
Dependability Engineering
Edited by Fausto Pedro García Márquez

and Mayorkinos Papaelias

Edited by Fausto Pedro García Márquez
and Mayorkinos Papaelias

The new technology and system communication advances are being employed in
any system, being more complex. The system dependability considers the technical
complexity, size, and interdependency of the system. The stochastic characteristic
together with the complexity of the systems as dependability requires to be under

control the Reliability, Availability, Maintainability, and Safety (RAMS). The
dependability contemplates, therefore, the faults/failures, downtimes, stoppages,

worker errors, etc. Dependability also refers to emergent properties, i.e., properties
generated indirectly from other systems by the system analyzed. Dependability,

understood as general description of system performance, requires advanced
analytics that are considered in this book. Dependability management and

engineering are covered with case studies and best practices. The diversity of
the issues will be covered from algorithms, mathematical models, and software

engineering, by design methodologies and technical or practical solutions. This book
intends to provide the reader with a comprehensive overview of the current state of
the art, case studies, hardware and software solutions, analytics, and data science in

dependability engineering.

Published in London, UK

© 2018 IntechOpen
© zhev / iStock

ISBN 978-1-78923-258-5

D
ependability Engineering

DEPENDABILITY
ENGINEERING

Edited by Fausto Pedro García Márquez
and Mayorkinos Papaelias

DEPENDABILITY
ENGINEERING

Edited by Fausto Pedro García Márquez
and Mayorkinos Papaelias

Dependability Engineering
http://dx.doi.org/10.5772/68108
Edited by Fausto Pedro García Márquez and Mayorkinos Papaelias

Contributors

Erica Sousa, Fernando Antonio Lins, Lena Feinbube, Andreas Polze, Lukas Pirl, Jörg Domaschka, Frank Griesinger,
Simon Volpert, Wlodek Zuberek, Dariusz Strzeciwilk, Ireneusz Czmoch, Mahmoud Ghofrani, Anthony Suherli, Taizhi
Liu, Linda Milor, Chang-Chih Chen, Panagiotis Sismanis, Tuan Anh Nguyen, Dugki Min, Eunmi Choi, Ali Jannesari,
Urbanus F. Melkior, Josef Tlusty, Zdenek Muller, Fausto Pedro García Márquez, Mayorkinos Papaelias

© The Editor(s) and the Author(s) 2018
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, Designs and
Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. The book as a whole
(compilation) cannot be reproduced, distributed or used for commercial or non-commercial purposes without
INTECHOPEN LIMITED’s written permission. Enquiries concerning the use of the book should be directed to
INTECHOPEN LIMITED rights and permissions department (permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in London, United Kingdom, 2018 by IntechOpen
eBook (PDF) Published by IntechOpen, 2019
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, registration number:
11086078, The Shard, 25th floor, 32 London Bridge Street
London, SE19SG – United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Dependability Engineering
Edited by Fausto Pedro García Márquez and Mayorkinos Papaelias

p. cm.

Print ISBN 978-1-78923-258-5

Online ISBN 978-1-78923-259-2

eBook (PDF) ISBN 978-1-83881-282-9

DBF_prva objava

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

3,500+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

111,000+
International authors and editors

115M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Meet the editors

Prof. Fausto Pedro García Márquez (www.uclm.es/profe-
sorado/fausto) obtained his European Doctorate in 2004 at
the University of Castilla-La Mancha (UCLM, Spain) with
a maximum distinction. He has been distingué with First
International Business Ideas Competition 2017 Award,
Runner Prize (2015), Advancement Prize (2013), and Silver
Prize (2012) by the International Society of Management

Science and Engineering Management or the Advancement Prize in the Third
International Conference on Management Science and Engineering Manage-
ment. He is working at the UCLM, Spain, as an accredited full professor; an
honorary senior research fellow at Birmingham University, United Kingdom;
and a lecturer at the Postgraduate European Institute. He was a senior manag-
er in Accenture (2013–2014). Fausto has managed a great number of projects:
five European projects as a principal investigator (PI), four FP7 framework
programs, and one Euroliga+4), being a researcher in three FP7 programs. He
was a PI in 2 national projects, and he has participated in 2 as PI and 2 as re-
searcher; 4 regional projects, 1 as PI and 3 as researcher; 3 university projects,
1 as PI and 2 as researcher; and more than 130 projects with research insti-
tutes and industrial companies (98% as director). He has been an evaluator in
different programs, nationals and internationals. As a result of the research
work, he has published more than 150 papers (65 % in ISI journals, 30% in JCR
journals, and 92% internationals), being the main author of 23 books (Elsevier,
Springer, Pearson, McGrawHill, InTech, IGI, Marcombo, AlfaOmega, etc.), 5
patents, and more than 80 conference papers. Some of these papers have been
especially recognized, e.g., by Renewable Energy (as “Best Paper Award 2014”),
the International Society of Management Science and Engineering Management
(as “excellent”), and the International Journal of Automation and Computing and
IMechE Part F: Journal of Rail and Rapid Transit (most downloaded). He is an
associate editor of several international journals, and he has participated as
committee member in more than 30 international conferences. He is the direc-
tor of Ingenium Research Group (www.ingeniumgroup.eu).

Dr. Mayorkinos Papaelias (PhD in Metallurgy, Chartered
Engineer, Greece) is a senior lecturer in NDT and Condi-
tion Monitoring at the School of Metallurgy and Materials
at the University of Birmingham. Dr. Papaelias is an expert
in NDT and condition monitoring technology. He has
been involved as technical coordinator or scientific consul-
tant in several FP6 and FP7 collaborative research projects.

He is the author or coauthor of more than 70 journal and conference papers
in NDT and condition monitoring. He is also a member of the International
Society for Condition Monitoring. Dr. Papaelias regularly authors articles for
industrial magazines.

http://www.uclm.es/profesorado/fausto
http://www.uclm.es/profesorado/fausto
http://www.ingeniumgroup.eu/

Contents

Preface VII

Chapter 1 Introductory Chapter: Introduction to Dependability
Engineering 1
Fausto Pedro García Márquez and Mayorkinos Papaelias

Chapter 2 Modeling Strategies to Improve the Dependability of Cloud
Infrastructures 7
Erica Teixeira Gomes de Sousa and Fernando Antonio Aires Lins

Chapter 3 Continuous Anything for Distributed Research Projects 23
Simon Volpert, Frank Griesinger and Jörg Domaschka

Chapter 4 Software Fault Injection: A Practical Perspective 47
Lena Feinbube, Lukas Pirl and Andreas Polze

Chapter 5 Stochastic Reward Net-based Modeling Approach for
Availability Quantification of Data Center Systems 61
Tuan Anh Nguyen, Dugki Min and Eunmi Choi

Chapter 6 Reliability and Aging Analysis on SRAMs Within
Microprocessor Systems 85
Taizhi Liu, Chang-Chih Chen and Linda Milor

Chapter 7 Advances in Engineering Software for Multicore Systems 105
Ali Jannesari

Chapter 8 Modeling Quality of Service Techniques for Packet-Switched
Networks 125
Wlodek M. Zuberek and Dariusz Strzeciwilk

Contents

Preface XI

Chapter 1 Introductory Chapter: Introduction to Dependability
Engineering 1
Fausto Pedro García Márquez and Mayorkinos Papaelias

Chapter 2 Modeling Strategies to Improve the Dependability of Cloud
Infrastructures 7
Erica Teixeira Gomes de Sousa and Fernando Antonio Aires Lins

Chapter 3 Continuous Anything for Distributed Research Projects 23
Simon Volpert, Frank Griesinger and Jörg Domaschka

Chapter 4 Software Fault Injection: A Practical Perspective 47
Lena Feinbube, Lukas Pirl and Andreas Polze

Chapter 5 Stochastic Reward Net-based Modeling Approach for
Availability Quantification of Data Center Systems 61
Tuan Anh Nguyen, Dugki Min and Eunmi Choi

Chapter 6 Reliability and Aging Analysis on SRAMs Within
Microprocessor Systems 85
Taizhi Liu, Chang-Chih Chen and Linda Milor

Chapter 7 Advances in Engineering Software for Multicore Systems 105
Ali Jannesari

Chapter 8 Modeling Quality of Service Techniques for Packet-Switched
Networks 125
Wlodek M. Zuberek and Dariusz Strzeciwilk

Chapter 9 Discretization of Random Fields Representing Material
Properties and Distributed Loads in FORM Analysis 141
Ireneusz Czmoch

Chapter 10 Energy Savings in EAF Steelmaking by Process Simulation and
Data-Science Modeling on the Reproduced Results 163
Panagiotis Sismanis

Chapter 11 Use of Renewable Energy for Electrification of Rural
Community to Stop Migration of Youth from Rural Area to
Urban: A Case Study of Tanzania 183
Urbanus F Melkior, Josef Tlustý and Zdeněk Müller

Chapter 12 Time Series and Renewable Energy Forecasting 207
Mahmoud Ghofrani and Anthony Suherli

X Contents

Preface

The new technology and system communication advances are being employed in any sys‐
tem, being more complex. The system dependability considers the technical complexity,
size, and interdependency of the system. The stochastic characteristic together with the com‐
plexity of the systems as dependability requires to be under control the Reliability, Availa‐
bility, Maintainability, and Safety (RAMS). The dependability contemplates, therefore, the
faults/failures, downtimes, stoppages, worker errors, etc. Dependability also refers to emer‐
gent properties, i.e., properties generated indirectly from other systems by the system ana‐
lyzed [1]. Dependability, understood as general description of system performance, requires
advanced analytics that are considered in this book. Dependability management and engi‐
neering are covered with case studies and best practices [2].

This book presents 12 chapters. Chapter 1 is an Introductory Chapter. Chapter 2 shows the
modeling strategies to improve the dependability of cloud infrastructures. Continuous any‐
thing for distributed research projects is considered in Chapter 3. A practical perspective of
software fault injection is studied in Chapter 4. Chapter 5 shows a stochastic reward net-
based modeling approach for availability quantification of data center systems. Chapter 6
presents a reliability and aging analysis on SRAMS within microprocessor systems. Advan‐
ces in engineering software for multicore systems are described in Chapter 7. Modeling
quality of service techniques for packetswitched networks is analyzed in Chapter 8. Discreti‐
zation of random fields representing material properties and distributed loads in FORM
analysis is drawn in Chapter 9. Chapter 10 considers the energy savings in EAF steelmaking
by process simulation and data science modeling on the reproduced results. Chapter 11
presents the use of renewable energy for electrification of rural community to stop migra‐
tion of youth from rural area to urban, with a case study of Tanzania. Finally, a case study of
reliability in renewable energy systems is studied in Chapter 12.

The diversity of the issues is covered in this book from algorithms, mathematical models,
and software engineering, by design methodologies and technical or practical solutions.
This book intends to provide the reader with a comprehensive overview of the current state
of the art, case studies, hardware and software solutions, analytics, and data science in de‐
pendability engineering.

Fausto Pedro García Márquez
Ingenium Research Group

University of Castilla-La Mancha, Spain

Mayorkinos Papaelias
School of Metallurgy and Materials

Birmingham University, United Kingdom

Chapter 9 Discretization of Random Fields Representing Material
Properties and Distributed Loads in FORM Analysis 141
Ireneusz Czmoch

Chapter 10 Energy Savings in EAF Steelmaking by Process Simulation and
Data-Science Modeling on the Reproduced Results 163
Panagiotis Sismanis

Chapter 11 Use of Renewable Energy for Electrification of Rural
Community to Stop Migration of Youth from Rural Area to
Urban: A Case Study of Tanzania 183
Urbanus F Melkior, Josef Tlustý and Zdeněk Müller

Chapter 12 Time Series and Renewable Energy Forecasting 207
Mahmoud Ghofrani and Anthony Suherli

ContentsVI

Preface

The new technology and system communication advances are being employed in any sys‐
tem, being more complex. The system dependability considers the technical complexity,
size, and interdependency of the system. The stochastic characteristic together with the com‐
plexity of the systems as dependability requires to be under control the Reliability, Availa‐
bility, Maintainability, and Safety (RAMS). The dependability contemplates, therefore, the
faults/failures, downtimes, stoppages, worker errors, etc. Dependability also refers to emer‐
gent properties, i.e., properties generated indirectly from other systems by the system ana‐
lyzed [1]. Dependability, understood as general description of system performance, requires
advanced analytics that are considered in this book. Dependability management and engi‐
neering are covered with case studies and best practices [2].

This book presents 12 chapters. Chapter 1 is an Introductory Chapter. Chapter 2 shows the
modeling strategies to improve the dependability of cloud infrastructures. Continuous any‐
thing for distributed research projects is considered in Chapter 3. A practical perspective of
software fault injection is studied in Chapter 4. Chapter 5 shows a stochastic reward net-
based modeling approach for availability quantification of data center systems. Chapter 6
presents a reliability and aging analysis on SRAMS within microprocessor systems. Advan‐
ces in engineering software for multicore systems are described in Chapter 7. Modeling
quality of service techniques for packetswitched networks is analyzed in Chapter 8. Discreti‐
zation of random fields representing material properties and distributed loads in FORM
analysis is drawn in Chapter 9. Chapter 10 considers the energy savings in EAF steelmaking
by process simulation and data science modeling on the reproduced results. Chapter 11
presents the use of renewable energy for electrification of rural community to stop migra‐
tion of youth from rural area to urban, with a case study of Tanzania. Finally, a case study of
reliability in renewable energy systems is studied in Chapter 12.

The diversity of the issues is covered in this book from algorithms, mathematical models,
and software engineering, by design methodologies and technical or practical solutions.
This book intends to provide the reader with a comprehensive overview of the current state
of the art, case studies, hardware and software solutions, analytics, and data science in de‐
pendability engineering.

Fausto Pedro García Márquez
Ingenium Research Group

University of Castilla-La Mancha, Spain

Mayorkinos Papaelias
School of Metallurgy and Materials

Birmingham University, United Kingdom

References
[1] F. P. G. Márquez and J. M. C. Muñoz, "A pattern recognition and data analysis

method for maintenance management," International Journal of Systems Science,
vol. 43, pp. 1014-1028, 2012.

[2] F. P. G. Márquez, I. P. G. Pardo, and M. R. M. Nieto, "Competitiveness based on
logistic management: a real case study," Annals of Operations Research, vol. 233,
pp. 157-169, 2015.

PrefaceVIII
Chapter 1

Introductory Chapter: Introduction to Dependability
Engineering

Fausto Pedro García Márquez and
Mayorkinos Papaelias

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.77013

Provisional chapter

DOI: 10.5772/intechopen.77013

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Introductory Chapter: Introduction to Dependability
Engineering

Fausto Pedro García Márquez and
Mayorkinos Papaelias

Additional information is available at the end of the chapter

1. Introduction

Cloud computing presents some challenges that are needed to be overcome, such as plan-
ning infrastructures that maintain availability when failure events and repair activities occur
[1]. Cloud infrastructure planning, which addresses the dependability aspects, is an essential
activity because it ensures business continuity and client satisfaction. Redundancy mecha-
nisms cold standby, warm standby, and hot standby can be allocated to components of the
cloud infrastructure to maintain the availability levels agreed in SLAs. Mathematical formal-
isms based on state space, such as stochastic Petri nets and based on combinatorial as reliabil-
ity block diagrams [2], can be adopted to evaluate the dependability of cloud infrastructures
considering the allocation of different redundancy mechanisms to its components [3].
Chapter 1 shows the adoption of the mathematical formalisms’ stochastic Petri nets and reli-
ability block diagrams to dependability evaluation of cloud infrastructures with different
redundancy mechanisms.

International research projects involve large distributed teams made up of multiple institu-
tions. Chapter 2 describes research artifacts that need to work together in order to demonstrate
and ship the project results. Yet, in these settings, the project itself is almost never in the core
interest of the partners in the consortium. This leads to a weak integration incentive and, con-
sequently, to last minute efforts. This in turn results in Big Bang Integration that imposes huge
stress on the consortium and produces only non-sustainable results. In contrast, the industry
has been profiting from the introduction of agile development methods backed by “continu-
ous delivery,” “continuous integration,” and “continuous deployment” [4]. Chapter 2 identi-
fies shortcomings of this approach for research projects. It shows how to overcome those in

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

References
[1] F. P. G. Márquez and J. M. C. Muñoz, "A pattern recognition and data analysis

method for maintenance management," International Journal of Systems Science,
vol. 43, pp. 1014-1028, 2012.

[2] F. P. G. Márquez, I. P. G. Pardo, and M. R. M. Nieto, "Competitiveness based on
logistic management: a real case study," Annals of Operations Research, vol. 233,
pp. 157-169, 2015.

PrefaceVIII
Chapter 1

Introductory Chapter: Introduction to Dependability
Engineering

Fausto Pedro García Márquez and
Mayorkinos Papaelias

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.77013

Provisional chapter

DOI: 10.5772/intechopen.77013

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Introductory Chapter: Introduction to Dependability
Engineering

Fausto Pedro García Márquez and
Mayorkinos Papaelias

Additional information is available at the end of the chapter

1. Introduction

Cloud computing presents some challenges that are needed to be overcome, such as plan-
ning infrastructures that maintain availability when failure events and repair activities occur
[1]. Cloud infrastructure planning, which addresses the dependability aspects, is an essential
activity because it ensures business continuity and client satisfaction. Redundancy mecha-
nisms cold standby, warm standby, and hot standby can be allocated to components of the
cloud infrastructure to maintain the availability levels agreed in SLAs. Mathematical formal-
isms based on state space, such as stochastic Petri nets and based on combinatorial as reliabil-
ity block diagrams [2], can be adopted to evaluate the dependability of cloud infrastructures
considering the allocation of different redundancy mechanisms to its components [3].
Chapter 1 shows the adoption of the mathematical formalisms’ stochastic Petri nets and reli-
ability block diagrams to dependability evaluation of cloud infrastructures with different
redundancy mechanisms.

International research projects involve large distributed teams made up of multiple institu-
tions. Chapter 2 describes research artifacts that need to work together in order to demonstrate
and ship the project results. Yet, in these settings, the project itself is almost never in the core
interest of the partners in the consortium. This leads to a weak integration incentive and, con-
sequently, to last minute efforts. This in turn results in Big Bang Integration that imposes huge
stress on the consortium and produces only non-sustainable results. In contrast, the industry
has been profiting from the introduction of agile development methods backed by “continu-
ous delivery,” “continuous integration,” and “continuous deployment” [4]. Chapter 2 identi-
fies shortcomings of this approach for research projects. It shows how to overcome those in

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

order to adopt all three continuous methodologies regarding that scope. It also presents a
conceptual, as well as a tooling framework, to realize the approach as “continuous anything.”
As a result, integration becomes a core element of the project plan. It distributes and shares the
responsibility of integration work among all partners, while at the same time clearly holding
individuals responsible for dedicated software components. Through a high degree of auto-
mation, it keeps the overall integration work low, but still provides immediate feedback on the
quality of the software. Overall, it is found that this concept is useful and beneficial in several
EU-funded research projects, where it significantly lowered integration effort and improved
quality of the software components, while also enhancing collaboration as a whole.

Software fault injection (SFI) is an acknowledged method for assessing the dependability of
software systems. After reviewing the state of the art of SFI, Chapter 3 addresses the challenge
of integrating it deeper into software development practice. It is presented with a well-defined
development methodology incorporating SFI (fault injection driven development, FIDD),
which begins by systematically constructing a dependability and failure cause model [5],
from which relevant injection techniques, points, and campaigns are derived [6]. The pos-
sibilities and challenges are analyzed for the end-to-end automation of such campaigns. The
suggested approach can substantially improve the accessibility of dependability assessment
in everyday software engineering practice.

Availability quantification and prediction of IT infrastructure in data centers are of paramount
importance for online business enterprises. Chapter 4 presents comprehensive availability
models for practical case studies in order to demonstrate a state space stochastic reward net
model for typical data center systems for quantitative assessment of system availability [7].
A stochastic reward net model of a virtualized server system, and also a data center network
based on DCell topology and a conceptual data center for disaster tolerance are presented.
The systems are then evaluated against various metrics of interest, including steady state
availability, downtime and downtime cost, and sensitivity analysis.

