and the points 
from which it is constructed. Some functions may include the distance between the surface 
and the points, the curvature, the normal vectors of the surface, or the radius of the 
primitives. However, minimization of such function is neither simple nor fast, and this 
method is suited for samples from the surface rather than within the surface. A possible 
solution would include extracting the samples on the surface, but discarding samples within 
the surface would eliminate potentially valuable information for the process. Instead, 
(Alvarez et al., 2004) propose a different approach using the k-means algorithm.  
The k-means algorithm, as defined by Bishop (Bishop, 1996), divide a set of n point samples 
(x1, x2, … xn) in a set of k disjoint, non-hierarchic sets (Q1 … Qk), through the minimization of 
a distance criterion d. Usually, Euclidian distance metric is used, which produces spherical 
clusters that, in this case, suit well as primitives for an implicit function. The k-means
algorithm is a minimization problem of a cost function: 
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The total cloud of samples is seen as a large cluster that will be approximated by a number 
of small clusters, defined by k primitives. The k-means algorithm distributes the primitives 
in the volume used by the cloud samples, iteratively adjusting its position to provide each 
cluster with a subset of the samples.  
The proposed k-means algorithm is summarized as follow. 
Step 1. An arbitrary set of clusters (primitives) is distributed randomly along the cloud of 

samples. 
Step 2. Calculate the distance metrics from each sample (x1, x2, … xn) to the center of each 

primitive (c1, … ck).
Step 3. Relate each sample to the closest primitive.  
Step 4. Recalculate the center of primitives as the average of all of the samples related with 

such primitive.  
Step 5. Repeat iteratively steps 2-4 until the change in the position of all centers lies below 

a certain threshold ε.
This process guarantees that each sample will belong to a group or primitive, and that the 
distribution will converge to a local minimum of (1). 
Once the primitives have been distributed using the k-means algorithm, the radius for each 
primitive is estimated as follow. For each group, the standard deviation from the center of 
the primitive to all samples is calculated. The radius of the primitive is then set as a multiple 
of this standard deviation according to the confidence interval expected. 

4.4 Construction of the color class 
Once the spherical primitives are defined, centers and radius are known, they will be 
combined into a implicit surface, as proposed in (Lim et al., 1995).  
The implicit function for each spherical primitive i is defined as: 
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This function has the following properties: 
( )if P < Γ  for points P inside the surface 

( )if P > Γ  for points P outside the surface 

( )if P = Γ  for points P on the surface 
Here,  is the threshold, which may be understood as a scale parameter for the sphere. For 
example, if  is set to 1 the original scale of the spherical primitive will be considered.  
Primitives are then joined into a unique implicit function, using a blending function to 
construct the final implicit surface. Here, a function presented by Ricci (Ricci, 1973) is used 
to blend the primitives: 
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When  tends to infinity, this function converges to the absolute minimum. Graphically, this 
parameter controls how tight will the surface fit the primitives that compose it; when 
tends to infinity, the function converges to the original set of primitives.  
From the implicit function f , it is possible to precompute the color class and store it into a 
look-up table, which will permit a fast mechanism to perform online classification. 
However, the implicit surface function could also be used as the classifier, defining a 
threshold as required. Doing so will allow this approach to be more dynamic, and to adjust 
during the execution of online classification. 
Moreover, the implicit function f can be seen as a possibility function, which provides more 
information about the classified sample other than its class, but also the degree of similarity 
between the sample and the color class, resembling a Gaussian mixture. Using other criteria 
—like Mahalanobis distance—would add different characteristics to this approach, which 
might be useful for certain application areas. 
An example result for the yellow color class using this approach is shown in Figure 4. 

Fig. 4. Color classification using the implicit surfaces technique. Shape on the left is the 
resulting implicit surface for the yellow color class. 

One advantage of the implicit surfaces technique is the simplicity to modify the scale 
parameter  for spherical primitives, and the blending degree ρ, in order to modify the 
amount of samples identified as part of a color class. By modifying these thresholds, a set of 
self-contained color classes is obtained. Classes with different thresholds may be used for 
different segmentation stages on the same process.  

5. Multilevel Classification for Image Segmentation 
In general, segmentation techniques consume a lot of computer power by processing every 
pixel on an image, increasing the possibilities of recognizing external noise as possible 
objects of interest. 
To avoid processing the entire image, Seed Region Growth algorithms (or SRG, for short) use only a 
set of pixels or seeds which are very likely to be part of an object of interest (von Hundelshausen & 
Rojas, 2003; Wasik & Saffiotti, 2002). Then, these seeds are used to grow regions of interest based on 
a homogeneity criterion, such as contrast between neighboring pixels. However, these techniques 
require a good homogeneity criterion to avoid flooding problems. 
A good way to analyze a small set of pixels with high probabilities of being part of an object 
of interest is to use information on the camera position and orientation to only evaluate 
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The total cloud of samples is seen as a large cluster that will be approximated by a number 
of small clusters, defined by k primitives. The k-means algorithm distributes the primitives 
in the volume used by the cloud samples, iteratively adjusting its position to provide each 
cluster with a subset of the samples.  
The proposed k-means algorithm is summarized as follow. 
Step 1. An arbitrary set of clusters (primitives) is distributed randomly along the cloud of 

samples. 
Step 2. Calculate the distance metrics from each sample (x1, x2, … xn) to the center of each 

primitive (c1, … ck).
Step 3. Relate each sample to the closest primitive.  
Step 4. Recalculate the center of primitives as the average of all of the samples related with 

such primitive.  
Step 5. Repeat iteratively steps 2-4 until the change in the position of all centers lies below 

a certain threshold ε.
This process guarantees that each sample will belong to a group or primitive, and that the 
distribution will converge to a local minimum of (1). 
Once the primitives have been distributed using the k-means algorithm, the radius for each 
primitive is estimated as follow. For each group, the standard deviation from the center of 
the primitive to all samples is calculated. The radius of the primitive is then set as a multiple 
of this standard deviation according to the confidence interval expected. 

4.4 Construction of the color class 
Once the spherical primitives are defined, centers and radius are known, they will be 
combined into a implicit surface, as proposed in (Lim et al., 1995).  
The implicit function for each spherical primitive i is defined as: 
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construct the final implicit surface. Here, a function presented by Ricci (Ricci, 1973) is used 
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When  tends to infinity, this function converges to the absolute minimum. Graphically, this 
parameter controls how tight will the surface fit the primitives that compose it; when 
tends to infinity, the function converges to the original set of primitives.  
From the implicit function f , it is possible to precompute the color class and store it into a 
look-up table, which will permit a fast mechanism to perform online classification. 
However, the implicit surface function could also be used as the classifier, defining a 
threshold as required. Doing so will allow this approach to be more dynamic, and to adjust 
during the execution of online classification. 
Moreover, the implicit function f can be seen as a possibility function, which provides more 
information about the classified sample other than its class, but also the degree of similarity 
between the sample and the color class, resembling a Gaussian mixture. Using other criteria 
—like Mahalanobis distance—would add different characteristics to this approach, which 
might be useful for certain application areas. 
An example result for the yellow color class using this approach is shown in Figure 4. 

Fig. 4. Color classification using the implicit surfaces technique. Shape on the left is the 
resulting implicit surface for the yellow color class. 

One advantage of the implicit surfaces technique is the simplicity to modify the scale 
parameter  for spherical primitives, and the blending degree ρ, in order to modify the 
amount of samples identified as part of a color class. By modifying these thresholds, a set of 
self-contained color classes is obtained. Classes with different thresholds may be used for 
different segmentation stages on the same process.  

5. Multilevel Classification for Image Segmentation 
In general, segmentation techniques consume a lot of computer power by processing every 
pixel on an image, increasing the possibilities of recognizing external noise as possible 
objects of interest. 
To avoid processing the entire image, Seed Region Growth algorithms (or SRG, for short) use only a 
set of pixels or seeds which are very likely to be part of an object of interest (von Hundelshausen & 
Rojas, 2003; Wasik & Saffiotti, 2002). Then, these seeds are used to grow regions of interest based on 
a homogeneity criterion, such as contrast between neighboring pixels. However, these techniques 
require a good homogeneity criterion to avoid flooding problems. 
A good way to analyze a small set of pixels with high probabilities of being part of an object 
of interest is to use information on the camera position and orientation to only evaluate 
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pixels located in areas of the image where objects can be present, and discard areas where 
no object can be located. In particular, the use of scanlines, which are perpendicular to the 
horizon, discards objects above a certain height and provide different resolutions for image 
scanning, according to the expected distance to objects (Jüngel, 2004). However, this method 
alone may discard information that might be found obtaining complete regions. 
The presented approach combines the advantages of scanlines and SRG algorithms by using 
a multilevel color classification (Alvarez et al., 2005). This classification takes advantage of 
the custom threshold of the implicit surfaces presented in section 4.  
First, a set of scanlines will be used to extract a set of color seeds. Pixels on scanlines will be 
identified using a small threshold color class to reduce the number of identified pixels. 
Then, extracted seeds will be used by a region growth algorithm to identify regions of 
interest. The SRG algorithm will use a color class with a bigger threshold to better 
characterize entire regions. 

5.1 Seed Extraction through Scanlines 
According to the approach from Jüngel (Jüngel, 2004), a set of vertical scanlines will be used 
to locate objects of interest within an image. Density of these lines will be different 
according to their distance to the camera. When a line is closer to the horizon, pixels on it 
will probably represent objects farther from the camera. As the line moves downward away 
from the horizon, pixels in the scanline will probably belong to objects closer to the camera, 
so a smaller line density should be sufficient to locate these objects. 
In order to obtain the horizon for the camera on each picture, the kinematic model of the 
camera should be known. This is highly dependent on the nature of the robot system and 
cannot be generalized, but by obtaining this kinematic model, a lot of undesired data can be 
discarded from the processing pipeline.  
Once the horizon is known, a scan pattern is projected on the image. The scan pattern 
consists on a set of lines, perpendicular to the horizon, that start above the horizon and go 
down the interest area. Distance between scanlines depends on the projected size of objects 
on the screen. As the projected size of objects grows as they get closer to the camera, 
scanlines should become sparser as they get below the horizon. An intertwined pattern of 
short and long scanlines will deal with this varying scanline density. An example of this 
pattern is shown in Figure 5.a. Pixels found in these scanlines will be classified according to 
a color class with a low threshold, as seen in Figure 5.b. 

a)  b) 
Fig. 5. a) Scan pattern projected on a custom image. Scanline density is higher as pixels get 
closer to the horizon (dotted line). b) Seeds extracted from evaluating pixels on scanlines 
using a low-threshold color class. 
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The scanline algorithm avoids processing the entire image, reducing the number of 
processed pixels. In addition, this routine discards pixels above a certain height, eliminating 
possible sources of noise. 

5.2 Seed Region Growth 
Seed Region Growth is a region based technique used to perform image segmentation 
(Wasik & Saffiotti, 2002). A seed is selected from this initial set of color seeds. In our 
approach, the initial set of color seeds is obtained from the scanline seed extraction. 
The selected seed is assigned to a new region, and this region is grown on a neighborhood. 
Usually, a 4-pixel neighborhood is selected, although an 8-pixel neighborhood can 
sometimes be used. When a neighboring pixel already belongs to the current region, it is 
ignored. If not, this pixel is evaluated through the homogeneity criterion to find if it belongs 
to the current region. If it does, this new pixel is added as a new seed for this region. 
Growth continues until there are no new seeds for the current region. Once a region is 
complete, a new seed is selected from the initial seed set, and new regions are created until 
no more initial seeds are found. 
The homogeneity criterion, as mentioned before, is that the new pixel belongs to the same a 
high-threshold color class than the initial seed. This avoids color flooding in areas with 
similar contrast. 

6. Applications and Results 
The present technique was applied in the 4-legged league of the Robocup competition 
(www.robocup.org). The basic idea behind this league is to make four autonomous legged 
mobile robots to play soccer. This league uses a standard robot, Sony’s AIBO ERS-7 robot, to 
guarantee a common hardware platform for each team, prohibiting the addition of 
additional hardware equipment for this robot. The soccer field is color tagged, providing 
specific colored and sized objects to allow the robot to identify the object type and location, 
and then to infer its position on the field. 
Rules of this league state that the robot should play autonomously on the soccer field, so 
every decision must be taken based on an efficient evaluation of the environment based 
on the information from the built-in camera. The robot provides a maximum camera 
resolution of 208x160pixels, producing 25 frames per second. This image should be 
processed by an internal MIPS R7000 CPU at 576 Mhz, which should also deal with the 
control of all the motors of the robot and the general strategy of the soccer game. The 
vision algorithm should be very efficient in order to deal with as many images as 
possible. 
An application to acquire samples from environment objects and build the color classes 
was programmed using the proposed algorithm. A screenshot from this application is 
shown in Figure 6. This application allows the selection of pixels from images to create 
clouds of samples for each desired color. The efficiency of the classification approach 
allows that, interactively, after selecting new samples from the image, the color class is 
updated, producing the implicit surface on the right area of the application, and 
classifying pixels on the image in the lower left area of the application. However, in order 
to produce a more efficient online classification, the application produces a look-up table 
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pixels located in areas of the image where objects can be present, and discard areas where 
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a color class with a low threshold, as seen in Figure 5.b. 

a)  b) 
Fig. 5. a) Scan pattern projected on a custom image. Scanline density is higher as pixels get 
closer to the horizon (dotted line). b) Seeds extracted from evaluating pixels on scanlines 
using a low-threshold color class. 
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was programmed using the proposed algorithm. A screenshot from this application is 
shown in Figure 6. This application allows the selection of pixels from images to create 
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that will reduce the online color classification step to a single query in a 3D array for each 
pixel.

Fig. 6. Tool for color image classification. 

The produced primitives and the resulting implicit surfaces fit tightly the samples used in 
the segmentation process, producing a precise representation of the color class. The 
blending degree can be also modified interactively.  
Figure 7 provides an example on how changes on this parameter affect the result of the 
color class and of the classification itself. Smaller blending degree produces robust color 
identification, while larger blending degree produces more precise results. This attribute, 
together with the threshold for the primitive radius, is useful to resolve overlapping 
between nearby color classes, and provides better control on the class tolerance. 

Fig. 7. Implicit surface with different blending degree, and associated segmentation for 
yellow in a sample image. a)  = 2, b)  = 1.5, c)  = 1. 

Color classification was also tested under different lighting conditions comparing the results 
with the parallelepiped threshold technique. Images processed with the implicit surface 
approach are better identifying colors, even under extreme illumination changes. This test is 
shown in Figure 8. In addition, this figure also shows the color subspace produced by the 
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color class. The parallelepiped threshold approach produces some misclassification 
problems that are visible in the lower images from Figure 8. 
In addition to a higher tolerance to illumination changes, the proposed approach could be 
extended to dynamically adapt the color subspace, by using a region growth approach as 
the one presented here in the segmentation algorithm. 
The multilevel classification technique improved the efficiency of previous techniques while 
producing a better quality image segmentation, and higher tolerance to illumination 
changes. The evaluation of this algorithm was simulated on a Pentium IV at 1.6 Ghz 
desktop computer, using real information from the robot.  
The seed extraction process used a set of color classes with a 0.5 threshold value. As the 
entire regions for the field lines and the field itself are not required, this step is used to 
identify lines and borders of the field, and these colors are discarded from the region 
growth step. The first step of this simulation takes an average of 16 ms. 

Fig. 8. Tolerance to changing lighting conditions. The yellow color is being classified and 
replaced by blue. Upper row: Color classification using an implicit surface threshold 
under different lighting conditions. Lower row, middle: Color subspace used for the 
images on the upper row. Lower row, left and right: Color classification using 
parallelepiped thresholds. 

Once the seeds are extracted, the region growth stage is executed, using a set of color classes 
with a 1.0 threshold value. This step takes an average of 24 ms.  
Some results of both steps of the segmentation are seen in Figure 9. 

7. Conclusions and Future Work 
The presented color classification technique shows a good approximation for color 
subspaces without the need of transforming the color signal of pixels. The produced implicit 
surface binds tightly the cloud of color samples, reducing possible overlapping problems 
with other color classes. The use of a look-up table was an efficient method that allows the 
classification of a single pixel with a single lookup on a 3D array.  
In addition, evaluation of this algorithm under varying lighting conditions showed a better 
color classification than that produced by other color classification methods. The main 
reason behind this benefit is the tight approximation of the color class to the cloud of 
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changes. The evaluation of this algorithm was simulated on a Pentium IV at 1.6 Ghz 
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with a 1.0 threshold value. This step takes an average of 24 ms.  
Some results of both steps of the segmentation are seen in Figure 9. 

7. Conclusions and Future Work 
The presented color classification technique shows a good approximation for color 
subspaces without the need of transforming the color signal of pixels. The produced implicit 
surface binds tightly the cloud of color samples, reducing possible overlapping problems 
with other color classes. The use of a look-up table was an efficient method that allows the 
classification of a single pixel with a single lookup on a 3D array.  
In addition, evaluation of this algorithm under varying lighting conditions showed a better 
color classification than that produced by other color classification methods. The main 
reason behind this benefit is the tight approximation of the color class to the cloud of 
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samples; as overlapping problems are reduced, a larger number of samples with different 
color intensities and tones may be selected to produce the color class. 

Fig. 9. Top row: Results of scanlines seed extraction stage. Bottom row: Results of region 
growth stage. 

Implicit surface was shown as a well suited threshold surface for color classification, as it is 
simple to identify whether a color lies inside or outside the color class by just evaluating the 
value of the implicit function. In addition, once the parameters for the primitives of the 
implicit surface have been estimated, the tolerance to noise and to changing lighting 
condition can be easily customized by changing both the blending degree and the primitive 
threshold for the desired color class, requiring no further execution of the entire 
classification process. 
While the entire classification process has not yet been implemented to be executed by a 
mobile robot, its offline classification process runs at interactive times. This may allow the 
later implementation of this technique on a mobile robot to dynamically modify color 
classes using some similarity criteria. 
The presented color image segmentation technique combines the advantages of different 
techniques reducing, at the same time, some of their drawbacks. The use of scanlines 
reduces the number of pixels evaluated by the classification and segmentation process, 
and helps to discard external noise due to objects outside the areas of interest of the 
image. 
Using a high-threshold color class as homogeneity criterion for the region growth algorithm 
provides with a greater control on the growth process, avoiding flooding problems on low-
contrast boundaries.  
Besides, the use of region growth completes the information extracted from scanlines. Pixels 
found for a region are the same that would be obtained by processing the entire image, but 
scanlines avoid processing pixels with no useful information, improving the efficiency of 
the segmentation phase. 
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In addition, scanlines should only find one pixel from an object to identify it, as the SRG 
step will identify the rest of the pixel. This reduces the required number of scanlines to 
obtain a good image segmentation. 
Many possible improvements can be considered. First, the k-means algorithm requires an 
initial number of primitives. It would be desirable that the number of primitives would also 
adapt to the nature of the color class. For this purpose, different initialization algorithms 
may be incorporated to produce better results. 
Another possible improvement lies on the nature of the primitives. Spherical clusters are 
well suited as an initial approach, as Euclidean distance is a simple metric to evaluate 
distance to a cluster. However, different distance metrics may provide with ellipsoidal or 
other-shaped clusters, which may produce as a result the use of less primitives and possibly 
a tighter adaptation of the color class to the samples. 
In addition, the online adjustment of the implicit surface threshold may be used by an 
online dynamic color classification technique that will adapt to varying lighting conditions. 
The required samples for this segmentation may be obtained from the region growth 
algorithm. When new pixels are included into a region, the dynamic classification algorithm 
would add these pixels to the cloud of samples for a given color class. Then, after receiving 
a set of pixels, the color classification process would be executed and the color class 
updated, producing a new classification suitable for current illumination conditions. This 
mechanism would also require an additional step to discard invalid samples and to validate 
new samples, either by the frequency of a sample, its last appearance on a frame, or its 
distance to the previous color class. This technique would produce a reliable, non-
supervised color segmentation technique that could adapt constantly to different conditions 
from the environment. 
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1. Introduction: Global Vision 
Vision is the richest of all human senses: we acquire most of our perceptual information 
through vision, and perform much of our own vision processing with little conscious effort. In 
contrast, dealing intelligently with the enormous volume of data that vision produces is one of 
the biggest challenges to robotics. Identifying an object of interest in a random camera image is 
a difficult problem, even in domains where the number of possible objects is constrained, such 
as robotic soccer. This difficulty increases in magnitude when attributes of interest involve 
change such as movement, and thus require both state information and examining change in 
visual images over time. Visual analysis also involves many subtle problems, from very low-
level issues such as identifying colours under changing lighting conditions, to higher-level 
problems such as tracing the path of an object under conditions of partial occlusion, or 
distinguishing two objects that are next to one another but appear as one larger object. 
Humans deal with vision through very specialized massively-parallel hardware, coupled 
with a broad range of commonsense knowledge. Neither of these is currently feasible to 
apply to a mobile robot platform. While mobile processors are becoming more powerful, we 
are still far below what is required to process vision at a human level, and common-sense 
knowledge has always been one of the most difficult problems associated with artificial 
intelligence. Vision on mobile robots is thus largely about producing heuristic solutions that 
are adequate for the problem domain and allow the available hardware to process vision at 
the frame rate required. 
Vision in robots may be divided into two types. The first of these, local vision, involves 
providing a first-person perspective using a camera attached to the robot itself. Local vision 
shares many of the same problems that humans deal with in visual analysis, such as 
determining whether motion in a visual stream is due to the motion of objects captured by 
the camera, or the motion of the agent itself (ego motion). In a local vision setting, each 
member of a team of robots receives its own unique camera feed and be responsible for 
analyzing and responding to that feed. 
There are a number of reasons why local vision may not be preferable in a given 
application, the foremost of which is the heavy requirement for computational resources. 
When each robot must perform its own visual processing, it must be able to carry enough 
on-board processing to do so, which may not be possible in smaller robots or applications 
with competing resource needs. The fact that each robot is entirely responsible for its own 
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change such as movement, and thus require both state information and examining change in 
visual images over time. Visual analysis also involves many subtle problems, from very low-
level issues such as identifying colours under changing lighting conditions, to higher-level 
problems such as tracing the path of an object under conditions of partial occlusion, or 
distinguishing two objects that are next to one another but appear as one larger object. 
Humans deal with vision through very specialized massively-parallel hardware, coupled 
with a broad range of commonsense knowledge. Neither of these is currently feasible to 
apply to a mobile robot platform. While mobile processors are becoming more powerful, we 
are still far below what is required to process vision at a human level, and common-sense 
knowledge has always been one of the most difficult problems associated with artificial 
intelligence. Vision on mobile robots is thus largely about producing heuristic solutions that 
are adequate for the problem domain and allow the available hardware to process vision at 
the frame rate required. 
Vision in robots may be divided into two types. The first of these, local vision, involves 
providing a first-person perspective using a camera attached to the robot itself. Local vision 
shares many of the same problems that humans deal with in visual analysis, such as 
determining whether motion in a visual stream is due to the motion of objects captured by 
the camera, or the motion of the agent itself (ego motion). In a local vision setting, each 
member of a team of robots receives its own unique camera feed and be responsible for 
analyzing and responding to that feed. 
There are a number of reasons why local vision may not be preferable in a given 
application, the foremost of which is the heavy requirement for computational resources. 
When each robot must perform its own visual processing, it must be able to carry enough 
on-board processing to do so, which may not be possible in smaller robots or applications 
with competing resource needs. The fact that each robot is entirely responsible for its own 
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vision will also mean that there will be significant redundancy in processing across a team 
of robots in many applications as well. Local vision may also be undesirable in applications 
where a large number of very simple robots may be able to do the job of a few complex 
robots, in environments where shared vision is amenable (that is, where a unique 
perspective for each individual is unnecessary), and in educational environments where it is 
desirable to separate the problems of computer vision from the rest of robotics. In these 
domains, the second form of vision, global vision, is often preferred. Global vision provides a 
single third-party view to all members of a robot team, analogous to the view of a 
commentator in a soccer game. 
Global vision shares many of the problems associated with local vision. Objects of interest 
must be identified and tracked, which requires dealing with changes in appearance due to 
lighting variation and perspective. Since objects may not be identifiable in every frame, 
tracking objects across different frames is often necessary even if the objects are not mobile. 
The problem of identifying objects that are juxtaposed being viewed as one larger object 
rather than several distinct objects, and other problems related to the placement and motion 
of objects in the environment, are also common. 
In domains such as robotic soccer, where pragmatic real-time global vision is large part of the 
application, many of the more difficult problems associated with global vision have been dealt 
with through the introduction of artificial assumptions that greatly simplify the situation. The 
cost of such assumptions is that of generality: such systems can only operate where the 
assumptions they rely upon can be made. For example, global vision systems for robotic 
soccer (e.g. (Bruce & Veloso, 2003; Browning et al., 2002; Simon et al., 2001; Ball et al., 2004)) 
generally require a camera to be mounted perfectly overhead in order to provide a simple 
geometric perspective (and thus ensure that any object is the same size in the image no matter 
where in the field of view it appears), simplify tracking, and eliminate complex problems such 
as occlusion between agents. If a camera cannot be placed perfectly overhead, these systems 
cannot be used. Such systems also typically recognize individuals by arrangements of 
coloured patches, where the colours (for the patches and other items such as the ball) must be 
pre-defined, necessitating constant camera recalibration as lighting changes. Such systems can 
thus only operate in environments where lighting remains relatively consistent. 
While such systems will always be applicable in narrow domains where these assumptions 
can be made to hold, the generality lost in continuing to adhere to these assumptions serves 
to limit the applicability of these approaches to harder problems. Moreover, these systems 
bear little resemblance to human vision: children playing with remote-controlled devices, 
for example, do not have to climb to the ceiling and look down from overhead. Similarly, 
human vision does not require significant restrictions lighting consistency, nor any 
specialized markings on objects to be tracked. In order to advance the state of the art in 
robotics and artificial intelligence, we must begin to make such systems more generally 
intelligent. The most obvious first steps in this direction are considering the assumptions 
necessary to make a global vision system operate, and then to find ways of removing these. 
Our approach to real time computer vision arises from a desire to remove these 
assumptions and produce a more intelligent approach to global vision for teams of robots, 
not only for the sake of technological advancement, but from a pragmatic standpoint as 
well. For example, a system that does not assume that a camera has a perfect overhead 
mount is not only more generally useful, but requires less set-up time in that a perfect 
overhead mount does not need to be made. Similarly, an approach that can function in a 
wide range of lighting conditions saves the time and expense of providing specialized 
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lighting for a robotic domain. Over the past six years, we have developed a series of real-
time global vision systems that, while designed for the robotic soccer domain, are also 
generally useful anywhere global vision can be used. These systems have been used in 
RoboCup and FIRA robotic soccer competitions by ourselves and other teams, and have also 
been employed in such applications as robotic education and imitation learning. All are 
open source, and can be easily obtained by the reader for use or as a basis for further 
research work (Baltes & Anderson, 2006). 
Each of the systems we have developed deals with some of the assumptions normally 
associated with global vision systems, and thus produces a more generally intelligent 
approach. This chapter overviews the work necessary to deal with these assumptions, and 
outlines challenges that remain. We begin by examining the steps necessary to deal with a 
more general camera position, how objects can be tracked when the camera is not perfectly 
overhead, and how an overhead view can be reconstructed from an oblique camera capture. 
This necessitates dealing with objects that are occluded temporarily as robots move around on 
the field, and also requires dealing with three dimensions rather than two (since the height of 
an object is significant when the view is not a perfect overhead one). We then turn to dealing 
with assumptions about the objects being tracked, in order to minimize the need for 
recalibration over time, and to make global vision less vulnerable to problems of lighting 
variability. We examine the possibility of tracking objects using only the appearance of the 
object itself, rather than specialized markers, and discuss the use of machine learning to teach 
a global vision system about the objects it should be tracking. Finally, we examine removing 
the assumption that specific colours can be calibrated and tracked at all, in order to produce a 
vision system that does not rely on perfect colour calibration to recognize objects. 

2. Doraemon: Real-Time Object Tracking from an Oblique View 
Doraemon (Anderson & Baltes, 2002; Baltes, 2002) is a global vision system that allows objects 
to be tracked from an oblique camera angle as well as from an overhead view. The system acts 
as a server, taking frames from a camera, and producing a description of the objects tracked in 
frames at regular intervals, sending these over a network to clients (agents controlling robots, 
for example) subscribing to this information stream. Fig. 1 is a sample visual frame used as 
input to Doraemon to illustrate the problems involved in interpreting visual images without 
using a perfect overhead viewpoint. The image is disproportionate in height because it is one 
raw field from the interlaced video stream provided by the camera. It is easy to see that colour 
features are hard to extract, in part because the shape of coloured patches are elongated by the 
visual perspective, and in part because colour is not consistent across the entire image. 

Fig. 1. A sample visual frame taken from an oblique angle. 
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vision will also mean that there will be significant redundancy in processing across a team 
of robots in many applications as well. Local vision may also be undesirable in applications 
where a large number of very simple robots may be able to do the job of a few complex 
robots, in environments where shared vision is amenable (that is, where a unique 
perspective for each individual is unnecessary), and in educational environments where it is 
desirable to separate the problems of computer vision from the rest of robotics. In these 
domains, the second form of vision, global vision, is often preferred. Global vision provides a 
single third-party view to all members of a robot team, analogous to the view of a 
commentator in a soccer game. 
Global vision shares many of the problems associated with local vision. Objects of interest 
must be identified and tracked, which requires dealing with changes in appearance due to 
lighting variation and perspective. Since objects may not be identifiable in every frame, 
tracking objects across different frames is often necessary even if the objects are not mobile. 
The problem of identifying objects that are juxtaposed being viewed as one larger object 
rather than several distinct objects, and other problems related to the placement and motion 
of objects in the environment, are also common. 
In domains such as robotic soccer, where pragmatic real-time global vision is large part of the 
application, many of the more difficult problems associated with global vision have been dealt 
with through the introduction of artificial assumptions that greatly simplify the situation. The 
cost of such assumptions is that of generality: such systems can only operate where the 
assumptions they rely upon can be made. For example, global vision systems for robotic 
soccer (e.g. (Bruce & Veloso, 2003; Browning et al., 2002; Simon et al., 2001; Ball et al., 2004)) 
generally require a camera to be mounted perfectly overhead in order to provide a simple 
geometric perspective (and thus ensure that any object is the same size in the image no matter 
where in the field of view it appears), simplify tracking, and eliminate complex problems such 
as occlusion between agents. If a camera cannot be placed perfectly overhead, these systems 
cannot be used. Such systems also typically recognize individuals by arrangements of 
coloured patches, where the colours (for the patches and other items such as the ball) must be 
pre-defined, necessitating constant camera recalibration as lighting changes. Such systems can 
thus only operate in environments where lighting remains relatively consistent. 
While such systems will always be applicable in narrow domains where these assumptions 
can be made to hold, the generality lost in continuing to adhere to these assumptions serves 
to limit the applicability of these approaches to harder problems. Moreover, these systems 
bear little resemblance to human vision: children playing with remote-controlled devices, 
for example, do not have to climb to the ceiling and look down from overhead. Similarly, 
human vision does not require significant restrictions lighting consistency, nor any 
specialized markings on objects to be tracked. In order to advance the state of the art in 
robotics and artificial intelligence, we must begin to make such systems more generally 
intelligent. The most obvious first steps in this direction are considering the assumptions 
necessary to make a global vision system operate, and then to find ways of removing these. 
Our approach to real time computer vision arises from a desire to remove these 
assumptions and produce a more intelligent approach to global vision for teams of robots, 
not only for the sake of technological advancement, but from a pragmatic standpoint as 
well. For example, a system that does not assume that a camera has a perfect overhead 
mount is not only more generally useful, but requires less set-up time in that a perfect 
overhead mount does not need to be made. Similarly, an approach that can function in a 
wide range of lighting conditions saves the time and expense of providing specialized 
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lighting for a robotic domain. Over the past six years, we have developed a series of real-
time global vision systems that, while designed for the robotic soccer domain, are also 
generally useful anywhere global vision can be used. These systems have been used in 
RoboCup and FIRA robotic soccer competitions by ourselves and other teams, and have also 
been employed in such applications as robotic education and imitation learning. All are 
open source, and can be easily obtained by the reader for use or as a basis for further 
research work (Baltes & Anderson, 2006). 
Each of the systems we have developed deals with some of the assumptions normally 
associated with global vision systems, and thus produces a more generally intelligent 
approach. This chapter overviews the work necessary to deal with these assumptions, and 
outlines challenges that remain. We begin by examining the steps necessary to deal with a 
more general camera position, how objects can be tracked when the camera is not perfectly 
overhead, and how an overhead view can be reconstructed from an oblique camera capture. 
This necessitates dealing with objects that are occluded temporarily as robots move around on 
the field, and also requires dealing with three dimensions rather than two (since the height of 
an object is significant when the view is not a perfect overhead one). We then turn to dealing 
with assumptions about the objects being tracked, in order to minimize the need for 
recalibration over time, and to make global vision less vulnerable to problems of lighting 
variability. We examine the possibility of tracking objects using only the appearance of the 
object itself, rather than specialized markers, and discuss the use of machine learning to teach 
a global vision system about the objects it should be tracking. Finally, we examine removing 
the assumption that specific colours can be calibrated and tracked at all, in order to produce a 
vision system that does not rely on perfect colour calibration to recognize objects. 

2. Doraemon: Real-Time Object Tracking from an Oblique View 
Doraemon (Anderson & Baltes, 2002; Baltes, 2002) is a global vision system that allows objects 
to be tracked from an oblique camera angle as well as from an overhead view. The system acts 
as a server, taking frames from a camera, and producing a description of the objects tracked in 
frames at regular intervals, sending these over a network to clients (agents controlling robots, 
for example) subscribing to this information stream. Fig. 1 is a sample visual frame used as 
input to Doraemon to illustrate the problems involved in interpreting visual images without 
using a perfect overhead viewpoint. The image is disproportionate in height because it is one 
raw field from the interlaced video stream provided by the camera. It is easy to see that colour 
features are hard to extract, in part because the shape of coloured patches are elongated by the 
visual perspective, and in part because colour is not consistent across the entire image. 

Fig. 1. A sample visual frame taken from an oblique angle. 
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Fig. 2. Tsai Camera Calibration used in Doraemon. 

In order to be able to track images from an oblique angle, a calibration must be provided 
that allows an appropriate translation from a particular pixel in a visual frame to a 
coordinate system in the real world. The calibration process used by Doraemon, described 
in detail in (Anderson & Baltes, 2002), utilizes the well-established Tsai camera calibration 
(Tsai, 1986), which can compute a camera calibration from a single image. This method 
computes six external parameters (the x, y , and z coordinates of the camera position, and 
angles of roll, pitch and yaw) and six internal parameters using a set of calibration points 
from an image with known world coordinates. This requires a set of coordinates to be 
imposed on the world via a sample visual image. Since Tsai calibration normally requires at 
least 15 calibration points (i.e. points with known x,y coordinates), a calibration carpet with 
a repetitive grid pattern is used to easily provide a significant number of points. The known 
grid size is input to the system, and the coloured squares can be then be selected by the user 
and the calibration points obtained from the square centers (Fig. 2). Even using an oblique 
view of the playing field, the calibration results in object errors of less than 1 cm. To make 
calibration more flexible, we also define a rotation matrix on the field that allows the 
calibration to be adjusted (for example if the camera shifts during play) without having to 
recalibrate using the carpet. 

Objects in Doraemon are identified by the size and arrangement of coloured patches. The 
simplest objects may be simply a single coloured area of a given size - e.g. a ball might be 
described as an orange item 5cm in diameter. More sophisticated items (e.g. individual 
robots) are identified using unique arrangement of coloured patches on the top surface, as 
seen in Fig. 1 (e.g. a blue patch for the front of all robots on one team, with an arrangement 
of other colours uniquely identifying each team member). The system is thus heavily 
dependent on accurate colour models. Doraemon uses a sophisticated 12 parameter colour 
model that is based on red (R), green (G), and blue (B) channels as well as the difference 
channels red-green (R-G), red-blue (R-B), and green-blue (G-B). The channel differences are 
less sensitive to lighting variations than the raw channels, and allow more robust colour 
recognition than the raw channels alone. While there are other models that are less sensitive 
to brightness, (for example, HSI), this approach attempts to balance sensitivity with 
computational resources. The channel differences are similar to the hue values used in HSI, 
for example, while this model is less computationally expensive. 
Colours of interest are defined using a colour calibration procedure, during which areas of 
the visual image intended to be matched to a particular named colour are selected. This 
reliance on colour, like that of other global and local vision systems, limits generality and 
forces recalibration to be performed when lighting conditions change. Moving beyond this 

Intelligent Global Vision for Teams of Mobile Robots 169

dependence on colour will be described in Sections 3 and 4. Once colours are defined, 
camera images can be colour thresholded and particular colour patches can be recognized in 
an image. 
The size of any patch of colour can be determined by its position on the field, since the 
perspective of the field is known through calibration. This still requires a model describing 
the arrangements of the coloured patches marking objects as well as their heights above the 
playing field, since, for example, an object that is 50cm tall will have markers of the same 
height appear differently in the camera image than that of an object that is flush with the 
playing field surface. The descriptions of the size, colour, arrangement, and height of objects 
to be recognized are described in a configuration file. 
Each frame is colour thresholded and the recognized patches are matched against the size 
and configuration information provided. Not every object will be recognized in every 
frame, since lighting fluctuations, for example, may make some spots difficult to recognize 
across the entire field area. To compensate for this, the locations of recognized objects in 
previous frames are used both to infer likely positions in future frames and to calculate the 
speed and orientation of motion of tracked objects. 
Occlusion in robotic soccer is normally not an issue for tracking robots, even with an 
oblique camera, since the markers are on top of the robots and are thus the highest points on 
the field. Occlusion certainly happens when tracking the ball, however, and is also possible 
in any tracking scenario where obstacles on the field could be taller than robots. There is 
also the possibility that robots may abut one another, presenting a display of coloured 
patches that is similar to a different robot altogether, or presented in such a way that no one 
robot is easily recognizable. These situations are dealt with by tracking objects over time as 
well - an object may be lost temporarily as it passes behind an obstacle, or may be more 
momentarily unrecognized due to abutting other tracked objects - because objects are 
intended to be in motion, such losses will be momentary as new information allows them to 
be disambiguated. 
Doraemon transmits information about tracked objects (position, orientation, velocity) in 
ASCII over Ethernet to any client interested in receiving it. A sample message is shown in 
Fig. 3. 

7 6188 0.000290976 ; #defined objects, frame#, time diff. from last frame 
1605.82 -708.394 1321.44 ; x, y, z coordinates of camera 
2 spot1 Found 1232.5 416.374 0 0 0 0 ;information about each defined object 
2 spot2 Found 1559.22 417.359 0 0 0 0 
2 spot3 Found 1260.55 812.189 0 0 0 0 
2 spot4 Found 902.726 1002.43 0 0 0 0 
2 spot5 Found 746.045 735.631 0 0 0 0 
1 ball1 Found 1677.99 1205.55 50 0 -2.75769 1.19908 
0 car54 Found 1783.53 873.531 100 2.63944 1.47684 -6.49056 

Fig. 3. A sample ASCII message from Doraemon. 

The first line of each message contains the number of objects that video server is configured 
to track, followed by the video frame number and time difference in seconds between this 
message and the previous one. The next line contains the x, y, and z coordinates of the 
camera, and following this is a line for each object being tracked. Each of those lines consists 
of a numeric object class (e.g. a ball, robot, etc.), the unique defined identifier for the object, 
whether the object was located in the current frame or not, the x, y, and z coordinates of the 
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Fig. 2. Tsai Camera Calibration used in Doraemon. 

In order to be able to track images from an oblique angle, a calibration must be provided 
that allows an appropriate translation from a particular pixel in a visual frame to a 
coordinate system in the real world. The calibration process used by Doraemon, described 
in detail in (Anderson & Baltes, 2002), utilizes the well-established Tsai camera calibration 
(Tsai, 1986), which can compute a camera calibration from a single image. This method 
computes six external parameters (the x, y , and z coordinates of the camera position, and 
angles of roll, pitch and yaw) and six internal parameters using a set of calibration points 
from an image with known world coordinates. This requires a set of coordinates to be 
imposed on the world via a sample visual image. Since Tsai calibration normally requires at 
least 15 calibration points (i.e. points with known x,y coordinates), a calibration carpet with 
a repetitive grid pattern is used to easily provide a significant number of points. The known 
grid size is input to the system, and the coloured squares can be then be selected by the user 
and the calibration points obtained from the square centers (Fig. 2). Even using an oblique 
view of the playing field, the calibration results in object errors of less than 1 cm. To make 
calibration more flexible, we also define a rotation matrix on the field that allows the 
calibration to be adjusted (for example if the camera shifts during play) without having to 
recalibrate using the carpet. 

Objects in Doraemon are identified by the size and arrangement of coloured patches. The 
simplest objects may be simply a single coloured area of a given size - e.g. a ball might be 
described as an orange item 5cm in diameter. More sophisticated items (e.g. individual 
robots) are identified using unique arrangement of coloured patches on the top surface, as 
seen in Fig. 1 (e.g. a blue patch for the front of all robots on one team, with an arrangement 
of other colours uniquely identifying each team member). The system is thus heavily 
dependent on accurate colour models. Doraemon uses a sophisticated 12 parameter colour 
model that is based on red (R), green (G), and blue (B) channels as well as the difference 
channels red-green (R-G), red-blue (R-B), and green-blue (G-B). The channel differences are 
less sensitive to lighting variations than the raw channels, and allow more robust colour 
recognition than the raw channels alone. While there are other models that are less sensitive 
to brightness, (for example, HSI), this approach attempts to balance sensitivity with 
computational resources. The channel differences are similar to the hue values used in HSI, 
for example, while this model is less computationally expensive. 
Colours of interest are defined using a colour calibration procedure, during which areas of 
the visual image intended to be matched to a particular named colour are selected. This 
reliance on colour, like that of other global and local vision systems, limits generality and 
forces recalibration to be performed when lighting conditions change. Moving beyond this 
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dependence on colour will be described in Sections 3 and 4. Once colours are defined, 
camera images can be colour thresholded and particular colour patches can be recognized in 
an image. 
The size of any patch of colour can be determined by its position on the field, since the 
perspective of the field is known through calibration. This still requires a model describing 
the arrangements of the coloured patches marking objects as well as their heights above the 
playing field, since, for example, an object that is 50cm tall will have markers of the same 
height appear differently in the camera image than that of an object that is flush with the 
playing field surface. The descriptions of the size, colour, arrangement, and height of objects 
to be recognized are described in a configuration file. 
Each frame is colour thresholded and the recognized patches are matched against the size 
and configuration information provided. Not every object will be recognized in every 
frame, since lighting fluctuations, for example, may make some spots difficult to recognize 
across the entire field area. To compensate for this, the locations of recognized objects in 
previous frames are used both to infer likely positions in future frames and to calculate the 
speed and orientation of motion of tracked objects. 
Occlusion in robotic soccer is normally not an issue for tracking robots, even with an 
oblique camera, since the markers are on top of the robots and are thus the highest points on 
the field. Occlusion certainly happens when tracking the ball, however, and is also possible 
in any tracking scenario where obstacles on the field could be taller than robots. There is 
also the possibility that robots may abut one another, presenting a display of coloured 
patches that is similar to a different robot altogether, or presented in such a way that no one 
robot is easily recognizable. These situations are dealt with by tracking objects over time as 
well - an object may be lost temporarily as it passes behind an obstacle, or may be more 
momentarily unrecognized due to abutting other tracked objects - because objects are 
intended to be in motion, such losses will be momentary as new information allows them to 
be disambiguated. 
Doraemon transmits information about tracked objects (position, orientation, velocity) in 
ASCII over Ethernet to any client interested in receiving it. A sample message is shown in 
Fig. 3. 

7 6188 0.000290976 ; #defined objects, frame#, time diff. from last frame 
1605.82 -708.394 1321.44 ; x, y, z coordinates of camera 
2 spot1 Found 1232.5 416.374 0 0 0 0 ;information about each defined object 
2 spot2 Found 1559.22 417.359 0 0 0 0 
2 spot3 Found 1260.55 812.189 0 0 0 0 
2 spot4 Found 902.726 1002.43 0 0 0 0 
2 spot5 Found 746.045 735.631 0 0 0 0 
1 ball1 Found 1677.99 1205.55 50 0 -2.75769 1.19908 
0 car54 Found 1783.53 873.531 100 2.63944 1.47684 -6.49056 

Fig. 3. A sample ASCII message from Doraemon. 

The first line of each message contains the number of objects that video server is configured 
to track, followed by the video frame number and time difference in seconds between this 
message and the previous one. The next line contains the x, y, and z coordinates of the 
camera, and following this is a line for each object being tracked. Each of those lines consists 
of a numeric object class (e.g. a ball, robot, etc.), the unique defined identifier for the object, 
whether the object was located in the current frame or not, the x, y, and z coordinates of the 
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object, the orientation of the object in radians, and the velocity of the object in mm/second 
in the x and y dimensions. 
Doraemon was later extended (Baltes & Anderson, 2005) to provide its own reconstructed 
overhead view through interpolation, which allows the perspective distortion created by the 
oblique camera angle to be corrected, allowing objects to be more accurately tracked. While 
this interpolation does slow down the vision process, it provides a remarkable improvement 
in image quality. As an example, Fig. 4 shows Doraemon´s reconstruction of the oblique 
view shown in Fig. 1. 
Doraemon takes several steps beyond global vision systems that maintain a fixed overhead 
camera in terms of being able to deal with the real world. It is quick to calibrate and simple to 
recalibrate when this is necessary (e.g. due to camera shift or changing lighting during use). 
However, there are still significant assumptions about the domain that affect the system’s 
generality. Doraemon is heavily dependent on good colour models, something that is not 
easy to maintain consistently over time in real-world domains without recalibration, and 
relies on a fairly naive model for dealing with occlusion. Dealing with these assumptions is 
the subject of the remaining sections in this chapter. 

Fig. 4. Doraemon’s overhead reconstruction (using average gradient interpolation) of the 
camera image shown in Fig. 1. 

3. Ergo: Removing Dependence on Predefined Colours 
The reliance on colour thresholding by both Doraemon and related systems places some 
severe restrictions on the applicability of a global vision system. Not only are lighting 
variations a problem, but the colours themselves must be chosen so that there is enough 
separation between them to allow them to be distinguished across the entire field of play, 
and the quality of the camera used is also a major issue. In practice, even with the extra 
colour channels employed by Doraemon tracking is practically limited to around 6 different 
colours by these restrictions. 
To increase the applicability of global vision to a broader array of real-world tasks, as well 
as to increase the robustness of the system in robotic soccer, we focussed on two major 
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changes in approach: the use of motion detection to focus on areas of interest in the field, 
and different methods of marking objects that deemphasize the use of colour. These and 
other extensions were combined into a new generation of global vision software, known as 
Ergo (Furgale et al., 2005). 
One additional pragmatic step was also necessary in Ergo in order to attain a comparable 
frame rate as that employed in the original Doraemon: the resolution of interpolated images 
was decreased, in order that interpolation did not inordinately slow down visual analysis. 
The result of this introduced an additional challenge, in that a typical 5cm soccer ball would 
now occupy only a 1-4 pixel range in the reduced resolution, allowing a ball to easily be 
interpreted as noise (Fig. 5). 
Rather than performing direct colour thresholding of camera images, Ergo thresholds for 
motion across pixels in each frame compared to a background image. A number of common 
thresholding techniques (using pixel intensity and distance in colour space, with global and 
local thresholds) were experimented with under poor lighting conditions and with common 
domain elements such as the presence of field lines and aliasing between camera frames. 
None of the common approaches were adequate in avoiding losing information from dark 
parts of the image while removing noise from lighter portions. In the end, an adaptation of 

 background estimation (Manzanera & Richefeu, 2004) was employed, which provides a 
computationally inexpensive means of recursively estimating the average colour and 
variance of each pixel in a camera image. 

Fig. 5. Captured field and corresponding low-resolution interpolated image in Ergo. Note 
that the ball is easily visible in the upper image, but blends with noise on the field lines in 
the lower. 
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object, the orientation of the object in radians, and the velocity of the object in mm/second 
in the x and y dimensions. 
Doraemon was later extended (Baltes & Anderson, 2005) to provide its own reconstructed 
overhead view through interpolation, which allows the perspective distortion created by the 
oblique camera angle to be corrected, allowing objects to be more accurately tracked. While 
this interpolation does slow down the vision process, it provides a remarkable improvement 
in image quality. As an example, Fig. 4 shows Doraemon´s reconstruction of the oblique 
view shown in Fig. 1. 
Doraemon takes several steps beyond global vision systems that maintain a fixed overhead 
camera in terms of being able to deal with the real world. It is quick to calibrate and simple to 
recalibrate when this is necessary (e.g. due to camera shift or changing lighting during use). 
However, there are still significant assumptions about the domain that affect the system’s 
generality. Doraemon is heavily dependent on good colour models, something that is not 
easy to maintain consistently over time in real-world domains without recalibration, and 
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Fig. 4. Doraemon’s overhead reconstruction (using average gradient interpolation) of the 
camera image shown in Fig. 1. 

3. Ergo: Removing Dependence on Predefined Colours 
The reliance on colour thresholding by both Doraemon and related systems places some 
severe restrictions on the applicability of a global vision system. Not only are lighting 
variations a problem, but the colours themselves must be chosen so that there is enough 
separation between them to allow them to be distinguished across the entire field of play, 
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changes in approach: the use of motion detection to focus on areas of interest in the field, 
and different methods of marking objects that deemphasize the use of colour. These and 
other extensions were combined into a new generation of global vision software, known as 
Ergo (Furgale et al., 2005). 
One additional pragmatic step was also necessary in Ergo in order to attain a comparable 
frame rate as that employed in the original Doraemon: the resolution of interpolated images 
was decreased, in order that interpolation did not inordinately slow down visual analysis. 
The result of this introduced an additional challenge, in that a typical 5cm soccer ball would 
now occupy only a 1-4 pixel range in the reduced resolution, allowing a ball to easily be 
interpreted as noise (Fig. 5). 
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motion across pixels in each frame compared to a background image. A number of common 
thresholding techniques (using pixel intensity and distance in colour space, with global and 
local thresholds) were experimented with under poor lighting conditions and with common 
domain elements such as the presence of field lines and aliasing between camera frames. 
None of the common approaches were adequate in avoiding losing information from dark 
parts of the image while removing noise from lighter portions. In the end, an adaptation of 

 background estimation (Manzanera & Richefeu, 2004) was employed, which provides a 
computationally inexpensive means of recursively estimating the average colour and 
variance of each pixel in a camera image. 

Fig. 5. Captured field and corresponding low-resolution interpolated image in Ergo. Note 
that the ball is easily visible in the upper image, but blends with noise on the field lines in 
the lower. 
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Detecting motion involves setting a threshold above which variation across pixels will be 
considered to be motion. In experimenting with this, it was found that increasing a global 
threshold enough that all noise would be eliminated also had the effect of eliminating any 
object of the size of a typical robotic soccer ball, since the size of such an object in the image 
(<=4 pixels) is easily interpreted as noise. To deal with this, a means was required to 
consider variation more locally and eliminate noise, while still being able to pick up the 
motion of small objects, and so a combination of local and global thresholding was 
employed. A threshold is set for each pixel by examining the variance for each pixel in the 
background image, then applying a convolution (1) in order to consider a pixel’s variance 
across its 9-pixel neighbourhood. This local threshold is then scaled by a global threshold. 
To detect motion, each incoming image has its sum-squared error calculated across all pixels 
against the background image, the same convolution is applied to the result, and each value 
is compared to its corresponding pre-computed threshold. The use of the convolution has 
the effect of blending motion in small areas to eliminate noise, while making the movement 
of small objects such as the ball more obvious by also considering small changes in 
neighbouring pixels. 
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This thresholding process causes motion to be separated from the background, after which 
the region growing algorithm of Bruce et al. (2000) is employed to generate a list of regions 
to match against the descriptions of objects that Ergo is tracking. 
Since Doraemon relied on patterns of coloured blobs to identify moving objects such as 
robots, a change in pattern representation was necessary in Ergo in order to remove the 
dependence on predefined colours. The two basic requirements of a representation are the 
determination of identity and orientation (since the remaining item of interest, velocity, can 
be obtained through knowing these over time). Previous research (Bruce & Veloso, 2003) 
has shown that asymmetrical patterns can be used to allow a range of objects can be 
identified with fewer colours, and these ideas were extended to develop a representation 
and associated matching mechanism for tracking objects while minimizing the need for 
predefined colours. 

Fig. 6. A new approach to labeling objects for tracking (Furgale et al., 2005): fixed black areas 
allow orientation to be recognized, while white and non-white values in locations 1-6 
represent identity 
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The marking approach designed for Ergo divides the marker for a robot (or similar moving 
object) into a circular series of wedges (Fig. 6). Two black wedges are the same on all robots, 
allowing a tracking algorithm to determine the labelled object’s orientation. The remaining 
six wedges are marked with white and non-white (i.e. any colour other than white or black) 
to allow the determination of identity. Marking only two of these segments would allow up 
to twenty-one individuals to be identified uniquely (the centre is left open for a possible 
team identifier if desired). 
An associated algorithm for identifying objects assumes that such a marking system is in 
use, and begins with a set of hypotheses of objects of interest, based on the regions of the 
camera image that have been flagged as motion. The original image is reinterpolated with a 
higher resolution in (only) three concentric circular strips of pixels (each 64 pixels long) 
around the centre of each region of motion. This allows enough high-resolution interpolated 
area to more accurately determine the marking pattern without the computational demands 
of large-scale interpolation. The mean is taken across these to reduce noise and error, 
resulting in a single array of 64 elements, providing an encoding for that region of motion 
that can be matched against the labeled pattern described above. To be able to match the 
pattern in this strip, two boundaries must be determined in this strip: the boundary between 
black and the marker that is neither black nor white, and the boundary between that and 
white. These boundaries are determined using a histogram of intensity values produced as 
part of the reinterpolation. The black-other threshold can be approximated based on the fact 
that any point near the centre will be 25% black. The other-white boundary is arrived at by 
starting a marker at the top of the range of the histogram, and then iteratively replacing that 
with that average of the weighted sum of the histogram counts above other-white and those 
below other-white. It is possible to avoid this process based on the pattern if a known 
pattern is being searched for, so it is not required in all cases. 
Once these thresholds are available, the identification algorithm begins by looking at for the 
two black regions, and the average of the centre between these is the orientation. These 
wedges also provide the plane on which the pattern, and based on that plane the recorded 
centre of the object is refined. The remaining parts of the interpolated strip are then 
partitioned relative to the black wedges and the identification pattern can then be 
determined by counting the number of white wedges and the number of wedges that are 
neither white nor black. 
This identification algorithm is very effective and computationally minimal, but is 
complicated in application by two factors. First, the list of regions of motion may be 
significantly larger than the number of objects to be tracked (due to extraneous movement 
by other objects, for example): large enough that this algorithm cannot process them all in 
real time in the data directed manner that would be ideal. Second, successful identification 
of an object relies on an accurate centre point. 
If two or more moving objects appear in close proximity to one another (or even partly 
occlude one another), motion analysis will view this as one large region of motion, with a 
centre that will not be helpful in identifying anything. This algorithm thus needs to be 
applied in a more goal-directed manner, and have some means of dealing with clumps of 
objects.
Ergo deals with these problems by tracking objects across images, which provides for a 
goal directed application of this algorithm. Prior to motion analysis, every object found in 
the previous frame predicts its position in the next image based on velocity and time 
difference. Some objects may thus be found very quickly, since their centre point will be 
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across its 9-pixel neighbourhood. This local threshold is then scaled by a global threshold. 
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is compared to its corresponding pre-computed threshold. The use of the convolution has 
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The marking approach designed for Ergo divides the marker for a robot (or similar moving 
object) into a circular series of wedges (Fig. 6). Two black wedges are the same on all robots, 
allowing a tracking algorithm to determine the labelled object’s orientation. The remaining 
six wedges are marked with white and non-white (i.e. any colour other than white or black) 
to allow the determination of identity. Marking only two of these segments would allow up 
to twenty-one individuals to be identified uniquely (the centre is left open for a possible 
team identifier if desired). 
An associated algorithm for identifying objects assumes that such a marking system is in 
use, and begins with a set of hypotheses of objects of interest, based on the regions of the 
camera image that have been flagged as motion. The original image is reinterpolated with a 
higher resolution in (only) three concentric circular strips of pixels (each 64 pixels long) 
around the centre of each region of motion. This allows enough high-resolution interpolated 
area to more accurately determine the marking pattern without the computational demands 
of large-scale interpolation. The mean is taken across these to reduce noise and error, 
resulting in a single array of 64 elements, providing an encoding for that region of motion 
that can be matched against the labeled pattern described above. To be able to match the 
pattern in this strip, two boundaries must be determined in this strip: the boundary between 
black and the marker that is neither black nor white, and the boundary between that and 
white. These boundaries are determined using a histogram of intensity values produced as 
part of the reinterpolation. The black-other threshold can be approximated based on the fact 
that any point near the centre will be 25% black. The other-white boundary is arrived at by 
starting a marker at the top of the range of the histogram, and then iteratively replacing that 
with that average of the weighted sum of the histogram counts above other-white and those 
below other-white. It is possible to avoid this process based on the pattern if a known 
pattern is being searched for, so it is not required in all cases. 
Once these thresholds are available, the identification algorithm begins by looking at for the 
two black regions, and the average of the centre between these is the orientation. These 
wedges also provide the plane on which the pattern, and based on that plane the recorded 
centre of the object is refined. The remaining parts of the interpolated strip are then 
partitioned relative to the black wedges and the identification pattern can then be 
determined by counting the number of white wedges and the number of wedges that are 
neither white nor black. 
This identification algorithm is very effective and computationally minimal, but is 
complicated in application by two factors. First, the list of regions of motion may be 
significantly larger than the number of objects to be tracked (due to extraneous movement 
by other objects, for example): large enough that this algorithm cannot process them all in 
real time in the data directed manner that would be ideal. Second, successful identification 
of an object relies on an accurate centre point. 
If two or more moving objects appear in close proximity to one another (or even partly 
occlude one another), motion analysis will view this as one large region of motion, with a 
centre that will not be helpful in identifying anything. This algorithm thus needs to be 
applied in a more goal-directed manner, and have some means of dealing with clumps of 
objects.
Ergo deals with these problems by tracking objects across images, which provides for a 
goal directed application of this algorithm. Prior to motion analysis, every object found in 
the previous frame predicts its position in the next image based on velocity and time 
difference. Some objects may thus be found very quickly, since their centre point will be 
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predicted and can easily be confirmed using the identification algorithm. The area in the 
image occupied by object recognized during this phase is masked during motion analysis. 
This masking serves two purposes: it produces no hypothesis, since the object has already 
been dealt with, but it also may serve to remove one of a group of objects that may appear 
together in a moving region. Masking the area will then leave a smaller region and a 
smaller number of grouped objects (possibly only one, which can then be handled as any 
other object would). 
For the remaining unrecognized objects, the region most closely predicted by each is 
selected. If an appropriate-sized region is found near the predicted location, it is passed to 
the identification algorithm, along with the hypothesized identity to speed up the 
identification process. This step, along with those detailed above, turns the identification 
process into a largely goal-directed one, and the vast majority of objects in any frame are 
recognized in this manner. Data-directed processing is still required, however, to deal with 
any objects that remain unidentified at this point. 
There are realistically two possibilities for the remaining objects: a region of motion is 
outside the predicted area for the object, or it is part of a clump of objects occupying a 
larger region. To deal with the former, Ergo examines the sizes of all unexplained 
regions of motion, and if it is a size that could suitably match an object of interest, it is 
passed to the identification algorithm. In the case of multiple objects occupying the same 
space, the regions of interest will be those that are too large for any one object. If any of 
these regions were to contain more than one object, at least one recognizable object will 
be touching the edge of the region, and so the edge is where recognition efforts are 
focussed. 
To analyze regions that could be multiple robots, extra samples are taken one object-radius 
in from the region’s edge and obtain a set of encodings that should cross the centre of at 
least one object if multiple objects are in the region. From this, those that are at least one 
object diameter long are chosen, and the identification algorithm above is run on each of 
these using each pixel as the potential centre of the object. If any object is identified, it is 
masked from the region in the next frame, allowing further objects to be distinguished in 
subsequent frames. This could be repeated in the analysis of the same frame to distinguish 
further objects, but since Ergo can determine likely positions of unrecognized objects just as 
Doraemon could in frames where some objects were unrecognized, this strikes a balance 
toward computational efficiency. 
Not every object is large enough to be labeled using the scheme shown in Fig. 7, nor do all 
objects need an encoding to uniquely identify them. In robotic soccer, for example, the 
ball is physically unique, and its nature does not require a pattern for identification. The 
use of motion tracking to distinguish an element as small as the ball has already been 
described. 
In frames where this motion tracking does not allow the ball to be found, the ball’s location 
is predicted from the previous frame, and an area eight times the ball’s size is scanned for 
regions of the correct size and dimension after colour thresholding. Colour thresholding 
here is simply used to distinguish regions at all given that motion detection has failed, and 
no predefined colours are employed. 
These techniques allow Ergo to perform well under very challenging conditions. Fig. 7 
illustrates a screenshot from an extreme example, with lighting positioned across the 
viewing area, causing a wide disparity in brightness, and significant shadowing. Motion 
tracking is shown in the upper right, and the system output in the bottom of the image. All 
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robots are identified except for one completely hidden in shadow, and the other in complete 
glare from the lighting source. 

Fig. 7. Using Ergo under very poor lighting conditions (Furgale et al., 2005). 

Ergo has gone a long way in making a global vision system more applicable to real-world 
situations, in that it has both removed the need for a fixed overhead camera as well as any 
predefined colours, and thus can operate across a much broader range of condition s than 
previous systems. There are still assumptions it operates under, the largest being that a 
pattern can be used to consistently identify objects that need to be tracked. In the 
remainder of this chapter, we will explore the possibility of tracking objects without such 
patterns.  

4. Removing Dependence on Predefined Patterns 
The ability to move beyond predefined colours or patterns for identifying objects is important 
in vision, for a number of reasons. From an immediate practical standpoint, scalability is 
always an issue. Even when using patterns without colour, there is a very finite amount of 
variation that can fit on a small pattern and be recognized reliably at a distance. While there 
are alternative approaches, such as just as arranging objects in predefined patterns before any 
movement begins and then tracking motion, such approaches can only operate for a short time 
before robots are misidentified as they move about. Once misidentified, there is no easy way 
to re-establish identity without stopping to do this manually. 
The issue of generality is much more significant in the long term than scalability, however. 
While patterns are employed by humans during visual tracking (e.g. in soccer, teams wear 
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structured uniforms involving both colour and pattern to distinguish themselves visually 
for the benefit of players and spectators), such patterns do not have to be pre-programmed. 
We need only watch an ongoing soccer game for few seconds to understand the pattern and 
be able to track it without any significant conscious effort. Humans can also switch between 
activities quickly, while equally quickly adapting to the details necessary for visual tracking 
in the new domain. 
In order to make a computer vision system truly intelligent, we must work toward this 
level of generality by removing assumptions of predefined patterns and demonstrating 
similar adaptability to that observed in human vision. In order for this to be achieved in a 
vision system, one of two things must happen: either additional sources of information 
must be exploited to make up for that provided by assumed patterns, or the system must 
be able to adapt to patterns itself over time. Both of these are significantly beyond the 
level of production vision systems at the present time, and represent some of the core 
ideas for improving this technology in future. In the following subsections, we present 
recent work in both of these areas, and then conclude by summarizing some of the issues 
yet remaining. 

4.1 Object Tracking Based on Control Information 
There are numerous techniques used by humans that can be exploited in an intelligent 
system for visually tracking objects. One of the most powerful can be seen any time a 
group of children operate remote-controlled vehicles. If the vehicles all look alike, a child 
quickly realizes that the one he or she is controlling can be identified by its response to 
the control commands being sent. While vision alone can be used to track the vehicle 
under control after it has been identified, when it is lost (e.g. has crossed paths with 
several other identical vehicles), this control information can be used to re-identify the 
vehicle. Such information can also be used to further confirm identity throughout the 
control process. 
In recent years we have been working toward extending the abilities of our global vision 
systems by intelligently applying such control information. The original versions of 
Doraemon and Ergo both maintain the identity and velocity of objects being tracked, in the 
form of a hypothesis with an associated measure of likelihood. As already discussed in 
Sections 2 and 3, this information is used to predict the future positions of moving objects in 
subsequent frames, to allow a more goal-directed tracking process and to account for objects 
when they cannot be recognized in every frame. If objects are no longer visually distinct, in 
that there is no predefined identification pattern, there may also no longer be any way to 
obtain orientation information visually in a single frame (depending on whether markings 
are present to provide such information). However, the addition of control information 
affords a better predictor of future object locations, because control commands are 
presumably the single most important factor in future movement. This same control 
information can also indirectly supply orientation information if it is not otherwise 
available, since the orientation is also obtainable based on the object’s response to 
commands. Control information is still imperfect, since commands may not be carried out 
correctly or even be received properly by a mobile device, and unpredictable events 
(collisions, outside forces) can affect objects’ future positions as well. However, such 
information should provide enough information to reliably support object tracking even 
where objects are not otherwise visually distinct, much as it does for humans operating 
remote controlled vehicles. 
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Fig. 8. Situations easily resolved using control information. Left: identification is simple 
given control command (dotted line) and velocity (arrow). Right: Two robots appear to 
cross paths unless control information is known.  

In some situations, making use of control information is straightforward. Consider the situation 
depicted in the left side of Fig. 8. Here, three robots are depicted with current orientation 
indicated with an arrow, and the motion that would result from the current command shown by 
a dotted line. Assuming they are identical, they can easily be differentiated in subsequent frames, 
since the motion each will exhibit is very distinct. If a trail is maintained over time, there are 
equally straightforward situations that would not be obvious using vision alone. In the right side 
of Fig. 8, for example, two robots turn near one another, leading to the appearance of crossed 
paths. Using vision alone, misidentification during and after the turn is very likely, but this is 
easily resolved if the intended turns are known. 

Fig. 9. A situation where control information alone cannot resolve object identities.  

In other situations, this is not the case. Fig. 9, for example, shows the same robots as the left 
side of Fig. 8, but with different intended movements. Here, the two robots on the right 
cannot be differentiated based on control information, since they will both be moving 
similarly. The robot on the left in the same image can only be identified if orientation is 
known, since all robots are turning clockwise. 
It can be seen from the latter example that current control information alone is not enough 
for reliable recognition. Even in a simple situation such as the first case, intended motion 
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Fig. 8. Situations easily resolved using control information. Left: identification is simple 
given control command (dotted line) and velocity (arrow). Right: Two robots appear to 
cross paths unless control information is known.  

In some situations, making use of control information is straightforward. Consider the situation 
depicted in the left side of Fig. 8. Here, three robots are depicted with current orientation 
indicated with an arrow, and the motion that would result from the current command shown by 
a dotted line. Assuming they are identical, they can easily be differentiated in subsequent frames, 
since the motion each will exhibit is very distinct. If a trail is maintained over time, there are 
equally straightforward situations that would not be obvious using vision alone. In the right side 
of Fig. 8, for example, two robots turn near one another, leading to the appearance of crossed 
paths. Using vision alone, misidentification during and after the turn is very likely, but this is 
easily resolved if the intended turns are known. 

Fig. 9. A situation where control information alone cannot resolve object identities.  

In other situations, this is not the case. Fig. 9, for example, shows the same robots as the left 
side of Fig. 8, but with different intended movements. Here, the two robots on the right 
cannot be differentiated based on control information, since they will both be moving 
similarly. The robot on the left in the same image can only be identified if orientation is 
known, since all robots are turning clockwise. 
It can be seen from the latter example that current control information alone is not enough 
for reliable recognition. Even in a simple situation such as the first case, intended motion 
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still may not be seen in future frames, because of the external factors. An obstacle might 
prevent movement, robots might collide, a command might not be received, or the robot 
might not even be perceived in the next frame. Control commands are a valuable source of 
information, but we must deal with the fact that they are uncertain. If the result of each 
individual command is viewed as a separate piece of evidence supporting identity, 
situations such as that shown in Fig. 9 can be resolved using accumulated evidence over 
time (that is, an accumulated trace or trail supplied by an object’s ongoing movement). 
To extend our global vision systems to deal with the uncertainty involved with using 
command information, we experimented with moving from the ad hoc approach used in our 
production systems to a Bayesian approach (Baltes & Anderson, 2003a). This approach 
accumulates evidence in the form of traces of robot movement over time, and reasons 
probabilistically about the identities of robots given the traces of movement seen. The 
system uses evidence accumulated over a window of 100 frames, and computes an ongoing 
maximum likelihood hypothesis (hML) for each tracked object. The trace of the motion 
consists of the position, orientation, and state of the object, where state is one of turning 
clockwise, turning counter-clockwise, moving straight, or stopped. 
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Bayes’ formula (2, where P(h|D) is the posterior probability of hypothesis h given the 
observation D, P(D|h) is the prior probability of observing data D given hypothesis h, and 
P(h) is the prior probability of hypothesis h) is used to compute the maximum posterior 
hypothesis for each robot’s identity given prior observations. 
In this application, the hypotheses are the form Commands for robot 1 are observed as trace 1,
Commands for robot 2 are observed as trace 2, etc., where a trace is a set of positions and states 
over time. All traces are assumed to be equally likely, and so the prior probability P(h) can 
be assumed to be uniform and thus ignored. 
The system determines the maximum likelihood (ML) assignment of identities to robots that 
maximizes the posterior probability: 

 hML = robot1 = (trace1,command1),... )|(maxarg hDPHh∈= (3)

To apply this calculation, P(D|h) was determined through empirical observation to be 
approximately 0.7. In other words, the system detects and labels a stationary robot as 
stopped in 70% of the cases. To further simplify the calculation of the probabilities of the 
match of a command sequence and a motion trace, we assume that the probabilities of 
observing any feature are statistically independent. 
The system computes the likelihood of all possible command traces to all observed traces 
and chooses the identity assignment that maximizes the likelihood for all robots. This 
approach was shown to work well in the soccer domain with a window of 100 frames and a 
small team of robots. The probability calculation as it stands is computationally expensive, 
which will result in limitations if scaled to teams of significant size, and so a significant 
element of future work will entail making such an approach efficient enough to use for large 
teams in real time. It is also possible that other applications might not require such a large 
evidential window, and thus may be less computationally demanding. 
This is only one example of exploiting information to substitute for a pre-defined pattern. It 
is possible that other equally valuable sources remain to be discovered, and that this 
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approach could be used in conjunction with other specific means of exploiting information 
as well. In terms of generality, however, it is still reasonably specific, in that it assumes there 
is a manageable range of discrete commands whose effects could be understood and 
recognized by vision system. While object tracking in human vision for specific domains 
such as soccer does appear to include information analogous to that exploited here (in the 
form of what a player would be expected to do given the object and rules of the game, for 
example), a more general approach to object tracking would be able to move beyond this 
knowledge as well. 

4.2 Inferring Orientation Without Prior Knowledge 
Completely removing any type of predefined marker results in an object recognition 
problem that is an order of magnitude more difficult than those described thus far, since 
features for recognition must be discovered as part of the recognition process itself. These 
features may at times be shadowed or otherwise occluded, making the discovery of such 
features more difficult than the recognition process itself. However, a system that has the 
ability to discover useful patterns will be more generally applicable than any current 
system, and may also be more robust, in that subtle patterns can be used by such a system 
that would be very difficult to even attempt to represent in an object description. 
The fact that what is being offered to the system is a set of subtle features spread across 
noisy images points to the potential for using a more decentralized approach that can 
consider recognition across the image as a whole, as opposed to representing specific 
features. The natural choice for such a task is a neural-net based approach: the robustness 
this approach in the face of noisy and uncertain data is well-known (Mitchell, 1997). 
Neural nets have been used extensively for image processing tasks in the presence of noise, 
from close-range applications such as face recognition (Mohamed, 2002) to remote sensing 
applications such as oil spill detection or land classification (Kubat et al., 1998; Schaale & 
Furrer, 1995). It is important to consider such prior work in the context of applications such 
as that described in this chapter. Recognizing a face, detecting an oil spill, or classifying 
vegetation from single image, for example, is a much simpler recognition problem than 
dealing with the subtler issues of ongoing tracking over time that have been presented in 
the previous sections. Neural networks have also been applied, though less extensively, to 
tracking information over time (e.g. (Cote & Tatnall, 1997)), and this also supports their use 
as a viable choice in real-time robot tracking. 
At this point in time, there are no systems that can recognize and track moving objects in real 
time (i.e. in the same fashion as Doraemon and Ergo) adaptively and with no prior knowledge. 
In working toward this goal, however, we have been working with a subset of the general 
object recognition problem – recognizing orientation alone, using only images of robots as 
opposed to pre-defined markings – as a means to gauge the applicability of neural nets to this 
particular task and as a foothold for more general future work (Baltes & Anderson, 2003b). 
Rather than using an artificial set of high-resolution images to train a network, we used actual 
data that was obtained by Doraemon. The original Doraemon was modified (as a preliminary 
test for larger-scale motion detection in the development of Ergo) to examine the difference 
between frames in order to note likely locations for the coloured patterns the system tracks. 
Where a strong difference is noted, the sub-area of the image (64 x 32 pixels) is stored and the 
direction of change noted as a basis for the matching described in Section 2. These sub-images 
can be viewed on the interface in an enlarged fashion for colour calibration purposes, but in 
this case, this internal portion of the system serves to be able to gather a set of close-up images 
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this case, this internal portion of the system serves to be able to gather a set of close-up images 
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of robots over time. A set of training data annotated with estimated orientation can be thus be 
recorded if it can be assumed that the robot is always facing forward when moving. Examples 
of these annotated images from training datasets are shown in Fig. 10. Note that lines on the 
field, as well as the fact that the images are quite small, both serve to promote noise. A training 
set of 200 images of each of two robot types was created (each network was ultimately trained 
to recognize orientation in only one type of robot). 

Fig 10. Sample images taken and annotated by Doraemon. The left image is a remote 
controlled toy car; the right is a robot built from a Lego MindStorms kit. 

The network employed to track robot orientations without patterns is a 3-layered feed-
forward backpropagation network, as shown in Fig. 11. Since the robot-sized images from 
Doraemon will be ultimately used as input for visual recognition of orientation, the input 
layer must ultimately receive these images. However, an RGB image of 64 x 32 pixels results 
in 6144 individual colour-separated pixels. A neural net constructed with this many input 
nodes was attempted, but performance was found to be poor and training extremely slow, 
necessitating sub-sampling of the original image to allow fewer input nodes. This was done 
by averaging over each 4 x 4 pixel neighbourhood, resulting in 384 input nodes. The hidden 
layer is 32 nodes, or approximately 10% of the input layer. The number of hidden nodes was 
arrived at by experimentation (Baltes & Anderson, 2003b): using a learning rate of 0.3 and a 
momentum term of 0.2, a network with a 32 node hidden layer was the first that could learn 
100% of a sample dataset after 2000 epochs (compared to 88% after 5000 epochs for the next 
best performing network topology, with 24 hidden nodes). The output layer is an encoding 
of the orientation angle discretized into 5-degree steps, resulting in 72 output nodes. The 
highest-strength output node is taken as the orientation classification. 
For a test data set, we used one robot as a test subject and caused it to drive at random 
across the same field on which the training data were gathered. This introduced the same 
lines and other noise that were present in the training images. In addition, we placed 
stationary robots on the field so that the system was exposed to more varied examples of 
robot images, and to avoid overfitting. 
To evaluate learning performance, we employed mean squared error (MSE), a common 
measure of error employed with neural nets. Mean squared error is the sum of the squared 
errors (SSE) over the output units, over the entire set of training examples (i.e. over one 
epoch), divided by the number of training patterns in the epoch. That is, MSE is the mean 
error for a given pattern. 
One interesting element in object recognition using a sub-symbolic approach such as a neural 
network is the relative utility of the designer attempting to emphasize or likely useful 
information in images beforehand, as opposed to simply allowing the approach to operate 
completely unbiased. Since the edges in an image of a robot contain much information that is 
useful for orientation classification, we attempted to contrast the recognition process using the 
images already described, with one employing sub-sampled images that had 2 x 2 Sobel edge 
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detection performed on them. Fig. 12 illustrates the edge maps created by performing edge 
detection on the images in Fig. 10. Since edge detection also removes colour information from 
the original image, fewer input nodes were needed in this case. 

Fig. 11. The Neural Network Architecture. 

Fig. 12. Training images from Fig. 10 after 2 x 2 Sobel edge detection. 

We ran a comparison on this network once the optimal number of hidden units was decided 
upon, comparing the accuracy and speed of learning using the toy car training data under 
three different input representations: 4 x 4 sub-sampled colour images described above, 2 x 
2 sub-sampled edge-detected images, and 2 x 2 sub-sampled grey scale images. The third 
representation was chosen in order to see the effect of removing colour information alone. 
As in preliminary experimentation, a learning rate of 0.3 and a momentum term of 0.2 were 
used. In all cases, training data was randomly reshuffled after each epoch to avoid over-
fitting the neural network to the specific sequence of training images. 
The results of this (Fig. 13) showed that the representation made little difference. Although 
edge detected images allowed faster MSE improvement over the first few hundred epochs 
ultimate performance was worse than other representations. The differences are not 
statistically significant, however, and all finish with an MSE of approximately 0.10. 
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Fig. 13. Evolution of the MSE over training epochs under different input representations, 
using the toy car image training set. 

The neural networks were then tested on accuracy of orientation classification. The results 
were also similar by representation. The network trained using colour images was able to 
classify 99% of all images within 5 degrees, while grey-scale or edge map trained networks 
classified 97% of all images correctly. There was no correlation between missed images over 
representations: that is, different images were misclassified by the three different 
representations.
Similar testing was done with Lego MindStorms robots, which as can be seen in Fig. 10, 
have more distinct visual features. This lead to networks trained with colour and grey-scale 
images to finish training much earlier than edge-detected images (Fig. 14). These two 
alternatives both terminated training early with 100% accuracy, while the network trained 
with edge-detected images still had only 93% accuracy after 5000 epochs. 
These results seem to indicate that preprocessing and basic feature selection is not useful for 
a neural network, and may in fact decrease the performance. While this seems counter-
intuitive, in retrospect the training images themselves seem to indicate that orientation is 
often about noting small pieces of evidence being combined into a consistent view, as 
opposed to extracting features such as edges. Edge-detection, while emphasizing some 
elements, loses many small details, especially with subjects such as the Lego robots, where 
much detail is present. Each pixel provides a small amount of information, but its 
relationship to other pixels makes this information important, and this relationship is 
diluted by preprocessing such as edge detection. This was fairly obvious in some cases: 
some images had shadows along one side, where this shadow was incorporated into the 
robot shape via edge detection, for example. Artificial neural networks, on the other hand, 
are especially well-suited to combining large amounts of input into a consistent view to deal 
with elements such as shadows. 
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Fig. 14. Evolution of the MSE over training epochs under different input representations, 
using the Lego robot image training set. 

We also examined the ability of these networks to generalize, by extracting 20 images (10%) 
at random from the set of 200 training images. After training the network on the training set 
minus these 20 images, the 20 unseen images were tested. These results were not as 
encouraging: the network as trained was unable to generalize well. Further investigation 
showed that the generalization ability was limited because there were few training 
examples for 5-degree turns compared to larger values. 
These efforts focus on only one sub-problem of object recognition: orientation. The results 
could certainly be used in a production vision system, but this is still far from dealing with 
the larger identification and tracking problem. However, the results presented here do show 
that artificial neural networks are a promising approach to this problem. 
One issue that will require significant work is that of training time. The work here was 
performed on a dual 1900+ MP Athlon system with 1 GB of RAM, and a training run took 
approximately 30 minutes. It is certainly conceivable to allow 30 minutes of observation 
before a system is used in some applications, but this would be unacceptable in others. 
Current neural network technology requires significant training time, and being able to 
classify images with very little training will ultimately require significant breakthroughs in 
many areas outside of computer vision. Another concern is the computational requirements 
of the neural network after training. Once trained, this same system could process a 
classification in around 0.07 msec, however, which would be fast enough to apply to a 5-on-
5 robotic soccer game. Scaling this to larger teams would require additional resources or 
significant improvements in efficiency. One possibility to improve speed would be to 
extrapolate a small set of rules that approximate some of the knowledge in the neural net. 
Applying these in conjunction with a simpler network may be faster than calculating the 
output of the entire network employed here. 
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significant improvements in efficiency. One possibility to improve speed would be to 
extrapolate a small set of rules that approximate some of the knowledge in the neural net. 
Applying these in conjunction with a simpler network may be faster than calculating the 
output of the entire network employed here. 
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5. Conclusion 
This chapter has reviewed some of the issues involved in creating pragmatic global vision 
systems. We have discussed the assumptions on which traditional systems are based, 
pointed out how these differ with the observed abilities of human vision, and described 
how these assumptions limit the applicability and generality of existing systems. We then 
described techniques that allow some of these assumptions to be discarded, and the 
embodiment of these techniques in our production global vision systems, Doraemon and 
Ergo. 
Both Doraemon and Ergo are used in a number of ways. Doraemon has been in use every 
year by a number of teams from around the world in the F-180 (small-size) league at 
RoboCup. Ergo is the current global vision system in use in our own laboratories, and is 
currently being employed in a number of projects, such as imitation learning in groups of 
robots (Allen, 2007). 
We have also described some of our recent work toward creating much more general global 
vision systems that take advantage of additional knowledge or adaptability in order to 
avoid the need for any type of predefined markings on objects. The latter work is very 
preliminary, but shows the potential for improved techniques to eventually be the basis for 
more general vision systems. 
In working toward such generality today, there are a number of very important areas of 
immediate future work. Existing approaches to global vision are well-understood and 
immediately deployable. The fact that they rely heavily on elements such as the ability to 
recognize colour patches, for example, means that anything that can be done to improve 
these abilities will serve to improve existing systems. While systems such as Doraemon are 
already exploiting much in terms of maximizing flexibility while still assuming colours can 
be defined and matched, future work may still improve this further. 
Any small steps that can be performed to wean existing systems away from their 
traditional assumptions will serve as a backbone for further future work. While Ergo is a 
significant improvement over the abilities of Doraemon, for example, it still conforms to 
some traditional assumptions in terms of relying on predefined patterns, and instead 
exploits different mechanisms to be more flexible and offer a better performance in a 
wider array of domains. There will be many similar steps as we move to more general 
vision systems. 
Any single tracking or identification technique has its limitations, and just as neither Ergo 
nor Doraemon use a single mechanism to identify and track objects, future systems will 
require a synergy of techniques. Attempting to leverage the strengths of techniques off of 
one another will always be an important part of future work in this area. In our own work, 
we are currently attempting to employ the addition of control knowledge to the sub-
symbolic orientation recognition described in Section 4.2. For example, if we are uncertain 
of a robot's location and orientation at the current time, we can start with the robot's last 
known location/orientation at previous time, and constrain the potential solution set by the 
likely outcome of the most recent command sent to the robot. 
The iterative steps taken in improving global vision are in turn a useful source of future 
work in improving application areas as well. For example, the work on recognizing 
orientation without markers described in Section 4.2 was undertaken as convenient sub-
problem of the overall vision task useful in robotic soccer, in order to track a team’s own 
players for control purposes. The ability to infer robots' orientation without prior 
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knowledge, however, also allows a team to infer the orientation and identity of the 
opponent's robots. This in turn can allow for more sophisticated tactical decision making 
than would otherwise be possible. For example, robots that have a strong kicking device can 
be extremely dangerous. If an opponent’s robot is oriented away from the current locus of 
activity, the situation is not as dangerous. 
In both current and ongoing work, there is also a great need for improvements to 
computational efficiency. While computer power is always improving, the demands of more 
sophisticated techniques will always exceed this. While we have attempted in Ergo, for 
example, to have as much of the matching be done in a goal-directed fashion, data-directed 
processing is still required, and so there is still ample opportunity for improving the frame-
rate in ergo through improvements in pattern-matching efficiency. In using control 
information to anticipate future movement, techniques that do not require the calculation of 
all possible robot assignments to all traces would be an enormous improvement. 
Finally, it should be noted that despite the fact that we have emphasized global vision in 
this chapter, the techniques employed in object tracking and identification by Doraemon, 
Ergo, and the other work described here are all equally applicable to local vision. If I have a 
local vision robot playing a soccer game, the robot still must be able to track its teammates 
and opponents across its field of vision, and update an internal model of the state of play in 
order to make intelligent decisions. Thus advancement in technology in one area is 
immediately applicable to the other. Although it does not compare to the limitations of 
human vision, omni-vision (that is, vision based on a 360° image, usually done with a 
camera and a parabolic mirror) has become largely a standard in some local vision robotic 
soccer leagues, most notably the RoboCup middle-sized league. Such vision ultimately 
allows a reconstruction on a local basis that bears a strong analogy to global vision, 
especially once a camera is not placed overhead and issues such as occlusion and complex 
geometry come into play. 
If readers are interested in using the work described here in their own future work, open-
source code for Doraemon, Ergo, and other systems is available (Baltes & Anderson, 2006). 
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The subject of this chapter is to describe selected topics on contour extraction, 
approximation and compression in spatial domain. Contours are treated as important image 
structure required in many applications, for example in analysis of medical image, 
computer vision, robot guidance, pattern recognition etc. Contour compression plays 
important role in many practical tasks associated with contour and image processing. 
The main approach solving the problem of contour compression is based on polygonal 
approximation. In this chapter the traditional and new methods for contour approximation 
in spatial domain are presented. These methods are often much faster than the methods of 
compression based on transform coding. In order to extract the contours from the image 
some algorithms have been developed. The selected well known methods for contour 
extraction and edge detection as well as the new algorithms are also presented in this 
chapter. The author is grateful to his Ph.D. students A. Ukasha and B. Fituri for their 
contribution in preparation of this chapter. 

1. Contour Analysis and Extraction 
Contours and line drawings have been an important area in image data processing. In many 
applications, e.g., weather maps and geometric shapes, it is necessary to store and transmit 
large amounts of contours and line drawings and process the information by computers. 
Several approaches have been used to extract and encode the boundary points of contours 
and line drawings. The extracted data is then used for further processing and applications. 
Contour approximation and compression are some of the processing operations performed 
on contours and has been considered by several authors. 
In encoding contours and line drawings, efficient data compression and good reconstruction 
are both usually required. Freeman proposed an eight-directional encoding scheme for 
contour lines. The proposed chain code is obtained by superimposing a rectangular grid on 
the curve and then quantizing the curve to the nearest one of the eight possible grid points. 
The chain encoding scheme represents contour lines by 3 bits/link, where a link is defined 
as one of the eight possible straight-line segments between two adjacent quantized points. 
 Efforts have been made to improve the coding efficiency. Freeman proposed a chain 
difference coding scheme which assigned variable-length codewords to the difference 
between two consecutive links. This coding scheme represents contour lines by about 2 to 
2.1 bits/link on average. 
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Contour approximation and compression are some of the processing operations performed 
on contours and has been considered by several authors. 
In encoding contours and line drawings, efficient data compression and good reconstruction 
are both usually required. Freeman proposed an eight-directional encoding scheme for 
contour lines. The proposed chain code is obtained by superimposing a rectangular grid on 
the curve and then quantizing the curve to the nearest one of the eight possible grid points. 
The chain encoding scheme represents contour lines by 3 bits/link, where a link is defined 
as one of the eight possible straight-line segments between two adjacent quantized points. 
 Efforts have been made to improve the coding efficiency. Freeman proposed a chain 
difference coding scheme which assigned variable-length codewords to the difference 
between two consecutive links. This coding scheme represents contour lines by about 2 to 
2.1 bits/link on average. 
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The purpose of this subchapter is to investigate selected methods for contour extraction. At 
the beginning some relationship between the image and contours that can be extracted from 
the image, are briefly described. 
In the simplest case, an image may consist of a single object or several separated objects of 
relatively high intensity. This allows figure/ground separation by thresholding. In order to 
create the two-valued binary image a simple threshold may be applied so that all the pixels 
in the image plane are classified into object and background pixels. A binary image function 
can then be constructed such that pixels above the threshold are foreground (“1”) and below 
the threshold are background (“0”). 
Binary images are images whose pixels have only two possible intensity values. They are 
normally displayed as black and white. Numerically, the two values are used 0 for black 
and 1 for white. In the analysis of the objects in images it is essential that we can distinguish 
between the objects of interest and “the rest”. This latter group is also referred to as the 
background. The techniques that are used to find the objects of interest are usually referred 
to as segmentation techniques - segmenting the foreground from background. 
In general there are two basic approaches for shape representation: by contours and by 
regions. Polygonal approximation, chain code, geometric primitives, parametric curves, 
Fourier descriptors and Hough transform are the examples of contour based shape 
representation methods. These methods share some common characteristics [1]: 

(1) Shape information extraction: the representation would facilitate some contour 
characteristics comprehension. 

(2) Data compression: data compression rates can vary in wide range depending on the 
method of compression and the structure of contours 

(3) Noise elimination: digital curves can be corrupted with noise and/or undesirable 
details treated as redundancy elements. The method should filter the noise and 
redundancies.

(4) Curvature evaluation: this step is important in contour description. The major 
difficulty is due to the discrete nature of the curve, making the majority of the 
methods noisy and scale dependent. There are psychological results showing that 
curvature plays a fundamental role in human shape perception. 

The most typical contour representations are illustrated below [2]: 
1) Generalized representation ),( lθ .
Fig. 1.1 shows the contour representation using the ),( lθ  generalized chain coding scheme. 

Fig. 1.1 Generalized representation of contour. 
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2) Polar representation ),( lα .
Fig. 1.2 shows the contour representation using the ),( lα  polar chain coding scheme. 

Fig. 1.2 Polar representation. 

3) Cartesian representation 
Cartesian representation of contour is shown in Fig. 1.3 

Fig. 1.3 Cartesian representation. 

Cartesian representation leads to decomposition of two-dimensional contour (y, x) into two 
one –dimensional signals x(n) and y(n), where n is a variable representing the current length 
of contour, as it is shown below 
One of the widely used procedures related to contour tracing is proposed by Freeman [3] . 
This procedure is based on an eight- or four-directional chain encoding scheme as shown in 
Fig. 1.5. An 8-directional chain-coding uses eight possible directions to represent all possible 
line segments connecting nearest neighbours according to the 8-connectivity scheme as 
shown in Fig. 1.5a. 4-directional chain-coding uses four possible directions to represent all 
possible line segments connecting nearest neighbours according to the 4-connectivity 
scheme as shown in Fig. 1.5b. 
This scheme describes arbitrary geometric configurations in a simple and efficient method. 
The chain code is obtained by superimposing a rectangular grid on the curve and then 
quantizing the curve to the nearest grid point. The Freeman chain code may subsequently 
be described in cartesian or polar systems. 
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1) Generalized representation ),( lθ .
Fig. 1.1 shows the contour representation using the ),( lθ  generalized chain coding scheme. 

Fig. 1.1 Generalized representation of contour. 
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2) Polar representation ),( lα .
Fig. 1.2 shows the contour representation using the ),( lα  polar chain coding scheme. 

Fig. 1.2 Polar representation. 

3) Cartesian representation 
Cartesian representation of contour is shown in Fig. 1.3 

Fig. 1.3 Cartesian representation. 

Cartesian representation leads to decomposition of two-dimensional contour (y, x) into two 
one –dimensional signals x(n) and y(n), where n is a variable representing the current length 
of contour, as it is shown below 
One of the widely used procedures related to contour tracing is proposed by Freeman [3] . 
This procedure is based on an eight- or four-directional chain encoding scheme as shown in 
Fig. 1.5. An 8-directional chain-coding uses eight possible directions to represent all possible 
line segments connecting nearest neighbours according to the 8-connectivity scheme as 
shown in Fig. 1.5a. 4-directional chain-coding uses four possible directions to represent all 
possible line segments connecting nearest neighbours according to the 4-connectivity 
scheme as shown in Fig. 1.5b. 
This scheme describes arbitrary geometric configurations in a simple and efficient method. 
The chain code is obtained by superimposing a rectangular grid on the curve and then 
quantizing the curve to the nearest grid point. The Freeman chain code may subsequently 
be described in cartesian or polar systems. 
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Fig. 1.4 Contour decomposition.
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a) 8-directional chain code.         b) 4-directional chain code. 
Fig. 1.5 Freeman chain code. 

Completely enclosed boundary regions can be coded with a simple modification to the basic 
chain coding. The outer boundary is first chain coded in a normal manner when this 
boundary has been closed ,a code group 0401 is inserted in the chain code, and an "invisible 
line" connecting the two boundaries is encoded. When the second boundary is reached, the 
code group 0402 is inserted in the chain code to indicate the end of the invisible line. The 
inner boundary is then chain coded in a normal manner. The prefix 04 of the "invisible line" 
code and the "visible line" code designates the rarely occurring event of a right shift 
followed by a left shift. This prefix is also used with other codes to indicate a variety of 
special cases. 
-Length of a chain: The length of an 8-directional chain code may be found using the 
following relation: 

)2( oe nnTL +=
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where en -number of even valued elements (chains) 

on --number of odd valued elements (chains) 
T- scale factor proportional to grid spacing. 

-Inverse chain: The inverse chain of an 8-directional chain code may be obtained using the 
following relation: 

41 ⊕=−
ii cc

where ⊕ -addition mod 8 

Example:
-For the curve shown 
(a) write the Freeman chain code using the 8-directional scheme. 
(b) Find the length of the chain code. 
(c) Find the inverse of the chain code. 

Fig. 1.6 Chain encoding example 

(a) In the Figure below is shown the tracing of the curve using the 8-dierectional scheme. 

The chain code is obtained as: (21010001212) 
(b) The length of the chain code, assuming T=1, is : 

)2( oe nnTL += =1(7+4 2 )=12.657 

(c) The inverse of the code is: . 41 ⊕=−
ii cc =(65454445656)
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1.1 OCF and MSCE Methods of Contour Extraction
The separation of objects from their background referred to as segmentation of gray scale 
images and as contour tracing (or boundary following) for binary images, often provide 
important features in pattern recognition and scene analysis and is used in variety of other 
applications, for example, recognition of human faces from essential contours. 
In general contour extraction from two-dimensional images may be accomplished in two 
operations: 1)Edge detection; 2)Contour tracing.
1) Edge detection: The aim of edge detection is to identify and enhance edges (pixels) 
belonging to boundaries of object of interest in the original image. An edge element is 
defined as a picture element which lies on the boundary between objects or regions of 
different intensities or gray levels. Many edge detection methods have been proposed for 
detecting and enhancing edges in digital images. Most of these methods are implemented as 
some form of gradient operators. Some images can be characterized as containing some 
objects of interest of reasonably uniform brightness placed against a background of differing 
brightness. Typical examples include handwritten and typewritten text, and airplanes on 
the a runway. For such images, brightness is a distinguishing feature that can be utilized to 
locate the object. This method is termed as luminance thresholding. 
2) Contour tracing: The contour tracing algorithm traces the contour and extracts the contour 
information which is then passed to subsequent processing. One of the most widely used 
procedures to follow contours and line drawings is that of Freeman, which provides a code 
that possesses some manipulative properties. The Freeman chain code can subsequently be 
described in cartesian or polar systems. 
The problem of contour extraction from 2D-digital image has been studied by many 
researchers, and a large number of contour extraction methods have been developed. Most 
of the developed methods can be assigned to either of two major classes known as 
sequential methods or Object Contour Following (OCF), and parallel methods or Multiple 
Step Contour Extraction (MSCE). In Fig.1.6 is shown a block diagram of the contour 
extraction and processing from gray level images. 
A brief description of the two main classes of contour extraction methods, OCF and MSCE, is given. 

Grey-level 
   image 

Binary image 

    Contour 
  extraction 

  Contour 
description

Cartesian Polar 

Processing

Freeman

Fig. 1.6 Contour extraction and processing from gray level images. 
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Two main approaches can be used for the extraction of object contours. The Object Contour 
Following (OCF) and Multiple Step Contour Extraction ( MSCE ). The OCF methods, 
sequentially detect and extract object contour edges. By sequential methods, it is meant that 
the result at a point is dependent upon the result of the previously processed points. The 
MSCE methods are referred to as parallel schemes for object contour extraction. By parallel, 
it is meant that the decision of whether or not a point is on an edge is made on the basis of 
the gray level of the point and its neighbours. So, the edge detection operator in principle 
can be applied simultaneously everywhere in the picture. It should be noted that the 
definitions of sequential and parallel schemes are used with respect to edge detection. To 
produce a closed boundary, the extracted edges have to be connected together to form a 
closed curve. 

(i) Object Contour Following( OCF ) 
 The OCF methods, which are also called Bug Following, can be used to trace (follow) the 
contour edges of a 2-D digital image. The idea of these methods is illustrated in Fig.1.7. The 
extraction procedure consists of finding a starting point and then cross the edge between the 
white and black regions, record the co-ordinates of the black pixel then turn left 
continuously until a white pixel is found, record the black pixel co-ordinates as the next 
contour edge point. Start turning right until a black pixel is found. Terminate this procedure 
when the starting point of the contour is reached again. 

Starting 
 point 

Fig. 1.7 The Object Contour Follower. 

(ii) Multiple Step Contour Extraction ( MSCE ) 
The key feature of MSCE methods is that the gradient between two pixels with different 
gray scale levels represents the difference between the two pixels, and the gradient will be 
zero for the pixels with the same gray scale level. A threshold value will determine if the 
gradient is interpreted as an object edge or not. An additional procedure is used to improve 
the overall contour structure by joining all disjoined edges and thinning the thick edges. 
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it is meant that the decision of whether or not a point is on an edge is made on the basis of 
the gray level of the point and its neighbours. So, the edge detection operator in principle 
can be applied simultaneously everywhere in the picture. It should be noted that the 
definitions of sequential and parallel schemes are used with respect to edge detection. To 
produce a closed boundary, the extracted edges have to be connected together to form a 
closed curve. 

(i) Object Contour Following( OCF ) 
 The OCF methods, which are also called Bug Following, can be used to trace (follow) the 
contour edges of a 2-D digital image. The idea of these methods is illustrated in Fig.1.7. The 
extraction procedure consists of finding a starting point and then cross the edge between the 
white and black regions, record the co-ordinates of the black pixel then turn left 
continuously until a white pixel is found, record the black pixel co-ordinates as the next 
contour edge point. Start turning right until a black pixel is found. Terminate this procedure 
when the starting point of the contour is reached again. 

Starting 
 point 

Fig. 1.7 The Object Contour Follower. 

(ii) Multiple Step Contour Extraction ( MSCE ) 
The key feature of MSCE methods is that the gradient between two pixels with different 
gray scale levels represents the difference between the two pixels, and the gradient will be 
zero for the pixels with the same gray scale level. A threshold value will determine if the 
gradient is interpreted as an object edge or not. An additional procedure is used to improve 
the overall contour structure by joining all disjoined edges and thinning the thick edges. 
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Fig.1.8 shows the steps required for extracting object contours by the MSCE methods. 
Although the method of gradient operator for generating edge elements is parallel, the 
method of connecting ( tracing ) these extracted edge elements is sequential. 

      Find gradient between pixels   Gradient Operators 
      ( Edge Detection )    Compass Operators 
      Uses 2 X 2 or 3 X 3 Window   Laplacian Operators 
   MSCE
      Multiple Step     Trace the contour 
   Contour Extraction          Joining disjoined lines 
             Additional operations 
                Thinning thick lines

Fig. 1.8 Block Diagram of The Multiple Step Contour Extraction. 

The three main steps of the MSCE methods are: edge detection, contour tracing and the 
additional procedures for joining disjoined lines, and thinning thick lines. 

a) Edge Detection
Local discontinuities in image luminance or gray levels are called luminance edges. Global 
discontinuities are called boundary segments. Edges characterise object boundaries. They 
are used for segmentation and identification of objects in images. Edge points can be 
thought of as pixel locations with abrupt gray level change. For example, it is reasonable to 
define edge points in binary images as black pixels ( object pixels ) with at least one white 
nearest neighbour pixel ( background pixel ). Most techniques used for edge detection are 
limited to processing over the 2x2 or 3x3 windows shown in Fig. 1.9a and Fig. 1.9b 
respectively.
Note that the same pixel numbering will be used with all edge detection operators. 

              i                i+1

       j     P(i,j)         P(i+1,j)

    j+1 P(i,j+1)     P(i+1,j+1)

         i

     P0     P1    P2

j    P7   P(i,j)  P3

     P6     P5    P4

Fig. 1.9a Pixel numbering for 2x2 edge 
detecting operators.

Fig. 1.9b Pixel numbering for 3x3 edge 
detecting operators.

b) Gradient Operators: 
These operators measure the gradient of the image G( i, j ) in two orthogonal directions, 
horizontal, and vertical directions. Except with the case of Roberts cross operator where the 
gradient is taken across the diagonals. 
The gradient is given by : 

),(),(),( 22 jigjigjiG hv +=  (1.1) 
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where gv : is the gradient in the vertical direction. 
gh : is the gradient in the horizontal direction. 
Instead of using the square root gradient given by Eq.(1.1), the gradient is often 
approximated using the absolute gradient given by the following equation : 

),(),(g),( v jigjijiG h+=   (1.2) 
Eq.(1.2) is easier to perform and to implement in digital hardware. 
The Roberts , Sobel , Prewitt [26] operators, showing the horizontal and vertical masks 
(diagonal masks in case of Roberts cross) together with the necessary equations for finding 
the gradient, are introduced next, as an example of edge detection using gradient operators. 

Roberts cross gradient operator : 
Roberts has used a simple window of 2x2 to introduce the square-root difference operator 
given in Fig.1.10, it is often called Roberts cross gradient operator. The edge detection is 
carried out using Eq.(1.1), where : 
 gv = P( i, j ) - P( i+1, j+1 ) (1.3) 
 gh = P( i, j+1 ) - P( i+1, j ) (1.4) 
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Fig. 1.10 Roberts cross gradient operator. 

Sobel gradient operator : 
The masks which are used by Sobel for finding the gradient of an image are shown in Fig. 
1.11. The corresponding equation used for calculating the gradient is given by Eq.(1.1), 
where : 
 gv = (P2 + 2P3 + P4 ) - ( P0 + 2P7 + P6 ) (1.5) 
 gh = (P0 + 2P1 + P2 ) - ( P6 + 2P5 + P4 ) (1.6) 
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     Horizontal mask.                  Vertical mask. 
Fig. 1.11 Sobel gradient operator. 

Laplacian operators : 
Three different Laplacian operators [26][27], with the necessary equations for calculating the 
gradient, are shown in Fig.1.12. For images with smooth changes in gray level values the 
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Laplacian operators : 
Three different Laplacian operators [26][27], with the necessary equations for calculating the 
gradient, are shown in Fig.1.12. For images with smooth changes in gray level values the 
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Laplacian operators give better results than the previous operators. But it is more sensitive 
to noise, and produces double edges. 
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Fig. 1.12 Three different types of Laplacian operators. 

For the operator of Fig. 1.12a -c the edges are detected by calculating the gradients between 
pixels using the following formulas respectively : 
 G ( i , j ) = 4F( i , j ) + ( P0 + P2 + P4 + P6 ) - ( P1 + P3 + P5 + P7 ) (1.7) 
 G ( i , j ) = 8F( i , j ) - ( P0 + P1 +P2 + P3 + P4 + P5 + P6 + P7 ) (1.8) 
 G ( i , j ) = 4F( i , j ) - ( P1 + P3 + P5 + P7 )  (1.9) 
To compare the performance of the selected gradient operators, the binary image of Fig. 
1.13a is used. The detected edges obtained by applying different gradient operators are 
shown in Fig. 1.13b-h. 

(a)

  (b)  (c)  (d) 

  (e)  (f) 
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  (g)  (h) 
(a) Original image, (b) Prewitt gradient Operator, (c) Roberts cross 
gradient operator, (d) Sobel gradient operator, (e) Prewitt compass 
operator, (f - h ) Three types of Laplacian operators 

Fig. 1.13 Different edge detection results on a real binary image. 

1.2 Object-oriented Contour Extraction OCE 
This algorithm is based on 4x4 pixels window structure to extract the object contours by the 
four central pixels which are processed simultaneously. The algorithm uses the features of 
both OCF and MSCE methods to overcome most of the disadvantages they have. 
It features a parallel implement and an effective suppression of noises. It can be realized in 
real-time [18]. 
The following three steps are needed for the extraction procedure: 
Step1: The image is framed with zeros. 
Step2: Eight rules of edge extraction are applied and are coded using 8-directional chain-
code as shown in Listing 1.1. 

Listing 1.1 
Implementation of the eight rules for contour extraction (4x4 windows) 
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where:

b(i,j) is the binary value of a pixel point (i,j) and k2  (k:0-7) is the extracted edge code. 
Step3: The extracted contour edges are sorted and stored or optimized according to the 
application requirements. The extraction procedure is shown in Fig. 1.14. 

Fig. 1.14 Object-oriented Contour Extraction (OCE). 

The problem in the OCE procedure is that contours extracted from the objects near the 
image boundary, i.e. objects within one pixel distance from the image border, are not closed 
and that is why the image should be framed with two background pixels to ensure the 
closure of the contours. Fig. (1.15a) shows that the extracted edges do not form closed 
contours; while Fig. (1.15b) shows that after framing the image with at least two 
underground pixels all extracted contours are closed. 

Fig. 1.15 OCE procedure (a) Without correcting the first step and (b) After correcting the 
first step. 

1.3 Single Step Parallel Contour Extraction ‘SSPCE’ (3x3 windows) 
There are two algorithms; the first one [35] [35] uses 8-connectivity scheme between pixels, 
and 8-Directional Freeman chain coding [3] scheme is used to distinguish all eight possible 
line segments connecting nearest neighbors. This algorithm uses the same principle of 
extraction rules as in the OCE algorithm. The second algorithm [35] uses the 4-connectivity 
scheme between pixels, and 4-Directional Freeman chain coding scheme is used to 
distinguish all four possible line segments. Both algorithms use an 3x3 pixels window 
structure to extract the object contours by using the central pixel to find the possible edge 
direction which connect the central pixel with one of the remaining pixels surrounding it. 
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The first algorithm gives exactly the same extracted contours as the OCE algorithms but is 
much faster ; while the second algorithm gives similar contours, but not identical and is also 
faster . Consider now the first algorithm in details. 
The edges can be extracted by applying the definition that an object contour edge is a 
straight line connecting two neighboring pixels which have both a common neighboring 
object pixel and a common neighboring underground pixel [33]. By this definition, no edges 
can be extracted from the three following cases: 

1- If all nine pixels are object pixels; i.e. the window is inside an object region. 
2- If all nine pixels are background pixels; i.e. the window is inside a background region. 

If the center pixel is an object pixel surrounded by background pixels; i.e. it is most probable 
that the center pixel in this case is a point noise caused by image digitalization. 
So, this algorithm uses the same principle and steps of extraction rules as the OCE algorithm 
using 3x3 window. The eight rules of edge extraction are applied and are coded using 8-
directional chain-code as shown in Listing 1.2. 

Listing 1.2 (3x3 windows) 
Implementation of the eight rules for contour extraction (3x3 windows) 

1.4 Contour Extraction Based on 2x2 Windows 
This algorithm is mainly used for gray scale images . It uses a smaller window for contour 
extraction than its predecessors, i.e. 2x2 window shown in Fig. 1.16. 

Fig. 1.16 Pixel numbering for 2x2 windows. 
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where:

b(i,j) is the binary value of a pixel point (i,j) and k2  (k:0-7) is the extracted edge code. 
Step3: The extracted contour edges are sorted and stored or optimized according to the 
application requirements. The extraction procedure is shown in Fig. 1.14. 

Fig. 1.14 Object-oriented Contour Extraction (OCE). 
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Fig. 1.15 OCE procedure (a) Without correcting the first step and (b) After correcting the 
first step. 
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The processed pixel is the darker one. Two buffers are required for a real time contour 
extraction system. First buffer is used for the storage of a previously processed image line 
and the second one keeps pixel values of the currently processed image line. 
The algorithm uses the 8-connectivity scheme, and the extracted edges are coded by using 
of the 8-directional chain coding. It does not require any storage of the scanned (processed) 
image.
The three main steps of the algorithm are: 

• Frame the image with zeros, 
• Extract contour edges using the eight rules 
• Sort the extracted contour edges. 

The eight rules of edge extraction are applied and are coded using 8-directional chain-code 
as shown in Listing 1.3. 

Listing 1.3 
Implementation of the eight rules for contour extraction (2x2 windows) 

The algorithm does not require the storage of the scanned image, i.e. it can be used for real 
time applications. 

1.5 Comparison of Contour Extraction Algorithms (Different  Windows)
The comparison is made between the following three algorithms: 

• Contour extraction CE referred to as the third algorithm (or 2x2 windows). 
• SSPCE method; it will be referred to as the second algorithm (or 3x3 windows). 
• OCE method; it will be referred to as the third algorithm (or 4x4 windows). 

The comparison is performed with respect to the number of operation and number of 
contour edges. The binary test images are illustrated in Fig. 1.17. 
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(a) (b)

(c)
Fig. 1.17 Binary images (a) Circle (b) Square (c) E letter. 
The comparison between the three algorithms with respect to the number of operations 
versus the number of edges for Circle, Square and E letter contours respectively is shown in 
Tab. 1.1, Tab. 1.2 and Tab. 1.3 

NE 20 30 40 50 60 AE
st1  algor. (NO) 276497 276581 276666 276748 276835 277060 
nd2  algor. (NO) 89810 89894 89979 90061 90148 90373 
rd3  algor. (NO) 1,065018 1,065092 1,065167 1,065239 1,065316 1,065514 

NE – Number of Edges, AE – All Edges and NO is the Number of Operations, 
Table 3.1 Comparison between the algorithms for Circle image. 

NE 50 100 150 200 AE
st1  algor. (NO) 447287 447687 448087 448487 450351 
nd2  algor. (NO) 446898 447298 447698 448098 448442 

rd3  algor. (NO) 1, 726850 1, 727200 1, 727550 1, 727900 1, 728201 

NE – Number of Edges, AE – All Edges and NO is the Number of Operations, 
Table3.2 Comparison between the algorithms for Square image 

NE 20 60 100 125 150 AE
st1  algor. (NO) 109410 109732 110053 110254 110454 110718 
nd2  algor. (NO) 56629 56951 57272 57473 57673 57937 

rd3  algor. (NO) 407648 407930 408211 408387 408562 408793 

NE – Number of Edges, AE – All Edges and NO is the Number of Operations, 
Table 3.3 Comparison between the algorithms for E letter image. 
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of the 8-directional chain coding. It does not require any storage of the scanned (processed) 
image.
The three main steps of the algorithm are: 
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time applications. 
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st1  algor. (NO) 276497 276581 276666 276748 276835 277060 
nd2  algor. (NO) 89810 89894 89979 90061 90148 90373 
rd3  algor. (NO) 1,065018 1,065092 1,065167 1,065239 1,065316 1,065514 

NE – Number of Edges, AE – All Edges and NO is the Number of Operations, 
Table 3.1 Comparison between the algorithms for Circle image. 

NE 50 100 150 200 AE
st1  algor. (NO) 447287 447687 448087 448487 450351 
nd2  algor. (NO) 446898 447298 447698 448098 448442 

rd3  algor. (NO) 1, 726850 1, 727200 1, 727550 1, 727900 1, 728201 

NE – Number of Edges, AE – All Edges and NO is the Number of Operations, 
Table3.2 Comparison between the algorithms for Square image 

NE 20 60 100 125 150 AE
st1  algor. (NO) 109410 109732 110053 110254 110454 110718 
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rd3  algor. (NO) 407648 407930 408211 408387 408562 408793 

NE – Number of Edges, AE – All Edges and NO is the Number of Operations, 
Table 3.3 Comparison between the algorithms for E letter image. 
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Extracted contours 
using first algorithm 

Extracted contours 
using second algorithm 

Extracted contours 
using third algorithm 

Fig. 1.18 Extracted contours using the three different algorithms. 

The first column of Fig. 1.18 shows the extracted contours by the first algorithm. The second 
column shows the extracted contours by the second algorithm and the third one- the 
extracted contours by the third algorithm. 
The comparison between the three algorithms with respect to the number of operations 
versus the number of edges for the binary images is illustrated in Fig. 1.19
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Fig. 1.19 Number of operations versus number of edges for the all algorithms for the shapes 
of (a) Circle (b) Square (c) E letter. 

The results presented in Fig.1.19 show that the fastest algorithm is dependent on the 
structure of contour. 

2. Methods of Contour Approximation and Compression in Spatial Domain
In many applications of contour processing and analysis it is desirable to obtain a 
polygonal approximation of an object under consideration. In this chapter we briefly 
consider the algorithms that have been introduced for polygonal approximation of 
extracted contours. The algorithm presented by Ramer uses the maximum distance of the 
curve from the approximating polygon as a fit criterion [45]. There exist algorithms 
referred to as the Triangle family of contour approximation . The first algorithm is based 
on the ratio between the height and length triangle distances for each segment, and this 
ratio is used as the fit criterion of the algorithm which is referred to as height over length 
triangle ratios algorithm [46] and [47]. The second algorithm is based on the height 
triangle distance for each segment as the fit criterion of the algorithm which is referred to 
as height length triangle algorithm. The third algorithms is related to the square of the 
height triangle distance for each segment as the fit criterion of the algorithm which is 
referred to as height square length triangle algorithm. The fourth algorithm is associated 
with the area for each triangle segment as the fit criterion of the algorithm which is 
referred to as the area triangle algorithm. 

2.1 Polygonal approximation 
A digitized picture in a 2D array of points is often desired to be approximated by polygonal 
lines with the smallest number of sides, under the given error tolerance E. 
There are several algorithms available for determining the number and location of the 
vertices and also to compute the polygonal approximation of a contour. The Ramer 
method is based on the polygonal approximation scheme. The simplest approach for the 
polygonal approximation is a recursive process (Splitting methods). Splitting methods is 
performed by first drawing a line from one point on the boundary to another. Then, we 
compute the perpendicular distance from each point along the segment to the line. If this 
exceeds some threshold, we break the line at the point of greatest error. We then repeat 
the process recursively for each of the two new lines until we don't need to break any 
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using second algorithm 
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Fig. 1.18 Extracted contours using the three different algorithms. 

The first column of Fig. 1.18 shows the extracted contours by the first algorithm. The second 
column shows the extracted contours by the second algorithm and the third one- the 
extracted contours by the third algorithm. 
The comparison between the three algorithms with respect to the number of operations 
versus the number of edges for the binary images is illustrated in Fig. 1.19

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

1,100,000

1,200,000

(4x4)

(2x2)

(3x3)

Circle

N
um

be
r o

f o
pe

ra
tio

ns
 (N

O
)

Number of edges (NE)

(a)

0 3,000 6,000 9,000 12,000 15,000 18,000 21,000
0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

(2x2)

(3x3)

(4x4)
Square

N
um

be
r o

f o
pe

ra
tio

ns
 (N

O
)

Number of edges (NE)

(b)

Contour Extraction and Compression-Selected Topics 203

0 1,000 2,000 3,000 4,000 5,000 6,000
0

100,000

200,000

300,000

400,000

(3x3)

(2x2)

(4x4)E letter

N
um

be
r o

f o
pe

ra
tio

ns
 (N

O
)

Number of edges (NE)

 (c) 
Fig. 1.19 Number of operations versus number of edges for the all algorithms for the shapes 
of (a) Circle (b) Square (c) E letter. 

The results presented in Fig.1.19 show that the fastest algorithm is dependent on the 
structure of contour. 

2. Methods of Contour Approximation and Compression in Spatial Domain
In many applications of contour processing and analysis it is desirable to obtain a 
polygonal approximation of an object under consideration. In this chapter we briefly 
consider the algorithms that have been introduced for polygonal approximation of 
extracted contours. The algorithm presented by Ramer uses the maximum distance of the 
curve from the approximating polygon as a fit criterion [45]. There exist algorithms 
referred to as the Triangle family of contour approximation . The first algorithm is based 
on the ratio between the height and length triangle distances for each segment, and this 
ratio is used as the fit criterion of the algorithm which is referred to as height over length 
triangle ratios algorithm [46] and [47]. The second algorithm is based on the height 
triangle distance for each segment as the fit criterion of the algorithm which is referred to 
as height length triangle algorithm. The third algorithms is related to the square of the 
height triangle distance for each segment as the fit criterion of the algorithm which is 
referred to as height square length triangle algorithm. The fourth algorithm is associated 
with the area for each triangle segment as the fit criterion of the algorithm which is 
referred to as the area triangle algorithm. 

2.1 Polygonal approximation 
A digitized picture in a 2D array of points is often desired to be approximated by polygonal 
lines with the smallest number of sides, under the given error tolerance E. 
There are several algorithms available for determining the number and location of the 
vertices and also to compute the polygonal approximation of a contour. The Ramer 
method is based on the polygonal approximation scheme. The simplest approach for the 
polygonal approximation is a recursive process (Splitting methods). Splitting methods is 
performed by first drawing a line from one point on the boundary to another. Then, we 
compute the perpendicular distance from each point along the segment to the line. If this 
exceeds some threshold, we break the line at the point of greatest error. We then repeat 
the process recursively for each of the two new lines until we don't need to break any 
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more. For a closed contour, we can find the two points that lie farthest apart and fit two 
lines between them, one for one side and one for the other. Then, we can apply the 
recursive splitting procedure to each side. First, use a single straight line to connect the 
end points. Then find the edge point with the greatest distance from this straight line. 
Then split the straight line in two straight lines that meet at this point. Repeat this process 
with each of the two new lines. Recursively repeat this process until the maximum 
distance of any point to the poly-line falls below a certain threshold. Finally draw the 
lines between the vertices of an edge of the reconstructed contour to obtain the polygonal 
approximating contour. 

The approximation of arbitrary two-dimensional curves by polygons is an important 
technique in image processing. For many applications, the apparent ideal procedure is to 
represent lines and boundaries by means of polygons with a minimum number of vertices 
and satisfying a given fit criterion. An approximation algorithm is presented which uses an 
iterative method to produce a small - but not minimum - number of vertices that lie on the 
given curve. The maximum distance of the curve from the approximated polygon is chosen 
as the fit criterion. 

Analysis of multiple views of the same scene is an area of active research in computer 
vision. The study of the structure of points and lines in two views received much attention 
in the eighties and early nineties [38], [39] and [40]. Studies on the constraints existent in 
three and more views have followed since then [41], [42], [43] and [44]. These multiview 
studies have concentrated on how geometric primitives like points, lines and planes are 
related across views. Specifically, the algebraic constraints satisfied by the projections of 
such primitives in different views have been a focus of intense studies. 
Polygonal approximation is illustrated in Fig. 2.1 

Fig. 2.1 Polygonal approximation. 

Some practical methods for contour approximation are analyzed below. 

2.2 Ramer Method 
The algorithm is based on the maximum distance of the curve from the approximating 
polygon, and this distance is used as the fit criterion. The algorithm produces a polygon 
with a small number of edges for arbitrary two-dimensional digitized curves. The segment 
of the curve is approximated by a straight-line segment connecting its initial and terminus. 
If the fit is not fulfilling, the curve segment is terminated into two segments at the curve 
point most distant from the straight-line segment. This loop is repeated until each curve 
segment can be approximated by a straight-line segment through its endpoints. The termini 
of all these curve segments then are the vertices of a polygon that satisfies the given 
maximum-distance approximation criterion. 

This type of polygonal curve representation exhibits two important disadvantages. First 
the polygons contain a very large number of edges and, therefore, are not in as compact a 
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form as possible. Second, the length of the edges is comparable in size to the noise 
introduced by quantization. 

The idea is illustrated in the following Figures (see Fig. 2.2 to Fig. 2.11). 
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Fig. 2.2 The original contour.  
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Fig. 2.3 The curve segment of straight  line .1l
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more. For a closed contour, we can find the two points that lie farthest apart and fit two 
lines between them, one for one side and one for the other. Then, we can apply the 
recursive splitting procedure to each side. First, use a single straight line to connect the 
end points. Then find the edge point with the greatest distance from this straight line. 
Then split the straight line in two straight lines that meet at this point. Repeat this process 
with each of the two new lines. Recursively repeat this process until the maximum 
distance of any point to the poly-line falls below a certain threshold. Finally draw the 
lines between the vertices of an edge of the reconstructed contour to obtain the polygonal 
approximating contour. 

The approximation of arbitrary two-dimensional curves by polygons is an important 
technique in image processing. For many applications, the apparent ideal procedure is to 
represent lines and boundaries by means of polygons with a minimum number of vertices 
and satisfying a given fit criterion. An approximation algorithm is presented which uses an 
iterative method to produce a small - but not minimum - number of vertices that lie on the 
given curve. The maximum distance of the curve from the approximated polygon is chosen 
as the fit criterion. 

Analysis of multiple views of the same scene is an area of active research in computer 
vision. The study of the structure of points and lines in two views received much attention 
in the eighties and early nineties [38], [39] and [40]. Studies on the constraints existent in 
three and more views have followed since then [41], [42], [43] and [44]. These multiview 
studies have concentrated on how geometric primitives like points, lines and planes are 
related across views. Specifically, the algebraic constraints satisfied by the projections of 
such primitives in different views have been a focus of intense studies. 
Polygonal approximation is illustrated in Fig. 2.1 

Fig. 2.1 Polygonal approximation. 

Some practical methods for contour approximation are analyzed below. 

2.2 Ramer Method 
The algorithm is based on the maximum distance of the curve from the approximating 
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segment can be approximated by a straight-line segment through its endpoints. The termini 
of all these curve segments then are the vertices of a polygon that satisfies the given 
maximum-distance approximation criterion. 

This type of polygonal curve representation exhibits two important disadvantages. First 
the polygons contain a very large number of edges and, therefore, are not in as compact a 
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form as possible. Second, the length of the edges is comparable in size to the noise 
introduced by quantization. 

The idea is illustrated in the following Figures (see Fig. 2.2 to Fig. 2.11). 
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Fig. 2. 5 The maximum distance for the segment curve segment from the straight line .1l
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Fig. 2.6 The curve segments for the two new straight lines 2l  and 
3l .
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Fig. 2.11 The Original and approximated contours. 

2.3 Triangle Methods of Contour Compression 
The proposed algorithms belong to a family of polygonal methods of approximation. An 
input contour for the algorithms is extracted from 256 x 256 grey-scale images using Single 
Step Parallel Contour Extraction (SSPCE) method [34]. 
The approximation procedure starts at the time, when the first and last points of a segment 
are determined. The proposed criterion can be modified depending on contour 
representation methods. The most popular contour description methods are Freeman’s 
chain coding, polar and Cartesian descriptions. Freeman chain coding can be used to 
distinguish all possible connections for both 8-connectivity and 4-connectivity schemes. A 
commonly used chain coding representation is the 8-Directional chain coding which uses 
eight possible directions to present all possible line segments connecting the nearest 
neighbors according to the 8-connectivity scheme. The contour extraction by these 
algorithms is based on (3 x 3) pixels window. 
The Triangle family contains four methods of contour compression which are very similar 
to each other and the first method will be described in details in the following section.

A) Height Over Length Triangle Ratio Method 
The algorithm refers to a quite new polygonal approximating method called the height over 
length ratio triangle method [46] and [47]. 
The idea of this method consists in segmentation of the contour points to get a triangle 
shape. The ratio of the height of the triangle (h) and the length of the base of the triangle (b)
is then compared with the given threshold value as follows: 

thbh <)/(  (4.1) 

Where:
th  - given threshold value. 
The first point of each segment is called the starting point (SP) and the last one is called the 
ending point (EP). To calculate these values a simple trigonometric formula is used. 
If the ratio value is smaller than the threshold according to Eqs. (4.1) the EP of the triangle is 
stored and SP is shifted to the EP, then a new segment is drawn. Otherwise the second point 
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(B) is stored and the SP is shifted to the B point of the triangle. Then a new segment is 
drawn. The stored points determine the vertices of an edge of the approximating polygon. 
The algorithm scans contour points only once i.e. it does not require the storage of the 
analysed contour points. The original points of the contour are discarded as soon as they are 
processed. Only the co-ordinates of the starting point of the contour segment, and the last 
processed point are stored. The idea of the proposed algorithm is illustrated in Fig. 2.12. A 
flowchart of the proposed algorithm is depicted in Fig. 2.13. 

Fig. 2.12 Illustration of the basic triangle for the proposed algorithm where h and b are 
height and length of the triangle respectively. 

Fig. 2.13 Flowchart of the proposed algorithm. 

where:
VA - sequence of indices of the final vertices; 
CC - sequence of the input for the contour; 
SP - starting point; 
EP - ending point; 
h ,b and th - as mentioned before (see Fig.4.13 and Eqs.4.1); 
f - length between each two points of the triangle. 

B) Height Triangle Method 
The second algorithm refers to a recent polygonal approximating method called the height 
triangle method. The idea of this method is very similar to the previous algorithm. The only 
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drawn. The stored points determine the vertices of an edge of the approximating polygon. 
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VA - sequence of indices of the final vertices; 
CC - sequence of the input for the contour; 
SP - starting point; 
EP - ending point; 
h ,b and th - as mentioned before (see Fig.4.13 and Eqs.4.1); 
f - length between each two points of the triangle. 

B) Height Triangle Method 
The second algorithm refers to a recent polygonal approximating method called the height 
triangle method. The idea of this method is very similar to the previous algorithm. The only 
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difference is that the threshold is compared with the height of the triangle (shadow region 
in Fig. 2.13).
The third algorithm refers to a polygonal approximating method called the height square 
triangle method. The idea of this method is very similar to the previous algorithm. The 
difference is that the threshold is compared with the square height of the triangle (shadow 
region in Fig. 2.13).
The fourth algorithm refers to a recent polygonal approximating method called the triangle 
area method. In this case the threshold is compared with the area of the triangle (shadow 
region in Fig. 2.13). 

2.4 Comparison Between the Triangle Family and Ramer Algorithms 
The computational complexity is one of the most important factors in evaluating a given 
method of approximation. High computational complexity leads to high implementation 
cost. The MSE (Mean Square Error) and SNR (Signal to Noise Ratio) criterions versus 
compression ratio are also used to evaluate the distortion. 
The comparison is done for some test contours (Italy & Rose) which was extracted by using 
the “SSPCE” (Single Step Parallel Contour Extraction). The comparison is made between the 
following five algorithms: 

• Height over length triangle (hb) method; it will be referred to as the first algorithm. 
• Height triangle (h) method; it will be referred as the second algorithm. 
• Height square triangle (hs) method; it will be referred as the third algorithm. 
• Area triangle (area) method; it will be referred as the fourth algorithm. 
• Ramer method; it will be referred as the fifth algorithm. 

To visualise the experimental results a set of two test contours was selected. Selected 
contours are shown in Fig. 2.14. 

     
Fig. 2.14 Test contours: a) Italy b) Rose. 

The comparison of the compression abilities versus the MSE & SNR are shown in the Fig. 
2.15 & Fig. 2.16 respectively. 
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Fig. 2.15 MSE versus compression ratio for (a) Italy contour (b) Rose contour. 
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Fig. 2.16 SNR versus compression ratio for (a) Italy contour (b) Rose contour. 

Comparison of the compression abilities versus the number of operations is presented in 
Fig. 2.17. 
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Fig. 2.17 NO versus compression ratio for (a) Italy contour (b) Rose contour. 

The plots show that SNR using the Ramer algorithm is close to the triangle family methods 
for the rose contour; the reconstruction quality by the triangle family algorithms are very 
similar but the (hs) method is much better for complicated contour as in Rose contour. The 
number of operations is very similar between the triangle family algorithms at high 
compression. The triangle family algorithms are many times faster than that of Ramer 
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The plots show that SNR using the Ramer algorithm is close to the triangle family methods 
for the rose contour; the reconstruction quality by the triangle family algorithms are very 
similar but the (hs) method is much better for complicated contour as in Rose contour. The 
number of operations is very similar between the triangle family algorithms at high 
compression. The triangle family algorithms are many times faster than that of Ramer 
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method. The compression ratio using triangle family methods can be even greater than 97% 
without significant lose of quality of compressed contour, but the complexity is much less 
than that of the Ramer algorithm. 
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1. Introduction 
Two different approaches to the mobile robot localization problem exist: relative and 
absolute. The first one is based on the data provided by sensors measuring the dynamics of 
variables internal to the vehicle; absolute localization requires sensors measuring some 
parameters of the environment in which the robot is operating. If the environment is only 
partially known, the construction of appropriate ambient maps is also required. The actual 
trend is to exploit the complementary nature of these two kinds of sensorial information to 
improve the precision of the localization procedure (see e.g. (Bemporad et al., 2000; Bonci et 
al., 2004; Borenstein et al., 1997; Durrant-Whyte, 1988; Gu et al., 2002; Ippoliti et al., 2004)) at 
expense of an increased cost and computational complexity. The aim is to improve the 
mobile robot autonomy by enhancing its capability of localization with respect to the 
surrounding environment. 
In this framework the research interests have been focused on multi-sensor systems because 
of the limitations inherent any single sensory device that can only supply partial 
information on the environment, thus limiting the ability of the robot to localize itself. The 
methods and algorithms proposed in the literature for an efficient integration of multiple-
sensor information differ according to the a priori information on the environment, which 
may be almost known and static, or almost unknown and dynamic. 
In this chapter both relative and absolute approaches of mobile robot localization are 

investigated and compared. With reference to relative localization, the purpose of this 
chapter is to propose and to compare three different algorithms for the mobile robot 
localization only using internal sensors like odometers and gyroscopes. The measurement 
systems for mobile robot localization only based on relative or dead-reckoning methods, 
such as encoders and gyroscopes, have the considerable advantage of being totally self-
contained inside the robot, relatively simple to use and able to guarantee a high data rate. A 
drawback of these systems is that they integrate the relative increments and the localization 
errors may considerably grow over time if appropriate sensor-fusion algorithms are not 
used (De Cecco, 2003). Here, different methods are analysed and tested. The best 
performance has been obtained in the stochastic framework where the localization problem 
has been formulated as a state estimation problem and the Extended Kalman Filtering (EKF) 
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contained inside the robot, relatively simple to use and able to guarantee a high data rate. A 
drawback of these systems is that they integrate the relative increments and the localization 
errors may considerably grow over time if appropriate sensor-fusion algorithms are not 
used (De Cecco, 2003). Here, different methods are analysed and tested. The best 
performance has been obtained in the stochastic framework where the localization problem 
has been formulated as a state estimation problem and the Extended Kalman Filtering (EKF) 
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is used. The EKF fuses together odometric and gyroscopic data. A difference with respect to 
other EKF based techniques is that the approach followed here derives the dynamical 
equation of the state-space form from the kinematic model of the robot, while the measure 
equation is derived from the numerical integration equations of the encoder increments. 
This allows to fuse together all the available informative content which is carried both by the 
robot dynamics and by the acquired measures. 
As previously mentioned, any relative localization algorithm is affected by a continuous 
growth in the integrated measurement error. This inconvenience can be reduced by 
periodically correcting the internal measures with the data provided by absolute sensors 
like sonar, laser, GPS, vision systems (Jarvis, 1992; Talluri & Aggarwal, 1992; Zhuang & 
Tranquilla, 1995; Mar & Leu, 1996; Arras et al., 2000; Yi et al., 2000; Panzieri et al., 2002). To 
this purpose, a localization algorithm based on a measure apparatus composed of a set of 
proprioceptive and exteroceptive sensors, is here proposed and evaluated. The fusion of 
internal and external sensor data is again realized through a suitably defined EKF driven by 
encoder, gyroscope and laser measures. 
The developed algorithms provide efficient solutions to the localization problem, where 

their appealing features are: 
• The possibility of collecting all the available information and uncertainties of a 

different kind into a meaningful state-space representation, 
• The recursive structure of the solution, 
• The modest computational effort. 

Significant experimental results of all proposed algorithms are presented here, and their 
comparison concludes this chapter. 

2. The sensors equipment 
In this section the considered sensor devices are introduced and characterized. 

2.1 Odometric measures 
Consider a unicycle-like mobile robot with two driving wheels, mounted on the left and right 
sides of the robot, with their common axis passing through the center of the robot (see Fig. 1). 

Fig. 1. The scheme of the unicycle robot. 
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Localization of this mobile robot in a two-dimensional space requires the knowledge of 
coordinates x  and y  of the midpoint between the two driving wheels and of the angle θ
between the main axis of the robot and the X -direction. The kinematic model of the 
unicycle robot is described by the following equations: 

( ) ( ) ( )cosx t t tν θ=  (1) 

( ) ( ) ( )siny t t tν θ=  (2) 

( ) ( )t tθ ω=  (3) 

where ( )tν  and ( )tω  are, respectively, the displacement velocity and the angular velocity 

of the robot and are expressed by: 
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where ( )r tω  and ( )l tω  are the angular velocities of the right and left wheels, respectively, 

r  is the wheel radius and d  s the distance between the wheels. 
Assuming constant ( )r tω  and ( )l tω  over a sufficiently small sampling period 

1:k k kt t t+Δ = − ,

the position and orientation of the robot at time instant 1kt +  can be expressed as: 
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( ) ( ) ( )1k k k kt t t tθ θ ω+ = + Δ  (8) 

where ( )k kt tν Δ  and ( )k kt tω Δ  are: 
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The terms ( )r kq tΔ  and ( )l kq tΔ  are the incremental distances covered on the interval 
ktΔ  by 

the right and left wheels of the robot respectively. Denote by ( )r ky t  and ( )l ky t  the measures 

of ( )r kq tΔ  and ( )l kq tΔ  respectively, provided by the encoders attached to wheels, one has 

( ) ( ) ( )r k r k r ky t q t s t= Δ +  (11) 

( ) ( ) ( )l k l k l ky t q t s t= Δ +  (12) 

where ( )rs ⋅  and ( )ls ⋅  are the measurement errors, which are modelled as independent, 
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zero mean, gaussian white sequences  (Wang, 1988). It 
follows that the really available values  ( )ky tν

 and  ( )ky tω
 of ( )k kt tν Δ  and ( )k kt tω Δ

respectively are given by: 
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where ( )νη ⋅  and ( )ωη ⋅  are independent, zero mean, gaussian white sequences 

, where, by (9) and (10),  ( )2 2 2 2 4r l rνσ σ σ= +  and 

( )2 2 2 2 2
r l r dωσ σ σ= + .

2.2 The Fiber optic gyroscope measures 
The operative principle of a Fiber Optic Gyroscope (FOG) is based on the Sagnac effect. The 
FOG is made of a fiber optic loop, fiber optic components, a photo-detector and a 
semiconductor laser. The phase difference of the two light beams traveling in opposite 
directions around the fiber optic loop is proportional to the rate of rotation of the fiber optic 
loop. The rate information is internally integrated to provide the absolute measurements of 
orientation. A FOG does not require frequent maintenance and have a longer lifetime of the 
conventional mechanical gyroscopes. In a FOG the drift is also low. A complete analysis of 
the accuracy and performances of this internal sensor has been developed in (Killian, 1994; 
Borenstein & Feng, 1996; Zhu et al., 2000; Chung et al., 2001). This internal sensor represents 
a simple low cost solution for producing accurate pose estimation of a mobile robot. The 
FOG readings are denoted by ( ) ( ) ( )gyθ θθ η⋅ = ⋅ + ⋅ , where ( )gθ ⋅  is the true value and ( )θη ⋅  is 

an independent, zero mean, gaussian white sequence .

2.3 Laser scanner measures 
The distance readings by the Laser Measurement System (LMS) are related to the in-door 
environment model and to the configuration of the mobile robot. 
Denote with l  the distance between the center of the laser scanner and the origin O′  of the 
coordinate system ( ), ,O X Y′ ′ ′  fixed to the mobile robot, as reported in Fig. 2. 

Fig. 2. Laser scanner displacement. 

Comparative Analysis of Mobile Robot Localization Methods Based On 
Proprioceptive and Exteroceptive Sensors 219 

At the sampling time 
kt , the position 

sx ,
sy  and orientation 

sθ  of the center of the laser 
scanner, referred to the inertial coordinate system ( ), ,O X Y , have the following form: 

( ) ( ) ( )coss k k kx t x t l tθ= +  (15) 

( ) ( ) ( )sins k k ky t y t l tθ= +  (16) 

( ) ( )s k kt tθ θ=  (17) 

The walls and the obstacles in an in-door environment are represented by a proper set of 
planes orthogonal to the plane XY  of the inertial coordinate system. Each plane jP ,

{ }1,2, , pj n∈  (where pn  is the number of planes which describe the indoor environment), 

is represented by the triplet j
rP , j

nP  and jPν
, where j

rP  is the normal distance of the plane 
from the origin O , j

nP  is the angle between the normal line to the plane and the X -direction 
and jPν

 is a binary variable, { }1,1jPν ∈ − , which defines the face of the plane reflecting the 

laser beam. In such a notation, the expectation of the i -th ( )1,2, , si n=  laser reading 

( )j
i kd t , relative to the present distance of the center of the laser scanner from the plane jP ,

has the following expression (see Fig. 3): 
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with [ ]0 1,iθ θ θ∗ ∈  given by (see Fig. 4): 

.
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The vector composed of geometric parameters j
rP , j

nP  and jPν
, { }1,2, , pj n∈ , is denoted by ∏ .

Fig. 3. Laser scanner measure. 
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zero mean, gaussian white sequences  (Wang, 1988). It 
follows that the really available values  ( )ky tν

 and  ( )ky tω
 of ( )k kt tν Δ  and ( )k kt tω Δ

respectively are given by: 

( ) ( ) ( ) ( ) ( )
2

r k l k
k k k k

y t y t
y t r t t tν νν η

+
= = Δ +  (13) 

( ) ( ) ( ) ( ) ( )
2

r k l k
k k k k

y t y t
y t r t t tω ωω η

−
= = Δ +  (14) 

where ( )νη ⋅  and ( )ωη ⋅  are independent, zero mean, gaussian white sequences 

, where, by (9) and (10),  ( )2 2 2 2 4r l rνσ σ σ= +  and 

( )2 2 2 2 2
r l r dωσ σ σ= + .
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2.3 Laser scanner measures 
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Fig. 2. Laser scanner displacement. 
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At the sampling time 
kt , the position 

sx ,
sy  and orientation 

sθ  of the center of the laser 
scanner, referred to the inertial coordinate system ( ), ,O X Y , have the following form: 
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from the origin O , j
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with [ ]0 1,iθ θ θ∗ ∈  given by (see Fig. 4): 

.
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πθ θ θ∗ = + −  (20) 

The vector composed of geometric parameters j
rP , j

nP  and jPν
, { }1,2, , pj n∈ , is denoted by ∏ .
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Fig. 4. Laser scanner field of view for plane jP .

The laser readings ( )j
i

kd
y t  are denoted by ( ) ( ) ( )j

i

j
i id

y d η⋅ = ⋅ + ⋅ , where ( )j
id ⋅  is the true value 

expressed by (18) and ( )iη ⋅  is an independent, zero mean, gaussian white sequence 

.

3. Relative approaches for mobile robot localization 
The purpose of this section is to propose and to compare three different algorithms for the mobile 
robot localization only using internal sensors like odometers and gyroscopes. The first method 
(Algorithm 1) is the simplest one and is merely based on a numerical integration of the raw 
encoder data; the second method (Algorithm 2) replaces the gyroscopic data into the equations 
providing the numerical integration of the increments provided by the encoders. The third 
method (Algorithm 3) operates in a stochastic framework where the uncertainty originates by the 
measurement noise and by the robot model inaccuracies. In this context the right approach is to 
formulate the localization problem as a state estimation problem and the appropriate tool is the 
EKF (see e.g. (Barshan & Durrant-Whyte, 1995; Garcia et al., 1995; Kobayashi et al., 1995; Jetto et al., 
1999; Sukkarieh et al., 1999; Roumeliotis & Bekey, 2000; Antoniali & Oriolo, 2001; Dissanayake et 
al., 2001)). Hence, Algorithm 3 is a suitably defined EKF fusing together odometric and gyroscopic 
data. In the developed solution, the dynamical equation of the state-space form of the robot 
kinematic model, has been considered. The numerical integration equations of the encoder 
increments have been considered for deriving the measure equation. This allows to fuse together 
all the available informative content which is carried both by the robot dynamics and by the 
acquired measures. 

3.1 Algorithm 1 
Equations (6)-(8) have been used to estimate the position and orientation of the mobile robot 
at time 

1kt +
 replacing the true values of ( )k kt tν Δ  and ( )k kt tω Δ  with their measures ( )ky tν

and ( )ky tω
 respectively, provided by the encoders. An analysis of the accuracy of this 
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estimation procedure has been developed in (Wang, 1988; Martinelli, 2002), where it is 
shown that the incremental errors on the encoder readings especially affect the estimate of 
the orientation ( )ktθ  and reduce its applicability to short trajectories. 

3.2 Algorithm 2 
This algorithm is based on the ascertainment that the angular measure ( )ky tθ

 provided by 

the FOG is much more reliable than the orientation estimate obtainable with Algorithm 1. 
Hence, at each time instant, Algorithm 2 provides an estimate of the robot position and 
orientation ( ) ( ) ( )1 1 1, ,k k kx t y t y tθ+ + +

, where ( )1ky tθ +
 is the FOG reading, ( )1kx t +

 and ( )1ky t +

are computed through equations (6), (7), replacing ( )k kt tν Δ  with its measure ( )ky tν
, ( )ktθ

with ( )ky tθ
 and ( )k kt tω Δ  with ( ) ( )1k ky t y tθ θ+ − .

3.3 Algorithm 3 
This algorithm operates in a stochastic framework exploiting the same measures of 
Algorithm 2. A state-space approach is adopted with the purpose of defining a more 
general method merging the information carried by the kinematic model with that 
provided by the sensor equipment. The estimation algorithm is an EKF defined on the 
basis of a state equation derived from (1)-(3) and of a measure equation inglobing the 
incremental measures of the encoders ( )ky tν

 and the angular measure of the gyroscope 

( )ky tθ
. This is a difference with respect to other existing EKF based approaches, 

(Barshan & Durrant-Whyte, 1995; Kobayashi et al., 1995; Sukkarieh et al., 1999; 
Roumeliotis & Bekey, 2000; Antoniali & Oriolo, 2001; Dissanayake et al., 2001b), where 
equations (1)-(3) are not exploited and the dynamical equation of the state-space model 
is derived from the numerical integration of the encoder measures. 
Denote with ( ) ( ) ( ) ( ): , ,

T
X t x t y t tθ=  the true robot state and with ( ) ( ) ( ): ,

T
U t t tν ω=  the 

robot control input. For future manipulations it is convenient to partition ( )X t  as 

( ) ( ) ( )1: ,
T

X t X t tθ= , with ( ) ( ) ( )1 : ,
T

X t x t y t= . The kinematic model of the robot can be 

written in the compact form of the following stochastic differential equation 

( ) ( ) ( )( ) ( ),dX t F X t U t dt d tη= +  (21) 

where ( ) ( )( ),F X t U t  represents the set of equations (1)-(3) and ( )tη  is a Wiener process 

such that ( ) ( )( )TE d t d t Qdtη η = . Its weak mean square derivative ( )d t dtη  is a white noise 

process  representing the model inaccuracies (parameter uncertainties, slippage, 
dragging). It is assumed that 2

3Q Iησ= , where 
nI  denote the n n×  identity matrix. The 

diagonal form of Q  understands the hypothesis that model (21) describes the true dynamics 
of the three state variables with nearly the same degree of approximation and with 
independent errors. 
Let

kt TΔ =  be the constant sampling period and denote 
kt  by kT , assume 
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Fig. 4. Laser scanner field of view for plane jP .

The laser readings ( )j
i

kd
y t  are denoted by ( ) ( ) ( )j

i

j
i id

y d η⋅ = ⋅ + ⋅ , where ( )j
id ⋅  is the true value 

expressed by (18) and ( )iη ⋅  is an independent, zero mean, gaussian white sequence 

.

3. Relative approaches for mobile robot localization 
The purpose of this section is to propose and to compare three different algorithms for the mobile 
robot localization only using internal sensors like odometers and gyroscopes. The first method 
(Algorithm 1) is the simplest one and is merely based on a numerical integration of the raw 
encoder data; the second method (Algorithm 2) replaces the gyroscopic data into the equations 
providing the numerical integration of the increments provided by the encoders. The third 
method (Algorithm 3) operates in a stochastic framework where the uncertainty originates by the 
measurement noise and by the robot model inaccuracies. In this context the right approach is to 
formulate the localization problem as a state estimation problem and the appropriate tool is the 
EKF (see e.g. (Barshan & Durrant-Whyte, 1995; Garcia et al., 1995; Kobayashi et al., 1995; Jetto et al., 
1999; Sukkarieh et al., 1999; Roumeliotis & Bekey, 2000; Antoniali & Oriolo, 2001; Dissanayake et 
al., 2001)). Hence, Algorithm 3 is a suitably defined EKF fusing together odometric and gyroscopic 
data. In the developed solution, the dynamical equation of the state-space form of the robot 
kinematic model, has been considered. The numerical integration equations of the encoder 
increments have been considered for deriving the measure equation. This allows to fuse together 
all the available informative content which is carried both by the robot dynamics and by the 
acquired measures. 

3.1 Algorithm 1 
Equations (6)-(8) have been used to estimate the position and orientation of the mobile robot 
at time 

1kt +
 replacing the true values of ( )k kt tν Δ  and ( )k kt tω Δ  with their measures ( )ky tν

and ( )ky tω
 respectively, provided by the encoders. An analysis of the accuracy of this 
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estimation procedure has been developed in (Wang, 1988; Martinelli, 2002), where it is 
shown that the incremental errors on the encoder readings especially affect the estimate of 
the orientation ( )ktθ  and reduce its applicability to short trajectories. 

3.2 Algorithm 2 
This algorithm is based on the ascertainment that the angular measure ( )ky tθ

 provided by 

the FOG is much more reliable than the orientation estimate obtainable with Algorithm 1. 
Hence, at each time instant, Algorithm 2 provides an estimate of the robot position and 
orientation ( ) ( ) ( )1 1 1, ,k k kx t y t y tθ+ + +

, where ( )1ky tθ +
 is the FOG reading, ( )1kx t +

 and ( )1ky t +

are computed through equations (6), (7), replacing ( )k kt tν Δ  with its measure ( )ky tν
, ( )ktθ

with ( )ky tθ
 and ( )k kt tω Δ  with ( ) ( )1k ky t y tθ θ+ − .

3.3 Algorithm 3 
This algorithm operates in a stochastic framework exploiting the same measures of 
Algorithm 2. A state-space approach is adopted with the purpose of defining a more 
general method merging the information carried by the kinematic model with that 
provided by the sensor equipment. The estimation algorithm is an EKF defined on the 
basis of a state equation derived from (1)-(3) and of a measure equation inglobing the 
incremental measures of the encoders ( )ky tν

 and the angular measure of the gyroscope 

( )ky tθ
. This is a difference with respect to other existing EKF based approaches, 

(Barshan & Durrant-Whyte, 1995; Kobayashi et al., 1995; Sukkarieh et al., 1999; 
Roumeliotis & Bekey, 2000; Antoniali & Oriolo, 2001; Dissanayake et al., 2001b), where 
equations (1)-(3) are not exploited and the dynamical equation of the state-space model 
is derived from the numerical integration of the encoder measures. 
Denote with ( ) ( ) ( ) ( ): , ,

T
X t x t y t tθ=  the true robot state and with ( ) ( ) ( ): ,

T
U t t tν ω=  the 

robot control input. For future manipulations it is convenient to partition ( )X t  as 

( ) ( ) ( )1: ,
T

X t X t tθ= , with ( ) ( ) ( )1 : ,
T

X t x t y t= . The kinematic model of the robot can be 

written in the compact form of the following stochastic differential equation 

( ) ( ) ( )( ) ( ),dX t F X t U t dt d tη= +  (21) 

where ( ) ( )( ),F X t U t  represents the set of equations (1)-(3) and ( )tη  is a Wiener process 

such that ( ) ( )( )TE d t d t Qdtη η = . Its weak mean square derivative ( )d t dtη  is a white noise 

process  representing the model inaccuracies (parameter uncertainties, slippage, 
dragging). It is assumed that 2

3Q Iησ= , where 
nI  denote the n n×  identity matrix. The 

diagonal form of Q  understands the hypothesis that model (21) describes the true dynamics 
of the three state variables with nearly the same degree of approximation and with 
independent errors. 
Let

kt TΔ =  be the constant sampling period and denote 
kt  by kT , assume 
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( ) ( ) ( ):U t U kT U k= = , for ( ), 1t kT k T∈ +  and denote by ( )X k  and by ( )ˆ ,X k k  the 
current state and its filtered estimate respectively at time instant 

kt kT= . Linearization 
of (15) about ( )1U k −  and ( )ˆ ,X k k  and subsequent discretization with period T  results 
in the following equation 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 dX k A k X k L k U k D k W k+ = + + +  (22) 

Partitioning vectors and matrices on the right hand side of equation (22) according to the 
partition of the state vector one has 

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( )

1,1 1,2 1 1

2 22,1 2,2

exp , ,d d

d d

d

A k A k L k D k
A k A k T L k D k

L k D kA k A k
= = = =  (23) 

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

ˆ ,
1

ˆ0 0 1 sin ,
, ˆ: 0 0 1 cos ,

0 0 0X t X k k
U t U k

k k k
F X t U t

A k k k k
X t

ν θ

ν θ
=
= −

− −
∂

= = −
∂

 (24) 

( ) ( ) ( ) ( )
( ) ( )1,1 2 1,2

ˆ1 sin ,1 0
: , ˆ0 1 1 cos ,d d

k k k T
A k I A k

k k k T

ν θ

ν θ

− −
= = =

−
 (25) 

( ) [ ] ( )2,1 2,20 0 , 1
d d

A k A k= =  (26) 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) [ ]
2

1 22

ˆ ˆcos , 0.5 1 sin ,
, 0ˆ ˆsin , 0.5 1 cos ,

T k k k T k k
L k L k T

T k k k T k k

θ ν θ

θ ν θ

− −
= =

−
 (27) 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )1 2

ˆ ˆ1 , sin ,
, 0ˆ ˆ1 , cos ,

T k k k k k
D k D k

T k k k k k

ν θ θ

ν θ θ

−
= =

− −
 (28) 

( ) ( ) ( )( ) ( ) ( )
( )

( )1
1

2

: exp 1
k T

kT

W k
W k A k k zT d

W k
τ η τ τ

+

= + − =  (29) 

with ( ) 2
1W k ∈ℜ , ( ) 1

2W k ∈ℜ , 0,1,2,...k = .

The integral term ( )W k  given (29) has to be intended as a stochastic Wiener integral, its 

covariance matrix is ( ) ( ) ( ) ( ) ( )2:T
dE W k W k Q k k Q kησ= = , where 

( ) ( ) ( )
( ) ( )

1,1 1,2

2,1 2,2

Q k Q k
Q k

Q k Q k
=  (30) 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3 3
2 2 2

1,1 3 3
2 2 2

ˆ ˆ ˆ1 sin , 1 cos , sin ,
3 3

ˆ ˆ ˆ1 cos , sin , 1 cos ,
3 3

T TT k k k k k k k k
Q k

T Tk k k k k T k k k

ν θ ν θ θ

ν θ θ ν θ

+ − − −
=

− − + −

 (31) 
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( )
( ) ( )

( ) ( )
( ) ( ) ( )

2

1,2 2,1 1,2 2,22

ˆ1 sin ,
2 , , .

ˆ1 cos ,
2

T

Tk k k
Q k Q k Q k Q k T

Tk k k

ν θ

ν θ

− −
= = =

− −

 (32) 

Denote by ( ) ( ) ( )1 2,
T

Z k z k z k=  the measurement vector at time instant kT , the elements of 

( )Z k  are: ( ) ( )1 kz k y tν≡ , ( ) ( )2 kz k y tθ≡ , where ( )ky tν
 is the measure related to the 

increments provided by the encoders through equations (9) and (13), ( )ky tθ
 is the angular 

measure provided by the FOG. The observation noise ( ) ( ) ( ),
T

V k k kν θη η=  is a white 

sequence  where 2 2diag ,R ν θσ σ= . The diagonal form of R  follows by the 

independence of the encoder and FOG measures. As previously mentioned, the measure 

( )2z k  provided by the FOG is much more reliable than ( )1z k , so that . This gives 

rise to a nearly singular filtering problem, where singularity of R  arises due to the very 
high accuracy of a measure. In this case a lower order non singular EKF can be derived 
assuming that the original R  is actually singular (Anderson & Moore, 1979). In the present 
problem, assuming 2 0θσ = , the nullity of R  is 1m =  and the original singular EKF of order 

3n =  can be reduced to a non singular problem of order 2n m− = , considering the third 
component ( )kθ  of the state vector ( )X k  coinciding with the known deterministic signal 

( ) ( )2 gz k kθ= . Under this assumption, only ( )1X k  needs be estimated as a function of ( )1z ⋅ .

As the measures ( )1z ⋅  provided by the encoders are in terms of increments, it is convenient to 

define the following extended state ( ) ( ) ( )1 1: , 1
TT TX k X k X k= −  in order to define a measure 

equation where the additive gaussian noise is white. The dynamic state-space equation for ( )X k
is directly derived from (22), taking into account that, by the assumption on ( )2z ⋅ , in all vectors 

and matrices defined in (25)–(32), the term ( )ˆ ,k kθ  must be replaced by ( )g kθ .

The following equation is obtained 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 gX k A k X k L k U k B k k D k W kθ+ = + + + +  (33) 

where

( ) ( ) ( ) ( )
( )1,22 2,2 1

2 2,2 2,2 2,1

0
, ,

0 0 0
d

A kI L k
A k L K B k

I
= = =  (34) 

( ) ( ) ( ) ( )1 1

2,1 2,1

,
0 0

D k W k
D k W k= =  (35) 

,0i j
 being the ( )i j×  null matrix. 

Equations (6), (7) and (13) and the way the state vector ( )X k  is defined imply that the 

( ) ( )1 kz k y tν≡  can be indifferently expressed as 
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( ) ( ) ( ):U t U kT U k= = , for ( ), 1t kT k T∈ +  and denote by ( )X k  and by ( )ˆ ,X k k  the 
current state and its filtered estimate respectively at time instant 

kt kT= . Linearization 
of (15) about ( )1U k −  and ( )ˆ ,X k k  and subsequent discretization with period T  results 
in the following equation 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 dX k A k X k L k U k D k W k+ = + + +  (22) 

Partitioning vectors and matrices on the right hand side of equation (22) according to the 
partition of the state vector one has 

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( )

1,1 1,2 1 1

2 22,1 2,2

exp , ,d d

d d

d

A k A k L k D k
A k A k T L k D k

L k D kA k A k
= = = =  (23) 

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

ˆ ,
1

ˆ0 0 1 sin ,
, ˆ: 0 0 1 cos ,

0 0 0X t X k k
U t U k

k k k
F X t U t

A k k k k
X t

ν θ

ν θ
=
= −

− −
∂

= = −
∂

 (24) 
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( ) ( )1,1 2 1,2

ˆ1 sin ,1 0
: , ˆ0 1 1 cos ,d d

k k k T
A k I A k

k k k T

ν θ

ν θ

− −
= = =

−
 (25) 

( ) [ ] ( )2,1 2,20 0 , 1
d d

A k A k= =  (26) 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) [ ]
2

1 22

ˆ ˆcos , 0.5 1 sin ,
, 0ˆ ˆsin , 0.5 1 cos ,

T k k k T k k
L k L k T

T k k k T k k

θ ν θ

θ ν θ

− −
= =
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 (27) 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )1 2

ˆ ˆ1 , sin ,
, 0ˆ ˆ1 , cos ,

T k k k k k
D k D k

T k k k k k

ν θ θ

ν θ θ

−
= =

− −
 (28) 

( ) ( ) ( )( ) ( ) ( )
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( )1
1

2

: exp 1
k T

kT

W k
W k A k k zT d

W k
τ η τ τ

+

= + − =  (29) 

with ( ) 2
1W k ∈ℜ , ( ) 1

2W k ∈ℜ , 0,1,2,...k = .

The integral term ( )W k  given (29) has to be intended as a stochastic Wiener integral, its 

covariance matrix is ( ) ( ) ( ) ( ) ( )2:T
dE W k W k Q k k Q kησ= = , where 

( ) ( ) ( )
( ) ( )

1,1 1,2

2,1 2,2

Q k Q k
Q k

Q k Q k
=  (30) 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3 3
2 2 2

1,1 3 3
2 2 2

ˆ ˆ ˆ1 sin , 1 cos , sin ,
3 3
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3 3

T TT k k k k k k k k
Q k

T Tk k k k k T k k k
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 (31) 
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( )
( ) ( )

( ) ( )
( ) ( ) ( )

2

1,2 2,1 1,2 2,22

ˆ1 sin ,
2 , , .

ˆ1 cos ,
2

T

Tk k k
Q k Q k Q k Q k T

Tk k k

ν θ

ν θ

− −
= = =

− −

 (32) 

Denote by ( ) ( ) ( )1 2,
T

Z k z k z k=  the measurement vector at time instant kT , the elements of 

( )Z k  are: ( ) ( )1 kz k y tν≡ , ( ) ( )2 kz k y tθ≡ , where ( )ky tν
 is the measure related to the 

increments provided by the encoders through equations (9) and (13), ( )ky tθ
 is the angular 

measure provided by the FOG. The observation noise ( ) ( ) ( ),
T

V k k kν θη η=  is a white 

sequence  where 2 2diag ,R ν θσ σ= . The diagonal form of R  follows by the 

independence of the encoder and FOG measures. As previously mentioned, the measure 

( )2z k  provided by the FOG is much more reliable than ( )1z k , so that . This gives 

rise to a nearly singular filtering problem, where singularity of R  arises due to the very 
high accuracy of a measure. In this case a lower order non singular EKF can be derived 
assuming that the original R  is actually singular (Anderson & Moore, 1979). In the present 
problem, assuming 2 0θσ = , the nullity of R  is 1m =  and the original singular EKF of order 

3n =  can be reduced to a non singular problem of order 2n m− = , considering the third 
component ( )kθ  of the state vector ( )X k  coinciding with the known deterministic signal 

( ) ( )2 gz k kθ= . Under this assumption, only ( )1X k  needs be estimated as a function of ( )1z ⋅ .

As the measures ( )1z ⋅  provided by the encoders are in terms of increments, it is convenient to 
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Equations (6), (7) and (13) and the way the state vector ( )X k  is defined imply that the 
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with ( ) ( ) ( )1k k g k g kt t t tω θ θ+Δ = −  and ( ) ( )k g kt tθ θ= . The measure equations (36) and (37) can 

be combined to obtain a unique equation where ( )1z k  is expressed as a function both of 

( ) ( )1x k x k+ −  and of ( ) ( )1y k y k+ − . As the amount of observation noise is the same, 

equations (36) and (37) are averaged, obtaining 

( ) ( ) ( ) ( )1 1 1z k C k X k v k= +  (40) 

where ( ) ( ) ( ) ( ) ( )1 1 1 1
1 2, 2, 2, 2C k k k k kα β α β− − − −= − −  and ( ) ( )1 :v k kνη= . Equations (33) 

and (40) represent the linearized, discretized state-space form to which the classical EKF 
algorithm has been applied. 

3.4 Experimental results 
The experimental tests have been performed on the TGR Explorer powered wheelchair 
(TGR Bologna, 2000) in an indoor environment. This mobile base has two driving wheels 
and a steering wheel. The odometric system is composed by two optical encoders connected 
to independent passive wheels aligned with the axes of the driving wheels, as shown in Fig. 
5. A sampling time of 0.4 s  has been used. 

Fig. 5. TGR Explorer with data acquisition system for FOG sensor and incremental encoders. 
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The odometric data are the incremental measures that at each sampling interval are 
provided by the encoders attached to the right and left passive wheels. The incremental 
optical encoders SICOD mod. F3-1200-824-BZ-K-CV-01 have been used to collect the 
odometric data. Each encoder has 1200 pulses/rev. and a resolution of 0.0013 rad. These 
measures are directly acquired by the low level controller of the mobile base. The gyroscopic 
measures on the absolute orientation have been acquired in a digital form by a serial port on 
the on-board computer. The fiber optic gyroscope HITACHI mod. HOFG-1 was used for 
measuring the angle θ  of the mobile robot. The main characteristics of this FOG are 
reported in the Table 1. While the used FOG measures the rotational rates with a very high 
accuracy, the internal integration of angular rates to derive the heading angle can suffer 
from drift (Barshan & Durrant-Whyte, 1995; Komoriya & Oyama, 1994). Because of the low 
rate integration drift of the used FOG (see Table 1), the drift is not accounted for in the 
proposed experiments where the robot task duration is on the order of several minutes. For 
longer task duration the rate integration drift can be compensated as proposed in (Ojeda et 
al., 2000) or can be periodically reset by a proper docking system or an absolute sensing 
mechanism (Barshan & Durrant-Whyte, 1995). 

Rotation Rate -1.0472 to +1.0472 rad/s
Angle Measurement Range -6.2832 to +6.2832 rad
Random Walk 0.0018 rad h≤
Zero Drift (Rate Integration) 0.00175rad h≤
Non-linearity of Scale Factor within ± 1.0%
Time Constant Typ. 20 ms
Response Time Typ. 20 ms
Data Output Interval Min. 10 ms
Warm-up Time Typ. 6.0 s

Table 1. Characteristics of the HITACHI gyroscope mod. HFOG - 1. 

The navigation module developed for the considered mobile base interacts with the user in 
order to involve her/him in the guidance of the vehicle without limiting the functionality 
and the security of the system. The user sends commands to the navigation module through 
the user interface and the module translates the user commands in the low level command 
for the driving wheels. Two autonomy levels are developed to perform a simple filtering or 
to introduce some local corrections of the user commands on the basis of the environment 
information acquired by a set of sonar sensors (for more details see (Fioretti et al., 2000)). 
The navigation system is connected directly with the low level controller and with the Fiber 
Optic Gyroscope by analog and digital converters and serial port RS232, respectively. 
All the experiments have been performed making the mobile base track relatively long trajectories. 
In the indoor environment of our Department a closed trajectory of 108 m length, characterized by 
a lot of orientation changes has been considered. The trajectory has been imposed by the user 
interface with the end configuration coincident with the start configuration. In order to quantify 
the accuracy of the proposed localization algorithms, six markers have been introduced along the 
trajectory. The covariance matrix R  of the observation noise ( )V ⋅  has been determined by an 
analysis of the sensor characteristics. The detected estimate errors in correspondence of the marker 
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3.4 Experimental results 
The experimental tests have been performed on the TGR Explorer powered wheelchair 
(TGR Bologna, 2000) in an indoor environment. This mobile base has two driving wheels 
and a steering wheel. The odometric system is composed by two optical encoders connected 
to independent passive wheels aligned with the axes of the driving wheels, as shown in Fig. 
5. A sampling time of 0.4 s  has been used. 
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The odometric data are the incremental measures that at each sampling interval are 
provided by the encoders attached to the right and left passive wheels. The incremental 
optical encoders SICOD mod. F3-1200-824-BZ-K-CV-01 have been used to collect the 
odometric data. Each encoder has 1200 pulses/rev. and a resolution of 0.0013 rad. These 
measures are directly acquired by the low level controller of the mobile base. The gyroscopic 
measures on the absolute orientation have been acquired in a digital form by a serial port on 
the on-board computer. The fiber optic gyroscope HITACHI mod. HOFG-1 was used for 
measuring the angle θ  of the mobile robot. The main characteristics of this FOG are 
reported in the Table 1. While the used FOG measures the rotational rates with a very high 
accuracy, the internal integration of angular rates to derive the heading angle can suffer 
from drift (Barshan & Durrant-Whyte, 1995; Komoriya & Oyama, 1994). Because of the low 
rate integration drift of the used FOG (see Table 1), the drift is not accounted for in the 
proposed experiments where the robot task duration is on the order of several minutes. For 
longer task duration the rate integration drift can be compensated as proposed in (Ojeda et 
al., 2000) or can be periodically reset by a proper docking system or an absolute sensing 
mechanism (Barshan & Durrant-Whyte, 1995). 