A majority of transistors in a modern microprocessor are used to implement static random
access memories (SRAM) [8]. Therefore, it is important to analyze the reliability of SRAM
blocks. During SRAM design, it is important to build in design margins to achieve an ade-
quate lifetime. The two main wear-out mechanisms that increase a transistor’s threshold volt-
age are bias temperature instability (BTI) and hot carrier injections (HCI). BTI and HCI can
degrade transistors’ driving strength, and further weaken circuit performance. In a micropro-
cessor, first level (L1) caches are frequently accessed, which makes it especially vulnerable to
BTI and HCI. In Chapter 5, the cache lifetimes due to BTI and HCI are studied for different
cache configurations, namely, cache size, associativity, cache line size, and replacement algo-
rithm. To give a case study, the failure probability (reliability) and the hit rate (performance)
of the L1 cache in a LEON3 microprocessor are analyzed while the microprocessor is running
a set of benchmarks [9]. Essential insights can be provided from the results to give better per-
formance reliability trade-offs for cache designers.

The vast amounts of data to be processed by today’s applications demand higher compu-
tational power [10]. To meet application requirements and achieve reasonable application
performance, it becomes increasingly profitable or even necessary, to exploit any available

Dependability Engineering2

hardware parallelism. For both new and legacy applications, successful parallelization is
often subject to high cost and price [11]. Chapter 6 proposes a set of methods that employ an
optimistic semiautomatic approach, which enables programmers to exploit parallelism on
modern hardware architectures. It provides a set of methods, including an LLVM-based tool,
to help programmers identify the most promising parallelization targets and understand the
key types of parallelism. The approach reduces the manual effort needed for parallelization.
A contribution of this work is an efficient profiling method to determine the control and data
dependences for performing parallelism discovery or other types of code analysis. A method
for detecting code sections is presented, where parallel design patterns might be applicable
and suggesting relevant code transformations. The approach efficiently reports detailed run-
time data dependences. It accurately identifies opportunities for parallelism and the appro-
priate type of parallelism to use as task based or loop based.

Quality of service is the ability to provide different priorities to applications, users or data
flows, or to guarantee a certain level of performance to a data flow [12, 13]. Chapter 7 uses
timed Petri nets to model techniques that provide the quality of service in packet-switched
networks and illustrate the behavior of developed models by performance characteristics of
simple examples. These performance characteristics are obtained by discrete event simulation
of analyzed models [14, 15].

Condition monitoring system is usually employed in structural health monitoring [16, 17].
The reliability analysis of more complicated structures usually deals with the finite element
method (FEM) models. The random fields (material properties and loads) have to be repre-
sented by random variables assigned to random field elements. The adequate distribution
functions and covariance matrices should be determined for a chosen set of random variables
[18]. This procedure is called discretization of a random field. Chapter 8 presents the dis-
cretization of the random field for material properties with the help of the spatial averaging
method of the one-dimensional homogeneous random field and midpoint method of discreti-
zation of the random field. The second part of Chapter 8 deals with the discretization of ran-
dom fields representing distributed loads. In particular, the discretization of the distributed
load imposed on a Bernoulli beam is presented in detail. A numerical example demonstrates
very good agreement of the reliability indices computed with the help of stochastic finite
element method (SFEM) and first-order reliability method (FORM) analyses with the results
obtained from analytical formulae.

Electric arc furnace (EAF)-based process route in modern steelmaking for the production of
plates and special quality bars requires a series of stations for the secondary metallurgy treat-
ment (ladle furnace (LF), and potentially vacuum degasser), till the final casting for the pro-
duction of slabs and blooms in the corresponding continuous casting machines. However,
since every steel grade has its own melting characteristics, the melting (liquidus) temperature
per grade is generally different and plays an important role to the final casting temperature,
which has to exceed by somewhat the melting temperature by an amount called superheat.
The superheat is adjusted at the LF station by the operator who decides mostly on personal
experience but, since the ladle has to pass from downstream processes, the liquid steel loses
temperature, not only due to the duration of the processes till casting but also due to the ladle

Introductory Chapter: Introduction to Dependability Engineering
http://dx.doi.org/10.5772/intechopen.77013

3

order to adopt all three continuous methodologies regarding that scope. It also presents a
conceptual, as well as a tooling framework, to realize the approach as “continuous anything.”
As a result, integration becomes a core element of the project plan. It distributes and shares the
responsibility of integration work among all partners, while at the same time clearly holding
individuals responsible for dedicated software components. Through a high degree of auto-
mation, it keeps the overall integration work low, but still provides immediate feedback on the
quality of the software. Overall, it is found that this concept is useful and beneficial in several
EU-funded research projects, where it significantly lowered integration effort and improved
quality of the software components, while also enhancing collaboration as a whole.

Software fault injection (SFI) is an acknowledged method for assessing the dependability of
software systems. After reviewing the state of the art of SFI, Chapter 3 addresses the challenge
of integrating it deeper into software development practice. It is presented with a well-defined
development methodology incorporating SFI (fault injection driven development, FIDD),
which begins by systematically constructing a dependability and failure cause model [5],
from which relevant injection techniques, points, and campaigns are derived [6]. The pos-
sibilities and challenges are analyzed for the end-to-end automation of such campaigns. The
suggested approach can substantially improve the accessibility of dependability assessment
in everyday software engineering practice.

Availability quantification and prediction of IT infrastructure in data centers are of paramount
importance for online business enterprises. Chapter 4 presents comprehensive availability
models for practical case studies in order to demonstrate a state space stochastic reward net
model for typical data center systems for quantitative assessment of system availability [7].
A stochastic reward net model of a virtualized server system, and also a data center network
based on DCell topology and a conceptual data center for disaster tolerance are presented.
The systems are then evaluated against various metrics of interest, including steady state
availability, downtime and downtime cost, and sensitivity analysis.

A majority of transistors in a modern microprocessor are used to implement static random
access memories (SRAM) [8]. Therefore, it is important to analyze the reliability of SRAM
blocks. During SRAM design, it is important to build in design margins to achieve an ade-
quate lifetime. The two main wear-out mechanisms that increase a transistor’s threshold volt-
age are bias temperature instability (BTI) and hot carrier injections (HCI). BTI and HCI can
degrade transistors’ driving strength, and further weaken circuit performance. In a micropro-
cessor, first level (L1) caches are frequently accessed, which makes it especially vulnerable to
BTI and HCI. In Chapter 5, the cache lifetimes due to BTI and HCI are studied for different
cache configurations, namely, cache size, associativity, cache line size, and replacement algo-
rithm. To give a case study, the failure probability (reliability) and the hit rate (performance)
of the L1 cache in a LEON3 microprocessor are analyzed while the microprocessor is running
a set of benchmarks [9]. Essential insights can be provided from the results to give better per-
formance reliability trade-offs for cache designers.

The vast amounts of data to be processed by today’s applications demand higher compu-
tational power [10]. To meet application requirements and achieve reasonable application
performance, it becomes increasingly profitable or even necessary, to exploit any available

Dependability Engineering2

hardware parallelism. For both new and legacy applications, successful parallelization is
often subject to high cost and price [11]. Chapter 6 proposes a set of methods that employ an
optimistic semiautomatic approach, which enables programmers to exploit parallelism on
modern hardware architectures. It provides a set of methods, including an LLVM-based tool,
to help programmers identify the most promising parallelization targets and understand the
key types of parallelism. The approach reduces the manual effort needed for parallelization.
A contribution of this work is an efficient profiling method to determine the control and data
dependences for performing parallelism discovery or other types of code analysis. A method
for detecting code sections is presented, where parallel design patterns might be applicable
and suggesting relevant code transformations. The approach efficiently reports detailed run-
time data dependences. It accurately identifies opportunities for parallelism and the appro-
priate type of parallelism to use as task based or loop based.

Quality of service is the ability to provide different priorities to applications, users or data
flows, or to guarantee a certain level of performance to a data flow [12, 13]. Chapter 7 uses
timed Petri nets to model techniques that provide the quality of service in packet-switched
networks and illustrate the behavior of developed models by performance characteristics of
simple examples. These performance characteristics are obtained by discrete event simulation
of analyzed models [14, 15].

Condition monitoring system is usually employed in structural health monitoring [16, 17].
The reliability analysis of more complicated structures usually deals with the finite element
method (FEM) models. The random fields (material properties and loads) have to be repre-
sented by random variables assigned to random field elements. The adequate distribution
functions and covariance matrices should be determined for a chosen set of random variables
[18]. This procedure is called discretization of a random field. Chapter 8 presents the dis-
cretization of the random field for material properties with the help of the spatial averaging
method of the one-dimensional homogeneous random field and midpoint method of discreti-
zation of the random field. The second part of Chapter 8 deals with the discretization of ran-
dom fields representing distributed loads. In particular, the discretization of the distributed
load imposed on a Bernoulli beam is presented in detail. A numerical example demonstrates
very good agreement of the reliability indices computed with the help of stochastic finite
element method (SFEM) and first-order reliability method (FORM) analyses with the results
obtained from analytical formulae.

Electric arc furnace (EAF)-based process route in modern steelmaking for the production of
plates and special quality bars requires a series of stations for the secondary metallurgy treat-
ment (ladle furnace (LF), and potentially vacuum degasser), till the final casting for the pro-
duction of slabs and blooms in the corresponding continuous casting machines. However,
since every steel grade has its own melting characteristics, the melting (liquidus) temperature
per grade is generally different and plays an important role to the final casting temperature,
which has to exceed by somewhat the melting temperature by an amount called superheat.
The superheat is adjusted at the LF station by the operator who decides mostly on personal
experience but, since the ladle has to pass from downstream processes, the liquid steel loses
temperature, not only due to the duration of the processes till casting but also due to the ladle

Introductory Chapter: Introduction to Dependability Engineering
http://dx.doi.org/10.5772/intechopen.77013

3

refractory history. Simulation software was developed in Chapter 9 in order to reproduce
the phenomena involved in a melt shop and influence downstream superheats. Data science
models were deployed in order to check the potential of controlling casting temperatures by
adjusting liquid steel exit temperatures at LF [19].

The electricity industry worldwide is turning increasingly to renewable sources of energy to
generate electricity [20, 21]. Rural electrification is the key in developing countries to encour-
age youth and skilled personnel to stay in the rural area for production/income generation
activities. Current situation of lack of grid network discourage skilled personnel to live in
the rural areas, rather they migrate to urban. Tanzania as other countries has diverse renew-
able energy which needs to be developed for electricity generation. Most of these sources are
found in rural areas, where there is no reliable electricity, that is, grid network is not extended
due to low population density. The government of Tanzania has put in place the policy which
encourages small power producers (up 10 MW) to develop and install electricity genera-
tion using renewable energy resources. Energy produced by small power producer would
be sold to the community directly or to the government-owned company for grid integra-
tion. Chapter 10 discussed three major renewable energy sources which are environmentally
friendly found in Tanzania, such as wind energy, solar energy, and hydropower energy. Also,
the government is setting the strategies of empowering people in rural areas, particularly
women and youth through organizations, such as local cooperatives, and by applying the
bottom-up approach, so that livelihoods in the rural areas, to be enhanced through effective
participation of rural people and rural communities in the management of their own social,
economic, and environmental.

Reliability is a key important criterion in every single system in the world, and it is not differ-
ent in engineering [22]. Reliability in power systems or electric grids can be generally defined
as the availability time (capable of fully supplying the demand) of the system compared to
the amount of time it is unavailable (incapable of supplying the demand) [23]. For systems
with high uncertainties, such as renewable energy-based power systems, achieving a high
level of reliability is a formidable challenge due to the increased penetrations of the intermit-
tent renewable sources, such as wind and solar [24]. A careful and accurate planning is of
the utmost importance to achieve high reliability in renewable energy-based systems [25].
Chapter 11 assesses wind-based power system’s reliability issues and provides a case study
that proposes a solution to enhance the reliability of the system.

Author details

Fausto Pedro García Márquez1* and Mayorkinos Papaelias2

*Address all correspondence to: Faustopedro.garcia@uclm.es

1 Ingenium Research Group, University of Castilla-La Mancha, Spain

2 School of Metallurgy and Materials, Birmingham University, United Kingdom

Dependability Engineering4

References

[1] Sousa E, Lins F, Tavares E, Cunha P, Maciel P. A modeling approach for cloud infrastruc-
ture planning considering dependability and cost requirements. IEEE Transactions on
Systems, Man, and Cybernetics: Systems. 2015;45:549-558

[2] Jiménez AA, Muñoz CQG, Márquez FPG. Dirt and mud detection and diagnosis on
a wind turbine blade employing guided waves and supervised learning classifiers.
Reliability Engineering & System Safety. 2018. In Press

[3] Sousa E, Lins F, Tavares E, Maciel P. Cloud infrastructure planning considering different
redundancy mechanisms. Computing. 2017;99:841-864

[4] Booch G. Object Oriented Design with Applications. The Benjamin/Cummings Publi-
shing, Pearson Education; 1991

[5] Muñoz CQG, Marquez FPG, Lev B, Arcos A. New pipe notch detection and location
method for short distances employing ultrasonic guided waves. Acta Acustica United
with Acustica. 2017;103:772-781

[6] Feinbube L, Pirl L, Tröger P, Polze A. Software fault injection campaign generation
for cloud infrastructures. In: 2017 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C). 2017. pp. 622-623

[7] Nguyen TA, Min D, Park JS. A comprehensive sensitivity analysis of a data center net-
work with server virtualization for business continuity. Mathematical Problems in
Engineering. 2015;2015:1-20

[8] Liu T, Chen C-C, Wu J, Milor L. SRAM stability analysis for different cache configura-
tions due to bias temperature instability and hot carrier injection. In: 2016 IEEE 34th
International Conference on Computer Design (ICCD). 2016. pp. 225-232

[9] Keller AM, Wirthlin MJ. Benefits of complementary SEU mitigation for the LEON3 soft
processor on SRAM-based FPGAs. IEEE Transactions on Nuclear Science. 2017;64:519-528

[10] Márquez FPG, Pedregal DJ, Roberts C. New methods for the condition monitoring of
level crossings. International Journal of Systems Science. 2015;46:878-884

[11] Papaelias M, Cheng L, Kogia M, Mohimi A, Kappatos V, Selcuk C, et al. Inspection and
structural health monitoring techniques for concentrated solar power plants. Renewable
Energy. 2016;85:1178-1191

[12] Manupati V, Anand R, Thakkar J, Benyoucef L, Garsia FP, Tiwari M. Adaptive production
control system for a flexible manufacturing cell using support vector machine-based app-
roach. The International Journal of Advanced Manufacturing Technology. 2013;67:969-981

[13] García Márquez FP, Pliego Marugán A, Pinar Pérez JM, Hillmansen S, Papaelias
M. Optimal dynamic analysis of electrical/electronic components in wind turbines.
Energies. 2017;10:1111

Introductory Chapter: Introduction to Dependability Engineering
http://dx.doi.org/10.5772/intechopen.77013

5

refractory history. Simulation software was developed in Chapter 9 in order to reproduce
the phenomena involved in a melt shop and influence downstream superheats. Data science
models were deployed in order to check the potential of controlling casting temperatures by
adjusting liquid steel exit temperatures at LF [19].

The electricity industry worldwide is turning increasingly to renewable sources of energy to
generate electricity [20, 21]. Rural electrification is the key in developing countries to encour-
age youth and skilled personnel to stay in the rural area for production/income generation
activities. Current situation of lack of grid network discourage skilled personnel to live in
the rural areas, rather they migrate to urban. Tanzania as other countries has diverse renew-
able energy which needs to be developed for electricity generation. Most of these sources are
found in rural areas, where there is no reliable electricity, that is, grid network is not extended
due to low population density. The government of Tanzania has put in place the policy which
encourages small power producers (up 10 MW) to develop and install electricity genera-
tion using renewable energy resources. Energy produced by small power producer would
be sold to the community directly or to the government-owned company for grid integra-
tion. Chapter 10 discussed three major renewable energy sources which are environmentally
friendly found in Tanzania, such as wind energy, solar energy, and hydropower energy. Also,
the government is setting the strategies of empowering people in rural areas, particularly
women and youth through organizations, such as local cooperatives, and by applying the
bottom-up approach, so that livelihoods in the rural areas, to be enhanced through effective
participation of rural people and rural communities in the management of their own social,
economic, and environmental.

Reliability is a key important criterion in every single system in the world, and it is not differ-
ent in engineering [22]. Reliability in power systems or electric grids can be generally defined
as the availability time (capable of fully supplying the demand) of the system compared to
the amount of time it is unavailable (incapable of supplying the demand) [23]. For systems
with high uncertainties, such as renewable energy-based power systems, achieving a high
level of reliability is a formidable challenge due to the increased penetrations of the intermit-
tent renewable sources, such as wind and solar [24]. A careful and accurate planning is of
the utmost importance to achieve high reliability in renewable energy-based systems [25].
Chapter 11 assesses wind-based power system’s reliability issues and provides a case study
that proposes a solution to enhance the reliability of the system.

Author details

Fausto Pedro García Márquez1* and Mayorkinos Papaelias2

*Address all correspondence to: Faustopedro.garcia@uclm.es

1 Ingenium Research Group, University of Castilla-La Mancha, Spain

2 School of Metallurgy and Materials, Birmingham University, United Kingdom

Dependability Engineering4

References

[1] Sousa E, Lins F, Tavares E, Cunha P, Maciel P. A modeling approach for cloud infrastruc-
ture planning considering dependability and cost requirements. IEEE Transactions on
Systems, Man, and Cybernetics: Systems. 2015;45:549-558

[2] Jiménez AA, Muñoz CQG, Márquez FPG. Dirt and mud detection and diagnosis on
a wind turbine blade employing guided waves and supervised learning classifiers.
Reliability Engineering & System Safety. 2018. In Press

[3] Sousa E, Lins F, Tavares E, Maciel P. Cloud infrastructure planning considering different
redundancy mechanisms. Computing. 2017;99:841-864

[4] Booch G. Object Oriented Design with Applications. The Benjamin/Cummings Publi-
shing, Pearson Education; 1991

[5] Muñoz CQG, Marquez FPG, Lev B, Arcos A. New pipe notch detection and location
method for short distances employing ultrasonic guided waves. Acta Acustica United
with Acustica. 2017;103:772-781

[6] Feinbube L, Pirl L, Tröger P, Polze A. Software fault injection campaign generation
for cloud infrastructures. In: 2017 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C). 2017. pp. 622-623

[7] Nguyen TA, Min D, Park JS. A comprehensive sensitivity analysis of a data center net-
work with server virtualization for business continuity. Mathematical Problems in
Engineering. 2015;2015:1-20

[8] Liu T, Chen C-C, Wu J, Milor L. SRAM stability analysis for different cache configura-
tions due to bias temperature instability and hot carrier injection. In: 2016 IEEE 34th
International Conference on Computer Design (ICCD). 2016. pp. 225-232

[9] Keller AM, Wirthlin MJ. Benefits of complementary SEU mitigation for the LEON3 soft
processor on SRAM-based FPGAs. IEEE Transactions on Nuclear Science. 2017;64:519-528

[10] Márquez FPG, Pedregal DJ, Roberts C. New methods for the condition monitoring of
level crossings. International Journal of Systems Science. 2015;46:878-884

[11] Papaelias M, Cheng L, Kogia M, Mohimi A, Kappatos V, Selcuk C, et al. Inspection and
structural health monitoring techniques for concentrated solar power plants. Renewable
Energy. 2016;85:1178-1191

[12] Manupati V, Anand R, Thakkar J, Benyoucef L, Garsia FP, Tiwari M. Adaptive production
control system for a flexible manufacturing cell using support vector machine-based app-
roach. The International Journal of Advanced Manufacturing Technology. 2013;67:969-981

[13] García Márquez FP, Pliego Marugán A, Pinar Pérez JM, Hillmansen S, Papaelias
M. Optimal dynamic analysis of electrical/electronic components in wind turbines.
Energies. 2017;10:1111

Introductory Chapter: Introduction to Dependability Engineering
http://dx.doi.org/10.5772/intechopen.77013

5

[14] Strzeciwilk D, Zuberek WM. Modeling and performance analysis of QoS data. In:
Romaniuk RS, editors. Proceedings of SPIE 10031, Photonics Applications in Astronomy,
Communications, Industry, and High-Energy Physics Experiments. Vol. 10031. SPIE
Proceedings; 28 September 2016. p. 1003158. DOI: 10.1117/12.2249385

[15] Jiménez AA, Muñoz CQG, Márquez FPG. Machine learning for wind turbine blades
maintenance management. Energies. 2017;11:1-16

[16] Muñoz CQG, Marquez FPG, Liang C, Maria K, Abbas M, Mayorkinos P. A new con-
dition monitoring approach for maintenance management in concentrate solar plants.
In: Proceedings of the Ninth International Conference on Management Science and
Engineering Management; 2015. pp. 999-1008

[17] García Márquez FP, Chacón Muñoz JM, Tobias AM. B-spline approach for failure detec-
tion and diagnosis on railway point mechanisms case study. Quality Engineering.
2015;27:177-185

[18] Fedor K, Czmoch I. Structural analysis of tension tower subjected to exceptional loads
during installation of line conductors. Procedia Engineering. 2016;153:136-143

[19] Sismanis P. Using data-science models to predict technological factors affecting the
mechanical properties of flat products. Journal of Chemical Technology & Metallurgy.
2017;52:299-313

[20] Pérez JMP, Márquez FPG, Hernández DR. Economic viability analysis for icing blades
detection in wind turbines. Journal of Cleaner Production. 2016;135:1150-1160

[21] Melkior UF, Čerňan M, Müller Z, Tlustý J, Kasembe AG. The reliability of the system
with wind power generation. In: 2016 17th International Scientific Conference on Electric
Power Engineering (EPE); 2016. pp. 1-6

[22] Muñoz CQG, Jiménez AA, Márquez FPG. Wavelet transforms and pattern recogni-
tion on ultrasonic guides waves for frozen surface state diagnosis. Renewable Energy.
2018;116:42-54

[23] Pliego Marugán A, García Márquez FP, Lev B. Optimal decision-making via binary
decision diagrams for investments under a risky environment. International Journal of
Production Research. 2017;55:5271-5286

[24] Gómez Muñoz CQ, Arcos Jimenez A, García Marquez FP, Kogia M, Cheng L, Mohimi
A, et al. Cracks and welds detection approach in solar receiver tubes employing electro-
magnetic acoustic transducers. Structural Health Monitoring; 2017

[25] Arabali A, Ghofrani M, Etezadi-Amoli M, Fadali MS, Moeini-Aghtaie M. A multi-objec-
tive transmission expansion planning framework in deregulated power systems with
wind generation. IEEE Transactions on Power Systems. 2014;29:3003-3011

Dependability Engineering6

Chapter 2

Modeling Strategies to Improve the Dependability of
Cloud Infrastructures

Erica Teixeira Gomes de Sousa and
Fernando Antonio Aires Lins

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71498

Provisional chapter

Modeling Strategies to Improve the Dependability
of Cloud Infrastructures

Erica Teixeira Gomes de Sousa and

Fernando Antonio Aires Lins

Additional information is available at the end of the chapter

Abstract

Cloud computing presents some challenges that need to be overcome, such as planning
infrastructures that maintain availability when failure events and repair activities occur.
Cloud infrastructure planning that addresses the dependability aspects is an essential
activity because it ensures business continuity and client satisfaction. Redundancy mech-
anisms cold standby, warm standby and hot standby can be allocated to components of
the cloud infrastructure to maintain the availability levels agreed in service level agree-
ment (SLAs). Mathematical formalisms based on state space such as stochastic Petri nets
and based on combinatorial as reliability block diagrams can be adopted to evaluate the
dependability of cloud infrastructures considering the allocation of different redundancy
mechanisms to its components. This chapter shows the adoption of the mathematical
formalisms stochastic Petri nets and reliability block diagrams to dependability evalua-
tion of cloud infrastructures with different redundancy mechanisms.

Keywords: dependability evaluation, state space models, non-state space models,
redundancy mechanisms, maintenance policies

1. Introduction

Ensuring the availability levels required by the different services hosted in the private cloud is
a great challenge. The occurrence of defects in these services can cause the degradation of their
response times and the interruption of service of a request due to unavailability of the required
resource. The interruption of these services can be caused by the occurrence of failure events in
the hardware, software, power system, cooling system and private cloud network. When the
occurrence of defects is constant, users give less preference to hiring service providers due to
reduced availability, reliability and performance of these services [1].

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71498

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[14] Strzeciwilk D, Zuberek WM. Modeling and performance analysis of QoS data. In:
Romaniuk RS, editors. Proceedings of SPIE 10031, Photonics Applications in Astronomy,
Communications, Industry, and High-Energy Physics Experiments. Vol. 10031. SPIE
Proceedings; 28 September 2016. p. 1003158. DOI: 10.1117/12.2249385

[15] Jiménez AA, Muñoz CQG, Márquez FPG. Machine learning for wind turbine blades
maintenance management. Energies. 2017;11:1-16

[16] Muñoz CQG, Marquez FPG, Liang C, Maria K, Abbas M, Mayorkinos P. A new con-
dition monitoring approach for maintenance management in concentrate solar plants.
In: Proceedings of the Ninth International Conference on Management Science and
Engineering Management; 2015. pp. 999-1008

[17] García Márquez FP, Chacón Muñoz JM, Tobias AM. B-spline approach for failure detec-
tion and diagnosis on railway point mechanisms case study. Quality Engineering.
2015;27:177-185

[18] Fedor K, Czmoch I. Structural analysis of tension tower subjected to exceptional loads
during installation of line conductors. Procedia Engineering. 2016;153:136-143

[19] Sismanis P. Using data-science models to predict technological factors affecting the
mechanical properties of flat products. Journal of Chemical Technology & Metallurgy.
2017;52:299-313

[20] Pérez JMP, Márquez FPG, Hernández DR. Economic viability analysis for icing blades
detection in wind turbines. Journal of Cleaner Production. 2016;135:1150-1160

[21] Melkior UF, Čerňan M, Müller Z, Tlustý J, Kasembe AG. The reliability of the system
with wind power generation. In: 2016 17th International Scientific Conference on Electric
Power Engineering (EPE); 2016. pp. 1-6

[22] Muñoz CQG, Jiménez AA, Márquez FPG. Wavelet transforms and pattern recogni-
tion on ultrasonic guides waves for frozen surface state diagnosis. Renewable Energy.
2018;116:42-54

[23] Pliego Marugán A, García Márquez FP, Lev B. Optimal decision-making via binary
decision diagrams for investments under a risky environment. International Journal of
Production Research. 2017;55:5271-5286

[24] Gómez Muñoz CQ, Arcos Jimenez A, García Marquez FP, Kogia M, Cheng L, Mohimi
A, et al. Cracks and welds detection approach in solar receiver tubes employing electro-
magnetic acoustic transducers. Structural Health Monitoring; 2017

[25] Arabali A, Ghofrani M, Etezadi-Amoli M, Fadali MS, Moeini-Aghtaie M. A multi-objec-
tive transmission expansion planning framework in deregulated power systems with
wind generation. IEEE Transactions on Power Systems. 2014;29:3003-3011

Dependability Engineering6

Chapter 2

Modeling Strategies to Improve the Dependability of
Cloud Infrastructures

Erica Teixeira Gomes de Sousa and
Fernando Antonio Aires Lins

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71498

Provisional chapter

Modeling Strategies to Improve the Dependability
of Cloud Infrastructures

Erica Teixeira Gomes de Sousa and

Fernando Antonio Aires Lins

Additional information is available at the end of the chapter

Abstract

Cloud computing presents some challenges that need to be overcome, such as planning
infrastructures that maintain availability when failure events and repair activities occur.
Cloud infrastructure planning that addresses the dependability aspects is an essential
activity because it ensures business continuity and client satisfaction. Redundancy mech-
anisms cold standby, warm standby and hot standby can be allocated to components of
the cloud infrastructure to maintain the availability levels agreed in service level agree-
ment (SLAs). Mathematical formalisms based on state space such as stochastic Petri nets
and based on combinatorial as reliability block diagrams can be adopted to evaluate the
dependability of cloud infrastructures considering the allocation of different redundancy
mechanisms to its components. This chapter shows the adoption of the mathematical
formalisms stochastic Petri nets and reliability block diagrams to dependability evalua-
tion of cloud infrastructures with different redundancy mechanisms.

Keywords: dependability evaluation, state space models, non-state space models,
redundancy mechanisms, maintenance policies

1. Introduction

Ensuring the availability levels required by the different services hosted in the private cloud is
a great challenge. The occurrence of defects in these services can cause the degradation of their
response times and the interruption of service of a request due to unavailability of the required
resource. The interruption of these services can be caused by the occurrence of failure events in
the hardware, software, power system, cooling system and private cloud network. When the
occurrence of defects is constant, users give less preference to hiring service providers due to
reduced availability, reliability and performance of these services [1].

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71498

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

The dependability assessment can minimize the occurrence of faults and failure events [2] in
the private cloud and promote the levels of availability and reliability defined in the SLAs,
avoiding the payment of contractual fines. One option to ensure the availability of services
offered in the private cloud is to assign redundant equipment to its components. Redundant
devices allow service reestablishment, minimizing the effects of failure events. The major
problem with this assignment is the estimation of the number of redundant equipment and
the choice of the type of redundancy that must be considered to guarantee the quality of the
service offered. The estimation of the type and number of redundant equipment should also
consider the cost of the quantitative of each type of redundancy mechanism attributed to the
components of the cloud computing [3, 4].

2. Basic concepts

The dependability evaluation denotes the ability of a system to deliver a reliably service. Depen-
dability measures are reliability, availability, maintainability, performability, safety, testability,
confidentiality, and integrity [2].

Dependability evaluation is related to the study of the effect of errors, defects and failures in
the system, since these have a negative impact on the dependability attributes. A fault is
defined as the failure of a component, subsystem or system that interacts with the system in
question [5]. An error is defined as a state that can lead to a failure. A defect represents the
deviation from the correct operation of a system. A summary of the main measures of depend-
ability is shown below.

The reliability of a system is the probability (P) that this system performs its function satisfac-
torily, without the occurrence of defects, for a certain period of time (T). Reliability is
represented by Eq. (1), where T is a random variable that represents the time for occurrence
of defects in the system [3, 4].

R tð Þ ¼ P T > tf g, t ≥ 0 (1)

The probability of the occurrence of defects up to a time t, is represented by Eq. (2), where T is
a random variable that represents the time for system failures [3, 4].

F tð Þ ¼ 1� R tð Þ ¼ P T ≤ tf g (2)

Eq. (3) represents the reliability, considering the density function F(t) of the time for occurrence
of failures (T) in the system [3, 4, 6].

R tð Þ ¼ P T > tf g ¼
ð∞
t
F tð Þdt (3)

The Mean Time to Failure (MTTF) is the average time for defects to occur in the system. When
this average time follows the exponential distribution with parameter λ, the MTTF is repre-
sented by Eq. (4) [3, 4, 6].

Dependability Engineering8

MTTF ¼
ð∞
0
R tð Þdt ¼

ð∞
0
e �λð Þt ¼ 1

λ
(4)

The failures can be classified in relation to the time, according to the mechanism that originated
them. The behavior of the failure rate can be represented graphically through the bathtub curve,
which presents three distinct phases: infant mortality (1), useful life (2) and aging (3). Figure 1
shows the variation of the failure rate of hardware components as a function of time [7].

During the infant mortality phase (1), a reduction in the failure rate occurs. Failures during this
period are due to equipment manufacturing defects. In order to shorten this period, manufac-
turers submit the equipment to a process called burn-in, where they are exposed to high
operating temperatures. In the useful stage (2), the failures occur randomly. Equipment reli-
ability values provided by manufacturers apply to this period. The service life of the equip-
ment is not normally a constant. It depends on the level of stress in which the equipment is
subjected during that period. During the aging phase (3), an increase in the failure rate occurs.

In high availability environments, one must be sure that the infant mortality phase has passed.
In some cases, it is necessary to leave the equipment running in a test environment during this
time. At the same time, care must be taken to have the equipment replaced before entering the
aging phase.

The availability of a system is the probability that this system is operational for a certain period
of time, or has been restored after a defect has occurred. Uptime is the period of time in which
the system is operational, downtime is the period of time when the system is not operational
due to a defect or repair activity occurring, and uptime + downtime is the time period of
observation of the system. Eq. (5) represents the availability of a system [3, 4, 6].

A ¼ uptime
uptimeþ downtime

(5)

Computational systems and applications require different levels of availability and therefore
can be classified according to these levels. U.S. Federal Aviation Administration’s National
Airspace System’s Reliability Handbook classifies computer systems and applications
according to their criticality levels [1]. These computational systems and applications can be

Figure 1. Bathtub curve.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

9

The dependability assessment can minimize the occurrence of faults and failure events [2] in
the private cloud and promote the levels of availability and reliability defined in the SLAs,
avoiding the payment of contractual fines. One option to ensure the availability of services
offered in the private cloud is to assign redundant equipment to its components. Redundant
devices allow service reestablishment, minimizing the effects of failure events. The major
problem with this assignment is the estimation of the number of redundant equipment and
the choice of the type of redundancy that must be considered to guarantee the quality of the
service offered. The estimation of the type and number of redundant equipment should also
consider the cost of the quantitative of each type of redundancy mechanism attributed to the
components of the cloud computing [3, 4].

2. Basic concepts

The dependability evaluation denotes the ability of a system to deliver a reliably service. Depen-
dability measures are reliability, availability, maintainability, performability, safety, testability,
confidentiality, and integrity [2].

Dependability evaluation is related to the study of the effect of errors, defects and failures in
the system, since these have a negative impact on the dependability attributes. A fault is
defined as the failure of a component, subsystem or system that interacts with the system in
question [5]. An error is defined as a state that can lead to a failure. A defect represents the
deviation from the correct operation of a system. A summary of the main measures of depend-
ability is shown below.

The reliability of a system is the probability (P) that this system performs its function satisfac-
torily, without the occurrence of defects, for a certain period of time (T). Reliability is
represented by Eq. (1), where T is a random variable that represents the time for occurrence
of defects in the system [3, 4].

R tð Þ ¼ P T > tf g, t ≥ 0 (1)

The probability of the occurrence of defects up to a time t, is represented by Eq. (2), where T is
a random variable that represents the time for system failures [3, 4].

F tð Þ ¼ 1� R tð Þ ¼ P T ≤ tf g (2)

Eq. (3) represents the reliability, considering the density function F(t) of the time for occurrence
of failures (T) in the system [3, 4, 6].

R tð Þ ¼ P T > tf g ¼
ð∞
t
F tð Þdt (3)

The Mean Time to Failure (MTTF) is the average time for defects to occur in the system. When
this average time follows the exponential distribution with parameter λ, the MTTF is repre-
sented by Eq. (4) [3, 4, 6].

Dependability Engineering8

MTTF ¼
ð∞
0
R tð Þdt ¼

ð∞
0
e �λð Þt ¼ 1

λ
(4)

The failures can be classified in relation to the time, according to the mechanism that originated
them. The behavior of the failure rate can be represented graphically through the bathtub curve,
which presents three distinct phases: infant mortality (1), useful life (2) and aging (3). Figure 1
shows the variation of the failure rate of hardware components as a function of time [7].

During the infant mortality phase (1), a reduction in the failure rate occurs. Failures during this
period are due to equipment manufacturing defects. In order to shorten this period, manufac-
turers submit the equipment to a process called burn-in, where they are exposed to high
operating temperatures. In the useful stage (2), the failures occur randomly. Equipment reli-
ability values provided by manufacturers apply to this period. The service life of the equip-
ment is not normally a constant. It depends on the level of stress in which the equipment is
subjected during that period. During the aging phase (3), an increase in the failure rate occurs.

In high availability environments, one must be sure that the infant mortality phase has passed.
In some cases, it is necessary to leave the equipment running in a test environment during this
time. At the same time, care must be taken to have the equipment replaced before entering the
aging phase.

The availability of a system is the probability that this system is operational for a certain period
of time, or has been restored after a defect has occurred. Uptime is the period of time in which
the system is operational, downtime is the period of time when the system is not operational
due to a defect or repair activity occurring, and uptime + downtime is the time period of
observation of the system. Eq. (5) represents the availability of a system [3, 4, 6].

A ¼ uptime
uptimeþ downtime

(5)

Computational systems and applications require different levels of availability and therefore
can be classified according to these levels. U.S. Federal Aviation Administration’s National
Airspace System’s Reliability Handbook classifies computer systems and applications
according to their criticality levels [1]. These computational systems and applications can be

Figure 1. Bathtub curve.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

9

considered critical critics when the required availability is 99.99999%, critical when the
required availability is 99.999%, essential when the required availability is 99.9% and routine
when the required availability is 99% [1].

The maintainability is the probability that a system can be repaired in a given period of time
(TR). The maintainability is described by Eq. (6), where TR denotes the repair time. This equation
represents maintainability, since the repair time TR has a density function G(t) [3, 4, 6].

V tð Þ ¼ P TR ≤ trf g ¼
ðtr
0
G tð Þdt (6)

The Mean Time to Repair (MTTR) is the average time to repair the system. When the time
distribution function of repair is represented by an exponential distribution with parameter μ,
the MTTR is represented by Eq. (7) [3, 4, 6].

MTTR ¼
ð∞
0
1�G trð Þdt ¼

ð∞
0
1� e μð Þtr ¼ 1

μ
(7)

Mean Time Between Failures (MTBF) is the mean time between system defects, represented by
Eq. (8) [3, 4, 6].

MTBF ¼ MTTRþMTTF (8)

Performability describes the degradation of system performance caused by the occurrence of
defects [3, 6].

3. Redundancy mechanisms

The redundancy mechanisms provide greater availability and reliability to the system during
the occurrence of failure events due to the maintenance of components operating in parallel,
that is, a redundant system has a secondary component that will be available when the
primary component fails. Thus, redundancy mechanisms are designed to avoid single points
of failure and therefore provide high availability and disaster recovery if necessary [1, 8].

The redundancy mechanisms can be classified as active-active and active-standby. Active-
active redundancy mechanisms are employed when the primary and secondary components
share the workload of the system. When any of these components fails, the other component
will be responsible for servicing the system users’ requests. These redundancy mechanisms
can be classified as N + K, where K secondary components identical to N primary components
are required for system workload sharing. In the N + 1, configuration, a secondary component
identical to the primary N components is required for sharing the system workload. In the
N + 2, configuration, two secondary components identical to the N primary components are
required for system workload sharing [1].

Dependability Engineering10

The active-standby redundancy mechanisms are employed when the primary components
meet the requests of the system users and the secondary components are on hold. When the
primary components fail, the secondary components will be responsible for servicing the
system users’ requests. The active-standby redundancy mechanisms can be classified as hot
standby, cold standby and warm standby [1].

In the hot standby redundancy mechanism, redundant modules that are in standby function in
synchronization with the operating module, without their computation being considered in
the system, and in case the occurrence of a failure event is detected, it is ready to make
operational immediately [1, 4].

In the cold standby redundancy mechanism, the redundant modules are turned off and only
when a failure event occurs will they be activated after a time interval. In the cold standby
redundancy mechanism, inactive modules that are de-energized, by hypothesis, do not fail,
whereas the active module has a constant failure rate λ.

In the warm standby redundancy mechanism, the redundant modules that are in standby
function in sync with the operating module, without their computation being considered in
the system. If a fault event is detected, the redundant module is ready to become operational
after a time interval. Systems with standby sparing of cold standby sparing and warm standby
sparing need more time for recovery compared to hot standby sparing, but systems with cold
standby sparing and warm standby sparing have the advantage of lower power consumption
and no wear standby systems [1, 4].

4. Modeling techniques

The models adopted for dependability evaluation can be classified as combinatorial and state
space. The combinatorial models capture the conditions that cause failures in the system or
allow its operation when considering the structural relationships of its components. The best
known combinatorial models are Reliability Block Diagram (RBD) and Fault Tree (FT) [9, 10].
State space-based models represent the behavior of the system (occurrence of failures and
repair activities) through its states and the occurrence of events. These models allow the
representation of dependency relations between the components of the systems. The most
widely used state space-based models are Markov Chains (MC) and Stochastic Petri Net
(SPN) [9–12].

The SPN models provide great flexibility in the representation of aspects of dependability.
However, these models suffer from problems related to the size of the state space for compu-
tational systems with large number of components [11, 12]. RBD models are simple, easy to
understand, and their solution methods have been extensively studied. These models can
represent the components of cloud computing that do not have a dependency relation to allow
an efficient representation, avoiding growth problems too much of the space of states [9, 10].

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

11

considered critical critics when the required availability is 99.99999%, critical when the
required availability is 99.999%, essential when the required availability is 99.9% and routine
when the required availability is 99% [1].

The maintainability is the probability that a system can be repaired in a given period of time
(TR). The maintainability is described by Eq. (6), where TR denotes the repair time. This equation
represents maintainability, since the repair time TR has a density function G(t) [3, 4, 6].

V tð Þ ¼ P TR ≤ trf g ¼
ðtr
0
G tð Þdt (6)

The Mean Time to Repair (MTTR) is the average time to repair the system. When the time
distribution function of repair is represented by an exponential distribution with parameter μ,
the MTTR is represented by Eq. (7) [3, 4, 6].

MTTR ¼
ð∞
0
1�G trð Þdt ¼

ð∞
0
1� e μð Þtr ¼ 1

μ
(7)

Mean Time Between Failures (MTBF) is the mean time between system defects, represented by
Eq. (8) [3, 4, 6].