Rotation Rate -1.0472 to +1.0472 rad/s
Angle Measurement Range -6.2832 to +6.2832 rad
Random Walk 0.0018 rad h≤
Zero Drift (Rate Integration) 0.00175rad h≤
Non-linearity of Scale Factor within ± 1.0%
Time Constant Typ. 20 ms
Response Time Typ. 20 ms
Data Output Interval Min. 10 ms
Warm-up Time Typ. 6.0 s

Table 1. Characteristics of the HITACHI gyroscope mod. HFOG - 1. 

The navigation module developed for the considered mobile base interacts with the user in 
order to involve her/him in the guidance of the vehicle without limiting the functionality 
and the security of the system. The user sends commands to the navigation module through 
the user interface and the module translates the user commands in the low level command 
for the driving wheels. Two autonomy levels are developed to perform a simple filtering or 
to introduce some local corrections of the user commands on the basis of the environment 
information acquired by a set of sonar sensors (for more details see (Fioretti et al., 2000)). 
The navigation system is connected directly with the low level controller and with the Fiber 
Optic Gyroscope by analog and digital converters and serial port RS232, respectively. 
All the experiments have been performed making the mobile base track relatively long trajectories. 
In the indoor environment of our Department a closed trajectory of 108 m length, characterized by 
a lot of orientation changes has been considered. The trajectory has been imposed by the user 
interface with the end configuration coincident with the start configuration. In order to quantify 
the accuracy of the proposed localization algorithms, six markers have been introduced along the 
trajectory. The covariance matrix R  of the observation noise ( )V ⋅  has been determined by an 
analysis of the sensor characteristics. The detected estimate errors in correspondence of the marker 
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configurations (the distance between the marker and the corresponding estimated configuration) 
of the mobile base with Algorithm 1 have been reported in the first row of Table 2. This algorithm 
fails to successfully localize the robot, because as it was predictable, the results exhibit a very large 
drift and the estimated trajectory is totally wrong after few meters of travel. 
With reference to the same experimental path, the trajectory estimated by Algorithm 2 is 
more accurate with respect to that estimated by Algorithm 1. Algorithm 2 successfully 
removes the integration error present in the odometry. The goodness of the estimated 
trajectory is quantified by the numerical values of the estimation errors in correspondence of 
the markers. These values are reported in the second row of Table 2. 
The experimental results obtained by Algorithm 3 are relatively close to those of Algorithm 
2. The improvement introduced by Algorithm 3 can be evaluated looking at the numerical 
values reported in the third row of Table 2. 

Markers
Mk1 Mk2 Mk3 Mk4 Mk5 Mk6 stop 

Algorithm 1 0.014 0.143 0.690 4.760 1.868 3.770 6.572 
Algorithm 2 0.012 0.041 0.042 0.164 0.142 0.049 0.187 
Algorithm 3 0.012 0.037 0.035 0.150 0.106 0.030 0.161 

Table 2. Estimation errors (in meters) in correspondence of the marker configurations 
(distance between the marker and the corresponding estimated configuration). 

3.5 Comments 
The performed experimental tests show that the simple odometric localization is not 
satisfactory, making it necessary the introduction of another internal sensor. A fiber optic 
gyroscope showed to be a key tool for obtaining a significant improvement in the accuracy 
of the estimated trajectory. Algorithm 2 is very similar to Algorithm 1, the only difference is 
that Algorithm 2 exploits the gyroscopic measures. This is enough to produce a huge 
improvement of the estimated trajectory, thus confirming the validity of Equations (6), (7) 
provided that an accurate estimate of the robot orientation is available. 
Algorithm 3 uses the same measures of Algorithm 2 but operates in the stochastic framework of 
the Kalman filtering theory. The novelty of the proposed EKF is that its formulation explicitly 
includes both the information carried by the model of the robot and the information carried by 
the observations. This introduces a further improvement with respect to Algorithm 2 and a very 
high degree of accuracy in the estimated trajectory is achieved. The main merit of Algorithm 3 is 
that it operates in a state-space form where sensor and model uncertainties are intrinsically taken 
into account. This makes the estimator more robust with respect to possible uncertain physical 
parameters and/or not exactly known initial conditions. Taking also into account its modest 
computational burden, Algorithm 3 appears to be the most appealing among the three 
localization procedures here proposed. 

4. Absolute approaches for mobile robot localization 
The purpose of this section is to propose and to experimentally evaluate a localization algorithm 
based on a measure apparatus composed of a set of internal and external sensors of a different 
nature and characterized by a highly different degree of accuracy. The sensor equipment 
includes odometric, gyroscopic and laser measures. 
The main technical novelty of this section is the integration in a stochastic framework of 
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the new set of measures. Both the information carried by the kinematic model of the 
robot and that carried by the dynamic equations of the odometry are exploited. The 
nearly singular filtering problem arising from the very high accuracy of angular 
measure has been explicitly taken into account. An exteroceptive laser sensor is 
integrated for reducing the continuous growth in the integrated error affecting any 
relative localization algorithm, such as the Algorithm 3. 

4.1 Algorithm 4 
The algorithm operates in a stochastic framework as Algorithm 3, and is based on the 
ascertainment that the angular measure ( )ky tθ

 provided by the FOG is much accurate than 

the other measures. This gives rise to a nearly singular filtering problem which can be 
solved by a lower order non singular Extended Kalman Filter, as described in subsection 3.3. 
The EKF is defined on the basis of a state equation derived from (1)–(3) and of a measure 
equation containing the incremental measures of the encoders ( )ky tν

 and the distance 

measures ( )j
i

kd
y t , 1,2, , si n= , provided by the laser scanner from the jP  plane, 

{ }1,2, , pj n∈ . The angular measure of the gyroscope ( )ky tθ
 is assumed coincident to the 

third component ( )kθ  of the state vector ( )X k .

Let ( )Z k  be the measurement vector at time instant kT . Its dimension is not constant, 

depending on the number of sensory measures that are actually used at each time instant. 
The measure vector ( )Z k  is composed by two subvectors ( ) ( ) ( )1 1 2,

T
Z k z k z k=  and 

( ) ( ) ( ) ( )2 3 4 2, , ,
s

T

nZ k z k z k z k+= , where the elements of ( )1Z k  are: ( ) ( )1z k y kν≡ ,

( ) ( )2z k y kθ≡ , where ( )y kν
 is the measure related to the increments provided by the 

encoders through equations (9) and (13), ( )y kθ
 is the angular measure provided by the 

FOG. The elements of ( )2Z k  are: ( ) ( ) ( )2
j

i i iz k d k kη+ = + , 1,2, , si n= , { }1,2, , pj n∈ , with 

( )j
id k  given by (18) and . The environment map provides the information needed 

to detect which is the plane jP  in front of the laser. 
The observation noise ( ) ( ) ( ) ( ) ( )1, , , ,

s

T

nV k k k k kν θη η η η= , is a white sequence 

 where [ ]1 2: block diag ,R R R= , with 2 2
1 : diag ,R ν θσ σ=  and 2 2 2

2 1 2: diag , , ,
snR σ σ σ= .

The diagonal form of R  follows by the independence of the encoder, FOG and laser 
scanner measures. 
The components of the extended state vector ( )X k  and the last sn  components of vector 

( )Z k  are related by a non linear measure equation which depends on the environment 

geometric parameter vector ∏ . The dimension ( )sn k  is not constant, depending on the 

number of laser scanner measures that are actually used at each time, this number depends 
on enviroment and robot configuration. 
Linearization of the measure equation relating ( )2Z k  and ( )X k  about the current estimate 
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configurations (the distance between the marker and the corresponding estimated configuration) 
of the mobile base with Algorithm 1 have been reported in the first row of Table 2. This algorithm 
fails to successfully localize the robot, because as it was predictable, the results exhibit a very large 
drift and the estimated trajectory is totally wrong after few meters of travel. 
With reference to the same experimental path, the trajectory estimated by Algorithm 2 is 
more accurate with respect to that estimated by Algorithm 1. Algorithm 2 successfully 
removes the integration error present in the odometry. The goodness of the estimated 
trajectory is quantified by the numerical values of the estimation errors in correspondence of 
the markers. These values are reported in the second row of Table 2. 
The experimental results obtained by Algorithm 3 are relatively close to those of Algorithm 
2. The improvement introduced by Algorithm 3 can be evaluated looking at the numerical 
values reported in the third row of Table 2. 
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Table 2. Estimation errors (in meters) in correspondence of the marker configurations 
(distance between the marker and the corresponding estimated configuration). 

3.5 Comments 
The performed experimental tests show that the simple odometric localization is not 
satisfactory, making it necessary the introduction of another internal sensor. A fiber optic 
gyroscope showed to be a key tool for obtaining a significant improvement in the accuracy 
of the estimated trajectory. Algorithm 2 is very similar to Algorithm 1, the only difference is 
that Algorithm 2 exploits the gyroscopic measures. This is enough to produce a huge 
improvement of the estimated trajectory, thus confirming the validity of Equations (6), (7) 
provided that an accurate estimate of the robot orientation is available. 
Algorithm 3 uses the same measures of Algorithm 2 but operates in the stochastic framework of 
the Kalman filtering theory. The novelty of the proposed EKF is that its formulation explicitly 
includes both the information carried by the model of the robot and the information carried by 
the observations. This introduces a further improvement with respect to Algorithm 2 and a very 
high degree of accuracy in the estimated trajectory is achieved. The main merit of Algorithm 3 is 
that it operates in a state-space form where sensor and model uncertainties are intrinsically taken 
into account. This makes the estimator more robust with respect to possible uncertain physical 
parameters and/or not exactly known initial conditions. Taking also into account its modest 
computational burden, Algorithm 3 appears to be the most appealing among the three 
localization procedures here proposed. 

4. Absolute approaches for mobile robot localization 
The purpose of this section is to propose and to experimentally evaluate a localization algorithm 
based on a measure apparatus composed of a set of internal and external sensors of a different 
nature and characterized by a highly different degree of accuracy. The sensor equipment 
includes odometric, gyroscopic and laser measures. 
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the new set of measures. Both the information carried by the kinematic model of the 
robot and that carried by the dynamic equations of the odometry are exploited. The 
nearly singular filtering problem arising from the very high accuracy of angular 
measure has been explicitly taken into account. An exteroceptive laser sensor is 
integrated for reducing the continuous growth in the integrated error affecting any 
relative localization algorithm, such as the Algorithm 3. 

4.1 Algorithm 4 
The algorithm operates in a stochastic framework as Algorithm 3, and is based on the 
ascertainment that the angular measure ( )ky tθ

 provided by the FOG is much accurate than 

the other measures. This gives rise to a nearly singular filtering problem which can be 
solved by a lower order non singular Extended Kalman Filter, as described in subsection 3.3. 
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of ( )X k  results in: 

( ) ( ) ( ) ( )2 2 2Z k C k X k V k= +  (41) 

where ( ) ( ) ( ) ( )2 1 2, , ,
snV k k k kη η η=  is a white noise sequence  and 

( ) ( ) ( ) ( ) ( )2 1 2: , , ,
s

TT T T
n kC k c k c k c k=  (42) 

with

( ) ( ) { }cos , sin ,0,0 , 1,2, , , 1,2, ,
cos

j
j j

i n n s pj
i

Pc k P P i n k j nν

θ
= − − = ∈  (43) 

and

2
j j

i n g iP πθ θ θ= − − +  (44) 

Equations (33), (40) and (41) represent the linearized, discretized state-space form to which 
the classical EKF algorithm has been applied. 

4.2 Laser scanner readings selection 
To reduce the probability of an inadequate interpretation of erroneous sensor data, a 
method is introduced to deal with the undesired interferences produced by the presence of 
unknown obstacles on the environment or by incertitude on the sensor readings. Notice that 
for the problem handled here both the above events are equally distributed. A simple and 
efficient way to perform this preliminary measure selection is to compare the actual sensor 
readings with their expected values. Measures are discharged if the difference exceeds a 
time-varying threshold. This is here done in the following way: at each step, for each 
measure ( )2 iz k+

 of the laser scanner, the residual ( ) ( ) ( )2
j

i i ik z k d kγ += −  represents the 

difference between the actual sensor measure ( )2 iz k+
 and its expected value j

id ,

( )1,2, , si n k= , 1,2, , pj n= , which is computed by (18) on the basis of the current estimate 

of the vector state ( )X k . As , the current value ( )2 iz k+
 is accepted if 

( ) ( )2i ik s kγ ≤  (Jetto et al., 1999). Namely, the variable threshold is chosen as two times the 

standard deviation of the innovation process. 

4.3 Experimental results 
The experimental tests have been performed in an indoor environment using the same TGR 
Explorer powered wheelchair (TGR Bologna, 2000), described in Section 3.4. 
The laser scanner measures have been acquired by the SICK LMS mod. 200 installed on the 
vehicle. The main characteristics of the LMS are reported in  Table 3. 

Aperture Angle 3.14 rad
Angular Resolution 0.0175/ 0.0088/ 0.0044 rad
Response Time 0.013/ 0.026/ 0.053 s
Resolution 0.010 m
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Systematic Error ± 0.015 m
Statistic Error (1 Sigma) 0.005 m
Laser Class 1 
Max. Distance 80 m
Transfer Rate 9.6/ 19.2/ 38.4/ 500  kBaud

Table 3. Laser. 

A characterization study of the Sick LMS 200 laser scanner has been performed as proposed 
in (Ye & Borenstein, 2002). Different experiments have been carried out to analyze the effects 
of data transfer rate, drift, optical properties of the target surfaces and incidence angle of the 
laser beam. Based on empirical data a mathematical model of the scanner errors has been 
obtained. This model has been used as a calibration function to reduce measurement errors. 
The TGR Explorer powered wheelchair with data acquisition system for FOG sensor, 
incremental encoders, sonar sensors and laser scanner is shown in Fig. 5. 

Fig.  6. Sample of the estimated trajectory. The dots are the actually used laser scanner measures. 
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j

i i ik z k d kγ += −  represents the 

difference between the actual sensor measure ( )2 iz k+
 and its expected value j

id ,

( )1,2, , si n k= , 1,2, , pj n= , which is computed by (18) on the basis of the current estimate 

of the vector state ( )X k . As , the current value ( )2 iz k+
 is accepted if 

( ) ( )2i ik s kγ ≤  (Jetto et al., 1999). Namely, the variable threshold is chosen as two times the 

standard deviation of the innovation process. 

4.3 Experimental results 
The experimental tests have been performed in an indoor environment using the same TGR 
Explorer powered wheelchair (TGR Bologna, 2000), described in Section 3.4. 
The laser scanner measures have been acquired by the SICK LMS mod. 200 installed on the 
vehicle. The main characteristics of the LMS are reported in  Table 3. 

Aperture Angle 3.14 rad
Angular Resolution 0.0175/ 0.0088/ 0.0044 rad
Response Time 0.013/ 0.026/ 0.053 s
Resolution 0.010 m
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Systematic Error ± 0.015 m
Statistic Error (1 Sigma) 0.005 m
Laser Class 1 
Max. Distance 80 m
Transfer Rate 9.6/ 19.2/ 38.4/ 500  kBaud

Table 3. Laser. 

A characterization study of the Sick LMS 200 laser scanner has been performed as proposed 
in (Ye & Borenstein, 2002). Different experiments have been carried out to analyze the effects 
of data transfer rate, drift, optical properties of the target surfaces and incidence angle of the 
laser beam. Based on empirical data a mathematical model of the scanner errors has been 
obtained. This model has been used as a calibration function to reduce measurement errors. 
The TGR Explorer powered wheelchair with data acquisition system for FOG sensor, 
incremental encoders, sonar sensors and laser scanner is shown in Fig. 5. 

Fig.  6. Sample of the estimated trajectory. The dots are the actually used laser scanner measures. 
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A significative reduction of the wrong readings produced by the presence of unknown 
obstacles has been realized by the selection of the laser scanner measures using the 
procedure described in the previous subsection . 
Different experiments have been performed making the mobile base track short and 
relatively long and closed trajectories. Fig.  6 illustrates a sample of the obtained results; the 
dots in the figure, are the actually used laser scanner measures. In the indoor environment 
of our Department, represented by a suitable set of planes orthogonal to the plane XY  of 
the inertial system, a trajectory of 118 m length, characterized by orientation changes, has 
been imposed by the user interface. The starting and final positions have been measured, 
while six markers specify different middle positions; this permits to compute the distance 
and angle errors between the marker and the corresponding estimated configuration. 
In these tests, the performances of Algorithm 4 have been compared with those ones of the 
Algorithm 3, which is the most appealing among the three relative procedures here 
analyzed. Table 4 summarizes the distance and angle errors between the marker and the 
corresponding configurations estimated by the two algorithms. 

Markers
Mk1 Mk2 Mk3 Mk4 Mk5 Mk6 stop 

Error 0.1392 0.095 0.2553 0.1226 0.2004 0.0301 0.3595 

A
lg

 3
 

θΔ 0.49 0.11 0.85 0.58 1.39 0.84 2.66 

Error 0.0156 0.0899 0.0659 0.1788 0.0261 0.0601 0.0951 

A
lg

 4
 

θΔ 0.59 0.05 0.45 0.07 0.72 0.12 1.55 

Table 4. Estimation errors (in meters) in correspondence of the marker configurations 
(distance between the marker and the corresponding estimated configuration) and 
corresponding angular errors (in degrees). 

Other significant sets of experiments have been performed inside a room, considering a 
short trajectory of 20 m characterized by different orientation changes (see Fig. 7). 

Fig. 7. Sample of the estimated trajectory inside the room, where dots indicate the laser measures. 
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The room has been modelled very carefully, permitting a precise evaluation of the distance 
and angle errors between the final position and the corresponding configuration estimated 
by the Algorithm 4; Table 5 resumes these results. 

final position 
error 0.0061 

A
lg

 4
 

θΔ 0.27

Table 5. Estimation distance errors (in meters) and corresponding angular errors (in degrees). 

In order to investigate further the efficiency of the developed Algorithm 4 and to evaluate its 
correction performances, it has been imposed a wrong initial position (see Table 6 and Fig. 8). 

error of initial position error of final position

error 0.2236 0.0152 
θΔ 1.5 0.73 

Table 6. Distance (in meters) and angle (in degrees) errors introduced on the initial position 
and corresponding errors on the final position. 

Fig. 8. Estimated trajectory with a wrong initial positioning. 

As a result, it has been seen that the Algorithm 4 is able to correct possible errors on the 
initial positioning, as confirmed by the results reported in Table 6. 

4.4 Comments 
As shown by the developed experimental tests (see Table 4), Algorithm 4 permits to obtain a 
much more reliable and accurate positioning than that one obtained by Algorithm 3. Note 
that estimation errors on the final position of the Algorithm 3 are due to the angle drift 
introduced by the gyroscope. 
Additionally, Algorithm 4 improves the positioning accuracy in spite of a wrong initial 
positioning. Table 6 shows as the possible errors introduced by a wrong initial pose, have 
been efficiently corrected by the Extended Kalman Filter. 
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5. Concluding remarks 
This chapter has presented a concise look at the problems and methods relative to the 
mobile robot localization. Both the relative and absolute approaches have been discussed. 
Relative localization has the main advantage of using a sensor equipment which is totally 
self-contained in the robot. It is relatively simple to be used and guarantees a high data rate. 
The main drawback is that the localization errors may considerably grow over time. 
The three corresponding algorithms which have been proposed only use odometric and 
gyroscopic measures. The experimental tests relative to Algorithm 1 show that the 
incremental errors of the encoder readings heavily affect the orientation estimate, thus 
reducing the applicability of the algorithm to short trajectories. A significant improvement is 
introduced by Algorithm 2 where the odometric measures are integrated with the angular 
measures provided by a gyroscope. 
Algorithm 3 uses the same measures of Algorithm 2 but operates in a stochastic framework. 
The localization problem is formulated as a state estimation problem and a very accurate 
estimate of the robot localization is obtained through a suitably defined EKF. A further 
notable improvement is provided by the fusion of the internal measures with absolute laser 
measures. This is clearly evidenced by Algorithm 4 where an EKF is again used. 
A novelty of the EKF algorithms used here is that the relative state-space forms include all 
the available information, namely both the information carried by the vehicle dynamics and 
by the sensor readings. The appealing features of this approach are: 

• The possibility of collecting all the available information and uncertainties of a 
different kind in the compact form of a meaningful state-space representation,  

• The recursive structure of the solution, 
• The modest computational effort. 

Other previous, significant experimental tests have been performed at our Department using 
sonar measures instead of laser readings (Bonci et al., 2004; Ippoliti et al., 2004).  Table 7 reports a 
comparison of the results obtained with Algorithm 3, Algorithm 4, and the algorithm (Algorithm 
4(S)) based on an EKF fusing together odometric, gyroscopic and sonar measures. The 
comparative evaluation refers to the same relatively long trajectory used for Algorithm 4. 

Alg 3 Alg 4 Alg 4(S) 
error 0.8079 0.0971 0.1408 

θΔ 2. 4637 0.7449 1. 4324 
Table 7. Estimation errors (in meters) in correspondence of the final vehicle configuration 
(distance between the actual and the corresponding estimated configuration) and 
corresponding angular errors (in degrees). 

Table 7 evidences that in spite of a higher cost with respect to the sonar system, the 
localization procedure based on odometric, inertial and laser measures does really seem to 
be an effective tool to deal with the mobile robot localization problem. 
A very interesting and still open research field is the Simultaneous Localization and Map 
Building (SLAM) problem. It consists in defining a map of the unknown environment and 
simultaneously using this map to estimate the absolute location of the vehicle. An efficient 
solution of this problem appears to be of a dominant importance because it would definitely 
confer autonomy to the vehicle. The SLAM problem has been deeply investigated in 
(Leonard et al., 1990; Levitt & Lawton, 1990; Cox, 1991; Barshan & Durrant-Whyte, 1995; 
Kobayashi et al., 1995; Thrun et al., 1998; Sukkarieh et al., 1999; Roumeliotis & Bekey, 2000; 
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Antoniali & Orialo, 2001; Castellanos et al., 2001; Dissanayake et al., 2001a; Dissanayake et 
al., 2001b; Zunino & Christensen, 2001; Guivant et al., 2002; Williams et al., 2002; Zalama et 
al., 2002; Rekleitis et al., 2003)). The algorithms described in this chapter, represent a solid 
basis of theoretical background and practical experience from which the numerous 
questions raised by SLAM problem can be solved, as confirmed by the preliminary results in 
(Ippoliti et al., 2004; Ippoliti et al., 2005). 
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1. Introduction 
As new technological achievements take place in the robotic hardware field, an increased 
level of intelligence is required as well. The most fundamental intelligent task for a mobile 
robot is the ability to plan a valid path from its initial to terminal configurations while 
avoiding all obstacles located on its way. 
The robot motion planning problem came into existence in early 70’s and evolved to a vast 
and active research discipline as it is today. Numerous solution methods have been 
developed for robot motion planning since then, many of them being variations of a few 
general approaches: Roadmap, Cell Decomposition, Potential Fields, mathematical 
programming, and heuristic methods. Most classes of motion planning problems can be 
solved using these approaches, which are broadly surveyed in (Latombe, 1991), (Hwang & 
Ahuja, 1992), and (Choset et al., 2005).  
This chapter introduces two new offline path planning models which are founded on the 
Roadmap and Potential Fields classic motion planning approaches. These approaches have 
their unique characteristics and strategies for solving motion planning problems. In fact, 
each one has its own advantage that excels others in certain aspects. For instance, the 
Visibility Graph yields the shortest path; but its computational time exceeds other methods. 
Or, while the Voronoi Diagram plans the safest path and is easy to calculate in 2D, it often 
produces overly lengthy paths, and yields poor results in higher space dimensions. On the 
other hand, Potential Fields are easy to compute and are suitable for high dimensional 
problems, but they suffer from the local minima problem, and the oscillating paths 
generated near narrow passages of configuration space reduce their efficiency. A brief 
review on these underlying methods is given in this section. 
In order to benefit from the strong aspects of these classic path planning methods and 
compensate their drawbacks, a policy of combining these basic approaches into single 
architectures is adopted. In devising the new planners it is intended to aggregate the 
superiorities of these methods and work out efficient and reliable composite algorithms for 
robot motion planning. 

1.1 Roadmap Methods 
The Roadmap approach involves retracting or reducing the robot’s free Configuration space 
(Cfree) onto a network of one-dimensional lines (i.e. a graph). Motion planning is then 
reduced to a graph-searching problem. At first, two paths are constructed from the start and 
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1.1 Roadmap Methods 
The Roadmap approach involves retracting or reducing the robot’s free Configuration space 
(Cfree) onto a network of one-dimensional lines (i.e. a graph). Motion planning is then 
reduced to a graph-searching problem. At first, two paths are constructed from the start and 
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goal positions to the roadmap, one for each. Then a path is planned between these points on 
the roadmap. The correctness of the solution strongly depends on the connectivity of the 
roadmap representing the entire C-space. If the roadmap does not represent the entire C-
space, a solution path may be missed. 
The Visibility Graph is the collection of lines in the free space that connects a feature of an 
object to that of another. In its principal form, these features are vertices of polygonal 
obstacles, and there are O(n2) edges in the visibility graph, which can be constructed in 
O(n2) time and space in 2D, where n is the number of features (Hwang & Ahuja, 1992). 
The Reduced Generalized Visibility Graph can be constructed in O(n3) time and its search 
performed in O(n2) time. The shortest path can be found in O(n2logn) time using the A* 
algorithm with the Euclidean distance to the goal as the heuristic function (Latombe, 1991). 
Works such as (Oommen et al., 1987) and (Yeung & Bekey, 1987) have employed this 
approach for path planning.
The Voronoi Diagram is defined as the set of points that are equidistant from two or more 
object features. Let the set of input features be denoted as s1, s2, …, sn. For each feature si, a 
distance function Di(x) = Dist(si, x) is defined. Then the Voronoi region of si is the set Vi = {x|
Di(x) Dj(x) ∀ j ≠ i }. The Voronoi diagram partitions the space into such regions. When the 
edges of convex obstacles are taken as features and the C-space is in ℜ2, The Voronoi 
diagram of the Cfree consists of a finite collection of straight line segments and parabolic 
curve segments, referred to as Medial Axis, or more often, Generalized Voronoi Diagram
(GVD).
In an ℜk space, the k-equidistant face is the set of points equidistant to objects C1, ..., Ck such 
that each point is closer to objects C1, ..., Ck than any other object. The Generalized Voronoi 
Graph (GVG) is the collection of m-equidistant faces (i.e. generalized Voronoi edges) and 
m+1-equidistant faces (i.e. generalized Voronoi vertices, or, meet points). The GVD is the 
locus of points equidistant to two obstacles, whereas the GVG is the locus of points 
equidistant to m obstacles. Therefore, in ℜm, the GVD is m–1-dimensional, and the GVG, 1-
dimensional. In planar case, the GVG and GVD coincide (Aurenhammer & Klein, 2000). 
The Voronoi diagram is attractive in two respects: there are only O(n) edges in the Voronoi 
diagram, and it can be efficiently constructed in (nlogn) time, where n is the number of 
features. The Voronoi diagram can be searched for the shortest path in O(n2) time by using 
the Dijkstra’s method. Another advantage of Voronoi method is the fact that the object’s 
initial connectedness is directly transferred to the diagram (Hwang & Ahuja, 1992). In 
(Canny, 1985) and (Choset & Burdick, 2000) the Voronoi diagram is used for planning robot 
paths.
For higher-dimensional spaces than 2D, both the Visibility graph and the Voronoi diagram 
have higher complexities, and it is not obvious what to select for the features. For example, 
the Voronoi diagram among polyhedra is a collection of 2D faces, which is not a 1D 
roadmap (Agarwal et al., 1998). 
The Silhouette method has been developed at early stages of the motion planning discipline, 
and is complex to implement. Its time complexity is in O(2m), where m is the dimension of 
the C-space, and is mostly used in theoretical algorithms analyzing complexity, rather than 
developing practical algorithms. A path found from the silhouette curves makes the robot 
slide along obstacle boundaries (Canny, 1988). 
Probabilistic Roadmaps use randomization to construct a graph in C-space. Roadmap nodes 
correspond to collision-free configurations of the robot. Two nodes are connected by an 
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edge if a path between the two corresponding configurations can be found by a ‘local 
planning’ method. Queries are processed by connecting the initial and goal configurations 
to the roadmap, and then finding a path in the roadmap between these two connection 
points (Kavraki et al., 1996). 

1.2 The Potential Fields Method 
A robot in Potential Fields method is treated as a point represented in configuration space, 
and as a particle under the influence of an artificial potential field U whose local variations 
reflect the ‘structure’ of the free space (Khatib, 1986). In order to make the robot attracted 
toward its goal configuration while being repulsed from the obstacles, U is constructed as 
the sum of two elementary potential functions; attractive potential associated with the goal 
configuration qgoal and repulsive potential associated with the C-obstacle region. Motion 
planning is performed in an iterative fashion. At each iteration, the artificial force induced 
by the potential function at the current configuration is regarded as the most appropriate 
direction of motion, and path planning proceeds along this direction by some increment. 
The most serious problem with the Potential Fields method is the presence of local minima 
caused by the interaction of attractive and repulsive potentials, which results in a cyclic 
motion. The routine method for getting free is to take a random step outwards the 
minimum well. Other drawbacks are (Koren & Borenstein, 1991): 

- No passage between closely spaced obstacles. 
- Oscillations in the presence of obstacles or in narrow passages. 
- Non-smooth movements of the robot when trying to extricate from a local 

minimum. 
- Overlapping of different obstacles’ repulsive potentials when they are adjacent to 

each other. 
- Difficulty in defining potential parameters properly. 

Nevertheless, the Potential Fields method remains as a major path-planning approach, 
especially when high degrees of freedoms are involved. This approach has improved later 
through a number of works such as (Sato, 1993), (Brook & Khatib, 1999) and (Alvarez et al., 
2003) to overcome the problem of getting trapped in local minima. 
The next sections of this chapter introduce two new composite models for robot path 
planning, called V-P Hybrid, and V-V-P Compound. They are apt to cover the shortcomings 
of their original methods and are efficient both in time complexity and path quality. 
Although originally devised for two-dimensional workspaces, they can be extended 
straightforwardly to 3D spaces. Experiments have shown their strength in solving a wide 
variety of problems. 

2. The V-P Hybrid Model 
In this section we present a new algorithm, called V-P Hybrid, where the concepts of 
Voronoi diagram and Potential fields are combined to integrate the advantages of each. In 
this approach, the initial path planning problem is decomposed to a number of smaller 
tasks, having intermediate milestones as temporary start and goal points. Through this 
iterative process the global path is incrementally constructed. 
For the path planning task, a number of assumptions are made: (i) the map of workspace is 
known a priori, (ii) the obstacles are static, and (iii) the robot is considered a point. For real 
world applications, the latter assumption can be attained by expanding the obstacles using 
the Minkowski Set Difference method. 
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The algorithm’s major steps are: 
(1) Preprocessing Phase; consisted of constructing a Pruned Generalized Voronoi Graph of the 
workspace, and then applying a Potential Field to it. This operation yields a network of 
Voronoi valleys (Sec. 2.1). 
(2) Search Phase; consisted of implementing a bidirectional steepest descent – mildest ascent 
search method to navigate through the network of Voronoi valleys. The search phase is 
designed to progressively build up a start-to-goal path (Sec. 2.2).  
Before explaining the details of the composite model, a mathematical representation of some 
variables is given: 

- n : Total number of obstacles’ vertices. 
- s : The Start configuration.
- g : The Goal configuration. 
- G = (V, E): The Generalized Voronoi Graph (GVG) of the Cfree with the set of 

vertices (nodes) V(G) and edges E(G).
- E(v, w): The edge connecting vertices v and w , ∀ v, w ∈ V(G).
- N(v) = {w⏐ E(v, w) ≠ ∅} : Neighboring vertices of the vertex v.
- E(v): The set of all edges at vertex v.
- d(v) = ⏐E(v)⏐: The degree of vertex v, equal to the number of passing edges. 

2.1 Preprocessing Phase 
The V-P Hybrid model starts solving the problem by constructing the Generalized Voronoi 
Graph (GVG) of the C-space. The Start and Goal configurations are then connected to the 
main Voronoi graph through shortest lines which are also included in the diagram. Fig. 1(a) 
provides an example of GVG. 

Fig. 1. (a) Generalized Voronoi Graph (GVG). (b) Algorithm for pruning the GVG. 

The main reason for incorporating the Voronoi concept in the Hybrid algorithm is its 
property of lying on the maximum clearance from the obstacles. This property helps the 
robot to navigate at a safe distance from obstacles, making it less prone to be trapped in 
local minimum wells. 
The next step is to exclude redundant or unpromising edges from the GVG. This is done 
through the pruning operation, where the Voronoi edges which either touch obstacle 
boundaries or have vertices with a degree (d(v)) equal to 1 are iteratively truncated. The 
pruning procedure is explained in Fig. 1(b). Also, the result of this operation performed on 

Procedure PRUNE(G, s, g)
      P={ v⏐v ∈ V(G) \ {s, g}, d(v) = 1 } 
      if (P = ∅) then Stop
      V(G) V(G) \ P
      E(G) E(G) \ E(v, N(v)), v ∈ P
      PRUNE(G, s, g)
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the example of Fig. 1(a) is portrayed in Fig. 2. The resulting subgraph is called Pruned 
Generalized Voronoi Graph, or simply PGVG. 
Note that the hypersensitivity of Voronoi diagram to minor inaccuracies in workspace 
definition which may lead to redundant edges (as in the lower-right disjoint obstacle in Fig. 
2(a)) is resolved after running the pruning procedure. 
The pruning operation is an important stage in the Hybrid algorithm since it truncates all 
paths toward collision with obstacles and dead-end traps, and therefore reduces the search 
space drastically. The resulting graph is a ‘lean’ network of interconnected Voronoi vertices, 
including the Start and Goal nodes.  
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(c)
Fig. 2. The construction of the Pruned Generalized Voronoi Graph in two iterations. 

The last step of the preprocessing phase is constructing a potential field for guiding 
the robot toward its goal. Unlike the conventional Potential Fields concept where 
there are two kinds of attractive and repulsive potentials associated with goal and 
obstacles respectively, the V-P hybrid algorithm makes use of only attractive 
potentials, related to the goal and the PGVG. By this, we avoid some known problems 
of the standard Potential Fields method concerning the calculation of repulsive forces 
for each obstacle and their integration into a single function, which usually gives rise 
to complexities due to overlapping and parameter setting (Koren & Bornstein, 1991). 
This reduces the computational time and memory significantly. Moreover, the 
problem of narrow corridors, where most Potential Field algorithms give way is fixed 
in this version. 
To apply these potentials, we graduate the configuration space into a grid of fine-enough 
resolution. For every grid point (xi, yi) the potential can then be numerically calculated in a 
very short time. 
As mentioned, the path planning process is decomposed into intermediate stages. So, each 
stage has its own temporary goal point, gtemp. The attractive potential of the goal is exerted 
through a paraboloid function with a nadir at the temporary goal by: 
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where ξ is a scaling factor. 
The next attractive potential applies to the PGVG. Because the GVG keeps a safe distance 
from obstacles the robot will hardly collide with them. Besides, since we prune the GVG 
such that all Voronoi edges toward obstacles (mainly leading to dead-ends) are eliminated 
from the graph, the possibility of the robot to get trapped in local minima reduces 
drastically. So we try to “encourage” the robot to move along the edges of PGVG. This is 
done by associating an attractive potential with the points on PGVG, which generates a 
network of deep “valleys” located at the maximum distance from obstacles, with a width of 
one gridpoint (Fig. 3(a)). The (virtual) robot will safely navigate at the bottom of PGVG 
valleys. The following function gives the desired result, in which s is the depth of valley: 

∈if ( ) PGVG
U ( )

0 otherwise.
i i

PGVG i i

-s x ,y
x ,y =  (2) 

The UPGVG field is calculated only once and remains constant till the end of the path 
planning. Instead, the attractive potential of the (temporary) goal is calculated at each 
iteration and is added to the UPGVG to yield the total potential used for the Search phase by 

 UTotal = Ug + UPGVG (3) 

The resulting manifold is depicted in Fig. 3(b) for a typical temporary goal point. Note that 
due to the numerical nature of the model, working with these complex functions is 
extremely easy, and just a simple addition of corresponding grid values is sufficient. 

 (a) (b) 
Fig. 3. (a) PGVG potential valleys for the sample problem (here the width of canals are 
intentionally aggrandized for a better view). (b) the total potential manifold as the sum of 
PGVG valleys and goal attractive potentials. 

Since the PGVG is a connected roadmap, a path connecting the Start and Goal points (which 
are located at the bottom of PGVG valleys) certainly exists.  
This combination of potentials provides a straightforward and guaranteed attraction from 
start to goal point. The potential associated with the goal absorbs every point to itself, as the 
gradient direction at every configuration points to the goal. Note that repulsive potentials 
are not calculated and consequently all the problems related to them are avoided. 
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The parameters of the functions such as the valley depth and concavity of the paraboloid 
should be selected carefully to make sure that the robot will not “escape” from valleys and 
surmount the obstacles, which are implicitly defined by their high potentials compared to 
the deeper valleys. 
It should be mentioned that the obtained total potential field may still have local minima 
(e.g. the V-shaped channel left to the center in Fig. 3(b)), but due to the applied search 
method they are resolved. 

2.2 Search Phase 
To search within the potential manifold, a bidirectional approach is adopted. First, two 
trajectory sets, Traj(s) and Traj(g), spanned from the Start (s) and Goal (g) points 
respectively, are initialized to keep the track of planned paths. Then through an iterative 
process, the PGVG valleys are being navigated alternately by Traj(s) and Traj(g). At each 
iteration first Traj(s) and then Traj(g) extend toward the endpoints of each other. Whenever 
a trajectory reaches a junction (i.e. a Voronoi vertex) it stops extending more, and the 
expansion is shifted to the other trajectory. The trajectories meet on the halfway and are 
concatenated into a single start-to-goal trajectory. 
The bidirectional nature of the search requires that for each iteration, the PGVG manifold be 
numerically added to a paraboloid centered on an intermediate goal point. For instance, 
when extending Traj(s), the temporary goal is to reach the endpoint of Traj(g), which is 
located on a junction of PGVG valleys.  
To maintain the movement of the robot in each iteration, the method of descent search is 
employed, which is the simplest and fastest searching method in numerical contexts. 
The neighborhood of each cell is defined to be 2-neighbors, that is, the points lying in the 
range of (x±1, y±1) for the point (x, y). The number of neighbors of a cell is thus 32 –1 = 8. For 
a k-dimensional space, it would be 3k –1. 
The searching begins at Start point, with examining all its neighboring gridpoints. The 
descent search selects a neighboring cell with the lowest potential among all neighbors as 
the next configuration. The simple steepest descent method, however, is prone to stop at a 
local minimum. To cope with this problem, taking ascending steps (or, “hill climbing”) is 
devised for exiting from local minimums. The amount of ascension is kept minimal. 
Therefore, the concept used here is a “steepest descent, mildest ascent” motion. The hill 
climbing movement is comparable to the random walk in the randomized planning 
(Barraquand et al., 1992). Upon reaching a junction, the next edge to navigate is the one 
having the lowest potential value at that point. 
In order to prevent the robot from looping (i.e. infinitely fluctuating between two 
neighboring cells), we assign to all visited grid cells a relatively higher potential, but still 
lower than the potentials of points not on the PGVG. Therefore, the robot will not return 
immediately to a local minimum after it has been once there, simply because it is not a local 
minimum anymore. The height to which a visited point is elevated is suggested to be less 
than 1/3 of the valley depth (Fig. 4). This will allow traversing an edge for three times (as in 
correcting a wrong route) without diverting from the PGVG edges. 
The process of the steepest descent - mildest ascent search applied to the example in Fig. 2(c) 
is shown in Figs. 5(a)-(d). Fig. 5(b) shows iteration 1, navigating from Start toward Goal. The 
Traj(s) stops at the first encountered junction (or Voronoi vertex). Fig. 5(c) shows iteration 1, 
navigating from the Goal point towards the temporary goal, which is now the endpoint of 
Traj(s). The Traj(g) stops at the first encountered junction, which becomes the new 
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where ξ is a scaling factor. 
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surmount the obstacles, which are implicitly defined by their high potentials compared to 
the deeper valleys. 
It should be mentioned that the obtained total potential field may still have local minima 
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located on a junction of PGVG valleys.  
To maintain the movement of the robot in each iteration, the method of descent search is 
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range of (x±1, y±1) for the point (x, y). The number of neighbors of a cell is thus 32 –1 = 8. For 
a k-dimensional space, it would be 3k –1. 
The searching begins at Start point, with examining all its neighboring gridpoints. The 
descent search selects a neighboring cell with the lowest potential among all neighbors as 
the next configuration. The simple steepest descent method, however, is prone to stop at a 
local minimum. To cope with this problem, taking ascending steps (or, “hill climbing”) is 
devised for exiting from local minimums. The amount of ascension is kept minimal. 
Therefore, the concept used here is a “steepest descent, mildest ascent” motion. The hill 
climbing movement is comparable to the random walk in the randomized planning 
(Barraquand et al., 1992). Upon reaching a junction, the next edge to navigate is the one 
having the lowest potential value at that point. 
In order to prevent the robot from looping (i.e. infinitely fluctuating between two 
neighboring cells), we assign to all visited grid cells a relatively higher potential, but still 
lower than the potentials of points not on the PGVG. Therefore, the robot will not return 
immediately to a local minimum after it has been once there, simply because it is not a local 
minimum anymore. The height to which a visited point is elevated is suggested to be less 
than 1/3 of the valley depth (Fig. 4). This will allow traversing an edge for three times (as in 
correcting a wrong route) without diverting from the PGVG edges. 
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Traj(s). The Traj(g) stops at the first encountered junction, which becomes the new 



244 Mobile Robots, Perception & Navigation

temporary goal. Fig. 5(d) illustrates iteration 2, navigating from endpoint of Traj(s) toward 
the temporary goal. The two trajectories Traj(s) and Traj(g) are now get connected, and the 
Search phase is completed. Note the changes in depth of valleys as they are being filled. 

Fig. 4. Valley-filling operation: the potential valley is being filled as the trajectory proceeds. 

    
 (a) (b) 

      
 (c) (d) 
Fig. 5. The process of searching in the V-P Hybrid model is completed in two iterations. 

2.3 Experiments 
In order to test and evaluate the V-P Hybrid algorithm, 20 problems with obstacles differing 
in number and shape (including convex, concave, and maze-like problems) were designed 
and solved by three different methods: the V-P Hybrid, the classical Potential Fields, and the 
A* Search. Experiments were run on a PC with a 1.4 GHz processor using MATLAB.  
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Table 1 shows the average values of path lengths (in equal units), CPU time (in seconds) and 
the number of evaluated grid points computed for the test problems via different 
approaches. The average length of optimal paths was 27.46 units. 

                                Model 

  Parameter 
Potential Field

Algorithm 
A* Search 
Algorithm 

V-P Hybrid 
Algorithm 

Path Length 33.49 30.67 33.62 

Search CPU Time 1.0375 19.40 0.0715 

Total Examined Grid points 2513 2664.2 331.8 

Table 1. Experimental results. 

An advantage of the V-P Hybrid algorithm over the classical Potential Fields method is its 
completeness. While the Potential Fields approach is not guaranteed to generate a valid 
path (Latombe, 1991), the V-P algorithm is exact, i.e. it finds a path if one exists. Since the 
Goal should be connected to the PGVG at the Preprocessing phase, the algorithm will report 
any failure in this stage, and so is complete.
The V-P Hybrid algorithm has also resolved a number of problems inherent in the 
conventional Potential Fields method. The local minimum problem is settled by 
implementing the steepest descent – mildest ascent search method and utilizing the PGVG. 
Problems due to obstacle potentials and narrow passages are totally fixed. 
The Voronoi diagram-Potential Field Hybrid algorithm averagely spent much less time 
for searching the C-space than the Potential Field method (around 15 times faster). Also 
the number of examined grid-points was reduced about 7.5 times for the Hybrid 
algorithm. We ascribe these results to the efficient abstraction of workspace due to the 
pruning procedure where most local minimum wells are excluded from the search space. 
The number of Voronoi vertices is also reduced effectively. The pruning procedure 
together with the fast searching of Voronoi valleys made the V-P model successful in 
solving complex and labyrinthine, maze-like workspaces. In sparse environments the 
Potential Fields found slightly shorter paths, but for maze-like problems the Hybrid 
algorithm outperformed. 
The time complexity of A* search is O(n2) (Latombe, 1991). A* is complete and optimal, 
but its space complexity is still prohibitive. The A* search employs a heuristic function for 
estimating the cost to reach the goal. For our experimentation a Euclidean straight-line 
distance was used as the heuristic. The Hybrid algorithm searched the grid space very 
much faster than A* search (270 times), examining around 8 times less points than it. This 
is because of the lower time complexity order of the Hybrid method compared to the 
O(n2) of A*. However, the quality of the path generated by A* is better than the Hybrid 
model by %10. The Hybrid algorithm also outperforms the Dijkstra’s algorithm which has 
an O(n2) time complexity. The time complexity of the V-P Hybrid algorithm is discussed 
below. 

2.4 Time Complexity Analysis 
For a time complexity analysis of the V-P Hybrid algorithm, its two phases must be 
analyzed separately. Time complexities of constructing and pruning the Voronoi graph, as 
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2.4 Time Complexity Analysis 
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well as the potential field calculation determine the computational burden of the 
Preprocessing phase. To evaluate this, we first need to study the problem’s size. The 
following two lemmas deal with this issue: 

Lemma 1.The Voronoi diagram has O(n) many edges and vertices, in which n is the 
number of Voronoi sites.  

Lemma 2. The average number of edges in the boundary of a Voronoi region is bounded 
by 6. 

Proofs to these lemmas are provided in (Aurenhammer & Klein, 2000). The proofs are 
originally developed for the case of points or convex objects taken as Voronoi sites. 
However, since due to the pruning procedure any non-convex obstacle is located in a 
unique connected Voronoi region, the above lemmas hold true for non-convex cases as 
well. 
The direct consequence of the Lemma 1 is that the Hybrid algorithm must perform O(n)
neighborhood checks for pruning the Voronoi Graph. Therefore, considering that the 
construction of the Generalized Voronoi Diagram takes O(nlogn) time, we conclude that the 
Pruned Generalized Voronoi Diagram is built in O(nlogn) time. 
For the potential field calculation, since we do not need to calculate the potential values for 
all gridpoints, save for those located on the PGVG, it is essential to have an estimate for the 
number of gridpoints on the PGVG. 
Assuming that after graduating the C-space the PGVG edges are divided into small 
intervals of size , each PGVG edge with vertices v and w will have grid points equal to 

e =
E v,w( ) . Considering the O(n) edges of the C-space, the number of all grid points would 

be O(e×n)  O(n), which also gives the complexity of potential field calculation. 
For obtaining an average-space complexity, the average length of the PGVG edges should 
be computed. Let m be the total number of configuration gridpoints, o the number of 
configuration gridpoints occupied by obstacles, and b the number of obstacles. Then the 
average number of C-points around an obstacle (Voronoi region) is (m–o)/b. Since the 
average number of edges around each obstacle is bounded by 6 (Lemma 2), we will assume 

that the typical shape of the region is hexagonal, with the surface area of /S = a23 3 2 ,
where a is the edge of the hexagon (Fig. 6). By setting this surface area equal to the average 
number of C-points in a Voronoi region, we get 

≅(m - o) (m - o)a =
b b

1 2 3 0.62
3

. (4) 

Since o < m in (4), we conclude that the average length of a Voronoi edge in terms of its 
number of gridpoints is in O m( ) . This means that the number of points whose potentials 

are to be computed is inO m( ) , where m is the total number of gridpoints. 
The above space complexity can also be used for calculating the time complexity of the 
Search phase. Since only the gridpoints on the PGVG need to be searched, and the average 
number of these points is O m( ) , the Search phase averagely will take O m( )  time to 
navigate the PGVG and accomplish the search. This result is superior to the conventional 
Potential Field’s search which contains a neighborhood checking operation and is carried on 
in O(m), m being the number of C-points (Latombe, 1991). 
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Fig. 6. A typical problem with hexagonal Voronoi regions. 

To conclude, the Preprocessing phase of the algorithm takes O(nlogn) time (n being the total 
number of obstacle vertices), which is due to construction of the GVG. The remaining 
components of the algorithm, i.e. the pruning, potential calculation, and potential search 
procedures all have linear or sub-linear time complexities. Since these components are 
executed sequentially, the most time-consuming operation will be bound to O(nlogn) time, 
which is the total time complexity. 

3. The V-V-P Compound Model 
Since the paths generated by the V-P Hybrid model are a subset of the Generalized Voronoi 
Graph of the workspace, they have lengths identical to the ones generated by the Voronoi 
Diagram method. The Voronoi paths are longer than the optimal Visibility Graph-based 
paths, especially in sparse environments. Aiming to improve the quality of generated paths, 
another composite algorithm is proposed (Masehian & Amin-Naseri, 2004) where three 
methods of Voronoi Diagram, Visibility graph, and Potential Fields are integrated in a 
single architecture, called V-V-P Compound model. 
The Compound model provides a parametric tradeoff between the safest and shortest paths 
and generally yields shorter paths than the Voronoi and Potential field methods, and faster 
than the Visibility graph. In the proposed model, positive attributes of these three path 
planning techniques have been combined in order to benefit from the advantages of each. 
To accomplish this, they are tailored and associated with a number of complementary 
procedures to generate a valid and high quality path. Hence, the Compound algorithm 
borrows its name, V-V-P, from these basic techniques, although the outcome is a new and 
different model as a whole. 
An overview of the model is as follows: after constructing the PGVG, a network of broad 
freeways is developed through a new concept based on medial axis, named �MID. A 
potential function is then assigned to the freeways to form an obstacle-free network of 
valleys. Afterwards we take advantage of a bidirectional search, where the Visibility Graph 
and Potential Field modules execute alternately from both Start and Goal configurations. A 
steepest descent – mildest ascent search technique is used for local planning and avoiding 
local minima. The assumptions on which the model is principally developed are the same as 
for the V-P Hybrid model; that is, the workspace is considered two-dimensional, and the 
map of workspace is known a priori. Similar to the Hybrid model, the Compound model 
has also two major stages: the Preprocessing phase and the Search phase. The Search phase 
contains two modules: Visibility, and Potential Field, which are executed alternately, as 
illustrated in Fig. 7. 

a



246 Mobile Robots, Perception & Navigation

well as the potential field calculation determine the computational burden of the 
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e =
E v,w( ) . Considering the O(n) edges of the C-space, the number of all grid points would 
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≅(m - o) (m - o)a =
b b

1 2 3 0.62
3

. (4) 
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Fig. 6. A typical problem with hexagonal Voronoi regions. 
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has also two major stages: the Preprocessing phase and the Search phase. The Search phase 
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The main differences between the V-V-P Compound and V-P Hybrid models are the width 
of the potential valleys and their filling technique. Additionally, the V-V-P model employs a 
Visibility module to obtain shorter paths than the V-P model. The description of algorithm’s 
phases is presented in the next subsections. 

Fig. 7. The overall process of problem solving in the V-V-P path planning model. Each 
iteration in search phase is comprised of two sequentially executed modules, Visibility 
and Potential Field. The gradually darkening shades imply the completion of a 
solution. 

3.1 Preprocessing Phase 
 This phase establishes an obstacle-free area for robot navigation. The main steps are:  

P1) Constructing the PGVG of the workspace (as described in Sec. 2.1). 

P2) Forming an obstacle-free C-space region based on PGVG points. 

P3) Associating an attractive (negative) potential to that region. The result is an obstacle-
free network of valleys as the robot’s navigation area. 

As noted in Sec. 1.1, the Generalized Voronoi Graph is also known as Medial Axis (MA). 
Voronoi diagram lies on the maximum clearance of objects. Although this property offers 
some advantages regarding to path safety, it makes the path longer, especially in 
workspaces where the obstacles are located quite far from each other. Besides, the generated 
path usually has sharp angles at Voronoi vertices, making it ineffective for robots with 
nonholonomic or rotational constraints. 
In order to compensate these shortcomings, unlike the 1-pixel-wide valleys in the V-P 
model, a network of “wider” channels is built based on PGVG. These channels are “dilated” 
Voronoi edges that provide sufficient space for the robot to plan shorter paths and 
maneuver freely. Due to the varying sizes of inter-obstacle free spaces, the widths of these 
channels must vary from region to region. 
For constructing this obstacle-free network of channels the Maximal Inscribed Disc (MID)
concept is incorporated. First some definitions are presented: 
A Locally Maximal Disc (LMD) of the point x ∈ Cfree is the set of points such that: 

{ }( ) ,= − ≤ ∂ ∈Min free freeLMD x q x q x - C q C , (5) 

and denotes a disc centered at x and tangent to the nearest obstacle boundary ( Cfree).
The Maximal Inscribed Disc (MID) is defined as: 
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{ }( ) ( )( ) ( ) , ( )= > ∈ ∧ ∈LMD x LMD yMID x LMD x x MA y N xr r , (6) 

in which the rLMD(x) is the radius of the LMD(x), and N(x) is the neighborhood of x.
For the Compound model, only the radii of all MIDs centered on PGVG points are 
calculated. Also, in order to maintain a safe distance from obstacle borders, MIDs radii are 
multiplied by a lessening factor α (α ∈ [0, 1]), to produce αMIDs defined as: 

{ }( ) ( )( ) ( ) , ,MID x LMD x αα = = α × ∈ ≤ ≤0 1LMD x MID x x MAr r  (7) 

 All �MIDs are integrated in a connected region called Region(�MID). The 
Region(�MID) of a C-space is the union of all �MIDs centered on the medial axis: 

( ) ( )
∀ ∈

α = α
x MA

Region MID MID x  (8) 

The Region(αMID) is obstacle-free and non-convex, and reflects the topology of the Cfree. An 
interesting property of the α is that it offers a balance between the Roadmap and full Cfree

concepts. If we set α=0, the Region(αMID) will turn into the medial axis roadmap. For α =1, 
the region’s borders will be tangent to obstacles. Based on experiments, we recommend α ∈
[0.5, 0.8]. 
The Region(αMID) for the workspace of Fig. 2(c) is calculated and depicted in Fig. 8(a). Fig. 8 
also indicates the property of Region(α 
MID) in smoothening the Voronoi roadmap’s sharp corners and local irregularities. 

 (a) (b) 
Fig. 8. (a) The Region(αMID) is comprised of αMIDs centered on the medial axis. Here the α
is set to 0.6. (b) Attractive potentials associated with the Region(αMID). 

Similar to the Hybrid model, the Compound model also creates a network of navigable 
valleys. It assigns attractive potentials to the points lying in Region(αMID):

(∈ α- if ( , )
U( , ) =

0 otherwise.
i i

i i

s x y Region MID)
x y  (9) 

The preprocessing phase terminates with the construction of potential valleys. 

3.2 Search Phase 
This phase is designed to progressively build up a Start-to-Goal path. The initial problem is 
decomposed to a number of smaller path planning tasks, having intermediate milestones as 
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nonholonomic or rotational constraints. 
In order to compensate these shortcomings, unlike the 1-pixel-wide valleys in the V-P 
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The preprocessing phase terminates with the construction of potential valleys. 

3.2 Search Phase 
This phase is designed to progressively build up a Start-to-Goal path. The initial problem is 
decomposed to a number of smaller path planning tasks, having intermediate milestones as 
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temporary start and goal points. Through this iterative process the solution path is 
incrementally constructed, and the algorithm becomes capable to resolve more complex 
problems. 
Similar to the V-P Hybrid, the global search process is performed bidirectionally. Again we 
initialize the two trajectories Traj(s) and Traj(g), and set Traj(s) = {s} and Traj(g) = {g} for the 
beginning.  
The main modules included in this phase are Visibility and Potential Field, which are 
executed iteratively until the construction of the final path. The termination condition is 
satisfied when Traj(s) and Traj(g) are either being seen or get in touch with each other. We 
characterize ‘being seen’ as being able to draw a straight line in free space to connect the 
two trajectories’ endpoints. 
The following subsections describe the Visibility and Potential Field modules. 

3.2.1 Visibility Module 
Each iteration of the Search phase starts with a Visibility scan performed concurrently for 
both endpoints of Traj(s) and Traj(g). For this purpose, a “ray sweeping” technique is used 
to collect information about the surrounding valley borders and probably the opposite 
trajectory.
The aim of this procedure is to determine whether the opposite trajectory is visible from the 
current point or not. If it is visible, then the Search phase is over. If not, we have to find the 
boundary vertices as seen from the current point, as described below. 
By applying a polar coordinate system with the origin defined on the vantage point (e.g. 
endpoint of Traj(s)), the radial Euclidean distances to valley borders ( Cfree) are calculated for 
[0, 2π] and integrated in an array (i.e. Visibility Polygon). Fig. 9(a) shows the Cfree valleys and 
the point (q) considered for visibility scan in a sample problem. Fig. 9(b) shows the distance 
of that point from its surroundings. 

 (a) (b) 
Fig. 9. (a) Visible configurations (visibility polygon) as a result of a visibility scan performed 
for the point q. (b) The polar representation of radial distances (i.e. ray magnitudes) of the 
point q from Cfree boundary ( Cfree).
Subsequent to the calculation of distances (ρ) between the vantage point and Cfree for any 
angle (θ ∈ [0, 2π]), this data is mapped into Cartesian coordinates (Fig. 10(a)). 
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Since the Cfree boundary generally has a complex geometrical shape and lacks definite 
vertices as in polygonal objects, we take advantage of the ray sweeping data to determine 
the boundary points being tangent to any ray emanated from the vision source point. A ray 
is tangent to Cfree if in the neighborhood of their contact point the interior of Cfree lies entirely 
on a single side of it. 
In order to find the tangent rays and their touching boundary points, we apply a difference 
function for successive adjacent rays. We define the Ray Difference variables as  
Δρ

θ
 = ρ

θ +1
 − ρ

θ
  for  θ ∈ [0, 2π] and collect them in an array plotted in Fig. 10(b). By applying 

a notch filter, the peaks of the Ray Difference array are determined. These peaks imply 
abrupt and large differences in successive ray magnitudes and therefore indicate the points 
where sweeping rays leave (positive peaks) or meet (negative peaks) a convex contour on 
Cfree, based on anticlockwise rotation of rays. 

The boundary points corresponding to the tangent rays are treated as boundary vertices 
visible from the vantage point, q. These points are called Critical points and form the set R(q)
(see step S1(d)). The tangent rays and critical points are shown in Fig. 11. 

 (a) (b) 
Fig. 10. (a) The Cartesian representation for the ray magnitudes of Fig. 9. (b) Magnitude 
difference of sweeping rays for successive angles. The three peaks show tangent rays. 

Fig. 11. The tangent rays and their corresponding boundary vertices (critical points). 
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Since the Cfree boundary generally has a complex geometrical shape and lacks definite 
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the boundary points being tangent to any ray emanated from the vision source point. A ray 
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on a single side of it. 
In order to find the tangent rays and their touching boundary points, we apply a difference 
function for successive adjacent rays. We define the Ray Difference variables as  
Δρ

θ
 = ρ

θ +1
 − ρ

θ
  for  θ ∈ [0, 2π] and collect them in an array plotted in Fig. 10(b). By applying 

a notch filter, the peaks of the Ray Difference array are determined. These peaks imply 
abrupt and large differences in successive ray magnitudes and therefore indicate the points 
where sweeping rays leave (positive peaks) or meet (negative peaks) a convex contour on 
Cfree, based on anticlockwise rotation of rays. 

The boundary points corresponding to the tangent rays are treated as boundary vertices 
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252 Mobile Robots, Perception & Navigation

By concurrently implementing the visibility scan for both ends of Traj(s) and Traj(g), we 
discover that either there exists a line which connects the two trajectories (and lies entirely 
in Cfree), or none of them is within the scope of the other’s endpoint. If the first case holds 
then the search phase terminates. For the latter case, critical points of the two sets R(p) and 
R(q) are calculated and matched to find the closest pair, one point from each. These points 
determine the two positions which the two trajectories must extend toward. 
The following steps are taken for the Visibility module: 

S1) Performing Visibility scan. The scan is concurrently implemented for the endpoints of 
both Traj(s) and Traj(g).

Suppose that the visibility scan operation is performed from p and q, the endpoints of Traj(s)
and Traj(g), respectively. Consequently, four incidences may occur (Fig. 12): 

 (a) (b) (c) (d) 
Fig. 12. Four different combinations of Traj(s) and Traj(g) in visibility scan. The visibility 
envelope is shown in grey. 

(a) A subset of points in Traj(g) is visible from p, but no point from Traj(s) is visible 
from q (Fig. 12(a)). In this case, by a straight line, connect p to a visible point in 
Traj(g), say q , which is nearest to the Goal (i.e. has the smallest ordinal rank in 
Traj(g) among the visible points), and truncate all elements in Traj(g) located after 
q . Note that the Goal point might be visible itself, which in that case point p is 
directly connected to the g (Fig. 12(c)). 

(b) A subset of points in Traj(s) is visible from q, but no point from Traj(g) is visible 
from p (Fig. 12(b)). This is the reverse of the previous case, so act similarly, but 
swap p and q, and also Traj(s) and Traj(g). 

(c) Subsets of points in both Traj(g) and Traj(s) are visible from p and q, respectively 
(Fig. 12(c)). In this case, define the following criterion C as: 

{ }
{ }

′ ′

′ ′ ′ ′∈ ∈

C spq g gqp s

Traj s p q q Traj g Traj g q p p Traj s

= Min ,

= Min ( ) + - + ( ) , ( ) + - + ( )
  (10) 

  where ⏐Traj(s)⏐ means the cardinality (or length) of Traj(s), ′p q-  is the Euclidean 

distance of p and q , and ⏐q ∈Traj(g)⏐ indicates the ordinal position of q  in Traj(g)
(i.e. the distance of q  to g via the Traj(g)). Among pq  and qp , the line providing the 
minimum value for the above criterion will be selected to connect Traj(s) and 
Traj(g). Again truncate the elements of the trajectory located after the connection 
point p  or q , according to the drawn line. 

(d) If none of the Traj(s) and Traj(g) are visible to each other’s endpoints, then for both 
p and q, determine those rays that are tangent to visible Cobs boundary. Note that 
this boundary is at a safe distance from actual obstacles’ edges. The intersection of 
these rays and the free space’s boundary produces two sets of Critical Points, R(p)
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and R(q). Fig. 12(d) shows the result of visibility scan from q, which consequently 
renders 4 visible obstacle vertices in R(q) = {1, 2, 3, 4}. 
Now among all combinations of the elements of R(p) and R(q), select the closest x
and y pair meeting the following condition:  

 {(x, y)|∀ x, u ∈ R(p); y, v ∈ R(q); x – y u – v }, (11) 

where •  shows Euclidean distance. The total number of combinations to be 
evaluated is ⏐R(p)⏐×⏐R(q)⏐, where ⏐•⏐ is the cardinality of sets. This operation 
determines the mutually best points that Traj(s) and Traj(g) must extend toward via 
two straight lines. 

S2) Map the line segment(s) found in step S1 to the configuration space grid. Through 
a fine-enough discretizing operation, new points are added to Traj(s) and/or Traj(g).

If any of the cases (a), (b), or (c) in step S1 holds, then terminate the Search phase and go to 
step S10 (Sec. 3.2.2). For the case (d) continue with the next step. 

S3) Since all the points in Traj(s) and Traj(g) lie on the bottom of roadmap valleys, in 
order to mark the valleys as traversed, increase the potentials of trajectory points 
and their surroundings to ‘fill’ the width of valleys (Sec. 3.2.2). This is an effective 
operation for preventing the planner from searching the Cfree exhaustively. 

3.2.2 Potential Field Module 
The bidirectional nature of the V-V-P algorithm requires that for each iteration, the valley 
potentials manifold be numerically added to a paraboloid with a nadir on a temporary goal 
point (see step S4). For instance, when extending Traj(s), the temporary goal is the endpoint 
of Traj(g), and vice versa. To apply the paraboloid potential, we graduate the configuration 
space in a fine-enough resolution, then assigning every grid cell as (xi, yi), the potential is 
calculated numerically. Fig. 13(a) shows the Potential Field manifold superimposed on the 
‘flat’ valley potentials manifold. 
As soon as new points are appended to the trajectories, the navigated valleys must be 
distinguished by ‘elevating’ their potentials in order to prevent the robot to re-traverse them 
later (Fig. 13(b)). 

 (a) (b) 
Fig. 13. (a) The Potential Field manifold (upper object) is constructed by numerically adding 
a paraboloid function defined in (1) to the valley potentials manifold (lower object). (b) A 
scene from an intermediate iteration in potential search. Trajectory points are shown black 
and the medial axis points are in white. 
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By concurrently implementing the visibility scan for both ends of Traj(s) and Traj(g), we 
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in Cfree), or none of them is within the scope of the other’s endpoint. If the first case holds 
then the search phase terminates. For the latter case, critical points of the two sets R(p) and 
R(q) are calculated and matched to find the closest pair, one point from each. These points 
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both Traj(s) and Traj(g).

Suppose that the visibility scan operation is performed from p and q, the endpoints of Traj(s)
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 (a) (b) (c) (d) 
Fig. 12. Four different combinations of Traj(s) and Traj(g) in visibility scan. The visibility 
envelope is shown in grey. 

(a) A subset of points in Traj(g) is visible from p, but no point from Traj(s) is visible 
from q (Fig. 12(a)). In this case, by a straight line, connect p to a visible point in 
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(b) A subset of points in Traj(s) is visible from q, but no point from Traj(g) is visible 
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  where ⏐Traj(s)⏐ means the cardinality (or length) of Traj(s), ′p q-  is the Euclidean 

distance of p and q , and ⏐q ∈Traj(g)⏐ indicates the ordinal position of q  in Traj(g)
(i.e. the distance of q  to g via the Traj(g)). Among pq  and qp , the line providing the 
minimum value for the above criterion will be selected to connect Traj(s) and 
Traj(g). Again truncate the elements of the trajectory located after the connection 
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p and q, determine those rays that are tangent to visible Cobs boundary. Note that 
this boundary is at a safe distance from actual obstacles’ edges. The intersection of 
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and R(q). Fig. 12(d) shows the result of visibility scan from q, which consequently 
renders 4 visible obstacle vertices in R(q) = {1, 2, 3, 4}. 
Now among all combinations of the elements of R(p) and R(q), select the closest x
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 {(x, y)|∀ x, u ∈ R(p); y, v ∈ R(q); x – y u – v }, (11) 

where •  shows Euclidean distance. The total number of combinations to be 
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and their surroundings to ‘fill’ the width of valleys (Sec. 3.2.2). This is an effective 
operation for preventing the planner from searching the Cfree exhaustively. 

3.2.2 Potential Field Module 
The bidirectional nature of the V-V-P algorithm requires that for each iteration, the valley 
potentials manifold be numerically added to a paraboloid with a nadir on a temporary goal 
point (see step S4). For instance, when extending Traj(s), the temporary goal is the endpoint 
of Traj(g), and vice versa. To apply the paraboloid potential, we graduate the configuration 
space in a fine-enough resolution, then assigning every grid cell as (xi, yi), the potential is 
calculated numerically. Fig. 13(a) shows the Potential Field manifold superimposed on the 
‘flat’ valley potentials manifold. 
As soon as new points are appended to the trajectories, the navigated valleys must be 
distinguished by ‘elevating’ their potentials in order to prevent the robot to re-traverse them 
later (Fig. 13(b)). 

 (a) (b) 
Fig. 13. (a) The Potential Field manifold (upper object) is constructed by numerically adding 
a paraboloid function defined in (1) to the valley potentials manifold (lower object). (b) A 
scene from an intermediate iteration in potential search. Trajectory points are shown black 
and the medial axis points are in white. 
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The valley filling technique is somehow a “micro-visibility” process; it marks the 
neighboring configurations as ‘seen’, and excludes them from the search space. This process 
is analogous to walking in a long corridor while trying to get out by reaching an open door 
or a junction. Naturally one does not consider the tiles across the corridor and near his feet 
as promising cells leading to a desired destination. Rather, he deems those points as 
traversed (though physically not indeed), and continues his wall-following motion. This is 
done in filling technique by ‘elevating’ the potentials of those cells, making them less 
attractive. Since in a steepest descent context the robot occupies the cell with the least 
potential value across the valley, the filling procedure does not affect the path length 
adversely. 
The filling procedure is applied immediately after a new point is appended to a trajectory. 
So it is performed in a layer-by-layer manner. Suppose that a point p is just being added to 
an existing trajectory array (Fig. 14(a)). In order to ‘mark’ and elevate the potentials of 
visited cells across the Cfree valley, we must find a line passing from p and perpendicular to 
the local direction of the channel. To do this, the point p must be connected to its nearest 
point q on the medial axis (skeleton) of the valley. By interpolation and extrapolation, the 
cells along this line are found and increased in potential. The amount of this increase is 
proposed to be about 1/3 of the valley depth (i.e. s in (9)). Fig. 14 shows three consecutive 
iterations of filling operation. 

 (a) (b) (c) 
Fig. 14. Three iterations from the valley filling process. As new points (black dots) are 
appended to the trajectory, the cells across the channel are elevated in potential, so that the 
planner is encouraged to move along the valley’s main direction. Points on the medial axis 
are shown white, except for the point q which is nearest to trajectory’s endpoint p (shown in 
black). The elevated rack is highlighted in each iteration. 

For a better understanding of the role of this process, imagine that an attractive potential 
(i.e. a local minimum) is located in the upper-end of the narrow channel in Fig. 14(a). 
Then according to the steepest descent search, the trajectory points should move towards it, 
which is of course hopeless. However, the elevated barrier created in each iteration blocks 
this motion, and forces the planner to take a mildest ascent step and run off the fatal 
situation. 
For channels of uniform width this method fills the cells thoroughly and compactly, but it 
may cause porosities in curved and bent valleys, or leave unfilled areas behind, as in Figs. 
14 or 15(b). The case in Fig. 15(b) arises from the fact that for two successive trajectory points 
their respective nearest medial axis points are not adjacent. Although this does not cause a 
serious problem most of the time, we will present a variation to this procedure to overcome 
such conditions: 
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First a square (or rectangular) frame with a symmetrical center on the medial point q is 
defined (the dashed line in Fig. 15(c)). This frame is partitioned into two hyper-planes by the 
connecting line pq. The hyper-plane that contains the penultimate trajectory point is 
therefore the ‘backward’ region which may contain some unfilled cells. Then, the potentials 
of the cells confined within the frame and valley border are elevated. The magnitude of this 
frame can be set such that all the unfilled cells can be covered. However, a size equal to the 
valley width in that point suffices. The still unfilled area at the right of Fig. 15(c) will not 
cause any problem since it is far from trajectory points. 

 (a) (b) (c) 
Fig. 15. An unfilled area is originated from the fact that for two successive trajectory 
points, their respective nearest medial axis points are not adjacent. To resolve this problem, 
a frame is defined around the medial point q (drawn by dashed line), and the unfilled area 
confined within this frame is elevated in potential. 

The implemented valley filling routine provides some advantages for the model: 
(1) It reduces the potential searching time significantly by discarding the 

configurations in Cfree which have normal vectors pointing toward a local 
minimum, and so obviates the random or ‘Brownian’ movements. 

(2) This technique enables the planner to perform a ‘hill climbing’ operation for coping 
with the attraction of  a nearby local minimum, and as such, is a subtle way to 
avoid exhaustively filling up dead-end or saddle point regions and the consequent 
path smoothing operations (Barraquand et al., 1992). 

For more clarification, suppose that the planner incrementally builds up a search tree and 
adopts a ‘best-first’ strategy to find the goal point. This task becomes time-consuming when 
the tree has many branches. The valley filling process curtails most of the non-promising 
branches and directs the planner along an effective branch leading to another valley. In 
other words, this technique converts a ‘breadth-first’ or ‘best-first’ search into a ‘depth-first’ 
search. 
Experiments showed that the valley filling process aids the robot considerably especially in 
departing from deep local minimum wells.  
Now the Potential Field module is executed according to the following steps. It is applied in 
two directions: first the Traj(s) is extended (steps S4 to S6), then Traj(g) is stretched out (step 
S7 to S9). 

S4) Setting the endpoint of Traj(g) as the temporary goal (gtemp), construct an attractive 
field by the paraboloid function introduced in (1). Then add this potential to the 
potential of Region(αMID) calculated in step P3 (Sec. 3.1). 

S5) Now the steepest descent – mildest ascent search is performed with setting the 
endpoint of Traj(s) as temporary start and the endpoint of Traj(g) as temporary goal 
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as promising cells leading to a desired destination. Rather, he deems those points as 
traversed (though physically not indeed), and continues his wall-following motion. This is 
done in filling technique by ‘elevating’ the potentials of those cells, making them less 
attractive. Since in a steepest descent context the robot occupies the cell with the least 
potential value across the valley, the filling procedure does not affect the path length 
adversely. 
The filling procedure is applied immediately after a new point is appended to a trajectory. 
So it is performed in a layer-by-layer manner. Suppose that a point p is just being added to 
an existing trajectory array (Fig. 14(a)). In order to ‘mark’ and elevate the potentials of 
visited cells across the Cfree valley, we must find a line passing from p and perpendicular to 
the local direction of the channel. To do this, the point p must be connected to its nearest 
point q on the medial axis (skeleton) of the valley. By interpolation and extrapolation, the 
cells along this line are found and increased in potential. The amount of this increase is 
proposed to be about 1/3 of the valley depth (i.e. s in (9)). Fig. 14 shows three consecutive 
iterations of filling operation. 
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Fig. 14. Three iterations from the valley filling process. As new points (black dots) are 
appended to the trajectory, the cells across the channel are elevated in potential, so that the 
planner is encouraged to move along the valley’s main direction. Points on the medial axis 
are shown white, except for the point q which is nearest to trajectory’s endpoint p (shown in 
black). The elevated rack is highlighted in each iteration. 

For a better understanding of the role of this process, imagine that an attractive potential 
(i.e. a local minimum) is located in the upper-end of the narrow channel in Fig. 14(a). 
Then according to the steepest descent search, the trajectory points should move towards it, 
which is of course hopeless. However, the elevated barrier created in each iteration blocks 
this motion, and forces the planner to take a mildest ascent step and run off the fatal 
situation. 
For channels of uniform width this method fills the cells thoroughly and compactly, but it 
may cause porosities in curved and bent valleys, or leave unfilled areas behind, as in Figs. 
14 or 15(b). The case in Fig. 15(b) arises from the fact that for two successive trajectory points 
their respective nearest medial axis points are not adjacent. Although this does not cause a 
serious problem most of the time, we will present a variation to this procedure to overcome 
such conditions: 
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First a square (or rectangular) frame with a symmetrical center on the medial point q is 
defined (the dashed line in Fig. 15(c)). This frame is partitioned into two hyper-planes by the 
connecting line pq. The hyper-plane that contains the penultimate trajectory point is 
therefore the ‘backward’ region which may contain some unfilled cells. Then, the potentials 
of the cells confined within the frame and valley border are elevated. The magnitude of this 
frame can be set such that all the unfilled cells can be covered. However, a size equal to the 
valley width in that point suffices. The still unfilled area at the right of Fig. 15(c) will not 
cause any problem since it is far from trajectory points. 
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Fig. 15. An unfilled area is originated from the fact that for two successive trajectory 
points, their respective nearest medial axis points are not adjacent. To resolve this problem, 
a frame is defined around the medial point q (drawn by dashed line), and the unfilled area 
confined within this frame is elevated in potential. 

The implemented valley filling routine provides some advantages for the model: 
(1) It reduces the potential searching time significantly by discarding the 

configurations in Cfree which have normal vectors pointing toward a local 
minimum, and so obviates the random or ‘Brownian’ movements. 

(2) This technique enables the planner to perform a ‘hill climbing’ operation for coping 
with the attraction of  a nearby local minimum, and as such, is a subtle way to 
avoid exhaustively filling up dead-end or saddle point regions and the consequent 
path smoothing operations (Barraquand et al., 1992). 

For more clarification, suppose that the planner incrementally builds up a search tree and 
adopts a ‘best-first’ strategy to find the goal point. This task becomes time-consuming when 
the tree has many branches. The valley filling process curtails most of the non-promising 
branches and directs the planner along an effective branch leading to another valley. In 
other words, this technique converts a ‘breadth-first’ or ‘best-first’ search into a ‘depth-first’ 
search. 
Experiments showed that the valley filling process aids the robot considerably especially in 
departing from deep local minimum wells.  
Now the Potential Field module is executed according to the following steps. It is applied in 
two directions: first the Traj(s) is extended (steps S4 to S6), then Traj(g) is stretched out (step 
S7 to S9). 

S4) Setting the endpoint of Traj(g) as the temporary goal (gtemp), construct an attractive 
field by the paraboloid function introduced in (1). Then add this potential to the 
potential of Region(αMID) calculated in step P3 (Sec. 3.1). 

S5) Now the steepest descent – mildest ascent search is performed with setting the 
endpoint of Traj(s) as temporary start and the endpoint of Traj(g) as temporary goal 
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point. This step contains a gradient search for selecting the next gridcell to proceed. 
New points are appended to Traj(s). Also, in order to provide a mechanism for 
escaping from local minima, perform the valley filling procedure. 

S6) Repeat the step S5 until one of  the following situations take place: 
(a) If before the occurrence of case (b) below, the endpoint of Traj(s) meets any 

point in opposite trajectory Traj(g), the search phase is completed. First 
truncate the elements of Traj(g) located after the connection point, then go to 
step S10. 

(b) The gridcell wavefront distance between the endpoint of Traj(s) and the free 
space boundary, Cfree, exceeds a certain limit, i.e. |END(Traj(s)) – Cfree| > d.
Through experimentations d = 3 was found appropriate. 

The steepest descent search for Traj(s) is now terminated and the searching process is 
shifted to steps S7 to S9, where Traj(g) is being extended towards Traj(s).

S7) This step is similar to step S4, except that the paraboloid which is added to the 
Region(αMID) valleys has a minimum on the endpoint of Traj(s).

S8) Setting the endpoints of Traj(g) and Traj(s) as temporary start and goal points 
respectively, perform a steepest descent – mildest ascent search, as well as the 
valley filling procedure, as described in step S5. 

S9) Repeat the step S8 until either of  the following cases happen: 
(a) If before the occurrence of case (b) below, the endpoint of Traj(g) meets any 

point in Traj(s), the search phase is completed. Truncate the elements of Traj(s)
located after the connection point, then go to step S10. 

(b) If the gridcell wavefront distance between the endpoint of Traj(g) and the Cfree

exceeds a certain limit, i.e. |END(Traj(g)) – Cfree| > 3, terminate the Potential 
Field module and start the next iteration from step S1, the Visibility module.

S10) Reverse the order of elements in Traj(g) and concatenate it to the endpoint of 
Traj(s). As a result, a single start-to-goal trajectory is achieved which is the final 
output of the V-V-P algorithm.  

3.3 An Example 
Now the algorithm’s path planning technique is demonstrated through solving a problem 
illustrated in Fig. 16(a).  
After preparing the valley potentials (Fig. 16(b)), the Search phase is accomplished in 3 
iterations. The bidirectional progression of trajectories is clearly shown in Figs. 17(a)-(c). The 
Cfree region is light-colored, and the ‘filled’ area has a darker shade. Fig. 17(a) indicates the 
development of Traj(s) (upper-right), and Traj(g) (lower-left) trajectories in iteration 1, by 
first performing a visibility scan, then a Potential Field search. The visibility scan matches 
with case S1(d), where none of the two trajectories is in the scope of another. Hence, 6 
possible pairs of critical points ((2 for g) × (3 for s)) are evaluated and the closest pair is 
selected as the destination of trajectories. The filling procedure is then implemented for the 
drawn lines (darker area in Cfree) according to step S3. 
The Potential Field module now starts with performing a steepest descent – mildest ascent 
search from the endpoint of Traj(s) toward the endpoint of Traj(g), the temporary goal. This 
requires a superimposition of a paraboloid function with a minimum on END(Traj(g)) on 
the ‘flat’ potential manifold in Fig. 16(b) (as described in step S4). This search generates 
points directed to the temporary goal, elevates the potentials across the current valley, and 
stops after a few repetitions upon detaching enough from the Cfree (case S6(b)). These points 
are appended to Traj(s). 
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 (a) (b) 
Fig. 16. (a) The PGVG and Region(αMID) (Step P2). (b) Obstacle-free network of valley 
potentials (Step P3). 

 (a) (b) (c) 
Fig. 17. The first, second and third iterations of the Search phase. The black lines show 
tangent rays for visibility scan, and white points are generated by potential search. 

The same operation is carried on from END(Traj(g)) to the new endpoint of Traj(s), which 
now includes recently added potential search points. Note that in Fig. 17(a), due to the 
filling operations executed before and during the Potential Field module, the steepest 
descent search does not fill the nearby minimum well, and thus avoids entrapment in the 
local minimum around the Goal point. Rather, it utilizes the mildest ascent concept, and 
exhibits a hill climbing behavior. This case shows the importance and effectiveness of the 
filling procedure, which helps the planner substantially through the whole process. Fig 
17(b) illustrates the second iteration, which is performed in the same fashion as the first 
iteration. Note the wall-following function of the potential module before detachment from 
Cfree border. 
Fig. 17(c) displays the case S1(c) occurred in the third iteration, where both trajectories are 
being seen by each other’s endpoints. By applying the criterion (10) it becomes evident that 
the endpoint of Traj(s) must be connected to a visible point in Traj(g) closest to g. The 
remaining points to the end of Traj(g) are truncated afterwards. Eventually the reversely-
ordered Traj(g) is concatenated to the Traj(s) and yields the final path from Start to Goal 
(Fig. 18(a)). 
Another example is presented in Fig. 18(b) to display the shape of the generated path for a 
maze-like problem. The meeting point of the approaching trajectories is shown by a color 
contrast. The search took 7 seconds and five iterations. 
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Through experimentations d = 3 was found appropriate. 

The steepest descent search for Traj(s) is now terminated and the searching process is 
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Traj(s). As a result, a single start-to-goal trajectory is achieved which is the final 
output of the V-V-P algorithm.  

3.3 An Example 
Now the algorithm’s path planning technique is demonstrated through solving a problem 
illustrated in Fig. 16(a).  
After preparing the valley potentials (Fig. 16(b)), the Search phase is accomplished in 3 
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filling operations executed before and during the Potential Field module, the steepest 
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local minimum around the Goal point. Rather, it utilizes the mildest ascent concept, and 
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the endpoint of Traj(s) must be connected to a visible point in Traj(g) closest to g. The 
remaining points to the end of Traj(g) are truncated afterwards. Eventually the reversely-
ordered Traj(g) is concatenated to the Traj(s) and yields the final path from Start to Goal 
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Another example is presented in Fig. 18(b) to display the shape of the generated path for a 
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 (a) (b) 
Fig. 18. (a) The final start-to-goal path. (b) Maze-like problem solved by the V-V-P algorithm. 

3.4 Time Complexity 
As discussed in the Sec. 2.4, the time complexity of constructing the PGVG is O(nlogn). The 
time required for establishing the Region(�MID) depends on the total length of PGVG 
edges, which is in O(n). The time required to calculate the valley potentials is constant for 
each gridpoint lying in Region(�MID). Hence, the total time complexity for the 
preprocessing phase is in the order of O(nlogn).
The Search phase has the Visibility and Potential Field modules which are executed for k
iterations. In the worst-case, k is bounded by half the number of all edges, which is in 
O(n/2) O(n). During the Search phase, the visibility radial sweep operation has constant 
time complexity and depends on the number of radial rays. The number of potential valleys 
is in O(n), which is affected by the O(n) number of Voronoi edges, n being the total number 
of obstacle vertices. The time complexity for the Potential Field searching operation is O(m)
in the total number of gridpoints (m), and is independent of the number and shape of the 
obstacles (Latombe 1991). Therefore, the time complexity of the Search phase is in the order 
of O(m).

3.5 Comparisons 
In order to compare the V-V-P model with the Visibility Graph, Voronoi diagram, and 
Potential Fields methods, we solved the 20 problems mentioned in Sec. 2.3 by these methods 
and calculated the lengths of produced paths. Path lengths were normalized via a uniform 
scale to set up a proper benchmark for comparison. The value of � in V-V-P algorithm was 
set to 0.7. The Preprocessing phase of the Compound model took about 9 seconds averagely, 
and the Search phase finished within 6 seconds on average. The experiments were run in 
MATLAB using a 1.4 GHz processor. A comparison of path lengths, as well as time 
complexities of the preprocessing and search procedures of all tested methods is provided 
in Table 2. 
The results show that the V-V-P Compound takes advantage of the superiorities of its 
parent methods; that is, low construction time from the GVG, low search time from the PF, 
and short paths from the VG. It provides an effective balance between computational speed 
and path quality. The extent of this tradeoff is determined by selecting different values for 
α ∈ (0, 1), after which the V-V-P method assumes the properties of either the Visibility, or 
Voronoi methods, or an intermediate state. 
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SearchingPath planning 
method 

Preprocessing 
Time complexity

Time complexity Search method 

Relative
path length 

Voronoi 
Diagrams O(nlogn) O(n2)

Dijkstra
on graph nodes 125.7

Potential
Fields O(n) O(m) Improved numerical 

navigation function 128.0 a

Visibility 
Graph O(n2) O(n2)

A*
on graph nodes 100.0

V-P 
Hybrid O(nlogn) O m( ) Steepest descent –  

mildest ascent 126.8

V-V-P 
Compound O(nlogn) O(m) Steepest descent –  

mildest ascent 114.3

a After post-processing and path smoothing 
Table 2. Time complexity and path quality comparison for five path planning approaches. 

It is worth noting that similar to the V-P Hybrid method (Sec. 2.4), the V-V-P Compound 
algorithm has the property of completeness. 

3.6 Extension to Higher Spaces 
The V-V-P algorithm has the potential to be extended to three and higher dimensional 
spaces. Though the full n-dimensional implementation of the algorithm is among our future 
research, we will briefly discuss here the possibility of its extension to 3D. 
Recall that the Generalized Voronoi Graph (GVG) in n-D space is the locus of points being 
equidistant from n or more obstacle features. Figs. 19(a)-(b) demonstrate a 3D environment 
and its GVG. The GVG is constructed incrementally using an algorithm which is the 3D 
version of our work presented in (Masehian et al., 2003). 
Due to the one-dimensional nature of the GVG roadmap, the pruning procedure is still 
applicable to 3D context. Fig. 19(c) depicts the result of pruning the GVG in Fig. 19(a), after 
fixing Start and Goal positions. Similar to the 2D case, the pruning procedure reduces the 
search space considerably in 3D.  
The Maximal Inscribed Discs can easily be generalized to 3D space, resulting in Maximal 
Inscribed Balls (MIBs), which are spheres centered on the GVG and tangent to 3 or more 
obstacle boundaries. In the same manner, we can extend the concept of αMID to αMIB,
and the concept of Region(αMID) to Region(αMIB). The Region(αMIB) is a network of 
“tube-like” obstacle-free navigable channels. Fig. 19(d) illustrates the Region(�MIB)
with α = 0.5. Greater values for α cause “fatter” tubes, and freer space for robot’s 
maneuvering. 
The visibility scan in 3D can be applied via “sweep surfaces” instead of sweep rays in the 
2D method. The robot should scan the space inside the Region(αMIB) to find “tangent 
surfaces”. The Potential calculations for gridpoints is still tractable in 3D workspace, and the 
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Fig. 18. (a) The final start-to-goal path. (b) Maze-like problem solved by the V-V-P algorithm. 
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search phase can be performed similar to the 2D V-V-P method; the Visibility and Potential 
Field modules will execute alternately, and the valley filling procedure will change to “tube 
filling”. Therefore, the V-V-P and V-P models are extendable to at least 3D C-spaces. 

 (a) (b) 

 (c) (d) 
Fig. 19. (a) Front view, and, (b) Back view of the medial axis (GVG) of a 3D workspace. (c) 
The PGVG of the same workspace. (d) The Region(αMIB). 

4. Summary and Future work 
This chapter introduces two new offline path planning models which are based on the 
Roadmap and Potential Fields classic motion planning approaches. It is shown that how 
some relatively old methods can combine and yield new models. 
The first path planning model is established based on two traditional methods: the Voronoi 
Diagrams and Potential Fields, and so is called V-P Hybrid model. The model integrates the 
advantages of Voronoi diagram’s safest distance and Potential Fields’ search simplicity 
properties. After constructing the Generalized Voronoi Graph roadmap for the workspace, 
it is reduced to the Pruned Generalized Voronoi Graph (PGVG) through a pruning 
procedure. The PGVG decreases the search time effectively. An attractive potential is then 
applied to the resulting roadmap, which yields a new version of Potential Fields method, 
since it implicitly models the obstacles by attractive potentials rather than repulsive ones. 
The search technique developed for finding the trajectory is a bidirectional steepest descent 
– mildest ascent stage-by-stage method, which is complete, and performs much faster than 
the classical Potential Fields or Dijkstra’s methods. 
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The second model is a generalization of the V-P Hybrid model: it integrates three main 
approaches: Voronoi Diagrams, Visibility Graph, and Potential Fields, and is called V-V-P 
Compound path planner. After constructing the PGVG roadmap, a broad freeway net 
(called Region(�MID)) is developed based on the Maximal Inscribed Discs concept. A 
potential function is then assigned to this net to form an obstacle-free network of valleys. 
Afterwards, a bidirectional search technique is used where the Visibility Graph and 
Potential Fields modules execute alternately from both start and goal configurations. The 
steepest descent – mildest ascent search method is used for valley filling and local planning 
to avoid local minima. This Compound model provides a parametric tradeoff between 
safest and shortest paths, and generally yields shorter paths than the Voronoi and Potential 
Fields methods, and faster solutions than the Visibility Graph. 
Different implementations of the presented algorithms exhibited these models’ competence 
in solving path planning problems in complex and maze-like environments. Comparisons 
with classical Potential Fields and A* methods showed that composite methods usually 
perform faster and explore far less grid-points. 
The developed composite path planning models can however be extended in numerous 
directions to accommodate more general assumptions. Here we mention two possible 
extensions which are achievable in the future versions of the models: 

(1) Both methods are basically developed for point robots. This assumption is not 
realistic and requires an extra preprocessing step for obstacle expanding through 
the Minkowski Set Difference technique. Moreover, the robot is bound to have 
mere translational movements, and not rotational. The models can be modified to 
accommodate arbitrary-shaped robots with rotational ability. 

(2) The developed models handle single-robot problems. The potential valleys in both 
V-P and V-V-P models may provide a framework for multiple robots motion 
planning. Especially, the Visibility component of the Compound model can be 
readily applied to mobile robots teams with vision capabilities. 
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1. Introduction  
In the last years, one of the applications of service robots with a greater social impact has 
been the assistance to elderly or disabled people. In these applications, assistant robots must 
robustly navigate in structured indoor environments such as hospitals, nursing homes or 
houses, heading from room to room to carry out different nursing or service tasks. 
Although the state of the art in navigation systems is very wide, there are not systems that 
simultaneously satisfy all the requirements of this application. Firstly, it must be a very 
robust navigation system, because it is going to work in highly dynamic environments and 
to interact with non-expert users. In second place, and to ensure the future commercial 
viability of this kind of prototypes, it must be a system very easy to export to new working 
domains, not requiring a previous preparation of the environment or a long, hard and 
tedious configuration process. Most of the actual navigation systems propose “ad-hoc” 
solutions that only can be applied in very specific conditions and environments. Besides, 
they usually require an artificial preparation of the environment and are not capable of 
automatically recover general localization failures. 
In order to contribute to this research field, the Electronics Department of the 
University of Alcalá has been working on a robotic assistant called SIRA, within the 
projects SIRAPEM (Spanish acronym of Robotic System for Elderly Assistance) and 
SIMCA (Cooperative multi-robot assistance system). The main goal of these projects is 
the development of robotic aids that serve primary functions of tele-presence, tele-
medicine, intelligent reminding, safeguarding, mobility assistance and social 
interaction. Figure 1 shows a simplified diagram of the SIRAPEM global architecture, 
based on a commercial platform (the PeopleBot robot of ActivMedia Robotics) endowed 
with a differential drive system, encoders, bumpers, two sonar rings (high and low), 
loudspeakers, microphone and on-board PC. The robot has been also provided with a 
PTZ color camera, a tactile screen and wireless Ethernet link. The system architecture 
includes several human-machine interaction systems, such as voice (synthesis and 
recognition speech) and touch screen for simple command selection. 
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Fig. 1. Global architecture of the SIRAPEM System

This chapter describes the navigation module of the SIRAPEM project, including 
localization, planning and learning systems. A suitable framework to cope with all the 
requirements of this application is Partially Observable Markov Decision Processes 
(POMDPs). These models use probabilistic reasoning to deal with uncertainties, and a 
topological representation of the environment to reduce memory and time requirements of 
the algorithms. For the proposed global navigation system, in which the objective is the 
guidance to a goal room and some low-level behaviors perform local navigation, a 
topological discretization is appropriate to facilitate the planning and learning tasks. 
POMDP models provide solutions to localization, planning and learning in the robotics 
context, and have been used as probabilistic reasoning method in the three modules of the 
navigation system of SIRA. The main contributions of the navigation architecture of SIRA, 
regarding other similar ones (that we’ll be referenced in next section), are the following: 

• Addition of visual information to the Markov model, not only as observation, but 
also for improving state transition detection. This visual information reduces 
typical perceptual aliasing of proximity sensors, accelerating the process of global 
localization when initial pose is unknown. 
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• Development of a new planning architecture that selects actions to combine several 
objectives, such as guidance to a goal room, localization to reduce uncertainty, and 
environment exploration. 

• Development of a new exploration and learning strategy that takes advantage of 
human-machine interaction to robustly and quickly fast learn new working 
environments.

The chapter is organized as follows. Section 2 places this work within the context of 
previous similar ones. A brief overview of POMDPs foundations is presented as 
background in section 3. Section 4 describes the proposed Markov model while section 
5 shows the global architecture of the navigation system. The localization module is 
described in section 6, the two layers of the planning system are shown in section 7 and 
the learning and exploration module are explained in section 8. Finally, we show some 
experimental results (section 9), whereas a final discussion and conclusion summarizes 
the chapter (sections 10 and 11). 

2. Related Previous Work 
Markov models, and particularly POMDPs, have already been widely used in robotics, and 
especially in robot navigation. The robots DERVISH (Nourbakhsh et al., 1995), developed in 
the Stanford University, and Xavier (Koenig & Simmons, 1998), in the Carnegie Mellon 
University, were the first robots successfully using this kind of navigation strategies for 
localization and action planning. Other successful robots guided with POMDPs are those 
proposed by (Zanichelli, 1999) or (Asoh et al., 1996).  In the nursing applications field, in 
which robots interact with people and uncertainty is pervasive, robots such as Flo (Roy et 
al., 2000) or Pearl (Montemerlo et al., 2002) use POMDPs at all levels of decision making, 
and not only in low-level navigation routines.  
However, in all these successful navigation systems, only proximity sensors are used to 
perceive the environment. Due to the typical high perceptual aliasing of these sensors in 
office environments, using only proximity sensors makes the Markov model highly non-
observable, and the initial global localization stage is rather slow. 
On the other hand, there are quite a lot of recent works using appearance-based methods for 
robot navigation with visual information. Some of these works, such as (Gechter et al., 2001) 
and (Regini et al., 2002), incorporate POMDP models as a method for taking into account 
previous state of the robot to evaluate its new pose, avoiding the teleportation phenomena. 
However, these works are focused on visual algorithms, and very slightly integrate them 
into a complete robot navigation architecture. So, the above referenced systems don’t 
combine any other sensorial system, and use the POMDP only for localizing the robot, and 
not for planning or exploring. 
This work is a convergence point between these two research lines, proposing a complete 
navigation architecture that adds visual information to proximity sensors to improve 
previous navigation results, making more robust and faster the global localization task. 
Furthermore, a new Markov model is proposed that better adapts to environment topology, 
being completely integrated with a planning system that simultaneously contemplates 
several navigation objectives. 
Regarding the learning system, most of the related works need a previous “hand-made” 
introduction of the Markov model of a new environment. Learning a POMDP involves two main 
issues: (1) obtaining its topology (structure), and (2) adjusting the parameters (probabilities) of the 
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model. The majority of the works deals with the last problem, using the well-known EM 
algorithm to learn the parameters of a Markov model whose structure is known (Thrun et al., 
1998; Koenig and Simmons, 1996). However, because computational complexity of the learning 
process increases exponentially as the number of states increases, these methods are still time 
consuming and its working ability is limited to learn reduced environments. In this work, the 
POMDP model can be easily obtained for new environments by means of human-robot 
cooperation, being an optimal solution for assistant robots endowed with human-machine 
interfaces. The topological representation of the environment is intuitive enough to be easily 
defined by the designer. The uncertainties and observations that constitute the parameters of the 
Markov model are learned by the robot using a modification of the EM algorithm that exploits 
slight user supervision and topology constraints to highly reduce memory requirements and 
computational cost of the standard EM algorithm. 

3. POMDPs Review 
Although there is a wide literature about POMDPs theory (Papadimitriou & Tsitsiklis, 1987; 
Puterman, 1994; Kaelbling et al., 1996) in this section some terminology and main 
foundations are briefly introduced as theoretical background of the proposed work.  
A Markov Decision Process (MDP) is a model for sequential decision making, formally 
defined as a tuple {S,A,T,R}, where, 

• S  is a finite set of states (s∈S).
• A  is a finite set of actions (a∈A).
• T={p(s’|s,a)  ∀ (s,s’∈S  a∈A)} is a state transition model which specifies a 

conditional probability distribution of posterior state s’ given prior state s and 
action executed a.

• R={r(s,a)  ∀ (s∈S  a∈A)} is the reward function, that determines the immediate 
utility (as a function of an objective) of executing action a at state s.

A MDP assumes the Markov property, which establishes that actual state and action are the 
only information needed to predict next state: 

)a,s|sp()a,s,...,a,s,a,s|sp( tt1ttt11001t ++ =  (1) 

In a MDP, the actual state s is always known without uncertainty. So, planning in a MDP is 
the problem of action selection as a function of the actual state (Howard, 1960). A MDP 
solution is a policy a=π(s), which maps states into actions and so determines which action 
must be executed at each state. An optimal policy a=π*(s) is that one that maximizes future 
rewards. Finding optimal policies for MDPs is a well known problem in the artificial 
intelligent field, to which several exact and approximate solutions (such as the “value 
iteration” algorithm) have been proposed (Howard, 1960; Puterman, 1994). 
Partially Observable Markov Decision Processes (POMDPs) are used under domains where 
there is not certainty about the actual state of the system. Instead, the agent can do 
observations and use them to compute a probabilistic distribution over all possible states. 
So, a POMDP adds: 

• O, a finite set of observations (o∈O)
• ϑ={p(o|s)  ∀ o∈O, s∈S} is an observation model which specifies a conditional 

probability distribution over observations given the actual state s.
Because in this case the agent has not direct access to the current state, it uses actions and 
observations to maintain a probability distribution over all possible states, known as the 
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“belief distribution”, Bel(S). A POMDP is still a markovian process in terms of this 
probability distribution, which only depends on the prior belief, prior action, and current 
observation. This belief must be updated whenever a new action or perception is carried 
out. When an action a is executed, the new probabilities become: 

SS ∈∀⋅⋅==
∈
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        (2) 

where K is a normalization factor to ensure that the probabilities all sum one. When a sensor 
report o is received, the probabilities become: 

SS ∈∀⋅⋅== s)s(Bel)s|o(pK)s(Bel priorposterior  (3) 

In a POMDP, a policy a=π(Bel) maps beliefs into actions. However, what in a MDP was a 
discrete state space problem, now is a high-dimensional continuous space. Although there 
are numerous studies about finding optimal policies in POMDPs (Cassandra, 1994; 
Kaelbling et al.,1998), the size of state spaces and real-time constraints make them infeasible 
to solve navigation problems in robotic contexts. This work uses an alternative approximate 
solution for planning in POMDP-based navigation contexts, dividing the problem into two 
layers and applying some heuristic strategies for action selection.  
In the context of robot navigation, the states of the Markov model are the locations (or nodes) of a 
topological representation of the environment. Actions are local navigation behaviors that the 
robot can execute to move from one state to another, and observations are perceptions of the 
environment that the robot can extract from its sensors. In this case, the Markov model is 
partially observable because the robot may never know exactly which state it is in.  

4. Markov Model for Global Navigation 
A POMDP model for robot navigation is constructed from two sources of information: the 
topology of the environment, and some experimental or learned information about action 
and sensor errors and uncertainties.  

Fig. 2. Topological graph of an environment map. 
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Taking into account that the final objective of the SIRAPEM navigation system is to direct 
the robot from one room to another to perform guiding or service tasks, we discretize the 
environment into coarse-grained regions (nodes) of variable size in accordance with the 
topology of the environment, in order to make easier the planning task. As it’s shown in 
figure 2 for a virtual environment, only one node is assigned to each room, while the 
corridor is discretized into thinner regions. The limits of these regions correspond to any 
change in lateral features of the corridor (such as a new door, opening or piece of wall). This 
is a suitable discretization method in this type of structured environments, since nodes are 
directly related to topological locations in which the planning module may need to change 
the commanded action. 

4.1. The elements of the Markov model: states, actions and observations 

States (S) of the Markov model are directly related to the nodes of the topological graph. A 
single state corresponds to each room node, while four states are assigned to each corridor 
node, one for each of the four orientations the robot can adopt. 
The actions (A) selected to produce transitions from one state to another correspond to local 
navigation behaviors of the robot. We assume imperfect actions, so the effect of an action 
can be different of the expected one (this will be modeled by the transition model T). These 
actions are:

(1) “Go out room” (aO): to traverse door using sonar an visual information in room 
states, 

(2) “Enter room” (aE): only defined in corridor states oriented to a door, 
(3) “Turn right” (aR): to turn 90° to the right, 
(4) “Turn Left” (aL): to turn 90° to the left,  
(5) “Follow Corridor” (aF): to continue through the corridor to the next state, and 
(6) “No Operation” (aNO): used as a directive in the goal state.

Finally, the observations (O) in our model come from the two sensorial systems of the robot: 
sonar and vision. Markov models provide a natural way to combine multisensorial 
information, as it will be shown in section 4.2.1. In each state, the robot makes three kind of 
observations:

(1) “Abstract Sonar Observation” (oASO). Each of the three nominal directions around the 
robot (left, front and right) is classified as “free” or “occupied” using sonar 
information, and an abstract observation is constructed from the combination of 
the percepts in each direction (thus, there are eight possible abstract sonar 
observations, as it’s shown in figure 3.a). 

(2) “Landmark Visual Observation” (oLVO). Doors are considered as natural visual 
landmarks, because they exist in all indoor environments and can be easily 
segmented from the image using color (previously trained) and some geometrical 
restrictions. This observation is the number of doors (in lateral walls of the 
corridor) extracted from the image (see figure 3.b), and it reduces the perceptual 
aliasing of sonar by distinguishing states at the beginning from states at the end of 
a corridor. However, in long corridors, doors far away from the robot can’t be 
easily segmented from the image (this is the case of image 2 of figure 3.b), and this 
is the reason because we introduce a third visual observation. 

(3) “Depth Visual Observation” (oDVO). As human-interaction robots have tall bodies 
with the camera on the top, it’s possible to detect the vanishing ceiling lines, and 
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classify its length into a set of discrete values (in this case, we use four 
quantification levels, as it’s shown in figure 3.b). This is a less sensitive to noise 
observation than using floor vanishing lines (mainly to occlusions due to people 
walking through the corridor), and provides complementary information to oLVO.

Figure 3.b shows two scenes of the same corridor from different positions, and their 
corresponding oLVO and oDVO observations. It’s shown that these are obtained by means of very 
simple image processing techniques (color segmentation for oLVO and edge detection for oDVO),
and have the advantage, regarding correlation techniques used in (Gechter et al., 2001) or (Regini 
et al., 2002), that they are less sensitive to slight pose deviations within the same node. 

Fig. 3. Observations of the proposed Markov model. 

4.2. Visual information utility and improvements 

Visual observations increase the robustness of the localization system by reducing 
perceptual aliasing. On the other hand, visual information also improves state transition 
detection, as it’s shown in the following subsections. 

4.2.1. Sensor fusion to improve observability 

Using only sonar to perceive the environment makes the Markov model highly non-
observable due to perceptual aliasing. Furthermore, the “Abstract Sonar Observation” is 
highly dependent on doors state (opened or closed). The addition of the visual 
observations proposed in this work augments the observability of states. For example, 
corridor states with an opened door on the left and a wall on the right produces the same 
abstract sonar observation (oASO=1) independently if they are at the beginning or at the 
end of the corridor. However, the number of doors seen from the current state (oLVO)
allows to distinguish between these states. 
POMDPs provide a natural way for using multisensorial fusion in their observation models 
(p(o|s) probabilities). In this case, o is a vector composed by the three observations proposed 
in the former subsection. Because these are independent observations, the observation 
model can be simplified in the following way: 

)|p()|p()|p()|,,p()|p( sosososoooso DVOLVOASODVOLVOASO == (4)
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classify its length into a set of discrete values (in this case, we use four 
quantification levels, as it’s shown in figure 3.b). This is a less sensitive to noise 
observation than using floor vanishing lines (mainly to occlusions due to people 
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corresponding oLVO and oDVO observations. It’s shown that these are obtained by means of very 
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4.2.2. Visual information to improve state transition detection 

To ensure that when the robot is in a corridor, it only adopts the four allowed directions 
without large errors, it’s necessary that, during the execution of a “Follow Corridor” action, 
the robot becomes aligned with the corridor longitudinal axis. So, when the robot stands up 
to a new corridor, it aligns itself with a subtask that uses visual vanishing points, and during 
corridor following, it uses sonar buffers to detect the walls and construct a local model of 
the corridor. Besides, an individual “Follow Corridor” action terminates when the robot 
eaches a new state of the corridor. Detecting these transitions only with sonar readings is 
very critical when doors are closed.  
To solve this problem, we add visual information to detect door frames as natural 
landmarks of state transitions (using color segmentation and some geometrical restrictions). 
The advantage of this method is that the image processing step is fast and easy, being only 
necessary to process two lateral windows of the image as it’s shown in figure 4.  

Fig. 4. State transition detection by means of visual information. 

Whenever a vertical transition from wall to door color (or vice versa) is detected in a lateral 
window, the distance to travel as far as that new state is obtained from the following 
formula, using a pin-hole model of the camera (see figure 4):
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where l is the distance of the robot to the wall in the same side as the detected door frame 
(obtained from sonar readings) and α is the visual angle of the door frame. As the detected 
frame is always in the edge of the image, the visual angle α only depends on the focal 
distance of the camera, that is constant for a fixed zoom (and known from camera 
specifications). After covering distance d (measured with relative odometry readings), the 
robot reaches the new state. This transition can be confirmed (fused) with sonar if the door 
is opened. Another advantage of this transition detection approach is that no assumptions 
are made about doors or corridor widths.
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4.3. Action and observation uncertainties 

Besides the topology of the environment, it’s necessary to define some action and 
observation uncertainties to generate the final POMDP model (transition and observation 
matrixes). A first way of defining these uncertainties is by introducing some experimental 
“hand-made” rules (this method is used in (Koenig & Simmons, 1998) and (Zanichelli, 
1999)). For example, if a “Follow” action (aF) is commanded, the expected probability of 
making a state transition (F) is 70%, while there is a 10% probability of remaining in the 
same state (N=no action), a 10% probability of making two successive state transitions (FF), 
and a 10% probability of making three state transitions (FFF). Experience with this method 
has shown it to produce reliable navigation. However, a limitation of this method is that 
some uncertainties or parameters of the transition and observation models are not intuitive 
for being estimated by the user. Besides, results are better when probabilities are learned to 
more closely reflect the actual environment of the robot. So, our proposed learning module 
adjusts observation and transition probabilities with real data during an initial exploration 
stage, and maintains these parameters updated when the robot is performing another 
guiding or service tasks. This module, that also makes easier the installation of the system in 
new environments, is described in detail in section 8. 

5. Navigation System Architecture 
The problem of acting in partially observable environments can be decomposed into two 
components: a state estimator, which takes as input the last belief state, the most recent 
action and the most recent observation, and returns an updated belief state, and a policy, 
which maps belief states into actions. In robotics context, the first component is robot 
localization and the last one is task planning. 
Figure 5 shows the global navigation architecture of the SIRAPEM project, formulated as a 
POMDP model.  At each process step, the planning module selects a new action as a command 
for the local navigation module, that implements the actions of the POMDP as local navigation 
behaviors. As a result, the robot modifies its state (location), and receives a new observation from 
its sensorial systems. The last action executed, besides the new observation perceived, are used 
by the localization module to update the belief distribution Bel(S).

Fig. 5. Global architecture of the navigation system. 
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corridor following, it uses sonar buffers to detect the walls and construct a local model of 
the corridor. Besides, an individual “Follow Corridor” action terminates when the robot 
eaches a new state of the corridor. Detecting these transitions only with sonar readings is 
very critical when doors are closed.  
To solve this problem, we add visual information to detect door frames as natural 
landmarks of state transitions (using color segmentation and some geometrical restrictions). 
The advantage of this method is that the image processing step is fast and easy, being only 
necessary to process two lateral windows of the image as it’s shown in figure 4.  

Fig. 4. State transition detection by means of visual information. 
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window, the distance to travel as far as that new state is obtained from the following 
formula, using a pin-hole model of the camera (see figure 4):
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where l is the distance of the robot to the wall in the same side as the detected door frame 
(obtained from sonar readings) and α is the visual angle of the door frame. As the detected 
frame is always in the edge of the image, the visual angle α only depends on the focal 
distance of the camera, that is constant for a fixed zoom (and known from camera 
specifications). After covering distance d (measured with relative odometry readings), the 
robot reaches the new state. This transition can be confirmed (fused) with sonar if the door 
is opened. Another advantage of this transition detection approach is that no assumptions 
are made about doors or corridor widths.
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4.3. Action and observation uncertainties 

Besides the topology of the environment, it’s necessary to define some action and 
observation uncertainties to generate the final POMDP model (transition and observation 
matrixes). A first way of defining these uncertainties is by introducing some experimental 
“hand-made” rules (this method is used in (Koenig & Simmons, 1998) and (Zanichelli, 
1999)). For example, if a “Follow” action (aF) is commanded, the expected probability of 
making a state transition (F) is 70%, while there is a 10% probability of remaining in the 
same state (N=no action), a 10% probability of making two successive state transitions (FF), 
and a 10% probability of making three state transitions (FFF). Experience with this method 
has shown it to produce reliable navigation. However, a limitation of this method is that 
some uncertainties or parameters of the transition and observation models are not intuitive 
for being estimated by the user. Besides, results are better when probabilities are learned to 
more closely reflect the actual environment of the robot. So, our proposed learning module 
adjusts observation and transition probabilities with real data during an initial exploration 
stage, and maintains these parameters updated when the robot is performing another 
guiding or service tasks. This module, that also makes easier the installation of the system in 
new environments, is described in detail in section 8. 

5. Navigation System Architecture 
The problem of acting in partially observable environments can be decomposed into two 
components: a state estimator, which takes as input the last belief state, the most recent 
action and the most recent observation, and returns an updated belief state, and a policy, 
which maps belief states into actions. In robotics context, the first component is robot 
localization and the last one is task planning. 
Figure 5 shows the global navigation architecture of the SIRAPEM project, formulated as a 
POMDP model.  At each process step, the planning module selects a new action as a command 
for the local navigation module, that implements the actions of the POMDP as local navigation 
behaviors. As a result, the robot modifies its state (location), and receives a new observation from 
its sensorial systems. The last action executed, besides the new observation perceived, are used 
by the localization module to update the belief distribution Bel(S).

Fig. 5. Global architecture of the navigation system. 
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After each state transition, and once updated the belief, the planning module chooses the next 
action to execute. Instead of using an optimal POMDP policy (that involves high computational 
times), this selection is simplified by dividing the planning module into two layers: 

• A local policy, that assigns an optimal action to each individual state (as in the 
MDP case). This assignment depends on the planning context. Three possible 
contexts have been considered: (1) guiding (the objective is to reach a goal room 
selected by the user to perform a service or guiding task), (2) localizing (the 
objective is to reduce location uncertainty) and (3) exploring (the objective is to 
learn or adjust observations and uncertainties of the Markov model). 

• A global policy, that using the current belief and the local policy, selects the best action 
by means of different heuristic strategies proposed by (Kaelbling et al., 1996). 

This proposed two-layered planning architecture is able to combine several contexts of the 
local policy to simultaneously integrate different planning objectives, as will be shown in 
subsequent sections. 
Finally, the learning module (López et al., 2004) uses action and observation data to learn 
and adjust the observations and uncertainties of the Markov model. 

6. Localization and Uncertainty Evaluation 
The localization module updates the belief distribution after each state transition, using the 
well known Markov localization equations (2) and (3). 
In the first execution step, the belief distribution can be initialized in one of the two following 
ways: (a) If initial state of the robot is known, that state is assigned probability 1 and the rest 0, (b) 
If initial state is unknown, a uniform distribution is calculated over all states. 
Although the planning system chooses the action based on the entire belief distribution, in 
some cases it´s necessary to evaluate the degree of uncertainty of that distribution (this is, 
the locational uncertainty). A typical measure of discrete distributions uncertainty is the 
entropy. The normalized entropy (ranging from 0 to 1) of the belief distribution is: 
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where ns is the number of states of the Markov model. The lower the value, the more certain 
the distribution. This measure has been used in all previous robotic applications for 
characterizing locational uncertainty (Kaelbling, 1996; Zanichelli, 1999). 
However, this measure is not appropriate for detecting situations in which there are a few 
maximums of similar value, being the rest of the elements zero, because it’s detected as a 
low entropy distribution. In fact, even being only two maximums, that is a not good result 
for the localization module, because they can correspond to far locations in the environment. 
A more suitable choice should be to use a least square measure respect to ideal delta 
distribution, that better detects the convergence of the distribution to a unique maximum 
(and so, that the robot is globally localized). However, we propose another approximate 
measure that, providing similar results to least squares, is faster calculated by using only the 
two first maximum values of the distribution (it’s also less sensitive when uncertainty is 
high, and more sensitive to secondary maximums during the tracking stage). This is the 
normalized divergence factor, calculated in the following way:  
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where dmax is the difference between first and second maximum values of the distribution, 
and pmax the absolute value of the first maximum. Again, a high value indicates that the 
distribution converges to a unique maximum. In the results section we’ll show that this new 
measure provides much better results when planning in some kind of environments. 

7. Planning under Uncertainty 
A POMDP model is a MDP model with probabilistic observations. Finding optimal policies in the 
MDP case (that is a discrete space model) is easy and quickly for even very large models. 
However, in the POMDP case, finding optimal control strategies is computationally intractable for 
all but the simplest environments, because the beliefs space is continuous and high-dimensional.  
There are several recent works that use a hierarchical representation of the environment, with 
different levels of resolution, to reduce the number of states that take part in the planning 
algorithms (Theocharous & Mahadevan, 2002; Pineau & Thrun, 2002). However, these methods 
need more complex perception algorithms to distinguish states at different levels of abstraction, 
and so they need more prior knowledge about the environment and more complex learning 
algorithms. On the other hand, there are also several recent approximate methods for solving 
POMDPs, such as those that use a compressed belief distribution to accelerate algorithms (Roy, 
2003) or the ‘point-based value iteration algorithm’  (Pineau et al., 2003) in which planning is 
performed only on a sampled set of reachable belief points. 
The solution adopted in this work is to divide the planning problem into two steps: the first 
one finds an optimal local policy for the underlying MDP (a*=π*(s), or to simplify notation, 
a*(s)), and the second one uses a number of simple heuristic strategies to select a final action 
(a*(Bel)) as a function of the local policy and the belief. This structure is shown in figure 6 
and described in subsequent subsections. 

Global POMDP 
Policy Bel(S)

Local MDP Policies

a*(Bel)

   PLANNING SYSTEM

Context Selection

Guidance 
 Context 

Localization 
 Context 

Exploration 
 Context 

Action

aG*(s)       aL*(s)             aE*(s)

a*(s) 

Goal room

Fig. 6. Planning system architecture, consisting of two layers: (1) Global POMDP policy and 
(2) Local MDP policies. 

7.1. Contexts and local policies 

The objective of the local policy is to assign an optimal action (a*(s)) to each individual state 
s. This assignment depends on the planning context. The use of several contexts allows the 
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After each state transition, and once updated the belief, the planning module chooses the next 
action to execute. Instead of using an optimal POMDP policy (that involves high computational 
times), this selection is simplified by dividing the planning module into two layers: 

• A local policy, that assigns an optimal action to each individual state (as in the 
MDP case). This assignment depends on the planning context. Three possible 
contexts have been considered: (1) guiding (the objective is to reach a goal room 
selected by the user to perform a service or guiding task), (2) localizing (the 
objective is to reduce location uncertainty) and (3) exploring (the objective is to 
learn or adjust observations and uncertainties of the Markov model). 

• A global policy, that using the current belief and the local policy, selects the best action 
by means of different heuristic strategies proposed by (Kaelbling et al., 1996). 

This proposed two-layered planning architecture is able to combine several contexts of the 
local policy to simultaneously integrate different planning objectives, as will be shown in 
subsequent sections. 
Finally, the learning module (López et al., 2004) uses action and observation data to learn 
and adjust the observations and uncertainties of the Markov model. 

6. Localization and Uncertainty Evaluation 
The localization module updates the belief distribution after each state transition, using the 
well known Markov localization equations (2) and (3). 
In the first execution step, the belief distribution can be initialized in one of the two following 
ways: (a) If initial state of the robot is known, that state is assigned probability 1 and the rest 0, (b) 
If initial state is unknown, a uniform distribution is calculated over all states. 
Although the planning system chooses the action based on the entire belief distribution, in 
some cases it´s necessary to evaluate the degree of uncertainty of that distribution (this is, 
the locational uncertainty). A typical measure of discrete distributions uncertainty is the 
entropy. The normalized entropy (ranging from 0 to 1) of the belief distribution is: 
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where ns is the number of states of the Markov model. The lower the value, the more certain 
the distribution. This measure has been used in all previous robotic applications for 
characterizing locational uncertainty (Kaelbling, 1996; Zanichelli, 1999). 
However, this measure is not appropriate for detecting situations in which there are a few 
maximums of similar value, being the rest of the elements zero, because it’s detected as a 
low entropy distribution. In fact, even being only two maximums, that is a not good result 
for the localization module, because they can correspond to far locations in the environment. 
A more suitable choice should be to use a least square measure respect to ideal delta 
distribution, that better detects the convergence of the distribution to a unique maximum 
(and so, that the robot is globally localized). However, we propose another approximate 
measure that, providing similar results to least squares, is faster calculated by using only the 
two first maximum values of the distribution (it’s also less sensitive when uncertainty is 
high, and more sensitive to secondary maximums during the tracking stage). This is the 
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where dmax is the difference between first and second maximum values of the distribution, 
and pmax the absolute value of the first maximum. Again, a high value indicates that the 
distribution converges to a unique maximum. In the results section we’ll show that this new 
measure provides much better results when planning in some kind of environments. 

7. Planning under Uncertainty 
A POMDP model is a MDP model with probabilistic observations. Finding optimal policies in the 
MDP case (that is a discrete space model) is easy and quickly for even very large models. 
However, in the POMDP case, finding optimal control strategies is computationally intractable for 
all but the simplest environments, because the beliefs space is continuous and high-dimensional.  
There are several recent works that use a hierarchical representation of the environment, with 
different levels of resolution, to reduce the number of states that take part in the planning 
algorithms (Theocharous & Mahadevan, 2002; Pineau & Thrun, 2002). However, these methods 
need more complex perception algorithms to distinguish states at different levels of abstraction, 
and so they need more prior knowledge about the environment and more complex learning 
algorithms. On the other hand, there are also several recent approximate methods for solving 
POMDPs, such as those that use a compressed belief distribution to accelerate algorithms (Roy, 
2003) or the ‘point-based value iteration algorithm’  (Pineau et al., 2003) in which planning is 
performed only on a sampled set of reachable belief points. 
The solution adopted in this work is to divide the planning problem into two steps: the first 
one finds an optimal local policy for the underlying MDP (a*=π*(s), or to simplify notation, 
a*(s)), and the second one uses a number of simple heuristic strategies to select a final action 
(a*(Bel)) as a function of the local policy and the belief. This structure is shown in figure 6 
and described in subsequent subsections. 
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Fig. 6. Planning system architecture, consisting of two layers: (1) Global POMDP policy and 
(2) Local MDP policies. 

7.1. Contexts and local policies 

The objective of the local policy is to assign an optimal action (a*(s)) to each individual state 
s. This assignment depends on the planning context. The use of several contexts allows the 
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robot to simultaneously achieve several planning objectives. The localization and guidance 
contexts try to simulate the optimal policy of a POMDP, which seamlessly integrates the two 
concerns of acting in order to reduce uncertainty and to achieve a goal. The exploration 
context is to select actions for learning the parameters of the Markov model. 
In this subsection we show the three contexts separately. Later, they will be automatically 
selected or combined by the ‘context selection’ and ‘global policy’ modules (figure 6). 

7.1.1. Guidance Context 

This local policy is calculated whenever a new goal room is selected by the user. Its main objective 
is to assign to each individual state s, an optimal action (aG*(s)) to guide the robot to the goal.  
One of the most well known algorithms for finding optimal policies in MDPs is ’value iteration’ 
(Bellman, 1957). This algorithm assigns an optimal action to each state when the reward function 
r(s,a) is available. In this application, the information about the utility of actions for reaching the 
destination room is contained in the graph. So, a simple path searching algorithm can effectively 
solve the underlying MDP, without any intermediate reward function. 
So, a modification of the A* search algorithm (Winston, 1984) is used to assign a preferred 
heading to each node of the topological graph, based on minimizing the expected total 
number of nodes to traverse (shorter distance criterion cannot be used because the graph 
has not metric information). The modification of the algorithm consists of inverting the 
search direction, because in this application there is not an initial node (only a destination 
node). Figure 7 shows the resulting node directions for goal room 2 on the graph of 
environment of figure 2. 

Fig. 7. Node directions for “Guidence” (to room 2) and “Localization” contexts for 
environment of figure 2. 

Later, an optimal action is assigned to the four states of each node in the following way: a “follow” 
(aF) action is assigned to the state whose orientation is the same as the preferred heading of the 
node, while the remaining states are assigned actions that will turn the robot towards that heading 
(aL or aR). Finally, a “no operation” action (aNO) is assigned to the goal room state. 
Besides optimal actions, when a new goal room is selected, Q(s,a) values are assigned to 
each (s,a) pair. In the MDPs theory, Q-values (Lovejoi, 1991) characterize the utility of 
executing each action at each state, and will be used by one of the global heuristic policies 
shown in next subsection. To simplify Q-values calculation, the following criterion has been 
used:  Q(s,a)=1 if action a is optimal at state s, Q(s,a)=-1 (negative utility) if actions a is  not 
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defined at state s, and Q(s,a)=-0.5 for the remaining cases (actions that disaligns the robot 
from the preferred heading). 

7.1.2. Localization Context 

This policy is used to guide the robot to “Sensorial Relevant States“ (SRSs) that reduce 
positional uncertainty, even if that requires moving it away from the goal temporarily. This 
planning objective was not considered in previous similar robots, such as DERVISH  
(Nourbakhsh et al., 1995) or Xavier (Koenig & Simmons, 1998), or was implemented by 
means of fixed sequences of movements (Cassandra, 1994) that don’t contemplate 
environment relevant places to reduce uncertainty. 
In an indoor environment, it’s usual to find different zones that produce not only the same 
observations, but also the same sequence of observations as the robot traverses them by 
executing the same actions (for example, symmetric corridors). SRSs are states that break a 
sequence of observations that can be found in another zone of the graph. 
Because a state can be reached from different paths and so, with different histories of 
observations, SRSs are not characteristic states of the graph, but they depend on the starting 
state of the robot. This means that each starting state has its own SRS. To simplify the 
calculation of SRSs, and taking into account that the more informative states are those 
aligned with corridors, it has been supposed that in the localization context the robot is 
going to execute sequences of “follow corridor” actions. So, the moving direction along the 
corridor to reach a SRS as soon as possible must be calculated for each state of each corridor. 
To do this, the “Composed Observations“ (COs) of these states are calculated from the 
graph and the current observation model ϑ in the following way: 
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Later, the nearest SRS for each node is calculated by studying the sequence of COs obtained 
while moving in both corridor directions. Then, a preferred heading (among them that align 
the robot with any connected corridor) is assigned to each node. This heading points at the 
corridor direction that, by a sequence of “Follow Corridor” actions, directs the robot to the 
nearest SRS (figure 7 shows the node directions obtained for environment of figure 2). And 
finally, an optimal action is assigned to the four states of each corridor node to align the 
robot with this preferred heading (as it was described in the guidance context section). The 
optimal action assigned to room states is always “Go out room” (aO).
So, this policy (a*L(s)) is only environment dependent and is automatically calculated from 
the connections of the graph and the ideal observations of each state.  

7.1.3. Exploration Context 

The objective of this local policy is to select actions during the exploration stage, in order to 
learn transition and observation probabilities. As in this stage the Markov model is 
unknown (the belief can’t be calculated), there is not distinction between local and global 
policies, whose common function is to select actions in a reactive way to explore the 
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robot to simultaneously achieve several planning objectives. The localization and guidance 
contexts try to simulate the optimal policy of a POMDP, which seamlessly integrates the two 
concerns of acting in order to reduce uncertainty and to achieve a goal. The exploration 
context is to select actions for learning the parameters of the Markov model. 
In this subsection we show the three contexts separately. Later, they will be automatically 
selected or combined by the ‘context selection’ and ‘global policy’ modules (figure 6). 

7.1.1. Guidance Context 

This local policy is calculated whenever a new goal room is selected by the user. Its main objective 
is to assign to each individual state s, an optimal action (aG*(s)) to guide the robot to the goal.  
One of the most well known algorithms for finding optimal policies in MDPs is ’value iteration’ 
(Bellman, 1957). This algorithm assigns an optimal action to each state when the reward function 
r(s,a) is available. In this application, the information about the utility of actions for reaching the 
destination room is contained in the graph. So, a simple path searching algorithm can effectively 
solve the underlying MDP, without any intermediate reward function. 
So, a modification of the A* search algorithm (Winston, 1984) is used to assign a preferred 
heading to each node of the topological graph, based on minimizing the expected total 
number of nodes to traverse (shorter distance criterion cannot be used because the graph 
has not metric information). The modification of the algorithm consists of inverting the 
search direction, because in this application there is not an initial node (only a destination 
node). Figure 7 shows the resulting node directions for goal room 2 on the graph of 
environment of figure 2. 

Fig. 7. Node directions for “Guidence” (to room 2) and “Localization” contexts for 
environment of figure 2. 

Later, an optimal action is assigned to the four states of each node in the following way: a “follow” 
(aF) action is assigned to the state whose orientation is the same as the preferred heading of the 
node, while the remaining states are assigned actions that will turn the robot towards that heading 
(aL or aR). Finally, a “no operation” action (aNO) is assigned to the goal room state. 
Besides optimal actions, when a new goal room is selected, Q(s,a) values are assigned to 
each (s,a) pair. In the MDPs theory, Q-values (Lovejoi, 1991) characterize the utility of 
executing each action at each state, and will be used by one of the global heuristic policies 
shown in next subsection. To simplify Q-values calculation, the following criterion has been 
used:  Q(s,a)=1 if action a is optimal at state s, Q(s,a)=-1 (negative utility) if actions a is  not 
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defined at state s, and Q(s,a)=-0.5 for the remaining cases (actions that disaligns the robot 
from the preferred heading). 

7.1.2. Localization Context 

This policy is used to guide the robot to “Sensorial Relevant States“ (SRSs) that reduce 
positional uncertainty, even if that requires moving it away from the goal temporarily. This 
planning objective was not considered in previous similar robots, such as DERVISH  
(Nourbakhsh et al., 1995) or Xavier (Koenig & Simmons, 1998), or was implemented by 
means of fixed sequences of movements (Cassandra, 1994) that don’t contemplate 
environment relevant places to reduce uncertainty. 
In an indoor environment, it’s usual to find different zones that produce not only the same 
observations, but also the same sequence of observations as the robot traverses them by 
executing the same actions (for example, symmetric corridors). SRSs are states that break a 
sequence of observations that can be found in another zone of the graph. 
Because a state can be reached from different paths and so, with different histories of 
observations, SRSs are not characteristic states of the graph, but they depend on the starting 
state of the robot. This means that each starting state has its own SRS. To simplify the 
calculation of SRSs, and taking into account that the more informative states are those 
aligned with corridors, it has been supposed that in the localization context the robot is 
going to execute sequences of “follow corridor” actions. So, the moving direction along the 
corridor to reach a SRS as soon as possible must be calculated for each state of each corridor. 
To do this, the “Composed Observations“ (COs) of these states are calculated from the 
graph and the current observation model ϑ in the following way: 
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Later, the nearest SRS for each node is calculated by studying the sequence of COs obtained 
while moving in both corridor directions. Then, a preferred heading (among them that align 
the robot with any connected corridor) is assigned to each node. This heading points at the 
corridor direction that, by a sequence of “Follow Corridor” actions, directs the robot to the 
nearest SRS (figure 7 shows the node directions obtained for environment of figure 2). And 
finally, an optimal action is assigned to the four states of each corridor node to align the 
robot with this preferred heading (as it was described in the guidance context section). The 
optimal action assigned to room states is always “Go out room” (aO).
So, this policy (a*L(s)) is only environment dependent and is automatically calculated from 
the connections of the graph and the ideal observations of each state.  

7.1.3. Exploration Context 

The objective of this local policy is to select actions during the exploration stage, in order to 
learn transition and observation probabilities. As in this stage the Markov model is 
unknown (the belief can’t be calculated), there is not distinction between local and global 
policies, whose common function is to select actions in a reactive way to explore the 
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environment. As this context is strongly connected with the learning module, it will be 
explained in section 8. 

7.2. Global heuristic policies 

The global policy combines the probabilities of each state to be the current state (belief 
distribution Bel(S)) with the best action assigned to each state (local policy a*(s)) to select the 
final action to execute, a*(Bel). Once selected the local policy context (for example guidance 
context, a*(s)=aG*(s)), some heuristic strategies proposed by (Kaelbling et al., 1996) can be 
used to do this final selection.  
The simpler one is the “Most Likely State“ (MLS) global policy that finds the state with the 
highest probability and directly executes its local policy: 

( )= )(maxarg*)(* sBelaa
s

MLS Bel (9)

The “Voting“ global policy first computes the “probability mass” of each action (V(a))
(probability of action a being optimal) according to the belief distribution, and then selects 
the action that is most likely to be optimal (the one with highest probability mass): 
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This method is less sensitive to locational uncertainty, because it takes into account all states, 
not only the most probable one. 
Finally, the QMDP global policy is a more refined version of the voting policy, in which the 
votes of each state are apportioned among all actions according to their Q-values: 
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This is in contrast to the “winner take all” behavior of the voting method, taking into 
account negative effect of actions. 
Although there is some variability between these methods, for the most part all of them do 
well when initial state of the robot is known, and only the tracking problem is present. If 
initial state is unknown, the performance of the methods highly depends on particular 
configuration of starting states. However, MLS or QMDP global policies may cycle through 
the same set of actions without progressing to the goal when only guidance context is used. 
Properly combination of guidance and localization context highly improves the performance 
of these methods during global localization stage. 

7.3. Automatic context selection or combination 

Apart from the exploration context, this section considers the automatic context selection 
(see figure 6) as a function of the locational uncertainty. When uncertainty is high, 
localization context is useful to gather information, while with low uncertainty, guidance 
context is the appropriate one. In some cases, however, there is benign high uncertainty in 
the belief state; that is, there is confusion among states that requires the same action. In these 
cases, it’s not necessary to commute to localization context. So, an appropriate measure of 
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uncertainty is the “normalized divergence factor“ of the probability mass distribution, 
D(V(a)), (see eq. 7). 
The “thresholding-method“ for context selection uses a threshold φ for the divergence factor 
D. Only when divergence is over that threshold (high uncertainty), localization context is 
used as local policy: 
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However, the “weighting-method“ combines both contexts using divergence as weighting factor. 
To do this, probability mass distributions for guidance and localization contexts (VG(a) and VL(a))
are computed separately, and the weighted combined to obtain the final probability mass V(a). As 
in the voting method, the action selected is the one with highest probability mass: 
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8. Learning the Markov Model of a New Environment 
The POMDP model of a new environment is constructed from two sources of information: 

• The topology of the environment, represented as a graph with nodes and 
connections. This graph fixes the states (s ∈ S) of the model, and establishes the 
ideal transitions among them by means of logical connectivity rules. 

• An uncertainty model, that characterizes the errors or ambiguities of actions and 
observations, and together with the graph, makes possible to generate the 
transition T and observation ϑ matrixes of the POMDP. 

Taking into account that a reliable graph is crucial for the localization and planning systems to 
work properly, and the topological representation proposed in this work is very close to human 
environment perception, we propose a manual introduction of the graph. To do this, the 
SIRAPEM system incorporates an application to help the user to introduce the graph of the 
environment (this step is needed only once when the robot is installed in a new working domain, 
because the graph is a static representation of the environment).  

Fig. 8. Example of graph definition for the environment of Fig. 2. 
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because the graph is a static representation of the environment).  

Fig. 8. Example of graph definition for the environment of Fig. 2. 
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After numbering the nodes of the graph (the only condition to do this is to assign the lower 
numbers to room nodes, starting with 0), the connections in the four directions of each corridor 
node must be indicated. Figure 8 shows an example of the “Graph definition” application (for the 
environment of figure 2), that also allows to associate a label to each room. These labels will be 
identified by the voice recognition interface and used as user commands to indicate goal rooms. 
Once defined the graph, the objective of the learning module is to adjust the parameters 
of the POMDP model (entries of transition and observation matrixes). Figure 9 shows 
the steps involved in the POMDP generation of a new working environment. The graph 
introduced by the designer, together with some predefined initial uncertainty rules are 
used to generate an initial POMDP. This initial POMDP, described in next subsection, 
provides enough information for corridor navigation during an exploration stage, 
whose objective is to collect data in an optimum manner to adjust the settable 
parameters with minimum memory requirements and ensuring a reliable convergence 
of the model to fit real environment data (this is the “active learning” stage). Besides, 
during normal working of the navigation system (performing guiding tasks), the 
learning module carries on working (“passive learning” stage), collecting actions and 
observations to maintain the parameters updated in the face of possible changes. 

Usual working mode

(guidance to

goal rooms)

Active Learning

(EXPLORATION)

Topological graph

definition

DESIGNER

Initial

Uncertainty Rules

Initial POMDP

compilation

T ini ϑini

  T ϑ

Passive Learning

Parameter fitting

Parameter fitting

 data

Fig.9. Steps for the introduction and learning of the Markov model of a new environment. 

8.1. Settable parameters and initial POMDP compilation 

A method used to reduce the amount of training data needed for convergence of the EM 
algorithm is to limit the number of model parameters to be learned. There are two reasons 
because some parameters can be excluded off the training process: 

Global Navigation of Assistant Robots using Partially Observable Markov Decision Processes 279

• Some parameters are only robot dependent, and don’t change from one 
environment to another. Examples of this case are the errors in turn actions (that 
are nearly deterministic due to the accuracy of odometry sensors in short turns), or 
errors of sonars detecting “free” when “occupied” or vice versa. 

• Other parameters directly depend on the graph and some general uncertainty rules, 
being possible to learn the general rules instead of its individual entries in the model 
matrixes. This means that the learning method constrains some probabilities to be 
identical, and updates a probability using all the information that applies to any 
probability in its class. For example, the probability of losing a transition while 
following a corridor can be supposed to be identical for all states in the corridor, being 
possible to learn the general probability instead of the particular ones. 

Taking these properties into account, table 1 shows the uncertainty rules used to generate 
the initial POMDP in the SIRAPEM system.  

Table 1. Predefined uncertainty rules for constructing the initial POMDP model. 

Figure 10 shows the process of initial POMDP compilation. Firstly, the compiler 
automatically assigns a number (ns) to each state of the graph as a function of the number of 
the node to which it belongs (n) and its orientation within the node (head={0(right), 1(up), 
2(left), 3(down)}) in the following way (n_rooms being the number of room nodes): 
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• Some parameters are only robot dependent, and don’t change from one 
environment to another. Examples of this case are the errors in turn actions (that 
are nearly deterministic due to the accuracy of odometry sensors in short turns), or 
errors of sonars detecting “free” when “occupied” or vice versa. 
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Figure 10 shows the process of initial POMDP compilation. Firstly, the compiler 
automatically assigns a number (ns) to each state of the graph as a function of the number of 
the node to which it belongs (n) and its orientation within the node (head={0(right), 1(up), 
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Room states:        ns=n
Corridor states:   ns=n_rooms+(n-n_rooms)*4+head

Fig. 10. Initial POMDP compilation, and structure of the resulting transition and observation 
matrixes. Parameters over gray background will be adjusted by the learning system. 
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Finally, the compiler generates the initial transition and observation matrixes using the 
predefined uncertainty rules. Settable parameters are shown over gray background in figure 
10, while the rest of them will be excluded of the training process. The choice of settable 
parameters is justified in the following way: 

• Transition probabilities. Uncertainties for actions “Turn Left” (aL), “Turn Right” (aR),
“Go out room” (aO) and “Enter room” (aE) depends on odometry and the developed 
algorithms, and can be considered environment independent. However, the “Follow 
corridor” (aF) action highly depends on the ability of the vision system to segment 
doors color, that can change from one environment to another. As a pessimistic 
initialization rule, we use a 70% probability of making the ideal “follow” transition 
(F), and 10% probabilities for autotransition (N), and two (FF) or three (FFF) 
successive transitions, while the rest of possibilities are 0. However, these 
probabilities will be adjusted by the learning system to better fit real environment 
conditions. In this case, instead of learning each individual transition probability, the 
general rule (values for N, F, FF and FFF) will be trained (so, transitions that initially 
are 0 will be kept unchanged). The new learned values are used to recompile the 
rows of the transition matrix corresponding to corridor states aligned with corridor 
directions (the only ones in which the “Follow Corridor” action is defined).

• Observation probabilities.  The Abstract Sonar Observation can be derived from the 
graph, the state of doors, and a model of the sonar sensor characterizing its 
probability of perceiving “occupied” when “free” or vice versa. The last one is no 
environment dependent, and the state of doors can change with high frequency. 
So, the initial model contemplates a 50% probability for states “closed” and 
“opened” of all doors. During the learning process, states containing doors will be 
updated to provide the system with some memory about past state of doors. 
Regarding the visual observations, it’s obvious that they are not intuitive for being 
predefined by the user or deduced from the graph. So, in corridor states aligned 
with corridor direction, the initial model for both visual observations consists of a 
uniform distribution, and the probabilities will be later learned from robot 
experience during corridor following in the exploration stage.

As a resume, the parameters to be adjusted by the learning system are:     
• The general rules N, F, FF and FFF for the “Follow Corridor” action. Their initial 

values are shown in table I. 
• the probabilities for the Abstract Sonar Observation of corridor states in which there is a 

door in left, right or front directions (to endow the system with some memory about 
past door states, improving the localization system results). Initially, it’s supposed a 
50% probability for “opened” and “closed” states. In this case, the adjustment will use a 
low gain because the state of doors can change with high frequency. 

• The probabilities for the Landmark Visual Observation and Deep Visual 
Observation of corridor states aligned with corridor direction, that are initialized as 
uniform distributions. 

8.2. Training data collection 

Learning Markov models of partially observable environments is a hard problem, because it 
involves inferring the hidden state at each step from observations, as well as estimating the 
transition and observation models, while these two procedures are mutually dependent. 
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transition and observation models, while these two procedures are mutually dependent. 
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The EM algorithm (in Hidden Markov Models context known as Baum-Welch algorithm) is 
an expectation-maximization algorithm for learning the parameters (entries of the transition 
and observation probabilistic models) of a POMDP from observations (Bilmes, 1997). The 
input for applying this method is an execution trace, containing the sequence of actions-
observations executed and collected by the robot at each execution step t=1...T (T is the total 
number of steps of the execution trace): 

[ ]T1T1Ttt2211 o,a,o,...,a,o,...,a,o,a,o −−=trace  (14) 

The EM algorithm is a hill-climbing process that iteratively alternates two steps to converge 
to a POMDP that locally best fits the trace. In the E-Step (expectation step), probabilistic 
estimates for the robot states (locations) at the various time steps are estimated based on the 
currently available POMDP parameters (in the first iteration, they can be uniform matrixes). 
In the M-Step (maximization step), the maximum likelihood parameters are estimated based 
on the states computed in the E-step. Iterative application of both steps leads to a refinement 
of both, state estimation, and POMDP parameters. 
The limitations of the standard EM algorithm are well known. One of them is that it converges to a 
local optimum, and so, the initial POMDP parameters have some influence on the final learned 
POMDP. But the main disadvantage of this algorithm is that it requires a large amount of training 
data. As the degrees of freedom (settable parameters) increase, so does the need for training data. 
Besides, in order to the algorithm to converge properly, and taking into account that EM is in 
essence a frequency-counting method, the robot needs to traverse several times de whole 
environment to obtain the training data. Given the relative slow speed at which mobile robots can 
move, it’s desirable that the learning method learns good POMDP models with as few corridor 
traversals as possible.  There are some works proposing alternative approximations of the 
algorithm to lighten this problem, such as (Koening & Simmons, 1996) or (Liu et al., 2001). We 
propose a new method that takes advantage of human-robot interfaces of assistant robots and the 
specific structure of the POMDP model to reduce the amount of data needed for convergence. 
To reduce the memory requirements, we take advantage of the strong topological 
restrictions of our POMDP model in two ways: 

• All the parameters to be learned (justified in the last subsection) can be obtained 
during corridor following by sequences of “Follow Corridor” actions. So, it’s not 
necessary to alternate other actions in the execution traces, apart from turn actions 
needed to start the exploration of a new corridor (that in any case will be excluded 
off the execution trace).  

• States corresponding to different corridors (and different directions within the 
same corridor) can be broken up from the global POMDP to obtain reduced sub-
POMDPs. So, a different execution trace will be obtained for each corridor and each 
direction, and only the sub-POMDP corresponding to the involved states will be 
used to calculate de EM algorithm, reducing in this way the memory requirements. 

As it was shown in figure 9, there are two learning modes, that also differ in the way in 
which data is collected: the active learning mode during an initial exploration stage, and the 
passive learning mode during normal working of the navigation system.  
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8.2.1. Supervised active learning. Corridors exploration 

The objective of this exploration stage is to obtain training data in an optimized way to 
facilitate the initial adjustment of POMDP parameters, reducing the amount of data of 
execution traces, and the number of corridor traversals needed for convergence. The 
distinctive features of this exploration process are: 

• The objective of the robot is to explore (active learning), and so, it independently 
moves up and down each corridor, collecting a different execution trace for each 
direction. Each corridor is traversed the number of times needed for the proper 
convergence of the EM algorithm (in the results section it will be demonstrated that 
the number of needed traversals ranges from 3 to 5). 

• We introduce some user supervision in this stage, to ensure and accelerate 
convergence with a low number of corridor traversals. This supervision can be 
carried out by a non expert user, because it consists in answering some questions 
the robot formulates during corridor exploration, using the speech system of the 
robot. To start the exploration, the robot must be placed in any room of the corridor 
to be explored, whose label must be indicated with a talk as the following: 

Robot:    I’m going to start the exploration. ¿Which is the initial room? 
Supervisor:   dinning room A 
Robot:    Am I in dinning room A? 
Supervisor:   yes 

With this information, the robot initializes its belief Bel(S) as a delta distribution centered in 
the known initial state. As the initial room is known, states corresponding to the corridor to 
be explored can be extracted from the graph, and broken up from the general POMDP as it’s 
shown in figure 11. After executing an “Out Room” action, the robot starts going up and 
down the corridor, collecting the sequences of observations for each direction in two 
independent traces (trace 1 and trace 2 of figure 11). Taking advantage of the speech system, 
some “certainty points” (CPs) are introduced in the traces, corresponding to initial and final 
states of each corridor direction. To obtain these CPs, the robot asks the user “Is this the end 
state of the corridor?”  when the belief of that final state is higher than a threshold (we use a 
value of 0.4). If the answer is “yes”,  a CP is introduced in the trace (flag cp=1 in figure 11), 
the robot executes two successive turns to change direction, and introduces a new CP 
corresponding to the initial state of the opposite direction. If the answer is “no”, the robot 
continues executing “Follow Corridor” actions. This process is repeated until traversing the 
corridor a predefined number of times. 
Figure 11 shows an example of exploration of the upper horizontal corridor of the 
environment of figure 2, with the robot initially in room 13. As it’s shown, an 
independent trace is stored for each corridor direction, containing a header with the 
number of real states contained in the corridor, its numeration in the global POMDP, 
and the total number execution steps of the trace. The trace stores, for each execution 
step, the reading values of ASO, LVO and DVO, the “cp” flag indicating CPs, and their 
corresponding “known states”. These traces are the inputs for the EM-CBP algorithm 
shown in the next subsection. 
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8.2.1. Supervised active learning. Corridors exploration 

The objective of this exploration stage is to obtain training data in an optimized way to 
facilitate the initial adjustment of POMDP parameters, reducing the amount of data of 
execution traces, and the number of corridor traversals needed for convergence. The 
distinctive features of this exploration process are: 
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moves up and down each corridor, collecting a different execution trace for each 
direction. Each corridor is traversed the number of times needed for the proper 
convergence of the EM algorithm (in the results section it will be demonstrated that 
the number of needed traversals ranges from 3 to 5). 

• We introduce some user supervision in this stage, to ensure and accelerate 
convergence with a low number of corridor traversals. This supervision can be 
carried out by a non expert user, because it consists in answering some questions 
the robot formulates during corridor exploration, using the speech system of the 
robot. To start the exploration, the robot must be placed in any room of the corridor 
to be explored, whose label must be indicated with a talk as the following: 

Robot:    I’m going to start the exploration. ¿Which is the initial room? 
Supervisor:   dinning room A 
Robot:    Am I in dinning room A? 
Supervisor:   yes 

With this information, the robot initializes its belief Bel(S) as a delta distribution centered in 
the known initial state. As the initial room is known, states corresponding to the corridor to 
be explored can be extracted from the graph, and broken up from the general POMDP as it’s 
shown in figure 11. After executing an “Out Room” action, the robot starts going up and 
down the corridor, collecting the sequences of observations for each direction in two 
independent traces (trace 1 and trace 2 of figure 11). Taking advantage of the speech system, 
some “certainty points” (CPs) are introduced in the traces, corresponding to initial and final 
states of each corridor direction. To obtain these CPs, the robot asks the user “Is this the end 
state of the corridor?”  when the belief of that final state is higher than a threshold (we use a 
value of 0.4). If the answer is “yes”,  a CP is introduced in the trace (flag cp=1 in figure 11), 
the robot executes two successive turns to change direction, and introduces a new CP 
corresponding to the initial state of the opposite direction. If the answer is “no”, the robot 
continues executing “Follow Corridor” actions. This process is repeated until traversing the 
corridor a predefined number of times. 
Figure 11 shows an example of exploration of the upper horizontal corridor of the 
environment of figure 2, with the robot initially in room 13. As it’s shown, an 
independent trace is stored for each corridor direction, containing a header with the 
number of real states contained in the corridor, its numeration in the global POMDP, 
and the total number execution steps of the trace. The trace stores, for each execution 
step, the reading values of ASO, LVO and DVO, the “cp” flag indicating CPs, and their 
corresponding “known states”. These traces are the inputs for the EM-CBP algorithm 
shown in the next subsection. 
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Fig. 11. Example of exploration of one of the corridors of the environment of figure 2 
(involved nodes, states of the two execution traces, and stored data). 

8.2.2. Unsupervised passive learning 

The objective of the passive learning is to keep POMDP parameters updated during the 
normal working of the navigation system. These parameters can change, mainly the state of 
doors (that affects the Abstract Sonar Observation), or the lighting conditions (that can 
modify the visual observations or the uncertainties of “Follow Corridor” actions). Because 
during the normal working of the system (passive learning), actions are not selected to 
optimize execution traces (but to guide the robot to goal rooms), the standard EM algorithm 
must be applied. Execution traces are obtained by storing sequences of actions and 
observations during the navigation from one room to another. Because they usually 
correspond to only one traversal of the route, sensitivity of the learning algorithm must be 
lower in this passive stage, as it’s explained in the next subsection. 
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Fig. 12. Extraction of the local POMDP corresponding to one direction of the corridor to be 
explored.

8.3. The EM-CBP Algorithm 

The EM with Certainty Break Points (EM-CBP) algorithm proposed in this section can be 
applied only in the active exploration stage, with the optimized execution traces. In this 
learning mode, an execution trace corresponds to one of the directions of a corridor, and 
involves only “Follow Corridor” actions. 
The first step to apply the EM-CBP to a trace is to extract the local POMDP corresponding to 
the corridor direction from the global POMDP, as it’s shown in figure 12. To do this, states 
are renumbering from 0 to n-1 (n being the number of real states of the local POMDP). The 
local transition model Tl contains only the matrix corresponding to the “Follow Corridor” 
action (probabilities p(s’|s,aF), whose size for the local POMDP is (n-1)x(n-1), and can be 
constructed from the current values of N, F, FF and FFF uncertainty rules (see figure 12). 
The local observation model ϑl also contains only the involved states, extracted from the 
global POMDP, as it’s shown in figure 12. 
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The main distinguishing feature of the EM with Certainty Break Points algorithm is that it 
inserts delta distributions in alfa and beta (and so, gamma) distributions of the standard EM 
algorithm, corresponding to time steps with certainty points. This makes the algorithm to 
converge in a more reliable and fast way with shorter execution traces (and so, less corridor 
traversals) than the standard EM algorithm, as will be demonstrate in the results section. 
Figure 13 shows the pseudocode of the EM-CBP algorithm. The expectation and 
maximization steps are iterated until convergence of the estimated parameters. The 
stopping criteria is that all the settable parameters remain stable between iterations (with 
probability changes lower than 0.05 in our experiments). 
The update equations shown in figure 13 (items 2.4 and 2.5) differ from the standard EM in 
that they use Baye’s rule (Dirichlet distributions) instead of frequencies. This is because, 
although both methods produce asymptotically the same results for long execution traces, 
frequency-based estimates are not very reliable if the sample size is small. So, we use the 
factor K (K>0) to indicate the confidence in the initial probabilities (the higher the value, the 
higher the confidence, and so, the lower the variations in the parameters). The original re-
estimation formulas are a special case with K=0. Similarly, leaving the transition 
probabilities unchanged is a special case with K→∞.

Fig. 13. Pseudocode of the EM-CBP algorithm. 
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In practice, we use different values of K for the different settable parameters. For example, 
as visual observations are uniformly initialized, we use K=0 (or low values) to allow 
convergence with a low number of iterations. However, the adjustment of Abstract Sonar 
Observations corresponding to states with doors must be less sensitive (we use K=100), 
because the state of doors can easily change, and all the probabilities must be contemplated 
with relative high probability. During passive learning we also use a high value of K 
(K=500), because in this case the execution traces contain only one traversal of the route, and 
some confidence about previous values must be admitted. 
The final step of the EM-CBP algorithm is to return the adjusted parameters from the local 
POMDP to the global one. This is carried out by simple replacing the involved rows of the 
global POMDP with their corresponding rows of the learned local POMDP. 

9. Results 
To validate the proposed navigation system and test the effect of the different involved 
parameters, some experimental results are shown. Because some statistics must be extracted and 
it’s also necessary to validate the methods in real robotic platforms and environments, two kind of 
experiments are shown. Firstly, we show some results obtained with a simulator of the robot in 
the virtual environment of figure 2, in order to extract some statistics without making long tests 
with the real robotic platform. Finally, we´ll show some experiments carried out with the real 
robot of the SIRAPEM project in one of the corridors of the Electronics Department. 

9.1. Simulation results 

The simulation platform used in these experiments (figure 14) is based on “Saphira” commercial 
software (Konolige & Myers, 1998) provided by ActivMedia Robotics, that includes a very realistic 
robot simulator, that very closely reproduces real robot movements and ultrasound noisy 
measures on a user defined map. A visual 3D simulator using OpenGL software has been added 
to incorporate visual observations. Besides, to test the algorithms in extreme situations, we have 
incorporated to the simulator some methods to increase the non-ideal effect of actions, and noise 
in observations (indeed, these are higher that in real environment tests). So, simulation results can 
be reliably extrapolated to extract realistic conclusions about the system.  

Fig. 14. Diagram of test platforms: real robot and simulator. 
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There are some things that make one world more difficult to navigate than another. One of them 
is its degree of perceptual aliasing, that substantially affects the agent’s ability for localization and 
planning. The localization and two-layered planning architecture proposed in this work 
improves the robustness of the system in typical “aliased” environments, by properly combining 
two planning contexts: guidance and localization. As an example to demonstrate this, we use the 
virtual aliased environment shown in figure 2, in which there are two identical corridors. Firstly, 
we show some results about the learning system, then some results concerning only the 
localization system are shown and finally we include the planning module in some guidance 
experiments to compare the different planning strategies. 

9.1.1. Learning results 

The objective of the first simulation experiment is to learn the Markov model of the sub-
POMDP corresponding to the upper horizontal corridor of the environment of figure 2, 
going from left to right (so, using only the trace 1 of the corridor). Although the global graph 
yields a POMDP with 94 states, the local POMDP corresponding to states for one direction 
of that corridor has 7 states (renumbered from 0 to 6), and so, the sizes of the local matrixes 
are: 7x7 for the transition matrix p(s’|s,aF), 7x4 for the Deep Visual Observation matrix 
p(oDVO|s), and 7x8 for the Abstract Sonar Observation matrix p(oASO|s). The Landmark 
Visual Observation has been excluded off the simulation experiments to avoid overloading 
the results, providing similar results to the Deep Visual Observation. In all cases, the initial 
POMDP was obtained using the predefined uncertainty rules of table 1. The simulator 
establishes that the “ideal” model (the learned model should converge to it) is that shown in 
table 2. It shows the “ideal” D.V.O. and A.S.O. for each local state (A.S.O. depends on doors 
states), and the simulated non-ideal effect of “Follow Corridor” action, determined by 
uncertainty rules N=10%, F=80%, FF=5% and FFF=5%. 

Table 2. Ideal local model to be learned for upper horizontal corridor of figure 2. 

In the first experiment, we use the proposed EM-CBP algorithm to simultaneously learn the 
“follow corridor” transition rules, D.V.O. observations, and A.S.O. observations (all doors 
were closed in this experiment, being the worst case, because the A.S.O doesn’t provide 
information for localization during corridor following). The corridor was traversed 5 times 
to obtain the execution trace, that contains a CP at each initial and final state of the corridor, 
obtained by user supervision. Figure 15 shows the learned model, that properly fits the ideal 
parameters of table 2. Because K is large for A.S.O. probabilities adjustment, the learned 
model still contemplates the probability of doors being opened. The graph on the right of 
figure 15 shows a comparison between the real states that the robot traversed to obtain the 
execution trace, and the estimated states using the learned model, showing that the model 
properly fits the execution trace. 
Figure 16 shows the same results using the standard EM algorithm, without certainty 
points. All the conditions are identical to the last experiment, but the execution trace was 
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obtained by traversing the corridor 5 times with different and unknown initial and final 
positions. It’s shown that the learned model is much worse, and its ability to describe the 
execution trace is much lower. 

Fig. 15. Learned model for upper corridor of figure 2 using the EM-CBP algorithm. 

Fig. 16. Learned model for upper corridor of figure 2 using the standard EM algorithm. 

Table 3 shows some statistical results (each experiment was repeated ten times) about the 
effect of the number of corridor traversals contained in the execution trace, and the state of 
doors, using the EM-CBP and the standard EM algorithms. Although there are several 
measures to determine how well the learning method converges, in this table we show the 
percentage of faults in estimating the states of the execution trace. Opened doors clearly 
improve the learned model, because they provide very useful information to estimate states 
in the expectation step of the algorithm (so, it’s a good choice to open all doors during the 
active exploration stage). As it’s shown, using the EM-CBP method with all doors opened 
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Fig. 16. Learned model for upper corridor of figure 2 using the standard EM algorithm. 
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provides very good models even with only one corridor traversal. With closed doors, the 
EM-CBP needs between 3 and 5 traversals to obtain good models, while standard EM needs 
around 10 to produce similar results. In our experiments, we tested that the number of 
iterations for convergence of the algorithm is independent of all these conditions (number of 
corridor traversals, state of doors, etc.), ranging from 7 to 12. 

 EM-CBP Standard EM 

Nº of corridor 
 traversals 

All doors 
 closed 

All doors
opened

All doors 
 closed 

All doors 
 opened 

1 37.6 % 6.0 % 57.0 % 10.2 % 
2 19.5 % 0.6 % 33.8 % 5.2 % 
3 13.7 % 0.5 % 32.2 % 0.8 % 
5 12.9 % 0.0 % 23.9 % 0.1 % 

10 6.7 % 0.0 % 12.6 % 0.0 % 
Table  3. Statistical results about the effect of corridor traversals and state of doors. 

9.1.2. Localization results 

Two are the main contributions of this work to Markov localization in POMDP navigation 
systems. The first one is the addition of visual information to accelerate the global localization 
stage from unknown initial position, and the second one is the usage of a novel measure to better 
characterize locational uncertainty. To demonstrate them, we executed the trajectory shown in 
figure 17.a, in which the “execution steps” of the POMDP process are numbered from 0 to 11. The 
robot was initially at node 14 (with unknown initial position), and a number of “Follow corridor” 
actions were executed to reach the end of the corridor, then it executes a “Turn Left” action and 
continues through the new corridor until reaching room 3 door.  
In the first experiments, all doors were opened, ensuring a good transition detection. This is the 
best assumption for only sonar operation. Two simulations were executed in this case: the first one 
using only sonar information for transition detection and observation, and the second one adding 
visual information. As the initial belief is uniform, and there is an identical corridor to that in 
which the robot is, the belief must converge to two maximum hypotheses, one for each corridor. 
Only when the robot reaches node 20 (that is an SRS) is possible to eliminate this locational 
uncertainty, appearing a unique maximum in the distribution, and starting the “tracking stage”. 
Figure 17.b shows the real state assigned probability evolution during execution steps for the two 
experiments. Until step 5 there are no information to distinguish corridors, but it can be seen that 
with visual information the robot is better and sooner localized within the corridor. Figure 17.c 
shows entropy and divergence of both experiments. Both measures detect a lower uncertainty 
with visual information, but it can be seen that divergence better characterizes the convergence to 
a unique maximum, and so, the end of the global localization stage. So, with divergence it’s easier 
to establish a threshold to distinguish “global localization” and “tracking” stages. 
Figures 17.d and 17.e show the results of two new simulations in which doors 13, 2 and 4 
were closed. Figure 17.d shows how using only sonar information some transitions are lost 
(the robots skips positions 3 , 9 and 10 of figure 17.a). This makes much worse the 
localization results. However, adding visual information no transitions are lost, and results 
are very similar to that  of figure 17.b. 
So, visual information makes the localization more robust, reducing perceptual aliasing of 
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states in the same corridor, and more independent of doors state. Besides, the proposed 
divergence uncertainty measure better characterizes the positional uncertainty that the 
typical entropy used in previous works. 

Fig. 17. Localization examples. (a) Real position of the robot at each execution step, (b) 
Bel(sreal) with all doors opened, with only sonar (__) and with sonar+vision (---), (c) 
uncertainty measures with all doors opened, (d) the same as (b) but with doors 13,2,4 closed, 
(e) the same as (c) but with doors 13,2,4 closed. 
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a unique maximum, and so, the end of the global localization stage. So, with divergence it’s easier 
to establish a threshold to distinguish “global localization” and “tracking” stages. 
Figures 17.d and 17.e show the results of two new simulations in which doors 13, 2 and 4 
were closed. Figure 17.d shows how using only sonar information some transitions are lost 
(the robots skips positions 3 , 9 and 10 of figure 17.a). This makes much worse the 
localization results. However, adding visual information no transitions are lost, and results 
are very similar to that  of figure 17.b. 
So, visual information makes the localization more robust, reducing perceptual aliasing of 
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states in the same corridor, and more independent of doors state. Besides, the proposed 
divergence uncertainty measure better characterizes the positional uncertainty that the 
typical entropy used in previous works. 

Fig. 17. Localization examples. (a) Real position of the robot at each execution step, (b) 
Bel(sreal) with all doors opened, with only sonar (__) and with sonar+vision (---), (c) 
uncertainty measures with all doors opened, (d) the same as (b) but with doors 13,2,4 closed, 
(e) the same as (c) but with doors 13,2,4 closed. 
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9.1.3. Planning Results 

The two layered planning architecture proposed in this work improves the robustness of the 
system in “aliased” environments, by properly combining the two planning contexts: guidance 
and localization. To demonstrate this, we show the results after executing some simulations in the 
same fictitious environment of figure 17.a. In all the experiments the robot was initially at room 
state 0, and the commanded goal room state was 2. However, the only initial knowledge of the 
robot about its position is that it’s a room state ( initial belief is a uniform distribution over room 
states). So, after the “go out room” action execution, and thanks to the visual observations, the 
robot quickly localizes itself within the corridor, but due to the environment aliasing, it doesn’t 
know in which corridor it is. So, it should use the localization context to reach nodes 20 or 27 of 
figure 2, that are sensorial relevant nodes to reduce uncertainty. 

ONLY GUIDANCE CONTEXT 
 Nº Actions Final H Final D Final State 2 

MLS 6 0.351 0.754 54.3% 
Voting 17 0.151 0.098 63.8% 
QMDP 15 0.13 0.095 62.3% 

GUIDANCE AND LOCALIZATION CONTEXTS (always with voting global method) 
 Nº Actions Final H Final D Final State 2 

H(V(a)) threshold 14 0.13 0.05 83.5% 
D(V(a)) threshold 13 0.12 0.04 100% 
Weighted D(V(a)) 13 0.12 0.04 100% 

Table 4. Comparison of the planning strategies in the virtual environment of figure 17.a. 

Table 4 shows some statistical results (average number of actions to reach the goal, final 
values of entropy and divergence and skill percentage on reaching the correct room)  after 
repeating each experiment a number of times. Methods combining guidance and 
localization contexts are clearly better, because they direct the robot to node 20 before acting 
to reach the destination, eliminating location uncertainty, whereas using only guidance 
context has a unpredictable final state between rooms 2 and 11. On the other hand, using the 
divergence factor proposed in this work, instead of entropy, improves the probability of 
reaching the correct final state, because it better detects the convergence to a unique 
maximum (global localization). 

9.2. Real robot results 

To validate the navigation system in larger corridors and real conditions, we show the results 
obtained with SIRA navigating in one of the corridors of the Electronics Department of the 
University of Alcalá. Figure 19 shows the corridor map and its corresponding graph with 71 states.  
The first step to install the robot in this environment was to introduce the graph and explore 
the corridor to learn the Markov model. The local POMDP of each corridor direction 
contains 15 states. To accelerate convergence, all doors were kept opened during the active 
exploration stage. We evaluated several POMDP models, obtained in different ways: 

• The initial model generated by the POMDP compiler, in which visual observations 
of corridor aligned states are initialized with uniform distributions. 

• A “hand-made” model, in which visual observations were manually obtained 
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(placing the robot in the different states and reading the observations). 
• Several learned POMDP models (using the EM-CBP algorithm), with different 

number of corridor traversals (from one to nine) during exploration. 
Two “evaluation trajectories” were executed using these different models to localize the robot. In 
the first one, the robot crossed the corridor with unknown initial position and all doors opened, and 
in the second one, all doors were closed. The localization system was able to global localize the 
robot in less than 5 execution steps in both cases with all models. However, the uncertainty of the 
belief distribution was higher with worse models. Figure 18 shows the mean entropy of the belief 
distribution for all the evaluation trajectories. The “initial POMDP model” is the worst, because it 
doesn’t incorporate information about visual observations. The learned model with one corridor 
traversal is not better that the “hand-made” one, but from two traversals, the obtained entropy and 
easy installation justifies the usage of the learning module. It can also be deduced that a good 
number of corridor traversals ranges from 2 to 4 in this case, because later adjustments of the model 
can be carried out during “active exploration”. Because all doors were opened during exploration, 
as the number of corridor traversals increases, so does the evidence about opened doors in the 
model and so, the uncertainty in the “evaluation trajectory” with opened doors decreases, while in 
that  with closed doors increases. So, the model adapts this kind of environment changes. 
The time required for exploring one corridor with three traversals was about 5 minutes 
(with a medium speed of 0.3 m/s). The computation time of the EM-CBP algorithm, using 
the onboard PC of the robot (a 850MHz Pentium III) was 62 ms. These times are much lower 
that the ones obtained in Thrun’s work (Thrun et al., 1998 b), in which for learning a metric 
map of an environment of 60x60 meters (18 times larger than our corridor), an exploration 
time of 15 minutes and computation time of 41 minutes were necessary. 

Fig. 18. Comparison of the mean entropy of the belief distribution using different models for 
the corridor to localize the robot in two evaluation trajectories. 
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obtained with SIRA navigating in one of the corridors of the Electronics Department of the 
University of Alcalá. Figure 19 shows the corridor map and its corresponding graph with 71 states.  
The first step to install the robot in this environment was to introduce the graph and explore 
the corridor to learn the Markov model. The local POMDP of each corridor direction 
contains 15 states. To accelerate convergence, all doors were kept opened during the active 
exploration stage. We evaluated several POMDP models, obtained in different ways: 

• The initial model generated by the POMDP compiler, in which visual observations 
of corridor aligned states are initialized with uniform distributions. 
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number of corridor traversals (from one to nine) during exploration. 
Two “evaluation trajectories” were executed using these different models to localize the robot. In 
the first one, the robot crossed the corridor with unknown initial position and all doors opened, and 
in the second one, all doors were closed. The localization system was able to global localize the 
robot in less than 5 execution steps in both cases with all models. However, the uncertainty of the 
belief distribution was higher with worse models. Figure 18 shows the mean entropy of the belief 
distribution for all the evaluation trajectories. The “initial POMDP model” is the worst, because it 
doesn’t incorporate information about visual observations. The learned model with one corridor 
traversal is not better that the “hand-made” one, but from two traversals, the obtained entropy and 
easy installation justifies the usage of the learning module. It can also be deduced that a good 
number of corridor traversals ranges from 2 to 4 in this case, because later adjustments of the model 
can be carried out during “active exploration”. Because all doors were opened during exploration, 
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Fig. 19. Topological graph model for a corridor of the Electronics Department, and executed 
trajectory from room 2 to room 4 (process evolution shown in table 5). 

Once shown the results of the learning process, a guidance example is included in which 
robot was initially in room 2 with unknown initial room state, and room 4 was commanded 
as goal state (see figure 19).  
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Table 3. Experimental results navigating towards room 4 with unknown initial room state 
(real initial room 2) 

In this example, guidance and localization contexts are combined using thresholding 
method with divergence of probability mass as uncertainty measure. Table 5 shows, for each 
execution step, the real robot state (indicated by means of node number and direction), the 
first and second most likely states, and divergence of the belief D(Bel). It also shows the 
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most voted action in guidance context and the divergence of its probability mass 
distribution D(V). When the last one is higher than 0.5, the most voted action of localization 
context is used. Finally, it shows the action command selected at each process step, and the 
real effect (transition) of actions from step to step. 
It can be seen that after going out the room, localization context is activated and the 
robot turns left, in the opposite direction of the destination, but to the best direction to 
reduce uncertainty. After this movement, uncertainty is reduced, and starts the 
movement to room 4. The trajectory shown with dotted line in figure 10 was obtained 
from odometry readings, and show the real movement of the robot. As a global 
conclusion, divergence factor and context combination reduces the number of steps the 
robot is “lost”, and so the goal reaching time. 

10. Discussion and Future Work 
The proposed navigation system, based on a topological representation of the world, allows 
the robot to robustly navigate in corridor and structured environments. This is a very 
practical issue in assistance applications, in which robots must perform guidance missions 
from room to room in environments typically structured in corridors and rooms, such as 
hospitals or nursing homes. Although the topological map consists of very simple and 
reduced information about the environment, a set of robust local navigation behaviors (the 
actions of the model) allow the robot to locally move in corridors, reacting to sensor 
information and avoiding collisions, without any previous metric information.  
Another important subject in robot navigation is robustness in dynamic environments. 
It is demonstrated that topological representations are more robust to dynamic changes 
of the environment (people, obstacles, doors state, etc.) because they are not modelled 
in the map. In this case, in which local navigation is also based on an extracted local 
model of the corridor, the system is quite robust to people traversing the corridor. 
People are another source of uncertainty in actions and observations, which is 
successfully treated by the probabilistic transition and observation models. Regarding 
doors state, the learning module adapts the probabilities to its real state, making the 
system more robust to this dynamic aspect of the environment. 
In order to improve the navigation capabilities of the proposed system, we are working on 
several future work lines. The first one is to enlarge the action and observation sets to 
navigate in more complex or generic environments. For example, to traverse large halls or 
unstructured areas, a “wall-following” or “trajectory-following” action would be useful. 
Besides, we are also working on the incorporation of new observations from new sensors, 
such as a compass (to discriminate the four orientations of the graph) and a wireless signal 
strength sensor. Enlarging the model doesn’t affect the proposed global navigation 
algorithms. Regarding the learning system, future work is focused on automatically learning 
the POMDP structure from real data, making even easier the installation process. 
Another current research lines are the extension of localization, planning and learning 
probabilistic algorithms to multi-robot cooperative systems (SIMCA project) and the 
use of hierarchical topological models to expand the navigation system to larger 
structured environments. 

11. Conclusion 

This chapter shows a new navigation architecture for acting in uncertain domains, based on 
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Fig. 19. Topological graph model for a corridor of the Electronics Department, and executed 
trajectory from room 2 to room 4 (process evolution shown in table 5). 
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Table 3. Experimental results navigating towards room 4 with unknown initial room state 
(real initial room 2) 

In this example, guidance and localization contexts are combined using thresholding 
method with divergence of probability mass as uncertainty measure. Table 5 shows, for each 
execution step, the real robot state (indicated by means of node number and direction), the 
first and second most likely states, and divergence of the belief D(Bel). It also shows the 
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most voted action in guidance context and the divergence of its probability mass 
distribution D(V). When the last one is higher than 0.5, the most voted action of localization 
context is used. Finally, it shows the action command selected at each process step, and the 
real effect (transition) of actions from step to step. 
It can be seen that after going out the room, localization context is activated and the 
robot turns left, in the opposite direction of the destination, but to the best direction to 
reduce uncertainty. After this movement, uncertainty is reduced, and starts the 
movement to room 4. The trajectory shown with dotted line in figure 10 was obtained 
from odometry readings, and show the real movement of the robot. As a global 
conclusion, divergence factor and context combination reduces the number of steps the 
robot is “lost”, and so the goal reaching time. 

10. Discussion and Future Work 
The proposed navigation system, based on a topological representation of the world, allows 
the robot to robustly navigate in corridor and structured environments. This is a very 
practical issue in assistance applications, in which robots must perform guidance missions 
from room to room in environments typically structured in corridors and rooms, such as 
hospitals or nursing homes. Although the topological map consists of very simple and 
reduced information about the environment, a set of robust local navigation behaviors (the 
actions of the model) allow the robot to locally move in corridors, reacting to sensor 
information and avoiding collisions, without any previous metric information.  
Another important subject in robot navigation is robustness in dynamic environments. 
It is demonstrated that topological representations are more robust to dynamic changes 
of the environment (people, obstacles, doors state, etc.) because they are not modelled 
in the map. In this case, in which local navigation is also based on an extracted local 
model of the corridor, the system is quite robust to people traversing the corridor. 
People are another source of uncertainty in actions and observations, which is 
successfully treated by the probabilistic transition and observation models. Regarding 
doors state, the learning module adapts the probabilities to its real state, making the 
system more robust to this dynamic aspect of the environment. 
In order to improve the navigation capabilities of the proposed system, we are working on 
several future work lines. The first one is to enlarge the action and observation sets to 
navigate in more complex or generic environments. For example, to traverse large halls or 
unstructured areas, a “wall-following” or “trajectory-following” action would be useful. 
Besides, we are also working on the incorporation of new observations from new sensors, 
such as a compass (to discriminate the four orientations of the graph) and a wireless signal 
strength sensor. Enlarging the model doesn’t affect the proposed global navigation 
algorithms. Regarding the learning system, future work is focused on automatically learning 
the POMDP structure from real data, making even easier the installation process. 
Another current research lines are the extension of localization, planning and learning 
probabilistic algorithms to multi-robot cooperative systems (SIMCA project) and the 
use of hierarchical topological models to expand the navigation system to larger 
structured environments. 

11. Conclusion 

This chapter shows a new navigation architecture for acting in uncertain domains, based on 
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a POMDP model incorporating simple visual information. This new sensor provides better 
information to state transition and observation models, making possible a faster global 
localization when the initial position of the robot is unknown and a more robust navigation. 
This chapter also shows a new planning architecture for acting in uncertain domains. 
Instead of using POMDP exact solutions, we propose an alternative two-level layered 
architecture that simplifies the selection of the final action, combining several planning 
objectives. As local policies we propose a guidance context, whose objective is to reach the 
goal, and a localization context to reduce location uncertainty when necessary. As global 
policies, we have adopted some heuristic strategies proposed in previous works. Regarding 
the learning system, a new method based on a modification of EM algorithm and human-
robot cooperation reduces the number of needed corridor traversals. We have demonstrated 
the validity of this architecture in highly aliased environments and in a real environment 
using the robot prototype of the SIRAPEM project.  

12. Acknowledgements 

The authors wish to acknowledge the contribution of the Ministerio de Ciencia y Tecnología 
(MCyT) for SIRAPEM project financing (DPI2002-02193), the Comunidad de Madrid and 
University of Alcalá for SIMCA project financing (CAM-UAH2005/018), and the Comunidad
de Madrid for ROBOCITY2030 project financing (S-0505/DPI/000176).

13. References 

Asoh, H.; Motomura, Y.; Hara, I.; Akaho, S.; Hayamizu, S. & Matsui, T. (1996). 
Combining probabilistic map and dialog for robust life-long office navigation, 
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS’96), pp. 807-812. 

Bellman, R. (1957). Dynamic Programming. Princeton University Press. 
Bilmes, J.A. (1997). Gentle tutorial on the EM algorithm and its application to parameter 

estimation for gaussian mixture and Hidden Markov Models. Technical Report, 
University of Berkeley, ICSI-TR-97-021 

Cassandra, A. (1994). Optimal policies for partially observable Markov Decision Processes. 
Technical Report CS-94-14, Brown University, Department of Computer Science, 
Providence, RI 

Gechter, F.; Thomas, V. & Charpillet, F. (2001). Robot Localization by Stochastic Vision 
Based Device. The 5th World Multi-Conference on Systemics, Cybernetics and 
Informatics, SCI 2001.

Howard, R.A. (1960) Dynamic Programming and Markov Processes. The MIT Press,
Cambridge, Massachusetts. 

Kaelbling, L.P.; Cassandra, A.R. & Kurien, J.A. (1996). Acting under uncertainty: discrete 
bayesian models for mobile robot navigation, Proceedings of the IEEE/RSJ 
International Conference on Intelligent Robots and Systems 

Kaelbling, L.P.; Littman, M.L.; Cassandra, A.R. (1998). Planning and acting in partially 
observable stochastic domains. Artificial Intelligence, Vol.101, pp. 99-134 

Global Navigation of Assistant Robots using Partially Observable Markov Decision Processes 297

Koenig, S. & Simmons, R. (1996). Unsupervised Learning of Probabilistic Models for 
Robot Navigation, Proceedings of the International Conference on Robotics and 
Automation, pp. 2301-2308 

Koenig, S. & Simmons, R. (1998). Xavier: a robot navigation architecture based on 
partially observable Markov decision process models. Artificial Intelligence and 
Mobile Robots, 91-122. 

Konolige, K. & Myers, K. (1998). The Saphira architecture for autonomous mobile robots. 
Artificial Intelligence and Mobile Robots, pp. 211-242 

Liu, Y.; Emery, R.; Chakrabarti, D.; Burgard, W. & Thrun, S. (2001). Using EM to learn 3D 
models with mobile robots, Proceedings of the International Conference on Machine 
Learning (ICML) 

López, E.; Barea, R.; Bergasa, L.M. & Escudero, M.S. (2004). A human-robot cooperative 
learning system for easy installation of assistant robots in new working 
environments. Journal of Intelligent and Robotic Systems, Vol. 40, pp. 233-265. 

Lovejoy, W.S. (1991). A survey of algorithmic methods for partially observed Markov 
decision processes. Annals of Operations Research, 28(1), pp. 47-65 

Montemerlo, M.; Pineau, J.; Roy, N.; Thrun, S. & Verma, V. (2002). Experiences with a 
Mobile Robotic Guide for the Elderly, Proceedings of the AAAI National Conference on 
Artificial Intelligence, Edmonton, Canada 

Nourbakhsh, I.; Powers, R. & Birchfield, S. (1995). DERVISH: an office navigating robot. 
Artificial Intelligence Magazine, 16(2) 

Papadimitriou, C. & Tsitsiklis, J. (1987). The complexity of Markov decision processes. 
Mathematics of Operations Research, Vol. 12, No.3, pp. 441-450 

Pineau, P. & Thrun, S. (2002). An integrated approach to hierarchy and abstraction for 
POMDPs. Technical Report CMU-RI-TR-02-21, Carnagie Mellon University, 
Pittsburgh, PA 

Pineau, J.; Gordon, G. & Thrun, S. (2003). Point-based value iteration: An anytime algorithm 
for POMDPs. International Joint Conference on Artificial Intelligence (IJCAI), Acapulco, 
Mexico, pp. 1025-1032 

Puterman, M.L. (1994). Markov Decision Processes-Discrete Stochastic Dynamic 
Programming, John Wiley & Sons, Inc., New York, NY 

Regini, L; Tascini, G. & Zingaretti, P. (2002). Appearance-based Robot Navigation. 
Proceedings of Artificial Inteligence and Intelligent Agents (AIIA 2002) 

Roy, N.; Baltus, G.; Gemperle, F.; Goetz, J.; Hirsch, T.; Magaritis, D.; Montemerlo, M.; 
Pineau, J.; Schulte, J. & Thrun, S. (2000). Towards personal service robots for the 
elderly, Proceedings of the Workshop on Interactive Robotics and Entertainment (WIRE), 
Pittsburgh, PA 

Roy, N. (2003). Finding aproximate POMDP solutions through belief compression. PhD 
Thesis, CMU-RI-TR-03-25. Robotics Institute, Carnegie Mellon University. 

Theocharous, G. & Mahadevan, S. (2002). Approximate planning with hierarchical partially 
observable markov decision processes for robot navigation, Proceedings of the IEEE 
International Conference on Robotics and Automation (ICRA) 

Thrun, S.; Gutmann, J.; Fox, D.; Burgard, W. & Kuipers, B. (1998). Integrating topological 



296 Mobile Robots, Perception & Navigation 

a POMDP model incorporating simple visual information. This new sensor provides better 
information to state transition and observation models, making possible a faster global 
localization when the initial position of the robot is unknown and a more robust navigation. 
This chapter also shows a new planning architecture for acting in uncertain domains. 
Instead of using POMDP exact solutions, we propose an alternative two-level layered 
architecture that simplifies the selection of the final action, combining several planning 
objectives. As local policies we propose a guidance context, whose objective is to reach the 
goal, and a localization context to reduce location uncertainty when necessary. As global 
policies, we have adopted some heuristic strategies proposed in previous works. Regarding 
the learning system, a new method based on a modification of EM algorithm and human-
robot cooperation reduces the number of needed corridor traversals. We have demonstrated 
the validity of this architecture in highly aliased environments and in a real environment 
using the robot prototype of the SIRAPEM project.  

12. Acknowledgements 

The authors wish to acknowledge the contribution of the Ministerio de Ciencia y Tecnología 
(MCyT) for SIRAPEM project financing (DPI2002-02193), the Comunidad de Madrid and 
University of Alcalá for SIMCA project financing (CAM-UAH2005/018), and the Comunidad
de Madrid for ROBOCITY2030 project financing (S-0505/DPI/000176).

13. References 

Asoh, H.; Motomura, Y.; Hara, I.; Akaho, S.; Hayamizu, S. & Matsui, T. (1996). 
Combining probabilistic map and dialog for robust life-long office navigation, 
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS’96), pp. 807-812. 

Bellman, R. (1957). Dynamic Programming. Princeton University Press. 
Bilmes, J.A. (1997). Gentle tutorial on the EM algorithm and its application to parameter 

estimation for gaussian mixture and Hidden Markov Models. Technical Report, 
University of Berkeley, ICSI-TR-97-021 

Cassandra, A. (1994). Optimal policies for partially observable Markov Decision Processes. 
Technical Report CS-94-14, Brown University, Department of Computer Science, 
Providence, RI 

Gechter, F.; Thomas, V. & Charpillet, F. (2001). Robot Localization by Stochastic Vision 
Based Device. The 5th World Multi-Conference on Systemics, Cybernetics and 
Informatics, SCI 2001.

Howard, R.A. (1960) Dynamic Programming and Markov Processes. The MIT Press,
Cambridge, Massachusetts. 

Kaelbling, L.P.; Cassandra, A.R. & Kurien, J.A. (1996). Acting under uncertainty: discrete 
bayesian models for mobile robot navigation, Proceedings of the IEEE/RSJ 
International Conference on Intelligent Robots and Systems 

Kaelbling, L.P.; Littman, M.L.; Cassandra, A.R. (1998). Planning and acting in partially 
observable stochastic domains. Artificial Intelligence, Vol.101, pp. 99-134 

Global Navigation of Assistant Robots using Partially Observable Markov Decision Processes 297

Koenig, S. & Simmons, R. (1996). Unsupervised Learning of Probabilistic Models for 
Robot Navigation, Proceedings of the International Conference on Robotics and 
Automation, pp. 2301-2308 

Koenig, S. & Simmons, R. (1998). Xavier: a robot navigation architecture based on 
partially observable Markov decision process models. Artificial Intelligence and 
Mobile Robots, 91-122. 

Konolige, K. & Myers, K. (1998). The Saphira architecture for autonomous mobile robots. 
Artificial Intelligence and Mobile Robots, pp. 211-242 

Liu, Y.; Emery, R.; Chakrabarti, D.; Burgard, W. & Thrun, S. (2001). Using EM to learn 3D 
models with mobile robots, Proceedings of the International Conference on Machine 
Learning (ICML) 

López, E.; Barea, R.; Bergasa, L.M. & Escudero, M.S. (2004). A human-robot cooperative 
learning system for easy installation of assistant robots in new working 
environments. Journal of Intelligent and Robotic Systems, Vol. 40, pp. 233-265. 

Lovejoy, W.S. (1991). A survey of algorithmic methods for partially observed Markov 
decision processes. Annals of Operations Research, 28(1), pp. 47-65 

Montemerlo, M.; Pineau, J.; Roy, N.; Thrun, S. & Verma, V. (2002). Experiences with a 
Mobile Robotic Guide for the Elderly, Proceedings of the AAAI National Conference on 
Artificial Intelligence, Edmonton, Canada 

Nourbakhsh, I.; Powers, R. & Birchfield, S. (1995). DERVISH: an office navigating robot. 
Artificial Intelligence Magazine, 16(2) 

Papadimitriou, C. & Tsitsiklis, J. (1987). The complexity of Markov decision processes. 
Mathematics of Operations Research, Vol. 12, No.3, pp. 441-450 

Pineau, P. & Thrun, S. (2002). An integrated approach to hierarchy and abstraction for 
POMDPs. Technical Report CMU-RI-TR-02-21, Carnagie Mellon University, 
Pittsburgh, PA 

Pineau, J.; Gordon, G. & Thrun, S. (2003). Point-based value iteration: An anytime algorithm 
for POMDPs. International Joint Conference on Artificial Intelligence (IJCAI), Acapulco, 
Mexico, pp. 1025-1032 

Puterman, M.L. (1994). Markov Decision Processes-Discrete Stochastic Dynamic 
Programming, John Wiley & Sons, Inc., New York, NY 

Regini, L; Tascini, G. & Zingaretti, P. (2002). Appearance-based Robot Navigation. 
Proceedings of Artificial Inteligence and Intelligent Agents (AIIA 2002) 

Roy, N.; Baltus, G.; Gemperle, F.; Goetz, J.; Hirsch, T.; Magaritis, D.; Montemerlo, M.; 
Pineau, J.; Schulte, J. & Thrun, S. (2000). Towards personal service robots for the 
elderly, Proceedings of the Workshop on Interactive Robotics and Entertainment (WIRE), 
Pittsburgh, PA 

Roy, N. (2003). Finding aproximate POMDP solutions through belief compression. PhD 
Thesis, CMU-RI-TR-03-25. Robotics Institute, Carnegie Mellon University. 

Theocharous, G. & Mahadevan, S. (2002). Approximate planning with hierarchical partially 
observable markov decision processes for robot navigation, Proceedings of the IEEE 
International Conference on Robotics and Automation (ICRA) 

Thrun, S.; Gutmann, J.; Fox, D.; Burgard, W. & Kuipers, B. (1998). Integrating topological 



298 Mobile Robots, Perception & Navigation 

and metric maps for mobile robot navigation: a statistical approach, Proceedings of 
the National Conference on Artificial Intelligence, pp. 989-995 

Thrun, S.; Burgard, W. & Fox, D. (1998). A probabilistic approach to concurrent mapping 
and localization for mobile robots. Machine learning and autonomous robots (joint 
issue), 31(5), pp. 1-25.

Winston, P.H. (1984). Artificial Intelligence. Addison-Wesley. 
Zanichelli, F. (1999). Topological maps and robust localization for autonomous navigation. 

IJCAI Workshop on Adaptive spatial representations of dynamic environments.

14

Robust Autonomous Navigation and World 
Representation in Outdoor Environments 

Favio Masson†, Juan Nieto‡, José Guivant‡, Eduardo Nebot‡ 
†Instituto de Investigaciones en Ingeniería Eléctrica, Universidad Nacional del Sur 

Argentina 
‡ARC Centre of Excellence for Autonomous Systems, University of Sydney 

Australia

1. Introduction 

Reliable localisation is an essential component of any autonomous vehicle system. The basic 
navigation loop is based on dead reckoning sensors that predict high frequency vehicle 
manoeuvres and low frequency absolute sensors that bound positioning errors. The 
problem of localisation given a map of the environment or estimating the map knowing the 
vehicle position has been addressed and solved using a number of different approaches. A 
related problem is when neither, the map nor the vehicle position is known. In this case the 
vehicle, with known kinematics, starts in an unknown location in an unknown environment 
and proceeds to incrementally build a navigation map of the environment while 
simultaneously using this map to update its location. In this problem, vehicle and map 
estimates are highly correlated and cannot be obtained independently of one another. This 
problem is usually known as Simultaneous Localisation and Map Building (SLAM).  
As an incremental algorithm, the SLAM in large outdoor environments must address 
several particular problems: the perception of the environment and the nature of features 
searched or observables with the available sensors, the number of features needed to 
successfully localise, the type of representation used for the features, a real time 
management of the map and the fusion algorithm, the consistency of the SLAM process and 
the data association between features mapped and observations. A good insight into the 
SLAM problem can be found in Durrant-Whyte & Bailey (2006). 
This chapter presents recent contributions in the areas of perception, representation and 
data fusion, focusing on solutions that address the real time problem in large outdoor 
environments. Topics such as DenseSLAM, Robust Navigation and non-Gaussian 
Observations in SLAM are summarised and illustrated with real outdoor tests. 

2. Detailed environment representation  

One of the main issues of the SLAM problem is how to interpret and synthesize the external 
sensory information into a representation of the environment that can be used by the mobile 
robot to operate autonomously. Traditionally, SLAM algorithms have relied on sparse 
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robot to operate autonomously. Traditionally, SLAM algorithms have relied on sparse 
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environment representations: maps built up of isolated landmarks observed in the 
environment (Guivant et al., 2002; Neira & Tardós, 2001). However, for autonomous 
navigation, a more detailed representation of the environment is necessary, and the classic 
feature-based representation fails to provide a robot with sufficient information. While a 
dense representation is desirable, it has not been possible for SLAM paradigms.  
The next generation of autonomous systems will be required to operate in more complex 
environments. A sparse representation formed only by isolated landmarks will in general 
not fulfil the necessities of an autonomous vehicle, and a more detailed representation will 
be needed for tasks such as place recognition or path planning. Furthermore, not only is a 
dense representation of the environment required, but also an algorithm that is able to 
obtain multi-layered maps, where each layer represents a different property of the 
environment, such as occupancy, traversability, elevation, etc (Lacroix et al., 2002). 

2.1 DenseSLAM 

Mapping techniques that are able to handle vehicle uncertainty such as EKF-SLAM are not 
able to obtain dense representations due to the extremely high computational burden 
involved. On the other hand, mapping algorithms that are able to obtain detailed 
representations such as Occupancy Grids (Elfes, 1989) are known to have problems coping 
with vehicle pose uncertainty. The concept of DenseSLAM was introduced in (Nieto et al., 
2004) as the process of simultaneous vehicle localisation and dense map building.
DenseSLAM is then a more ambitious problem than classic feature-based SLAM. A 
solution for DenseSLAM will have to deal with computational and consistency issues, 
arising from the dual purpose of trying to obtain a dense representation while 
simultaneously doing localisation.  
This section presents the Hybrid Metric Maps. The Hybrid Metric Maps (HYMMs) algorithm 
(Guivant et al., 2004; Nieto et al., 2004) presents a novel solution for addressing the mapping 
problem with unknown robot pose. The HYMM is a mapping algorithm that combines feature 
maps with other metric sensory information. The approach permits the localisation of the robot 
and at the same time constructs a detailed environment representation (DenseSLAM). It is also a 
powerful technique to solve several practical problems (Masson et al., 2005)  
Rather than incorporating all the sensory information into a global map, the algorithm 
maintains a features map and represents the rest of the sensed data in local maps 
defined relative to the feature positions. A joint state vector with the vehicle pose and 
the feature positions is maintained and the dense maps are stored in a separate data 
structure. When new observations are received, the state vector is augmented with the 
feature positions and the rest of the information is fused into the local regions. The 
main difference between feature-based SLAM and DenseSLAM is that feature-based 
SLAM incorporates the features into the map and neglects the rest of the information, 
whereas DenseSLAM has the ability to maintain all the sensory information to build a 
detailed environment representation.  
The algorithm works as follows. When the robot starts to navigate, it will extract 
features from the environment that will be incorporated in the state vector. The feature 
map will be used to partition the global map into smaller regions, Fig. 1 illustrates this 
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process. The dense sensory information will be represented in these local regions. Fig. 
2 shows a hypothetical dense map. The figure shows the division of the global map 
into smaller regions and the dense multi-layer maps obtained by DenseSLAM. Each of 
these layers depicts different environment properties. The global dense map consists of 
a set of local maps defined relative to the feature positions. Fig. 3 shows a basic flow 
diagram of the algorithm.  
The main characteristic of DenseSLAM is the local representation used to fuse the dense 
information. The motivation behind the relative representation is to reduce correlations 
between states. Using this relative representation, the states represented in a local frame 
become strongly correlated and the states represented in different frames become weakly 
correlated. This is the key which allows the decorrelation of the dense maps with the rest of 
the system making the representation tractable. 
Since the observations of the world are taken relative to the vehicle pose, any environment 
representation created will be correlated with the vehicle pose. Augmenting the state vector 
with all the information rendered by the sensors and maintaining the correlations is 
infeasible due to the computational burden involved. Therefore, DenseSLAM incorporates a 
set of landmarks in the state vector and the rest of the sensed data is decorrelated and stored 
in a separate data structure.

Xv(k)

Xv(0)
Landmarks

Local Regions: Divisions

Fig. 1. Landmarks map (‘o’) and a particular partition of the global map in local regions. As 
shown, not all the landmarks are needed as vertex points in the regions definition. 

The approximation made by the algorithm consists of representing the dense information in the 
local regions without including the correlations between the locally represented information and 
the rest of the system. These correlations will be zero only when there is full correlation between 
the local property (expressed in global coordinates) and the features that define the respective 
local frame (assuming the same uncertainty magnitude), so their relative positions are perfectly 
known. Although it can be proved that in a SLAM process the map becomes fully correlated in 
the limit (Gibbens et al., 2000), in practice only high correlation is achieved. However, it can be 
demonstrated that the assumptions made by the HYMM framework are, in practice, very good 
approximations for SLAM problems. The next paragraphs explain two well known properties of 
SLAM that justify the approximations made in the HYMMs. 
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process. The dense sensory information will be represented in these local regions. Fig. 
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into smaller regions and the dense multi-layer maps obtained by DenseSLAM. Each of 
these layers depicts different environment properties. The global dense map consists of 
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The approximation made by the algorithm consists of representing the dense information in the 
local regions without including the correlations between the locally represented information and 
the rest of the system. These correlations will be zero only when there is full correlation between 
the local property (expressed in global coordinates) and the features that define the respective 
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demonstrated that the assumptions made by the HYMM framework are, in practice, very good 
approximations for SLAM problems. The next paragraphs explain two well known properties of 
SLAM that justify the approximations made in the HYMMs. 
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Fig. 2. Hypothetical multi-layer dense map. The ‘*’ represent the landmark positions and the 
map layers depict different environment properties captured by the sensors. 

Fig. 3. HYMM algorithm flow diagram. When a sensor frame is obtained, first a feature extraction 
algorithm is applied and the features extracted are added to the feature-based SLAM. Then the 
algorithm looks for new local regions (LR) and fuses all the sensory information in the respective 
local frames. f

kz  represents the observations associated with features and d
kz  the rest of the 

observations (dense maps). 
vx  represents the vehicle position and f

mx  the feature map. 
Geographically close objects have high correlation: If a set of observed objects is geographically close 
from the vehicle viewpoint, then the error due to the vehicle pose uncertainty will be a common 
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component of these estimated objects’ positions. This is a typical situation in SLAM where the 
vehicle accumulates uncertainty in its estimated position and incorporates observations that are 
used to synthesize a map. Due to this fact the estimates of objects that are geographically close will 
present similar uncertainties (high cross-correlations). Any update of a particular object will imply 
a similar update of any object sufficiently close to the first one. Figure 4 shows an example of a 
typical SLAM map. The figure shows a landmarks map with its uncertainty bounds. It can be seen 
that landmarks that are geographically close have very similar uncertainty. 
The relative representation stores close objects in local coordinate frames and then permits the 
reduction of correlation to the rest of the map (Guivant & Nebot, 2003): Assume a landmark can 
be represented in a local frame in the following way. 

( )L
v b= , ,x h x z x  (1) 

where xL represents the relative landmark position, xv the vehicle position, z the observations 
and xb the position of the landmarks that define the local frame (base landmarks).  

(a) (b) 
Fig. 4: Map Correlation: The figures show that geographically close objects possess similar 
uncertainty. Figure (a) shows how the landmarks that are being observed have similar 
uncertainty to the robot pose. (b) shows how the estimated landmarks’ means are updated after 
the vehicle closes the loop. The dots represent landmark position estimates over time. High 
correlation in geographically close objects is one of the SLAM characteristics; because the vehicle 
will observe close objects at similar instants it will propagate similar uncertainty to the objects. 

Taking into account that the observation errors are independent of the vehicle position, the 
cross-correlation between the vehicle and the landmark in the local frame will be: 

v b

T T
vL vv vb= ∇ + ∇x xP P h P h  (2) 

where
vvP  represents the vehicle states covariance, 

vbP  the cross-correlation between the 
vehicle states and the base landmarks position estimated and 

i i

∂
∂∇ = h

x xh  is the Jacobian 

matrix of h with respect to the state xi. 
Taking for example the one dimensional case, Equation (1) becomes:  

( )L
v b v bx h x z x x z x= , , = + −  (3) 

Applying Equation (3) to (2):  
(1) ( 1)vL vv vb vv vb= + − = −P P P P P  (4) 

Equation (4) shows that if the magnitudes of Pvv and the covariance of the base landmarks 
Pbb are similar, when the robot is highly correlated with the base landmarks there will be 
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Equation (4) shows that if the magnitudes of Pvv and the covariance of the base landmarks 
Pbb are similar, when the robot is highly correlated with the base landmarks there will be 
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almost no correlation between the robot position and the local landmark (PvL) and then no 
correlation between the relative landmark and the rest of the map. Since the relative and the 
base landmarks are geographically close, whenever the robot observes the local landmark it 
will be highly correlated with the base landmarks. This fact will reduce the correlation 
between the local landmark and the robot and therefore the correlation between the local 
landmark and the rest of the map will be reduced as well.  
A more direct way of observing the decorrelation effect will be by evaluating the cross-
correlation between a landmark in the global frame with a landmark represented in a 
local frame and comparing this with the cross-correlation of the same two landmarks, 
both represented in the global frame. In a similar manner to Equation (2), the cross-
covariance matrix between the j-th landmark and a locally represented landmark can 
be evaluated in the following way: 
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where the prefix j means the j-th landmark, b the base landmarks that define the local frame, L
the locally represented landmark and G the position of the local landmark in the global frame. 
Then given Pjb, PjG and the transforming function from the global to the local frame h, it is 
possible to evaluate the cross-correlation between the local landmark and the j landmark in the 
map. Although the effect of decorrelation happens regardless of the particular local 
representation used, finding an expression to demonstrate that PjL << PjG will be dependent on 
the local representation used. Equation (5) shows that for a particular local representation h, the 
decorrelation effect between the local object and the rest of the map will depend on the cross 
correlation between the rest of the map and the base landmarks and the cross-correlation 
between the rest of the map and the local represented object in the global frame.  
Fig. 5 (a) shows the simulation environment utilised to illustrate the decorrelation effect. In the 
example, a local region is defined using three landmarks and another landmark is locally 
represented in this local frame. The i-th landmark is then represented in the local frame after a few 
observations which ensures high correlation with the base landmarks. After that, the landmark is 
not observed again, as it actually occurs with the dense sensory information (it is assumed that is 
not possible to observe exactly the same point of the environment more than once). The blue solid 
line in Fig. 5 (a) shows the local frame axis and the red dotted line the local landmark position 
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(c) (d) 
Fig. 5: Decorrelation effect: (a) shows a zoom of the navigation environment where three 
landmarks were used to define a local region and one landmark   (red dashed line) was 
represented in this local frame. (b) shows the correlation between the landmark   
represented in the global frame and the base landmarks. (c) shows the decorrelation effect; 
when the landmark   is represented in local coordinates (blue line) the cross-correlation with 
other landmarks is considerably reduced in respect to the correlation between other 
landmarks and the landmark   in global coordinates (red line). (d) shows the landmark 
deviation when it is represented in local (blue line) and global (red line) coordinates.  

Fig. 5 (b) shows the evolution in time of the correlation coefficient of the i landmark 
represented in global coordinates G

Lix , with the landmarks used to define the local frame. 
The solid line depicts the cross-correlation in the east axis and the dashed line in the north 
axis. The different colours represent the cross-correlation with the different base landmarks. 
As can be seen, the landmark G

Lix  possesses high correlation with the base landmarks. This is 
due to the geographical proximity between the landmarks. Fig. 5 (c) shows the correlations 
between G

Lix  and 
Ljx  in red, and the correlations between the j landmark and the landmark i

represented in the local frame L
Lix  (Equation (5)) in blue. The correlation was reduced from 

almost one when the landmark was represented in global coordinates, to almost zero when 
the landmark was represented in the local frame. 
Finally Fig. 5 (d) shows the variance of the landmark i. The blue line depicts the variance 
when the landmark is in the local frame and the red line when it is in global. Because of the 
high correlation between G

Lix  and the base landmarks, the uncertainty in their relative 
position is very low, and so is the variance of L

Lix .
In summary the relative representation used by DenseSLAM permits the local represented 
information to be decorrelated with the rest of the system. This permits the incorporation of 
more information without increasing the computational cost. 

2.2 DenseSLAM: Applications 

This section shows how the detailed multi-dimensional environment description obtained 
by DenseSLAM can be used to improve the vehicle navigation process. Two particular 
applications are shown. (i) Complex landmarks can be extracted and incorporated as they 
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almost no correlation between the robot position and the local landmark (PvL) and then no 
correlation between the relative landmark and the rest of the map. Since the relative and the 
base landmarks are geographically close, whenever the robot observes the local landmark it 
will be highly correlated with the base landmarks. This fact will reduce the correlation 
between the local landmark and the robot and therefore the correlation between the local 
landmark and the rest of the map will be reduced as well.  
A more direct way of observing the decorrelation effect will be by evaluating the cross-
correlation between a landmark in the global frame with a landmark represented in a 
local frame and comparing this with the cross-correlation of the same two landmarks, 
both represented in the global frame. In a similar manner to Equation (2), the cross-
covariance matrix between the j-th landmark and a locally represented landmark can 
be evaluated in the following way: 

Gb

T T
jL jb jG= ∇ + ∇x xP P h P h  (5) 

where the prefix j means the j-th landmark, b the base landmarks that define the local frame, L
the locally represented landmark and G the position of the local landmark in the global frame. 
Then given Pjb, PjG and the transforming function from the global to the local frame h, it is 
possible to evaluate the cross-correlation between the local landmark and the j landmark in the 
map. Although the effect of decorrelation happens regardless of the particular local 
representation used, finding an expression to demonstrate that PjL << PjG will be dependent on 
the local representation used. Equation (5) shows that for a particular local representation h, the 
decorrelation effect between the local object and the rest of the map will depend on the cross 
correlation between the rest of the map and the base landmarks and the cross-correlation 
between the rest of the map and the local represented object in the global frame.  
Fig. 5 (a) shows the simulation environment utilised to illustrate the decorrelation effect. In the 
example, a local region is defined using three landmarks and another landmark is locally 
represented in this local frame. The i-th landmark is then represented in the local frame after a few 
observations which ensures high correlation with the base landmarks. After that, the landmark is 
not observed again, as it actually occurs with the dense sensory information (it is assumed that is 
not possible to observe exactly the same point of the environment more than once). The blue solid 
line in Fig. 5 (a) shows the local frame axis and the red dotted line the local landmark position 
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(c) (d) 
Fig. 5: Decorrelation effect: (a) shows a zoom of the navigation environment where three 
landmarks were used to define a local region and one landmark   (red dashed line) was 
represented in this local frame. (b) shows the correlation between the landmark   
represented in the global frame and the base landmarks. (c) shows the decorrelation effect; 
when the landmark   is represented in local coordinates (blue line) the cross-correlation with 
other landmarks is considerably reduced in respect to the correlation between other 
landmarks and the landmark   in global coordinates (red line). (d) shows the landmark 
deviation when it is represented in local (blue line) and global (red line) coordinates.  

Fig. 5 (b) shows the evolution in time of the correlation coefficient of the i landmark 
represented in global coordinates G

Lix , with the landmarks used to define the local frame. 
The solid line depicts the cross-correlation in the east axis and the dashed line in the north 
axis. The different colours represent the cross-correlation with the different base landmarks. 
As can be seen, the landmark G

Lix  possesses high correlation with the base landmarks. This is 
due to the geographical proximity between the landmarks. Fig. 5 (c) shows the correlations 
between G

Lix  and 
Ljx  in red, and the correlations between the j landmark and the landmark i

represented in the local frame L
Lix  (Equation (5)) in blue. The correlation was reduced from 

almost one when the landmark was represented in global coordinates, to almost zero when 
the landmark was represented in the local frame. 
Finally Fig. 5 (d) shows the variance of the landmark i. The blue line depicts the variance 
when the landmark is in the local frame and the red line when it is in global. Because of the 
high correlation between G

Lix  and the base landmarks, the uncertainty in their relative 
position is very low, and so is the variance of L

Lix .
In summary the relative representation used by DenseSLAM permits the local represented 
information to be decorrelated with the rest of the system. This permits the incorporation of 
more information without increasing the computational cost. 

2.2 DenseSLAM: Applications 

This section shows how the detailed multi-dimensional environment description obtained 
by DenseSLAM can be used to improve the vehicle navigation process. Two particular 
applications are shown. (i) Complex landmarks can be extracted and incorporated as they 
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become identified using the dense representation.  (ii) The dense maps can be used to 
estimate the variations in time of the areas explored by the robot which can be used to 
discriminate whether a region has potential dynamic objects.  
High Level Landmarks (HLLs): One of the main problems in SLAM algorithms is the error 
accumulation due to non-linearities in the system. This error accumulation can be reduced if 
more information is added into the localisation map, since the vehicle error will remain 
smaller. Among the reasons to avoid including more landmarks is the computational 
burden required to maintain the map. However, in many situations, even when the 
computational cost may not be a problem, the difficulties of finding stable and easily detectable
features cause the algorithm to use only a small number of landmarks for the localisation 
process, which results in a major accumulation of errors due to non-linearities.  
DenseSLAM yields a rich environment representation, which gives the possibility of adding 
landmarks extracted from the dense maps into the landmarks map. In many situations an 
object cannot be detected using the measurements taken from only one vantage point. This 
can be due to a variety of reasons: occlusion between objects, the size of the object in relation 
to the sensor field of view, an inappropriate feature model, or just because the nature of the 
sensor makes the estimation of the landmark location impossible from only one vantage 
point (e.g. wide-beam sonar; Leonard J. et al. 2002, McKerrow P. 1993). Estimating partially 
observable features has been an important research topic in computer vision using stereo 
vision and bearing only information, where the initialisation of the feature position is a 
significant problem. The problem of partially observable features has also been studied for 
localisation and SLAM applications. In Leonard et al. (2002) an approach is presented that 
delays the decision to incorporate the observations as map landmarks. Consistent estimation 
is achieved by adding the past vehicle positions to the state vector and combining the 
observations from multiple points of view until there is enough information to validate a 
feature. In McKerrow (1993), intersection of constant depth range of ultrasonic sensors is 
used to determine the location of features from multiple vantage points.  
Having a comprehensive representation of the environment will enable a delayed 
processing to determine whether part of the map can qualify as a landmark. The rich 
representation obtained by DenseSLAM will enable postprocessing capabilities to 
continuously detect high-level landmarks using the dense map layers. The newly detected 
landmarks can then be added to the feature map. This approach has the potential of 
incorporating a large number of landmark models, some of them to be applied online at the 
time the observations are taken and the rest to run in the background when computer 
resources become available. The landmarks can then be incorporated into the features map. 
High Level Landmarks representation. The only condition for the incorporation of a HLL is 
to represent the information in the same form as the feature map. For example, if EKF-
SLAM is used, the HLLs have to be represented in state vector form.  
The HLLs could be represented using geometric parameters. Experimental results of SLAM using 
trees as landmarks are presented in (Guivant et al., 2002). An EKF is run which estimates the trees’ 
parameters, which consist of the centre and the diameter of the trees’ trunks. In Thrun (2001) an 
algorithm is presented that employs expectation maximization to fit a low-complexity planar 
model to 3D data collected by range finders and a panoramic camera. After this model is obtained, 
its parameters could be added to the state vector to represent a HLL.  
Fig. 6 shows an example of HLLs. In the example, the HLLs are represented as a local 
coordinate system and a template which is defined relative to the local axes. The templates 
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are formed with the information extracted from the dense maps. Scan correlation can be 
used to generate observations of the landmarks (see Nieto et al. 2005, for more details).  

(a) (b) 
Fig. 6: The figure examples of HLLs extracted from the dense maps. (a) shows a HLL 
represented extracted from an occupancy grid map and (b) a HLL extracted from a Sum of 
Gaussian dense map. 

Dynamic Environments: Most of the mapping algorithms assume the world is static (Thrun, 
2002). Dynamic environments require an extension of the typical representation used for 
static environments. That extension should allow for modelling the temporal evolution of 
the environment. Dynamic objects can induce serious errors in the robot localisation process. 
Only a few approaches that include moving objects have been presented so far. The next 
paragraphs review some of them.  
A SLAM algorithm with generic objects (static and dynamic) is presented in (Chieh-Chih Wang, 
2004). Similar to classic SLAM, the approach calculates the joint posterior over the robot and 
object’s pose, but unlike traditional SLAM it includes also the object’s motion model. The 
problem is shown to be computationally intractable and so a simplified version called SLAM with 
Detection and Tracking of Moving Objects (SLAM with DATMO) is presented (Chieh-Chih Wang et 
al., 2003). The latest algorithm decomposes the estimation process into two separate problems: (i) 
the SLAM problem, using static landmarks as the classic approach, and (ii) the detection and 
tracking of moving objects, using the robot pose estimated by the SLAM algorithm. This 
simplification makes updating both the SLAM and the tracking algorithm possible in real-time 
since they are now considered two independent filters.  
In Hahnel et al. (2003) an algorithm for mapping in dynamic environments is presented. The 
aim of the approach is to determine which measurements correspond to dynamic objects and 
then filter them out for the mapping process. The approach uses the EM algorithm; the 
expectation step computes an estimate of which measurements might correspond to static 
objects. These estimates are then used in the maximization step to determine the position of 
the robot and the map.  
An approach called Robot Object Mapping Algorithm (ROMA) is presented in Biswas et al. (2003). 
The main goal is to identify non-stationary objects and model their time varying locations. The 
approach assumes that objects move sufficiently slowly that they can safely be assumed static for 
the time it takes to build an occupancy grid map of the whole area explored by the robot. 
Assuming the robot is able to acquire static occupancy grid maps at different times, changes in 
the environment are detected using a differencing technique. The algorithm learns models of the 
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become identified using the dense representation.  (ii) The dense maps can be used to 
estimate the variations in time of the areas explored by the robot which can be used to 
discriminate whether a region has potential dynamic objects.  
High Level Landmarks (HLLs): One of the main problems in SLAM algorithms is the error 
accumulation due to non-linearities in the system. This error accumulation can be reduced if 
more information is added into the localisation map, since the vehicle error will remain 
smaller. Among the reasons to avoid including more landmarks is the computational 
burden required to maintain the map. However, in many situations, even when the 
computational cost may not be a problem, the difficulties of finding stable and easily detectable
features cause the algorithm to use only a small number of landmarks for the localisation 
process, which results in a major accumulation of errors due to non-linearities.  
DenseSLAM yields a rich environment representation, which gives the possibility of adding 
landmarks extracted from the dense maps into the landmarks map. In many situations an 
object cannot be detected using the measurements taken from only one vantage point. This 
can be due to a variety of reasons: occlusion between objects, the size of the object in relation 
to the sensor field of view, an inappropriate feature model, or just because the nature of the 
sensor makes the estimation of the landmark location impossible from only one vantage 
point (e.g. wide-beam sonar; Leonard J. et al. 2002, McKerrow P. 1993). Estimating partially 
observable features has been an important research topic in computer vision using stereo 
vision and bearing only information, where the initialisation of the feature position is a 
significant problem. The problem of partially observable features has also been studied for 
localisation and SLAM applications. In Leonard et al. (2002) an approach is presented that 
delays the decision to incorporate the observations as map landmarks. Consistent estimation 
is achieved by adding the past vehicle positions to the state vector and combining the 
observations from multiple points of view until there is enough information to validate a 
feature. In McKerrow (1993), intersection of constant depth range of ultrasonic sensors is 
used to determine the location of features from multiple vantage points.  
Having a comprehensive representation of the environment will enable a delayed 
processing to determine whether part of the map can qualify as a landmark. The rich 
representation obtained by DenseSLAM will enable postprocessing capabilities to 
continuously detect high-level landmarks using the dense map layers. The newly detected 
landmarks can then be added to the feature map. This approach has the potential of 
incorporating a large number of landmark models, some of them to be applied online at the 
time the observations are taken and the rest to run in the background when computer 
resources become available. The landmarks can then be incorporated into the features map. 
High Level Landmarks representation. The only condition for the incorporation of a HLL is 
to represent the information in the same form as the feature map. For example, if EKF-
SLAM is used, the HLLs have to be represented in state vector form.  
The HLLs could be represented using geometric parameters. Experimental results of SLAM using 
trees as landmarks are presented in (Guivant et al., 2002). An EKF is run which estimates the trees’ 
parameters, which consist of the centre and the diameter of the trees’ trunks. In Thrun (2001) an 
algorithm is presented that employs expectation maximization to fit a low-complexity planar 
model to 3D data collected by range finders and a panoramic camera. After this model is obtained, 
its parameters could be added to the state vector to represent a HLL.  
Fig. 6 shows an example of HLLs. In the example, the HLLs are represented as a local 
coordinate system and a template which is defined relative to the local axes. The templates 
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are formed with the information extracted from the dense maps. Scan correlation can be 
used to generate observations of the landmarks (see Nieto et al. 2005, for more details).  

(a) (b) 
Fig. 6: The figure examples of HLLs extracted from the dense maps. (a) shows a HLL 
represented extracted from an occupancy grid map and (b) a HLL extracted from a Sum of 
Gaussian dense map. 

Dynamic Environments: Most of the mapping algorithms assume the world is static (Thrun, 
2002). Dynamic environments require an extension of the typical representation used for 
static environments. That extension should allow for modelling the temporal evolution of 
the environment. Dynamic objects can induce serious errors in the robot localisation process. 
Only a few approaches that include moving objects have been presented so far. The next 
paragraphs review some of them.  
A SLAM algorithm with generic objects (static and dynamic) is presented in (Chieh-Chih Wang, 
2004). Similar to classic SLAM, the approach calculates the joint posterior over the robot and 
object’s pose, but unlike traditional SLAM it includes also the object’s motion model. The 
problem is shown to be computationally intractable and so a simplified version called SLAM with 
Detection and Tracking of Moving Objects (SLAM with DATMO) is presented (Chieh-Chih Wang et 
al., 2003). The latest algorithm decomposes the estimation process into two separate problems: (i) 
the SLAM problem, using static landmarks as the classic approach, and (ii) the detection and 
tracking of moving objects, using the robot pose estimated by the SLAM algorithm. This 
simplification makes updating both the SLAM and the tracking algorithm possible in real-time 
since they are now considered two independent filters.  
In Hahnel et al. (2003) an algorithm for mapping in dynamic environments is presented. The 
aim of the approach is to determine which measurements correspond to dynamic objects and 
then filter them out for the mapping process. The approach uses the EM algorithm; the 
expectation step computes an estimate of which measurements might correspond to static 
objects. These estimates are then used in the maximization step to determine the position of 
the robot and the map.  
An approach called Robot Object Mapping Algorithm (ROMA) is presented in Biswas et al. (2003). 
The main goal is to identify non-stationary objects and model their time varying locations. The 
approach assumes that objects move sufficiently slowly that they can safely be assumed static for 
the time it takes to build an occupancy grid map of the whole area explored by the robot. 
Assuming the robot is able to acquire static occupancy grid maps at different times, changes in 
the environment are detected using a differencing technique. The algorithm learns models of the 
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objects using EM. The expectation step calculates the correspondences between objects at 
different points in time and the maximisation step uses these correspondences to generate 
refined object models, represented by occupancy grid maps.  
The algorithms presented in Chieh-Chih Wang et al. (2003) and Montemerlo et al. (2002) 
have one thing in common; they rely on pre-defined models of the specific objects they aim 
to track. ROMA, however, is able to learn about the shape of the objects, but the algorithm 
presents a number of limitations. Objects have to move slowly (it is not able to cope with 
fast-moving objects such as people), it is assumed the robot is able to obtain static maps at 
different times. The results presented include only four different objects in an environment 
where these objects can be perfectly segmented from a laser scan. The extension to a real 
environment with a larger number of objects may not be possible and will be 
computationally very expensive.
If navigation is the primary objective, the accurate shape of objects, or even their 
classification may not be important in general. What may be more useful is an algorithm 
able to identify observations that may be coming from objects that are not static and 
eliminate them from the list of observations to be used for the navigation process. 
Furthermore the algorithm could identify areas where it is more likely to find dynamic 
objects (e.g. a corridor where people walk) and then avoid their use or give a low priority to 
observations coming from objects in those areas.  
The rich environment representation obtained by DenseSLAM allows a map layer 
identifying the most likely areas to possess dynamic objects to be built. As shown in Biswas 
et al., (2003), dynamic objects can be identified by differentiation of maps taken at different 
times. There are two different classes of object motions in a dynamic environment; slow 
motion, as for example the motion of a bin, which will be static during most of the day but 
will eventually be moved; and fast motion, such as people. Using DenseSLAM, and 
applying a straightforward differentiation, it is possible to identify regions with dynamic 
objects for either fast or slow motion objects. 
One of the main problems with the differentiation is that maps obtained at different times 
will have different uncertainty. If a global map is maintained and two maps acquired at 
different times want to be differentiated, the uncertainty in the maps will make the 
matching process very difficult.  
In DenseSLAM the global map is divided into smaller regions, so the whole map can be 
differentiated by applying differentiation between the corresponding local regions. As a 
consequence, the differentiation process will be prone only to local errors (which were 
shown to be much smaller than the global ones) eliminating detection errors due to the 
uncertainty between maps acquired at different moments.  
A particular case where the DenseSLAM representation will not present advantages over 
other approaches is in decentralised multi-robot mapping. If multiple robots are used to 
map an area, each robot will form the map using different local regions. If the objective is to 
detect dynamic objects by fusing the maps built by different robots, a global map will have 
to be used and DenseSLAM loses advantages with respect to other approaches.  
Fast motion can be captured by differentiation, in a similar way to slow motion. The main 
difference is that the differentiation is done over shorter periods of time and only in the 
region under the sensor view. As in the detection of objects with slow motion, using 
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DenseSLAM the differentiation is done using local regions instead of the global map. The 
motion detection will be included in a map layer as will the other properties captured by the 
sensors, then the global position of the dynamic map will be updated together with the 
other map properties (colour, occupancy, etc.).  
It is important to note that fast motion detection can be also done with other 
techniques that are able to create a dense map in proximity to the vehicle position. The 
advantage of DenseSLAM is that the dense representation is already obtained, 
therefore, the detection of moving objects is a straightforward procedure that does not 
add computational cost.   

2.3 Experimental Results 

This section presents experimental results of DenseSLAM in an outdoor environment. The 
environment is a large area of 120 by 200 metres and the run is approximately 1 km long. 
The experimental platform used for the experiments is a conventional Holden UTE 
equipped with Sick lasers, a linear variable differential transformer sensor for the steering 
mechanism, back wheel velocity encoder, inertial unit and GPS.  
In order to test the DenseSLAM algorithm, the GPS information was fused with the feature-
based SLAM to obtain a laser image of the environment that is used as a reference to 
compare with the estimates by DenseSLAM. Fig. 7 shows the laser image obtained with the 
GPS information and the final map obtained with DenseSLAM. The dense map was 
obtained by fusing the raw laser observations into the local regions. The figure also shows 
the landmark positions.  

Fig. 7: Final map obtained with DenseSLAM. The light points represent the laser image 
obtained using GPS and SLAM. The dark points depict the dense map estimated by 
DenseSLAM.
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objects using EM. The expectation step calculates the correspondences between objects at 
different points in time and the maximisation step uses these correspondences to generate 
refined object models, represented by occupancy grid maps.  
The algorithms presented in Chieh-Chih Wang et al. (2003) and Montemerlo et al. (2002) 
have one thing in common; they rely on pre-defined models of the specific objects they aim 
to track. ROMA, however, is able to learn about the shape of the objects, but the algorithm 
presents a number of limitations. Objects have to move slowly (it is not able to cope with 
fast-moving objects such as people), it is assumed the robot is able to obtain static maps at 
different times. The results presented include only four different objects in an environment 
where these objects can be perfectly segmented from a laser scan. The extension to a real 
environment with a larger number of objects may not be possible and will be 
computationally very expensive.
If navigation is the primary objective, the accurate shape of objects, or even their 
classification may not be important in general. What may be more useful is an algorithm 
able to identify observations that may be coming from objects that are not static and 
eliminate them from the list of observations to be used for the navigation process. 
Furthermore the algorithm could identify areas where it is more likely to find dynamic 
objects (e.g. a corridor where people walk) and then avoid their use or give a low priority to 
observations coming from objects in those areas.  
The rich environment representation obtained by DenseSLAM allows a map layer 
identifying the most likely areas to possess dynamic objects to be built. As shown in Biswas 
et al., (2003), dynamic objects can be identified by differentiation of maps taken at different 
times. There are two different classes of object motions in a dynamic environment; slow 
motion, as for example the motion of a bin, which will be static during most of the day but 
will eventually be moved; and fast motion, such as people. Using DenseSLAM, and 
applying a straightforward differentiation, it is possible to identify regions with dynamic 
objects for either fast or slow motion objects. 
One of the main problems with the differentiation is that maps obtained at different times 
will have different uncertainty. If a global map is maintained and two maps acquired at 
different times want to be differentiated, the uncertainty in the maps will make the 
matching process very difficult.  
In DenseSLAM the global map is divided into smaller regions, so the whole map can be 
differentiated by applying differentiation between the corresponding local regions. As a 
consequence, the differentiation process will be prone only to local errors (which were 
shown to be much smaller than the global ones) eliminating detection errors due to the 
uncertainty between maps acquired at different moments.  
A particular case where the DenseSLAM representation will not present advantages over 
other approaches is in decentralised multi-robot mapping. If multiple robots are used to 
map an area, each robot will form the map using different local regions. If the objective is to 
detect dynamic objects by fusing the maps built by different robots, a global map will have 
to be used and DenseSLAM loses advantages with respect to other approaches.  
Fast motion can be captured by differentiation, in a similar way to slow motion. The main 
difference is that the differentiation is done over shorter periods of time and only in the 
region under the sensor view. As in the detection of objects with slow motion, using 
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DenseSLAM the differentiation is done using local regions instead of the global map. The 
motion detection will be included in a map layer as will the other properties captured by the 
sensors, then the global position of the dynamic map will be updated together with the 
other map properties (colour, occupancy, etc.).  
It is important to note that fast motion detection can be also done with other 
techniques that are able to create a dense map in proximity to the vehicle position. The 
advantage of DenseSLAM is that the dense representation is already obtained, 
therefore, the detection of moving objects is a straightforward procedure that does not 
add computational cost.   

2.3 Experimental Results 

This section presents experimental results of DenseSLAM in an outdoor environment. The 
environment is a large area of 120 by 200 metres and the run is approximately 1 km long. 
The experimental platform used for the experiments is a conventional Holden UTE 
equipped with Sick lasers, a linear variable differential transformer sensor for the steering 
mechanism, back wheel velocity encoder, inertial unit and GPS.  
In order to test the DenseSLAM algorithm, the GPS information was fused with the feature-
based SLAM to obtain a laser image of the environment that is used as a reference to 
compare with the estimates by DenseSLAM. Fig. 7 shows the laser image obtained with the 
GPS information and the final map obtained with DenseSLAM. The dense map was 
obtained by fusing the raw laser observations into the local regions. The figure also shows 
the landmark positions.  

Fig. 7: Final map obtained with DenseSLAM. The light points represent the laser image 
obtained using GPS and SLAM. The dark points depict the dense map estimated by 
DenseSLAM.
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Fig. 8 shows a zoom of the top part of the run. Fig. 8 (a) shows the result obtained by 
DenseSLAM before closing the loop. The figure also shows the laser image used as a 
reference. The error in the estimated map before closing the loop can be easily observed. Fig. 
8 (b) shows the result after closing the first loop. Although there is still some residual error, 
it is clear how the estimated map has been corrected. Looking at Fig. 8 (b) it can be seen that 
there is some remaining uncertainty in these landmarks even after the loop is closed. This is 
because the vehicle does not return to the top part of the run after closing the first loop. As a 
result, the error in that region is not reduced as much as in the bottom part of the run. 
Nevertheless, an important correction in all the regions has still been made. 

Fig. 8: The lighter points represent the laser image obtained using GPS/SLAM. The darker 
points represent the final map obtained with DenseSLAM. Figure (a) shows the result before 
closing the loop, and (b) after the loop is closed. 

3. Fundamental issues when working in large areas 
Most EKF implementations generate state estimations with mono-modal probability 
distributions and are not capable of handling multi-modal probability distributions. 
Multi-modal distributions are typical when closing large loops, that is, revisiting 
known places after a large exploration period. It is at this stage where the standard 
SLAM based on Kalman filters is especially fragile to incorrect association of 
landmarks (Neira & Tardós, 2001). Other data fusion algorithms, such as the ones that 
use particle filter (Montemerlo et al., 2002), can address this problem since they 
naturally deal with multi-hypothesis problems.  
In Masson (2003) is proposed a robust data fusion algorithm, which uses a hybrid 
architecture. The algorithm uses Compressed EKF (CEKF in Guivant & Nebot, 2003) under 
normal conditions to perform SLAM. At a certain time the system may not be able to 
perform the association task due to large errors in vehicle pose estimation. This is an 
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indication that the filter cannot continue working assuming a mono-modal probability 
density distribution. At this time, we have the CEKF estimated mean and deviation of the 
states representing the vehicle pose and landmark positions. With the currently estimated 
map, a decorrelated map is built using a coordinate transform and a decorrelation 
procedure (Guivant & Nebot, 2002). A particle filter (Gordon et al., 1993) is initialised using 
the available statistics and is then used to resolve the position of the vehicle as a localisation 
problem. Once the multi-hypothesis problem is solved, the CEKF is restarted with the states 
values back propagated to the time when the data association problem was detected. Then 
the CEKF resumes operation until a new potential data association problem is detected. 
There are several important implementation issues that need to be taken into account to 
maximise the performance of the hybrid architecture proposed. The solutions they need to 
consider are the uncertainties in vehicle, map and sensor to maximise the number of 
particles in the most likely position of the vehicle.  
The SLAM algorithm builds a map while the vehicle explores a new area. The map 
states will be, in most cases, highly correlated in a local area. In order to use the particle 
filter to solve the localisation problem, a two dimensional map probability density 
distribution needs to be synthesised from an originally strongly correlated n
dimension map. The decorrelation procedure is implemented in two steps. The map, 
originally represented in global coordinates is now represented in a local frame defined 
by the states of two beacons that are highly correlated to all the local landmarks. The 
other local landmarks are then referenced to this new base. A conservative bound 
matrix can be obtained as a diagonal matrix with bigger diagonal components and 
deleting the cross-correlation terms (Guivant & Nebot, 2002).  
In most practical cases the local map is very large when compared to the sensor field of 
view. Most of the landmarks are usually beyond the range of the sensor. It is then possible 
to select only the visible beacons from the entire map by considering the estimated 
uncertainties. This will significantly reduce the computation complexity for the evaluation 
of the likelihood for each predicted particle. The boundaries of the reduced map are fixed 
based on the beacons that are close to the vehicle location, the particle positions, the 
observation and their respective uncertainty. Only a few beacons are within the field of view 
of any of the particles. The other beacons are not considered to be part of the reduced map.  
As the number of particles affects both the computational requirements and the convergence of 
the algorithm, it is necessary to select an appropriate set of particles to represent the a priori 
density function at time T0, that is, the time when the data association fails. Since the particle 
filters work with samples of a distribution rather than its analytic expression it is possible to 
select the samples based on the most probable initial pose of the rover. A good initial distribution 
is a set of particles that is dense in at least a small sub-region that contains the true states value. 
The initial distribution should be based in the position and standard deviations reported by the 
CEKF, and in at least one observation in a sub-region that contains this true state’s value. In 
Lenser & Veloso (2000) a localisation approach is presented that replaces particles with low 
probability with others based on the observations. Although this algorithm is very efficient it 
considers that the identity of that landmark is given (known data association). This is true in 
some applications such as the one addressed in this work but not common in natural outdoor 
environments where landmarks have similar aspects and the presence of spurious objects or new 
landmarks is common. Here, the data association is implicitly done by the localisation algorithm. 
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Fig. 8 shows a zoom of the top part of the run. Fig. 8 (a) shows the result obtained by 
DenseSLAM before closing the loop. The figure also shows the laser image used as a 
reference. The error in the estimated map before closing the loop can be easily observed. Fig. 
8 (b) shows the result after closing the first loop. Although there is still some residual error, 
it is clear how the estimated map has been corrected. Looking at Fig. 8 (b) it can be seen that 
there is some remaining uncertainty in these landmarks even after the loop is closed. This is 
because the vehicle does not return to the top part of the run after closing the first loop. As a 
result, the error in that region is not reduced as much as in the bottom part of the run. 
Nevertheless, an important correction in all the regions has still been made. 

Fig. 8: The lighter points represent the laser image obtained using GPS/SLAM. The darker 
points represent the final map obtained with DenseSLAM. Figure (a) shows the result before 
closing the loop, and (b) after the loop is closed. 

3. Fundamental issues when working in large areas 
Most EKF implementations generate state estimations with mono-modal probability 
distributions and are not capable of handling multi-modal probability distributions. 
Multi-modal distributions are typical when closing large loops, that is, revisiting 
known places after a large exploration period. It is at this stage where the standard 
SLAM based on Kalman filters is especially fragile to incorrect association of 
landmarks (Neira & Tardós, 2001). Other data fusion algorithms, such as the ones that 
use particle filter (Montemerlo et al., 2002), can address this problem since they 
naturally deal with multi-hypothesis problems.  
In Masson (2003) is proposed a robust data fusion algorithm, which uses a hybrid 
architecture. The algorithm uses Compressed EKF (CEKF in Guivant & Nebot, 2003) under 
normal conditions to perform SLAM. At a certain time the system may not be able to 
perform the association task due to large errors in vehicle pose estimation. This is an 
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indication that the filter cannot continue working assuming a mono-modal probability 
density distribution. At this time, we have the CEKF estimated mean and deviation of the 
states representing the vehicle pose and landmark positions. With the currently estimated 
map, a decorrelated map is built using a coordinate transform and a decorrelation 
procedure (Guivant & Nebot, 2002). A particle filter (Gordon et al., 1993) is initialised using 
the available statistics and is then used to resolve the position of the vehicle as a localisation 
problem. Once the multi-hypothesis problem is solved, the CEKF is restarted with the states 
values back propagated to the time when the data association problem was detected. Then 
the CEKF resumes operation until a new potential data association problem is detected. 
There are several important implementation issues that need to be taken into account to 
maximise the performance of the hybrid architecture proposed. The solutions they need to 
consider are the uncertainties in vehicle, map and sensor to maximise the number of 
particles in the most likely position of the vehicle.  
The SLAM algorithm builds a map while the vehicle explores a new area. The map 
states will be, in most cases, highly correlated in a local area. In order to use the particle 
filter to solve the localisation problem, a two dimensional map probability density 
distribution needs to be synthesised from an originally strongly correlated n
dimension map. The decorrelation procedure is implemented in two steps. The map, 
originally represented in global coordinates is now represented in a local frame defined 
by the states of two beacons that are highly correlated to all the local landmarks. The 
other local landmarks are then referenced to this new base. A conservative bound 
matrix can be obtained as a diagonal matrix with bigger diagonal components and 
deleting the cross-correlation terms (Guivant & Nebot, 2002).  
In most practical cases the local map is very large when compared to the sensor field of 
view. Most of the landmarks are usually beyond the range of the sensor. It is then possible 
to select only the visible beacons from the entire map by considering the estimated 
uncertainties. This will significantly reduce the computation complexity for the evaluation 
of the likelihood for each predicted particle. The boundaries of the reduced map are fixed 
based on the beacons that are close to the vehicle location, the particle positions, the 
observation and their respective uncertainty. Only a few beacons are within the field of view 
of any of the particles. The other beacons are not considered to be part of the reduced map.  
As the number of particles affects both the computational requirements and the convergence of 
the algorithm, it is necessary to select an appropriate set of particles to represent the a priori 
density function at time T0, that is, the time when the data association fails. Since the particle 
filters work with samples of a distribution rather than its analytic expression it is possible to 
select the samples based on the most probable initial pose of the rover. A good initial distribution 
is a set of particles that is dense in at least a small sub-region that contains the true states value. 
The initial distribution should be based in the position and standard deviations reported by the 
CEKF, and in at least one observation in a sub-region that contains this true state’s value. In 
Lenser & Veloso (2000) a localisation approach is presented that replaces particles with low 
probability with others based on the observations. Although this algorithm is very efficient it 
considers that the identity of that landmark is given (known data association). This is true in 
some applications such as the one addressed in this work but not common in natural outdoor 
environments where landmarks have similar aspects and the presence of spurious objects or new 
landmarks is common. Here, the data association is implicitly done by the localisation algorithm. 
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The multi-hypotheses considered are defined by the uncertainty of the robot pose estimation. In 
addition the method presented is able to deal with false observations. Spurious observations and 
landmarks that do not belong to the map are naturally rejected by the localiser. The technique 
presented considers the information from a set of observations to select particles only in the 
initial distribution and combined with the CEKF estimates as was mentioned previously. In fact, 
this localisation filter is a Monte Carlo Localisation.  
The initial distribution is created from range/bearing observations of a set of landmarks. 
This probability distribution is dominant in a region that presents a shape similar to a set of 
helical cylinders in the space ( )x y ϕ, , . Each helix centre corresponds to a hypothetical 
landmark position with its radio defined by the range observation. The landmarks 
considered are only the ones that the vehicle can see from the location reported by the CEKF 
and within the range and field of view of the sensors.  
Although it is recognised that some observations will not be due to landmarks, all range and 
bearing observations in a single scan are used to build the initial distribution. Even though a set of 
families of helices will introduce more particles than a single family of helices (one observation), it 
will be more robust in the presence of spurious observations. By considering that the 
range/bearing observations are perfect then the dominant region becomes a discontinuous one 
dimensional curve (family of helices) C, in the three dimensional space ( )x y ϕ, ,
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These regions can be reduced by adjusting the variation of τ according to the uncertainty in 
ϕ. Assuming the presence of noise in the observations and in the landmark positions  
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this family of helices becomes a family of cylindrical regions surrounding the helices. The helical 
cylinder section can be adjusted by evaluating its sensitivity to the noise sources 

i ix y r βγ γ γ γ, , , .

The same assumptions can be made for the case of using bearing only observations. Although 
this method can be more efficient than the standard uniform o Gaussian distribution it is still 
very demanding in the number of particles. A more efficient algorithm can be designed 
considering two observations at a time. With no data association a pair of observations will 
generate a family of curved cylinders to cover all possible hypotheses. This initialisation is 
significantly less expensive than a uniform distributed sample in a large rectangular region in 
the ( )x y ϕ, ,  space or even a Gaussian distribution in this region. In the case of range only 
observations, the initialisation is very similar to the range and bearing problem. In this case the 
main difference is in the evaluation of the orientation (Masson et al., 2003). 
Finally, two main issues need to be addressed to implement the switching strategy between the 
CEKF and the SIR filter. The first problem involves the detection of a potential data association 
failure while running the CEKF. This is implemented by monitoring the estimated error in vehicle 
and local map states and the results of the standard data association process. The second issue is the 
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reliable determination that the particle filter has resolved the multi-hypothesis problem and is ready 
to send the correct position to the CEKF back propagating its results. This problem is addressed by 
analysing the evolution of the estimated standard deviations. The filter is assumed to converge 
when the estimated standard deviation error becomes less than two times the noise in the 
propagation error model for x, y and ϕ. The convergence of the filter is guaranteed by the fact that 
the weights are bounded (Masson et al., 2003) above at any instant of time (Crisan & Doucet, 2000).  
The following are results obtained using the hybrid architecture in an outdoor environment 
populated by trees that are used as the most relevant features to build a navigation map 
(Guivant et al., 2002). Full details of the vehicle and sensor model used for this experiment 
are available in Nebot (2002). 
The CEKF filter is used to navigate when no potential data association faults are detected. When 
a data association failure is detected the particle filter is initialised according to the procedure 
presented in section 4.2 and is run until convergence is reached. At this point the filter reports the 
corrections to the CEKF that continues the SLAM process using EKF based methods.  
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Fig. 9: (a) Experimental run implementing SLAM using all the available information. (b) A 
zoomed area. A diamond and a square show the start and end position respectively of the 
particle filter correction. The dots represent the RTK GPS information. 

The algorithms were tested in an environment with areas of different feature density as 
shown in Fig. 9. In this experiment we logged GPS, laser and dead reckoning information. 
The GPS used is capable of providing position information with 2 cm accuracy. This 
accuracy is only available in open areas and is shown in Fig. 9 with a thick line. The vehicle 
started at the point labelled "Starting Position" and the filter used GPS, laser and dead 
reckoning to perform SLAM (Guivant et al., 2002) until it reached the location at coordinates 
(-30,60) where GPS is no longer available. The SLAM remained operating using Laser and 
dead-reckoning information only. High accuracy GPS was again available close to the end of 
the run and will be essential to demonstrate the consistency and performance of the hybrid 
navigation architecture proposed. 



312 Mobile Robots, Perception & Navigation 

The multi-hypotheses considered are defined by the uncertainty of the robot pose estimation. In 
addition the method presented is able to deal with false observations. Spurious observations and 
landmarks that do not belong to the map are naturally rejected by the localiser. The technique 
presented considers the information from a set of observations to select particles only in the 
initial distribution and combined with the CEKF estimates as was mentioned previously. In fact, 
this localisation filter is a Monte Carlo Localisation.  
The initial distribution is created from range/bearing observations of a set of landmarks. 
This probability distribution is dominant in a region that presents a shape similar to a set of 
helical cylinders in the space ( )x y ϕ, , . Each helix centre corresponds to a hypothetical 
landmark position with its radio defined by the range observation. The landmarks 
considered are only the ones that the vehicle can see from the location reported by the CEKF 
and within the range and field of view of the sensors.  
Although it is recognised that some observations will not be due to landmarks, all range and 
bearing observations in a single scan are used to build the initial distribution. Even though a set of 
families of helices will introduce more particles than a single family of helices (one observation), it 
will be more robust in the presence of spurious observations. By considering that the 
range/bearing observations are perfect then the dominant region becomes a discontinuous one 
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These regions can be reduced by adjusting the variation of τ according to the uncertainty in 
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this family of helices becomes a family of cylindrical regions surrounding the helices. The helical 
cylinder section can be adjusted by evaluating its sensitivity to the noise sources 
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The same assumptions can be made for the case of using bearing only observations. Although 
this method can be more efficient than the standard uniform o Gaussian distribution it is still 
very demanding in the number of particles. A more efficient algorithm can be designed 
considering two observations at a time. With no data association a pair of observations will 
generate a family of curved cylinders to cover all possible hypotheses. This initialisation is 
significantly less expensive than a uniform distributed sample in a large rectangular region in 
the ( )x y ϕ, ,  space or even a Gaussian distribution in this region. In the case of range only 
observations, the initialisation is very similar to the range and bearing problem. In this case the 
main difference is in the evaluation of the orientation (Masson et al., 2003). 
Finally, two main issues need to be addressed to implement the switching strategy between the 
CEKF and the SIR filter. The first problem involves the detection of a potential data association 
failure while running the CEKF. This is implemented by monitoring the estimated error in vehicle 
and local map states and the results of the standard data association process. The second issue is the 
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reliable determination that the particle filter has resolved the multi-hypothesis problem and is ready 
to send the correct position to the CEKF back propagating its results. This problem is addressed by 
analysing the evolution of the estimated standard deviations. The filter is assumed to converge 
when the estimated standard deviation error becomes less than two times the noise in the 
propagation error model for x, y and ϕ. The convergence of the filter is guaranteed by the fact that 
the weights are bounded (Masson et al., 2003) above at any instant of time (Crisan & Doucet, 2000).  
The following are results obtained using the hybrid architecture in an outdoor environment 
populated by trees that are used as the most relevant features to build a navigation map 
(Guivant et al., 2002). Full details of the vehicle and sensor model used for this experiment 
are available in Nebot (2002). 
The CEKF filter is used to navigate when no potential data association faults are detected. When 
a data association failure is detected the particle filter is initialised according to the procedure 
presented in section 4.2 and is run until convergence is reached. At this point the filter reports the 
corrections to the CEKF that continues the SLAM process using EKF based methods.  
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Fig. 9: (a) Experimental run implementing SLAM using all the available information. (b) A 
zoomed area. A diamond and a square show the start and end position respectively of the 
particle filter correction. The dots represent the RTK GPS information. 

The algorithms were tested in an environment with areas of different feature density as 
shown in Fig. 9. In this experiment we logged GPS, laser and dead reckoning information. 
The GPS used is capable of providing position information with 2 cm accuracy. This 
accuracy is only available in open areas and is shown in Fig. 9 with a thick line. The vehicle 
started at the point labelled "Starting Position" and the filter used GPS, laser and dead 
reckoning to perform SLAM (Guivant et al., 2002) until it reached the location at coordinates 
(-30,60) where GPS is no longer available. The SLAM remained operating using Laser and 
dead-reckoning information only. High accuracy GPS was again available close to the end of 
the run and will be essential to demonstrate the consistency and performance of the hybrid 
navigation architecture proposed. 
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The stars and encircled stars in Fig. 9 (a) represent the natural features incorporated into the 
map and the selected landmarks whose deviations are shown in Fig. 10(a) respectively. A 
diamond and a square represent the starting and ending position resulting from the particle 
filter correction and are clearly shown in Fig. 9 (b). The beacons that produce the association 
failure are the squared stars marked as C in the figure. 
Fig. 10(b) presents the vehicle position estimated error. It can be seen that the error was very 
small when the system was operating with GPS, time < 200ms. It is then maintained below 
0.5 m while in the area with high feature density. The error then started to increase before 
reaching point "A" since the laser cannot detect any known feature. At this time (320 sec) a 
new feature was incorporated but with large uncertainty as shown in Fig. 10(a). Then a 
known landmark was detected and since it can be associated correctly, the error in vehicle 
and landmark position dramatically decreased as expected. 
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Fig. 10: Standard deviation (a) of selected beacons in the map and (b) of the car positions 
over time. These beacons are shown as rounded stars in Fig. 9.  

A different situation is presented in Fig. 9 (b) that corresponds to the area marked as 
zoomed area in Fig. 9 (a). Once the laser stopped seeing the previous known 
landmarks the error built up again to the point where the system can no longer 
associate the detected landmarks to a single known landmark. The location of the 
vehicle at this time is represented as a diamond at coordinates (45,45) in this figure. In 
this case the system has to activate the Monte Carlo localiser to generate the 
relocalisation results shown as a square at coordinates (47,45) in the same figure.
Examples of the Monte Carlo filter initialisation are shown in Fig. 11. Fig. 11(a) shows 
the initialisation for the range and bearing case. The figure clearly shows the helical 
shape of the initial distributions. The arrows represent the position and orientation of 
the vehicle and the stars the beacons present in the map. The initialisation for the case 
of bearing only is also shown in Fig. 11(b). 
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Fig. 11. Initialisation of the particle filter (a) using range and bearing information and (b) 
using bearing only information  

The relocalisation result is then reported to the CEKF to continue with the SLAM process for 
the rest of the run. At the end of the trajectory high accuracy GPS was again available (thick 
line). It can be clearly seen, specially in Fig. 9 (b), that the estimated vehicle pose just before 
GPS became available is very close to the high accuracy GPS position reported. This 
demonstrates the performance and consistency of the hybrid architecture proposed.  

3.1 Assimilation of non-Gaussian observations 

A pure SLAM algorithm is based in measures relative to the vehicle. Nevertheless a practical 
application of localisation must fuse all the available sources of information that are available, 
included absolute information. This is a fundamental issue in navigation. Although many pure 
SLAM algorithms can work in large areas they could also benefit from absolute position 
information such as GPS. In many applications, it is not possible to obtain GPS information for 
long periods of time. However, at some locations this sensor will be able to report navigation data 
with an estimated error. It is clearly important to be able to incorporate this information to 
improve the localisation estimates and at the same time enable the SLAM algorithm to explore and 
incorporate new features while bounding the absolute pose error with the absolute information. 
In order to add this information in a consistent manner some important issues need to be 
considered. The quality of the models and the relative navigation information used in SLAM 
algorithms could lead to very large innovations errors when the absolute information is fused. 
This occurs after long periods of navigation when only relative information is used (pure SLAM). 
A strong correction will make the linearisation of the models not valid generating incorrect update 
of covariance. The innovations may not be large but can generate strong updates in the covariance 
matrix. This can potentially introduce serious numerical errors. In order to prevent these 
problems, it is possible to treat new absolute information as L observations such that the total 
information introduced becomes equivalent to a single update (Guivant et al., 2002). In this case, 
the filter will perform L updates with the observation value and modified noise covariance. The 
sequential updates generate the same results as the single update but alleviate numerical problems 
arising from large covariance updates.  
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The stars and encircled stars in Fig. 9 (a) represent the natural features incorporated into the 
map and the selected landmarks whose deviations are shown in Fig. 10(a) respectively. A 
diamond and a square represent the starting and ending position resulting from the particle 
filter correction and are clearly shown in Fig. 9 (b). The beacons that produce the association 
failure are the squared stars marked as C in the figure. 
Fig. 10(b) presents the vehicle position estimated error. It can be seen that the error was very 
small when the system was operating with GPS, time < 200ms. It is then maintained below 
0.5 m while in the area with high feature density. The error then started to increase before 
reaching point "A" since the laser cannot detect any known feature. At this time (320 sec) a 
new feature was incorporated but with large uncertainty as shown in Fig. 10(a). Then a 
known landmark was detected and since it can be associated correctly, the error in vehicle 
and landmark position dramatically decreased as expected. 
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Fig. 10: Standard deviation (a) of selected beacons in the map and (b) of the car positions 
over time. These beacons are shown as rounded stars in Fig. 9.  

A different situation is presented in Fig. 9 (b) that corresponds to the area marked as 
zoomed area in Fig. 9 (a). Once the laser stopped seeing the previous known 
landmarks the error built up again to the point where the system can no longer 
associate the detected landmarks to a single known landmark. The location of the 
vehicle at this time is represented as a diamond at coordinates (45,45) in this figure. In 
this case the system has to activate the Monte Carlo localiser to generate the 
relocalisation results shown as a square at coordinates (47,45) in the same figure.
Examples of the Monte Carlo filter initialisation are shown in Fig. 11. Fig. 11(a) shows 
the initialisation for the range and bearing case. The figure clearly shows the helical 
shape of the initial distributions. The arrows represent the position and orientation of 
the vehicle and the stars the beacons present in the map. The initialisation for the case 
of bearing only is also shown in Fig. 11(b). 
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Fig. 11. Initialisation of the particle filter (a) using range and bearing information and (b) 
using bearing only information  

The relocalisation result is then reported to the CEKF to continue with the SLAM process for 
the rest of the run. At the end of the trajectory high accuracy GPS was again available (thick 
line). It can be clearly seen, specially in Fig. 9 (b), that the estimated vehicle pose just before 
GPS became available is very close to the high accuracy GPS position reported. This 
demonstrates the performance and consistency of the hybrid architecture proposed.  

3.1 Assimilation of non-Gaussian observations 

A pure SLAM algorithm is based in measures relative to the vehicle. Nevertheless a practical 
application of localisation must fuse all the available sources of information that are available, 
included absolute information. This is a fundamental issue in navigation. Although many pure 
SLAM algorithms can work in large areas they could also benefit from absolute position 
information such as GPS. In many applications, it is not possible to obtain GPS information for 
long periods of time. However, at some locations this sensor will be able to report navigation data 
with an estimated error. It is clearly important to be able to incorporate this information to 
improve the localisation estimates and at the same time enable the SLAM algorithm to explore and 
incorporate new features while bounding the absolute pose error with the absolute information. 
In order to add this information in a consistent manner some important issues need to be 
considered. The quality of the models and the relative navigation information used in SLAM 
algorithms could lead to very large innovations errors when the absolute information is fused. 
This occurs after long periods of navigation when only relative information is used (pure SLAM). 
A strong correction will make the linearisation of the models not valid generating incorrect update 
of covariance. The innovations may not be large but can generate strong updates in the covariance 
matrix. This can potentially introduce serious numerical errors. In order to prevent these 
problems, it is possible to treat new absolute information as L observations such that the total 
information introduced becomes equivalent to a single update (Guivant et al., 2002). In this case, 
the filter will perform L updates with the observation value and modified noise covariance. The 
sequential updates generate the same results as the single update but alleviate numerical problems 
arising from large covariance updates.  
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Even so, there is another potential issue that must be considered with some sensors. A typical 
measurement obtained from a GPS occurs when it operates in environments where there are forest 
and/or buildings. In open places GPS operation is usually satisfactory but is not the case in forest or 
urban canyons. The problem arises from total unavailability of satellite signals to partial occlusion 
and performance degradation due to multi path effects. Others sensors such as compasses present 
similar behaviour in static and dynamic environments where magnetic field perturbations affect the 
sensor operation. However there is no doubt that both sensors can provide useful information to 
contribute in the localisation process. In the case of range only and bearing only sensors, one 
measurement generates a non-Gaussian distribution and the way to deal with it is delaying the 
fusion collecting several measures and recording the vehicle pose (Bailey, 2002; Sola et al., 2005). 
Essentially, these kinds of sensors could introduce non-Gaussian noise and some could also 
introduced noise correlated in time. In the case of the GPS in autonomous mode for 
example, the uncertainty will be introduced as a result of many factors such as satellite 
availability, satellites distribution, signal reflections, multi-path, atmospheric distortion, etc. 
It is obvious that this cannot be modelled as Gaussian, nor white. Similarly the compass 
usually presents biased noise due to distortion in the magnetic field, and the change 
depends on time and geographical position. An unknown and changing bias that varies 
according to the position, orientation or time represents a difficult modelling problem. 
Additional to the non-Gaussian or time correlated nature of the noise, the probability distribution 
of the uncertainty in the observations could be unknown or only partially known. Estimators such 
the EKF and also any Bayesian filters cannot deal with those measurements. The improper use of 
them can produce inconsistent estimations. For example, if the noise is not white and this is 
ignored assuming that the measurements are independent, then the estimates will be over-
confident. As a conservative policy these correlated measurements could be ignored to avoid 
inconsistent results. However in many practical applications those measurements are crucial 
sources of information and should be considered in a consistent way.  
Consider the following situation. At time k there exists a Gaussian estimation and an 
available observation. This one is neither Gaussian, nor white and with partially known 
probability distribution, or any of these situations. 
Initially it is assumed that the observation involves only one state variable and that all its 
probability is concentrated in an interval a x b. The shape of the probability distribution inside 
that interval is completely unknown and subsequent measurements are not independent, i.e. 
statistical dependence exists between k and k+1. However even under that undesirable condition it 
is possible to extract information from such observations. The effect of these observations will 
improve the full estimates state vector and will reduce the covariance matrix. In fact, a new 
Gaussian probability distribution is obtained. The rest of this section explains how to obtain a 
conservative and consistent update. 
The summary of the proposed update process is the following. At time k the estimator 
produces a Gaussian estimate of the states x = {x, y, ϕ, m} in the form of a joint probability 
distribution px,k+1(x), where {x, y, ϕ} is the pose of the vehicle and {m} are the states of the 
landmarks’ positions. A bearing observation of ϕ is performed and with it a marginal 
probability pϕ,k+1(ϕ) is obtained. With the update of the marginal probability of the observed 
state, a total update of the joint probability px,k+1(x) is obtained. 
With the non-Gaussian, non-white and partially known probability observation, a new 
couple ( )ϕσϕ ,ˆ  is estimated. This pair completely defines the marginal Gaussian density 
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The non zero cross-correlation terms in the covariance matrix means that all the states are 
connected. Then, with this new couple ( )ϕσϕ ,ˆ   it is necessary to carry out a virtual update 
with the purpose of transmitting the new information acquired to the whole density px,k+1(x)
whose expression is 
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As a result of this update a new joint Gaussian density is obtained, and the normal 
estimation process is pursued.  
In general (Guivant & Masson, 2005), for an arbitrary density p(ϕ) that concentrates all its 
energy inside the interval (a, b), a Gaussian density with expected value b is a better 
approximation to p(ϕ) than any other Gaussian density with expected value greater than b if 
the better previous estimation obtained is greater than b. In particular, this is better than 
discarding the observation. The same happens with Gaussian densities whose expected 
value is smaller than a and it is independent of the form that take p(ϕ) inside the interval (a,
b). Consequently, the mean ξ of the new density it is selected as  

if    b < c                ξ = b (10) 
if    a > c                ξ = a (11) 
if    a > c > b          ξ = c (12)

where c is the mean of the better previous estimate. The deviation of this new Gaussian 
must be obtained by solving the following implicit equation  
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Then, unless the mean is updated, the deviation is always improved. This is an important 
result because it is always necessary to maintain the absolute error between the true value 
and the mean of the Gaussian bounded. This condition guarantees a secure condition for the 
EKF as estimator. If the mean value estimated is near the true value the filter will perform 
almost as a linear estimator. In particular, the Jacobians will be calculated properly. In 
several cases, the filter could behave in a consistent way. But, given great deviations, the 
Jacobians evaluated at the mean value will be different from the one calculated at the true 
value. This fact is widely known in the EKF estimation theory. 
At this point the calculation was focused on the marginal density p(ϕ). However the full 
probability density is a Gaussian multi-dimensional density. The covariance matrix is a full 
matrix and this shows the correlation between the states of the vehicle and the map. It was 
shown (Gibbens et al., 2000) that neglecting this correlations leads to non-consistent estimations. 
A virtual update is a form to update the full covariance matrix. The desired update over the 
individual deviation σϕ is known. With it, it is possible to obtain the complete update without 
violating conditions of consistency of the estimation. The updated covariance will be 

Pk+1| k+1 = Pk+1| k − ΔP (16) 
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The non zero cross-correlation terms in the covariance matrix means that all the states are 
connected. Then, with this new couple ( )ϕσϕ ,ˆ   it is necessary to carry out a virtual update 
with the purpose of transmitting the new information acquired to the whole density px,k+1(x)
whose expression is 
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As a result of this update a new joint Gaussian density is obtained, and the normal 
estimation process is pursued.  
In general (Guivant & Masson, 2005), for an arbitrary density p(ϕ) that concentrates all its 
energy inside the interval (a, b), a Gaussian density with expected value b is a better 
approximation to p(ϕ) than any other Gaussian density with expected value greater than b if 
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Then, unless the mean is updated, the deviation is always improved. This is an important 
result because it is always necessary to maintain the absolute error between the true value 
and the mean of the Gaussian bounded. This condition guarantees a secure condition for the 
EKF as estimator. If the mean value estimated is near the true value the filter will perform 
almost as a linear estimator. In particular, the Jacobians will be calculated properly. In 
several cases, the filter could behave in a consistent way. But, given great deviations, the 
Jacobians evaluated at the mean value will be different from the one calculated at the true 
value. This fact is widely known in the EKF estimation theory. 
At this point the calculation was focused on the marginal density p(ϕ). However the full 
probability density is a Gaussian multi-dimensional density. The covariance matrix is a full 
matrix and this shows the correlation between the states of the vehicle and the map. It was 
shown (Gibbens et al., 2000) that neglecting this correlations leads to non-consistent estimations. 
A virtual update is a form to update the full covariance matrix. The desired update over the 
individual deviation σϕ is known. With it, it is possible to obtain the complete update without 
violating conditions of consistency of the estimation. The updated covariance will be 

Pk+1| k+1 = Pk+1| k − ΔP (16) 
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where Pk+1| k(:,iϕ) is the row vector iϕ of the predicted covariance matrix, Pk+1| k(iϕ,:) is the 
column vector iϕ , 2

ϕσΔ  is the improvement in the deviation incorporating the non Gaussian 

observation and 
k,ϕσ is the deviation predicted in the state ϕ.

Fig. 12 shows the proposed approach when it is applied in a SLAM process where non-Gaussian 
observations come from compass measurements. Details about the vehicle model and the SLAM 
algorithm could be referred from (Guivant et al., 2002). In this experiment GPS, laser, compass and 
dead reckoning information was available. The GPS used is capable of providing position 
information with 2 cm of accuracy when it works in RTK mode. This quality is only available in 
relatively open areas and is shown in Fig. 12 by using a thick line. The vehicle started at the point 
labelled 1. An EKF performs SLAM by using all the available information (thin line). When the 
vehicle arrives at point 2, there is no GPS information and the laser and compass are intentionally 
disconnected until the vehicle reaches point 3. The reason for this is to allow the uncertainty to 
grow and clearly show the impact of the algorithm. In Fig. 12 (a), at point 4, it could be seen how 
the estimator goes far away from the real path that can be seen in Fig. 12 (b). In this last case, the 
filter uses the non-Gaussian observation of the compass to correct the mean and covariance. 

−250 −200 −150 −100 −50 0 50 100
−250

−200

−150

−100

−50

0

50
Approximated travel path (thin) and the GPS measures in RTK mode (thick)

Longitud in meters

La
tit

ud
 in

 m
et

er
s

GPS is in RTK mode
Approximated Travel Path
Landmarks or trees

1

2

3

4

−250 −200 −150 −100 −50 0 50 100
−250

−200

−150

−100

−50

0

50
Approximated travel path (thin) and the GPS measures in RTK mode (thick)

Longitud in meters

La
tit

ud
 in

 m
et

er
s

GPS is in RTK mode
Approximated Travel Path
Landmarks or trees

(a) (b) 
Fig. 12. Figure (a) shows results from a standard SLAM algorithm which does not use the 
available compass measurements. At point 4 the data association fails. Figure (b) shows the 
result from a SLAM process which does use the available compass measurements and at 
point 4 the data association is successful. 

4. Conclusion 
A solution to the SLAM problem is necessary to make a robot truly autonomous. For this 
reason, SLAM has been one of the main research topics in robotics, especially during the last 
fifteen years. While the structure of the problem is today well known, there are still many 
open problems, particularly when working in outdoor environments. We presented here 
some of the latest SLAM algorithms that address the problem of localisation and mapping in 
large outdoor areas. 
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Fig. 12. Figure (a) shows results from a standard SLAM algorithm which does not use the 
available compass measurements. At point 4 the data association fails. Figure (b) shows the 
result from a SLAM process which does use the available compass measurements and at 
point 4 the data association is successful. 
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A solution to the SLAM problem is necessary to make a robot truly autonomous. For this 
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fifteen years. While the structure of the problem is today well known, there are still many 
open problems, particularly when working in outdoor environments. We presented here 
some of the latest SLAM algorithms that address the problem of localisation and mapping in 
large outdoor areas. 
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1. Introduction  
Among the underwater robotic systems that are currently available, remotely operated 
vehicles (ROVs) are the most commonly used underwater robotic systems. A ROV is an 
underwater vehicle that is controlled from a mother-ship by human operators. Sometimes a 
ROV is equipped with one or more robotic manipulators to perform underwater tasks. 
These robotic manipulators are also controlled by human operators from a remote site (e.g., 
mother-ship) and are known as tele-manipulators. Although the impact of ROVs with tele-
manipulators is significant, they suffer from high operating cost because of the need for a 
mother-ship and experienced crews, operator fatigue and high energy consumption because 
of the drag generated by the tether by which the ROV is connected to the ship. The 
performance of such a system is limited by the skills, coordination and endurance of the 
operators. Not only that, communication delays between the master and the slave site (i.e., 
the mother-ship and the ROV) can severely degrade the performance. 
In order to overcome some of the above-mentioned problems, autonomous underwater 
vehicles (AUVs) are developed. However, an AUV alone cannot interact with the 
environment. It requires autonomous robotic manipulator(s) attached to it so that the 
combined system can perform some useful underwater tasks that require physical contact 
with the environment.  Such a system, where one or more arms are mounted on an AUV, is 
called an autonomous underwater vehicle-manipulator system (UVMS).  
One of the main research problems in underwater robotics is how to design an autonomous 
controller for a UVMS. Since there is no human operator involved in the control of a UVMS, 
the task planning has become an important aspect for smooth operation of such a system. 
Task planning implies the design of strategies for task execution. In other words, a task 
planning algorithm provides a set of desired (i.e., reference) trajectories for the position and 
force variables, which are used by the controller to execute a given task. Task planning can 
be divided into motion planning and force planning. In this research, we focus on the 
design of motion planning algorithms for a UVMS. 
The motion planning of a UVMS is a difficult problem because of several reasons. First, a 
UVMS is a kinematically redundant system. A kinematically redundant system is one which 
has more than 6 degrees-of-freedom (DOF) in a 3-D space. Commonly, in a UVMS, the AUV 
has 6 DOF. Therefore, the introduction of a manipulator, which can have n DOF, makes the 
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environment. It requires autonomous robotic manipulator(s) attached to it so that the 
combined system can perform some useful underwater tasks that require physical contact 
with the environment.  Such a system, where one or more arms are mounted on an AUV, is 
called an autonomous underwater vehicle-manipulator system (UVMS).  
One of the main research problems in underwater robotics is how to design an autonomous 
controller for a UVMS. Since there is no human operator involved in the control of a UVMS, 
the task planning has become an important aspect for smooth operation of such a system. 
Task planning implies the design of strategies for task execution. In other words, a task 
planning algorithm provides a set of desired (i.e., reference) trajectories for the position and 
force variables, which are used by the controller to execute a given task. Task planning can 
be divided into motion planning and force planning. In this research, we focus on the 
design of motion planning algorithms for a UVMS. 
The motion planning of a UVMS is a difficult problem because of several reasons. First, a 
UVMS is a kinematically redundant system. A kinematically redundant system is one which 
has more than 6 degrees-of-freedom (DOF) in a 3-D space. Commonly, in a UVMS, the AUV 
has 6 DOF. Therefore, the introduction of a manipulator, which can have n DOF, makes the 
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combined system kinematically redundant. Such a system admits infinite number of joint 
space solutions for a given Cartesian space coordinates, and thus makes the problem of 
motion planning a difficult one. Second, a UVMS is composed of two dynamic subsystems, 
one for the vehicle and one for the manipulator, whose bandwidths are vastly different. The 
dynamic response of the vehicle is much slower than that of the manipulator. Any 
successful motion planning algorithm must consider this different dynamic bandwidth 
property of the UVMS. There are several other factors such as the uncertainty in the 
underwater environment, lack of accurate hydrodynamic models, and the dynamic 
interactions between the vehicle and the manipulator to name a few, which makes the 
motion planning for a UVMS a challenging problem. 
In robotics, trajectory planning is one of the most challenging problems (Klein & Huang, 
1983). Traditionally, trajectory planning problem is formulated as a kinematic problem and 
therefore the dynamics of the robotic system is neglected (Paul, 1979). Although the 
kinematic approach to the trajectory planning has yielded some very successful results, they 
are essentially incomplete as the planner does not consider the system’s dynamics while 
generating the reference trajectory. As a result, the reference trajectory may be kinematically 
admissible but may not be dynamically feasible.
Researchers, in the past several years, have developed various trajectory planning methods 
for robotic systems considering different kinematic and dynamic criteria such as obstacle 
avoidance, singularity avoidance, time minimization, torque optimization, energy 
optimization, and other objective functions. A robotic system that has more than 6 dof 
(degrees-of-freedom) is termed as kinematically redundant system. For a kinematically 
redundant system, the mapping between task-space trajectory and the joint-space trajectory 
is not unique. It admits infinite number of joint-space solutions for a given task-space 
trajectory. However, there are various mathematical tools such as Moore-Penrose 
Generalized Inverse, which map the desired Cartesian trajectory into the corresponding 
joint-space trajectory for a kinematically redundant system. Researchers have developed 
various trajectory planning methods for redundant systems (Klein & Huang, 1983; Zhou & 
Nguyen, 1997; Siciliano, 1993; Antonelli & Chiaverini, 1998; shi & McKay, 1986). Kinematic 
approach of motion planning has been reported in the past. Among them, Zhou and 
Nguyen (Zhou & Nguyen, 1997) formulated optimal joint-space trajectories for 
kinematically redundant manipulators by applying Pontryagin’s Maximum Principle. 
Siciliano (Siciliano, 1993) has proposed an inverse kinematic approach for motion planning 
of redundant spacecraft-manipulator system. Antonelli and Chiaverini (Antonelli & 
Chiaverini, 1998) have used pseudoinverse method for task-priority redundancy resolution 
for an autonomous Underwater Vehicle-Manipulator System (UVMS) using a kinematic 
approach.
Several researchers, on the other hand, have considered dynamics of the system for 
trajectory planning. Among them, Vukobratovic and Kircanski (Vukobratovic & 
Kircanski, 1984) proposed an inverse problem solution to generate nominal joint-space 
trajectory considering the dynamics of the system. Bobrow (Bobrow, 1989) presented the 
Cartesian path of the manipulator with a B-spline polynomial and then optimized the 
total path traversal time satisfying the dynamic equations of motion. Shiller and 
Dubowsky (Shiller & Dubowsky, 1989) presented a time-optimal motion planning method 
considering the dynamics of the system. Shin and McKay (Shin & McKay, 1986) proposed 
a dynamic programming approach to minimize the cost of moving a robotic manipulator. 
Hirakawa and Kawamura (Hirakawa & Kawamura, 1997) have proposed a method to 
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solve trajectory generation problem for redundant robot manipulators using the 
variational approach with B-spline function to minimize the consumed electrical energy. 
Saramago and Steffen (Saramago & Steffen, 1998) have formulated off-line joint-space 
trajectories to optimize traveling time and minimize mechanical energy of the actuators 
using spline functions. Zhu et al. (Zhu et al. , 1999) have formulated real-time collision free 
trajectory by minimizing an energy function. Faiz and Agrawal (Faiz & Agrawal, 2000) 
have proposed a trajectory planning scheme that explicitly satisfy the dynamic equations 
and the inequality constraints prescribed in terms of joint variables. Recently, Macfarlane 
and Croft (Macfarlane & Croft, 2003) have developed and implemented a jerk-bounded 
trajectory for an industrial robot using concatenated quintic polynomials. Motion 
planning of land-based mobile robotic systems has been reported by several researchers. 
Among them, Brock and Khatib (Brock & Khatib, 1999) have proposed a global dynamic 
window approach that combines planning and real-time obstacle avoidance algorithms to 
generate motion for mobile robots. Huang et al. (Huang et al., 2000) have presented a 
coordinated motion planning approach for a mobile manipulator considering system 
stability and manipulation. Yamamoto and Fukuda (Yamamoto & Fukuda, 2002) 
formulated trajectories considering kinematic and dynamic manipulability measures for 
two mobile robots carrying a common object while avoiding a collision by changing their 
configuration dynamically. Recently, Yamashita et al. (Yamashita et al., 2003) have 
proposed a motion planning method for multiple mobile robots for cooperative 
transportation of a large object in a 3D environment. To reduce the computational burden, 
they have divided the motion planner into a global path planner and a local manipulation 
planner then they have designed it and integrated it. All the previously mentioned 
researches have performed trajectory planning for either space robotic or land-based 
robotic systems. On the other hand, very few works on motion/trajectory planning of 
underwater robotic systems have been reported so far. Among them, Yoerger and Slotine 
(Yoerger & Slotin, 1985) formulated a robust trajectory control approach for underwater 
robotic vehicles. Spangelo and Egeland (Spangelo & Egeland, 1994) developed an energy-
optimum trajectory for underwater vehicles by optimizing a performance index 
consisting of a weighted combination of energy and time consumption by the system. 
Recently, Kawano and Ura (Kawano & Ura, 2002) have proposed a motion planning 
algorithm for nonholonomic autonomous underwater vehicle in disturbance using 
reinforcement learning (Q-learning) and teaching method. Sarkar and Podder (Sarkar & 
Podder, 2001) have presented a coordinated motion planning algorithm for a UVMS to 
minimize the hydrodynamic drag. Note that UVMS always implies an autonomous 
UVMS here. 
However, majority of the trajectory planning methods available in the literature that 
considered the dynamics of the system are formulated for land-based robots. They have 
either optimized some objective functions related to trajectory planning satisfying 
dynamic equations or optimized energy functions. Moreover, for the land-based robotic 
system, the dynamics of the system is either homogeneous or very close to homogeneous. 
On the other hand, most of the trajectory planning methods that have been developed for 
space and underwater robotic systems use the pseudoinverse approach that neglects the 
dynamics of the system (Siciliano, 1993; Antonelli & Chiaverini, 1998; Sarkar & Podder, 
2001).   
In this research, we propose a new trajectory planning methodology that generates a 
kinematically admissible and dynamically feasible trajectory for kinematically 
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combined system kinematically redundant. Such a system admits infinite number of joint 
space solutions for a given Cartesian space coordinates, and thus makes the problem of 
motion planning a difficult one. Second, a UVMS is composed of two dynamic subsystems, 
one for the vehicle and one for the manipulator, whose bandwidths are vastly different. The 
dynamic response of the vehicle is much slower than that of the manipulator. Any 
successful motion planning algorithm must consider this different dynamic bandwidth 
property of the UVMS. There are several other factors such as the uncertainty in the 
underwater environment, lack of accurate hydrodynamic models, and the dynamic 
interactions between the vehicle and the manipulator to name a few, which makes the 
motion planning for a UVMS a challenging problem. 
In robotics, trajectory planning is one of the most challenging problems (Klein & Huang, 
1983). Traditionally, trajectory planning problem is formulated as a kinematic problem and 
therefore the dynamics of the robotic system is neglected (Paul, 1979). Although the 
kinematic approach to the trajectory planning has yielded some very successful results, they 
are essentially incomplete as the planner does not consider the system’s dynamics while 
generating the reference trajectory. As a result, the reference trajectory may be kinematically 
admissible but may not be dynamically feasible.
Researchers, in the past several years, have developed various trajectory planning methods 
for robotic systems considering different kinematic and dynamic criteria such as obstacle 
avoidance, singularity avoidance, time minimization, torque optimization, energy 
optimization, and other objective functions. A robotic system that has more than 6 dof 
(degrees-of-freedom) is termed as kinematically redundant system. For a kinematically 
redundant system, the mapping between task-space trajectory and the joint-space trajectory 
is not unique. It admits infinite number of joint-space solutions for a given task-space 
trajectory. However, there are various mathematical tools such as Moore-Penrose 
Generalized Inverse, which map the desired Cartesian trajectory into the corresponding 
joint-space trajectory for a kinematically redundant system. Researchers have developed 
various trajectory planning methods for redundant systems (Klein & Huang, 1983; Zhou & 
Nguyen, 1997; Siciliano, 1993; Antonelli & Chiaverini, 1998; shi & McKay, 1986). Kinematic 
approach of motion planning has been reported in the past. Among them, Zhou and 
Nguyen (Zhou & Nguyen, 1997) formulated optimal joint-space trajectories for 
kinematically redundant manipulators by applying Pontryagin’s Maximum Principle. 
Siciliano (Siciliano, 1993) has proposed an inverse kinematic approach for motion planning 
of redundant spacecraft-manipulator system. Antonelli and Chiaverini (Antonelli & 
Chiaverini, 1998) have used pseudoinverse method for task-priority redundancy resolution 
for an autonomous Underwater Vehicle-Manipulator System (UVMS) using a kinematic 
approach.
Several researchers, on the other hand, have considered dynamics of the system for 
trajectory planning. Among them, Vukobratovic and Kircanski (Vukobratovic & 
Kircanski, 1984) proposed an inverse problem solution to generate nominal joint-space 
trajectory considering the dynamics of the system. Bobrow (Bobrow, 1989) presented the 
Cartesian path of the manipulator with a B-spline polynomial and then optimized the 
total path traversal time satisfying the dynamic equations of motion. Shiller and 
Dubowsky (Shiller & Dubowsky, 1989) presented a time-optimal motion planning method 
considering the dynamics of the system. Shin and McKay (Shin & McKay, 1986) proposed 
a dynamic programming approach to minimize the cost of moving a robotic manipulator. 
Hirakawa and Kawamura (Hirakawa & Kawamura, 1997) have proposed a method to 
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solve trajectory generation problem for redundant robot manipulators using the 
variational approach with B-spline function to minimize the consumed electrical energy. 
Saramago and Steffen (Saramago & Steffen, 1998) have formulated off-line joint-space 
trajectories to optimize traveling time and minimize mechanical energy of the actuators 
using spline functions. Zhu et al. (Zhu et al. , 1999) have formulated real-time collision free 
trajectory by minimizing an energy function. Faiz and Agrawal (Faiz & Agrawal, 2000) 
have proposed a trajectory planning scheme that explicitly satisfy the dynamic equations 
and the inequality constraints prescribed in terms of joint variables. Recently, Macfarlane 
and Croft (Macfarlane & Croft, 2003) have developed and implemented a jerk-bounded 
trajectory for an industrial robot using concatenated quintic polynomials. Motion 
planning of land-based mobile robotic systems has been reported by several researchers. 
Among them, Brock and Khatib (Brock & Khatib, 1999) have proposed a global dynamic 
window approach that combines planning and real-time obstacle avoidance algorithms to 
generate motion for mobile robots. Huang et al. (Huang et al., 2000) have presented a 
coordinated motion planning approach for a mobile manipulator considering system 
stability and manipulation. Yamamoto and Fukuda (Yamamoto & Fukuda, 2002) 
formulated trajectories considering kinematic and dynamic manipulability measures for 
two mobile robots carrying a common object while avoiding a collision by changing their 
configuration dynamically. Recently, Yamashita et al. (Yamashita et al., 2003) have 
proposed a motion planning method for multiple mobile robots for cooperative 
transportation of a large object in a 3D environment. To reduce the computational burden, 
they have divided the motion planner into a global path planner and a local manipulation 
planner then they have designed it and integrated it. All the previously mentioned 
researches have performed trajectory planning for either space robotic or land-based 
robotic systems. On the other hand, very few works on motion/trajectory planning of 
underwater robotic systems have been reported so far. Among them, Yoerger and Slotine 
(Yoerger & Slotin, 1985) formulated a robust trajectory control approach for underwater 
robotic vehicles. Spangelo and Egeland (Spangelo & Egeland, 1994) developed an energy-
optimum trajectory for underwater vehicles by optimizing a performance index 
consisting of a weighted combination of energy and time consumption by the system. 
Recently, Kawano and Ura (Kawano & Ura, 2002) have proposed a motion planning 
algorithm for nonholonomic autonomous underwater vehicle in disturbance using 
reinforcement learning (Q-learning) and teaching method. Sarkar and Podder (Sarkar & 
Podder, 2001) have presented a coordinated motion planning algorithm for a UVMS to 
minimize the hydrodynamic drag. Note that UVMS always implies an autonomous 
UVMS here. 
However, majority of the trajectory planning methods available in the literature that 
considered the dynamics of the system are formulated for land-based robots. They have 
either optimized some objective functions related to trajectory planning satisfying 
dynamic equations or optimized energy functions. Moreover, for the land-based robotic 
system, the dynamics of the system is either homogeneous or very close to homogeneous. 
On the other hand, most of the trajectory planning methods that have been developed for 
space and underwater robotic systems use the pseudoinverse approach that neglects the 
dynamics of the system (Siciliano, 1993; Antonelli & Chiaverini, 1998; Sarkar & Podder, 
2001).   
In this research, we propose a new trajectory planning methodology that generates a 
kinematically admissible and dynamically feasible trajectory for kinematically 
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redundant systems whose subsystems have greatly different dynamic responses. We 
consider the trajectory planning of underwater robotic systems as an application to the 
proposed theoretical development. In general, a UVMS is composed of a 6 dof 
Autonomous Underwater Vehicles (AUV) and one (or more) n dof robotic 
manipulator(s). Commonly, the dynamic response of the AUV is an order of 
magnitude slower than that of the manipulator(s). Therefore, a UVMS is a 
kinematically redundant heterogeneous dynamic system for which the trajectory 
planning methods available in the literature are not directly applicable.  For example, 
when the joint-space description of a robotic system is determined using 
pseudoinverse, all joints are implicitly assumed to have same or similar dynamic 
characteristics. Therefore, the traditional trajectory planning approaches may generate 
such reference trajectories that either the UVMS may not be able to track them or while 
tracking, it may consume exorbitant amount of energy which is extremely precious for 
autonomous operation in oceanic environment. 
Here, we present a new unified motion planning algorithm for a UVMS, which incorporates 
four other independent algorithms. This algorithm considers the variability in dynamic 
bandwidth of the complex UVMS system and generates not only kinematically admissible 
but also dynamically feasible reference trajectories. Additionally, this motion planning 
algorithm exploits the inherent kinematic redundancy of the whole system and provides 
reference trajectories that accommodates other important criteria such as thruster/actuator 
faults and saturations, and also minimizes hydrodynamic drag. All these performance 
criteria are very important for autonomous underwater operation. They provide a fault-
tolerant and reduced energy consuming autonomous operation framework. We have 
derived dynamic equations of motion for UVMS using a new approach Quasi-Lagrange 
formulation and also considered thruster dynamics. Effectiveness of the proposed unified 
motion planning algorithm has been verified by extensive computer simulation and some 
experiments.

2. UVMS Dynamics 
The dynamics of a UVMS is highly coupled, nonlinear and time-varying. There are 
several methods such as the Newton-Euler method, the Lagrange method and Kane's 
method to derive dynamic equations of motion. The Newton-Euler approach is a 
recursive formulation and is less useful for controller design (Kane & Lavinson, 1985; 
Fu et al., 1988; Craig, 1989). Kane’s method is a powerful approach and it generates the 
equations of motion in analytical forms, which are useful for control. However, we 
choose to develop the dynamic model using the Lagrange approach because of two 
reasons. First, it is a widely known approach in other fields of robotics and thus will be 
accessible to a larger number of researchers. Second, this is an energy-based approach 
that can be easily extended to include new subsystems (e.g., inclusion of another 
manipulator). 
There is a problem, however, to use the standard form of the Lagrange equation to 
derive the equations of motion of a UVMS. When the base of the manipulator is not 
fixed in an inertial frame, which is the case for a UVMS, it is convenient to express the 
Lagrangian not in terms of the velocities expressed in the inertial frame but in terms 
of velocities expressed in a body attached frame. Moreover, for feedback control, it is 
more convenient to work with velocity components about body-fixed axes, as sensors 
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measure motions and actuators apply torques in terms of components about the 
body-fixed reference frame. However, the components of the body-fixed angular 
velocity vector cannot be integrated to obtain actual angular displacement. As a 
consequence of this, we cannot use the Lagrange equation directly to derive the 
dynamic equations of motion in the body-fixed coordinate frame. This problem is 
circumvented by applying the Quasi-Lagrange approach. The Quasi-Lagrange 
approach was used earlier to derive the equations of motion of a space structure 
(Vukobratovic & Kircanski, 1984). Fossen mentioned the use of the same approach to 
model an AUV (Fossen, 1984).  
However, this is the first time that a UVMS is modeled using the Quasi-Lagrange approach. 
This formulation is attractive because it is similar to the widely used standard Lagrange 
formulation, but it generates the equations of motion in the body-attached, non-inertial 
reference frame, which is needed in this case. 
We, for convenience, commonly use two reference frames to describe underwater robotic 
systems. These two frames are namely the earth-fixed frame (denoted by XYZ) and the 
body-fixed frame (denoted by 

vvv ZYX ), as shown in Fig. 1.  
The dynamic equations of motion of a UVMS can be expressed as follows:  

bbmbmbmb qGwwqDwwqCwqM τ=+++ )(),(),()(   (1) 

where the subscript ‘b’  denotes the corresponding parameters in the body-fixed frames of 
the vehicle and the manipulator. )6()6()( nn

mb qM +×+ℜ∈  is the inertia matrix including the 
added mass and )6()6(),( nn

mb wqC +×+ℜ∈  is the centrifugal and Coriolis matrix including terms 
due to added mass. )6()6(),( nn

mb wqD +×+ℜ∈  is the drag matrix, )6()( nqG +ℜ∈  is the vector of 
restoring forces and )6( n

b
+ℜ∈τ  is the vector of forces and moments acting on the UVMS. 

The displacement vector T
mv qqq ][ ,= , where T

v qqq ]....,[ 6,1= , and T
nm qqq ],....,[ 67 += .

21 ,qq and
3q  are the linear (surge, sway, and heave) displacements of the vehicle along X, 

Y, and Z axes, respectively, expressed in the earth-fixed frame. 
54 ,qq  and 

6q are the angular 
(roll, pitch, and yaw) displacements of the vehicle about X, Y and Z axes, respectively, 
expressed in the earth-fixed frame. 

nqqq +687 ,......,,  are the angular displacements of joint 1, 
joint 2, ……., joint n of the  manipulator in link-fixed frames. The quasi velocity vector 

[ ]T
nwww += 61 ,......., , where 21 , ww  and 

3w  are the linear velocities of the vehicle 
along

vX ,
vY , and

vZ  axes respectively, expressed in the body-fixed frame.
54 , ww  and 

6w
are the angular velocities of the vehicle about 

vX ,
vY , and

vZ  axes, respectively, expressed in 
the body-fixed frame. 

nwww +687 ,......,,  are the angular  velocities of manipulator joint 1, 
joint 2, …. ., joint n, expressed in the link-fixed frame. A detailed derivation of Equation (1) 
is given in (Podder, 2000). 
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redundant systems whose subsystems have greatly different dynamic responses. We 
consider the trajectory planning of underwater robotic systems as an application to the 
proposed theoretical development. In general, a UVMS is composed of a 6 dof 
Autonomous Underwater Vehicles (AUV) and one (or more) n dof robotic 
manipulator(s). Commonly, the dynamic response of the AUV is an order of 
magnitude slower than that of the manipulator(s). Therefore, a UVMS is a 
kinematically redundant heterogeneous dynamic system for which the trajectory 
planning methods available in the literature are not directly applicable.  For example, 
when the joint-space description of a robotic system is determined using 
pseudoinverse, all joints are implicitly assumed to have same or similar dynamic 
characteristics. Therefore, the traditional trajectory planning approaches may generate 
such reference trajectories that either the UVMS may not be able to track them or while 
tracking, it may consume exorbitant amount of energy which is extremely precious for 
autonomous operation in oceanic environment. 
Here, we present a new unified motion planning algorithm for a UVMS, which incorporates 
four other independent algorithms. This algorithm considers the variability in dynamic 
bandwidth of the complex UVMS system and generates not only kinematically admissible 
but also dynamically feasible reference trajectories. Additionally, this motion planning 
algorithm exploits the inherent kinematic redundancy of the whole system and provides 
reference trajectories that accommodates other important criteria such as thruster/actuator 
faults and saturations, and also minimizes hydrodynamic drag. All these performance 
criteria are very important for autonomous underwater operation. They provide a fault-
tolerant and reduced energy consuming autonomous operation framework. We have 
derived dynamic equations of motion for UVMS using a new approach Quasi-Lagrange 
formulation and also considered thruster dynamics. Effectiveness of the proposed unified 
motion planning algorithm has been verified by extensive computer simulation and some 
experiments.

2. UVMS Dynamics 
The dynamics of a UVMS is highly coupled, nonlinear and time-varying. There are 
several methods such as the Newton-Euler method, the Lagrange method and Kane's 
method to derive dynamic equations of motion. The Newton-Euler approach is a 
recursive formulation and is less useful for controller design (Kane & Lavinson, 1985; 
Fu et al., 1988; Craig, 1989). Kane’s method is a powerful approach and it generates the 
equations of motion in analytical forms, which are useful for control. However, we 
choose to develop the dynamic model using the Lagrange approach because of two 
reasons. First, it is a widely known approach in other fields of robotics and thus will be 
accessible to a larger number of researchers. Second, this is an energy-based approach 
that can be easily extended to include new subsystems (e.g., inclusion of another 
manipulator). 
There is a problem, however, to use the standard form of the Lagrange equation to 
derive the equations of motion of a UVMS. When the base of the manipulator is not 
fixed in an inertial frame, which is the case for a UVMS, it is convenient to express the 
Lagrangian not in terms of the velocities expressed in the inertial frame but in terms 
of velocities expressed in a body attached frame. Moreover, for feedback control, it is 
more convenient to work with velocity components about body-fixed axes, as sensors 
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measure motions and actuators apply torques in terms of components about the 
body-fixed reference frame. However, the components of the body-fixed angular 
velocity vector cannot be integrated to obtain actual angular displacement. As a 
consequence of this, we cannot use the Lagrange equation directly to derive the 
dynamic equations of motion in the body-fixed coordinate frame. This problem is 
circumvented by applying the Quasi-Lagrange approach. The Quasi-Lagrange 
approach was used earlier to derive the equations of motion of a space structure 
(Vukobratovic & Kircanski, 1984). Fossen mentioned the use of the same approach to 
model an AUV (Fossen, 1984).  
However, this is the first time that a UVMS is modeled using the Quasi-Lagrange approach. 
This formulation is attractive because it is similar to the widely used standard Lagrange 
formulation, but it generates the equations of motion in the body-attached, non-inertial 
reference frame, which is needed in this case. 
We, for convenience, commonly use two reference frames to describe underwater robotic 
systems. These two frames are namely the earth-fixed frame (denoted by XYZ) and the 
body-fixed frame (denoted by 

vvv ZYX ), as shown in Fig. 1.  
The dynamic equations of motion of a UVMS can be expressed as follows:  

bbmbmbmb qGwwqDwwqCwqM τ=+++ )(),(),()(   (1) 

where the subscript ‘b’  denotes the corresponding parameters in the body-fixed frames of 
the vehicle and the manipulator. )6()6()( nn

mb qM +×+ℜ∈  is the inertia matrix including the 
added mass and )6()6(),( nn

mb wqC +×+ℜ∈  is the centrifugal and Coriolis matrix including terms 
due to added mass. )6()6(),( nn

mb wqD +×+ℜ∈  is the drag matrix, )6()( nqG +ℜ∈  is the vector of 
restoring forces and )6( n

b
+ℜ∈τ  is the vector of forces and moments acting on the UVMS. 

The displacement vector T
mv qqq ][ ,= , where T

v qqq ]....,[ 6,1= , and T
nm qqq ],....,[ 67 += .

21 ,qq and
3q  are the linear (surge, sway, and heave) displacements of the vehicle along X, 

Y, and Z axes, respectively, expressed in the earth-fixed frame. 
54 ,qq  and 

6q are the angular 
(roll, pitch, and yaw) displacements of the vehicle about X, Y and Z axes, respectively, 
expressed in the earth-fixed frame. 

nqqq +687 ,......,,  are the angular displacements of joint 1, 
joint 2, ……., joint n of the  manipulator in link-fixed frames. The quasi velocity vector 

[ ]T
nwww += 61 ,......., , where 21 , ww  and 

3w  are the linear velocities of the vehicle 
along

vX ,
vY , and

vZ  axes respectively, expressed in the body-fixed frame.
54 , ww  and 

6w
are the angular velocities of the vehicle about 

vX ,
vY , and

vZ  axes, respectively, expressed in 
the body-fixed frame. 

nwww +687 ,......,,  are the angular  velocities of manipulator joint 1, 
joint 2, …. ., joint n, expressed in the link-fixed frame. A detailed derivation of Equation (1) 
is given in (Podder, 2000). 
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Fig. 1.  Coordinate frames for underwater vehicle-manipulator system. 

Equation (1) is represented in the body-fixed frame of the UVMS because it is convenient to 
measure and control the motion of the UVMS with respect to the moving frame. However, 
the integration of the angular velocity vector does not lead to the generalized coordinates 
denoting the orientation of the UVMS. In general, we can relate the derivative of the 
generalized coordinates and the velocity vector in the body-fixed frame by the following 
linear transformation:  

Bwq =  (2) 

The transformation matrix B in Equation (2) is given by:  
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Here Si, Ci and Ti represent sin(qi), cos(qi) and tan(qi), respectively, and I is the identity 
matrix. Note that there is an Euler angle (roll, pitch, yaw) singularity in 2J  when the pitch 
angle )( 5q is an odd multiple of 090± . Generally, the pitch angle in practical operation is 
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restricted to 0
5 90<q . However, if we need to avoid singularity altogether, unit 

quarternions can be used to represent orientation (Fossen, 1984). 

3. Dynamics-Based Trajectory Planning Algorithm 
Most of the trajectory planning methods found in literature is formulated for land-based 
robots where the dynamics of the system is homogeneous or very close to homogeneous. 
The study of UVMS becomes more complicated because of the heterogeneous dynamics and 
dynamic coupling between two different bandwidth subsystems. From practical point of 
view it is very difficult and expensive to move a heavy and large body with higher 
frequency as compared to a lighter and smaller body. The situation becomes worse in the 
case of underwater systems because of the presence of heavier liquid (water) which 
contributes significant amount of drag forces. Therefore, it will be more meaningful if we 
can divide the task into several segments depending on the natural frequencies of the 
subsystems. This will enable the heterogeneous dynamic system to execute the trajectory 
not only kinematically admissibly but also dynamically feasibly. 
Here we present a trajectory planning algorithm that accounts for different bandwidth 
characteristic of a dynamic system. First, we present the algorithm for a general n-
bandwidth dynamic system. Then we improvise this algorithm for application to a UVMS.  

3.1 Theoretical Development 
Let us assume that we know the natural frequency of each subsystem of the heterogeneous 
dynamic system. This will give us a measure of the dynamic response of each subsystem. 
Let these frequencies be 

iω , si ,,2,1= .
We approximate the task-space trajectories using Fourier series and represent it in terms of 
the summation of several frequencies in ascending order.  
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where
rr baa ,,0
 are the coefficients of Fourier series and are represented as 16×  column 

vectors, Lr 2  is the frequency of the series and 2L is the time period.  

Now we truncate the series at a certain value of r (assuming 1pr =  to be sufficiently large) 
so that it can represent the task-space trajectories reasonably. We rewrite the task-space 
trajectory in the following form: 

)()()()()(
1211616 tftftftftx pd +++== ××

 (7) 

where )/sin()/cos()( 1101 LtbLtaatf ππ ++= , and =)(tf j )/sin()/cos( LtjbLtja jj ππ +
for

1,...,3,2 pj = .
We then use these truncated series as the reference task-space trajectories and map them 
into the desired (reference) joint-space trajectories by using weighted pseudoinverse 
method as follows: 

jjj dWd xJq +=   (8) 

)(
jjjj ddWd qJxJq −= +  (9) 
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Fig. 1.  Coordinate frames for underwater vehicle-manipulator system. 

Equation (1) is represented in the body-fixed frame of the UVMS because it is convenient to 
measure and control the motion of the UVMS with respect to the moving frame. However, 
the integration of the angular velocity vector does not lead to the generalized coordinates 
denoting the orientation of the UVMS. In general, we can relate the derivative of the 
generalized coordinates and the velocity vector in the body-fixed frame by the following 
linear transformation:  
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Here Si, Ci and Ti represent sin(qi), cos(qi) and tan(qi), respectively, and I is the identity 
matrix. Note that there is an Euler angle (roll, pitch, yaw) singularity in 2J  when the pitch 
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restricted to 0
5 90<q . However, if we need to avoid singularity altogether, unit 

quarternions can be used to represent orientation (Fossen, 1984). 

3. Dynamics-Based Trajectory Planning Algorithm 
Most of the trajectory planning methods found in literature is formulated for land-based 
robots where the dynamics of the system is homogeneous or very close to homogeneous. 
The study of UVMS becomes more complicated because of the heterogeneous dynamics and 
dynamic coupling between two different bandwidth subsystems. From practical point of 
view it is very difficult and expensive to move a heavy and large body with higher 
frequency as compared to a lighter and smaller body. The situation becomes worse in the 
case of underwater systems because of the presence of heavier liquid (water) which 
contributes significant amount of drag forces. Therefore, it will be more meaningful if we 
can divide the task into several segments depending on the natural frequencies of the 
subsystems. This will enable the heterogeneous dynamic system to execute the trajectory 
not only kinematically admissibly but also dynamically feasibly. 
Here we present a trajectory planning algorithm that accounts for different bandwidth 
characteristic of a dynamic system. First, we present the algorithm for a general n-
bandwidth dynamic system. Then we improvise this algorithm for application to a UVMS.  

3.1 Theoretical Development 
Let us assume that we know the natural frequency of each subsystem of the heterogeneous 
dynamic system. This will give us a measure of the dynamic response of each subsystem. 
Let these frequencies be 

iω , si ,,2,1= .
We approximate the task-space trajectories using Fourier series and represent it in terms of 
the summation of several frequencies in ascending order.  
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where
rr baa ,,0
 are the coefficients of Fourier series and are represented as 16×  column 

vectors, Lr 2  is the frequency of the series and 2L is the time period.  

Now we truncate the series at a certain value of r (assuming 1pr =  to be sufficiently large) 
so that it can represent the task-space trajectories reasonably. We rewrite the task-space 
trajectory in the following form: 
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where )/sin()/cos()( 1101 LtbLtaatf ππ ++= , and =)(tf j )/sin()/cos( LtjbLtja jj ππ +
for

1,...,3,2 pj = .
We then use these truncated series as the reference task-space trajectories and map them 
into the desired (reference) joint-space trajectories by using weighted pseudoinverse 
method as follows: 

jjj dWd xJq +=   (8) 

)(
jjjj ddWd qJxJq −= +  (9) 
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where
jdq are the joint-space velocities and 

jdq  are the joint-space accelerations 

corresponding to the task-space velocities dttfdx jdj
))((=  and task-space accelerations 

22 ))(( dttfdx jd j
=  for 

1,...,2,1 pj = . 111 )( −−−+ = T
j

T
jw JJWJWJ

j
 are the weighted pseudoinverse 

of Jacobians and ),.......,( )6(1 jj nj hhdiagW +=  are diagonal weight matrices. 

In our proposed scheme we use weighted pseudoinverse technique in such a way that it can 
act as a filter to remove the propagation of undesirable frequency components from the 
task-space trajectories to the corresponding joint-space trajectories for a particular 
subsystem. This we do by putting suitable zeros in the diagonal entries of the 1−

jW  matrices 

in Equation (8) and Equation (9). We leave the other elements of 1−
jW  as unity. We have 

developed two cases for such a frequency-wise decomposition as follows: 

Case I – Partial Decomposition:
In this case, the segments of the task-space trajectories having frequencies tω )( it ωω ≤  will 

be allocated to all subsystems that have natural frequencies greater than tω  up to the 
maximum bandwidth subsystem. To give an example, for a UVMS, the lower frequencies 
will be shared by both the AUV and the manipulator, whereas the higher frequencies will 
be solely taken care of by the manipulator. 

Case II- Total Decomposition: 
In this case, we partition the total system into several frequency domains, starting from the 
low frequency subsystem to the very high frequency subsystem. We then allocate a 
particular frequency component of the task-space trajectories to only those subsystems that 
belong to the frequency domain just higher than the task-space component to generate joint-
space trajectories. For a UVMS, this means that the lower frequencies will be taken care of 
by the vehicle alone and the higher frequencies by the manipulator alone.  
To improvise the general algorithm for a (6+n) dof UVMS, we decompose the task-space 
trajectories into two components as follows: 

)()()( 2211 tftftf +=  (10) 

where
==

++=
11

11
011 )/sin()/cos()(

r

r
r

r

r
r LtrbLtraatf ππ ,

+=
+=

2

1 1
22 )/cos()(

r

rr
r Ltratf π

+=

2

1 1
)/sin(

r

rr
n Ltrb π , 1r  and 2r )( 12 pr =  are suitable finite positive integers. Here, 

)(11 tf consists of lower frequency terms and )(22 tf has the higher frequency terms. 
Now, the mapping between the task-space variables and the joint-space variables are 
performed as 
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where )6()6( nn
iW +×+ℜ∈  are the  weight matrices, )6( n

dq +ℜ∈  are the joint-space accelerations 
and 111 )( −−−+ = T

i
T

iwi JJWJWJ  for (i=1,2). We have considered the weight matrices for two 
types of decompositions as follows: 
For Case I – Partial decomposition: 

),....,,( 6211 nhhhdiagW +=   (14) 

),....,,0,....,0( 672 nhhdiagW +=   (15) 

For Case II- Total decomposition:

)0,....,0,,....,( 611 hhdiagW =  (16) 

),....,,0,....,0( 672 nhhdiagW +=  (17) 

The weight design is further improved by incorporating the system’s damping into the 
trajectory generation for UVMS. A significant amount of energy is consumed by the 
damping in the underwater environment. Hydrodynamic drag is one of the main 
components of such damping. Thus, if we decompose the motion in the joint-space in such a 
way that it is allocated in an inverse ratio to some measure of damping, the resultant 
trajectory is expected to consume less energy while tracking the same task-space trajectory. 
Thus, we incorporate the damping into the trajectory generation by designing the diagonal 
elements of the weight matrix as )( ii fh ζ= , where iζ  (i=1,…...,6+n) is the damping ratio of 
the particular dynamic subsystem which can be found out using multi-body vibration 
analysis techniques (James et al., 1989). A block diagram of the proposed scheme has been 
shown in Fig. 2.  
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Fig. 2.  Dynamics-based planning scheme. 

3.2 Implementation Issues 
It is to be noted that in the proposed dynamics-based method we have decomposed the 
task-space trajectory into two domains where the lower frequency segments of the task-
space trajectories are directed to either the heavier subsystem, i.e., the vehicle in Case II, or 
to both the heavier and lighter subsystems, i.e., the vehicle and the manipulator as in Case I. 
The high frequency segments of the task-space trajectories, on the other hand, are always 
allocated to the lighter subsystem, i.e., the manipulator. These allocations of task-space 
trajectories have been mapped to corresponding joint-space trajectories by utilizing 
weighted pseudoinverse technique where the heterogeneous dynamics of the UVMS have 
been taken into consideration. Then, these reference joint-space trajectories are followed by 
the individual joint/dof to execute the end-effector’s trajectories.  
There are two basic issues of this proposed algorithm that must be discussed before it can be 
implemented. They are: given a nonlinear, multi degree-of-freedom (n-DOF) dynamic 
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where
jdq are the joint-space velocities and 
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In our proposed scheme we use weighted pseudoinverse technique in such a way that it can 
act as a filter to remove the propagation of undesirable frequency components from the 
task-space trajectories to the corresponding joint-space trajectories for a particular 
subsystem. This we do by putting suitable zeros in the diagonal entries of the 1−

jW  matrices 

in Equation (8) and Equation (9). We leave the other elements of 1−
jW  as unity. We have 

developed two cases for such a frequency-wise decomposition as follows: 

Case I – Partial Decomposition:
In this case, the segments of the task-space trajectories having frequencies tω )( it ωω ≤  will 

be allocated to all subsystems that have natural frequencies greater than tω  up to the 
maximum bandwidth subsystem. To give an example, for a UVMS, the lower frequencies 
will be shared by both the AUV and the manipulator, whereas the higher frequencies will 
be solely taken care of by the manipulator. 

Case II- Total Decomposition: 
In this case, we partition the total system into several frequency domains, starting from the 
low frequency subsystem to the very high frequency subsystem. We then allocate a 
particular frequency component of the task-space trajectories to only those subsystems that 
belong to the frequency domain just higher than the task-space component to generate joint-
space trajectories. For a UVMS, this means that the lower frequencies will be taken care of 
by the vehicle alone and the higher frequencies by the manipulator alone.  
To improvise the general algorithm for a (6+n) dof UVMS, we decompose the task-space 
trajectories into two components as follows: 

)()()( 2211 tftftf +=  (10) 

where
==

++=
11

11
011 )/sin()/cos()(

r

r
r

r

r
r LtrbLtraatf ππ ,

+=
+=

2

1 1
22 )/cos()(

r

rr
r Ltratf π

+=

2

1 1
)/sin(

r

rr
n Ltrb π , 1r  and 2r )( 12 pr =  are suitable finite positive integers. Here, 

)(11 tf consists of lower frequency terms and )(22 tf has the higher frequency terms. 
Now, the mapping between the task-space variables and the joint-space variables are 
performed as 

)(
1111 ddWd xJxJq −= +   (11) 

)(
2222 ddWd xJxJq −= +  (12) 

21 ddd qqq +=  (13) 
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where )6()6( nn
iW +×+ℜ∈  are the  weight matrices, )6( n

dq +ℜ∈  are the joint-space accelerations 
and 111 )( −−−+ = T

i
T

iwi JJWJWJ  for (i=1,2). We have considered the weight matrices for two 
types of decompositions as follows: 
For Case I – Partial decomposition: 

),....,,( 6211 nhhhdiagW +=   (14) 

),....,,0,....,0( 672 nhhdiagW +=   (15) 

For Case II- Total decomposition:

)0,....,0,,....,( 611 hhdiagW =  (16) 

),....,,0,....,0( 672 nhhdiagW +=  (17) 

The weight design is further improved by incorporating the system’s damping into the 
trajectory generation for UVMS. A significant amount of energy is consumed by the 
damping in the underwater environment. Hydrodynamic drag is one of the main 
components of such damping. Thus, if we decompose the motion in the joint-space in such a 
way that it is allocated in an inverse ratio to some measure of damping, the resultant 
trajectory is expected to consume less energy while tracking the same task-space trajectory. 
Thus, we incorporate the damping into the trajectory generation by designing the diagonal 
elements of the weight matrix as )( ii fh ζ= , where iζ  (i=1,…...,6+n) is the damping ratio of 
the particular dynamic subsystem which can be found out using multi-body vibration 
analysis techniques (James et al., 1989). A block diagram of the proposed scheme has been 
shown in Fig. 2.  
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Fig. 2.  Dynamics-based planning scheme. 

3.2 Implementation Issues 
It is to be noted that in the proposed dynamics-based method we have decomposed the 
task-space trajectory into two domains where the lower frequency segments of the task-
space trajectories are directed to either the heavier subsystem, i.e., the vehicle in Case II, or 
to both the heavier and lighter subsystems, i.e., the vehicle and the manipulator as in Case I. 
The high frequency segments of the task-space trajectories, on the other hand, are always 
allocated to the lighter subsystem, i.e., the manipulator. These allocations of task-space 
trajectories have been mapped to corresponding joint-space trajectories by utilizing 
weighted pseudoinverse technique where the heterogeneous dynamics of the UVMS have 
been taken into consideration. Then, these reference joint-space trajectories are followed by 
the individual joint/dof to execute the end-effector’s trajectories.  
There are two basic issues of this proposed algorithm that must be discussed before it can be 
implemented. They are: given a nonlinear, multi degree-of-freedom (n-DOF) dynamic 
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system having different frequency bandwidth subsystems, how to find the 1) natural 
frequencies of each subsystem, and 2) the damping ratios of each subsystem. We briefly 
point out the required steps that are needed to obtain these system dynamic parameters: (1) 
Linearize the dynamic equations, (2) Find the eigenvalues and eigenvectors from the 
undamped homogeneous equations, (3) Find the orthogonal modal matrix (P), (4)  Find the 
generalized mass matrix ( MPPT ), (5) Find the generalized stiffness matrix ( KPPT ), (6) Find 
the weighted modal matrix ( P~ ), (7) Using Rayleigh damping equation find a proportional 
damping matrix, and (8) Decouple the dynamic equations by using P~ .
After all these operations, we will obtain (6+n) decoupled equations similar to that of a 
single-dof system instead of (6+n) coupled equations. From this point on, finding the 
natural frequencies )( iω  and the damping ratios ( iζ ) are straightforward. A detailed 
discussion on these steps can be found in advanced vibration textbook (James et al.,
1989). 

3.3 Results and Discussion 
We have conducted extensive computer simulations to investigate the performance of the 
proposed Drag Minimization (DM) algorithm.  The UVMS used for the simulation consists 
of a 6 dof vehicle and a 3 dof planar manipulator working in the vertical plane. The vehicle 
is ellipsoidal in shape with length, width and height 2.0m, 1.0m and 1.0m, respectively. The 
mass of the vehicle is 1073.0Kg. The links are cylindrical and each link is 1.0m long. The radii 
of link 1, 2 and 3 are 0.1m, 0.08m and 0.07m, respectively. The link masses (oil filled) are 
32.0Kg, 21.0Kg and 16.0Kg, respectively. We have compared our results with that of the 
conventional Pseudoinverse (PI) method (i.e., without the null-space term), which is a 
standard method for resolving kinematic redundancy.  

3.3.1 Trajectory  
We have chosen a square path in xy (horizontal) plane for the computer simulation. We 
have assumed that each side of the square path is tracked in equal time. The geometric path 
and the task-space trajectories are given in Fig. 3.   

Fig. 3. Task-space geometric path and trajectories. 
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The Fourier series for the above trajectories are as follows: 
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where ‘j’ implies the coefficients for x, y or z; k is a constant and 2L is the time period. The 
Fourier coefficients are:

kaa oyx =−=0
, )1(cos)(4 2 −=−= ππ rrkaa ryrx

 and )2/sin()(8 2 ππ rrkbb ryrx =−= .

For this simulation, we have taken k= 1m, i.e., the path is 2m square, L=5 and maximum 
frequency at which the Fourier series is truncated is 301 == pr . The frequency of the 
manipulator is 10 times higher than that of the vehicle. We have taken the natural frequency 
of the vehicle as 0.15 cycles per second and the manipulator to be 10 time faster than the 
vehicle.  We have segmented the task-space trajectories as 
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We have compared our results from the proposed dynamics-based trajectory planning 
method with that from the conventional straight-line trajectory planning method using 
regular pseudoinverse technique. In conventional method, the trajectory is designed in three 
sections: the main section (intermediate section), which is a straight line, is preceded and 
followed by two short parabolic sections (Fu et al., 1988; Craig, 1989). The simulation time is 
10.0sec, which is required to complete the square path in XY (horizontal) plane. The total 
length of the path is 8.0m; the average speed is about 1.6knot. This speed is more than 
JASON vehicle (speed = 1.0knot) but less than SAUVIM system (designed speed = 3.0knot).
We have presented results from computer simulations in Fig. 4 through Fig. 9. Results for Case 
I (Partial Decomposition) are plotted in Fig. 5 through Fig. 7 and that of for Case II (Total 
Decomposition) are provided in Fig. 8 through Fig. 9. It is observed from Fig. 4 and 5 that the 
end-effector tracks the task-space paths and trajectories quite accurately. The errors are very 
small. The joint-space trajectories are plotted in Fig. 6. It is observed that the proposed 
dynamics-based method restricts the motion of the heavy subsystem and allows greater 
motion of the lighter subsystem to track the trajectory. It is also noticed that the motion of the 
heavy subsystem is smoother. The errors in joint-space trajectory are almost zero. 
Simulation results for surge-sway motion, power requirement and energy consumption for 
conventional straight-line method are plotted in the left column and that of for proposed 
dynamics-based method are plotted in the right column in Fig. 7. Top two plots of Fig. 7 
show the differences in surge-sway movements for two methods. In case of the conventional 
method, the vehicle changes the motion very sharply as compared to the motion generated 
from the dynamics-based method. It may so happen that this type of sharp movements may 
be beyond the capability of the heavy dynamic subsystem and consequently large errors in 
trajectory tracking may occur. Moreover, the vehicle will experience large velocity and 
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system having different frequency bandwidth subsystems, how to find the 1) natural 
frequencies of each subsystem, and 2) the damping ratios of each subsystem. We briefly 
point out the required steps that are needed to obtain these system dynamic parameters: (1) 
Linearize the dynamic equations, (2) Find the eigenvalues and eigenvectors from the 
undamped homogeneous equations, (3) Find the orthogonal modal matrix (P), (4)  Find the 
generalized mass matrix ( MPPT ), (5) Find the generalized stiffness matrix ( KPPT ), (6) Find 
the weighted modal matrix ( P~ ), (7) Using Rayleigh damping equation find a proportional 
damping matrix, and (8) Decouple the dynamic equations by using P~ .
After all these operations, we will obtain (6+n) decoupled equations similar to that of a 
single-dof system instead of (6+n) coupled equations. From this point on, finding the 
natural frequencies )( iω  and the damping ratios ( iζ ) are straightforward. A detailed 
discussion on these steps can be found in advanced vibration textbook (James et al.,
1989). 

3.3 Results and Discussion 
We have conducted extensive computer simulations to investigate the performance of the 
proposed Drag Minimization (DM) algorithm.  The UVMS used for the simulation consists 
of a 6 dof vehicle and a 3 dof planar manipulator working in the vertical plane. The vehicle 
is ellipsoidal in shape with length, width and height 2.0m, 1.0m and 1.0m, respectively. The 
mass of the vehicle is 1073.0Kg. The links are cylindrical and each link is 1.0m long. The radii 
of link 1, 2 and 3 are 0.1m, 0.08m and 0.07m, respectively. The link masses (oil filled) are 
32.0Kg, 21.0Kg and 16.0Kg, respectively. We have compared our results with that of the 
conventional Pseudoinverse (PI) method (i.e., without the null-space term), which is a 
standard method for resolving kinematic redundancy.  

3.3.1 Trajectory  
We have chosen a square path in xy (horizontal) plane for the computer simulation. We 
have assumed that each side of the square path is tracked in equal time. The geometric path 
and the task-space trajectories are given in Fig. 3.   

Fig. 3. Task-space geometric path and trajectories. 
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The Fourier series for the above trajectories are as follows: 
∞

=

∞

=
++=

11
0 )/sin()/cos()(

r
rj

r
rjjj LtrbLtraatf ππ  (21)

where ‘j’ implies the coefficients for x, y or z; k is a constant and 2L is the time period. The 
Fourier coefficients are:

kaa oyx =−=0
, )1(cos)(4 2 −=−= ππ rrkaa ryrx

 and )2/sin()(8 2 ππ rrkbb ryrx =−= .

For this simulation, we have taken k= 1m, i.e., the path is 2m square, L=5 and maximum 
frequency at which the Fourier series is truncated is 301 == pr . The frequency of the 
manipulator is 10 times higher than that of the vehicle. We have taken the natural frequency 
of the vehicle as 0.15 cycles per second and the manipulator to be 10 time faster than the 
vehicle.  We have segmented the task-space trajectories as 
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We have compared our results from the proposed dynamics-based trajectory planning 
method with that from the conventional straight-line trajectory planning method using 
regular pseudoinverse technique. In conventional method, the trajectory is designed in three 
sections: the main section (intermediate section), which is a straight line, is preceded and 
followed by two short parabolic sections (Fu et al., 1988; Craig, 1989). The simulation time is 
10.0sec, which is required to complete the square path in XY (horizontal) plane. The total 
length of the path is 8.0m; the average speed is about 1.6knot. This speed is more than 
JASON vehicle (speed = 1.0knot) but less than SAUVIM system (designed speed = 3.0knot).
We have presented results from computer simulations in Fig. 4 through Fig. 9. Results for Case 
I (Partial Decomposition) are plotted in Fig. 5 through Fig. 7 and that of for Case II (Total 
Decomposition) are provided in Fig. 8 through Fig. 9. It is observed from Fig. 4 and 5 that the 
end-effector tracks the task-space paths and trajectories quite accurately. The errors are very 
small. The joint-space trajectories are plotted in Fig. 6. It is observed that the proposed 
dynamics-based method restricts the motion of the heavy subsystem and allows greater 
motion of the lighter subsystem to track the trajectory. It is also noticed that the motion of the 
heavy subsystem is smoother. The errors in joint-space trajectory are almost zero. 
Simulation results for surge-sway motion, power requirement and energy consumption for 
conventional straight-line method are plotted in the left column and that of for proposed 
dynamics-based method are plotted in the right column in Fig. 7. Top two plots of Fig. 7 
show the differences in surge-sway movements for two methods. In case of the conventional 
method, the vehicle changes the motion very sharply as compared to the motion generated 
from the dynamics-based method. It may so happen that this type of sharp movements may 
be beyond the capability of the heavy dynamic subsystem and consequently large errors in 
trajectory tracking may occur. Moreover, the vehicle will experience large velocity and 
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acceleration in conventional method that result in higher power requirement and energy 
consumption, as we observe in Fig. 7. 

Fig. 4.  Task-space geometric paths, (a) Conventional Straight-line planning method  and  (b)  
Dynamics-Based planning method for Case I. The actual path is denoted by solid line and 
the desired path is denoted by dashed line. 
We have also presented simulation results for Case II (Total Decomposition) in Fig. 8 and 9. 
From Fig. 8 it is observed that even though the vehicle has moved more as compared to the 
conventional straight-line planning method, the motion is smooth. This type of motion is more 
realistic for a heavy subsystem like the vehicle here and it also avoids large acceleration of the 
vehicle. On the other hand, the movement of the manipulator is smaller but sharper than that 
of the conventional method. In the plots in the left column of Fig. 9 it is shown that the end-
effector tracks the task-space trajectories quite accurately. The second plot on the right column 
of this figure shows that the power requirement of the UVMS is less in Case II of the proposed 
dynamics-based method as compared to that of in conventional method.  
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Fig. 5. Task-space trajectories: Conventional Straight-line planning method (left column) 
and Dynamics-Based planning method for Case I (right column). Desired trajectories are 
denoted by dashed lines and actual trajectories are denoted by dashed lines.  
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Fig. 6. Joint-space trajectories: Dynamics-Based planning method for Case I (solid/blue line) 
and Conventional Straight- line planning method (dashed/red line). 
For Case II, we can say even though the reduction of energy consumption is not  much, 
however, the movement is smooth that can be practically executed. The power requirement 
is also less as compared to the conventional straight-line planning method. 
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Fig. 7. X-Y  motion of  the  center  of  gravity,  power and energy consumption of the UVMS. 
Left column for Conventional Straight-line planning method and right column for 
Dynamics-Based planning method for Case I (partial decomposition). 
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acceleration in conventional method that result in higher power requirement and energy 
consumption, as we observe in Fig. 7. 

Fig. 4.  Task-space geometric paths, (a) Conventional Straight-line planning method  and  (b)  
Dynamics-Based planning method for Case I. The actual path is denoted by solid line and 
the desired path is denoted by dashed line. 
We have also presented simulation results for Case II (Total Decomposition) in Fig. 8 and 9. 
From Fig. 8 it is observed that even though the vehicle has moved more as compared to the 
conventional straight-line planning method, the motion is smooth. This type of motion is more 
realistic for a heavy subsystem like the vehicle here and it also avoids large acceleration of the 
vehicle. On the other hand, the movement of the manipulator is smaller but sharper than that 
of the conventional method. In the plots in the left column of Fig. 9 it is shown that the end-
effector tracks the task-space trajectories quite accurately. The second plot on the right column 
of this figure shows that the power requirement of the UVMS is less in Case II of the proposed 
dynamics-based method as compared to that of in conventional method.  
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Fig. 5. Task-space trajectories: Conventional Straight-line planning method (left column) 
and Dynamics-Based planning method for Case I (right column). Desired trajectories are 
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Fig. 6. Joint-space trajectories: Dynamics-Based planning method for Case I (solid/blue line) 
and Conventional Straight- line planning method (dashed/red line). 
For Case II, we can say even though the reduction of energy consumption is not  much, 
however, the movement is smooth that can be practically executed. The power requirement 
is also less as compared to the conventional straight-line planning method. 
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Fig. 7. X-Y  motion of  the  center  of  gravity,  power and energy consumption of the UVMS. 
Left column for Conventional Straight-line planning method and right column for 
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Fig. 8. Joint-space trajectories: Dynamics-Based planning method (solid/blue line)  for Case 
II and Conventional Straight- line planning method (dashed/red line). 
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Fig. 9. Task-space trajectories (left column), and surge-sway motion, power requirement and 
energy consumption (right column) for Dynamics-Based planning method for Case II (total 
decomposition). 
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4. Fault Tolerant Decomposition Algorithm 
A UVMS is expected to function in a hazardous and unstructured underwater environment. 
A thruster/actuator fault can occur due to various reasons. There are different methods to 
detect and isolate these faults. Without going into the details of the possible nature of 
thruster/actuator faults and how they can be detected and isolated, we assume in this work 
that we can detect and isolate thruster/actuator faults when they occur. In general, there are 
more thrusters and actuators than what is minimally required for the specific dof that a 
UVMS is designed for. Here, we develop an algorithm to exploit the thruster and actuator 
redundancy to accommodate thruster/actuator faults during operation.  

4.1 Theoretical Development 
In order to relate the generalized force vector bτ  with the individual thruster/actuator 
force/torque, let us consider a UVMS which has p thrusters and actuators where, in general, 

)6( np +≥ . In such a case, we can write 

tb EF=τ  (24) 
where pnE ×+ℜ∈ )6( thruster configuration matrix and p

tF ℜ∈  is the reference thruster and 
actuator forces and torques. The thruster configuration matrix is a constant matrix that 
depends on the geometric locations of the thrusters and actuators. 
Substituting Equation (24) into Equation (1) and performing algebraic manipulation we get 

)(1
btdb EFMw ξ−= −  (25) 

where )(),(),( qGwwqDwwqC bmbmbb ++=ξ .
Differentiation of Equation (2) leads to the following acceleration relationship:

wBwBq +=   (26) 
Now, from Equation (25) and Equation (26) we can write 

+= tFq η  (27) 
where EBMbpn

1
)6(

−
×+ =η   and  

bbn BMwB ξ1
1)6(

−
×+ −= .

From Equation (27), using weighted pseudoinverse technique we obtain a least-norm 
solution to thruster and actuator forces and torques as  

)( −= + qF Wt η  (28) 
where 111 )( −−−+ = TT

W WW ηηηη  is the weighted pseudoinverse of η  and 

).,,.........( 2,1 phhhdiagW =  is the weight matrix. 

Now, we construct a thruster fault matrix, 1−
× = Wppψ , with diagonal entries either 1 or 0 to 

capture the fault information of each individual thruster/actuator. If there is any 
thruster/actuator fault we introduce 0 into the corresponding diagonal element of ψ ,
otherwise it will be 1. We can also rewrite Equation (28) in terms of thruster fault matrix, 
ψ , as 

)()( 1 −= − qF TT
t ηψηψη   (29) 

Equation (29) provides us the fault tolerant allocation of thruster/actuator force/torque, tF .
More detailed discussion on this topic can be found in (Podder & Sarkar, 2000; Podder et al.,
2001).



334 Mobile Robots, Perception & Navigation 

0 5 10
7

8

9

su
rg

e 
po

s 
[m

]

0 5 10

2

3

4

sw
ay

 p
os

 [
m

]

0 5 10
-0.2

0

0.2

he
av

e 
po

s 
[m

]

0 5 10
-20

-10

0

10

ro
llp

os
 [

de
g]

0 5 10
-20

-10

0

10

pi
tc

h 
po

s 
[d

eg
]

0 5 10
-80
-60
-40
-20

0
20

ya
w

 p
os

 [
de

g]

0 5 10

60

80

100

120

jo
in

t 1
 p

os
 [

de
g]

time [s]
0 5 10

-100

-80

-60

-40

jo
in

t 2
 p

os
 [

de
g]

time [s]
0 5 10

-100

-80

-60

-40

jo
in

t 3
 p

os
 [

de
g]

time [s]

Fig. 8. Joint-space trajectories: Dynamics-Based planning method (solid/blue line)  for Case 
II and Conventional Straight- line planning method (dashed/red line). 

0 2 4 6 8 10

9

10

11

x 
po

s 
[m

]

time [s]

0 2 4 6 8 10

0

1

2

y 
po

s 
[m

]

time [s]

0 2 4 6 8 10
-0.202

-0.2

-0.198

time [s]

7 7.5 8 8.5 9
1.5

2

2.5

3

3.5

ve
hi

cl
e 

sw
ay

 p
os

 [
m

]

vehicle surge pos [m]

0 2 4 6 8 10
0

1

2

3

po
w

er
 [

H
P

]

time [s]

0 2 4 6 8 10
0

2000

4000

time [s]

to
ta

l e
ne

rg
y 

[J
]

Fig. 9. Task-space trajectories (left column), and surge-sway motion, power requirement and 
energy consumption (right column) for Dynamics-Based planning method for Case II (total 
decomposition). 

Unified Dynamics-based Motion Planning Algorithm for Autonomous Underwater 
Vehicle-Manipulator Systems (UVMS) 335

4. Fault Tolerant Decomposition Algorithm 
A UVMS is expected to function in a hazardous and unstructured underwater environment. 
A thruster/actuator fault can occur due to various reasons. There are different methods to 
detect and isolate these faults. Without going into the details of the possible nature of 
thruster/actuator faults and how they can be detected and isolated, we assume in this work 
that we can detect and isolate thruster/actuator faults when they occur. In general, there are 
more thrusters and actuators than what is minimally required for the specific dof that a 
UVMS is designed for. Here, we develop an algorithm to exploit the thruster and actuator 
redundancy to accommodate thruster/actuator faults during operation.  

4.1 Theoretical Development 
In order to relate the generalized force vector bτ  with the individual thruster/actuator 
force/torque, let us consider a UVMS which has p thrusters and actuators where, in general, 

)6( np +≥ . In such a case, we can write 

tb EF=τ  (24) 
where pnE ×+ℜ∈ )6( thruster configuration matrix and p

tF ℜ∈  is the reference thruster and 
actuator forces and torques. The thruster configuration matrix is a constant matrix that 
depends on the geometric locations of the thrusters and actuators. 
Substituting Equation (24) into Equation (1) and performing algebraic manipulation we get 

)(1
btdb EFMw ξ−= −  (25) 

where )(),(),( qGwwqDwwqC bmbmbb ++=ξ .
Differentiation of Equation (2) leads to the following acceleration relationship:

wBwBq +=   (26) 
Now, from Equation (25) and Equation (26) we can write 

+= tFq η  (27) 
where EBMbpn

1
)6(

−
×+ =η   and  

bbn BMwB ξ1
1)6(

−
×+ −= .

From Equation (27), using weighted pseudoinverse technique we obtain a least-norm 
solution to thruster and actuator forces and torques as  

)( −= + qF Wt η  (28) 
where 111 )( −−−+ = TT

W WW ηηηη  is the weighted pseudoinverse of η  and 

).,,.........( 2,1 phhhdiagW =  is the weight matrix. 

Now, we construct a thruster fault matrix, 1−
× = Wppψ , with diagonal entries either 1 or 0 to 

capture the fault information of each individual thruster/actuator. If there is any 
thruster/actuator fault we introduce 0 into the corresponding diagonal element of ψ ,
otherwise it will be 1. We can also rewrite Equation (28) in terms of thruster fault matrix, 
ψ , as 

)()( 1 −= − qF TT
t ηψηψη   (29) 

Equation (29) provides us the fault tolerant allocation of thruster/actuator force/torque, tF .
More detailed discussion on this topic can be found in (Podder & Sarkar, 2000; Podder et al.,
2001).
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Fig. 10. Fault-tolerant control scheme. 

4.2 Experimental Setup 
We have conducted both computer simulations and underwater experiments to verify the 
proposed fault-tolerant control scheme.  We have used ODIN (Omni-Directional Intelligent 
Navigator), which is a 6 dof vehicle designed at the University of Hawaii], as our test-bed. 
ODIN is a near-spherical AUV that has 4 horizontal thrusters and 4 vertical thrusters as 
shown in Fig. 11. We have compared our simulation results with that of actual experiments, 
and presented them later in this section.  

Fig. 11.  Omni-Directional Intelligent Navigator (ODIN) vehicle. 

The ODIN has a near-spherical shape with horizontal diameter of 0.63m and vertical 
diameter of 0.61m, made of anodized Aluminum (AL 6061-T6). Its dry weight is 125.0Kg and 
is slightly positively buoyant. The processor is a Motorola 68040/33MHz working with 
VxWorks 5.2 operating systems. The RS232 protocol is used for RF communication. The RF 
Modem has operating range up to 480m, operating frequency range 802-928MHz, and 
maximum transmission speed 38,400 baud data rate. The power supply is furnished by 24 
Lead Gel batteries, where 20 batteries are used for the thrusters and 4 batteries are used for 
the CPU. ODIN can perform two hours of autonomous operation. 
The actuating system is made of 8 thrusters of which 4 are vertical and 4 are horizontal. 
Each thruster has a brushless DC motor weighing approximately 1Kg and can provide a 
maximum thrust of approximately 27N. The sensor system is composed of: 1) a pressure 
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sensor for measuring depth with an accuracy of 3cm, 2) 8 sonars for position reconstruction 
and navigation, each with a range of 0.1-14.4m, and 3) an inertial system for attitude and 
velocity measurement. Since the sonars need to be in the water to work properly, the first 
100sec of sonar data is not accurate.  
The experiments were conducted at the University of Hawaii swimming pool. Several 
experiments were performed to verify the proposed control scheme. The thruster faults 
were simulated by imposing zero voltages to the relevant thrusters.  

4.3 Results and Discussion 
We have performed extensive computer simulations and a number of experiments to verify 
the proposed planning and control scheme.  We present simulation results for two cases to 
demonstrate the effectiveness of the proposed method.  In Case 1, all thrusters are in 
working condition and therefore the thruster fault matrix Ψ  becomes an identity matrix. In 
Case 2, there are two thrusters that stop working during trajectory tracking operation. In 
both the cases, ODIN tries to track the following trajectories: it first moves toward the z-
direction for 120sec to reach a depth of 2m. Then it moves toward the y-direction for another 
120.0sec to traverse 2.0m. It subsequently moves towards the x-direction for 120sec to 
traverse 2m. Finally it hovers at that position for another 40sec. ODIN follows a trapezoidal 
velocity profile during this task. The attitudes are always kept constant at ]9000[ 000 . For 
Case 2, one horizontal thruster (Thruster 6) fails at 260sec and one vertical thruster (Thruster 
2) fails at 300sec while tracking the same trajectories as explained in Case 1. In simulations, 
we have introduced sensory noise in position and orientation measurements. We have 
chosen Gaussian noise of 2mm mean and 1.5mm standard deviation for the surge, sway and 
heave position measurements, 0.15degree mean and 0.15degree standard deviation for the 
roll, pitch and yaw position measurements for the vehicle.  
In Fig. 12, we present results from a trajectory following task when there is no thruster 
fault. It can be observed that both the simulation and the experimental results for all the 
six trajectories match their respective desired trajectories within reasonable limits. It 
should also be noted that the particular sonar system of ODIN requires 100.0sec before it 
works properly. Thus, x and y trajectories in experiments have data after 100.0sec.
However, the depth and attitude sensors provide information from the beginning of the 
task. In Fig. 13, the same trajectory following task is performed but with thruster faults. In 
this case, one horizontal thruster (Thruster 6) fails at 260.0sec (marked as ‘A’) and one 
vertical thruster (Thruster 2) fails at 300.0sec (marked as ‘B’). Both the faulty thrusters are 
located at the same thruster bracket of the ODIN. Thus, this situation is one of the worst 
fault conditions. The simulation results are not affected by the occurrence of faults except 
in the case of the yaw trajectory, which produces a small error at the last part of the 
trajectory.  In experiment, the first fault does not cause any tracking error. There are some 
small perturbations after the second fault from which the controller quickly recovers. It 
can also be noticed that in case of experiment the tracking performance is better in z-
direction (depth) as compared to other two directions, i.e., x-direction and y-direction. 
This happened because of two reasons: 1) less environmental and hydrodynamic 
disturbances in z-direction, and 2) the pressure sensor for depth measurement is more 
accurate as compared to sonar sensors used to measure x-position and y-position. 
However, the orientation of the AUV, which is measured by INS sensors, is reasonably 
good. 
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4.2 Experimental Setup 
We have conducted both computer simulations and underwater experiments to verify the 
proposed fault-tolerant control scheme.  We have used ODIN (Omni-Directional Intelligent 
Navigator), which is a 6 dof vehicle designed at the University of Hawaii], as our test-bed. 
ODIN is a near-spherical AUV that has 4 horizontal thrusters and 4 vertical thrusters as 
shown in Fig. 11. We have compared our simulation results with that of actual experiments, 
and presented them later in this section.  