MTBF ¼ MTTRþMTTF (8)

Performability describes the degradation of system performance caused by the occurrence of
defects [3, 6].

3. Redundancy mechanisms

The redundancy mechanisms provide greater availability and reliability to the system during
the occurrence of failure events due to the maintenance of components operating in parallel,
that is, a redundant system has a secondary component that will be available when the
primary component fails. Thus, redundancy mechanisms are designed to avoid single points
of failure and therefore provide high availability and disaster recovery if necessary [1, 8].

The redundancy mechanisms can be classified as active-active and active-standby. Active-
active redundancy mechanisms are employed when the primary and secondary components
share the workload of the system. When any of these components fails, the other component
will be responsible for servicing the system users’ requests. These redundancy mechanisms
can be classified as N + K, where K secondary components identical to N primary components
are required for system workload sharing. In the N + 1, configuration, a secondary component
identical to the primary N components is required for sharing the system workload. In the
N + 2, configuration, two secondary components identical to the N primary components are
required for system workload sharing [1].

Dependability Engineering10

The active-standby redundancy mechanisms are employed when the primary components
meet the requests of the system users and the secondary components are on hold. When the
primary components fail, the secondary components will be responsible for servicing the
system users’ requests. The active-standby redundancy mechanisms can be classified as hot
standby, cold standby and warm standby [1].

In the hot standby redundancy mechanism, redundant modules that are in standby function in
synchronization with the operating module, without their computation being considered in
the system, and in case the occurrence of a failure event is detected, it is ready to make
operational immediately [1, 4].

In the cold standby redundancy mechanism, the redundant modules are turned off and only
when a failure event occurs will they be activated after a time interval. In the cold standby
redundancy mechanism, inactive modules that are de-energized, by hypothesis, do not fail,
whereas the active module has a constant failure rate λ.

In the warm standby redundancy mechanism, the redundant modules that are in standby
function in sync with the operating module, without their computation being considered in
the system. If a fault event is detected, the redundant module is ready to become operational
after a time interval. Systems with standby sparing of cold standby sparing and warm standby
sparing need more time for recovery compared to hot standby sparing, but systems with cold
standby sparing and warm standby sparing have the advantage of lower power consumption
and no wear standby systems [1, 4].

4. Modeling techniques

The models adopted for dependability evaluation can be classified as combinatorial and state
space. The combinatorial models capture the conditions that cause failures in the system or
allow its operation when considering the structural relationships of its components. The best
known combinatorial models are Reliability Block Diagram (RBD) and Fault Tree (FT) [9, 10].
State space-based models represent the behavior of the system (occurrence of failures and
repair activities) through its states and the occurrence of events. These models allow the
representation of dependency relations between the components of the systems. The most
widely used state space-based models are Markov Chains (MC) and Stochastic Petri Net
(SPN) [9–12].

The SPN models provide great flexibility in the representation of aspects of dependability.
However, these models suffer from problems related to the size of the state space for compu-
tational systems with large number of components [11, 12]. RBD models are simple, easy to
understand, and their solution methods have been extensively studied. These models can
represent the components of cloud computing that do not have a dependency relation to allow
an efficient representation, avoiding growth problems too much of the space of states [9, 10].

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

11

5. Reliability block diagram

Reliability block diagram (RBD) is one of the most used techniques for reliability analysis of
systems [5].

The RBD allows the calculation of availability and reliability by means of closed formulas,
since it is a combinational model. These closed formulas make the calculation of the result
faster than the simulation, for example [6].

In a reliability block diagram, components are represented with blocks combined with other
blocks (i.e., components) in series, parallel or combinations of those structures. A diagram that
has components connected in series requires each component to be running for the system to
be operational. A diagram that has components connected in parallel requires that only one
component is working for the system to be operational [13]. Thus, the system is described as a
set of interconnected functional blocks to represent the effect of availability and reliability of
each block on the availability and reliability of the system [14].

The availability and reliability of two blocks connected in series is obtained through Eq. (9) [6].

Ps ¼
Yn
i¼1

Pi tð Þ (9)

where:

Pi(t) describes the reliability Ri(t), the instantaneous availability Ai(t) e a and the steady state
availability Ai of the block Bi.

The availability and reliability of two blocks connected in parallel is obtained through Eq. (10) [6].

Pp ¼ 1�
Yn
i¼1

1� Pi tð Þð Þ (10)

where Pi(t) describes the reliability Ri(t), the instantaneous availability Ai(t) e a and the steady
state availability Ai of the block Bi.

Figure 2 shows the connection of the blocks in series and Figure 3 shows the connection of the
blocks in parallel.

The reliability block diagram is mainly used in modular systems consisting of many indepen-
dent modules, where each can be easily represented by a block.

Figure 2. Reliability block diagram in series.

Dependability Engineering12

6. Petri nets

The concept of Petri nets was introduced by Carl Adam Petri in 1962 with the presentation
of his doctoral thesis “Kommunikation mit Automaten” (Communication with Automata) [15]
at the Faculty of Mathematics and Physics of Darmstadt University in Germany. Petri nets are
graphical and mathematical tools used for formal description of systems characterized by
properties of concurrency, parallelism, synchronization, distribution, asynchronism, and non-
determinism [15].

The applicability of Petri nets as a tool for systems study is important because it allows for
mathematical representation, analysis of models and also for providing useful information
about the structure and dynamic behavior of the modeled systems. The applications of Petri
nets can occur in many areas (systems of manufacture, development and testing of software,
administrative systems, among others) [16].

The Petri nets presents some characteristics that are: the dynamic representation of the model-
ing system with the desired level of detail; The graphical and formal description that allows to
obtain information on the behavior of the modeled system through its behavioral and struc-
tural properties; The representation of synchronism, asynchronism, competition, resource
sharing, among other behaviors; And the wide applicability and documentation.

Petri nets are formed by places (1), transitions (2), arcs (3) and marking (4). The places corre-
spond to state variables and the transitions, actions or events performed by the system. The
performance of an action is associated with some preconditions, that is, there is a relation

Figure 3. Reliability block diagram in parallel.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

13

5. Reliability block diagram

Reliability block diagram (RBD) is one of the most used techniques for reliability analysis of
systems [5].

The RBD allows the calculation of availability and reliability by means of closed formulas,
since it is a combinational model. These closed formulas make the calculation of the result
faster than the simulation, for example [6].

In a reliability block diagram, components are represented with blocks combined with other
blocks (i.e., components) in series, parallel or combinations of those structures. A diagram that
has components connected in series requires each component to be running for the system to
be operational. A diagram that has components connected in parallel requires that only one
component is working for the system to be operational [13]. Thus, the system is described as a
set of interconnected functional blocks to represent the effect of availability and reliability of
each block on the availability and reliability of the system [14].

The availability and reliability of two blocks connected in series is obtained through Eq. (9) [6].

Ps ¼
Yn
i¼1

Pi tð Þ (9)

where:

Pi(t) describes the reliability Ri(t), the instantaneous availability Ai(t) e a and the steady state
availability Ai of the block Bi.

The availability and reliability of two blocks connected in parallel is obtained through Eq. (10) [6].

Pp ¼ 1�
Yn
i¼1

1� Pi tð Þð Þ (10)

where Pi(t) describes the reliability Ri(t), the instantaneous availability Ai(t) e a and the steady
state availability Ai of the block Bi.

Figure 2 shows the connection of the blocks in series and Figure 3 shows the connection of the
blocks in parallel.

The reliability block diagram is mainly used in modular systems consisting of many indepen-
dent modules, where each can be easily represented by a block.

Figure 2. Reliability block diagram in series.

Dependability Engineering12

6. Petri nets

The concept of Petri nets was introduced by Carl Adam Petri in 1962 with the presentation
of his doctoral thesis “Kommunikation mit Automaten” (Communication with Automata) [15]
at the Faculty of Mathematics and Physics of Darmstadt University in Germany. Petri nets are
graphical and mathematical tools used for formal description of systems characterized by
properties of concurrency, parallelism, synchronization, distribution, asynchronism, and non-
determinism [15].

The applicability of Petri nets as a tool for systems study is important because it allows for
mathematical representation, analysis of models and also for providing useful information
about the structure and dynamic behavior of the modeled systems. The applications of Petri
nets can occur in many areas (systems of manufacture, development and testing of software,
administrative systems, among others) [16].

The Petri nets presents some characteristics that are: the dynamic representation of the model-
ing system with the desired level of detail; The graphical and formal description that allows to
obtain information on the behavior of the modeled system through its behavioral and struc-
tural properties; The representation of synchronism, asynchronism, competition, resource
sharing, among other behaviors; And the wide applicability and documentation.

Petri nets are formed by places (1), transitions (2), arcs (3) and marking (4). The places corre-
spond to state variables and the transitions, actions or events performed by the system. The
performance of an action is associated with some preconditions, that is, there is a relation

Figure 3. Reliability block diagram in parallel.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

13

between the places and the transitions that allows or not the accomplishment of a certain action.
After performing a certain action, some places will have their information changed, that is, the
action will create a post condition. The arcs represent the flow of the marking through the Petri
net, and the tokens represent the state in which the system is at a given moment. Graphically,
places are represented by ellipses or circles, transitions, by rectangles, arcs, by arrows and
marking, by means of dots (Figure 4) [16].

The two elements, place and transition, are interconnected by directed arcs as shown in
Figure 5. The arcs that interconnect places to the transitions (Place ! Transition) correspond
to the relationship between the true conditions (precondition), which enable the execution Of
the shares. The arcs that interconnect transitions to places (Transition ! Place) represent the
relationship between actions and conditions that become true with the execution of actions
(post condition) [16].

The formal mathematical representation of a model in Petri net (Petri net—PN) is the quintuple
PN = P, T, F, W, M0 [15], where:

6.1. Properties of Petri nets

The study of the properties of Petri nets allows the analysis of the modeling system. Property
types can be divided into two categories: the initial marking-dependent properties, named
behavioral properties, and the non-marking properties, named structural properties [15, 16].

6.1.1. Behavioral properties

The behavioral properties are those that depend only on the initial marking of the Petri net.
The properties covered are reachability, limitation, safeness, liveness and coverage.

Reachability indicates the possibility that a given marking can be reached by firing a finite
number of transitions from an initial marking. Given a Petri net marked RM = (R,M0), the
triggering of a transition t0 alters the marking of the Petri net. An M’ label is accessible from
M0 if there is a sequence of transitions which, triggered, lead to the M’ label. That is, if the
marking M0 enables the transition t0, by triggering this transition, the marking M1 is reached.
The marking M1 enables t1 which, upon being triggered, reaches the marking M2 and so on
until the marking M’ is obtained.

Figure 5. Example of Petri net.

Figure 4. Elements of Petri net.

Dependability Engineering14

Let M a place pi ∈ P, of a Petri net marked RM = (R, M0), this place is k-bounded (k ∈ IN) or
simply limited if for every accessible marking M ∈ CA (R, M0), M (pi) ≤ k.

The limited k is the maximum number of marking that a place can accumulate. A Petri net
labeled RM = (R, M0) is k-bounded if the number of marking at each RM site does not exceed k
at any accessible RM marking (max (M (p)) = k, ∀ p ∈ P).

Safeness is a particularization of limited property. The concept of limited defines that a pi place is
k-bounded if the number of marking that this place can accumulate is limited to the number k. A
place that is 1-limited can simply be called insurance.

Liveness is defined according to the triggering possibilities of the transitions. A Petri net is
considered live if, regardless of the marking that are reachable fromM0, it is always possible to
trigger any transition of the Petri net through a sequence of transitions L(M0). The absence of
deadlock in systems is strongly linked to the concept of vivacity, since deadlock in a Petri net is
the impossibility of triggering any transition of the Petri net. The fact that a system is deadlock
free does not mean that it is live, however a live system implies a deadlock free system.

The concept of coverage is associated with the concept of reachability and live. An Mi marking
is covered if there is a marking Mj 6¼ Mi, such that Mj ≥ Mi.

6.1.2. Structural properties

The structural properties are those that depend only on the structure of the Petri net. These
properties reflect independent marking characteristics. The properties analyzed in this work
are structural limitation and consistency.

A Petri net R = (P, T, F, W, M0) is classified as structurally limited if it is limited to any initial
marking.

The Petri net is considered to be consistent if, by triggering a sequence of enabled transitions
from an M0 marking, it returns to M0, however all transitions of the Petri net are fired at least
once.

Let RM = (R, M0) be a marked Petri net and a sequence s of transitions, RM is consistent if
M0 [s > M0] and every transition Ti, firing at least once in s.

6.2. Stochastic Petri net

Petri Net (SNP) [11] is one of the Petri net extensions (PN) [15] used for performance and
dependability modeling. A stochastic Petri net adds time to Petri net formalism, with the
difference that the times associated with the timed transitions are exponentially distributed,
while the time associated with the immediate transitions is zero. The timed transitions model
activities through the associated times, so that the timing transition period corresponds to the
activity execution period, and the timed transition trigger corresponds to the end of the activity.
Different levels of priority can be assigned to transitions. The trigger priority of the immediate
transitions is higher than the timed transitions. Priorities can solve situations of confusion [12]. The
firing probabilities associated with immediate transitions can resolve conflict situations [4, 5].

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

15

between the places and the transitions that allows or not the accomplishment of a certain action.
After performing a certain action, some places will have their information changed, that is, the
action will create a post condition. The arcs represent the flow of the marking through the Petri
net, and the tokens represent the state in which the system is at a given moment. Graphically,
places are represented by ellipses or circles, transitions, by rectangles, arcs, by arrows and
marking, by means of dots (Figure 4) [16].

The two elements, place and transition, are interconnected by directed arcs as shown in
Figure 5. The arcs that interconnect places to the transitions (Place ! Transition) correspond
to the relationship between the true conditions (precondition), which enable the execution Of
the shares. The arcs that interconnect transitions to places (Transition ! Place) represent the
relationship between actions and conditions that become true with the execution of actions
(post condition) [16].

The formal mathematical representation of a model in Petri net (Petri net—PN) is the quintuple
PN = P, T, F, W, M0 [15], where:

6.1. Properties of Petri nets

The study of the properties of Petri nets allows the analysis of the modeling system. Property
types can be divided into two categories: the initial marking-dependent properties, named
behavioral properties, and the non-marking properties, named structural properties [15, 16].

6.1.1. Behavioral properties

The behavioral properties are those that depend only on the initial marking of the Petri net.
The properties covered are reachability, limitation, safeness, liveness and coverage.

Reachability indicates the possibility that a given marking can be reached by firing a finite
number of transitions from an initial marking. Given a Petri net marked RM = (R,M0), the
triggering of a transition t0 alters the marking of the Petri net. An M’ label is accessible from
M0 if there is a sequence of transitions which, triggered, lead to the M’ label. That is, if the
marking M0 enables the transition t0, by triggering this transition, the marking M1 is reached.
The marking M1 enables t1 which, upon being triggered, reaches the marking M2 and so on
until the marking M’ is obtained.

Figure 5. Example of Petri net.

Figure 4. Elements of Petri net.

Dependability Engineering14

Let M a place pi ∈ P, of a Petri net marked RM = (R, M0), this place is k-bounded (k ∈ IN) or
simply limited if for every accessible marking M ∈ CA (R, M0), M (pi) ≤ k.

The limited k is the maximum number of marking that a place can accumulate. A Petri net
labeled RM = (R, M0) is k-bounded if the number of marking at each RM site does not exceed k
at any accessible RM marking (max (M (p)) = k, ∀ p ∈ P).

Safeness is a particularization of limited property. The concept of limited defines that a pi place is
k-bounded if the number of marking that this place can accumulate is limited to the number k. A
place that is 1-limited can simply be called insurance.

Liveness is defined according to the triggering possibilities of the transitions. A Petri net is
considered live if, regardless of the marking that are reachable fromM0, it is always possible to
trigger any transition of the Petri net through a sequence of transitions L(M0). The absence of
deadlock in systems is strongly linked to the concept of vivacity, since deadlock in a Petri net is
the impossibility of triggering any transition of the Petri net. The fact that a system is deadlock
free does not mean that it is live, however a live system implies a deadlock free system.

The concept of coverage is associated with the concept of reachability and live. An Mi marking
is covered if there is a marking Mj 6¼ Mi, such that Mj ≥ Mi.

6.1.2. Structural properties

The structural properties are those that depend only on the structure of the Petri net. These
properties reflect independent marking characteristics. The properties analyzed in this work
are structural limitation and consistency.

A Petri net R = (P, T, F, W, M0) is classified as structurally limited if it is limited to any initial
marking.

The Petri net is considered to be consistent if, by triggering a sequence of enabled transitions
from an M0 marking, it returns to M0, however all transitions of the Petri net are fired at least
once.

Let RM = (R, M0) be a marked Petri net and a sequence s of transitions, RM is consistent if
M0 [s > M0] and every transition Ti, firing at least once in s.

6.2. Stochastic Petri net

Petri Net (SNP) [11] is one of the Petri net extensions (PN) [15] used for performance and
dependability modeling. A stochastic Petri net adds time to Petri net formalism, with the
difference that the times associated with the timed transitions are exponentially distributed,
while the time associated with the immediate transitions is zero. The timed transitions model
activities through the associated times, so that the timing transition period corresponds to the
activity execution period, and the timed transition trigger corresponds to the end of the activity.
Different levels of priority can be assigned to transitions. The trigger priority of the immediate
transitions is higher than the timed transitions. Priorities can solve situations of confusion [12]. The
firing probabilities associated with immediate transitions can resolve conflict situations [4, 5].

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

15

Timed transitions can be characterized by different memory policies such as Resampling,
Enabling memory and Age memory [5]. The timed transitions can also be characterized by
different firing semantics named single server, multiple server and infinite server [5].

6.3. Phase approximation technique

SPN models consider only immediate transitions and timed transitions with exponentially
distributed trigger times. These transitions model actions, activities, and events. A variety of
activities can be modeled through the use of constructor throughput subnets and s-transitions.
These constructs are used to represent expolinomial distributions, such as the Erlang,
hypoexponential and hyperexponential distributions [9].

The phase approximation technique can be applied to model non-exponential actions, activi-
ties, and events through moment matching. The presented method calculates the first moment
around the origin (average) and the second central moment (variance) and estimates the
respective moments of the s-transition [9].

Performance and dependability data measured or obtained from a system (empirical distribu-
tion) with mean μ and standard deviation σ may have their approximate stochastic behavior
through the phase approximation technique. The inverse of the variation coefficient of the data
measured or obtained from a system Eq. (11) allows the selection of the expolinomial distribu-
tion that best adapts to the empirical distribution. This empirical distribution can be continu-
ous or discrete. Among the continuous distributions, there are: Normal, Lognormal, Weibull,
Gamma, Continuous Uniform, Pareto, Beta and Triangular and among the discrete distribu-
tions there are: Geometric, Poisson and Discrete Uniform [8].

1
CV

¼ μD

σD
(11)

The Petri net described in Figure 6 represents a timed activity with generic probability distribution.

Depending on the inverse of the variation coefficient of the measured data (Eq. (11)), the
respective activity has one of these distributions attributed: Erlang, Hypoexponential or
Hyperexponential. When the inverse of the variation coefficient is an integer and different
from one, the data must be characterized by the Erlang distribution. When the inverse of the
variation coefficient is a number greater than one (but not an integer), the data are represented
by the hypoexponential distribution. When the inverse of the variation coefficient is a number
smaller than one, the data must be characterized by a hyperexponential distribution.

Figure 6. Empirical distribution.

Dependability Engineering16

7. Modeling strategy

The dependability metrics can be calculated using state space-based models (e.g., SPN) and
combinatorial models (e.g., RBD). The RBDs have an advantage over the provision of results,
as present faster calculations through their formulas than the simulations and the numerical
analyzes of the SPNs. However, SPNs have a greater power of representation [3, 17].

State space-based models can describe dependencies that allow the representation of complex
redundancy mechanisms. However, these models can generate a very large or even infinite
number of states when they represent highly complex systems [3, 12, 17].

The combination of state space-based models and combinatorial models allows for the reduc-
tion of complexity in the representation of systems. RBDmodels can represent the components
of the cloud computing [6]. These RBD models are used to estimate the availability and
downtime of the cloud computing when there is little dependency relation between the
components of this environment and the redundancy mechanisms adopted. If there is a need
to represent a greater dependency between the components of the cloud computing and the
redundancy mechanisms used, SPN models are used to represent the computational cloud
systems [11].

Figure 7 shows a basic SPN model that allows a representation of the cloud computing. In this
SPN model, the ON and OFF places represent the working or faulted computational cloud.
The attributes of the transitions of this SPN model are presented in Table 1.