Fig. 11.  Omni-Directional Intelligent Navigator (ODIN) vehicle. 

The ODIN has a near-spherical shape with horizontal diameter of 0.63m and vertical 
diameter of 0.61m, made of anodized Aluminum (AL 6061-T6). Its dry weight is 125.0Kg and 
is slightly positively buoyant. The processor is a Motorola 68040/33MHz working with 
VxWorks 5.2 operating systems. The RS232 protocol is used for RF communication. The RF 
Modem has operating range up to 480m, operating frequency range 802-928MHz, and 
maximum transmission speed 38,400 baud data rate. The power supply is furnished by 24 
Lead Gel batteries, where 20 batteries are used for the thrusters and 4 batteries are used for 
the CPU. ODIN can perform two hours of autonomous operation. 
The actuating system is made of 8 thrusters of which 4 are vertical and 4 are horizontal. 
Each thruster has a brushless DC motor weighing approximately 1Kg and can provide a 
maximum thrust of approximately 27N. The sensor system is composed of: 1) a pressure 
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sensor for measuring depth with an accuracy of 3cm, 2) 8 sonars for position reconstruction 
and navigation, each with a range of 0.1-14.4m, and 3) an inertial system for attitude and 
velocity measurement. Since the sonars need to be in the water to work properly, the first 
100sec of sonar data is not accurate.  
The experiments were conducted at the University of Hawaii swimming pool. Several 
experiments were performed to verify the proposed control scheme. The thruster faults 
were simulated by imposing zero voltages to the relevant thrusters.  

4.3 Results and Discussion 
We have performed extensive computer simulations and a number of experiments to verify 
the proposed planning and control scheme.  We present simulation results for two cases to 
demonstrate the effectiveness of the proposed method.  In Case 1, all thrusters are in 
working condition and therefore the thruster fault matrix Ψ  becomes an identity matrix. In 
Case 2, there are two thrusters that stop working during trajectory tracking operation. In 
both the cases, ODIN tries to track the following trajectories: it first moves toward the z-
direction for 120sec to reach a depth of 2m. Then it moves toward the y-direction for another 
120.0sec to traverse 2.0m. It subsequently moves towards the x-direction for 120sec to 
traverse 2m. Finally it hovers at that position for another 40sec. ODIN follows a trapezoidal 
velocity profile during this task. The attitudes are always kept constant at ]9000[ 000 . For 
Case 2, one horizontal thruster (Thruster 6) fails at 260sec and one vertical thruster (Thruster 
2) fails at 300sec while tracking the same trajectories as explained in Case 1. In simulations, 
we have introduced sensory noise in position and orientation measurements. We have 
chosen Gaussian noise of 2mm mean and 1.5mm standard deviation for the surge, sway and 
heave position measurements, 0.15degree mean and 0.15degree standard deviation for the 
roll, pitch and yaw position measurements for the vehicle.  
In Fig. 12, we present results from a trajectory following task when there is no thruster 
fault. It can be observed that both the simulation and the experimental results for all the 
six trajectories match their respective desired trajectories within reasonable limits. It 
should also be noted that the particular sonar system of ODIN requires 100.0sec before it 
works properly. Thus, x and y trajectories in experiments have data after 100.0sec.
However, the depth and attitude sensors provide information from the beginning of the 
task. In Fig. 13, the same trajectory following task is performed but with thruster faults. In 
this case, one horizontal thruster (Thruster 6) fails at 260.0sec (marked as ‘A’) and one 
vertical thruster (Thruster 2) fails at 300.0sec (marked as ‘B’). Both the faulty thrusters are 
located at the same thruster bracket of the ODIN. Thus, this situation is one of the worst 
fault conditions. The simulation results are not affected by the occurrence of faults except 
in the case of the yaw trajectory, which produces a small error at the last part of the 
trajectory.  In experiment, the first fault does not cause any tracking error. There are some 
small perturbations after the second fault from which the controller quickly recovers. It 
can also be noticed that in case of experiment the tracking performance is better in z-
direction (depth) as compared to other two directions, i.e., x-direction and y-direction. 
This happened because of two reasons: 1) less environmental and hydrodynamic 
disturbances in z-direction, and 2) the pressure sensor for depth measurement is more 
accurate as compared to sonar sensors used to measure x-position and y-position. 
However, the orientation of the AUV, which is measured by INS sensors, is reasonably 
good. 
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Fig. 12. Trajectory tracking with no thruster fault, simulation results in the left and 
experimental results in the right. The actual trajectories are denoted by solid lines and the 
desired trajectories are denoted by dashed lines. 
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Fig. 13. Trajectory tracking with thruster faults, simulation results in the left and 
experimental results in the right. The actual trajectories are denoted by solid lines and the 
desired trajectories are denoted by dashed lines. 
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Fig. 14. Voltage versus time plots for the vertical thrusters (left) and the horizontal thrusters 
(right).

The voltage plots for Case 2 are presented in Fig. 14. It can be seen that voltage for Thruster 
6 is zero after 260sec and that of Thruster 2 after 300sec, which imply thruster faults. From 
these plots it is observed that in case of simulations all the thruster voltages and in case of 
experiment the vertical thruster voltages are within  volt2± .  Whereas, the horizontal 
thruster voltages in case of experiment have some spikes greater than volt2± . The causes 
are as mentioned previously. We also observe that the voltage profile for the vertical 
thrusters matches well between simulations and experiments. This match was less obvious 
for horizontal thrusters. However, in all the cases, the range and general pattern seem to be 
consistent.  More details can be found in (Podder et al., 2001). 

5. Saturation Limit Algorithm 
In the previous section, we have derived Equation (29) for desired thruster/actuator 
force/torque allocation that allows the operation of the UVMS with faults. However, it 
cannot guarantee that the desired allocated forces/torques will remain within the saturation 
limit of the thrusters/actuators. As a result, if some of the forces and torques determined 
from those equations are beyond the capacity of the corresponding thrusters and actuators, 
the performance of the controller will suffer because of saturation effect. 

5.1 Theoretical Development 
The saturation problem cannot be solved based on the formulation given by Equations (29). 
In order to avoid the saturation effect, the thruster/actuator force/torque must be 
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Fig. 12. Trajectory tracking with no thruster fault, simulation results in the left and 
experimental results in the right. The actual trajectories are denoted by solid lines and the 
desired trajectories are denoted by dashed lines. 
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Fig. 13. Trajectory tracking with thruster faults, simulation results in the left and 
experimental results in the right. The actual trajectories are denoted by solid lines and the 
desired trajectories are denoted by dashed lines. 
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Fig. 14. Voltage versus time plots for the vertical thrusters (left) and the horizontal thrusters 
(right).

The voltage plots for Case 2 are presented in Fig. 14. It can be seen that voltage for Thruster 
6 is zero after 260sec and that of Thruster 2 after 300sec, which imply thruster faults. From 
these plots it is observed that in case of simulations all the thruster voltages and in case of 
experiment the vertical thruster voltages are within  volt2± .  Whereas, the horizontal 
thruster voltages in case of experiment have some spikes greater than volt2± . The causes 
are as mentioned previously. We also observe that the voltage profile for the vertical 
thrusters matches well between simulations and experiments. This match was less obvious 
for horizontal thrusters. However, in all the cases, the range and general pattern seem to be 
consistent.  More details can be found in (Podder et al., 2001). 

5. Saturation Limit Algorithm 
In the previous section, we have derived Equation (29) for desired thruster/actuator 
force/torque allocation that allows the operation of the UVMS with faults. However, it 
cannot guarantee that the desired allocated forces/torques will remain within the saturation 
limit of the thrusters/actuators. As a result, if some of the forces and torques determined 
from those equations are beyond the capacity of the corresponding thrusters and actuators, 
the performance of the controller will suffer because of saturation effect. 

5.1 Theoretical Development 
The saturation problem cannot be solved based on the formulation given by Equations (29). 
In order to avoid the saturation effect, the thruster/actuator force/torque must be 
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controlled so that it cannot reach the saturation limit. However, in such a case, since the 
input to the controller and the output of the controller will be algebraically related, static 
state feedback technique will not be able to control the thruster and actuator forces and 
torques. We, therefore, propose to use the dynamic state feedback technique (Isidori et al.,
1968; Yun, 1988) to generate thruster forces that are within the saturation limit. The basic 
idea of dynamic state feedback is to introduce integrators at the input channel to enlarge the 
state space, and then apply the static state feedback on the enlarged system. 
However, there is a difference between explicit control of the thruster/actuator 
forces/torques so that it can be regulated about a point or can follow a trajectory, and keep 
it within a specified range without regulation. The former is a force control problem and the 
latter is a saturation problem. We first use the dynamic state feedback technique to enlarge 
the state space in the following way.  
We differentiate the output Equation (27) to obtain a new input ν as follows:  

γηνηη +=++= tt FFq       (30) 

where += tFηγ  and 
tF=ν .

Now, we consider the following control law 
γην −−+−+−+= + )]()()([ 321 qqKqqKqqKq ddddWF

          (31) 
and integration of Equation (31) yields the desired thruster and actuator forces and torques 
as

= dtFtd ν          (32) 
where 111 )( −−−+ = T
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FWF WW ηηηη , 1K  is the acceleration gain, 2K  is the velocity gain and 

3K  is the position gain; 
dq  and  

tdF  are desired parameters of q  and  tF , respectively. The 

diagonal elements of the weight matrix, ).......,,( )21 pF diagW = , are computed from the 

thruster/actuator saturation limits as follows: 
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where
max,itF  and 

min,itF  are the upper and lower limits of thrust/torque of the i-th

thruster/actuator, and 
iC  is a positive quantity which is determined from the damping 

property of the dynamic system. Then, differentiating Equation (24), we obtain 
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Then, the diagonal elements of the weight matrix are defined as  
iii FFH ∂∂+= )(1   (35) 

From the above expression (34), we notice that 
itt FFH ∂∂ )(  is equal to zero when the i-th

thruster/actuator is at the middle of its range, and becomes infinity at either limits. Thus, 
i

varies from 1 to infinity if the i-th thrust goes from middle of the range to its limit. If the i-th
thrust/torque approaches its limit, then 

i
 becomes very large and the corresponding 

element in 1−
FW  goes to zero and the i-th thruster/actuator avoids saturation. Depending 

upon whether the thruster/actuator is approaching toward or departing from its saturation 
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limit, i  can be redefined as iii FFH ∂∂+= )(1  when 0)( ≥∂∂Δ ii FFH  (i.e., the 
thruster/actuator force/torque is approaching toward its limit), and 1=i  when 

0)( ≤∂∂Δ ii FFH  (i.e., the thruster/actuator force/torque is departing from its limit). 

Finally, the desired thruster/actuator force/torque vector, tdF , that is guaranteed to stay 
within the saturation limit.  
 Substituting Equation (31) into Equation (30) and denoting qqe d −= , we obtain the 
following error equation in joint-space 

0321 =+++ eKeKeKe   (36) 

Thus, for positive values of the gains, 1K , 2K  and 3K , the joint-space errors reduce to 
zero asymptotically, as time goes to infinity.  
Now, to incorporate both the fault and the saturation information in control Equation (31), 
we define a fault-saturation matrix, 1−

× =Γ Fpp W , having diagonal elements either i1  or 
zero. Whenever there is any thruster/actuator fault, we put that corresponding diagonal 
element in Γ  matrix as zero. If there is no fault in any thruster/actuator, that corresponding 
diagonal entry of the fault-saturation matrix will be i1 . Thus, it accounts for the 
force/torque saturation limits along with the fault information. We can rewrite the Equation 
(31) in terms of fault-saturation matrix, Γ , as 

γηηην −−+−+−+ΓΓ= − )]()()([)( 321
1 qqKqqKqqKq dddd

TT          (37) 

5.2 Results and Discussion 
We present the simulation results for a circular trajectory to demonstrate the effectiveness of 
the proposed method. In the simulation, an ODIN type vehicle (with higher thruster 
capacity) tries to track a circular path of diameter 2.65m in a horizontal plane in 20sec. The 
vehicle attitudes are kept constant at ]9000[ 000 . We have considered three different cases 
for this circular trajectory tracking task. In Case 1, all thrusters are in working condition. In 
Case 2, two of the thrusters (Thruster 1 and 5) develop faults during operation. Case 3 is 
similar to Case 2 except, in this case, the thruster saturation limits are imposed. In Case 1, all 
thrusters are in working condition and therefore the thruster fault matrix, Ψ , becomes an 
identity matrix. In Case 2 and 3, Thruster 5 stops functioning after 7sec and Thruster 1 stops 
functioning after 12sec. We have simulated it by incorporating zeros for the corresponding 
elements in the Ψ  matrix. 
It should be noted that the chosen circular trajectory tracking task is a much faster task 
(average speed = 0.808knot, Fig. 15) compared to the straight-line trajectory tracking task 
(average speed = 0.032knot) as discussed in Section 4.3.  We wanted to see the performance 
of the proposed controller in a high-speed trajectory tracking with both thruster fault and 
thruster saturation. We could not risk the expensive ODIN for such a high-speed operation 
and thus, we provide only simulation results to demonstrate the efficacy of the proposed 
technique. Additionally, we could not experimentally verify the thruster saturation 
controller because ODIN was not equipped with any acceleration feedback mechanism. 
We present the simulation results for the circular trajectory tracking task considering all the 
three cases: with no thruster fault, with thruster fault, and with thruster fault and thruster 
saturation in Fig. 15 and 16. We have simulated two thruster faults: one (Thruster 5, marked 



340 Mobile Robots, Perception & Navigation 

controlled so that it cannot reach the saturation limit. However, in such a case, since the 
input to the controller and the output of the controller will be algebraically related, static 
state feedback technique will not be able to control the thruster and actuator forces and 
torques. We, therefore, propose to use the dynamic state feedback technique (Isidori et al.,
1968; Yun, 1988) to generate thruster forces that are within the saturation limit. The basic 
idea of dynamic state feedback is to introduce integrators at the input channel to enlarge the 
state space, and then apply the static state feedback on the enlarged system. 
However, there is a difference between explicit control of the thruster/actuator 
forces/torques so that it can be regulated about a point or can follow a trajectory, and keep 
it within a specified range without regulation. The former is a force control problem and the 
latter is a saturation problem. We first use the dynamic state feedback technique to enlarge 
the state space in the following way.  
We differentiate the output Equation (27) to obtain a new input ν as follows:  

γηνηη +=++= tt FFq       (30) 

where += tFηγ  and 
tF=ν .

Now, we consider the following control law 
γην −−+−+−+= + )]()()([ 321 qqKqqKqqKq ddddWF

          (31) 
and integration of Equation (31) yields the desired thruster and actuator forces and torques 
as

= dtFtd ν          (32) 
where 111 )( −−−+ = T

F
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FWF WW ηηηη , 1K  is the acceleration gain, 2K  is the velocity gain and 

3K  is the position gain; 
dq  and  

tdF  are desired parameters of q  and  tF , respectively. The 

diagonal elements of the weight matrix, ).......,,( )21 pF diagW = , are computed from the 

thruster/actuator saturation limits as follows: 
We define a function of thruster and actuator force and torque variables as  
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where
max,itF  and 

min,itF  are the upper and lower limits of thrust/torque of the i-th

thruster/actuator, and 
iC  is a positive quantity which is determined from the damping 

property of the dynamic system. Then, differentiating Equation (24), we obtain 
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Then, the diagonal elements of the weight matrix are defined as  
iii FFH ∂∂+= )(1   (35) 

From the above expression (34), we notice that 
itt FFH ∂∂ )(  is equal to zero when the i-th

thruster/actuator is at the middle of its range, and becomes infinity at either limits. Thus, 
i

varies from 1 to infinity if the i-th thrust goes from middle of the range to its limit. If the i-th
thrust/torque approaches its limit, then 

i
 becomes very large and the corresponding 

element in 1−
FW  goes to zero and the i-th thruster/actuator avoids saturation. Depending 

upon whether the thruster/actuator is approaching toward or departing from its saturation 
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limit, i  can be redefined as iii FFH ∂∂+= )(1  when 0)( ≥∂∂Δ ii FFH  (i.e., the 
thruster/actuator force/torque is approaching toward its limit), and 1=i  when 

0)( ≤∂∂Δ ii FFH  (i.e., the thruster/actuator force/torque is departing from its limit). 

Finally, the desired thruster/actuator force/torque vector, tdF , that is guaranteed to stay 
within the saturation limit.  
 Substituting Equation (31) into Equation (30) and denoting qqe d −= , we obtain the 
following error equation in joint-space 

0321 =+++ eKeKeKe   (36) 

Thus, for positive values of the gains, 1K , 2K  and 3K , the joint-space errors reduce to 
zero asymptotically, as time goes to infinity.  
Now, to incorporate both the fault and the saturation information in control Equation (31), 
we define a fault-saturation matrix, 1−

× =Γ Fpp W , having diagonal elements either i1  or 
zero. Whenever there is any thruster/actuator fault, we put that corresponding diagonal 
element in Γ  matrix as zero. If there is no fault in any thruster/actuator, that corresponding 
diagonal entry of the fault-saturation matrix will be i1 . Thus, it accounts for the 
force/torque saturation limits along with the fault information. We can rewrite the Equation 
(31) in terms of fault-saturation matrix, Γ , as 

γηηην −−+−+−+ΓΓ= − )]()()([)( 321
1 qqKqqKqqKq dddd

TT          (37) 

5.2 Results and Discussion 
We present the simulation results for a circular trajectory to demonstrate the effectiveness of 
the proposed method. In the simulation, an ODIN type vehicle (with higher thruster 
capacity) tries to track a circular path of diameter 2.65m in a horizontal plane in 20sec. The 
vehicle attitudes are kept constant at ]9000[ 000 . We have considered three different cases 
for this circular trajectory tracking task. In Case 1, all thrusters are in working condition. In 
Case 2, two of the thrusters (Thruster 1 and 5) develop faults during operation. Case 3 is 
similar to Case 2 except, in this case, the thruster saturation limits are imposed. In Case 1, all 
thrusters are in working condition and therefore the thruster fault matrix, Ψ , becomes an 
identity matrix. In Case 2 and 3, Thruster 5 stops functioning after 7sec and Thruster 1 stops 
functioning after 12sec. We have simulated it by incorporating zeros for the corresponding 
elements in the Ψ  matrix. 
It should be noted that the chosen circular trajectory tracking task is a much faster task 
(average speed = 0.808knot, Fig. 15) compared to the straight-line trajectory tracking task 
(average speed = 0.032knot) as discussed in Section 4.3.  We wanted to see the performance 
of the proposed controller in a high-speed trajectory tracking with both thruster fault and 
thruster saturation. We could not risk the expensive ODIN for such a high-speed operation 
and thus, we provide only simulation results to demonstrate the efficacy of the proposed 
technique. Additionally, we could not experimentally verify the thruster saturation 
controller because ODIN was not equipped with any acceleration feedback mechanism. 
We present the simulation results for the circular trajectory tracking task considering all the 
three cases: with no thruster fault, with thruster fault, and with thruster fault and thruster 
saturation in Fig. 15 and 16. We have simulated two thruster faults: one (Thruster 5, marked 
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by ‘A’) at 7sec and the other (Thruster 1, marked by ‘B’) at 12sec, Fig. 16. Both the faulty 
thrusters were chosen to be located at the same thruster bracket of the AUV. Thus, this fault 
was one of the worst fault conditions. We have imposed the following thruster saturation 
limits: N50±  for vertical thrusters and N150±  for horizontal thrusters. The task-space paths 
and trajectories are plotted in Fig. 15. It is observed that the trajectories are tracked quite 
accurately in all the three cases. However, the tracking errors are more for the thruster 
saturation case.  
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Fig. 15. Simulation results: Task-space (Cartesian) paths and trajectories, the solid lines 
denote the actual trajectories and the dashed lines denote desired trajectories. 

The thruster forces are plotted in Fig. 16. From these plots, we can see that after the first 
fault, thrust for Thruster 7 becomes close to N200− . But by implementing the thruster 
saturation algorithm, we are able to keep this thrust within the specified limit ( N150± ). In 
this process, the thrusts for Thruster 6 and Thruster 8 reach the saturation limits, but do not 
cross it. As a result, we observe larger errors in the trajectory tracking during this time for 
the saturation case (Fig. 15). However, the controller brings back the AUV in its desired 
trajectories and the errors are gradually reduced to zero.  

6. Drag Minimization Algorithm 
A UVMS is a kinematically redundant system. Therefore, a UVMS can admit an infinite 
number of joint-space solutions for a given task-space coordinates. We exploit this 
particular characteristic of a kinematically redundant system not only to coordinate the 
motion of a UVMS but also to satisfy a secondary objective criterion that we believe will be 
useful in underwater applications.  
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Fig. 16. Simulation results: Thrust versus time, no fault (Case 1, denoted by dashed-dot 
lines), with faults (Case 2, denoted by dashed lines), and saturation (Case 3, denoted by 
solid lines). 

The secondary objective criterion that we choose to satisfy in this work is hydrodynamic 
drag optimization. Thus, we want to design a motion planning algorithm that generates 
trajectories in such a way that the UVMS not only reaches its goal position and orientation 
from an initial position and orientation, but also the drag on the UVMS is optimized while it 
follows the generated trajectories. Drag is a dissipative force that does not contribute to the 
motion. Actually, a UVMS will require a significant amount of energy to overcome the drag. 
Since the source of energy for an autonomous UVMS is limited, which generally comes from 
the batteries that the UVMS carries with it unlike a ROV and tele-manipulator system where 
the mother ship provides the energy, we focus our attention to reduce the drag on the 
system. Reduction of drag can also be useful from another perspective. The UVMS can 
experience a large reaction force because of the drag. High reaction force can saturate the 
controller and thus, degrade the performance of the system.  This problem is less severe 
when human operators are involved because they can adjust their strength and 
coordination according to the situation. However, for an autonomous controller, it is better 
to reduce such a large force especially when the force is detrimental to the task.  



342 Mobile Robots, Perception & Navigation 

by ‘A’) at 7sec and the other (Thruster 1, marked by ‘B’) at 12sec, Fig. 16. Both the faulty 
thrusters were chosen to be located at the same thruster bracket of the AUV. Thus, this fault 
was one of the worst fault conditions. We have imposed the following thruster saturation 
limits: N50±  for vertical thrusters and N150±  for horizontal thrusters. The task-space paths 
and trajectories are plotted in Fig. 15. It is observed that the trajectories are tracked quite 
accurately in all the three cases. However, the tracking errors are more for the thruster 
saturation case.  
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Fig. 15. Simulation results: Task-space (Cartesian) paths and trajectories, the solid lines 
denote the actual trajectories and the dashed lines denote desired trajectories. 

The thruster forces are plotted in Fig. 16. From these plots, we can see that after the first 
fault, thrust for Thruster 7 becomes close to N200− . But by implementing the thruster 
saturation algorithm, we are able to keep this thrust within the specified limit ( N150± ). In 
this process, the thrusts for Thruster 6 and Thruster 8 reach the saturation limits, but do not 
cross it. As a result, we observe larger errors in the trajectory tracking during this time for 
the saturation case (Fig. 15). However, the controller brings back the AUV in its desired 
trajectories and the errors are gradually reduced to zero.  

6. Drag Minimization Algorithm 
A UVMS is a kinematically redundant system. Therefore, a UVMS can admit an infinite 
number of joint-space solutions for a given task-space coordinates. We exploit this 
particular characteristic of a kinematically redundant system not only to coordinate the 
motion of a UVMS but also to satisfy a secondary objective criterion that we believe will be 
useful in underwater applications.  
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Fig. 16. Simulation results: Thrust versus time, no fault (Case 1, denoted by dashed-dot 
lines), with faults (Case 2, denoted by dashed lines), and saturation (Case 3, denoted by 
solid lines). 

The secondary objective criterion that we choose to satisfy in this work is hydrodynamic 
drag optimization. Thus, we want to design a motion planning algorithm that generates 
trajectories in such a way that the UVMS not only reaches its goal position and orientation 
from an initial position and orientation, but also the drag on the UVMS is optimized while it 
follows the generated trajectories. Drag is a dissipative force that does not contribute to the 
motion. Actually, a UVMS will require a significant amount of energy to overcome the drag. 
Since the source of energy for an autonomous UVMS is limited, which generally comes from 
the batteries that the UVMS carries with it unlike a ROV and tele-manipulator system where 
the mother ship provides the energy, we focus our attention to reduce the drag on the 
system. Reduction of drag can also be useful from another perspective. The UVMS can 
experience a large reaction force because of the drag. High reaction force can saturate the 
controller and thus, degrade the performance of the system.  This problem is less severe 
when human operators are involved because they can adjust their strength and 
coordination according to the situation. However, for an autonomous controller, it is better 
to reduce such a large force especially when the force is detrimental to the task.  
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6.1 Theoretical Development 

Recalling Equation (11) and Equation (13), we can write the complete solution to the joint-
space acceleration as (Ben-Israel & Greville, 1974):   

1)()(
11111

φJJIqJxJq WddWd
++ −+−=          (38) 

2)()(
22222

φJJIqJxJq WddWd
++ −+−=   (39) 

where  the null-space vectors  iW JJI
i

φ)( +−  (for i=1,2) will be utilized to minimize the drag 

effects on the UVMS.   
We define a positive definite scalar potential function ),( qqp , which is a quadratic function 
of drag forces as 

),(),(),( qqDWqqDqqp D
T=   (40) 

where )6(),( nqqD +ℜ∈  is the  vector of drag forces and )6()6( nn
DW +×+ℜ∈  is a positive 

definite weight matrix. Note that a proper choice of this DW  matrix can enable us to design 
the influence of drag on individual components of the UVMS. Generally, DW  is chosen to be 
a diagonal matrix so that the cross-coupling terms can be avoided. If it is chosen to be an 
identity, then the drag experienced on all dof of the combined system is equally weighted. 
However, increasing or decreasing the values of the diagonal elements of the DW  matrix, 
the corresponding drag contribution of each dof can be regulated. The potential function, 

),( qqp , captures the total hydrodynamic drag on the whole vehicle-manipulator system. 
Therefore, the minimization of this function will lead to the reduction of drag on the whole 
system. 
Now, taking the gradient of the potential function, ),( qqp , we obtain 

q
qqp

q
qqpqqp

∂
∂+

∂
∂=∇ ),(),(),(           (41) 

We take the gradient, ),( qqp∇ , as the arbitrary vector, iφ , of Equation (38) and Equation 
(39) to minimize the hydrodynamic drag in the following form: 

T
ii p∇−= κφ     for  i= 1, 2.         (42) 

where iκ  are arbitrary positive quantities, and the negative sign implies minimization of the 
performance criteria.  A block diagram of the proposed control scheme is shown in Fig. 17. 
More detailed discussion on this drag minimization can be found in (Sarkar & Podder, 2001). 

Fig. 17. Computer torque control scheme for drag minimization method. 
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6.2 Results and Discussion 

We have conducted extensive computer simulations to investigate the performance of the 
proposed Drag Minimization (DM) algorithm.  The details of the UVMS used for the 
simulation have been provided in Section 3.3. We have chosen a straight-line trajectory 
(length = 10m) in the task-space for the simulations. For the chosen trajectory, we have 
designed a trapezoidal velocity profile, which imposes a constant acceleration in the 
starting phase, followed by a cruise velocity, and then a constant deceleration in the 
arrival phase. The initial velocities and accelerations are chosen to be zero and the initial 
desired and actual positions and orientations are same.  The simulation time is 15.0sec.
Thus, the average speed of the UVMS is 0.67m/s ≈ 1.30knot. This speed is chosen to 
simulate the average speed of SAUVIM (Semi-Autonomous Underwater Vehicle for 
Intervention Mission), a UVMS being designed at the University of Hawaii, which has a 
maximum speed of 3knot.
In our simulation, we have introduced sensory noise in position and orientation 
measurements. We have chosen Gaussian noise of 1mm mean and 1mm standard 
deviation for the surge, sway and heave position measurements, 0.1deg mean and 0.1deg
standard deviation for the roll, pitch and yaw position measurements for the vehicle, 
and 0.01deg mean and 0.01deg standard deviation for the joint position measurements 
for the manipulator. We have also incorporated a 15% modeling inaccuracy during 
computer simulations to reflect the uncertainties that are present in underwater 
environment. This inaccuracy has been introduced to observe the effect of both the 
uncertainty in the model and the neglected off-diagonal terms of the added mass 
matrix. 
Thruster dynamics have been incorporated into the simulations using the thruster 
dynamic model described later in Section 7.2. The thruster configuration matrix is 
obtained from the preliminary design of SAUVIM type UVMS. It has 4 horizontal 
thrusters and 4 vertical thrusters. The thruster configuration matrix for the simulated 
UVMS is as follows: 
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where mRt 25.11 = , mRt 75.12 = , mRt 75.03 = , and mRt 25.14 =  are the perpendicular 
distances from the center of the vehicle to the axes of  the side and the front horizontal 
thrusters, and  the side and the front vertical thrusters, respectively. The thrusters for UVMS 
are chosen to be DC brushless thrusters, model 2010 from TECNADYNE. The thruster 
propeller diameter is 0.204m. It can produce approximately 580N thrust. The weight of each 
thruster is 7.9Kg (in water). 
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6.1 Theoretical Development 

Recalling Equation (11) and Equation (13), we can write the complete solution to the joint-
space acceleration as (Ben-Israel & Greville, 1974):   
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We take the gradient, ),( qqp∇ , as the arbitrary vector, iφ , of Equation (38) and Equation 
(39) to minimize the hydrodynamic drag in the following form: 
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where iκ  are arbitrary positive quantities, and the negative sign implies minimization of the 
performance criteria.  A block diagram of the proposed control scheme is shown in Fig. 17. 
More detailed discussion on this drag minimization can be found in (Sarkar & Podder, 2001). 

Fig. 17. Computer torque control scheme for drag minimization method. 
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6.2 Results and Discussion 

We have conducted extensive computer simulations to investigate the performance of the 
proposed Drag Minimization (DM) algorithm.  The details of the UVMS used for the 
simulation have been provided in Section 3.3. We have chosen a straight-line trajectory 
(length = 10m) in the task-space for the simulations. For the chosen trajectory, we have 
designed a trapezoidal velocity profile, which imposes a constant acceleration in the 
starting phase, followed by a cruise velocity, and then a constant deceleration in the 
arrival phase. The initial velocities and accelerations are chosen to be zero and the initial 
desired and actual positions and orientations are same.  The simulation time is 15.0sec.
Thus, the average speed of the UVMS is 0.67m/s ≈ 1.30knot. This speed is chosen to 
simulate the average speed of SAUVIM (Semi-Autonomous Underwater Vehicle for 
Intervention Mission), a UVMS being designed at the University of Hawaii, which has a 
maximum speed of 3knot.
In our simulation, we have introduced sensory noise in position and orientation 
measurements. We have chosen Gaussian noise of 1mm mean and 1mm standard 
deviation for the surge, sway and heave position measurements, 0.1deg mean and 0.1deg
standard deviation for the roll, pitch and yaw position measurements for the vehicle, 
and 0.01deg mean and 0.01deg standard deviation for the joint position measurements 
for the manipulator. We have also incorporated a 15% modeling inaccuracy during 
computer simulations to reflect the uncertainties that are present in underwater 
environment. This inaccuracy has been introduced to observe the effect of both the 
uncertainty in the model and the neglected off-diagonal terms of the added mass 
matrix. 
Thruster dynamics have been incorporated into the simulations using the thruster 
dynamic model described later in Section 7.2. The thruster configuration matrix is 
obtained from the preliminary design of SAUVIM type UVMS. It has 4 horizontal 
thrusters and 4 vertical thrusters. The thruster configuration matrix for the simulated 
UVMS is as follows: 
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where mRt 25.11 = , mRt 75.12 = , mRt 75.03 = , and mRt 25.14 =  are the perpendicular 
distances from the center of the vehicle to the axes of  the side and the front horizontal 
thrusters, and  the side and the front vertical thrusters, respectively. The thrusters for UVMS 
are chosen to be DC brushless thrusters, model 2010 from TECNADYNE. The thruster 
propeller diameter is 0.204m. It can produce approximately 580N thrust. The weight of each 
thruster is 7.9Kg (in water). 
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The simulation results are presented in Fig. 18 through Fig. 20. In Fig. 18, we have 
plotted both the desired and the actual 3D paths and trajectories. From the plots, it is 
observed that the end-effector of the manipulator tracks the desired task-space 
trajectories satisfactorily in both the PI and the DM methods. From the joint-space 
trajectories in Fig. 19, we can see that even though the UVMS follows the same task-
space trajectories in both PI and DM methods, it does it with different joint-space 
configurations. This difference in joint-space configurations contributes to drag 
minimization as shown in Fig. 20. The total energy consumption of the UVMS has also 
been presented in Fig. 20. We find that the energy consumption is less in DM method as 
compared to that of in PI method. From these plots we observe that the drag on the 
individual components of UVMS may or may not be always smaller in DM method. But 
we can see in Fig. 20 that the total drag (norm of drag) on UVMS is less in DM method 
as compared to that of in PI method.  
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Fig. 18. Task-space (XYZ) straight-line trajectories of the end-effector of the robot 
manipulator, solid lines denote DM (drag minimization) method, dashed lines denote PI 
(pseudoinverse) method, and dashed dot lines denote the desired trajectories. 

Here we have designed a model-based controller to follow a set of desired trajectories and 
presented results from computer simulations to demonstrate the efficacy of this newly 
proposed motion planning algorithm. In this context we must mention that a purely model-
based controller may not be ideal for underwater applications. However, since the main 
thrust of this study is in motion planning, we have used this model-based controller only to 
compare the effectiveness of the proposed Drag Minimization algorithm with that of more 
traditionally used Pseudoinverse algorithm.
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Fig. 19. Joint-space positions of the UVMS, solid lines denote DM (drag minimization) 
method, dashed lines denote PI (pseudoinverse) method. 
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Fig. 20. (a) Norm of drag force, (b) total energy consumption of the UVMS, solid lines 
denote DM (drag minimization) method, dashed lines denote PI (pseudoinverse) method. 

7. Unified Dynamics-Based Motion Planning Algorithm 
7.1 Theoretical Development 
A schematic diagram of the proposed unified dynamics-based control scheme is given in 
Fig. 21. For a unified dynamics-based algorithm, let us look back to Equations (38) and (39) 
along with Equations (40)-(42) which provide us with the reference joint-space trajectories 
considering the dynamics-based planning method as well as the drag minimization scheme. 
Now, we can obtain all the desired joint-space variables required for the control law (Eq. 
(31) or Eq. (37)) by integrating Equation (38) and Equation (39) and making use of Equation 
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The simulation results are presented in Fig. 18 through Fig. 20. In Fig. 18, we have 
plotted both the desired and the actual 3D paths and trajectories. From the plots, it is 
observed that the end-effector of the manipulator tracks the desired task-space 
trajectories satisfactorily in both the PI and the DM methods. From the joint-space 
trajectories in Fig. 19, we can see that even though the UVMS follows the same task-
space trajectories in both PI and DM methods, it does it with different joint-space 
configurations. This difference in joint-space configurations contributes to drag 
minimization as shown in Fig. 20. The total energy consumption of the UVMS has also 
been presented in Fig. 20. We find that the energy consumption is less in DM method as 
compared to that of in PI method. From these plots we observe that the drag on the 
individual components of UVMS may or may not be always smaller in DM method. But 
we can see in Fig. 20 that the total drag (norm of drag) on UVMS is less in DM method 
as compared to that of in PI method.  
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Fig. 18. Task-space (XYZ) straight-line trajectories of the end-effector of the robot 
manipulator, solid lines denote DM (drag minimization) method, dashed lines denote PI 
(pseudoinverse) method, and dashed dot lines denote the desired trajectories. 

Here we have designed a model-based controller to follow a set of desired trajectories and 
presented results from computer simulations to demonstrate the efficacy of this newly 
proposed motion planning algorithm. In this context we must mention that a purely model-
based controller may not be ideal for underwater applications. However, since the main 
thrust of this study is in motion planning, we have used this model-based controller only to 
compare the effectiveness of the proposed Drag Minimization algorithm with that of more 
traditionally used Pseudoinverse algorithm.
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Fig. 19. Joint-space positions of the UVMS, solid lines denote DM (drag minimization) 
method, dashed lines denote PI (pseudoinverse) method. 
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Fig. 20. (a) Norm of drag force, (b) total energy consumption of the UVMS, solid lines 
denote DM (drag minimization) method, dashed lines denote PI (pseudoinverse) method. 

7. Unified Dynamics-Based Motion Planning Algorithm 
7.1 Theoretical Development 
A schematic diagram of the proposed unified dynamics-based control scheme is given in 
Fig. 21. For a unified dynamics-based algorithm, let us look back to Equations (38) and (39) 
along with Equations (40)-(42) which provide us with the reference joint-space trajectories 
considering the dynamics-based planning method as well as the drag minimization scheme. 
Now, we can obtain all the desired joint-space variables required for the control law (Eq. 
(31) or Eq. (37)) by integrating Equation (38) and Equation (39) and making use of Equation 
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(13). Then by differentiating it we can obtain the desired third derivative for the joint-space 
variables. Thus, we have formulated a unified motion planning algorithm by integrating the 
dynamics-based planning algorithm (Eq. (11)-(13)) with fault-tolerant algorithm (Eq. (29)), 
saturation algorithm (Eq. (30)-(31)), and drag minimization algorithm (Eq. (38)-(39)). 

Fig. 21. Unified dynamics-based motion planning scheme. 

7.2 Thruster Dynamics 
The desired thruster force allocation as obtained from Equation (23) can be directly applied 
to the dynamic model of the UVMS given by Equation (1)  (using Equation (15)) to generate 
the actual motion of the system. However, in such a case the dynamics of the thrusters will 
be neglected and the results will not accurately reflect the reality. Yoerger et al. (Yoerger et
al., 1990) pointed out that the system dynamics of an underwater vehicle can be greatly 
influenced by the dynamics of the thrusters, and neglecting this dynamics may result in a 
limited bandwidth controller with limit cycle instability. There are several dynamic models 
of marine thrusters (Yoerger et al., 1990; Healey et al., 1995; Whitcomb & Yoerger, 1999) that 
can reliably account for thruster dynamics.
In this work we use the model proposed by Healey et al. (Healey et al., 1995) that included a 
four-quadrant mapping of the lifts and drag forces of the propeller blades and was coupled 
with the motor and fluid system dynamics. This model is given by the following equations:  
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where Ω  and rΩ are the actual and the desired/reference propeller angular velocity, 

respectively, and mi  is the motor current. The other parameters are: )(tan222
2 γηρα Ar= ,

where ρ  is the density of the water, r is the radius of the propeller, A is the thruster duct area, 
η  is the propeller efficiency, γ  is the average pitch of the propeller blade, 1α  is an 
experimentally determined constant, tK  is the motor torque constant, fK  is the motor 
viscous friction constant, fbK  is the motor feedback gain, and ℑ  is the propeller shaft torque.  
Neglecting the motor inductance (Healey et al., 1995), the motor input voltage can be written as  

Ω+= emfmmm KRiV          (47) 
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where mV  is the motor input voltage, mR  is the motor resistance and emfK  is the motor 
back emf constant. 
The propeller torque and the axial thrust are related to the blade lift, L and the drag, D as follows: 

θθ cossin7.0 DrL +=ℑ          (48) 
θθ sincos, DLF actt −=          (49) 

where acttF ,  is the propeller shaft thrust, αγθ −= , and α  is the angle of attack. 

7.3 Results and Discussion 
We have performed extensive computer simulation to investigate the efficacy of the 
proposed Unified Dynamics-based Motion Planning (UDMP) algorithm. To verify the 
effectiveness of the proposed method, we have compared the results of UDMP approach 
with that of Conventional Motion Planning (CMP) method. In conventional method, the 
trajectory is designed in three sections: the main section (intermediate section) that is a 
straight line is preceded and followed by two short parabolic sections. The UVMS used for 
these simulations is same as mentioned in Section 3.3. The simulation time is 10sec that is 
required to complete the square path. The total length of the path is 8m, thus the average 
speed is about 1.6knot. This speed is close to JASON II vehicle (speed=1.5knot).
We have simulated two thruster faults: one horizontal thruster (Thruster 1) and the other one 
vertical thruster (Thruster 5). Both the thrusters stop functioning from 6sec. It is to be noted that both 
the thrusters are located at the same bracket of the UVMS, which is one of the worst thruster fault 
situations. In our simulation, we have considered the following thruster/actuator thrust/torque 
saturation limits: N400±   for horizontal thrusters (Thruster 1-4), N200±  for vertical thrusters 
(Thruster 5-8), mN.200±  for actuator 1, mN.100±  for actuator 2 and mN.50±   for actuator 3.  
To make the simulation close to reality, we have introduced sensory noise in the 
measurements of positions and its derivatives. We have considered Gaussian noise of 1 
mean and 1 standard deviation in the measurement of linear quantities (in mm unit), and 
0.01 mean and 0.05 standard deviation in measurement of angular quantities (in deg unit). 
We have considered 10% modeling inaccuracy during computer simulation to reflect the 
uncertainties that are present in underwater environment.  

9 10 11

0

1

2

x pos [m]

y 
po

s 
[m

]

9 10 11

0

1

2

x pos [m]

y 
po

s 
[m

]

Fig. 22. Task-space geometric paths: Conventional Motion Planning (CMP) method in the 
left and Unified Dynamics-based Motion Planning (UDMP) method in the right. Doted lines 
denote the desired paths and solid lines denote actual paths. 

We have presented results from the computer simulations in Fig. 22 through Fig. 26. The results 
we have provided here are from Case I: Partial Decomposition of the proposed UDMP method. The 



348 Mobile Robots, Perception & Navigation 

(13). Then by differentiating it we can obtain the desired third derivative for the joint-space 
variables. Thus, we have formulated a unified motion planning algorithm by integrating the 
dynamics-based planning algorithm (Eq. (11)-(13)) with fault-tolerant algorithm (Eq. (29)), 
saturation algorithm (Eq. (30)-(31)), and drag minimization algorithm (Eq. (38)-(39)). 

Fig. 21. Unified dynamics-based motion planning scheme. 

7.2 Thruster Dynamics 
The desired thruster force allocation as obtained from Equation (23) can be directly applied 
to the dynamic model of the UVMS given by Equation (1)  (using Equation (15)) to generate 
the actual motion of the system. However, in such a case the dynamics of the thrusters will 
be neglected and the results will not accurately reflect the reality. Yoerger et al. (Yoerger et
al., 1990) pointed out that the system dynamics of an underwater vehicle can be greatly 
influenced by the dynamics of the thrusters, and neglecting this dynamics may result in a 
limited bandwidth controller with limit cycle instability. There are several dynamic models 
of marine thrusters (Yoerger et al., 1990; Healey et al., 1995; Whitcomb & Yoerger, 1999) that 
can reliably account for thruster dynamics.
In this work we use the model proposed by Healey et al. (Healey et al., 1995) that included a 
four-quadrant mapping of the lifts and drag forces of the propeller blades and was coupled 
with the motor and fluid system dynamics. This model is given by the following equations:  
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where Ω  and rΩ are the actual and the desired/reference propeller angular velocity, 

respectively, and mi  is the motor current. The other parameters are: )(tan222
2 γηρα Ar= ,

where ρ  is the density of the water, r is the radius of the propeller, A is the thruster duct area, 
η  is the propeller efficiency, γ  is the average pitch of the propeller blade, 1α  is an 
experimentally determined constant, tK  is the motor torque constant, fK  is the motor 
viscous friction constant, fbK  is the motor feedback gain, and ℑ  is the propeller shaft torque.  
Neglecting the motor inductance (Healey et al., 1995), the motor input voltage can be written as  

Ω+= emfmmm KRiV          (47) 
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where mV  is the motor input voltage, mR  is the motor resistance and emfK  is the motor 
back emf constant. 
The propeller torque and the axial thrust are related to the blade lift, L and the drag, D as follows: 

θθ cossin7.0 DrL +=ℑ          (48) 
θθ sincos, DLF actt −=          (49) 

where acttF ,  is the propeller shaft thrust, αγθ −= , and α  is the angle of attack. 

7.3 Results and Discussion 
We have performed extensive computer simulation to investigate the efficacy of the 
proposed Unified Dynamics-based Motion Planning (UDMP) algorithm. To verify the 
effectiveness of the proposed method, we have compared the results of UDMP approach 
with that of Conventional Motion Planning (CMP) method. In conventional method, the 
trajectory is designed in three sections: the main section (intermediate section) that is a 
straight line is preceded and followed by two short parabolic sections. The UVMS used for 
these simulations is same as mentioned in Section 3.3. The simulation time is 10sec that is 
required to complete the square path. The total length of the path is 8m, thus the average 
speed is about 1.6knot. This speed is close to JASON II vehicle (speed=1.5knot).
We have simulated two thruster faults: one horizontal thruster (Thruster 1) and the other one 
vertical thruster (Thruster 5). Both the thrusters stop functioning from 6sec. It is to be noted that both 
the thrusters are located at the same bracket of the UVMS, which is one of the worst thruster fault 
situations. In our simulation, we have considered the following thruster/actuator thrust/torque 
saturation limits: N400±   for horizontal thrusters (Thruster 1-4), N200±  for vertical thrusters 
(Thruster 5-8), mN.200±  for actuator 1, mN.100±  for actuator 2 and mN.50±   for actuator 3.  
To make the simulation close to reality, we have introduced sensory noise in the 
measurements of positions and its derivatives. We have considered Gaussian noise of 1 
mean and 1 standard deviation in the measurement of linear quantities (in mm unit), and 
0.01 mean and 0.05 standard deviation in measurement of angular quantities (in deg unit). 
We have considered 10% modeling inaccuracy during computer simulation to reflect the 
uncertainties that are present in underwater environment.  
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Fig. 22. Task-space geometric paths: Conventional Motion Planning (CMP) method in the 
left and Unified Dynamics-based Motion Planning (UDMP) method in the right. Doted lines 
denote the desired paths and solid lines denote actual paths. 

We have presented results from the computer simulations in Fig. 22 through Fig. 26. The results 
we have provided here are from Case I: Partial Decomposition of the proposed UDMP method. The 
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task-space geometric paths are plotted in Fig. 22, where we can see that the path tracking errors 
in our proposed UDMP method are much smaller as compared to that of CMP method.  We 
have also plotted task-space trajectories in Fig. 23. It is also observed from plots in Fig. 23 that the 
end-effector tracks the task-space trajectories quite accurately in UDMP method. The errors are 
less in proposed UDMP method as compared to the CMP method. The joint-space trajectories 
are plotted in Fig. 24. From these plots it is observed that the proposed UDMP method effectively 
reduces the motions of the heavy subsystem (the vehicle) and allows greater and sharper 
motions to the lighter subsystem (the manipulator) while tracking the same task-space 
trajectories. It is also noticed that the motion of the heavy subsystem is smoother in the proposed 
method. We find that these sharper and larger motions of the heavy subsystem in case of CMP 
method demand higher driving force that we see in Fig. 25. From the plots in this Fig. (Fig. 25) it 
is also observed that in case of UDMP method thrusters 4, 7, 8 and actuator 1 have reached the 
saturation limits, but they have not exceeded the limits. On the other hand, in case of CMP 
method all the thrusters and actuators have reached the saturation limits, however the saturation 
scheme was able to keep them to within the specified limits. Because of this, the path and 
trajectory tracking performance in CMP method has been degraded, as we can see in Fig. 22 and 
Fig. 23. Thus, the conventional planning method demands more powerful actuation system to 
track the same trajectories with reasonable accuracy. We also observe that the thrust 1 and thrust 
5 are zero from 6sec as marked by “A” and “B”, respectively (see Fig. 25). These imply they have 
developed faults at 6th second and remain non-functional for rest of the time. At this moment we 
observe some perturbations in trajectories and paths, however, the proposed UDMP scheme 
gradually brings the system to the desired directions and reduces the tracking errors. On the 
other hand, after the occurrence of faults the paths and the trajectories are tacked poorly in case 
of CMP method, because this algorithm cannot account for the dynamics of the system while 
generating the reference trajectories. 
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Fig. 23. Task-space trajectories: Conventional Motion Planning method (left column) and 
Unified Dynamics-based Motion Planning method (right column). Actual trajectories (solid 
lines) are superimposed on desired trajectories (doted lines). 
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We have also plotted the simulation results for surge-sway motion, power 
requirement and energy consumption of the UVMS in case of CMP method (in the left 
column) and that of in case of proposed UDMP method (in the right column) in Fig. 
26. Top two plots in this figure show the profile of the surge- sway movements of the 
vehicle in the said two methods. In case of the CMP method, the vehicle changes the 
motion sharply and moves more as compared to the motion generated from the 
UDMP method. It may so happen that, in practice, this type of sharp and fast 
movements may be beyond the capability of the heavy dynamic subsystem and 
consequently large errors in trajectory tracking will occur. Additionally, this may 
cause saturation of the thrusters and the actuators resulting in degradation in 
performance. Moreover, the vehicle will experience large velocity and acceleration in 
CMP method that result in higher power requirement and energy consumption, as we 
observe it in next two sets of plots in Fig. 26. Thus, this investigation reveals that our 
proposed Unified Dynamics-Based Motion Planning method is very promising for 
autonomous operation of dynamic system composed of several subsystems having 
variable dynamic responses.  
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Fig. 24. Joint-space trajectories: Unified Dynamics-based Motion Planning method (solid 
lines) and Conventional Motion Planning method (dashed lines). 
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task-space geometric paths are plotted in Fig. 22, where we can see that the path tracking errors 
in our proposed UDMP method are much smaller as compared to that of CMP method.  We 
have also plotted task-space trajectories in Fig. 23. It is also observed from plots in Fig. 23 that the 
end-effector tracks the task-space trajectories quite accurately in UDMP method. The errors are 
less in proposed UDMP method as compared to the CMP method. The joint-space trajectories 
are plotted in Fig. 24. From these plots it is observed that the proposed UDMP method effectively 
reduces the motions of the heavy subsystem (the vehicle) and allows greater and sharper 
motions to the lighter subsystem (the manipulator) while tracking the same task-space 
trajectories. It is also noticed that the motion of the heavy subsystem is smoother in the proposed 
method. We find that these sharper and larger motions of the heavy subsystem in case of CMP 
method demand higher driving force that we see in Fig. 25. From the plots in this Fig. (Fig. 25) it 
is also observed that in case of UDMP method thrusters 4, 7, 8 and actuator 1 have reached the 
saturation limits, but they have not exceeded the limits. On the other hand, in case of CMP 
method all the thrusters and actuators have reached the saturation limits, however the saturation 
scheme was able to keep them to within the specified limits. Because of this, the path and 
trajectory tracking performance in CMP method has been degraded, as we can see in Fig. 22 and 
Fig. 23. Thus, the conventional planning method demands more powerful actuation system to 
track the same trajectories with reasonable accuracy. We also observe that the thrust 1 and thrust 
5 are zero from 6sec as marked by “A” and “B”, respectively (see Fig. 25). These imply they have 
developed faults at 6th second and remain non-functional for rest of the time. At this moment we 
observe some perturbations in trajectories and paths, however, the proposed UDMP scheme 
gradually brings the system to the desired directions and reduces the tracking errors. On the 
other hand, after the occurrence of faults the paths and the trajectories are tacked poorly in case 
of CMP method, because this algorithm cannot account for the dynamics of the system while 
generating the reference trajectories. 
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Fig. 23. Task-space trajectories: Conventional Motion Planning method (left column) and 
Unified Dynamics-based Motion Planning method (right column). Actual trajectories (solid 
lines) are superimposed on desired trajectories (doted lines). 
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We have also plotted the simulation results for surge-sway motion, power 
requirement and energy consumption of the UVMS in case of CMP method (in the left 
column) and that of in case of proposed UDMP method (in the right column) in Fig. 
26. Top two plots in this figure show the profile of the surge- sway movements of the 
vehicle in the said two methods. In case of the CMP method, the vehicle changes the 
motion sharply and moves more as compared to the motion generated from the 
UDMP method. It may so happen that, in practice, this type of sharp and fast 
movements may be beyond the capability of the heavy dynamic subsystem and 
consequently large errors in trajectory tracking will occur. Additionally, this may 
cause saturation of the thrusters and the actuators resulting in degradation in 
performance. Moreover, the vehicle will experience large velocity and acceleration in 
CMP method that result in higher power requirement and energy consumption, as we 
observe it in next two sets of plots in Fig. 26. Thus, this investigation reveals that our 
proposed Unified Dynamics-Based Motion Planning method is very promising for 
autonomous operation of dynamic system composed of several subsystems having 
variable dynamic responses.  
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Fig. 24. Joint-space trajectories: Unified Dynamics-based Motion Planning method (solid 
lines) and Conventional Motion Planning method (dashed lines). 
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Fig. 25. Thruster and actuator forces and torques of the UVMS. Unified Dynamics-based 
Motion Planning method (solid lines) and Conventional Motion Planning method (dashed 
lines). Thruster faults are marked by “A” (Thruster 1) and “B” (Thruster 5). 
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Fig. 26. Surge-sway motion of the vehicle, power requirement and energy consumption of 
the UVMS. Results from Conventional Motion Planning method are in the left and that of 
Unified Dynamics-based Motion Planning method are in the right. 
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8. Conclusions 
We have proposed a new unified dynamics-based motion planning algorithm that can 
generate both kinematically admissible and dynamically feasible joint-space trajectories 
for systems composed of heterogeneous dynamics. We have then extended this 
algorithm for an autonomous underwater vehicle-manipulator system, where the 
dynamic response of the vehicle is much slower than that of the manipulator. We have 
also exploited the kinemetic redundancy to accommodate the thruster/actuator faults 
and saturation and also to minimize hydrodynamic drag. We have incorporated 
thruster dynamics when modeling the UVMS. Although, some researchers have 
exploited kinematic redundancy for optimizing various criteria, but those work have 
mainly addressed to problems with land-based robotics or space-robotics. Hardly any 
motion planning algorithm has been developed for autonomous underwater vehicle-
manipulator system. In this research, work we have formulated a new unified motion 
planning algorithm for a heterogeneous underwater robotic system that has a vastly 
different dynamic bandwidth. The results from computer simulation demonstrate the 
effectiveness of the proposed method. It shows that the proposed algorithm not only 
improves the trajectory tracking performance but also significantly reduce the energy 
consumption and the power requirements for the operation of an autonomous UVMS. 
We have not presented results from Case II (Total Decomposition) because of the length 
of the paper. However, these results are comparable to the conventional motion 
planning approach. In future, instead of Fourier decomposition, one can try to use 
wavelet approach to decompose the task-space trajectory into system’s sub-component 
compatible segments. 
There are a few drawbacks of this paper as well. We used a model-based control technique 
to evaluate our planning algorithm. However, the underwater environment is uncertain and 
we need to use adaptive control techniques in future. Although the fault-tolerant control 
algorithm has been experimentally verified, the other proposed algorithms need to be 
validated by experiments.  
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Fig. 26. Surge-sway motion of the vehicle, power requirement and energy consumption of 
the UVMS. Results from Conventional Motion Planning method are in the left and that of 
Unified Dynamics-based Motion Planning method are in the right. 
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8. Conclusions 
We have proposed a new unified dynamics-based motion planning algorithm that can 
generate both kinematically admissible and dynamically feasible joint-space trajectories 
for systems composed of heterogeneous dynamics. We have then extended this 
algorithm for an autonomous underwater vehicle-manipulator system, where the 
dynamic response of the vehicle is much slower than that of the manipulator. We have 
also exploited the kinemetic redundancy to accommodate the thruster/actuator faults 
and saturation and also to minimize hydrodynamic drag. We have incorporated 
thruster dynamics when modeling the UVMS. Although, some researchers have 
exploited kinematic redundancy for optimizing various criteria, but those work have 
mainly addressed to problems with land-based robotics or space-robotics. Hardly any 
motion planning algorithm has been developed for autonomous underwater vehicle-
manipulator system. In this research, work we have formulated a new unified motion 
planning algorithm for a heterogeneous underwater robotic system that has a vastly 
different dynamic bandwidth. The results from computer simulation demonstrate the 
effectiveness of the proposed method. It shows that the proposed algorithm not only 
improves the trajectory tracking performance but also significantly reduce the energy 
consumption and the power requirements for the operation of an autonomous UVMS. 
We have not presented results from Case II (Total Decomposition) because of the length 
of the paper. However, these results are comparable to the conventional motion 
planning approach. In future, instead of Fourier decomposition, one can try to use 
wavelet approach to decompose the task-space trajectory into system’s sub-component 
compatible segments. 
There are a few drawbacks of this paper as well. We used a model-based control technique 
to evaluate our planning algorithm. However, the underwater environment is uncertain and 
we need to use adaptive control techniques in future. Although the fault-tolerant control 
algorithm has been experimentally verified, the other proposed algorithms need to be 
validated by experiments.  
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1. Introduction 
The control system of a mobile robot generally comprises two different modules: a trajectory 
planner and a trajectory tracking controller, although some researchers have proposed 
algorithms that integrate both tasks. 
To completely solve the trajectory planning problem is to define an open-loop path and its 
velocity profile from an initial to a final posture, while avoiding any potential obstacles.  
In time-optimal planning of a wheeled mobile robot (WMR), the problem is solved by 
defining control inputs for the wheels that minimize navigation time from the origin to the 
target posture. This goal implies two tasks, which can be carried out simultaneously or 
sequentially: path-planning (PP), which involves the computation of the shortest feasible 
path; and velocity-planning (VP), which involves the computation of the fastest feasible 
velocity profile for the entire domain of the path. 
Several approaches have been developed to perform both tasks. The most widely used 
approaches are free configuration-time space based methods, (Reinstein & Pin, 1994), but these 
algorithms are computationally expensive, even when one is only dealing with PP or VP 
separately. To reduce the computational cost, researchers have recently published methods 
which do not require computing the C-space obstacles (Wang et al., 2004), as well as methods 
that search for a probabilistic road map (LaValle & Kuffner, 2001). Some other approaches that 
use intelligent computing-based methods have also been presented, such as those that use 
artificial potential fields-based methods (Liu & Wu, 2001), fuzzy logic (Takeshi, 1994), genetic 
algorithms (Nerchaou, 1998) or neural networks (Zalama et al., 1995). 
In order to find an optimal and feasible solution for the two problems, mechanical, 
kinematic and dynamic characteristics of the WMR that limit its motion must be taken into 
account, as well as other environmental, task-related and operational issues. These 
constraints can be summarized by upper boundary functions of the velocity, acceleration 
and deceleration of the WMR. In general, the functions are not constant, nor are they even 
continuous. They are therefore nonintegrable constraints, and the time optimal planning is a 
nonholonomic problem.  
A significant number of nonholonomic constraints, which include not only mechanical and 
kinematic but also dynamic characteristics of the WMR, are difficult to deal with when PP 
and VP are approached simultaneously. The vast majority of existing algorithms consider 
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only kinematic constraints or some dynamic conditions derived from simplified models of 
the WMR and/or its environment. But the resulting trajectory may be unexecutable, or 
tracked by the robot with high spatial and temporal errors. However, when PP and VP are 
approached sequentially, the difficulty of both problems is significantly reduced. Such 
approaches make it possible to include more complex constraints for the WMR’s velocity 
and acceleration, especially with regards to its kinematic and dynamic characteristics. 
To our knowledge, the first references addressing VP with kinematic and dynamic 
constraints for WMR is (O’Dunlaing, 1987). This paper, like a number of other algorithms to 
solve the VP stage, is based on constant maximum values for robot velocity and 
acceleration, set to arbitrary constants which are unrelated to the mechanical characteristics 
of the system. More recent works seek to find more efficient bounds for these operating 
variables, but never in a global way and always based on simplified dynamic robot models. 
(Weiguo et al., 1999) propose a velocity profile planner for WMRs on flat and homogeneous 
terrains, where velocity and acceleration are limited only by the outer motor torques and by 
the absolute slippage of the vehicle on the ground. (Choi & Kim, 2001) develop another 
planner where velocity and acceleration are constrained by dynamic characteristics related 
to the performance of the robot's electric motors and its battery's power. (Guarino Lo Bianco 
& Romano, 2005) present a VP algorithm for specific paths that generate a continuous 
velocity and acceleration profile, both into safety regions limited by upper boundary 
functions not described in the paper. The method involves an optimization procedure that 
has a significant computational cost. 
Some other limitations have been studied, mainly within the framework of projects for 
planetary exploration. (Shiller, 1999) deals with some dynamic constraints: sliding 
restrictions, understood as the avoidance of absolute vehicle slippage, tip-over and loss of 
wheel-ground contact constraints, which are important issues when dealing with irregular 
outdoor terrains. The author works with a very simplified robot model, neglecting sideslip 
and assuming pure rolling, so wheel deformations and microslippages which can cause 
important tracking errors are not quantified. (Cheriff, 1999) also proposes a set of kinematic 
and dynamic constraints over the robot’s path, dealing specifically with 3D irregular and 
non-homogeneous grounds. The resulting trajectory planner directly incorporates a 
complete dynamic WMR model, considering non-linear motions and specifically accounting 
for wheel-ground interactions, which makes it necessary to run complex algorithms that 
significantly increase computational cost.  
(Lepetic et al., 2003) present a VP method that considers dynamic constraints by bounding 
the acceleration by the maximum wheel-ground adherence capacity. This maximum is 
computed as a function of a constant friction coefficient for every posture and of the weight 
borne by the wheel. Load transfer due to lateral forces is considered to calculate the weight 
on the wheel, but only as a constant maximum value, derived from a simplified model of the 
WMR, that reduces the lateral maximum acceleration to the same value for every posture. 
The VP method published by (Krishna et al., 2006) builds a trajectory continuous in space 
and velocity, which incorporates environment and sensory constraints by setting a 
maximum velocity for the entire path of the robot that is decreased when an obstacle is 
detected within its visibility circle. The velocity constraint is computed as a function of the 
position and velocity of the obstacle and of a maximum acceleration or deceleration value of 
the WMR, established as constant values for every posture. 
This chapter deals with time-optimal planning of WMRs when navigating on specific spatial 
paths, i.e., when the PP is previously concluded. First, the computation of the upper 
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boundary functions of its velocity, acceleration and deceleration are described. Then a 
method for time-optimal planning is proposed, the main goals of which are: 

- To fully exploit velocity, acceleration and deceleration constraints, avoiding the 
planning of velocities or accelerations that lead to dangerous motions. 

- To plan a feasible trajectory, with continuous velocity and deceleration 
- To bound the jerk of the WMR 
- To be of low computational cost. 

The method firstly deals with velocity planning in static environments and then presents an 
algorithm to modify the resulting trajectory to avoid moving obstacles. Special attention is 
paid to the efficiency of the second algorithm, an advantage which makes it highly useful 
for local and/or reactive control systems.  

2. Problem definition 
Problem 1: Given a WMR’s path, computed to navigate in a static and known environment, 
plan the fastest, feasible and safe trajectory, considering the constraints imposed by the 
mechanical configuration, kinematics and dynamics of the robot and by environmental and 
task-related issues. 
Problem 2: Modify the trajectory quickly and locally to avoid moving obstacles.  
A generalized posture of a WMR, parameterizing by the path length, s, can be defined by 
the vector [ ]T(s)(s),Y(s),X(s),q(s) = . [X(s), Y(s)] is the position and θ(s) the orientation of 
the WMR’s guide point on a global frame (Z coordinate is constant by assuming navigation 
is on flat ground). δ(s) is a function kinematically related to the curvature of the trajectory, 

(s); specifically, it is a function of the steer angles of the wheels of WMRs with steering 
wheels or a function of the difference between the angular velocities at the traction wheels 
for WMRs with differential drive.  
The path, P(s), can be defined by a continuous series of generalized postures from the initial 
posture, q0, to the final one, qf. Therefore, if S is the total length of the path: 

{ } [ ] fqSPqPSsqsP =∨=ℜ→= )()0(;,0:)()( 0
4  (1) 

To transform P(s) into a trajectory, a velocity function must be generated for the entire path 
domain. It must be defined in positive real space (if the WMR is only required to move 
forward, as is the usual case) and planned to make the robot start from a standstill and 
arrive at the final posture also with null velocity. That is: 

{ } [ ] 0)(0)0(;,0:)()( =∨=ℜ→= + SVVSsvsV  (2) 

Additional conditions are strongly required of V(s) to obtain a feasible trajectory: 
1. Continuity, since the kinematics of WMR make it impossible to develop other types 

of maneuvers. 
2. Confinement into a safety region of the space-velocity plane (s×v), upper limited by 

a boundary function of the velocity, VLim(s).
3. Confinement of its first derivative with respect to time, acceleration or deceleration, 

into a safety region of the space-acceleration plane (s×a),  upper limited by a 
boundary function of the acceleration, aLim(s), and lower limited by the negative 
value of a boundary function of deceleration dLim(s).
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only kinematic constraints or some dynamic conditions derived from simplified models of 
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4. Continuity of acceleration or deceleration: this condition ensures that the jerk of the 
robot, the second derivative of its velocity, is finite, so that the robot’s movements 
are smooth. High jerk is not recommended for WMRs for a number of reasons: it 
causes the robot to shake significantly and thus complicates on-board tasks; it 
makes tracking control more difficult, since wheel microslippage increases and 
wheel behavior becomes less linear (Wong, 2001); and it increases the error of on-
board sensor systems. 

5. Additionally, low computational cost is beneficial for the generation of the velocity 
profile. This goal is especially pursued when solving problem 2, for the purpose of 
possibly incorporating the algorithm into local controls or reactive planners, to 
adjust the trajectory in the presence of new unexpected obstacles that appear in the 
visibility area of the robot’s sensorial systems (Krishna et al., 2006). 

3. Velocity constraints 
This section deals with constructive characteristics, kinematic configuration and the 
dynamic behaviour of a WMR, as well as operational matters, in order to identify the 
constraints that influence the maximum velocity of a WMR’s guide point.  
For all the constraints detailed in the following subsections, an upper boundary function of 
velocity, parametrized by s, can be generated. The function is built by assigning the lowest 
upper bound of all the velocity constraints to each posture: 

{ } [ ]S,0s/V.......V,Vmin)s(V nLim2Lim1LimLim ⊂=  (3) 

This chapter addresses the case of a WMR guided by steering wheels; in the case of WMRs 
with differential drive, the approach will be similar and therefore the constraints can easily 
be deduced under the same considerations. 

3.1. Construction constraints  

Thermal and mechanical characteristics of motors and batteries impose maximum rotational 
velocities on the tractive and steering servomotors, ωtmmax and ωsmmax, respectively (Choi & 
Kim 2001). Thus, if t is the reduction ratio of the drive-train and R the wheel’s radius, the 
maximum linear velocity of driven wheels on the ground is: 

Rmax
tmt

max
twv ωξ=  (4) 

Further, if s is the reduction ratio of the steering-train, the maximum velocity of variation of 
the steering angle, i.e. the maximum steering gain, is: 

max
sms

max
sG ωξ=  (5) 

3.2. Kinematic constraints  

With regards to kinematic linkages between the driven wheels and the guide point, if dtwmax

is the position vector on the ground of the most distant driven wheel with respect to the 
guide point, an upper bound for the WMR’s velocity is given by: 
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tw

max
tw1Lim

d1
/1

vV
+κ

κ
=  (6) 

On the other hand, by considering kinematic linkages between the steering wheels and the 
guide point, a second boundary function for the velocity is found as: 

ds
d

dt
d

V 2Lim κ

κ
=  (7) 

The numerator must be calculated from a kinematic model of the robot, whereas the 
denominator can be directly computed from the known spatial path.

3.3. Dynamic constraints  

A dynamic model of the robot is needed to generate boundary functions relating to its 
dynamic characteristics. Since this model is only used to fully define the VP algorithm, 
specifically when defining VLim, aLim and dLim, but not when computing the trajectory, it can 
be as complex as needed for successful results without increasing computational cost. One 
may therefore use a model which is not limited by its degrees of freedom, geometric non-
linearities, integration tolerances, etc...  

3.3.1. Maximum velocity to bound spatial error 

Let the quadratic spatial error of a WMR be the square of the distance from the actual 
position of its guide point tracking a trajectory to the position planned by the PP, measured 
on the ground plane and parameterised by the normalised arc length, s~ , defined as the ratio 
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Let the actual tracked trajectory, which will involve a side-slip angle with a value that is 
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If the planned path, P(s) in (1) is particularized for stationary manoeuvres, i.e. with constant 
velocity and curvature, the WMR’s planned position in the same world reference frame can 
be expressed as a function of s~  as: 
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4. Continuity of acceleration or deceleration: this condition ensures that the jerk of the 
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With regards to kinematic linkages between the driven wheels and the guide point, if dtwmax

is the position vector on the ground of the most distant driven wheel with respect to the 
guide point, an upper bound for the WMR’s velocity is given by: 
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The actual tracked trajectory, with side-slip angle A and curvature A, will generally differs 
from the planned trajectory and is given by (Prado et al., 2002): 

( ) [ ] [ ]π+β−β
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A
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A and A can be approximated by the trajectory obtained as simulation output of a sufficiently 
accurate dynamic model or by experimental results. If enough simulations or tests are 
performed to characterize the dynamics of the WMR in stationary trajectories, it is possible to 
fit A and A to functions of the planned curvature and velocity. Therefore, by substituting (11) 
and (12) into (10) and considering the simulation or experimental results to compute A and 

A, the total spatial error of the WMR when navigating a whole stationary cycle can be 
calculated as a function of the planned V and . Although it is known that in general the 
planned variables V and  do not stay constant at adjacent postures, it is understood that they 
will experience smooth variations when smooth paths are planned. Therefore, the error at each 
posture will be approximated by the error in (10) computed as described in this section, i.e. 
considering neighbourhoods where the V and  are kept constant.  
Finally, TEs2 will be upper limited by a magnitude relative to the total area of the circle that 
defines the stationary planned trajectory. Therefore, if tols is the percentage of the 
admissible tolerance for the spatial error, the following constraint is imposed: 
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When (13) is applied to (10), a velocity constraint VLim3 for the WMR is obtained.  

3.3.2. Maximum velocity to bound temporal error 

When a WMR is navigating, it must do more than consider position error; temporal error 
can also be important if one wishes to fit or synchronise several objects. Let the temporal 
error of a WMR be the time gap between the actual time when the robot arrives at a posture, 
tA, and the time when it is planned to arrive, t:  

ttE At −=  (14) 

For a stationary trajectory of length S tracked with actual velocity VA, this error is: 

−=
V
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VA in a stationary trajectory can be approximated by the velocity obtained in experimental 
tests or simulations of a sufficiently accurate dynamic model of the WMR. As stated for the 
spatial error, such outcomes make it possible to express VA as a function of the 
characteristics of V and .
The velocity planner fixes an upper bound for the temporal error associated to each 
posture, given by a value relative to the time that the path tracker estimates the robot 
will spend in the stationary trajectory, with relative tolerance ttrel. Then the following 
inequality must be satisfied: 

V
StolttolE ttt =≤  (16) 
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By substituting (15) in (22), a new upper boundary function VLim4 is generated as: 

( ) AtLim4 V1tolV +=  (17) 

3.3.3. Tip-over limitation 

Tip-over occurs when the robot’s entire weight shifts to one side of the vehicle, and the other 
wheels are about to lose contact. Thus, the robot is at risk of tipping-over when its total 
weight is entirely borne by the outer wheel (Shiller, 1999). The extreme situation, depicted in 
Fig. 1 for positive , where h is the height of the centre of gravity (c.g.) of the robot and B1

and B2 are the lateral distances between the outer wheel and the c.g. for positive and 
negative , respectively (although generally B1=B2), yields a relation between the lateral 
force, Fy, and the vertical force, Fz, given by: 
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By neglecting gyroscope torques, the lateral force, Fy, on flat grounds is simply the 
centrifugal force, while Fz is the robot’s weight. Thus, if g is the gravity constant, equation 
(18) requires V to be lower than: 
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3.4. Operational constraints  

The need to fit and synchronise the robot's motion with its environment, whether static or 
dynamic, makes operational constraints necessary. 

Fig. 1. Tip-over of the WMR. 
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dynamic, makes operational constraints necessary. 

Fig. 1. Tip-over of the WMR. 
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3.4.1. Maximum velocity to prevent collisions 
V is limited by a value that ensures the WMR will come to a complete stop at a distance 
greater than a safety distance from any obstacle, Lsafe. Such a stop will be performed at the 
maximum deceleration, bmax, a constant calculated in section 4. Therefore, the distance run 
by the robot until it stops, is: 

maxb2
Vs

2

=   (20) 

When Vobs is the maximum estimated velocity of the obstacle towards the robot (0 in static 
environments), the distance covered by the object is: 

V
b
V

s max
obs

obs =  (21) 

If Dobs is the distance from the robot guide point to the obstacle in completely known 
environments, or the radius of vision of the external sensor system in partially known 
environments (Krishna et al., 2006), in order to ensure that the robot maintains its safety 
distance, it must satisfy: 

safeobsobs LDss −=+  (22) 

By replacing (20) and (21) in (22), a new upper limit for the velocity is found as: 

obssafeobs
max2

obs7Lim V)LD(b2)V(V −−+=  (23) 

3.4.2. Maximum velocity to approach the target posture 
In the same way, in order to ensure safe stopping at the target point of the path, another 
upper boundary function is given by: 

max
28Lim b)sS(C2V −=  (24) 

Where C2 is an arbitrary constant greater than 1, which reflects a security percentage for 
stopping, and S is the total path length. 

3.4.3. Environmental constraints 
A set of velocity constraints which are solely dependent on the robot's working environment 
can be defined as a function which assigns a maximum speed Vi to each portion of the path, 
with expressions such as: 
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4. Acceleration and deceleration constraints 
The same constructive, kinematic, dynamic and environmental topics which were analysed 
for velocity are studied for acceleration and deceleration in this section. From all the 
constraints detailed in next subsections an upper boundary function of acceleration, aLim,
and deceleration, dLim, can be generated as: 
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{ } [ ]S,0s/a.......a,amin)s(a nLim2Lim1LimLim ⊂=  (26) 

{ } [ ]S,0s/d.......d,dmin)s(d nLim2Lim1LimLim ⊂=  (27) 

4.1. Constructive constraints 

The maximum torques of tractive motors, Ttm, steering motors, Tsm, and the braking 
mechanism, Tbm, dictate the maximum torques achievable at the wheels. If ηt and ηs are the 
efficiency of the drive-train and of the steering-train, these values are given by:  
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4.2. Kinematic constraints 

As occurs with velocity, the robot's kinematics would make its acceleration be a function of 
the acceleration of the wheels.  But as is argued in section 4.4, this value is limited 
exclusively by the dynamic capabilities relative to the resisting loads. 

4.3. Dynamic constraints  

4.3.1. Wheel-ground adhesion constraint 
In order to avoid slippage, the maximum effort that the wheel-ground contact can support 
in a direction j is limited by the wheel-ground friction coefficient,μ, as: 

n
wij

adj
wi FF μ=  (29) 

μ can be assumed to be constant for uniform rubber wheels if slippage does not occur and 
terrain characteristics are uniform (Wong, 2001). Fwin is the vertical load borne by the i-th 
wheel, which changes with: ground irregularities, transients for non-stationary manoeuvres, 
lateral load transference produced by the centrifugal force on curved paths and longitudinal 
load transference on accelerated or decelerated paths. The first two phenomena can be 
neglected, especially for navigation in industrial environments. Regarding the two dynamic 
load transfers, Fwin can be computed as a function of the static weight borne by the i-th 
wheel,
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n
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Where wiL is the vector of longitudinal position of the centre of the i-th wheel with respect 

to the c.g. of the WMR and  wiB  is the vector of its lateral position.  
The maximum lateral effort that can be borne by the steering wheel is computed by 
replacing in (29) the sum of (30) extended for those wheels: 

=

μ=
steering

wheeli

n
wiy

ad

y FF  (31) 

Therefore, if dc is the castor distance, i.e. the longitudinal distance from the rotation axis of 
the steering system to the wheel centre, the available steering torque limited by the wheel-
ground adherence capacity is:  
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Therefore, if dc is the castor distance, i.e. the longitudinal distance from the rotation axis of 
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=
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Regarding driven and braking wheels, by replacing in (29) the sum of (30) for all those 
wheels, the longitudinal driven and braking efforts limited by the wheel-ground adherence 
capacity are given by the following equations, respectively:  
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4.3.2. Maximum tractive and braking efforts 

The maximum acceleration is that which is reached applying the maximum available effort 
when rolling, grade and aerodynamic resistances are overcome.  For WMRs, aerodynamic 
resistance is habitually neglected, because of their low navigation velocity. Therefore, the 
maximum acceleration when negotiating a grade j, and with rolling resistance coefficient fr, is: 
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Flong|max is the maximum longitudinal effort, limited either by the motors or by the wheel-
ground adherence capacity. Therefore, by introducing the power capacities computed in (28) and 
the maximum adhesion of (33) into (34), the following upper boundary functions are defined:  
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These are constant functions as long as fr can be considered constant, which occurs when the 
operating variables stay within a small interval, which is the most common situation for 
WMR motion in industrial environments (Wong, 2001). 

4.3.3. Maximum steering efforts 

The maximum acceleration available for the steering angle, , can be calculated as: 
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Tsteer|max is the maximum steering torque at the wheel, limited either by power of the 
steering system, in (28) or by adhesion, in (32); Is is the mass moment of inertia of the whole 
steering system;  and Twires is the self-aligning torques of the i-th wheel.  
Looking at the left-hand side of (37), it can be expressed by: 

2

2

2

2

2

2

2

2

d
d

ds
d

td
sd

dt
d

κ
δκ=δ  (38) 

Thus, the acceleration of δ depends on three terms: the acceleration of the trajectory; the 
spatial acceleration of curvature, a characteristic directly derived from the spatial path; and 
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on the last term, which is a characteristic of the robot that can be approximated from its 
kinematic model. 
By replacing (38) and in (37) and by isolating the acceleration, a new boundary function is 
given by: 
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This upper bound depends on the velocity, which would take the VP to an iteration loop.  In order 
to avoid this costly procedure, V is substituted by the single-valued upper boundary function of 
velocity, VLIM(s), defined in section 3, making the acceleration boundary even more restrictive. 

5. Velocity Planning in Static Environments 
5.1. Path Segmentation 

In order to reduce its complexity, the proposed method divides the path into segments 
where all of the velocity constraints are continuous and monotone or constant, i.e. where the 
velocity of the path can be continuous and monotone or constant when it matches its upper 
boundary function. The velocity profile for the entire path is generated sequentially from the 
first segment to the last one according to the method describe later on in this section.  
A set of p+2 segmentation points, Ps={0, 1ss, ... pss, S}, sorted in increasing order, divides P(s) 
into p+1 segments, SG={1Sg, ... p+1Sg}, where iSg is the subset of P(s) corresponding to the 
domain s⊂[ i-1ss, iss].   
Ps, comprises: the initial point of the path, s=0; its final point, s=S; and every point that 
satisfies at least one of the following conditions: 

- To be a local extremum of the velocity boundary function: consequently VLim is
monotone over iSg, so that V(s) can also be monotone when it matches VLim.

- To be a point of discontinuity of VLim: at the first stage, the VP algorithm proposed 
herein will only deal with the velocity limits at the end points of the segment. Later 
it will check if VLim(s) is exceeded at any intermediate point and, in such a case, a 
time-consuming iterative process will be carried out. Since any discontinuity of 
VLim increases the risk of failing to meet the velocity constraint, they are shifted to 
the ends of the segments by selecting them as segmentation points.  

5.2. VP of a segment of the path in static environments 

The piece of V(s) for iSg is generated from the time-space (t×s) function iσ(t), which 
computes the path length navigated as:  

[ ]ss,sss;)t(s i1ii −⊂σ=  (40) 

Thus, the velocity profile for the segment is:  

( )( )( ) [ ]ss,sss;s
dt
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iσ(t) must start at the initial position of iSg and arrive at its final position. If the origin of time 
is shifted to the first point of iSg, without loss of generality, and if it is the time taken by the 
WMR to navigate iSg, the position boundary conditions are: 
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Regarding driven and braking wheels, by replacing in (29) the sum of (30) for all those 
wheels, the longitudinal driven and braking efforts limited by the wheel-ground adherence 
capacity are given by the following equations, respectively:  
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4.3.2. Maximum tractive and braking efforts 

The maximum acceleration is that which is reached applying the maximum available effort 
when rolling, grade and aerodynamic resistances are overcome.  For WMRs, aerodynamic 
resistance is habitually neglected, because of their low navigation velocity. Therefore, the 
maximum acceleration when negotiating a grade j, and with rolling resistance coefficient fr, is: 
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Flong|max is the maximum longitudinal effort, limited either by the motors or by the wheel-
ground adherence capacity. Therefore, by introducing the power capacities computed in (28) and 
the maximum adhesion of (33) into (34), the following upper boundary functions are defined:  
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These are constant functions as long as fr can be considered constant, which occurs when the 
operating variables stay within a small interval, which is the most common situation for 
WMR motion in industrial environments (Wong, 2001). 

4.3.3. Maximum steering efforts 

The maximum acceleration available for the steering angle, , can be calculated as: 
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Tsteer|max is the maximum steering torque at the wheel, limited either by power of the 
steering system, in (28) or by adhesion, in (32); Is is the mass moment of inertia of the whole 
steering system;  and Twires is the self-aligning torques of the i-th wheel.  
Looking at the left-hand side of (37), it can be expressed by: 
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Thus, the acceleration of δ depends on three terms: the acceleration of the trajectory; the 
spatial acceleration of curvature, a characteristic directly derived from the spatial path; and 
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on the last term, which is a characteristic of the robot that can be approximated from its 
kinematic model. 
By replacing (38) and in (37) and by isolating the acceleration, a new boundary function is 
given by: 
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This upper bound depends on the velocity, which would take the VP to an iteration loop.  In order 
to avoid this costly procedure, V is substituted by the single-valued upper boundary function of 
velocity, VLIM(s), defined in section 3, making the acceleration boundary even more restrictive. 

5. Velocity Planning in Static Environments 
5.1. Path Segmentation 

In order to reduce its complexity, the proposed method divides the path into segments 
where all of the velocity constraints are continuous and monotone or constant, i.e. where the 
velocity of the path can be continuous and monotone or constant when it matches its upper 
boundary function. The velocity profile for the entire path is generated sequentially from the 
first segment to the last one according to the method describe later on in this section.  
A set of p+2 segmentation points, Ps={0, 1ss, ... pss, S}, sorted in increasing order, divides P(s) 
into p+1 segments, SG={1Sg, ... p+1Sg}, where iSg is the subset of P(s) corresponding to the 
domain s⊂[ i-1ss, iss].   
Ps, comprises: the initial point of the path, s=0; its final point, s=S; and every point that 
satisfies at least one of the following conditions: 

- To be a local extremum of the velocity boundary function: consequently VLim is
monotone over iSg, so that V(s) can also be monotone when it matches VLim.

- To be a point of discontinuity of VLim: at the first stage, the VP algorithm proposed 
herein will only deal with the velocity limits at the end points of the segment. Later 
it will check if VLim(s) is exceeded at any intermediate point and, in such a case, a 
time-consuming iterative process will be carried out. Since any discontinuity of 
VLim increases the risk of failing to meet the velocity constraint, they are shifted to 
the ends of the segments by selecting them as segmentation points.  

5.2. VP of a segment of the path in static environments 

The piece of V(s) for iSg is generated from the time-space (t×s) function iσ(t), which 
computes the path length navigated as:  

[ ]ss,sss;)t(s i1ii −⊂σ=  (40) 

Thus, the velocity profile for the segment is:  
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dt
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iσ(t) must start at the initial position of iSg and arrive at its final position. If the origin of time 
is shifted to the first point of iSg, without loss of generality, and if it is the time taken by the 
WMR to navigate iSg, the position boundary conditions are: 
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The first derivative of iσ(t) with respect to time, iσ'(t), must also satisfy the velocity 
boundary conditions, which are given at the edge points of the segment by:  
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The second equation of (43) sets the velocity at the end of iSg to the maximum value 
permitted by the VLim at this point, in order to obtain the fastest trajectory; while the first 
equation of (43) compels the WMR to start from a standstill for the first segment of the path, 
i=1, or ensures continuity between adjacent segments for any other case. Note that i-1 ’(i-1t)
was set to its highest feasible value when planning the previous segment i-1Sg.
The cubic polynomial is selected to generate iσ(t), since it has just enough parameters to 
satisfy the boundary conditions in (42) and (43) and it has inverse, so that (41) can be 
computed. Thus, the t×s function of the path can be expressed as: 
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By applying (42) and (43) to (44), the boundary conditions can be summed up as: 
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it must be computed to confine iV(s) into the safety zone of the s×v plane limited by  
[0 V(s), V(s) VLim(s)], and its first derivative into the safety zone of the  s×a plane limited by  
[-dLim(s) V’(s), V’(s) aLim(s)]; further, it must be computed to ensure the continuity of iσ(t) up to 
its second derivative for the entire domain of the path, specifically between adjacent segments.  
The magnitude i ’’(t) is important because local extrema of VLim are always located at the 
ends of the segments that partition the path. The velocity planned for these points is the 
maximum possible, under (43). If a maneuver with positive acceleration is planned for a 
segment whose end point is a local maximum of VLim, the velocity boundary will be violated 
at the beginning of the next segment. A similar situation would occur for a local minimum 
when negative acceleration is planned. 
A direct approach to the problem would involve solving a large system of non-linear 
inequalities, a process of very high computational cost (Muñoz, 1995). Therefore, a method is 
proposed, working mainly with closed mathematical expressions and thereby reducing 
computational cost significantly. The method is based on setting the acceleration to zero at 
the segmentation points, so that acceleration continuity is ensured and the problem of 
failing to meet the velocity constraints just after local extrema of VLim, explained in a 
previous paragraph, is overcome.

The maximum acceleration of iSg, iA, is planned to be reached at an intermediate point, itc,
which yields one of the acceleration profiles showed in Fig. 2, therefore: 
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Fig.  2. Possible solutions in static environments. A) Acceleration profile; b)Velocity profile; 
c)Trajectory.
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By integrating (46) and calculating the integration constants to satisfy the initial velocity 
boundary condition of (43) and to ensure continuity between iσ'1(t) and iσ'2(t), the velocity 
profile of the segment, also plotted in Fig. 2, is: 
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Finally iσ(t) is computed by integrating (47) with the integration constants to satisfy the first 
position boundary condition of (42) and to ensure its continuity at itc:
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The proposed algorithm initially selects itc at the half-way point of iSg. So: 
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In this case, by taking into account the second velocity condition in (43) it is found that: 

A
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In order to arrive at the position given by the second equation of (50), iA must be: 
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The first derivative of iσ(t) with respect to time, iσ'(t), must also satisfy the velocity 
boundary conditions, which are given at the edge points of the segment by:  
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The second equation of (43) sets the velocity at the end of iSg to the maximum value 
permitted by the VLim at this point, in order to obtain the fastest trajectory; while the first 
equation of (43) compels the WMR to start from a standstill for the first segment of the path, 
i=1, or ensures continuity between adjacent segments for any other case. Note that i-1 ’(i-1t)
was set to its highest feasible value when planning the previous segment i-1Sg.
The cubic polynomial is selected to generate iσ(t), since it has just enough parameters to 
satisfy the boundary conditions in (42) and (43) and it has inverse, so that (41) can be 
computed. Thus, the t×s function of the path can be expressed as: 
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it must be computed to confine iV(s) into the safety zone of the s×v plane limited by  
[0 V(s), V(s) VLim(s)], and its first derivative into the safety zone of the  s×a plane limited by  
[-dLim(s) V’(s), V’(s) aLim(s)]; further, it must be computed to ensure the continuity of iσ(t) up to 
its second derivative for the entire domain of the path, specifically between adjacent segments.  
The magnitude i ’’(t) is important because local extrema of VLim are always located at the 
ends of the segments that partition the path. The velocity planned for these points is the 
maximum possible, under (43). If a maneuver with positive acceleration is planned for a 
segment whose end point is a local maximum of VLim, the velocity boundary will be violated 
at the beginning of the next segment. A similar situation would occur for a local minimum 
when negative acceleration is planned. 
A direct approach to the problem would involve solving a large system of non-linear 
inequalities, a process of very high computational cost (Muñoz, 1995). Therefore, a method is 
proposed, working mainly with closed mathematical expressions and thereby reducing 
computational cost significantly. The method is based on setting the acceleration to zero at 
the segmentation points, so that acceleration continuity is ensured and the problem of 
failing to meet the velocity constraints just after local extrema of VLim, explained in a 
previous paragraph, is overcome.

The maximum acceleration of iSg, iA, is planned to be reached at an intermediate point, itc,
which yields one of the acceleration profiles showed in Fig. 2, therefore: 
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Fig.  2. Possible solutions in static environments. A) Acceleration profile; b)Velocity profile; 
c)Trajectory.
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By integrating (46) and calculating the integration constants to satisfy the initial velocity 
boundary condition of (43) and to ensure continuity between iσ'1(t) and iσ'2(t), the velocity 
profile of the segment, also plotted in Fig. 2, is: 
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Finally iσ(t) is computed by integrating (47) with the integration constants to satisfy the first 
position boundary condition of (42) and to ensure its continuity at itc:
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The proposed algorithm initially selects itc at the half-way point of iSg. So: 
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In this case, by taking into account the second velocity condition in (43) it is found that: 
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In order to arrive at the position given by the second equation of (50), iA must be: 
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Therefore, by replacing (51) in (50), the value of it needed for navigating iSg with the 
selected velocity profile is computed as: 
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While the maximum acceleration must be: 
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iσ(t) is fully defined by replacing (49), (52) and (53) in (48). It satisfies the boundary 
conditions of position and velocity at the initial and end points of iSg and ensures the 
continuity up to its second derivative over both iSg and the entire path domain. But aLim(s) 
and dLim(s) constraints must also be satisfied, hence it is necessary to check that: 
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When i-1v<iv, an acceleration maneuver is planned for the segment. So if the acceleration 
restriction fails, it occurs because its upper boundary, the first inequality of (54), is violated. 
This problem can be solved by decreasing the final velocity to the maximum permitted by 
the maximum feasible acceleration in the segment. Thus, the velocity at the end of the 
segment is modified to be: 
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where the modified acceleration, iA*, is computed as:  
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And the time that the WMR takes to navigate the i-th segment is recomputed as: 
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Obviously, iv*<iv, since iA*<iA, and it is not necessary to check the velocity constraint at the 
end point of iSg again. 
On the other hand, when i-1v<iv, a deceleration maneuver is planned for the segment. 
Therefore, if the acceleration restriction fails, it occurs because its lower boundary, the 
second inequality of (54), is violated. In this case it is not possible to reduce deceleration by 
increasing the final velocity, since iv was selected as the maximum permitted by VLim. As a 
consequence, it becomes necessary to decrease the initial velocity to the maximum permitted 
by the maximum feasible deceleration:  
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where iA* is computed as:  
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And the new time it takes to navigate the i-th segment is recomputed by: 
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This strategy requires the velocity profile of i-1Sg to also be modified by planning i-1v* as the 
velocity at its final posture, in order to ensure the continuity of V(s). 
The proposed algorithm ensures the velocity constraint will be satisfied at the end points of 
iSg, but not along the entire segment. Thus, it must be checked: 
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If this constraint is violated now, the iterative processes detailed in section 5.3 must be 
performed. When iV(s) was computed by the proposed algorithm, inequality (61) failed in 
very few cases for the tests carried out with the WMR RAM, mentioned in section 7, and 
therefore the iterative strategies were necessary very infrequently. The same results can be 
expected for any WMR that works with spatial paths planned as smooth curves (continuous 
in curvature), because VLim depends on the curvature of the path and its first derivative with 
respect to the path length, and these functions are smooth if the spatial path is smooth.  
The last task to build iσ(t) involves undoing the time shifting, i.e., setting the time at the 
initial point of iSg equal to the time at the final point of i-1Sg. That is: 
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5.3. Velocity profile modification to satisfy velocity constraints in segments. 

5.3.1. Acceleration maneuvers 

When (61) is not satisfied in iSg and i-1v<iv, iV(s) is iteratively slowed down by delaying itc

from the half-way point of iSg to a value itc*, given by: 

.....5,4,3N;t
N

1N*t i
c

i =−=  (63) 

Then i (t) is recomputed under (48) but substituting itc with itc* and with the maximum 
acceleration recomputed to be a value that satisfies the conditions in (42) and (43): 
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And it is substituted with it* computed under (57). N in (63) keeps on increasing and iσ(t) 
being modified until (61) is satisfied.  
By deriving (64) with respect to itc*:
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It is observed that for acceleration maneuvers the derivative is always negative. Thus, 
delaying itc*, i.e. increasing itc* in (73), implies reducing the maximum acceleration needed to 
satisfy the boundary conditions of the segment, although the time consumed in navigating it 
is increased. Hence a long trajectory with low velocity at all points is planned, and the 
velocity constraint is satisfied. Obviously, if the acceleration constraint was satisfied before 
the modification, it is also verified now and does not need to be checked again. 
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Therefore, by replacing (51) in (50), the value of it needed for navigating iSg with the 
selected velocity profile is computed as: 
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iσ(t) is fully defined by replacing (49), (52) and (53) in (48). It satisfies the boundary 
conditions of position and velocity at the initial and end points of iSg and ensures the 
continuity up to its second derivative over both iSg and the entire path domain. But aLim(s) 
and dLim(s) constraints must also be satisfied, hence it is necessary to check that: 

[ ]ss,sss
)s(d)s(V

dt
d

)s(a)s(V
dt
d

i1i

Lim

Lim
i

−⊂∀
≥−

≤  (54) 

When i-1v<iv, an acceleration maneuver is planned for the segment. So if the acceleration 
restriction fails, it occurs because its upper boundary, the first inequality of (54), is violated. 
This problem can be solved by decreasing the final velocity to the maximum permitted by 
the maximum feasible acceleration in the segment. Thus, the velocity at the end of the 
segment is modified to be: 
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where the modified acceleration, iA*, is computed as:  
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And the time that the WMR takes to navigate the i-th segment is recomputed as: 
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Obviously, iv*<iv, since iA*<iA, and it is not necessary to check the velocity constraint at the 
end point of iSg again. 
On the other hand, when i-1v<iv, a deceleration maneuver is planned for the segment. 
Therefore, if the acceleration restriction fails, it occurs because its lower boundary, the 
second inequality of (54), is violated. In this case it is not possible to reduce deceleration by 
increasing the final velocity, since iv was selected as the maximum permitted by VLim. As a 
consequence, it becomes necessary to decrease the initial velocity to the maximum permitted 
by the maximum feasible deceleration:  

( ) ( )ssssAv*v 1ii*i2i1i −− −−=  (58) 

where iA* is computed as:  
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And the new time it takes to navigate the i-th segment is recomputed by: 
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This strategy requires the velocity profile of i-1Sg to also be modified by planning i-1v* as the 
velocity at its final posture, in order to ensure the continuity of V(s). 
The proposed algorithm ensures the velocity constraint will be satisfied at the end points of 
iSg, but not along the entire segment. Thus, it must be checked: 
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If this constraint is violated now, the iterative processes detailed in section 5.3 must be 
performed. When iV(s) was computed by the proposed algorithm, inequality (61) failed in 
very few cases for the tests carried out with the WMR RAM, mentioned in section 7, and 
therefore the iterative strategies were necessary very infrequently. The same results can be 
expected for any WMR that works with spatial paths planned as smooth curves (continuous 
in curvature), because VLim depends on the curvature of the path and its first derivative with 
respect to the path length, and these functions are smooth if the spatial path is smooth.  
The last task to build iσ(t) involves undoing the time shifting, i.e., setting the time at the 
initial point of iSg equal to the time at the final point of i-1Sg. That is: 
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5.3. Velocity profile modification to satisfy velocity constraints in segments. 

5.3.1. Acceleration maneuvers 

When (61) is not satisfied in iSg and i-1v<iv, iV(s) is iteratively slowed down by delaying itc

from the half-way point of iSg to a value itc*, given by: 
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Then i (t) is recomputed under (48) but substituting itc with itc* and with the maximum 
acceleration recomputed to be a value that satisfies the conditions in (42) and (43): 
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And it is substituted with it* computed under (57). N in (63) keeps on increasing and iσ(t) 
being modified until (61) is satisfied.  
By deriving (64) with respect to itc*:
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It is observed that for acceleration maneuvers the derivative is always negative. Thus, 
delaying itc*, i.e. increasing itc* in (73), implies reducing the maximum acceleration needed to 
satisfy the boundary conditions of the segment, although the time consumed in navigating it 
is increased. Hence a long trajectory with low velocity at all points is planned, and the 
velocity constraint is satisfied. Obviously, if the acceleration constraint was satisfied before 
the modification, it is also verified now and does not need to be checked again. 
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5.3.2. Deceleration maneuvers 

When (61) is not satisfied in iSg and i-1v>iv, a similar strategy to the one described in the 
previous section for acceleration maneuvers is applicable, but in this case, in order to plan a 
maneuver of lower deceleration, itc is advanced to a value itc*, which is given by: 
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N
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c
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Then iσ(t) is recomputed by (48), substituting itc with itc*, maximum deceleration recomputed by 
(64) to be a value that satisfies the conditions in (50) and (51), and substituting it with it* computed 
under (57). N in (66) keeps on increasing and iσ(t) being modified until (61) is satisfied. 
It can be observed that the derivative of the modified deceleration, id*=-iA*, given by (65), is 
always positive when i-1v>iv. Therefore, advancing the control point implies reducing the 
maximum deceleration and therefore increasing the time consumed in tracking the trajectory. 
Consequently if the deceleration constraint was satisfied before the modification, it is also 
verified now and does not need to be checked again. This modification leads to planning lower 
velocities at all points of the segment, except for points that are very close to the end point. Only 
when the velocity constraint fails in this region but not at the end point is the proposed method 
unable to find a feasible solution. But such a situation is not expected to occur when the spatial 
path is planned as smooth curves and the segmentation of section 5.1 is applied.   

5.4. Velocity planning algorithm in static environments 
The comprehensive algorithm proposed in this chapter for VP in static environments is 
summarized in the following flowchart: 

1. Compute  [ ]S,0s;)s(VLim ⊂
2. Compute  [ ]S,0s;)s(a Lim ⊂
3. Compute  [ ]S,0s;)s(dLim ⊂
4. Create Ps={0, 1ss, ... pss, S} 
5. VP for iSg. for i=1 to p+1 do
6. Set position boundary conditions, (42) 
7. Set velocity boundary conditions,  (43) 
8. Compute i (t), (48), with it, (52), itc, (49), 

and iA, (53) 
9. if acceleration constraint, (54), fails then
10. if vv ii <−1 then
11. Modified i (t) with iv*, (55), iA*, (56), and 

it*,  (57) 
12. end if
13. if i-1v>iv then 
14. Modified i (t) with i-1v*, (58),, iA*,  (59), 

and it*, (60) 
15. Recompute i-1V(s) for i-1Sg with new iv* , 

(58)
16. end if
17. end if
18. if velocity constraint, (61), fails then
19. if i-1v<iv then
20. N=1 

21. repeat
22. N=N+2. 
23. Advance itc, (63) 
24. Compute iA*, (64) and it*, (57) 
25. Compute i (t), (48), with values in 
Error! Reference source not found.
26. until satisfy velocity constraint, (61) 
27. end if
28. if i-1v>iv then
29. N=1 
30. repeat
31. N=N+2 
32. Delay itc,  (66) 
33. Compute iA*, (64), and it*, (57) 
34. Compute i (t), (48), with values in  
(Error! Reference source not found.)
35. until satisfy velocity constraint (61) 
36. end if
37. end if
38. Shift the origin of the time, (62) 
39. Compute iV(s), (41) 
40. end for
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6. Velocity Planning in Dynamic Environments 
Crossing points of moving obstacles with the WMR’s path can be represented by a set R=[1R
2R … lR] of rectangular forbidden regions in the s×t plane (Liu & Wu, 2001).  Each region kR
is defined by a segment of the space with end points [ksini, ksfin]  and an interval of time 
limited by [ktini, ktfin], as shown in Fig. 3. 
The function iσ(t), computed previously, is not a valid solution of the VP problem if it 
intersects a forbidden region. 

Fig. 3. Velocity planning in dynamic environments. 

The problem can be solved by planning a slower trajectory that allows the moving obstacle to 
cross the robot’s path before it arrives at the crossing region. The opposite solution, to plan a 
faster trajectory so that the robot passes through the dangerous space before the obstacle arrives, 
it is not possible, since iσ(t) was built to achieve the highest feasible velocity profile.  
A secondary aim of the modification strategy, as stated in section 2, is to achieve a low 
computational cost. This is accomplished by both modifying only the segments adjacent to 
where the obstacle is found and by avoiding iterative strategies. 
If iσ(t) intersects the forbidden region kR, the trajectory is slowed down by dividing iSg into 
two subsegments: SgSgSg 2i1ii ∪= . The first one, i1Sg, plans a velocity profile,  , that makes 
the WMR avoid the obstacle. The second segment, i2Sg, plans a velocity profile, )t(V̂2i ,
that makes the WMR arrive at the final position imposed by the second position boundary 
condition of  (42) with the velocity imposed by the second velocity boundary condition of 
(43).

6.1. Planning the velocity profile to avoid moving obstacles 

The first piece of the modified sxt function, )t(ˆ1i σ , is planned to make the WMR avoid kR
by compelling it to pass through its first point at its last time, i.e.: 

( ) ini
k

fin
k1i stˆ =σ   (67) 

The total time for the subsegment i1Sg, t̂1i , is set equal to it, the time planned for iSg in static 

environments, and its point of maximum acceleration, c
1i t̂ , to the same time as for static 

environments, itc. This goal can be achieved by selecting the maximum acceleration in i1Sg so 

that )t(ˆ1i σ  is similar to iσ(t) computed by (48) but substituting iA with a lower 
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5.3.2. Deceleration maneuvers 

When (61) is not satisfied in iSg and i-1v>iv, a similar strategy to the one described in the 
previous section for acceleration maneuvers is applicable, but in this case, in order to plan a 
maneuver of lower deceleration, itc is advanced to a value itc*, which is given by: 
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Then iσ(t) is recomputed by (48), substituting itc with itc*, maximum deceleration recomputed by 
(64) to be a value that satisfies the conditions in (50) and (51), and substituting it with it* computed 
under (57). N in (66) keeps on increasing and iσ(t) being modified until (61) is satisfied. 
It can be observed that the derivative of the modified deceleration, id*=-iA*, given by (65), is 
always positive when i-1v>iv. Therefore, advancing the control point implies reducing the 
maximum deceleration and therefore increasing the time consumed in tracking the trajectory. 
Consequently if the deceleration constraint was satisfied before the modification, it is also 
verified now and does not need to be checked again. This modification leads to planning lower 
velocities at all points of the segment, except for points that are very close to the end point. Only 
when the velocity constraint fails in this region but not at the end point is the proposed method 
unable to find a feasible solution. But such a situation is not expected to occur when the spatial 
path is planned as smooth curves and the segmentation of section 5.1 is applied.   

5.4. Velocity planning algorithm in static environments 
The comprehensive algorithm proposed in this chapter for VP in static environments is 
summarized in the following flowchart: 

1. Compute  [ ]S,0s;)s(VLim ⊂
2. Compute  [ ]S,0s;)s(a Lim ⊂
3. Compute  [ ]S,0s;)s(dLim ⊂
4. Create Ps={0, 1ss, ... pss, S} 
5. VP for iSg. for i=1 to p+1 do
6. Set position boundary conditions, (42) 
7. Set velocity boundary conditions,  (43) 
8. Compute i (t), (48), with it, (52), itc, (49), 

and iA, (53) 
9. if acceleration constraint, (54), fails then
10. if vv ii <−1 then
11. Modified i (t) with iv*, (55), iA*, (56), and 

it*,  (57) 
12. end if
13. if i-1v>iv then 
14. Modified i (t) with i-1v*, (58),, iA*,  (59), 

and it*, (60) 
15. Recompute i-1V(s) for i-1Sg with new iv* , 

(58)
16. end if
17. end if
18. if velocity constraint, (61), fails then
19. if i-1v<iv then
20. N=1 

21. repeat
22. N=N+2. 
23. Advance itc, (63) 
24. Compute iA*, (64) and it*, (57) 
25. Compute i (t), (48), with values in 
Error! Reference source not found.
26. until satisfy velocity constraint, (61) 
27. end if
28. if i-1v>iv then
29. N=1 
30. repeat
31. N=N+2 
32. Delay itc,  (66) 
33. Compute iA*, (64), and it*, (57) 
34. Compute i (t), (48), with values in  
(Error! Reference source not found.)
35. until satisfy velocity constraint (61) 
36. end if
37. end if
38. Shift the origin of the time, (62) 
39. Compute iV(s), (41) 
40. end for
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6. Velocity Planning in Dynamic Environments 
Crossing points of moving obstacles with the WMR’s path can be represented by a set R=[1R
2R … lR] of rectangular forbidden regions in the s×t plane (Liu & Wu, 2001).  Each region kR
is defined by a segment of the space with end points [ksini, ksfin]  and an interval of time 
limited by [ktini, ktfin], as shown in Fig. 3. 
The function iσ(t), computed previously, is not a valid solution of the VP problem if it 
intersects a forbidden region. 

Fig. 3. Velocity planning in dynamic environments. 

The problem can be solved by planning a slower trajectory that allows the moving obstacle to 
cross the robot’s path before it arrives at the crossing region. The opposite solution, to plan a 
faster trajectory so that the robot passes through the dangerous space before the obstacle arrives, 
it is not possible, since iσ(t) was built to achieve the highest feasible velocity profile.  
A secondary aim of the modification strategy, as stated in section 2, is to achieve a low 
computational cost. This is accomplished by both modifying only the segments adjacent to 
where the obstacle is found and by avoiding iterative strategies. 
If iσ(t) intersects the forbidden region kR, the trajectory is slowed down by dividing iSg into 
two subsegments: SgSgSg 2i1ii ∪= . The first one, i1Sg, plans a velocity profile,  , that makes 
the WMR avoid the obstacle. The second segment, i2Sg, plans a velocity profile, )t(V̂2i ,
that makes the WMR arrive at the final position imposed by the second position boundary 
condition of  (42) with the velocity imposed by the second velocity boundary condition of 
(43).

6.1. Planning the velocity profile to avoid moving obstacles 

The first piece of the modified sxt function, )t(ˆ1i σ , is planned to make the WMR avoid kR
by compelling it to pass through its first point at its last time, i.e.: 

( ) ini
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k1i stˆ =σ   (67) 

The total time for the subsegment i1Sg, t̂1i , is set equal to it, the time planned for iSg in static 

environments, and its point of maximum acceleration, c
1i t̂ , to the same time as for static 

environments, itc. This goal can be achieved by selecting the maximum acceleration in i1Sg so 

that )t(ˆ1i σ  is similar to iσ(t) computed by (48) but substituting iA with a lower 
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acceleration, Â1i , calculated to satisfy (67). This value is given by: 
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The WMR’s position at the end of i1Sg, ŝi , is a lower value than is, since a lower 
acceleration is used during the same time. Therefore the WMR does not arrive at the final 
position condition, iss, given by the second equation of (42), but rather at: 

( )
c
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31i1i
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6
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Likewise, the velocity of the WMR at the final posture of i1Sg, )t(v̂1i,i  is also a lower value 
than iv, so it does not satisfy the final velocity condition of (43), but is rather: 
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c
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21i1i
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Since )t(ˆ1i σ is computed from iσ(t) by applying a lower acceleration for the same time and 
the velocity and acceleration constraints were successfully checked for iσ(t), the two upper 

limits are also satisfied by )t(ˆ1i σ . But two lower limits can be violated and they must be 
checked: the positive magnitude of the velocity and the deceleration constraint: 

[ ]t̂,0t0)t('ˆ 1i1i ⊂∀≥σ   (71) 
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If it )t(ˆ1i σ  fails to meet one of these constraints, the processes detailed in subsections 6.1.1 
or 6.1.2 must be carried out, respectively. 

The last task to build )t(ˆ1i σ  involves setting the time at the initial point of the segment equal 
to the time at the final point of the previous segment: 

( ) ( )tˆttˆ 1i1i1i σ=+σ −   (73) 

Finally, the velocity profile  ( )sV̂1i  is computed by applying (41). 

6.1.1. Modification of the velocity profile to keep velocity positive  

When the lower boundary of velocity, (71), is violated, the initial velocity and the maximum 
deceleration of i1Sg are modified in order to plan for the WMR to arrive at the end posture at 
zero velocity, i.e.: 

( ) 0*v̂t̂'ˆ 1i,ii1i ==σ   (74) 
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By making )t(ˆ1i σ  fulfill (74) while still satisfying (67) to avoid kR, the initial velocity and 

maximum acceleration of  i1Sg are modified to be  )t(*v̂1i,1i− and *Â1i :
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Obviously, in this case the previous segment, i-1Sg, must be recomputed following the 
method stated in section 5 with a new velocity boundary condition, given by: 
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6.1.2 Modification of the velocity profile to satisfy the deceleration constraint 

When the lower boundary of acceleration, (72), is violated, the maximum deceleration is 

decreased by setting it to its maximum feasible value. Thus,  Â1i  is replaced by: 
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Additionally, the initial velocity of the subsegment must be sufficiently reduced to keep on 
satisfying (76) when the maximum deceleration is  *Â1i , yielding: 
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Thus, )t(ˆ1i σ  is recomputed from iσ(t) by replacing iA with *Â1i and i-1v with *v̂i,1i− . The 
position and velocity of the WMR at the end of i1Sg must be also recomputed by using (78) 
and (79) respectively, with the new values for  *Â1i and *v̂1i,1i− .
Finally, it is necessary to recompute the previous segment, i-1Sg, making its final velocity 
equal to  *v̂1i,1i− to avoid discontinuities between adjacent segments. 

6.2. Planning the velocity profile to arrive at the final position 

A second function )t(ˆ2i σ  is planned to be attached to  in order to make the WMR arrive at 
iss. The following position boundary conditions must be satisfied by  )t(ˆ2i σ :
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acceleration, Â1i , calculated to satisfy (67). This value is given by: 
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The WMR’s position at the end of i1Sg, ŝi , is a lower value than is, since a lower 
acceleration is used during the same time. Therefore the WMR does not arrive at the final 
position condition, iss, given by the second equation of (42), but rather at: 
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Likewise, the velocity of the WMR at the final posture of i1Sg, )t(v̂1i,i  is also a lower value 
than iv, so it does not satisfy the final velocity condition of (43), but is rather: 
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Since )t(ˆ1i σ is computed from iσ(t) by applying a lower acceleration for the same time and 
the velocity and acceleration constraints were successfully checked for iσ(t), the two upper 

limits are also satisfied by )t(ˆ1i σ . But two lower limits can be violated and they must be 
checked: the positive magnitude of the velocity and the deceleration constraint: 
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If it )t(ˆ1i σ  fails to meet one of these constraints, the processes detailed in subsections 6.1.1 
or 6.1.2 must be carried out, respectively. 

The last task to build )t(ˆ1i σ  involves setting the time at the initial point of the segment equal 
to the time at the final point of the previous segment: 

( ) ( )tˆttˆ 1i1i1i σ=+σ −   (73) 

Finally, the velocity profile  ( )sV̂1i  is computed by applying (41). 

6.1.1. Modification of the velocity profile to keep velocity positive  

When the lower boundary of velocity, (71), is violated, the initial velocity and the maximum 
deceleration of i1Sg are modified in order to plan for the WMR to arrive at the end posture at 
zero velocity, i.e.: 

( ) 0*v̂t̂'ˆ 1i,ii1i ==σ   (74) 
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By making )t(ˆ1i σ  fulfill (74) while still satisfying (67) to avoid kR, the initial velocity and 

maximum acceleration of  i1Sg are modified to be  )t(*v̂1i,1i− and *Â1i :
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Obviously, in this case the previous segment, i-1Sg, must be recomputed following the 
method stated in section 5 with a new velocity boundary condition, given by: 
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6.1.2 Modification of the velocity profile to satisfy the deceleration constraint 

When the lower boundary of acceleration, (72), is violated, the maximum deceleration is 

decreased by setting it to its maximum feasible value. Thus,  Â1i  is replaced by: 
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Additionally, the initial velocity of the subsegment must be sufficiently reduced to keep on 
satisfying (76) when the maximum deceleration is  *Â1i , yielding: 
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Thus, )t(ˆ1i σ  is recomputed from iσ(t) by replacing iA with *Â1i and i-1v with *v̂i,1i− . The 
position and velocity of the WMR at the end of i1Sg must be also recomputed by using (78) 
and (79) respectively, with the new values for  *Â1i and *v̂1i,1i− .
Finally, it is necessary to recompute the previous segment, i-1Sg, making its final velocity 
equal to  *v̂1i,1i− to avoid discontinuities between adjacent segments. 

6.2. Planning the velocity profile to arrive at the final position 

A second function )t(ˆ2i σ  is planned to be attached to  in order to make the WMR arrive at 
iss. The following position boundary conditions must be satisfied by  )t(ˆ2i σ :
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Additionally,  )t(ˆ2i σ must ensure continuity between i1Sg and i2Sg. Therefore: 
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)t(ˆ2i σ is generated by the procedure presented in section 5, but with the boundary 
conditions given by (88) and (89). 

6.3. Velocity planning algorithm in dynamic environments 

The comprehensive algorithm for VP in dynamic environments is summarized as follows: 

1. Compute  , (56)  with  , (77) 
2. if lower boundary of velocity,(80) 

,fails then
3. Compute  ,  (84) 
4. Compute  , (84) 
5. Compute  ,(56) ,with values of 3,  4 
6. Replan i-1V(s) of i-1Sg with velocity 

boundary conditions of (85) 
7. end if
8. if boundary of deceleration, (81)fails 

then
9. Compute  ,  (86) 

10. Compute  , (87) 
11. Compute  ,(56),with values 9, 10 
12. Replan i-1V(s) of i-1Sg with velocity 

boundary conditions of  (85) 
13. end if
14. Shift the origin of time, (82) 
15. Compute iV(s), (49) 
16. Compute  , (78) 
17. Compute  , (79) 
18. Vp for i2Sg: 
19. Algorithm for static environments with 

position boundary condition of (88) and 
velocity boundary conditions of (89). 

7. Experimental and simulation results  

The velocity planner described in previous sections is applied to the robot RAM (Ollero et 
al., 1993), a WMR designed for navigation with high maneuverability in indoor and outdoor 
industrial environments. The maximum velocity its traction motors can reach is 1.7m/s and 
their maximum acceleration is 10.8m/s2 
The spatial paths of the robot are generated as cubic spirals, since this is curve that shows 
the best mechanical characteristics to be tracked by a WMR (Prado, 2000): continuity of 
position, orientation and curvature; bounded curvature; arbitrary selection of position and 
orientation at the initial and final postures; best dynamic behavior of the WMR, specifically 
lowest tracking errors, when it navigates with open loop control.  
Fig. 4 plots the planned trajectory and the trajectory actually tracked by RAM in a static 
environment. The time consumed for the trajectory which was planned using the proposed 
algorithm is 62.2s, 24.7% longer than the time that would be consumed if RAM navigated 
the entire path at its maximum velocity. Results show very low tracking errors: spatial 
errors are lower than 0.1m for a path of 84.4m, and temporal errors are lower than 1s for a 
trajectory of 62.2s.  
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Fig. 4. Planned and tracked trajectory with maximum velocity 1.7m/s.

Fig.  5. Planned and tracked trajectory with maximum velocity 17m/s.
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velocity was set to its upper boundary function, disregarding the acceleration constraint and 
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reach the velocity boundary function. Low errors are found again: spatial errors are always 
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7. Experimental and simulation results  

The velocity planner described in previous sections is applied to the robot RAM (Ollero et 
al., 1993), a WMR designed for navigation with high maneuverability in indoor and outdoor 
industrial environments. The maximum velocity its traction motors can reach is 1.7m/s and 
their maximum acceleration is 10.8m/s2 
The spatial paths of the robot are generated as cubic spirals, since this is curve that shows 
the best mechanical characteristics to be tracked by a WMR (Prado, 2000): continuity of 
position, orientation and curvature; bounded curvature; arbitrary selection of position and 
orientation at the initial and final postures; best dynamic behavior of the WMR, specifically 
lowest tracking errors, when it navigates with open loop control.  
Fig. 4 plots the planned trajectory and the trajectory actually tracked by RAM in a static 
environment. The time consumed for the trajectory which was planned using the proposed 
algorithm is 62.2s, 24.7% longer than the time that would be consumed if RAM navigated 
the entire path at its maximum velocity. Results show very low tracking errors: spatial 
errors are lower than 0.1m for a path of 84.4m, and temporal errors are lower than 1s for a 
trajectory of 62.2s.  
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lower than 0.80m and temporal errors are lower than 2s for a trajectory of 14.2 s. 
The velocity and acceleration profiles of the trajectory of Fig. 5, along with their boundary 
functions are plotted in Fig. 6. It can be observed that both velocity and acceleration remain 
within the safety limits while still ensuring their continuity. 
Similar results were found for other simulated trajectories with paths generated as cubic 
splines, but also as clothoids or polar splines (Prado et al. 2003). Particularly regarding 
velocity constraints, not one path of RAM planned as curves with continuous curvature was 
found for which the iteration strategies of section 5.3 were needed.  Similar results can be 
expected for any WMR if its spatial path is planned as smooth curves. 

Fig.  6. a) Velocity profile of the trajectory of Fig. 5; b) acceleration profile of the trajectory of 
Fig. 5 

Fig. 7. a) Planned path; b)Planned velocity profile; c) Planned acceleration profile
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When a moving obstacle intersects the WMR’s path, its velocity profile is slowed down, as 
explained in section 6. Fig. 7 shows the effect of including a forbidden region that intersects 
the 5th segment of the fast trajectory of Fig. 5.  The maneuver involves an increase of 4.6s in 
navigation time. It can be observed that the obstacle is successfully avoided by only 
modifying the trajectory at the segment that intersects with the forbidden region. The 
modified trajectory is also continuous in velocity and acceleration and both functions 
remain within their respective bounded regions.  

8. Conclusion 

A method to compute velocity, acceleration and deceleration upper boundary functions for 
WMRs is described in this chapter. These functions confine the operating variables into 
safety regions in order to generate trajectories that are feasible, safe and with low tracking 
errors.  The method first deals with issues related to the performances of steering, tractive 
and braking subsystems of wheeled robots, as well as mechanical properties of wheel-
ground contact. Next, the motion capabilities of the robot's guide point are calculated as 
functions of the previous results, attending to the kinematics and dynamics of the complete 
robot system. Operational constraints caused by the need for fitting and synchronising the 
robot's motion with its environment are also defined. 

The upper limits for velocity based on robot dynamics are fixed not only to avoid total 
vehicle slippage, as was previously done by other authors, but also to bound the spatial and 
temporal errors of a trajectory in which the space path generator and the trajectory tracker 
work under the kinematic problem solution. The definition of these boundary functions 
depends on either simulation outcomes of a sufficiently accurate dynamic model of the 
WMR, as complex as needed since it works offline, or on an appropriate number of 
experimental tests. 

Topics involving navigation over 3D terrains and vehicles with very high velocities, such as 
the presence of ground irregularities, transients for non-stationary manoeuvres, 
aerodynamic effects, gyroscope torques, etc., are not dealt with in this chapter, though they 
should be taken into account for robots used in tasks such as outdoor exploration or vehicles 
developed to run on roads without a driver. 

The resulting bounds are included in an algorithm to plan time optimal velocity profiles for 
a WMR on specific paths. Dealing with PP and VP simultaneously may make it possible to 
plan faster trajectories in some situations, but such methodologies involve more complex 
algorithms where it is very difficult to include a significant number of velocity and 
acceleration constraints that include nonintegrable functions.  

The velocity planner proposed in this chapter is able to generate a trajectory with favorable 
tracking conditions, since:  
-It confines the velocity and its first derivative into safety zones limited by functions that can 
consider any velocity, acceleration and deceleration constraint which can be expressed as a 



378 Mobile Robots, Perception & Navigation

lower than 0.80m and temporal errors are lower than 2s for a trajectory of 14.2 s. 
The velocity and acceleration profiles of the trajectory of Fig. 5, along with their boundary 
functions are plotted in Fig. 6. It can be observed that both velocity and acceleration remain 
within the safety limits while still ensuring their continuity. 
Similar results were found for other simulated trajectories with paths generated as cubic 
splines, but also as clothoids or polar splines (Prado et al. 2003). Particularly regarding 
velocity constraints, not one path of RAM planned as curves with continuous curvature was 
found for which the iteration strategies of section 5.3 were needed.  Similar results can be 
expected for any WMR if its spatial path is planned as smooth curves. 

Fig.  6. a) Velocity profile of the trajectory of Fig. 5; b) acceleration profile of the trajectory of 
Fig. 5 

Fig. 7. a) Planned path; b)Planned velocity profile; c) Planned acceleration profile
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When a moving obstacle intersects the WMR’s path, its velocity profile is slowed down, as 
explained in section 6. Fig. 7 shows the effect of including a forbidden region that intersects 
the 5th segment of the fast trajectory of Fig. 5.  The maneuver involves an increase of 4.6s in 
navigation time. It can be observed that the obstacle is successfully avoided by only 
modifying the trajectory at the segment that intersects with the forbidden region. The 
modified trajectory is also continuous in velocity and acceleration and both functions 
remain within their respective bounded regions.  

8. Conclusion 

A method to compute velocity, acceleration and deceleration upper boundary functions for 
WMRs is described in this chapter. These functions confine the operating variables into 
safety regions in order to generate trajectories that are feasible, safe and with low tracking 
errors.  The method first deals with issues related to the performances of steering, tractive 
and braking subsystems of wheeled robots, as well as mechanical properties of wheel-
ground contact. Next, the motion capabilities of the robot's guide point are calculated as 
functions of the previous results, attending to the kinematics and dynamics of the complete 
robot system. Operational constraints caused by the need for fitting and synchronising the 
robot's motion with its environment are also defined. 

The upper limits for velocity based on robot dynamics are fixed not only to avoid total 
vehicle slippage, as was previously done by other authors, but also to bound the spatial and 
temporal errors of a trajectory in which the space path generator and the trajectory tracker 
work under the kinematic problem solution. The definition of these boundary functions 
depends on either simulation outcomes of a sufficiently accurate dynamic model of the 
WMR, as complex as needed since it works offline, or on an appropriate number of 
experimental tests. 

Topics involving navigation over 3D terrains and vehicles with very high velocities, such as 
the presence of ground irregularities, transients for non-stationary manoeuvres, 
aerodynamic effects, gyroscope torques, etc., are not dealt with in this chapter, though they 
should be taken into account for robots used in tasks such as outdoor exploration or vehicles 
developed to run on roads without a driver. 

The resulting bounds are included in an algorithm to plan time optimal velocity profiles for 
a WMR on specific paths. Dealing with PP and VP simultaneously may make it possible to 
plan faster trajectories in some situations, but such methodologies involve more complex 
algorithms where it is very difficult to include a significant number of velocity and 
acceleration constraints that include nonintegrable functions.  

The velocity planner proposed in this chapter is able to generate a trajectory with favorable 
tracking conditions, since:  
-It confines the velocity and its first derivative into safety zones limited by functions that can 
consider any velocity, acceleration and deceleration constraint which can be expressed as a 
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function of the spatial path. 
- It ensures the continuity of the velocity and acceleration over the entire path.  
- The jerk of the WMR is bounded. 
- It is of low computational cost. Nonetheless, iteration strategies are proposed to 

solve some specific situations, but such situations are not expected to occur when 
the spatial path is planned as smooth curves. 

Initially, the problem is addressed for static environments, and later an algorithm is 
proposed to locally modify the velocity profile when crossing points where moving 
obstacles are detected. It is also an algorithm of low computational cost, thereby providing a 
beneficial characteristic for its possible use in local control systems.  
The method was tested on the WMR RAM with paths planned as cubic spirals. Its successful 
performance was confirmed by experimental results for the feasible velocities of the WMR 
prototype and by simulation results for higher velocities.  
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1. Introduction 
One of distinctive features of the recent intelligent autonomous robot from the conventional 
industrial robot is the mobility, which makes the robot overcome the limited workspace and 
expands it arbitrary. For autonomous navigation in workspace, a mobile robot should be able to 
figure out where it is and what direction it moves towards, which is called the self-localization 
(Singh & Keller, 1991). The self-localization capability is the most basic requirement for mobile 
robots, since it is the basis of the on-line trajectory planning and control. 
The trajectory error of a dead-reckoning navigation, which relies only on the internal sensor 
such as the odometer or the encoder, grows with time and distance. Therefore, an external 
sensor is necessary in order to localize the position of the robot in the workspace and to 
compensate it for the trajectory error. Among the several alternatives, the ultrasonic sensor 
is regarded as the most cost-effective external sensor and it is widely used for general 
purposes (Kuc & Siegel, 1987). The methods of the self-localization using the external 
sensors can be classified into two groups: local methods and global methods. (1) In the local 
method, a mobile robot makes a local object map using the relative distance data from the 
environmental objects and matches the local map with a global map database. As a result, 
the mobile robot figures out its own position in the workspace. (2) In the global method, the 
mobile robot computes its position directly in the global coordinates using the distances 
from some reference positions in the workspace. 
The local method has some advantages in that collision-avoidance motion and map-
reconstruction for the transformed environment are made possible by using the distance 
sensors as well as the self-localization system. However, this requires massive computations 
in terms of the local map-making and the matching processes with the global map database. 
In the extreme case, the robot has to stop moving momentarily in order to obtain the 
necessary environmental information (Leonard & Durrant-Whyte, 1992) (Ko et al., 1996). On 
the other hand, in the global method, the local map-making and the matching processes are 
avoidable and the self-localization is computationally efficient and fast (Leonard & 
Durrante-Whyte, 1991) (Hernandez et al., 2003). 
A global ultrasonic system presented in this chapter is a kind of a pseudo-lite system with a 
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well-known GPS like structure (Haihang et al., 1997). For the self-localization of an indoor 
mobile robot, the global ultrasonic system consists of four or more ultrasonic generators 
fixed at reference positions in global coordinates and two receivers mounted on the mobile 
robot. Based on the distance measurements between the ultrasonic generators and the 
receivers and the appropriate data fusion algorithm for the distance data, it is possible to 
compute the position of the mobile robot in global coordinates. 
When several ultrasonic generators are used under a system, the following problems should 
be taken into consideration; 

(1) Cross talk between ultrasonic signals 
(2) Identification of each ultrasonic signal 
(3) Synchronization between each ultrasonic generator and the receiver to count the 

TOF(Time-Of-Flight) of ultrasonic signal 
In order to solve the above problems, a small-sized RF (Radio Frequency) module is 
added to the ultrasonic sensors and the RF calling signal is transmitted from the 
ultrasonic receiver side, i.e. the mobile robot. By using this configuration, the robot is able 
to control triggering time and sequence of ultrasonic signal generation as well as to 
synchronize the ultrasonic sensors, so that to localize its own position in the global 
coordinates. In this chapter, we propose a global ultrasonic system and adopt the EKF 
(Extended Kalman Filter) algorithm designed for the self-localization.  The performance 
of the autonomous navigation system based on the self-localization is verified through 
extensive experiments. 

2. A global ultrasonic system 
The overall structure of the global ultrasonic system is depicted in Fig. 1. The ultrasonic 
generators are fixed at known positions, , , t

i i ix y z=iT , 1, , 4i = ⋅⋅⋅  in the work space, e.g. at 

each corner of the ceiling. Using the front and the rear ultrasonic sensors situated at fP  and 

rP , the mobile robot receives the ultrasonic signal and computes the distances by counting 

the TOF of the signal. It is conveniently assumed in Fig. 1 that the number of ultrasonic 
generators is four, which can be increased as needed in consideration of the workspace size 
and objects in the immediate environment. In order to avoid cross-talk between the 
ultrasonic signals and to synchronize the ultrasonic receivers with the generators, the RF 
receivers,

1 4~RX RX , and the RF transmitter, TX , are added to the ultrasonic generators 

and the ultrasonic receivers, respectively. By using the RF channel, the mobile robot 
sequentially activates each one of the ultrasonic generators in successive time slots. 
Assuming that the delivery time for the RF calling signal is negligible, the ultrasonic signal 
generation occurs simultaneously with the RF calling signal transmission and it is possible 
to synchronize the ultrasonic generators with the receivers. In Fig. 1, 

,1 ,4~f fh h  denote the 

distance between 41T ~T  and 
fP . The distances, 

,1 ,4~r rh h , between 41T ~T  and 
rP  are 

omitted for brevity. The positions of the ultrasonic receivers on the robot, , ,
t

f f fx y z=fP

and , , t
r r rx y z=rP , with respect to the center position of the mobile robot, , , t

cx y z=P ,

can be described as follows:  
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where l  represents the distance between the center position of the mobile robot and the 
ultrasonic receiver, and θ  denotes the heading angle of the mobile robot. It is assumed that 
the moving surface is flat, so that the z  component of the position vectors is constant as cz
in (1). 

Fig. 1. A global ultrasonic system. 

3. The EKF for the self-localization and the autonomous navigation algorithm 
The position vector in the x y−  plane, , tx y=r , together with the heading angle, θ , of a 

mobile robot having differential wheels, follows the state equation (2) in the discrete-time 
domain (Fox et al., 1997): 
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where the subscript k  is the time index, T , denotes the sampling interval, kυ  and 
kω  are 

the linear and the angular velocities of the robot respectively, and k
k

k

υρ ω=  represents the 

radius of rotation. The position vector and the heading angle of the mobile robot are 
augmented so as to become , , tx y θ=P , which is referred to as the robot posture. The bold 

and normal symbols represent the vector and the scalar variables, respectively. 



384 Mobile Robots, Perception & Navigation

well-known GPS like structure (Haihang et al., 1997). For the self-localization of an indoor 
mobile robot, the global ultrasonic system consists of four or more ultrasonic generators 
fixed at reference positions in global coordinates and two receivers mounted on the mobile 
robot. Based on the distance measurements between the ultrasonic generators and the 
receivers and the appropriate data fusion algorithm for the distance data, it is possible to 
compute the position of the mobile robot in global coordinates. 
When several ultrasonic generators are used under a system, the following problems should 
be taken into consideration; 

(1) Cross talk between ultrasonic signals 
(2) Identification of each ultrasonic signal 
(3) Synchronization between each ultrasonic generator and the receiver to count the 

TOF(Time-Of-Flight) of ultrasonic signal 
In order to solve the above problems, a small-sized RF (Radio Frequency) module is 
added to the ultrasonic sensors and the RF calling signal is transmitted from the 
ultrasonic receiver side, i.e. the mobile robot. By using this configuration, the robot is able 
to control triggering time and sequence of ultrasonic signal generation as well as to 
synchronize the ultrasonic sensors, so that to localize its own position in the global 
coordinates. In this chapter, we propose a global ultrasonic system and adopt the EKF 
(Extended Kalman Filter) algorithm designed for the self-localization.  The performance 
of the autonomous navigation system based on the self-localization is verified through 
extensive experiments. 

2. A global ultrasonic system 
The overall structure of the global ultrasonic system is depicted in Fig. 1. The ultrasonic 
generators are fixed at known positions, , , t

i i ix y z=iT , 1, , 4i = ⋅⋅⋅  in the work space, e.g. at 

each corner of the ceiling. Using the front and the rear ultrasonic sensors situated at fP  and 

rP , the mobile robot receives the ultrasonic signal and computes the distances by counting 

the TOF of the signal. It is conveniently assumed in Fig. 1 that the number of ultrasonic 
generators is four, which can be increased as needed in consideration of the workspace size 
and objects in the immediate environment. In order to avoid cross-talk between the 
ultrasonic signals and to synchronize the ultrasonic receivers with the generators, the RF 
receivers,

1 4~RX RX , and the RF transmitter, TX , are added to the ultrasonic generators 

and the ultrasonic receivers, respectively. By using the RF channel, the mobile robot 
sequentially activates each one of the ultrasonic generators in successive time slots. 
Assuming that the delivery time for the RF calling signal is negligible, the ultrasonic signal 
generation occurs simultaneously with the RF calling signal transmission and it is possible 
to synchronize the ultrasonic generators with the receivers. In Fig. 1, 

,1 ,4~f fh h  denote the 

distance between 41T ~T  and 
fP . The distances, 

,1 ,4~r rh h , between 41T ~T  and 
rP  are 

omitted for brevity. The positions of the ultrasonic receivers on the robot, , ,
t

f f fx y z=fP

and , , t
r r rx y z=rP , with respect to the center position of the mobile robot, , , t

cx y z=P ,

can be described as follows:  

Autonomous Navigation of Indoor Mobile Robot Using Global Ultrasonic System 385

cos
sinf

c

x l
y l

z

θ
θ

+
= +P

cos
sinr

c

x l
y l

z

θ
θ

−
= −P

 (1)

where l  represents the distance between the center position of the mobile robot and the 
ultrasonic receiver, and θ  denotes the heading angle of the mobile robot. It is assumed that 
the moving surface is flat, so that the z  component of the position vectors is constant as cz
in (1). 

Fig. 1. A global ultrasonic system. 

3. The EKF for the self-localization and the autonomous navigation algorithm 
The position vector in the x y−  plane, , tx y=r , together with the heading angle, θ , of a 

mobile robot having differential wheels, follows the state equation (2) in the discrete-time 
domain (Fox et al., 1997): 

( )
( )( )

( )
( )( )

1

1

cos
0

sin

cos sin

sin 1 cos
0

cos sin

sin 1 cos

k k k
k

k k k

k k k kk

k k kk
k

k k k k

k k k

x T
if

y T

x Tx
Ty

if
x T

T

υ θ
ω

υ θ

ρ θ ω

ρ θ ω
ω

ρ θ ω

ρ θ ω

+

+

+
=

+

+
=

− −
≠

+

+ −  (2) 

1k k kTθ θ ω+ = +

where the subscript k  is the time index, T , denotes the sampling interval, kυ  and 
kω  are 

the linear and the angular velocities of the robot respectively, and k
k

k

υρ ω=  represents the 

radius of rotation. The position vector and the heading angle of the mobile robot are 
augmented so as to become , , tx y θ=P , which is referred to as the robot posture. The bold 

and normal symbols represent the vector and the scalar variables, respectively. 



386 Mobile Robots, Perception & Navigation

As a consequence of (1) and (2), the state equation for the ultrasonic receivers on the robot 
can be described as follows: 
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where [ , ] t
f fx y=fr  and [ , ] t

r rx y=rr  represent the positions of the front and rear 

ultrasonic receivers respectively and 
1, 2,[ , ] t

k kq q=kq  is the Gaussian random noise with 

zero mean and Q  variance. The measurement equation at the ultrasonic receivers can be 
modeled as follows: 
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where the measurement noise, kν , is assumed to be Gaussian with zero mean and G

variance, and the subscript, i , denotes one of the ultrasonic generators, 41T ~T , which is 
called by the mobile robot at time k .
From the state Eq. (3-1) and the measurement Eq. (4-1), it is possible to get the following set 
of equations constituting the EKF estimation for the front ultrasonic receiver position: 
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where
,f kK  is the kalman filter gain, ,ˆf k

−r  and ,ˆf kr  represents the a priori and a posteriori

estimations for 
,f kr , respectively, and 
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error covariance matrices, respectively, as defined in (7). 
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where ( )⋅E  denotes the expectation of the corresponding random variables. The Jacobian 
matrices, 

,f kA  and 
,f kH , in (6) are given as follows: 

, ,
,

ˆ( , , )

1 0
0 1

f
f k f k k

f k

∂
= ∂

=

0
f

A r ur  (8) 

,
, ,

,

, ,

, ,

ˆ( , )f i
f k f k

f k

i if k f k

f i f i

h

x x y y
D D

∂
= ∂

− −
=

0H rr  (9) 

where
,f iD  is defined by the following Eq. (10). 
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The EKF estimation, 
,r̂ kr , for the rear ultrasonic receiver position is similar and omitted here 

for the sake of brevity. 
From

,ˆf kr  and 
,r̂ kr , the posture estimation for the mobile robot can be described as follows: 
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Assuming that the estimation error covariances for positions of the front and the rear 
ultrasonic receiver are the same, the error covariances of the posture estimation are given in 
(12) as shown in Fig. 2. 
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where
,f iD  is defined by the following Eq. (10). 
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Assuming that the estimation error covariances for positions of the front and the rear 
ultrasonic receiver are the same, the error covariances of the posture estimation are given in 
(12) as shown in Fig. 2. 
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Eq. (12) implies that the estimation for heading angle becomes more accurate according to 
the distance between the two ultrasonic receivers. Based on the self-localization given in (11), 
a simple control input, kυ  and kω , to drive the mobile robot toward the given goal position, 

[x y=gr

can be written as (13). 

Fig. 2.  Error covariances of the posture estimation.
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where c  and kθ  are positive constants. The mobile robot adjusts its heading angle toward 
the intended position and moves with the constant velocity as depicted in Fig. 3. 

Fig. 3. Navigation control. 
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4. Experiments and Discussions 
In order to verify the performance of the EKF based self-localization and autonomous 
navigation system using the global ultrasonic system, a simple experimental set-up was 
established as shown in Fig. 4, which has dimension of 1,500 mm and 1,500 mm in width and 
length respectively and 2,500 mm in height. The ultrasonic generators installed with the RF 
receivers are fixed near the four corners of the ceiling and their positions are described in 
(14).

Fig. 4. Experimental set-up. 
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At first, a preliminary experiment was carried out for the ultrasonic calibration and the 
result is presented in Fig. 5. 

Fig. 5. Real distance with respect to ultrasonic TOF.  
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The linear equation relating the ultrasonic TOF to the real distance is given in (15), as obtained 
from the least-square method, and the variance of the measurement noise is specified as (16). 

0.34533 57.224D T= ⋅ −  (15) 

1.8G =  (16) 
where ( )D mm  represents the real distance between the ultrasonic generator and the receiver 
and ( sec)T μ  is the ultrasonic TOF.  
Fig. 6 shows the results of the self-localization experiment, in which the robot is moved 
manually from the initial posture, ( ) ( ), , 600, 600, 0x y θ = to the goal posture, 

(900, 900, /2)π  at 45 sec. The initial value of the posture estimation is set arbitrarily as 

( )650, 650, 0 . The distance and the heading angle are described by mm  and .rad ,

respectively. As shown in Fig. 6, the position errors in the x and y  axes are less than 25 mm
in the steady-state. Since the distance between the center position of the robot and the 
ultrasonic receiver is designed as 75l mm= , the estimation error of the heading angle in (12) 
becomes 1tan (25/75) 0.32 .rad− ≈  as shown in Fig. 6 (c). 

(a) Position estimation in x  axis. 

(b) Position estimation in y  axis. 

Autonomous Navigation of Indoor Mobile Robot Using Global Ultrasonic System 391

(c) Estimation for heading θ  angle. 
Fig.  6. The self-localization of the mobile robot. 
The autonomous navigation system using the global ultrasonic system is compared to the 
dead-reckoning navigation system on the straight line connecting the initial posture, 
(650, 650, /4)π , and the goal posture, (900, 900, /4)π , in the workspace.  

(a) Position in x  and y  axis 

(b) Heading angle 
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(c) Trajectory in x y−  plane 
Fig. 7. The dead-reckoning navigation.  

Fig. 7 shows the results in the case of the dead-reckoning navigation, in which the mobile 
robot cannot reach its goal posture, due to the uncertainties in the state equation. In Fig. 7 (c), 
the dotted polygons represent the desired postures of the mobile robot with respect to time. 
The results of the autonomous navigation system based on the self-localization using the 
global ultrasonic system are presented in Fig. 8 for the same initial and goal postures. As 
shown in this figure, the mobile robot reaches the goal posture, overcoming the 
uncertainties in the state equation, and the heading angle at the final position is around 4

π

as desired. It should be noted that the posture data in Figs. 7 and 8 are obtained by using the 
global ultrasonic system also, thus these values may be different from the actual postures to 
some degree. 

(a) Position in x  and y  axis 

Autonomous Navigation of Indoor Mobile Robot Using Global Ultrasonic System 393

(b) Heading angle 

(c) Trajectory in x y−  plane 
Fig. 8. Navigation with global ultrasonic system. 

The size of the ultrasonic region in the work space is dependant on the beam-width of the 
ultrasonic generator. In the case of a general ultrasonic ranging system, in which both the 
signal generator and the receiver are lumped together, an ultrasonic generator with a 
narrow beam-width is preferable in order to avoid the ambiguity and to enhance the 
measurement accuracy. On the other hand, the proposed global ultrasonic system, which 
has a distributed signal generator, requires the use of a wide beam-width generator, in 
order to expand the ultrasonic region in the work space. 

5. Conclusions 
In this chapter, the global ultrasonic system with an EKF algorithm is presented for the self-
localization of an indoor mobile robot. Also, the performance of the autonomous navigation 
based on the self-localization system is thus verified through various experiments. The 
global ultrasonic system consists of four or more ultrasonic generators fixed at known 
positions in the workspace, two receivers mounted on the mobile robot, and RF modules 
added to the ultrasonic sensors. By controlling the ultrasonic signal generation through the 
RF channel, the robot can synchronize and measure the distance between the ultrasonic 
generators and receivers, thereby estimating its own position and heading angle. It is shown 
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through experiments that the estimation errors are less than 25 mm in terms of the position 
and less than 0.32 .rad  in terms of the heading angle. Since the estimation error of the 
heading angle is dependant on the distance between the two ultrasonic receivers on the 
robot, it is possible to obtain a more accurate estimation for the heading angle by increasing 
this distance. 
The global ultrasonic system has the following salient features: (1) simple and efficient state 
estimation since the process of local map-making and matching with the global map 
database is avoidable due to the GPS-like nature of the system, (2) active cuing of the 
ultrasonic generation time and sequence through the RF channel, and (3) robustness against 
signal noise, since the ultrasonic receiver on the mobile robot processes the signal received 
directly from the generator, instead of through an indirect reflected signal. 
In this chapter, it is assumed that an ideal environment exists without any objects in the 
workspace. Environmental objects may result in an area of relative obscurity, which the 
ultrasonic signals cannot reach. It is possible to overcome the problems associated with 
environments containing obstacles by increasing the number of ultrasonic generators in the 
work space as needed. This enhancement is currently being studied. 
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1. Introduction 
This chapter introduces approaches of electronic travel (walking) aid (ETA) interface for 
visual information deficit and gives discussions on the high integrity design concept under 
restrictions of visual- tactile sensational characteristics in substitution process. Here, we start 
from the concept formulation of ETA. The concept of ETA human interface is based on the 
sensory substitution between visual and tactile sensation. If human has lost the visual 
information caused by some sort of environment interference or physical troubles, this ETA 
assist the subjects to obstacle avoidance self-walking with transferring some environment 
information (depth, image, object and so on). 
Since the first prototype ETA model of TVSS (Tactile Vision Substitution System) in early 
1960’s, enormous number of research and commercial instruments are developed with 
visual sensory substitution. Some of these models are still available in markets with 
improvements (e.g. sonic torch/guide, MOWAT sensor and so on.). 
The user with visually impaired using these devices claimed on the difficult understanding 
at complex environment like in crowds and ‘sensory overload’ in use as complexity of 
understanding, inhibition to other sensory function. 

Fig.1. Haptic Travel Aid Image 
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Applying 
sensory 

Transfer
target

Transfer method Display device Transfer 
part

Distance *Sound modulation 
*Voice Guide/Alarm 
*osseous conduction 

Headphone (speaker) Drum
membrane

Auditory 
Sense

Obstacle Voice guide/Alarm Headphone (speaker) Drum 
membrane

Distance *Mechanical Vibration 
*Sound modulation 
*Voice Guide/Alarm 
*Electromagnetic relay 
*PZT actuator 
*micro vibro-Motor 

*Electric cane 
*Vibro Handheld device 
*Tactile/haptic Display 

*forehead,
*back,
*forearm, 
*palm,
*finger, 
*fingertip, 
*tongue

2Dimage *Pin stroke 
*Voltage impression 

*2D Electric-driven Braille 
display 
*2D Electrode Array 

*Fingertip 
*Back 

Letter/
Texture

*Pin stroke 
*Voltage Impression 

*2D Electric-driven Braille 
display 
*2D Electrode Array 

 *Fingertip 
*Back)

Tactile Sense 

3Dfigure *Pin stroke 
*Sequential 2D depth 
contour 
*Touch /grasp object 
*Force Feedback 

*2D Electric-driven Braille 
display 
*Pneumatic pressure 
*transform object 
(deforming object , 
balloon, actuator) 
*Haptic display 

*Fingertip, 
*Palm,
*Tongue)

Baresthesia
(Pressure
sense)

Distance *Hydrostatic / 
pneumatic pressure 

*Water /Air injection 
valve *Palm)

Electric 
sense?

2Dimage *voltage impression *2D Electrode Array *Fingertip 
*Back 
Retina,
Cortex

Thermal
/Chemical
sense

N.A N.A N.A N.A 

Table 1. Visual Sensory Substitution Method (N.A: not available) 

For the user-friendly ETA interface design, we should consider more direct operational 
method and transfer device. From the transfer target classification, ETA type is classified 
into 3 categories as (A) (edge operation processed) environment image, (B) Distance 
Information of surrounding obstacles, and (C) combination of (A) and (B). By comparison 
with ETA, other applications of vision-tactile sensory substitution are listed in character 
display with Braille display, 2-dimensional image display, Pseudo-3D object figure transfer, 
and surrounding state guide. (Shinohara et al., 1995), (Shimojo et al., 1997) From the aspect 
of using sensory classification types, they are listed as following: a) artificial vision with 

Distance Feedback Travel Aid Haptic Display Design 397

surgery operation to implant electrode array on retina, b) transfer camera image to implant 
ed electrode on visual cortex (needs surgery operation), c) make use of auditory sensation 
with sound modulation or beep or voice announce correspond to depth or object, d) use 
tactile sense to display visual image or extracted information with tactile/haptic display 
device. 
Furthermore, from the visual-tactile sense conversion method classification, 
representative ETA method are listed in 1) 2D pin/electrode image display (including 
pre-processed operation, difference, edge, so on) , 2) low frequency vibro-tactile 
stimulation based on depth, and 3) selective part haptic display are representative 
methods. 
As mentioned above, current objective is to realize the (none sensory overload) user-
friendly ETA interface and to give design guide. This chapter takes up the simple scheme 
distance feedback ETA using selective stimulation haptic depth display, which possess 
advantage in fast depth recognition in comparison to existing 2D tactile display type ETA 
and doesn’t need heavy surgery operation and concentrates to discuss the adequate design 
guide for haptic sensational restrictions. 
Following background of ETA section, basic characteristics and restrictions of tactile/haptic 
sensation are discussed, which are important for user-friendly haptic ETA design. Based on 
this consideration, we introduce a concept of selective skin part stimulation distance 
feedback ETA interface system and continue to the discussion of user-friendly and effective 
distance-tactile stimulation conversion and device design from the aspect of avoidance walk 
and environment recognition. 

2. Background and History of ETA 
The background and history of ETA are shown in Table 2. In 1960s, TVSS(Tactile 
Vision substitution System) are studied at Smith-Ketlewell Labs. L.KAY’ s Sonic 
Torch is produced as the first practical ETA device and continues in following famous 
commercial models, MOWAT sensor, Laser Cane, and so on. These ETA devices are 
basically surrounding distance transfer device, which gives distance information 
along pointed direction back to user with converted tone, sound modulation or 
mechanical vibrations. In addition, not only portable device, there exists travel 
guidance system in building as functional welfare facility, which gives voice 
announce about the important location and attribute information to the visually 
impaired by detecting sensor under the floor or street with electric cane. Beyond 
portable ETA concept, Guide Dog Robot, which scans the environment image and 
street line and precedes and guide subjects, has been developed in 1978 (TACHI, 
1978)
For Image transfer, 2D electric driving pin array (electric Braille display, OPTACON) are 
developed and investigated on the static 2D image recognition of character and/or figures. 
Human’s character and image recognition with millimetric order electric pin-array and 
electrode array 2D display recognition characteristics are investigated not only from 
physical aspect but also from the psychological one. The phantom effect and adequate 
display rate and method are summarized (Shimizu 1997). 
For user-friendly ETA device design, Tactile Display Glove and Line Type Haptic Display, 
which project distance to selective skin part, was proposed and shown direct operational 
performance (SUMIYA et al, 2000)(SUMIYA, 2005) 
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pneumatic pressure 

*Water /Air injection 
valve *Palm)

Electric 
sense?

2Dimage *voltage impression *2D Electrode Array *Fingertip 
*Back 
Retina,
Cortex

Thermal
/Chemical
sense

N.A N.A N.A N.A 
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For the user-friendly ETA interface design, we should consider more direct operational 
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into 3 categories as (A) (edge operation processed) environment image, (B) Distance 
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For user-friendly ETA device design, Tactile Display Glove and Line Type Haptic Display, 
which project distance to selective skin part, was proposed and shown direct operational 
performance (SUMIYA et al, 2000)(SUMIYA, 2005) 
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Year Device Name Transfer 
Target

Transfer Method Implementer/Planner 

1960s TVSS (Tactile 
Vision
Substitution
System) /The 
voice

Gray level 
camera 
Image 

400 millimeter 
Solenoid activator 
array/
Soundscape 

Smith-Kettlewell 
Institute (USA) 
Carter Collins 
Peter Meijer 

(1965) SonicTorch, distance Tonal pattern Leslie KAY(UK) 
 GuideCane   Johann Borenstein 

(USA)
1978 SonicGuide 

(KASPA)
distance Tone Leslie KAY(UK) 

1978 Guide Dog Robot 
(MELDOG MARK 
I)

Camera
Image,
distance

Voice Annouce 
(precede subject) 

Susumu TACHI, 
Kazuo TANIE,Yuji 
HOSODA, Minoru 
ABE (JPN) 

1973 MOWAT Sensor  Vibration, Tone MOWAT G,C, (USA) 
1980s Trisensor   Leslie KAY(UK) 
 Radar on a chip   Lawrence Livermore 

Labs(USA) 
 LaserCane 

(Polaron,
Wheelchair
Pathfinder)

 Vibration, 
sound( +audible 
warning signal) 

Nurion-Raycal (USA) 

 Lindsey Russell 
Pathsounder 

Obstacle
detection 

Audible Signal 
/silent vibration 

Lindsey Russell (USA) 

 Sensory 6  Tone pitch Brytech Corporation 
 (Proto-type) Camera 

image 
2D Electrode array 
(20*20 condensor 
discharge 
electrode,150Hz) 

National Institute of 
Bioscience and 
Human- Technology 
(JAPAN)

 Miniguide   Greg Phillips 
(Australia)

(1984) Sonic Pathfinder 
(Nottingham
Obstacle Detector) 

 stereophonic Tony Heye (UK) 

1996  Cortical 
implant 

 Schmidt et al 
(GERMANY)

 (Dobelle Artificial 
Vision System) 

  (Dobelle 
Institute(USA)) 

1997 Artificial Retina Implant 
on Retina 

 Ito, N. et al (JPN) 

Table 2. ETA(Electronic Travel Aid) Development History 

Artificial vision with implanting surgical operation technique have started in 1990s, the 1st 
type of artificial vision is implanting electrode on retina and connect with neuron to cortex 
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(Ito et al, 1997)(Rizzo et al, 2001). The 2nd type is 2D edge operation processed image 
information is applied to 2D electrode array implanted on the visual cortex. They are still in 
clinical testing, but reports the recovery of some part of visual function so that they can 
follow child and grasp objects. 
As represented by the work of Weber E. H., Fechner G.T., Von Frey, Weinstein S., Schmidt 
R., and Verrillo, R. t. et al, enormous number of Tactile Sense analysis and brain projection 
are investigated. (WEBER 1978) These investigated result are closely linked to user-friendly 
ETA design and quoted in next section. 

3. Problems of the Visual-Tactile Sensory Sybstitution 
This section gives significant characteristics and restrictions on tactile sense. 

3.1 Static Characteristics of Tactile Sense Recognition 
Static Tactile Recognition Characteristics are investigated and derived numerical values by 
the achievements of our predecessors as follows. 
(1) 2 Points Discrimination Threshold 
 E.H.WEBER has measured the 2 point discrimination threshold. Including this result, he 
summarized and published his famous book, ‘The sense of Touch’. 

Part Threshold(mm) Part Threshold 
Forehead 22.5 Dorsal hand 31.5 
Apex of tongue 1.0 Fingertip 2.3 
Lip 4.5 Dorsum of finger 7.0 
Front of forearm 40.5 Anterior tibial(shin) 67.5 

Table 3. (Statical Pressure) 2 Points Discrimination Threshold on Human Skin(Average). 

(2) WEBER-FECHNER Law 
In ‘The sense of Touch’, he wrote the concept of WEBER-FECHNER Law. The rate of 
sensitivity resolution vs. applied range takes constant value. If E is sensing event, S is 
caused sense.(sensitivity) 

tconsEE tan/ =Δ  (1) 

If the variation of output sense takes constant for the variation of given event. 

EES /Δ=Δ  (2) 

Solve this difference equation as differential equation, then sensitivity is expressed as next 
equation.

BEAS +− 10log  (3) 

(Here, B is an offset value.) 

(2) Baresthesia (Static Pressure Sensing Limit) 
 Frey, V., M. has measured the human’s static pressure sensing limit on skin part.(Frey. 
1896)
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Sensing Part Sensing Limit 
(g/mm2) Sensing Part Sensing

Limit(g/mm2)
Apex of tongue 2 Abdominal Area 26 
Dorsum of antebrachium 
(backside of forearm) 33 Lumber Division 

(pars lumbalis) 48

Front of forearm 8 Dorsal hand 12 
Fingertip 3 Sura (calf) 16 
Dorsum of finger 5 Planta pedis (sole)  

Table 4. Static Pressure Sensing Limit on Human’s Skin Surface 

(3) Spatial Positioning Error 
Spatial Positioning Error is the error between the actual stimulating point on skin surface 
and the subject’s recognized point. (Weinstein, 1968) (Schmidt et al., 1989) (Schmidt, 2001) 

Part Error(mm) Part Error(mm) 
Forearm 9 Forehead 4 
Upperarm 11 Abdomen 9 
Shoulder 9~10 Distal thigh 11 
Fingertip 2 Calf 11 
forehead 4 Sole 7~8 
Finger 2 Toe 2 

Table 5. Spatial Positioning Error 

(4)  Sensory Representation in The Cerebral Cortex 
For further work on brain function connected to tactile sense, the tactile sense projection 
map on the cerebral cortex studied by Penfield W. and Rasmussen T are the milestone in 
this research field and the projected area and relative position gives many hint on next issue. 
Even Penfield’s Homunculus image still gives strong impact for every viewer. (Penfield & 
Boldrey, , 1937)(Rasmussen et al., 1947) 

3.2 Dynamic Characteristics of Tactile Sense Recognition 
(1) Dynamic Range/Sensitivity 
Tactile sense frequency sensitivity and discrimination performance shows the different 
characteristics from stimulating contactor dimensional size. Bolanoski et al(Bolanoski et al., 
1988) and Verrillo(Verrilo 1968,1969) investigated tactile sensitivity for vibro-stimuli with 
diameter rod with 2.9cm2 and 0.005cm2 correspondingly. The frequency discrimination 
result shows U-curve and highest sensitivity at 250Hz. Lav. Levänen and Hamforf studied 
the frequency discrimination value for the deaf subjects and the hearing subjects, and 
showed the smallest frequency difference at palm and finger are 21 3Hz and 28 4 in 160-
250Hz (1s duration, 600 stimuli), correspondingly.
Sumiya et al reported the tactile vibro-stimuli recognition rate follows the WEBER-
FECHNER Law in recognition for quick random frequency presentation, as seen for ETA 
sensing and the resolution is at most 20% of total area at a point on forearm. This means the 
resolution in high speed sensing at most 5 partition of the searching range. For the case of 
linear partition at 10m searching area and projected to frequency, the resolution segment is 
at most 2m or smooth recognition (Sumiya et al., 2000). That is also considerable to 
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introduce log partition in the aspect of WEBER-FECHNER Law, but in late section, Linear 
partition shows higher performance for ETA (blindfolded walk) with the reason of easy 
association of environment map. 
 Kyung has studied perceptual tactile frequency discrimination characteristics on finger 
with 0.7mm diameter small contactor, as popular size for Braille display. The subject’s 
sensitivity shows almost 100% recognition rate at the frequency bands of 1-3Hz and 18-
32Hz. As frequency increases up to 500Hz around, the frequency discrimination 
performance decreases gradually to 85% on abdominal finger. On palm, the discrimination 
characteristic shows flat curve through 1 to 560Hz at the value of 85 5Hz.(Kyung et al., 
2005)
(2) Learning Effect 
Learning effect of frequency discrimination at 20hz around is reported by Imai. (Imai et al., 
2003). Learning Effect after daily training shows rapid gains within 2 weeks, and later 
within 4 weeks the improvement of learning effect shows still raise in a measure , but shows 
conversion. 
Learning effect for distance recognition with distance-selective skin part stimulation ETA 
device has tested for the several distance partition methods. The result shows the linear 
partition shows best learning effect for blindfolded walk time performance. (Sumiya 2005) 
(3) Fatigue effect/ Saturation from repetitive stimulation 
Fatigue effect and Saturation of tactile sense has not tested precisely. For steady use as ETA 
device, this should be investigated. 

4. Specific Requirement for Travel Aid Interface 
Compared with other tactile/haptic image recognition device, ETA should satisfy the next 
factor.
(1) Fast response
Slow response brings interruption to user in operation and understanding. For human’s 
reaction, response time should satisfy 15Hz or higher for mobility. 
(2) Accordance between operational direction and spatial direction
Easy-to-use needs this coincidence to help user’s intuitive operation for environmental 
grasping. Left-Right direction, close-far direction , rotation direction should match to 
operator-centered intuition. This also help fast and high adaptability. In addition, this is also 
important for learning effect when the first handling is not easy. 
(3) Transfer environmetal attribute information 
ETA user request the detected object’s attribute information. For example, the detected 
object is whether person or still object. Color, Material, Moving Direction, Hardness, … and 
functional meaning. In introducing next research, using the stereo image and Nueral net 
scheme, several pattern has specified and send to user (human, stairs, rectangular form 
obstacle) to the assigned stimulating point. The combination of 2D tactile display and 
selective part stimulating haptic ETA device would cover this problem. Even single 2D 
tactile display, Shimojo et al proposed the unique approach for 3D information transfer with 
time sequence depth contour display.(shimojo et al. 1999) . 
(4) reconstruction of environmental state (spatial relative position, forgetting factor) 
It is important that the user ‘s mental image is close to real environment. Author has tried to 
questionnaire sheet to draw the obstacle position and ETA user ‘s image map after 
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blindfolded walk with ETA. Without knowing global image around subjective, normally it 
is hard to grasp the global location of subject with simple one directional distance sensing. 
Gibson has proposed ‘The theory of Affordance’ that subjects will sense envirionmental 
information and in accordance with self-moving.(Gibson) , That is to say, subject’s motion it 
self help the grasp of environment. Simultaneously, however, this captured information 
fades away from forgetting. The questionnaire method can not respond to the real time 
image reconstruction. Although the mental (recognized) space is hard to estimate, but it will 
give some hint to know the projected map on visual cortex. PET: positron emission 
tomography, fMRI: functional magnetic resonance imaging, MEG: magnet-encephalography 
are impossible to monitor moving subject’s inner brain activity from their structure. From 
the report that retina image is projected to primary visual cerebral cortex (Fellerman and 
Essen, 1991), it could be possible to brain activity of moving subjects with ‘Optical 
Topography’, which will monitor the cerebral cortex activity, if the resolution will increase.
(Watanabe er al. 1996) (Plichta et al. 1997) 

5. Current Approach 
The concept of walking aid human interface for visually impaired is based on the sensory 
substitution (visual sensation to tactile sensation conversion). A variety of electronic travel 
aid system (ETA) or sensory substitution system(SSS) have been developed, and some of 
these products are casted in commercial market :( Lenay et al. 1997). 

 (a) Environmental State Detection Goggle (ESDG) (b) Selective Stimulation Haptic Display 1 

(c) Selective Stimulation Haptic Display 2 
Fig. 2. Selective Stimulation Haptic ETAInterface 

Distance Feedback Travel Aid Haptic Display Design 403

The distance display method of these systems are classified as distance-sound modulation 
(mono-, stereophonic), distance-tactile vibration (frequency modulation), distance-tactile 
pressure, distance-selective stimulation part mapping using mechanic vibration or 
electronic stimulation and so on. Recently, DOBELLE System and Artificial Retina System 
are developed and broadcasted in several media, but they need surgical operation and 
still cost high denomination. Simultaneously, this is the critical point, the tactile sensation 
would rather suit to 2 Dimensional sense with low resolution of force, frequency 
sensitivity. Therefore, vision to tactile sense substitution studies are still exploring the 
design of 3 dimensional depth display that vision transfers as seen in interesting 
literature: (Shimojo et al., 1999). Our main concern is to develop affordable price and 
direct operational feel walking aid human interface without surgical operation and long 
learning process. This study concentrates on the distance-selective skin part stimulation 
mapping method that known as high performance in absolute repetitive cognition : ( 
Shinoda et al., 1998), ( Sumiya et al., 2000), (Nakatani et al., 2003), (Kobayashi & Ohta, 
1999). 
First, we show the concept of our distance-selective skin part mapping type tactile walking 
aid interface. Secondly, this paper discusses the basic concept of the stimulation point 
number and design of the selective skin part mapping interface with the consideration of 
tactile sensation characteristics and restriction of human being. At the third stage, we 
propose different types of distance display interface that takes a count of absolute distance 
value priority display method and relative distance priority display method. Through the 
blindfolded walking experiment, we inspected the performance in spatial perception and 
direct operation factor for these proposed interfaces with their direct recognition accuracy 
and learning Effect. 