Figure 8 shows a basic RBD model that allows a representation of the cloud computing. The
parameters of the RBD model are presented in the Table 2.

Figure 7. Basic SPN model.

Transition Type Time Weight Concurrence

MTTF exp XMTTF – SS

MTTR exp XMTTR – SS

Table 1. Attributes of the SPN model transitions.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

17

Timed transitions can be characterized by different memory policies such as Resampling,
Enabling memory and Age memory [5]. The timed transitions can also be characterized by
different firing semantics named single server, multiple server and infinite server [5].

6.3. Phase approximation technique

SPN models consider only immediate transitions and timed transitions with exponentially
distributed trigger times. These transitions model actions, activities, and events. A variety of
activities can be modeled through the use of constructor throughput subnets and s-transitions.
These constructs are used to represent expolinomial distributions, such as the Erlang,
hypoexponential and hyperexponential distributions [9].

The phase approximation technique can be applied to model non-exponential actions, activi-
ties, and events through moment matching. The presented method calculates the first moment
around the origin (average) and the second central moment (variance) and estimates the
respective moments of the s-transition [9].

Performance and dependability data measured or obtained from a system (empirical distribu-
tion) with mean μ and standard deviation σ may have their approximate stochastic behavior
through the phase approximation technique. The inverse of the variation coefficient of the data
measured or obtained from a system Eq. (11) allows the selection of the expolinomial distribu-
tion that best adapts to the empirical distribution. This empirical distribution can be continu-
ous or discrete. Among the continuous distributions, there are: Normal, Lognormal, Weibull,
Gamma, Continuous Uniform, Pareto, Beta and Triangular and among the discrete distribu-
tions there are: Geometric, Poisson and Discrete Uniform [8].

1
CV

¼ μD

σD
(11)

The Petri net described in Figure 6 represents a timed activity with generic probability distribution.

Depending on the inverse of the variation coefficient of the measured data (Eq. (11)), the
respective activity has one of these distributions attributed: Erlang, Hypoexponential or
Hyperexponential. When the inverse of the variation coefficient is an integer and different
from one, the data must be characterized by the Erlang distribution. When the inverse of the
variation coefficient is a number greater than one (but not an integer), the data are represented
by the hypoexponential distribution. When the inverse of the variation coefficient is a number
smaller than one, the data must be characterized by a hyperexponential distribution.

Figure 6. Empirical distribution.

Dependability Engineering16

7. Modeling strategy

The dependability metrics can be calculated using state space-based models (e.g., SPN) and
combinatorial models (e.g., RBD). The RBDs have an advantage over the provision of results,
as present faster calculations through their formulas than the simulations and the numerical
analyzes of the SPNs. However, SPNs have a greater power of representation [3, 17].

State space-based models can describe dependencies that allow the representation of complex
redundancy mechanisms. However, these models can generate a very large or even infinite
number of states when they represent highly complex systems [3, 12, 17].

The combination of state space-based models and combinatorial models allows for the reduc-
tion of complexity in the representation of systems. RBDmodels can represent the components
of the cloud computing [6]. These RBD models are used to estimate the availability and
downtime of the cloud computing when there is little dependency relation between the
components of this environment and the redundancy mechanisms adopted. If there is a need
to represent a greater dependency between the components of the cloud computing and the
redundancy mechanisms used, SPN models are used to represent the computational cloud
systems [11].

Figure 7 shows a basic SPN model that allows a representation of the cloud computing. In this
SPN model, the ON and OFF places represent the working or faulted computational cloud.
The attributes of the transitions of this SPN model are presented in Table 1.

Figure 8 shows a basic RBD model that allows a representation of the cloud computing. The
parameters of the RBD model are presented in the Table 2.

Figure 7. Basic SPN model.

Transition Type Time Weight Concurrence

MTTF exp XMTTF – SS

MTTR exp XMTTR – SS

Table 1. Attributes of the SPN model transitions.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

17

7.1. Cloud computing model

Cloud computing consists of the Cloud Controller (Controller), Node Controller (Node) and
Network equipment (Network). Figure 9 shows the RBD model of the cloud computing. The
parameters of the RBD model of cloud computing are presented in Table 3. Figure 10 shows
the SPN model of the cloud computing. The attributes of the SPN Model Transitions of cloud
computing are presented in Table 4. In RBD and SPN models, the cloud controller and node
controller are configured on different physical machines. The node controller enables the
instantiation of virtual machines. The physical machines where the components of cloud
computing are configured are connected through a switch and a router. All components of
cloud computing must be operational for the cloud computing to be operational. These com-
ponents can be described as Controller, Node, and Network. In this way, the operating mode
of cloud computing is OM = (Controller ∧ Node ∧ Network).

Cloud computing consists of the Cloud Controller (Controller), Node Controller (Node) and
Network equipment (Network). The Cloud Controller (Controller) has a hot standby redundancy,
but the other components (Node and Network) can also be assigned this redundancy. The main
cloud controller (ControllerMain) and the redundant cloud controller (ControllerStandby) in hot
standby are operational [3, 4]. The operating mode of cloud computing with redundant cloud

Figure 8. Basic RBD model.

Parameters Description

MTTFBlock Mean Time to Failure

MTTRBlock Mean Time to Repair

Table 2. Parameters of the RBD model.

Figure 9. RBD model of the cloud computing.

Parameters Description

MTTFController, MTTFNode, MTTFNetwork Mean Time to Failure of the controller, node and network

MTTRController, MTTRNode, MTTRNetwork Mean Time to Repair of the controller, node and network

Table 3. Parameters of the RBD model of the cloud computing.

Dependability Engineering18

controller in hot standby is OM = ((ControllerMain ∨ ControllerStandby) Λ Node Λ Network)).
Figure 11 shows the RBD model adopted to estimate the availability of cloud computing with
redundant cloud controller in hot standby.

Cloud computing consists of the Cloud Controller (Controller), Node Controller (Node) and
Network equipment (Network). The Cloud Controller (Controller) has a cold standby redun-
dancy, but the other components (Node and Network) can also be assigned this redundancy.
The main cloud controller (ControllerMain) is operational and the redundant cloud controller
(ControllerStandby) is non-active. The redundant cloud controller is not operational waiting to

Figure 10. SPN model of the cloud computing.

Transition Type Time Weight Concurrence Enable function

ControllerMTTF, NodeMTTF,
NetworkMTTF

exp XMTTF – SS –

ControllerMTTR, NodeMTTR,
NetworMTTR

exp XMTTR – SS –

CloudMTTF imme – 1 – ((#ControllerON = 0)OR(#NodeON = 0)OR
(#NetworkON = 0))

CloudMTTR imme – 1 – NOT((#ControllerON = 0)OR(#NodeON = 0)
OR(#NetworkON = 0))

Table 4. Attributes of the SPN model transitions of the cloud computing.

Figure 11. RBD model of the cloud computing with redundant cloud controller in hot standby.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

19

7.1. Cloud computing model

Cloud computing consists of the Cloud Controller (Controller), Node Controller (Node) and
Network equipment (Network). Figure 9 shows the RBD model of the cloud computing. The
parameters of the RBD model of cloud computing are presented in Table 3. Figure 10 shows
the SPN model of the cloud computing. The attributes of the SPN Model Transitions of cloud
computing are presented in Table 4. In RBD and SPN models, the cloud controller and node
controller are configured on different physical machines. The node controller enables the
instantiation of virtual machines. The physical machines where the components of cloud
computing are configured are connected through a switch and a router. All components of
cloud computing must be operational for the cloud computing to be operational. These com-
ponents can be described as Controller, Node, and Network. In this way, the operating mode
of cloud computing is OM = (Controller ∧ Node ∧ Network).

Cloud computing consists of the Cloud Controller (Controller), Node Controller (Node) and
Network equipment (Network). The Cloud Controller (Controller) has a hot standby redundancy,
but the other components (Node and Network) can also be assigned this redundancy. The main
cloud controller (ControllerMain) and the redundant cloud controller (ControllerStandby) in hot
standby are operational [3, 4]. The operating mode of cloud computing with redundant cloud

Figure 8. Basic RBD model.

Parameters Description

MTTFBlock Mean Time to Failure

MTTRBlock Mean Time to Repair

Table 2. Parameters of the RBD model.

Figure 9. RBD model of the cloud computing.

Parameters Description

MTTFController, MTTFNode, MTTFNetwork Mean Time to Failure of the controller, node and network

MTTRController, MTTRNode, MTTRNetwork Mean Time to Repair of the controller, node and network

Table 3. Parameters of the RBD model of the cloud computing.

Dependability Engineering18

controller in hot standby is OM = ((ControllerMain ∨ ControllerStandby) Λ Node Λ Network)).
Figure 11 shows the RBD model adopted to estimate the availability of cloud computing with
redundant cloud controller in hot standby.

Cloud computing consists of the Cloud Controller (Controller), Node Controller (Node) and
Network equipment (Network). The Cloud Controller (Controller) has a cold standby redun-
dancy, but the other components (Node and Network) can also be assigned this redundancy.
The main cloud controller (ControllerMain) is operational and the redundant cloud controller
(ControllerStandby) is non-active. The redundant cloud controller is not operational waiting to

Figure 10. SPN model of the cloud computing.

Transition Type Time Weight Concurrence Enable function

ControllerMTTF, NodeMTTF,
NetworkMTTF

exp XMTTF – SS –

ControllerMTTR, NodeMTTR,
NetworMTTR

exp XMTTR – SS –

CloudMTTF imme – 1 – ((#ControllerON = 0)OR(#NodeON = 0)OR
(#NetworkON = 0))

CloudMTTR imme – 1 – NOT((#ControllerON = 0)OR(#NodeON = 0)
OR(#NetworkON = 0))

Table 4. Attributes of the SPN model transitions of the cloud computing.

Figure 11. RBD model of the cloud computing with redundant cloud controller in hot standby.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

19

be activated when the main cloud controller fails. Thus, when the main cloud controller, the
activation of the redundant cloud controller occurs in a certain period of time. This period is
named Mean Time to Active (MTA) [3, 4]. The operating mode of cloud computing with
redundant cloud controller in cold standby is OM = ((ControllerMain ∨ ControllerStandby) Λ
Node Λ Network)). Figure 12 shows the SPN model adopted to estimate the availability of
cloud computing with redundant cloud controller in cold standby.

Cloud computing consists of the Cloud Controller (Controller), Node Controller (Node) and
Network equipment (Network). The Cloud Controller (Controller) has a warm standby redun-
dancy, but the other components (Node and Network) can also be assigned this redundancy. The
main cloud controller (ControllerMain) is based on a non-active redundant cloud controller
(ControllerStandby) that waits to be activated when the main cloud controller fails. The differ-
ence with respect to cold standby redundancy is that the main cloud controller and the redun-
dant cloud controller have an λ failure rate when they are in operation, but the redundant
cloud controller has a failure rate φ when it is de-energized, considering that 0 ≤λ ≤φ [3, 4].
The redundant cloud controller (ControllerStandby) starts in idle mode. When the main
cloud controller (ControllerMain) fails, the timed SpareActive transition triggers. This fire
represents the start of the redundant cloud controller operation. The time associated with the
SpareActive timed transition represents the Mean Time to Active (MTA). The SpareNActive
immediate transition represents the return of the main module to the operational mode. The
operating mode of cloud computing with redundant cloud controller in warm standby is
OM = ((ControllerMain ∨ ControllerStandby) Λ Node Λ Network)). Figure 13 shows the SPN
model adopted to estimate the availability of cloud computing with redundant cloud controller
in warm standby.

Figure 12. SPN model of the cloud computing with redundant cloud controller in cold standby.

Dependability Engineering20

8. Conclusions

This chapter presents concepts on dependability, redundancy mechanisms, stochastic Petri
nets and reliability block diagram. In addition, this chapter also shows how the mathematical
formalisms stochastic Petri nets and reliability block diagrams can be adopted for modeling
cloud infrastructures with cold standby, warm standby and hot standby redundancy mecha-
nisms. Reliability block diagrams is adopted to model cloud infrastructures with the redun-
dancy mechanism cold standby and stochastic Petri nets is used to model cloud infrastructures
with the redundancy mechanisms warm standby and hot standby.

Author details

Erica Teixeira Gomes de Sousa* and Fernando Antonio Aires Lins

*Address all correspondence to: erica.sousa@ufrpe.br

Department of Statistics and Informatics, Federal Rural University of Pernambuco, Brazil

References

[1] Bauer E, Adams R. Reliability and Availability of Cloud Computing. Wiley Online
Library; 2012

[2] Laprie JCC, Avizienis A, Kopetz H. Dependability: Basic Concepts and Terminology.
Secaucus, NJ, USA: Springer-Verlag New York, Inc; 1992

Figure 13. SPN model of the cloud computing with redundant cloud controller in warm standby.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

21

be activated when the main cloud controller fails. Thus, when the main cloud controller, the
activation of the redundant cloud controller occurs in a certain period of time. This period is
named Mean Time to Active (MTA) [3, 4]. The operating mode of cloud computing with
redundant cloud controller in cold standby is OM = ((ControllerMain ∨ ControllerStandby) Λ
Node Λ Network)). Figure 12 shows the SPN model adopted to estimate the availability of
cloud computing with redundant cloud controller in cold standby.

Cloud computing consists of the Cloud Controller (Controller), Node Controller (Node) and
Network equipment (Network). The Cloud Controller (Controller) has a warm standby redun-
dancy, but the other components (Node and Network) can also be assigned this redundancy. The
main cloud controller (ControllerMain) is based on a non-active redundant cloud controller
(ControllerStandby) that waits to be activated when the main cloud controller fails. The differ-
ence with respect to cold standby redundancy is that the main cloud controller and the redun-
dant cloud controller have an λ failure rate when they are in operation, but the redundant
cloud controller has a failure rate φ when it is de-energized, considering that 0 ≤λ ≤φ [3, 4].
The redundant cloud controller (ControllerStandby) starts in idle mode. When the main
cloud controller (ControllerMain) fails, the timed SpareActive transition triggers. This fire
represents the start of the redundant cloud controller operation. The time associated with the
SpareActive timed transition represents the Mean Time to Active (MTA). The SpareNActive
immediate transition represents the return of the main module to the operational mode. The
operating mode of cloud computing with redundant cloud controller in warm standby is
OM = ((ControllerMain ∨ ControllerStandby) Λ Node Λ Network)). Figure 13 shows the SPN
model adopted to estimate the availability of cloud computing with redundant cloud controller
in warm standby.

Figure 12. SPN model of the cloud computing with redundant cloud controller in cold standby.

Dependability Engineering20

8. Conclusions

This chapter presents concepts on dependability, redundancy mechanisms, stochastic Petri
nets and reliability block diagram. In addition, this chapter also shows how the mathematical
formalisms stochastic Petri nets and reliability block diagrams can be adopted for modeling
cloud infrastructures with cold standby, warm standby and hot standby redundancy mecha-
nisms. Reliability block diagrams is adopted to model cloud infrastructures with the redun-
dancy mechanism cold standby and stochastic Petri nets is used to model cloud infrastructures
with the redundancy mechanisms warm standby and hot standby.

Author details

Erica Teixeira Gomes de Sousa* and Fernando Antonio Aires Lins

*Address all correspondence to: erica.sousa@ufrpe.br

Department of Statistics and Informatics, Federal Rural University of Pernambuco, Brazil

References

[1] Bauer E, Adams R. Reliability and Availability of Cloud Computing. Wiley Online
Library; 2012

[2] Laprie JCC, Avizienis A, Kopetz H. Dependability: Basic Concepts and Terminology.
Secaucus, NJ, USA: Springer-Verlag New York, Inc; 1992

Figure 13. SPN model of the cloud computing with redundant cloud controller in warm standby.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

21

[3] Kuo W, Zuo MJ. Optimal Reliability Modeling: Principles and Applications. Wiley; 2002

[4] Rupe JW. Reliability of computer systems and networks fault tolerance, analysis, and
design. IIE Transactions. 2003;35(6):586-587

[5] Maciel P, Trivedi K, Matias R, Kim D. Performance and Dependability in Service Com-
puting: Concepts, Techniques and Research Directions. IGI Global; 2011

[6] Xie M, Dai YS, Poh KL. Computing System Reliability: Models and Analysis. US: Springer;
2004

[7] Ebeling CE. An Introduction to Reliability and Maintainability Engineering. Waveland Pr
Inc; 2009

[8] Schmidt K. High Availability and Disaster Recovery: Concepts, Design, Implementation.
Vol. 22. Berlin Heidelberg: Springer-Verlag; 2006

[9] Sahner RA, Trivedi K, Puliafito A. Performance and Reliability Analysis of Computer
Systems: An Example-Based Approach Using the SHARPE Software Package. New York,
US: Springer; 1996

[10] Trivedi KS. Probability & Statistics with Reliability, Queuing and Computer Science Appli-
cations. 2nd ed. Wiley; 2001

[11] German R. Performance Analysis of Communication Systems with Non-Markovian Sto-
chastic Petri Nets. New York, NY, USA: John Wiley & Sons, Inc; 2000

[12] Marsan MA, Balbo G, Conte G, Donatelli S, Franceschinis G. Modelling with Generalized
Stochastic Petri Nets, ACM SIGMETRICS Performance Evaluation Review. Vol. 26. New
York, NY, USA; 1998

[13] Trivedi KS, Hunter S, Garg S, Fricks R. Reliability analysis techniques explored through a
communication network example. Citeseer, International Workshop on Computer-Aided
Design, Test, and Evaluation for Dependability; 1996

[14] Smith DJ. Reliability, Maintainability and Risk: Practical Methods for Engineers. Butterworth-
Heinemann; 2011

[15] Murata T. Petri nets: Properties, analysis and applications. IEEE, Proceedings of the IEEE.
1989;77(4):541-580

[16] Maciel PRM, Lins RD, Cunha PRF. Introduction of the Petri Net and Applied. Campinas,
SP: X Escola de Computação; 1996

[17] Balbo G. Introduction to Stochastic Petri Nets. Lectures on Formal Methods and Perfor-
mance Analysis: First EEF/Euro Summer School on Trends in Computer Science. Berg en
Dal, The Netherlands, July 3–7, 2000: Revised Lectures: Springer; 2000

Dependability Engineering22

Chapter 3

Continuous Anything for Distributed Research Projects

Simon Volpert, Frank Griesinger and
Jörg Domaschka

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72045

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72045

Continuous Anything for Distributed Research Projects

Simon Volpert, Frank Griesinger and Jörg Domaschka

Additional information is available at the end of the chapter

Abstract

International research projects involve large, distributed teams made up from multiple
institutions. These teams create research artefacts that need to work together in order
to demonstrate and ship the project results. Yet, in these settings the project itself is
almost never in the core interest of the partners in the consortium. This leads to a weak
integration incentive and consequently to last minute efforts. This in turn results in Big
Bang integration that imposes huge stress on the consortium and produces only non-
sustainable results. In contrast, industry has been profiting from the introduction of agile
development methods backed by Continuous Delivery, Continuous Integration, and
Continuous Deployment. In this chapter, we identify shortcomings of this approach for
research projects. We show how to overcome those in order to adopt all three methodolo-
gies regarding that scope. We also present a conceptual, as well as a tooling framework
to realise the approach as Continuous Anything. As a result, integration becomes a core
element of the project plan. It distributes and shares responsibility of integration work
among all partners, while at the same time clearly holding individuals responsible for
dedicated software components. Through a high degree of automation, it keeps the over-
all integration work low, but still provides immediate feedback on the quality of the soft-
ware. Overall, we found this concept useful and beneficial in several EU-funded research
projects, where it significantly lowered integration effort and improved quality of the
software components while also enhancing collaboration as a whole.