5.1. System Concept and Configuration 
(1) Distance Display Walking Aid Tactile Interface 
This paper concentrates on The walking aid system with the distance-selective skin part 
stimulating. User wears the Environmental State Detection Goggle(ESDG) . 
This sensing unit installs one ultrasonic distance detection sensor unit and stereo camera 
unit. This plural detected signal are sent to the signal processing unit in personal 
computer to produce target pointed distance and 3D-depth map for further 
surroundings state and object information feedback with surround state transfer tactile 
display through Surrounding Attribute estimate Neural network Scheme[4]. This 
detected target-pointed distance information in the user-facing direction is converted 
into depth transfer tactile display signal. Briefly, the detected distance information is 
classified into some range because of the selective stimulation part number restriction. In 
the case of tactile Display Glove installs 5 selective stimulating point on root of each 
finger. If detected distance would classified in range i, then i-th finger's stimulator 
activated and applies vibration. 
Then user acquires the information of the detected distance range in facing direction. With 
the danger priority consideration, closest range mapped to first finger stimulator and 
mapped each finger to corresponding distance range in upwards. The issues are distance-
selective points mapping. 
(2) Distance Display Walking Aid Tactile Interface 
Then user gets the information of the detected distance range in facing direction. 
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 (a) Environmental State Detection Goggle (ESDG) (b) Selective Stimulation Haptic Display 1 

(c) Selective Stimulation Haptic Display 2 
Fig. 2. Selective Stimulation Haptic ETAInterface 
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sensitivity. Therefore, vision to tactile sense substitution studies are still exploring the 
design of 3 dimensional depth display that vision transfers as seen in interesting 
literature: (Shimojo et al., 1999). Our main concern is to develop affordable price and 
direct operational feel walking aid human interface without surgical operation and long 
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Then user acquires the information of the detected distance range in facing direction. With 
the danger priority consideration, closest range mapped to first finger stimulator and 
mapped each finger to corresponding distance range in upwards. The issues are distance-
selective points mapping. 
(2) Distance Display Walking Aid Tactile Interface 
Then user gets the information of the detected distance range in facing direction. 
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Fig. 3. Haptic ETA operation Flow 

(3) Distance Display Method for spatial perception 
Then user gets the information of the detected distance range in facing direction. 
(4) Consideration on Selective Stimulation Part Number 
Humans' discriminative resolution on spacial perception, especially along depth direction, 
are not constant.(WEBER-FECHNER Law). For the walking circumstance, the mainly 
influencing distance range could be assumed from 0 to 10m (or less 5m in slow exploring 
walk in complex circumstance) for path-finding purpose. In this range, as seen in space 
cognitive resolution characteristics, we can assume that the distance cognitive resolution 
also possesses linear characteristics with depth(target distance). 
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Fig. 4. Selective Stimulation Contactor Alignment 

If we assume the distance resolution as y =1cm at y = 1m depth, from the above linear 
resolution hypothesis, the resolution in all travel of target range keeps y/y= 0.01. If we set 
the starting detection distance and the ending distance as ds, de correspondingly. The 
necessary number of selective stimulator number is calculated as follows. 
The first stimulator's sensing depth d(0) is 

sdd =)0(  (4) 

If we assume the incremental value right to reference point would proportional to 
resolution, then the mapped distance to the n-th stimulator as described in eq.(2) 

1)/1()( −Δ+= n
s yydnd  (5) 

Necessary number of stimulator should satisfy next eq.(6). 

))/1log(/( yyddn se Δ+>  (6) 

This is the realization of Weber-Fechner law in suit to logarithmic sensitivity. 
In latter section, the performance comparison among linear distance partition and other 
partition method projection method are discussed. 

5.2. Distance Transfer Tactile Display 
(1) Linear Mapping 
Distance-Selective Stimulation Mapping using A-TDG 
Mapping as written in section 1-3-2, a detected signal converts corresponding selective skin 
part stimulation. In this section, we tried 3 types of linear discrete depth range division and 
distance transfer display using mapping into corresponding selective finger part 
stimulation. 
(2) Personal Space Based Mapping 
Personal Space is psychological concept that human being keeps their own social territory in 
other people's communication. range1:closest relation as holding each other as family touch 
each shoulder to 30cm, range2:friend relation holding each hands to make a familiar 
greeting closer one reach 70cm, range3: acquaintance region to exist situation in street until 
both opened reach 1.5m, unknown person that if other person enters room where main 
person stays, then should feel attention on each other, room size,5m or more. This range is 
mapped to each finger stimulator. This conversion methods is psychological factor priority 
conversion
 (3) Stride Based Mapping 
As every person has experienced in growing process, the different feeling of space 
perception in childhood and after grown up sometimes cause the ponder of the scale-based 
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space perception idea. Stride Based Mapping is the humans' physical factor priority 
mapping based on the stride length as a representative physical dimension. This Base 
mapping is linear mapping but is not divided by constant Number for each user. Each user 
takes one depth division taken from their own stride size. The issue is whether this method 
will fit each user and cause the smooth walk to erase the unfit feeling caused by the 
personal physical size factor. 

 1)Equidistance Mapping 2)Personal Space based Mapping 
  (Mental Factor Priority) 

3) Stride-based Mapping 
Fig. 5 Distance - Selective Part Mapping 

5.3 Blindfolded Walking Experiment 
(1) Comparison Between Linear Discrete Mapping 
Distance-Selective Stimulation Mapping using A-TDG Mapping as written in section 1-3-2, a 
detected signal converts corresponding selective skin part stimulation. In this 
section, we tried 3 types of linear discrete depth range division and distance transfer display 
using mapping into corresponding selective finger part stimulation. While blindfolded 
walking experiment, subjects walking motion is recorded in video camera. Subject location is 
derived from the captured video image. The obsctacle alignment position is changed for each 
trial . Afer walking experiment, subject draw the target image on right-questionnaire map. 

Forward direction 5m 

50

50cm

Width 2m

Fig. 6. Blindfolded Walking Experiment 
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5.4. Walking Aid Interface Performance 

(a) Linear Mapping (b) Personal Space Based Mapping –Mental Factor 

o –first trial 
* - second trial 

(a) Stride Based Mapping - Physical Factor  
Fig. 7. Walking 3D Trajectory in time-line 

Walk Time(sec) No1 No2 No3 No4 No5 Average 

Relative Indicator 65.4 77.9 135.7 103.8 56.1 88.8 

Relative Indicator 
(sensitivity prior.) 116 152.3 135.7 107.8 61.8 118.2 

Table 6. Walk Through Performance (Absolute Indicator Value as 100(%)) 

(1) Spatial Reconstruction after Walking Performance 
Mapping as written in 5.2, a detected signal converts corresponding selective skin part 
stimulation. In this section, we tried 3 types of linear discrete depth range division and 
distance transfer display using mapping into corresponding selective finger part stimulation. 
(2) Learning Effect 
From the walking performance time performance, Learning Effect is explicitly detected only 
for the linear (equidistance) mapping. (This signal conversion may already too simple to 
activate the humans' ability. This method still does not have enough transfer function about 
fast 3-Dimensional space perception. 
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6. Environmental Attribute Transfer 

Fig. 8. Stereoscopic 2D Depth Image Instrumentation

This system generates the 2D distance (depth) map in VGA size using L-R image pattern 
matching with continuity of surface. The inner product vector similarity is proposed for the L-
R pattern shift calculation and additional algorithm improvement is processed for Speed-up. 
Generated depth map information is also used to estimate detected object and state. 
Extracted outline with the consideration of depth and colors pattern is normalized as fit to 
16*16 bit image, then set to the inter-connected Neural Net scheme. For the estimation 
accuracy improvement, this system adopt combinational learning and estimating algorithm. 
See (sumiya, 2005) for more details. 
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Fig. 9. Estimated Searched Object and State Attribution 

7. Conclusion 
This chapter aims at the user-friendly ETA design. As a preliminary information, several 
tactile characteristics including sensing range, sensitivity, dynamic factors are introduced, 
which are critical to design tactile/haptic device. In the latter half of this chapter, an 
example model of recent ETA design is introduced along the user-friendly real-time 
operation. Current ETA system are still on the process to gives satisfactory level of 
environmental reconstruction for user. Even under restriction of tactile charcterists, this 
design concept will give some hint to create new device to activate human’s sensitivity. (e.g. 
magnification of sensing resolution, extending human sense). Recent studies of sensory 
substitution system has another aspect to extend human original sense. These approach 
would be called as ‘Hyper sense’. Currently, the most popular user of ETA is the visually 
impaired. But this applicable area is more extensive. ETA technique will take the certain role 
in ‘Hyper Sense’ technique. 

8. Consideration (Current Unsolved Problem) 
As discussed in section 4., visualization of constructed mental map /image is next interesing 
issue. Especially for human in motion, the portable brain activity monitoring system should be 
introduced. If starting with the cortex neighbor activity monitoring , Optical topography 
technique is a possible candidate , if resolution will increase up to mm order. 
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1. Introduction 
A feature based approach to simultaneous localization and map building (SLAM) is to use the 
information obtained by sensors mounted on a vehicle to build and update a map of the 
environment and compute the vehicle location in that map. One of the critical problems in 
obtaining a robust SLAM solution is data association, i.e. relating sensor measurements to features 
in the map that has been built thus far (Guivant, 2000). SLAM relies on correct correspondence 
between data obtained from the robot sensors and the data currently stored in the map.  
There have been numerous approaches to data association. In stochastic mapping, the 
simplest method is the NN algorithm which is a classical technique in tracking problems 
(Bar-shalom & Fortmann, 1988). The great advantage of NN is its o(mn) computational 
complexity in addition to its conceptual simplicity (Here m is the number of sensor 
measurements and n is the number of existing features in the map). It performs 
satisfactorily when clutter density is low and sensor accuracy is high. However, during the 
process of SLAM, especially in complex outdoor environments, clutter level is usually high 
and the innovations in matching different observations obtained from the same vehicle 
position are correlated. In this situation, the NN algorithm may accept a wrong matching, 
which leads to divergence in state estimation. 
In order to improve the robustness of data association, Neira and Tardos (Neira & Tardos, 2001) 
presented an approach using a joint compatibility test based on the branch and bound search 
with a high computational cost. Juan Nieto et al. (Nieto et al., 2003) give a fast SLAM algorithm 
for data association by applying the multiple hypotheses tracking method in a variety of outdoor 
environments. The experimental complexity estimates show that if the number of features in one 
scan is large, these algorithms will not be fast enough for real time implementation. In other 
approaches, Bailey et al. consider relative distances and angles between points and lines in two 
laser scans and use graph theory to find the largest number of compatible pairings between the 
measurements and existing features (Bailey et al., 2000). The work of Lim and Leonard (Leonard 
& Lim, 2000) applies a hypotheses test to implement data association of the relocation in SLAM 
using geometric constraints. Castellanos and Tardos (Castellanos et al., 1999) use binary 
constraints to localize the robot with an  a priori map using an interpretation tree. In these 
methods, geometric constraints among features are used to obtain hypotheses with pairwise 
compatible parings. However, pairwise compatibility doesn't guarantee joint compatibility, and 
additional validations are required. 
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Data association based on a 0-1 integer programming (IP) problem for multi-sensor multi-target 
tracking was firstly proposed in (Morefield, 1977) and later improved in (Poore & Robertson, 1995; 
Poore & Robertson, 1997; Poore & Robertson, 1994). In these articles, the data association and 
tracking problem was formulated as a multi-dimensional assignment problem.  
By extending the multi-sensor and multi-target tracking problem, the data association in 
SLAM is formulated as a 0-1 integer programming problem in (Zhang et al., 2004b; Perera et 
al., 2003; Perera et al., 2004). In (Perera et al., 2003; Perera et al., 2004), the data association in 
SLAM is first formulated as a three dimensional assignment problem where two frames of  
scan data are used to establish the correspondence between the measurements and the 
features stored in SLAM. This algorithm can track features very reliably especially in high 
clutter density environments. However, three dimensional assignment problem is NP-hard 
(Hochbaum, 1997) and only heuristic optimization algorithms are available for an 
approximation solution because of the computational complexity. In (Zhang et al., 2004b), a 
parallel development of data association in SLAM is formulated as a two dimensional 
assignment problem. The chapter reports the detail of this work.  
In this chapter we present an efficient integer programming (IP) based data association 
approach to SLAM. In this approach, the feature based SLAM data association problem is 
formulated as a 0-1 IP problem that considers only 1 frame of scan data. Therefore, it is 
formulated as a two dimensional assignment problem for which many optimization 
algorithms such as those in (Poor & Robertson, 1994; Poor & Robertson, 1997; Miller & 
Franz, 1993; Miller & Franz, 1996; Storms & Spieksma, 2003) can be applied. The IP problem 
is approached by first solving a relaxed linear programming (LP) problem. In order to 
reduce the computational burden, a validation gate is applied to reduce the size of the 
solution space. An iterative heuristic greedy rounding (IHGR) process based on linear 
programming techniques (Miller & Franz, 1993; Miller & Franz, 1996; Storms & Spieksma, 
2003) is then proposed to obtain a suboptimal solution to the integer programming problem. 
The algorithm has moderate computational requirements.  
Detailed simulation and experimental results show that the proposed method gives a much 
higher success rate of data association for environments of high density features than the 
NN algorithm while the cost of computation is moderately higher than the latter. Further, 
experiments in a real outdoor environments show that the NN algorithm leads to a 
diverged vehicle pose estimate whereas the proposed algorithm performs satisfactorily. As 
compared to other existing methods such as the JCBB algorithm, our approach has a lower 
computational complexity and provides a good trade-off between accuracy and 
computational cost.  
The chapter is organized as follows: Section 2 is devoted to an IP formulation for data 
association in SLAM. Section 3 presents an iterative heuristic greedy rounding algorithm for 
the IP problem. Section 4 shows some simulation and experimental results. Some 
conclusions are drawn in Section 5.  

2. Problem Formulation 
In this section we formulate the data association of SLAM as a 0-1 integer programming 
problem similar to (Perera et al., 2003; Perera et al., 2004). A mathematical framework of 
SLAM which is based on the extended Kalman filter (EKF) will be applied.  
Data association in SLAM is the decision process of associating measurements 
(observations) with existing features in the stochastic map. It should be noted that the term 
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“measurements” (observations) in this chapter refers to the observed features after feature 
extraction rather than the raw sensor measurements. Generally, the number of the 
measurements obtained in each scan is not equal to the number of features whose positions 
are estimated by the EKF. Each measurement may either (1) belong to a previously known 
geometric feature or (2) be a new geometric feature or (3) be a spurious measurement (also 
called a false alarm). On the other hand, there also exist features that do not have associated 
measurements in the current scan. A dummy element is applied to denote the case of a false 
alarm or a new feature or a feature that does not have an associated measurement here.  
Assume that there are M measurements from the latest scan which are to be assigned 

to N existing features in the map built based on the previous scans. It is also assumed 

that the measurements are independent. Typically, NM ≠ . We define the binary 

assignment variable  

1
0 .nm

if measurement m is assigned to feature n
x

otherwise
=   (1) 

Note that 10 =nx implies that the feature N has no associated measurement in the current 

scan, and 10 =mx  implies that the measurement m is not assigned to any of the existing N
features, but instead, assigned to a dummy feature–false alarm or newly initialized feature. 
In the data association process, we make the reasonable assumption that one measurement 
originates from at most one feature, and one feature can produce at most one measurement. 
Therefore, the following constraints can be imposed to the association variables:  

(2)

(3) 

Our goal is to match the sensor’s observations with the features by providing estimates of the 
features’ positions relative to the vehicle pose at the time of the current scan. In order to 
formulate the 2-D assignment problem, a generalized likelihood ratio which involves feature 
state estimates for the candidate associations is used to assi5ogn a cost to each association. 
Similarly to the multi-target tracking problem, we maximize a likelihood function LH as follows:  

 (4) 

(5)

where mz  is the m-th measurement of the scan, ˆnz is the predicted relative position of the n-th 
feature by the EKF, S is the covariance matrix of ˆm nz z− , and 

nmE  is the set of all possible 
assignment pairs. The likelihood ratio ( , )m nz fΛ  is in fact the probability that the mth 
measurement matches the n-th feature in the current sensor scan. In order to constitute a 2D-
assignment optimization problem, instead of maximizing the product of matching probabilities, 
we can minimize the negative log-likelihood ratio. To this end, we define:  
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 (6) 

Then, an equivalent cost function for equation (4) can be written as follows:  

wher. Thus, data association in SLAM can be formulated as the following 0-1 integer 
programming problem:  

 (7) 
subject to  

(8)
 (9) 

where                                                                                                               and  
 (10) 

In this algorithm, two points should be noted:  
• If a measurement does not fall into the 3σ  region of any of the existing N  features (see 

the gating process in Subsection 3.1), we assume that it is a new feature and add it to 
the SLAM map directly. It will no longer be considered in the above 2D-assignment.  

• If an existing feature does not have any measurement that falls into its 3σ region,
we consider that this feature is not observed in the current scan. No further 
matching will be carried out for this feature 

3. The IHGR Based Data Association Algorithm 
In this section, we apply an LP based algorithm to solve the data association problem 
formulated in the last section. The method is a combined IHGR and LP algorithm. In order 
to reduce the computational burden, a validation gate is applied first to reduce the above 
global association to several local associations.  

3.1 Gating 
In order to reduce the solution space, gating is first applied. Only measurements that are 
close enough to the predicted state of an existing feature are considered possible candidates 
of association with the feature. The criterion of gating is given by:  
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( 1)jz k +  is a close enough match to the predicted feature position. From the 2χ distribution 

table, we know that with a probability of 0.99 for a variable of two degrees of freedom. Here 
we set 6.63ε = .

3.2 Iterative Heuristic Greedy Rounding 

3.2.1 Relaxation and Rounding Technique 
Many combinatorial optimization problems can be attacked with approximation algorithms 
that yield a feasible solution in polynomial time with cost close enough to the optimal one 
(Hochbaum, 1997). Such approximation algorithms can be loosely categorized as 
combinatorial approximation algorithms and LP based approximation algorithms. Here, we 
are interested in the latter category. In order to solve the IP problem, we often firstly relax it 
into a LP problem (Cormen et al., 2001). In general, the relaxation refers to the action of 
relaxing the integer requirement of a linear IP to turn it into an LP. However, the optimal 
solution to the LP problem in general does not coincide with the solution to the initial IP 
problem. One of the basic techniques which is widely exploited to derive a LP based 
approximation algorithm is LP-based rounding. It refers to how to construct a feasible 
solution for the IP from the LP (Cormen et al., 2001; Parker & Rardin 1988). Thus, the LP-
based approximation algorithm first relaxes the IP problem to a LP problem, solves the LP 
problem and then converts the fractional optimal solution of LP to an integer solution. The 
heuristic algorithm applied here is based on the relaxation and rounding algorithms as 
described in (Miller & Franz, 1993; Miller & Franz, 1996; Storms & Spieksma, 2003). These 
algorithms are used for other applications. It is noted that the two dimensional assignment 
problem can also be solved by other optimization techniques.  

3.2.2 IHGR Procedure 
By changing the integer constraint {0,1}nmx ∈ to0 1nmx≤ ≤ , the IP problem is relaxed to a LP one. 
The LP problem can be solved by basic LP algorithms, such as the Simplex algorithm (Vajda, 
1981). If the optimal solution 

opx of the LP-relaxation is fully integer-valued (in this case all 

decision variables will have the value of either 0 or 1) then the solution opx is optimal for the 

0-1 IP problem in Equation (7) (Parker & Rardin, 1988). Otherwise, we apply the IHGR 
procedure (see, e.g. (Miller & Franz, 1996)). Observe that the larger the decision variable nmx ,
the higher the probability that the m -th measurement associates with the n -th feature. 
Hence, the algorithm starts by setting the maximum decision variable (with a value close to 1) 
to 1 and all other entries in the same row and column to zero to meet the constraints (8) and 
(9). Then, solve the LP problem for the remaining assignment matrix and repeat the IHGR 
procedure to decide the next pairing of measurements and features. The process is continued 
until all measurements have been assigned. In this manner, a feasible (but not necessarily 
optimal) solution for the original IP problem is constructed.  
In the IHGR procedure, when nmx is set to 1, all variables in the column and row associated 
with the specific set in 

nmE must be set to 0. Once a variable is forced to a certain value, it is 
not allowed to change any more. To achieve this, all rounded variables and all implicated 
variables are discarded from the IHGR procedure. In this way, the IHGR will never set the 
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 (6) 

Then, an equivalent cost function for equation (4) can be written as follows:  
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0-1 IP problem in Equation (7) (Parker & Rardin, 1988). Otherwise, we apply the IHGR 
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(9). Then, solve the LP problem for the remaining assignment matrix and repeat the IHGR 
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optimal) solution for the original IP problem is constructed.  
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not allowed to change any more. To achieve this, all rounded variables and all implicated 
variables are discarded from the IHGR procedure. In this way, the IHGR will never set the 
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value of a variable twice. This deletion of variables also applies to the initial LP solution, i.e. 
all variables with value 1 and all zero-valued variables implicated by them, are removed. 
The IHGR algorithm repeats the actions of selection, rounding and deletion until there are 
no variables left. The outcome will then be a feasible solution to (7).  
The algorithm described above can be summarized in the following 4 steps: 
 Step 1: Relax the IP problem to a LP problem and solve the LP problem. If the solution is 
fully integer valued, then stop. Otherwise, go to Step 2.  

• Step 2: Set the maximum decision variable to 1 and other entries in the same row 
and column to zero.  

• Step 3: Delete the elements that have been decided, go back to step 1 for the rest of 
the assignment matrix.  

• Step 4: Repeat the above relaxation, selection, rounding, and deletion steps until all 
the elements are assigned.

Observe that the IHGR can be implemented efficiently, but it is clear that there is no 
guarantee that this heuristic procedure yields the optimal solution to the IP problem. 
However, the simulations and experiments to be discussed in the following section show 
that the IHGR does result in acceptable feature-measurement assignments of which the 
achieved cost is close to the optimal cost.  

3.3. Algorithm Complexity 
Due to the application of the gating process that is affected by random factors, we cannot 
give an exact description of the complexity. However, we know that in any fixed dimension, 
LP can be solved in polynomial linear time (linear in the input size) (Karmarkar, 1984). For 
our case, the input size is M N× . Thus, we can roughly know the worst-case complexity of 
the proposed algorithm is  

Neira and Tardos (Neira & Tardos, 2001) presented a data association approach–JCBB. JCBB 
performs incremental construction and search of an interpretation tree of joint association 
hypotheses. The gating determines acceptable hypotheses and performs branch and bound 
pruning of the search space. The discussion in (Neira & Tardos, 2001) does not provide any 
theoretical bound, but gives an empirical complexity estimate of (1.53 )NO , where N is the 
number of observed features. When N is large, the algorithm will have a high 
computational complexity. For example, when 30N = , 301.53 347330= . For the algorithm 
presented here, ( 1)( 1) ( 1) 9455MN M N M N+ − − + + − + =  where M =30 that is the worst case. 

Therefore, when the observed feature number is large (such as more than 30), our algorithm 
is faster than JCBB. In the simulation, we also found that when N is large, for 
example 30N ≥ , JCBB is too slow to work while the algorithm proposed can work well (The 
example can be seen in the section of experimental results).  

4. Simulation and Experimental Results 
The algorithm presented was tested in two different environments, an artificial environment 
and a real outdoor environment. In these two environments, SLAM was implemented by 
using the data association algorithm proposed in the last section.  

( ( 1) ( 1) ( 1) 1)O MN M N M N+ − × − + + − + ×
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4.1 Results of Simulation Environment 
4.1.1 Simulation Example 1 

The first test environment is established by randomly generating some features and 
assuming that the vehicle’s trajectory is a circle whose radius is 62 meters. The robot moves 
at a constant speed and the heading angle changes 1 degree at each sampling instant. The 
environments involve 105 features which are randomly distributed in a region of 120 meters 
by 120 meters. The standard deviations of the simulated laser sensor are taken as 0.01rσ =
meters and 0.0005θσ = radians. When the vehicle moves, some of the features are observed. 
We assume that the features’ positions are unknown which is the case in SLAM and match 
the features with the observations by using the NN and the IHGR algorithms, respectively.  
In order to compare the successful rates of these two data association algorithms, we 
change feature positions except one feature 200 times to implement the SLAM. The 
features’ positions are randomly generated each time with uniform distribution in 
space. We apply the NN data association algorithm and the IHGR data association 
method to perform the SLAM processes, respectively. In the simulation, we only fix the 
position of one feature and investigate the successful rate of the matching of this feature 
with its observation in one scan (scan 15) during the SLAM. The data association 
successful rate for this feature when using IHGR algorithm is 96.5% (193/200) while it 
is only 81% (162/200) for the NN algorithm. 

Fig. 1. Unsuccessful mapping when applying the NN data association algorithm in the 
SLAM process. 
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When the features are closely located, the NN algorithm fails. Figures 1 and 2 show the 
SLAM results where the NN algorithm fails whereas the proposed IHGR algorithm 
performs well. In this case, the positions of 3 features in the environment are fixed and they 
are located at (27, 20.5), (26, 19.5) and (26.5, 19), respectively. The remaining features are 
randomly distributed. It can be observed from Figure 1 that the NN algorithm leads to 
diverged estimates of vehicle pose and feature positions. On the other hand, our IHGR 
method performs very well as observed in Figure 2. In fact, the vehicle’s true path is almost 
overlapped with the estimated one. The global error between the estimated vehicle’s 
position and the ground truth can be seen in Figure 3.  
A comparison on execution time between the NN algorithm and the IHGR based data 
association algorithm versus the number of features observed in one scan is shown in Figure 
4 (the algorithms are run on Pentium IV PC, 1.7GHz) for the cases when the NN algorithm 
is able to give successful SLAMs. In the figure, the mean execution time means the average 
CPU time used for 50 Monte Carlo runs for data association algorithm. In the simulation, we 
extract data at each scan under different feature number and assume that the number of 
measurements is the same as that of the existing features (this is the most time consuming 
case). The result shows that our IHGR based method has moderate computational 
requirement and is implementable in real-time applications.  

Fig. 2. The mapping and vehicle path when applying IHGR data association method in the 
SLAM process. 
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Fig.  3. The vehicle’s position errors in global coordinates between the ground truth (generated 
data) and the estimated position using IHGR data association algorithm in the SLAM process. 

Fig. 4. The mean execution time of the IHGR algorithm and the NN algorithm. The mean 
execution time means the average CPU time used of 50 Monte Carlo runs for the process of 
the data association algorithm. The mean execution time of IHGR is nearly linear with 
respect to the observed feature number by repeated experiments. 
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 Errors(Meters) 
M X direction error Y direction error 

2 0.2374 0.2518 
5 0.1737 0.1946 
8 0.1278 0.1469 
10 0.1008 0.1348 
13 0.0792 0.0986 
15 0.0771 0.0910 
18 0.0631 0.0874 
20 0.0558 0.0806 
25 0.0501 0.0645 
30 0.0354 0.0439 
35 0.0323 0.0357 

Table 1.  Comparison of the SLAM performance for various number of observations (M). 

In Table 1, we show the average global errors of the vehicle’s position estimate versus the 
number of features observed (observations) in each scan in the same environment 
mentioned above. We fixed the number of observations in each SLAM process which lasted 
for a few thousand steps but changed the number of observations for different SLAM 
processes. In the table, the errors are calculated as follows:  
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where
ixE  and 

iyE are the absolute values of the i th time step vehicle position errors in the 
X and Y directions, respectively, and K is the total number of steps during SLAM.  
It is found that the errors decrease when the number of observations increases. When 
the number of observations is more than 35, we found that the errors change very little. 
Therefore, we only show the results when the number of observations is smaller than 
35.
In order to examine the robustness of the IHGR based algorithm with respect to 
sensor noise, we also carried out the simulations under various sensor range 
variances. From (Zhang et al., 2004a; Zhang et al., 2003; Adams et al., 2004), we know 
that for any range finder, the range noise covariance can vary depending on the 
received signal amplitude while the angular uncertainty is relatively very small and 
little changed compared to the range noise. In the simulation, we fix 

0.0005θσ = radian. The sensor used here is a LADAR (Laser Detection and Ranging) 
sensor, therefore, the standard deviation of the range noise rσ can be typically from 
0.01 meters to 0.25 meters (Adams, 1999) for different sensors. Table 2 shows the 
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average performance of 10 SLAM processes for the same environments mentioned 
earlier with 12 observations.  
In Subsection 3.3 we have compared the computational burden of our method with that of 
the JCBB algorithm (Neira & Tardos, 2001). Here we shall compare the accuracy of these 
two methods. Note that the JCBB algorithm which uses the branch and bound enumeration 
algorithm gives an optimal solution to the data association problem. In this simulation, we 
use 30 features in the large scale map because the speed of the JCBB algorithm becomes 
quite slow when the feature number is too large.  

 Errors(Meters) 

rσ X direction error Y direction error 

0.01 0.0815 0.0979 
0.02 0.0989 0.1135 
0.03 0.1247 0.1389 
0.05 0.2049 0.2209 
0.08 0.2975 0.3108 
0.1 0.3564 0.4532 
0.15 0.4753 0.6786 
0.2 0.6785 0.9860 
0.25 0.9076 1.0062 

Table. 2.  SLAM performance versus the standard deviation of the sensor range noise. 

 JCBB method IHGR method 

M xError yError xError yError

5 0.1802 0.1899 0.1802 0.1899 
8 0.1346 0.1573 0.1389 0.1623 

10 0.1025 0.1389 0.1101 0.1475 
13 0.0834 0.1003 0.0924 0.1120 
15 0.0799 0.0915 0.0856 0.1079 
18 0.0702 0.0832 0.0786 0.0886 
20 0.0628 0.0784 0.0703 0.0826 
25 0.0591 0.0748 0.0651 0.0799 
30 0.0528 0.0537 0.0580 0.0722 

Table 3. The comparison of the SLAM performance for the JCBB algorithm and IHGR 
algorithm under different number of features. The unit for the errors is meter. 

From Table 3 one can see that with the IHGR based data association method a near 
optimal solution to SLAM has been achieved. Observe that when the number of 
features is 5, the same performance as the JCBB algorithm which gives the optimal 
solution is obtained in this experiment.  
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two methods. Note that the JCBB algorithm which uses the branch and bound enumeration 
algorithm gives an optimal solution to the data association problem. In this simulation, we 
use 30 features in the large scale map because the speed of the JCBB algorithm becomes 
quite slow when the feature number is too large.  

 Errors(Meters) 

rσ X direction error Y direction error 

0.01 0.0815 0.0979 
0.02 0.0989 0.1135 
0.03 0.1247 0.1389 
0.05 0.2049 0.2209 
0.08 0.2975 0.3108 
0.1 0.3564 0.4532 
0.15 0.4753 0.6786 
0.2 0.6785 0.9860 
0.25 0.9076 1.0062 

Table. 2.  SLAM performance versus the standard deviation of the sensor range noise. 

 JCBB method IHGR method 

M xError yError xError yError

5 0.1802 0.1899 0.1802 0.1899 
8 0.1346 0.1573 0.1389 0.1623 

10 0.1025 0.1389 0.1101 0.1475 
13 0.0834 0.1003 0.0924 0.1120 
15 0.0799 0.0915 0.0856 0.1079 
18 0.0702 0.0832 0.0786 0.0886 
20 0.0628 0.0784 0.0703 0.0826 
25 0.0591 0.0748 0.0651 0.0799 
30 0.0528 0.0537 0.0580 0.0722 

Table 3. The comparison of the SLAM performance for the JCBB algorithm and IHGR 
algorithm under different number of features. The unit for the errors is meter. 

From Table 3 one can see that with the IHGR based data association method a near 
optimal solution to SLAM has been achieved. Observe that when the number of 
features is 5, the same performance as the JCBB algorithm which gives the optimal 
solution is obtained in this experiment.  
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4.2 Real Outdoor Environment 
4.2.1 SLAM with Artificial Beacon 

In order to implement the IHGR data association algorithm during SLAM in a real 
environment, we firstly use the experimental data set from (Guivant & Nebot, 2003) 
obtained by Guivant and Nebot. The testing site is a car park at Sydney University. The 
vehicle is equipped with a GPS, a laser sensor and wheel encoders. A kinematic GPS 
system of 2 cm accuracy was used to evaluate the ground truth. Thus, the true 
navigation map was available for comparison purposes. Wheel encoders give an 
odometric measurement of the vehicle location. The dead reckoning sensors and laser 
range sensor are combined together to predict the vehicle’s trajectory using the 
extended Kalman filter and to build up the map at the same time. In this experiment, 
the features used are artificial beacons. The feature detection was done by using a 
geometric analysis of the range measurement to obtain the most likely centers of tree 
trunks using intensity information. The laser scans are processed using Guivant’s 
algorithm (Guivant & Nebot, 2000) to detect tree trunks’ centers and estimate their 
radii.

Fig. 5. The SLAM path and the feature map during the SLAM process with IHGR data 
association.
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Fig. 6. The 2σ  confidence bounds during the SLAM process with IHGR data range 
innovation and its association. 

Fig. 7. The observation angle innovation and its 2σ confidence bounds during the SLAM 
process with IHGR data association. 
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We ran continuous SLAM for more than 5000 time steps and obtained the map shown in 
Figure 5 using our proposed IHGR data association method. It can be seen that the IHGR 
method performs well in real time. Figures 6 and 7 give the measurement (range and angle) 
innovation and their 95% confidence bounds during the SLAM process, respectively. The 
results show that the IHGR based algorithm works well during the SLAM process.  
In order to check the effectiveness of the IHGR data association method, we randomly 
choose two scans (scan 68 and scan 87) and show the matching matrix nmx  after the IP 
problem is solved. In scan 68, the laser sensor obtained 2 measurements and the existing 
feature number has accumulated to 11. As mentioned, the term “measurement” means the 
extracted features. As seen in Table 4, measurement 1 is associated with feature 3 and 
measurement 2 is associated with feature 2. The rest of the features are all undetected in this 
scan. In Table 5, for scan 87, measurement 1 is matched with a dummy element which 
means this is a new feature or false alarm. Since the probability of false alarm for the laser 
sensor is low, we regard the measurement as a new feature. The other measurements and 
features are similar to those in scan 68 which can be seen in Table 4.  

 Existed feature number and dummy element 
1 2 3 4 5 6 7 8 9 10 11 0

scan 68 1 0 0 1 0 0 0 0 0 0 0 0 0 
2 0 1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 1 1 1 1 1 1 1 1 0 

Table 4. The matching matrix in scan 68. 

  Existed feature number and dummy element 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

scan 87 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 

Table 5. The matching matrix in scan 87. 

In this environment, the features are sparsely distributed. By checking the 
experimental data, we know that the number of observations per step ranges from 1 to 
5. Therefore, the environment is relatively simple as far as data association is 
concerned. In this case, the NN algorithm also works well. We ran SLAM with the NN 
algorithm and IHGR algorithm respectively and found that the computational cost is 
similar although the NN algorithm is slightly faster than our method. For NN data 
association, the whole SLAM process (involving more than 5000 time steps), where the 
vehicle travelled several hundred meters, took 40.9680 seconds while the IHGR 
algorithm took 58.1420 seconds on the same computer (the algorithms were run on 
Pentium IV PC, 1.7GHz, and we calculated the CPU time for each algorithm).  

4.2.2 SLAM with Natural Features in a real Environment 

In order to verify the effectiveness of the IHGR algorithm, a more complex real environment 
is explored using our car-like Cycab vehicle (see Figure 9). In this case, SLAM is 
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implemented with natural features rather than artificial beacons in the last experiment. The 
features extracted from the complex campus environment are obtained by using the feature 
extraction algorithm given in (Zhang et al. 2004a). The experimental data used was obtained 
from a 2-D scanning range laser (SICK LMS200) mounted on the front of the vehicle. The 
laser returns a 180 degree planar sweep of range measurements in 0.5 degree intervals (i.e., 
361 range values in an anti-clockwise order) with a range resolution of 50mm. Similar to the 
last experiment, the vehicle is equipped with a D-GPS, a laser sensor and encoders. The D-
GPS system is used to evaluate the ground truth. Thus, the true navigation map is available 
for comparison purposes. The testing site is a long walk way around Hall 7 at Nanyang 
Technological University of Singapore. The real campus map, including this road, is shown 
in Figure 8. The dead reckoning sensors and laser range sensor are combined together to 
predict the vehicle’s trajectory using the extended Kalman filter and to build up the map at 
the same time. During SLAM, in order to improve our map accuracy, we attempted to 
detect two types of features, namely the point features and circular features and used the 
IHGR algorithm to carry out data association.  

Fig.  8. The map of our experiment site. The blue curve represents the vehicle’s trajectory; 
The starting and ending of the trajectory are indicated by red dots. 

Figure 9 shows part of the experimental environment. Figure 10 gives a typical laser scan 
during the run and shows the main features that are extracted from the scan data. Figure 11 
shows the experimental results of SLAM. In this figure, there is a break in the GPS data. This is 
because the vehicle is under a building which blocks the GPS signal (the GPS data coordinate 
is vacant roughly between (-10, -120) and (-30, -115)). That is, no ground truth is available in 
this segment of road. From this figure, we can see that the estimated path is close to the GPS 
reading except the part of the road that is near to the break because the GPS reading is not 
accurate for this segment of the trajectory. Figures 12 and 13 indicate the observation 
innovations and their 95 % confidence bounds during the whole process which lasted for 450 
seconds. These figures show that the SLAM process is consistent using the natural features. It 
is also important to mention that the average positional error of the entire SLAM process 
except the segment where the ground truth is unavailable is smaller than 0.5 meter. We also 
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except the segment where the ground truth is unavailable is smaller than 0.5 meter. We also 
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carried out the SLAM process with the NN data association algorithm. Unfortunately, the NN 
algorithm results in a diverged vehicle path estimate as shown in Figure 14, due to the 
complex environment with features of high density. In Figure 14, point A is the starting point 
of the SLAM process as in the previous experiment with the IHGR algorithm.  

Fig. 9. The environment and the vehicle in our experiment. 

Fig. 10. A typical laser scan of the experimental environment. 
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Fig. 11. A comparison between the estimated path and the path estimated by the D-GPS 
(used as ground truth) during SLAM. 

Fig. 12. The range observation’s innovation and its 95% confidence bounds in the SLAM 
experiment.
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Fig. 13. The angular observation’s innovation and its 95% confidence bounds in the SLAM 
experiment.

Fig. 14. The unsuccessful path estimation of this experiment when NN algorithm is applied. 
The vehicle started from point A in our experiment, see Figure 8. 
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5. Conclusions 
This chapter presented a data association algorithm for SLAM which offers a good trade-off 
between accuracy and computational requirements. We first formulated the data association 
problem in SLAM as a two dimensional assignment problem. In our work, only 1 frame of 
scan data is considered. The data association problem in SLAM is formulated as a two 
dimensional assignment problem rather than a three dimensional one which is an NP hard 
problem and is computationally more efficient. Further, since only one step prediction is 
involved, the effect of the vehicle model uncertainty is smaller as compared to the data 
association methods using two frame scan data. In order to obtain a fast solution, the 0-1 IP 
problem was firstly relaxed to an LP problem. Then we proposed to use the IHGR 
procedure in conjunction with basic LP algorithms to obtain a feasible solution of the data 
association problem. Both the simulation and experiment results demonstrated that the 
proposed algorithm is implementable and gives a better performance (higher successful 
rate) than the commonly used NN algorithm for complex (outdoor) environments with high 
density of features. Compared to the optimal JCBB algorithm, the proposed algorithm has 
lower computational complexity and is more suitable for real-time implementation.  
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1. Introduction 

One of the ultimate goals of robotics is to create autonomous robots. Such robots could accept 
high level instructions and carry out tasks without further human supervision or intervention. 
High level input commands would specify a desired task and the autonomous robot would 
compute how to complete the task itself. Progress towards autonomous robots is of great 
research and practical interest, with possible applications in any environment hostile to 
humans. Examples are underwater work, space exploration, waste management and bomb 
disposal among many others. One of the key technical issues towards such an autonomous 
robot is the Path Planning Problem (PPP): How can a robot decide what paths to follow to 
achieve its task. The PPP can be described as follows: given a robot with an initial configuration, 
a goal configuration, its shape and a set of obstacles located in the workspace, find a collision-
free path from the initial configuration to the goal configuration for it. 
PPP has been an active field during the past thirty years. Although seemingly trivial, it has 
proved notoriously difficult to find techniques which work efficiently, especially in the 
presence of multiple obstacles. A significant and varied effort has been made on this 
complicated problem (Wang et al., 2005; Wang et al., 2004; Wang & Lane, 2000; Wang & 
Lane, 1997; Wang, 1995; Wang, 1997; Wang et al., 2000; Wang & Cartmell, 1998c; Wang & 
Cartmell, 1998a; Wang & Cartmell, 1998b; Wang & Linnett, 1995; Wang et al., 1994a; Wang 
et al., 1994b; Petillot et al., 1998; Petillot et al., 2001; Park et al., 2002; Ruiz et al., 1999; Trucco 
et al., 2000; Brooks & Lozano-Perez, 1985; Conn & Kam, 1997; Connolly, 1997; Hu et al., 1993; 
Huang & Lee, 1992; Hwang & Ahuja, 1992; Khatib, 1986; Latombe, 1991; Lozano-Perez, 1983; 
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such as Vgraph, Voronoi diagram, exact cell decomposition, approximate cell 
decomposition, potential field approach, and optimization-based approach have been 
developed. A systematic discussion on these old methods can be found in references ( Wang 
et al., 2005; Wang, 1995; Latombe, 1991).  
In any robot path planning method, robot and obstacle representation is the first thing to be 
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considered. PPP essentially deals with how to find a collision_free path for a 3 Dimensional 
(3D) object (robot) moving among another set of 3D objects (obstacles), satisfying various 
constraints (Wang et al., 2005; Wang et al., 2004; Wang & Lane, 2000; Wang & Lane, 1997; 
Wang, 1995; Wang, 1997; Wang et al., 2000). There are many reasons for having so many 
different approaches developed. For example, assumptions made on both the shapes of the 
robot and obstacles and the constraints imposed by the mechanical structure of the robot 
contribute to them (Wang, 1997). The important thing for judging the reality of an approach 
is whether the realistic constraints have been considered.  
An important concept proposed in the early stage of robot path planning field is the 
shrinking of the robot to a point and meanwhile the expanding of the obstacles in the 
workspace as a set of new obstacles. The resulting grown obstacles are called the 
Configuration Space (Cspace) obstacles. The find-path problem is then transformed into 
that of finding a collision-free path for a point robot among the Cspace obstacles. This 
idea was first popularized by Lozano-Perez (Lozano-Perez, 1983) in the Artificial 
Intelligence Laboratory, MIT as a basis of the spatial planning approach for the find-path 
and find-place problems, and then extended by Latombe (Latombe, 1991) as a basis for all 
motion planning approaches suitable for a point robot. However, the research experiences 
obtained so far have shown that the calculation of Cspace obstacles is very hard in 2D 
when the following situations occur. 1. Both the robot and obstacles are not polygons; and 
2. The robot is allowed to rotate. The situation gets even worse when the robot and 
obstacles are 3D objects with various shapes (Ricci, 1973; Blechschmidt  & Nagasuru, 1990; 
Barr, 1981; Chiyokura, 1988). For this reason, direct path planning approaches without the 
Cspace calculation is quite useful and expected.  
The objective of this chapter is to present a new approach to the PPP without the Cspace 
calculation. The chapter is based on our previous work (Wang et al., 2005; Wang et al., 2004; 
Wang & Lane, 2000; Wang & Lane, 1997), and in the following we will present the 
background of the new method to show its principle.  
Historically the Constrained Optimization and Constructive Solid Geometry (COCSG) 
method is first proposed in (Wang & Lane, 1997), and two assumptions made in it are that: 
1. The Cspace obstacles in the workspace can be approximately represented by inequalities; 
and 2. The robot can be treated as a point. The mathematical foundations for the 
Constructive Solid Geometry (CSG), the Boolean operations, and the approximation 
techniques are developed to represent the free space of the robot as a set of inequalities 
(Ricci, 1973; Wang & Lane, 1997). The fundamental ideas used include: 1. The free Cspace of 
the robot is represented as a set of inequality constraints using configuration variables; 2. 
The goal configuration is designed as the unique global minimum point of the objective 
function, and the initial configuration is treated as the start point for the spatial search; and 
3. The numerical algorithm developed for solving nonlinear programming problem is 
applied to solve the robot motion planning problem and every immediate point generated 
in this way guarantees that it is in the free space, and therefore is collision free. The 
contribution of the above paper is that for the first time, the idea of inequality is introduced 
to represent objects and the optimization technique is used for the efficient search. 
However, we can still observe that two issues arise from the above problem formulation. 
One is how to exactly rather than approximately deal with the shapes of both the robot and 
the obstacles, and the other is how to calculate the Cspace obstacles. In reference (Wang & 
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Lane, 2000), we further investigate the effect of obstacle shapes on the problem formulation, 
and introduce the new concept of the first and second kinds of obstacles. When the second 
kind of obstacles is considered, the PPP leads to a generalized constrained optimization 
problem (GCOP) with both logic AND and OR relationships, which is totally different from 
the traditional standard constrained optimization problem with only logic AND relationship 
among the constraints. A mathematical transformation technique is developed to solve the 
GCOP. The original contributions of this paper include threefold: First, from the viewpoint 
of optimization theory, it is the first one to propose such a GCOP; Second, a method is 
developed to solve such a GCOP; Third, from the viewpoint of PPP, this paper inherits the 
advantage of the previous method in (Wang & Lane, 1997) and further generalizes its ability 
to deal with various shapes of obstacles.   
The issue that has not been addressed by the above two papers is the calculation of the 
Cspace obstacles. We deal with the PPP with the first kind of obstacles in (Wang et al., 2004) 
and the second kind of obstacles in (Wang et al., 2005) respectively, without the need to 
calculate the Cspace obstacles. A sufficient and necessary condition for a collision free path 
for the robot and the obstacles is then derived in the form of a set of inequalities that lead to 
the use of efficient search algorithms. The principle is that the points outside the obstacles in 
the 3D workspace are represented by implicit inequalities, the points on the boundary of a 
3D robot are expressed in the form of a parametric function, and the PPP is formulated as a 
semi-infinite constrained optimization problem with the help of the mathematical 
transformation. To show its merits, simulation results with different shapes of robot and 
obstacles in 3D space are presented. 
In this chapter we will present a comprehensive introduction to the principle of the PPP 
without the Cspace calculation, including the mathematical background, robot and obstacle 
representation, sufficient and necessary condition for collision-free path, algorithm 
efficiency, and the simulation results. Particularly, we will also discuss the constraints that 
must be considered in the future work and explain mathematically the reason why these 
constraints can lead to more difficulties in this area.  
The rest of the chapter is organized as follows. Section 2 gives a brief description of 
inequality constraints and the formulations for optimization theory. In particular, a 
previously-developed, generalized constrained optimization and the mathematical 
translation needed for its solution are also presented in this section. In Section 3, obstacle 
and robot presentation method is presented. The implicit function inequalities for 
representing the outside of the obstacles and the parametric function equalities for 
representing the surface points of 3D robot are developed. In Section 4, we investigate 
how to convert the robot path planning problem into a semi-infinite constrained 
optimization problem. Simulation results are presented in Section 5. Finally conclusions 
are given in Section 6. 

2. Mathematical Background
In this section we will give a brief introduction to various optimization problems, i.e. the 
standard constrained optimization problem (SCO), generalized constrained optimization 
problem (GCO), and semi-infinite constrained problem (SICO). The essential part of the 
mathematical transformation which can transfer a set of inequalities with logic OR 
operations into one inequality is also introduced in subsection 2.4. Details of the nonlinear 
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programming theory can be found in (Fletcher, 1987; Gill et al., 1981; Luenberger, 1984; 
Polak & Mayne, 1984; Rao, 1984; Tanak et al., 1988). 

2.1 Optimization Problems 

Standard optimization theory (SOT) concerns the minimization or maximization of a 
function subject to different types of constraints (equality or inequality) (Fletcher, 1987; Gill 
et al., 1981). There are mainly four different types of optimization problem: Linear 
Programming, Unconstrained Problems, Constrained Problems and Semi-infinite Constrained 
Problems, as listed in Table 1. The last three parts together comprise the subject of Non-linear 
Programming.

TYPE NOTATION
Unconstrained scalar min f(x)
Unconstrained min f(x)
Constrained min f(x) such that g(x) ≤ 0 
Goal min γ such that f(x)-xγ ≤ Goal
Minmax min{max f(x)} such that g(x) ≤ 0 
Nonlinear least squares min { f(x)*f(x)}
Nonlinear equations f(x)=0
Semi-infinite constrained min f(x) such that g(x) ≤ 0 & Φ(x,w) ≤ 0 for all w∈ ℜ 2

Table 1. Types of nonlinear minimization problems. 

2.2 Standard Constrained Optimization (SCO) 

The standard constrained optimization problem can be described as follows: find an optimal 
point x* which minimizes the function: 

 f(x)     (1) 
subject to: 
 gi(x) = 0, i = 1, 2,…, t
 gj(x) ≤ 0, j = t+1, t+2,…, s 
 xL ≤ x ≤ xU (2)
where t and s are positive integers and s  t, x is an n-dimensional vector of the unknowns x
= (x1 , x2,…, xn), and f, gi ( i = 1, 2,…, t) and gj ( j = t+1, t+2,…, s) are real-valued functions of 
the variables (x1 , x2,…, xn). xL = (L1, L2 ,…, Ln) and xU =(U1 ,U2, …, Un) are the lower and 
upper bounds of x, respectively. The function f is the objective function, and the equations 
and inequalities of (2) are constraints.  
It is important to note that although not explicitly stated in the literature available, the logic 
relationship among the constraints (equalities and inequalities) in (2) are logic AND 
(denoted by “∧”). That is, constraints in (2) can be presented explicitly as:  

 g1(x)=0 ∧ g2(x)=0 ∧ … ∧ gt(x)=0
∧ gt+1(x)≤0 ∧ gt+2(x)≤0 ∧ … ∧ gs(x)≤0                  (3) 

∧ L1≤x1≤U1 ∧ L2≤x2≤U2 ∧ … ∧ Ln≤xn≤Un.

Problem described by (1) and (2) is named as the standard constrained optimization 
problem (SCOP). 
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2.3 Generalized Constrained Optimization (GCO) 

The work reported in (Wang & Lane, 2000) has shown that some realistic problem can be 
cast as a generalized constrained optimization problem of the following form: 
Find an optimal point x* which minimizes the function   

 f(x)                  (4) 
subject to: 
 g1(x)=0 ∧ g2(x)=0 ∧ … ∧ gt(x)=0

∧ gt+1(x)≤0 ∧ gt+2(x)≤0 … ∧ gs(x)≤0
∧ ( h1,1(x)≤0 ∨ h1,2(x)≤0 ∨ …∨

11,kh  (x)≤0 )

∧ ( h2,1(x)≤0 ∨ h2,2(x)≤0 ∨ …∨
22,kh  (x)≤0 )

∧ …
∧ ( hm,1(x)≤0 ∨ hm,2(x)≤0 ∨ …∨ , mm kh  (x)≤0 )

∧ L1≤x1≤U1 ∧ L2≤x2≤U2 ∧ … ∧ Ln≤xn≤Un   (5) 

where, the symbol “∨” denotes the logic OR relationship, t, s, m, k1, k2, ..., km are all positive 
integers, and hi,j(x), (i=1,2,…m; j=1,2,…ki), are real-valued functions of the variables x. The 
problem described by (4) and (5) is named as the generalized constrained optimization 
problem (GCOP) because the constraints have both logic AND and logic OR relationships.  
The development of an algorithm for the solution to GCOP is important. There are two 
ways to deal with the difficulty. The first is to develop some new algorithms which can 
directly deal with the GCOP rather than adopting the algorithms available for the SCOP. 
The second way is based on the idea of devising a mathematical transformation which is 
able to convert each constraint: hi,1(x)≤0 ∨ hi,2(x)≤0 ∨ … ∨ , ii kh  (x)≤0 (i=1, 2, …, m) into one

new inequality Hi(x)≤ 0, i=1, 2, …, m, for any point x. As a result, the algorithms developed 
for the SCOP can be directly applied to the GCOP. 

2.4 A Mathematical Solution to Converting a Set of Inequalities with Logic OR Relation 
into One Inequality 

Here, we present a mathematical transformation which is able to realize the second idea in 
subsection 2.3. Suppose there are m inequalities hi(x)<0, i=1,2,...,m, with Logic AND defined 
as set A in (6). From a mathematical viewpoint, set A represents the point set of the inside 
for a generalized n dimensional object, and its complement A represents the point set of the 
outside and boundary of the object. In a 3D space, set definition (6) may be explained as 
representing the set of all the inside points for an object whose surface is mathematically
represented by m continuous equations hi(x)=0 (i=1, 2,..., m).

 A = { x | h1(x)<0 ∧ ....... ∧ hm(x)<0 }                                               (6)
A ={ x h1(x)≥ 0 ∨ h2(x)≥ 0 ∨ …∨ hm(x)≥ 0 }                               (7) 

For each function hi(x), (i=1, 2, …, m), a new function of the following form is constructed (x
is omitted for simplicity): 

 vi=( 2
ih +t2)1/2+hi         i=1, 2, …, m                                                 (8) 
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where t is a small, positive real number and satisfies t<<1. Note that vi is the function of a 
point x and t. For the whole object, a function V of the following form is also constructed: 
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Now let us examine the properties of the two transformations from hi to vi and from vi to V.
First, function vi is always positive for any point x and any constant t, i.e., vi>0 always holds, 
and second, it is an increasing function of hi, which suggests that the value of vi at the 
points where hi>0 is much larger than the value at the points where hi<0. If t<<1, vi can be 
approximately represented as 
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where O(t2) represents a very small positive number with the order of t2 for t<<1. (10) 
indicates that except for the points located at the vicinity of the surface hi=0, vi is large 
compared with t when hi>0, and small compared with t when hi<0.
From Fig. 1 we can see that for the points located inside the object and in the vicinity of hi=0,
the value of all other functions hj (j=1,2,...,m and j≠i) is less than zero. This leads to vi in the 
order of O(t2). Substituting (10) into (9) gives 
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Consequently, from (11), (6), and (7) we can observe that:  function V is small, ≈O(t2),
compared with t, when all the hi are sufficiently negative, i.e. at those points which are 
inside the object; V>>t+O(t2) at the set of outside points of the object where at least one of 
the hi is greater than t; and V≈t in the vicinity of the boundaries of the object. Fig. 1 
illustrates this situation. 
Now let us consider the situation when t→0 to have a better understanding why 
construction functions (8) and (9) are used as the mathematical transformation. As t→0, vi

tends to be 

Fig. 1. Illustration of V as a function of point x in n-dimensional space. 
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It is well-known that the sum of two positive values is positive, the sum of a positive value 
and a zero is positive, and the sum of two zeroes is zero. Thus the addition operation of vi in
(9) corresponds to the Logic OR if we treat a positive value as a logic value “1” and a zero as 
a logic value “0”. Thus we have 
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This property indicates that when t=0 the sufficient and necessary condition for a point x
which falls into the outside of the object is that  
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Note that the standard form for constraints in optimization problem (1) and (2) is less than 
or equal to zero. Note that although (14) may change to the form (15), it does not allow the 
condition “equal to zero”. 
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In fact, the “equal to zero” case means the point lies on the boundary of the object.  
However, it is not desirable for robot path planning to have the path too close to the 
obstacles. Thus a small positive value Δv can be introduced to control the distance of the 
feasible path to the obstacle. If the following inequality is satisfied by a point x
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then this point must be outside the obstacle determined by (6). If Δv→0, the boundary 
determined by 
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Δ − ≤  tends to be the surface of the obstacle.  

In summary, we have the following result. 
Theorem 1: If the outside and the surface of an object is determined by (h1≥0 ∨ h2≥0 ∨ ... ∨ hm≥0),
then its outside and surface can also be determined by the inequality 
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positive value Δv→0. In other words, the satisfaction of the inequality 
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guarantees that this point falls outside the object. 
A direct conclusion drawn from Theorem 1 is that a GCO problem can be converted into an 
SCO problem by the transformations (8) and (9).  

2.5 Semi-Infinite Constrained Optimization (SICO) 

The semi-infinite constrained optimization problem is to find the minimum of a semi-
infinitely constrained scalar function of several variables x starting at an initial estimate xs.
This problem is mathematically stated as: 
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infinitely constrained scalar function of several variables x starting at an initial estimate xs.
This problem is mathematically stated as: 
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Minimize
 f(x), x ∈ ℜ n,      (17) 
subject to: 
 gi(x) = 0, i = 1, 2, …, t 
 gj(x) ≤ 0, j= t+1, t+2,…, s 

Φk(x, v) ≤ 0, k= 1, 2, …, r 
 xL ≤ x ≤ xU, for all v∈ ℜ 2                   (18) 

where Φk(x, v) is a continuous function of both x and an additional set of variables v. The 
variables v are vectors of at most length two. The aim is to minimize f(x) so that the 
constraints hold for all possible values of Φk(x, v). Since it is impossible to calculate all 
possible values of Φk(x, v), a region, over which to calculate an appropriately sampled set of 
values, must be chosen for v. x is referred to as the unknown variable and v as the 
independent variables.  
The procedure for solving such an SICO with nonlinear constraints is as follows: 
(a) Assign an initial point for x and a region for v;
(b) Apply a search algorithm to find the optimum solution x* and the corresponding 
minimum objective function f(x*).
In the subsequent sections we will gradually illustrate that the 3D path planning problem 
without the calculation of Cspace obstacles can be converted into a standard semi-infinite 
constrained optimization problem. 

3. Obstacle and Robot Representations 
For robot path planning, the first thing is to give each of the objects a mathematical 
representation, including obstacles and robot in the workspace. Modeling and manipulation 
of objects is the research task of Computer Aided Design (CAD), Computer Aided 
Manufacturing (CAM), and Computer Graphics (CG) (Ricci, 1973; Blechschmidt  & 
Nagasuru, 1990; Barr, 1981; Chiyokura, 1988; Hall & Warren, 1990; Berger, 1986; Comba, 
1968; Franklin & Barr, 1981). A solid model should contain an informationally complete 
description of the geometry and topology of a 3D object (Blechschmidt  & Nagasuru, 1990). 
A successful modeling system, in addition to many other features, must be capable of 
representing the object’s surface and be able to unambiguously determine whether a point is 
in the “inside” or “outside” of the object. In CAD, CAM, and CG, there are three traditional 
categories of solid modeling systems, namely boundary representation (B-rep), spatial 
decomposition, and constructive solid geometry (CSG) (Chiyokura, 1988). In our method, 
two different categories of obstacles are distinguished, and CSG together with an 
approximation approach are used to represent the various objects in real world in form of 
inequality constraints. 

3.1 General Representation of Obstacle and Classification 

A 3D object S divides the 3D Euclidean space E 3 into three parts: the inside of the object 
(denoted by I), the outside of the object (denoted by T), and the boundary (denoted by B), with 

 I ∪ B ∪ T = E 3                                                  (19) 
 I ∩ B = B ∩ T = I ∩ T =       (20) 
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Let x=(x, y, z) ∈ E 3 denote a point in 3D space. An obstacle can be described as a set of all 
those points that fall into the inside of the obstacle, that is, an obstacle A can be described as: 

 A = { x | x falls into the inside of A }                                           (21) 

Based on this set-formed representation, we can define an important concept “free space of 
an obstacle” and get a basic condition for a collision-free point. 
Definition 1: Free space of an obstacle: The set of points on or outside of the surface of a 3D 
obstacle is defined as its free space. That is, the free space of an obstacle A (set-formed 
representation) is just A , i.e., the complement of set A.
Proposition 1: The necessary and sufficient condition for a point x to be collision-free from an 
obstacle A is that the point x must fall into the free space of A, that is, x∈ A .
The inside of a 3D object can be mathematically represented by one or several united 
implicit function inequalities. According to the number of the inequalities, we categorize 3D 
obstacles into two groups. 
Definition 2: First group of obstacles: If the inside of a obstacle can be represented by only 
one implicit function inequality, the obstacle is said to be in the first group. That is, if an 
obstacle A can be represented as:  

 A={ x  h(x) <0 }                     (22) 

where h(x) is an implicit function of  x, then A belongs to the first group of obstacles. 
Obviously the free space of A can be represented as the following: 

A = { x  h(x) ≥ 0 }                                 (23) 

Examples of the obstacles in the first group include spheres, ellipsoids, torus, 
superellipsoids and so on (Ricci, 1973; Blechschmidt  & Nagasuru, 1990; Barr, 1981; Berger, 
1986; Franklin & Barr, 1981; Wang & Lane, 1997). A simple example of the first-group 
obstacles is illustrated in Fig. 2. 

Fig. 2. First group of obstacles: inside and outside of an obstacle. 

Definition 3: Second group of obstacles: If the inside of an obstacle must be represented by 
more than one united implicit function inequalities, the obstacle is said to be in the second 
group. That is, if an obstacle A can be represented as: 

 A ={ x  h1(x)<0 ∧ h2(x)<0 ∧ … ∧ hm(x)<0 }                                  (24) 

where hi(x), i=1, 2, …, m, are all implicit functions of x and m is more than one, then A
belongs to the second group of obstacles. 
For the second-group obstacle A, the free space can be represented as the following: 
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A ={ x h1(x)≥ 0 ∨ h2(x)≥ 0 ∨ …∨ hm(x)≥ 0 }                                 (25)

For example, in Fig. 3, the 2-demensioned obstacle is a rectangle whose inside is surrounded 
by four lines h1= x-a =0, h2= -x-a =0, h3= y-b =0, and h4= -y-b =0, where a and b are positive 
values. The inside of the obstacle (denoted as A) is the intersection of regions Ai, i=1, 2, 3, 4,
where each Ai is defined as Ai={ (x, y)  hi <0 }, that is: 

 A = A1 ∩ A2 ∩ A3 ∩ A4

 = { (x, y)  h1 <0 } ∩ { (x, y)  h2 <0 } ∩ { (x, y)  h3 <0 } ∩ { (x, y)  h4 <0 }   
 = { (x, y)  h1 <0 ∧ h2 <0 ∧ h3 <0 ∧ h4 <0 }       (26)

Fig. 3. Second group of obstacles: inside and outside of an obstacle described by more than 
one implicit function inequalities. 

where “∩”denotes intersection operation of a set and “∧” denotes logic AND. The free space 
of the obstacle (just the union of region I, region II, …, region VIII, and the boundary of the 
rectangle), can be represented as: 

A =
43214321 )( AAAAAAAA ∪∪∪=∩∩∩

 = { (x, y)  h1 ≥ 0 } ∪ { (x, y)  h2 ≥ 0 } ∪ { (x, y)  h3 ≥ 0 } ∪ { (x, y)  h4 ≥ 0 }
 = { (x, y)  h1 ≥ 0 ∨ h2 ≥ 0 ∨ h3 ≥ 0 ∨ h4 ≥ 0 }     (27)
where “∪” denotes union operation of a set and “∨” denotes logic OR.

3.2 Construction of Object’s Defining Inequality 

According to section 3.1 we know the inequality “h (x) <0” is a general form to define a 
representation of an object. We name it as defining inequality. How to construct defining 
inequality for specific objects in real world? Here we present an approximated method. 
To represent an object, another form equivalent to “h (x) <0” is “f(x) <1”. The latter form can 
be easily transformed into “h (x) <0”, and is more applicable and convenient for constructing 
defining inequalities of complex objects from those of the simple objects.  In “f(x) <1”, the 
function f(x) is named as defining function.
Definition 4: Defining Function: For an object S with its inside I, outside T, and boundary 
B, a continuous and positive function f(x) is called the defining function of S if for any x =(x, 
y, z)∈E 3, the following hold: 
` f(x) = 1      ⇔   x ∈ B
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 0< f(x) < 1  ⇔   x ∈ I                                       (28)
 f(x) > 1        ⇔   x ∈ T.

For example, a defining function for a sphere with radius R and its centre at the origin of the 
coordinate system is  
 f(x) = (x/R)2 +(y/R)2+(z/R)2,       (29) 
and equality  (x/R)2 +(y/R)2+(z/R)2 = 1  defines the surface of the sphere. 
There are many categories of basic defining functions for object representation (called 
“primitive solids”) such as Quadrics, Superquadrics, and Blobby functions (Berger, 1986).  
a. Quadrics. A frequently used class of objects are the quadric surfaces, which are described 
with second-degree equations (quadratics). They include spheres, ellipsoids, tori, 
paraboloids, and hyperboloids. Quadric surfaces, particularly spheres and ellipsoids, are 
common elements of CAD and Graphics, and are often available in CAD and graphics 
packages as primitives from which more complex objects can be constructed.  
Sphere: In Cartesian coordinates, a spherical surface with radius r centered on the 
coordinate origin is defined as the points (x, y, z) that satisfy the equation 
                             x2+y2+z2 = r2              (30) 
Ellipsoid: An ellipsoidal surface can be described as an extension of a spherical surface, 
where the radii in the three mutually perpendicular directions can have different 
values. The Cartesian representation for points over the surface of an ellipsoid 
centered on the origin is
  (x/rx)2 + (y/ry)2 + (z/rz)2 = 1    (31) 
Slabs, i.e. region bounded by two parallel planes with the expression of (x/a)2 = 1, (y/b)2 = 1, 
(z/c)2 = 1 and circular or elliptical cylinder with the expression of (x/a)2 + (y/h)2 = 1 are 
special cases of this general ellipsoid, here a, b, c are positive real numbers. 
Torus: A torus is a doughnut-shaped object. It can be generated by rotating a circle or other 
conic about a specified axis. The Cartesian representation for points over the surface of a 
torus can be written in the form 
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where r is any given offset value. 
b. Superquadrics. This class of objects is a generalization of the quadric representations and 
provides more flexibility to describe objects (Franklin & Barr, 1981). Superquadrics are 
formed by incorporating additional parameters into the quadric equations to provide 
increased flexibility for adjusting object shapes. The number of additional parameters used 
is equal to the dimension of the object: one parameter for curves and two parameters for 
surfaces. The most useful one for CSG is superellipsoid. 
Superellipsoid.  A Cartesian representation for points over the surface of a superellipsoid is 
obtained from the equation for an ellipsoid by incorporating two exponent parameters: 
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where parameters s1 and s2 can be assigned any positive real value. For s1=s2=1, we get an 
ordinary ellipsoid. Super-ellipsoid is also used to represent the robot in 3D space. We will 
describe this in more detail in the next section. 
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A ={ x h1(x)≥ 0 ∨ h2(x)≥ 0 ∨ …∨ hm(x)≥ 0 }                                 (25)
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Fig. 3. Second group of obstacles: inside and outside of an obstacle described by more than 
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where “∩”denotes intersection operation of a set and “∧” denotes logic AND. The free space 
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A =
43214321 )( AAAAAAAA ∪∪∪=∩∩∩
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3.2 Construction of Object’s Defining Inequality 
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` f(x) = 1      ⇔   x ∈ B
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where r is any given offset value. 
b. Superquadrics. This class of objects is a generalization of the quadric representations and 
provides more flexibility to describe objects (Franklin & Barr, 1981). Superquadrics are 
formed by incorporating additional parameters into the quadric equations to provide 
increased flexibility for adjusting object shapes. The number of additional parameters used 
is equal to the dimension of the object: one parameter for curves and two parameters for 
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where parameters s1 and s2 can be assigned any positive real value. For s1=s2=1, we get an 
ordinary ellipsoid. Super-ellipsoid is also used to represent the robot in 3D space. We will 
describe this in more detail in the next section. 
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c. Blobby functions. Blobby function has been used in computer graphics for representing 
molecular structure, water droplets and other liquid effects, melting objects, and muscle 
shapes in the human body. In robotics, it is also useful for describing obstacles. Several 
models have been developed for representing blobby objects as distribution functions over a 
region of space. One way to do this is to model objects as combinations of Gaussion density 
functions, or “bumps”. A surface function is then defined as 
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used to adjust the amount of blobbiness of the individual objects. Negative values for 
parameter bk can be used to produce dents instead of bumps. 
The defining functions (30) to (34) describe the solids in standard positions and orientations. 
It is usually necessary to translate and rotate the objects to the desired configurations. The 
rigid body transformations are invertible. Thus, the original inside-outside function can be 
used after a function inversion. For example, substituting the translation x=(x’-a) into the 
defining function (x/a)2 = 1 leads to a new defining function [(x’-a)/a]2=1, which  describes 
the surface of an infinite slab centered at x’=a  and with the same thickness of 2a. More 
generally, let M∈R3×3 denote the desired rotation matrix and B=[b1,b2,b3] denote the 
translation vector. Then the translated and rotated solid S is given by:  
 x’ = Mx +B       (35) 
and the new inside-outside defining function is calculated by inverting the translation and 
substituting into the old inside-outside function; i.e. 
                         f ’(x’, y’, z’) = f(x, y, z)             (36) 
where
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M-1 is the inverse of the rotation matrix. Because the rotation matrix is always orthogonal, its 
inverse is the same as its transpose, i.e. M-1=MT.
It’s easy to give out defining functions for basic object such as sphere and ellipsoids, directly 
using primitive solids. But objects in real world are usually complex and cannot be directly 
represented by primitive solids. A natural method to overcome this difficulty is constructing 
complex objects from simple objects via set operations (union, intersection, and difference). 
Given n defining functions f1(x), f2(x), and fn(x) for n objects, respectively, the defining 
function for the intersection of the n objects is given by 
        f I(x)  = max(f1(x), f2(x), …, fn(x))              (38) 
and the surface equation of the intersection of the n objects is given by  
        max(f1(x), f2(x), …, fn(x)) = 1              (39) 
Similarly, the defining function for the union of the n objects is given by 

f U(x)  = min(f1(x), f2(x), …, fn(x)).        (40) 
and the surface equation of the union of the n objects is given by  
                                          min(f1(x), f2(x), …, fn(x)) = 1         (41) 
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For example, the intersection of the three infinite slabs with defining functions: f1(x)= (x/r)2,
f2(x)= (y/r)2, and f3(x)= (z/r)2 has the following surface equation max((x/r)2, (y/r)2, (z/r)2) =1, 
which represent the surface of a cube. 
Although equations (39) and (41) represent the exact surfaces of the intersection and union of the 
n objects, they are not readily manipulated and computed. To realize a smooth blending of the n
objects into a final one, equations (39) and (41) must be approximated by means of suitable 
functions. A certain degree of smoothing has been obtained in a particular technique for the 
detection of intersections of 3D objects (Wang & Cartmell, 1998a), but this method does not apply 
to non-convex objects. A currently wide-used method is the one reported in (Ricci, 1973). We use 
that method here. The intersection and union can be smoothly approximated as: 
 f I(x)  = (f1m (x) + f2 m (x) +  fn m (x))1/ m                (42) 

 f U(x)  = (f1-m (x) + f2 -m (x) + fn- m (x)) -1/ m               (43) 
The resulting approximations of the surfaces for the intersection and union of the n objects 
are respectively represented as: 
 (f1m (x) + f2 m (x) +  fn m (x))1/ m  =  1        (44) 

 (f1-m (x) + f2 -m (x) +  fn- m (x)) -1/ m  = 1     (45) 

where m is a positive real number. m is used to control the accuracy of the smoothing 
approximation and thus is called the control parameter. A larger m produces blending surfaces 
that cling more closely to the primitive objects. Ricci (Ricci, 1973) proved that when m , the 
approximations (42) and (43) give the exact description of the intersection and union respectively.  
These approximations have the following advantages: 
(i) Blending effects are primarily noticeable near surface intersections.  
(ii) f I(x) and f U(x) are differentiable which may avoid the possible difficulties in 
computation due to the differentiability of the max and min functions. 
One problem that has been investigated in the previous literature (Wang & Lane, 1997) is 
the choice of the control parameter m in Equations (44) and (45). Although Ricci (Ricci, 1973) 
suggested that any positive real number may be chosen as the candidate, our experience has 
shown that when using slabs as the basic primitives, some care must be taken. In this case, m
must be an integer, which leads to 2m as an even number. Some examples are given below. 

(a) m = 1, 2, 4, 8, and 16 from inside to outside; (b) m = 3/2, 9/2, and 33/2 from inside to
 outside. 
Fig. 4. Illustration of intersection f1∩f2. f1 = x2, f2 = y2, ((x2)m + (y2)m)1/m = 1. 
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c. Blobby functions. Blobby function has been used in computer graphics for representing 
molecular structure, water droplets and other liquid effects, melting objects, and muscle 
shapes in the human body. In robotics, it is also useful for describing obstacles. Several 
models have been developed for representing blobby objects as distribution functions over a 
region of space. One way to do this is to model objects as combinations of Gaussion density 
functions, or “bumps”. A surface function is then defined as 
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used to adjust the amount of blobbiness of the individual objects. Negative values for 
parameter bk can be used to produce dents instead of bumps. 
The defining functions (30) to (34) describe the solids in standard positions and orientations. 
It is usually necessary to translate and rotate the objects to the desired configurations. The 
rigid body transformations are invertible. Thus, the original inside-outside function can be 
used after a function inversion. For example, substituting the translation x=(x’-a) into the 
defining function (x/a)2 = 1 leads to a new defining function [(x’-a)/a]2=1, which  describes 
the surface of an infinite slab centered at x’=a  and with the same thickness of 2a. More 
generally, let M∈R3×3 denote the desired rotation matrix and B=[b1,b2,b3] denote the 
translation vector. Then the translated and rotated solid S is given by:  
 x’ = Mx +B       (35) 
and the new inside-outside defining function is calculated by inverting the translation and 
substituting into the old inside-outside function; i.e. 
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M-1 is the inverse of the rotation matrix. Because the rotation matrix is always orthogonal, its 
inverse is the same as its transpose, i.e. M-1=MT.
It’s easy to give out defining functions for basic object such as sphere and ellipsoids, directly 
using primitive solids. But objects in real world are usually complex and cannot be directly 
represented by primitive solids. A natural method to overcome this difficulty is constructing 
complex objects from simple objects via set operations (union, intersection, and difference). 
Given n defining functions f1(x), f2(x), and fn(x) for n objects, respectively, the defining 
function for the intersection of the n objects is given by 
        f I(x)  = max(f1(x), f2(x), …, fn(x))              (38) 
and the surface equation of the intersection of the n objects is given by  
        max(f1(x), f2(x), …, fn(x)) = 1              (39) 
Similarly, the defining function for the union of the n objects is given by 

f U(x)  = min(f1(x), f2(x), …, fn(x)).        (40) 
and the surface equation of the union of the n objects is given by  
                                          min(f1(x), f2(x), …, fn(x)) = 1         (41) 
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For example, the intersection of the three infinite slabs with defining functions: f1(x)= (x/r)2,
f2(x)= (y/r)2, and f3(x)= (z/r)2 has the following surface equation max((x/r)2, (y/r)2, (z/r)2) =1, 
which represent the surface of a cube. 
Although equations (39) and (41) represent the exact surfaces of the intersection and union of the 
n objects, they are not readily manipulated and computed. To realize a smooth blending of the n
objects into a final one, equations (39) and (41) must be approximated by means of suitable 
functions. A certain degree of smoothing has been obtained in a particular technique for the 
detection of intersections of 3D objects (Wang & Cartmell, 1998a), but this method does not apply 
to non-convex objects. A currently wide-used method is the one reported in (Ricci, 1973). We use 
that method here. The intersection and union can be smoothly approximated as: 
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The resulting approximations of the surfaces for the intersection and union of the n objects 
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where m is a positive real number. m is used to control the accuracy of the smoothing 
approximation and thus is called the control parameter. A larger m produces blending surfaces 
that cling more closely to the primitive objects. Ricci (Ricci, 1973) proved that when m , the 
approximations (42) and (43) give the exact description of the intersection and union respectively.  
These approximations have the following advantages: 
(i) Blending effects are primarily noticeable near surface intersections.  
(ii) f I(x) and f U(x) are differentiable which may avoid the possible difficulties in 
computation due to the differentiability of the max and min functions. 
One problem that has been investigated in the previous literature (Wang & Lane, 1997) is 
the choice of the control parameter m in Equations (44) and (45). Although Ricci (Ricci, 1973) 
suggested that any positive real number may be chosen as the candidate, our experience has 
shown that when using slabs as the basic primitives, some care must be taken. In this case, m
must be an integer, which leads to 2m as an even number. Some examples are given below. 

(a) m = 1, 2, 4, 8, and 16 from inside to outside; (b) m = 3/2, 9/2, and 33/2 from inside to
 outside. 
Fig. 4. Illustration of intersection f1∩f2. f1 = x2, f2 = y2, ((x2)m + (y2)m)1/m = 1. 
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Figures 4(a) and 4(b) show two examples, using two slabs f1 (x)= x2, f2 (x)= y2 as basic primitives to 
construct a rounded square with different orders (control parameters). In Figure 4(a), m has been 
chosen to be an integer. When using m=1 to approximate the intersection of f1 (x) and f2 (x), the 
result is a circle. As m increases the approximation to the intersection of f1 (x) and f2 (x), a square 
with length and width being 1, get better. It can be seen that when m = 8 or 16, the approximation 
is very close to the square. In Figure 4(b), the values of m are fractions rather than integers so that 
2m is an odd number. The resulting approximate implicit function is not, as could be expected, a 
closed curve. Closed curve here means that the number of real circuits is limited to one and that 
the circuit does not extend to infinity. Only in the first quadrant it is a good approximation of the 
intersection of f1 (x) and f2 (x). Furthermore, if m is chosen as a decimal so that 2m is not an integer, 
then the resulting approximate implicit function is of real value only in the first quadrant: see the 
figures given in (Franklin & Barr, 1981). The above discussion also applies to the union operation. 
If, on the other hand, a circle or an ellipse is used as the primitive to construct a new object, 
any positive number m able to keep the closeness of the intersection and union operation. 
Figures 5 and 6 give two examples. Similarly as m increases, the approximation gets better. 

Fig. 5. Illustration of intersection f1∩f2. f1 =x2+y2, f2 =(x-1)2+y2. m = 0.6, 0.8, 1, 2, 5, and 25 from 
inside to outside. 

Fig. 6. Illustration of union f1∪f2. f1 =[(x+4)2+y2]/32, f2 =[x2+(y+4)2]/32. m= 8, 4, 2, 1, 0.8, and 0.5 
from inside to outside. 
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3.3 Robot Representation 

Since robot is a movable and rotatable object in the workspace, to clearly model and 
dynamically manipulate a robot in 3D space, we must be capable of representing not only its 
shape and size, but also its spatial location and orientation. Robot representation means the 
expression of a point, denoted by x=(x, y, z), on the boundary of the robot as the function of 
its spatial position and orientation variables. Normally there are two mathematical ways to 
describe the boundary of a robot. The first is the implicit function which takes the form of 
g(x, y, z) = 0 for its boundary expression. The second is the parametric form, in which the x,
y, and z are expressed as functions of two auxiliary parameters v=(t1, t2), so that x=x(v)=x(t1,
t2), y=y(v)=y(t1, t2), and z=z(v)=z(t1, t2). In the following context, we will use both the 
implicit and the parametric forms to formulate a robot. 
Let the geometric centre point O of the robot, denoted by O(xo, yo, zo), be chosen as the 
position parameters and let a set of three orientation angles, denoted by (θ1, θ2, θ3), be 
chosen as the orientation parameters. Then a robot can be represented as: 
 { (x, y, z) |  g(x, y, z, xo, yo, zo , θ1, θ2, θ3 ) = 0 }                                    (46)
and its equivalent parametric form can be expressed as: 
 { (x, y, z) | x=x(xo, yo, zo, θ1, θ2, θ3, v),  
 y=y(xo, yo, zo, θ1, θ2, θ3, v),
 z=z(xo, yo, zo, θ1, θ2, θ3, v) (47)
xo, yo , zo together with θ1, θ2, θ3 are responsible for determining the position and orientation 
of a robot. We call (xo, yo, zo, θ1, θ2, θ3) as the robot’s space configuration variables.
The implicit function we use to describe the robot here is the superellipsoid proposed in 
references (Barr, 1981; Berger, 1986), which is a Constructive Solid Geometry (CSG) 
primitive for a broad family of robot and obstacles. The superellipsoid is defined as: 
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Its parametric form is: 
 bx= rx 1coss (t1) 2coss (t2)+ xo ;
 y= ry 1coss  (t1) 2sins (t2)+ yo;      - /2 t1 /2;  0 t2 2        (49)

 z= rz 1sins (t1)+ zo.

where rx , ry , rz define the geometric extent, s1 and s2 specify the shape properties (s1 is the 
squareness parameter in the north-south direction; s2 is the squareness parameter in the 
east-west direction), and xo, yo, zo describe the spatial location. The superellipsoid can be 
constructed from the basic slabs. Some superellipsoid shapes produced by the choice of 
different values for parameters s1 and s2 are shown in Fig. 7 when rx=ry=rz. 
From (Barr, 1981; Berger, 1986), we know that most kinds of robots can be simulated by the 
broad family of easily defined superellipsoid primitives. In addition to the superspherical 
shapes that can be generated using various values for parameters s1 and s2, other 
superquadratic shapes can also be combined to create more complex structures. More 
details about them can be found in (Barr, 1981; Berger, 1986; Wang & Lane, 1997).  
(48) and (49) describe a 3D robot in the standard orientation with θ1=θ2=θ3=0. It’s necessary 
to give a general representation of its spatial orientation. The concepts of Euler angle and 
Euler angle conversion are introduced in the following. 



446 Mobile Robots, Perception & Navigation

Figures 4(a) and 4(b) show two examples, using two slabs f1 (x)= x2, f2 (x)= y2 as basic primitives to 
construct a rounded square with different orders (control parameters). In Figure 4(a), m has been 
chosen to be an integer. When using m=1 to approximate the intersection of f1 (x) and f2 (x), the 
result is a circle. As m increases the approximation to the intersection of f1 (x) and f2 (x), a square 
with length and width being 1, get better. It can be seen that when m = 8 or 16, the approximation 
is very close to the square. In Figure 4(b), the values of m are fractions rather than integers so that 
2m is an odd number. The resulting approximate implicit function is not, as could be expected, a 
closed curve. Closed curve here means that the number of real circuits is limited to one and that 
the circuit does not extend to infinity. Only in the first quadrant it is a good approximation of the 
intersection of f1 (x) and f2 (x). Furthermore, if m is chosen as a decimal so that 2m is not an integer, 
then the resulting approximate implicit function is of real value only in the first quadrant: see the 
figures given in (Franklin & Barr, 1981). The above discussion also applies to the union operation. 
If, on the other hand, a circle or an ellipse is used as the primitive to construct a new object, 
any positive number m able to keep the closeness of the intersection and union operation. 
Figures 5 and 6 give two examples. Similarly as m increases, the approximation gets better. 
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describe the boundary of a robot. The first is the implicit function which takes the form of 
g(x, y, z) = 0 for its boundary expression. The second is the parametric form, in which the x,
y, and z are expressed as functions of two auxiliary parameters v=(t1, t2), so that x=x(v)=x(t1,
t2), y=y(v)=y(t1, t2), and z=z(v)=z(t1, t2). In the following context, we will use both the 
implicit and the parametric forms to formulate a robot. 
Let the geometric centre point O of the robot, denoted by O(xo, yo, zo), be chosen as the 
position parameters and let a set of three orientation angles, denoted by (θ1, θ2, θ3), be 
chosen as the orientation parameters. Then a robot can be represented as: 
 { (x, y, z) |  g(x, y, z, xo, yo, zo , θ1, θ2, θ3 ) = 0 }                                    (46)
and its equivalent parametric form can be expressed as: 
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xo, yo , zo together with θ1, θ2, θ3 are responsible for determining the position and orientation 
of a robot. We call (xo, yo, zo, θ1, θ2, θ3) as the robot’s space configuration variables.
The implicit function we use to describe the robot here is the superellipsoid proposed in 
references (Barr, 1981; Berger, 1986), which is a Constructive Solid Geometry (CSG) 
primitive for a broad family of robot and obstacles. The superellipsoid is defined as: 
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Its parametric form is: 
 bx= rx 1coss (t1) 2coss (t2)+ xo ;
 y= ry 1coss  (t1) 2sins (t2)+ yo;      - /2 t1 /2;  0 t2 2        (49)

 z= rz 1sins (t1)+ zo.

where rx , ry , rz define the geometric extent, s1 and s2 specify the shape properties (s1 is the 
squareness parameter in the north-south direction; s2 is the squareness parameter in the 
east-west direction), and xo, yo, zo describe the spatial location. The superellipsoid can be 
constructed from the basic slabs. Some superellipsoid shapes produced by the choice of 
different values for parameters s1 and s2 are shown in Fig. 7 when rx=ry=rz. 
From (Barr, 1981; Berger, 1986), we know that most kinds of robots can be simulated by the 
broad family of easily defined superellipsoid primitives. In addition to the superspherical 
shapes that can be generated using various values for parameters s1 and s2, other 
superquadratic shapes can also be combined to create more complex structures. More 
details about them can be found in (Barr, 1981; Berger, 1986; Wang & Lane, 1997).  
(48) and (49) describe a 3D robot in the standard orientation with θ1=θ2=θ3=0. It’s necessary 
to give a general representation of its spatial orientation. The concepts of Euler angle and 
Euler angle conversion are introduced in the following. 
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The Euler angles comprise three arbitrary rotations in 3D space to describe the spatial 
orientation of an object. How the Euler angle is defined and how the rotation matrix R is 
obtained are briefly described, with the assumption that we start in frame S with Cartesian 
axes, xold, yold, and zold. A positive (anti-clockwise) rotation of magnitude  about the z axis of 
S is first carried out and the resulting frame is called S'. Then it is followed by a positive 
rotation of magnitude about the y' axis of frame S' and the resulting frame is called S''. 
Finally, a positive rotation of magnitude about the z'' axis of S'' is made and the resulting 
frame is called S'''. Fig. 8 illustrates the combined effect of these steps. 
The combined result of these three rotations is mathematically expressed by the following 
rotation matrix: 

Fig. 8. Euler angle conversion. 
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where R is the rotation matrix:  
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where vector (xold, yold, zold) represents the point in the first coordinate system and (xnew, ynew ,
znew) represent the point in the new coordinate system. The ranges for , , are
 0 2 , 0 , 0 2       (52)
The combination of rotation transformation (52) with (49) results in the parametric form for 
a superellipsoid robot in a general position O(xo, yo, zo) and orientation (θ1, θ2, θ3):
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 x=(rx 1coss (t1) 2coss (t2))l1+(ry 1coss (t1) 2sin s (t2))l2+(rz 1sins (t1))l3+ xo ;
 y=(rx 1coss (t1) 2coss (t2))m1+(ry 1coss (t1) 2sins (t2))m2+(rz 1sins (t1))m3+ yo ;           (53)
 z=(rx 1coss (t1) 2coss (t2))n1+(ry 1coss (t1) 2sin s (t2))n2+(rz 1sins (t1))n3+zo .
where
where the oriental angles θ1, θ2, θ3 are specified by three Euler angles. For more details about 
Euler angle conversion, see (Rose, 1957). 

4. Converting the Robot Path Planning Problem into the Semi-infinite 
Optimization Problem 
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4.1 Collision-free Condition for the Obstacle Avoidance 

According to Proposition 1 and the representations of the two classes of obstacles, we can 
get the condition for a point to be collision-free from an obstacle: 
Proposition 2: The necessary and sufficient condition for a point x to be collision-free from a first-
group obstacle A ={ x  h(x) <0 } is that x∈ A , that is, h(x) ≥ 0.
Proposition 3: The necessary and sufficient condition for a point x to be collision-free from a second-
group obstacle A ={ x  h1(x)<0 ∧ h2(x)<0 ∧ … ∧ hm(x)<0 } is that x∈ A , that is, h1(x)≥ 0 ∨ h2(x)≥ 0 
∨ …∨ hm(x)≥ 0.

Let vi(x)=( 2
ih (x)+t2)1/2+hi(x), (i=1, 2, …, m), and Δv be a small positive value, then according 

to Theorem 1 and Proposition 3, we can get a realistically necessary and sufficient condition 
for a point to be collision-free from a second-group obstacle:
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respect to the realistic requirement of robot path planning, we can represent the free space 
of the second-group obstacle as: 
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Now let’s consider the collision-free condition in the presence of multiple obstacles. In the 
presence of multiple obstacles, the condition for a point to be collision-free from all obstacles 
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where vector (xold, yold, zold) represents the point in the first coordinate system and (xnew, ynew ,
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According to Proposition 1 and the representations of the two classes of obstacles, we can 
get the condition for a point to be collision-free from an obstacle: 
Proposition 2: The necessary and sufficient condition for a point x to be collision-free from a first-
group obstacle A ={ x  h(x) <0 } is that x∈ A , that is, h(x) ≥ 0.
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Now let’s consider the collision-free condition in the presence of multiple obstacles. In the 
presence of multiple obstacles, the condition for a point to be collision-free from all obstacles 
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in the workspace is obviously that the point must fall into the intersection of free spaces of 
all the obstacles. We get: 
Theorem 2: In the presence of multiple obstacles Ai, i=1, 2,…, j; (j>1), the necessary and sufficient 
condition for a point x to be collision-free from all the obstacles is that x∈

1 2 ... jA A A∩ ∩ ∩ .

Suppose in a workspace there are totally s first-group obstacles and m second-group 
obstacles, and they are respectively defined as: 

i={ x gi(x)<0 }, i=1, 2,…, s (56)

j={ x  hj,1(x)<0 ∧ hj,2(x)<0 ∧ … ∧ , jj kh (x)<0 }, j=1, 2, …, m.

We note Gi(x) = - gi(x), i=1, 2,…, s, and consequently the representation of the free space of Ai

changes into: 
 ={ x Gi(x) ≤  0 },       i=1, 2,…, s.    (57) 

Let vj,r (x)=( 2
,j rh (x)+t2)1/2+hj,r (x), (j=1, 2, …, m; r=1, 2,…, kj), and Δvj (j=1, 2, …, m) be small 

positive values. And further let Hj(x)=
,

1

( )
jk

j j r
r

v v x
=

Δ − , then free space of Bj can be 

consequently represented as: 

         
jB ={ x Hj(x)  0 },       j=1, 2, …, m.      (58)

Thus, the condition for a point x to be collision-free from all the obstacles is that: 
∈ S =  

1 2 1 2... ...s mA A A B B B∩ ∩ ∩ ∩ ∩ ∩ ∩

   { x G1(x) ≤ 0 }∩{ x G2(x) ≤ 0 }∩…∩{ x Gs(x) ≤ 0 }
 { x  H1(x)  0 }∩{ x  H2(x)  0 }∩…∩{ x  Hm(x)  0 }
   { x G1(x) ≤ 0 ∧ G2(x) ≤ 0∧…∧ Gs(x) ≤ 0 ∧H1(x)  0 ∧ H2(x)  0 ∧… ∧ Hm(x)  0 } (59)
that is,  
 G1(x) ≤ 0 ∧ G2(x) ≤ 0∧…∧ Gs(x) ≤ 0 ∧ H1(x)  0 ∧ H2(x)  0 ∧… ∧ Hm(x)  0      (60) 

4.2 Constraints of Path Planning Problem 

An obvious necessary and sufficient condition for a robot to be collision-free from multiple 
obstacles is that: all the points inside or on the boundary of the robot fall into the intersection of 
free spaces of all the obstacles. A little weaker, but sufficient in almost all realistic cases, condition 
is that: all the points on the boundary of the robot fall into intersection of all the free spaces.
Suppose in the workspace there are totally s first-group obstacles and m second-group 
obstacles, just as defined in (56), and also a static superellipsoid-shaped robot with 
squareness parameters s1, s2, geometric extent rx, ry, rz, center position O(xo, yo, zo) and 
orientation (θ1, θ2, θ3). According to (53), the set of the robot boundary points is: 
 T = { (x, y, z) |  

 x=(rx 1coss (t1) 2coss (t2))l1+(ry 1coss (t1) 2sin s (t2))l2+(rz 1sin s (t1))l3+ xo

 y=(rx 1coss (t1) 2coss (t2))m1+(ry 1coss (t1) 2sin s (t2))m2+(rz 1sin s (t1))m3+ yo

 z=(rx
1coss (t1) 2coss (t2))n1+(ry

1coss (t1) 2sin s (t2))n2+(rz
1sin s (t1))n3+zo - /2 t1 /2; 0 t2 2 . (61)
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li, mi, ni, (i=1,2,3) are defined same as in (54). Let (x, y, z) = (X(xo, yo, zo, θ1, θ2, θ3, t1, t2), Y(xo, yo,
zo, θ1, θ2, θ3, t1, t2), Z(xo, yo, zo, θ1, θ2, θ3, t1, t2)), and the space configuration vector u= (xo, yo, zo,
θ1, θ2, θ3), then the collision-free condition, according to (60), can be represented as: 
For all v = (t1, t2) that - /2 t1 /2, 0 t2 2 , the following expression hold: 

 G1(X(u, v), Y(u, v), Z(u, v))  0 ∧

 G2(X(u, v), Y(u, v), Z(u, v))  0∧…∧

 Gs(X(u, v), Y(u, v), Z(u, v))  0 ∧

 H1(X(u, v), Y(u, v), Z(u, v))  0 ∧

 H2(X(u, v), Y(u, v), Z(u, v))  0∧…∧

 Hm(X(u, v), Y(u, v), Z(u, v))  0           (62) 

Let Pi (u, v) = Gi(X(u, v), Y(u, v), Z(u, v)) i=1,2,…,s; Qj (u, v) =Hj (X(u, v), Y(u, v), Z(u, v)) j = 
1,2,…, m, then (62) changes into the following: 
 P1(u, v)  0 ∧P2(u, v)  0∧…∧Ps(u, v)  0 ∧
 Q1(u, v)  0 ∧Q2(u, v)  0∧…∧Qm(u, v)  0        (63) 
In path planning the configuration variables also have certain range limits. This requirement 
can be described as: 
 xL ≤ xo ≤ xU, yL ≤ yo ≤ yU, zL ≤ zo ≤ zU , 1≤ θ1 ≤ 1 , 2≤ θ2 ≤ 2, 3≤ θ3 ≤ 3      (64)
that is,  
 uL≤ u≤ uU                                          (65) 
where uL=( xL, yL, zL, 1, 2, 3), uU=( xU, yU, zU, 1, 2, 3).
(63) and (65) form the inequality constraints required in the formulation of the SICO 
problem for path planning. 

4.3 Design of the Objective Function 

There are many ways to design the objective function. In a nonlinear programming problem, 
this function must represent some meaning of the practical problem, for example, minimum 
time, minimum distance, minimum energy, or minimum cost. From a mathematical 
viewpoint, this function must have a minimum lower bound. For the path planning 
problem, the goal configuration must be designed as the unique global minimum of the 
configuration variables. We use a quadratic function of the form (66) as the objective 
function, with the goal configuration point (xg, yg, zg) and goal configuration angles ( 1, 2,

3 ) being its unique global minimum point and satisfying the condition that min f(xo, yo, zo,
θ1, θ2, θ3) = f(xg, yg , zg , 1, 2, 3) = 0.  

 f(xo, yo, zo, θ1, θ2, θ3 )=

 w((xo-xg)2+(yo-yg)2+(zo-zg)2)+(1-w)((θ1- 1)2+(θ2- 2)2+(θ3- 3)2)               (66) 
where w is a non-negative weighted factor that satisfies: 0  w  1. 
In (66), w is used to adjust the relative effects of the spatial position (xo-xg)2+(yo-yg)2+(zo-zg)2

and the spatial orientation (θ1- 1)2+(θ2- 2)2+(θ3- 3)2. When w=1, only the effect of the spatial 
position factor is considered. w can be adaptively adjusted and be revised during the 
searching process. (66), (63), and (65) together form a semi-infinite constrained optimization 
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in the workspace is obviously that the point must fall into the intersection of free spaces of 
all the obstacles. We get: 
Theorem 2: In the presence of multiple obstacles Ai, i=1, 2,…, j; (j>1), the necessary and sufficient 
condition for a point x to be collision-free from all the obstacles is that x∈
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Suppose in a workspace there are totally s first-group obstacles and m second-group 
obstacles, and they are respectively defined as: 
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j={ x  hj,1(x)<0 ∧ hj,2(x)<0 ∧ … ∧ , jj kh (x)<0 }, j=1, 2, …, m.

We note Gi(x) = - gi(x), i=1, 2,…, s, and consequently the representation of the free space of Ai

changes into: 
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is that: all the points on the boundary of the robot fall into intersection of all the free spaces.
Suppose in the workspace there are totally s first-group obstacles and m second-group 
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squareness parameters s1, s2, geometric extent rx, ry, rz, center position O(xo, yo, zo) and 
orientation (θ1, θ2, θ3). According to (53), the set of the robot boundary points is: 
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1coss (t1) 2sin s (t2))n2+(rz
1sin s (t1))n3+zo - /2 t1 /2; 0 t2 2 . (61)
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this function must represent some meaning of the practical problem, for example, minimum 
time, minimum distance, minimum energy, or minimum cost. From a mathematical 
viewpoint, this function must have a minimum lower bound. For the path planning 
problem, the goal configuration must be designed as the unique global minimum of the 
configuration variables. We use a quadratic function of the form (66) as the objective 
function, with the goal configuration point (xg, yg, zg) and goal configuration angles ( 1, 2,

3 ) being its unique global minimum point and satisfying the condition that min f(xo, yo, zo,
θ1, θ2, θ3) = f(xg, yg , zg , 1, 2, 3) = 0.  

 f(xo, yo, zo, θ1, θ2, θ3 )=

 w((xo-xg)2+(yo-yg)2+(zo-zg)2)+(1-w)((θ1- 1)2+(θ2- 2)2+(θ3- 3)2)               (66) 
where w is a non-negative weighted factor that satisfies: 0  w  1. 
In (66), w is used to adjust the relative effects of the spatial position (xo-xg)2+(yo-yg)2+(zo-zg)2

and the spatial orientation (θ1- 1)2+(θ2- 2)2+(θ3- 3)2. When w=1, only the effect of the spatial 
position factor is considered. w can be adaptively adjusted and be revised during the 
searching process. (66), (63), and (65) together form a semi-infinite constrained optimization 
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problem. If we use the initial configuration variables (xs, ys, zs, 1, 2, 3) as the initial estimate 
of the optimization problem, the optimum search for (xo*, yo*, zo*,θ1*, θ2*, θ3*) is equivalent to 
searching the goal configuration variables. If the algorithm is convergent and the problem 
has a solution, then we will find that xo* = xg, yo* = yg, zo*=zg, θ1*= 1, θ2*= 2, θ3*= 3.

In summary, the fundamental idea for this approach is to represent the free space determined by 
the robot and obstacles as inequality constraints for a semi-infinite constrained optimization 
problem in 3D space. The goal configuration is designed as the unique global minimum point of 
the objective function. The initial configuration is treated as the first search point for the 
optimization problem. Then the numerical algorithm developed for solving the semi-infinite 
constrained optimization problem can be applied to solve the robot motion planning problem. 
Every point generated using the semi-infinite constrained optimization method is guaranteed to 
be in free space and therefore is collision free. 

5. Implementation Considerations and Simulation Results 
When implementation is carried out, we only consider the motion of the robot in 3D space. 
The vehicle is modeled as a superellipsoid with different shapes and the obstacles are 
modeled by circle, ellipsoid, cylinder, tetrahedron, cuboids, and various other shapes of 
superellipsoid, which belong to either the first group or the second group. 

5.1 Algorithm Implementation Consideration 

The implementation of the semi-infinite optimization is based on the constrained optimization 
toolbox (The Math Works Inc., 1993), but some modifications have been made. The first is the 
control of the output. In (The Math Works Inc., 1993), only the final result of the vector x= (xo*, yo*, 
zo*, θ1*, θ2*, θ3*) is provided. However, the important thing for the robot path planning problem is 
to generate a smooth path. Therefore, a new function which outputs the current (xo, yo, zo, θ1, θ2,
θ3) at every iteration has been added. The second is the control of the change of Euler Angles in 
the line search algorithm for every iteration. Recall that the principle of developing an algorithm 
in nonlinear programming is to minimize the number of function evaluations, which represents 
the most efficient way for finding the optimum x*. Thus, the changing step is automatically 
chosen as large as possible to minimize the objective function in the line search direction. The 
disadvantage of this strategy when applied to path planning is that it sometimes leads to a non-
smooth path, so a modification has been made. For more details on the implementation of the 
semi-infinite optimization algorithms, see the reference (The Math Works Inc., 1993).  
In the following the results obtained for 3D path planning will be given. In all the 
experiments the algorithm adopted is the Sequential Quadratic Programming (SQP) (The 
Math Works Inc., 1993). The limits of the workspace are: Ol=(-20, -20, -20) and Ou=(60, 60, 
60), thus the workspace is surrounded by a cube with length 80(-20, 60), width 80(-20, 60), 
and height 80(-20,60). The inequality Ol≤O≤Ou will guarantee that the generated path must 
be in the workspace. Let Os=(xs, ys, zs) and s=( 1, 2, 3) denote the initial configuration 
and Og=(xg, yg, zg), g=( 1, 2, 3) denote the goal configuration. The robot’s start and 
goal configurations are chosen as (xs, ys, zs, 1, 2, 3)=(-20, -20, -20, 0, 0, 0) and (xg, yg , zg , 

1, 2, 3 )=(50, 50, 50, 0, 0, 0) respectively . The objective function is defined as: 

 f = w((xo-50)2+(yo-50)2+(zo-50)2)+(1-w)(θ12+θ22+θ32)      (67) 

where w is chosen as 0  w  1.
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5.2 Simulation Results with the First Kind of Objects 

(a) (b) 
Fig. 10. Workspace with nine cylinders and the generated path. (a) 3D view. (b) 2D view. 

In order to demonstrate the convergence of the problem formulation to the goal 
configuration, the workspace considered in example 1 contains seven obstacles as 
shown in Figs. 9(a) and 9(b). The obstacles are represented as spheres with the 
following boundary expressions: (x-20)2 + (y-20)2+ (z-20)2 = 225 x2 + (y-20)2+ (z-20)2 = 
25 (x-40)2 + (y-20)2+ (z-20)2 = 25 (x-20)2 + y2+ (z-20)2 = 25 (x-20)2 + (y-40)2+ (z-20)2 = 
25 (x-20)2 + (y-20)2+ z2 = 25 (x-20)2 + (y-20)2+ (z-40)2 = 25.The robot is represented by 
a superellipsoid with rx=5, ry=4, rz=3, s1=s2=1, which is an ellipsoid. Figs. 9(a) and 9(b) 
show the same generated path, the same obstacles and the same robot, but from 
different view angles. It can be observed that the optimization algorithm does converge 
to the goal and a smooth path has been generated. 
In order to illustrate the suitability of the approach for different obstacle shapes, we have 
shown another distributed-obstacle situation as shown in Figs. 10(a) and 10(b). The results 
simulate a real world path planning task encountered in offshore industry. The designed 
workspace contains a set of cylinders which could be easily recognized as pipelines or a 
base of an offshore structure. In this example, we have 9 cylinders to represent obstacles 
with the following boundary equations: x2 + y2 = 16, x2 + (y-20)2= 16, x2 + (y-40)2 =16, (x-
20)2 + y2 =16, (x-20)2 + (y-20)2 = 16, (x-20)2 + (y-40)2 = 16, (x-40)2 + y2 = 16, (x-40)2 + (y-20)2 = 
16, (x-40)2 + (y-40)2 = 16 where -20 ≤ z≤ 60. The robot is represented by a superellipsoid 
with rx=5, ry=4, rz=3, s1=s2=1.5, which is a superellipsoid. Fig. 10(a) is a 3D view and Fig. 
10(b) is a 2D view. In this example the 2D view clearly shows the collision avoidance of 
the robot from the obstacles. From Figs. 10(a) and 10(b), we can also observe that the 
generated path passes behind the cylinder without touching it, and the plotted path 
avoids all the obstacles and converges to the goal in a smooth way.  
In addition to the simulation results shown in Figs. 9 and 10, we have carried out another 
test with mixed superellipsoids and cylinders as shown in Figs. 11(a) and 11(b). In this test, 
five obstacles are included and the robot is represented by a superellipsoid with rx=8, ry=8,
rz=6, s1=s2=0.8. The boundary expressions for the obstacles are: 2 cylinders (x-40)2 + y2 = 
144, 30 ≤ z≤ 50, (x-30)2 +( y-30)2=100, -5≤ z ≤ 30, 3 superellipoids: ((x-15)/12) + ((y+10)/8) + ((z-
12)/12) =1, ((x- 15)/20)2/3 + ((y- 40)/18)2/3 + ((z+10)/12)2/3 =1, (x-10)2 + (y-10)2+ (z-10)2 = 100. Fig. 
11(b) is an enlarged view of Fig. 11(a). The experimental results show that the robot can 
adjust its orientation angles autonomously to reach the goal point. 
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Fig. 11. Simulation result with mixed superellipsoids and cylinders. (a) 3D view. (b) another 
3D view. 

5.3 Simulation Results with Both the First and Second Kinds of Objects 

Figs. 12(a), 12(b), and 12(c) show the experimental results with the environment including a 
triangular pyramid and a cube which belong to the second group and a cylinder-like 
obstacle belonging to the first group. The triangular pyramid’s four vertexes are: V0=(-5,-10,-
15), V1=(20,15,-15), V2=(5,-15,10), V3=(5,20,10) and its outside is represented by {(h1≥-x-y-0.6z-
14) ∪ (h2≥-x+0.4z+1) ∪ (h3≥x+0.6z-11) ∪ (h4≥-x+y-0.8z-7)}.The cube is represented by 10 ≤ x≤
25, 25≤ y≤ 45, 25≤ z≤ 40, while the cylinder is descried as (x-35)2 + (y-20) ≤ 64, -10 ≤ z≤ 50. The 
robot is represented by a superellipsoid with rx=8, ry=6, rz=4, s1=s2=1.It is obvious that the 
path generated clearly avoids the obstacle and converges to the goal.  

(a) (b) 

(c)
Fig. 12. Simulation result with both the first and the second kinds of objects. (a)  3D view. (b) 
another 3D view. (c) 2D view. 
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Figs. 13(a) and 13(b) show the results simulating another typical real world path planning 
task encountered in offshore industry. The designed workspace contains a cylinder and 
several cubes which may be models for pipelines or a base of an offshore structure. The 
cylinder is described as follows: (x-20)2 + (y-20) 2 ≤ 49, -10 ≤ z≤ 50. The four cubes are 
represented as: {0 ≤ x≤ 10, 5 ≤ y≤ 10, -15 ≤ z≤ 55}, {30 ≤ x≤ 40, 30 ≤ y≤ 35, -15 ≤ z≤ 55},{5 ≤ x≤
10, 30 ≤ y≤ 40, -15 ≤ z≤ 55},{30 ≤ x≤ 35, 0 ≤ y≤ 10, -15 ≤ z≤ 55}. The robot is represented by a 
superellipsoid with rx=6, ry=4, rz=3, s1=s2=1.2. Figs. 13(a) and 13(b) show the clear avoidance 
of the obstacles by the robot and the convergence to the goal. 

(a) (b) 
Fig. 13. Simulation result with four cubes and one cylinder. (a)  2D view. (b) 3D view. 

5.4 Discussion about Efficiency of the Approach 

A criterion for efficiency analysis used by many previous path planning algorithms is the 
worst case computational complexity when the robot path planning problem is formulated 
as a discrete mathematics problem (Kreyszig, 1993; Rosen, 1991), based on the assumption 
that objects are represented by polygons or polyhedrons and a discrete search algorithm is 
used. However in constrained optimization there is no such a criterion corresponding to that 
used in discrete mathematics for measuring the worst case computational complexity, 
because the time used depends on both the size of the problem (i.e. the number of the 
equalities) and the form of the objective function and the constraints. 
As shown in our simulation experiments, the time for the robot to take a step varies, because at 
some places it must adjust its pose or step size, and at other places it doesn’t have to. In the 
simulation experiment shown in Figs. 10 (a) and 10(b), the average time for one step is about 0.8s 
with Intel Pentium 4 CPU running the algorithm realized in Matlab. Besides improving the 
performance of the implementation and the algorithm itself, there is still big room for efficiency 
improvement. For example, in our experiments the value of the distance that robot is permitted to 
be close to obstacles is so small (close to 0) that sample points of the surface of the robot 
(represented as a superellipsoid) and the obstacles must be very dense, otherwise collisions are 
likely to occur. Density of sample points is one of the main sources of the computational 
complexity, but in real applications, the distance is usually bigger and the sample points may be 
sparse, and consequently the time needed for computation may be much less. 
To precisely analyze the computational complexity of our method is an important, necessary, 
but difficult job. It must include determining proper complexity description model, 
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analyzing performance of the implementation of SCO algorithm which is applied in our 
method, etc. We hope to address it in further papers. 

6. Conclusions 
In this chapter, inequality transformation and semi-infinite constrained optimization techniques 
have been presented for the development of a realistic Robot Path Planning approach. We have 
shown the principle of converting the path planning problem into the standard Semi-infinite 
Constrained Optimization problem. This direct path planning approach considers the robot’s 3D 
shape and is totally different from the traditional approaches in the way that the calculation of 
the Cspace obstacles is no longer needed. From the viewpoint of robot path planning, this paper 
presents a new way of using a classical engineering approach. The generality of representing the 
free space of all the objects using the inequalities gi(x)≤0 makes this optimization-based approach 
suitable for different object shapes, and it has significantly simplified the construction of the 
objects by sensors and computer vision systems. The iterative nature of the search for the 
optimization point makes it particularly suitable for on-line sensor-based path planning.  Once a 
new object is detected, a new inequality can be added before running the next iteration. When an 
old obstacle is passed, its corresponding inequality may also be deleted. Every time when an 
inequality is added or deleted, a new optimization problem is formed. The current variable is 
always treated as the initial point of the optimization problem and search starts again. This 
mechanism indicates this approach is efficient and particularly suitable for on-line path planning. 
Other advantages of the approaches include that mature techniques developed in nonlinear 
programming theory with guarantee of convergence, efficiency, and numerical robustness 
can be directly applied to the robot path planning problem. The semi-infinite constrained 
optimization approach with an adaptive objective function has the following advantages: 

1) The robot does not need to be shrunk to a point, the obstacles do not need to be 
expended to Cspace, and the entire course of path planning can be carried out in 
real 3D space. 

2) The goal point is guaranteed to be the only global minimum of the objective function.  
3) The standard search techniques which have been developed for more than thirty 

years in the nonlinear programming field can be used.  
4) The approach is suitable for on-line task planning.  

The investigation carried out in this chapter has also indicated that robot path planning can 
be formulated in different ways.  It’s important to seek more efficient and realistic methods 
for problem formalization. Computational complexity analysis must be developed based on 
a proper problem formulation which considers enough constraints. Although the 
fundamentals for the nonlinear programming theory have existed for many years, they have 
not attracted enough attention for such applications. The context presented in this chapter 
covers a wide range of subjects such as robot kinematics, CAD, CAM, computer graphics 
and nonlinear programming theory, and a basic framework has been developed. Our 
treatment is consistent. The study presented in this chapter has shown its great potential as 
an on-line motion planner. The future work includes the extension of the principle 
developed here to the obstacle avoidance problem for manipulator without the calculation 
of Cspace obstacles, and the adoption of the interpolation techniques to deal with the local 
minima problem (Wang et al., 2000).
The constraints added by the kinematics and the shape of a manipulator are more complex 
than the subsea vehicle we have done in this chapter.  In addition, for a car_like moving 
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robot, the nonholonomic constraints must be taken into account. Path planning without the 
Cspace computation and with the consideration of those practical issues is still the challenge 
we are facing. 
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analyzing performance of the implementation of SCO algorithm which is applied in our 
method, etc. We hope to address it in further papers. 

6. Conclusions 
In this chapter, inequality transformation and semi-infinite constrained optimization techniques 
have been presented for the development of a realistic Robot Path Planning approach. We have 
shown the principle of converting the path planning problem into the standard Semi-infinite 
Constrained Optimization problem. This direct path planning approach considers the robot’s 3D 
shape and is totally different from the traditional approaches in the way that the calculation of 
the Cspace obstacles is no longer needed. From the viewpoint of robot path planning, this paper 
presents a new way of using a classical engineering approach. The generality of representing the 
free space of all the objects using the inequalities gi(x)≤0 makes this optimization-based approach 
suitable for different object shapes, and it has significantly simplified the construction of the 
objects by sensors and computer vision systems. The iterative nature of the search for the 
optimization point makes it particularly suitable for on-line sensor-based path planning.  Once a 
new object is detected, a new inequality can be added before running the next iteration. When an 
old obstacle is passed, its corresponding inequality may also be deleted. Every time when an 
inequality is added or deleted, a new optimization problem is formed. The current variable is 
always treated as the initial point of the optimization problem and search starts again. This 
mechanism indicates this approach is efficient and particularly suitable for on-line path planning. 
Other advantages of the approaches include that mature techniques developed in nonlinear 
programming theory with guarantee of convergence, efficiency, and numerical robustness 
can be directly applied to the robot path planning problem. The semi-infinite constrained 
optimization approach with an adaptive objective function has the following advantages: 

1) The robot does not need to be shrunk to a point, the obstacles do not need to be 
expended to Cspace, and the entire course of path planning can be carried out in 
real 3D space. 

2) The goal point is guaranteed to be the only global minimum of the objective function.  
3) The standard search techniques which have been developed for more than thirty 

years in the nonlinear programming field can be used.  
4) The approach is suitable for on-line task planning.  

The investigation carried out in this chapter has also indicated that robot path planning can 
be formulated in different ways.  It’s important to seek more efficient and realistic methods 
for problem formalization. Computational complexity analysis must be developed based on 
a proper problem formulation which considers enough constraints. Although the 
fundamentals for the nonlinear programming theory have existed for many years, they have 
not attracted enough attention for such applications. The context presented in this chapter 
covers a wide range of subjects such as robot kinematics, CAD, CAM, computer graphics 
and nonlinear programming theory, and a basic framework has been developed. Our 
treatment is consistent. The study presented in this chapter has shown its great potential as 
an on-line motion planner. The future work includes the extension of the principle 
developed here to the obstacle avoidance problem for manipulator without the calculation 
of Cspace obstacles, and the adoption of the interpolation techniques to deal with the local 
minima problem (Wang et al., 2000).
The constraints added by the kinematics and the shape of a manipulator are more complex 
than the subsea vehicle we have done in this chapter.  In addition, for a car_like moving 
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robot, the nonholonomic constraints must be taken into account. Path planning without the 
Cspace computation and with the consideration of those practical issues is still the challenge 
we are facing. 
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1. Introduction 
Robot navigation in dynamic environments and tracking of moving objects are among the 
most important topics addressed by the robotics community. These problems are more 
difficult than classical navigation problems, where the robot navigates to reach a 
stationary object. More interesting and complex applications involve moving targets. For 
example, applications such as dynamic surveillance can benefit from the tracking and 
navigation towards a moving goal. In surveillance problems the aim is for a robot to keep 
an evader in the field of view of the robot's sensory system (which consists of vision 
sensors in most cases). While adequate solutions to the problem of navigation towards a 
stationary goal have been elaborated, the problem of navigation and tracking of moving 
objects is still an open problem. This problem is fairly new and much more difficult. 
Algorithms developed in the motion planning community are highly effective at 
computing open loop controls, but cannot provide closed loop systems. This makes these 
algorithms less appropriate for tracking and navigation towards a moving object. This 
problem is a real-time problem that requires a closed loop strategy. The problem of 
navigation towards a moving goal in the presence of obstacles is a more difficult problem. 
The problem combines both local and global aspects. The local navigation aspect deals 
with the navigation on a small scale, where the primary problem is obstacle avoidance. 
The global navigation aspect deals with a larger scale, where the problem resides in 
reaching the goal. 
Various methods based on different strategies such as computer vision, fuzzy logic, and 
Lyapunov theory have been suggested to solve this problem. Methods used for tracking 
moving targets can be classified into two different families: model-based methods and 
feature-based methods. Model-based methods aim to build a model of the tracking 
problem. Feature-based methods track the features of the object. Vision-based methods 
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1. Introduction 
Robot navigation in dynamic environments and tracking of moving objects are among the 
most important topics addressed by the robotics community. These problems are more 
difficult than classical navigation problems, where the robot navigates to reach a 
stationary object. More interesting and complex applications involve moving targets. For 
example, applications such as dynamic surveillance can benefit from the tracking and 
navigation towards a moving goal. In surveillance problems the aim is for a robot to keep 
an evader in the field of view of the robot's sensory system (which consists of vision 
sensors in most cases). While adequate solutions to the problem of navigation towards a 
stationary goal have been elaborated, the problem of navigation and tracking of moving 
objects is still an open problem. This problem is fairly new and much more difficult. 
Algorithms developed in the motion planning community are highly effective at 
computing open loop controls, but cannot provide closed loop systems. This makes these 
algorithms less appropriate for tracking and navigation towards a moving object. This 
problem is a real-time problem that requires a closed loop strategy. The problem of 
navigation towards a moving goal in the presence of obstacles is a more difficult problem. 
The problem combines both local and global aspects. The local navigation aspect deals 
with the navigation on a small scale, where the primary problem is obstacle avoidance. 
The global navigation aspect deals with a larger scale, where the problem resides in 
reaching the goal. 
Various methods based on different strategies such as computer vision, fuzzy logic, and 
Lyapunov theory have been suggested to solve this problem. Methods used for tracking 
moving targets can be classified into two different families: model-based methods and 
feature-based methods. Model-based methods aim to build a model of the tracking 
problem. Feature-based methods track the features of the object. Vision-based methods 



462 Mobile Robots, Perception & Navigation 

are among the most important feature-based methods. These methods are widely used for 
tracking and reaching moving objects (Tsai et al., 2003; Oh & Allen, 2001). Other authors 
consider the problem of tracking humans using a wheeled mobile robot. The suggested 
algorithms can be used in different surveillance applications. Feyrer and Zell (Feyrer & 
Zell, 2001) suggested an algorithm that allows the detection, tracking and pursuing of 
humans in real time. The navigation is based on a potential field method and the 
detection process is based on an approach that combines colour, motion, and contour 
information. An algorithm for tracking humans from a moving platform is suggested in 
(Davis et al., 2000). Visual servoing methods are also used to keep the target in the field of 
vision of the robot (Thuilot et al., 2002). This problem is related to the problem of 
positioning and localization of the robot with respect to the moving object (Kim et al., 
2001; Chaumette et al, 1999). 
Even though vision-based methods are widely used, they may suffer from the following 
drawbacks: 

- Most vision-based methods use complex algorithms that are computationally 
expensive, especially to track fast moving objects.  

- It is necessary to keep the moving object in the field of view of the camera. This 
requires camera calibration. However, this task is difficult for manoeuvring and 
fast moving targets. 

Several solutions have been suggested to solve these problems. Data reduction and the use 
of fast algorithms are among the most used solutions. 
The problem of cooperative hunting behaviour by mobile robots troops is considered in 
(Yamaguchi, 2003). Clearly, this problem evolves navigation towards the prey. This task is 
accomplished using a model-based method.  
Even though vision sensors are the most used, other sensors such as LADAR sensors, and 
acoustic sensors (Parker et al., 2003) are also used for target tracking and interception. 
Sensor planning and control for optimally tracking of targets is discussed in (Spletzer & 
Taylor, 2003). The existence of a strategy to maintain a moving target within the sensing 
range of an observer is discussed in (Murrieta et al., 2003). 
Methods from control theory are also used for target-tracking. In (Lee et al., 2000), 
Lyapunov theory is used to derive an asymptotically stable solution to the tracking 
problem. A combination between control theory and artificial potential field methods is 
discussed in (Adams, 1999), where the asymptotic stability is discussed in details. 
Model-based methods can be divided into three main families: 

- Methods based on artificial intelligence. 
- Methods based on optimal control and differential games theory. 
- Methods based on geometric and kinematics equations. 

In many situations, the robot tracks an intelligent evader. In this case more elaborate 
control strategies are needed. Methods based on artificial intelligence are used mainly 
by researchers in the robotics community to pursue and keep a moving target in the 
field of view of the robot. Optimal control methods are widely used in the aerospace 
community. These methods require an estimation of the time-to-go, which is a difficult 
task in practice. Kinematics-based methods are based on the derivation of a kinematics 
model for the motion. Kinematics-based methods can be used in various applications 
in surveillance and domain coverage. One important advantage of model-based 
methods is that it is possible to implement these methods using different types of 
sensors.
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Here, we suggest a novel approach for tracking of and navigation towards a moving 
object. Our approach is based on a combination of the kinematics equations with 
geometric rules. The goal is to derive a closed loop control law for the robot's orientation 
angle. Since the target's motion is not a-priori known to the robot, it is necessary to design 
an online control law. Our approach combines the pursuit law with a rendezvous strategy 
and consists of a closed loop strategy. Thus, the control law for the robot's orientation 
angle has two terms. The first term corresponds to the pursuit, and the second term 
corresponds to the rendezvous. In the pursuit behavior the robot tracks or follows the 
path of the target. In the rendezvous behavior the robot does not follow or move towards 
the goal, but it moves towards a point that both the robot and the goal will reach 
simultaneously. 
Our navigation law depends on a real variable, which we call the navigation parameter. 
This parameter allows controlling the navigation law. Thus, we can obtain a pure pursuit 
behavior or a pure rendezvous behavior, or a combination between the pursuit and the 
rendezvous. The navigation parameter can be time-varying too. In the presence of obstacles, 
the navigation law is combined with an obstacle avoidance algorithm; therefore, the robot 
moves in two modes: the tracking mode and the obstacle avoidance mode. We also suggest 
studying the control law in terms of the optimality of the path traveled by the robot. The 
method presents various advantages over other classical methods such as: 

- Robustness: Kinematics-based methods are well-known by their robustness. 
- Model-based: Our method is model-based, which means that the method can be 

implemented using different types of sensors.  
- Proof of correctness: Our method allows us to rigorously prove that the robot 

navigating under our control law will reach the target successfully. 
The algorithm discussed here relies on a localization technique to determine the visibility 
angle. However, only the control loop is discussed. The localization problem and the 
influence of the sensory system are beyond the scope of this study. 

2. Preliminaries: Geometry and kinematics 
In this section, we introduce several important concepts and definitions. The workspace 
consists of a subset  of IR2. The robot and the goal are shown in figure 1. The reference 
point of the robot is denoted by R. The goal point is defined to be ( ) χ⊂GG yx , . It is denoted 
by G. Let point O be the origin of an inertial reference frame of coordinates. With reference 
to figure 1, we define the following quantities: 

1. The visibility line robot-goal: This is the imaginary straight line that starts at the 
robot’s reference point and is directed towards the goal. This line is defined even in 
the presence of obscurities. 

2. Based on the visibility line, we define the visibility angle denoted by  as shown in 
figure 1. is a function of the robot’s and the goal’s coordinates. 

3. The visibility angles for the robot and the goal are given by R and G,
respectively. 

4. rR and rG denote the Euclidian distances from the origin to the reference points of the 
robot and the goal, respectively. The relative distance robot-goal is denoted by r.

5. The robot’s coordinates in the Cartesian frame are given by (xR,yR), and the goal’s 
coordinates are given by (xG ,yG). The position error vector is given by [xe , ye]T, with 
xe = xG - xR, ye = yG - yR.
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Taylor, 2003). The existence of a strategy to maintain a moving target within the sensing 
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- Methods based on optimal control and differential games theory. 
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In many situations, the robot tracks an intelligent evader. In this case more elaborate 
control strategies are needed. Methods based on artificial intelligence are used mainly 
by researchers in the robotics community to pursue and keep a moving target in the 
field of view of the robot. Optimal control methods are widely used in the aerospace 
community. These methods require an estimation of the time-to-go, which is a difficult 
task in practice. Kinematics-based methods are based on the derivation of a kinematics 
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angle. Since the target's motion is not a-priori known to the robot, it is necessary to design 
an online control law. Our approach combines the pursuit law with a rendezvous strategy 
and consists of a closed loop strategy. Thus, the control law for the robot's orientation 
angle has two terms. The first term corresponds to the pursuit, and the second term 
corresponds to the rendezvous. In the pursuit behavior the robot tracks or follows the 
path of the target. In the rendezvous behavior the robot does not follow or move towards 
the goal, but it moves towards a point that both the robot and the goal will reach 
simultaneously. 
Our navigation law depends on a real variable, which we call the navigation parameter. 
This parameter allows controlling the navigation law. Thus, we can obtain a pure pursuit 
behavior or a pure rendezvous behavior, or a combination between the pursuit and the 
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the navigation law is combined with an obstacle avoidance algorithm; therefore, the robot 
moves in two modes: the tracking mode and the obstacle avoidance mode. We also suggest 
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- Model-based: Our method is model-based, which means that the method can be 

implemented using different types of sensors.  
- Proof of correctness: Our method allows us to rigorously prove that the robot 

navigating under our control law will reach the target successfully. 
The algorithm discussed here relies on a localization technique to determine the visibility 
angle. However, only the control loop is discussed. The localization problem and the 
influence of the sensory system are beyond the scope of this study. 

2. Preliminaries: Geometry and kinematics 
In this section, we introduce several important concepts and definitions. The workspace 
consists of a subset  of IR2. The robot and the goal are shown in figure 1. The reference 
point of the robot is denoted by R. The goal point is defined to be ( ) χ⊂GG yx , . It is denoted 
by G. Let point O be the origin of an inertial reference frame of coordinates. With reference 
to figure 1, we define the following quantities: 

1. The visibility line robot-goal: This is the imaginary straight line that starts at the 
robot’s reference point and is directed towards the goal. This line is defined even in 
the presence of obscurities. 

2. Based on the visibility line, we define the visibility angle denoted by  as shown in 
figure 1. is a function of the robot’s and the goal’s coordinates. 
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respectively. 

4. rR and rG denote the Euclidian distances from the origin to the reference points of the 
robot and the goal, respectively. The relative distance robot-goal is denoted by r.

5. The robot’s coordinates in the Cartesian frame are given by (xR,yR), and the goal’s 
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Fig. 1. A representation of the geometry. 

The movement of the robot is controlled by its parameterized linear velocity vR(t) and 
angular velocity R(t). The kinematics of the robot are described by the following equation: 
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with RR ωθ = , where R is the robot’s orientation angle with respect to the positive x-axis. 
The kinematics equations describe the relationship between the control functions and the 
resulting trajectories. The goal is a moving point that moves according to the following 
kinematics equations: 
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where vG is the goal’s linear velocity and G is the goal’s orientation angle. vG and G are not 
a-priori known to the robot. However, it is assumed that the robot has a sensory system that 
allows to obtain these quantities in addition to the goal’s position in real time. The 
kinematics model given by system (1) is in fact the kinematics model of a wheeled mobile 
robot of the unicycle type. The position of the robot in the reference frame of coordinates is 
given by the vector: 
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In a similar way, the position of the goal is given by the vector: 
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where yx uu ,  are the unit vectors along the x- and y-axes, respectively. The time derivative of 

Rr and Gr  gives the velocity vectors as follows: 
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By taking the time derivative of xR, yR, xG, and yG, we obtain: 
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By replacing RR yx ,  by their values in the kinematics model of the robot, we obtain: 
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By replacing GG yx ,  by their values in the kinematics model of the goal, we obtain: 
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Now we consider the relative range between the robot and the goal which is given by 

RG rrr −=   (9) 

Its time derivative gives the relative velocity 

RG rrr −=   (10) 

The relative velocity can be decomposed into two components along and across the 
visibility line robot-goal. This allows us to obtain: 
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The relative kinematics model given by system (11) is very important in the formulation of 
our navigation-tracking problem. This model gives a good description of the motion of the 
goal as seen by the robot. The first equation gives the relative distance robot-goal. A 
decreasing range corresponds to 0<r . The second equation gives the rate of turn of the 
goal with respect to the robot. The sign of ηθ −G  indicates whether the goal is approaching 
or moving away from the robot. For ] [2/,2/ ππηθ −∈−G  the goal is moving away from the 
robot. For ] [2/3,2/ ππηθ ∈−G  the goal is approaching from the robot. System (11) is highly 
nonlinear. Its solution gives the robot’s path in the plane ( r ,  ). However, the analytical 
solution is difficult except in a few particular cases.

3. Problem statement 
The workspace is cluttered with N stationary obstacles denoted by Bi, (i=1,..,N). The robot 
moves in the workspace according to the kinematics equations given by (1). The path of the 
robot is given by PR(t). The path of the moving goal is given by PG(t). This path is not a-priori 
known to the robot. Our goal is to design a closed loop control law for the robot in order to 
reach the goal and avoid possible collisions with obstacles. This can be stated as follows: 
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The movement of the robot is controlled by its parameterized linear velocity vR(t) and 
angular velocity R(t). The kinematics of the robot are described by the following equation: 
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where vG is the goal’s linear velocity and G is the goal’s orientation angle. vG and G are not 
a-priori known to the robot. However, it is assumed that the robot has a sensory system that 
allows to obtain these quantities in addition to the goal’s position in real time. The 
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robot of the unicycle type. The position of the robot in the reference frame of coordinates is 
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Now we consider the relative range between the robot and the goal which is given by 
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The relative kinematics model given by system (11) is very important in the formulation of 
our navigation-tracking problem. This model gives a good description of the motion of the 
goal as seen by the robot. The first equation gives the relative distance robot-goal. A 
decreasing range corresponds to 0<r . The second equation gives the rate of turn of the 
goal with respect to the robot. The sign of ηθ −G  indicates whether the goal is approaching 
or moving away from the robot. For ] [2/,2/ ππηθ −∈−G  the goal is moving away from the 
robot. For ] [2/3,2/ ππηθ ∈−G  the goal is approaching from the robot. System (11) is highly 
nonlinear. Its solution gives the robot’s path in the plane ( r ,  ). However, the analytical 
solution is difficult except in a few particular cases.

3. Problem statement 
The workspace is cluttered with N stationary obstacles denoted by Bi, (i=1,..,N). The robot 
moves in the workspace according to the kinematics equations given by (1). The path of the 
robot is given by PR(t). The path of the moving goal is given by PG(t). This path is not a-priori 
known to the robot. Our goal is to design a closed loop control law for the robot in order to 
reach the goal and avoid possible collisions with obstacles. This can be stated as follows: 
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where  is a small real number and tf is the interception time. We will also design a control 
law for the robot linear velocity to keep the goal within a given coverage range from the 
robot.
It is assumed that  

1. The control input for the robot is [vR, R] instead of [vR, R].
2. The robot is faster than the goal. This means that vR > vG.
3. The robot does not have a pre-decided knowledge of the environment. However, it 

has a sensory system that allows detecting obstacles and obtaining the necessary 
information on the goal. As we mentioned previously, the influence of the sensory 
system is beyond the scope of this study. 

This problem is difficult, because it combines two different aspects, navigation towards the 
goal and obstacle avoidance. Navigation towards the goal has a global aspect while obstacle 
avoidance has a local aspect. The goal can perform two different types of motion, namely 
accelerating motion, and non-accelerating motion. In the case of an accelerating motion, 
either the linear velocity or the orientation angle of the goal is time- varying. In the case of a 
non-accelerating motion, both G and vG are constant. It is more difficult for the robot to 
reach an accelerating goal. 

4. The control law 
As we mentioned previously there exist two approaches for navigating a robot towards a 
moving object. The first approach is the pursuit (Belkhouche & Belkhouche, 2005), the 
second approach is the rendezvous. In the pursuit, the robot follows the moving object 
directly. That is the robot is always heading towards the goal at any time. This is the 
most obvious way to reach a moving goal. Various sensor-based algorithms use the 
pursuit even though they do not model the problem using the pursuit equations. The 
rendezvous approach uses a completely different principle which is the opposite 
extreme of the pursuit. In the rendezvous, the robot does not follow the path of the goal, 
but it moves towards a point where the robot and the goal will arrive at the same time. 
To accomplish this task the robot moves in lines that are parallel to the initial line of 
sight. The strategy discussed in this chapter is a new strategy that combines the pursuit 
and the rendezvous. In this approach, the robot orientation angle is given by the 
following equation: 

( )( )ηθηθ −+= −
GvR Kc sinsin 1   (13) 

where c is a real number that satisfies 0  c  1. c is the control variable of the robot’s 
orientation angle. RGv vvK =  is the speed ratio. Equation (13) is a closed loop control law, 
where the control input depends on the state of the system, mainly the state of the goal. For 
c = 0, the control law acts like the pure pursuit. For c = 1, the control law acts like the pure 
rendezvous. For 0 < c < 1, the control law has a behaviour that combines the rendezvous 
and the pursuit. For example, c=0.9 corresponds to 90% rendezvous and 10% pursuit. The 
control law given by (13) allows to reach the goal from any arbitrary initial position when 
the assumptions stated previously are satisfied. The main result concerning the navigation 
using the control law given by (13) is stated as follows: 
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Proposition: 
Under the control law given by (13), the robot reaches the goal from any initial state when 
vR > vG.

Proof 
The proof is based on the differential equation of the relative range rate; recall that 0<Rr
corresponds to a decreasing range. We put 

( )( )ηθλ −= −
GvK sinsin 1  (14) 

Under the control law the relative range varies as follows: 
( ) ( )ληθ cvvr RGG coscos −−=   (15)

Recall that under the assumption that the robot is faster than the goal we have Kv < 1. The inverse of 
the sine function maps the domain [-1, 1] to [- /2,  /2], and since Kv < 1, we have 

( )( ) ] [2,2sinsin 1 ππηθλ −∈−= −
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The cosine function of  is strictly positive, i,e, 
( ) 0cos >λ   (17) 

Since the cosine function of  is strictly positive and 0  c  1, it turns out that 
( ) ( )λλ ccoscos ≤   (18) 

Since Kv < 1, we have
( ) ( )ληθ cG coscos <−   (19) 

Therefore  
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Thus, since 0<r  under the control law, the relative distance between the robot and the goal is a 
decreasing function of time. 

There exist major differences in the behaviour of the control law for different values of c. For 
c = 0, the path of the robot is more curved near the interception. Thus more corrections are 
required near the interception. The opposite is true for c = 1, where the path of the robot is 
more curved at the beginning. This requires more corrections at the beginning of the 
navigation process. These aspects are discussed in the simulation. The control law becomes 
a simple pure pursuit when the goal is stationary.  

4.1 Heading regulation  
The initial state of the robot’s orientation angle is given by R0 = R(t0). In most cases, the 
value of R given by the control law is different from R0. Our goal is to design a smooth 
feedback plan that solves the planar navigation problem. For this reason a heading 
regulation is necessary. The heading regulation is accomplished by using the following 
formula:
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where  is a small real number and tf is the interception time. We will also design a control 
law for the robot linear velocity to keep the goal within a given coverage range from the 
robot.
It is assumed that  

1. The control input for the robot is [vR, R] instead of [vR, R].
2. The robot is faster than the goal. This means that vR > vG.
3. The robot does not have a pre-decided knowledge of the environment. However, it 

has a sensory system that allows detecting obstacles and obtaining the necessary 
information on the goal. As we mentioned previously, the influence of the sensory 
system is beyond the scope of this study. 

This problem is difficult, because it combines two different aspects, navigation towards the 
goal and obstacle avoidance. Navigation towards the goal has a global aspect while obstacle 
avoidance has a local aspect. The goal can perform two different types of motion, namely 
accelerating motion, and non-accelerating motion. In the case of an accelerating motion, 
either the linear velocity or the orientation angle of the goal is time- varying. In the case of a 
non-accelerating motion, both G and vG are constant. It is more difficult for the robot to 
reach an accelerating goal. 

4. The control law 
As we mentioned previously there exist two approaches for navigating a robot towards a 
moving object. The first approach is the pursuit (Belkhouche & Belkhouche, 2005), the 
second approach is the rendezvous. In the pursuit, the robot follows the moving object 
directly. That is the robot is always heading towards the goal at any time. This is the 
most obvious way to reach a moving goal. Various sensor-based algorithms use the 
pursuit even though they do not model the problem using the pursuit equations. The 
rendezvous approach uses a completely different principle which is the opposite 
extreme of the pursuit. In the rendezvous, the robot does not follow the path of the goal, 
but it moves towards a point where the robot and the goal will arrive at the same time. 
To accomplish this task the robot moves in lines that are parallel to the initial line of 
sight. The strategy discussed in this chapter is a new strategy that combines the pursuit 
and the rendezvous. In this approach, the robot orientation angle is given by the 
following equation: 

( )( )ηθηθ −+= −
GvR Kc sinsin 1   (13) 

where c is a real number that satisfies 0  c  1. c is the control variable of the robot’s 
orientation angle. RGv vvK =  is the speed ratio. Equation (13) is a closed loop control law, 
where the control input depends on the state of the system, mainly the state of the goal. For 
c = 0, the control law acts like the pure pursuit. For c = 1, the control law acts like the pure 
rendezvous. For 0 < c < 1, the control law has a behaviour that combines the rendezvous 
and the pursuit. For example, c=0.9 corresponds to 90% rendezvous and 10% pursuit. The 
control law given by (13) allows to reach the goal from any arbitrary initial position when 
the assumptions stated previously are satisfied. The main result concerning the navigation 
using the control law given by (13) is stated as follows: 
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Proposition: 
Under the control law given by (13), the robot reaches the goal from any initial state when 
vR > vG.

Proof 
The proof is based on the differential equation of the relative range rate; recall that 0<Rr
corresponds to a decreasing range. We put 

( )( )ηθλ −= −
GvK sinsin 1  (14) 

Under the control law the relative range varies as follows: 
( ) ( )ληθ cvvr RGG coscos −−=   (15)

Recall that under the assumption that the robot is faster than the goal we have Kv < 1. The inverse of 
the sine function maps the domain [-1, 1] to [- /2,  /2], and since Kv < 1, we have 

( )( ) ] [2,2sinsin 1 ππηθλ −∈−= −
GvK   (16) 

The cosine function of  is strictly positive, i,e, 
( ) 0cos >λ   (17) 

Since the cosine function of  is strictly positive and 0  c  1, it turns out that 
( ) ( )λλ ccoscos ≤   (18) 

Since Kv < 1, we have
( ) ( )ληθ cG coscos <−   (19) 

Therefore  
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Thus, since 0<r  under the control law, the relative distance between the robot and the goal is a 
decreasing function of time. 

There exist major differences in the behaviour of the control law for different values of c. For 
c = 0, the path of the robot is more curved near the interception. Thus more corrections are 
required near the interception. The opposite is true for c = 1, where the path of the robot is 
more curved at the beginning. This requires more corrections at the beginning of the 
navigation process. These aspects are discussed in the simulation. The control law becomes 
a simple pure pursuit when the goal is stationary.  

4.1 Heading regulation  
The initial state of the robot’s orientation angle is given by R0 = R(t0). In most cases, the 
value of R given by the control law is different from R0. Our goal is to design a smooth 
feedback plan that solves the planar navigation problem. For this reason a heading 
regulation is necessary. The heading regulation is accomplished by using the following 
formula:
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where des
Rθ  is given by the control law in equation (13). K  is a real positive number. The 

heading regulation is a transition phase that allows putting the robot in a configuration 
where the application of the control law is possible. The heading regulation phase is used 
whenever modes are switched during the collision avoidance process. Heading regulation is 
illustrated in figure 2 for both the pure pursuit (PP) and pure rendezvous (PR). The robot 
initial orientation angle is given by 900.

4.2 The pure rendezvous  
As we mentioned previously, the pure rendezvous corresponds to c = 1. By replacing R by
its value in the equation of the visibility angle rate, we obtain 

0=η   (22) 

which implies that the visibility angle is constant, i.e., =constant. This is the most important 
characterization of the pure rendezvous law. As a result, the motion of the goal as seen by 
the robot is linear, meaning that the robot moves in a straight line if the goal is moving in a 
straight line. The visibility angle is given by 
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Fig. 2. An illustration of the heading regulation for the PP and PR. The robot’s initial 
orientation angle is 900.

which is constant under the pure rendezvous. By taking the time derivative we obtain 
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This allows us to write 
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This equation is another important equation that characterizes the pure rendezvous. The 
orientation angle under the pure rendezvous is constant when the goal is not accelerating, 
and the robot is moving with a constant linear velocity. This is stated in the following result. 

Proposition: 
Under the pure rendezvous with vR=constant, the robot’s orientation angle is constant for 
non-manoeuvring goals. 

Proof: 
The first step resides in proving that the visibility angle is constant under the pure 
rendezvous. By replacing R by its value, we obtain 

( ) ( )( )( )( ) 11 sinsinsinsin −− −−−= rKcvv GvRGG ηθηθη  (26) 

It turns out that under the pure rendezvous (c=1), we have 0=η , therefore const=η .
As a result, for a non-manoeuvring target and a robot moving with constant speed we have 

R=constant. Thus the robot moves in a straight line. 

4.3 The pure pursuit 
The pure pursuit is another important particular case. It corresponds to c = 0, and thus the 
robot’s orientation angle is equal to the visibility angle. The kinematics equations under the 
pure pursuit are given by 

( )
( )( ) 1sin

cos
−−=

−−=

rv

vvr

GG

RGG

ηθη

ηθ
 (27) 

It is clear from the first equation in the system that the range rate is negative when vG < vR.
Unlike the pure rendezvous, the visibility angle is not constant in the case of the pure 
pursuit. In fact, in the pure pursuit the visibility angle tracks the goal’s orientation angle 
with time.
The pure pursuit and the pure rendezvous are illustrated in figures 3 and 4. The difference 
in the path is obvious. Note that in the case of the pure rendezvous, the visibility line angles 
are parallel to each other. A more detailed comparison is shown in our simulation. 

4.4 Navigation with time varying navigation parameter 
We have seen that the navigation parameter enables us to control the navigation law 
between two extreme strategies. Previously we have considered only constant values of c. 
However the navigation parameter can be time varying too. This property is used to 
combine the advantages of the pure pursuit with those of the rendezvous in one 
navigation law. It is possible to use different formulae for c (t). Two possibilities are the 
following: 

( ) btetc −−= 1    (28) 
and

( ) btetc −=   (29) 
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where des
Rθ  is given by the control law in equation (13). K  is a real positive number. The 

heading regulation is a transition phase that allows putting the robot in a configuration 
where the application of the control law is possible. The heading regulation phase is used 
whenever modes are switched during the collision avoidance process. Heading regulation is 
illustrated in figure 2 for both the pure pursuit (PP) and pure rendezvous (PR). The robot 
initial orientation angle is given by 900.

4.2 The pure rendezvous  
As we mentioned previously, the pure rendezvous corresponds to c = 1. By replacing R by
its value in the equation of the visibility angle rate, we obtain 

0=η   (22) 

which implies that the visibility angle is constant, i.e., =constant. This is the most important 
characterization of the pure rendezvous law. As a result, the motion of the goal as seen by 
the robot is linear, meaning that the robot moves in a straight line if the goal is moving in a 
straight line. The visibility angle is given by 
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This equation is another important equation that characterizes the pure rendezvous. The 
orientation angle under the pure rendezvous is constant when the goal is not accelerating, 
and the robot is moving with a constant linear velocity. This is stated in the following result. 

Proposition: 
Under the pure rendezvous with vR=constant, the robot’s orientation angle is constant for 
non-manoeuvring goals. 

Proof: 
The first step resides in proving that the visibility angle is constant under the pure 
rendezvous. By replacing R by its value, we obtain 

( ) ( )( )( )( ) 11 sinsinsinsin −− −−−= rKcvv GvRGG ηθηθη  (26) 

It turns out that under the pure rendezvous (c=1), we have 0=η , therefore const=η .
As a result, for a non-manoeuvring target and a robot moving with constant speed we have 

R=constant. Thus the robot moves in a straight line. 

4.3 The pure pursuit 
The pure pursuit is another important particular case. It corresponds to c = 0, and thus the 
robot’s orientation angle is equal to the visibility angle. The kinematics equations under the 
pure pursuit are given by 
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It is clear from the first equation in the system that the range rate is negative when vG < vR.
Unlike the pure rendezvous, the visibility angle is not constant in the case of the pure 
pursuit. In fact, in the pure pursuit the visibility angle tracks the goal’s orientation angle 
with time.
The pure pursuit and the pure rendezvous are illustrated in figures 3 and 4. The difference 
in the path is obvious. Note that in the case of the pure rendezvous, the visibility line angles 
are parallel to each other. A more detailed comparison is shown in our simulation. 

4.4 Navigation with time varying navigation parameter 
We have seen that the navigation parameter enables us to control the navigation law 
between two extreme strategies. Previously we have considered only constant values of c. 
However the navigation parameter can be time varying too. This property is used to 
combine the advantages of the pure pursuit with those of the rendezvous in one 
navigation law. It is possible to use different formulae for c (t). Two possibilities are the 
following: 

( ) btetc −−= 1    (28) 
and

( ) btetc −=   (29) 
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where b is a real positive number. By using equation (28), the navigation law acts like the 
pure pursuit near the initial state and like the pure rendezvous near the interception. The 
opposite is true with equation (29). It is also important to note that equations (28) and (29) 
can be used for transition between the pure pursuit and the pure rendezvous. Smaller 
values of b are required in this case. 
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Fig.3. An illustration of the pure pursuit. 
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4.5 The time-to-go 
The time-to-go is the time it takes the robot to reach the moving goal. The time-to-go is very 
important for any comparison between control strategies. The time-to-go can be estimated 
by the following equation: 

r
rt goto −=−  (30) 

In general, it is difficult to estimate the time-to-go since it depends on many factors that are 
time-varying. The most important factors are the velocity ratio, and the target manoeuvers. 
The time-to-go may be used to determine the appropriate value of b to adjust c(t). The only 
case where it is possible to find the time-to-go analytically is when the goal moves in a 
straight line, ( constG =θ ), vR and vG are constant, and the robot is applying a pure 
rendezvous approach. In this case, the time-to-go is given by 

( ) ( )ληθ cvv
rt

RGG
goto coscos

0
−−

−=−   (31) 

It is obvious that the time-to-go is proportional to the initial range. 

5. In the presence of obstacles 
It is clear that the problems of navigation and reaching a moving object in the presence of 
obstacles are among the most difficult problems in robotic navigation. They combine local 
path planning for collision avoidance with global path planning for reaching the goal. In our 
formulation, the robot moves in two modes, the navigation mode and the obstacle 
avoidance mode. Clearly, the obstacle avoidance mode has the priority. The collision 
avoidance is accomplished by building a polar histogram of the environment. The polar 
histogram is based on the angular information obtained from the sensory system. Only 
obstacles that appear within a given region called the active region are considered. The 
polar histogram allows determining free directions and directions corresponding to the 
obstacles. A snapshot of the local environment from a given position of the robot is a 
characterization of the visible obstacles and the angles they make with the robot. 
The first stage in the polar histogram is to represent the robot’s surrounding environment 
using angular information provided by the robot’s onboard sensors. The angles i1 and i2

are the limit angles characterizing obstacle Bi as shown in figure 7. The polar diagram 
denoted by D is obtained as follows: 

=

=
k

i
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  (32) 

where k denotes the number of obstacles in the active region, and di is given as follows: 

 di=1 if [ ]ηληληθ −−∈− 21 , iiR  (33) 

di=0 otherwise 
Note that the polar histogram is constructed based on the angle ηθβ −= R , therefore the 
pure pursuit corresponds to 0=β , and the pure rendezvous corresponds to λβ = . The 
obstacle avoidance mode is activated when at least one obstacle appears in the active region, 
and the robot navigates by using the polar histogram. It is also easy to represent the goal’s 
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where b is a real positive number. By using equation (28), the navigation law acts like the 
pure pursuit near the initial state and like the pure rendezvous near the interception. The 
opposite is true with equation (29). It is also important to note that equations (28) and (29) 
can be used for transition between the pure pursuit and the pure rendezvous. Smaller 
values of b are required in this case. 
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4.5 The time-to-go 
The time-to-go is the time it takes the robot to reach the moving goal. The time-to-go is very 
important for any comparison between control strategies. The time-to-go can be estimated 
by the following equation: 

r
rt goto −=−  (30) 

In general, it is difficult to estimate the time-to-go since it depends on many factors that are 
time-varying. The most important factors are the velocity ratio, and the target manoeuvers. 
The time-to-go may be used to determine the appropriate value of b to adjust c(t). The only 
case where it is possible to find the time-to-go analytically is when the goal moves in a 
straight line, ( constG =θ ), vR and vG are constant, and the robot is applying a pure 
rendezvous approach. In this case, the time-to-go is given by 
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It is obvious that the time-to-go is proportional to the initial range. 

5. In the presence of obstacles 
It is clear that the problems of navigation and reaching a moving object in the presence of 
obstacles are among the most difficult problems in robotic navigation. They combine local 
path planning for collision avoidance with global path planning for reaching the goal. In our 
formulation, the robot moves in two modes, the navigation mode and the obstacle 
avoidance mode. Clearly, the obstacle avoidance mode has the priority. The collision 
avoidance is accomplished by building a polar histogram of the environment. The polar 
histogram is based on the angular information obtained from the sensory system. Only 
obstacles that appear within a given region called the active region are considered. The 
polar histogram allows determining free directions and directions corresponding to the 
obstacles. A snapshot of the local environment from a given position of the robot is a 
characterization of the visible obstacles and the angles they make with the robot. 
The first stage in the polar histogram is to represent the robot’s surrounding environment 
using angular information provided by the robot’s onboard sensors. The angles i1 and i2

are the limit angles characterizing obstacle Bi as shown in figure 7. The polar diagram 
denoted by D is obtained as follows: 
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where k denotes the number of obstacles in the active region, and di is given as follows: 

 di=1 if [ ]ηληληθ −−∈− 21 , iiR  (33) 

di=0 otherwise 
Note that the polar histogram is constructed based on the angle ηθβ −= R , therefore the 
pure pursuit corresponds to 0=β , and the pure rendezvous corresponds to λβ = . The 
obstacle avoidance mode is activated when at least one obstacle appears in the active region, 
and the robot navigates by using the polar histogram. It is also easy to represent the goal’s 
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orientation angle in the polar histogram. The robot deviates from its nominal path only if an 
obstacle appears in its path. The algorithm for collision avoidance is the following: 

Procedure Deviation 
1. Choose an intermediary point M such that ηη −M  has the same sign as ηθ −G . Mη

is the visibility angle between the robot and point M. 
2. Navigate towards this point using the pure pursuit. A heading regulation 

procedure is used to keep the smoothness of the path. The equation for the heading 
regulation is similar to (21).  
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Fig. 6. Collision avoidance. 

Collision avoidance algorithm: 
1. If obstacle detected within the active region, then the collision avoidance mode is 

activated. 
2. If the robot is in a collision course with obstacle Bi, then call procedure deviation 
3. After obstacle passed go back to the pursuit-rendezvous mode. Since ηη −M  and 

ηθ −G  have the same sign, the robot orientation angle and the goal orientation 
angle are on the same side of the visibility line. 
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Fig. 7. Polar histogram for the environment in figure 6. 

6. Pursuit-rendezvous for target dynamic coverage 
Dynamic target coverage by a wheeled mobile robot or a group of mobile robots has been 
considered in the literature recently. This problem is important in various applications, such 
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as cleaning, security and patrolling, and sensor network deployment. Dynamic target 
coverage aims to generate a trajectory and the corresponding linear velocities. In the 
previous section, we designed a control law that allows the robot to reach the moving goal 
from an arbitrary initial state. In this section our goal is to design a second control law to 
keep the moving object within a given distance from the robot so that the goal stays in the 
robot’s field of view. That is, 

( ) desdes rtrr 21 ≤≤   (34) 

with desdesdes rrr 21 ≤≤ . rdes is the desired value of the coverage range, desr1  and desr2  are the 
range limits for rdes. The coverage range is represented by a circle as shown in figure 8. 
Dynamic coverage is necessary in various surveillance and tracking applications. For 
example, in many situations it is important to keep the goal in the field of view of the 
robot’s sensory system. To accomplish this task, it is necessary to design a control law for 
the robot’s linear velocity. Note that a constant range between the robot and the moving 
object corresponds to 0=r ; that is, 

( ) ( )ληθ cvv RGG coscos =−  (35) 

In order to combine the navigation mode with the tracking at a constant distance mode, we 
use the method which is known as feedback linearization (Drakunov et. 1991) in 
combination with backstepping or block control (Drakunov et. 1991) which gives 

( )des
r rrKr −−=  (36) 

where Kr is a real positive number. Equation (36) allows to drive the relative range smoothly 
to its desired coverage range. By replacing r  by its value, we obtain 

( ) ( ) ( )des
rRGG rrKcvv −−=−− ληθ coscos  (37) 

From which the relative velocity of the robot can be obtained as follows: 

( ) ( )
( )λ

ηθ
c
vrrKv GG

des
r

R cos
cos −+−

=  (38) 

The system converges to a steady state that satisfies equation (35). We have the following 
remarks concerning equation (38): 

1. The term Kr ( r - rdes ) goes to zero with time. 
2. If the goal applies a pure escape strategy, then R = and vR = vG. This is true for 

both the pure pursuit and the pure rendezvous. 
3. In general, the required value of vR is smaller in the case of the pure pursuit. 

In the case of the pure pursuit, the dynamic coverage of a target is characterized by an 
important property, which can be states as follows: 

Proposition 
Under the pure pursuit, the dynamic coverage is characterized by ηθ →R  and GR vv → .
This means that the robot’s orientation angle will track the target’s orientation angle, and 
the robot’s linear velocity will track the target’s linear velocity. 
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orientation angle in the polar histogram. The robot deviates from its nominal path only if an 
obstacle appears in its path. The algorithm for collision avoidance is the following: 

Procedure Deviation 
1. Choose an intermediary point M such that ηη −M  has the same sign as ηθ −G . Mη

is the visibility angle between the robot and point M. 
2. Navigate towards this point using the pure pursuit. A heading regulation 

procedure is used to keep the smoothness of the path. The equation for the heading 
regulation is similar to (21).  
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Collision avoidance algorithm: 
1. If obstacle detected within the active region, then the collision avoidance mode is 

activated. 
2. If the robot is in a collision course with obstacle Bi, then call procedure deviation 
3. After obstacle passed go back to the pursuit-rendezvous mode. Since ηη −M  and 

ηθ −G  have the same sign, the robot orientation angle and the goal orientation 
angle are on the same side of the visibility line. 
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6. Pursuit-rendezvous for target dynamic coverage 
Dynamic target coverage by a wheeled mobile robot or a group of mobile robots has been 
considered in the literature recently. This problem is important in various applications, such 
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as cleaning, security and patrolling, and sensor network deployment. Dynamic target 
coverage aims to generate a trajectory and the corresponding linear velocities. In the 
previous section, we designed a control law that allows the robot to reach the moving goal 
from an arbitrary initial state. In this section our goal is to design a second control law to 
keep the moving object within a given distance from the robot so that the goal stays in the 
robot’s field of view. That is, 

( ) desdes rtrr 21 ≤≤   (34) 

with desdesdes rrr 21 ≤≤ . rdes is the desired value of the coverage range, desr1  and desr2  are the 
range limits for rdes. The coverage range is represented by a circle as shown in figure 8. 
Dynamic coverage is necessary in various surveillance and tracking applications. For 
example, in many situations it is important to keep the goal in the field of view of the 
robot’s sensory system. To accomplish this task, it is necessary to design a control law for 
the robot’s linear velocity. Note that a constant range between the robot and the moving 
object corresponds to 0=r ; that is, 

( ) ( )ληθ cvv RGG coscos =−  (35) 

In order to combine the navigation mode with the tracking at a constant distance mode, we 
use the method which is known as feedback linearization (Drakunov et. 1991) in 
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( )des
r rrKr −−=  (36) 

where Kr is a real positive number. Equation (36) allows to drive the relative range smoothly 
to its desired coverage range. By replacing r  by its value, we obtain 

( ) ( ) ( )des
rRGG rrKcvv −−=−− ληθ coscos  (37) 

From which the relative velocity of the robot can be obtained as follows: 

( ) ( )
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ηθ
c
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=  (38) 

The system converges to a steady state that satisfies equation (35). We have the following 
remarks concerning equation (38): 
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2. If the goal applies a pure escape strategy, then R = and vR = vG. This is true for 

both the pure pursuit and the pure rendezvous. 
3. In general, the required value of vR is smaller in the case of the pure pursuit. 

In the case of the pure pursuit, the dynamic coverage of a target is characterized by an 
important property, which can be states as follows: 

Proposition 
Under the pure pursuit, the dynamic coverage is characterized by ηθ →R  and GR vv → .
This means that the robot’s orientation angle will track the target’s orientation angle, and 
the robot’s linear velocity will track the target’s linear velocity. 
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Proof 
The kinematics model under the pure pursuit is written as  
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−−=
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The equilibrium position for the second equation is given by Tθη =* . By using the classical 
linearization, it turns out that this equilibrium position is asymptotically stable. Therefore, 

Gθη → , since Rθη =  under the pure pursuit, which gives GR θθ → . From equation (38) 
under the pure pursuit (c = 0), we have GR vv →  as GR θθ → .
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7. Simulation 
Here we consider several simulation examples to illustrate the suggested approach. 

Example 1: A comparison between the pure pursuit (PP) and the pure rendezvous (PR) 
Three scnearios are shown here. The first scneario shown in figure 9 corrresponds to a goal 
moving in a straight line. The second scenario shown in figure 12 corresponds to a goal 
moving in a circle. The third scenario is shown in figure 13, the goal moves in a sinusoidal 
motion, which is among the most difficult paths to reach. Note that the path of the goal is 
not a-priori known to the robot. For the scenario of figure 9, the visibility angle is shown in 
figure 10, and the robot orientation angle in figure 11. From figure 10, the visibility angle is 
constant under the PR. From figure 11, it is clear that more corrections and manoeuvers are 
required under the PP. Figure 14 shows the robot path for different values of c. In all cases 
the robot reaches the goal successfully. 
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Example 2: in the presence of obstacles: 
Two scenarios are shown in figures 14 and 15 to illustrate the navigation towards a moving 
goal in the presence of obstacles. The paths of the robot under the PP and the PR are 
different as shown in the figures. The robot accomplish the navigation and obstacle 
avoidance tasks successfully. 
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8. Conclusion 
We presented a method for robotic navigation and tracking of an unpredictably moving 
object. Our method is kinematics-based, and combines the pursuit law with the rendezvous 
law. First a kinematics model is derived. This kinematics model gives the motion of the goal 
with respect to the robot. The first equation gives the range rate between the robot and its 
goal. The second equation gives the turning rate of the goal with respect to the robot. The 
control law is then derived based on this kinematics model. This law is controlled by a real 
variable, which may be constant or time-varying. The most important properties of the 
control law are discussed. The dynamic coverage of the target is also discussed, where a 
second law for the robot’s linear velocities is derived. 
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1. Introduction 
Mobile Manipulators are special cases of mobile robots that need a careful consideration 
when planning their motion. Due to their higher and changing centre of gravity caused by 
the position of the manipulator and its configuration, abrupt motion or change of direction 
can have dangerous consequences and the toppling of the whole mobile manipulator. 
Therefore, the motion planning process has to produce smooth and safe trajectories. Since 
the 1980’s mobile robot motion planning problems have been an important research topic 
that has attracted the attention of many researchers who worked extensively to obtain 
efficient methods to solve these problems. Such problems have been approached in two 
general ways: one approach has concentrated on solving motion planning problems by 
considering a previously known global environment or obstacles information and robot 
characteristics; the second approach has focused on planning motions by using local sensor 
information and robot characteristics. The first approach has been used extensively at a 
global planning level in robotics to plan trajectories from one environment location to 
another. This plan functions under the assumption of a perfectly controlled and modelled 
environment that in most situations does not exist. Unexpected obstacles, persons or 
moving elements make this approach difficult to utilize except in robustly controlled 
environments, such as in industrial manipulation environments (manufacturing).  The 
second approach became evident in mobile robotics from the very beginning. A mobile 
robot’s environment presents unexpected objects which makes it impossible to use the first 
approach exclusively. The second approach produces local plans by using local sensor 
information to avoid obstacles. Obviously a local plan is a solution for a local scale problem 
and needs to be integrated with a global planner or with global information to guarantee the 
existence of a solution to the global problem. This method received different names such as 
collision avoidance methods, local planners, and navigation methods.
To navigate in complex environments, an autonomous mobile robot needs to reach a 
compromise between the need for reacting to unexpected events and the need for efficient 
and optimized trajectories. Usually, path planning methods work in two steps: in the first 
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and needs to be integrated with a global planner or with global information to guarantee the 
existence of a solution to the global problem. This method received different names such as 
collision avoidance methods, local planners, and navigation methods.
To navigate in complex environments, an autonomous mobile robot needs to reach a 
compromise between the need for reacting to unexpected events and the need for efficient 
and optimized trajectories. Usually, path planning methods work in two steps: in the first 
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step, a global path over an existing map is calculated, and in the second step, the robot reads 
the sensor data and modifies the local trajectory in a reactive way. This provides the path 
adaptation mechanism to cope with unexpected obstacles or dynamic environments. These 
methods calculate the global trajectory off-line in a priori known map, and while the robot is 
moving local modifications are made continuously based on the sensor data. 
The reason for using a two level planning approach is due to high computational cost that is 
required in most motion planning techniques to achieve an updated environment model 
(and to plan a smooth and dynamically adapted trajectory). 
The use of a two level planner strategy decreases computational cost by activating the 
global planner occasionally (it can be done off line) while the local planner which is much 
faster runs on line. This two level approach affects the control architecture of the mobile 
robot. The first mobile robots were based on a sense-model-plan scheme referred to in the 
literature as planned architectures (Meystel, 1986). These architectures present some 
difficulties providing fast responses to environmental changes. 
Posterior reactive architectures (Brooks, 1986) have the advantage of using fast response 
methods based on a sensor-decision-action scheme to react to environmental changes, but 
also show the difficulty of extending the reactivity to upper levels.  Finally, hybrid 
deliberative/reactive architectures (Arkin, 1990), (Arkin, 1998), (Alami et al., 1998), (Chatila, 
1995), (Bonasso et al., 1996) and (Low et al., 2002) have emerged as the result of recognizing 
the advantages provided with planning at high control levels and reactive architectures at 
lower control levels. 
The Voronoi Fast Marching method is based on a sensor-based global path planning 
paradigm. This is a planning approach based on a fast sense-model-plan scheme able to 
integrate sensor information in a simple grid based environment model and to calculate a 
globally consistent, smooth and safe trajectory, fast enough to be used as a reactive 
navigation method. This approach presents some advantages. One is the ability of global 
planning methodologies to guarantee a path between a given point and the goal point, if 
one exists. And the other is the smoothness and safety of the solution obtained. This 
solution eliminates the local minima trap problem and the oscillations in narrow places 
present in other methods, and also indirectly eliminates the use of a supervision system able 
to detect local minima failures (obstructed paths), in order to initiate the search for a new 
and feasible global path from the current position to the goal point. 
To calculate the trajectory, the proposed method combines the Voronoi Distance transform 
and the Fast Marching Method. The Voronoi approach to path planning has the advantage 
of providing the safest trajectories in terms of distance to obstacles, but because its nature is 
purely geometric it does not achieve enough smoothness. On the other hand, the Fast 
Marching Method has been applied to path planning (Sethian, 1996a), and their trajectories 
are of minimal distance, but they are not very safe because the path is too close to obstacles, 
and more importantly the path is not smooth enough. In order to improve the safety of the 
trajectories calculated by the Fast Marching Method, two solutions are possible. The first 
possibility, in order to avoid unrealistic trajectories, produced when the areas are narrower 
than the robot, the segments with distances to the obstacles and walls less than half the size 
of the robot need to be removed from the Voronoi Diagram before the Distance Transform. 
The second possibility, used in this paper, is to dilate the objects and the walls in a safely 
distance to ensure that the robot does not collide nor accepts passages narrower than the 
robot size. The last step is to calculate the trajectory in the image generated by the Voronoi 
Diagram using the Fast Marching Method, the path obtained verifies the smoothness and 
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safety required for mobile manipulator’s path planning. The advantages of this method 
include the ease of implementation, the speed of the method, and the quality of the 
trajectories produced. The method works in 2D and 3D, and it can be used on a global or 
local scale, in this case operating with sensor information instead of using a priori map 
(sensor based planning). 
The chapter is organized as follow, after discussing related work in Section 2, Section 3 
explains the requirements and basic ideas of the method and in Sections 4, 5 and 6 the 
theoretical background of various ideas used in the method are discussed.  Section 7 
discusses some results of the method “Voroni Diagram and Extended Fast Marching” for an 
holonomic mobile robot. Sections 8 discuss the contributions of the method with respect to 
other methods and Section 9 concludes the chapter. 

2. Related work 
The objective of our work is to calculate collision-free trajectories for a mobile robot and 
manipulators operating in environments with unknown obstacles (dynamic or not). The 
technique proposed here avoids the classical partition in global based on a priori 
information (motion planning or global planning), and local based on sensory information 
(reactive navigation, collision avoidance or sensor based local planning). 
From a theoretical point of view, the motion planning problem is well understood and 
formulated, and there is a set of classical solutions able to compute a geometrical trajectory 
avoiding all known obstacles. Mobile robot path planning approaches can be divided into 
five classes according to Latombe (Latombe, 1991). Roadmap methods extract a network 
representation of the environment and then apply graph search algorithms to find a path. 
Exact cell decomposition methods construct non-overlapping regions that cover free space 
and encode cell connectivity in a graph. Approximate cell decomposition is similar, but cells 
are of pre-defined shape (e.g. rectangles) and not exactly cover free space. Potential field 
methods differ from the other four in such a way that they consider the robot as a point 
evolving under the influence of forces that attract it to the goal while pushing it away from 
obstacles. Navigation functions are commonly considered as special case of potential fields. 
Most of these general methods are not applicable if the environment is dynamic or there are 
no modelled obstacles. Hence, to avoid the problem of executing an unrealistic geometrical 
trajectory which can collide with obstacles, obstacle avoidance algorithms have been 
developed to provide a robust way of coping with this problem. 
These methods are based on a perception-action process that is repeated periodically at a 
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Due to fast operation rate of the collision avoidance algorithms they can deal robustly with 
unknown obstacles and dynamic scenarios. However, it is difficult to obtain optimal 
solutions and to avoid trap situations since they use only local sensory information. This 
classical approach to motion planning is demonstrated schematically in figure 1.  Next, we 
describe some of these related methods. 
One of the classical methods for dynamically coping with the collision avoidance problem is 
the potential field approach developed by Khatib (Khatib, 1986 and Khatib & Chatila, 1995). 
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The reason for using a two level planning approach is due to high computational cost that is 
required in most motion planning techniques to achieve an updated environment model 
(and to plan a smooth and dynamically adapted trajectory). 
The use of a two level planner strategy decreases computational cost by activating the 
global planner occasionally (it can be done off line) while the local planner which is much 
faster runs on line. This two level approach affects the control architecture of the mobile 
robot. The first mobile robots were based on a sense-model-plan scheme referred to in the 
literature as planned architectures (Meystel, 1986). These architectures present some 
difficulties providing fast responses to environmental changes. 
Posterior reactive architectures (Brooks, 1986) have the advantage of using fast response 
methods based on a sensor-decision-action scheme to react to environmental changes, but 
also show the difficulty of extending the reactivity to upper levels.  Finally, hybrid 
deliberative/reactive architectures (Arkin, 1990), (Arkin, 1998), (Alami et al., 1998), (Chatila, 
1995), (Bonasso et al., 1996) and (Low et al., 2002) have emerged as the result of recognizing 
the advantages provided with planning at high control levels and reactive architectures at 
lower control levels. 
The Voronoi Fast Marching method is based on a sensor-based global path planning 
paradigm. This is a planning approach based on a fast sense-model-plan scheme able to 
integrate sensor information in a simple grid based environment model and to calculate a 
globally consistent, smooth and safe trajectory, fast enough to be used as a reactive 
navigation method. This approach presents some advantages. One is the ability of global 
planning methodologies to guarantee a path between a given point and the goal point, if 
one exists. And the other is the smoothness and safety of the solution obtained. This 
solution eliminates the local minima trap problem and the oscillations in narrow places 
present in other methods, and also indirectly eliminates the use of a supervision system able 
to detect local minima failures (obstructed paths), in order to initiate the search for a new 
and feasible global path from the current position to the goal point. 
To calculate the trajectory, the proposed method combines the Voronoi Distance transform 
and the Fast Marching Method. The Voronoi approach to path planning has the advantage 
of providing the safest trajectories in terms of distance to obstacles, but because its nature is 
purely geometric it does not achieve enough smoothness. On the other hand, the Fast 
Marching Method has been applied to path planning (Sethian, 1996a), and their trajectories 
are of minimal distance, but they are not very safe because the path is too close to obstacles, 
and more importantly the path is not smooth enough. In order to improve the safety of the 
trajectories calculated by the Fast Marching Method, two solutions are possible. The first 
possibility, in order to avoid unrealistic trajectories, produced when the areas are narrower 
than the robot, the segments with distances to the obstacles and walls less than half the size 
of the robot need to be removed from the Voronoi Diagram before the Distance Transform. 
The second possibility, used in this paper, is to dilate the objects and the walls in a safely 
distance to ensure that the robot does not collide nor accepts passages narrower than the 
robot size. The last step is to calculate the trajectory in the image generated by the Voronoi 
Diagram using the Fast Marching Method, the path obtained verifies the smoothness and 

Sensor-based Global Planning for Mobile Manipulators Navigation using 
Voronoi Diagram and Fast Marching 481 

safety required for mobile manipulator’s path planning. The advantages of this method 
include the ease of implementation, the speed of the method, and the quality of the 
trajectories produced. The method works in 2D and 3D, and it can be used on a global or 
local scale, in this case operating with sensor information instead of using a priori map 
(sensor based planning). 
The chapter is organized as follow, after discussing related work in Section 2, Section 3 
explains the requirements and basic ideas of the method and in Sections 4, 5 and 6 the 
theoretical background of various ideas used in the method are discussed.  Section 7 
discusses some results of the method “Voroni Diagram and Extended Fast Marching” for an 
holonomic mobile robot. Sections 8 discuss the contributions of the method with respect to 
other methods and Section 9 concludes the chapter. 

2. Related work 
The objective of our work is to calculate collision-free trajectories for a mobile robot and 
manipulators operating in environments with unknown obstacles (dynamic or not). The 
technique proposed here avoids the classical partition in global based on a priori 
information (motion planning or global planning), and local based on sensory information 
(reactive navigation, collision avoidance or sensor based local planning). 
From a theoretical point of view, the motion planning problem is well understood and 
formulated, and there is a set of classical solutions able to compute a geometrical trajectory 
avoiding all known obstacles. Mobile robot path planning approaches can be divided into 
five classes according to Latombe (Latombe, 1991). Roadmap methods extract a network 
representation of the environment and then apply graph search algorithms to find a path. 
Exact cell decomposition methods construct non-overlapping regions that cover free space 
and encode cell connectivity in a graph. Approximate cell decomposition is similar, but cells 
are of pre-defined shape (e.g. rectangles) and not exactly cover free space. Potential field 
methods differ from the other four in such a way that they consider the robot as a point 
evolving under the influence of forces that attract it to the goal while pushing it away from 
obstacles. Navigation functions are commonly considered as special case of potential fields. 
Most of these general methods are not applicable if the environment is dynamic or there are 
no modelled obstacles. Hence, to avoid the problem of executing an unrealistic geometrical 
trajectory which can collide with obstacles, obstacle avoidance algorithms have been 
developed to provide a robust way of coping with this problem. 
These methods are based on a perception-action process that is repeated periodically at a 
high rate. The process has two steps: first, the sensory information is collected and then a 
motion command is calculated to avoid collisions while moving the robot toward a given 
goal location (that is while maintaining the global plan previously determined) 
Due to fast operation rate of the collision avoidance algorithms they can deal robustly with 
unknown obstacles and dynamic scenarios. However, it is difficult to obtain optimal 
solutions and to avoid trap situations since they use only local sensory information. This 
classical approach to motion planning is demonstrated schematically in figure 1.  Next, we 
describe some of these related methods. 
One of the classical methods for dynamically coping with the collision avoidance problem is 
the potential field approach developed by Khatib (Khatib, 1986 and Khatib & Chatila, 1995). 
This approach is based on the creation of an artificial potential field in which the target is an 
attractive pole and the obstacles are repulsive surfaces. The robot follows the gradient of 



482 Mobile Robots, Perception & Navigation

this potential toward its minimum. The derived force induces a collinear and proportional 
acceleration enabling easy dynamics and kinematic control actions. This technique can be 
used at a global or local level depending on the information used to generate the potentials. 
The major advantage of this method is its simplicity, and the capability of being used 
dynamically due to easy treatment of fixed and mobile obstacles. Its major disadvantage is 
the possible existence of local minima and the oscillations for certain configurations of 
obstacles. Despite of such problem this technique has been used extensively in reactive 
architectures because of its ability to encapsulate specific robot behaviours. 
A variation of this idea is the vector field histogram (VFH) method (Borenstein & Koren, 
1991). VHF uses a method consisting of a local heuristic choice based on a bi-dimensional 
grid modelling of the environment. A polar histogram is constructed around the robot 
representing the polar densities of the obstacles. The sector associated with the least density 
closest to the goal direction is chosen. This technique is simple, but may lead to oscillations 
and can also be trapped in certain configurations. Posteriorly, several improvements have 
been proposed in the VFH+ to improve the security distance (object enlarging), to reduce 
oscillations between valleys (hysteresis), and to obtain path smoothness (Ulrich & 
Borenstein, 1998). A third version, VHF* has been proposed that includes a “look-ahead” 
verification of the robots motions in order to avoid local traps (Ulrich & Borenstein, 2000). A 
projected position tree is built by predicting each possible movement of the robot and 
searches using A* classic method to choose a motor command. 
Between the obstacle avoidance (sensor-based local planners) we can find the Curvature-
Velocity method (Simmons, 1996), which treats obstacle avoidance as a constrained 
optimization in velocity space. Vehicle dynamics and obstacle information are converted 
into constrains and used in the optimization process. 
The Dynamic Window approach (Fox et al., 1997) uses a similar approach to the 
Curvature-Velocity method. It also uses a constrained search in the velocity space to 
determine convenient speed commands. The use of a grid based representation on one 
hand is simple but on the other hand increases the memory requirements and the 
computational cost. The Nearness Diagram approach (Minguez & Montano, 2004) is a 
situated-activity reasoning system that based on the sensor information identifies the 
situation and determines the corresponding action. It uses a reactive navigation method 
designed by a symbolic level decision tree based on a set of complete and exclusive 
definitions of the possible situations. 
The Elastic Bands proposed in (Quinlan & Khatib, 1993) represent connected bubbles of the 
free space subject to repulsive forces from obstacles and attractive forces from neighbouring 
bubbles. The elastic band iteratively smoothes the plan and adapts it to moving or 
unexpected obstacles. 
The majority of the above methods have commutation difficulties, due to the fact that local 
avoidance algorithms provide modifications of global trajectories, but do not offer solutions 
when the global trajectory is blocked or trapped in local minima. The classical solution to 
this problem is to include a supervisor to analyze the global path execution. In the case 
where a local trap or a blocked trajectory is detected, it begins a search for a new global path 
from the current location to the goal point. 
The objective of the present work is to unify the global motion planner and the obstacle 
avoidance planner in a single planner. This provides a smooth and reliable global motion 
path that avoids local obstacles from the current position to the goal destination. The motion 
planning structure with the proposed planner is shown in figure. 2. 
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3. The sensor-based global planner algorithm 
The sensor-based global planner algorithm proposed in this study is based on three key 
points:

• Fast response. The planner needs to be fast enough to be used reactively in case 
unexpected obstacles make it necessary to plan a new calculation. To obtain such a 
fast response, a fast planning algorithm and a fast-simple treatment or modelling 
of the sensor information is required. This requires a low complexity order 
algorithm to obtain a real-time response to unexpected situations. 

• Smooth trajectory. The planner must be able to provide a smooth motion plan which 
can to be executed by the robot motion controller. This avoids the need for a local 
refinement of the trajectory. 

• Reliable trajectory. The planner will provide a safe (reasonably far from a priori and 
detected obstacles) and reliable trajectory (free from local traps). This avoids the 
coordination problem between the local avoidance planners and the global 
planners when local traps or blocked trajectories exist in the environment. 

To satisfy all these requirements the sensor based global planner approach follows these 
steps:

1. The first step of the algorithm integrates sensor measurements into a grid based map 
by updating the corresponding occupied cells. The sensory information is included 
in the environment map avoiding complex modelling or information fusion. 

2. In the second step the objects are enlarged in the radius of the mobile robot, which 
will eliminate unfeasible paths, and avoid additional path verifications. 
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3. The updated environment model is then converted to an environment safety image 
by using the Euclidean distance transform in the environment image. In the new 
image, each position contains the distance to the closest object that produces a 
distance map based on the Euclidean distance transform where maxima are 
obtained in the Voronoi diagram of the environment model (skeleton). This reveals 
the collision risk of a given trajectory in terms of the distance to obstacles at each 
point of the trajectory. The step starts with the calculation of the Voronoi Diagram 
of a priori map of the environment (which are the cells located equidistant to the 
obstacles). This process is done by means of morphological operations on the 
image of the environment map. To be more precise, a skeletonisation is done by 
using image techniques in order to obtain the Voronoi Diagram. Simultaneously, 
the method calculates the Extended Voronoi Transform of the map to obtain the 
Euclidean distances of each cell to the closest obstacle in the environment. This part 
of the method is also very because it is done by efficient image processing 
techniques. 

4. Based on this distance map to obstacles, the Level Set Method (Fast Marching), is 
used to calculate the shortest trajectories in the potential surface defined by the 
Extended Voronoi Transform of the map. The calculated trajectory is geodesic in 
the potential surface, i.e. with a viscous distance. This viscosity is indicated by the 
grey level. If the Level Set Method were used directly on the environment map, we 
would obtain the shortest geometrical trajectory, but then the trajectory would be 
neither safe nor smooth. 

The main reason to separate the trajectory calculation into two parts (in classical 
approaches) is because the global path calculation is very slow and it is impossible to re-
calculate it continuously as the robot is moving. The method proposed here is extremely 
fast, where the whole process (sensing-model-plan) takes only 0.15 seconds (for a medium 
length trajectory), letting the algorithm to re-calculate a path from the current robots 
position to the goal location reactively. 

4. Voronoi Diagram and Skeleton determination 
It has been observed that the skeleton is embedded in the Voronoi diagram of a polygonal 
shape (Lee, 1982). Similarly, the skeleton of a shape described by a discrete sequence of 
boundary points can be approximated from the Voronoi diagram of the points. Both 
approaches yield a connected, Euclidean skeleton, but the latter is perhaps more 
appropriate for images since point sequences are more easily obtained than polygons. 
Although it is not true in general, if one restricts the shapes to those which are 
morphologically open and closed with respect to a finite-sized disk, the resulting skeleton 
approximated from the Voronoi diagram of a finite sampling of the boundary is close to the 
actual skeleton. In this case, the approximation error can be quantified, and made arbitrarily 
closer to zero. 
Consider the set F, closed in R2. A Voronoi region is associated with each point in F.

 (1) 
The Voronoi diagram of F is the union of the boundaries of all the Voronoi regions. 

 (2) 
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A maximal disk in G is one which is contained in G and not contained in any other disk in G.
Assume that all maximal disks in G are bounded. The skeleton (G)  is the set of centres of 
maximal disks in G. One desires the skeleton to be “graph-like” retraction of the original set. In 
general, this cannot be assured due to the presence of infinitesimal detail. However, it is 
possible to eliminate these fine structures by assuming a reasonable subclass:, the regular sets. 
A compact set, K is said to be r – regular if it is morphologically open and closed with respect 
to a disk of radius r > 0 (Serra, 1982). It is possible to show that  is a disjoint union of 
closed simple 2C  curves with curvature magnitude no greater than 1/r. The skeleton of the 
interior of K  is well-behaved and graph-like. 

4.1. Skeleton-based generalization algorithm 
One issue that needs improvement is the existence of spurious “hairs” on the generated 
skeletons. This is a well-known artefact of skeleton generation, where any irregularities in the 
boundary generates unwanted skeleton branches. Ogniewicz (Ogniewicz & Kubler, 1995) 
attempted to reduce skeletons formed from raster boundary points to a simple form by 
pruning the leaf nodes of the skeleton until a specified minimum circum-circle was achieved.  
However, with the development of the one-step crust and skeleton algorithm this process may 
be greatly simplified. Blum (Blum, 1967), as well as Alt (Alt & Schwarzkopf, 1995) showed that 
leaf nodes of a skeleton correspond to locations of minimum curvature on the boundary. For a 
sampled boundary curve this means that three adjacent sample points are co-circular, with 
their centre at the skeleton leaf. If we wish to simplify the skeleton we should retract leaf 
nodes to their parent node location, creating four co-circular points instead of three. 
The retraction is performed by taking the central point of the three, defining the leaf node, and 
moving it towards the parent node of the skeleton until it meets the parent node circum-circle, 
which smoothes outward-pointing salient in the boundary of the object. The same process is 
repeated from the other side of the boundary, which may displace some of the points involved in 
the first smoothing step, but as the process is convergent a small number of iterations suffice to 
produce a smoothed curve having the same number of points as the original, but with a 
simplified skeleton.  Figure 3 shows the Voronoi diagram obtained by skeletonization of a room. 

Fig. 3. Map of the room with the Voronoi made by skeletonization. 
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5. The Extended Voronoi Transform 

A k-dimensional binary image is a function I  from the elements of an array to 
[0,1]. The elements are called pixels when 2=n  and voxels when 3≥n . Voxels of value are 
called background and foreground or feature voxels, respectively. For a given distance 
metric, the Extended Voronoi Transform (also called Image Distance Transform) of an 
image I  is an assignment to each voxel x  of the distance between x  and the closest feature 
voxel in I , i.e. it consists of associate grey levels for each cell. As a result of this process, a 
kind of potential proportional to the distance to the nearest obstacles for each cell is 
obtained. Zero potential indicates that a given cell is part of an obstacle and maxima 
potential cells correspond to cells located in the Voronoi diagrams (which are the cells 
located equidistant to the obstacles). This function introduces a potential similar to a 
repulsive electric potential. 
At each dimension level, the transform is computed by constructing the intersection of 
the Voronoi diagram whose sites are the feature voxels with each row of the image. 
This construct is performed efficiently by using the transform in the next lower 
dimension. 
The algorithm calculates the Voronoi and the Extended Voronoi Transform simultaneously, 
therefore, saving time. The algorithm used (Maurer et al., 2003) for a k-dimensional binary 
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6. Level Set Method and the Fast Marching Planning Method 
The level set method was devised by Osher and Sethian (Osher & Sethian, 1988) as a simple 
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three dimensions. The goal is to compute and analyze subsequent motion of the interface 
under a velocity field. This velocity can depend on position, time, and the geometry of the 
interface and on external physics. The interface is captured for later time, as the zero level 
set of a smooth (at least Lipschitz continuous) function. Topological merging and breaking 
are well defined and easily performed. 
The original level set idea of Osher and Sethian involves tracking the evolution of an initial 
front  as it propagates in a direction normal to itself with a given speed, function V. The 
main idea is to match the one-parameter family of fronts , where  is the position of 
the front at time t, with a one-parameter family of moving surfaces in such a way that the 
zero level set of the surface always yields the moving front. To determine the front 
propagation, a partial differential equation must be solved for the motion of the evolving 
surface. To be more precise, let  be an initial front in Rd, d > 2 and assume that the so-
called level set function  is such that at time t > 0  the zero level set of  is the 
front . We further assume that ; where d(x) is the distance from x to the 
curve . We use a plus sign if x is inside  and minus if it is outside. Let each level set of 

 along its gradient field with speed V. This speed function should match the desired speed 
function for the zero level set of . Now consider the motion of, e.g., the level set 

  (3) 

Let x(t) be trajectory of a particle located at this level set so that 
 (4) 

The particle speed dxdt in the direction n normal to the level set is given by the speed 
function V, and hence 

 (5) 
Where the normal vector n is given by 

 (6) 
This is a vector pointing outwards, giving our initialization of u. By the chain rule 

 (7) 
Therefore  satisfies the partial differential equation (the level set equation) 

 (8) 
and the initial condition 

 (9) 
This is called an Eulerian formulation of the front propagation problem because it is written 
in terms of a fixed coordinate system in the physical domain. 
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If the speed function V is either always positive or always negative, we can introduce a new 
variable (the arrival time function) T(x) defined by 

 (10) 
In other words, T(x) is the time when . If , then T will satisfy the stationary 
Eikonal equation 

 (11) 
coupled with the boundary condition 

 (12) 
The advantage of formula (11) is that we can solve it numerically by the fast marching 
method (Sethian, 1996c), which is exactly what will be done in this study. 
The direct use of the Fast Marching method does not guarantee a smooth and safe 
trajectory. Due to the way that the front wave is propagated and the shortest path is 
determined, the trajectory is not safe because it selects the shortest path, resulting in un-safe 
trajectory that touches the corners and walls, as is shown in figure 5. This problem can 
easily be reduced by enlarging the obstacles, but even in this case the trajectory tends to go 
close to the walls. 

Fig. 5. Trajectory calculated by Fast Marching Method directly, without the use of the 
Extended Voronoi Transform. 

The use of the Extended Voronoi transform together with the Fast Marching method 
improves the quality of the calculated trajectory considerably. On the one hand, the 
trajectories tend to go close to the Voronoi skeleton because of the optimal conditions of this 
area for robot movement; on the other hand the trajectories are also considerably 
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smoothened. This can be observed in figure 6, where safe and smooth quality of the 
trajectory can be noted. 

Fig. 6. Trajectory calculated using Fast Marching with the Extended Voronoi Transform.

Summing up, the central mathematical idea is to view the moving front 
tγ  as the zero level 

set of the higher-dimensional level set function ( )x tφ ; . Depending on the form of the speed 
function V , the propagation of the level set function ( )x tφ ;  is described by the initial 
problem for a nonlinear Hamilton-Jacobi type partial differential equation (7) of first or 
second order. 
If 0V >  or 0V < , it is also possible to formulate the problem in terms of a time 
function ( )T x  which solves a boundary value problem for a stationary Eikonal 
equation (11). 
Fast Marching Methods are designed for problems in which the speed function never changes 
sign, so that the front is always moving forward or backward. This allows us to convert the 
problem to a stationary formulation, because the front crosses each grid point only once. 
This conversion to a stationary formulation, plus a whole set of numerical tricks, gives it 
tremendous speed. 
Because of the nonlinear nature of the governing partial differential equation (7) or (11), 
solutions are not smooth enough to satisfy this equation in the classical sense (the level 
set function and the time function are typically only Lipschitz). Furthermore, 
generalized solutions, i.e., Lipschitz continuous functions satisfying the equations 
almost everywhere, are not uniquely determined by their data and additional selection 
criteria (entropy conditions) are required to select the (physically) correct generalized 
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solutions. The correct mathematical framework to treat Hamilton-Jacobi type equations 
is provided by the notion of viscosity solutions (Crandall & Lions, 1983; Crandall et al., 
1992). 

Fig. 7. Front propagation of the Fast Marching Method with the Extended Voronoi 
Transform.

After its introduction, the level set approach has been successfully applied to a wide array 
of problems that arise in geometry, mechanics, computer vision, and manufacturing 
processes, see (Sethian, 1996b). Numerous advances have been made in the original 
technique, including the adaptive narrow band methodology (Adalsteinsson & Seth, 1995) 
and the fast marching method for solving the static Eikonal equation ((Sethian, 1996a), 
(Sethian, 1996b)). For further details and summaries of level set and fast marching 
techniques for numerical purposes, see (Sethian, 1996b). The Fast Marching Method is an  
O(nlog(n)) algorithm. 

7. Results 
To illustrate the capability of the proposed method three tests are shown. In the first test, the 
method proposed is applied directly to the data obtained from a laser scan around the 
robot. Note how the method obtains a good trade off between trajectory distance, distances 
to obstacles and smooth changes in the trajectory (figures 8 and 9). 
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Fig. 8.  Laser scan data. 

Fig. 9.  Extended Voronoi transform of the scanned data and trajectory obtained with the 
Fast Marching Method 
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In the second test, in order to show global plan capabilities, the method is applied to the 
whole plant of the building where our laboratory is located. The laboratory plant is around 
2000 square meters (medium size). The results are shown in figures 10 and 11. 

Fig. 10.  Extended Voronoi transform of the UC3M Robotics Lab plan 

Fig. 11.  Motion trajectory obtained with the Extended Fast Marching Method 

The last test shows the combination of the global and local properties of this method. In 
this case a simple trajectory motion is determined from an initial position to the goal 
position. During the robot motion the robot observes the environment with its laser 
scan, introduces it in the map, and plans a new trajectory. Local observations (obstacles 
located in the middle of the corridor) that originate may slightly modify the trajectories 
to avoid detected obstacles (figure 12). In the last image of figure 12 the obstacles 
detected blocked the corridor and the sensor based global planner finds a completely 
different trajectory. 
This technique shows the advantage by not only being local, but also global, and combines 
sensor based local planning capabilities with global planning capabilities to react to the 
obstacles rapidly, while maintaining reliability in the planned trajectory. The method 
always finds a solution, if it exists. 

8. Discussion 
We present here a discussion regarding alternative planning approaches, the 
limitations of the proposed method, and the potential effect on mobile robot’s control 
architecture.

8.1. Comparison with existing methods 
The common limitation of all the reactive navigation methods analyzed in this section is 
that they cannot guarantee global convergence to the goal location, because they use 
only a fraction of the information available (the local sensory information). Some 
researchers have worked on introducing global information into the reactive collision 
avoidance methods to avoid local traps situations. This approach has been adopted in 
(Ulrich & Borenstein, 2000) which utilizes a look-ahead verification in order to analyze 
the consequences of a given motion a few steps ahead avoiding trap situations. Other 
authors exploit the information about global environment connectivity to avoid trap 
situations (Minguez & Montano, 2001). Such solutions still maintain the classical two-
level approach, and require additional complexity at the obstacle avoidance level to 
improve the reliability. 
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Fig. 12.  Dynamical evolution of the path when the robot reads information about the new 
obstacles that are not in the previous map and the robot cannot pass through the corridor. 

The Voronoi Fast Marching method is consistent at local and global scale, because it 
guarantees a motion path (if it exists), and does not require a global re-planning supervision 
to re-start the planning when a local trap is detected or a path is blocked. Additionally, the 
path calculated has good safety and smoothness characteristics. 

8.2. Method limitations 
The main limitation of the Voronoi Fast Marching method is its computational complexity 
and the computational differences between the initial and the final stages of task 
implementation. Because the fast marching method is a wave propagation technique, the 
area explored by the algorithm can be quite different. This causes the algorithm to be 
faster at the end of the task. Despite of its computational efficiency for medium size 
environments, the computational cost increases with the environment size. In our test site, 
the laboratory plant is about 2000 square meters (medium size) and the slowest 
computation time detected was 150 milliseconds (2.2 Ghz Pentium 4 processor). This time 
is acceptable for most applications, but because the algorithm has to operate in a reactive 
way in case of bigger environments, the computational cost has to be controlled. One 
possible solution is to increase the cell size, another is to use a multi-resolution map 
system which uses a big cell size to calculate the motion path in areas outside of a 
window located around the robot. 
The method can be extended to non-holonomic robot structures by modifying the 
algorithm to operate in the robot’s configuration space instead of the environment map.  
However, the computational cost increases and its capability to operate in real time 
decreases.
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8.3. Architectural effect
Due to the fact that the VFM method integrates global motion planning and obstacle 
avoidance capabilities in an algorithm, which lets us simplify the mobile robot control 
architecture. This technique has been originally designed for mobile manipulators, 
which requires a smoother and safer motion plan compared to mobile robots. From an 
architectural point of view, this uncovers an old discussion in the mobile robot research 
community. Can a planned architecture be as efficient and as responsive as a reactive 
architecture? This difficult question we think may be answered by utilizing sensor-
based global planning method that can lead us to develop efficient and responsive 
sensor-based planned architectures, and to also simplify the current hybrid 
architectures which operate deliberatively at upper architectural levels and reactively at 
lower levels. 

9. Conclusions 
We have addressed here a sensor-based global planner. We have presented a method able to 
deal simultaneously with global and local planning requirements using a combination of the 
extended Voronoi transform and the Fast Marching method. The advantage is that our 
design is able to provide a smooth and safe motion trajectory, and at the same time 
guarantee that the trajectory obtained from the current location to the goal location is free 
from local traps (with the information available at that moment). 
To illustrate its possibilities, the method has been used for planning a trajectory in 
different situations: In the first case operating only with sensor information (in this case 
only as a local planner); in the second case working as a global planner by using a priori 
map only; in the third situation operating as a sensor-based global planner using a priori 
information and sensor information, to re-plan dynamically the trajectory from the 
current position to the goal position as soon as the sensor originates information changes 
around the robot. The dimensions of the laboratory environment are 116x14 meters (the 
cell resolution used in the a priori information map are 12 cm). For this environment the 
first step (the Extended Voronoi Transform) takes 0.05 seconds in a Pentium 4 at 2.2 Ghz, 
and the second step (Fast Marching) takes between 0.05 and 0.15 seconds, depending on 
the length of the trajectory. For a medium distance trajectory on the map, the value is 
around 0.10 seconds. 
The proposed method is highly efficient from a computational point of view because it 
operates directly over a 2D image map (without extracting adjacency maps), and due to the 
fact that Fast Marching complexity is O(nlog(n)) and the Extended Voronoi Transform 
complexity is O((n)), where n is the number of cells in the environment map. The main 
contribution of the method is that it robustly achieves smooth and safe motion plans during 
dynamic scenarios in real time that can be used at low control levels without any additional 
smoothing interpolations. This permits the method to fuse collision avoidance and global 
planning in only one module, which can simplify the control architecture of the mobile 
robots and manipulators. 
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based global planning method that can lead us to develop efficient and responsive 
sensor-based planned architectures, and to also simplify the current hybrid 
architectures which operate deliberatively at upper architectural levels and reactively at 
lower levels. 

9. Conclusions 
We have addressed here a sensor-based global planner. We have presented a method able to 
deal simultaneously with global and local planning requirements using a combination of the 
extended Voronoi transform and the Fast Marching method. The advantage is that our 
design is able to provide a smooth and safe motion trajectory, and at the same time 
guarantee that the trajectory obtained from the current location to the goal location is free 
from local traps (with the information available at that moment). 
To illustrate its possibilities, the method has been used for planning a trajectory in 
different situations: In the first case operating only with sensor information (in this case 
only as a local planner); in the second case working as a global planner by using a priori 
map only; in the third situation operating as a sensor-based global planner using a priori 
information and sensor information, to re-plan dynamically the trajectory from the 
current position to the goal position as soon as the sensor originates information changes 
around the robot. The dimensions of the laboratory environment are 116x14 meters (the 
cell resolution used in the a priori information map are 12 cm). For this environment the 
first step (the Extended Voronoi Transform) takes 0.05 seconds in a Pentium 4 at 2.2 Ghz, 
and the second step (Fast Marching) takes between 0.05 and 0.15 seconds, depending on 
the length of the trajectory. For a medium distance trajectory on the map, the value is 
around 0.10 seconds. 
The proposed method is highly efficient from a computational point of view because it 
operates directly over a 2D image map (without extracting adjacency maps), and due to the 
fact that Fast Marching complexity is O(nlog(n)) and the Extended Voronoi Transform 
complexity is O((n)), where n is the number of cells in the environment map. The main 
contribution of the method is that it robustly achieves smooth and safe motion plans during 
dynamic scenarios in real time that can be used at low control levels without any additional 
smoothing interpolations. This permits the method to fuse collision avoidance and global 
planning in only one module, which can simplify the control architecture of the mobile 
robots and manipulators. 
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1. Introduction 
Many published papers [17, 44] on the map building of Autonomous Mobile Robots (AMRs) 
do not consider the question of autonomous exploration at all. This is, of course, often just a 
choice of research focus; effort is expended on the mechanics of map construction from sensor 
data without worrying about how the sensing positions were selected. Or the map is provided 
by the operator [7, 11] for any other applications. In our view, the autonomous exploration 
skill is an extremely important capability for a truly AMR. For example: as it is desired to build 
a map of unknown environments without human intervention, AMRs should be equipped 
with a skill of autonomous exploration which includes the competence of path finding, 
obstacle avoidance and monitor progress towards reaching a goal location or target. 
Several possible strategies for exploration of unknown environment are described in the 
robotics literature. The following categorization is taken from Lee [24]: 

1. Human Control – mobile motion is controlled by human operator. 
2. Reactive Control – the mobile robot movement is relied on the perception system. 
3. Approaching the unknown – the mobile robot move into the region that it knows 

least in the environment.  
4. Optimal search strategies – the approach is focused on to search the shortest path 

for seeking the goal. 
In the first category, the robot is guided around the environment by a human operator. This 
requires human intervention in the map building process. Therefore, it is not suitable for an 
autonomous exploration mobile robot. 
For reactive exploration approach (2nd category), the sensory data (perception space) is used to 
calculate or determine the control actions (action space). The sensory data may be the distance 
information from infrared, sonar or laser range finder type sensors, visual information or 
processed information obtained after appropriate fusion of multiple sensor outputs. The 
control actions are usually a change in steering angle and setting a translation velocity of the 
robot that will avoid collisions with the obstacles on its way and reach the desired target. Pre-
designed or adaptive systems based on fuzzy logic [15, 26, 28, 31, 40-41, 45-46, 48-49], neural-
networks [9, 33-35, 38, 51] or combination of them [27] are designed by this reactive navigation 
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processed information obtained after appropriate fusion of multiple sensor outputs. The 
control actions are usually a change in steering angle and setting a translation velocity of the 
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networks [9, 33-35, 38, 51] or combination of them [27] are designed by this reactive navigation 
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approach. Since a totally reactive behavior uses only locally available environment 
information, without any memory of the previously encountered situations, the autonomous 
robots are found to suffer from local minima situations. For that reason, a reactive approach 
cannot be applied to autonomous exploration robot independently. 
In the strategy of approaching the unknown (3rd category), a mobile robot tries to move 
towards the regions of its environment about which it knows least. A mobile robot uses the 
perception sensor information to search the new territory and move towards that area. This 
process is repeated until the whole environment has been covered. Global grid model is used 
in some of map building system to represent the environment. Thrun [44] developed a system 
trained by an artificial neural network to translate neighboring groups of sonar readings onto 
occupancy values in the grid and then control the mobile robot to explore directed towards to 
an areas of high uncertainty in global grid map. However, this system required offline training 
by the robot simulator though neural network and the algorithm depended on the assumption 
that environment was rectilinear. In terms of topological maps approach for exploration, 
Edlinger and Weiss [12] developed a robot equipped with laser range finder to detect obstacle-
free segments from the scans and it created topological relations between those scans. A 
similar approach proposed by Yamauchi [50] required an accurate laser range finder sensing 
to detect the open space. Recently, Duckett [10] proposed an exploration system to build a 
topological map which is augmented with metric information concerning the distance and 
angles between connected places. A trained neural network was used to detect an open space 
in the environment via sonar sensors and infrared sensor. The open space areas were added to 
a stack of unexplored locations which were visited in turn until the whole environment had 
been covered by the robot. This system was tested successfully in a middle-scale indoor 
environment with Nomad 200 mobile robot [36]. However, this approach relies on a set of 
sonar sensors and infrared sensors mounted on the rotating robot’s turret (which can be 
rotated independently relative to the base of the robot). It needs to stop the robot on every 1m 
place in environment to scan and search the possible areas of uncharted territory in all 
directions. This means that the system would work with Nomad 200 mobile robot only and 
not suitable for the mobile robot which without rotating turret. 
For the fourth category (Optimal search strategies), many researchers have provided 
mathematical analyses of strategies which are minimized the length of the path traveled by the 
robot during exploration. It is similar to the well-known traveling salesman problem [14]. 
In the last two decades, many researchers proposed robust and successful reactive 
navigation controller, such as behavior-based method [32, 40, 45, 49] and model-based 
method [2, 21-22, 30]. However, while reactive navigation approaches are often very robust, 
they cannot be guarantee to navigate all areas in an unknown environment. Therefore, the 
approaches based on reactive control (2nd category) and approaching the unknown (3rd

category) would seem the most promising for autonomous exploration via mobile robot. 
Therefore, a novel mixing approach combined the reactive approach with approaching the 
unknown strategy will be presented in this paper. 
Our approach is closest in spirit to that of Edlinger and Weiss [12] and Duckett [10], though 
it does not require an accurate laser range finder for perception system, a rotating robot’s 
turret and a set of training for setting the open space detection neural network system. A 
simple and real-time system is designed for detecting an open free space via a Bayesian 
update theory [1] instead of pre-trained system or accurate sensing system. Reactive 
navigation scheme is applied to start the exploration by using a predefined Hierarchical 
Fused Fuzzy System (HFFS) [4, 20, 23]. Those proposed algorithm would generate a metric 
topological map model after the exploration. 

Effective Method for Autonomous Simultaneous Localization and Map Building in 
Unknown Indoor Environments 499

In studying the problem of feature based SLAM, a number of specific problems should be 
considered. These include feature extraction, data association, map management and 
computation complexity. 
In recent times, a number of research groups have attempted to implement real-time SLAM 
approach successfully with SICK laser scanner [3, 8, 16, 29] in indoor environments. The 
main advantage of the SICK laser scanner is that the sensor measurements from one robot 
position can be directly correlated to measurements taken from a nearby position. In 
contrast, the sonar sensor measurements are usually too noisy, ambiguous and spurious and 
hence it is difficult to apply the above technique to work properly. Also, it is a common 
belief that mobile robot navigation and mapping in indoor environments is far more 
difficult with sonar than with laser measurements. An alternative methodology [5, 6] to 
overcome limitations of the sonar sensor is to develop advanced custom-made sonar arrays 
that allow extracting and initializing geometric features from a single robot position. Most 
recently, some researchers [25, 43] have addressed this issue with a ring of sonar sensors 
successfully. Tardos et al. (2002) [43] proposed a new technique for perceptual feature 
extraction technique by using Hough Transform and map joining technique with two 
statistically independent and uncorrelated maps. On the other hand, Leonard et al. (2002) 
[25] proposed a feature initialization technique from multiple uncertain vantage points and 
focused on its state estimation aspects. Both these two algorithms were successfully applied 
to solve the SLAM problem with 24 sonar sensors in a circular array. The SLAM problem for 
non-circular or restricted sonar sensor array has not been addressed. This particular 
problem is addressed by the authors’ pervious work [19].  
The rest of this chapter is organized as follows: Section 2 states an overall framework of the 
proposed SLAM algorithm is described. Section 3 presents the complete implementation of 
the proposed autonomous exploration and mapping system. The performance of the 
proposed algorithm will be tested via robot simulator and physical mobile robot Pioneer 
2DX in Section 4. Finally, the chapter will be concluded in Section 5. 

2. Overall framework of the proposed SLAM with feature tracking algorithm 
The authors’ pervious proposed SLAM algorithm [19] which incorporate with conventional 
SLAM (which is introduced in appendix), enhanced adaptive fuzzy clustering EAFC feature 
extraction scheme [17], overlapping comparison technique and feature tracking scheme. The 
overall framework of this novel SLAM algorithm with feature tracking scheme is shown in 
the Figure 1. A step-by-step procedure for updating the estimated robot pose and map 
feature are presented as follows: 

1. Obtain the control action and sensor measurements from the odometric sensor and 
sonar sensor respectively.  

2. Store the sensor measurements in Overlapping sliding window sonar buffer.  
3. Use the control action (odometric measurement) and present estimated robot pose 

to perform a SLAM prediction process (it is calculated by equation (A.3) to (A.5)).  
4. Check the buffer is full (go to step 5). If the buffer is not empty (go to step 7). 
5. To extract the two overlapping segments in the different group of buffer and 

calculate the comparison values.  
6. To perform a “Feature Initialization” process (the map state matrix )|( kkX m

 and 
covariance matrix )|( kkP  are updated by equation (A.11) and (A.12), respectively) 
if the related overlapping segments comparison values are satisfied.  
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4. Check the buffer is full (go to step 5). If the buffer is not empty (go to step 7). 
5. To extract the two overlapping segments in the different group of buffer and 

calculate the comparison values.  
6. To perform a “Feature Initialization” process (the map state matrix )|( kkX m

 and 
covariance matrix )|( kkP  are updated by equation (A.11) and (A.12), respectively) 
if the related overlapping segments comparison values are satisfied.  
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7. To perform a “Data Association” process to calculate sensor measurement 
prediction value. If the sensors can match with the existing feature in the map, go 
to step 10. Otherwise, go to next step. 

8. Feature Tracking Scheme: Extend the current tracking feature in the map and 
repeat the “Data Association” again if the related comparison values are satisfied.  

9. If the related sensor is matched, store the extended feature in the map. If not 
match, just forgo it.  

10. Use the prediction value obtained in step 3 to perform the SLAM updating process 
(it is calculated by equation (A.6) to (A.10)). 

11. The estimated robot pose and map are updated and their covariance as well. Go 
back to step 1. 

3. Autonomous exploration strategy 
In the proposed exploration system, two core components are required: a reactive 
navigation scheme by using hierarchical fused fuzzy system (section 3.1) and a navigation 
point generation system (section 3.2). When the mobile robot starts to navigate the 
environment, a point-mark will be placed on the acquired map sequentially. The map can be 
learned by either one of standard segment-based map building technique [13, 17, 43]. 

Fig. 1. The overall framework of the proposed SLAM.
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The moving actions are relied on the reactive navigation system to control the mobile robot 
to navigate in the environment by wall following and collision avoiding technique until the 
mobile robot travels back to the traveled point-mark. On every point-mark, the open space 
evaluation system examines the eight given directions (45° apart each direction) for 
detecting possible areas of uncharted. An open space probability value is assigned and 
stored in each given direction at each traveled point-mark. In addition, the acquired map 
will be used to update if the open space is free or not. If the open space in a given direction 
at a traveled point-mark is occupied by a segment (map model), then this direction will be 
stated as not open space, otherwise it is registered as open space (the corresponding 
variables are described in section 2.2). When the mobile robot travels back to the traveled 
point-mark, subsequent movements by the mobile robot is required to validate whether the 
open space in a given direction at each point-mark actually free or not. Therefore, “A*” 
heuristic search algorithm [36] is used for planning routines in all traveled point-marks. 
This process guarantees finding the shortest path to the target location (which is the 
traveled point-mark still contain an open space in those given direction) from all the other 
traveled point-marks. Note, when the shortest path is generated by a path planning 
algorithm, the robot’s heading is steered by the current robot direction to the next node on 
the path to the target location with constant velocity at a fixed sampling time. If the given 
direction at the traveled point-marked is stated as open space, a reactive navigation scheme 
will be activated again to explore in this given direction. The whole process is repeated until 
all the open space in a given direction at each traveled point-mark in the map are traveled 
or cleared by the robot or map feature, respectively. 

3.1 Reactive navigation via HFFS 
HFFS [4, 20, 23] uses smaller number of rules to represent the same amount knowledge, 
have higher mutually related interactions due to their cross-coupling between each element 
and level. Due to these properties, this structure is applied to design a reactive navigation 
controller to control the mobile robot to achieve some task, such as: keep off obstacles and 
wall or corridor following. 
The schematic diagram of the HFFS is shown in Figure 2. In this system, six 2-input / 1-
output fuzzy system are used. This HFFS consist 7 inputs and 2 outputs and the total 
number of rules are 60 only. 
The strategy of creating the fuzzy rules is that decision should try to move forward, 
navigate along a corridor and at corner, keep off and parallel to wall and avoid obstacle. The 
antecedent variables to the HFFS are 5 sides’ sonar sensors reading (i.e. left and right side, 
left and right front corner and front side) and 2 changes of side sensor readings (left and 
right).
The input sensor readings are fuzzified using the fuzzy set definitions as shown in Figure 
3a. The variable is partitioned in three fuzzy sets namely, VN (very near), NR (near) and FR 
(far). The sensor readings are normalized between 0 and 1. The input membership function 
for the two changes of side sensor readings is shown in Figure 3b. Furthermore, the variable 
is partitioned in three fuzzy sets namely, N (negative), Z (zero) and P (positive). The change 
of side sensor reading is normalized between –1 and 1. The input L_M and R_M inside the 
HFFS are fuzzified using the fuzzy membership functions as shown in Figure 3c and they 
are normalized between –1 and 1. The labels of each subset are N (negative), Z (zero), VS 
(very slow), M (medium) and F (fast). Since normalized input variables are used. Four input 
scaling factors should be used, such as L_S’ and R_S’ sensor reading scaling factor 

Sσ , F_S’ 
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Sσ , F_S’ 



502 Mobile Robots, Perception & Navigation

sensor reading scaling factor Fσ , change of side sensor reading (ΔL_S and ΔR_S) scaling 
factor

SΔσ  and L_M and R_M velocity scaling factor 
Vσ .
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Fig. 2. The HFFS reactive navigation structure. 

The singleton fuzzy set is used for the all output variables (L_M, L_M’, R_M, R_M”, ΔL_M 
and ΔR_M) in HFFS and it is shown in Figure 4. The fuzzy partition names for L_M, L_M’, 
R_M and R_M” are same as that used in input L_M or R_M. The normalized ΔL_M and 
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ΔR_M are partitioned into five fuzzy sets, namely NL (negative large), NS (negative small), 
Z (zero), PS (positive small) and PL (positive large). All the output variables are normalized 
between –1 and 1. The output scaling factor for the motor velocity L_M’ & R_M’ and the 
change of motor velocity ΔL_M & ΔR_M are stated as 

Vσ  (same as the input scaling factor 
used in L_M and R_M) and 

VΔσ , respectively. In the present implementation the center 
average de-fuzzifier [47] is used for its fast computation. 

a) Fuzzy set definition for input variable sensor reading. 

Δ Δ 

b) Fuzzy set definition for input variable change of side sensor readings. 

c) Fuzzy set definition for input variable motor velocity. 

Figure 3 Input membership functions corresponding to HFFS. 



502 Mobile Robots, Perception & Navigation

sensor reading scaling factor Fσ , change of side sensor reading (ΔL_S and ΔR_S) scaling 
factor

SΔσ  and L_M and R_M velocity scaling factor 
Vσ .

Σ

Σ

Σ

Σ

Σ

Δ 

Δ 

Σ

Σ

Δ 

Δ 

  Δ Δ
          Δ Δ

Fig. 2. The HFFS reactive navigation structure. 

The singleton fuzzy set is used for the all output variables (L_M, L_M’, R_M, R_M”, ΔL_M 
and ΔR_M) in HFFS and it is shown in Figure 4. The fuzzy partition names for L_M, L_M’, 
R_M and R_M” are same as that used in input L_M or R_M. The normalized ΔL_M and 

Effective Method for Autonomous Simultaneous Localization and Map Building in 
Unknown Indoor Environments 503

ΔR_M are partitioned into five fuzzy sets, namely NL (negative large), NS (negative small), 
Z (zero), PS (positive small) and PL (positive large). All the output variables are normalized 
between –1 and 1. The output scaling factor for the motor velocity L_M’ & R_M’ and the 
change of motor velocity ΔL_M & ΔR_M are stated as 

Vσ  (same as the input scaling factor 
used in L_M and R_M) and 

VΔσ , respectively. In the present implementation the center 
average de-fuzzifier [47] is used for its fast computation. 

a) Fuzzy set definition for input variable sensor reading. 

Δ Δ 

b) Fuzzy set definition for input variable change of side sensor readings. 

c) Fuzzy set definition for input variable motor velocity. 

Figure 3 Input membership functions corresponding to HFFS. 
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a) Output consequences for motor velocity L_M, L_M’, R_M and R_M’. 

Δ Δ

b) Output consequences for the change of motor velocity ΔL_M and ΔR_M . 

Fig. 4. Output consequences corresponding to the HFFS. 

The corresponding fuzzy rule tables used in HFFS are shown in Table 1. From the rule table 
(Table 1c), we defined that the robot will turn right when both sides’ sensor readings are 
equal or a nearer obstacle occupied in left side. 

R_S’O/P: L_M / R_M VN NR FR 
VN Z / Z VS / Z M / N 
NR Z / VS M / M F / M L_S’ 
FR N / M M / F F / F 

a) Fuzzy rule base for FLC-1 and FLC-2 in HFFS. 
L_M or R_M O/P: ΔL_M or ΔR_M N Z VS M F 

N X X X PS PL 
Z X X X Z Z 

ΔL_S 
or
ΔR_S P X X X NS NL 

b) Fuzzy rule base for FLC-3 and FLC_4 in HFFS. 
L_M / R_M O/P: L_M’ / R_M’ N Z VS M F 

VN N N Z A1 / B1  A1 / B1
NR N VS Z A2 / B2 A2 / B2F_S’   
FR N VS VS M F 

c) Fuzzy rule base for FLC-5 and FLC_6 in HFFS. 
Table 1. Fuzzy rule tables for the proposed HFFS reactive navigation controller. 
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3.2 Navigation point generation system 
The objective of this system is to place and store a point-mark on the traveled robot 
trajectory and hence to search all possible open space on the mapping environment. Before 
we describe the system, few types of points and terms are introduced in Table 2. The main 
feature of this navigation point generation system is to arrange the navigation point in 
unevenly distribution. Different to the navigation system proposed by Duckett [10]. Duckett 
[10] suggests adding a “place” (equivalent to navigation point used in here) at every certain 
distance (1 m is used in their experiment). Therefore, the resulting topological path was 
distributed evenly and some of redundant “place” or navigation point was occurred. In 
contrast, we suggest adding a confirmed navigation point in a required region. For example: 
if the mobile robot navigates in a long corridor, few navigation points are required to 
represent the free path. Therefore, 8 possible free space directions and its related free space 
probability are assigned at each confirmed navigation point. We can compare their state (8 
free space probability) of navigation point to past navigation point to verify their similarity 
when the mobile robot navigated in an unknown environment. The calculation of free space 
probability in a given direction at each navigation point is discussed in section 3.2.3 

Symbol Definition 
T_NPn nth Test Navigation Point 
P_NP Potential Navigation Point 
Cd_NP Confirmed Navigation Point 
L_Cd_NP Last Cd_NP 
N_Cd_NP The Nearest Cd_NP to the current robot location 
T_Cd_NP[i] 
where i = 0, 1, 2, 3 

ith recent Traveled Cd_NP 
(The most recent Cd_NP is represented by i = 0) 

E_Cd_NP The Extra Past Cd_NP, 
i.e. At time k E_Cd_NP ≠T_Cd_NP[i] for i = 0, 1, 2, 3. 

FreeSpaceCoverRadius The maximum free space coverage radius 
MinNavTravelDis The minimum specified traveled displacement 

Table 2. The Various symbols in Navigation point generation system. 

In addition, three terms will be attached in each given direction at each Cd_NP, such as 
“FreeSpaceProbability (= 0 ~ 1)”, “IsOpenSpace (= True or False)” and “IsExplored (= True 
or False)”. 
Figure 5 is a flow chart of the entire navigation point generation system. It is designed to 
allow direct translation into an implementation. In Figure 5, two types of line are used, i.e. 
dashed-line and solid-line. The dashed-line stated that the process should go to next step 
within same sampling interval. In contrast, the solid-line stated that the next step would be 
executed at next sampling interval. The flow of the algorithm is regulated by the state 
variables described in Table 2. The significance of some parts of the flow chart necessitates 
discussion. These regions have been labeled in Figure 4 and are described as following:  

A The state of the last confirmed navigation point (L_Cd_NP) is updated by 10 
sampling robot steps before it go to next step. The state of Cd_NP updating process 
will be discussed in section 3.2.1. 

B When Condition 1 (which stated in Figure 4) is satisfied, a new confirmed 
navigation point (Cd_NP) is registered and reset the variable n (which states the 
total number of test navigation point) to 1. And then calculate and update the state 
of this new registered Cd_NP in next sampling interval. 
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Table 2. The Various symbols in Navigation point generation system. 

In addition, three terms will be attached in each given direction at each Cd_NP, such as 
“FreeSpaceProbability (= 0 ~ 1)”, “IsOpenSpace (= True or False)” and “IsExplored (= True 
or False)”. 
Figure 5 is a flow chart of the entire navigation point generation system. It is designed to 
allow direct translation into an implementation. In Figure 5, two types of line are used, i.e. 
dashed-line and solid-line. The dashed-line stated that the process should go to next step 
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executed at next sampling interval. The flow of the algorithm is regulated by the state 
variables described in Table 2. The significance of some parts of the flow chart necessitates 
discussion. These regions have been labeled in Figure 4 and are described as following:  

A The state of the last confirmed navigation point (L_Cd_NP) is updated by 10 
sampling robot steps before it go to next step. The state of Cd_NP updating process 
will be discussed in section 3.2.1. 

B When Condition 1 (which stated in Figure 4) is satisfied, a new confirmed 
navigation point (Cd_NP) is registered and reset the variable n (which states the 
total number of test navigation point) to 1. And then calculate and update the state 
of this new registered Cd_NP in next sampling interval. 
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C When the current test navigation point (T_NPn) is similar to the extra past 
confirmed navigation point (E_Cd_NP), then reset the current test navigation point 
and set n to 1. After that, register a new test navigation point in next sampling 
interval.

D If the current test navigation point is not similar to the current potential navigation 
point, then search the nearest confirmed navigation point (Cd_NP) in the list 
relative to the current potential navigation point. If this resulting point is similar to 
the current potential point and their distance is smaller than “MinNavTravelDis”, 
then reset the current test navigation point and set n to 1. 

3.2.1 Process for updating the state of confirmed navigation point (Cd_NP) 
As mentioned that as before, three variables are attached in each given direction of each 
confirmed navigation point (Cd_NP). One floating point variable, i.e. 
“FreeSpaceProbability”. The updating process of this variable will be introduced in section 
3.2.3. Two Boolean variables, i.e. “IsOpenSpace” and “IsExplored”, and the updating 
condition are discussed as follows: 
“IsOpenSpace” This Boolean variable can be stated that the given direction of confirmed 
navigation point is open or not. And it can be determined by the  “FreeSpaceProbability”. If 
the free space probability is more than or equal to 0.5, then this given direction is open 
(IsOpenSpace = True). Otherwise, “IsOpenSpace” is equal to “False”. On the other hand, 
this Boolean variable can be also updated by the acquired map model. Since a segment-
based map is extracted by either one of segment-based map building technique 
simultaneously. (The corresponding map building will be discussed in section 4.) A simple 
logical updating algorithm is applied. If the given direction of confirmed navigation point is 
occupied by a segment, then the Boolean variable can be stated as “False”. Otherwise, it is 
registered as “True”. 
“IsExplored” This Boolean variable states that the given direction of confirmed navigation 
point is explored or not. Three conditions are used to update this variable and are shown as 
following: 

1. If the distance between two confirmed navigation points is smaller than 
FreeSpaceCoverRadius, then these Boolean variables (in the corresponding given 
direction at the two confirmed navigation points are registered as “True” (i.e. 
IsExpored = True).  

2. If the distance between the current robot position and the corresponding 
confirmed navigation point is smaller than FreeSpaceCoverRadius, then it is 
stated as “True”. 

3. If the term “IsOpenSpace” is stated as “False” in a given direction at the 
corresponding confirmed navigation point, then the term “IsExplored” is equal to 
True in the same direction at the corresponding confirmed navigation point. 

3.2.2 Redundant confirmed navigation point removing process 
As we want to reduce the redundant confirmed navigation point in the map, a redundant 
point removing process is needed. In this process, we compare the T_Cd_NP[0] and 
T_Cd_NP[1]. If it is similar and the distance between T_Cd_NP[0] and T_Cd_NP[2] is 
smaller than FreeSpaceCoverRadius , then remove the T_Cd_NP[1]. The visualization of the 
proposed exploration algorithm is shown in Figure 6. 
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Fig. 5. The flow chart of the proposed navigation point generation system. 
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Fig. 5. The flow chart of the proposed navigation point generation system. 
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Fig. 6. The visualization of exploration algorithm. 
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3.2.3 Open space evaluation system 
To evaluate areas of free space, we have developed a simple and efficient mechanism which 
uses a Bayesian update rule and sonar sensor model pdf to calculate the value of 
“FreeSpaceProbability” in a given direction at each point-mark (T_NP or Cd_NP). From 
equation (A-2), the sonar probability model ),|( θzrp  can be calculated. r  is the sensor 
range reading. z  represents the true parameter space range value (here we use the value of 
“FreeSpaceCoverRadius”). θ  represents the azimuth angle measured with respect to the 
beam central axis (here we calculated as sonar beam angle Sθ  subtract the given direction at 
a point-mark, all angles are referred to the global reference frame). In this application, the 
value εk  and ok  become a constant in equation (A-2). i.e. εk = zero or very small real 

number and εk = 0.6. The variance of radial rσ  and angular θσ  is equal to 250mm and 
12.5°, respectively. After a sampling for all sonar sensors (16 sonar sensors used here), the 
probability is fused together by Bayes’s theorem [1]. The value of “FreeSpaceProbability” in 
given direction is calculated as below: 
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observations.
The whole process is repeated until the robot has traveled far away from the point-mark 
with certain distance (300mm in these experiment). After the open space evaluation process 
is complete, 8 probability values (see bottom right in Figure 6) are attached in the point-
mark (T_NPn or Cd_NP) for representing the free space probability values in given 
direction. Furthermore, another function for this open space evaluation system is aimed to a 
mobile robot escaping from a “U-trap” (see the upper part in Figure 6). We can detect a “U-
trap” situation from the following 2 conditions: 

1. L_S’<600mm and R_S’<600mm 
2. An “IsOpenSpace[i]” in point T_Cd_NP[0] is equal FALSE, where i is equal to the 

direction (0 ~ 7) which is pointed to the current position of mobile robot. 
If a “U-trap” is detected, the reactive navigation system will be disabled until the mobile 
robot is rotated for certain degree (120° in these experiments). 

4. Experimental Results 
In order to evaluate the performance of the proposed autonomous exploration strategy, 
several experiments were conducted. In the first two experiments, we applied the proposed 
reactive navigation system only to control a Pioneer 2DX mobile robot to navigate along a 
corridor and at corners. For third experiment, the complete autonomous exploration 
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Fig. 6. The visualization of exploration algorithm. 
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corridor and at corners. For third experiment, the complete autonomous exploration 
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strategy was conducted in a localization error free (no slippage or wheel drift error) mobile 
robot simulator platform (Pioneer simulator). For fourth experiment, the autonomous 
SLAM experiment was conducted in a well constructed unknown indoor environment with 
Pioneer 2DX mobile robot. 
All of experiments were implemented in robot software “Saphira” [42] on a Pentium 4 1.6 
GHz with 256RAM PC computer and it is communicated to the Pioneer 2DX mobile robot 
via wireless modem. Also, all sonar sensors measurements were limited up to 3 meters to 
reduce the uncertainty for map building process. In our proposed exploration scheme, two 
sides sensors and front sonar sensors array are used only. They are arranged in 5 input 
groups as shown in Figure 7 (i.e. L_S, L_F_S, F_S, R_F_S and R_S). The 10 sensors were 
categorized into 5 inputs for HFFS reactive navigation system and it is allocated as follows: 
Left side: L_S = min(S16,S1)
Left front corner: L_F_S = min(S2,S3)
Front side: F_S = min(S4,S5)
Right front corner: R_F_S = min(S6,S7)
Right side: R_S = min(S8,S9)

Fig. 7. Sensors arrangement for HFFS reactive navigation system. 

The values (range) from direction left to right (i.e. L_S, L_F_S, F_S, R_F_S and R_S) were used 
as the input of the HFFS reactive navigation system and the outputs of the system were the 
linear velocity of the left (L_M”) and right (R_M”) driving motor of the mobile robot. For 
scaling factor Sσ , a simple adoption scheme was used and it is formulated as follows: 
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where MAXσ  is the maximum defined range value and is equal to FreeSpaceCoverRadius 
and

λ  is a forgetting factor (0.7 in these experiments). 
The initial value )0(Sσ  is defined as 1500mm. The setting of reminding input and output 
scaling factors are stated as follows: 
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Fσ  is defined as FreeSpaceCoverRadius. 

SΔσ  is defined as 100mm (designed by human experience). 

Vσ  is defined as 200mm/s (predefined maximum translation velocity). 

VΔσ  is defined as 20mm/s (designed by human experience). 
The sampling time for the proposed autonomous exploration strategy is 1s in all the 
following experiments. 

4.1 Experiments with a real robot 
In the first experiment, the system was tested in a long corridor with 1.5m widths. The objective 
of this experiment was to verify the performance when a mobile robot navigated along a 
corridor. Therefore, the minimum range value of the left and right side group sensors are plotted 
against time and it is shown in Figure 8a. In Figure 8a) and b), shows that the Pioneer 2DX 
mobile robot navigated along towards the middle of corridor with a smooth trajectory. 
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b) Snap shots of a Pioneer 2DX navigating along a corridor. 

Fig. 8. The performance of the proposed HFFS reactive navigation system while navigates 
along a corridor. 
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In the second experiment, the proposed reactive navigation system was used to control a 
Pioneer 2DX navigating in a more complex area where is located at the outside of our 
research laboratory in the university. Figure 9 shows the robot’s information and the robot 
trajectory during navigation. At starting of the navigation (low bottom left in Figure 9b), the 
mobile robot traveled along a corridor. Then the mobile robot turned to right side when the 
robot’s front sensor detected an obstacle (at time 70s, see Figure 9a). Then the mobile robot 
started to follow a set of lockers (by wall following behavior) until it’s front sensor detect an 
obstacle again. Finally, it started to follow right hand side object at time 140s. 
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Fig. 9. The robot’s information and robot trajectory while a Pioneer 2DX navigated at corner. 
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From the above two experiments, it can be demonstrated that the proposed HFFS reactive 
navigation system can achieve the goal of multi-behavior (such as: navigate along a 
corridor and at corner, keep off and parallel to wall and avoid obstacle) mobile robot 
controller. In the next experiment, the complete autonomous exploration strategy is 
applied to control a mobile robot for navigating in an unknown environment via robot 
simulator. 

4.2 Experiment with a robot simulator 
In this experiment, the EAFC segment-based map building algorithm [15] was adopted 
to extract the map information from raw sonar data. This map building algorithm is 
the authors’ pervious work [17]. Other than that algorithm, we can also apply fuzzy 
sonar maps [13] (which was proposed by Gasos and Martin 1996) or Hough transform 
with sonar arc (which was proposed by Tardos et. al. 2002) for extracting a segment-
based map. For the parameters setting in autonomous exploration strategy, it was 
selected as follow: “FreeSpaceCoverRadius” = 2500mm and “MinNavTravelDis” = 
800mm.
The advantage for using a robot simulator to verify our proposed autonomous exploration 
strategy is that the localization error can be disabled or neglected. Since the localization 
problem will arise an error or affect the accuracy in the planning process. The Pioneer 
Simulator [42] can simulate several different types of typical noise that occur during robot 
navigation and sensor perception. To achieve the goal of this experiment, the percentage of 
encoder jitter, angle jitter and angle drift in robot simulator is reduced to zero. Nevertheless, 
the sonar sensor uncertainty is still occurring in the system. Figure 10 shows the navigation 
point-marks and the unexplored direction at each Cd_NP superposed on the actual map 
when the Pioneer 2DX navigates in the simulation world. We can see that the mobile robot 
can navigate in all regions in the unknown environment. Also, the navigation point-marks 
are distributed unevenly in the navigation environment. The raw sonar data and extracted 
map by EAFC during the autonomous navigation are shown in Figure 11 a) and b), 
respectively.

4.3 Autonomous SLAM experiment
In this experiment, the autonomous exploration strategy was combined with the SLAM 
algorithm [19] to form an effective SLAM algorithm. Basically, this effective SLAM 
algorithm is similar to the algorithm that was tested in section 4.2 except the map 
information (for aiming the navigation point generation system) is replaced by the SLAM 
map. An overview of the system architecture is shown in Figure 12. Since this was a real-
time experiment, it was difficult to obtain a ground truth robot trajectory. Therefore, we 
used the authors’ previous proposed fuzzy tuned extended Kalman filter FT-EKF model-
based localization algorithm [18] to measure the robot trajectory during the autonomous 
SLAM process for comparison. The system was tested in our research office (8 × 8 m) and 
the floor plan.. The total trajectory of the mobile robot was around 30m, lasting around 20 
minutes 
The sampling rate of SLAM process and autonomous exploration strategy was 1000ms. The 
parameters settings for the autonomous exploration strategy were selected as: 
“FreeSpaceCoverRadius” = 2000mm and “MinNavTravelDis” = 700mm. 
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Fig. 10. Snap Shots for the Pioneer 2DX mobile robot navigating in the simulation 
world.
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a) Raw sonar data during navigation. 

b) (black line) Extracted line segments superposed on (gray line) real map. 
Fig. 11. Robot trajectory, navigation point-marks, extracted map, raw data and real map 
captured from the robot software Saphira. 
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Fig. 12. Overall architecture of the proposed autonomous SLAM mechanism. 

At the start of the experiment, the Pioneer 2DX was placed at end of the corridor (shown in 
lower left corner in Figure 13a). After all the given directions at each navigation point were 
navigated, the mobile robot traveled back to the starting position. The final global map 
acquired at end of the experiment is shown in Figure 13b. In addition, 25 line features and 
16 navigation points were extracted in the final map and the final absolute position error in 
X and Y is 50mm and 64mm (measured by hand and relative to actual position), 
respectively. For comparison purposes, the odometric wake, the SLAM wake, extracted 
navigation points and map model are superimposed on the hand measured map model.  

a) Sonar returns, navigation points and autonomous SLAM estimated wake obtained during 
the experiment. (Captured from the robot software “Saphira”.) The range threshold of all 
sonar sensors is 1500mm. Therefore, a lot of ambiguous and noise measurements were filtered. 
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b) Extracted map model and navigation points superposed on the real map. 
Fig. 13. Robot trajectory, navigation point-marks, extracted map, raw data and real map 
during the autonomous SLAM experiment. 

To further analyze the consistency of our integrated approach, Figure 14 shows a 
comparison between the error in the autonomous SLAM pose versus model-based FT-EKF 
robot pose along with the 2-sigma (2σ) uncertainty bounds logged from the SLAM process. 
It is clearly demonstrated that those errors remain inside their 2σ uncertainly bounds at the 
most of time. From this on-line integrated experiment, we conclude that this approach can 
fulfill the three essential missions of mobile robot and those are operated in real time and 
simultaneously. Figure 15 shows snap shots captured from the robot software “Saphira”, 
during the experiment. 
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during the autonomous SLAM experiment. 

To further analyze the consistency of our integrated approach, Figure 14 shows a 
comparison between the error in the autonomous SLAM pose versus model-based FT-EKF 
robot pose along with the 2-sigma (2σ) uncertainty bounds logged from the SLAM process. 
It is clearly demonstrated that those errors remain inside their 2σ uncertainly bounds at the 
most of time. From this on-line integrated experiment, we conclude that this approach can 
fulfill the three essential missions of mobile robot and those are operated in real time and 
simultaneously. Figure 15 shows snap shots captured from the robot software “Saphira”, 
during the experiment. 



518 Mobile Robots, Perception & Navigation

5. Conclusions 
In this chapter, a new autonomous exploration strategy for mobile robot was presented and 
extensively tested via simulation and experimental trials. The essential mechanisms used 
included a HFFS reactive navigation scheme, EAFC map extraction algorithm, SLAM 
process, an open space evaluation system cooperating with probability theory and Bayesian 
update rule and a novel navigation point generation system. The proposed autonomous 
exploration algorithm is a version of combination of a robust reactive navigation scheme 
and approaching the unknown strategy which ensure that the mobile robot to explore the 
entire region in an unknown environment automatically. 
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Fig. 14. Estimated errors in robot location during the autonomous SLAM process with 
sonar. (Gray lines represent two-sigma (2σ) uncertainly bounds.) 
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(1)    (2) 
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(7)    (8) 
Fig. 15. Snap shots during autonomous SLAM process via Pioneer 2DX mobile robot. 
(Captured from the robot software “Saphira”.) The black robot (a bit bigger) represents the 
robot position estimated by odometric. The gray robot represents the robot position 
estimated by SLAM process. 
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In this chapter, a new autonomous exploration strategy for mobile robot was presented and 
extensively tested via simulation and experimental trials. The essential mechanisms used 
included a HFFS reactive navigation scheme, EAFC map extraction algorithm, SLAM 
process, an open space evaluation system cooperating with probability theory and Bayesian 
update rule and a novel navigation point generation system. The proposed autonomous 
exploration algorithm is a version of combination of a robust reactive navigation scheme 
and approaching the unknown strategy which ensure that the mobile robot to explore the 
entire region in an unknown environment automatically. 
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In addition in this chapter, a metric topological map model is advocated for facilitating the 
path planning process during the autonomous exploration. Moreover, the map model 
extracted from an EAFC map building algorithm (metric map model) is aimed to generate 
the navigation point or node on the navigation path. Therefore, a hybrid map model is 
proposed for autonomous map building in an unknown indoor environment. An 
autonomous map building algorithm was tested in a simulation world (section 4.2). On the 
other hand, a successful on-line autonomous SLAM experiment (section 4.3) was conducted 
for a mobile robot to map an indoor and unknown environment. 
Basically, this chapter concluded the pervious work: a SLAM problem solved by 
overlapping sliding window sonar buffer [Ip and Rad 2003] and EAFC feature initialization 
technique []Ip and Rad] combined with a novel autonomous exploration strategy to 
formulate an autonomous SLAM mechanism. Experimental studies demonstrated that the 
mobile robot was able to build a segment-based map and topological map (a list of 
navigation points) in real time without human intervention. 
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1. Abstract 
This chapter surveys some recent results on motion planning and reconfiguration for 
systems of multiple objects and for modular systems with applications in robotics. 

1 Introduction 
In this survey we discuss three related reconfiguration problems for systems of multiple 
objects.
(I) Consider a set of n pairwise disjoint objects in the plane that need to be brought from a 
given start (initial) configuration S into a desired goal (target) configuration T. The motion 
planning problem for such a system is that of computing a sequence of object motions 
(schedule) that achieves this task. If such a sequence of motions exists, we say that the 
problem is feasible and say that it is infeasible otherwise. 
The problem is a simplified version of a multi-robot motion planning problem [23], in which 
a system of robots, whose footprints are, say disks, are operating in a common workplace. 
They have to move from their initial positions to a set of specified target positions. No 
obstacles other than the robots themselves are assumed to be present in the workplace; in 
particular, the workspace is assumed to extend throughout the entire plane. In many 
applications, the robots are indistinguishable so any of them can occupy any of the specified 
target positions; that is, the disks are unlabeled. Another application which permits the 
same abstraction is moving around large sets of heavy objects in a warehouse. Typically, 
one is interested in minimizing the number of moves and designing efficient algorithms for 
carrying out the motion plan. There are several types of moves, such as sliding or lifting, 
which lead to different models that will be discussed in Section 2. 
(II) A different kind of reconfiguration problem appears in connection to so-called self-
reconfigurable or metamorphic modular systems. A modular robotic system consists of a 
number of identical robotic modules that can connect to, disconnect from, and relocate 
relative to adjacent modules, see examples in [15, 11, 26, 27, 28, 32, 34, 35, 36, 39]. Typically, 
the modules have a regular symmetry so that they can be packed densely, with small gaps 
between them. Various practical realizations are under way at different sites. Such a system 
can be viewed as a large swarm of physically connected robotic modules that behave 
collectively as a single entity. 

1 Computer Science, University of Wisconsin–Milwaukee, Milwaukee, WI 53201-0784, USA. Email: 
ad@cs.uwm.edu. Supported in part by NSF CAREER grant CCF-0444188. 



522 Mobile Robots, Perception & Navigation

33. Millan, J.R., Rapid, safe, and incremental learning of navigation strategies, IEEE 
Transactions on Systems, Man and Cybernetics 26 (3) (1996) 408–420. 

34. Musilek, P., Neural networks in navigation of mobile robots: A survey, Neural 
Network World 6 (1995) 917–928. 

35. Nagrath, I.J., Behera, L., Krishna, K.M. and Rajshekhar, K.D., Real-time navigation of a 
mobile robot using Kohonen’s topology conserving neural network, in: Proceedings of 
the International Conference on Advanced Robotics, pp. 459–464, 1997. 

36. Nilsson, N., Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980. 
37. Nomad 200 User’s Manual. Mountain View, CA: Nomadic Technol., 1996. 
38. Pal, P.K. and Kar, A., Mobile robot navigation using a neural net, in: Proceedings 

of the IEEE International Conference on Robotics and Automation, Nagoya, Japan, 
pp. 1503–1508, 1995. 

39. Pioneer 2 Mobile Robot Operation Manual. May 2001. ActivMedia Robotics, LLC, v7b. 
40. Saffiotti, A., Autonomous robot navigation, in: E. Ruspini, P. Bonissone, W. 

Pedrycz (Eds.), Handbook of Fuzzy Computation, Oxford University Press, 
Oxford, 1998 (Chapter G6.1). 

41. Saffiotti, A., Fuzzy Logic in Autonomous Navigation, In Driankov, D. and Saffiotti, 
A. eds., Fuzzy Logic Techniques for Autonomous Vehicle Navigation, Physica-
Verlag Heidelberg, New York, pp.3-24, 2001 

42. Saphira operations and programming manual V6.2, ActivMedia Robotics, 1999. 
43. Tardos, J.D., Neria, J., Newman, P.M. and Leonard J.J., Robust Mapping and 

Localization in Indoor Environments using sonar data. The International Journal of 
Robotics Research Vol. 21, No. 4, pp.311-330, 2002. 

44. Thrun, S., (1998) Learning Metric-topological Maps for Indoor Mobile Robot 
Navigation, Artificial Intelligence 99 21-71. 

45. Tunstel E. and Jamshidi, M., (1997) Intelligent Control and Evolution of Mobile 
Robot Behavior, Ed. M. Jamshidi, Prentice Hall Inc. 1997, Chapter 1 pp1-24. 

46. Tunstel E., H. Danny, Y. Lippincott and M. Jamshidi (1997) Adaptive Fuzzy-Behavior 
Hierarchy for Autonomous Navigation, Proceeding of the 1997 IEEE International 
Conference on Robotics and Automation Albuquerque, New Mexico – April 1997, 
pp829-834. 

47. Wang, L.X., A Course in Fuzzy Systems and Control. Prentice-Hall International, 
Inc., 1997. 

48. Xu, W.L., Tso, S.K. and Fung, Y.H., Fuzzy reactive control of a mobile robot 
incorporating a real/virtual target switching strategy, Robotics and Autonomous 
Systems 23 (1998) 171–186. 

49. Xu, W.L. and Tso, S.K., Sensor-Based Fuzzy reactive navigation of a mobile robot 
through local target switching, IEEE Transactions on System, Man and 
Cybernetics-Part C: Application and Reviews, Vol. 29, No. 3, pp. 451-459 (1999). 

50. Yamauchi, B., A frontier-based approach for autonomous exploration. In 
Proceedings of 1997 IEEE International Symposium on Computational Intelligence 
in Robotics and Autonmation, 1997. 

51. Zhang, M., Peng, S. and Meng, Q., Neural network and fuzzy logic techniques 
based collision avoidance for a mobile robot, Robotica 15 (1997) 627–632. 

24

Motion Planning and Reconfiguration for 
Systems of Multiple Objects 

Adrian Dumitrescu1

University of Wisconsin–Milwaukee 
U.S.A. 

1. Abstract 
This chapter surveys some recent results on motion planning and reconfiguration for 
systems of multiple objects and for modular systems with applications in robotics. 

1 Introduction 
In this survey we discuss three related reconfiguration problems for systems of multiple 
objects.
(I) Consider a set of n pairwise disjoint objects in the plane that need to be brought from a 
given start (initial) configuration S into a desired goal (target) configuration T. The motion 
planning problem for such a system is that of computing a sequence of object motions 
(schedule) that achieves this task. If such a sequence of motions exists, we say that the 
problem is feasible and say that it is infeasible otherwise. 
The problem is a simplified version of a multi-robot motion planning problem [23], in which 
a system of robots, whose footprints are, say disks, are operating in a common workplace. 
They have to move from their initial positions to a set of specified target positions. No 
obstacles other than the robots themselves are assumed to be present in the workplace; in 
particular, the workspace is assumed to extend throughout the entire plane. In many 
applications, the robots are indistinguishable so any of them can occupy any of the specified 
target positions; that is, the disks are unlabeled. Another application which permits the 
same abstraction is moving around large sets of heavy objects in a warehouse. Typically, 
one is interested in minimizing the number of moves and designing efficient algorithms for 
carrying out the motion plan. There are several types of moves, such as sliding or lifting, 
which lead to different models that will be discussed in Section 2. 
(II) A different kind of reconfiguration problem appears in connection to so-called self-
reconfigurable or metamorphic modular systems. A modular robotic system consists of a 
number of identical robotic modules that can connect to, disconnect from, and relocate 
relative to adjacent modules, see examples in [15, 11, 26, 27, 28, 32, 34, 35, 36, 39]. Typically, 
the modules have a regular symmetry so that they can be packed densely, with small gaps 
between them. Various practical realizations are under way at different sites. Such a system 
can be viewed as a large swarm of physically connected robotic modules that behave 
collectively as a single entity. 

1 Computer Science, University of Wisconsin–Milwaukee, Milwaukee, WI 53201-0784, USA. Email: 
ad@cs.uwm.edu. Supported in part by NSF CAREER grant CCF-0444188. 



524 Mobile Robots, Perception & Navigation

The system changes its overall shape and functionality by reconfiguring into different 
formations. In most cases individual modules are not capable of moving by themselves; 
however, the entire system may be able to move to a new position when its members 
repeatedly change their positions relative to their neighbors, by rotating or sliding around 
other modules [10, 26, 38], or by expansion and contraction [32]. In this way the entire 
system, by changing its aggregate geometric structure, may acquire new functionalities to 
accomplish a given task or to interact with the environment. 
Shape changing in these composite systems is envisioned as a means to accomplish various 
tasks, such as reconnaissance, exploration, satellite recovery, or operation in constrained 
environments inaccessible to humans,(e.g., nuclear reactors, space or deep water). For another 
example, a self-reconfigurable robot can aggregate as a snake to traverse a tunnel and then 
reconfigure as a six-legged spider to move over uneven terrain. A novel useful application is 
to realize self-repair: a self-reconfigurable robot carrying some additional modules may 
abandon the failed modules and replace them with spare units [32]. It is usually assumed that 
the modules must remain connected all (or most) of the time during reconfiguration. 
The motion planning problem for such a system is that of computing a sequence of module 
motions that brings the system in a given initial configuration I into a desired goal 
configuration G. Reconfiguration for modular systems acting in a grid-like environment, 
and where moves must maintain connectivity of the whole system has been studied in [18, 
19, 20], focusing on two basic capabilities of such systems: reconfiguration and locomotion. 
We present details in Section 3. 
(III) In many cases, the problem of bringing a set of pairwise disjoint objects (in the plane or 
in the space) to a desired goal configuration, admits the following abstraction: we have an 
underlying finite or infinite connected graph, the start configuration is represented by a set 
of n chips at n start vertices and the target configuration by another set of n target vertices. 
A vertex can be both a start and target position. The case when the chips are labeled or 
unlabeled give two different variants of the problem. In one move a chip can follow an 
arbitrary path in the graph and end up at another vertex, provided the path (including the 
end vertex) is free of other chips [13]. 
The motion planning problem for such a system is that computing a sequence of chip 
motions that brings the chips from their initial positions to their target positions. Again, the 
problem may be feasible or infeasible. We address multiple aspects of this variant in Section 
4. We note that the three (disk) models mentioned earlier do not fall in the above graph 
reconfiguration framework, because a disk may partially overlap several target positions. 

2 Models of reconfiguration for systems of objects in the plane 
There are several types of moves that make sense to study, as dictated by specific 
applications, such as: 

1. Sliding model: one move is sliding a disk to another location in the plane without 
intersecting any other disk, where the disk center moves along an arbitrary (open) 
continuous curve [5]. 

2. Lifting model: one move is lifting a disk and placing it back in the plane anywhere 
in the free space, that is, at a position where it does not intersect (the interior of) 
any other disk [6]. 

3. Translation model: one move is translating a disk in the plane along a fixed direction 
without intersecting any other disk [1]. 
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It turns out that moving a set of objects from one place to another is related to certain 
separability problems [14, 9, 21, 22]; see also [31]. For instance, given a set of disjoint 
polygons in the plane, may each be moved “to infinity” in a continuous motion in the plane 
without colliding with the others? Often constraints are imposed on the types of motions 
allowed, e.g., only translations, or only translations in a fixed set of directions. Usually only 
one object is permitted to move at a time. Without the convexity assumption on the objects, 
it is easy to show examples when the objects are interlocked and could only be moved 
“together” in the plane; however they could be easily separated using the third dimension, 
i.e., in the lifting model. 

Table 1: Comparison summary: number of moves for disks in the plane/ chips in the grid. 

It can be shown that for the class of disks, the reconfiguration problem in each of these 
models is always feasible [1, 5, 6, 9, 21, 22]. This follows essentially from the feasibility in the 
sliding model and the translation model, see Section 2.1. For the more general class of 
convex objects, one needs to allow rotations. For simplicity we will restrict ourselves mostly 
to the case of disks. We are thus lead to the following generic question: Given a pair of start 
and target configurations, each consisting of n pairwise disjoint disks in the plane, what is 
the minimum number of moves that suffice for transforming the start configuration into the 
target configuration for each of these models? 

Fig. 1. 2n – 1 moves are necessary (in either model) to bring the n segments from vertical 
position to horizontal position. 

If no target disk coincides with a start disk, so each disk must move at least once, obviously 
at least n moves are required. In general one can use (a variant of) the following simple 
universal algorithm for the reconfiguration of n objects using 2n moves. To be specific, 
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at least n moves are required. In general one can use (a variant of) the following simple 
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consider the lifting model. In the first step (n moves), move all the objects away anywhere in 
the free space. In the second step (n moves), bring the objects “back” to target positions. For 
the class of segments (or rectangles) as objects, it is easy to construct examples that require 
2n – 1 moves for reconfiguration, in any of the three models, even for congruent segments, 
as shown in Figure 1. A first goal is to estimate more precisely where in the interval [n, 2n]
the answer lies for each of these models. The best current lower and upper bounds on the 
number of moves necessary in the three models mentioned can be found in Table 1. It is 
quite interesting to compare the bounds on the number of moves for the three models, 
translation, sliding and lifting, with those for the graph variants discussed in Section 4. 
Table 1 which is constructed on the basis of the results in [1, 5, 6, 13] facilitates this 
comparison. 
Some remarks are in order. Clearly, any lower bound (on the number of moves) for lifting is 
also valid for sliding, and any upper bound (on the number of moves) for sliding is also valid 
for lifting. Another observation is that for lifting, those objects whose target position coincides 
with their start position can be safely ignored, while for sliding this is not true. A simple 
example appears in Figure 2: assume that we have a large disk surrounded by n – 1 smaller 
ones. The large disk has to be moved to another location, while the n –1 smaller disks have to 
stay where they are. One move is enough in the lifting model, while n – 1 are needed in the 
sliding model: one needs to make space for the large disk to move out by moving out about 
half of the small disks and then moving them back in to the same positions. 

Fig. 2. One move is enough in the lifting model, while n – 1 are needed in the sliding model 
for this pair of start and target configurations with n disks each (here n = 1). Start disks are 
white and target disks are shaded. 

A move is a target move if it moves a disk to a final target position. Otherwise, it is a non-
target move. Our lower bounds use the following argument: if no target disk coincides with 
a start disk (so each disk must move), a schedule which requires x non-target moves, must 
consist of at least n + x moves. 

2.1 The sliding model 
It is not difficult to show that, for the class of disks, the reconfiguration problem in the 
sliding model is always feasible. More generally, the problem remains feasible for the class 
of all convex objects using sliding moves which follows from Theorem 1 below. This old 
result appears in the work of Fejes Tóth and Heppes [21], but it can be traced back to de 
Bruijn [9]; some algorithmic aspects of the problem have been addressed more recently by 
Guibas and Yao [22]. 
Theorem 1 [9, 21, 22] Any set of n convex objects in the plane can be separated via translations all 
parallel to any given fixed direction, with each object moving once only. If the topmost and 
bottommost points of each object are given (or can be computed in O(n log n) time), an ordering of 
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the moves can be computed in O(n log n)time. 
The universal algorithm mentioned earlier can be adapted to perform the reconfiguration of 
any set of n convex objects. It performs 2n moves for the reconfiguration of n disks. In the 
first step (n moves), in decreasing order of the x-coordinates of their centers, slide the disks 
initially along a horizontal direction, one by one to the far right. Note that no collisions can 
occur. In the second step (n moves), bring the disks ”back” to target positions in increasing 
order of the x-coordinates of their centers. (General convex objects need rotations and 
translations in the second step). Already for the class of disks, Theorem 3 shows that one 
cannot do much better in terms of the number of moves. 
Theorem 2 [5] Given a pair of start and target configurations S and T, each consisting of n congruent 
disks, sliding moves always suffice for transforming the start configuration into the 
target configuration. The entire motion can be computed in  time. On the other hand, 
there exist pairs of configurations that require  moves for this task. 
We now briefly sketch the upper bound proof and the corresponding algorithm in [5] for 
congruent disks. First, one shows the existence of a line bisecting the set of centers of the 
start disks such that the strip of width 6 around this line contains a small number of disks. 
More precisely the following holds: 
Lemma 1 [5] Let S be a set of n pairwise disjoint unit (radius) disks in the plane. Then there exists a 
line   that bisects the centers of the disks such that the parallel strip of width 6 around  (that is, 
runs in the middle of this strip) contains entirely at most disks. 
Let S’ and T’ be the centers of the start disks and target disks, respectively, and let be the line 
guaranteed by Lemma 1. We can assume that is vertical. Denote by s1 = [n/2] and s2 = [n/2] the 
number of centers of start disks to the left and to the right of  (centers on can be assigned to 
the left or right). Let be the number of start disks contained entirely in the 
vertical strip of width 6 around . Denote by t1 and t2 the number of centers of target disks to the 
left and to the right of , respectively. By symmetry we can assume that 
Let R be a region containing all start and target disks, e.g., the smallest axis-aligned rectangle that 
contains all disks. The algorithm has three steps. All moves in the region R are taken along 
horizontal lines, i.e., perpendicularly to the line . The reconfiguration procedure is schematically 
shown in Figure 3. This illustration ignores the disks/targets in the center parallel strip. 

Fig. 3. Algorithm with three steps for sliding congruent disks. The start disks are white and 
the target disks are shaded. 

STEP 1 Slide to the far right all start disks whose centers are to the right of  and the (other) 
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consider the lifting model. In the first step (n moves), move all the objects away anywhere in 
the free space. In the second step (n moves), bring the objects “back” to target positions. For 
the class of segments (or rectangles) as objects, it is easy to construct examples that require 
2n – 1 moves for reconfiguration, in any of the three models, even for congruent segments, 
as shown in Figure 1. A first goal is to estimate more precisely where in the interval [n, 2n]
the answer lies for each of these models. The best current lower and upper bounds on the 
number of moves necessary in the three models mentioned can be found in Table 1. It is 
quite interesting to compare the bounds on the number of moves for the three models, 
translation, sliding and lifting, with those for the graph variants discussed in Section 4. 
Table 1 which is constructed on the basis of the results in [1, 5, 6, 13] facilitates this 
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Some remarks are in order. Clearly, any lower bound (on the number of moves) for lifting is 
also valid for sliding, and any upper bound (on the number of moves) for sliding is also valid 
for lifting. Another observation is that for lifting, those objects whose target position coincides 
with their start position can be safely ignored, while for sliding this is not true. A simple 
example appears in Figure 2: assume that we have a large disk surrounded by n – 1 smaller 
ones. The large disk has to be moved to another location, while the n –1 smaller disks have to 
stay where they are. One move is enough in the lifting model, while n – 1 are needed in the 
sliding model: one needs to make space for the large disk to move out by moving out about 
half of the small disks and then moving them back in to the same positions. 

Fig. 2. One move is enough in the lifting model, while n – 1 are needed in the sliding model 
for this pair of start and target configurations with n disks each (here n = 1). Start disks are 
white and target disks are shaded. 

A move is a target move if it moves a disk to a final target position. Otherwise, it is a non-
target move. Our lower bounds use the following argument: if no target disk coincides with 
a start disk (so each disk must move), a schedule which requires x non-target moves, must 
consist of at least n + x moves. 

2.1 The sliding model 
It is not difficult to show that, for the class of disks, the reconfiguration problem in the 
sliding model is always feasible. More generally, the problem remains feasible for the class 
of all convex objects using sliding moves which follows from Theorem 1 below. This old 
result appears in the work of Fejes Tóth and Heppes [21], but it can be traced back to de 
Bruijn [9]; some algorithmic aspects of the problem have been addressed more recently by 
Guibas and Yao [22]. 
Theorem 1 [9, 21, 22] Any set of n convex objects in the plane can be separated via translations all 
parallel to any given fixed direction, with each object moving once only. If the topmost and 
bottommost points of each object are given (or can be computed in O(n log n) time), an ordering of 
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the moves can be computed in O(n log n)time. 
The universal algorithm mentioned earlier can be adapted to perform the reconfiguration of 
any set of n convex objects. It performs 2n moves for the reconfiguration of n disks. In the 
first step (n moves), in decreasing order of the x-coordinates of their centers, slide the disks 
initially along a horizontal direction, one by one to the far right. Note that no collisions can 
occur. In the second step (n moves), bring the disks ”back” to target positions in increasing 
order of the x-coordinates of their centers. (General convex objects need rotations and 
translations in the second step). Already for the class of disks, Theorem 3 shows that one 
cannot do much better in terms of the number of moves. 
Theorem 2 [5] Given a pair of start and target configurations S and T, each consisting of n congruent 
disks, sliding moves always suffice for transforming the start configuration into the 
target configuration. The entire motion can be computed in  time. On the other hand, 
there exist pairs of configurations that require  moves for this task. 
We now briefly sketch the upper bound proof and the corresponding algorithm in [5] for 
congruent disks. First, one shows the existence of a line bisecting the set of centers of the 
start disks such that the strip of width 6 around this line contains a small number of disks. 
More precisely the following holds: 
Lemma 1 [5] Let S be a set of n pairwise disjoint unit (radius) disks in the plane. Then there exists a 
line   that bisects the centers of the disks such that the parallel strip of width 6 around  (that is, 
runs in the middle of this strip) contains entirely at most disks. 
Let S’ and T’ be the centers of the start disks and target disks, respectively, and let be the line 
guaranteed by Lemma 1. We can assume that is vertical. Denote by s1 = [n/2] and s2 = [n/2] the 
number of centers of start disks to the left and to the right of  (centers on can be assigned to 
the left or right). Let be the number of start disks contained entirely in the 
vertical strip of width 6 around . Denote by t1 and t2 the number of centers of target disks to the 
left and to the right of , respectively. By symmetry we can assume that 
Let R be a region containing all start and target disks, e.g., the smallest axis-aligned rectangle that 
contains all disks. The algorithm has three steps. All moves in the region R are taken along 
horizontal lines, i.e., perpendicularly to the line . The reconfiguration procedure is schematically 
shown in Figure 3. This illustration ignores the disks/targets in the center parallel strip. 

Fig. 3. Algorithm with three steps for sliding congruent disks. The start disks are white and 
the target disks are shaded. 

STEP 1 Slide to the far right all start disks whose centers are to the right of  and the (other) 
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start disks in the strip, one by one, in decreasing order of their x-coordinates (with ties broken 
arbitrarily). At this point all t2 n/2 target disk positions whose centers lie right of are free. 
STEP 2 Using all the  remaining disks whose centers are to the left of , in 
increasing order of their x-coordinates, fill free target positions whose centers are right of ,
in increasing order of their x-coordinates: each disk slides first to the left, then to the right 
on a wide arc and to the left again in the end. Note that  . Now all the target 
positions whose centers lie left of  are free. 
STEP 3 Move to place the far away disks: first continue to fill target positions whose centers 
are to the right of  , in increasing order of their x-coordinates. When done, fill target 
positions whose centers are left of , in decreasing order of their x-coordinates. Note that at 
this point all target positions whose centers lie left of  are free. 
The only non-target moves are those done in STEP 1 and their number is 

, so the total number of moves is .
The first simple idea in constructing a lower bound is as follows: The target configuration 
consists of a set of n densely packed unit (radius) disks contained, for example, in a square 
of side length . The disks in the start configuration enclose the target positions using 
concentric rings, that is,  rings, each with  start disk positions, as shown in 
Figure 4. Now observe that for each ring, the first move which involves a disk in that ring 
must be a non-target move. The number of rings is , from which the lower bound 

 follows. 

Fig. 4. A lower bound of  moves:  rings, each with   start disk 
positions. Targets are densely packed in a square formation enclosed by the rings. 

This basic idea of a cage-like construction can be further refined by redesigning the cage[5]. 
The new design is more complicated and uses “rigidity” considerations which go back to 
the stable disk packings of density 0 of K. Böröczky[7]. A packing C of unit (radius) disks in 
the plane is said to be stable if each disk is kept fixed by its neighbors [8]. More precisely, C
is stable if none of its elements can be translated by any small distance in any direction 
without colliding with the others. It is easy to see that any stable system of (unit) disks in the 
plane must have infinitely many elements. Somewhat surprisingly, K. Böröczky [7] showed 
that there exist stable systems of unit disks with arbitrarily small density. These can be 
adapted for the purpose of constructing a lower bound in the sliding model for congruent 
disks. The details are quite technical, and we only sketch here the new cage-like 
constructions shown in Figure 5. 
Let us refer to the disks in the start (resp. target) configuration as white (resp. black) disks. 
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Now fix a large n, and take n Use of them to build three junctions connected by 
three “double-bridges” to enclose a triangular region that can accommodate n tightly 
packed nonoverlapping black disks. Divide the remaining white disks into three roughly 
equal groups, each of size  and rearrange each group to form the initial section 
of a “one-way bridge” attached to the unused sides of the junctions. Each of these bridges 
consists of five rows of disks of “length” roughly where the length of a bridge is the 
number of disks along its side. The design of both the junctions and the bridges prohibits 

any target move before one moves out a sequence of about  white adjacent 
disks starting at the far end of one of the one-way bridges. The reason is that with the 
exception of the at most 3 × 4 = 12 white disks at the far ends of the truncated one-way 
bridges, every white disk is fixed by its neighbours. The total number of necessary moves is 
at least  for this triangular ring construction, and at least 

 for the hexagonal ring construction. 
For disks of arbitrary radii, the following result is obtained in [5]: 

Fig. 5. Two start configurations based on hexagonal and triangular cage-like constructions. 
Targets are densely packed in a square formation enclosed by the cage. 
For disks of arbitrary radii, the following result is obtained in [5]: 

Theorem 3 [5] Given a pair of start and target configurations, each consisting of 
_
disks of arbitrary 

radii, 2n sliding moves always suffice for transforming the start configuration into the target 
configuration. The entire motion can be computed in O(n log n) time. On the other hand, there exist 
pairs of configurations that require 2n – o(n)moves for this task, for every sufficiently large n. 

Fig. 6. A simple configuration which requires about 3n/2 moves (basic step for the recursive 
construction).
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that there exist stable systems of unit disks with arbitrarily small density. These can be 
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constructions shown in Figure 5. 
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Now fix a large n, and take n Use of them to build three junctions connected by 
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packed nonoverlapping black disks. Divide the remaining white disks into three roughly 
equal groups, each of size  and rearrange each group to form the initial section 
of a “one-way bridge” attached to the unused sides of the junctions. Each of these bridges 
consists of five rows of disks of “length” roughly where the length of a bridge is the 
number of disks along its side. The design of both the junctions and the bridges prohibits 
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The upper bound follows from the universal reconfiguration algorithm described earlier. 
The lower bound is a recursive construction shown in Figure 7. It is obtained by iterating 
recursively the basic construction in Figure 6, which requires about 3n/2 moves: note that 
the target positions of the n – 1 small disks lie inside the start position of the large disk. This 
means that no small disk can reach its target before the large disk moves away, that is, 
before roughly half of the n – 1 small disks move away. So about 3n/2 moves in total are 
necessary. 
In the recursive construction, the small disks around a large one are replaced by the ”same” 
construction scaled (see Figure 7). All disks have distinct radii so it is convenient to think of 
them as being labeled. There is one large disk labeled 0, and 2m + 1 groups of smaller disks 
around it close to the vertices of a regular (2m + 1)-gon (m  1). The small disks on the last 
level or recursion have targets inside the big ones they surround (the other disks have 
targets somewhere else). Let m  1 be fixed. If there are levels in the recursion, about 

non-target moves are necessary. The precise calculation for m = 1 
yields the lower bound , see [5]. 

Fig. 7. Recursive lower bound construction for sliding disks of arbitrary radii: m = 2 and k = 3. 

2.2 The translation model 
This model is a constrained variant of the sliding model, in which each move is a translation 
along a fixed direction; that is, the center of the moving disk traces a line segment. With 
some care, one can modify the universal algorithm mentioned in the introduction, and find 
a suitable order in which disks can be moved “to infinity” and then moved “back” to target 
position via translations all almost parallel to any given fixed direction using 2n translation
moves [1]. 

Fig. 8. A two-disk configuration that requires 4 translation moves. 
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That this bound is best possible for arbitrary radii disks can be easily seen in Figure 8. The 
two start disks and the two target positions are tangent to the same line. Note that the first 
move cannot be a target move. Assume that the larger disk moves first, and observe that its 
location must be above the horizontal line. If the second move is again a non-target move, 
we have accounted for 4 moves already. Otherwise, no matter which disk moves to its target 
position, the other disk will require two more moves to reach its target. The situation when 
the smaller disk moves first is analogous. One can repeat this basic configuration with two 
disks, using different radii, to obtain configurations with an arbitrary large (even) number 
of disks, which require 2n translation moves. 

Fig. 9. A configuration of 6 congruent disks that requires 9 translation moves. 

Theorem 4 [1] Given a pair of start and target configurations, each consisting of 
_
disks of arbitrary 

radii, 2n translation moves always suffice for transforming the start configuration into the target 
configuration. On the other hand, there exist pairs of configurations that require 2n such moves. 
For congruent disks, the configuration shown in Figure 9 requires 3n/2 moves, since from 
each pair of tangent disks, the first move must be a non-target move. The best known lower 
bound, [8n/5], is from [1]; we illustrate it in Figure 10. The construction is symmetric with 
respect to the middle horizontal line. Here we have groups of five disks each, where to 
move one group to some five target positions requires eight translation moves. In each 
group, the disks S2, S4 and S5 are pairwise tangent, and S1 and S3 are each tangent to S2; the 
tangency lines in the latter pairs are almost horizontal converging to the middle horizontal 
line. There are essentially only two different ways for “moving” one group, each requiring 
three non-target moves: (i) S1 and S3 move out, S2 moves to destination, S4 moves out, S5

moves to destinations followed by the rest. (ii) S4, S5 and S2 move out (to the left), S1 and S3

move to destinations followed by the rest. 

Fig. 10. Reconfiguration of a system of 10 congruent disks which needs 16 translation 
moves. Start disks are white and target disks are shaded. 
Theorem 5 [1] Given a pair of start and target configurations, each consisting of n congruent disks, 
2n – 1 translation moves always suffice for transforming the start configuration into the target 
configuration. On the other hand, there exist pairs of configurations that require [8n/5] such moves. 

2.3 The lifting model 
For systems of n congruent disks, one can estimate the number of moves that are always 
sufficient with relatively higher accuracy. The following result is obtained in [6]: 
Theorem 6 [6] Given a pair of start and target configurations S and T, each with n congruent disks, 
one can move disks from S to T using n + O(n2/3) moves in the lifting model. The entire motion can 
be computed in O(n log n) time. On the other hand, for each n, there exist pairs of configurations 
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Fig. 7. Recursive lower bound construction for sliding disks of arbitrary radii: m = 2 and k = 3. 
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which require moves for this task. 
The lower bound construction is illustrated in Figure 11 for n = 25. Assume for simplicity 
that n = m2 where m is odd. We place the disks of T onto a grid X X of size m m where X 
= {2, 4, …, 2m} We place the disks of S onto a grid of size (m – 1) x (m – 1) so that they 
overlap with the disks from T. The grid of target disks contains 4m – 4 disks on its 
boundary. We “block” them with 2m – 2 start disks in S by placing them so that each start 
disk overlaps with two boundary target disks as shown in the figure. We place the last start 
disk somewhere else, and we have accounted for (m – 1)2 + (2m – 2) + 1 = m2  start disks. As 
proved in [6], at least n + [m/2] moves are necessary for reconfiguration (it can be verified 
that this number of lifting moves suffices for this construction). 

Fig. 11. A pair of start and target configurations, each with n = 25 congruent disks, which 
require 27 lifting moves. The start disks are white and the target disks are shaded. 

The upper bound n + O(n2/3) of is technically somewhat more complicated. It uses a binary 
space partition of the plane into convex polygonal (bounded or unbounded) regions 
satisfying certain properties. Once the partition is obtained, a shifting algorithm moves disks 
from some regions to fill the target positions in other regions, see [6] for details. Since the 
disks whose target position coincides with their start position can be safely ignored in the 
beginning, the upper bound yields an efficient algorithm which performs a number of 
moves close to the optimum (for large n).
For arbitrary radius disks, the following result is obtained in [6]: 
Theorem 7 [6] Given a pair of start and target configurations S and T, each with n disks with 
arbitrary radii, 9n/5 moves always suffice for transforming the start configuration into the target 
configuration. On the other hand, for each n, there exist pairs of configurations which require 
[5n/3]moves for this task. 
The lower bound is very simple. We use disks of different radii (although the radii can be 
chosen very close to the same value if desired). Since all disks have distinct radii, one can 
think of the disks as being labeled. Consider the set of three disks, labeled 1, 2, and 3 in 
Figure 12. The two start and target disks labeled i are congruent, for i= 1,2,3. To transform 
the start configuration into the target configuration takes at least two non-target moves, thus 
five moves in total. By repeatedly using groups of three (with different radii), one gets a 
lower bound of 5n/3 moves, when n is a multiple of three, and [5n/3] in general. 

We now explain the approach in [6] for the upper bound for 
_
disks of arbitrary radii. Let S = 

{S1, …, Sn} and T = {t1, …, tn} be the start and target configurations. We assume that for each 
i, disk Si is congruent to disk ti i.e., ti is the target position of Si; if the correspondence 
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 is not given (but only the two sets of disks), it can be easily computed by sorting 
both S and T by radius. 

Fig. 12. A group of three disks which require five moves to reach their targets; part of the 
lower bound construction for lifting disks of arbitrary radii. The disks are white and their 
targets are shades. 

In a directed graph D = (V,E), let  denote the degree of vertex v, where  is 
the out-degree of v and  is the in-degree of v. Let  be the maximum size of a subset 
V' of V such that , the subgraph induced by V', is acyclic. In [6] the following inequality 
is proved for any directed graph: 

For a disk , let  denote the interior of . Let S be a set of k pairwise disjoint red disks, and 
T be a set of l pairwise disjoint blue disks. Consider the bipartite red-blue disk intersection 

graph G = (S,T,E), where . Using the triangle 
inequality (among sides and diagonals in a convex quadrilateral), one can easily show that 
any red-blue disk intersection graph G = (S,T,E) is planar, and consequently 

. We think of the start and target disks being labeled from 1 
to n, so that the target of start disk i is target disk i. Consider the directed blocking graph D = 
(S,F) on the set S of n start disks, where 

If we say that disk i blocks disk j. (Note that  does not generate any 

edge in D.) Since if then , we have . The algorithm 
first eliminates all the directed cycles from D using some non-target moves, and then fills 
the remaining targets using only target moves. Let 

be the average out-degree in D. We have  which further implies (by Jensen’s 
inequality): 

Let  be a set of disks of size at least n/5 and whose induced subgraph is acyclic in D.
Move out far away the remaining set S” of at most 4n/5 disks, and note that the far away 
disks do not block any of the disks in S’. Perform a topological sort on the acyclic graph 
D[S’] induced by S’, and fill the targets of these disks in that order using only target moves. 
Then fill the targets with the far away disks in any order. The number of moves is at most 
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configuration. On the other hand, for each n, there exist pairs of configurations which require 
[5n/3]moves for this task. 
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think of the disks as being labeled. Consider the set of three disks, labeled 1, 2, and 3 in 
Figure 12. The two start and target disks labeled i are congruent, for i= 1,2,3. To transform 
the start configuration into the target configuration takes at least two non-target moves, thus 
five moves in total. By repeatedly using groups of three (with different radii), one gets a 
lower bound of 5n/3 moves, when n is a multiple of three, and [5n/3] in general. 

We now explain the approach in [6] for the upper bound for 
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V' of V such that , the subgraph induced by V', is acyclic. In [6] the following inequality 
is proved for any directed graph: 

For a disk , let  denote the interior of . Let S be a set of k pairwise disjoint red disks, and 
T be a set of l pairwise disjoint blue disks. Consider the bipartite red-blue disk intersection 

graph G = (S,T,E), where . Using the triangle 
inequality (among sides and diagonals in a convex quadrilateral), one can easily show that 
any red-blue disk intersection graph G = (S,T,E) is planar, and consequently 

. We think of the start and target disks being labeled from 1 
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(S,F) on the set S of n start disks, where 
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be the average out-degree in D. We have  which further implies (by Jensen’s 
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Let  be a set of disks of size at least n/5 and whose induced subgraph is acyclic in D.
Move out far away the remaining set S” of at most 4n/5 disks, and note that the far away 
disks do not block any of the disks in S’. Perform a topological sort on the acyclic graph 
D[S’] induced by S’, and fill the targets of these disks in that order using only target moves. 
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 as claimed. Figure 13 shows the bipartite intersection graph G and the 
directed blocking graph D for a small example, with the corresponding reconfiguration 
procedure explained above. Similar to the case of congruent disks, the resulting algorithm 
performs a number of moves that is not more than a constant times the optimum (with ratio 
9/5).

Fig. 13. The bipartite intersection graph G and the directed blocking graph D. Move out: 4, 5, 
7, 8; no cycles remain in D. Fill targets: 3,2,1,6, and then 4,5,7,8. The start disks are white and 
the target disks are shaded. 

2.4 Further questions 
Here are some interesting remaining questions pertaining to the sliding and translation 
models: 

(1) Consider the reconfiguration problem for congruent squares (with arbitrary 

orientation) in the sliding model. It can be checked that the  upper 

bound for congruent disks still holds in this case, however the 
lower bound based on stable disk packings cannot be used. Observe that the 

 lower bound for congruent disks in the lifting model (Figure 11) can 
be realized with congruent (even axis-aligned) squares, and therefore holds for 
congruent squares in the sliding model as well. Can one deduce better bounds for 
this variant? 

(2) Derive a  upper bound for the case of congruent disks in the translation 

model (where δ  is a positive constant), or improve the  lower bound. 
(3) Consider the reconfiguration problem for congruent labeled disks in the sliding 

model. It is easy to see that  the lower bound for arbitrary disks holds, since 
the construction in Figure 12 can be realized with congruent disks. Find a 

 upper bound (where δ is a positive constant), or improve the 
lower bound. 

3. Modular and reconfigurable systems 
In [20] a number of issues related to motion planning and analysis of rectangular 
metamorphic robotic systems are addressed. A distributed algorithm for reconfiguration 
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that applies to a relatively large subclass of configurations, called horizontally convex 
configurations is presented. Several fundamental questions in the analysis of metamorphic 
systems were also addressed. In particular the following two questions have been shown to 
be decidable: (i) whether a given set of motion rules maintains connectivity; (ii) whether a 
goal configuration is reachable from a given initial configuration (at specified locations). 
For illustration, we present the rectangular model of metamorphic systems introduced in [18, 
19, 20]. Consider a plane that is partitioned into a integer grid of square cells indexed by 
their center coordinates in the underlying x-y coordinate system. This partition of the plane 
is only a useful abstraction: the module-size determines the grid size in practice, and 
similarly for orientation. 
At any time each cell may be empty or occupied by a module. The reconfiguration of a 
metamorphic system consisting of n modules is a sequence of configurations (distributions) 
of the modules in the grid at discrete time steps t=0,1,2…, see below. Let be the 
configuration of the modules at time t, where we often identify  with the set of cells 
occupied by the modules or with the set of their centers. We are only interested in 
configurations that are connected, i.e., for each t, the graph  must be connected, 
where for any , is the set of edges connecting pairs of cells in  that are side-adjacent. 
The following two generic motion rules (Figure 14) define the rectangular model [18, 19, 20]. 
These are to be understood as possible in all axis parallel orientations, in fact generating 16 
rules, eight for rotation and eight for sliding. A somewhat similar model is presented in [10]. 

• Rotation: A module m side-adjacent to a stationary module f rotates through an 
angle of 90° around f either clockwise or counterclockwise. Figure 14(a) shows a 
clockwise NE rotation. For rotation to take place, both the target cell and the cell at 
the corresponding corner of f that m passes through (NW in the given example) 
have to be empty. 

• Sliding: Let f1 and f2 be stationary cells that are side-adjacent. A module  that m is 
side-adjacent to f1 and adjacent to f2 slides along the sides of f1 and f2 into the cell 
that is adjacent to f and side-adjacent to f2. Figure 14(b) shows a sliding move in the 
E direction. For sliding to take place, the target cell has to be empty. 

The system may execute moves sequentially, when only one module moves at each discrete 
time step, or concurrently (when more modules can move at each discrete time step). 
Parallel execution has the advantage to speed up the reconfiguration process. If concurrent 
moves are allowed, additional conditions have to be imposed, as in [19, 20]. In order to 
ensure motion precision, each move is guided by one or two modules that are stationary 
during the same step. 

Fig. 14. Moves in the rectangular model: (a) clockwise NE rotation and (b) sliding in the E
direction. Fixed modules are shaded. The cells in which the moves take place are outlined in 
the figure. 
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clockwise NE rotation. For rotation to take place, both the target cell and the cell at 
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The following recent result settles a conjecture formulated in [20]. 
Theorem 8 [18] The set of motion rules of the rectangular model guarantees the feasibility of motion 
planning for any pair of connected configurations V and V’ having the same number of modules. That 
is, following the above rules, V and V’ can always be transformed into each other so that all 
intermediate configurations are connected. 
The algorithm is far from being intuitive or straightforward. The main difficulties that have 
to be overcome are: dealing with holes and avoiding certain deadlock situations during 
reconfiguration. The proof of correctness of the algorithm and the analysis of the number of 
moves (cubic in the number of modules, for sequential execution) are quite involved. At the 
moment, this is for reconfiguration without the presence of obstacles! 
We refer to a set of modules that form a straight line chain in the grid, as a straight chain. It is 
easy to construct examples so that neither sliding nor rotation alone can reconfigure them to 
straight chains. Conform with Theorem 8, the motion rules of the rectangular model 
(rotation and sliding, Figure 14) are sufficient to guarantee reachability, while maintaining 
the system connected at each discrete time step. This has been proved earlier for the special 
class of horizontally convex systems [20]. 
A somewhat different model can be obtained if, instead of the connectedness requirement at 
each time step, one imposes the so-called single backbone condition [20]: a module moves 
(slides or rotates) along a single connected backbone (formed by the other modules). If 
concurrent moves are allowed, additional conditions have to be imposed, as in [20]. A subtle 
difference exists between requiring the configuration to be connected at each discrete time 
step and requiring the existence of a connected backbone along which a module slides or 
rotates. A one step motion that does not satisfy the single backbone condition appears in 
Figure 15: the initial connected configuration practically disconnects during the move and 
reconnects at the end of it. Our algorithm has the nice property that the single backbone 
condition is satisfied during the whole procedure. 

Fig. 15. A rotation move which temporarily disconnects the configuration. 

We now briefly discuss another rectangular model for which the same property holds. The 
following two generic motion rules (Figure 16) define the weak rectangular model. These are 
to be understood as possible in all axis-parallel orientations, in fact generating eight rules, 
four diagonal moves and four side moves (axis-parallel ones). The only imposed condition 
is that the configuration must remain connected at each discrete time step. 

• Diagonal move: A module m moves diagonally to an empty cell corner-adjacent to cell(m). 
• Side move: A module m moves to an empty cell side-adjacent to cell(m).
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Fig. 16. Moves in the weak rectangular model: (a) NE diagonal move and (b) side move in 
the E direction. The cells in which the moves take place are outlined in the figure. 

The same result as in Theorem 8 holds for this second model [18]; however, its proof and 
corresponding reconfiguration algorithm, are much simpler. It remains to be seen how these 
two models compare in a practical realization. 
Theorem 9 [18] The set of motion rules of the weak rectangular model guarantees the feasibility of 
motion planning for any pair of connected configurations having the same number of modules. 
A different variant of inter-robot reconfiguration is useful in applications for which there is 
no clear preference between the use of a single large robot versus a group of smaller ones 
[12]. This leads to the merging of individual smaller robots into a larger one or the splitting 
of a large robot into smaller ones. For example, in a surveillance or rescue mission, a large 
robot is required to travel to a designated location in a short time. Then the robot may create 
a group of small robots which are to explore in parallel a large area. Once the task is 
complete, the robots might merge back into the large robot that carried them. 
As mentioned in [17], there is considerable research interest in the task of having one 
autonomous vehicle follow another, and in general in studying robots moving in formation. 
[19] examines the problem of dynamic self-reconfiguration of a modular robotic system to a 
formation aimed at reaching a specified target position as quickly as possible. A number of 
fast formations for both rectangular and hexagonal systems are presented, achieving a 
constant ratio guarantee on the time to reach a given target in the asymptotic sense. 
For example in the rectangular model, for the case of even n  4, there exist snake-like 
formations having a speed of . Fig. 17 shows the case n = 20, where the formation at time 0 
reappears at time 3, translated diagonally by one unit. Thus by repeatedly going through 
these configurations, the modules can move in the NE direction at a speed of .

Fig. 17. Formation of 20 modules moving diagonally at a speed of  (diagonal formation). 

We conclude this section with some remaining questions on modular and reconfigurable 
systems related to the results presented: 

(1) The reconfiguration algorithm in the rectangular model takes fewer than 2n3moves 
in the worst case (with the current analysis). On the other hand, the reconfiguration 
of a vertical chain into a horizontal chain requires only moves, and it is 
believed that no other pair of configurations requires more. This has been shown to 
hold in the weak rectangular model, but it remains open in the first model. 

(2) Extend the algorithm(s), for reconfiguration under the presence of obstacles. 
(3) Study weather the analogous rules of rotation and sliding in three dimensions 

permit the feasibility of motion planning for any pair of connected configurations 
having the same number of modules. 



536 Mobile Robots, Perception & Navigation
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Fig. 15. A rotation move which temporarily disconnects the configuration. 
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Fig. 16. Moves in the weak rectangular model: (a) NE diagonal move and (b) side move in 
the E direction. The cells in which the moves take place are outlined in the figure. 
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4 Reconfigurations in graphs and grids 
In certain applications, objects are indistinguishable, therefore the chips are unlabeled; for 
instance, a modular robotic system consists of a number of identical modules (robots), each 
having identical capabilities [18, 19, 20]. In other applications the chips may be labeled. The 
variant with unlabeled chips is easier and always feasible, while the variant with labeled 
chips may be infeasible: a classical example is the 15-puzzle on a 4 x 4 grid — introduced by 
Sam Loyd in 1878 — which admits a solution if and only if the start permutation is an even 
permutation [24, 33] Most of the work done so far concerns labeled versions of the 
reconfiguration problem, and we give here only a short account. 
For the generalization of the 15-puzzle on an arbitrary graph (with k = v – 1 labeled chips in 
a connected graph on v vertices), Wilson [37] gave an efficiently checkable characterization 
of the solvable instances of the problem. Kornhauser et al. have extended his result to any k

v – 1 and provided bounds on the number of moves for solving any solvable instance [25]. 
Ratner and Warmuth have shown that finding a solution with minimum number of moves 
for the (N x N) extension of the 15-puzzle is intractable [30], so the reconfiguration problem 
in graphs with labeled chips is NP-hard. 
Auletta et al. gave a linear time algorithm for the pebble motion on a tree [3]. This problem is 
the labeled variant of the same reconfiguration problem studied in [13], however each move 
is along one edge only. 
Papadimitriou et al. studied a problem of motion planning on a graph in which there is a 
mobile robot at one of the vertices s, that has to reach to a designated vertex t using the 
smallest number of moves, in the presence of obstacles (pebbles) at some of the other 
vertices [29]. Robot and obstacle moves are done along edges, and obstacles have no 
destination assigned and may end up in any vertex of the geraph. The problem has been 
shown to be NP-complete even for planer graphs, and a ration polynomial time 
approximation algorithm was given in [29]. 
The following results are shown in [13] for the “chips in graph” reconfiguration problem 
described in part (III) of Section 1. 

(1) The reconfiguration problem in graphs with unlabeled chips U-GRAPH-RP is NP-
hard, and even APX-hard. 

(2) The reconfiguration problem in graphs with labeled chips L-GRAPH-RP is APX-
hard. 

(3) For the infinite planar rectangular grid, both the labeled and unlabeled variants L-
GRID-RP and U-GRID-RP are NP-hard. 

(4) There exists a ratio 3 approximation algorithm for the unlabeled version in graphs 
U-GRAPH-RP. Thereby one gets a ratio 3 approximation algorithm for the 
unlabeled version U-GRID-RP in the (infinite) rectangular grid. 

(5) It is shown that n moves are always enough (and sometimes necessary) for the 
reconfiguration of n unlabeled chips in graphs. For the case of trees, a linear time 
algorithm which performs an optimal (minimum) number of moves is presented. 

(6) It is shown that 7n/4 moves are always enough, and 3n/2 are sometimes 
necessary, for the reconfiguration of n labeled chips in the infinite planar 
rectangular grid (L-GRID-RP). 

Next, we give some details showing that in the infinite grid, n moves always suffice for the 
reconfiguration of n unlabeled chips, and of course it is easy to construct tight examples. 
The result holds in a more general graph setting (item (5) in the above list): Let G be a 
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connected graph, and let V and V’ two -element subsets of its vertex set V(G). Imagine that 
we place a chip at each element of V and we want to move them into the positions of V’ (V
and V’ may have common elements). A move is defined as shifting a chip from v1 to 

along a path in G so that no intermediate vertices are occupied. 
Theorem 10 [13] In G one can get from any n-element initial configuration V to any n-element final 
configuration V’ using at most n moves, so that no chip moves twice. 
It is sufficient to prove the theorem for trees. We argue by induction on the number of chips. 
Take the smallest tree T containing V and V’, and consider an arbitrary leaf l of T. Assume 
first that the leaf l belongs to V: say l=v. If v also belongs to V’, the result trivially follows by 
induction, so assume that this is not the case. Choose a path P in T, connecting v to an 
element v’ of V’ such that no internal point of P belongs to V’. Apply the induction 
hypothesis to V\{v} and V’\{v’} to obtain a sequence of at most n-1 moves, and add a final 
(unobstructed) move from to. 
The remaining case when the leaf l belongs to V’ is symmetric: say l=v’; choose a path P in T,
connecting v’ to an element v of V such that no internal point of P belongs to V. Move first v
to v’ and append the sequence of at most n-1 moves obtained from the induction hypothesis 
applied to V\{v} and V’\{v’}. This completes the proof. 
Theorem 10 implies that in the infinite rectangular grid, we can get from any starting 
position to any ending position of the same size n in at most n moves. It is interesting to 
compare this to the problem of sliding congruent unlabeled disks in the plane, where one 

can come up with cage-like constructions that require about  moves [5], as discussed in 
Section 2.1. Here are some interesting remaining questions on reconfigurations in graphs 
and grids: 

(1) Can the ratio approximation algorithm for the unlabeled version in graphs U-
GRAPH-RP be improved? Is there an approximation algorithm with a better ratio 
for the infinite planar rectangular grid? 

(2) Close or reduce the gap between the 3n/2 lower bound and the 7n/4 upper bound 
on the number of moves for the reconfiguration of n labeled chips in the infinite 
planar rectangular grid. 

5 Conclusion 
The different reconfiguration models discussed in this survey have raised new interesting 
mathematical questions and revealed surprising connections with other older ones. For 
instance the key ideas in the reconfiguration algorithm in [18] were derived from the 
properties of a system of maximal cycles, similar to those of the block decomposition of 
graphs [16]. 
The lower bound configuration with unit disks for the sliding model in [5] uses “rigidity” 
considerations and properties of stable packings of disks studied a long time ago by 
Böröczky [7]; in particular, he showed that there exist stable systems of unit disks with 
arbitrarily small density. A suitable modification of his construction yields our lower bound. 
The study of the lifting model offered other interesting connections: the algorithm for unit 
disks given in [6] is intimately related to the notion of center point of a finite point set, and to 
the following fact derived from it: Given two sets each with n pairwise disjoint unit disks, 
there exists a binary space partition of the plane into polygonal regions each containing 
roughly the same small number  of disks and such that the total number of disks 
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intersecting the boundaries of the regions is small . The reconfiguration algorithm for 
disks of arbitrary radius relies on a new lower bound on the maximum order of induced 
acyclic subgraphs of a directed graph [6], similar to the bound on the independence number of 
an undirected graph given by Turán’s theorem [2]. 
The ratio 3 approximation algorithm for the unlabeled version in graphs is obtained by 
applying the local ratio method of Bar-Yehuda [4] to a graph H constructed from the given 
graph G. Regarding the various models of reconfiguration for systems of objects in the 
plane, we currently have combinatorial estimates on the number of moves that are 
necessary in the worst case. From the practical viewpoint one would like to covert these 
estimates into approximation algorithms with a good ratio guarantee. As shown for the 
lifting model, the upper bound estimates on the number of moves give good approximation 
algorithms for large values of n. However further work is needed in this direction for the 
sliding model and the translation model in particular. 
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1. Introduction 
One main issue for mobile robots is their capacity to go from one point to another 
autonomously, without getting lost or crashing into another object (Arkin, 1998). 
It is based on three concepts: 

• planning which computes a trajectory between the two points, 
• navigation which gives motion orders to the robot to follow the computed 

trajectory,
• environment representation which permits the robot to know if it goes in the right 

direction. 
Works presented here are interested in point 3, that is, in acquiring spatial models of the 
robot’s physical environment. 
Two different approaches to this problem have emerged. The first one, the 
metric/quantitative representation of the environment, has some disadvantages. For 
example, due to incorrigible wheel slippage, dead-reckoning could be unreliable. The non-
metric/qualitative approach use perceptual landmarks to generate maps and to localise the 
robot with respect to these landmarks. Works presented here are interested in the non-
metric approach, trying to perform a qualitative description of a stuctured indoor 
environment.
These problems are tackled by the Simultaneous Localisation And Mapping (SLAM) 
introduced by Leonard and Durrant-Whyte (Leonard & Durrant-Whyte, 1991) (Smith & 
Leonard, 1997) in robotics. SLAM is still today a very active field of research (Meyer & 
Filliat, 2002)(Filliat & Meyer, 2002a,b). This problem is regarded as one of most significant 
for a true autonomy of the robots. Crucial questions still remain satisfactorily unanswered 
in spite of great progress in this field and the existence of robust methods to map static, very 
structured and limited sized environments. 
(Kulic and Vukic, 2003) use a robot motion planning based on behavioural cloning. In a first 
phase, the robot is trained under operator’s control to locate unmoving obstacles avoidance 
through a simulator. In that phase, the evaluated variables are stored in a log file. The 
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second phase, called learning phase, machine learning program generates the differential 
equations defining the operator’s trajectory, i.e. the clone. Finally, the verifying phase, the 
robot is controlled by the clone. These developmental phases are repeated changing both 
problem domain representation and learning system according to the cloning system 
criterion.
The problem of mapping can be generally regarded as the fact of giving to an autonomous 
robot the capacity to move in an environment. Thus, the problem of mapping goes further 
than simple construction of a plan gathering the obstacles in a given zone. Thrun (Thrun, 
2002) gives a general survey of the mapping problem. He points out the six key aspects of 
the mapping problem: 

• The effects of the noise in the measurements (Wheel slippage, localisation error 
introduced by integration of data from wheel encoders, drift of inertial systems are 
three examples among many others.), 

• The high dimensionality of the entities that are being mapped (How many 
parameters describe the environment, its major topological elements like corridors, 
crossings, doors, rooms, etc.?), 

• The correspondence problem, also known as the data association problem (Do the 
measurements made by the sensors at different points in time in the environment 
correspond to the same object?), 

• The perceptual aliasing (Two different places from the environment can be 
perceived in an identical way by the sensors.), 

• The environment changes over time, 
• The robotic exploration, that is the task of generating robot motion in the pursuit of 

building a map. 
This chapter is organised as follow. Section 2 gives an overview of the works in the field 
of environment representation. Section 3 briefly presents the test-bed perception system. 
Sections 4 and 5 detail our approach in the digitised construction of the environment from 
the distance measurements, the extraction of the landmarks and explain the fresco 
construction and its validation. In section 6, we propose a method to represent robot’s 
trajectory based on series of landmarks called frescoes and different methods to select the 
most salient of them with which it is possible to describe the environment. Section 7 
shows and discusses the experimental results. We conclude with ways to improve the 
method. 

2. Related works 
Related works can be found in the fields of Image Based Navigation systems, shape 
understanding using sensor data, vision based homing. Vision for mobile robot navigation 
did have specific development during the last twenty years. (DeSouza & Kak, 2002) give a 
complete survey of the different approaches. For indoor navigation, systems are classified in 
three groups: map-based navigation using predefined geometric and/or topological 
models, map-building-based navigation constructing by themselves geometric and/or 
topological models, and mapless navigation using only object recognition and actions 
associated to these objects (Gaussier & al. 1997). 
Kuipers’ works (Kuipers & Byan, 1991) defined symbols as distinct places situated at equal 
distances from the nearby obstacles. Connections between these places link symbols and 
represent free path (Choset & Nagatani, 2001). Fig. 1 shows an example of the Voronoii 
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graph of an environment. The labelled vertices represent the symbols while edges 
connecting the symbols are the path the robot can use. 

2
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Fig. 1. Voronoii diagram with labelled vertices. 

Indeed, assume that the robot has to move in this simple environment (Fig. 1) according to a 
mission given by the user, if the robot goes from label 1 to label 9, the most important areas 
are those filled, where the robot changes its direction. Between them, when there are no 
changes in the environment, it is useless to preserve the whole set of information from this 
part of the way. On the contrary, it is necessary to find a method of mapping of the filled 
zones which can describe them unambiguously.  
In Image Based Navigation systems, several great classes of systems can be identified from the 
literature. The first one uses conventional telemeters and vision to find and identify objects in 
the environment (Wichert, 1996). The second one is the class of the systems coupling more or 
less directly sensor data to motor control thanks to a supervised learning process. Among 
them neural networks systems used as classifiers are noticeable. These systems begin to 
classify the environment into global classes such as “corridor, corner, room, crossing ...” (Al 
Alan & al. ,1995) (Pomerleau, 1993) are often followed by a second processing unit that 
outputs a navigation command. In addition to restrictions related to the supervised learning, 
these classes give only a global description and are of least interest in cluttered and complex 
environments. The third class includes the systems which compare current sensor data and 
predefined models both at a low level (edges, planes ...) – see (Kim & Neviata, 1994) - and at a 
high level (door, room, object ...). These systems use mainly vision sensors (cameras) that 
provide a huge amount of data that must be reduced to be processed in real time. The 
elements extracted from the data are compared to reference models known a priori. The fourth 
class evoked here includes the systems trying to geometrically build environment models 
before deciding an optimised path plan (Crosnier, 1999). 
In the field of shape understanding using sensor data, environment interpretation stresses 
the use of natural landmarks to ease the navigation and the pose estimation of a mobile 
robot. Among other works, one can pinpoint (Simhon & Dudek, 1998a) which is interested 
in defining islands of reliability for exploration. He proposes strategies to couple navigation 
and sensing algorithms through hybrid topological metric maps. (Oore & al., 1997) consider 
the problem of locating a robot in an initially unfamiliar environment from visual input. In 
the same way, (MacKenzie & Dudek, 1994) involve a methodology to bind raw noisy sensor 
data to a map of object models and an abstract map made of discrete places of interest. 
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Several implementations of vision based homing systems are presented in (Franz & al., 
1997). A method aiming at highlighting salient features as, for example, landmarks between 
these two views and deriving a decision is used in (Hong, 1991). In these works, a homing 
system extracts landmarks from the view and allows a robot to move to home location using 
sequence target locations situated en route between its current location and home. Other 
works are biologically inspired. (Judd & Collett, 1998) showed that ants store series of 
snapshots at different distances from their goal to use them for navigating during 
subsequent journeys. Judd and Collett experimented their theory with a mobile robot 
navigating through a corridor, homing successive target locations. Weber (Weber & al., 
1999) proposes an approach using the bearings of the features extracted of the panoramic 
view leading to a robust homing algorithm. This algorithm pairs two landmarks situated 
into two snapshots to derive the homing direction. The bearings-pairing process uses a list 
of preferences similar to neighbourhood rules. 
Symbolic processing methods are described in Tedder’s works (Tedder & Hall, 2001). This 
formal approach is often called structural or syntactic description and recognition. The 
general method for perception and interpretation proposes to symbolically represent and 
manipulate data in a mapping process. (Tedder & Hall, 2001) solve the problem in 
modelling the 3D environment as symbolic data and in processing all data input on this 
symbolic level. The results of obstacle detection and avoidance experiments demonstrate 
that the robot can successfully navigate the obstacle course using symbolic processing 
control. These works use a laser range finder. A way for defining suitable landmarks from 
an environment as the robot travels is a research problem pointed out by Fleisher and al. 
in (Fleisher and al., 2003). An automatic landmark selection algorithm chooses as 
landmarks any places where a trained sensory anticipation model makes poor 
predictions. The landmark detection system consists of a sensory anticipation network 
and a method of detecting when the difference between the prediction of the next sensor 
values and the current measured values can reveal the presence of a landmark. This 
model has been applied to the navigation of a mobile robot. An evaluation has been made 
according to how well landmarks align between different runs on the same route. These 
works show that the robot is able to navigate reliably using only odometry and landmark 
category information. 
In (Lamon & al., 2001), a method is proposed for creating unique identifiers called 
fingerprint sequences for visually distinct significant features in panoramic images. This 
localisation system proves that the actual position of a robot in an environment can be 
recovered by constructing a fingerprint sequence and comparing it with a database of 
known fingerprints.  
The proposed work goes on the way proposed by (Tedder & Hall, 2001) and (Lamon & al., 
2001). According to these works, our contribution applies mainly on a method to extract 
clues of interest among raw distance data delivered by a 2D panoramic laser range finder 
installed on the robot. These clues of interest, i.e. the landmarks, are gathered in a sequence 
that we call a fresco. We consider that the trajectory of the robot can be described by the set 
of the frescoes. To do that, we have to select the frescoes that bring new information. The 
originality of this work stays in the simple but efficient criteria used for the construction and 
the validation of the fresco but mainly to select the most pertinent frescoes along the route 
of the robot. In addition to this qualitative approach, one must consider that the system will 
have to be embarked on a vehicle, which vibrates, runs at variable speeds on a non-uniform 
ground. This leads to constraints of speed, size, robustness, compactness and cost, implying 
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various choices both at the design and at the development levels of the system. The methods 
used have been chosen as simple as possible to reduce the cost and the complexity of the 
processing. Nevertheless the method must be robust compared with the robot movements, 
the sensor accuracy and the variations of the complexity of the environment. 

3. Test-bed perception system 
The application field of this work is a middle-cost mobile robot sent in an apartment to do 
service for a user. Hence, the environment is of a structured and not engineered indoor type 
environment. At this point, the problem is two-fold. Firstly, through the Human-Machine 
Interface (HMI), a mission must be entered and its development must be explained to the 
user. Secondly, the robot has to be programmed to execute the mission. Building a 
description of the route as close as a human could do has at least two advantages. This 
description, on one hand, is requested by the HMI and, on the other hand, at the execution 
level, it can be a way to take into account the stumbling blocks highlighted by the 
conventional navigation systems.  
The size of the non holonomous robot is (width x length) 0.50m x 0.75m. Its linear and 
angular speeds are up to 1 ms-1 and 2.45 rads-1. Placed at the geometrical centre of the robot 
with practical/maximum ranges equal to 3m/10m, a panoramic 2D telemeter captures a 
circular environment. It has been decided to consider a 36m² squared environment to ease 
the reconstruction process (measurements at the corners are valid according to the 
maximum range of the telemeter). Only 256 measurements over the 1024 the telemeter is 
able to deliver are used by the fresco construction process. At a 1ms-1 speed, the translation 
displacement error remains lower than 10cm for one complete rotation of the telemeter. In 
100 ms, the rotation of the robot remains lower than 23°. Experiments in the following have 
been made with measurements coming from both a simulated laser range finder and the 
real telemeter. 
We will then consider that: 

• there is a lack of accuracy of the telemetry measurements due to the vibrations 
caused by the jolts, 

• most part of the environment is composed of co-operative targets (low material 
absorption coefficient, acceptable level of the reflected signal up to a 80° incident 
angle),

• reference position of the laser coincides with the main axis of the robot, 
• data sequencing compensates the effects of the clockwise (CW) or counter 

clockwise (CCW) rotations of the robot so that the 256 horizontal distance 
information are regularly arranged on 360°, 

• precision is greater than 20 cm for every measurements. 
According to these considerations, we chose to digitise the environment on a 32 x 32 cells grid 
which covers the area seen by the telemeter, each cell representing a 0.1875m x 0.1875m 
square. The terms “grid” or “cellular space” will be considered as equivalent in the following. 

4. Representation construction 
4.1 Cyclic representation and cellular space 
Landmarks such as “Opening, Closure, End_of_Closure, Angle_of_Closures” used to build 
the qualitative description of the environment from the measurements. According to the 
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Several implementations of vision based homing systems are presented in (Franz & al., 
1997). A method aiming at highlighting salient features as, for example, landmarks between 
these two views and deriving a decision is used in (Hong, 1991). In these works, a homing 
system extracts landmarks from the view and allows a robot to move to home location using 
sequence target locations situated en route between its current location and home. Other 
works are biologically inspired. (Judd & Collett, 1998) showed that ants store series of 
snapshots at different distances from their goal to use them for navigating during 
subsequent journeys. Judd and Collett experimented their theory with a mobile robot 
navigating through a corridor, homing successive target locations. Weber (Weber & al., 
1999) proposes an approach using the bearings of the features extracted of the panoramic 
view leading to a robust homing algorithm. This algorithm pairs two landmarks situated 
into two snapshots to derive the homing direction. The bearings-pairing process uses a list 
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Symbolic processing methods are described in Tedder’s works (Tedder & Hall, 2001). This 
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landmarks any places where a trained sensory anticipation model makes poor 
predictions. The landmark detection system consists of a sensory anticipation network 
and a method of detecting when the difference between the prediction of the next sensor 
values and the current measured values can reveal the presence of a landmark. This 
model has been applied to the navigation of a mobile robot. An evaluation has been made 
according to how well landmarks align between different runs on the same route. These 
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clues of interest among raw distance data delivered by a 2D panoramic laser range finder 
installed on the robot. These clues of interest, i.e. the landmarks, are gathered in a sequence 
that we call a fresco. We consider that the trajectory of the robot can be described by the set 
of the frescoes. To do that, we have to select the frescoes that bring new information. The 
originality of this work stays in the simple but efficient criteria used for the construction and 
the validation of the fresco but mainly to select the most pertinent frescoes along the route 
of the robot. In addition to this qualitative approach, one must consider that the system will 
have to be embarked on a vehicle, which vibrates, runs at variable speeds on a non-uniform 
ground. This leads to constraints of speed, size, robustness, compactness and cost, implying 
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various choices both at the design and at the development levels of the system. The methods 
used have been chosen as simple as possible to reduce the cost and the complexity of the 
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the sensor accuracy and the variations of the complexity of the environment. 
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The size of the non holonomous robot is (width x length) 0.50m x 0.75m. Its linear and 
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real telemeter. 
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• there is a lack of accuracy of the telemetry measurements due to the vibrations 
caused by the jolts, 

• most part of the environment is composed of co-operative targets (low material 
absorption coefficient, acceptable level of the reflected signal up to a 80° incident 
angle),

• reference position of the laser coincides with the main axis of the robot, 
• data sequencing compensates the effects of the clockwise (CW) or counter 

clockwise (CCW) rotations of the robot so that the 256 horizontal distance 
information are regularly arranged on 360°, 

• precision is greater than 20 cm for every measurements. 
According to these considerations, we chose to digitise the environment on a 32 x 32 cells grid 
which covers the area seen by the telemeter, each cell representing a 0.1875m x 0.1875m 
square. The terms “grid” or “cellular space” will be considered as equivalent in the following. 

4. Representation construction 
4.1 Cyclic representation and cellular space 
Landmarks such as “Opening, Closure, End_of_Closure, Angle_of_Closures” used to build 
the qualitative description of the environment from the measurements. According to the 
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sequential aspect of the data delivered by the laser range finder, the landmarks extraction 
order corresponds to the measurements order. The robot refers to two main axis: the 
“lengthwise axis” corresponds to the forward and rear directions of displacement, the 
“crosswise axis” is perpendicular to the lengthwise axis at the robot geometrical centre. 
The fresco construction is divided into two main steps: 

• The construction of the reliable digitised environment: cellular space building, 
signature extraction, crosswise, lengthwise and diagonal segments extraction, 
refining, reorientation. 

• The landmarks extraction: Opening, Closure, End_of_Closure and 
Angle_of_Closures extraction, fresco construction, fresco validation. 

The cellular space appears in fig. 4a. 

4.2 Conventions used in the cellular space 
The method uses evolution laws in the cellular space that act on every cells. For a cell called 
CELL the neighbourhood conventions use standard Von Neuman neighbourhood. For 
example, CELL_W, CELL_E, CELL_N, CELL_S are the names of the cells situated 
westbound, eastbound, northbound, southbound. We add the word Great to name the cells 
in the second neighbourhood layer (Great West: CELL_GW, Great East: CELL_GE …). The 
quadrants are numbered counter clockwise in relation to the lengthwise axis: quadrant 0 is 
the front right one. 

4.3 Construction of the digitised description 
Fig. 2 summarises the operations leading to the construction of a reliable cellular space 
(Pradel and al., 1994). 

(a) Generation of the digitised environment: the very first operation performed 
consists in the lay-down of the distance measurements onto the grid to create the 
initial cellular spaces. They perform the same operations on the distance 
measurements issued from the sensor (part 1) and on the 45° shifted measurements 
set (part 2). On the grid, black cells represent the range finder impacts. Noise 
introduced in the measurements (measurements are made while the robot is 
moving) appears mainly on the form of cells agglomerations (fig. 4a). 
Agglomerations also occur when measurements belong to the border between 
adjacent cells. Elimination of agglomerations (fig. 4a, b) is performed keeping only 
the cells situated the closest to the robot for obvious safety reasons. The method 
adopted for this elimination uses evolution laws close to those used in cellular 
automata.

(b) Segmentation of the cellular space: the next operation is the extraction of the 
segments corresponding to the obstacles from the cellular space. Four directions 
are considered. In addition with the lengthwise (fig. 3a) and crosswise axis (fig. 3c), 
a search for the segments is made onto the two diagonals (fig. 3d, f). The extraction 
laws leave alive a cell owning a neighbour alive in the considered direction. 

(c) Reorientation of the cellular space: as shown in fig. 4a, another origin of noise is 
bound to the oblique walls. These digitised oblique walls take the form of small 
adjacent segments with junctions without real significance. To eliminate these 
oblique walls and the noise they introduce we decided to use a second grid on 
which the measurements are laid with a 45° angular shift (Part 3). Superfluous data 
elimination and segmentation are also applied on this second grid. 
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Fig. 2. lock diagram showing the operations performed in the construction of the digitised 
environment.

Fig. 3. Extraction of segments in the 4 filtering directions: 
a (upper left):  Lengthwise segmentation, 
b (upper centre):  Refined environment, 
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sequential aspect of the data delivered by the laser range finder, the landmarks extraction 
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“lengthwise axis” corresponds to the forward and rear directions of displacement, the 
“crosswise axis” is perpendicular to the lengthwise axis at the robot geometrical centre. 
The fresco construction is divided into two main steps: 

• The construction of the reliable digitised environment: cellular space building, 
signature extraction, crosswise, lengthwise and diagonal segments extraction, 
refining, reorientation. 

• The landmarks extraction: Opening, Closure, End_of_Closure and 
Angle_of_Closures extraction, fresco construction, fresco validation. 

The cellular space appears in fig. 4a. 

4.2 Conventions used in the cellular space 
The method uses evolution laws in the cellular space that act on every cells. For a cell called 
CELL the neighbourhood conventions use standard Von Neuman neighbourhood. For 
example, CELL_W, CELL_E, CELL_N, CELL_S are the names of the cells situated 
westbound, eastbound, northbound, southbound. We add the word Great to name the cells 
in the second neighbourhood layer (Great West: CELL_GW, Great East: CELL_GE …). The 
quadrants are numbered counter clockwise in relation to the lengthwise axis: quadrant 0 is 
the front right one. 

4.3 Construction of the digitised description 
Fig. 2 summarises the operations leading to the construction of a reliable cellular space 
(Pradel and al., 1994). 

(a) Generation of the digitised environment: the very first operation performed 
consists in the lay-down of the distance measurements onto the grid to create the 
initial cellular spaces. They perform the same operations on the distance 
measurements issued from the sensor (part 1) and on the 45° shifted measurements 
set (part 2). On the grid, black cells represent the range finder impacts. Noise 
introduced in the measurements (measurements are made while the robot is 
moving) appears mainly on the form of cells agglomerations (fig. 4a). 
Agglomerations also occur when measurements belong to the border between 
adjacent cells. Elimination of agglomerations (fig. 4a, b) is performed keeping only 
the cells situated the closest to the robot for obvious safety reasons. The method 
adopted for this elimination uses evolution laws close to those used in cellular 
automata.

(b) Segmentation of the cellular space: the next operation is the extraction of the 
segments corresponding to the obstacles from the cellular space. Four directions 
are considered. In addition with the lengthwise (fig. 3a) and crosswise axis (fig. 3c), 
a search for the segments is made onto the two diagonals (fig. 3d, f). The extraction 
laws leave alive a cell owning a neighbour alive in the considered direction. 

(c) Reorientation of the cellular space: as shown in fig. 4a, another origin of noise is 
bound to the oblique walls. These digitised oblique walls take the form of small 
adjacent segments with junctions without real significance. To eliminate these 
oblique walls and the noise they introduce we decided to use a second grid on 
which the measurements are laid with a 45° angular shift (Part 3). Superfluous data 
elimination and segmentation are also applied on this second grid. 
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Fig. 2. lock diagram showing the operations performed in the construction of the digitised 
environment.

Fig. 3. Extraction of segments in the 4 filtering directions: 
a (upper left):  Lengthwise segmentation, 
b (upper centre):  Refined environment, 
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c (upper right):  Crosswise segmentation, 
d (lower left):  First diagonal segmentation, 
e (lower centre):  Initial measurements, 
f (lower right): Second diagonal segmentation 

A search for the longest and the shortest continuous segments is performed (Bras & al., 
1995) among the projections of the environment on the crosswise and lengthwise axis in 
each quadrant of the cellular space according to a filtering direction (lengthwise, crosswise, 
diagonal 1 and 2). A reorientation angle is then computed according to: 

4
*

mentgthwisesegLongestLen
mentosswiseSegShortestCrarctan πn±=Θ (1)

According to the direction in which the longest segment is found (i.e. the most plausible 
reference in the environment), adequate choices for the sign and the value of n (n in {0, 1}) 
lead the robot to be reoriented parallel to the longest segment (0 π /3) or 
perpendicularly to it (π /3 < π /2). The reoriented cellular space is re-built from the 
initial measurements according to the reorientation angle. Fig. 4c shows the benefits of the 
reorientation. The reoriented cellular space is then considered as reliable and will allow the 
landmarks to be extracted. 
(d) Landmarks extraction: as told in the introduction, the environments are described using 
a fresco made of ordered series of landmarks: “Opening”, “Wall” also called “Closure” and 
“Corner” also called “Angle_of_Closures”. Let us note that an “Angle_of_Closures” must be 
neighboured by two “End_of_Closure” landmarks. The landmarks extraction first considers 
the “Opening” elements that are directly extracted from the reoriented signatures. 
The “Angle_of_Closures” and “End_of_Closure” landmarks are extracted from the reoriented 
cellular space by the following laws. The first operation consists in the “Angle_of_Closures” 
extraction by the following equation that is applied to every cell in the grid: 

Angle_of_Closures = ((CELL & CELL_W) | (CELL & CELL_E)) & ((CELL | 
CELL_N) | (CELL & CELL_S)) & neg CELLdiag 

with: CELLdiag meaning that the logical state of the cell is true if it belongs to a diagonal. 
Operators & (logical AND) and neg (logical NOT) are applied on the states of the cells. 
The first ligne of this equation checks if the cell has east or west neighbours while the 
second line checks north and south neighbours. Therefore a cell is considered as an 
Angle_of_Closures if it has at least a crosswise and a lengthwise neighbour. 
The second operation aims at extracting the “Lenghtwise End_of_Closure” and “Crosswise 
End_of_Closure” landmarks. These operations are allowed if and only if the cell does not 
belong to the two diagonals and is not an “Angle_of_Closures”. 
Fig. 4d and 4e show the “Angle_of_Closures” and “End_of_Closure” landmarks positioned 
on the grids. To each landmark are associated three qualitative attributes representing three 
properties of landmarks. The off-sight attribute is set when the landmark stands on the 
cellular space border. The position attribute can take the following values: crosswise, 
diagonal, lengthwise according its position. The certainty attribute is introduced to take into 
account landmarks that could come from a possible noise introduced in the digitisation 
process not detected by the previous laws or a still possible bad reorientation. It is false for 
every landmark (for instance, diagonal “End_of_Closure”, “45°_angles”) whose evolution 
cannot be known. 
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5. Fresco construction 
The first step of the fresco construction gathers the landmarks space into ordered series of 
semantic clues and describes the environment by positioning landmarks in respect to each 
others. Each landmark has exactly two neighbours (the last landmark in the list has the first 
one as second neighbour). Building the fresco is made using the symbols presented in Table 
1 which gathers the landmarks identity and attributes. The landmarks identity and 
attributes have been chosen according to the indoor environment in which the robot moves. 
This operation mainly aims at eliminating the notion of distance to the profit of a spatial 
series and highlights the qualitative representation of the environment. An example of 
fresco is given in fig. 4f. The robot is situated in the middle of the environment. To each 
landmark are associated three qualitative attributes representing three properties of 
landmarks. The off-sight attribute is set when the landmark stands close to or beyond the 
end of the sensor range. The position attribute can take the following values: crosswise, 
diagonal or lengthwise according its position related to the lenghtwise and crosswise robot 
axis. The certainty attribute is introduced to take into account landmarks whose evolution 
can be forecast. It is false for every landmark (for instance, diagonal “End_of_Closure”, 
“45°_angles”) that could come from a possible noise introduced in the digitisation process 
and whose evolution cannot be known (Pradel & al., 2000), (Pradel & Bras, 2001). 

Fig. 4. Example of the digitised constructions: 
a (upper left): real world from raw measurements; b (upper centre): reoriented cellular 
space; c (upper right): refined space after superfluous data elimination; 
d (lower left): Angles_of_Closure extraction, e (lower centre): End_of_Closure extraction; f 
(lower right): fresco construction 
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c (upper right):  Crosswise segmentation, 
d (lower left):  First diagonal segmentation, 
e (lower centre):  Initial measurements, 
f (lower right): Second diagonal segmentation 

A search for the longest and the shortest continuous segments is performed (Bras & al., 
1995) among the projections of the environment on the crosswise and lengthwise axis in 
each quadrant of the cellular space according to a filtering direction (lengthwise, crosswise, 
diagonal 1 and 2). A reorientation angle is then computed according to: 

4
*

mentgthwisesegLongestLen
mentosswiseSegShortestCrarctan πn±=Θ (1)

According to the direction in which the longest segment is found (i.e. the most plausible 
reference in the environment), adequate choices for the sign and the value of n (n in {0, 1}) 
lead the robot to be reoriented parallel to the longest segment (0 π /3) or 
perpendicularly to it (π /3 < π /2). The reoriented cellular space is re-built from the 
initial measurements according to the reorientation angle. Fig. 4c shows the benefits of the 
reorientation. The reoriented cellular space is then considered as reliable and will allow the 
landmarks to be extracted. 
(d) Landmarks extraction: as told in the introduction, the environments are described using 
a fresco made of ordered series of landmarks: “Opening”, “Wall” also called “Closure” and 
“Corner” also called “Angle_of_Closures”. Let us note that an “Angle_of_Closures” must be 
neighboured by two “End_of_Closure” landmarks. The landmarks extraction first considers 
the “Opening” elements that are directly extracted from the reoriented signatures. 
The “Angle_of_Closures” and “End_of_Closure” landmarks are extracted from the reoriented 
cellular space by the following laws. The first operation consists in the “Angle_of_Closures” 
extraction by the following equation that is applied to every cell in the grid: 

Angle_of_Closures = ((CELL & CELL_W) | (CELL & CELL_E)) & ((CELL | 
CELL_N) | (CELL & CELL_S)) & neg CELLdiag 

with: CELLdiag meaning that the logical state of the cell is true if it belongs to a diagonal. 
Operators & (logical AND) and neg (logical NOT) are applied on the states of the cells. 
The first ligne of this equation checks if the cell has east or west neighbours while the 
second line checks north and south neighbours. Therefore a cell is considered as an 
Angle_of_Closures if it has at least a crosswise and a lengthwise neighbour. 
The second operation aims at extracting the “Lenghtwise End_of_Closure” and “Crosswise 
End_of_Closure” landmarks. These operations are allowed if and only if the cell does not 
belong to the two diagonals and is not an “Angle_of_Closures”. 
Fig. 4d and 4e show the “Angle_of_Closures” and “End_of_Closure” landmarks positioned 
on the grids. To each landmark are associated three qualitative attributes representing three 
properties of landmarks. The off-sight attribute is set when the landmark stands on the 
cellular space border. The position attribute can take the following values: crosswise, 
diagonal, lengthwise according its position. The certainty attribute is introduced to take into 
account landmarks that could come from a possible noise introduced in the digitisation 
process not detected by the previous laws or a still possible bad reorientation. It is false for 
every landmark (for instance, diagonal “End_of_Closure”, “45°_angles”) whose evolution 
cannot be known. 
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5. Fresco construction 
The first step of the fresco construction gathers the landmarks space into ordered series of 
semantic clues and describes the environment by positioning landmarks in respect to each 
others. Each landmark has exactly two neighbours (the last landmark in the list has the first 
one as second neighbour). Building the fresco is made using the symbols presented in Table 
1 which gathers the landmarks identity and attributes. The landmarks identity and 
attributes have been chosen according to the indoor environment in which the robot moves. 
This operation mainly aims at eliminating the notion of distance to the profit of a spatial 
series and highlights the qualitative representation of the environment. An example of 
fresco is given in fig. 4f. The robot is situated in the middle of the environment. To each 
landmark are associated three qualitative attributes representing three properties of 
landmarks. The off-sight attribute is set when the landmark stands close to or beyond the 
end of the sensor range. The position attribute can take the following values: crosswise, 
diagonal or lengthwise according its position related to the lenghtwise and crosswise robot 
axis. The certainty attribute is introduced to take into account landmarks whose evolution 
can be forecast. It is false for every landmark (for instance, diagonal “End_of_Closure”, 
“45°_angles”) that could come from a possible noise introduced in the digitisation process 
and whose evolution cannot be known (Pradel & al., 2000), (Pradel & Bras, 2001). 

Fig. 4. Example of the digitised constructions: 
a (upper left): real world from raw measurements; b (upper centre): reoriented cellular 
space; c (upper right): refined space after superfluous data elimination; 
d (lower left): Angles_of_Closure extraction, e (lower centre): End_of_Closure extraction; f 
(lower right): fresco construction 
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Symbol Landmark Position Off-sight Certainty 
Angle_of_Closure   True 
End_of_Closure lengthwise  True 
End_of_Closure lengthwise off_sight False 
End_of_Closure crosswise  True 

End_of_Closure crosswise off_sight False 

End_of_Closure diagonal1  False 
End_of_Closure diagonal1 off_sight False 
End_of_Closure diagonal2  False 
End_of_Closure diagonal2 off_sight False 

45°Angle lengthwise  False 
45°Angle crosswise  False 
Opening lengthwise  True 

Breakthrough lengthwise  True 
Opening crosswise  True 

Breakthrough crosswise  True 

Table 1. Landmarks used in the fresco construction. 

The second step focuses on the fresco validation. Assuming that there is only one 
description for one environment, strict laws of neighbourhood are defined. Fig. 5 shows 
these neighbourhood laws that can be interpreted as a set of logical assertions. An 
Angle_of_Closure can only have as neighbours Angle_of_Closures or End_of_Closures. For 
each landmark, the neighbourhood is checked. Every time a fresco is built, the whole set of 
these rules is applied in order to validate the fresco. If one rule failed, the fresco is not valid. 

Fig. 5. Landmarks neighbourhood rules. 

The validation fails mainly due to a bad landmark extraction process in a very noisy cellular 
space or a bad reorientation. Making the necessary corrections in the extraction laws to 
solve these seldom failing cases leads to an increasing of the complexity of the evolution 
laws, increasing not really justified by the low frequency of the failures. We consider that 
the loss of a fresco is not an important drawback: a failure in the validation of the fresco will 
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be corrected by the next valid one with only slight effects on the mission of the robot and 
the effect of this loss is very attenuated because the process of transitions detection and 
environment memorisation eliminates a greater part of the frescoes. When it is validated, 
the fresco appears as shown in fig. 4f. A fresco will contain at most 64 landmarks symbols 
organised into 4 sectors of 16 symbols at most. 

6. Symbolic trajectory description using frescoes 
Building the symbolic description of the route followed by the robot is three-fold: 

• how to build the qualitative descriptions (frescoes) in accordance with the robot’s 
sensors ? 

• how to describe the route by a sequence of the most pertinent frescoes ? 
• how to use these frescoes with the control-command level of the robot ? 

This section deals with the second point. The choice of the most salient frescoes is made 
using different criteria described in the following sections. Every time the laser range finder 
scans the environment, a fresco is built. In our case, the fresco built-in period is 300ms. 
Hence, if all frescoes are stored their number grows quickly and some of them are not 
useful. Storing all the frescoes when the robot runs in a corridor is a trivial example. All 
frescoes are very similar excepted at both ends. If only few frescoes are useful, how then is it 
possible to select them? Is a specific sequence of frescoes able to describe a part of the 
environment? Answering, at least partially, to these questions is the aim of this section. 
Following a specific path, the total number of stacked frescoes could be large enough. 
Moreover, successive frescoes could be identical or slightly different. Therefore, a selection 
of meaningful frescoes, which offers a thoroughly environment description, is absolutely 
necessary. Based on these salient selected frescoes, the robot also should be able to find a 
return path. In local homing for example, an agent returns to a previously visited location 
by moving to maximize the correspondence between what it sees currently and a 
remembered view from the target. 
In dealing with frescoes, which are basically a collection of symbolic strings, we were 
inspired by different methods, such as those used in spell checking, optical character 
recognition (OCR), molecular biology for DNA or amino-acid sequences study (Altschul, 
1991), (Karlin, 1990) or computational intelligence. 
The first two criteria proposed to evaluate a kind of distance between frescoes are called 
resemblance and barycentre. A new fresco is considered as bringing new information if its 
distance to the previous stored one regarding one of the criteria is greater than a threshold. 
The two next sections describe these criteria. A systematic study gives an evaluation of the 
thresholds to use to make the criteria effective. 

6.1 Resemblance method
This criterion uses a nearby principle of that presented in (Hong, 1991). A correlation 
function allows calculating the resemblance between two frescoes. This criterion has been 
tested in the same environment as that used for the construction and the validation of the 
frescoes. The use of this criterion shows that the landmarks that are not certain make very 
difficult the evaluation of the resemblance so only the certain elements were kept. The 
resemblance between two consecutive frescoes is calculated by taking into account the 
difference between the number of certain landmarks in the corresponding quadrants. The 
resemblance between two frescoes is calculated from the difference between the number of 
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Symbol Landmark Position Off-sight Certainty 
Angle_of_Closure   True 
End_of_Closure lengthwise  True 
End_of_Closure lengthwise off_sight False 
End_of_Closure crosswise  True 

End_of_Closure crosswise off_sight False 

End_of_Closure diagonal1  False 
End_of_Closure diagonal1 off_sight False 
End_of_Closure diagonal2  False 
End_of_Closure diagonal2 off_sight False 

45°Angle lengthwise  False 
45°Angle crosswise  False 
Opening lengthwise  True 

Breakthrough lengthwise  True 
Opening crosswise  True 

Breakthrough crosswise  True 

Table 1. Landmarks used in the fresco construction. 

The second step focuses on the fresco validation. Assuming that there is only one 
description for one environment, strict laws of neighbourhood are defined. Fig. 5 shows 
these neighbourhood laws that can be interpreted as a set of logical assertions. An 
Angle_of_Closure can only have as neighbours Angle_of_Closures or End_of_Closures. For 
each landmark, the neighbourhood is checked. Every time a fresco is built, the whole set of 
these rules is applied in order to validate the fresco. If one rule failed, the fresco is not valid. 

Fig. 5. Landmarks neighbourhood rules. 

The validation fails mainly due to a bad landmark extraction process in a very noisy cellular 
space or a bad reorientation. Making the necessary corrections in the extraction laws to 
solve these seldom failing cases leads to an increasing of the complexity of the evolution 
laws, increasing not really justified by the low frequency of the failures. We consider that 
the loss of a fresco is not an important drawback: a failure in the validation of the fresco will 
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be corrected by the next valid one with only slight effects on the mission of the robot and 
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6.1 Resemblance method
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resemblance between two frescoes is calculated from the difference between the number of 
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landmarks in respective quadrants of two consecutive frescoes. The comparison of this 
difference with a reference threshold indicates if the current fresco should be kept or 
rejected because not bringing enough information. 
The resemblance between two consecutive frescoes i and j is calculated as: 

 rij = |N0i-N0j| + |N1i-N1j| + |N2i-N2j| + |N3i-N3j| (2) 

where
Nki, k = 1 ... 4 represents the number of landmarks in quadrant k of the i-th fresco Nkj, k = 1 
... 4 represents the number of landmarks in quadrant k of the j-th fresco . 
If the resemblance rij is greater then an a priori specified threshold then the j-th fresco will be 
selected and memorized as sufficiently different from the rest. 

6.2 Barycenter method
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Fig. 6. Barycenter computation between certain landmarks. 

This criterion is inspired by the distance of Hausdorff which measures the distance between 
two sets (Ahuactzin & al., 1995), (Huttenlocher & al., 1993). In our case, this notion was very 
simplified to respect real-time constraints. It takes into account only the number of certain 
landmarks in every quadrant. The landmarks are positioned as indicated on the fig. 6 and 
the barycentre is positioned at the following coordinates: 
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where
Nki, k = 1 ... 4 is the number of landmarks in quadrant k of the i-th fresco, 
Nkj, k = 1 ... 4 is the number of landmarks in quadrant k of the fresco, 
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Ntoti and Ntotj are the total numbers of certain landmarks in the i-th/j-th frescoes 
respectively.
Any variation of the number of elements in a quadrant implies a movement of the 
barycentre. If this displacement is greater then an a priori specified threshold then the j-th 
fresco will be selected and memorized. 

6.3 Distances based methods
Distance is usually, but not necessarily, defined on a vector space. For strings, there are also 
some ways for quantifying how much two strings differs, as we will see in the next sections. 
These metric functions attempt to ascribe a numeric value to the degree of dissimilarity 
between two strings. 

(a) Hamming distance method: the Hamming distance (HD) could be defined only for 
strings of the same length (Gusfield, 1997). For two strings, S1 and S2, the Hamming 
distance HD(S1, S2) represents the number of places in which the two strings differ, 
(Lamon, 2001) have different characters as shown in the following example: HD 
(‘ABCD’, ‘ACDB’) = 3 

(b) Levenshtein distance method: the Levenshtein distance (LD) realizes a more 
complex evaluation of two strings than the Hamming distance. It could operate 
with strings not necessary of the same length and represents the minimum number 
of elementary transformations (insertion, deletion and substitution of a symbol) 
needed to transform one string into another (Levenshtein, 1966): 

LD(S1, S2) = min(Nins + Ndel + Nsubst)
(6)

Closely related to it is the weighted Levensthein distance (WLD) also known as edit 
distance, where different costs are assigned to each edit operation (Kohonen, 1988) (Wagner, 
1974):

WLD(S1, S2) = min(winsNins + wdelNdel + wsubstNsubst)
(7)

(c) N-Gram method: an N-gram is a substring of N consecutive symbols. Let N1 and N2 be 
the number of N-grams in strings S1 and S2, respectively let m be the number of matching N-
grams. If one string is longer than the other, the unmatched N-grams are also counted as 
differences. The feature distance (FD) is defined then as (Kohonen, 1987): 

FD(S1, S2) = max(N1,N2) - m(S1, S2)
(8)

6.4 Similarity based methods 
Finding similarities in character strings is an important problem in text processing and data 
mining. It has applications in genetics research as well, since strands of DNA can be 
expressed as very long strings of the characters. 
A similarity measure is simpler than a distance. For strings S1, S2, finding similarities in 
character strings is an important problem in text processing and data mining. It has 
applications in genetics research as well, since strands of DNA can be expressed as very 
long strings of characters. 
A similarity measure is simpler than a distance. For strings S1, S2 ∈ S, any function 

ℜ→2: Ss  can be declared similarity. For strings, similarity is closely related to alignment. 
(a)Cross correlation matching method 
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This function is commonly used in signal processing. For symbols, the function compares 
string S1 (of length m) with S2 (of length l = n  m) and produces a cross correlation 
similarity vector, CCS, of length (l = m + n-1) with elements CCSi (with i = 0, 1 … l-1) given 
by (Gusfield, 1997) (Haykin, 1999): 
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Fig. 7. Results of the cross correlation function. Peak value is obtained for the alignment of 
“ABC” tri-gram.

Fig. 7 gives an example of the results given by the cross correlation matching method for 
two strings of length equal to 6. 