Keywords: Continuous Delivery, Continuous Integration, Continuous Deployment,
project management, software quality, DevOps, distributed software development

1. Introduction

The rise of agile software engineering strategies has leveraged the realisation of Continuous
Integration proposed by Grady Booch as early as 1991 [18]. Continuous Integration propagates
a constant integration of changes to code as opposed to Big Bang integration done at the end

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[3] Kuo W, Zuo MJ. Optimal Reliability Modeling: Principles and Applications. Wiley; 2002

[4] Rupe JW. Reliability of computer systems and networks fault tolerance, analysis, and
design. IIE Transactions. 2003;35(6):586-587

[5] Maciel P, Trivedi K, Matias R, Kim D. Performance and Dependability in Service Com-
puting: Concepts, Techniques and Research Directions. IGI Global; 2011

[6] Xie M, Dai YS, Poh KL. Computing System Reliability: Models and Analysis. US: Springer;
2004

[7] Ebeling CE. An Introduction to Reliability and Maintainability Engineering. Waveland Pr
Inc; 2009

[8] Schmidt K. High Availability and Disaster Recovery: Concepts, Design, Implementation.
Vol. 22. Berlin Heidelberg: Springer-Verlag; 2006

[9] Sahner RA, Trivedi K, Puliafito A. Performance and Reliability Analysis of Computer
Systems: An Example-Based Approach Using the SHARPE Software Package. New York,
US: Springer; 1996

[10] Trivedi KS. Probability & Statistics with Reliability, Queuing and Computer Science Appli-
cations. 2nd ed. Wiley; 2001

[11] German R. Performance Analysis of Communication Systems with Non-Markovian Sto-
chastic Petri Nets. New York, NY, USA: John Wiley & Sons, Inc; 2000

[12] Marsan MA, Balbo G, Conte G, Donatelli S, Franceschinis G. Modelling with Generalized
Stochastic Petri Nets, ACM SIGMETRICS Performance Evaluation Review. Vol. 26. New
York, NY, USA; 1998

[13] Trivedi KS, Hunter S, Garg S, Fricks R. Reliability analysis techniques explored through a
communication network example. Citeseer, International Workshop on Computer-Aided
Design, Test, and Evaluation for Dependability; 1996

[14] Smith DJ. Reliability, Maintainability and Risk: Practical Methods for Engineers. Butterworth-
Heinemann; 2011

[15] Murata T. Petri nets: Properties, analysis and applications. IEEE, Proceedings of the IEEE.
1989;77(4):541-580

[16] Maciel PRM, Lins RD, Cunha PRF. Introduction of the Petri Net and Applied. Campinas,
SP: X Escola de Computação; 1996

[17] Balbo G. Introduction to Stochastic Petri Nets. Lectures on Formal Methods and Perfor-
mance Analysis: First EEF/Euro Summer School on Trends in Computer Science. Berg en
Dal, The Netherlands, July 3–7, 2000: Revised Lectures: Springer; 2000

Dependability Engineering22

Chapter 3

Continuous Anything for Distributed Research Projects

Simon Volpert, Frank Griesinger and
Jörg Domaschka

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72045

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72045

Continuous Anything for Distributed Research Projects

Simon Volpert, Frank Griesinger and Jörg Domaschka

Additional information is available at the end of the chapter

Abstract

International research projects involve large, distributed teams made up from multiple
institutions. These teams create research artefacts that need to work together in order
to demonstrate and ship the project results. Yet, in these settings the project itself is
almost never in the core interest of the partners in the consortium. This leads to a weak
integration incentive and consequently to last minute efforts. This in turn results in Big
Bang integration that imposes huge stress on the consortium and produces only non-
sustainable results. In contrast, industry has been profiting from the introduction of agile
development methods backed by Continuous Delivery, Continuous Integration, and
Continuous Deployment. In this chapter, we identify shortcomings of this approach for
research projects. We show how to overcome those in order to adopt all three methodolo-
gies regarding that scope. We also present a conceptual, as well as a tooling framework
to realise the approach as Continuous Anything. As a result, integration becomes a core
element of the project plan. It distributes and shares responsibility of integration work
among all partners, while at the same time clearly holding individuals responsible for
dedicated software components. Through a high degree of automation, it keeps the over-
all integration work low, but still provides immediate feedback on the quality of the soft-
ware. Overall, we found this concept useful and beneficial in several EU-funded research
projects, where it significantly lowered integration effort and improved quality of the
software components while also enhancing collaboration as a whole.

Keywords: Continuous Delivery, Continuous Integration, Continuous Deployment,
project management, software quality, DevOps, distributed software development

1. Introduction

The rise of agile software engineering strategies has leveraged the realisation of Continuous
Integration proposed by Grady Booch as early as 1991 [18]. Continuous Integration propagates
a constant integration of changes to code as opposed to Big Bang integration done at the end

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

of a development cycle. It has, in turn, paved the path to Continuous Delivery and Continuous
Deployment of software components and entire software platforms. The core idea of Continuous
Delivery is to be able to roll out new releases at any time and not only at the end of larger devel-
opment cycles. In order to reach this goal, Continuous Delivery demands the automation of all
steps required to compile, bundle, test, and release the software. Testing ranges from unit tests
targeting a single software component, over integration tests, acceptance test to user acceptance
tests. While this approach is emergently successful in industry, it is barely used for scientific
software, neither is it used in collaborative research environments.

In contrast to industrial projects and even open source software projects, distributed research
projects (for instance, large(r) EU-funded ICT projects), the project itself is almost never in
the core interest of the partners forming the project consortium. Instead, every partner is
interested in the niche aspect that made him join the project and that makes the consortium
look complete and gives the consortium a complementary appearance. In reality, though, the
agendas of the project partners are often driven by their individual interests and particularly
academic partners do have an obvious interest in the actual research aspect of the work and
are less focussed on the provisioning of dependable, sustainable software artefacts. Neither
are they preliminary interested in the common, integrated, stable software platform. In prac-
tise, this may mean that Partner A wants to improve on an algorithm they have, while Partner
B would define a domain specific language (DSL) for a specific scope and Partner C will pro-
vide an improved kernel module for handling I/O on solid state disks. From a research point
of view, this means that the main work for Partner A will be on the definition of the algorithm,
its implementation, and evaluation in some limited, publishable scope. For Partner B, the
main work will be on the definition of the DSL and on applying and realising it in two or three
use case scenarios. Partner C’s work will be on the definition of the new approach and on the
realisation and evaluation of the kernel module, probably for one specific version of Linux.

While the behaviour of all three partners is fully legitimate and understandable, it is the nature
of a distributed research project that interdependencies between parts of the software exist.
Usually software integration is required at certain project milestones where prototypes should
be released and new, emergent features be demonstrated to the public or at least the funders.
Here, the lack of common interest in the project in combination with the described “research
style” code quality makes the integration a painful, cumbersome, and frustrating task. Our
experience shows that in many projects the task of integrating software from different partners
is outsourced in an own project work package and then assigned to one or at most two partners
that were not or only marginally involved in improving the algorithm from Partner A, devel-
oping the DSL from Partner B, and realising the kernel module of Partner C. Furthermore, in
many projects the whole integration of all software components is done in a Big Bang style
before a review or before an obligatory software release and even worse often performed by a
single individual. This poor devil ends up integrating and fixing several dozen software com-
ponents (s)he has not developed, is not owning, and has never been responsible for.

We argue that instead of putting all integration responsibility and work on the shoulders of a sin-
gle individual, it is way better to spread out work among project partners and make it everybody’s
task. We further believe that the techniques and strategies offered by Continuous Integration,
Continuous Delivery, and Continuous Deployment are beneficial for enforcing the distribution

Dependability Engineering24

of the task, automating the necessary steps, monitoring the status of, and gaining confidence in
the produced software. The main contribution of this chapter is a concise technical and organisa-
tional framework for Continuous Integration, Continuous Delivery, and Continuous Deployment
in distributed (research) projects. The framework is based on our experience in half a dozen mid-
sized EC projects of 5–25 partners and several smaller sized national-funded research projects. It
fairly distributes work among partners and improves overall code quality.

The rest of this chapter is structured as follows. Section 2 identifies the requirements in more
detail and presents related work. Sections 3–5 introduce background on Continuous Integration,
Continuous Delivery, and Continuous Deployment, respectively. Section 6 presents our frame-
work on both conceptual and tooling level while Section 7 discusses the approach. Section 8
concludes and gives an outlook on future work.

2. Problem statement and related work

International ICT research projects involve large, distributed teams (consortia) made up from
multiple companies or institutions, so called partners or beneficiaries. These teams create
research software artefacts that need to work together in order to demonstrate and ship the
project results. In the following, we analyse the challenges of such constellations, and why
this requires a special integration strategy. Finally, we carve out the requirements towards
such an integration strategy and discuss related work.

2.1. Challenges with distributed research teams

Development in distributed, that is, non co-located, teams is challenging, as the distribution
aspect hinders communication. For instance, meetings and synchronisation actions barely can
happen in a timely or even ad hoc manner, causing delays. From a technical point of view this
may lead to diverging developments at different locations. From an organisational point of view,
it causes overhead.

Koetter et al. [10] identify major problems in distributed teams and particularly with respect to
research projects. At the core of their analysis, they identify the team distribution and lacking
stakeholder commitment as major problems. The former complicates team communication lead-
ing to a lack of internal communication. The latter, a consequence of diverging goals and different
(research) interests, leads to a lack of incentives for prototype integration.1 The impact of these
causes is further increased by different cultural and technical background, etiquette, company
policies, and high personal fluctuation in research projects.

In order to cope with the diversity and resulting centrifugal forces, it is common that proj-
ect management applies rules: these range from a common toolset and document template to
regular virtual and physical meetings; both intended to improve communication. Additionally,

1Please note that “integration” as in “Continuous Integration” has a different meaning than “prototype integration”. As
defined later, the first tackles integration on code level, while the later addresses the integration of distributed software
architecture. In order to avoid misunderstandings, we will always use the full terms.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

25

of a development cycle. It has, in turn, paved the path to Continuous Delivery and Continuous
Deployment of software components and entire software platforms. The core idea of Continuous
Delivery is to be able to roll out new releases at any time and not only at the end of larger devel-
opment cycles. In order to reach this goal, Continuous Delivery demands the automation of all
steps required to compile, bundle, test, and release the software. Testing ranges from unit tests
targeting a single software component, over integration tests, acceptance test to user acceptance
tests. While this approach is emergently successful in industry, it is barely used for scientific
software, neither is it used in collaborative research environments.

In contrast to industrial projects and even open source software projects, distributed research
projects (for instance, large(r) EU-funded ICT projects), the project itself is almost never in
the core interest of the partners forming the project consortium. Instead, every partner is
interested in the niche aspect that made him join the project and that makes the consortium
look complete and gives the consortium a complementary appearance. In reality, though, the
agendas of the project partners are often driven by their individual interests and particularly
academic partners do have an obvious interest in the actual research aspect of the work and
are less focussed on the provisioning of dependable, sustainable software artefacts. Neither
are they preliminary interested in the common, integrated, stable software platform. In prac-
tise, this may mean that Partner A wants to improve on an algorithm they have, while Partner
B would define a domain specific language (DSL) for a specific scope and Partner C will pro-
vide an improved kernel module for handling I/O on solid state disks. From a research point
of view, this means that the main work for Partner A will be on the definition of the algorithm,
its implementation, and evaluation in some limited, publishable scope. For Partner B, the
main work will be on the definition of the DSL and on applying and realising it in two or three
use case scenarios. Partner C’s work will be on the definition of the new approach and on the
realisation and evaluation of the kernel module, probably for one specific version of Linux.

While the behaviour of all three partners is fully legitimate and understandable, it is the nature
of a distributed research project that interdependencies between parts of the software exist.
Usually software integration is required at certain project milestones where prototypes should
be released and new, emergent features be demonstrated to the public or at least the funders.
Here, the lack of common interest in the project in combination with the described “research
style” code quality makes the integration a painful, cumbersome, and frustrating task. Our
experience shows that in many projects the task of integrating software from different partners
is outsourced in an own project work package and then assigned to one or at most two partners
that were not or only marginally involved in improving the algorithm from Partner A, devel-
oping the DSL from Partner B, and realising the kernel module of Partner C. Furthermore, in
many projects the whole integration of all software components is done in a Big Bang style
before a review or before an obligatory software release and even worse often performed by a
single individual. This poor devil ends up integrating and fixing several dozen software com-
ponents (s)he has not developed, is not owning, and has never been responsible for.

We argue that instead of putting all integration responsibility and work on the shoulders of a sin-
gle individual, it is way better to spread out work among project partners and make it everybody’s
task. We further believe that the techniques and strategies offered by Continuous Integration,
Continuous Delivery, and Continuous Deployment are beneficial for enforcing the distribution

Dependability Engineering24

of the task, automating the necessary steps, monitoring the status of, and gaining confidence in
the produced software. The main contribution of this chapter is a concise technical and organisa-
tional framework for Continuous Integration, Continuous Delivery, and Continuous Deployment
in distributed (research) projects. The framework is based on our experience in half a dozen mid-
sized EC projects of 5–25 partners and several smaller sized national-funded research projects. It
fairly distributes work among partners and improves overall code quality.

The rest of this chapter is structured as follows. Section 2 identifies the requirements in more
detail and presents related work. Sections 3–5 introduce background on Continuous Integration,
Continuous Delivery, and Continuous Deployment, respectively. Section 6 presents our frame-
work on both conceptual and tooling level while Section 7 discusses the approach. Section 8
concludes and gives an outlook on future work.

2. Problem statement and related work

International ICT research projects involve large, distributed teams (consortia) made up from
multiple companies or institutions, so called partners or beneficiaries. These teams create
research software artefacts that need to work together in order to demonstrate and ship the
project results. In the following, we analyse the challenges of such constellations, and why
this requires a special integration strategy. Finally, we carve out the requirements towards
such an integration strategy and discuss related work.

2.1. Challenges with distributed research teams

Development in distributed, that is, non co-located, teams is challenging, as the distribution
aspect hinders communication. For instance, meetings and synchronisation actions barely can
happen in a timely or even ad hoc manner, causing delays. From a technical point of view this
may lead to diverging developments at different locations. From an organisational point of view,
it causes overhead.

Koetter et al. [10] identify major problems in distributed teams and particularly with respect to
research projects. At the core of their analysis, they identify the team distribution and lacking
stakeholder commitment as major problems. The former complicates team communication lead-
ing to a lack of internal communication. The latter, a consequence of diverging goals and different
(research) interests, leads to a lack of incentives for prototype integration.1 The impact of these
causes is further increased by different cultural and technical background, etiquette, company
policies, and high personal fluctuation in research projects.

In order to cope with the diversity and resulting centrifugal forces, it is common that proj-
ect management applies rules: these range from a common toolset and document template to
regular virtual and physical meetings; both intended to improve communication. Additionally,

1Please note that “integration” as in “Continuous Integration” has a different meaning than “prototype integration”. As
defined later, the first tackles integration on code level, while the later addresses the integration of distributed software
architecture. In order to avoid misunderstandings, we will always use the full terms.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

25

most projects announce a central technical responsible whose role is to break ties in technical
discussions. Finally, technical work is often separated such that local teams at partner sites
work independently on certain sub topics producing isolated assets.

From our experience, these measures usually work fine and minimise the tension in the con-
sortium. The lack of common goals usually gets masked by introducing a storyline every part-
ner can agree on. Yet, we claim that the only aspect that cannot be handled by these measures is
the work to be done for prototype integration, because it requires that components developed
in isolation, work together smoothly despite the weak communication, and common goals.
The often-practised Big Bang integration of artefacts causes a lot of work, troubles the consor-
tium, and results in poor software quality.

2.2. The cause for Continuous Anything

Understanding and accepting that Big Bang integration causes pain and sub-optimal results,
leads to the insight that a different prototype integration strategy is needed. Ironically, soft-
ware development industry was facing similar issues decades ago [16] which led to abandon-
ing of the waterfall model and the introduction of so called agile development methodologies.
These were stated in the agile manifesto [17] and are being realised by methodologies such as
extreme programming, Scrum, or Kanban.

All of these methodologies assume co-located teams with large common interests and a
high intrinsic motivation to deliver high quality, usable software. In consequence, they can-
not be applied directly to research projects that do not fulfil the necessary preconditions.
Nonetheless, at the core of their prototype integration2 methodology, agile methodologies
rely on a highly automated, frequently executed, and constant process to reduce the possibil-
ity for human errors and to obtain continuously executable software artefacts.

While such an approach requires an upfront and constant invest in prototype integration, the
overall amount of effort needed per partner and particularly per consortium is likely to be a lot
less compared to Big Bang integration. This is due to the fact that changes are small and can be
easily reviewed. Moreover, the use of automation allows dealing with the complexity of even
larger and more diverse teams.

2.3. Constraints and requirements

We claim that automation can reduce the pain for prototype integration in (large) research
projects. Yet, as with improving communication within the consortium, introducing an auto-
mated process, this improvement will not happen for free. Work from the project manage-
ment is needed to establish and enforce such a process, which may cause resistance.

Therefore, our major aim is to minimise the upfront investment of project partners and the man-
agement effort needed to enforce the strategy. The overall goal is to develop an automated pro-
totype integration schema that takes into account the specific needs of research consortia. This is
broken down into particular requirements and challenges presented in the following sections.

2For industry it should rather be “product integration”.

Dependability Engineering26

2.3.1. General requirements

This section covers requirements towards automating prototype integration. We present them
from the perspective of a research project, but they can be applied in different settings.

R.1 (distribute work among partners): As partners do not have common interest and no
incentives for prototype integration, it is necessary to not burden one team or even one indi-
vidual with this task, but to achieve a fair distribution of work among partners.

R.2 (reduce manual burden): Integration work distracts researchers from their work and so
does testing. Due to that, as much as possible of the prototype integration work and testing
should be automated. This includes reporting if code is currently working or not.

R.3 (denote responsible persons): With high automation degree and the capability to identify
non-working portions of the code, denoting responsible persons for individual software com-
ponents, libraries, and features, allows explicitly tasking those for fixing the non-working parts
of the architecture.

R.4 (make the product easy to start and use): Having a project outcome that is easy to install,
to start, and to demonstrate, tremendously reduces the burden when planning for a review, a
demo, or a webinar.

R.5 (clarify big picture and software dependencies): In large software projects, it is often the
case that the big picture is forgotten. In particular, in research projects, researchers lose them-
selves in details of research questions. Hence, it is important to keep an eye on the overall
architecture and ensure that the interactions between components work as intended.

R.6 (make the software status visible): Making the product (including its sub-products) vis-
ible helps consortium members to understand what the others are doing. It also helps use case
partners giving feedback on the project and the work currently done.

2.3.2. Specific challenges of research projects

Besides the generic requirements that can be found in many distributed teams, the fact that
distributed research projects are often executed by loosely coupled beneficiaries creates fur-
ther technical challenges.

R.A (cater for closed code or even unavailable source code and binaries): Due to different
commercial interests of partners, it may be the case that some of them release source code
only in a restricted manner or not at all. In some cases, partners do not even release binaries
to the rest of the consortium. The overall prototype integration strategy has to be able to deal
with this.

R.B (support fluctuation of team members): Research projects have a very high fluctuation
of team members. As the budget is fixed, it happens that more people come into the project
towards the end, if budget is still available. On the other hand, if the project is short on budget,
expensive, that is, senior researchers are moved away and juniors or even undergrads join.
This forbids that there are hidden, that is, implicit, agreements between individuals.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

27

most projects announce a central technical responsible whose role is to break ties in technical
discussions. Finally, technical work is often separated such that local teams at partner sites
work independently on certain sub topics producing isolated assets.

From our experience, these measures usually work fine and minimise the tension in the con-
sortium. The lack of common goals usually gets masked by introducing a storyline every part-
ner can agree on. Yet, we claim that the only aspect that cannot be handled by these measures is
the work to be done for prototype integration, because it requires that components developed
in isolation, work together smoothly despite the weak communication, and common goals.
The often-practised Big Bang integration of artefacts causes a lot of work, troubles the consor-
tium, and results in poor software quality.

2.2. The cause for Continuous Anything

Understanding and accepting that Big Bang integration causes pain and sub-optimal results,
leads to the insight that a different prototype integration strategy is needed. Ironically, soft-
ware development industry was facing similar issues decades ago [16] which led to abandon-
ing of the waterfall model and the introduction of so called agile development methodologies.
These were stated in the agile manifesto [17] and are being realised by methodologies such as
extreme programming, Scrum, or Kanban.

All of these methodologies assume co-located teams with large common interests and a
high intrinsic motivation to deliver high quality, usable software. In consequence, they can-
not be applied directly to research projects that do not fulfil the necessary preconditions.
Nonetheless, at the core of their prototype integration2 methodology, agile methodologies
rely on a highly automated, frequently executed, and constant process to reduce the possibil-
ity for human errors and to obtain continuously executable software artefacts.

While such an approach requires an upfront and constant invest in prototype integration, the
overall amount of effort needed per partner and particularly per consortium is likely to be a lot
less compared to Big Bang integration. This is due to the fact that changes are small and can be
easily reviewed. Moreover, the use of automation allows dealing with the complexity of even
larger and more diverse teams.

2.3. Constraints and requirements

We claim that automation can reduce the pain for prototype integration in (large) research
projects. Yet, as with improving communication within the consortium, introducing an auto-
mated process, this improvement will not happen for free. Work from the project manage-
ment is needed to establish and enforce such a process, which may cause resistance.

Therefore, our major aim is to minimise the upfront investment of project partners and the man-
agement effort needed to enforce the strategy. The overall goal is to develop an automated pro-
totype integration schema that takes into account the specific needs of research consortia. This is
broken down into particular requirements and challenges presented in the following sections.

2For industry it should rather be “product integration”.

Dependability Engineering26

2.3.1. General requirements

This section covers requirements towards automating prototype integration. We present them
from the perspective of a research project, but they can be applied in different settings.

R.1 (distribute work among partners): As partners do not have common interest and no
incentives for prototype integration, it is necessary to not burden one team or even one indi-
vidual with this task, but to achieve a fair distribution of work among partners.

R.2 (reduce manual burden): Integration work distracts researchers from their work and so
does testing. Due to that, as much as possible of the prototype integration work and testing
should be automated. This includes reporting if code is currently working or not.

R.3 (denote responsible persons): With high automation degree and the capability to identify
non-working portions of the code, denoting responsible persons for individual software com-
ponents, libraries, and features, allows explicitly tasking those for fixing the non-working parts
of the architecture.

R.4 (make the product easy to start and use): Having a project outcome that is easy to install,
to start, and to demonstrate, tremendously reduces the burden when planning for a review, a
demo, or a webinar.

R.5 (clarify big picture and software dependencies): In large software projects, it is often the
case that the big picture is forgotten. In particular, in research projects, researchers lose them-
selves in details of research questions. Hence, it is important to keep an eye on the overall
architecture and ensure that the interactions between components work as intended.

R.6 (make the software status visible): Making the product (including its sub-products) vis-
ible helps consortium members to understand what the others are doing. It also helps use case
partners giving feedback on the project and the work currently done.

2.3.2. Specific challenges of research projects

Besides the generic requirements that can be found in many distributed teams, the fact that
distributed research projects are often executed by loosely coupled beneficiaries creates fur-
ther technical challenges.

R.A (cater for closed code or even unavailable source code and binaries): Due to different
commercial interests of partners, it may be the case that some of them release source code
only in a restricted manner or not at all. In some cases, partners do not even release binaries
to the rest of the consortium. The overall prototype integration strategy has to be able to deal
with this.

R.B (support fluctuation of team members): Research projects have a very high fluctuation
of team members. As the budget is fixed, it happens that more people come into the project
towards the end, if budget is still available. On the other hand, if the project is short on budget,
expensive, that is, senior researchers are moved away and juniors or even undergrads join.
This forbids that there are hidden, that is, implicit, agreements between individuals.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

27

R.C (keep track of targeted outcomes): The fluctuation of team members and the dynamic of
IT research lead to often changing technical goals of the research project. As a consequence,
the current goals need to be documented and be accessible by all project members in order to
keep a common focus. Ideally, they are immediately visible to all contributors.

R.D (support different configurations): Often research projects do not build generic solutions,
but only demonstrators for specific use cases. The prototype integration strategy has to be able
to deal with this and provide the capability to set-up different environments.

R.E (allow different programming languages and development methodologies): Research
projects barely start from scratch, as many partners continue earlier work. Further, the knowl-
edge and suitability of languages is very specific to problem domains. Therefore, a prototype
integration strategy has to be open to different programming languages.

2.4. Approach

In industrial contexts solving integration and communication issues is realised by introduc-
ing three kinds of orthogonal, but complementary approaches: Continuous Integration handles
the integration on code level per component. It builds and tests the component whenever a
new version of the code is available. Continuous Delivery is concerned with taking the new ver-
sion of a component and packing it in a shippable box. In addition, it runs integration tests to
ensure the interplay with other components. Finally, Continuous Delivery takes the component
and installs it in a pre-defined environment.

In Sections 3–5, we show that an adapted process to Continuous Integration, Continuous
Delivery, and Continuous Deployment can indeed overcome integration issues for distributed
research projects. In addition, Section 6 presents a set-up that is able to deal with the requirements
from Section 2.3.

2.5. Related work

While there is a lot of literature on DevOps [15], agile methods, Continuous Integration,
Continuous Delivery [13], and Continuous Deployment not much can be found with respect
to academia and academia/industry collaboration. Eckstein provides guidelines for distrib-
uted teams [11].

Rother [1] lays part of the foundation of what is today perceived as DevOps by presenting the
production pipelines and methodologies of Toyota. Being more on the cultural side of DevOps
and CI/CD spectrum, Davis and Daniels [14] and Sharma [12] give some insights on how to
bring these ideas to industry.

Especially Continuous Integration was significantly influenced by Duvall et al. [2]. There, the
authors describe most of the paradigms important for Continuous Integration. These are still
valid today and are considered as de-facto standard. Fowler’s influential articles on Continuous
Integration, for example [5], and testing, for example, through micro-service scenarios [4], lay
the foundation on what is being perceived as Continuous Integration along with best practices.

Dependability Engineering28

Regarding academia, there is ongoing effort in bringing Continuous Integration and Continuous
Delivery to teaching. Eddy et al. [7] describe how they implement a pipeline for supporting their
lecture on modern development practices. An academic view on Continuous Experimentation
is brought up by Fagerholm et al. [9] by investigating multiple use-cases of industry partners.
They analyse the demands and propose solutions to create experimentation-happy environ-
ments utilising Continuous Integration and Continuous Delivery.

On Academia/Industry collaboration Sandberg and Crnkovic [6] and Guillot et al. [8] investi-
gate challenges between those parties and how to solve them with agile methods. Both anal-
yse the adaption of the rather strict scrum methodology on said collaboration in multiple
case studies with positive results. However, also that approach is highly dependent on team
agreement.

Koetter et al. analyse the characteristics and problems of software development in distributed
teams in research projects [10]. They give a literature review of common problems and typi-
cal solutions. With the focus on Software Architecture, the authors summarise the issues and
sketch solution approaches on a methodological level.

3. Background: Continuous Integration

This section gives an introduction into the concepts of Continuous Integration. The next sub-
section defines the scope of the methodology and gives a definition. Later sub-sections intro-
duce the general concept and the Continuous Integration loop in more detail and introduce
basics to testing and best practises.

3.1. Definition and scope

Continuous Integration describes a methodology to always have the latest successfully built
and tested version of a software component available [2]. At its core, it aims at removing diverg-
ing developments of different developers by enforcing that all the code changes of every devel-
oper are integrated with each other to a shared mainline “all the time” (hence, it focuses on
the integration of code of a single build artefact). Integrating small changes at high frequency
reduces the chance of diverging code and the pain of code integration.

In Continuous Integration, the process of building and testing the component is usually
described by scripts and hence, easy to reproduce by any developer and easy to automate. In
consequence, it overcomes the issue of hard-to-reproduce builds that is a reoccurring problem
in traditional development environments where developers usually have their code being
built and run inside their different IDE in terms of version or even brand.

3.2. The integration pipeline

A successful adoption of Continuous Integration in any environment has to rely on automation
in order to achieve a permanent feedback loop. This is illustrated in Figure 1. At some point in

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

29

R.C (keep track of targeted outcomes): The fluctuation of team members and the dynamic of
IT research lead to often changing technical goals of the research project. As a consequence,
the current goals need to be documented and be accessible by all project members in order to
keep a common focus. Ideally, they are immediately visible to all contributors.

R.D (support different configurations): Often research projects do not build generic solutions,
but only demonstrators for specific use cases. The prototype integration strategy has to be able
to deal with this and provide the capability to set-up different environments.

R.E (allow different programming languages and development methodologies): Research
projects barely start from scratch, as many partners continue earlier work. Further, the knowl-
edge and suitability of languages is very specific to problem domains. Therefore, a prototype
integration strategy has to be open to different programming languages.

2.4. Approach

In industrial contexts solving integration and communication issues is realised by introduc-
ing three kinds of orthogonal, but complementary approaches: Continuous Integration handles
the integration on code level per component. It builds and tests the component whenever a
new version of the code is available. Continuous Delivery is concerned with taking the new ver-
sion of a component and packing it in a shippable box. In addition, it runs integration tests to
ensure the interplay with other components. Finally, Continuous Delivery takes the component
and installs it in a pre-defined environment.

In Sections 3–5, we show that an adapted process to Continuous Integration, Continuous
Delivery, and Continuous Deployment can indeed overcome integration issues for distributed
research projects. In addition, Section 6 presents a set-up that is able to deal with the requirements
from Section 2.3.

2.5. Related work

While there is a lot of literature on DevOps [15], agile methods, Continuous Integration,
Continuous Delivery [13], and Continuous Deployment not much can be found with respect
to academia and academia/industry collaboration. Eckstein provides guidelines for distrib-
uted teams [11].

Rother [1] lays part of the foundation of what is today perceived as DevOps by presenting the
production pipelines and methodologies of Toyota. Being more on the cultural side of DevOps
and CI/CD spectrum, Davis and Daniels [14] and Sharma [12] give some insights on how to
bring these ideas to industry.

Especially Continuous Integration was significantly influenced by Duvall et al. [2]. There, the
authors describe most of the paradigms important for Continuous Integration. These are still
valid today and are considered as de-facto standard. Fowler’s influential articles on Continuous
Integration, for example [5], and testing, for example, through micro-service scenarios [4], lay
the foundation on what is being perceived as Continuous Integration along with best practices.

Dependability Engineering28

Regarding academia, there is ongoing effort in bringing Continuous Integration and Continuous
Delivery to teaching. Eddy et al. [7] describe how they implement a pipeline for supporting their
lecture on modern development practices. An academic view on Continuous Experimentation
is brought up by Fagerholm et al. [9] by investigating multiple use-cases of industry partners.
They analyse the demands and propose solutions to create experimentation-happy environ-
ments utilising Continuous Integration and Continuous Delivery.

On Academia/Industry collaboration Sandberg and Crnkovic [6] and Guillot et al. [8] investi-
gate challenges between those parties and how to solve them with agile methods. Both anal-
yse the adaption of the rather strict scrum methodology on said collaboration in multiple
case studies with positive results. However, also that approach is highly dependent on team
agreement.

Koetter et al. analyse the characteristics and problems of software development in distributed
teams in research projects [10]. They give a literature review of common problems and typi-
cal solutions. With the focus on Software Architecture, the authors summarise the issues and
sketch solution approaches on a methodological level.

3. Background: Continuous Integration

This section gives an introduction into the concepts of Continuous Integration. The next sub-
section defines the scope of the methodology and gives a definition. Later sub-sections intro-
duce the general concept and the Continuous Integration loop in more detail and introduce
basics to testing and best practises.

3.1. Definition and scope

Continuous Integration describes a methodology to always have the latest successfully built
and tested version of a software component available [2]. At its core, it aims at removing diverg-
ing developments of different developers by enforcing that all the code changes of every devel-
oper are integrated with each other to a shared mainline “all the time” (hence, it focuses on
the integration of code of a single build artefact). Integrating small changes at high frequency
reduces the chance of diverging code and the pain of code integration.

In Continuous Integration, the process of building and testing the component is usually
described by scripts and hence, easy to reproduce by any developer and easy to automate. In
consequence, it overcomes the issue of hard-to-reproduce builds that is a reoccurring problem
in traditional development environments where developers usually have their code being
built and run inside their different IDE in terms of version or even brand.

3.2. The integration pipeline

A successful adoption of Continuous Integration in any environment has to rely on automation
in order to achieve a permanent feedback loop. This is illustrated in Figure 1. At some point in

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

29

time, developers working on a local version of the code will be finished with their work, for
example, a new feature or a bug fix. Then, they commit (step i) their changes to the version con-
trol system shared by all developers of that component. In addition to the code, the repository
contains additional data and procedures to build and also test the software.

Accordingly, a new commit triggers (step ii) a new build of the software component. In case the
build is successful (step iii), tests of the code get executed. Here, build automation enables that
both building and testing can run automatically and do not require any human integration.

On a technical level, both build step and test step are executed on one or multiple build serv-
ers which is tightly integrated with the code repository and gets triggered through changes to
the codebase. At the end of the build and test process, it will (step iv) report the status back to
the users. Such a report includes information about failed builds or failed test cases. On suc-
cess the build server issues a versioned and downloadable build artefact.

For closing the Continuous Integration loop, other developers react on reports issued by the
build server. In case of successful build and test steps, they are supposed to immediately inte-
grate the changes in their own code base. This core concept behind Continuous Integration
ensures that the code bases of different developers evolve compatibly.

In order to successfully implement this feedback loop, it is important for every developer to com-
mit very often (commonly interpreted as at least once a day). This ensures that merge conflicts
stay minor and are easier to resolve.

3.3. Testing

Testing is necessary, as a successful build process does not give any hints whether the code
is actually working. Hence, testing increases confidence on the codebase which creates an

Figure 1. The Continuous Integration feedback loop realising the integration pipeline.

Dependability Engineering30

experiment-happy environment and reduces the risk introduced by possible ambiguity
of requirements. Further, testing may yield information about code quality and runtime
behaviour. Consequently, testing is the main vehicle to ensure reliability of and trust in the
code. Obviously, this trust is higher, the higher the test coverage. Due to the many builds
per day, testing can only be realised in an automated manner. In consequence, high auto-
mated test coverage is a core demand for Continuous Integration [2].

While there is no general agreement on a fixed number for code coverage percentage, there are
suggestions and guidelines [3] about that metric. In practise, however, the desired coverage
degree is dependent on the project and the criticality of the code.

As with the whole Continuous Integration methodology, it is important that all team members
have understood the importance of testing and practise it. Unit and Integration Tests are the
minimum amount of tests necessary to achieve that. Consequently, they are our main concern
in this chapter. Further details on testing of distributed applications are available elsewhere [1].

Unit tests target small portions of code in the codebase and usually operate on a class- or
routine-level. They are built alongside the application and are executed on a successful built.
Implementing them makes sure that individual parts of the component are working as expected
and intended. In contrast, integration tests are run against a fully built and unit-tested compo-
nent. An integration test executes the software component as a whole and runs tests against APIs
and if necessary utilises mocks.

3.4. Best practices

While the Continuous Integration loop as detailed earlier is simple, a true realisation of the
approach requires flanking measures on the management and organisational side.

In order to decrease the change of a broken build and failing tests, developers have to build
and test the application locally before committing their changes to the shared code repository.
This practise leads to the desire that the automated test environment used on the build server
and the test environment provided by the developer’s IDE be compatible. Only then can the
same tests be run in both environments and only then is the effort for the developer minimal
to follow the principle of Continuous Integration.

Having such a set-up, a developer will commit more often to the shared code repository when
experiencing short feedback cycles from the Continuous Integration loop. Ideally, the time
from committing code changes to a tested software artefact is as short as running the tests on
the development machine or even shorter.

However, even performing local tests will not avoid that at some point a build or a test will
fail leading to a broken build. While the build is broken no developer should commit to the
repository. Instead, everyone in the team is encouraged to contribute to fixing whatever
caused the build to break. Only then further commits to the code repository are allowed.

In order to enable developers to witness that a build breaks and to trigger the process of handling
this broken build, visibility of the current build and test status is a major concern. This can be as
simple as a red or green badge being shown in a dashboard, an e-mail, but could also include
bots that report on it on a messaging platform.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

31

time, developers working on a local version of the code will be finished with their work, for
example, a new feature or a bug fix. Then, they commit (step i) their changes to the version con-
trol system shared by all developers of that component. In addition to the code, the repository
contains additional data and procedures to build and also test the software.

Accordingly, a new commit triggers (step ii) a new build of the software component. In case the
build is successful (step iii), tests of the code get executed. Here, build automation enables that
both building and testing can run automatically and do not require any human integration.

On a technical level, both build step and test step are executed on one or multiple build serv-
ers which is tightly integrated with the code repository and gets triggered through changes to
the codebase. At the end of the build and test process, it will (step iv) report the status back to
the users. Such a report includes information about failed builds or failed test cases. On suc-
cess the build server issues a versioned and downloadable build artefact.

For closing the Continuous Integration loop, other developers react on reports issued by the
build server. In case of successful build and test steps, they are supposed to immediately inte-
grate the changes in their own code base. This core concept behind Continuous Integration
ensures that the code bases of different developers evolve compatibly.

In order to successfully implement this feedback loop, it is important for every developer to com-
mit very often (commonly interpreted as at least once a day). This ensures that merge conflicts
stay minor and are easier to resolve.

3.3. Testing

Testing is necessary, as a successful build process does not give any hints whether the code
is actually working. Hence, testing increases confidence on the codebase which creates an

Figure 1. The Continuous Integration feedback loop realising the integration pipeline.

Dependability Engineering30

experiment-happy environment and reduces the risk introduced by possible ambiguity
of requirements. Further, testing may yield information about code quality and runtime
behaviour. Consequently, testing is the main vehicle to ensure reliability of and trust in the
code. Obviously, this trust is higher, the higher the test coverage. Due to the many builds
per day, testing can only be realised in an automated manner. In consequence, high auto-
mated test coverage is a core demand for Continuous Integration [2].

While there is no general agreement on a fixed number for code coverage percentage, there are
suggestions and guidelines [3] about that metric. In practise, however, the desired coverage
degree is dependent on the project and the criticality of the code.

As with the whole Continuous Integration methodology, it is important that all team members
have understood the importance of testing and practise it. Unit and Integration Tests are the
minimum amount of tests necessary to achieve that. Consequently, they are our main concern
in this chapter. Further details on testing of distributed applications are available elsewhere [1].

Unit tests target small portions of code in the codebase and usually operate on a class- or
routine-level. They are built alongside the application and are executed on a successful built.
Implementing them makes sure that individual parts of the component are working as expected
and intended. In contrast, integration tests are run against a fully built and unit-tested compo-
nent. An integration test executes the software component as a whole and runs tests against APIs
and if necessary utilises mocks.

3.4. Best practices

While the Continuous Integration loop as detailed earlier is simple, a true realisation of the
approach requires flanking measures on the management and organisational side.

In order to decrease the change of a broken build and failing tests, developers have to build
and test the application locally before committing their changes to the shared code repository.
This practise leads to the desire that the automated test environment used on the build server
and the test environment provided by the developer’s IDE be compatible. Only then can the
same tests be run in both environments and only then is the effort for the developer minimal
to follow the principle of Continuous Integration.

Having such a set-up, a developer will commit more often to the shared code repository when
experiencing short feedback cycles from the Continuous Integration loop. Ideally, the time
from committing code changes to a tested software artefact is as short as running the tests on
the development machine or even shorter.

However, even performing local tests will not avoid that at some point a build or a test will
fail leading to a broken build. While the build is broken no developer should commit to the
repository. Instead, everyone in the team is encouraged to contribute to fixing whatever
caused the build to break. Only then further commits to the code repository are allowed.

In order to enable developers to witness that a build breaks and to trigger the process of handling
this broken build, visibility of the current build and test status is a major concern. This can be as
simple as a red or green badge being shown in a dashboard, an e-mail, but could also include
bots that report on it on a messaging platform.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

31

3.5. Summary

Summarising, Continuous Integration gives reproducible builds, versioned downloadable
artefacts, and quick feedback on broken builds. Hence, it addresses many of the requirements
brought up in Section 2: breaking down development into small units that are independently
built and tested distributes work among partners (R.1) and at the same time, identifies
responsible persons (R.3). Automating the build and testing process tremendously reduces
the manual burden (R.2). It also checks dependencies on build level (R.5) and makes the
software status visible (R.6). The availability of ready-to-use binaries is a first step towards
an easy-to-use prototype (R.4). The definition of unit tests and integration tests allow people
joining the project late to confidently make changes to the source code (R.B). If used properly,
tests also serve as a testimonial of the currently defined requirements of the project (R.C). The
separation of build and test phase enables some support for closed source code (R.A).

On the downside, Continuous Integration does not address dependencies on service level (R.5)
and neither allows for a full easy-to-use set-up (R.4). In consequence, it also does not make the
full software status available (R.6). With respect to closed and unavailable source code (R.A),
further means have to be established.

Yet, the use of Continuous Integration also introduces new requirements:

R.CI.1 (additional project infrastructure): The use of Continuous Integration requires more
infrastructure to be brought into the project. These include a revision control system, a build
server, and a test server. All of them have to be maintained and explained to the consortium,
for example, through tutorials. The build server in addition has to support all programming
languages used in the project (R.E).

R.CI.2 (support for private code): For those partners in the project that want to disclose their
source code to the public, the project infrastructure needs to support a private repository.

R.CI.3 (support for closed code): For those partners in the project that want to disclose the
source code of their components even to the project, additional mechanisms have to be estab-
lished in order to connect these components to the overall application.

R.CI.4 (team agreement): For Continuous Integration to work properly, all project partners
have to agree on its use and be willing to take their share of the load. This is a management issue
that can be supported when lean technology and good documentation is applied.