6.5 Neural network based method
Speaking in a neural network terminology, finding the salient frescoes is equivalent with 
finding prototype vectors. Self Organizing Feature Map-Neural Networks, SOFM-NN, tries 
to place or adapt neurons in such a way that they serve as good prototypes of input data for 
which they are sensitive. 
(a) Classic SOFM-NN: these networks are based on unsupervised competitive learning and 
winner-takes-all neurons (Haykin, 1999). During the training phase a SOFM-NN creates a 
topologic correspondence between the spatial location of the neurons in the output layer 
and the intrinsic features of the input patterns. If there is some similarity between input 
vectors then neighbours neurons will fire. If two input patterns are different than output 
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neurons situated at considerable distance or spatial location will respond. For prototype 
vectors calculus usually Euclidian distance is used, as elements having the smallest sum of 
squared distance over the data set. 
The principal problem is that classic SOFM-NN training algorithm is defined for numbers 
and not for strings. There are numerous ways for string to numbers conversion and vice 
versa (Aha & al., 1991) (Blanzieri, 1999). For our particular case, the maximum number of 
symbols within a fresco is 16, hex coded. So the NN input vector could be constructed by 
means of: 

• Direct coding: each symbol had its own binary equivalent (0 = 0000, 1 = 00001 … F 
= 1111), 

• Exclusive coding that is, the symbol is coded with an unary vector with all the 
components but the i-th set to zero (0 = 000 … 0001, 1 = 00 … 010, … , F = 10 … 
000).

Finally, a fresco will be represented as a binary vector composed by concatenation of each 
binary coded constituent string. 
(b) Symbolic SOFM-NN: based on distance measure for strings and calculating the 
prototype as a mean or median value, SOFM-NN for strings have been defined (Kohonen, 
1998). These SOFM-NN are organized as a symbol strings array, whereby the relative 
locations of the strings on the SOFM ought to reflect some distance measure (e.g. LD, FD) 
between the strings. The idea behind the pure symbolic SOFM-NN is to define similarities 
or distances between data objects. In our application data objects are represented by 
symbolic strings. Based on these similarities/distances, finding representative prototypes 
(for our application, meaningful frescoes) will be the next step. 
In training of pure symbolic SOFM-NN, two steps are repeated: 

• Find best-matching unit (BMU) for each data item, and add the data item to the list 
of its best-matching unit; BMU is found using the defined similarity/distance 
measure,

• Update the models in SOFM nodes: find the median data item belonging to the 
union of the list (data list union contains all data items in the neighbourhood of the 
current node being update). 

For computing the median data item, assume there are 3 data items (e.g. symbol strings S1,
S2, S3) and the following pair wise distances (Table 2): 

 S1 S2 S3

S1 0 4 2 
S2 4 0 2 
S3 1 2 0 

Table 2. Pair wise distances.

then compute the sum of the distances from each data item to others: 

S1 : 0 + 4 + 1 = 5 
S2 : 4 + 0 + 2 = 6 
S3 : 1 + 2 + 0 = 3

(11)

The smallest sum of distances is for data item S3, so that is the median of this data set. In the 
case of SOFM-NN, the distances could be weighted by the value of neighbourhood function 
(e.g. a Gaussian-shaped neighbourhood function). 
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7. Experimental results 
7.1 Application of the resemblance and barycentre criteria in simple environment 
The two criteria apply only on the certain landmarks and have been tested in two types of 
environments. In a first step, experiments in simple environments led us to point out the 
thresholds relevant ranges. In a second step, a complex environment has been used to 
validate these thresholds. 
The problem is to find the right threshold for each criterion. A representative panel of 
situations is first established and systematic tests are made on each situation in which the 
frescoes are listed for different thresholds of the two criteria. Then a reference threshold for 
each criterion is fixed taking into account firstly the ratio of kept frescoes and secondly the 
position of these frescoes with respect to their situation along the robot’s route in the 
considered environment. Finally, thresholds that have been defined are tested in a complex 
environment.
(a) Choice of different types of environment: indoor environments can be described using a 
limited number of situations (Al Alan, 1995): openings, walls, angles, room, corridor, dead-
end and crossings. So far, tested situations are listed in Table 3. Fig. 8 shows the example of 
the “opening on the left situation”. Numbers on the left of the figure show the different 
positions where frescoes have been constructed. In this example, frescoes are built from 
position 1 to position 31 (only one of five is drawn to make the figure readable). 

Fig. 8. Example of situation: Opening on the left. 

In the different situations, the initial numbers of frescoes are different (Table 3). 

 Situation Number of frescoes 
Angle to the left AL 31 

Angle to the right AR 31 
Opening on the left OL 31 

Opening on the right OR 31 
X-crossing CX 42 

Table 3. Initial number of built frescoes. 

(b) Number of pertinent frescoes vs. criterion: it is firstly interesting to observe the number 
of frescoes kept for different values of thresholds. For barycentre criterion, values between 0 
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and 2 with a step of 0.05 are tested. For resemblance criterion, values between 0 and 12 with 
a step of 0.5 are tested. Beyond these limits, only fresco number one is kept. As the initial 
number of frescoes is different in all situations, the ratio between the number of frescoes 
kept and the initial number of frescoes is analysed. Fig. 9 shows the results for resemblance 
criterion. Fig. 10 shows the results for barycentre criterion. It can be seen that curves in each 
figure are similar, meaning that criteria have the same response in all the environment 
situations. It seems then possible to find a common threshold. 

Fig. 9. Percentage of frescoes selected by resemblance criterion vs. threshold value (AR/AL: 
angle on the right/left, CX: X-crossing, LA: lab, OR/OL opening on the right/left, Sum: add 
up). 

Fig. 10. Percentage of frescoes selected by barycentre criterion vs. threshold value (AR/AL: 
angle on the right/left,CX: X-crossing, LA: lab, OR/OL opening on the right/left, Sum: add 
up). 
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 a)  b)

 c) d) 

e)
Fig. 11. Pertinent frescoes vs. barycentre criterion (AL situation); a) threshold=0.40; b) 
threshold=0.45; c) threshold=0.50; d) threshold=0.55; e) threshold=0.60. 
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It also can be noted that curves decrease quickly for low thresholds values. In fig. 8, frescoes 
between 1 and 10 represent the same part of the environment with very slight differences. 
The objective is to keep a reasonable part of frescoes between 10% and 20% in the first 
approximation. That means thresholds values comprise between 5 and 7 for resemblance 
criterion and between 0.4 and 0.6 for barycentre criterion. 
(c) Positions of pertinent frescoes: for both criteria, it is interesting to visualise which 
frescoes are considered as pertinent (fig. 11). Frescos number 1 and 31 represent the 
beginning and the end of the trajectory: they appear for all thresholds. Frescoes 9, 11, 13 and 
24 represent the heart of the turning. They are very close considering Euclidean distance but 
they differ in term of orientation. Fresco number 24 disappears for thresholds equal to 0.55 
or 0.60. The value 0.50 is the central threshold value for barycentre criterion. A similar 
analysis has been conducted for all other situations. In the same way, the resemblance 
criterion leads to the same conclusion with 6.0 as central threshold. 

7.2 Application of the resemblance and barycentre criteria in complex environments
A complete trajectory has been studied in a complex environment (fig. 12 a)). The two 
criteria have been applied. The variations of the thresholds have been limited to the range 
determined by the tests in simple environments: 5 to 7 for resemblance and 0.4 to 0.6 for 
barycentre. Fig. 13 shows the percentage of selected frescoes for both criteria. For barycentre 
criterion, there is no significant difference between the complex and the simple 
environments. For resemblance criterion, the ratio is greater in the complex environment 
than in the simple ones. Nevertheless, for a threshold equal to 7.0, the ratio becomes close to 
the ratio obtained in simple environments. 

7.3 Application of the other criteria 
Against the frescoes acquired (fig. 12 b)) from the lab environment (Hoppenot, 2003), the 
above mentioned possibilities of salient frescoes selection were implemented and 
compared. 
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Fig. 12. a) Test environment: the lab; b) Frescoes acquired by the robot from the 
environment shown in the left. 
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Fig. 13. Comparison of percentage of frescoes selected by resemblance/barycentre criterion 
in complex (LA) and simple environments vs. threshold. 

The current numbers of the selected frescoes are synthetically presented in Table 4. 

Method Index 
R  2 3 8 22 23 24 25 
B  4 9 11 13 21 23  
H  9 10 13 15 17 18 20  
L  9 11 15 17 19 22  
C  9 11 15 17 18 19 25 
N 1 3 7 8 13 15 17  

Table 4. Indexes of selected frescoes with R-Resemblance, B-Barycentre, H-Hamming, L-
Levenshtein, C-Cross-correlation, N-Neural Network. 
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Fig. 14. The dependence percent of selected frescoes – threshold. 
(a) Resemblance criterion; 
(b) Barycentre criterion; 
(c) Hamming criterion; 
(d) Levenshtein criterion 
(e) Cross-correlation criterion; 

In fig. 14 the dependence percentage of selected frescoes vs. threshold is depicted. Fig. 15 
show the salient frescoes selected by each method. An acceptable percent of the selected 
meaningful frescoes should be around 30% or less from the total amount of frescoes. In 
absolute values this mean around 7 frescoes selected. 



562 Mobile Robots, Perception & Navigation

Fig. 13. Comparison of percentage of frescoes selected by resemblance/barycentre criterion 
in complex (LA) and simple environments vs. threshold. 

The current numbers of the selected frescoes are synthetically presented in Table 4. 

Method Index 
R  2 3 8 22 23 24 25 
B  4 9 11 13 21 23  
H  9 10 13 15 17 18 20  
L  9 11 15 17 19 22  
C  9 11 15 17 18 19 25 
N 1 3 7 8 13 15 17  

Table 4. Indexes of selected frescoes with R-Resemblance, B-Barycentre, H-Hamming, L-
Levenshtein, C-Cross-correlation, N-Neural Network. 

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
0

10

20

30

40

50

60

70

80

90

100

S
el

ec
te

d 
fre

sc
oe

s 
[%

]

Threshold

Resemblance criterion

   
0 0.05 0.1 0.15 0.2 0.25 0.3 0.3

0

10

20

30

40

50

60

70

80

90

100

S
el

ec
te

d 
fre

sc
oe

s 
[%

]

Threshold

Barycenter criterion

 (a) (b) 

Symbolic Trajectory Description in Mobile Robotics  563 

20 25 30 35 40 45 50 55 60 65 70
0

10

20

30

40

50

60

70

80

90

100

S
el

ec
te

d 
fre

sc
oe

s 
[%

]

Distance [%]

Hamming criterion

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

S
el

ec
te

d 
fre

sc
oe

s 
[%

]

Distance [%]

Levenshtein criterion

 (c) (d) 

25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

S
el

ec
te

d 
fre

sc
oe

s 
[%

]

Threshold

Cross-corelation criterion

(e)

Fig. 14. The dependence percent of selected frescoes – threshold. 
(a) Resemblance criterion; 
(b) Barycentre criterion; 
(c) Hamming criterion; 
(d) Levenshtein criterion 
(e) Cross-correlation criterion; 

In fig. 14 the dependence percentage of selected frescoes vs. threshold is depicted. Fig. 15 
show the salient frescoes selected by each method. An acceptable percent of the selected 
meaningful frescoes should be around 30% or less from the total amount of frescoes. In 
absolute values this mean around 7 frescoes selected. 
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   a)     b) 

d)     e) 

e)     f) 
Fig. 15. Selected salient frescoes using the criteria of: a) resemblance; b) barycentre; c) 
Hamming; d) Levenshtein; e) cross-correlation; f) SOFM-NN. 
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8. Future works and conclusion 
Human beings, as well as insects (Collet & al., 1992), use resemblance (or dissimilarity) to 
compare views of the environment rejecting those that do not bring up new elements 
without using metrics, only using the occurence of landmarks. In this work, we propose a 
qualitative method inspired of homing methods (Weber, 1999) to construct the 
environment surrounding an indoor mobile robot equipped with a 2D telemetry sensor. 
Every times distance measurements are made, landmarks are extracted and organised 
into series called frescoes. From this point, distance information are no longer used. In 
order to derive the pertinent frescoes that can describe the trajectory of the robot, we plan 
to use a pairing-like method. The first criterion that is primarily being investigated uses a 
resemblance between two frescoes. The landmarks are bounded and a correlation 
function measures the difference between consecutives frescoes. The second criterion is 
based on the difference between the barycentre positions of consecutive frescoes 
(Huttenlocher, 1993). Those frescoes separated by a difference higher than a threshold are 
considered as pertinent to describe the robot’s route. In both cases the differences are 
compared with thresholds that are experimentally set up. Despite the criteria simplicity, 
the results in the very changing test environment (Fig. 12a) show that the thresholds 
experimentally trimmed in simple environments are well fitted to a complex 
environment. But the resemblance and barycentre methods have the disadvantage of not 
taking into account the qualitative aspect of landmarks but only the quantitative one. Lets 
consider an hypothetically example, in which two consecutive frescoes are completely 
different but has the same number of landmarks/quadrant. Both methods will give an 
inappropriate answer, resulting in meaningful frescoes losses, because both operate with 
number, not type, of landmarks. The value of the selection threshold for the resemblance 
method is also difficult to be anticipated because of rapid variation of the number of 
selected frescoes in the region of the optimal threshold. It could be easily observed the 
poor performance of this criterion: the marked frescoes are somehow similar and not 
representative. The barycentre method is similar with the previous one: in selecting the 
salient frescoes only number of landmarks from quadrants are counted. It differs in 
respect of computing the difference between strings and it seems to give slightly better 
results. 
The Hamming distance compares two strings/frescoes character by character, the 
distance representing the number of different characters found. Here the selection 
threshold has been expressed in percentage form. The principle underlying 
Hamming distance is totally different from the previous two methods: it takes into 
account the qualitative aspect of strings and, as a consequence, is a better solution. 
In spite of this fact one might consider it giving unsatisfactory results. Let’s take a 
fragment from two successive frescoes, for example: … 0004F74000 … and … 
004F740000 … It is clear that these two consecutive frescoes contain basically the 
same landmark. The 1-character left shift is an environment perspective changing 
due robot movement along the trajectory. Although, HD score is very high, as the 
two consecutive frescoes were completely different, resulting in a possible selection 
of both strings. 
This kind of problem is not present in the case of Levenshtein distance. LD computes 
the distance, in this case, as a simple insertion operation, the distance being kept at 
minimum. It appears that this method is the best solution for the problem of salient 
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frescoes selection. The computationally cost represents the main disadvantage of LD. 
One might observe that frescoes are padded with lots of zeros representing empty cells. 
In order to reduce the computation time, these empty spaces might be ignored. We 
called the result fast Levenshtein distance, fLD, which produce, in terms of selected 
frescoes, the same results as LD, but in a significantly shorter time. Almost the same 
results as LD are given by the cross-correlation principle. Due to alignment underling 
principle of these methods, the perspective modification of landmarks in a fresco is not 
seen as a fundamental change. 
The SOFM-NN implemented has an input layer of 256 (64 symbols/fresco x 4 bits) neurons 
and 7 output neurons. Thus, the training is constituted of 25 binary vector having 256 
elements. The network has been trained for 5000 epochs. After the learning phase, the seven 
weight vector corresponding to the output neurons should represent the essential frescoes 
selected from the input set. 
Using a SOFM neural network for salient frescoes selection turns out to be improper. 
Among possible explanations are: 

• The reduced size of training elements; The 25 considered set of frescoes are not 
enough to form appropriate prototype vectors. Thus, prototype vectors are not 
entire identically with some of the 25 training frescoes. 

• There is no sufficiently redundancy in the 25 frescoes selected. 
• The conversion process frescoes -> binary vectors -> real numbers and vice-versa 

generates errors.
Within the framework of mobile robots navigation, six methods for salient frescoes selection 
were described and tested. Of the six, the Levenshtein distance and cross-correlation 
defined for strings approaches produced the most accurate results and had some benefits in 
interpreting the score in meaningful ways (see Table 5). The good results given by these 
approaches could be explained based on theirs ability in dealing with frescoes perspective 
modification. 

 R B H L C N Score 
R - 1(23) 0 1(22) 1(25) 2(3,8) 5 
B 1(23) - 2(9,13) 2(9,11) 2(9,11) 1(13) 8 
H 0 2(9,13) - 3(9,15,17) 4(9,15,17,18) 3(13,15,17) 12 
L 1(22) 2(9,11) 3(9,15,17) - 5(9,11,15,17,19) 3(7,15,17) 14 
C 1(25) 2(9,11) 4(9,15,17,18) 5(9,11,15,17,19) - 2(15,17) 14 
N 2(3,8) 1(13) 3(13,15,17) 3(7,15,17) 2(15,17) - 11 
Table 5. Common selected frescoes. Based on these common frescoes a score for each 
method is computed. 

Legend: R-Resemblance, B-Barycentre, H-Hamming, L-Levenshtein, C-Cross-correlation, N-
Neural Network. 
One application field is service robotics (e.g., supplying help to old or handicapped 
persons.). It can be easily foreseen that the robot will have to make return journeys in the 
user’s flat. The problem is then fourfold: i) the journey must be described using a human-
like language, ii) series of frescoes are inferred from the route description, iii) navigation 
uses these series to lead the robot to the target point, iv) the robot has to return to its starting 
point and must retrieve its route using only the pertinent frescoes recorded when on the 
way on? 
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Point 1 was studied in (Saïdi, 2006). From a high-level route description, the robot’s journey is 
built. The problem was extended to a group of robots. To solve point 4, selected frescoes 
describing the way on are stored in robot’s memory (LIFO). After having been processed its 
task, the robot has to return on a route that is not exactly the same than the way on. Therefore, 
the current fresco does not correspond exactly to the stored frescoes (the 180° rotation is, 
obviously, taken into account): the fresco and one situated on the top of the LIFO do not 
correspond. A first method consists in shifting left or right the current fresco to better fit to one 
of the stored frescoes (Pradel, 2000). Another method consisting in gathering landmarks into 
representative sets (alcove, cupboard ...) and using all possible transformations of the current 
fresco is too time consuming. On the contrary, a method grounded on the study of the 
evolution of very small groups of landmarks is more promising, simple and low resource 
consuming. On the other hand, with this method, the robot must anticipate the future 
environments. This anticipation, even if it needs a complete description of all transforms of a 
fresco, is simpler when the fresco is split into small groups of landmarks. Anticipating frescoes 
from the current one and comparing them with the stored frescoes seems to be a promising 
method that will allow the robot to choose the right return way. First results show that the 
robot is able to return to its starting point in various environments. Nevertheless, the method 
must be validated in complex and changing environments. 
Present and future works focus on points 2, 3. Another perspective is to use a single vision 
sensor (CCD camera) instead of the laser range finder, extracting distances from images to 
build a structure similar to frescoes. 
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In order to reduce the computation time, these empty spaces might be ignored. We 
called the result fast Levenshtein distance, fLD, which produce, in terms of selected 
frescoes, the same results as LD, but in a significantly shorter time. Almost the same 
results as LD are given by the cross-correlation principle. Due to alignment underling 
principle of these methods, the perspective modification of landmarks in a fresco is not 
seen as a fundamental change. 
The SOFM-NN implemented has an input layer of 256 (64 symbols/fresco x 4 bits) neurons 
and 7 output neurons. Thus, the training is constituted of 25 binary vector having 256 
elements. The network has been trained for 5000 epochs. After the learning phase, the seven 
weight vector corresponding to the output neurons should represent the essential frescoes 
selected from the input set. 
Using a SOFM neural network for salient frescoes selection turns out to be improper. 
Among possible explanations are: 

• The reduced size of training elements; The 25 considered set of frescoes are not 
enough to form appropriate prototype vectors. Thus, prototype vectors are not 
entire identically with some of the 25 training frescoes. 

• There is no sufficiently redundancy in the 25 frescoes selected. 
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generates errors.
Within the framework of mobile robots navigation, six methods for salient frescoes selection 
were described and tested. Of the six, the Levenshtein distance and cross-correlation 
defined for strings approaches produced the most accurate results and had some benefits in 
interpreting the score in meaningful ways (see Table 5). The good results given by these 
approaches could be explained based on theirs ability in dealing with frescoes perspective 
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Present and future works focus on points 2, 3. Another perspective is to use a single vision 
sensor (CCD camera) instead of the laser range finder, extracting distances from images to 
build a structure similar to frescoes. 
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1. Introduction
Intelligent and autonomous mobile robots are required to wander around and explore their 
environment without colliding with any obstacles (stationary or moving) for the purpose to 
fulfill its mission by executing successfully an assigned task, and to survive by affording the 
possibility of finding energy sources and avoid dangerous hazards. To efficiently carry out 
complex missions, autonomous robots need to learn and maintain a model of their 
environment. The acquired knowledge through learning process is used to build an internal 
representation. Knowledge differs from information in that it is structured in long-term 
memory and it is the outcome of learning. In order to enable an autonomous mobile robot to 
navigate in unknown or changing environment and to update in real-time the existing 
knowledge of robot’s surroundings, it is important to have an adaptable representation of 
such knowledge and maintain a dynamic model of its environment. Navigation in unknown 
or partially unknown environments remains one of the biggest challenges in today's 
autonomous mobile robots. Mobile robot dynamic navigation, perception, modeling, 
localization, and mapping robot’s environment have been central research topics in the field 
of developing robust and reliable navigation approach for autonomous mobile robots. To 
efficiently carry out complex missions in indoor environments, autonomous mobile robots 
must be able to acquire and maintain models of their environments. Robotic mapping 
addresses the problem of acquiring spatial models of physical environments through mobile 
robots and it is generally regarded as one of the most important problems in the pursuit of 
building truly autonomous mobile robots. Acquiring and mapping unstructured, dynamic, 
or large-scale environments remains largely an open research problem. (Habib & Yuta, 1988; 
Kuipers & Byun, 1991; Thrun & Bucken, 1996; Murphy, 2000; Thrun, 2002). There are many 
factors imposing practical limitations on a robot’s ability to learn and use accurate models. 
The availability of efficient mapping systems to produce accurate representations of initially 
unknown environments is undoubtedly one of the main requirements for autonomous 
mobile robots. 
A key component of this task is the robot’s ability to ascertain its location in the partially 
explored map or to determine that it has entered new territory. Accurate localization is a 
prerequisite for building a good map, and having an accurate map is essential for good 
localization (Se et al., 2002; Choset, 2001). All robots, which do not use pre-placed landmarks 
or GPS must employ a localization algorithm while mapping an unknown space. Therefore, 
accurate simultaneous localization and mapping (SLAM) represents a critical factor for 
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localization (Se et al., 2002; Choset, 2001). All robots, which do not use pre-placed landmarks 
or GPS must employ a localization algorithm while mapping an unknown space. Therefore, 
accurate simultaneous localization and mapping (SLAM) represents a critical factor for 
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successful mobile robot dynamic navigation in a large and complex environment because it 
enables the robot to function autonomously, intelligently, purposefully, and robustly. The 
term SLAM was first coined to describe a technique used by robots and autonomous 
vehicles to build up a map within unknown environment while at the same time keeping 
track of its current position. This technique has attracted immense attention in the mobile 
robotics literature and has been applied successfully by many researchers (Se et al., 2002; 
Choset & Nagatani, 2001). SLAM has not yet been fully perfected, but it is starting to be 
employed in unmanned aerial vehicles, autonomous underwater vehicles, planetary rovers, 
and newly emerging domestic robots. All the numerous methods proposed in literature are 
based on some sort of incremental integration: a newly acquired partial map is integrated 
with the old maps. To integrate the partial map obtained at each sensing step into the global 
map of the environment, the localization of the robot is fundamental. To perform 
localization, it needs to estimate both robot’s pose and obstacles positions are needed. 
Map building in an unknown dynamic environment has been under study for a long time 
and many different approaches have been developed and evaluated (Borenstien & Koren, 
1991a; Thrun & Bucken, 1996; Singhal, 1997; Borenstien & Ulrich, 1998; Murphy, 2000; Ellore, 
2002). Other important issues related to navigation of an autonomous mobile robot are, 
dealing with moving obstacles/objects, and fusing sensory information from multiple 
heterogeneous sensors. These issues usually cannot be resolved through the use of 
conventional navigation techniques.  
During real time simultaneous map building and localization, the robot is incrementally 
conducting distance measurements. At any iteration of map building the measured distance 
and direction traveled will have a slight inaccuracy, and then any features being added to 
the map will contain corresponding errors. If unchecked, these positional errors build 
cumulatively, grossly distorting the map and therefore affect the robot's ability to know its 
precise location. One of the greatest difficulties of map building arises from the nature of the 
inaccuracies and uncertainties in terms of noise in sensor measurements, which often lead to 
inaccurate maps. If the noise in different measurements is statistically independent, a robot 
can simply take multiple measurements to cancel out the effects of the noise. But, the 
measurement errors are statistically dependent due to odometry errors that accumulate over 
time and affect the way that future sensor measurements are interpreted. Small odometry 
errors can have large effects on later position estimates. There are various techniques to 
compensate for this, such as recognizing features that the robot has come across previously 
and re-skewing recent parts of the map to make sure the two instances of that feature 
become one. For the last decade, the field of robot mapping has been dominated by 
probabilistic techniques for simultaneously solving the mapping problem and the induced 
problem of localizing the robot relative to its growing map and accordingly different 
approaches have been evolved. The first category includes approaches that employ Kalman 
filter to estimate the map and the robot location (Lu & Milios, 1997; Castellanos & Tardos, 
1999; Thrun, 2002). Another approach is based on Dempster’s expectation maximization 
algorithm (Thrun, 2001; Thrun, 2002). This category specifically addresses the 
correspondence problem in mapping, which is the problem of determining whether sensor 
measurement recorded at different points in time correspond to the same physical entity in 
the real world. The Extended Kalman Filter (EKF) has been the de facto approach to the 
SLAM problem. However, the EKF has two serious deficiencies that prevent it from being 
applied to large, real-world environments: quadratic complexity and sensitivity to failures 
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in data association. An alternative approach called Fast-SLAM is based on the Rao-
Blackwellized Particle Filter, and can scale logarithmically with the number of landmarks in 
the map (Montemerlo & Thrun, 2003). The other category of approaches seeks to identify 
objects and landmarks in the environment, which may correspond to ceilings, walls, doors, 
furniture and other objects that move. For the last two decades, there has been made 
tremendous progress in the development of efficient and highly accurate map building 
techniques. Most of these techniques focus either on capturing the metric layout of an 
environment with high accuracy (Moravec & Elfes, 1985; Moravec, 1988; Elfes, 1989a; Elfes, 
1989b; Borenstien & Koren, 1991a and b; Borenstien & Koren, 1998; Ribo & Pinz, 2001; Ellore, 
2002), or on representing the topological structure of an environment (Habib & Yuta, 1988; 
Kuipers & Byun, 1991; Habib & Yuta, 1993;  Choset & Nagatani, 2001). 
To acquire a map and achieve efficient simultaneous localization, robots must possess 
sensors that enable them to perceive the outside world. There are different types of sensor 
modalities commonly brought to bear for this task such as ultrasonic, laser range finders, 
radar, compasses, vision, infrared, tactile sensors, etc. However, while most robot sensors 
are subjected to strict range limitations, all these sensors are subject to errors, often referred 
to as measurement noise. Laser scanning system is active, accurate but slow. Vision systems 
are passive and of high resolution but it demands high computation Ultrasonic range 
finders are common in mobile robot navigation due to their simplicity of operation, high 
working speed and cheap but usually they are very crude. These sensors provide relative 
distances between them and surrounding obstacles/objects located within their radiation 
cone. However, these devices are prone to several measuring errors due to various 
phenomena, such as, multiple reflections, wide radiation cone, and low angular resolution. 
Robot motion is also subject to errors, and the controls alone are therefore insufficient to 
determine a robot’s pose relative to its environment. Hence, one of the main problems in 
SLAM is coming from the uncertainty in the estimated robot pose. This uncertainty creates 
correlation between the robot pose and the estimated map. Maintaining such a correlation 
increases computational complexity. This characteristic of SLAM makes the algorithm hard 
to apply to estimate very dense maps due to the computational burden. 
The objectives of this chapter are to discuss and understand the importance, the complexity, 
and the challenges of mapping robot’s unknown, unstructured and dynamic environment, 
besides the role of sensors and the problems inherited in map building. These issues remain 
largely an open research problem facing the development of dynamic navigation systems 
for mobile robots. In addition, the chapter aims to discuss the available techniques and 
approaches of mainly indoor map building supporting the navigation of mobile robots. 
Furthermore, it introduces an autonomous map building and maintenance method with 
focus on developing an incremental approach that is suitable for real-time obstacle detection 
and avoidance. The robot maps its environment incrementally while wandering in it and 
staying away from all obstacles. In this case, the navigation of mobile robots can be treated 
as a problem of tracking geometric features that occur naturally in the environment of the 
robot. The implementation of the developed technique uses the concept of occupancy grids 
and a modified Histogrammic In-Motion Mapping (HIMM) algorithm to build and maintain 
the environment of the robot by enabling the robot to recognize and track the elements of 
the occupancy grid in real-time. In parallel to this, the incrementally built and maintained 
map has been integrated directly to support navigation and obstacle avoidance. To ensure 
real-time operation with limited resources, as well as to promote extensibility, these 
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successful mobile robot dynamic navigation in a large and complex environment because it 
enables the robot to function autonomously, intelligently, purposefully, and robustly. The 
term SLAM was first coined to describe a technique used by robots and autonomous 
vehicles to build up a map within unknown environment while at the same time keeping 
track of its current position. This technique has attracted immense attention in the mobile 
robotics literature and has been applied successfully by many researchers (Se et al., 2002; 
Choset & Nagatani, 2001). SLAM has not yet been fully perfected, but it is starting to be 
employed in unmanned aerial vehicles, autonomous underwater vehicles, planetary rovers, 
and newly emerging domestic robots. All the numerous methods proposed in literature are 
based on some sort of incremental integration: a newly acquired partial map is integrated 
with the old maps. To integrate the partial map obtained at each sensing step into the global 
map of the environment, the localization of the robot is fundamental. To perform 
localization, it needs to estimate both robot’s pose and obstacles positions are needed. 
Map building in an unknown dynamic environment has been under study for a long time 
and many different approaches have been developed and evaluated (Borenstien & Koren, 
1991a; Thrun & Bucken, 1996; Singhal, 1997; Borenstien & Ulrich, 1998; Murphy, 2000; Ellore, 
2002). Other important issues related to navigation of an autonomous mobile robot are, 
dealing with moving obstacles/objects, and fusing sensory information from multiple 
heterogeneous sensors. These issues usually cannot be resolved through the use of 
conventional navigation techniques.  
During real time simultaneous map building and localization, the robot is incrementally 
conducting distance measurements. At any iteration of map building the measured distance 
and direction traveled will have a slight inaccuracy, and then any features being added to 
the map will contain corresponding errors. If unchecked, these positional errors build 
cumulatively, grossly distorting the map and therefore affect the robot's ability to know its 
precise location. One of the greatest difficulties of map building arises from the nature of the 
inaccuracies and uncertainties in terms of noise in sensor measurements, which often lead to 
inaccurate maps. If the noise in different measurements is statistically independent, a robot 
can simply take multiple measurements to cancel out the effects of the noise. But, the 
measurement errors are statistically dependent due to odometry errors that accumulate over 
time and affect the way that future sensor measurements are interpreted. Small odometry 
errors can have large effects on later position estimates. There are various techniques to 
compensate for this, such as recognizing features that the robot has come across previously 
and re-skewing recent parts of the map to make sure the two instances of that feature 
become one. For the last decade, the field of robot mapping has been dominated by 
probabilistic techniques for simultaneously solving the mapping problem and the induced 
problem of localizing the robot relative to its growing map and accordingly different 
approaches have been evolved. The first category includes approaches that employ Kalman 
filter to estimate the map and the robot location (Lu & Milios, 1997; Castellanos & Tardos, 
1999; Thrun, 2002). Another approach is based on Dempster’s expectation maximization 
algorithm (Thrun, 2001; Thrun, 2002). This category specifically addresses the 
correspondence problem in mapping, which is the problem of determining whether sensor 
measurement recorded at different points in time correspond to the same physical entity in 
the real world. The Extended Kalman Filter (EKF) has been the de facto approach to the 
SLAM problem. However, the EKF has two serious deficiencies that prevent it from being 
applied to large, real-world environments: quadratic complexity and sensitivity to failures 
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in data association. An alternative approach called Fast-SLAM is based on the Rao-
Blackwellized Particle Filter, and can scale logarithmically with the number of landmarks in 
the map (Montemerlo & Thrun, 2003). The other category of approaches seeks to identify 
objects and landmarks in the environment, which may correspond to ceilings, walls, doors, 
furniture and other objects that move. For the last two decades, there has been made 
tremendous progress in the development of efficient and highly accurate map building 
techniques. Most of these techniques focus either on capturing the metric layout of an 
environment with high accuracy (Moravec & Elfes, 1985; Moravec, 1988; Elfes, 1989a; Elfes, 
1989b; Borenstien & Koren, 1991a and b; Borenstien & Koren, 1998; Ribo & Pinz, 2001; Ellore, 
2002), or on representing the topological structure of an environment (Habib & Yuta, 1988; 
Kuipers & Byun, 1991; Habib & Yuta, 1993;  Choset & Nagatani, 2001). 
To acquire a map and achieve efficient simultaneous localization, robots must possess 
sensors that enable them to perceive the outside world. There are different types of sensor 
modalities commonly brought to bear for this task such as ultrasonic, laser range finders, 
radar, compasses, vision, infrared, tactile sensors, etc. However, while most robot sensors 
are subjected to strict range limitations, all these sensors are subject to errors, often referred 
to as measurement noise. Laser scanning system is active, accurate but slow. Vision systems 
are passive and of high resolution but it demands high computation Ultrasonic range 
finders are common in mobile robot navigation due to their simplicity of operation, high 
working speed and cheap but usually they are very crude. These sensors provide relative 
distances between them and surrounding obstacles/objects located within their radiation 
cone. However, these devices are prone to several measuring errors due to various 
phenomena, such as, multiple reflections, wide radiation cone, and low angular resolution. 
Robot motion is also subject to errors, and the controls alone are therefore insufficient to 
determine a robot’s pose relative to its environment. Hence, one of the main problems in 
SLAM is coming from the uncertainty in the estimated robot pose. This uncertainty creates 
correlation between the robot pose and the estimated map. Maintaining such a correlation 
increases computational complexity. This characteristic of SLAM makes the algorithm hard 
to apply to estimate very dense maps due to the computational burden. 
The objectives of this chapter are to discuss and understand the importance, the complexity, 
and the challenges of mapping robot’s unknown, unstructured and dynamic environment, 
besides the role of sensors and the problems inherited in map building. These issues remain 
largely an open research problem facing the development of dynamic navigation systems 
for mobile robots. In addition, the chapter aims to discuss the available techniques and 
approaches of mainly indoor map building supporting the navigation of mobile robots. 
Furthermore, it introduces an autonomous map building and maintenance method with 
focus on developing an incremental approach that is suitable for real-time obstacle detection 
and avoidance. The robot maps its environment incrementally while wandering in it and 
staying away from all obstacles. In this case, the navigation of mobile robots can be treated 
as a problem of tracking geometric features that occur naturally in the environment of the 
robot. The implementation of the developed technique uses the concept of occupancy grids 
and a modified Histogrammic In-Motion Mapping (HIMM) algorithm to build and maintain 
the environment of the robot by enabling the robot to recognize and track the elements of 
the occupancy grid in real-time. In parallel to this, the incrementally built and maintained 
map has been integrated directly to support navigation and obstacle avoidance. To ensure 
real-time operation with limited resources, as well as to promote extensibility, these 
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modules were deployed in parallel and in distributed framework. Simulation based 
experiments has been conducted and illustrated to show the validity of the developed 
mapping and obstacle avoidance approach. 

2. Mapping Approaches and Autonomous Mobile Robots Navigation 
Mapping is the process of generating models of a mobile robot's environment based on sensory 
information with aim to determine the location of various entities, such as landmarks or obstacles. 
Most successful navigation algorithms require the availability of dynamic and adaptable maps. 
An accurate model of the environment surrounding a robot enables it to complete complex tasks 
quickly, reliably and successfully. Without such a model, a robot neither can plan a path to a 
place not currently sensed by its sensors nor may effectively search for an object or place. 
Map based navigation calls for three processes: map learning, localization, and path planning 
(Levitt & Lawton, 1990). These three processes may rely on three distinct sources of 
information available to a robot; the first source enables the robot to sense its own personal 
configurations and its relationship to the environment; the second is required to enable the 
robot to survive in the mission’s environment by detecting and avoiding obstacles along the 
desired trajectory toward its target; and the third is to recognize the associated requirements 
and features of the targeted mission and assure its successful execution. There are many ways 
to integrate these sources of information in a representation that is useful for robot navigation. 
The drawbacks and advantages of these sources of information are complementary. 
Localization is a critical issue in mobile robotics. If a robot does not know where it is, it cannot 
effectively plan movements, locate objects, or reach goals. Localization and map learning are 
interdependence processes, because using a map to localize a robot requires a fact that the map 
exists and building a map requires the position to be estimated relative to the partial map 
learned so far. Map building and learning is a crucial issue in autonomous mobile robot 
navigation, where robots must acquire appropriate models of their environment from their 
actual sensory perceptions while interacting with the real world. Generally, there are three 
main approaches to generate purposeful maps. Metric (geometric), topological or hybrid 
navigation schemes have been proposed and studied. Each one of these methods is optimal 
concerning some characteristics but can be very disappointing with respect to other 
requirements. These approaches present complementary strengths and weaknesses.
The mapping problem is generally regarded as one of the most important problems in the 
pursuit of building truly autonomous mobile robots. Despite significant progress in this area, 
it still poses great challenges (Thrun, 2002). Robust methods are available for mapping 
environments that are static, structured, and of limited size, whereas mapping unstructured, 
dynamic, or large-scale environments remains largely as an open research issue. Since the 
1990s, the field of robot mapping has been dominated by probabilistic techniques because of 
its ability to deal successfully with the inherent uncertainties associated with robot 
perception that would otherwise make map-building a very hard process. Some algorithms 
are building the map incrementally to suit real-time needs, whereas others require multiple 
passes through the data. Some algorithms require exact pose information to build a map, 
whereas others can do so by using odometry measurements. Dynamic environment with 
dynamic objects, and imperfect sensors and actuators can lead to serious errors in the 
resulting map. The problem of learning maps in unknown and dynamic environment has 
been studied by many researchers. Some of these efforts include tracking dynamic objects 
while filtering out the measurements reflected by those objects (Hahnel et al. 2002; Wang & 
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Thorpe 2002). The approach developed by Hahnel et al, interleaves mapping and 
localization with a probabilistic technique to identify spurious measurements. Such 
approaches have been demonstrated some robustness compared to traditional approaches, 
but they results in producing maps that describe the static aspects of the environment. 
Enhanced sensor models combined with the EM algorithm have been used to filter out 
arbitrary dynamic objects to improve the scan registration and lead to more accurate maps 
(Hahnel et al., 2003). Another approach deals with mapping dynamic environments by 
explicitly modelling the low-dynamic or quasi-static states, and this was achieved by 
dividing the entire map of the environment into several sub-maps and learns the typical 
configurations of the corresponding part of the environment by clustering local grid maps 
for each of the sub-maps (Stachniss & Burgard, 2005). Similar work was developed aims to 
learn models of non-stationary objects from proximity data by applying a hierarchical EM 
algorithm based on occupancy grids recorded at different points in time. A robotic mapping 
method based on locally consistent 3D laser range scans has been developed (Nüchter et al. 
2006). In this method, scan matching is combined with a heuristic for closed loop detection 
and a global relaxation method, results in a 6D concurrent localization and mapping on 
natural surfaces. In recent years, a few researchers have discussed the possibility of 
decoupling the mapping and localization processes in SLAM in order to gain computational 
efficiency. Since the observations made by a robot are about the relative locations between 
the robot and features, a natural way to decouple mapping and localization is to extract 
information about the relative locations among the features and then construct a relative 
map using this part of information. Martinelli et al (2004) made use of relative maps where 
the map state only contains distances between features that are invariants under shift and 
rotation. But, this approach has redundant elements in the state vector of the relative map 
while a significant increase in computational complexity of the SLAM algorithm results due 
to constraints applied to avoid the generation of an inconsistent map.Furthermore, issues of 
how to extract the information about the relative map from the original observations has has 
not been been addressed yet properly. Some of these issues have been tackled by 
developing a decoupled SLAM algorithm (D-SLAM) based on a new formulation of 2-D 
relative map with no redundant elements (Wang et al., 2005). The Extended Kalman Filter 
(EKF) has served as the primary approach to SLAM for the last fifteen years. However, EKF-
based SLAM algorithms suffer from two well known shortcomings that complicate their 
application to large, real world environments. These two problems are the quadratic 
complexity, and the sensitivity to failures in data association. The EKF has become widely 
known in terms of the growth of complexity due to the update step that requires 
computation time proportional to the square of the number of landmarks. This obviously 
becomes difficult to deal with in large environments. To address these issues, FastSLAM 
family of algorithms that applies particle filters to the SLAM problem have been developed 
to provide new insights into the data association problem. In the original form of FastSLAM, 
each particle may have different number of features and maintains these features in its local 
map. Multiple readings can be incorporated per time step by processing each observation 
sequentially to increase the accuracy of data association. The weight for each particle is 
equal to the product of the weights due to each observation considered alone (Montemerlo 
& Thrun, 2003). Modification, extensions and analysis has been made to the original 
FastSLAM approach, and the recent analysis shows that it degenerates with time, regardless 
of the number of particles used or the density of landmarks within the environment, and 
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modules were deployed in parallel and in distributed framework. Simulation based 
experiments has been conducted and illustrated to show the validity of the developed 
mapping and obstacle avoidance approach. 

2. Mapping Approaches and Autonomous Mobile Robots Navigation 
Mapping is the process of generating models of a mobile robot's environment based on sensory 
information with aim to determine the location of various entities, such as landmarks or obstacles. 
Most successful navigation algorithms require the availability of dynamic and adaptable maps. 
An accurate model of the environment surrounding a robot enables it to complete complex tasks 
quickly, reliably and successfully. Without such a model, a robot neither can plan a path to a 
place not currently sensed by its sensors nor may effectively search for an object or place. 
Map based navigation calls for three processes: map learning, localization, and path planning 
(Levitt & Lawton, 1990). These three processes may rely on three distinct sources of 
information available to a robot; the first source enables the robot to sense its own personal 
configurations and its relationship to the environment; the second is required to enable the 
robot to survive in the mission’s environment by detecting and avoiding obstacles along the 
desired trajectory toward its target; and the third is to recognize the associated requirements 
and features of the targeted mission and assure its successful execution. There are many ways 
to integrate these sources of information in a representation that is useful for robot navigation. 
The drawbacks and advantages of these sources of information are complementary. 
Localization is a critical issue in mobile robotics. If a robot does not know where it is, it cannot 
effectively plan movements, locate objects, or reach goals. Localization and map learning are 
interdependence processes, because using a map to localize a robot requires a fact that the map 
exists and building a map requires the position to be estimated relative to the partial map 
learned so far. Map building and learning is a crucial issue in autonomous mobile robot 
navigation, where robots must acquire appropriate models of their environment from their 
actual sensory perceptions while interacting with the real world. Generally, there are three 
main approaches to generate purposeful maps. Metric (geometric), topological or hybrid 
navigation schemes have been proposed and studied. Each one of these methods is optimal 
concerning some characteristics but can be very disappointing with respect to other 
requirements. These approaches present complementary strengths and weaknesses.
The mapping problem is generally regarded as one of the most important problems in the 
pursuit of building truly autonomous mobile robots. Despite significant progress in this area, 
it still poses great challenges (Thrun, 2002). Robust methods are available for mapping 
environments that are static, structured, and of limited size, whereas mapping unstructured, 
dynamic, or large-scale environments remains largely as an open research issue. Since the 
1990s, the field of robot mapping has been dominated by probabilistic techniques because of 
its ability to deal successfully with the inherent uncertainties associated with robot 
perception that would otherwise make map-building a very hard process. Some algorithms 
are building the map incrementally to suit real-time needs, whereas others require multiple 
passes through the data. Some algorithms require exact pose information to build a map, 
whereas others can do so by using odometry measurements. Dynamic environment with 
dynamic objects, and imperfect sensors and actuators can lead to serious errors in the 
resulting map. The problem of learning maps in unknown and dynamic environment has 
been studied by many researchers. Some of these efforts include tracking dynamic objects 
while filtering out the measurements reflected by those objects (Hahnel et al. 2002; Wang & 
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Thorpe 2002). The approach developed by Hahnel et al, interleaves mapping and 
localization with a probabilistic technique to identify spurious measurements. Such 
approaches have been demonstrated some robustness compared to traditional approaches, 
but they results in producing maps that describe the static aspects of the environment. 
Enhanced sensor models combined with the EM algorithm have been used to filter out 
arbitrary dynamic objects to improve the scan registration and lead to more accurate maps 
(Hahnel et al., 2003). Another approach deals with mapping dynamic environments by 
explicitly modelling the low-dynamic or quasi-static states, and this was achieved by 
dividing the entire map of the environment into several sub-maps and learns the typical 
configurations of the corresponding part of the environment by clustering local grid maps 
for each of the sub-maps (Stachniss & Burgard, 2005). Similar work was developed aims to 
learn models of non-stationary objects from proximity data by applying a hierarchical EM 
algorithm based on occupancy grids recorded at different points in time. A robotic mapping 
method based on locally consistent 3D laser range scans has been developed (Nüchter et al. 
2006). In this method, scan matching is combined with a heuristic for closed loop detection 
and a global relaxation method, results in a 6D concurrent localization and mapping on 
natural surfaces. In recent years, a few researchers have discussed the possibility of 
decoupling the mapping and localization processes in SLAM in order to gain computational 
efficiency. Since the observations made by a robot are about the relative locations between 
the robot and features, a natural way to decouple mapping and localization is to extract 
information about the relative locations among the features and then construct a relative 
map using this part of information. Martinelli et al (2004) made use of relative maps where 
the map state only contains distances between features that are invariants under shift and 
rotation. But, this approach has redundant elements in the state vector of the relative map 
while a significant increase in computational complexity of the SLAM algorithm results due 
to constraints applied to avoid the generation of an inconsistent map.Furthermore, issues of 
how to extract the information about the relative map from the original observations has has 
not been been addressed yet properly. Some of these issues have been tackled by 
developing a decoupled SLAM algorithm (D-SLAM) based on a new formulation of 2-D 
relative map with no redundant elements (Wang et al., 2005). The Extended Kalman Filter 
(EKF) has served as the primary approach to SLAM for the last fifteen years. However, EKF-
based SLAM algorithms suffer from two well known shortcomings that complicate their 
application to large, real world environments. These two problems are the quadratic 
complexity, and the sensitivity to failures in data association. The EKF has become widely 
known in terms of the growth of complexity due to the update step that requires 
computation time proportional to the square of the number of landmarks. This obviously 
becomes difficult to deal with in large environments. To address these issues, FastSLAM 
family of algorithms that applies particle filters to the SLAM problem have been developed 
to provide new insights into the data association problem. In the original form of FastSLAM, 
each particle may have different number of features and maintains these features in its local 
map. Multiple readings can be incorporated per time step by processing each observation 
sequentially to increase the accuracy of data association. The weight for each particle is 
equal to the product of the weights due to each observation considered alone (Montemerlo 
& Thrun, 2003). Modification, extensions and analysis has been made to the original 
FastSLAM approach, and the recent analysis shows that it degenerates with time, regardless 
of the number of particles used or the density of landmarks within the environment, and 
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will always produce optimistic estimates of uncertainty in the long-term. FastSLAM behaves 
like a non-optimal local search algorithm; in the short-term it may produce consistent 
uncertainty estimates but, in the long-term, it is unable to adequately explore the state-space 
to be a reasonable Bayesian estimator. However, the number of particles and landmarks 
does affect the accuracy of the estimated mean. Given sufficient particles FastSLAM can 
produce good non-stochastic estimates in practice (Bailey et al., 2006). FastSLAM has several 
practical advantages, particularly with regard to data association, and may work well in 
combination with other versions of stochastic SLAM, such as EKF-based SLAM. FastSLAM-
type algorithms have enabled robots to acquire maps of unprecedented size and accuracy, in 
a number of robot application domains and have been successfully applied in different 
dynamic environments, including the solution to the problem of people tracking (Nieto et al, 
2003; Montemerlo & Thrun, 2007). Since the complexity of the global map cannot be avoided, 
some researchers have proposed hierarchical division of the global map into sub-maps, 
within which the complexity can be bounded through the use of the generalized Voronoi 
graph (GVG). The GVG serves as a high-level topological map organizing a collection of 
feature-based maps at the lower level, and this leads to create a hierarchical approach to the 
simultaneous localization and mapping (Lisien et al, 2003). 

2.1 Types of map representation 

2.1.1 Metric maps 
The geometric approach to world representation attempts to capture the geometric 
properties, and build a detailed metrical description of robot’s environment from sensor 
data (Preciado et al., 1991; Durrant-Whyte, 1998; Thurn, 2001). This kind of representations 
has a reasonably well defined relation to the real world, but it is highly vulnerable to 
metrical inaccuracy in sensory devices and movement of actuators. 
The map quantitatively reproduces the metric spatial features of the environment in an accurate 
way. The occupancy grid framework represents a fundamental departure from conventional 
traditional geometric approaches and it uses a stochastic tessellated representation of spatial 
information maintaining probabilistic estimates of the occupancy state of each cell in a spatial 
lattice. An early representative of the grid based metric approach was Elfes and Moravec’s 
important occupancy grid mapping algorithm (Elfes, 1987; Moravec, 1988; Elfes, 1989a; Elfes, 
1989b). In this approach, the metric map represents the environment with a grid of fixed 
resolution. At a low level, a local map, such as a fine array of pixels can model the environment 
of the robot. The grids hold information of the observed environment and each cell of the grid 
represents some amount of space in the real world. Sensors are used to detect obstacles and 
objects, and the acquired sensory data are used to determine the occupancy value of each grid 
space so that a map can be generated. Each grid cell estimates the occupancy probability of the 
corresponding region of the environment. Metric maps are easy to construct because grids 
reproduce explicitly the metrical structure of the environment. Besides, the geometry of the grid 
corresponds directly to that of the real environment, so that the robot position and orientation 
within its model can be determined by its position and orientation in the real world. However, 
any approaches using purely metric maps are vulnerable to inaccuracies in both map-making 
and dead-reckoning abilities of the robot. Even by taking into account all relationships between 
features and the robot itself, in large environments the drift in the odometry causes big troubles 
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for map maintenance and makes the global consistency of the map difficult to maintain. 
Landmark-based approaches, which rely on the topology of the environment, can better handle 
this problem, because they only have to maintain topological global consistency, not the metric 
one. While grid-based methods produce accurate metric maps, their complexity often prohibits 
efficient planning and problem solving in large-scale indoor environments, and it can be very 
memory intensive as the world map grows. This is because the resolution of a grid must be fine 
enough to capture every important detail of the world (Kuipers & Byun, 1991; Engelson & 
McDermott, 1992; Borghi & Brugali, 1995; Thrun & Bucken, 1996). On the downside, it is slow, 
not expressive and also it is associated with local minima problem. The grid based metric 
approach has been used in a great number of robotic systems, such as (Borenstien & Koren, 
1991a and b; Burgard et al., 1999; Yamaguchi & Langley, 2000). Alternative metric mapping 
algorithms were proposed by many researchers aiming to describe the free space geometrically 
using natural landmarks, polyhedral shapes, prime rectangular area, and cones to formulate the 
geometrical features of the environments (Habib & Yuta, 1993; Chatila & Laumond, 1985; Habib 
& Yuta, 1990; Brooks, 1983). While metric maps have the advantage of its high resolution and of 
being well suited for robot navigation tasks, they are typically unstructured and contain no 
information about the different types of places or objects in the environment. Also, it suffers from 
their enormous space and time complexity.  

2.1.2 Topological maps 
Topology maps describe the connectivity of different places and it can be automatically 
extracted while building metric maps. They can also be enriched by path shape information, 
i.e. the geometrical relations between places to help planning and navigation (Fabrizi & 
Saffiotti, 2000; Engelson & McDermott, 1992).  
A topological map is a feature-based map that uses symbolic description. Such maps can be 
used to reduce the SLAM problem to a graph-matching problem at the topological scale. 
Hence, in office buildings with corridors and rooms, or roads, the topology of important 
locations and their connections can highly support the navigational requirements. The 
topological approach is a qualitative one, less sensitive to sensor errors, less complex and 
permits more efficient planning than metric maps. Topological maps can capture the 
structure of the free space in the environment in terms of basic topological notions of 
connectivity and adjacency as a list of significant places connected via arcs that are needed 
to plan a navigational strategy. At high level, a topological map serves as an example of 
symbols and connects between them. The symbols that are local maxima of the distance to 
nearby obstacles are nodes in a graph and correspond to perceptually distinct regions, 
places, landmarks or situations. While the connections between the symbols represent the 
graph edges/arcs that link the distinct places to indicate the spatial relations between them, 
i.e. a direct path exists between them. Arcs are usually annotated with information on how 
to navigate from one place to another. For an indoor building environment, junctions and 
termination points of corridors represent symbols while the corridors themselves are the 
connections (Habib & Yuta, 1988 ; Habib & Yuta, 1993). 
Distances are usually not considered and instead only relative positions are considered. The 
graph describing a topological map is good to be stored and communicated because it has the 
advantage of using a small amount of memory and the ability to record only parts of the 
environment that are of interest and necessary for navigation. Such models involve more 
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will always produce optimistic estimates of uncertainty in the long-term. FastSLAM behaves 
like a non-optimal local search algorithm; in the short-term it may produce consistent 
uncertainty estimates but, in the long-term, it is unable to adequately explore the state-space 
to be a reasonable Bayesian estimator. However, the number of particles and landmarks 
does affect the accuracy of the estimated mean. Given sufficient particles FastSLAM can 
produce good non-stochastic estimates in practice (Bailey et al., 2006). FastSLAM has several 
practical advantages, particularly with regard to data association, and may work well in 
combination with other versions of stochastic SLAM, such as EKF-based SLAM. FastSLAM-
type algorithms have enabled robots to acquire maps of unprecedented size and accuracy, in 
a number of robot application domains and have been successfully applied in different 
dynamic environments, including the solution to the problem of people tracking (Nieto et al, 
2003; Montemerlo & Thrun, 2007). Since the complexity of the global map cannot be avoided, 
some researchers have proposed hierarchical division of the global map into sub-maps, 
within which the complexity can be bounded through the use of the generalized Voronoi 
graph (GVG). The GVG serves as a high-level topological map organizing a collection of 
feature-based maps at the lower level, and this leads to create a hierarchical approach to the 
simultaneous localization and mapping (Lisien et al, 2003). 

2.1 Types of map representation 

2.1.1 Metric maps 
The geometric approach to world representation attempts to capture the geometric 
properties, and build a detailed metrical description of robot’s environment from sensor 
data (Preciado et al., 1991; Durrant-Whyte, 1998; Thurn, 2001). This kind of representations 
has a reasonably well defined relation to the real world, but it is highly vulnerable to 
metrical inaccuracy in sensory devices and movement of actuators. 
The map quantitatively reproduces the metric spatial features of the environment in an accurate 
way. The occupancy grid framework represents a fundamental departure from conventional 
traditional geometric approaches and it uses a stochastic tessellated representation of spatial 
information maintaining probabilistic estimates of the occupancy state of each cell in a spatial 
lattice. An early representative of the grid based metric approach was Elfes and Moravec’s 
important occupancy grid mapping algorithm (Elfes, 1987; Moravec, 1988; Elfes, 1989a; Elfes, 
1989b). In this approach, the metric map represents the environment with a grid of fixed 
resolution. At a low level, a local map, such as a fine array of pixels can model the environment 
of the robot. The grids hold information of the observed environment and each cell of the grid 
represents some amount of space in the real world. Sensors are used to detect obstacles and 
objects, and the acquired sensory data are used to determine the occupancy value of each grid 
space so that a map can be generated. Each grid cell estimates the occupancy probability of the 
corresponding region of the environment. Metric maps are easy to construct because grids 
reproduce explicitly the metrical structure of the environment. Besides, the geometry of the grid 
corresponds directly to that of the real environment, so that the robot position and orientation 
within its model can be determined by its position and orientation in the real world. However, 
any approaches using purely metric maps are vulnerable to inaccuracies in both map-making 
and dead-reckoning abilities of the robot. Even by taking into account all relationships between 
features and the robot itself, in large environments the drift in the odometry causes big troubles 
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for map maintenance and makes the global consistency of the map difficult to maintain. 
Landmark-based approaches, which rely on the topology of the environment, can better handle 
this problem, because they only have to maintain topological global consistency, not the metric 
one. While grid-based methods produce accurate metric maps, their complexity often prohibits 
efficient planning and problem solving in large-scale indoor environments, and it can be very 
memory intensive as the world map grows. This is because the resolution of a grid must be fine 
enough to capture every important detail of the world (Kuipers & Byun, 1991; Engelson & 
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compact representations. However, it relies heavily on the existence of recognizable landmarks 
(Kuipers & Byun, 1991; Engelson & McDermott, 1992; Borghi & Brugali, 1995). Since sensory 
input depends strongly on the viewpoint of the robot, topological approaches may fail to 
recognize geometrically nearby places. The resolution of topological maps corresponds directly 
to the complexity of the environment. The compactness of topological representations gives them 
three key advantages over grid-based approaches: they permit fast planning; they facilitate 
interfacing to symbolic planners and problem-solvers; and they provide natural interfaces for 
human instructions. Moreover, it is easier to generate and maintain global consistency for 
topological maps than for metric maps. Since topological approaches usually do not require the 
exact determination of the geometric position of the robot, they often recover better from drift 
and slippage that must constantly be monitored and compensated in grid-based approaches. 
However, these techniques often ignore valuable metric information and they still lack the ability 
to describe individual objects in an environment. In addition, coherent topological maps are 
often difficult to learn and maintain in large-scale environments. A fundamental problem in 
topological mapping is recognizing an already-visited place, i.e., closing the loop. With 
sufficiently rich sensory information and features abstraction, detecting unique sensing 
signatures that describe such places will easily solve this problem. Topology-based maps are 
fairly robust against sensor noise and small environmental changes, and have nice computational 
properties. Some examples of topological approaches are available in the following references 
(Habib & Yuta, 1988; Mataric, 1990; Kuipers & Byun, 1991; Engelson & McDermott, 1992; Habib 
& Yuta, 1993; Choset, 1996; Kuipers et al, 2004). 

2.1.3 Hybrid maps 
 The hybrid integration of both metric and topological paradigms is gaining popularity 
among researchers because it leads to maximizing their effectiveness by combining the best 
characteristics of both universes and can support to cover a large scale environment. For this, 
the overall environmental model embodies both a metric and a topological representation 
(Habib & Yuta, 1993). In a hybrid map, the environment is described by a global topological 
map, so that it facilitates planning and re-planning within the whole environment to enable 
the robot finding a suitable route to its currently stated target; on the contrary, local metric 
maps can be used by the robot for safe navigation toward a given target, and the robot 
needs further localization precision. The world can be represented as a graph, like a pure 
topological map. The nodes in this graph represent topological locations and each node can 
be a metric map. The traveling between nodes along the edges causes a switch from the 
topological to the metric paradigm. A global topological map connects the disconnected 
local metric maps, and allows the representation of a compact environment model, which 
does not require global metric consistency and permits both precision and robustness. The 
environment models allow the use of two different navigation methods with 
complementary characteristics. This gives the map precise detail where it is needed, while 
leaving out details that are not needed, and this can reduce memory size dramatically. 
Detectable metric features are needed to determine the transition point and to initialize the 
metric localization. The metric localization permits a very precise positioning at the goal 
point whereas the topological one guarantees robustness against getting lost due to the 
multimodal representation of robot’s location. The effectiveness of such integration for 
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navigation and localization has already been demonstrated in different work (Elfes, 1987; 
Habib & Yuta, 1993; Tomatis et al., 2001). 
In (Habib & Yuta 1988; Habib & Yuta 1993) the authors have developed and implemented a 
4-levels hierarchical topological map integrated with local metric maps. The 4-levels 
hierarchical topological map used to describe large indoor environment consists of a 
network of buildings connected through common corridors like passage ways. The four 
levels are  

a) Network of buildings with nodes at the center of each passage way between 
adjacent buildings,  

b) Network of corridors within each building. Each corridor has two nodes, one at 
each of its terminals. 

c) Rooms within each corridor. Each room is represented by a node at each entry 
point of the associated doors,  

d) The free space within a room is structured into prime rectangular areas (PRAs). The 
PRAs are intersecting with each other, and the header of each PRA is treated as a 
node.  

The geometric maps are generated and required for each corridor, and each PRA that are 
part of a generated path connecting the current robot location to a given target.  

2.1.4 Other classification of maps 
Another way to classify the available mapping algorithms is world-centric versus robot-
centric. World-centric maps are represented in a global coordinate space. The entities in the 
map do not carry information about the sensor measurements that led to their discovery. 
Robot-centric maps, in contrast, are described in measurement space. They describe the 
sensor measurements that a robot would receive at different locations (Thrun, 2002). Robot-
centric maps suffer two disadvantages. First, it is often difficult to infer or estimate by 
extending or projecting known information (extrapolate) of individual measurement to 
measurement at nearby, unexplored places, i.e., there is usually no obvious geometry in 
measurement space that would allow for such extrapolation.  Such extrapolation is typically 
straightforward in world-centric approaches.  Second, if different places look alike, robot-
centric approaches often face difficulties to disambiguate them, again due to the lack of an 
obvious geometry in measurement space. For these reasons, the dominant approaches to 
date generate world-centric maps. 

2.2 Sensors and problems inherited in map building 
Map building potentially provides a good framework for integrating information from many 
different sensors, of the same types or heterogeneous types that can perceive the surroundings 
from many different poses (position and orientation) into a single knowledge source. The use of 
heterogeneous sensors is essential because it compensates for many weaknesses inherent in 
various sensors used in map building. If the information from different sets of sensors is 
integrated into the same map, then they can be used to either confirm or dispute each other, 
resulting in a more robust and less error-prone model of the environment. One of the most 
prominent difficulties in mapping an environment is in knowing the exact position and 
orientation the robot was in when it received the sensor readings. If a wrong position is estimated, 
then the incorrect part of the map will be updated and this leads to large errors. Information 
regarding the distance the robot has traveled, and in which direction, is usually calculated by 
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exact determination of the geometric position of the robot, they often recover better from drift 
and slippage that must constantly be monitored and compensated in grid-based approaches. 
However, these techniques often ignore valuable metric information and they still lack the ability 
to describe individual objects in an environment. In addition, coherent topological maps are 
often difficult to learn and maintain in large-scale environments. A fundamental problem in 
topological mapping is recognizing an already-visited place, i.e., closing the loop. With 
sufficiently rich sensory information and features abstraction, detecting unique sensing 
signatures that describe such places will easily solve this problem. Topology-based maps are 
fairly robust against sensor noise and small environmental changes, and have nice computational 
properties. Some examples of topological approaches are available in the following references 
(Habib & Yuta, 1988; Mataric, 1990; Kuipers & Byun, 1991; Engelson & McDermott, 1992; Habib 
& Yuta, 1993; Choset, 1996; Kuipers et al, 2004). 

2.1.3 Hybrid maps 
 The hybrid integration of both metric and topological paradigms is gaining popularity 
among researchers because it leads to maximizing their effectiveness by combining the best 
characteristics of both universes and can support to cover a large scale environment. For this, 
the overall environmental model embodies both a metric and a topological representation 
(Habib & Yuta, 1993). In a hybrid map, the environment is described by a global topological 
map, so that it facilitates planning and re-planning within the whole environment to enable 
the robot finding a suitable route to its currently stated target; on the contrary, local metric 
maps can be used by the robot for safe navigation toward a given target, and the robot 
needs further localization precision. The world can be represented as a graph, like a pure 
topological map. The nodes in this graph represent topological locations and each node can 
be a metric map. The traveling between nodes along the edges causes a switch from the 
topological to the metric paradigm. A global topological map connects the disconnected 
local metric maps, and allows the representation of a compact environment model, which 
does not require global metric consistency and permits both precision and robustness. The 
environment models allow the use of two different navigation methods with 
complementary characteristics. This gives the map precise detail where it is needed, while 
leaving out details that are not needed, and this can reduce memory size dramatically. 
Detectable metric features are needed to determine the transition point and to initialize the 
metric localization. The metric localization permits a very precise positioning at the goal 
point whereas the topological one guarantees robustness against getting lost due to the 
multimodal representation of robot’s location. The effectiveness of such integration for 
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navigation and localization has already been demonstrated in different work (Elfes, 1987; 
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In (Habib & Yuta 1988; Habib & Yuta 1993) the authors have developed and implemented a 
4-levels hierarchical topological map integrated with local metric maps. The 4-levels 
hierarchical topological map used to describe large indoor environment consists of a 
network of buildings connected through common corridors like passage ways. The four 
levels are  

a) Network of buildings with nodes at the center of each passage way between 
adjacent buildings,  

b) Network of corridors within each building. Each corridor has two nodes, one at 
each of its terminals. 

c) Rooms within each corridor. Each room is represented by a node at each entry 
point of the associated doors,  

d) The free space within a room is structured into prime rectangular areas (PRAs). The 
PRAs are intersecting with each other, and the header of each PRA is treated as a 
node.  

The geometric maps are generated and required for each corridor, and each PRA that are 
part of a generated path connecting the current robot location to a given target.  

2.1.4 Other classification of maps 
Another way to classify the available mapping algorithms is world-centric versus robot-
centric. World-centric maps are represented in a global coordinate space. The entities in the 
map do not carry information about the sensor measurements that led to their discovery. 
Robot-centric maps, in contrast, are described in measurement space. They describe the 
sensor measurements that a robot would receive at different locations (Thrun, 2002). Robot-
centric maps suffer two disadvantages. First, it is often difficult to infer or estimate by 
extending or projecting known information (extrapolate) of individual measurement to 
measurement at nearby, unexplored places, i.e., there is usually no obvious geometry in 
measurement space that would allow for such extrapolation.  Such extrapolation is typically 
straightforward in world-centric approaches.  Second, if different places look alike, robot-
centric approaches often face difficulties to disambiguate them, again due to the lack of an 
obvious geometry in measurement space. For these reasons, the dominant approaches to 
date generate world-centric maps. 

2.2 Sensors and problems inherited in map building 
Map building potentially provides a good framework for integrating information from many 
different sensors, of the same types or heterogeneous types that can perceive the surroundings 
from many different poses (position and orientation) into a single knowledge source. The use of 
heterogeneous sensors is essential because it compensates for many weaknesses inherent in 
various sensors used in map building. If the information from different sets of sensors is 
integrated into the same map, then they can be used to either confirm or dispute each other, 
resulting in a more robust and less error-prone model of the environment. One of the most 
prominent difficulties in mapping an environment is in knowing the exact position and 
orientation the robot was in when it received the sensor readings. If a wrong position is estimated, 
then the incorrect part of the map will be updated and this leads to large errors. Information 
regarding the distance the robot has traveled, and in which direction, is usually calculated by 
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measuring the number of times each wheel has turned, i.e., from odometry. Unfortunately, 
occurrences of wheel slippage and angular drift can lead to the estimation of wrong robot position 
and orientation. It is therefore necessary to integrate other sensors with the robot, or recognizing 
certain situations with environmental features to help correct errors in pose estimation. This is 
called localization. Global localization is necessary when the robot has a previously generated map 
of its environment. When it is first turned on, it must be able to know where it is within that map 
in order to incorporate its new sensor readings into the correct area of that map. Position tracking 
is used to compensate for wheel slippage and angular drift. When performing map building with 
mobile robots, simultaneous localization and map building is usually performed in parallel with 
continuous corrected update of robot’s estimated pose. 
In general, the real world is: a harsh place that is not complete and with no consistent 
environmental knowledge, non-deterministic (interactions in dynamic and open 
environments can neither be formulated, nor designed, or analyzed fully using stationary or 
static models), dynamic (changes happen at the time of decisions are made, such as 
closing/opening motion of doors, movement of chairs and people, etc.), and it is continuous 
and not discrete. Accordingly, the robot should not only be capable of controlling their 
motion in response to sensor inputs, but it should capable of, 

a) reacting to unexpected events and accordingly change course if necessary by 
efficiently deciding the next action to be performed,  

b) learning from their experiences in different ways to improve their behavior and 
performance with time and when facing similar situation,  

c) considering multiple conflicting objectives simultaneously, and overcome errors in 
perceptions and actions. 

Primary difficulties arise when building maps of an environment, and such difficulties may 
include: 

a) Sensors are inaccurate, noisy, faulty, and with limited field of view, which means 
that decisions might be based on wrong information. Limitation is related to range, 
resolution, occlusion, etc. Accordingly, there is a need to efficiently interpret sensor 
readings into knowledge about the environment, while compensating for the 
considerable amount of inaccuracy in sensor readings. 

b) The more information is stored about an environment by increasing its 
dimensionality, the more use can be made of it, but also the more memory and 
computation time is required.  

c) The time available to decide what to do is limited, because the robot needs to 
respond quickly to environmental demand and has to operate at a pace dictated by 
its surroundings. Such limit to respond may be due to computation time or control 
paradigm 

d) A robot cannot assume correct and perfect execution of its actions due to 
imperfections of actuators and uncertainties in the environment, such as the 
accumulation of odometry errors over time. Accordingly, there is a need of a 
reliable approach to estimate the position and orientation of the robot. 

e) The dynamic and complex features of robot environments make it principally 
impossible to maintain exact models and to predict accurately.  

The problem is how to extract reliable evidence from unreliable sources of information. 
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3. Representation Requirements and Incremental Grid Map Building 
Any representation used for modeling physical attributes of an environment and any of the 
entities present in it, must possess certain qualities. It must be powerful enough to express 
all the entities that need to be represented. At the same time, it must be adaptive in those 
entities that affect the navigation strategy at any given state of the environment. Also, the 
characteristics of any representation must be able to quickly update its knowledge about the 
current state of the environment without heavy computation effort (Singhal, 1997).  
In order to effectively support the goal of acquiring autonomously a world model, the robot 
must exhibit several characteristics: able to manage a collection of different sensors; provide 
mechanisms to manage the uncertainty associated with sensory information; able to recover 
the uncertainty on its position, and able to provide exploration strategies in order to plan 
autonomously the sequence of actions that allow to execute an assigned task. 

3.1 Spatial information and occupancy grid 
The spatial information is represented by a metric map and it is based on occupancy grids. 
The occupancy grids, also known as evidence grids or certainty grids were pioneered by 
Moravec and Elfes (Moravec & Elfes, 1985; Elfes, 1987, Moravec, 1988; Elfes, 1989a; Elfes, 
1989b) and formulated in CMU (Martin & Moravec, 1996) as a way to construct an 
internal representation of static environments by evenly spaced grids based on ultrasonic 
range measurements. Occupancy grids provide a data structure that allows for fusion of 
sensor data.  It provides a representation of the world which is created with inputs from 
the sensors. Apart from being used directly for sensor fusion, there also exist interesting 
variations of evidence grids, such as place-centric grids (Youngblood et al., 2000), 
histogram grids (Koren & Borenstein, 1991) and response grids (Howard & Kitchen, 1996). 
The variations will not be studied in this chapter. Occupancy Grids is certainly the state of 
the art method in the field of grid based mapping. It is the most widely used robot 
mapping technique due to its simplicity and robustness and also because it is flexible 
enough to accommodate many kinds of spatial sensors with different modalities and 
combining different sensor scans. It also adapts well to dynamic environments. 
Occupancy grids have been implemented with laser range finders, stereo vision sensors 
(Moravec, 1996) and even with a combination of sonar, infrared sensors and sensory data 
obtained from stereo vision (Lanthier et al., 2004). 
In general, the occupancy grid technique divides the environment into two dimensional 
discrete grid cells as shown in Fig. 1.a. The occupancy grids map is considered as a discrete 
state stochastic process defined over a set of continuous spatial coordinates. Each grid cell is 
an element and represents an area of the environment.  The state variable associated with 
any grid cell Cij in the grid map yields the occupancy probability value of the corresponding 
region. Since the probabilities are identified based on the sensor data, they are purely 
conditional. Given a sensor data, each cell in the occupancy grid can be in two states s(Cij )=
Occupied or  s(Cij )= Empty, and to each cell there is probability P[s(Cij ) = Occupied]
attached,  which reflects the belief of the cell Cij being occupied by an object. Since 
 P[s(Cij ) = Empty] = 1 - P[s(Cij ) = Occupied] (1) 
Sensor readings supply uncertainty regions within which an obstacle is expected to be. 
The grid locations that fall within these regions of uncertainty have their values 
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measuring the number of times each wheel has turned, i.e., from odometry. Unfortunately, 
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certain situations with environmental features to help correct errors in pose estimation. This is 
called localization. Global localization is necessary when the robot has a previously generated map 
of its environment. When it is first turned on, it must be able to know where it is within that map 
in order to incorporate its new sensor readings into the correct area of that map. Position tracking 
is used to compensate for wheel slippage and angular drift. When performing map building with 
mobile robots, simultaneous localization and map building is usually performed in parallel with 
continuous corrected update of robot’s estimated pose. 
In general, the real world is: a harsh place that is not complete and with no consistent 
environmental knowledge, non-deterministic (interactions in dynamic and open 
environments can neither be formulated, nor designed, or analyzed fully using stationary or 
static models), dynamic (changes happen at the time of decisions are made, such as 
closing/opening motion of doors, movement of chairs and people, etc.), and it is continuous 
and not discrete. Accordingly, the robot should not only be capable of controlling their 
motion in response to sensor inputs, but it should capable of, 

a) reacting to unexpected events and accordingly change course if necessary by 
efficiently deciding the next action to be performed,  

b) learning from their experiences in different ways to improve their behavior and 
performance with time and when facing similar situation,  

c) considering multiple conflicting objectives simultaneously, and overcome errors in 
perceptions and actions. 

Primary difficulties arise when building maps of an environment, and such difficulties may 
include: 

a) Sensors are inaccurate, noisy, faulty, and with limited field of view, which means 
that decisions might be based on wrong information. Limitation is related to range, 
resolution, occlusion, etc. Accordingly, there is a need to efficiently interpret sensor 
readings into knowledge about the environment, while compensating for the 
considerable amount of inaccuracy in sensor readings. 

b) The more information is stored about an environment by increasing its 
dimensionality, the more use can be made of it, but also the more memory and 
computation time is required.  

c) The time available to decide what to do is limited, because the robot needs to 
respond quickly to environmental demand and has to operate at a pace dictated by 
its surroundings. Such limit to respond may be due to computation time or control 
paradigm 

d) A robot cannot assume correct and perfect execution of its actions due to 
imperfections of actuators and uncertainties in the environment, such as the 
accumulation of odometry errors over time. Accordingly, there is a need of a 
reliable approach to estimate the position and orientation of the robot. 

e) The dynamic and complex features of robot environments make it principally 
impossible to maintain exact models and to predict accurately.  

The problem is how to extract reliable evidence from unreliable sources of information. 
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all the entities that need to be represented. At the same time, it must be adaptive in those 
entities that affect the navigation strategy at any given state of the environment. Also, the 
characteristics of any representation must be able to quickly update its knowledge about the 
current state of the environment without heavy computation effort (Singhal, 1997).  
In order to effectively support the goal of acquiring autonomously a world model, the robot 
must exhibit several characteristics: able to manage a collection of different sensors; provide 
mechanisms to manage the uncertainty associated with sensory information; able to recover 
the uncertainty on its position, and able to provide exploration strategies in order to plan 
autonomously the sequence of actions that allow to execute an assigned task. 

3.1 Spatial information and occupancy grid 
The spatial information is represented by a metric map and it is based on occupancy grids. 
The occupancy grids, also known as evidence grids or certainty grids were pioneered by 
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1989b) and formulated in CMU (Martin & Moravec, 1996) as a way to construct an 
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range measurements. Occupancy grids provide a data structure that allows for fusion of 
sensor data.  It provides a representation of the world which is created with inputs from 
the sensors. Apart from being used directly for sensor fusion, there also exist interesting 
variations of evidence grids, such as place-centric grids (Youngblood et al., 2000), 
histogram grids (Koren & Borenstein, 1991) and response grids (Howard & Kitchen, 1996). 
The variations will not be studied in this chapter. Occupancy Grids is certainly the state of 
the art method in the field of grid based mapping. It is the most widely used robot 
mapping technique due to its simplicity and robustness and also because it is flexible 
enough to accommodate many kinds of spatial sensors with different modalities and 
combining different sensor scans. It also adapts well to dynamic environments. 
Occupancy grids have been implemented with laser range finders, stereo vision sensors 
(Moravec, 1996) and even with a combination of sonar, infrared sensors and sensory data 
obtained from stereo vision (Lanthier et al., 2004). 
In general, the occupancy grid technique divides the environment into two dimensional 
discrete grid cells as shown in Fig. 1.a. The occupancy grids map is considered as a discrete 
state stochastic process defined over a set of continuous spatial coordinates. Each grid cell is 
an element and represents an area of the environment.  The state variable associated with 
any grid cell Cij in the grid map yields the occupancy probability value of the corresponding 
region. Since the probabilities are identified based on the sensor data, they are purely 
conditional. Given a sensor data, each cell in the occupancy grid can be in two states s(Cij )=
Occupied or  s(Cij )= Empty, and to each cell there is probability P[s(Cij ) = Occupied]
attached,  which reflects the belief of the cell Cij being occupied by an object. Since 
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Sensor readings supply uncertainty regions within which an obstacle is expected to be. 
The grid locations that fall within these regions of uncertainty have their values 
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increased while locations in the sensing path between the robot and the obstacle have 
their probabilities decreased. 
For the purpose of this work, the histogram grid approach has been selected due to its 
simplicity, robustness and adaptability to dynamic environments. Like in certainty grid concept, 
each cell Cij in the histogram grid holds a certainty value, CVij, that represents the confidence of 
the algorithm in the existence Cij of an obstacle at the location pointed pout by i and j. 

3.2 Ultrasonic sensor and map building 
Map building methods depend strongly on the characteristics of the sensors that provide the raw 
data. In order to create a map using sensors, such as, ultrasonic range measurements, it is 
necessary to consider the following important steps (Thrun, 1998):  sensor interpretations, 
integration over time, pose estimation, global grid building, and exploration. The probabilistic 
representation approach yields a world model, called a certainty grid that is especially suited to 
the unified representation of data from different sensors such as ultrasonic, vision, and proximity 
sensors as well as the accommodation of inaccurate sensor data (Moravec, 1988). 
Ultrasonic sensors provide good range data but offer only poor directionality and associated 
with inaccuracy. A typical ultrasonic sensor returns a radial measure of the distance to the 
nearest object within its conical field of view (Polaroid, 1989), yet it does not specify the 
angular location of the object. The angle of the cone depends on the noise absorption of the 
material which causes the reflection. Typically, it lies between 10°to 30°.  
The robot used in this research is a cylindrical in shape (the robot is 20 cm in radius), 
equipped with multiple simulated ultrasonic sensors (24 Polaroid ultrasonic ranging 
modules that are equally spaced (15 degree apart), arranged and mounted on a horizontal 
ring around the robot circumferences at a height of 30 cm above the ground), and has 
been designed, modeled and simulated by the author as a test bed for this work (see Fig. 
1.b). Scanning with a horizontal ultrasonic ring does not require rotating parts and 
motors, and a view of 360º coverage can be acquired rapidly. However, due to the 
possibility of a significant crosstalk, all sensors cannot be fired at the same time. Hence, 
there is a need to design a firing sequence that can reduce crosstalk (6 groups, each group 
with 4 sensors, and the sensors of each group are triggered simultaneously), but this will 
inevitably increase the overall time needed to obtain all 24 sensors readings for full 360º 
coverage. Typical scan times range from 60 to 500 ms, for a full scan cycle (Crowley, 1989), 
and it is important to keep it as small as possible. Because of the wide beam angle, any 
individual range provides only indirect information about the location of the detected 
objects.  Hence, the constraints from individual readings were combined to reduce the 
uncertainty. 
The ultrasonic sensors were set up to detect an object within a range between 15 cm to 180 
cm with accuracy of ±1%, and the beam of acoustic energy spreads in a cone of 
approximately 30°. Therefore, the longest time for each sensor, i.e. each sensors group, to 
wait for its echo is bounded by the maximum measurable distance, i.e., R =180 cm, and this 
time equal to  t = 2*1.8/340 = 10.58 ms. A complete 360 scan should therefore take 6*10.58= 
63.48 ms. Accordingly, If the sensor returns a distance value between the specified 
minimum and maximum range (12  r < 180), then the returned distance measurement is 
proportional to the distance of nearest object located within the field of view of the sensor 
with small error along the arc perpendicular to the sensor acoustic axis. In this case, we have 
the range to the nearest point on the object but the sensor can’t recognize the angle between 
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the sensor axis and the nearest point on the object. An object may be detected at a certain 
instance by one or more sensors simultaneously. An object located near the acoustic axis is 
more likely to produce an echo than an object further away from the acoustic axis. Whether 
or not an echo is received as an indication to the presence of an object depends on the 
relative angles, the surface structure, object reflect-ability, and the distance to the object.  
Let’s now consider the regions in the general sonar model. We can recognize four zones 
within the operational view in front of the sensor. These zones are named as Z1, Z2, Z3 and 
Z4. The areas of the four areas are superimposed over a grid of cells as shown in Fig. 1.c. 
The zone, Z1, no reading returned from anything in this region and this indicates that cells 
within this zone must be free from objects. The zone, Z2 (the area occupied by the arc at the 
radial distance equal to the measured distance (r)), indicates, for a given sensor range 
reading, the cells in which the nearest point on the nearest object that cause the 
measurement distance (r) is likely to be found, i.e., a reflection from an object laying in this 
region. In zones Z3 and Z4, the area of these zones is undetected by the current sonar 
reading. Our interest in this work is focusing on the area of Z1 and mainly the cells along 
the acoustic axis for each ultrasonic sensor. Given that the beam is superimposed on an 
occupancy grid, the sonar model looks similar to Fig. 1.d. The elevation indicates a high 
probability of the grid element being occupied and the depression signifies a high 
probability of being empty. 
The sensor interpretation is the first phase that interprets sonar data for the purpose to perform the 
higher level mapping and navigation functions to support occupancy grid based navigation. The 
grids allow the efficient accumulation of small amounts of information from individual sensor 
readings for increasingly accurate maps of the robot's surroundings.  During this process, the 
incoming 24 sonar range scalar values are interpreted and converted to local occupancy values 
around the robot. It should be noted that the range readings of each sensor group are 
asynchronously communicated to the map building algorithm. Since different sonar 
measurements give different values for a grid cell because of noise/error and the change in 
sensor’s viewpoint, it is important to integrate the conditional probabilities of distinct moments. 
After the local grid is created around robot’s current location, its values have to be merged into the 
global grid. Beyond the coordinate transformation between the grids, there is a need for a global 
position where the local grid can be integrated. Robot position can be estimated using position 
estimation method like “odometry”, a continuous calculation of changes of the robot pose 
combined with correction of errors cumulated by sensor and motor noise (Moravec, 1988).  This 
method is basically a data structure to store data acquired from different sources and takes into 
account the uncertainty of sensory data by working with probabilities or certainty values. The 
resulting probabilistic spatial models obtained from these sensor models serve as maps of the 
robot's environment, and can be used directly for robot navigation tasks such as path planning 
and obstacle avoidance, position estimation, and also to incorporate the motion uncertainty into 
the mapping process. It provides a way of representing data to be later extracted as useful and 
informative maps that can be used directly in robotic planning and navigation (Moravec, 1988). 
The data structure for each point in the environment represents the probability that some object 
occupies the point. In principle, uncertainty grid store qualitative information about which areas 
of the robot’s surroundings are empty, and which areas are occupied by obstacles. Besides, no 
other characterization of the environment is of interest. 
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minimum and maximum range (12  r < 180), then the returned distance measurement is 
proportional to the distance of nearest object located within the field of view of the sensor 
with small error along the arc perpendicular to the sensor acoustic axis. In this case, we have 
the range to the nearest point on the object but the sensor can’t recognize the angle between 
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3.3 Building the grid map incrementally with robot in motion 
There are different uncertainty calculi techniques to build occupancy grids of an unknown 
environment using sensory information provided by a ring of ultrasonic range finders. These 
techniques are based on Bayesian theory, Dempster–Shafer theory of evidence, fuzzy set 
theory, and the histogrammic in-motion mapping (HIMM) method (Murphy, 2000; Ribo & 
Pinz, 2001; Borenstein & Koren, 1991). Each of these methods has its own approach in 
transforming sensor readings into the representation of uncertainty and the update rule for 
combining the uncertainty for a pair of observation. It has been recognized that Dempster-
Shafer method provides an accurate map compared to HIMM. However, the computational 
time required by HIMM method is significantly less than both Bayesian and Depmpster-
Shafer methods. The method introduced by (Moravec & Elfes, 1985; Elfes, 1989a; Elfes, 1989b) 
projects a heuristic probability function that assign CVs to all cells in zone 1 (see Fig. 1.c), and 
this makes it computationally intensive and would impose a heavy time-penalty in relation to 
real-time execution, and due to this the mobile robot should remain stationary while taking a 
full scan with its 24 ultrasonic sensors. The histogram grid differs from the certainty grid in the 
way it is built and updated.  
Let’s focus on the incremental grid based map building approach using ultrasonic range 
measurements. The map of robot’s environment has been constructed incrementally based 
on the histogrammic in-motion mapping approach as it is a good method for real-time map 
building with a mobile robot in motion, that is well suited to model inaccurate and noisy 
range sensor data and require minimum computational time. What makes it attractive is its 
capability to provide instantaneous environmental information that is ready to be used with 
integrated real-time obstacle avoidance. Each cell in the histogram grid holds a certainty 
value (CV) that represents the confidence in the existence of an obstacle at that location. 
Upon receiving a sonar range reading from each sensor within the available six sensor 
groups, the algorithm updates only the CVs of the cells that are directly a long the acoustic 
axis and within the sensor range reading. This approach results in a histogram probability 
distribution by continuously and rapidly sampling each sensor while the mobile robot is in 
motion. High certainty values are obtained in cells close to the actual location of the obstacle. 
For illustration the size of the environment has been considered as 10 meter 10 meter, and 
the size of each cell has been decided to be as 10 10 cm. Each cell has its own coordinate 
and contains a CV. The CVs are updated by a heuristic probabilistic function that is applied 
to each one of the 24 range readings and takes into account the characteristics of a given 
sensor.  The range of a CV has chosen arbitrary from 0 (the minimum CV of a cell) to 16 (the 
maximum CV of a cell) to represent the confidence in the existence of an obstacle. The 
CV=16 shows, any cell with this value represents high probability to be occupied by 
obstacle or object at that instance. While the CV=0 indicates that any cell with this value 
represents high probability to be empty. Sensor position is determined relative to robot 
reference frame. Sensor readings are mapped into CVs according to specific rules that 
produce high CVs for cells that correspond to obstacles, while it keeps low CVs for empty 
cells or for cells that were incremented due to misreading or moving objects.  
The update rule for any cell’s CV consists of the following steps: 

1. At the beginning, it starts by having the certainty values of all cells representing the 
environment assigned to zero, i.e., all cells are assigned to be free from obstacles.  

2. The robot starts at an unknown position and obtain measurements of the 
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environment relative to its momentary position.  
3. For each sensor group, sensor readings are communicated to the map building 

module. This information is used to build and maintain incrementally a map that 
can support navigation and localization.  

4. For each sensor range reading, the algorithm updates the CVs of the cells that are 
only located along the acoustic axis of the sensor and at the radial distance within 
the view of the sensor. The update rules are as follow: 

a) The certainty value (CV) of the cell on the acoustic axis and corresponds to the 
measured distance (r) is updated by adding 4 to it and the CV is bounded by its 
maximum value, i.e., only one cell is incremented for each range reading. A large 
increment makes the robot reacts to a single and possibly false readings, while a small 
increment would not build up timely CVs to support real-time avoidance maneuver.  

b) The CVs of other cells that lie along the acoustic axis and at a range less than the 
sensor range reading are decremented.  The CVs of the cells are decremented 
according to the following: 
I. If the range reading is, r < 60, then decrement the CVs of the cells that are at 

a distance less than the range reading by 1, i.e., CV -= 1. 
II. If the range reading is, 60  r < 120, then decrement the CVs of the cells that are 

within 60 cm distance along the acoustic axis by 2 and decrement the other 
cells that are with the distance between 60 cm and less than 120 cm by 1. 

III. If the range reading is, 120  r < 180, then decrement the CVs of the cells that 
are within 60 cm distance along the acoustic axis by 3, decrement the cells 
within the distance 60  r < 120, by 2, and the remaining cells within the 
distance between 120 cm and less than 180 cm by 1. 

c) When there is no echo reflecting back, i.e., no obstacle within the view of the 
sensor, i.e., the sensor reading is r = R. In this case, there is no need for any 
increment to the CV of the cell corresponds to the sensor range reading, and the 
decrement will follow the rule mentioned in 4.b.III.  

A histogram type probability distribution is obtained by continuous and rapid sampling of 
the sensors whiles the robot in motion (see Fig. 2.a and b for illustration). A global path-
planning and obstacle avoidance strategies can be employed iteratively as the map is 
incrementally updated. 

                                        
(a)An example of occupancy grid structure.         (b) The designed mobile robot as a test-bed    

for simulation         

Cij
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        The Ultrasonic Sensor 
(c) The classification of regions in the sonar model       (d) Visualization of the probabilities  
 distribution  
Fig. 1. The model of the used mobile robot and the regions in the sonar model 

          
(a) Example of a robot environment with  (b) Incrementally constructed the histogram  
a robot inside it.            grid-based map. 

Fig. 2 Example of a robot environment and a histogram grid-based map building. 

4. Dynamic Navigation Supporting Obstacle Avoidance 
Different obstacle avoidance techniques have been developed and available in the literature. 
Some of the relevant obstacle avoidance techniques are based on edge detection, potential 
field and certainty grids. The edge detection algorithm tries to determine the position of the 
vertical edges of a detected obstacle using ultrasonic sensors, in order to enable the robot to 
steer around the obstacle (Kuc & Barshan, 1989). A disadvantage of this method is the need 
for the robot to remain stationary while gathering sensor information about the obstacle. In 
addition, this method is very sensitive to sensor accuracy. As for the certainty grid for 
obstacle detection and avoidance, a method for probabilistic representation of obstacles in a 
certainty grid-type world model has been developed (Moravec & Elfes, 1985, Elfes, 1987; 
Moravec, 1988). This approach is especially suited to accommodate inaccurate sensor data 
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such as range measurements from ultrasonic sensors. With this approach too, the mobile 
robot has to remain stationary while it takes a panoramic scan with its 24 ultrasonic sensors. 
After updating the certainty value of the relevant grid cells, the robot moves to a new 
location, stops, and repeats the procedure. After having robot traverses its environment and 
having its map, a global path-planning method is then employed for off-line calculations of 
subsequent robot paths. The critical issue with this method is computational cost. In 
addition, there are widely used methods for obstacle avoidance that are based on the 
concept of potential field. The idea of imaginary forces acting on a robot has been suggested 
by (Khatib, 1983) in which obstacles exert repulsive forces while the target applies an 
attractive force to the robot, and  accordingly a resultant force vector comprising the sum of 
a target-directed attractive force and repulsive forces from obstacles, is calculated for a 
given robot position. With the resultant force vector acting as accelerating force on the robot, 
the robot's new position for a given time interval is calculated, and the algorithm is repeated. 
Krogh and Thorpe (Krogh & Thorpe, 1986) suggest a combined method for global and local 
path planning, which uses a generalized potential field approach. This method assumes a 
known and prescribed world model, in which simple, predefined geometric shapes 
represent obstacles and the robot's path is generated off-line.  
But, the need is to have a method that deals with real-time sensory information and allows 
for fast, continuous, and smooth motion of the controlled vehicle among unexpected 
obstacles, and does not require the vehicle to stop in front of obstacles. Obstacle avoidance 
methods must account for the sensors' shortcomings, such as (for the case of ultrasonic 
sensors) inaccuracies, crosstalk, and spurious readings. The adopted approach in this work 
used the extended vector field histogram with obstacle avoidance technique (Borenstien & 
Ulrich, 1998) that uses in real-time as input an intermediate data structure as a 2D histogram 
grid representing robot’s local environment that is based on occupancy grid concept. This 
approach was further developed for real time mobile robot obstacle avoidance to offer 
smoother robot trajectories and better reliability. 
This approach employs the following steps: 

1. The two-dimensional map grid is reduced to one-dimensional polar histogram that 
is constructed around the robot's momentary location. This includes: 
(a) Select a circular masking window of a certain diameter and attach it to the robot 
reference frame at the robot centre point. This window moves together with the 
robot. The area covered by this window at any time is called the active region. 
(b) Based on the current map information, the content of every cell covered by the 
circular masking window is represented by an obstacle vector with a direction 
described by the robot’s current position and the relevant cell position. The 
magnitude is proportional to the squared value of CV of that cell, and it is a function 
of the squared distance between that cell and the current position of the robot. 
Occupied cells produce larger vector magnitude when they are close to the robot. 
According to the adopted axes and angle convention (Fig. 3.b (upper)), the direction 
of the obstacle vector is )]()([ 00

1tan yyxx ji −−− and the final value is calculated 

using the signs of both arguments to determine the quadrant of the return value. 
00 , yx , represent the coordinates of the robot’s current position at its center point, 

and
ji yx , represents the coordinates of a cell

ijC within the circular mask window. 

Global coordinates is used to describe robot position. 
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such as range measurements from ultrasonic sensors. With this approach too, the mobile 
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robot. The area covered by this window at any time is called the active region. 
(b) Based on the current map information, the content of every cell covered by the 
circular masking window is represented by an obstacle vector with a direction 
described by the robot’s current position and the relevant cell position. The 
magnitude is proportional to the squared value of CV of that cell, and it is a function 
of the squared distance between that cell and the current position of the robot. 
Occupied cells produce larger vector magnitude when they are close to the robot. 
According to the adopted axes and angle convention (Fig. 3.b (upper)), the direction 
of the obstacle vector is )]()([ 00

1tan yyxx ji −−− and the final value is calculated 

using the signs of both arguments to determine the quadrant of the return value. 
00 , yx , represent the coordinates of the robot’s current position at its center point, 

and
ji yx , represents the coordinates of a cell

ijC within the circular mask window. 

Global coordinates is used to describe robot position. 
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(c) The circumference of the circular mask window is divided into m angular sectors. 
The resolution for each sector has been selected to be 5°, i.e., the total number of 
sectors is, 725360 ==n , Sn, n = 1, 2, .., 72 (See Fig. 3.c). It is possible to have a 
finer resolution for the sectors, but this will result in extra computation cost. 
Each sector is represented by a value that reflects the confidence in the existence 
of object/obstacle within it, and an obstacle density describes it. This value is 
calculated by summing up the obstacle vector magnitudes for all cells within 
each sector to yield the confidence value of the corresponding sector.  

(d) Map the confidence value of each sector by using its angular position ( n×5 )
onto the primary polar histogram.  

(e) Build the polar histogram around the current position of the robot using the 
adopted axes and angle convention, and it is independent of robot’s orientation. 

A polar histogram with robot’s width consideration is the output from this step. 
2. Using the results of the previous step to generate a binary polar histogram. This is 

performed by using a hysteresis technique based on two thresholds values, high and 
low, (these values are decided experimentally). The two threshold values help to 
build a binary polar histogram and help to identify sectors within the binary polar 
histogram that are free from objects or blocked, and if it is free, whether it has a wide 
or a narrow opening that allow the robot to pass through. In addition, the two 
threshold values help to smooth the desired trajectory and avoid oscillations in the 
steering command. The binary polar histogram is updated in real-time. 

3. Select the most appropriate candidate as new direction for the robot based on the 
generated binary polar histogram, the give target, and a cost function. This 
selection aims to enable the robot to achieve the desired target through 
simultaneous translation and rotation. 

The navigation system continuously reads sensory input and writing motor commands at 
regular intervals. The sensory input comprises the readings of the ultrasonic and odometry 
sensors. The motor commands govern information about the environment that is stored in 
the internal map. To navigate reliably, a mobile robot must know its pose (position and 
orientation) and this can be done by estimating robot’s pose relative to its environment. A 
kinematic model of the designed differential drive robot is used for simulation based 
experiments to track robot position and orientation. Other parameters can be considered to 
increase accuracy, such as wheel radius and slip angle. 
This approach has been combined with the mapping algorithm discussed in section 3, 
implemented and demonstrated. Figure 3.a shows an example of a selected robot 
environment with a target location framed by dark lines and the robot is shown in a 
dark spot, and figure 3.b shows a momentary situation faced by the robot within the 
selected environment. The primary polar histogram for this situation is shown in 
Figure 3.d. For the sectors represented by ‘A’ and ‘E’, the obstacle density is very small. 
For the sectors represented by ‘B’ and ‘F’, the obstacle density is high. The sectors 
covered by ‘D’ posse medium value of the obstacle density as the obstacle at ‘D’ has 
just been detected, and hence its CV is still small. Although sectors represented by ‘C’ 
is free of obstacles, it doesn’t have a small obstacle density value, and this is due to the 
poor angular resolution of the sonar which restricts the detection of small opening. 
Figure 3.e shows the binary polar histogram for the considered momentary situation. 
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orientation) and this can be done by estimating robot’s pose relative to its environment. A 
kinematic model of the designed differential drive robot is used for simulation based 
experiments to track robot position and orientation. Other parameters can be considered to 
increase accuracy, such as wheel radius and slip angle. 
This approach has been combined with the mapping algorithm discussed in section 3, 
implemented and demonstrated. Figure 3.a shows an example of a selected robot 
environment with a target location framed by dark lines and the robot is shown in a 
dark spot, and figure 3.b shows a momentary situation faced by the robot within the 
selected environment. The primary polar histogram for this situation is shown in 
Figure 3.d. For the sectors represented by ‘A’ and ‘E’, the obstacle density is very small. 
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(e) Binary polar histogram. 

Fig. 3. Obstacle avoidance example with highlight for a robot’s momentary location. 

5. Conclusion and Future Work 
This chapter presented the state of the art, the complexity, and the challenges facing 
simultaneous and real-time mapping, obstacle avoidance, and dynamic navigation for 
mobile robots. The development of an autonomous map building and maintenance method 
with focus on incremental map building technique that is suitable for real-time obstacle 
detection and avoidance has been presented. The chapter introduced a modified histogram 
grid based navigation techniques that is integrated with the concept of vector field 
histogram to support real-time obstacle avoidance in parallel with the incremental map 
building. Through the integrated implementation, the mobile robot was able to map the 
environment, avoid obstacles and move towards its target successfully.  The results are 
important for simultaneous localization and map building applications, and can facilitate 
the use of additional natural landmarks to improve the accuracy of the localization 
algorithm.  

5.1 Future work 

The future expansion can include the following: 
1. As the grid based mapping in general and the histogram grids require fixed-size 

environment, it is important to consider a technique that helps to deal with 
dynamic size of robot’s environment, i.e. building variable-sized maps without 
imposing size or shape constraints on the grid map. Dynamically expanding 
occupancy grids seek to remove dependency on an array for representing a 
histogram or occupancy grid. Dynamically expanding occupancy grids tackle the 
issues related to the efficient use of available memory and the requirements for real 
time searching and actions. Such techniques help to increase the size of map 
dynamically when new area is detected. 

2. Integrate heterogeneous sensor modules, such as ultrasonic range data and an 
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active stereo-vision system or other type of sensors. Due to the complementary 
error characteristics with respect to range and angular resolution, fusion of stereo-
vision data with ultrasonic range information improves mapping precision 
significantly. In addition, the vision can support the classification of dynamic and 
modeling of obstacles in 3D, 

3. Consider building 3D based grid map, 
4. It is essential to develop a powerful incremental integration between the geometric 

and topological mapping approaches supported by belief values.  This should have 
simultaneous support for localization, path planning and navigation, 

5. Multi-robot sharing map building. Merging accurately topological maps, or metric 
maps or hybrid maps created by different mobile robots. In addition, the key 
challenge here is, how representation (i.e., any form of world model and mapping) 
can be effectively distributed over the behavior structure? 

6. Due to the limitations associated with grid and topological based mapping, it is 
necessary to find new techniques to efficiently integrate both paradigms.  
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1. Introduction  
It has been proven that fuzzy controllers are capable of controlling non-linear systems 
where it is cumbersome to develop conventional controllers based on mathematical 
modeling. This chapter describes designing fuzzy controllers for an AC motor run 
mechanism. It also compares performance of two controllers designed based on Mamdani 
and Takagi-Sugeno with the conventional control scheme in a short track length, following a 
high disturbance. Fine and rapid control of AC motors have been a challenge and the main 
obstacle in gaining popularity in use of AC motors in robots actuators. This chapter reviews 
how use of intelligent control scheme can help to solve this problem. 

2. Cart and Pendulum Problem 
Design and implementation of a system is followed by vigorous testing to examine the 
quality of the design. This is true in the case of designing control systems. One the classical 
systems to test quality and robustness of control scheme is inverted pendulum. In recent 
years, the mechanism of an inverted pendulum on a moving cart has been used extensively 
and in many different types. The cart and pendulum mechanism has become even more 
popular since the advent of intelligent control techniques. This mechanism is simple, 
understandable in operation, and stimulating. It has a non-linear model that can be 
transformed into linear by including certain condition and assumption in its operation. For 
the above reasons, inverted pendulum’s performance has become a bench mark for testing 
novel control schemes. In this chapter the focus is on the driving power in balancing the 
inverted pendulum which is an electrical motor. Traditionally, DC motors are used for this 
type of tasks. However, in this chapter the focus is on AC electrical motors for producing the 
torque required for the horizontal movements of the inverted pendulum. A simplified 
control model for the AC motor is used which includes the motor's equivalent time constant 
as the crucial parameter in producing rapid responses to the disturbances. In the modeling 
of fuzzy controllers for the inverted pendulum, the input to the pendulum block is 
considered to be a torque. This torque is produced by an electrical motor which is not 
included in the model. That is, the torque is output of the motor. A disadvantage in this 
modeling is that the electrical motor dynamics is not built-in in the control system 
independently. On the other hand, not including the electrical motor in the control scheme 
of the pendulum mechanism provides the freedom to alter the electrical motor and examine 
the performance of the pendulum with different types of the drive. Here, a simplified model 
of an AC electrical motor is incorporated into the system. The electrical motor receives its 
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inputs as current or voltage and produces a torque as output to control the balance of the 
mechanism.  
The new approach in modeling a fuzzy control system assists in achieving a number of 
goals such as: examining use of AC motors in producing rapid response, selecting sensitive 
parameters for an optimum high performance electrical motor capable to stabilize the 
inverted pendulum system, designing a Takagi-Sugeno type fuzzy controller, and 
comparing the effectiveness of inclusion of fuzzy controller along with the conventional 
control scheme. 

3. Conventional Controllers & Fuzzy Controllers 
The conventional approach in controlling the inverted pendulum system is to use a PID 
(Proportional, Integral, and Derivative) controller. In order to model the system the 
developer would have to know every technical detail about the system and be able to model 
it mathematically. Fuzzy Logic control (FLC) challenges this traditional approach by using 
educated guesses about the system to control it (Layne & Passino 2001). Passino states that 
differential equations are the language of conventional control (PID), while “rules” about 
how the system works is the language of fuzzy control (Passino and Yurkovich, 1998).  
Fuzzy logic has found its way into the everyday life of people, since Lotfi Zedah first 
introduced fuzzy logic in 1962. In Japan, the use of fuzzy logic in household appliances is 
common. Fuzzy logic can be found in such common household products as video cameras, 
rice cookers and washing machines (Jenson 2005). From the weight of the clothes, fuzzy 
logic would be able to determine how much water as well as the time needed to effectively 
wash the clothes. Japan developed one of the largest fuzzy logic projects, when they opened 
the Sendai Subway in 1987 (Kahaner 1993). In this subway, trains are controlled by fuzzy 
logic. Fuzzy Logic is a subset of traditional Boolean logic. Boolean logic states that 
something is either true or false, on or off, 0 or 1. Fuzzy logic extends this into saying that 
something is somewhat true, or not completely false. In fuzzy logic there is no clear 
definition as to what is exactly true or false. Fuzzy logic uses a degree of membership 
(DOM) to generalize the inputs and outputs of the system (Lin and Lee 1996). The DOM 
ranges from [0 1], where the degree of membership can lie anywhere in between. 
The majority of Inverted pendulum systems developed using fuzzy logic, are developed 
using a two dimensional approach, where only the angle and angular velocity of the 
pendulum’s arm are measured. The following research will show why this method is 
insufficient for the development of an inverted pendulum on a limited size track. To have an 
efficient fuzzy controller for an inverted pendulum, the system must also include inputs for 
the position of the cart that the pendulum is balanced upon and the velocity of the cart. 
Two-dimensional fuzzy controllers are very simple examples of fuzzy control research. 
Many of them will balance the inverted pendulum, but are not in control of the cart’s 
position on the track. Adeel Nafis proposed a two-dimensional fuzzy controller to balance 
the Inverted pendulum on a track  (Nafis 2005). Tests showed that the controller would 
balance the pendulum but neglected to control the position of the cart and eventually the 
cart’s position would exceed the length of the track. Another FLC was proposed by Passino; 
again this cart had the same result as the previous FLC (Passino and Yurkovich, 1998). 
Control of the system requires that the cart holding the pendulum be moved by some 
mechanism. For simulation purposes, in this experiment a field oriented AC motor was used 
(Bose 1997).  
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4. Effect of Number of Inputs on Designing Fuzzy Logic Controllers 
In a simple control mechanism there is one input and one output. Fuzzy Logic Controllers 
can have more than one input. Two-input FLC’s are easy to implement and receive great 
performance responses from simulations. Layne (Layne & Passino 2001) modeled a fuzzy 
controller that had great performance balancing the pendulum but the cart’s positioning 
was unstable, making it an impractical rule set for real life implementation. Two-input 
FLC’s are the most commonly researched inverted pendulum systems. One of the most 
commonly researched types fuzzy controllers is two-input inverted pendulum systems. The 
2-input system receives angle θ and angular velocity ω as its inputs. The system uses 5 
membership functions for each input, and another 5 for the outputs which is the Force. The 
system consists of 25 (that is 5 to power 2; 52) rules. Table 1 shows the rule base for the 
inverted pendulum system. According to Table 1 a value of NL represents a negative large 
angle or angular velocity, and PL represents a positive large angle/angular velocity. As 
Table 1 indicates, if there is a situation where the angle is Zero (ZE) and the angular velocity 
is PS then the rule NS will be fired. Where, NL, NS, ZE, PS, PL are linguistic values of 
negative large, negative small, zero, Positive small, and positive large. 

θ/ω NL NS ZE PS PL 
NL PL PL PL PS ZE
NS PL PL PS ZE NS
ZE PL PS ZE NS NL
PS PS ZE NS NL NL
PL ZE NS NL NL NL

Table 1. Rule-base Matrix for the Inverted Pendulum. 

A simulation that runs for 2 seconds is shown in Figure 1. The pendulum has an initial angle 
of 0.2 radians (dashed line). When the simulation is run, the angle of pendulum balances 
quickly, in about 1 second, but the position of the cart is not controlled (continuous line) so 
the cart’s position will eventually drift off into the end of the track, even though the 
pendulum’s arm is balanced.  

Figure 1. Variation of angle θ (rad) and position X (m) of pendulum vs. time t (s). 
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The benefit of adding two more inputs to the system to control the X-position of the cart and 
the velocity of the cart will greatly benefit the stability of the system. There is a cost for 
better stability; this is a greater computation time, and greater complexity in the model. The 
cost of adding more inputs increases exponentially with the number of inputs added. The 
above two-input system used five membership function for each input used; this resulted in 
a 25 (i.e. 52) rule base. By adding two more inputs to the system, the systems rule base 
would grow to 625 (i.e. 54) rules. Development time for a rule base this size can be very time 
consuming, both in development and in computational time. Bush proposed using an 
equation to calculate the rules, rather than taking the time to develop the rules individually 
(Bush 2001). The system was a 54 system with 17 output membership functions (OMF). The 
equation used was: 

Output Membership Function = I + (J – 1) + (-K + 5)+ (L+5) (1) 

This equation results in values ranging between 1 and 17. This corresponds to the OMF that 
is to be used in the calculation of the output. The performance of the system using this 
approach is not consistent with that of the original simulation, given by the author of the 
above Equation 1 (Bush 2001). The force given to the cart holding the pendulum was found 
not to be enough to balance the pendulum and the system failed within a small amount of 
time. It can be concluded that this system would be a good starting point for one to base a 
large rule set on, but the system would need some tweaking of the rules and membership 
functions to get to balance the system effectively. The final FLC controller that was modeled 
for simulation was a Takagi-Sugeno type fuzzy controller. All the previous FLC’s modeled 
were of Mamdani type.  A Takagi-Sugeno type fuzzy controller (Mathswork, 2002), (Liang & 
Langari, 1995), (Johansen et al. 2000), (Tanaka et al. 2003) varies from the traditional 
Mamdani type controller by using linear or constant OMF’s instead of triangular, 
trapezoidal, Gaussian or any other method the developer decided to use. The system uses 4-
inputs with only 2 input membership functions for each. This resulted in a 24, 16 rule 
system. The linear output membership functions are calculate using the equation  

)x*c()x*c()x*c()x*c(cFunctionMembershipOutput 443322110 ++++= (2)

Where cn is the parameters of the OMF, and xn is the values of , ω, X and linear velocity V 
respectively. The system modeled here uses fuzzy logic toolbox of Matlab (Sugeno 2002). 

Figure 2. In adjusting the balance of pendulum angle θ (rad), and position X (m) changes 
with time t (s). 
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The control of all 4 parameters with only 2 membership functions causes the system to run 
very quickly. The down side to this quick response is that it takes more time for the system 
to stabilize when there are so few membership functions. The system will overshoot the 
targeted position and eventually come to rest. The settling time of this system takes more 
time than any other system.
Figure 2 is the result of the simulation. The pendulum is started with an initial disturbance 
of 0.2 radians. As shown, the fuzzy controller overcompensates for this initial disturbance 
and sends the pendulum’s angle (dashed line) in an opposite direction in an attempt to 
balance it, this is the overshoot. It takes approximately 5 seconds for the pendulums arm to 
balance.

5. Mathematical Modeling of Field Oriented AC Induction Motors 
The motor chosen for the simulation is an AC motor. The motor is modeled, Figure 3, using 
field oriented control scheme (Bose 1997). 
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The benefit of adding two more inputs to the system to control the X-position of the cart and 
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)x*c()x*c()x*c()x*c(cFunctionMembershipOutput 443322110 ++++= (2)

Where cn is the parameters of the OMF, and xn is the values of , ω, X and linear velocity V 
respectively. The system modeled here uses fuzzy logic toolbox of Matlab (Sugeno 2002). 

Figure 2. In adjusting the balance of pendulum angle θ (rad), and position X (m) changes 
with time t (s). 
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The control of all 4 parameters with only 2 membership functions causes the system to run 
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targeted position and eventually come to rest. The settling time of this system takes more 
time than any other system.
Figure 2 is the result of the simulation. The pendulum is started with an initial disturbance 
of 0.2 radians. As shown, the fuzzy controller overcompensates for this initial disturbance 
and sends the pendulum’s angle (dashed line) in an opposite direction in an attempt to 
balance it, this is the overshoot. It takes approximately 5 seconds for the pendulums arm to 
balance.

5. Mathematical Modeling of Field Oriented AC Induction Motors 
The motor chosen for the simulation is an AC motor. The motor is modeled, Figure 3, using 
field oriented control scheme (Bose 1997). 
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Where: rrr RL=τ  is the rotor time constant. 

Figure 3. Magnetic Flux Control Scheme in Induction Motors
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stator current on d-q axis, where ids component is aligned with the rotor field. The rotor 
flux and torque can be controlled independently by ids and iqs, shown in Figure 4. The 
electric torque Te is proportional to the quadrature-axis current iqs, component of the stator 
current Is, and the rotor flux ψr can be controlled by the direct-axis current ids, of Is, where: 
Is = ids + J iqs. 
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The transfer function of this AC motor yields angular velocity ( ) as the motor shaft output. 
In the simulation,  was easily converted into the force on the cart. The motor responded 
well, reaching its maximum force exerted on the cart in less than 2.5 seconds.  

6. Discussion and Results 
The simulation consists of four main components, the fuzzy controller, AC motor, the cart 
and the inverted pendulum, Figure 5. The cart passes the fuzzy controller four parameters θ,
ω, X, V. Based on these four parameters the fuzzy controller outputs a voltage to the motor. 
The motor in turn calculates the force that will be exerted on the cart. The system then 
calculates the new values for parameters θ, ω, X, V and the cycle will be repeated.  

Figure 5. Schematic diagram of fuzzy controller for the inverted pendulum. 

The fuzzy controller used in the simulation, with the AC motor included, is a 24 FLC as 
described above. The system runs identical to the 24 system only the settling time for the 
simulation, with the motor included, is larger. Figure 6 shows the results of the simulation 
using the same fuzzy controller as (Sugeno 2002) with the AC motor included in the 
simulation.  
The AC motor has a delay, where it takes the motor a given time to reach a maximum force. 
This in turn causes the simulation take longer to reach steady state. Parameters used in the 
simulation of the motor are listed in Table 2. 
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Figure 6 shows that it takes approximately 12 seconds for the pendulum’s angle to become 
steady, and even longer for the cart’s position to stabilize. The difference in the response 
time of this system can be found in the motor. The motor has a time constant which delays 
the motor’s response time to an inputted voltage. A typical AC motor has a time constant 
larger than that of a DC motor. The shorter the time constant of the motor, the quicker the 
system will respond.  Therefore, it can be expected that it takes longer for AC motor to 
balance the pendulum. 

Figure 6. Variation of angle θ (rad) and position X(m) of the pendulum with time t(s). 

The simulation shows that the system responds well even with a motor attached to the 
system. The cost of implementing a motor into the simulation is response time for the 
pendulum to stabilize. Simulations done without the addition of the AC motor can not be 
considered for real life implementation because the motor is needed to investigate the 
response time that the system will observe in real life. 
In a series of tests carried on without the use of fuzzy controller, it was revealed that the 
pendulum can hardly overcome any disturbances. If the disturbance is very small, it takes 
twice longer for the pendulum to balance again in an upright position. 
Performances of vector control AC induction motors are comparable to that of DC motors; 
however, AC motors are rugged and low cost. Therefore, whenever possible, usage of AC 
motors will greatly reduce the capital cost of equipment and devices. 

7. Conclusion 
In this chapter design of a Fuzzy Logic Controller for a multi-input output system is 
described. It demonstrates a trade-off between precision which requires complex design and 
simplification which achieves less precise system. There is no absolute solution in 
developing fuzzy logic controllers. Designer of a FLC system must consider whether 
precision will be sacrificed for performance and simplicity. The 52 system developed in this 
work was very simple and computed quickly. The drawback of this initial design was that 
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precision was compromised. The 24 system was also very simple and ran quickly but the 
performance of the system was not satisfactory. The settling time for the cart pendulum was 
required to be quicker. The 54 system was very complex and performance was slow, but if 
tuned correctly, a system of this size would be very precise. 
Implementation of the system requires a high performance AC motor. Simulation results 
showed that the system would work for this type of motor. Having a smaller time constant 
in the AC motor would result in a shorter response time of the system. The FLC would need 
to be fine tuned for other types of motors.  
With the AC motor implemented in the simulation model, the system did not react as well 
to high disturbances as it did when the motor was neglected in the simulation, or a DC 
motor was used. This indicates that the system will react well to small disturbances and be 
able to recover from them quickly. As the results indicates, in order for this system to handle 
large disturbances a motor with high performance dynamics need to be used that has a very 
small time constant. Use FLC made significant improvement to the controllability of the 
inverted pendulum by improving the response time. 
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1. Introduction 
In the exploration of a planetary surface such as that of Mars using mobile robots, rock 
and soil-sample collection and analysis are essential in determining the terrain 
composition and in searching for traces of ancient life (Malin & Edgett, 2000). Several 
missions to Mars have already been sent. In the 1997 Mars Pathfinder mission (Mars 
Pathfinder Homepage), the Sojourner rover used an alpha-proton-X-ray spectrometer 
(APXS) to analyze rock and soil sample compositions. It also had a simple onboard 
control system for hazard avoidance, although the rover was operated remotely from 
Earth most of the time. The method for rock and soil-sample collection is as follows. After 
landing, the rover used its black-and-white and color imaging systems to survey the 
surrounding terrain. The images were sent back to Earth, and analyzed by a team of 
geologists to determine where interesting samples might be found. Based on that 
information, the next destination for the rover was selected and the commands to get 
there were sent to the rover via radio with transmission delays ranging from 10 to 15 
minutes (depending on the relative orbital positions of Earth and Mars). The set of 
commands were sent out over a day with the rover moving only a small distance each 
time. This was done to allow the mission control to constantly verify the position, with 
time to react to unforeseen problems. When the rover finally reached its destination and 
analyzed the sample, it spent another day transmitting the information back to Earth. The 
cycle was repeated as soon as the geologists had decided on the next destination for the 
rover. Clearly, an automated system for rock and soil sample collection would expedite 
the process. In the 2004 Mars Exploration Rover (MER) mission, the Spirit and 
Opportunity rovers (Mars Spirit & Opportunity Rovers Homepage) featured an upgraded 
navigation system. Imagery from a stereo camera pair was used to create a 3-D model of 
the surrounding terrain, from which a traversability map could be generated. This feature 
gave the mission controllers the option of either directly commanding the rovers or 

* This chapter is an enhanced version of the paper by J.C. Cardema, P.K.C. Wang and G. Rodriguez, 
“Optimal Path Planning of Mobile Robots for Sample Collection”, J. Robotic Systems, Vol.21, No.10, 2004, 
pp.559-580.
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allowing them to autonomously navigate over short distances. Consequently, the rovers 
were often able to traverse over 100 meters a day (Biesiadecki & Maimone, 2006). The 
rovers were also programmed to autonomously select interesting soil samples, but this 
feature was seldom used. Nevertheless, this was a significant first step toward fully 
automating the soil-sample collection process.  
In this study, an attempt is made to formulate the path planning problem for single and 
multiple mobile robots (referred to hereafter as “rovers” for brevity) for sample collection as 
a mathematical optimization problem. The objective is to maximize the value of the mission, 
which is expressed in the form of a mission return function. This function contains the 
performance metric for evaluating the effectiveness of different mission setups. To the best 
of our knowledge, the problem of sample collection has not yet been studied in conjunction 
with optimal path planning. There are many considerations in the mathematical 
formulation of this problem. These include planetary terrain surface modeling, rover 
properties, number of rovers, initial starting positions, and the selection of a meaningful 
performance metric for rovers so that the performance of single versus multiple rovers in 
representative scenarios can be compared. The basic problem is to find a sample-collection 
path based on this performance metric. The main objective is to develop useful algorithms 
for path planning of single or multiple planetary rovers for sample collection. Another 
objective is to determine quantitatively whether multiple rovers cooperating in sample 
collection can produce better performance than rovers operating independently. In 
particular, the dependence of the overall performance on the number of rovers is studied. 
To clarify the basic ideas, we make use of the Mars rover rock and soil-sample collection 
scenario in the problem formulation and in the numerical study. 

2. Problem Description 
We begin with a discussion of the problem of planetary surface modeling, followed by 
various operational considerations of the rovers. To facilitate the mathematical formulation 
of the optimal path-planning problems, a few basic definitions will be introduced. Then, 
precise mathematical statements of the optimal path-planning problems will be presented 
for both single and multiple rover cases. 

2.1 Planetary Surface Modeling 
Assuming that a region on the planetary surface has been selected for detailed scientific 
study, the main task is to develop a suitable terrain surface model for rover path-
planning. Initially, a crude surface model for the selected spatial region may be 
constructed from the aerial planetary survey data obtained by fly-by spacecraft or 
observation satellites such as the Mars Orbiter. Once the rovers are on the planetary 
surface, more refined models (usually localized model) may be constructed from the 
image-data generated by on-board cameras. Although the refined models may be useful 
for scientific studies, they may not be useful for practical optimal path planning. 
Therefore we resort to approximate models that simplify the mathematical formulation 
and numerical solution of the optimal path-planning problems. In our model, we assume 
that the area of the spatial domain for exploration is sufficiently small so that the 
curvature of the planetary surface can be neglected. Moreover, the surface is sufficiently 
smooth for rover maneuvers. 
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2.1.1 Approximate Surface Model 
Let Ω  be a bounded spatial domain of the two-dimensional real Euclidean space 2R  and 
the representation of a point in 2R with respect a given orthonormal basis be denoted by x .
Let ( )f f x=  be a real-valued continuous function defined on .Ω Let

denote the graph of f , which represents the planetary surface 
under consideration. In this work, we use a polygonal approximation for the planetary 
surface 

fG via triangulation that partitions 
fG  into adjacent, non-overlapping triangular 

patches, where each edge of a triangular patch is shared by exactly two triangular patches 
except on the boundaries of 

fG . It has been proved that every C 1 -surface defined on Ω

with a sufficiently smooth boundary has a triangulation, although an infinite number of 
triangular patches may be required (Weisstein). Here we make use of the Delaunay 
triangulation, which produces a set of lines connecting each point in a given finite point set 
to its neighbors. Furthermore, it has the property that the triangles created by these lines 
have empty circumcircles (i.e. the circumcircles corresponding to each triangle contains no 
other data points). The Delaunay triangulation of 

fG  is a polygonal approximation of the 

original planetary surface. It can also be thought of as the projection of the planetary surface 
onto a mesh space. The domain of the triangulation is a mesh space denoted by Ω̂ ⊂ Ω ,
where Ω̂  is the discrete version of Ω . The resulting polygonal approximation of the 
planetary surface 

fG  will be denoted by ˆ
fG . This approximate surface model will be used 

in formulating the optimal path-planning problem. Although one might use other forms of 
approximation for 

fG  that lead to smoother approximate surfaces, our choice provides 

significant simplification of the optimal path-planning problem, since the paths are 
restricted to lie on the edges of the triangular patches. 

2.1.2. Rock and Soil-sample Properties 
Rock and soil samples have different values to geologists based on the questions they are 
trying to answer. For example, in Mars exploration, sedimentary rocks are important since 
two of the primary questions about early Martian geological history are whether liquid 
water could exist on its surface and, if so, whether liquid water ever took the form of lakes 
or seas (Malin & Edgett, 2000). According to Malin and Edgett, outcrop materials are 
interpreted as Martian sedimentary rock, and they are of particular interest to geologists for 
answering these questions. The outcrop materials occur in three types: layered, massive, 
and thin mesas, which differ in visual tone, thickness, texture, and configuration. The 
locations of these outcrops are limited to specific regions mostly between ± 30 degrees 
latitude. One of the regions with large outcrop occurrence is in Valles Marineris. The terrain 
in a portion of this region is used for our case study. The three types of outcrops are 
speculated to come from different Martian ages. The rover should have the capability of 
identifying and distinguishing these different types. To model a portion of Valles Marineris, 
we assume that the rock and soil samples are randomly distributed over various sub-
regions. An appropriate model should allow for the specification of any rock and soil-
sample distribution on the given Mars terrain. A simple way to do this is to divide the 
terrain into sub-regions and assign weights to determine how many samples to uniformly 
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allowing them to autonomously navigate over short distances. Consequently, the rovers 
were often able to traverse over 100 meters a day (Biesiadecki & Maimone, 2006). The 
rovers were also programmed to autonomously select interesting soil samples, but this 
feature was seldom used. Nevertheless, this was a significant first step toward fully 
automating the soil-sample collection process.  
In this study, an attempt is made to formulate the path planning problem for single and 
multiple mobile robots (referred to hereafter as “rovers” for brevity) for sample collection as 
a mathematical optimization problem. The objective is to maximize the value of the mission, 
which is expressed in the form of a mission return function. This function contains the 
performance metric for evaluating the effectiveness of different mission setups. To the best 
of our knowledge, the problem of sample collection has not yet been studied in conjunction 
with optimal path planning. There are many considerations in the mathematical 
formulation of this problem. These include planetary terrain surface modeling, rover 
properties, number of rovers, initial starting positions, and the selection of a meaningful 
performance metric for rovers so that the performance of single versus multiple rovers in 
representative scenarios can be compared. The basic problem is to find a sample-collection 
path based on this performance metric. The main objective is to develop useful algorithms 
for path planning of single or multiple planetary rovers for sample collection. Another 
objective is to determine quantitatively whether multiple rovers cooperating in sample 
collection can produce better performance than rovers operating independently. In 
particular, the dependence of the overall performance on the number of rovers is studied. 
To clarify the basic ideas, we make use of the Mars rover rock and soil-sample collection 
scenario in the problem formulation and in the numerical study. 

2. Problem Description 
We begin with a discussion of the problem of planetary surface modeling, followed by 
various operational considerations of the rovers. To facilitate the mathematical formulation 
of the optimal path-planning problems, a few basic definitions will be introduced. Then, 
precise mathematical statements of the optimal path-planning problems will be presented 
for both single and multiple rover cases. 

2.1 Planetary Surface Modeling 
Assuming that a region on the planetary surface has been selected for detailed scientific 
study, the main task is to develop a suitable terrain surface model for rover path-
planning. Initially, a crude surface model for the selected spatial region may be 
constructed from the aerial planetary survey data obtained by fly-by spacecraft or 
observation satellites such as the Mars Orbiter. Once the rovers are on the planetary 
surface, more refined models (usually localized model) may be constructed from the 
image-data generated by on-board cameras. Although the refined models may be useful 
for scientific studies, they may not be useful for practical optimal path planning. 
Therefore we resort to approximate models that simplify the mathematical formulation 
and numerical solution of the optimal path-planning problems. In our model, we assume 
that the area of the spatial domain for exploration is sufficiently small so that the 
curvature of the planetary surface can be neglected. Moreover, the surface is sufficiently 
smooth for rover maneuvers. 
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2.1.1 Approximate Surface Model 
Let Ω  be a bounded spatial domain of the two-dimensional real Euclidean space 2R  and 
the representation of a point in 2R with respect a given orthonormal basis be denoted by x .
Let ( )f f x=  be a real-valued continuous function defined on .Ω Let

denote the graph of f , which represents the planetary surface 
under consideration. In this work, we use a polygonal approximation for the planetary 
surface 

fG via triangulation that partitions 
fG  into adjacent, non-overlapping triangular 

patches, where each edge of a triangular patch is shared by exactly two triangular patches 
except on the boundaries of 

fG . It has been proved that every C 1 -surface defined on Ω

with a sufficiently smooth boundary has a triangulation, although an infinite number of 
triangular patches may be required (Weisstein). Here we make use of the Delaunay 
triangulation, which produces a set of lines connecting each point in a given finite point set 
to its neighbors. Furthermore, it has the property that the triangles created by these lines 
have empty circumcircles (i.e. the circumcircles corresponding to each triangle contains no 
other data points). The Delaunay triangulation of 

fG  is a polygonal approximation of the 

original planetary surface. It can also be thought of as the projection of the planetary surface 
onto a mesh space. The domain of the triangulation is a mesh space denoted by Ω̂ ⊂ Ω ,
where Ω̂  is the discrete version of Ω . The resulting polygonal approximation of the 
planetary surface 

fG  will be denoted by ˆ
fG . This approximate surface model will be used 

in formulating the optimal path-planning problem. Although one might use other forms of 
approximation for 

fG  that lead to smoother approximate surfaces, our choice provides 

significant simplification of the optimal path-planning problem, since the paths are 
restricted to lie on the edges of the triangular patches. 

2.1.2. Rock and Soil-sample Properties 
Rock and soil samples have different values to geologists based on the questions they are 
trying to answer. For example, in Mars exploration, sedimentary rocks are important since 
two of the primary questions about early Martian geological history are whether liquid 
water could exist on its surface and, if so, whether liquid water ever took the form of lakes 
or seas (Malin & Edgett, 2000). According to Malin and Edgett, outcrop materials are 
interpreted as Martian sedimentary rock, and they are of particular interest to geologists for 
answering these questions. The outcrop materials occur in three types: layered, massive, 
and thin mesas, which differ in visual tone, thickness, texture, and configuration. The 
locations of these outcrops are limited to specific regions mostly between ± 30 degrees 
latitude. One of the regions with large outcrop occurrence is in Valles Marineris. The terrain 
in a portion of this region is used for our case study. The three types of outcrops are 
speculated to come from different Martian ages. The rover should have the capability of 
identifying and distinguishing these different types. To model a portion of Valles Marineris, 
we assume that the rock and soil samples are randomly distributed over various sub-
regions. An appropriate model should allow for the specification of any rock and soil-
sample distribution on the given Mars terrain. A simple way to do this is to divide the 
terrain into sub-regions and assign weights to determine how many samples to uniformly 
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distribute within each sub-region. Moreover, we assume there are a finite number of 
samples, each with an assigned value in a prescribed range. A high sample value implies 
high scientific value. In practical situations, this task may be accomplished by a careful 
study of the aerial survey data. 

2.2. Single Rover Case

2.2.1 Operational Considerations 
In what follows, we consider the main factors that are relevant to the formulation of the 
path-planning problem. 

2.2.1.1 Dynamic properties 
The rover is modeled simply. We only consider mass m, maximum traversable slope or tilt 
angle θ , maximum speed maxν , and maximum power maxP . They are used to calculate the 
rover’s traveling time on terrains with varying slopes. Higher-order dynamics involving the 
acceleration of the rover and the damping effects of the suspension system are not included, 
since the actual motion of the rover is relatively slow compared to that of mobile robots in a 
laboratory environment. In what follows, the term “sample collection” is used 
interchangeably with “sample analysis”, although they do not necessarily have the same 
connotation. (i.e. sample collection can be thought of as the collection of sample data.) In the 
case where the rover physically picks up the sample, the mass of each collected sample is 
added to the overall mass of the rover. There is also a loading constraint that limits the 
number of samples that the rover can physically hold in its storage compartment. In this 
study, we do not consider the situation where the rover can only use its imaging system to 
identify and detect samples. This leads to the problem of determining a path that maximizes 
the visual coverage of the terrain (Wang, 2003, 2004). 

2.2.1.2 Mission time limit 
The mission length is an important consideration in path planning. For the 1997 Pathfinder 
mission, the planned mission duration was 30 days. The algorithm for path planning should 
verify that the time duration for sample collection is within the prescribed mission time 
limit (denoted by maxτ ), which in turn determines the maximum terrain coverage. 
There should be a clarification about the distinction between the overall mission time and 
the time it takes to execute a planned path. In practical situations, it would be difficult to 
plan a path for the entire mission duration. It would be more reasonable to plan paths of 
shorter duration that can be executed at specific intervals during the mission. However, to 
simplify our formulation, we do not make this distinction and assume that we can plan a 
path for the entire mission duration. 

2.2.1.3 Sample analysis time 
As mentioned earlier, the Sojourner rover in the Pathfinder mission was equipped with a 
spectrometer (APXS) for rock and soil-sample analysis. The sensor head of the APXS was 
placed on the sample for 10 hours during the analysis. To account for this, the sample 
analysis time waitτ is introduced into our model. It represents the amount of time required to 
analyze the sample. To simplify the model, we assume that maxτ  is the same for every 
sample, regardless of its type. With the inclusion of the sample analysis time, the rover is 
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forced to consider more carefully which rock and soil samples to collect while still operating 
within the time limit. 

2.2.1.3 Mission return function 
To characterize the performance of a rover in rock and soil sample collection, we need to 
choose an appropriate mission return function to quantify the rover’s performance 
throughout the mission. The mission return function used in this study is simply the sum of 
the collected sample values. 

2.2.1.4 Terrain risk 
Let maxθ denote the angle of the maximum traversable slope corresponding to the maximum 
allowable tilt angle of the rover before it topples over. To determine if a point on the surface 
is too risky to traverse, the terrain slopes at that point in all directions are computed. If the 
magnitude of the slope angle in any direction exceeds maxθ , that point is deemed un-
traversable. Usually, the rover is more susceptible to tipping over sideways than forwards 
or backwards, although the dimensions of the rover are not considered in this study. 

2.2.1.5 Terrain properties 
Ideally, the terrain surface in the spatial region chosen for exploration should be sufficiently 
smooth to facilitate rover maneuverability but also has features to indicate the possible 
presence of interesting samples. For rover traversability, the terrain texture and hardness 
are also important (Seraji, 2000). Terrains that are rough and rocky are avoided in favor of 
smoother ones. Terrain risk depends on both the terrain texture and hardness. 

2.2.2. Definitions 
Having specified an approximate surface in the form described in Sec. 2.1.1, a path can be 
specified on this surface. First, we introduce the notion of an admissible segment. 

2.2.2.1 Definition 1 
(Admissible segment): A segment γ  connecting a point ( , ( ))a ax f x ∈ ˆ

fG with an adjacent point 

ˆ( , ( ))b b fx f x ∈G along an edge of a triangular patch formed by the Delaunay triangulation of 

fG is said to be admissible if it satisfies the following constraints induced by the terrain risk: 

max
( ) ( )arcsin a ai

a
f x f x

d
θ θ−= ≤  for all ,aix

and

max
( ) ( )arcsin b bi

b
f x f x

d
θ θ−= ≤  for all 

bix ,

where
aix  and 

bix  are the adjacent points of 
ax  and 

bx , respectively, and 

1 1( , ( )) ( , ( ))i i i id x f x x f x+ += −  is the Euclidean distance between points ( , ( ))i ix f x and

1 1( , ( ))i ix f x+ +
. (i.e. The slopes of ˆ

fG from
ax and

bx  to all their neighboring points satisfy the 

maximum traversable slope angle constraint maxθ ).
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distribute within each sub-region. Moreover, we assume there are a finite number of 
samples, each with an assigned value in a prescribed range. A high sample value implies 
high scientific value. In practical situations, this task may be accomplished by a careful 
study of the aerial survey data. 

2.2. Single Rover Case

2.2.1 Operational Considerations 
In what follows, we consider the main factors that are relevant to the formulation of the 
path-planning problem. 

2.2.1.1 Dynamic properties 
The rover is modeled simply. We only consider mass m, maximum traversable slope or tilt 
angle θ , maximum speed maxν , and maximum power maxP . They are used to calculate the 
rover’s traveling time on terrains with varying slopes. Higher-order dynamics involving the 
acceleration of the rover and the damping effects of the suspension system are not included, 
since the actual motion of the rover is relatively slow compared to that of mobile robots in a 
laboratory environment. In what follows, the term “sample collection” is used 
interchangeably with “sample analysis”, although they do not necessarily have the same 
connotation. (i.e. sample collection can be thought of as the collection of sample data.) In the 
case where the rover physically picks up the sample, the mass of each collected sample is 
added to the overall mass of the rover. There is also a loading constraint that limits the 
number of samples that the rover can physically hold in its storage compartment. In this 
study, we do not consider the situation where the rover can only use its imaging system to 
identify and detect samples. This leads to the problem of determining a path that maximizes 
the visual coverage of the terrain (Wang, 2003, 2004). 

2.2.1.2 Mission time limit 
The mission length is an important consideration in path planning. For the 1997 Pathfinder 
mission, the planned mission duration was 30 days. The algorithm for path planning should 
verify that the time duration for sample collection is within the prescribed mission time 
limit (denoted by maxτ ), which in turn determines the maximum terrain coverage. 
There should be a clarification about the distinction between the overall mission time and 
the time it takes to execute a planned path. In practical situations, it would be difficult to 
plan a path for the entire mission duration. It would be more reasonable to plan paths of 
shorter duration that can be executed at specific intervals during the mission. However, to 
simplify our formulation, we do not make this distinction and assume that we can plan a 
path for the entire mission duration. 

2.2.1.3 Sample analysis time 
As mentioned earlier, the Sojourner rover in the Pathfinder mission was equipped with a 
spectrometer (APXS) for rock and soil-sample analysis. The sensor head of the APXS was 
placed on the sample for 10 hours during the analysis. To account for this, the sample 
analysis time waitτ is introduced into our model. It represents the amount of time required to 
analyze the sample. To simplify the model, we assume that maxτ  is the same for every 
sample, regardless of its type. With the inclusion of the sample analysis time, the rover is 
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forced to consider more carefully which rock and soil samples to collect while still operating 
within the time limit. 

2.2.1.3 Mission return function 
To characterize the performance of a rover in rock and soil sample collection, we need to 
choose an appropriate mission return function to quantify the rover’s performance 
throughout the mission. The mission return function used in this study is simply the sum of 
the collected sample values. 

2.2.1.4 Terrain risk 
Let maxθ denote the angle of the maximum traversable slope corresponding to the maximum 
allowable tilt angle of the rover before it topples over. To determine if a point on the surface 
is too risky to traverse, the terrain slopes at that point in all directions are computed. If the 
magnitude of the slope angle in any direction exceeds maxθ , that point is deemed un-
traversable. Usually, the rover is more susceptible to tipping over sideways than forwards 
or backwards, although the dimensions of the rover are not considered in this study. 

2.2.1.5 Terrain properties 
Ideally, the terrain surface in the spatial region chosen for exploration should be sufficiently 
smooth to facilitate rover maneuverability but also has features to indicate the possible 
presence of interesting samples. For rover traversability, the terrain texture and hardness 
are also important (Seraji, 2000). Terrains that are rough and rocky are avoided in favor of 
smoother ones. Terrain risk depends on both the terrain texture and hardness. 

2.2.2. Definitions 
Having specified an approximate surface in the form described in Sec. 2.1.1, a path can be 
specified on this surface. First, we introduce the notion of an admissible segment. 

2.2.2.1 Definition 1 
(Admissible segment): A segment γ  connecting a point ( , ( ))a ax f x ∈ ˆ

fG with an adjacent point 

ˆ( , ( ))b b fx f x ∈G along an edge of a triangular patch formed by the Delaunay triangulation of 

fG is said to be admissible if it satisfies the following constraints induced by the terrain risk: 

max
( ) ( )arcsin a ai

a
f x f x

d
θ θ−= ≤  for all ,aix

and

max
( ) ( )arcsin b bi

b
f x f x

d
θ θ−= ≤  for all 

bix ,

where
aix  and 

bix  are the adjacent points of 
ax  and 

bx , respectively, and 

1 1( , ( )) ( , ( ))i i i id x f x x f x+ += −  is the Euclidean distance between points ( , ( ))i ix f x and

1 1( , ( ))i ix f x+ +
. (i.e. The slopes of ˆ

fG from
ax and

bx  to all their neighboring points satisfy the 

maximum traversable slope angle constraint maxθ ).
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2.2.2.2 Definition 2 
(Admissible path): A path  composed of connected segments in ˆ

fG is said to be admissible if 
each segment is admissible. 
Each admissible path can be represented by an ordered string of points that will be denoted 
by S ⊂ Ω̂ . The string of points S  may include repeated points since partial backtracking 
along the path is allowed. To account for different sample values in the model, the samples 
are individually indexed. Each sample 

kσ  has a corresponding value 
kλ , where k is the 

index number. We assume that the sample values as well as the sample distribution ( )ssD x
on the terrain defined below are known a priori.

2.2.2.3 Definition 3 
(Sample distribution): The sample distribution ( )ss ssD D x=  is a set-valued function defined as 

follows: If at a point ˆ ,x ∈Ω  there are m samples with indices 
,1 ,2 ,{ , ,..., }x x x x mk k k=J , then 

( )ssD x  = .xJ  If there are no samples at ˆx ∈ Ω , then ( )ssD x is an empty set. 
The entire set of all samples indices is denoted by 

ssE . Along each admissible path  with 
the corresponding string S , there is a set of collectable samples

ssC  that includes all the 
samples contained in S as defined below: 

2.2.2.4 Definition 4 
(Collectible sample set): If 

ΓS  is the string of points associated with an admissible path Γ , and 

1 2{ , ,..., }Nk k kΓ =J  is the set of sample indices such that 

( ),ss
x

D x
Γ

Γ
∈

=
S

J

where N is the number of soil samples along the path, then the collectable sample set is 
.ss Γ=C J

Next, we define the attainable set associated with an initial point 
0x  at time 

0t .

2.2.2.5 Definition 5 
(Attainable set): The attainable set at time t starting from 

0x ˆ∈Ω  at time 
0t (denoted by 

0 0( ; , )t x tA ˆ⊂ Ω ) is the set of all points in Ω̂  that can be reached at time t via admissible paths 
initiating from 

0x  at time 
0t .

Since ˆ
fG  is time-invariant, we can set 

0t  = 0. Successive points along the admissible path Γ

will be restricted to this attainable set. An attainable set associated with a maximum mission 
time duration maxτ  will be denoted by max 0( )xA  = max 0( ; ,0),xτA  which will be referred to as 
the maximal attainable set from 0x .
Evidently, we can find the admissible paths and their collectible sample sets associated with 
a given 

0( ; ,0).t xA  Once we determine the samples to collect along the path, we can 
introduce the notion of an admissible tour.
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2.2.2.6 Definition 6 
(Admissible tour): An admissible tour 

aT  is a pair (
aΓ ,

ssaL ), where 
aΓ  is an admissible path 

with point set 
aS  and collectible sample set 

ssaC , and 
ssaL is the list of soil samples collected 

along the path 
aΓ .

In an admissible tour, the time for traversing the path (including the sample analysis time) 
is within the mission time limit. If n is the number of samples collected, then the mission 
time mτ is given by 

max ,m i wait
i

nτ τ τ τ= + ⋅ ≤  (1) 

where waitτ  is the time required to analyze each sample; maxτ is the mission time limit; iτ is 
the traveling time between the successive points ix  and 1ix +  in aS  and is given by 

m ax m ax

m ax , ,m
i

m g h d
P v

τ =  (2) 

where
mg  is the acceleration due to gravity of the planet, 

1( ) ( )i ih f x f x += −  is the difference 

in terrain elevation at the points ix  and 1ix + , and 1 1( , ( )) ( , ( ))i i i id x f x x f x+ += − . Thus, iτ
corresponds to the maximum of the traveling times under the power and speed constraints. 
Physically, when climbing up a slope, the power constraint is used to compute iτ . When the 
terrain is flat or sloping downward, the speed constraint is used instead.  
For an admissible tour 

aT , the sample list 
ssL contains the index of each sample in the order 

of collection. Each sample kσ in the sample list has value kλ . Let I  = 1 2{ , ,..., ,..., }j nk k k k be
the set of sample indices in the order of collection, where 

ssa⊂I C  and 
jk  is the index of the 

j th sample collected along the path. Then, 
ssL  = I .

2.2.3. Problem Formulation 
Assume that an approximate planetary surface ˆ

fG , initial starting point 
0x , mission time 

limit maxτ , sample analysis time waitτ , sample index set ssE , samples kσ ‘s with values kλ , k ∈

ssE , and sample distribution ( )ss ssD D x=  are given.  

2.2.3.1 Problem P1 
Find an optimal tour oT  (with admissible path o

aΓ  and the corresponding sample list
ssa
oL ) that 

maximizes the mission return function  

( ) ,
ssa

ssa k
k

V λ
∈

=
L

L (3)

where
kλ  is the value of sample kσ , i.e. 

( ) ( )o
ssa ssaV V≥L L (4)

for all 
ssaL  associated with admissible paths 

aΓ .
To find an optimal tour, we must first consider all possible admissible paths from the given 
initial starting point 0x . The total traveling time atτ  along each admissible path aΓ  (with 
path point set aS  and collectible sample set ssaC ) satisfies the constraint: 
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2.2.2.2 Definition 2 
(Admissible path): A path  composed of connected segments in ˆ

fG is said to be admissible if 
each segment is admissible. 
Each admissible path can be represented by an ordered string of points that will be denoted 
by S ⊂ Ω̂ . The string of points S  may include repeated points since partial backtracking 
along the path is allowed. To account for different sample values in the model, the samples 
are individually indexed. Each sample 

kσ  has a corresponding value 
kλ , where k is the 

index number. We assume that the sample values as well as the sample distribution ( )ssD x
on the terrain defined below are known a priori.

2.2.2.3 Definition 3 
(Sample distribution): The sample distribution ( )ss ssD D x=  is a set-valued function defined as 

follows: If at a point ˆ ,x ∈Ω  there are m samples with indices 
,1 ,2 ,{ , ,..., }x x x x mk k k=J , then 

( )ssD x  = .xJ  If there are no samples at ˆx ∈ Ω , then ( )ssD x is an empty set. 
The entire set of all samples indices is denoted by 

ssE . Along each admissible path  with 
the corresponding string S , there is a set of collectable samples

ssC  that includes all the 
samples contained in S as defined below: 

2.2.2.4 Definition 4 
(Collectible sample set): If 

ΓS  is the string of points associated with an admissible path Γ , and 

1 2{ , ,..., }Nk k kΓ =J  is the set of sample indices such that 

( ),ss
x

D x
Γ

Γ
∈

=
S

J

where N is the number of soil samples along the path, then the collectable sample set is 
.ss Γ=C J

Next, we define the attainable set associated with an initial point 
0x  at time 

0t .

2.2.2.5 Definition 5 
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0x ˆ∈Ω  at time 
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0 0( ; , )t x tA ˆ⊂ Ω ) is the set of all points in Ω̂  that can be reached at time t via admissible paths 
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0x  at time 
0t .

Since ˆ
fG  is time-invariant, we can set 

0t  = 0. Successive points along the admissible path Γ

will be restricted to this attainable set. An attainable set associated with a maximum mission 
time duration maxτ  will be denoted by max 0( )xA  = max 0( ; ,0),xτA  which will be referred to as 
the maximal attainable set from 0x .
Evidently, we can find the admissible paths and their collectible sample sets associated with 
a given 

0( ; ,0).t xA  Once we determine the samples to collect along the path, we can 
introduce the notion of an admissible tour.
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2.2.2.6 Definition 6 
(Admissible tour): An admissible tour 

aT  is a pair (
aΓ ,

ssaL ), where 
aΓ  is an admissible path 

with point set 
aS  and collectible sample set 

ssaC , and 
ssaL is the list of soil samples collected 

along the path 
aΓ .

In an admissible tour, the time for traversing the path (including the sample analysis time) 
is within the mission time limit. If n is the number of samples collected, then the mission 
time mτ is given by 

max ,m i wait
i

nτ τ τ τ= + ⋅ ≤  (1) 

where waitτ  is the time required to analyze each sample; maxτ is the mission time limit; iτ is 
the traveling time between the successive points ix  and 1ix +  in aS  and is given by 

m ax m ax

m ax , ,m
i

m g h d
P v

τ =  (2) 

where
mg  is the acceleration due to gravity of the planet, 

1( ) ( )i ih f x f x += −  is the difference 

in terrain elevation at the points ix  and 1ix + , and 1 1( , ( )) ( , ( ))i i i id x f x x f x+ += − . Thus, iτ
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2.2.3. Problem Formulation 
Assume that an approximate planetary surface ˆ

fG , initial starting point 
0x , mission time 

limit maxτ , sample analysis time waitτ , sample index set ssE , samples kσ ‘s with values kλ , k ∈

ssE , and sample distribution ( )ss ssD D x=  are given.  

2.2.3.1 Problem P1 
Find an optimal tour oT  (with admissible path o

aΓ  and the corresponding sample list
ssa
oL ) that 
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( ) ,
ssa

ssa k
k

V λ
∈

=
L

L (3)

where
kλ  is the value of sample kσ , i.e. 

( ) ( )o
ssa ssaV V≥L L (4)

for all 
ssaL  associated with admissible paths 

aΓ .
To find an optimal tour, we must first consider all possible admissible paths from the given 
initial starting point 0x . The total traveling time atτ  along each admissible path aΓ  (with 
path point set aS  and collectible sample set ssaC ) satisfies the constraint: 
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max ,at i
i

τ τ τ= ≤  (5) 

where iτ  is the traveling time between successive points ix  and 1ix +  in aS .
Along each admissible path, we have a set 

ssaC  of collectable samples. Let I ⊂ ssaC  be a set 
of sample indices in the order of collection such that 

max ,am i wait
i

nτ τ τ τ= + ⋅ ≤  (6) 

where amτ  is the total mission time, n is the number of samples in I, and each iτ  is the 
traveling time between successive points ix  and 1ix +  in aS  along the path. All possible sets 
of sample indices I are considered. 
For each admissible path 

aΓ  (with path point set 
aS  and collectible sample set 

ssaC ), we 
search through all possible sets of sample indices I ⊂ ssaC , and find a I * ⊂ ssaC  that 
maximizes the mission return function 

( ) ,k
k

V λ
∈

=
I

I  (7) 

i.e. 
( *) max{ ( ) : }ssaV V C= ⊂I I I  and *ssa =L I . (8) 

Let
AΓ  denote the set of all admissible paths, and Λ A  the corresponding set of sample lists. 

Once we have performed the maximization for each admissible path, the optimal sample list 
o
ssL  is found by taking the path and sample list that maximizes the mission return function, 

i.e.  
( ) max{ ( ) : }.o

ss ss ss AV V= ∈L L L L  (9) 

The optimal path oΓ  is the path associated with ,o
ssL  and the optimal tour is oT  = ( oΓ , o

ssL ).
The optimal sample collection path generally depends on the initial starting position of the 
rover. Intuitively, we would like to place the rover as close as possible to the highest-valued 
samples. Since the distributions of the samples are known, we could also maximize the 
mission return function with respect to the starting position. But in practical situations, the 
starting position cannot be specified precisely. Moreover, the sample distributions are not 
known beforehand. 

2.3. Multiple Rover Case 
In the multiple rover case, it is necessary to introduce a few additional notions. 

2.3.1. Operational Considerations 

2.3.1.1 Starting positions 
First, let us consider the attainable set of each rover corresponding to a given initial starting 
position at time 0t = . If the maximal attainable sets of two or more rovers overlap, then a 
decision has to be made on the assignment of rovers to cover the overlapping region. This 
decision can be made either by the mission planner (centralized operation) or by the rovers 
themselves (autonomous operation). 
As in the single rover case, the choice of starting positions is an important issue. If the rovers 
are placed too close together, they could interfere with each other’s collection tasks. If the 
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rovers are placed too far apart, then there is little cooperation among them since the 
overlapping region is small. Therefore, it is desirable to place the rovers such that a balance 
between cooperation and interference can be reached. The problem of finding the optimum 
starting positions for m rovers, with or without a priori knowledge of the sample 
distributions, is an interesting one. This problem will not be considered here. In what 
follows, we assume that the starting positions of the rovers are pre-assigned. 

2.3.1.2 Interaction 
The interaction between the rovers can lead to either cooperation or interference. In order to 
promote cooperation, the rovers can actively communicate with each other and decide 
among themselves on how to split up the terrain to make the collection process most 
efficient. Alternatively, a central supervisor or mission planner can make all these decisions 
beforehand and predetermine the rover’s sample collection path. We expect that the 
performance of multiple rovers with interaction and cooperation is better than that of 
multiple rovers operating independently. 

2.3.1.3 Centralized vs. Autonomous Operation 
The distinction between the centralized and autonomous operations depends on information 
utilization. In the centralized operation, all the information about the terrain including sample 
locations is known beforehand. This information is analyzed and the optimum paths for the 
rovers are predetermined. This is a simplified version of the real-world scenario. In practical 
situations, the terrain details as well as the rock and soil-sample locations are not completely 
known, hence autonomous operation would be more desirable. Here, each rover must rely on 
its vision system to examine the surrounding terrain and to detect samples. Since the range of 
view of the rover is limited, cooperation between the rovers is more desirable. Using the data 
from its vision system, each rover would then plan its own optimum path while keeping in 
communication with the other rovers for promoting cooperation and avoiding interference. 
The autonomous operation could account for inaccuracies or uncertainties in the rover’s 
terrain information. In what follows, we consider only the centralized operation. 

2.3.2. Centralized Operation 
The multiple rover case is similar to the single rover case when the rovers are placed far 
apart. Since there is little or no interaction, the problem can be reduced to one involving 
separate single rover cases. When the rovers are placed close enough such that interaction 
occurs, a new approach to the problem must be developed. We shall consider several 
different sample collection strategies for m rovers with given initial starting positions and 
sample distributions. 

2.3.2.1 Best Route First 
Here, we solve the single rover case for each rover and compute the optimal tours. We 
search for the rover whose tour has the highest mission return function value and keep only 
that tour. The tour is assigned to that rover and its collected samples are removed from the 
terrain. The process is repeated for the remaining rovers until a tour has been assigned to 
each rover. The drawbacks with this strategy include long computation time, especially for a 
large number of rovers and samples. Moreover, the tour value of each successive rover is 
less than that of the preceding rover in the iteration process.  
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Let
AΓ  denote the set of all admissible paths, and Λ A  the corresponding set of sample lists. 

Once we have performed the maximization for each admissible path, the optimal sample list 
o
ssL  is found by taking the path and sample list that maximizes the mission return function, 
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The optimal path oΓ  is the path associated with ,o
ssL  and the optimal tour is oT  = ( oΓ , o

ssL ).
The optimal sample collection path generally depends on the initial starting position of the 
rover. Intuitively, we would like to place the rover as close as possible to the highest-valued 
samples. Since the distributions of the samples are known, we could also maximize the 
mission return function with respect to the starting position. But in practical situations, the 
starting position cannot be specified precisely. Moreover, the sample distributions are not 
known beforehand. 

2.3. Multiple Rover Case 
In the multiple rover case, it is necessary to introduce a few additional notions. 

2.3.1. Operational Considerations 

2.3.1.1 Starting positions 
First, let us consider the attainable set of each rover corresponding to a given initial starting 
position at time 0t = . If the maximal attainable sets of two or more rovers overlap, then a 
decision has to be made on the assignment of rovers to cover the overlapping region. This 
decision can be made either by the mission planner (centralized operation) or by the rovers 
themselves (autonomous operation). 
As in the single rover case, the choice of starting positions is an important issue. If the rovers 
are placed too close together, they could interfere with each other’s collection tasks. If the 
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rovers are placed too far apart, then there is little cooperation among them since the 
overlapping region is small. Therefore, it is desirable to place the rovers such that a balance 
between cooperation and interference can be reached. The problem of finding the optimum 
starting positions for m rovers, with or without a priori knowledge of the sample 
distributions, is an interesting one. This problem will not be considered here. In what 
follows, we assume that the starting positions of the rovers are pre-assigned. 

2.3.1.2 Interaction 
The interaction between the rovers can lead to either cooperation or interference. In order to 
promote cooperation, the rovers can actively communicate with each other and decide 
among themselves on how to split up the terrain to make the collection process most 
efficient. Alternatively, a central supervisor or mission planner can make all these decisions 
beforehand and predetermine the rover’s sample collection path. We expect that the 
performance of multiple rovers with interaction and cooperation is better than that of 
multiple rovers operating independently. 

2.3.1.3 Centralized vs. Autonomous Operation 
The distinction between the centralized and autonomous operations depends on information 
utilization. In the centralized operation, all the information about the terrain including sample 
locations is known beforehand. This information is analyzed and the optimum paths for the 
rovers are predetermined. This is a simplified version of the real-world scenario. In practical 
situations, the terrain details as well as the rock and soil-sample locations are not completely 
known, hence autonomous operation would be more desirable. Here, each rover must rely on 
its vision system to examine the surrounding terrain and to detect samples. Since the range of 
view of the rover is limited, cooperation between the rovers is more desirable. Using the data 
from its vision system, each rover would then plan its own optimum path while keeping in 
communication with the other rovers for promoting cooperation and avoiding interference. 
The autonomous operation could account for inaccuracies or uncertainties in the rover’s 
terrain information. In what follows, we consider only the centralized operation. 

2.3.2. Centralized Operation 
The multiple rover case is similar to the single rover case when the rovers are placed far 
apart. Since there is little or no interaction, the problem can be reduced to one involving 
separate single rover cases. When the rovers are placed close enough such that interaction 
occurs, a new approach to the problem must be developed. We shall consider several 
different sample collection strategies for m rovers with given initial starting positions and 
sample distributions. 

2.3.2.1 Best Route First 
Here, we solve the single rover case for each rover and compute the optimal tours. We 
search for the rover whose tour has the highest mission return function value and keep only 
that tour. The tour is assigned to that rover and its collected samples are removed from the 
terrain. The process is repeated for the remaining rovers until a tour has been assigned to 
each rover. The drawbacks with this strategy include long computation time, especially for a 
large number of rovers and samples. Moreover, the tour value of each successive rover is 
less than that of the preceding rover in the iteration process.  
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2.3.2.2 Partition of Overlapping Attainable Set: Closest Rover 
The maximal attainable sets of the m rovers are examined and the terrain is divided into 
overlapping and non-overlapping regions. The overlapping region includes all points on the 
terrain that can be reached by more than one rover within the given mission time limit. 
Since each sample in the overlapping region can be assigned to only one rover, the set of 
samples in the overlapping region must be partitioned according to some given criteria. 
Here, the samples in the overlapping region are each assigned to one of the rovers based on 
the distance from the sample’s position to each rover’s starting position. The rover whose 
starting position is closest to the sample’s position is assigned to collect that sample. Once 
the partitioning of the samples in the overlapping region is completed, the problem reduces 
to m single rover problems with each rover limited to a subset of the collectable samples. 
However, a rover may be assigned more samples than it can collect within the prescribed 
mission time limit. In that case, after determining the rover’s tour, the uncollected samples 
are passed on to the other rovers for consideration. 

2.3.2.3 Partition of Overlapping Attainable Set: Closest Path 
This strategy is similar to the previous one except that the criterion for partitioning samples in 
the overlapping region of the maximal attainable sets is different. The samples in the 
overlapping region are assigned to one of the rovers based on the distance from the sample’s 
position to each rover’s preliminary path (a path planned before the overlapping region is taken 
into account). The rover whose preliminary path comes the closest to the sample’s position is 
assigned to collect that sample. This criterion makes the sample collection task easier, since it 
involves only a slight deviation from the preliminary path. Again, if a rover cannot collect all of 
its assigned samples, the uncollected samples are passed on to the other rovers.  
One possible modification is to insert the sample into the preliminary path when 
considering the subsequent samples in the overlapping region. This may result in a better 
partitioning of the overlapping region. For simplicity, this is not done in this work. Rather, 
when considering other samples, we use the original preliminary path. In what follows, 
only the “Partition of Overlapping Attainable Set: Closest Path” strategy will be considered. 

2.3.3. Definitions 
The sample collection path for rover j  is 

jΓ  and is associated with a collectible sample set 

,ss jC . Each path 
jΓ  is represented by an ordered set of points that will be denoted by 

jS ˆ⊂ Ω . This set may include repeated points. Let the sample distribution be denoted by 

( )ss ssD D x= , and the entire set of sample indices by 
ssE .

The attainable set of rover j at a particular time t, starting from an initial point 
0, jx ∈ Ω̂  at 

0t ,

is denoted by 
0 0( ; , )j t x tA ⊂ Γ̂ . Successive points along the admissible path 

jΓ  will be 

restricted to this attainable set. The attainable set of rover j  associated with the maximum 

mission time maxτ  is denoted by 
max, jA  = 

max 0 0( ; , )j x tτA . This attainable set 
max, jA  is the 

maximum attainable set of rover j .

The spatial domain Ω̂  is partitioned into sub-regions based on the maximal attainable sets 
max,1 max,,..., mA A . Let Ŷ ∈ Ŝ  denote the set of points in the overlapping region of the maximal 
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attainable sets. (i.e. All points in Ŷ  can be reached by more than one rover.) Let 
jM  = 

max, jA  - (
max, jA Ŷ∩ ) be the sub-region of the spatial domain that can only be reached by 

rover j. The set of sample indices in the overlapping region will be denoted by 
ssI ∈ ssE .

The sample indices in each sub-region 
jM  are denoted by 

,ss j ⊂F ssE .

2.3.4 Problem Formulation 
There are many possible formulations of the optimal path-planning problem for sample 
collection involving multiple rovers. We give one such formulation. 

2.3.4.1 Problem P2 
Given the approximate planetary surface ˆ

fG ; m rovers with initial starting points 
0,1 0,,..., mx x ;

mission time limit maxτ ; sample analysis time waitτ ; sample index set 
ssE ; samples kσ  with 

values kλ , ssk ∈E ; and sample distribution ( )ss ssD D x= , find optimal tours 
1 ,...,o o

mT T  (each 

with path 
o
jΓ  and sample list ,ssopt jL ) that maximize the mission return function 

,

,1 ,
1

( ,..., ) .
ss j

m

ss ss m k
j k

V λ
= ∈

=
L

L L  (10) 

Consider the “Partition of Overlapping Attainable Set: Closest Path” strategy for finding the 
optimal tours. We need to first partition the terrain into sub-regions based on the maximal 
attainable sets. By considering the terrain without including the overlapping region Ŷ , we 
can solve m single rover problems: “Rover 1 starting at 0,1x  with sub-domain

1M  “ to “Rover 

m starting at 0,mx  with sub-domain mM .” For each rover j , we maximize the mission return 
function

,

,( )
ss j

ss j k
k

V λ
∈

=
L

L  (11) 

over the sub-domain 
jM  and the corresponding set of sample indices 

,ss jF . From these m

single rover problems, we obtain m tours 
,( , ),i i ss i= ΓT L 1,..., .i m=  These tours are not 

optimal since we have not yet considered the samples in the overlapping region. 
Next, we consider each sample in the overlapping region Ŷ . For each sample with index 

,ssk ∈I we find the rover j whose path 
jΓ  (with path point set 

jS ) is closest to the sample. 

We minimize
( ) min min ( , ( )) ( , ( ))

j
p i i ij x

d x x f x x f x
∈

= −
S

 (12) 

i th respect to ix , the spatial coordinate of the ith sample in the overlapping region. The 
rover j that minimizes this function is assigned to collect the sample at ix . This is repeated 
for all the samples in the overlapping region. After the assigning of the samples in the 
overlapping region, each rover j has a new set of samples to collect from. This new set of 
sample indices is denoted by '

,ss jF .

Now, we repeat solving m single rover problems with each rover j limited to the sample set 
'

,ss jF . The resulting tours are near-optimal. 
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Since each sample in the overlapping region can be assigned to only one rover, the set of 
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starting position is closest to the sample’s position is assigned to collect that sample. Once 
the partitioning of the samples in the overlapping region is completed, the problem reduces 
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However, a rover may be assigned more samples than it can collect within the prescribed 
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overlapping region are assigned to one of the rovers based on the distance from the sample’s 
position to each rover’s preliminary path (a path planned before the overlapping region is taken 
into account). The rover whose preliminary path comes the closest to the sample’s position is 
assigned to collect that sample. This criterion makes the sample collection task easier, since it 
involves only a slight deviation from the preliminary path. Again, if a rover cannot collect all of 
its assigned samples, the uncollected samples are passed on to the other rovers.  
One possible modification is to insert the sample into the preliminary path when 
considering the subsequent samples in the overlapping region. This may result in a better 
partitioning of the overlapping region. For simplicity, this is not done in this work. Rather, 
when considering other samples, we use the original preliminary path. In what follows, 
only the “Partition of Overlapping Attainable Set: Closest Path” strategy will be considered. 

2.3.3. Definitions 
The sample collection path for rover j  is 

jΓ  and is associated with a collectible sample set 
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jΓ  is represented by an ordered set of points that will be denoted by 

jS ˆ⊂ Ω . This set may include repeated points. Let the sample distribution be denoted by 

( )ss ssD D x= , and the entire set of sample indices by 
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is denoted by 
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max,1 max,,..., mA A . Let Ŷ ∈ Ŝ  denote the set of points in the overlapping region of the maximal 

Optimal Path Planning of Multiple Mobile Robots for Sample Collection on a Planetary Surface 615

attainable sets. (i.e. All points in Ŷ  can be reached by more than one rover.) Let 
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rover j. The set of sample indices in the overlapping region will be denoted by 
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jM  are denoted by 
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i th respect to ix , the spatial coordinate of the ith sample in the overlapping region. The 
rover j that minimizes this function is assigned to collect the sample at ix . This is repeated 
for all the samples in the overlapping region. After the assigning of the samples in the 
overlapping region, each rover j has a new set of samples to collect from. This new set of 
sample indices is denoted by '

,ss jF .

Now, we repeat solving m single rover problems with each rover j limited to the sample set 
'

,ss jF . The resulting tours are near-optimal. 
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2.4 Sample Collection Problem 
The Sample Collection Problem (SCP) is an instance of the well-known Traveling Salesman 
Problem (TSP). A brief discussion of the TSP can be found in Appendix A. In the TSP, the 
problem is to find a path that visits all the nodes with minimum total traveling distance. In 
the SCP, the problem is to find a path that maximizes the value of the nodes visited within a 
specified maximum mission time limit. The differences between the TSP and the SCP are: (i) 
the TSP begins and ends at the same node while the SCP can end anywhere, (ii) the SCP has 
a waiting time associated with picking up a sample to account for the sample analysis time, 
(iii) the samples have different values, so different payoffs are associated with different 
nodes, (iv) instead of finding the minimum total distance, the SCP tries to maximize the 
value of all the collected samples, and (v) not all the nodes need to be visited. These 
modifications make the SCP a much more complex problem to solve than the original TSP, 
which is known to be NP-hard. 
The heuristic used in solving the SCP is the maximum-value heuristic, which is similar to 
the minimum-distance heuristic used in solving the TSP. Instead of minimizing the total 
distance traveled, the maximum-value heuristic calls for maximizing the value of a 
weighting function that takes into account the value of each sample as well as the distance. 
At a given position ix , the weighting function is used to decide on the next sample to collect. 

3. Algorithms 
As mentioned in Sec. 2.1.1, we only consider the rover’s mass m, maximum traversable 
slope (or tilt) maxθ , maximum velocity maxν , and maximum power maxP . The samples consist 
of three different types, each type with a corresponding value (1, 3, or 9) representing its 
relative worth to geologists studying the planetary surface. The samples are randomly 
distributed on the terrain in the following way. The terrain is first divided into sub-regions 
and each sub-region j is assigned a weight ,i jW  for each sample type i such that  
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where the ceiling function C(v) rounds v to the integer v. Once the number of each sample 
type for each sub-region is given, the samples are uniformly distributed within that sub-
region. Multiple samples are allowed to occupy the same spatial point. If a certain type of 
sample is collected, the values of the other samples of that type are not affected. This may be 
different from the real scenario where once one sample type has been collected; there is no 
need to find other samples of that type. 
Starting from the rovers’ initial positions, the maximal attainable sets corresponding to 
the mission time limit maxτ are computed. These maximal attainable sets represent the 
maximum range of each rover when no samples are collected. As the maximal attainable 
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sets are computed, the best path to each point on the terrain is stored. All possible paths 
from the starting point are explored. We examine one path at a time and follow it until 
time expires. As the path reaches each point, we do the following: If this is the first time a 
path has reached this point, the traveling time to the point is stored. If this is not the first 
time, the traveling time to the point by the current path is compared to the previously 
stored time. If the current time is less than the stored time, the current time replaces the 
stored time. The point may be reached many more times as other paths are tried and the 
best time is always kept. In this way, the best times to each point are stored as the 
computation progresses. 
In order to retrace a path given the starting and terminal points, we introduce the 
“previous path point” variable. Whenever the best time for a path point is stored, the 
path point the rover came from (or previous path point) is also stored. Therefore, by 
going from a previous path point to the previous path point, the path can be retraced. 
This method saves memory space, since only one previous path point variable has to 
be stored for each attainable point on the terrain instead of an entire list of path 
points.

Fig. 1. Plot of the weighting function. 

The set of best times (TimeMatrix), previous path points (PMatrix), and maximal 
attainable set (AMatrix) for each starting point are saved as Path Planning Data Sets 
(PPDS), which depends on the starting point and the maximum mission time. This 
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pre-computation saves time later when solving the SCP. The PPDS starting at each 
sample are also computed, which is the most time-consuming operation in the 
program.
Since considering all possible admissible paths is time consuming and memory 
intensive, an approximate solution is obtained by applying the “maximum-value 
heuristic” and “3-opt switching” to solve the SCP. The “maximum-value heuristic” is 
almost a “greedy” heuristic, which ignores all the samples except for the highest-valued 
ones.
The “maximum-value heuristic” is based on a weighting function that weights each sample 
based on its value and its distance from the starting point. Sample kσ  with value kλ  from a 
point 0x  is given and 0( , )kxτ σ  (the time it takes to get from point 0x  to sample kσ ). We 
define the weighting function as  

0
0

0

,    if ( , ) 0;
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We collect the sample that maximizes this weighting function. The value for  in (15) is 
determined by setting the value of a sample 1 meter away from x0 to be 3/4 of the kλ  value. 
In Figure 1, the weighting function for  = 13.5 and different values of kλ are plotted with 

0( , )kxτ σ  as a variable. 
The algorithm also looks ahead two steps and maximizes the weighting function for the 
next two samples to collect, as well as taking into account the remaining mission time. 
Looking ahead two steps helps steer the rover toward the higher concentrations of samples. 
Let , , 1( , )i k i i iW λ τ −  be the weighting function value for the ith step, with sample ik  and where 

, 1i iτ −  is the time required to traverse from step i – 1 to step i. The algorithm weights the 
second step a fraction 1/  of the value of the first step. The algorithm maximizes the 
function

1 ,1 1,0 2 ,2 2,1
1( , ) ( , )tot k kW W Wλ τ λ τ
β

= +  (16) 

with respect to 1,0τ  and 2,1τ  satisfying 

1,0 2,1 max( ) ( ) ,wait waitτ τ τ τ τ+ + + ≤  (17) 

where 1,0τ  is the time to reach sample 1k  from the starting position 0x , and 2,1τ  is the time to 
reach sample k2 from sample k1. In our case studies, the value for  is found by setting 

1 1 2(9,250) (1,500) (1/ ) (9,0)W W Wβ> + . The value of 500 for the time length was chosen since it 
is equal to the maximum mission time used for the flat terrain experimental case. The 
calculated value is 20β ≈ .
After the list of collected samples has been determined, we apply “3-opt switching” (see 
Appendix A3) to obtain a more time-efficient solution. Then, we determine whether 
more samples can be collected. If so, the “3-opt switching” is performed again, 
repeatedly as necessary. The resulting tour is locally optimized, but is not necessarily 
optimal. 
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Fig. 2. Flow chart for the single rover case. 

3.1 Single Rover Case 
Starting from an initial point 0x  and a list of sample indices 

ssE , an admissible tour 
aT

(with path 
aΓ  and sample list 

ssaL ) is composed by using the “maximum value heuristic” 
that looks ahead two steps. This tour is subject to the time constraint (6), i.e.  

max ,am i wait
i

nτ τ τ τ= + ⋅ ≤  (18) 

where amτ  is the elapsed mission time for the admissible tour and n is the number of 
samples in 

ssaL .

Next, “3-opt switching” is applied to the sample list ssaL  to determine if the same 
samples can be collected in less time. Each remaining uncollected sample is then 
considered to determine if it can be collected and analyzed within the remaining mission 
time. We collect the remaining sample with the highest weighting function value that still 
satisfies the mission time constraint. Every time an additional sample is added to the 
sample list ssaL , “3-opt switching” is applied. This process is repeated until the list is 
unchanged through one iteration. The resulting tour is locally optimized, but not 
necessarily optimal. 
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 Fig. 3. Flow chart for the multiple rover case. 

3.2 Multiple Rover Case 
In the multiple rover cases, we assign the samples in the overlapping region to the rover 
whose preliminary path is closest to the sample as discussed in Sec. 2.2.1. Let 2m ≥  be the 
number of rovers. Each rover’s preliminary path is found by removing the samples in the 
overlapping region and solving the SCP for each rover. To reduce the computation time, 
only the collected samples along the path are used instead of every point along the path 
when computing the distance to the samples in the overlapping region. If jσ  is the sample 
in the overlapping region in question, the distance from 

jσ  to rover i ‘s path, denoted by 

,i jδ , is found according to: 

, min ( , ( )) ( , ( )) ,
k

i j j j k kx
x f x x f xδ = −

where kx  is the position of sample kσ ∈ ssaL , and jx  is the position of soil sample jσ  in the 
overlapping region Ŷ . After partitioning the overlapping region, each rover has its own 
assigned set of samples to collect, and each sample can only be assigned to one rover at a 
time.
After partitioning the samples in the overlapping region among the rovers, the multiple 
rover case reduces to solving m single rover cases. After the first rover’s tour is 
determined, we assign its uncollected samples to the next rover, since considering this 
extra set of samples may result in a better tour for the second rover. Similarly, after each 
rover’s tour is computed, the uncollected samples are always passed on for the next 
rover to consider. After the m th rover’s tour is determined, its uncollected samples are 
passed back to the first rover and all the tours are computed again. For the one-, two-, 
and four-rover cases, this loop-back only occurs once. In the eight-rover case, the loop-
back occurs twice. This ensures that each rover has a chance to consider all the 
uncollected samples. 
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One additional note is that collision avoidance was not implemented. Adding this consideration 
would further complicate the path-planning algorithm and may not be useful at this point, since 
each rover is assumed to be a point mass in this study. In the real-life scenario, collision 
avoidance must be included and the dimensions of the rover must be taken into account. 

4. Case Study 
In this study, real Mars terrain data obtained from the Mars Orbiter Laser Altimeter (MOLA) 
Science Investigation are used. The terrain area chosen is relatively flat with a high plateau. 
The terrain is assumed to be smooth. Delaunay triangulation is used to create a 24 × 24 m2

mesh for approximating the terrain. From this point on, terrain is used to refer to the 
approximated version of the Mars data.  

4.1 Flat Terrain 
First, we consider the case of a flat 24 × 24 m2 terrain after Delaunay triangulation, shown in 
Fig. 4. This case provides a test of the path-planning algorithm under idealized conditions. 
Here, each node on the terrain is labeled from 1 to 576, starting from the bottom left corner 
and moving up the vertical axis. This label will be referred to as the x-reference.

Fig. 4. Flat terrain after Delaunay triangulation. 

The parameter values for the 24 × 24 m2 flat terrain case are given in Table 1. They include 
the rover vehicle and mission specifications based on the NASA/JPL FIDO rover. Based on 
these data, the rover is capable of traveling a distance of 1 m in 17.99 seconds. These values 
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have been chosen to expedite the computer simulations and although they may exceed the 
actual attainable values, they can be scaled accordingly.  

Table 1. Rover variables, flat terrain case. 

The starting position is set at one of the four corners of the terrain. The maximal attainable 
sets corresponding to the maximum mission time maxτ  = 500 seconds starting from each of 
the four corner points are shown in Fig. 5. The maximal attainable set for each corner can 
cover most of the terrain, and the union of the maximal attainable sets starting from all four 
corner points is the entire surface. Thus, it is possible to produce a sufficiently large number 
of paths for single and multiple rovers. 

Fig. 5. Maximal attainable sets for the four different starting positions for the flat terrain, 
single rover case.  
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On this surface, we distribute 45 samples, as shown in Fig. 6. The samples are distributed by first 
dividing the terrain into five distinct regions. Each region is assigned a weight for each of three 
sample types. These weights are used to determine how many samples of each type to assign to 
each region. Once the number of samples for each region and type are determined, the samples are 
distributed uniformly. Samples are allowed to occupy the same spatial point on the terrain. There 
are three sample types with values 1, 4, and 9. The sample index numbers, x-references, and values 
are listed in Table 2. The soil samples with higher values have relatively smaller population. 

Fig.6. Sample distribution on 24 × 24 m2flat terrain. 

Table 2. Sample data for flat terrain case. 
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4.1.1 Single Rover Case 
For the single rover case, we consider four different starting positions at each of the four 
corners of the terrain. We then solve the SCP for each starting position by using the 
“maximum value heuristic” and “3-opt switching”. The resulting paths are given in Fig. 7. 
The sample collection lists are given in Table 3. The elapsed times for each vehicle are very 
close to the maximum mission time. We observe that there is a higher concentration of high-
valued samples in the upper region of the terrain, so it makes sense that the rovers starting 
in this area result in a higher value of the mission return function. Out of the four starting 
positions, the one starting at the top left ( 0 23x = ) gives the highest mission value with 

57.V =  A close examination of the decision process made by the rover for each step of the 
sample collection path is given in (Cardema et al, 2003). 

Fig.7. Four different starting positions for the flat terrain, single rover case. 

Table 3. Sample collection lists, flat terrain, single rover case. 
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Fig. 8. Paths for the flat terrain, eight-rover case. 

Table 4. Sample collection lists, flat terrain, eight-rover case. 

4.1.2 Eight-Rover Case 
The foregoing computations are also performed for two, four and eight-rover cases. For 
brevity, only the results for the eight-rover case are presented here. The results for other 
cases are described in (Cardema et al, 2003). In the eight-rover case, we try to employ a 
symmetric configuration for the rover starting positions to give each rover equal 
opportunity at sample collection. From Fig. 8, we observe that all the samples have been 
collected. 
If we take the best values from the single rover (V = 57), two-rover (V = 92), four-rover cases 
(V = 138), and eight-rover cases (V = 170), the plot of mission value versus the number of 
rovers is sub-linear. If we take the worst values from the single rover (V = 35), two-rover (V
= 71), four-rover (V = 138), and eight-rover (V = 170) cases, then the plot is close to linear, 
but diverges after four rovers. The plot of performance versus number of rovers is shown in 
Fig. 9. The linear projection shown in the figure is based on the lowest-valued single rover 
case.  
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valued samples in the upper region of the terrain, so it makes sense that the rovers starting 
in this area result in a higher value of the mission return function. Out of the four starting 
positions, the one starting at the top left ( 0 23x = ) gives the highest mission value with 

57.V =  A close examination of the decision process made by the rover for each step of the 
sample collection path is given in (Cardema et al, 2003). 

Fig.7. Four different starting positions for the flat terrain, single rover case. 

Table 3. Sample collection lists, flat terrain, single rover case. 
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Fig. 8. Paths for the flat terrain, eight-rover case. 

Table 4. Sample collection lists, flat terrain, eight-rover case. 

4.1.2 Eight-Rover Case 
The foregoing computations are also performed for two, four and eight-rover cases. For 
brevity, only the results for the eight-rover case are presented here. The results for other 
cases are described in (Cardema et al, 2003). In the eight-rover case, we try to employ a 
symmetric configuration for the rover starting positions to give each rover equal 
opportunity at sample collection. From Fig. 8, we observe that all the samples have been 
collected. 
If we take the best values from the single rover (V = 57), two-rover (V = 92), four-rover cases 
(V = 138), and eight-rover cases (V = 170), the plot of mission value versus the number of 
rovers is sub-linear. If we take the worst values from the single rover (V = 35), two-rover (V
= 71), four-rover (V = 138), and eight-rover (V = 170) cases, then the plot is close to linear, 
but diverges after four rovers. The plot of performance versus number of rovers is shown in 
Fig. 9. The linear projection shown in the figure is based on the lowest-valued single rover 
case.  
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Fig.9. Performance vs. number of rovers, flat terrain case. 

4.2. Mars Terrain 
We now consider a 24 × 24 m2 section of Mars terrain data obtained from the Mars Orbiter 
Laser Altimeter (MOLA) Science Investigation. This region is located near the Valles 
Marineris. It is chosen since the surface is smooth enough to facilitate rover movement, but 
has surface variations to provide an interesting example. The terrain is shown in Fig. 10. We 
define this as a 24 × 24 m2 section, although the actual dimensions are much larger. The 
height has also been scaled down to facilitate rover movement. This is meant to be an 
illustrative example rather than a realistic one. The variables for the Mars terrain case are 
identical to those in Table 1, except here the maximum mission time maxτ  is 720 seconds. 

Fig.10. Mars terrain after Delaunay triangulation. 

Optimal Path Planning of Multiple Mobile Robots for Sample Collection on a Planetary Surface 627

The four possible starting positions along with the maximal attainable sets based on the 
maximum mission time maxτ  = 720 seconds are shown in Fig. 11. The mission time has been 
extended from the flat case so that the maximal attainable sets overlap, but the starting 
positions remain the same. The overlapping region of the maximal attainable sets of the four 
rovers is shown in Fig. 12. The overlapping region is the set of all points that can be reached 
by two or more rovers. In this case, the overlapping region covers the entire area. 

Fig.11. Maximal attainable sets for the four different starting positions for the Mars terrain, 
single rover case. 

Fig. 12. Overlapping regions of the Mars terrain case. 
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On this surface, we distribute 45 samples, as shown in Fig. 13. The samples are distributed 
in the same way as in the flat terrain case. The index numbers, x-references, and values of 
the samples are listed in Table 5. 

Fig.13. Sample distribution on Mars terrain. 

Table 5. Sample data for Mars terrain case. 

4.2.1 Single Rover Case 
For the single rover case, we consider four different starting positions and solve the SCP for 
each location by using the “maximum value heuristic” and “3-opt switching”. The resulting 
graphs are given in Fig. 14. The sample collection lists are given in Table 6. Note that the 
rovers’ paths tend to lie in the valleys and on the flatter regions. Out of these starting 
positions, the one starting at 

0x  = 432 gives the highest mission value 32V = .
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Fig. 14. Paths for four different starting positions for the Mars terrain, single rover case. 

Table 6. Sample collection lists, Mars terrain, single rover case. 

Fig. 15. Paths for Mars terrain, eight rover case. 
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Table 7. Sample collection lists, Mars terrain, eight-rover case. 

Fig. 16. Performance vs. number of rovers, Mars Terrain case. 

4.2.2 Eight-Rover Case 
Again, as in the flat terrain case, we only present results for the eight-rover case. 
The sample collection lists are given in Table 7. The results for two and four-rover 
cases are given in (Cardema et al, 2003). The starting positions in the Mars terrain 
for the eight-rover case are the same as those in the flat terrain case. All the samples 
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except for 8σ  ( 8λ  = 1) have been collected. One high-valued sample in particular, 

27σ  (
27λ  = 9), is only collected in this eight-rover case. This makes sense since the 

sample is located close to the highest peak. The rover starting at 0 1x =  spends a long 
time climbing up to collect 27σ  and only collects four samples as a result. Note that 
the rover starting at 0 553x =  only collects three samples and has a very short 
mission time of 335.96 sec, although several high-valued samples are easily within 
reach. The algorithm does not try to distribute the task evenly, which may be a 
hindrance to higher performance. However, the results provide some insight on the 
nature of solutions to the SCP for multiple rovers. If we take the best values from 
the single rover (V = 43), two-rover (V = 84), four-rover (V = 136), and eight-rover 
cases (V = 169), the plot of mission value versus the number of rovers is sub-linear. 
If we take the worst values from the single rover (V = 37), two-rover (V = 72), four-
rover (V = 136), and eight-rover cases (V = 169), the plot is again close to linear 
when the number of rovers is less than 4. Note that the spacing between the upper 
and lower bounds in the Mars terrain case is smaller than that of the flat terrain 
case. 
When examining the performance versus the number of rovers, it makes sense that the 
graph is near-linear or sub-linear, since once the best path for the first rover has been 
found; there is not much room for improvement. In Fig 17, we observe that the flat 
terrain and Mars terrain results are near-linear or sub-linear and they are also very 
similar. The spacing between the upper and lower bounds for the Mars terrain is smaller 
than that of the flat terrain. This is due to the longer traveling times between samples in 
the Mars terrain case. The relatively close spacing of the rovers in our examples helps to 
ensure that nearly all the samples of interest are collected within the elapsed mission 
time, but may not be the best placement for obtaining high values for the mission return 
function. If higher values are desired, it may be better to have no interaction at all. In 
that case, the rovers are deployed in different areas resulting in independent single-rover 
cases. Since the rovers are not competing for the same high-valued soil samples, the 
resulting values for the mission return function may be higher than in the case where the 
rovers cooperate. 

5. Remarks on Further Studies 

The approach to optimal path planning studied here is an initial but nonetheless essential 
step toward the long-term goal of developing autonomous rovers that are capable of 
analyzing sensory data and selecting the optimal path to take based on autonomous 
assessment of the relative scientific value of the possible sampling sites in rovers’ field of 
view. Such a scientific-value-driven autonomous navigation capability presents formidable 
challenges in autonomous rover development. One of the key challenges is how to assign 
relative scientific value to possible samples using data from the onboard sensors, and 
update the values on the basis of information that has been gathered at previous scientific 
sites. Sample selection is done very well by scientists on the ground, based on their 
extensive experience in field geology, but capturing their expertise in a set of algorithms is 
difficult.
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Fig. 17. Performance vs. number of rovers. 

There have been some interesting studies aimed at selecting geological sampling sites 
and performing data acquisition autonomously, such as those performed by (Pedersen 
et al, 2001) and by (Huntsberger et al, 2002). But this area of study is in its infancy, and 
it will take some time to mature to the point that it can be considered for operational 
rovers. When it does become possible for rovers to automatically select the soil 
samples of interest, the path-planning problem will become a closed-loop process. 
When the rover initializes, it will perform a sensor scan of the surrounding area to 
create a three-dimensional terrain map, locate potential soil samples, evaluate their 
relative values, and formulate an initial path. As the rover navigates through the 
terrain, it can update its plan as it discovers new soil samples or alters the value of 
already detected ones. Mission performance will depend on the quality of the sensors, 
which affects the maximum detection range, sample localization, and accuracy of 
sample valuation. 
The metric used in this study for mission performance was the total value of the collected 
soil samples. Instead of using the total sample value, other objectives could include 
minimizing the total collection time of a given number of samples, maximizing the 
probabilities of detecting interesting samples, or maximizing the total coverage of a given 
area.
During the past and on-going Mars missions, rovers typically received a new set of 
instructions sent daily from scientists and engineers on Earth. The rover was expected to 
move over a given distance, position itself with respect to a target, and deploy its 
instruments to take close-up pictures and analyze the minerals or composition of rocks and 
soil. For operational scenarios involving multiple rovers as considered in this study, the 
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above-mentioned challenges become even more formidable because of the need for 
coordinated path planning and execution.  
The use of multiple rovers to aid sample collection leads to new interesting problems. 
In the MER mission, two rovers were used, but they were deployed in two separate 
locations. Consequently, the path-planning problem reduces essentially to two single-
rover path-planning problems. In this work, we have begun to develop cooperative 
path-planning algorithms for interacting multiple rovers using our “best path first” and 
“partition of overlapping sets” heuristics. But this approach can also be viewed as the 
decomposition of the multiple-rover path-planning problem into multiple single-rover 
ones. Cooperative algorithms could be used instead. If the process is to be automated, 
communication between the rovers is critical in updating each one’s knowledge of the 
terrain and soil samples. Each rover receives updates from the others, recomputes its 
optimum path, and makes adjustments as necessary. There are many issues to be 
resolved. A basic issue is to determine how close should the rovers be for maximum 
operational efficiency. Evidently, they should be sufficiently close so that the 
information they collect are relevant to the others, but not close enough to interfere 
with each other’s actions. Another issue is to determine how should the tasks be 
divided. One can imagine a strategy where the rovers with different capabilities can be 
used for specialized functions, such as using a small fast rover only for gathering 
information about the terrain. This information is then relayed to the larger, more 
equipped rovers to perform the sample collection. The strategy used will depend on the 
mission objective (e.g. maximum value of soil samples collected versus maximum area 
covered by the rovers). Once the objective and strategy for multiple rovers have been 
determined, another interesting sub-problem is to find the optimal number of rovers to 
use. 
The study of the multiple-rover problem would be similar to the work outlined here. 
Models would be developed to describe the planetary surface, each rover’s dynamics, and 
the sensor capabilities and operation. A general framework should be implemented to serve 
as a test-bed for various multiple rover objectives and strategies, allowing for case studies 
involving different algorithms, sensor properties, surface conditions, and the number and 
types of rovers used. 
The solution of the Sample Collection Problem (modified Traveling Salesman Problem) 
for both single and multiple rovers also presents some room for improvement. Besides 
the heuristic methods presented here, additional methods that could be explored 
include simulated annealing, genetic algorithms or other global optimization 
techniques. 

6. Conclusion
In this work, we gave mathematical formulations of the sample collection problem for 
single and multiple robots as optimization problems. These problems are more complex 
than the well-known NP-hard Traveling Salesman Problem. In order to gain some insight 
on the nature of the solutions, algorithms are developed for solving simplified versions of 
these problems. This study has been devoted to centralized operation. If communication 
between the rovers is considered, as in autonomous operation, the nature of the result 
will be different. The problem posed here is simplified to facilitate mathematical 
formulation. To determine whether the strategies and algorithms discussed in this paper 
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can be applied to practical situations, extensive testing must be done with actual rovers 
on various terrains. The formulation presented in this paper could be used as a 
framework for future studies. In particular, the autonomous case discussed briefly in this 
paper deserves further study. 

7. Appendix
Traveling Salesman Problem:
The problem of soil sample collection is an instance of the well-known Traveling Salesman 
Problem (TSP). In this problem, a traveling salesman is required to visit n cities before 
returning home (Evans & Minieka, 1992). He would like to plan his trip so that the total 
distance traveled is as small as possible. Let G be a graph that contains the vertices that 
correspond to the cities on the traveling salesman’s route, and the arcs correspond to the 
connections between two cities. A cycle that includes each city in G at least once is called a 
salesman cycle. A cycle that includes each city in G exactly once is called a Hamiltonian cycle
or traveling salesman tours. The TSP is NP-hard since the solution time increases 
exponentially with the number of cities n. Although there does not exist efficient algorithms 
to solve the TSP, it is nevertheless studied in depth because of its simplicity. For small 
values of n, each possible route can be enumerated and the one with the least total distance 
is the exact optimum solution. For large n, it becomes time-consuming and memory-
intensive to enumerate each possibility. Thus, it becomes necessary to make use of heuristics 
to obtain near-optimal solutions. A few tour construction heuristics are described briefly in 
the sequel. 

A1. Nearest-neighbor heuristic
Let ( , )d x y  denote the distance between cities x and y and. In this heuristic, we begin at 

the starting point 0x  and find the next city 1x  such that 0 1( , )d x x is minimized. Then, 
from 1x , find the next nearest neighbor 2x  that minimizes 1 2( , )d x x . We continue this 
process until all the cities have been visited. The last arc is from city nx  back to 0x ,
where n is the total number of cities visited. This heuristic rarely leads to the optimal 
solution. 

A2. Nearest-insertion heuristic 
Starting from 

0x , we choose the nearest city 
1x  and form the sub-tour 

0x 1 0x x→ → . At each 
iteration, find the city 

mx  not in the sub-tour but closest to the cities in the sub-tour that 
minimizes 

0 1 0 1( , ) ( , ) ( , )m md x x d x x d x x+ − . Then 
mx  is inserted between 

0x  and 1x . This 
insertion process is repeated with the next closest city and continued until all the cities have 
been visited. This method slowly builds on the original sub-tour by minimizing the distance 
added at each iteration. 

A3. k-opt tour improvement heuristics 
Given a traveling salesman tour, a k-opt tour improvement heuristic will change the 
ordering of up to k cities to find a more optimal solution. For example, if the original tour 
of 4 cities is 1-2-3-4-1, 2-opt switching will try all possible combinations of 2 switches (1-3-
2-4-1, 1-4-3-2-1, 1-2-4-3-1) and keep the tour with the smallest total distance. For k < n, the 
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k -opt heuristic will take less time to implement than enumerating all possible orderings 
of n cities. 
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can be applied to practical situations, extensive testing must be done with actual rovers 
on various terrains. The formulation presented in this paper could be used as a 
framework for future studies. In particular, the autonomous case discussed briefly in this 
paper deserves further study. 

7. Appendix
Traveling Salesman Problem:
The problem of soil sample collection is an instance of the well-known Traveling Salesman 
Problem (TSP). In this problem, a traveling salesman is required to visit n cities before 
returning home (Evans & Minieka, 1992). He would like to plan his trip so that the total 
distance traveled is as small as possible. Let G be a graph that contains the vertices that 
correspond to the cities on the traveling salesman’s route, and the arcs correspond to the 
connections between two cities. A cycle that includes each city in G at least once is called a 
salesman cycle. A cycle that includes each city in G exactly once is called a Hamiltonian cycle
or traveling salesman tours. The TSP is NP-hard since the solution time increases 
exponentially with the number of cities n. Although there does not exist efficient algorithms 
to solve the TSP, it is nevertheless studied in depth because of its simplicity. For small 
values of n, each possible route can be enumerated and the one with the least total distance 
is the exact optimum solution. For large n, it becomes time-consuming and memory-
intensive to enumerate each possibility. Thus, it becomes necessary to make use of heuristics 
to obtain near-optimal solutions. A few tour construction heuristics are described briefly in 
the sequel. 

A1. Nearest-neighbor heuristic
Let ( , )d x y  denote the distance between cities x and y and. In this heuristic, we begin at 

the starting point 0x  and find the next city 1x  such that 0 1( , )d x x is minimized. Then, 
from 1x , find the next nearest neighbor 2x  that minimizes 1 2( , )d x x . We continue this 
process until all the cities have been visited. The last arc is from city nx  back to 0x ,
where n is the total number of cities visited. This heuristic rarely leads to the optimal 
solution. 

A2. Nearest-insertion heuristic 
Starting from 

0x , we choose the nearest city 
1x  and form the sub-tour 

0x 1 0x x→ → . At each 
iteration, find the city 

mx  not in the sub-tour but closest to the cities in the sub-tour that 
minimizes 

0 1 0 1( , ) ( , ) ( , )m md x x d x x d x x+ − . Then 
mx  is inserted between 

0x  and 1x . This 
insertion process is repeated with the next closest city and continued until all the cities have 
been visited. This method slowly builds on the original sub-tour by minimizing the distance 
added at each iteration. 

A3. k-opt tour improvement heuristics 
Given a traveling salesman tour, a k-opt tour improvement heuristic will change the 
ordering of up to k cities to find a more optimal solution. For example, if the original tour 
of 4 cities is 1-2-3-4-1, 2-opt switching will try all possible combinations of 2 switches (1-3-
2-4-1, 1-4-3-2-1, 1-2-4-3-1) and keep the tour with the smallest total distance. For k < n, the 
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k -opt heuristic will take less time to implement than enumerating all possible orderings 
of n cities. 
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1. Introduction 
Collision avoidance is one of the essential pillars of a wheeled robotic system. A wheeled 
mobile robot (called mobile robot for conciseness henceforth) requires for effective 
functioning an integrated system of modules for (i) map building, (ii) localization, (iii) 
exploration, (iv) planning and (v) collision avoidance. Often (i) and (ii) are entailed to be 
done simultaneously by robots resulting in a vast array of literature under the category 
SLAM, simultaneous localization and mapping. In this chapter we focus on the aspect of 
collision avoidance specifically between multiple robots, the remaining themes being too 
vast to even get a brief mention here. 
We present a cooperative conflict resolution strategy between multiple robots 
through a purely velocity control mechanism (where robots do not change their 
directions) or by a direction control method. The conflict here is in the sense of 
multiple robots competing for the same space over an overlapping time window. 
Conflicts occur as robots navigate from one location to another while performing a 
certain task. Both the control mechanisms attack the conflict resolution problem at 
three levels, namely (i) individual, (ii) mutual and (iii) tertiary levels. At the 
individual level a single robot strives to avoid its current conflict without anticipating 
the conflicting robot to cooperate. At the mutual level a pair of robots experiencing a 
conflict mutually cooperates to resolve it. We also denote this as mutually 
cooperative phase or simply cooperative phase succinctly. At tertiary level a set of 
robots cooperate to avoid one or more conflicts amidst them. At the tertiary level a 
robot may not be experiencing a conflict but is still called upon to resolve a conflict 
experienced by other robots by modifying its velocity and (or) direction. This is also 
called as propagation phase in the chapter since conflicts are propagated to robots not 
involved in those. Conflicts are resolved by searching the velocity space in case of 
velocity control or orientation space in case of direction control and choosing those 
velocities or orientations that resolve those conflicts. At the individual level the 
search is restricted to the individual robot’s velocity or direction space; at the mutual 
level the search happens in the velocity or direction space of the robot pair 
experiencing the conflict and at tertiary levels the search occurs in the joint space of 
multiple robots. The term cooperative is not a misnomer for it helps in achieving the 
following capabilities: 
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1 Avoid collision conflicts in a manner that conflicting agents do not come too near 
while avoiding one and another whenever possible. Thus agents take action in a 
fashion that benefits one another apart from avoiding collisions. 

2 Provides a means of avoiding conflicts in situations where a single agent is unable 
to resolve the conflict individually. 

3 Serves as a pointer to areas in the possible space of solutions where a search for 
solution is likely to be most fruitful. 

The resolution scheme proposed here is particularly suitable where it is not feasible to have 
a-priori the plans and locations of all other robots, robots can broadcast information 
between one another only within a specified communication distance and a robot is 
restricted in its ability to react to collision conflicts that occur outside of a specified time 
interval called the reaction time interval. Simulation results involving several mobile robots 
are presented to indicate the efficacy of the proposed strategy. 
The rest of the chapter is organized as follows. Section 2 places the work in the context of 
related works found in the literature and presents a brief literature review. Section 3 
formulates the problem and the premises based on which the problem is formulated. 
Section 4 mathematically characterizes the three phases or tiers of resolution briefly 
mentioned above. Section 5 validates the efficacy of the algorithm through simulation 
results. Section 6 discusses the limitations of the current approach and its future scope and 
ramifications and section 7 winds up with summary remarks. 

2 Literature Review
Robotic navigation for single robot systems has been traditionally classified into planning 
and reactive based approaches. A scholarly exposition of various planning methodologies 
can be found in (Latombe 1991). A similar exposition for dynamic environments is 
presented by Fujimora (Fujimora 1991). Multi-robot systems have become an active area of 
research since they facilitate improved efficiency, faster responses due to spread of 
computational burden, augmented capabilities and discovery of emergent behaviors that 
arise from interaction between individual behaviors. Multiple mobile robot systems find 
applications in many areas such as material handling operations in difficult or hazardous 
terrains (Genevose at. al, 1992)3, fault-tolerant systems (Parker 1998), covering and 
exploration of unmanned terrains (Choset 2001), and in cargo transportation (Alami et. al, 
1998). Collaborative collision avoidance (CCA) between robots arises in many such multi-
robot applications where robots need to crisscross each other’s path in rapid succession or 
come together to a common location in large numbers. Whether it is a case of navigation of 
robots in a rescue and relief operation after an earthquake or while searching the various 
parts of a building or in case of a fully automated shop floor or airports where there are only 
robots going about performing various chores, CCA becomes unavoidable. 
Multi-robotic navigation algorithms are traditionally classified as centralized or 
decentralized approaches. In the centralized planners [Barraquand and Latombe 1990, 
Svetska and Overmars 1995] the configuration spaces of the individual robots are combined 
into one composite configuration space which is then searched for a path for the whole 
composite system. In case of centralized approach that computes all possible conflicts over 
entire trajectories the number of collision checks to be performed and the planning time 
tends to increase exponentially as the number of robots in the system increases. Complete 
recalculation of paths is required even if one of the robot’s plans is altered or environment 
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changes. However centralized planners can guarantee completeness and optimality of the 
method at-least theoretically. 
Decentralized approaches, on the other hand, are less computationally intensive as the 
computational burden is distributed across the agents and, in principle, the computational 
complexity of the system can be made independent of the number of agents in it at-least to 
the point of computing the first individual plans. It is more tolerant to changes in the 
environment or alterations in objectives of the agents. Conflicts are identified when the 
plans or commands are exchanged and some kind of coordination mechanism is resorted to 
avoid the conflicts. However, they are intrinsically incapable of satisfying optimality and 
completeness criterion. Prominent among the decentralized approaches are the decoupled 
planners [Bennewitz et. al, 2002], [Gravot and Alami 2001], [Leroy et. al 1999]. The decoupled 
planners first compute separate paths for the individual robots and then resolve possible 
conflicts of the generated paths by a hill climbing search [Bennewitz et. al, 2004] or by plan 
merging [Gravot and Alami 2001] or through dividing the overall coordination into smaller 
sub problems [Leroy et. al 1999]. 
The method presented here is different in that complete plans of the robots are not 
exchanged. The locations of the robots for a certain T time samples in future are exchanged 
for robots moving along arcs and for those moving with linear velocities along straight lines 
it suffices to broadcast its current state. The collisions are avoided by searching in the 
velocity or the orientation space (the set of reachable orientations) of the robot. In that aspect 
it resembles the extension of the Dynamic Window approach [Fox et. al, 1997] to a multi 
robotic setting however with a difference. The difference being that in the dynamic window 
the acceleration command is applied only for the next time interval whereas in the present 
method the restriction is only in the direction of change in acceleration over a time interval 

Tt < for all the robots. 
The present work is also different from others as the resolution of collision conflicts is 
attempted at three levels, namely the individual, cooperative, and propagation levels. 
Functionally cooperation is a methodology for pinning down velocities or orientations in 
the joint solution space of velocities or orientations of the robots involved in conflict when 
there exists no further solution in the individual solution space of those robots. When joint 
actions in the cooperative phase are not sufficient for conflict resolution assistance of other 
robots that are in a conflict free state at that instant is sought by the robots in conflict by 
propagating descriptions of the conflicts to them. When such free robots are also unable to 
resolve the conflict collision is deemed inevitable. The concept of propagating conflict 
resolution requests to robots not directly involved in a conflict is not found mentioned in 
robotic literature. Such kind of transmission of requests to robots though not invoked 
frequently is however helpful in resolving a class of conflicts that otherwise would not be 
possible as our simulation results reveal. 
The method presented here is more akin to a real-time reactive setting where each robot is 
unaware of the complete plans of the other robots and the model of the environment. The 
work closest to the present is a scheme for cooperative collision avoidance by Fujimora’s 
group (Fujimora et. al, 2000) and a distributed fuzzy logic approach as reported in 
(Srivastava et. al, 1998). Their work is based on devising collision avoidance for two robots 
based on orientation and velocity control and extend this strategy for the multi robot case 
based on the usual technique of priority based averaging (PBA). However we have proved 
in an earlier effort of ours (Krishna and Kalra, 2002) that such PBA techniques fail when 
individual actions that get weighted and averaged in the PBA are conflicting in nature. The 
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work of Lumelsky (Lumelsky and Harinarayanan 1998) is of relation here in that it does not 
entail broadcast of plans to all other robots. It describes an extension of one of the Bug
algorithms to a multi robotic setting. There is not much mention of cooperation or 
collaborative efforts between the robots except in the limited sense of “reasonable behavior” 
that enables shrinking the size of collision front of a robot that is sensed by another one. 

3 Objective, Assumptions and Formulations: 
Given a set of robots { }nRRRR ,,, 21= , each assigned a start and goal configuration the 
objective is to navigate the robot such that they reach the goal configuration avoiding all 
collisions. 
While collisions could be with stationary and moving objects in this chapter we focus 
specifically how the robots could avoid collisions that occur amongst them in a cooperative 
fashion. For this purpose the following premises have been made: 

a. Each robot Ri is assigned a start and goal location and it has access to its current state 
and its current and aspiring velocities. The current state of Ri is represented as 

{ }iiiii ncvnvc θθψ ,,,=  where vnvc,  represent its current and aspiring velocities and 
nc θθ ,  its current and aspiring directions. The aspiring direction to be reached at a 

given time t is the angle made by the line joining the current position to the position 
reached at t with the current heading. This is shown in figure 1 where a robot 
currently at P reaches a point N moving along an arc, the aspiring orientation is the 
angle made by the dashed line connecting P to N with the current heading direction. 

b. All robots are circular and described by their radius 
c. Robots are capable of broadcasting their current states to each other. They do so 

only to those robots that are within a particular range of communication. 
d. Robots accelerate and decelerate at constant rates that are same for all. Hence a 

robot Ri can predict, when another robot Rj would attain its aspiring velocity vn
from its current velocity vc  if it does not change its direction. 

Fig. 1. A robot currently at location C moves along a clothoidal arc to reach position N. The 
aspiring orientation is computed as mentioned in premise a in text. The heading at C is 
indicated by the arrow 

3.1 Robot Model
We consider a differential drive (DD) mobile robot in consonance with the robots available 
in our lab. Figure 2a shows an abstraction of a DD robot consisting of two wheels mounted 
on a common axis driven by two separate motors. Consider the wheels rotating about the 
current center C, at the rate ω as shown in figure 2. The coordinates of the axis center is (x, 
y) and the robot’s bearing is at θ with respect to the coordinate frame. The distance between 
the two wheels is L and the radius of curvature of the robot’s motion is R (distance from C 
to robot’s center). Given that the left and right wheel velocities are rl vv ,  the following 
describe the kinematics of the robot: 
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Fig. 2a. A differential drive robot with left and right wheels driven by two motors that are 
independently controlled.
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Here ω,v represent the instantaneous linear and angular velocity of the robot. Given the 
current configuration of the robot’s center as 000 ,, θyx  at 0t  the coordinates reached by the 
robot at time t under constant linear and angular acceleration ( )α,a  is given by 
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Integrals 3.1.4 and 3.1.5 require numerical techniques to compute. Hence in a manner 
similar to (Fox et.al, 1997) we assume finite sufficiently small intervals for which the velocity 
is assumed to be a constant and the coordinates of the robot are then computed as 
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In the collision avoidance maneuver it is often required to check if the robot can reach to a 
location that lies on one of the half-planes formed by a line and along a orientation that is 
parallel to that line. In figure 2b a robot with current configuration sss yx θ,,  with velocity 

sv wants to reach a position on the left half plane (LHP) of line l along a direction parallel to 
l. For this purpose we initially compute where the robot would reach when it attains either 
the maximum angular velocity shown in angular velocity profiles of figures 2c and 2d under 
maximum angular acceleration. The positions reached at such an instant are computed 
through (3.1.6) and (3.1.7). Let the maximum angular velocity in a given velocity profile as 
determined by figures 2d and 2e be aMω  and the location reached by the robot 
corresponding to aMω  be aMaM yx , . aMω  is not necessarily the maximum possible angular 
velocity Mω  and is determined by the time for which the angular acceleration is applied. 
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work of Lumelsky (Lumelsky and Harinarayanan 1998) is of relation here in that it does not 
entail broadcast of plans to all other robots. It describes an extension of one of the Bug
algorithms to a multi robotic setting. There is not much mention of cooperation or 
collaborative efforts between the robots except in the limited sense of “reasonable behavior” 
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3 Objective, Assumptions and Formulations: 
Given a set of robots { }nRRRR ,,, 21= , each assigned a start and goal configuration the 
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given time t is the angle made by the line joining the current position to the position 
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indicated by the arrow 

3.1 Robot Model
We consider a differential drive (DD) mobile robot in consonance with the robots available 
in our lab. Figure 2a shows an abstraction of a DD robot consisting of two wheels mounted 
on a common axis driven by two separate motors. Consider the wheels rotating about the 
current center C, at the rate ω as shown in figure 2. The coordinates of the axis center is (x, 
y) and the robot’s bearing is at θ with respect to the coordinate frame. The distance between 
the two wheels is L and the radius of curvature of the robot’s motion is R (distance from C 
to robot’s center). Given that the left and right wheel velocities are rl vv ,  the following 
describe the kinematics of the robot: 

Multi Robotic Conflict Resolution by Cooperative Velocity and Direction Control 641 

Fig. 2a. A differential drive robot with left and right wheels driven by two motors that are 
independently controlled.
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Integrals 3.1.4 and 3.1.5 require numerical techniques to compute. Hence in a manner 
similar to (Fox et.al, 1997) we assume finite sufficiently small intervals for which the velocity 
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In the collision avoidance maneuver it is often required to check if the robot can reach to a 
location that lies on one of the half-planes formed by a line and along a orientation that is 
parallel to that line. In figure 2b a robot with current configuration sss yx θ,,  with velocity 

sv wants to reach a position on the left half plane (LHP) of line l along a direction parallel to 
l. For this purpose we initially compute where the robot would reach when it attains either 
the maximum angular velocity shown in angular velocity profiles of figures 2c and 2d under 
maximum angular acceleration. The positions reached at such an instant are computed 
through (3.1.6) and (3.1.7). Let the maximum angular velocity in a given velocity profile as 
determined by figures 2d and 2e be aMω  and the location reached by the robot 
corresponding to aMω  be aMaM yx , . aMω  is not necessarily the maximum possible angular 
velocity Mω  and is determined by the time for which the angular acceleration is applied. 
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Consider a circle tangent to the heading at aMaM yx ,  with radius aM

sv
ω , this circle is shown 

dashed in figure 2c. Consider also the initial circle which is drawn with the same radius but 
which is tangent to sθ  at ss yx , , which is shown solid in 2c. Evidently the initial circle 
assumes that the robot can reach aMω  instantaneously. Let the displacements in the centers 
of the two circles be aMsd , . Then if the initial circle can be tangent to a line parallel to l that 
is at-least aMskd ,  from l into its LHP then the robot that moves with an angular velocity 
profile shown in figures 2d or 2e can reach a point that lies in the LHP of l along a direction 
parallel to l. We found k=2 to be a safe value. It is to be noted checking on the initial circle is 
faster since it avoids computing the entire profile of 2d or 2e before concluding if an 
avoidance maneuver is possible or not. 

3.2 The Collision Conflict
With robots not being point objects a collision between two is modeled as an event 
happening over a period of time spread over an area. The collision conflict (CC) is 
formalized here for the simple case of two robots moving at constant velocities. The 
formalism is different if velocity alone is controlled or direction control is also involved. 
Figure 3 shows the CC formalism when velocity control alone is involved. 
Shown in figure 3, two robots R1 and R2 of radii r1 and r2 and whose states are 

),( 111 vnvc=ψ and ),( 222 vnvc=ψ  respectively, where 1vc , 2vc  are the current velocities 
while 1vn , 2vn  are the aspiring velocities for R1 and R2 respectively. The orientations are 
omitted while representing the state since they are not of concern here. Point C in the figure 
represents the intersection of the future paths traced by their centers. For purpose of 
collision detection one of the robots R1 is shrunk to a point and the other R2 is grown by the 
radius of the shrunken robot. The points of interest are the centers C21 and C22 of R2 where 
the path traced by the point robot R1 becomes tangential to R2. At all points between C21 
and C22 R2 can have a potential collision with R1. C21 and C22 are at distances 
( ) ( )21cos21 θθ −+ ecrr  on either side of C. The time taken by R2 to reach C21 and C22 given 
its current state ),( 22 vnvc  is denoted by 21t  and 22t . Similar computations are made for R1 
with respect to R2 by making R2 a point and growing R1 by r2. Locations C11 and C12 and 
the time taken by R1 to reach them 11t  and 12t  are thus computed. A collision conflict or 
CC is said to be averted between R1 and R2 if and only if [ ] [ ] Φ∈∩ 22211211 ,, tttt . The 
locations C11, C12, C21 and C22 are marked in figure1. 
A direct collision conflict (DC) between robots R1 and R2 is said to occur if R1 occupies a space 
between C11 and C12 when the center of R2 lies between C21 and C22 at some time t .
For direction control the CC is formalized as follows. Consider two robots R1 and R2 
approaching each other head on as in figure 4a and at an angle in figure 4b. The points at 
which the robots are first tangent to one another (touch each other exactly at one point) 
correspond to locations C11 and C21 of R1 and R2’s center. The points at which they touch 
firstly and lastly are marked as P in 4a and P1, P2 in 4b. Let 21, cc tt  denote the times at 
which they were first and lastly tangent to each other. We expand the trajectory of R2 from 
all points between and including C21 and C22 by a circle of radius r1 while R1 is shrunk to a 
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point. The resulting envelope due to this expansion of the path from C21 to C22 is marked 
E. All points outside of E are at a distance r2+r1 from R2’s center when it belongs to 
anywhere on the segment connecting C21 to C22. The envelope E consists of two line 
segment portions 21EE , 43EE  and two arc segment portions 322,411 EAEEAE  shown in 
figures 4a and 4b. We say a CC is averted if R1 manages to reach a location that is outside of 
E with a heading aθ for the time R2 occupies the region from C21 to C22 and upon 
continuing to maintain its heading guarantees resolution for all future time. 

Fig. 2b. A robot at A heading along the direction denoted by the arrow wants to reach a 
position that lies on the LHP of line l along a orientation parallel to l. Its angular velocity 
should reach zero when it reaches a orientation parallel to l.
Fig. 2c. In sequel to figure 2b, the robot at A takes off along a clothoidal arc approximated 
by equations 3.1.6 and 3.1.7 and reaches B with maximum angular velocity. It then moves 
along a circle centered at C2 shown dotted and then decelerates its angular velocity to zero 
when it becomes parallel to l. The initial circle is drawn centered at C1 tangent to the robot’s 
heading at A. The distance between C1 and C2 decides the tangent line parallel to l to which 
the robot aspires to reach. 

Fig. 2d and 2e. Two possible angular velocity profiles under constant acceleration. Figure 3d 
corresponds to a path that is a circle sandwiched between two clothoids, while Figure 3e 
corresponds to the path of two clothoids.

For example in 4a R1 reaches the upper half plane of the segment 21EE  or the lower half 
plane of 43EE  before R2 reaches P then it guarantees resolution for all future times 
provided R2 does not change its state. Similarly in figure 4b by reaching a point on the 
lower half plane of 43EE  with a heading parallel to 43EE  collision resolution is 
guaranteed. It is obvious R2 would not want to maintain its heading forever, for it will try to 
reach its actual destination once the conflict is resolved. 
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dashed in figure 2c. Consider also the initial circle which is drawn with the same radius but 
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faster since it avoids computing the entire profile of 2d or 2e before concluding if an 
avoidance maneuver is possible or not. 

3.2 The Collision Conflict
With robots not being point objects a collision between two is modeled as an event 
happening over a period of time spread over an area. The collision conflict (CC) is 
formalized here for the simple case of two robots moving at constant velocities. The 
formalism is different if velocity alone is controlled or direction control is also involved. 
Figure 3 shows the CC formalism when velocity control alone is involved. 
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while 1vn , 2vn  are the aspiring velocities for R1 and R2 respectively. The orientations are 
omitted while representing the state since they are not of concern here. Point C in the figure 
represents the intersection of the future paths traced by their centers. For purpose of 
collision detection one of the robots R1 is shrunk to a point and the other R2 is grown by the 
radius of the shrunken robot. The points of interest are the centers C21 and C22 of R2 where 
the path traced by the point robot R1 becomes tangential to R2. At all points between C21 
and C22 R2 can have a potential collision with R1. C21 and C22 are at distances 
( ) ( )21cos21 θθ −+ ecrr  on either side of C. The time taken by R2 to reach C21 and C22 given 
its current state ),( 22 vnvc  is denoted by 21t  and 22t . Similar computations are made for R1 
with respect to R2 by making R2 a point and growing R1 by r2. Locations C11 and C12 and 
the time taken by R1 to reach them 11t  and 12t  are thus computed. A collision conflict or 
CC is said to be averted between R1 and R2 if and only if [ ] [ ] Φ∈∩ 22211211 ,, tttt . The 
locations C11, C12, C21 and C22 are marked in figure1. 
A direct collision conflict (DC) between robots R1 and R2 is said to occur if R1 occupies a space 
between C11 and C12 when the center of R2 lies between C21 and C22 at some time t .
For direction control the CC is formalized as follows. Consider two robots R1 and R2 
approaching each other head on as in figure 4a and at an angle in figure 4b. The points at 
which the robots are first tangent to one another (touch each other exactly at one point) 
correspond to locations C11 and C21 of R1 and R2’s center. The points at which they touch 
firstly and lastly are marked as P in 4a and P1, P2 in 4b. Let 21, cc tt  denote the times at 
which they were first and lastly tangent to each other. We expand the trajectory of R2 from 
all points between and including C21 and C22 by a circle of radius r1 while R1 is shrunk to a 
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point. The resulting envelope due to this expansion of the path from C21 to C22 is marked 
E. All points outside of E are at a distance r2+r1 from R2’s center when it belongs to 
anywhere on the segment connecting C21 to C22. The envelope E consists of two line 
segment portions 21EE , 43EE  and two arc segment portions 322,411 EAEEAE  shown in 
figures 4a and 4b. We say a CC is averted if R1 manages to reach a location that is outside of 
E with a heading aθ for the time R2 occupies the region from C21 to C22 and upon 
continuing to maintain its heading guarantees resolution for all future time. 

Fig. 2b. A robot at A heading along the direction denoted by the arrow wants to reach a 
position that lies on the LHP of line l along a orientation parallel to l. Its angular velocity 
should reach zero when it reaches a orientation parallel to l.
Fig. 2c. In sequel to figure 2b, the robot at A takes off along a clothoidal arc approximated 
by equations 3.1.6 and 3.1.7 and reaches B with maximum angular velocity. It then moves 
along a circle centered at C2 shown dotted and then decelerates its angular velocity to zero 
when it becomes parallel to l. The initial circle is drawn centered at C1 tangent to the robot’s 
heading at A. The distance between C1 and C2 decides the tangent line parallel to l to which 
the robot aspires to reach. 

Fig. 2d and 2e. Two possible angular velocity profiles under constant acceleration. Figure 3d 
corresponds to a path that is a circle sandwiched between two clothoids, while Figure 3e 
corresponds to the path of two clothoids.

For example in 4a R1 reaches the upper half plane of the segment 21EE  or the lower half 
plane of 43EE  before R2 reaches P then it guarantees resolution for all future times 
provided R2 does not change its state. Similarly in figure 4b by reaching a point on the 
lower half plane of 43EE  with a heading parallel to 43EE  collision resolution is 
guaranteed. It is obvious R2 would not want to maintain its heading forever, for it will try to 
reach its actual destination once the conflict is resolved. 
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Fig. 3. Two robots R1 and R2 with radii r1 and r2 along with their current states are shown. 
When R1 is shrunk to a point and R2 grown by radius of R1, C21 and C22 are centers of R2
where the path traced by R1 becomes tangential to R2.

Fig. 4a. Situation where two Robots approaching head on.

Fig. 4b. Situation where two Robots approaching at an angle.

4 Phases of Resolution 
Let ST be the set of all possible solutions that resolve conflicts among the robots involved. 
Depending on the kind of control strategy used each member Ti Ss ∈ can be represented as 
follows: 

i. An ordered tuple of velocities in case of pure velocity control i.e. 
{ }Niiii vvvs ,,, 21= , for each of the N robots involved in the conflict. Obviously 

the set is  is infinite, the subscript i in is  is used only for notational convenience. 
ii. An ordered tuple of directions in case of pure direction control i.e. 

{ }Niiiis θθθ ,,, 21= .
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iii. An ordered tuple of velocity direction pairs in case of velocity and direction 
control, { } { } { }{ }NiNiiiiii vvvs θθθ ,,,,,, 2211= in case of both velocity and direction 
control.

Conflicts are avoided by reaching each component of is , i.e. the velocities or directions or 
both within a stipulated time tuplet { },,,, 21 Niii ttt . For purely velocity control the 
velocities to be attained involved not more than one change in direction of acceleration, i.e., 
they are attained by an increase or decrease from current acceleration levels but not a 
combination of both. For purely direction control the final orientation aspired for involves 
not more than one change in turning direction. However the final direction attained could 
be through a sequence of angular velocity profiles such as in figures in 2d & 2e that involve 
only one change in turning direction. 
The cooperative space is represented by the set TC SS ⊆ , i.e., the cooperative space is a subset 
of the total solution space and where every robot involved in the conflict is required to 
modify its current aspiring velocity or direction to avoid the conflict. In other words robots 
modify the states in such a manner that each of the robot involved has a part to play in 
resolving the conflict. Or if any of the robots had not modified its velocity it would have 
resulted in one or more collisions among the set of robots involved in the conflict. 
The cooperative phase in navigation is defined by the condition TC SS = , where each robot 
has no other choice but to cooperate in order to resolve conflicts. In individual resolution 
robots choose velocities in the space of CTI SSS −= , where the entailment for every robot to 

cooperate does not exist. When Φ=IS , the null set, we say the navigation has entered the 
cooperative phase. 
Figures 5a-5d characterize the changes in solution space due to velocity control alone for 
evolving trajectories of two orthogonal robots while those of 6a-6e do the same for 
orientation control of robots that approach each other head on. Figure 5a shows evolution of 
trajectories of two robots, marked R1 and R2, moving orthogonal to one another. The arrows 
show the location of the two robots at time 0=t sample. The robots move with identical 
speed of == 21 RR vv 5.2 units. The states of the two robots are represented as 

)0,0,,( 111 RR vv=ψ  and )90,90,,( 222 −−= RR vvψ . The equality in the current and aspiring 
velocities merely indicates that the robot moves with uniform velocity and is not a loss of 
generality from the case when the aspiring velocity differs from the current. The subsequent 
discussion holds equally for the case when the current and aspiring velocities differ. 
Corresponding to this location of the robots at the beginning of their trajectories, figure 5b 
depicts the total space of velocities bounded within the outer rectangle (shown thick) whose 
length and breadth are 5 units respectively. In other words each robot can have velocities in 
the interval [ ]5,0 units. The abscissa represents the range for one of the robots (R1) and the 
ordinate the range for the other (R2). The center of the figure marked as O indicates the 
location corresponding to their respective velocities of 2.5units each. The strips of shaded 
region represent those velocities not reachable from O due to the limits of acceleration and 
deceleration. The inner rectangle, marked ABCD, represents the region of velocities where a 
possible solution can be found if and only if both robots alter their velocities. For 

5.21 =Rv corresponding to R1’s velocity on the abscissa, R2 must possess a velocity, which 
lies either above or below the segments AB and CD of the rectangle when projected onto the 
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only one change in turning direction. 
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of the total solution space and where every robot involved in the conflict is required to 
modify its current aspiring velocity or direction to avoid the conflict. In other words robots 
modify the states in such a manner that each of the robot involved has a part to play in 
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Figures 5a-5d characterize the changes in solution space due to velocity control alone for 
evolving trajectories of two orthogonal robots while those of 6a-6e do the same for 
orientation control of robots that approach each other head on. Figure 5a shows evolution of 
trajectories of two robots, marked R1 and R2, moving orthogonal to one another. The arrows 
show the location of the two robots at time 0=t sample. The robots move with identical 
speed of == 21 RR vv 5.2 units. The states of the two robots are represented as 

)0,0,,( 111 RR vv=ψ  and )90,90,,( 222 −−= RR vvψ . The equality in the current and aspiring 
velocities merely indicates that the robot moves with uniform velocity and is not a loss of 
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Corresponding to this location of the robots at the beginning of their trajectories, figure 5b 
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ordinate. Similarly for 5.22 =Rv on the ordinate, robot R1 must possess a velocity either to 
the right or left of the segments BC and AD when projected onto the abscissa to avert 
collision. We denote the velocities that make R1 reach the velocities at D and C from O as 

11v  and 12v  respectively, while the velocities that make R2 reach A and D from O by 21v
and 22v  respectively. With reference to figure 3 11v  and 12v  correspond to velocities that 
enable R1 to reach C11 and C12 in the time R2 reaches C22 and C21 respectively without R2 
changing its current aspiring velocity from 2Rv .

Fig. 5a. Two robots approach each other 
along orthogonal directions. 

Fig. 5b. The possible range of velocities for 
robots R1 and R2 shown along the x and y 
axis. The inner rectangular area being 
cooperative region. 

Fig. 5c. At t=25 the conflict area occupies the 
entire possible space of velocities. 

Fig. 5d. Search is limited to quadrants 2 and 
4 where robot actions are complementary. 

Figure 6a shows the snapshot at time 0=t  or 191 =ct (the time left for the robots to become 
tangent to one another for the first time) when robots approach each other head on. Figure 
6b shows the collision region marked on θ  axis for R1. All θ  values in the interval [b,d] on 
the right and [a,c] on left are reachable and collision free. Values in the interval [d,M] and 
[m,c] are not accessible or unattainable due to the limits on angular acceleration of the robot, 
while those in [a,b] conflict with the impinging robot. Figure 6c shows the conflicting and 
inaccessible orientations overlap in intervals [a,c] and [d,b] for time 141 =ct . Figure 6c 
shows the need for cooperation since the entire θ  axis of R1 is either conflicting or 
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inaccessible or both. The values of θ  to the left of O (corresponding to current heading of 
R1) on the θ  axis of R1 are those obtained by turning R1 right in figure 6a & while those on 
the right of O on the θ  axis are obtained by turning R1 to its left in figure 6a. While 
depicting the solution space in terms of θ  for a robot the current heading is always 0 
degrees for convenience. 

Fig. 6a. Robots R1 and R2 approaching 
Head on.

Fig. 6b. Collision and accessible regions 
on θ axis for robot R1 where [a, b] 
being the collision range.

Fig. 6c. Collision and accessible regions on θ  axis. Dark area showing the overlapped 
collision and inaccessible regions. 

Fig. 6d. Joint orientation space for 
robots R1 and R2 in terms of θ 1 and θ 2.
Outer rectangle representing accessible 
combination.

Fig. 6e. Joint orientation space for robots 
R1 and R2, where accessible region is 
inside the collision region where gray 
region representing cooperation zone.

Figures 6d and 6e depict the joint orientation solution space for robots R1 and R2 in terms of 
1θ  (abscissa) and 2θ  (ordinate). Figure 6d corresponds to the situation for time 0=t  or 

171 =ct ; the shaded parts of the rectangle comprises of regions inaccessible to both R1 and 
R2. R2 must reach a orientation on the ordinate that is either above or below segments AB 
and CD while R1 should reach a orientation that is either to the right of BC or left of AD. 
These orientations are denoted as 1211,θθ  for R1 and 2221,θθ  for R2 in a manner similar to 
velocity control discussed before. With reference to figure 4a 1211,θθ  correspond to 

directions that enable R1 to reach the upper half plane of the segment 21EE  or the lower 
half plane of 43EE  before R2 reaches C21 without R2 changing its current aspiring 
orientation that is 0 degrees with respect to itself and 180 degrees with respect to a global 
reference frame, F shown in 6a. 
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enable R1 to reach C11 and C12 in the time R2 reaches C22 and C21 respectively without R2 
changing its current aspiring velocity from 2Rv .

Fig. 5a. Two robots approach each other 
along orthogonal directions. 

Fig. 5b. The possible range of velocities for 
robots R1 and R2 shown along the x and y 
axis. The inner rectangular area being 
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Fig. 5c. At t=25 the conflict area occupies the 
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Fig. 5d. Search is limited to quadrants 2 and 
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Fig. 6a. Robots R1 and R2 approaching 
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Fig. 6d. Joint orientation space for 
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Fig. 6e. Joint orientation space for robots 
R1 and R2, where accessible region is 
inside the collision region where gray 
region representing cooperation zone.

Figures 6d and 6e depict the joint orientation solution space for robots R1 and R2 in terms of 
1θ  (abscissa) and 2θ  (ordinate). Figure 6d corresponds to the situation for time 0=t  or 

171 =ct ; the shaded parts of the rectangle comprises of regions inaccessible to both R1 and 
R2. R2 must reach a orientation on the ordinate that is either above or below segments AB 
and CD while R1 should reach a orientation that is either to the right of BC or left of AD. 
These orientations are denoted as 1211,θθ  for R1 and 2221,θθ  for R2 in a manner similar to 
velocity control discussed before. With reference to figure 4a 1211,θθ  correspond to 

directions that enable R1 to reach the upper half plane of the segment 21EE  or the lower 
half plane of 43EE  before R2 reaches C21 without R2 changing its current aspiring 
orientation that is 0 degrees with respect to itself and 180 degrees with respect to a global 
reference frame, F shown in 6a. 
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4.1 Individual Phase for Velocity Control
A pair of robots R1 and R2, which have a DC between them are said to be in individual 
phase of navigation if the conflict is resolved by either of the following two means: 
(i) R1 controls its velocity to 12v  such that it is able to get past C12 before R2 reaches C21 

with its aspiring velocity as 2Rv  or R1 controls its velocity to 11v  such that it does not 
reach C11 before R2 reaches C22 without changing its aspiring velocity from 2Rv .

(ii) R2 controls its velocity to 22v  such that it is able to get past C22 before R1 reaches C11 
with its current aspiring velocity as 1Rv  or R2 controls its velocity to 21v  such that it does 
not reach C21 before R1 reaches C12 without changing its aspiring velocity from 1Rv .

In both cases it would suffice that only one of the two robots controls or modifies its 
aspiring velocity. This indeed is the crux of the individual phase where at-least one of the 
two robots is able to individually avoid the conflict without requiring the other to take 
action. Thus the range of velocities that permit individual resolution of conflict by R1 is 
given by: [ ] [ ]Mvvvv 11211 ,,0∈ , where Mv1  represents the maximum permissible velocity 
for R1, which is 5 units in figure 2b. They are given by: 

( ) )2( 2
1

2
22122111 savctavctavcv mmm −−− +++±+=  Here s  denotes the distance from R1’s

current location to C11, ma−  is the maximum possible deceleration and 22t is the time taken 
by R2 to reach C22 given its current state 2ψ . In the same vein the velocity that causes R1 to 

be ahead of C12 when R2 reaches C21 under maximum acceleration, ma , is given by: 

( ) )'2( 2
1

2
21121112 savctavctavcv mmm +++±+= , where, 's  the distance from R1’s current 

location to C12 can also be written as ( )21cos)21(' θθ −++= ecrrss  and 21t  is the time taken 

by R2 to reach C21 given its current state 2ψ . In a similar fashion velocities 21v  and 22v are
computed. Thus some of the possible sets of solutions from the set TS  are enumerated as: 

{ } { } { } { } { } { }12216221152214211321222111 ,,,,,,,,,,, vvsvvsvvsvvsvvsvvs RRRR ====== .
From the above list the first four solutions involve change in velocities of only one of the 
robots while the last two solutions involve change in velocities of both the robots. The last 
two solutions are examples of collaboration even in the individual phase as robots involve 
in a combined effort to avoid conflict even though they are not entailed to do so. The 
collaboration in the individual phase achieves the first capability mentioned in section 1 of 
avoiding conflicts in a manner that conflicting agents do not come too near while avoiding 
one and another. Amongst the last two solutions ( 5s , 6s ) that one is selected which 
involves minimal change from the current state of the respective robots. The last two 
solutions indicate that collaboration involves complementary decision making since one of 
the robots accelerates from its current velocity the other decelerates. 
Henceforth for any robot the lower velocity is denoted as 1v  and the higher velocity by 

2v  with the robot index dropped for notational simplicity. In other words the lower and 
upper velocities are denoted as 1v  and 2v  instead of 21v  and 22v  for R2 or instead of 

21, II vv  for RI. 
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It is to be noted that the phrase that a robot change or modify its velocity is more precisely 
stated as the robot control or modify its aspiring velocity. 

4.1.2 Individual Phase for Direction Control 
Unlike velocity control a unique way of characterizing 1211,θθ  is difficult depending on the 
angular separation between the robots and their directions of approach. However certain 
commonalities can be observed, namely (i) the robot to be avoided can be encapsulated 
within a planar envelope E (section 3.2), (ii) the robot that avoids has essentially two turning 
options either to turn left or right, (iii) the robot can reach a point in the plane that has no 
overlaps with E by reaching a heading, can in principle continue with the heading and 
avoid conflict forever with the same robot. Based on the above observations we formulate a 
conservative resolution criteria based on the angular separation between the two robots. 
In purely velocity control a closed form solution to the values 1211 & vv was possible to 
ascertain, whereas in direction control a closed form expression for 1211,θθ  is very difficult 
to obtain due to following reasons. Firstly in velocity control the robot had to reach a 
particular point for the limiting case. Whereas in direction control the robot is can reach any 
point on a line as long as its orientation is the same as that line in the limiting case. This 
leads to several velocity profile choices for the same target criteria. Secondly in the velocity 
control scheme it is possible to reach a particular linear velocity and maintain that as the 
aspiring velocity, however in direction control the eventual angular aspiring velocity needs 
to be zero for any avoidance maneuver. Hence it is easier to work in the space of directions 
than in space of angular velocities. For computing the solution space an exhaustive search 
mechanism is resorted by changing the time for which an acceleration command is applied 
for the same linear velocity. These are the solution spaces shown in the chapter under the 
assumption current linear velocity remains unchanged since those depicted are those for 
purely direction control. In case of the actual algorithm running real-time few sample points 
in the { }α,v  space are computed before a conclusion regarding which phase of resolution is 
to be resorted to. The basis or the motivation for selecting the candidate points will be 
discussed elsewhere. 
Figures 7a and 7b are similar to those of 4a and 4b. Figure 7a depicts the head on case while 
7b portrays the case when angular separation between the robots lies in the interval [90,180). 
Both the cases have been discussed in detail in section 3.2 and early parts of this section 
when figures 6a – 6d were discussed. For the sake of completion we briefly mention them 
here. For 7a 1211,θθ  are easily computed and correspond to directions that enable R1 to 

reach the lower half plane of the segment 43EE  or the upper half plane of 21EE  before R2 
reaches P. For a given linear velocity of R1 1211,θθ  are symmetric on either sides of the 
current heading of R1 and this is expected as there are equal opportunities to avoid a 
conflict on both sides of the current heading. For figure 7b the conflict is best resolved if R1 
reaches a point with a heading parallel to 43EE  in the lower half plane of 43EE  that does 
not contain R2. This can be achieved by either turning to its left or right. R1 can also aspire 
to reach a location in the upper half plane formed by 21EE  that does not contain R2 before 
R2 reaches C21. This would once again involve R1 turning right. Hence 12θ  corresponds to 
the value that is collision free by turning left whereas 11θ  corresponds to the value that is 

collision free by turning right and reaching a point either on the upper half plane of 21EE
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to be resorted to. The basis or the motivation for selecting the candidate points will be 
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before R2 reaches C21 or the lower half plane of the same 21EE  without entering the 
envelope E during the time R2’s center occupies the space from C21 to C22. 

Fig. 7a. Robots R1 and R2 approaching 
head on.

Fig. 7b. Robots R1 and R2 approaching 
at an angle in range [90,180).

Fig. 7c. Robots R1 and R2 approaching at an angle less than 90 degrees.

Fig. 7d. Collision and accessible regions on 
θ axis for robot R1 where [a,b] being the 
collision range.

Fig. 7e. Collision and accessible regions 
on θ  axis. Dark area showing the 
overlapped collision and inaccessible 
regions

Figure 7c depicts the case when the angular separation between the robots at the first instance 
of collision lies in (0,90]. Once again conflicts are resolved if the robot reaches a point in the 
half plane formed by 43EE  along a orientation parallel to 43EE  without entering the half-
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plane that contains R2. Figures 7d and 7e have exactly the same connotations as figures 6b and 
6c except that they are the plots for robots approaching each other not head on but as in figure 
7c. The θ  axis is depicted as shown before. Figure 7d corresponds to 311 =ct . Note the entire 
reachable space lies on the right of current heading of R1. This indicates only turns to the left 
avoid conflicts or a value for 11θ  does not exist even very early in resolution. This is only 
expected since a cursory glance of figure 7c indicates most of the turns of R2 to its right could 
only collide with R1. Figure 7e indicates the onset of cooperation with 111 =ct  where all the 
reach orientations all are in conflict with R2. 

4.3 Mutual (Cooperative) Phase for Velocity Control 
The area enclosed within the rectangle ABCD of figure 5b is termed as conflict area for the 
pair of velocities { }21, RR vv  for time 0=t and denoted as )0,,( 21 =tvvCA RR . Let 

[ ]111 , hlr vvV =  represent the range of velocities for which there is a collision for robot R1 
when R2 possesses a velocity 2Rv . Similarly let [ ]222 , hlr vvV = represent the range of 

velocities for which there is a collision for robot R2 when robot R1 possesses a velocity 1Rv .
We define the conflict area for the velocity pair { }21, RR vv  for a given time t  as 

{ }22112121 ,|,),,( rRrRRRRR VvVvvvtvvCA ∈∈= . The velocities 11 , hl vv  for R1 and 22 , hl vv
for R2 are arbitrarily close to their respective upper and lower control velocities 21 ,vv  that 
are used for resolving conflicts. In other words 2,1 1211 RforvvRforvv ll εε <−<−  and 

similarly εε <−<− 2221 , vvvv hh  where ε  is any arbitrarily low value. With progress in 
time if control actions to avoid conflicts were not resorted to the conflict area expands to 
occupy the entire space of possible velocities. This is shown in figure 5c where the conflict 
area fills up the entire velocity space. Any combination of velocities outside the rectangle 
ABCD now falls inside the shaded border strips, which are not accessible from O due to the 
limits imposed by acceleration and deceleration. Hence individual resolution of conflicts by 
any one of the robots is ruled out since the upper and lower velocities 1v  and 2v  for both R1 
and R2 now lie inside the shaded area. 
Since the upper and lower velocities are situated well inside the shaded area the velocity 
pairs corresponding to the vertices ABCD of the conflict area are unknown. Hence a 
cooperative search ensues for finding the pair of velocities that would resolve the conflict. 
Cooperation between robots averts an exhaustive search and restricts it two quadrants 2 and 
4 (figure 5d) of the conflict area where robot actions are complementary and yield best 
results for conflict resolution. Since a search is nonetheless time intensive the rules (i) and 
(ii) mentioned below where robots resort to maximum acceleration and deceleration in a 
complementary fashion offer the boundary value solutions. A failure of the solutions at the 
bounds implies a failure anywhere inside and a pointer to resort to conflict propagation as 
the last resort. 
A pair of robots R1 and R2 are said to be in mutual phase of navigation if and only if they 
are able to resolve the collision conflict between the two through either of the following 
rules:



650 Mobile Robots, Perception & Navigation 

before R2 reaches C21 or the lower half plane of the same 21EE  without entering the 
envelope E during the time R2’s center occupies the space from C21 to C22. 

Fig. 7a. Robots R1 and R2 approaching 
head on.

Fig. 7b. Robots R1 and R2 approaching 
at an angle in range [90,180).

Fig. 7c. Robots R1 and R2 approaching at an angle less than 90 degrees.

Fig. 7d. Collision and accessible regions on 
θ axis for robot R1 where [a,b] being the 
collision range.

Fig. 7e. Collision and accessible regions 
on θ  axis. Dark area showing the 
overlapped collision and inaccessible 
regions

Figure 7c depicts the case when the angular separation between the robots at the first instance 
of collision lies in (0,90]. Once again conflicts are resolved if the robot reaches a point in the 
half plane formed by 43EE  along a orientation parallel to 43EE  without entering the half-

Multi Robotic Conflict Resolution by Cooperative Velocity and Direction Control 651 

plane that contains R2. Figures 7d and 7e have exactly the same connotations as figures 6b and 
6c except that they are the plots for robots approaching each other not head on but as in figure 
7c. The θ  axis is depicted as shown before. Figure 7d corresponds to 311 =ct . Note the entire 
reachable space lies on the right of current heading of R1. This indicates only turns to the left 
avoid conflicts or a value for 11θ  does not exist even very early in resolution. This is only 
expected since a cursory glance of figure 7c indicates most of the turns of R2 to its right could 
only collide with R1. Figure 7e indicates the onset of cooperation with 111 =ct  where all the 
reach orientations all are in conflict with R2. 

4.3 Mutual (Cooperative) Phase for Velocity Control 
The area enclosed within the rectangle ABCD of figure 5b is termed as conflict area for the 
pair of velocities { }21, RR vv  for time 0=t and denoted as )0,,( 21 =tvvCA RR . Let 

[ ]111 , hlr vvV =  represent the range of velocities for which there is a collision for robot R1 
when R2 possesses a velocity 2Rv . Similarly let [ ]222 , hlr vvV = represent the range of 

velocities for which there is a collision for robot R2 when robot R1 possesses a velocity 1Rv .
We define the conflict area for the velocity pair { }21, RR vv  for a given time t  as 

{ }22112121 ,|,),,( rRrRRRRR VvVvvvtvvCA ∈∈= . The velocities 11 , hl vv  for R1 and 22 , hl vv
for R2 are arbitrarily close to their respective upper and lower control velocities 21 ,vv  that 
are used for resolving conflicts. In other words 2,1 1211 RforvvRforvv ll εε <−<−  and 

similarly εε <−<− 2221 , vvvv hh  where ε  is any arbitrarily low value. With progress in 
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area fills up the entire velocity space. Any combination of velocities outside the rectangle 
ABCD now falls inside the shaded border strips, which are not accessible from O due to the 
limits imposed by acceleration and deceleration. Hence individual resolution of conflicts by 
any one of the robots is ruled out since the upper and lower velocities 1v  and 2v  for both R1 
and R2 now lie inside the shaded area. 
Since the upper and lower velocities are situated well inside the shaded area the velocity 
pairs corresponding to the vertices ABCD of the conflict area are unknown. Hence a 
cooperative search ensues for finding the pair of velocities that would resolve the conflict. 
Cooperation between robots averts an exhaustive search and restricts it two quadrants 2 and 
4 (figure 5d) of the conflict area where robot actions are complementary and yield best 
results for conflict resolution. Since a search is nonetheless time intensive the rules (i) and 
(ii) mentioned below where robots resort to maximum acceleration and deceleration in a 
complementary fashion offer the boundary value solutions. A failure of the solutions at the 
bounds implies a failure anywhere inside and a pointer to resort to conflict propagation as 
the last resort. 
A pair of robots R1 and R2 are said to be in mutual phase of navigation if and only if they 
are able to resolve the collision conflict between the two through either of the following 
rules:
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(i) R1 is able to get past C12 under maximum acceleration before R2 can get to C21 
under maximum deceleration. 

(ii) R2 is able to get past C22 under maximum acceleration before R1 can get to C11 
under maximum deceleration. 

The difference between the above rules and those mentioned in section 4.1 is that in section 4.1 
R1 finds a control velocity that avoids conflict with R2 under the premise that R2 would not 
alter its aspiring velocity. Similarly R2 finds a control velocity under the impression R1 is 
dumb. However in the cooperative phase R1 anticipates a modification in the aspiring velocity 
of R2 such as in rule 1 where R2 modifies its state (and hence its aspiring velocity) such that it 
reaches C12 under maximum deceleration. Under this anticipation of change in R2’s control 
action R1 tries to attain the corresponding control velocity that would avoid conflict. 

4.4 Mutual phase for direction control 
As in velocity control figure 6e shows the situation when cooperation is inevitable since the 
entire accessible area (inner green rectangle) lies completely within the conflict area. The 
outer rectangle is the conflict area. The areas between the inner and outer rectangle are 
shown in red. The areas shown in gray within the rectangle are the solution pairs for which 
resolution is possible. Like in velocity control the solutions exist in opposing quadrants. The 
gray areas in first quadrant correspond to R1 and R2 turning left in figure 6a and 7a, while 
those in third quadrant correspond to R1 and R2 turning right. Once again if a solution does 
not exist at the top right and bottom left corners of the inner rectangle implies lack of 
solutions anywhere inside the inner rectangle. 
Individual resolution through direction control fails because R1(R2) is unable to get out of E 
onto the half planes discussed earlier before R2(R1) reaches C21(C11). In such a situation the 
perpendicular distance from R1’s (R2’s) location to R2’s (R1) trajectory is still less than 
r1+r2. Hence R2(R1) also changes its orientation to reach a location that would be r1+r2 
away from each others trajectory by the instant it would have reached C21(C11) on the 
original trajectory had it not changed its direction. Hence a pair of robots can avoid conflicts 
mutually only if turning with maximum angular accelerations they can orient their 
trajectories by 1ct  such that the perpendicular distance between a robot’s position and the 
other robot’s trajectory is at-least r1+r2. If the robots cannot reach such a location by 1ct
under maximum angular acceleration applied till maximum angular velocities are attained 
then cooperative resolution would fail for all other values of α . Failure at Mω  obtained 
under maximum acceleration implies failure at the corners of the inner rectangle and hence 
a failure of the mutual phase to resolve conflicts. 

4.5 Tertiary (Propagation) Phase for Velocity Control 
Figure 8a shows the velocity axis for a robot RN. RN’s current velocity is shown as O in the 
figure. The portions of the velocity axis shown shaded are those portions of the velocity 
forbidden from the current state of RN either because they are not reachable or they conflict 
with other robots. For example portions AB and FG on the axis are not reachable while 
portions BC, CD and EF conflict with robots R1, R2 and R3 respectively. At O, RN enters 
into a new conflict with a robot RM. Individual resolution of RN’s conflict with RM results 
in conflict with R1 on the lower side and enters forbidden region on the upper side. 
Similarly RM’s individual resolution leads to conflict with other robots or results in access 
of forbidden regions. When RN cooperates with RM to resolve the conflict it again results in 
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conflict with R2 on the lower side and R3 on the upper side. In such a scenario RN 
propagates cooperation request to R1, R2 and R3. The tree structure of figure 8b depicts this 
propagation. All nodes on the left of RN are requests arising due to lower aspiring velocities 
while nodes on the right of RN are requests that arise due to higher aspiring velocities. This 
convention would be followed for all robots involved in the propagation phase. Thus robot 
RN’s resolution of its DC (Direct Conflict) with RM results in indirect conflict (IDC) with 
robots R1, R2 and R3 and hence RN is considered to be in IDC with R1, R2 and R3. When R1 
or R2 try to collaborate in conflict resolution of RN by changing their aspiring velocities it 
can lead to further conflict with other robots to whom requests are transmitted by R1 or R2 
for collaboration. Thus propagation can be recursive and results in a multiple tree like or 
forest data structure shown in figure 8c. A graph like propagation is avoided since a robot-
node that has already propagated a request to another node below does not entertain any 
new requests. 

Fig. 8a. The velocity axis of the robot whose current velocity is at O. Shaded represents the 
inaccessible velocities due to conflicts.

Fig. 8b. RN propagates requests to R1 and R2 on the left due to conflicts with lower 
velocities and on the right to R3 due to higher velocity. 

Fig. 8c. Propagation can result in a generalized multiple tree or forest structure whose links 
represent the flow of conflicts between robots. 

Thus any robot has the following functionalities with regard to propagating requests which 
are taken up for discussion below 

• Transmit requests 
• Receive requests 
• Reply to requests 
• Receive replies 
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into a new conflict with a robot RM. Individual resolution of RN’s conflict with RM results 
in conflict with R1 on the lower side and enters forbidden region on the upper side. 
Similarly RM’s individual resolution leads to conflict with other robots or results in access 
of forbidden regions. When RN cooperates with RM to resolve the conflict it again results in 

Multi Robotic Conflict Resolution by Cooperative Velocity and Direction Control 653 

conflict with R2 on the lower side and R3 on the upper side. In such a scenario RN 
propagates cooperation request to R1, R2 and R3. The tree structure of figure 8b depicts this 
propagation. All nodes on the left of RN are requests arising due to lower aspiring velocities 
while nodes on the right of RN are requests that arise due to higher aspiring velocities. This 
convention would be followed for all robots involved in the propagation phase. Thus robot 
RN’s resolution of its DC (Direct Conflict) with RM results in indirect conflict (IDC) with 
robots R1, R2 and R3 and hence RN is considered to be in IDC with R1, R2 and R3. When R1 
or R2 try to collaborate in conflict resolution of RN by changing their aspiring velocities it 
can lead to further conflict with other robots to whom requests are transmitted by R1 or R2 
for collaboration. Thus propagation can be recursive and results in a multiple tree like or 
forest data structure shown in figure 8c. A graph like propagation is avoided since a robot-
node that has already propagated a request to another node below does not entertain any 
new requests. 

Fig. 8a. The velocity axis of the robot whose current velocity is at O. Shaded represents the 
inaccessible velocities due to conflicts.

Fig. 8b. RN propagates requests to R1 and R2 on the left due to conflicts with lower 
velocities and on the right to R3 due to higher velocity. 

Fig. 8c. Propagation can result in a generalized multiple tree or forest structure whose links 
represent the flow of conflicts between robots. 
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are taken up for discussion below 
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Transmitting Requests: A robot RT transmits a request to another robot RR a packet of that 
contains the following information: 
Source: The robot that originally sourced the request. 
T-robot: The robot that is currently transmitting the request, which is itself (RT). 
R-robot: The robot to which the request is transmitted (RR). 
V-aspire: The velocity which the transmitting robot RT, would aspire to have in order to 
avoid conflict which it has currently with some robot, R1, but which results in conflict with 
the robot to which the request is transmitted, RR. 
t-collide: The minimum time to collision that RT currently has with R1 
Mode: If the aspiring velocity V-aspire is higher than RT’s current velocity then mode takes 
the tag high else it is assigned the tag low.
S-mode: If the S-mode has the tag high then it indicates that RT and RR would be the right 
descendants of the source robot else it indicates that they are left descendants. 
RT transmits a request to RR only if RR is in a state of entertaining requests else the request 
is not transmitted to RR. A robot RR accepts a request to collaborate to resolve RT’s DC with 
another robot only if RR itself is not involved in a DC. 
Receiving Requests: A robot RR can receive single or multiple requests. A robot that 
receives requests from more than one robot to participate in its conflict such as C receives 
requests from A and X in figure 8c, prioritizes the requests in order of time to collision of 
A and C with the robots with which A and C are in conflict. The requests are processed in 
the order of their priorities. If a request could be resolved a success reply is propagated 
back to the robot that transmitted the request. A success reply indicates that RR intends to 
modify its aspiring velocity with respect to that request. Hence it cannot modify its 
velocity to the remaining requests it has received and hence propagates a failure back to 
the remaining robots that had requested RR. If a request is not solved it is either 
propagated to another robot or a failure transmitted back to the robot that transmitted. 
Unless all the requests had resulted in a failure being transmitted RR does not entertain 
any new request for that sample. In other words if RR has managed to solve at-least one 
request or passed at-least one to another robot it does not accept any new request for that 
sample. A sample is one complete execution of the entire reactive loop or module across 
all robots. 
Replying requests: A request is replied back as success or failure to the robot that transmitted 
in the manner described in the previous paragraph. 
Receiving replies: A robot RT that had transmitted requests to other robots receives a 
success or failure reply from the robots to which it had transmitted. If a success reply is 
received RT sees whether the reply is from its left or right child. From the side on which 
the success was received a check is made if all other robots that had received the request 
from RT with respect to that particular aspiring velocity of RT have also replied a success. 
If all other children with respect to that v-aspire from that side (left or right accordingly) 
have propagated a success then RT propagates a success to the parent whose request to 
RT has now succeeded. It removes links with all its remaining children since it has 
already achieved a success on one of its v-aspire, which would become its new aspiring 
velocity. To its remaining parents it propagates a failure reply. On the other hand if RT 
receives a failure reply from its left or right child, it propagates a failure reply to RT’s 
parent responsible for that request. Simultaneously it removes all other children on the 
particular side from which the failure reply was received with respect to that aspiring 
velocity. 
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This process of replying requests and receiving replies is recurred back till the original 
source or the root.

4.6 Tertiary Phase for Direction Control 
The tertiary phase for direction control is a replica of the velocity control scheme but for the 
following minor changes 

Transmitting Requests:
i.  While transmitting requests θ -aspire the aspiring orientation of RT to avoid a 

conflict with R1 but which results in a conflict with RR is transmitted instead v-
aspire. This is indeed obvious 

ii.  Mode: If the aspiring orientation of RT requires RT turning left the mode tag takes 
high else it is low. 

Receiving Requests: 
A robot that receives multiple requests tries to modify its orientation according to following 
heuristics: 

i.  Prioritize the requests such that the request from the robot that has the shortest 
collision time receives highest priority. Requests are serviced in the order of 
priority. Once a request is resolved other requests are not attempted to be resolved, 
they are either propagated to other robots or a failure is propagated back to the 
parent which had propagated the request. 

ii.  A robot tries to resolve as many requests as possible by appropriately finding a 
new aspiring orientation that overcomes all those conflicts 

iii.  A robot tries to see the impact value of a request. A request’s impact value varies 
inversely with number of robots that need to modify their aspiring states for a 
conflict of the robot that transmitted the request. Hence a robot tries to resolve 
those requests that do not simultaneously require other robots also to modify their 
states since such requests have the highest impact. 

The results reported in the subsequent section are those that incorporate the first 
heuristic. 

4.7 Cost function
Often conflicts are resolved in multiple ways leading to multiple solutions. Let the set of 
solutions identified be { }NI ssS ,,1=  where each Ii Ss ∈  is either a velocity tuple 
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i vvv ,,, 21  or an orientation tuple { }a
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i θθθ ,,, 21  depending on the control 

methodology invoked. Here ni is the number of robots that were involved in the resolution 
for that tuple. The superscript ‘a’ indicates the aspiring nature of the element in a tuple. The 
tuple selected could be based on the following criteria for velocity control: 

i. ( )( )ij sDevs min=  where ( )
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 , where ijv  is the current velocity of 

the robot. Here we look for the solution where the sum of changes in velocities 
over all robots is a minimum. 
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RT transmits a request to RR only if RR is in a state of entertaining requests else the request 
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propagated to another robot or a failure transmitted back to the robot that transmitted. 
Unless all the requests had resulted in a failure being transmitted RR does not entertain 
any new request for that sample. In other words if RR has managed to solve at-least one 
request or passed at-least one to another robot it does not accept any new request for that 
sample. A sample is one complete execution of the entire reactive loop or module across 
all robots. 
Replying requests: A request is replied back as success or failure to the robot that transmitted 
in the manner described in the previous paragraph. 
Receiving replies: A robot RT that had transmitted requests to other robots receives a 
success or failure reply from the robots to which it had transmitted. If a success reply is 
received RT sees whether the reply is from its left or right child. From the side on which 
the success was received a check is made if all other robots that had received the request 
from RT with respect to that particular aspiring velocity of RT have also replied a success. 
If all other children with respect to that v-aspire from that side (left or right accordingly) 
have propagated a success then RT propagates a success to the parent whose request to 
RT has now succeeded. It removes links with all its remaining children since it has 
already achieved a success on one of its v-aspire, which would become its new aspiring 
velocity. To its remaining parents it propagates a failure reply. On the other hand if RT 
receives a failure reply from its left or right child, it propagates a failure reply to RT’s 
parent responsible for that request. Simultaneously it removes all other children on the 
particular side from which the failure reply was received with respect to that aspiring 
velocity. 

Multi Robotic Conflict Resolution by Cooperative Velocity and Direction Control 655 

This process of replying requests and receiving replies is recurred back till the original 
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4.6 Tertiary Phase for Direction Control 
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Transmitting Requests:
i.  While transmitting requests θ -aspire the aspiring orientation of RT to avoid a 

conflict with R1 but which results in a conflict with RR is transmitted instead v-
aspire. This is indeed obvious 

ii.  Mode: If the aspiring orientation of RT requires RT turning left the mode tag takes 
high else it is low. 

Receiving Requests: 
A robot that receives multiple requests tries to modify its orientation according to following 
heuristics: 

i.  Prioritize the requests such that the request from the robot that has the shortest 
collision time receives highest priority. Requests are serviced in the order of 
priority. Once a request is resolved other requests are not attempted to be resolved, 
they are either propagated to other robots or a failure is propagated back to the 
parent which had propagated the request. 

ii.  A robot tries to resolve as many requests as possible by appropriately finding a 
new aspiring orientation that overcomes all those conflicts 

iii.  A robot tries to see the impact value of a request. A request’s impact value varies 
inversely with number of robots that need to modify their aspiring states for a 
conflict of the robot that transmitted the request. Hence a robot tries to resolve 
those requests that do not simultaneously require other robots also to modify their 
states since such requests have the highest impact. 
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ii. ( )( )[ ]ij sDevs min= , where ( )[ ]isDev  indicates the number of changes in velocity 

entailed in a solution set is . Hence that solution is preferred where the number of 
robots changing their state is a minimum. 
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robots that had changed their state. This is in contrast to the cost function in ii 
since it promotes the case where small changes in states by many robots over 
large changes due to fewer ones. This cost function is more intuitive with a 
participatory cooperative mechanism and is what is used in the results presented 
in section 5. 

The criteria for choosing a solution tuple for orientation control is along same lines except 
that ( )isDev  is computed as the maximum deviation of the trajectory of a robot computed 
by dropping a perpendicular onto the original trajectory from the location reached by the 
robot in the new trajectory at 1ct .

4.8 Local Planning as an Alternative
The attractiveness of a decentralized collision scheme decreases as the number of 
transmissions and replies between robots increase, consuming a lot of bandwidth 
eventually leading to a breakdown. In such a case the role of a local planner running 
onboard the robot or within their vicinity needs to be explored. All robots involved in 
a conflict either directly or indirectly can be brought within the ambit of a planner 
and local plans guaranteeing collision freeness for the next T instants can be 
computed and disseminated. The tradeoff however is as the number of robots 
increase local planners need to resort to some kind of search techniques such as hill 
climbing to come up with collision free plans and the real-time nature of such 
methods is under scrutiny. One of the future scopes of the current effort is to evaluate 
situations where the role of such a local planner enhances the performance of a multi-
agent system. 

Fig. 9a. Robots Moving in Orthogonal angle Fig. 9b. Various phases of navigation 
versus sampling instants for orthogonal 
separation. 
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Fig. 9c. Percentage availability of solution 
space versus sampling instants 

Fig. 9d. Phases of navigation for angular 
separation of 450.

Fig. 9e. Percentage availability of the 
solution space does not overlap precisely in 
this case for the two robots and hence the 
demarcation between the two plots. 

Fig. 9f. The cooperative phase becomes 
prominent for an angular separation of 15 0.

Fig. 9g. Percentage availability of solution space versus sampling instants for an angular 
separation of 15 0.
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5 Simulation Results 
This section is organized as follows. Initially the existence of the cooperative phase in a 
multi-robot navigation system is portrayed in section 5.1 and the effects of parametric 
variations on the time span of the cooperative phase is presented. In section 5.2 the 
inevitability of cooperative phase is discussed. Section 5.3 presents results of multi-bodied 
system and illustrates the effects of scaling up of the number of robots on the requirement to 
cooperate and propagate 

5.1 Existential Evidence 
Velocity Control 
The existence of the cooperative phase in navigation and its time span of existence vis-à-vis 
the angular separation between robot heading angles, ( )21 θθ − , for the two bodied case is 
first presented. Robots are made to approach each other at various angular separations and 
the percentage of solution space available for choosing control velocities that could avoid 
collision is computed. The percentage availability of solution space is computed as 

100⋅
T

US
L
L

, where USL  is the length of the line that is not shaded on the velocity axis and TL

refers to the total length of the velocity axis. 
However the robots do not chose these velocities but continue to proceed until the solution 
space dries up completely indicating the onset of cooperative phase. If the robots continue 
to navigate without entering into a cooperative scheme for collision avoidance, a stage arises 
where even cooperation would not prevent collision. This final phase is termed as the 
destructive phase, where the robots inevitably have to collide into each other. 
Figure 9a depicts a two-bodied case where the robots approach each other with an angular 
separation of 90 degrees. Figure 9b illustrates a graph that takes discrete values on the y-axis 
versus sampling instants on the x-axis. Sampling instants denote the onset of a new reactive 
loop of the algorithm. The delays are appropriately introduced in the algorithm to make the 
time-length of every reactive cycle and hence every sample constant. For all the simulations 
portrayed in this section (6.1) the maximum velocity of either of the robots is 5 pixels per 
sample and the maximum acceleration for both the robots is 2 units. The discrete values on 
the ordinate (y-axis or vertical axis) of figure 9b indicate the various phases of robot 
navigation. An ordinate value of 0 denotes the individual phase where the robot can avoid 
collision individually without entering into cooperation. An ordinate value 1 signifies the 
cooperative phase of navigation where the solution space has dried up and the robots needs to 
cooperate for averting collision. Finally value 2 on the ordinate implies the destructive phase
where the robots inevitably need to collide or have already collided. 
In figure 9b the individual phase spans for 86 sampling instants from the start of navigation 
while the cooperative phase extends for only two instants after which the robots enter their 
destructive phase. Figure 9c depicts the percentage availability of solution space for 
choosing control velocities corresponding to the various navigational states of the robot in 
figure 9b. It is evident from figure 9c that the range of options available in the solution space 
decreases with time and hits zero in the 86th sample where correspondingly in figure 9b the 
robot enters the cooperative phase of navigation on that instant. Equivalently the conflict 
area expands to occupy the entire space of possible velocities as depicted in 5c. Figures 9d 
and 9e depict the phases of navigation and the availability of solution space when robot pair 
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approaches one another with an angular separation of 45 degrees, while figures 9f and 9g 
depict the same for a separation of 15 degrees. These figures indicate that the cooperative 
phase onsets earlier as the angular separation decreases and correspondingly the range of 
options on the solution space reduce to zero faster. The span of the cooperative phase also 
increases with decrease in angular separation and in figure 9f it becomes rather prominent. 
It is also worthwhile to note in figures 9e and 9g the percentage availability of the solution 
space does not overlap precisely for the robot pair over sampling instants. Hence the 
appearance of two distinct plots corresponding to the two robots. In figure 9e the 
percentage availability of solution space hits zero for one of the robots ahead of the other. 
However, the system itself enters a cooperative phase only when the individual solution 
space exhausts for both the robots. The analysis indicates that the need to resort to 
cooperative phase for conflict resolution would increase when robots approach one another 
with reduced angles of separation. This is expected since the distance between C11 and C12 
(C21 and C22) increases as the angular separation between the robots decreases. With 
increasing distances the conditions (i) and (ii) for individual resolution of conflicts 
mentioned in section 4.1 becomes more difficult to be met. Equivalently the percentage of 
individual solution space becomes less for the same reaction time for considering conflicts. 

Orientation Control 
Figures 10a, 10b and 10c depict the percentage availability of solution space during individual 
and mutual resolution of conflicts for cases of robots approaching each other head on (that we 
denote as 180 degrees), orthogonal to each other and when they approach one another with a 
separation of 30 degrees. In contrast to velocity control the individual phase lasts for the least for 
robots approaching at 90 degrees to one another among the three cases and the amount of 
leverage gained by resorting to orientation control is also the least for this case. This conclusion is 
from the graph 10b for orthogonally approaching robots that shows the percentage of solution 
space available when a robot attempts to resolve conflict individually is the least. The percentage 
availability of the individual solution space (the gray regions within the inner green rectangle in 
figure 6e) is highest for the 30degree case. Whereas the percentage availability of the mutual 
solution space when individual resolution ends is highest for the head on case. These somewhat 
counterintuitive results can be explained as follows. Consider R1 approaching R2 head on with 
R1 trying to avoid the conflict. Turns into both half planes formed by the line along the current 
heading of R1 passing through R1’s center can yield solutions. 

Fig. 10a. Percentage availability in both 
individual and cooperation phases versus 
percentage time Elapsed, for head on case. 

Fig. 10b. Percentage availability in both 
individual and cooperation phases versus 
percentage time elapses, for 90 degree case. 
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, where USL  is the length of the line that is not shaded on the velocity axis and TL

refers to the total length of the velocity axis. 
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approaches one another with an angular separation of 45 degrees, while figures 9f and 9g 
depict the same for a separation of 15 degrees. These figures indicate that the cooperative 
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individual solution space becomes less for the same reaction time for considering conflicts. 

Orientation Control 
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solution space when individual resolution ends is highest for the head on case. These somewhat 
counterintuitive results can be explained as follows. Consider R1 approaching R2 head on with 
R1 trying to avoid the conflict. Turns into both half planes formed by the line along the current 
heading of R1 passing through R1’s center can yield solutions. 

Fig. 10a. Percentage availability in both 
individual and cooperation phases versus 
percentage time Elapsed, for head on case. 

Fig. 10b. Percentage availability in both 
individual and cooperation phases versus 
percentage time elapses, for 90 degree case. 
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Fig. 10c. Percentage availability in both 
individual and cooperation phases versus 
percentage time elapses, for 300.

Fig. 10d. percentage of initial individual 
and cooperative solution space available 
versus various angles. 

However since the relative velocity between the two robots is also the maximum the 
solution space decreases rapidly as many of the turns into both quadrants do not resolve 
conflicts with passage of time. This explains the fastest decrease in individual solution 
space for the head on case and the slowest decrease for the 30 degrees case (since the 
relative velocity is the least for this case). A cursory look at the slopes of the curves shows 
that they are most steep for head on and least steep for 30 degree case. For reasons why 
the highest percentage of solution space is available for 30 degree case initially the 
following explanation is given. Albeit the fact that turns into one half plane are most 
likely to yield collision (the half plane that contains R2) almost all the turns into other half 
plane (that does not contain R2) are collision free since those turns are not steep and 
easily attainable. For the head on case as explained in previous sections reaching to either 
the half plane above 21EE  or the one below 43EE  are of same steepness. So the gains 
made in the solution space on a turn into one of the half planes over the 30 degree case is 
compensated for the turns into other half plane for which the 30 degree case is entirely 
conflict free. The net result being that the percentage of solution space initially available 
for individual resolution is highest for the head-on case. The turns to avoid conflict on 
either half planes are steep for the orthogonal case and hence many of the turns are 
unable to avoid the conflict leading to the least amount of solution space available 
initially for the orthogonal case. 
The higher percentage of mutual or cooperative solution space for the head-on over 30 
degree case is arguably due to the fact that the gray solution areas exist both in the 1st and 
3rd quadrant in for the head on case (figure 6e). Whereas for 30 degree angular separation 
most of the solution space would be confined to one of the quadrants. 
Figure 10d shows a plot of percentage of initial individual solution space available versus 
angular separation. The plot shows that the highest percentage is available for robots at zero 
degrees (one behind the other) and least for orthogonal case. These discussions suggest that 
velocity control is apt when angular separation is close to 90 and orientation control is apt 
when angular separation closes in to zero or 180 degrees. 

5.2 Inevitability of cooperation 
While the existential evidence of the mutual phase or cooperative phase is established how 
essential the need for it is. 
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Requirement for cooperation in two-bodied system 
For the two-bodied system discussed in last section cooperation could have been avoided if 
robots took preemptive actions before the onset of the cooperative phase. Table 1 illustrates 
under what set of parameters did an invocation of a cooperative scheme for collision 
avoidance became unavoidable. The table suggests for the case of 90 degrees separation in 
robot heading directions cooperation becomes inevitable only when the robot’s reaction 
time is considerably reduced to 5seconds and when it possesses awful dynamic capabilities 
such as when it cannot accelerate faster or decelerate slower than 215.0 samplepixels .
However when the angular separation was 15 degrees even default parameters entailed the 
cooperative phase. Hence the requirement of a cooperative scheme in real-time navigation is not 
artificial even for a simple two-bodied system. 

Angular Separation 
(degrees)

Reaction Time 
(seconds)

Maximum 
Acceleration, 
Deceleration pixel/s2 

Maximum 
velocity pixel/s 

90 5 0.15,-0.15 5 
45 5 0.45,-0.45 3 
15 12 2,-2 1 

Table 1. The reaction time for various Angles, in case of velocity control. 

Angular Separation 
(degrees)

Reaction Time 
(seconds)

Maximum Angular 
Acceleration rad/s2 

Velocity pixel/s 

180 17 0.0045 3 
90 16 0.0045 3 
30 11 0.0045 3 

Table 2: The reaction time for various Angles, in case of orientation control. 

Table 2 depicts the parameters for which mutual cooperation is inevitable in case of 
orientation control. All things being same with respect to table 1 the third column is the 
angular acceleration in radians per second square. The fourth column shows the constant 
linear velocity with which the robot moved in those cases. The maximum angular velocity 
was also same for all the test runs. 

5.3 Simulation with Multiple Robots 
Velocity Control 
For all the simulations portrayed in this section the maximum velocity of either of the robots 
is 5 pixels per sample and the maximum acceleration for both the robots is 2 

2samplepixels . The reaction time rt  is fixed at 12 samples. All robots are capable of 
communicating to one another within a range of 100 pixels. 
Figure 11a shows an instant during the navigation of a system of five robots where robots 1 
and 3 are unable to resolve their conflicts between them individually as well as 
cooperatively as cooperative solutions lead to indirect conflict with robot 4. Hence 1 and 3 
propagate a request to resolve their conflict to 4 thereby embarking on the propagation 
phase as the last attempt to resolve their conflicts. Robot 4 accepts requests from 1 and 3 and 
is able to solve the request of 1 by modifying its current velocity such that 1 and 3 are able to 
avoid their mutual direct conflicts. This scenario is depicted in figure 11b where 4 moves 
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faster in such a way 1 and 3 are able to avoid their mutual direct conflict. Figure 11c shows 
the space-time evolution of trajectories for the robots of figures 11a and 11b. The x and y 
axes indicate the regions in the x-y plane occupied by a robot every time it samples the 
environment. Robot samples of the environment in time are shown along the z axis as 
sampling instants. The five solid lines of the figure correspond to the trajectories of the five 
robots. The figure shows that the robot trajectories do not overlap in space-time confirming 
that all collision conflicts were resolved by the algorithm. 

Fig. 11a. Snapshot of 
system of five robots. 

Fig. 11b. Robots 1 and 3 propagate requests to resolve their 
conflicts to robot 4, which accepts the request and moves faster 
such that 1 and 3 are able to avoid their mutual direct conflict. 

Fig. 11c. Space-time evolution of trajectories for the five robot system. 

Fig. 12. Sequence of snapshots arranged from left to right with the second row following the 
depicting navigation of a system of eight robots. The third and fourth snapshots depict 
instances where propagation of conflicts was resorted for conflict resolution. 
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Figure 12 shows a sequence of snapshots during the navigation of a system of 8 robots. The 
sequence is ordered left to right with the second row sequence following the first row. The 
traces of the robot are shown by thin lines rather than by the size of the robot. The rightmost 
snapshot in the first row and the leftmost snap shot on the second row are instances when 
propagation phase was effected for conflict resolution. The first and the last snapshots 
represent the initial and final configuration of the robots. 

Fig. 13. Sequence of snapshots during navigation of a system of nine robots. 

Fig. 14. Sequence involving 11 robots. The second of the snapshots indicates the instance 
when robots begin to react to each other’s presence. 

Figure 13 shows yet another sequence of six snapshots of a system of nine robots arranged 
in the same order as in figure 12. The first and the last snapshots are the initial and final 
configurations of the nine robots. The robots are labeled 1 to 9 in the first and last figures. 
The traces of the robots are not shown for clarity. The initial and final configuration 
resembles a clock like structure. In other words a robot placed at position 3 in a clock needs 
to get to a goal location which is near 9 and a robot placed near nine initially has its goal 
configuration near 3. These examples depict simulations with increasing difficulty as the 
number of robots increase and all of them converge towards a common junction. Hence the 
trajectory of every robot intersects with every other robot and hence the number of collision 
conflicts of the total system is high. It is also worth emphasizing that robots consider 
collision conflicts only within a reaction time of 12 samples by which time the robots have 
converged sufficiently close to one another. 
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The sequence of snapshots shown in figure 14 highlight a more difficult example involving 
11 robots at similar initial and final configurations as in figure 12. When the number of 
robots were increased beyond 11 some of the conflicts could not be resolved and hence 
collisions were encountered between the robots. The second of these snapshots represent 
the instant when robots first begin to react to each other’s presence by embarking a strategy 
for resolving conflicts. 

Direction Control 
Figures 15a-15d shows a sequence of snapshots of four robots red, blue, black and cyan 
avoiding collisions by direction control. Initially (figure 12a) red and blue are within 
communication distance of one another and begin to avoid conflict in the cooperative 
mode to minimize deviation suffered by one robot alone. After a while both cyan and 
black enter the communication zone of blue and red with cyan in conflict with blue and 
black with red. Red has already deviated to its left in avoiding blue and same is the case 
with blue. To avoid black and cyan the best recourse for red and blue is to turn right on 
their current heading that brings them into conflict once again. Hence the only solution 
left is for both black and cyan to modify their trajectories which are shown in the 
remaining snapshots. 

Fig. 15a. Initially red and blue robots
detect collision and avoiding collision
cooperatively. 

Fig. 15b. Two more robots 
arrived in the scenario. 

Fig. 15c. In order to minimize the 
optimization function robots black and 
cyan change their directions and avoid 
collision. 

Fig. 15d. All Robots after avoiding 
collision go through their actual 
path.

Multi Robotic Conflict Resolution by Cooperative Velocity and Direction Control 665 

6. Summarizing Comments 
A method by which the velocity and orientation axis of the robot can be dissected into 
various portions and these portions labeled as conflict free or conflicting with a particular 
set of robots, unreachable and reachable is presented. The conflict free intervals along the 
axis that are also represent the solution space for the robot. When the entire reachable space 
is conflicting with one or more robots it points to the need for cooperation between robots. 
For a pair of robots that are in conflict with one another and either of them unable to resolve 
the conflict individually plot of the joint solution space demarcates area where cooperative 
change of velocities or directions can result in collision freeness. For a pair of robots the 
entire solution space need not be searched, if a solution is not possible at the corners of the 
rectangular portions demarcated there is no possibility to resolve the conflict by mutual 
cooperation. Often a velocity or direction control strategy that solves a conflict with one 
robot results in conflict with others there by bringing in more robots into the resolution 
scheme. In such situations the space to be searched for finding a solution increases 
exponentially. However a method by which requests are passed between robots to resolve 
the conflicts drastically reduces the space to be searched. We call this as a three-tiered 
strategy of individual, mutual and tertiary levels. Simulation results confirm the efficacy of 
the method. Existential and inevitable nature of cooperation is also presented and analyzed 
in detail 
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1. Introduction 
Collaboration has been acknowledged as an excellent tool to compensate for limitations and 
shortcoming of individuals in order to achieve complex tasks. Yet, robotics collaboration has 
been recognized as an independent entity on its own within robotics community as suggested by 
the emerging literature and the growing applications like RoboCup, FIRA competitions (Kitaneo, 
1997), autonomous vehicles for space/submarine exploration (Todd and Pomerleau, 1996). This 
promises a leading future for this field in a medium term. However, the development of effective 
collaboration schemes is subject to several challenges. This concerns aspects related to robot 
localization (absolute and/or relative localization), environment map building, sensor modelling 
and fusion, game-theoretic scenarios, collaboration/cooperation modes, user’s interface and 
control modes, among others, see, for instance, (Mataric, 1998). This chapter aims to contribute at 
least to the first two aspects of the aforementioned challenges where the issue of dynamic 
localization and map building using two miniature Khepera® robots is tackled. An extended-
Kalman filter based approach is developed and implemented in order to model the state of the 
robot and various observations as well as to determine and update the positioning estimates of 
both robots together with the identified landmarks in the environment. A virtual representation 
of the map and robots is also put forward using OpenGL for 3D representation. While the 
developed interface uses enhanced help capabilities in case of unsafe or non-tolerated 
manipulations by the user. 
The issue of mobile localization and map building has been a challenging issue that faced 
the robotics community since the eighties due the debatable issues related to the state and 
observation modelling, map initialization and building, and convergence of the estimation 
process, among others. This led to the development of several techniques to overcome the 
above challenges. Since the pioneering work of Smith and Cheesman (1986), a bridge from 
geometrical features and stochastic models has been established, which led to a variety of 
algorithms, mainly using Kalman filter (Geb, 1986) or its variants, whose feasibility and 
satisfactory performances have been demonstrated both from theoretical and practical 
perspectives through the convergence properties of the algorithms and the successful 
applications.   
The concept of robot localization and map building is often referred to as SLAM (Simultaneous 
Localization And Mapping), in which both the environment map represented as a set of 
landmarks and the robot states are estimated simultaneously by augmenting the state vector to 
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include both robot’s state and landmark states (Leonard and Durrant-White, 1991a; Dissanayake 
et al., 2000, 2001; Thrun et al., 1998; Bailey and Durrant-White, 2006). This trivially increases the 
autonomy of the robot(s) as it permits consistent robot navigation without requiring a priori map. 
Besides, the study and experiments carried out in the above citations, among others, demonstrated 
the feasibility of SLAM both from theoretical and practical viewpoints despite the challenging 
issues related to complexity, map building and data association, etc. In contrast to the stochastic 
models which govern the construction of the majority of the proposed SLAM models, one shall 
mention the increasing literature in soft-computing based approaches like fuzzy/possibility-based 
approach (Oussalah et al., 2003), neural network (Nonato et al., 2006), genetic algorithms (Higuchi, 
1996), inference systems (Begum et al., 2005). Reference (Murphy, 2000) provides a good overview 
of such methodologies. 
The vast majority of SLAM implementations utilise expensive sensor equipment that has good 
range detection and high accuracy, typically laser range finder, ultrasonic sensors and/or vision 
systems. Although the use of ultrasonic sensors causes specular reflection while the ultrasonic 
beam deteriorates the measurement accuracy. On the other hand, the vision system induces high 
computational complexity, which opens new areas for research and investigations in order to 
achieve high balance in terms of cost-effectiveness ratio. Besides, almost all the implementations 
so far restricted to a single robotic system (Bailey and Durrant-White, 2006; Durrant-White and 
Bailey, 2006). Consequently the use of a group of Khepera robots together with the limited sensor 
capabilities and restricted range of infrared sensors makes the SLAM problematic even more 
challenging. For this purpose, similarly to (Dissanayake et al., 2000, 2001) a stochastic SLAM 
based approach was developed to account for the multi-robotic systems. The underlying SLAM 
model depends on the robot collaboration mode. For instance, in case where the vision robot 
restricts its movement to rotation to identify possible objects, the state vector includes both the 
state of both robots as well as that of landmarks. While in case where both robots achieve non-
negligible movement, the state vector includes state of each robot together with each 
environment map constituted by its set of landmarks. The latter is made of Cartesian points, 
which are transformed into feature landmarks - mainly segment lines and corners-. Performances 
of the proposal will be illustrated through experimental setup. Section 2 of this chapter describes 
the overall system setup providing an overview of the system, concept of robots’ collaboration, 
mapping and user’s interface. Section 3 recalls the basis of stochastic SLAM model and develops 
the proposed filter estimation algorithm. Section 4 examines the experimental performances of 
the developed algorithm. Next overall conclusion is provided.  

2. System Setup 
2.1 System Overview 

Two Khepera robots were used in our experiment. Both robots are equipped with encoders 
and infrared sensors. Besides, one of the robots is equipped with a linear vision turret, 
which allows detection of far away objects. One refers Vision Robot (VR) to the robot 
equipped with vision turret and Blind Robot (BR) to the other one. The two robots BR and 
VR are controlled via the two serial connections COM1 and COM2, respectively, of a regular 
windows-based PC platform. 
Each of the robots only has 512k of memory on-board. This small amount of memory 
and the limited processing powers of the robots entail that almost all of the map 
construction and robot control are accomplished on the PC platform while a 
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behavioural safety oriented navigation scheme is embedded in robot platform executed 
by local micro-controller in order to prevent robots to crash with obstacles or objects 
using the infrared sensors. The user interacts with the system through the control 
program interface. Figure 1 shows a typical system setup using a PC with two serial 
extension cables and a custom made testing environment. 

Fig. 1. Instance system setup. 

2.2 Robot Collaboration: Concept 

Building on the ability of the two robots to individually add objects to the map based on 
their tracked location, the robots are able to collaborate their efforts to achieve the shared 
goal of mapping the environment. This ability also helps make use of the vision turret, 
which one of the robots is equipped with. For example the VR can send a BR to a typical 
location viewed through its vision turret in order to explore the neighbourhood of the 
underlying object using the infrared sensor the BR is equipped with. This is especially useful 
when, for example, the two robots are on opposite sides of an object. So, by calling the other 
robot to the location of the detected object, if the other robot comes from the other side of the 
object, it will encounter the other edge of the object perimeter in its travels, and add that to 
the map accordingly. On the other hand as the range of the infrared sensors is very limited 
(only few centimeters), the use of vision turret whose range may go up to 1 meter allows us 
to compensate for such limitation. The diagram in Figure 2 below illustrates this point 
where the arrows show direction of robot travel. 

Fig. 2. Robots collaborating to map opposing edges of same object. 
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Especially, when the action to search for an object is sent to the VR, the latter starts 
turning via fixed angular increments until the vision turret detects an object, then either 
the robot moves toward it or sends a command to the BR to go to object location 
according to the determined azimut and explore it via its infra-red sensors. The process 
of detecting an object with the turret is based on: i) the number of pixels (out of 64 
maximum) that detected the object; ii) calculus of the target pixel, which defined the 
edge of the object; iii) turning the VR until the turret detects an object at the target pixel; 
vi) storing the orientation angle. The above process effectively ensures that of all the 
pixels that do not detect an object, half are on the left and half are on the right, leaving 
the object-detected pixels in the centre of the field of view.

2.3 Mapping 

Due to low resolution of sensors equipping the robots, the SLAM approach of representing 
the object as virtual points in the x-y coordinates sounds appealing. However, these virtual 
objects, if detected by vision turret, will get further explored using infrared sensors in which 
the virtual points are, under some geometrical constraint, linearly fitted together, which will 
form the environment map. These points will act as landmarks for the robots, which will 
then be added to the vector state model containing the x-y and pose of the robot. As special 
interest, one notices the fact that the second robot will not be used as an extra object in the 
environment but rather will use the information of 2nd robot’s positioning to update the 
current robot location. This builds a bridge towards the issue of relative positioning which 
has focused much of interest in recent years. From a geometrical perspective, as far as range 
sensors were used, the detected object is modelled as a rectangular object centred around 
the virtual point identified by the sensor and whose direction is perpendicular to sensor 
beam as illustrated in Figure 3.  

Fig. 3. Robot configuration and object modelling. 

The systems mapping ability is combined with the robot localisation, which provides further 
evidence on whether the object needs to be added to the map or is already an observed 
landmark or just a false alarm that needs to be discarded. Besides, the object once added to 
the map will be used again in the observation model to correct the robot positioning as will 
be detailed later on. On the other hand, since the map contains several objects, the mapping-
localization mechanism should be endowed with retrieval capabilities to search the closest 
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objects in the map to the current robot positioning in order to avoid using the whole set of 
objects, which increases substantially the complexity of the algorithm. This leads to a local 
map of the environment, used for updating and data association purposes. This helps in the 
decision making process of adding a new object to the map or not. Indeed, if, for example, 
the sensors are observing an object at much closer range than the closest mapped object, 
then the observed object is added to the map as described earlier.
With the ability to know the robots location and correctly add objects to the map around 
that location the system can map out the environment the robots are in. To map the 
perimeter of the environment a robot will travel forwards constantly checking its sensors. 
When a sensor detects an object any necessary adjustments are made to the map as 
described above, then the robot turns to align itself with the object and then continues to 
travel forward. At set intervals (set by the required resolution of the map and robot speed) 
the robots location is updated and the object detected is added to the map.  

2.4 User’s Interface 

The interface consists of three parts: the console, the display and the menu. These can be 
seen in Figure 4. The console is the most diverse aspect of the interface, in that it has the 
most uses. Firstly the internal workings of the system can be displayed in text format using 
the console. This can range from simply displaying the current state of the system (such as 
robot coordinates and orientation), to the most recent recorded values (such as sensor, turret 
and odometer readings), to the actual values being calculated and used in a process. The 
console also allows the user to enter custom data into the system, such as providing a 
filename to save a map as. Aside from the need to enter filenames of maps to load or save 
the console can be mainly ignored for general system usage. 

Fig. 4. Example of screenshot showing the three components of the user interface. 



670 Mobile Robots, Perception & Navigation

Especially, when the action to search for an object is sent to the VR, the latter starts 
turning via fixed angular increments until the vision turret detects an object, then either 
the robot moves toward it or sends a command to the BR to go to object location 
according to the determined azimut and explore it via its infra-red sensors. The process 
of detecting an object with the turret is based on: i) the number of pixels (out of 64 
maximum) that detected the object; ii) calculus of the target pixel, which defined the 
edge of the object; iii) turning the VR until the turret detects an object at the target pixel; 
vi) storing the orientation angle. The above process effectively ensures that of all the 
pixels that do not detect an object, half are on the left and half are on the right, leaving 
the object-detected pixels in the centre of the field of view.

2.3 Mapping 

Due to low resolution of sensors equipping the robots, the SLAM approach of representing 
the object as virtual points in the x-y coordinates sounds appealing. However, these virtual 
objects, if detected by vision turret, will get further explored using infrared sensors in which 
the virtual points are, under some geometrical constraint, linearly fitted together, which will 
form the environment map. These points will act as landmarks for the robots, which will 
then be added to the vector state model containing the x-y and pose of the robot. As special 
interest, one notices the fact that the second robot will not be used as an extra object in the 
environment but rather will use the information of 2nd robot’s positioning to update the 
current robot location. This builds a bridge towards the issue of relative positioning which 
has focused much of interest in recent years. From a geometrical perspective, as far as range 
sensors were used, the detected object is modelled as a rectangular object centred around 
the virtual point identified by the sensor and whose direction is perpendicular to sensor 
beam as illustrated in Figure 3.  

Fig. 3. Robot configuration and object modelling. 

The systems mapping ability is combined with the robot localisation, which provides further 
evidence on whether the object needs to be added to the map or is already an observed 
landmark or just a false alarm that needs to be discarded. Besides, the object once added to 
the map will be used again in the observation model to correct the robot positioning as will 
be detailed later on. On the other hand, since the map contains several objects, the mapping-
localization mechanism should be endowed with retrieval capabilities to search the closest 

Robot Collaboration for Simultaneous Map Building and Localization 671 

objects in the map to the current robot positioning in order to avoid using the whole set of 
objects, which increases substantially the complexity of the algorithm. This leads to a local 
map of the environment, used for updating and data association purposes. This helps in the 
decision making process of adding a new object to the map or not. Indeed, if, for example, 
the sensors are observing an object at much closer range than the closest mapped object, 
then the observed object is added to the map as described earlier.
With the ability to know the robots location and correctly add objects to the map around 
that location the system can map out the environment the robots are in. To map the 
perimeter of the environment a robot will travel forwards constantly checking its sensors. 
When a sensor detects an object any necessary adjustments are made to the map as 
described above, then the robot turns to align itself with the object and then continues to 
travel forward. At set intervals (set by the required resolution of the map and robot speed) 
the robots location is updated and the object detected is added to the map.  

2.4 User’s Interface 

The interface consists of three parts: the console, the display and the menu. These can be 
seen in Figure 4. The console is the most diverse aspect of the interface, in that it has the 
most uses. Firstly the internal workings of the system can be displayed in text format using 
the console. This can range from simply displaying the current state of the system (such as 
robot coordinates and orientation), to the most recent recorded values (such as sensor, turret 
and odometer readings), to the actual values being calculated and used in a process. The 
console also allows the user to enter custom data into the system, such as providing a 
filename to save a map as. Aside from the need to enter filenames of maps to load or save 
the console can be mainly ignored for general system usage. 

Fig. 4. Example of screenshot showing the three components of the user interface. 



672 Mobile Robots, Perception & Navigation

The display shows a 3D map which represents the environment as it is known by the 
system. The map includes the ground, objects and the two robots. On the other hand, the 
interface also includes some help functionalities in the event the user was unsure how to 
start using the system. It is fairly brief and only covers the most common mishaps. The user 
can also display the system credits, which states the program author and completion date. 

2.5 Optimal Resource Allocation 

Due to discrepancy between processing capability of PC and robot’s controller, it was 
necessary to take this into account when designing the interaction between host PC and 
robots. This can be ensured by using a delay function to ensure the sensors are being 
queried at reasonable time. Besides to avoid inconsistency in requesting information from 
different robot’s sensors, another small delay of around 0.05 seconds between sending a 
request for a sensor or odometer update and reading in characters from the receive buffer 
(reading the response) is inserted. The turret returns many more characters, so it was 
necessary to use such delay, anything less and some of the characters do not get received. 
To allocate the best use of available resources, the ‘reading’ process was split into 
‘update’ and ‘show’. Rather than have the program poll the robot continually every 
time it wanted to make a decision, the readings are updated once and then stored on the 
PC. The program can then access these stored readings as many times as it wants, as 
fast as it wants without putting further strain on the robots. ‘Show’ refers to accessing 
these stored readings, whereas ‘update’ refers to polling the robots to update the stored 
readings with current data. Obviously the update process needs to be called 
periodically before the stored readings get too out of date. This design improved system 
efficiency greatly. It also allows the system to fully analyse a specific time index before 
moving onto the next. For example when checking the sensors for object detection the 
stored sensor readings can be updated once. An individual analysis of the reading of 
each of the sensors at that time index can then be made, and any necessary processing 
done. A separate update process eliminates the need to poll the robot once for each of 
the 8 sensors, the polling of which would incur a 0.05second delay for each sensor. 

3. Kalman filter and SLAM models 
The aim of this section is to investigate the stochastic models underlying the SLAM or 
simultaneous robot localization and map building. First let us describe the standard Kalman 
filter approach without recourse to SLAM. 

3.1 State model 

Using the incremental moving r
kl  and l

kl  of the right and left wheel, respectively, obtained 
by reading the encoder sensor of the robot, one can estimate the pose of the robot given in 
term of x-y coordinate of a reference point in the robot, usually taken as the centre of the 
robot and the orientation of the robot with respect to horizontal axis as it can be seen in 
Figure 3. The prediction model giving the state of the robot T

kkk yx ),,( θ based on previous 
state T

kkk yx ),,( 111 −−− θ and the incremental encoder readings is given by the expression: 
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where nk stands for Gaussian zero-mean noise pervading the state components x, y and θ ;
that is, ),0]00([ T Qk Νη , where Q is a 3x3 noise variance-covariance matrix, usually taken 
as a fixed symmetric definite matrix. E is the distance between the wheels (left and right 
wheels) of the robot.  Expression (1) assumes that the robot trajectory is linear between two 
consecutive time increments k and k+1, while the incremental moving of kθ  is assimilated to 
an arc of circle.  
One designates T

kR xkX ]y[)( kk θ=  the state vector of the robot positioning. So, (1) can be 
rewritten as
   

kRkR kkXFkkX η+=+ ))|(()|1(             (2) 

The quantity ))|(( kkXF Rk
 represents the prediction of the estimate on RX

denoted )|1(ˆ kkX R + . Due to randomness pervading the estimation of RX  expressed in the 
form of additive Gaussian noise with known statistics (zero mean and Q variance-
covariance matrix), the entity )|1( kkX R +  is attached a Gaussian distribution probability 
with mean )|1(ˆ kkX R +  and variance-covariance matrix  
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Where F∇  indicates the Jacobian (with respect to xk, yk and kθ ) of the state transition 
function F, i.e.,  
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Observation Model 
The exteroceptive sensors of the robot consist of infrared range sensors and vision turret (for 
only one of the robots). Therefore, the observation consists of the range –distance di from the 
sensor location within the robot platform to the ith object (whose x-y coordinates are 

),(
ii BB yx while the information issued from the vision sensor can be translated into the 

azimuth
iβ  indicating the pose of the object with respect to the horizontal axis. Notice that 

the distance di can also be measured from the centre of robot as suggested by Figure 3 due 
to knowledge of radius r of the robot. Now relating the state variables to the observation 
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3. Kalman filter and SLAM models 
The aim of this section is to investigate the stochastic models underlying the SLAM or 
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3.1 State model 

Using the incremental moving r
kl  and l

kl  of the right and left wheel, respectively, obtained 
by reading the encoder sensor of the robot, one can estimate the pose of the robot given in 
term of x-y coordinate of a reference point in the robot, usually taken as the centre of the 
robot and the orientation of the robot with respect to horizontal axis as it can be seen in 
Figure 3. The prediction model giving the state of the robot T

kkk yx ),,( θ based on previous 
state T

kkk yx ),,( 111 −−− θ and the incremental encoder readings is given by the expression: 
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where nk stands for Gaussian zero-mean noise pervading the state components x, y and θ ;
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leads to the following expression of the observation model 
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Or, more generally, 
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The set of all measurements available at current time k+1 is denoted by 
))1(z...)1(()1( n1 ++=+ kkzkZ , where n stands for the total number of observations at time 

(k+1).
Similarly, ),0]0([ T Rvk Ν , where R is a 2x2 noise variance-covariance matrix, usually taken 
as symmetric definite matrix.   
It should be noticed that not both measurement equations are used necessarily 
simultaneously due to possible non-availability of either distance reading or camera 
reading. In such case, one only uses either v1 or v2 noise expressions, which are one-
dimensional entities. 
Kalman filter or extended Kalman filter (in case of nonlinear state or measurement equation) 
aims at finding the estimation )1|1(ˆ ++ kkX R  of the robot’s state )1|1( ++ kkX R  of the 
current state of the vehicle given the set of measurements. This is typically given as the 
expectation given the set of observation Z, i.e., ]|)1|1([)1|1(ˆ ZkkXEkkX RR ++=++ . The 
uncertainty on such estimation is provided by the state variance-covariance matrix 

1|1 ++ kkP ,

given as covariance on error of estimate:   
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T
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These entities are determined using Kalkan filter equations, which proceeds recursively in 
two stages –prediction and update- whose expressions are given below: 
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))|(ˆ()|1(ˆ kkXFkkX RR =+    (prediction of state vector)                            (10) 
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RR +∇+∇=+ ).|1(.)1(        (variance-covariance of innovation matrix)  (11)  
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RR    Gain matrix      (12) 

)|1(.)1()|1()1|1( kkPHkKkkPkkP RRRR +∇+−+=++  (state covariance update)     (13) 

)))|1(ˆ()1().(1()|(ˆ)1|1(ˆ kkXHkZkKkkXkkX RRR +−+++=++   (state update)      (14)  
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Where H∇ represents the Jacobian of the measurement equation H, which in case that both 
distance and landmark location were used, is given by 
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In case where only one single type of observation is available, then one uses on a single row 
of matrix H∇ .
So, the estimation of )1|1( ++ kkX R  follows the Gaussian probability distribution 

))1|1(),1|1(ˆ( ++++ kkPkkXN RR
.

Kalman equations (9-14) are recursive, so they only depend on previous state. At time 0 
where initially no observations were made, one requires an initial guess of the state vector 
and variance-covariance matrix, )0|0(RX and )0|0(RP , respectively, this allows us to 
determine the new estimate )1|1(RX and )1|1(RP given the observation vector Z(1).  
Notice that since the measurements are usually sampled at lower rate than encoders (almost 
five to 10 times less), the prediction equations (9) and (10) are applied several times before 
calling up for update stage using expressions (11-14). 

3.2 SLAM mode 

The preceding development of Kalman filter model assumes that the landmarks (observed 
objects) and robot positioning are independent. For instance, if the absolute locations of 
landmarks are fully known, then the previous Kalman filter approach does make sense. 
However, in reality, as far as the construction of global map of environment is concerned 
and no absolute knowledge of the landmark location is priori given, the estimations of 
landmarks positioning are correlated and strongly influenced by the uncertainty pervading 
the robot’s location. Indeed, as the robot moves forth and back through the environment, the 
uncertainty pervading the landmarks’ locations will be influenced and since the overall set 
of landmarks are linked through geometrical entities like wall, corners, etc, such uncertainty 
would propagate through overall set of landmarks. On the other hand, as all the 
observations (landmarks) are implicitly linked to robot state such uncertainty would also 
affect the robot state estimate RX . This has given rise to the idea of simultaneous mapping 
and localization using estimation-theoretic methods known as SLAM. Work by Smith and 
Cheesman (1986) and Durrant-White (1988) established a statistical basis for describing 
relationships between landmarks and manipulating geometric uncertainty. Smith et al. 
(1990) established that if a mobile robot is moving through unknown environment and 
taking relative observations of landmarks, then the estimates of these landmarks are all 
necessarily correlated with each others because of common error in estimated robot location. 
As a result of this, a consistent estimation would require a joint state composed of both 
robot state and each landmark position leading to an augmented state vector. However as a 
result of increasing number of landmarks, the dimension of such state vector increases 
accordingly, which often induces further challenges in terms of computational complexity, 
convergence behaviour, conflict resolution, among others (Durrant-White and Bailey, 2006; 
Martinili et al., 2003).  
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The preceding development of Kalman filter model assumes that the landmarks (observed 
objects) and robot positioning are independent. For instance, if the absolute locations of 
landmarks are fully known, then the previous Kalman filter approach does make sense. 
However, in reality, as far as the construction of global map of environment is concerned 
and no absolute knowledge of the landmark location is priori given, the estimations of 
landmarks positioning are correlated and strongly influenced by the uncertainty pervading 
the robot’s location. Indeed, as the robot moves forth and back through the environment, the 
uncertainty pervading the landmarks’ locations will be influenced and since the overall set 
of landmarks are linked through geometrical entities like wall, corners, etc, such uncertainty 
would propagate through overall set of landmarks. On the other hand, as all the 
observations (landmarks) are implicitly linked to robot state such uncertainty would also 
affect the robot state estimate RX . This has given rise to the idea of simultaneous mapping 
and localization using estimation-theoretic methods known as SLAM. Work by Smith and 
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relationships between landmarks and manipulating geometric uncertainty. Smith et al. 
(1990) established that if a mobile robot is moving through unknown environment and 
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necessarily correlated with each others because of common error in estimated robot location. 
As a result of this, a consistent estimation would require a joint state composed of both 
robot state and each landmark position leading to an augmented state vector. However as a 
result of increasing number of landmarks, the dimension of such state vector increases 
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More specifically, let T
llL iii

yxX ),(=  be the state of the ith feature or landmark given in terms of 

x-y Cartesian coordinates. First, one assumes the environment be static. This assumption is 
very common and trivial if the objects are not dynamic. Indeed, tracking moving objects is 
not considered of much value for the navigation purpose. So, the dynamic model that 
includes both landmark and robot’s state becomes 
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ℜ∈=  represents the set of all N landmarks 

identified up to current time. Loosely speaking, in some literature N is set as an arbitrary 
total number of landmarks that may exist in the environment, while it is common that the 
value of N varies within time due to update of the environment and addition of new 
landmarks to the map. So, the new state vector will be T
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The augmented state transition model for the complete system can now be written as 
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Accordingly, the new state Jacobian matrix eF∇  (one denotes eF  for extended state 
transition F) will be  
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Where
xN30  stands for 3 x N zero matrix , similar definitions hold for 
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The new observation model can be written 
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Similarly, the new Jacobian eH∇ of the observation model reads as (assuming that only a 
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With 22 )()( kBkBi yyxx
ii
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(21) can also be rewritten as  

]H[ 2211 ∅∅=∇ HH e  (22) 
Where 1∅  and 2∅ stand for all null elements located in (20) or (21). Notice that most 
elements of both eF∇  and eH∇  are null elements. 
From implementation perspective of the (extended) Kalman filter in the sense of expressions 
(9-13), a naïve implementation consists to compute the predicted state variance-covariance: 
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Strictly speaking the above operation induces a cubic complexity in the number of 
landmarks. However, intuitively since only the robot state variables are involved in the 
observation, the covariance should be simplified accordingly. For this purpose, by 
distinguishing parts related to robot state and those linked to landmark state in matrix P as 
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It has been shown that the evaluation of this matrix requires approximately 9(N+3) 
multiplications (Guivant and Neboit, 2001). 
Similarly, in the updating stage, by rewriting T

L
T

R
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k HPHPHP 21. +=∇   leads to a cost, which 
is proportional to (N+3), so the evaluation of the covariance update is )(~ 2NO .
Moreover, it has been shown that it is not necessary to perform full SLAM update when 
dealing with a local area. So, the complexity can even get substantially reduced accordingly. 
More formally, assuming the state vector is divided as [ ]T

AXX BX=   with 3+ℜ∈ AN
AX  and 

3+ℜ∈ BN
BX , BA NNN +=  (Guivant and Nebo, 2001). The states AX  can be initially selected 

as the state of all landmarks located in the neighborhood of the vehicle in addition to the 
three states of the vehicle, while BX  corresponds to the states of all remaining landmarks. 
The hint is that at a give time, the observations are only related to 

AX . Accordingly,  
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And the filter gain  
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It has been shown that the evaluation of this matrix requires approximately 9(N+3) 
multiplications (Guivant and Neboit, 2001). 
Similarly, in the updating stage, by rewriting T

L
T

R
Te

k HPHPHP 21. +=∇   leads to a cost, which 
is proportional to (N+3), so the evaluation of the covariance update is )(~ 2NO .
Moreover, it has been shown that it is not necessary to perform full SLAM update when 
dealing with a local area. So, the complexity can even get substantially reduced accordingly. 
More formally, assuming the state vector is divided as [ ]T

AXX BX=   with 3+ℜ∈ AN
AX  and 

3+ℜ∈ BN
BX , BA NNN +=  (Guivant and Nebo, 2001). The states AX  can be initially selected 

as the state of all landmarks located in the neighborhood of the vehicle in addition to the 
three states of the vehicle, while BX  corresponds to the states of all remaining landmarks. 
The hint is that at a give time, the observations are only related to 

AX . Accordingly,  

[ ]∅=
∂
∂

∂
∂=∇ H
X
H

A
A

B

e H
X

H (26)

Consequently, given =
B

AB

P
P

T
AB

A

P
P

P , one induces   

            S=H.P.HT +R = RHPH T
AAAA +..       (27) 

And the filter gain  



678 Mobile Robots, Perception & Navigation

==
−

−

B

A
T
A

T
AB

T
AAA

W
W

SHP
SHP

W
1

1
     (28) 

In other words, the innovation matrix and matrix gain WA are independent of remaining 
landmarks XB. When the vehicle departs from this local area the information will be 
propagated to global landmark. So, the entities XB, PAB and PBB will only be determined 
when the vehicle moves away from the local area. It has been shown that the complexity of 
update in such case is of order )( 2

ANO  and since NA is in general much smaller than NB, the 
gain in terms of complexity becomes significant. This reduction method is known as 
compressed (extended) Kalman filter in (Guivant and Nebo, 2001). Williams (2001) has put 
forward the Constrained Local Submap Filter approach in which both the relative state of 
each landmark with respect to local map as well as its global coordinate with respect to the 
global map are carried out. The method maintains an independent, local submap estimate of 
the features in the immediate vicinity of the vehicle. 
An ultimate problem which arises from the above submapping is the selection of the local 
area. Several approaches have been investigated for such purpose. One conventional 
approach consists of dividing the global map into rectangular regions with size at least 
equal to the range of the external sensor. So, at each position, one may consider for instance 
the eight or twenty fourth neighbouring cells as suggested in (Guivant and Nebo, 2001).   
In the context of our work, we rather adopted an approach close to that developed by 
Dissanayake et al. (2001). In this course, given a time interval hT, a two-stage selection 
process is carried out: 

- First, one maintains all landmarks that have been seen by the vehicle within the 
time interval hT. Alternatively, authors in (Dissanayake et al., 2000) used a 
predefined distance travelled by the vehicle. 

- Next, among the above set of landmarks, one selects only those, which are the most 
informative in the sense of landmark variance-covariance matrix. For this purpose, the 
reciprocal of the trace of such variance-covariance matrix was used as a tool to evaluate 
the extent of the information content. Consequently, from the set of landmarks, only 
those landmarks whose information content in the above sense is beyond some 
threshold are considered.  The value of the threshold is here taken to be a function of 
the information content associated to the fully defined prior landmarks concerning the 
border of the environment as will be pointed in the map initialization section.  

3.3 Convergence properties 

As far as the construction of the submap is concerned, the aspect of convergence becomes 
crucial. From theoretical perspective, some appealing results have been reported by 
Dissanayake et al. (2001). Especially given the decomposition (24), it has been proven that 

i) The determinant of any submatrix of the map covariance matrix PL decreases 
monotonically as successive observations are made  

ii) In the limit case (at time infinity), the determinant of PR tends towards zero, so the 
landmark estimates become fully correlated.    

iii) In the limit case, the lower bound on the covariance matrix associated with any single 
landmark is determined only by the initial covariance of the vehicle estimate PR.

The above testifies on the steady state behavior of the convergence of the landmark 
estimates. Especially, it stresses that as the vehicle moves on the environment the 
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uncertainty pervading the landmark estimations reduces monotonically. The estimation of 
any pair of landmarks becomes fully correlated in the sense that if one landmark is known 
with full certainty, the others can be known with full certainty too. The individual landmark 
variances converge toward a lower bound determined by initial uncertainties in vehicle 
position and observations as indicated by matrices P(0|0) and R.   
On the other hand, Julier (2003) has investigated the effect of adding noise to the long term 
behaviors of SLAM and has shown that: 

i) If the steady state covariance will not be degraded, the computational and storage 
cost increase linearly with the number of landmarks in the map; 

ii) Even if the steady state covariance is preserved, local performance can be 
unacceptably high; 

iii) If the solution causes the steady state covariance to degrade, the addition can only 
be a finite number of times.  

This entails that it is more appropriate to maintain the full correlation structure of all 
landmarks within the operational area of the vehicle.  
On the other hand, from the observability perspective, it has been shown that the Riccati 
equation in P (that follows from update expression (13)), e.g., (Andrade-Cetto and Sanfeliu, 
2004), which can be rewritten as: 

QFPHRHPHHPPFP TTT +∇∇+∇∇∇−∇= − )...)..(..( 1

converges to a steady state covariance only if the pair ),( HF ∇∇  is fully observable. In 
addition if the pair ),( IF∇  is fully controllable, then the steady state covariance is a unique 
positive definite matrix, independent of the initial covariance P(0|0). 

3.4 Map Initialization 

Initialization is required to infer the number of landmarks N as well as their x-y coordinates, 
which will be used in the SLAM model. Several studies have explored the initialization of 
the map through sensor scan, using, for instance, sonar-like measurements (Chong and 
Kleeman, 1999; Ip and Rad, 2004), which an initial value of landmarks. While other studies 
assumed the initial map is initially empty, and as soon as an observation gets reinforced by 
other observations, it will be promoted to a landmark (Dissanayake et a., 2001). Both 
approaches can be used in our study. Indeed, the use of initial mapping using a single 
sensor can be accomplished using the vision sensor. So, in the light of the emerging works in 
the bearing-only SLAM, one can think of the robot using a single rotation at discrete sample 
intervals, repeated at two different robot’s locations, would allow us in theory to determine 
initial set of landmarks. However, the data association problem in such case becomes 
difficult. While the second approach is trivially straightforward where the initial state vector 
reduces to robot state vector. In our study, in order to make use of the geometrical 
environment constraints at one hand, and on the other hand, avoid the nontrivial data 
association problem due to the limited sensory perception, one assumes that the boundary 
of the environment is fully known. Consequently, the four corners of the rectangular 
environment are taken as fully determined landmarks. This also allows us to set up a 
geometrical consistency test in the sense that as soon as the perceived landmark is located 
beyond the border limit, it is systematically discarded.  
Therefore, initially, the state vector is T

RXX ]y xy xy xy   x[
44332211 LLLLLLLL=
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3.5 Data Association and Map building 

Data association has always been a critical and crucial issue in practical SLAM 
implementations. That is because it governs the validation of the new landmarks and the 
matching of the observation (s) with the previously validated landmarks. On the other hand, 
an incorrect association of the observation to the map can cause the filter to diverge. Given 
the knowledge of the geometrical boundary of the environment, two validation tests are 
carried out: 

- Geometrical validation test: This is a basic check to test whether the location of the 
observation is within the environment boundary. This is mainly meant to remove 
possible outliers and noise measurement observations. 

- Statistical validation test: This uses the statistical properties of the observations as 
well as landmarks as a tool to achieve the matching. Especially, the nearest 
neighbour association is taken as the closest association in statistical sense. For this 
purpose, one first needs to translate the range/bearing observation into landmark 
locations. In case where measurement coincides with range measurement, e.g., 

Lrkz =)( , we have 
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jα  stands for the azimuth of the jth robot’s sensor that 

detected the underlying landmark, with respect to robot axis. Putting (29) in matrix 
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Where R stands for the z(k)’s covariance, and RP  for the (updated) robot state vector 
variance-covariance matrix as determined by the filter. 
Now given the vector 

iLX  sympolized by (29) and given a set of confirmed landmarks 
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iLi PL stands for the first and second statistics of the ith

landmark, the measurement z(k) is associated with the jth landmark if:    
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where
mind is some validation gate. The threshold mind  can be determined by noticing that 

the left hand side part of the inequality in (31) is 2χ distributed, so by choosing the null 
hypothesis and the confidence level, the mind value is straightforward. 
Therefore, if the above condition holds only for one single landmark, then the underlying 
observation z(k) is associated with that landmark. Otherwise, if the inequality holds for 
more than one landmark, the observation is then omitted, meaning that under the current 
level of confidence, the statistical test cannot lead to a matching. Obviously, it is still possible 
to narrow the confidence level such that the validation gate 

mind  decreases, which may 
result in resolving the conflict among the possible candidates. 
On the other hand, if the above inequality cannot hold indicating that there is no landmark 
that may match the current observation, then such observation can be considered as a new 
landmark. Once the validated landmarks are constituted of a set of Cartesian points, a 
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geometrical fitting allows us to group these features into high level geometrical entities 
constituted of two main feature landmarks: line segment, if the underlying points are 
sufficiently aligned up, and corner. The former is modelled by the extreme points of the 
segment while the corner by the x-y coordinates of the underlying Cartesian point.   
In other studies, e.g., (Guivant and Neboit, 2001), a non-matched observation will be treated as a 
potential landmark (so maintaining at each time a set of confirmed landmarks and a set of 
tentative landmarks), and will not be promoted to a confirmed landmark until sufficient number 
of observations are found matching this potential landmark in the above statistical sense. Strictly 
speaking such reasoning cannot be applied in our experiment due to the lack of redundant data 
and limited navigation tasks. Therefore, as soon as the statistical test fails for all set of landmarks, 
the new observation is automatically promoted to a confirmed new landmark, unless the 
geometrical validation test fails as well in which case, the observation is fully ignored. Adding a 
new landmark to the new set of already confirmed landmarks will obviously result in an 
augmented state vector. 

3.6 Discussions 

- It should be noted that the above data association reasoning relies heavily on the 
range of sensors because the information about the landmark location can be 
directly inferred as according to (29). However, the use of bearing sensor would be 
beneficial if the two robots were equipped with vision turret. In this course, the use 
of bearing information from two different robot locations would allow us to infer 
the x-y coordinate of the associated landmark, assuming the data association is 
very simple in the sense that at each robot location the sensory information 
identified the same object, which in reality is not always the case. 

- The representation of the landmark in this study is made easy by choosing a 
Cartesian point as a geometric primitive, which are later combined to form more 
generic feature like segment line and corner. However, such choice, even if it is 
motivated by the limited sensory modality of Khepera, can also be questioned. 
Dufourd and Chatila, (2004) provide a comparison of space-based, grid-based and 
feature based map formats. Lisien et al. (2003) suggested to combine topological 
and feature based mapping where topological methods are used for planning 
feature based mapping. This leads to what is referred to as hierarchy SLAM.    

-  The restriction concerning the validation of new landmark using only geometrical 
and statistical tests is also shown to be limited. Indeed, it can make sense for more 
point-based-landmarks but it is difficult to be justified for more realistic geometric 
patterns. Several studies using SLAM with range-only sensors (Leonard et al., 
2003) and bearing-only sensors (Lemaire et al., 2005; Deans and Hebert, 2000) 
proved that a single measurement is insufficient to constrain landmark location, 
instead several observations are necessary to confirm or delete the tentative 
landmark.  

- The use of Mahalanobis distance as in (31), even it has proven to be successful, can 
also be questioned. Alternatives include Multiple hypotheses tree using Bayes’ 
theorem, but, this raises the complexity of the algorithm due to the cost of 
maintaining separate map estimates for each hypothesis, and the pruning decision. 
Montemerlo and Thrum (2003) suggested a fast SLAM algorithm based on the idea 
of exact factorization of posterior distribution into a product of conditional 
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landmark distributions and a distribution over robot paths. Instead of geometrical 
feature landmarks, Nieto et al. (2005) has suggested a methodology to deal with 
features of arbitrary shapes, where each landmark is defined by a shape model 
incorporating an embedded coordinate frame, so, the map is constituted of a set of 
landmark frame locations. Eliazar and Parr (2004) advocated the use of grid cell 
representation in conjunction with particle filter. Nieto et al., (2004) also used 
occupancy grid structure where each grid-cell is determined by a set of local 
landmarks in the overall SLAM map. The data association problem in such cases 
boils down to ambiguity in cell allocation. The latter can be solved by Bayes’ like 
approach. However, the suggested algorithmic representation sounds very context 
dependent. Also, the choice of grid cell posterior as well as adapting the number of 
cells is very debatable in the literature. Wijesoma et al. (2006) advocated the use of 
optimization problem-based approach where the data association is formulated as 
a generalized discrete optimization problem where the cost function is constructed 
from joint likelihood of measurements in multiple frames and features. The 
minimization is subject to some environmental and rational constraints. 

- The issue of landmark selection in suboptimal filtering as detailed is very debatable as 
well. Indeed, this boils down to the difficult trade-off of maintaining sufficient 
representation of the map which allows good estimates of robot pose versus reducing 
the map size to its nominal representation in order to reduce the computational 
complexity. Indeed, the crucial question is how much should we be looking back into 
the past such that all the visited landmarks will be maintained? Typically, there is no 
exact answer to this question as it is very much context dependent; that is, it requires 
knowledge of how often the vehicle visits the already perceived landmarks. The aspect 
of information content discussed in previous section requires also further analysis. 
Indeed, we adopted, similarly to Dissanayake et al. (2001), the reciprocal of the trace of 
the covariance matrix. However, other alternatives are also possible. This includes, for 
instance, Shannon entropy, Fisher entropy, among others. 

- The map initialization adopted in this study contrasts with alternatives approaches 
in which either no prior knowledge is assumed leading to zero initial landmarks 
and the full scanning of the environment where the obtained landmark states will 
be updated as far as further observations reinforce or delete the initial knowledge. 
This study by assuming fully known boundary landmarks offers on one hand, an 
appealing opportunity for geometrical validation test in data association stage, 
and, on the other hands, allows more accurate association and filter update 
estimation as soon as one of these landmarks is part of the suboptimal map, which 
is part of the state vector. This is due to the fact that the variance-covariance 
matrices associated to these landmarks are close to null evaluation, which, in turn, 
affects, the estimation process of the filter. Kwork and Dissanayake (2004) used a 
multiple hypothesis filter to initialise landmarks based on a number of hypotheses. 

- The issue of when the filter will be updated is also debatable. Indeed, while the 
computational complexity requirement tends to postpone the update as late as 
possible (Knight et al., 2001), the requirement of building a complete and a 
consistent map tends to prevent such postponement. However, this aspect is rather 
very context dependent.   

- The extended Kalman filter has often been criticised in case of high nonlinearity of 
either the state or measurement equations, which led to the rapidly developing 
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Monte-Carlos based approaches (Montemerlo et al., 2003). However, the 
computational complexity get increased, while in case of relatively small robot 
speed, the performance of the extended Kalman filter still are acceptable. 

3.7 Multiple Robot Localization 
Important feature of our robotic system is the use of two different robots. Consequently, this 
offers the possibility of mutual collaboration in updating their current states. Intuitively, the 
basic scenario consists of making the vision robot turning around until the second robot is 
identified, and next the coordinates of the robots are matched, and updated accordingly. 
The identification of the robot by the vision turret is made possible through appropriate 
choice of black/white cover, which was selected different from objects in the environment.
More formally, let T

i
i
R xX )y( ii θ=  be the state vector attached to the ith robot. Similarly let 

i
RP  designate the associated variance-covariance matrix. So, for the two robots, the dynamic 

models can be rewritten in the light of (2) as: 
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Within the framework constituted of the single system of the two robots, assume, for 
instance, at a given time, the Robot 1 observes the Robot 2, this relative observation can be 
modelled as 

     wXhz += )( , with ),0( wRw Ν    (37) 

Where h corresponds to the model of the predicted observation, which, in case of relative 
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Therefore, the update estimations given the (relative) observations are determined using the 
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standard (extended) Kalman filter equations by: 
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The above estimation provides an estimation of the states of both robots 1 and 2 in terms of 
state vector estimation as well as the variance-covariance matrix associated to each one. 
Moreover, the estimation also provides an indication concerning the correlation among the 
estimations of both robots as quantified by the quantity 12P  and 21P  of the matrix P. 
Notice that in case where the two robots are within range sensor reach, the observation also 
includes the relative distance, in this case, the observation model h in (37) boils down to: 
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The (update) estimation process is still made of expressions (39-40). 
Note that the update equations can be used either via one of the measurement equation (38) 
or (44) or both of them depending on availability of measurements as the filter can be used 
recursively with respect to measurements as well.  
Remark that the state vector in this situation does not include landmark states due to the 
fact that the process of multi-localization is not used as often as mapping. It is only 
employed when the process of robot collaboration is called upon, or when the quality of the 
estimation as quantified by the matrix P is too poor. This is because the process of looking 
for Robot 2 by Robot 1 using the vision turret is relatively costly. 
Alternatively, one may think of using both the mapping and multi-robot simultaneously. In 
this case, the rational is to leave the state of landmarks with only one robot state vector, e.g., 

]XX[ 2
RL

1
RXX = . However, if both robots navigate within the environment for sufficient 

time interval, then a rational is to maintain two different maps; that is, each robot will 
maintain its own map of the environment, leading to an augmented state vector. The 
estimation process is somehow similar to that already developed in this section, where 
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observations might be either relative observation with respect to a second robot where one 
robot identified another robot, or relative observation with respect to landmark (s).

3.8 Overview of general approach 

Figure 5 summarizes the general scheme of our SLAM approach involving multi-robot 
collaboration and localization. The vector U mentioned in Figure 5 corresponds to the 
command vector in terms of incremental moving of the right and the left wheel of the robot 
used by the encoder.  

Fig. 5. General scheme of the SLAM –collaboration process. 

Note that the possible movement of Robot 1 is not represented, but can obviously carry out 
the same reasoning as Robot 2 in terms of stages: i) prediction using encoder model; ii) 
measurements & measurement model; iii) data association based on Mahalanobis distance 
that determines the validity of the measurement and whether it corresponds to an already 
identified landmark or to a new landmark, which, in turn, induces either state 
augmentation, or just a false alarm that needs to be discarded; iv) mapping and suboptimal 
map construction based on the viewing field of the sensor and the timing frame; v) update 
with respect to (extended) Kalman filter equations. 
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4. Testing and results 
Figure 6 shows an example of mapping the entire perimeter of the environment using one 
single infrared sensor. On the left hand side of Figure 6 is shown the virtual representation 
of the perceived environment in terms of a set of landmarks. Remark that the number of 
landmarks depends on the robot speed and sampling frequency of infrared sensors. Also by 
increasing the resolution to ‘High’ the walls have a more solid and continuous look.  
The prior landmarks consisting of the four corners of the environment are used here for 
geometrical validation purpose of all represented landmarks but they are not plotted in 
figure 6 because they are not perceived by the robot sensors. 

Fig. 6. Mapping the perimeter of the environment by robot. 

Figure 7 shows another example of robot configuration and map building using SLAM 
algorithm while using curved object as a set of bounded plans in the environment. On the 
left hand side of Figure 7, the objects are modelled as a successive set of landmarks (virtual 
Cartesian points). The feature landmarks can therefore be extracted from these Cartesian 
points. Intuitively, one can identify at least eight segment lines together with eight corners. 

Fig. 7. Example of environment mapping. 

Ultimately linked to the preceding is the issue of loading and saving environment map. This 
is carried out by the user’s interface. Indeed, to ensure the maintaining of previous maps 
even if the system switched off, the map is saved in file format and loaded upon request.  To 
recreate the map from the interface, one requires: i) select “Load Map” previously saved 
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map in the interface; ii) click the console window to make it the active window; iii) type in 
the name of the map to load, in this case “completeperimeter” and press enter. The console 
will then display object and robot information that is being loaded into the map, the result 
of which will be displayed in the map window. An example is shown in Figure 8 that 
retrieves the perimeter map, which is kept along all experiments carried out in this study. 
Now in order to quantify the quality of the estimation, Figure 9 displays the error in vehicle 
localization. The errors are quantified for the environment shown in Figure 7. In the latter 
the true positioning are measured with respect to Cartesian coordinate chosen at the left 
hand corner of the environment. 

Fig. 8. Console output showing map objects being successfully loaded. 
Figure 9 shows the actual error in estimated vehicle location in both x and y coordinates (solid 
line) as a function of time increments, which summarizes the vehicle movement as in Figure 7. The 
Figure also displays the 95% confidence limits, or two-times standard deviation around estimates 
(represented in dashed line), which is driven from the state covariance P by selecting the relevant 
component of P pertaining to 

xxRP and
yyRP and taking the square root. As it can be noticed from the 

plot, the vehicle error is clearly bounded by the confidence limits of estimated vehicle error, which 
shows the consistency and convergence of the underlying SLAM algorithm. This also 
demonstrates that the algorithm clearly yields consistent and bounded errors.  

Fig. 9. Error in vehicle location estimate in x and y coordinates and the associated 95% 
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confidence bounds (dotted line) obtained from state estimate covariance matrix. 
Figure 10 shows the evolution of the innovation of range measurement over the time. The 
bounded limit curves corresponding to 95% confidence limit drawn in the same plot indicate the 
consistency of the filter outcomes and estimation process.  Note that only the range innovation is 
displayed here because only range measurements were used in the map initialization and 
management. The bearing measurements are only used for robot collaboration. 

Figure 11 provides an estimation of the quality of landmark estimations in terms of standard 
deviation with respect to x and y coordinates as quantified by landmark variance-covariance 
matrices 

iLP . We restricted to three chosen landmarks consisting of the first landmark 

encountered and two others.  

Fig. 10. Range innovation with associated 95 confidence bounds. 

This explains why the estimation process does not start at time t=0 for all landmarks as 
landmark 2 and 3 are not identified yet at the beginning. The plots were obtained after using 
least square fitting in standard deviation results in order to obtain a smooth representation. 
The graph shows clearly a decreasing tendency in the standard deviation over time, which 
indicates consistent and convergence of the estimation process. On the other hand, as far as 
the local map is concerned, the display shows that despite the use of local map while 
maintaining all information with computational effective algorithm whose complexity is 
proportional to the number of landmarks, the performances of the filter in terms of variance-
covariance matrix still behave consistently. This demonstrates that the developed cost 
effective SLAM algorithm does not suffer from divergence. Notice that in Figure 11, the initial 
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uncertainty ascribed to landmarks 2 and 3 is always less than that of landmark 1. This is 
because while the vehicle is moving around, its associated variance-covariance matrix tends 
to decrease, which, in turn, reduces the uncertainty of the identified landmarks.  

Fig. 11. Landmark Estimation In terms of Standard Deviations in x and y coordinates. 

Now considering the situation in which two robots were used to accomplish a task, in order to 
quantify the performance of the algorithm, one considers the scenario shown in Figure 1 of this 
chapter. In the latter Robot 1 (vision robot) identifies an object (white box) in the environment and 
sends a command to Robot 2 to go to its location.  The figure displays the performance of the 
estimation of the Robot 2 localization in terms of x and y standard deviation together with the 
associated 95% confidence bounds. Clearly, the decreasing behaviour together with the 
conservative bounds testify on the consistent and convergent estimation process along the 
collaboration scheme. Notice that the figure shows a local region where standard deviation does 
increase. This, in fact, corresponds to the region of the environment where the robot goes straight to 
the object and no observations were taken, so the filter only relies on prediction part of the filter, 
which trivially tends to increase the variance-covariance estimate. Intuitively by exchanging relative 
pose information, the states of the robots are updated in a centralized fashion. Note that Robot 1 
once the image of the object after a single revolution, the robot becomes static. Consequently, the 
possibility of using Robot 2 to update the state of Robot 1 is very limited in this scenario. 
Figure 13 shows the trajectory of Robot 2 while moving toward the target object and 
exploring the underlying object. In the same plot is displayed the true position of the vehicle 
in terms of x-y coordinates of the reference point in the robot platform. The estimated 
trajectory is represented in circles (o) while the true trajectory is drawn in start (*). 
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encountered and two others.  

Fig. 10. Range innovation with associated 95 confidence bounds. 

This explains why the estimation process does not start at time t=0 for all landmarks as 
landmark 2 and 3 are not identified yet at the beginning. The plots were obtained after using 
least square fitting in standard deviation results in order to obtain a smooth representation. 
The graph shows clearly a decreasing tendency in the standard deviation over time, which 
indicates consistent and convergence of the estimation process. On the other hand, as far as 
the local map is concerned, the display shows that despite the use of local map while 
maintaining all information with computational effective algorithm whose complexity is 
proportional to the number of landmarks, the performances of the filter in terms of variance-
covariance matrix still behave consistently. This demonstrates that the developed cost 
effective SLAM algorithm does not suffer from divergence. Notice that in Figure 11, the initial 

Robot Collaboration for Simultaneous Map Building and Localization 689 
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Fig. 11. Landmark Estimation In terms of Standard Deviations in x and y coordinates. 
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the object and no observations were taken, so the filter only relies on prediction part of the filter, 
which trivially tends to increase the variance-covariance estimate. Intuitively by exchanging relative 
pose information, the states of the robots are updated in a centralized fashion. Note that Robot 1 
once the image of the object after a single revolution, the robot becomes static. Consequently, the 
possibility of using Robot 2 to update the state of Robot 1 is very limited in this scenario. 
Figure 13 shows the trajectory of Robot 2 while moving toward the target object and 
exploring the underlying object. In the same plot is displayed the true position of the vehicle 
in terms of x-y coordinates of the reference point in the robot platform. The estimated 
trajectory is represented in circles (o) while the true trajectory is drawn in start (*). 
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Fig. 12. Performances of Robot 2 in terms of standard deviation in x and y in case of robot-
collaboration scenario. 

10 20 30 40 50 60 70 80 90 100 110
-10

0

10

20

30

40

50

60

70

x-movement

y-
m

ov
em

en
t

Robot Trajectory

Fig. 13. Estimated Robot trajectory versus True trajectory. 
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5. Conclusion 
This chapter investigated the state of the art of SLAM system whose aim is to simultaneously map 
the environment and provide accurate positioning of the vehicle where the state of both vehicle 
and landmarks are brought into a single estimation process. The estimation process supplies 
estimation of vehicle and landmarks in terms of mean and variance-covariance estimate of the 
state vector conditional on the whole set of measurements. The construction of the map involves 
appropriate initialization step in which some prior knowledge regarding the environment is 
reported, which allows us to ensure geometrical validation test later on, and an alignment stage in 
which the observations are turned into landmark Cartesian coordinates. Next, a data association 
stage is required to map the observations to the already identified landmark or initiate new 
landmarks. For this purpose, one uses Mahanalobis distance to match the observation to possible 
landmarks. If none of the landmarks matches the current observation and both the geometrical 
and statistical tests were positive, then a new landmark is initiated and the state vector is therefore 
augmented. Note that, in order to balance the cost effectiveness and optimality requirement, the 
reasoning is carried out only within a submap of the environment, where it is most likely to find 
the matching given the sensor limitations. At later stage, the obtained landmarks are also used to 
extract feature landmark consisting of segments and corners. The methodology has been validated 
in a platform using two Khepera robots, one of which is equipped with vision turret while both 
are equipped with range infrared sensors and encoders. A virtual interface showing the robot 
trajectory as well as environment is developed using OpenGL platform for 3D visualization. The 
use of both robots also allowed us to test and validate collaboration scenarios in which multi-robot 
localization technique is used in conjunction with SLAM algorithm. The tests carried out 
demonstrated the validation of the developed algorithm and the consistency of the outcomes 
when looking at the 95% confidence bound limits.  
This open a new area of research where more advanced collaboration scenarios can be used 
in more complex environments where the features can be constituted of either geometrical 
or non-geometrical features. On the other hand, inspired by the overall intelligent behaviour 
of large biological insect communities, together with the rapid development of the field of 
distributed artificial intelligence, through, for instance, the concrete RoboCup robot soccer 
initiative, this offers new motivation grounds for further developments of multiple robot 
systems at different research communities. 
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