4. Background: Continuous Delivery

This section details background on Continuous Delivery. It starts with a definition and the usage
scope, then presents the delivery pipeline and further testing steps. In contrast to Continuous
Integration that has many challenges on social level, but a clearly defined build artefact at the
end of a pipeline, the exact result of a run of the delivery pipeline is a design choice; the only
demand is that it packages the binaries into something executable. Section 4.3 is concerned with

Dependability Engineering32

the various possible approaches to packaging. Finally, when executing a component, various
parameters may need to be configured, depending on the context the component is used in. We
sketch possible design choices in Section 4.4.

4.1. Definition and scope

Continuous Delivery takes an executable binary (e.g. a build artefact) and packages it in a
ready-to-run execution environment that resolves all internal and external dependencies,
for example, to the operation system kernel, third-party libraries, and remote services.
At this end, this automatic process creates packaged runtime environments for binaries
and other artefacts. The rational is that pre-configured and tested self-contained packages
are easy to roll out in different environments increasing the reliability of the roll-out pro-
cess. In addition, abandoning manual actions strengthens maintainability and trust in the
process.

When combined with Continuous Integration, Continuous Delivery provides a methodology
that ensures that at any time a packaged, tested, and reliably deployable artefact is available
based on the latest successful run of the integration pipeline.

4.2. The delivery pipeline

The delivery pipeline starts where Continuous Integration ends. It introduces the packaging
step plus further automated and manual acceptance tests. A visual example of such a pipeline is
shown in Figure 2.

Continuous Delivery starts with build artefact(s) that could be the outcome of Continuous
Integration. The packaging step integrates one or more of them with any external dependencies
and bundles them into packed artefacts (or simply artefacts). The pipeline is not necessarily
linear and hence, can general more than one package. Depending on the process, packages for
multiple architectures or use cases can be generated. While Continuous Integration contains

Figure 2. Example delivery pipeline.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

33

3.5. Summary

Summarising, Continuous Integration gives reproducible builds, versioned downloadable
artefacts, and quick feedback on broken builds. Hence, it addresses many of the requirements
brought up in Section 2: breaking down development into small units that are independently
built and tested distributes work among partners (R.1) and at the same time, identifies
responsible persons (R.3). Automating the build and testing process tremendously reduces
the manual burden (R.2). It also checks dependencies on build level (R.5) and makes the
software status visible (R.6). The availability of ready-to-use binaries is a first step towards
an easy-to-use prototype (R.4). The definition of unit tests and integration tests allow people
joining the project late to confidently make changes to the source code (R.B). If used properly,
tests also serve as a testimonial of the currently defined requirements of the project (R.C). The
separation of build and test phase enables some support for closed source code (R.A).

On the downside, Continuous Integration does not address dependencies on service level (R.5)
and neither allows for a full easy-to-use set-up (R.4). In consequence, it also does not make the
full software status available (R.6). With respect to closed and unavailable source code (R.A),
further means have to be established.

Yet, the use of Continuous Integration also introduces new requirements:

R.CI.1 (additional project infrastructure): The use of Continuous Integration requires more
infrastructure to be brought into the project. These include a revision control system, a build
server, and a test server. All of them have to be maintained and explained to the consortium,
for example, through tutorials. The build server in addition has to support all programming
languages used in the project (R.E).

R.CI.2 (support for private code): For those partners in the project that want to disclose their
source code to the public, the project infrastructure needs to support a private repository.

R.CI.3 (support for closed code): For those partners in the project that want to disclose the
source code of their components even to the project, additional mechanisms have to be estab-
lished in order to connect these components to the overall application.

R.CI.4 (team agreement): For Continuous Integration to work properly, all project partners
have to agree on its use and be willing to take their share of the load. This is a management issue
that can be supported when lean technology and good documentation is applied.

4. Background: Continuous Delivery

This section details background on Continuous Delivery. It starts with a definition and the usage
scope, then presents the delivery pipeline and further testing steps. In contrast to Continuous
Integration that has many challenges on social level, but a clearly defined build artefact at the
end of a pipeline, the exact result of a run of the delivery pipeline is a design choice; the only
demand is that it packages the binaries into something executable. Section 4.3 is concerned with

Dependability Engineering32

the various possible approaches to packaging. Finally, when executing a component, various
parameters may need to be configured, depending on the context the component is used in. We
sketch possible design choices in Section 4.4.

4.1. Definition and scope

Continuous Delivery takes an executable binary (e.g. a build artefact) and packages it in a
ready-to-run execution environment that resolves all internal and external dependencies,
for example, to the operation system kernel, third-party libraries, and remote services.
At this end, this automatic process creates packaged runtime environments for binaries
and other artefacts. The rational is that pre-configured and tested self-contained packages
are easy to roll out in different environments increasing the reliability of the roll-out pro-
cess. In addition, abandoning manual actions strengthens maintainability and trust in the
process.

When combined with Continuous Integration, Continuous Delivery provides a methodology
that ensures that at any time a packaged, tested, and reliably deployable artefact is available
based on the latest successful run of the integration pipeline.

4.2. The delivery pipeline

The delivery pipeline starts where Continuous Integration ends. It introduces the packaging
step plus further automated and manual acceptance tests. A visual example of such a pipeline is
shown in Figure 2.

Continuous Delivery starts with build artefact(s) that could be the outcome of Continuous
Integration. The packaging step integrates one or more of them with any external dependencies
and bundles them into packed artefacts (or simply artefacts). The pipeline is not necessarily
linear and hence, can general more than one package. Depending on the process, packages for
multiple architectures or use cases can be generated. While Continuous Integration contains

Figure 2. Example delivery pipeline.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

33

a set of basic tests, Continuous Delivery introduces more sophisticated acceptance test. These
are a crucial part of any useful delivery strategy and often contain both manual and auto-
matic steps that validate if the software component behaves as expected. It will almost always
include mocking of remote services.

4.3. Possible packing formats

The outcome of a run of the delivery pipeline is at least one deployable artefact packing an
application component. While the delivery concept per se does not foresee a specific format
and basically an arbitrary number of formats are possible, the following four approaches have
found wide-spread acceptance and are commonly used. They differ in the size of the package,
the coupling between component and host, and possible interferences with other components
on the same host.

Virtual machine images package the component together with a suited operating system and
all required third-party libraries. Executing the image in a virtual machine on a hypervisor
introduces very strong runtime isolation between component instance (inside the virtual
machine), the host installation (outside the virtual machine), and the host’s hardware. It also
creates barely any external dependencies and no direct interferences with other components
on the same host. On the downside, virtual machine images are heavy weight in terms of size
and resource usage. Container images are a lightweight alternative that also bundle the com-
ponent with all third-party libraries. Yet, the container’s operating system strongly depends
on the hosting environment in terms of operating system version and kernel configuration.
Still isolation between co-located components is available.

Both virtual machine and container images create an isolated and fully self-contained envi-
ronment for the component. A conceptual different approach is followed by configuration
management tools and distribution packages. Both of them install software directly on the
host platform and barely create any isolation between different components. Software dis-
tribution packages are special archives that wrap the binary and files it ships with, but also
contains hints to packages this binary depends on. Obviously, they integrate deeply with the
dependency management of the host platform and utilise shared system resources and librar-
ies directly. Configuration management tools provide a layer of abstraction, as they attempt to
(re-)configure and change the hosts environment to reach a state which ensures that the appli-
cation can run. They may do so by using software distribution packages. Both approaches are
rather lightweight in terms of storage size.

4.4. Package configuration

The major goal of Continuous Delivery is to always have the latest deployable package of a
component available. In consequence, this means that when creating the package, it is not
known in which environment it will run. For instance, IP addresses, port numbers, paths
to files may not have been defined yet, or can change over time. Consequently, when pre-
paring a component for Continuous Deployment, it is important to foresee a configuration
interface. Several approaches exist ranging from environment variables as suggested by the

Dependability Engineering34

12FactorApp3 over configuration files as commonly used for components provided as Linux
packages, to key/value stores or a database.

The choice of a configuration approach has influence on the overall implementation of a com-
ponent. In addition, there is a mutual influence between configuration and packaging format.

4.5. Summary

Summarising, Continuous Delivery gives tested, versioned, and downloadable artefacts that
are shippable, installable, and configurable out-of-the-box. As with Continuous Integration,
the high degree of automation reduces manual burden (R.2). The use of Continuous
Deployment helps the installation and management of the project outcomes (R.4) and at the
same time helps remembering the big picture due to acceptance tests (R.5). The latter also con-
tributes to the visibility of the software status (R.6). Similarly, acceptance tests help keeping
track of desired outcomes (R.C) and support the fluctuation of team members (R.B).

On the downside, creating a larger deployable component from smaller parts, may counteract
the equal distribution of load over partners (R.1) and makes the naming of responsible per-
sons harder (R.3). Yet, when Continuous Integration is used in addition, logical bugs should
have been filtered out and only those produced by acceptance test remain.

Continuous Delivery introduces the following additional requirements towards prototype
integration and management.

R.CDel.1 (packaging format): Continuous Delivery requires to decide on one or more pack-
aging formats per delivery pipeline.

R.CDel.2 (configuration options): Continuous Delivery requires to decide on the approach
taken towards configuration per pipeline. It has to be consistent with the packaging format.

R.CDel.3 (support for closed artefacts): As with Continuous Integration additional mecha-
nisms have to be established for any kind of closed code or closed binaries.

5. Background: Continuous Deployment

This section gives background on Continuous Deployment. As before, we start with a defi-
nition and set the scope for this methodology. Then, we describe the deployment pipeline.
Finally, we consider deployment environments and application state.

5.1. Definition and scope

Deployment as such describes the process of enacting an application or application compo-
nent. In general, it covers the steps from acquiring the necessary and possibly distributed
hardware resources over installing as well as configuring the component(s) on these resources

3https://12factor.net/de/config

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

35

a set of basic tests, Continuous Delivery introduces more sophisticated acceptance test. These
are a crucial part of any useful delivery strategy and often contain both manual and auto-
matic steps that validate if the software component behaves as expected. It will almost always
include mocking of remote services.

4.3. Possible packing formats

The outcome of a run of the delivery pipeline is at least one deployable artefact packing an
application component. While the delivery concept per se does not foresee a specific format
and basically an arbitrary number of formats are possible, the following four approaches have
found wide-spread acceptance and are commonly used. They differ in the size of the package,
the coupling between component and host, and possible interferences with other components
on the same host.

Virtual machine images package the component together with a suited operating system and
all required third-party libraries. Executing the image in a virtual machine on a hypervisor
introduces very strong runtime isolation between component instance (inside the virtual
machine), the host installation (outside the virtual machine), and the host’s hardware. It also
creates barely any external dependencies and no direct interferences with other components
on the same host. On the downside, virtual machine images are heavy weight in terms of size
and resource usage. Container images are a lightweight alternative that also bundle the com-
ponent with all third-party libraries. Yet, the container’s operating system strongly depends
on the hosting environment in terms of operating system version and kernel configuration.
Still isolation between co-located components is available.

Both virtual machine and container images create an isolated and fully self-contained envi-
ronment for the component. A conceptual different approach is followed by configuration
management tools and distribution packages. Both of them install software directly on the
host platform and barely create any isolation between different components. Software dis-
tribution packages are special archives that wrap the binary and files it ships with, but also
contains hints to packages this binary depends on. Obviously, they integrate deeply with the
dependency management of the host platform and utilise shared system resources and librar-
ies directly. Configuration management tools provide a layer of abstraction, as they attempt to
(re-)configure and change the hosts environment to reach a state which ensures that the appli-
cation can run. They may do so by using software distribution packages. Both approaches are
rather lightweight in terms of storage size.

4.4. Package configuration

The major goal of Continuous Delivery is to always have the latest deployable package of a
component available. In consequence, this means that when creating the package, it is not
known in which environment it will run. For instance, IP addresses, port numbers, paths
to files may not have been defined yet, or can change over time. Consequently, when pre-
paring a component for Continuous Deployment, it is important to foresee a configuration
interface. Several approaches exist ranging from environment variables as suggested by the

Dependability Engineering34

12FactorApp3 over configuration files as commonly used for components provided as Linux
packages, to key/value stores or a database.

The choice of a configuration approach has influence on the overall implementation of a com-
ponent. In addition, there is a mutual influence between configuration and packaging format.

4.5. Summary

Summarising, Continuous Delivery gives tested, versioned, and downloadable artefacts that
are shippable, installable, and configurable out-of-the-box. As with Continuous Integration,
the high degree of automation reduces manual burden (R.2). The use of Continuous
Deployment helps the installation and management of the project outcomes (R.4) and at the
same time helps remembering the big picture due to acceptance tests (R.5). The latter also con-
tributes to the visibility of the software status (R.6). Similarly, acceptance tests help keeping
track of desired outcomes (R.C) and support the fluctuation of team members (R.B).

On the downside, creating a larger deployable component from smaller parts, may counteract
the equal distribution of load over partners (R.1) and makes the naming of responsible per-
sons harder (R.3). Yet, when Continuous Integration is used in addition, logical bugs should
have been filtered out and only those produced by acceptance test remain.

Continuous Delivery introduces the following additional requirements towards prototype
integration and management.

R.CDel.1 (packaging format): Continuous Delivery requires to decide on one or more pack-
aging formats per delivery pipeline.

R.CDel.2 (configuration options): Continuous Delivery requires to decide on the approach
taken towards configuration per pipeline. It has to be consistent with the packaging format.

R.CDel.3 (support for closed artefacts): As with Continuous Integration additional mecha-
nisms have to be established for any kind of closed code or closed binaries.

5. Background: Continuous Deployment

This section gives background on Continuous Deployment. As before, we start with a defi-
nition and set the scope for this methodology. Then, we describe the deployment pipeline.
Finally, we consider deployment environments and application state.

5.1. Definition and scope

Deployment as such describes the process of enacting an application or application compo-
nent. In general, it covers the steps from acquiring the necessary and possibly distributed
hardware resources over installing as well as configuring the component(s) on these resources

3https://12factor.net/de/config

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

35

Figure 3. Deployment pipeline.

and starting the necessary deliveries. The task of deciding in what order components should
be started is referred to as orchestration, the task of enacting components to find each other is
called discovery or wiring.

Continuous Deployment describes a methodology to always have the latest version of all
artefacts of an application deployed; and that updates to the application are visible in the
deployment shortly after changes to the codebase. As with integration and delivery pipelines,
the deployment pipeline is supposed to run automatically.

As all artefacts have gone through unit, integration, and acceptance tests, there is trust that
individual artefacts work as expected. What is less reliable is the interplay of the components
on an application-wide level. For that reason, in practise, multiple isolated environments are
used and Continuous Deployment usually tackles the least critical environment, which is not
linked with production systems. Yet, some companies like Amazon and Netflix demonstrate
Continuous Deployment can go directly to production.

5.2. The deployment pipeline

The safety net of having multiple environments caters for incompatible version and interface
changes of individual components. Figure 3 shows an example of three traditionally used dif-
ferent environments as well as transitions between them.

The development environment contains the very latest version of the components’ code and
is automatically updated on every commit. In contrast, the production environment contains

Dependability Engineering36

the actual live and fully functional environment facing users and customers. The staging
environment is applied to validate updating the production environment to newer version.
Therefore, staging uses a snapshot of the production data.

It is important to note that besides their build versions, the packaged components do not differ
from environment to environment. What differs is their configuration in the respective environ-
ment (cf. Section 4.4) and the process of updating them. The development environment is auto-
matically installed from scratch with each new deployable artefact from Continuous Integration.
This environment is then used by developers in order to test and validate the common applica-
tion. It is also used for reviews by Q/A. If these are successful, the version of the development
environment is instantiated in the staging environment by updating the previous installation.
This serves as a blueprint for updating the production environment. In case it succeeds, Q/A
will enact more tests and finally decide to upgrade the production environment.

5.3. Application state

Usually at least one of the application components makes use of persistent state such as data
stored in a database and on the file system. In order to support automatic re-deployment in
case of failures and a seamlessly upgrade from one version to another, this state has to be
separated from the artefact produced by the delivery pipeline. Otherwise, software and state
cannot not be upgraded separately.

In consequence, state needs to remain available, even if the application environment is torn
down. In IaaS clouds or containers, this can be achieved through the use of block storage/
volumes; in more traditional approaches, a remote file system, a NAS, or a SAN could be
used. In consequence, the location of the state has to be configurable.

5.4. Summary

Summarising, Continuous Deployment realises support for a constantly deployed instance of
the project outcome. In addition to that, it enables the realisation of use-case specific or demo-
specific environment (R.D). Similar to Continuous Integration and Continuous Delivery, it
helps distributing work among partners (R.1), reduces manual burden (R.2), and makes the
software status visible (R.6). Its orchestration is the missing link to make available an easy to
start and use environment (R.4) and clarifies the big picture (R.5). There are no immediate
downsides to Continuous Deployment, but further requirements emerge:

R.CDep.1 (environment planning): The consortium has to agree on the number of environ-
ments and the desired flexibility in creating environments. In the most extreme cases the
creation of a new environment is fully automatized and developers can flexibly create new
environments.

R.CDep.2 (handling of state): Continuous Deployment requires to decide on the approach
taken towards handling application state. In addition, stateful components need to be able to
find their state, to validate it exists, and to initialise the storage location, in case it does not
exists. In case state representation was changed, this has to be tolerated.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

37

Figure 3. Deployment pipeline.

and starting the necessary deliveries. The task of deciding in what order components should
be started is referred to as orchestration, the task of enacting components to find each other is
called discovery or wiring.

Continuous Deployment describes a methodology to always have the latest version of all
artefacts of an application deployed; and that updates to the application are visible in the
deployment shortly after changes to the codebase. As with integration and delivery pipelines,
the deployment pipeline is supposed to run automatically.

As all artefacts have gone through unit, integration, and acceptance tests, there is trust that
individual artefacts work as expected. What is less reliable is the interplay of the components
on an application-wide level. For that reason, in practise, multiple isolated environments are
used and Continuous Deployment usually tackles the least critical environment, which is not
linked with production systems. Yet, some companies like Amazon and Netflix demonstrate
Continuous Deployment can go directly to production.

5.2. The deployment pipeline

The safety net of having multiple environments caters for incompatible version and interface
changes of individual components. Figure 3 shows an example of three traditionally used dif-
ferent environments as well as transitions between them.

The development environment contains the very latest version of the components’ code and
is automatically updated on every commit. In contrast, the production environment contains

Dependability Engineering36

the actual live and fully functional environment facing users and customers. The staging
environment is applied to validate updating the production environment to newer version.
Therefore, staging uses a snapshot of the production data.

It is important to note that besides their build versions, the packaged components do not differ
from environment to environment. What differs is their configuration in the respective environ-
ment (cf. Section 4.4) and the process of updating them. The development environment is auto-
matically installed from scratch with each new deployable artefact from Continuous Integration.
This environment is then used by developers in order to test and validate the common applica-
tion. It is also used for reviews by Q/A. If these are successful, the version of the development
environment is instantiated in the staging environment by updating the previous installation.
This serves as a blueprint for updating the production environment. In case it succeeds, Q/A
will enact more tests and finally decide to upgrade the production environment.

5.3. Application state

Usually at least one of the application components makes use of persistent state such as data
stored in a database and on the file system. In order to support automatic re-deployment in
case of failures and a seamlessly upgrade from one version to another, this state has to be
separated from the artefact produced by the delivery pipeline. Otherwise, software and state
cannot not be upgraded separately.

In consequence, state needs to remain available, even if the application environment is torn
down. In IaaS clouds or containers, this can be achieved through the use of block storage/
volumes; in more traditional approaches, a remote file system, a NAS, or a SAN could be
used. In consequence, the location of the state has to be configurable.

5.4. Summary

Summarising, Continuous Deployment realises support for a constantly deployed instance of
the project outcome. In addition to that, it enables the realisation of use-case specific or demo-
specific environment (R.D). Similar to Continuous Integration and Continuous Delivery, it
helps distributing work among partners (R.1), reduces manual burden (R.2), and makes the
software status visible (R.6). Its orchestration is the missing link to make available an easy to
start and use environment (R.4) and clarifies the big picture (R.5). There are no immediate
downsides to Continuous Deployment, but further requirements emerge:

R.CDep.1 (environment planning): The consortium has to agree on the number of environ-
ments and the desired flexibility in creating environments. In the most extreme cases the
creation of a new environment is fully automatized and developers can flexibly create new
environments.

R.CDep.2 (handling of state): Continuous Deployment requires to decide on the approach
taken towards handling application state. In addition, stateful components need to be able to
find their state, to validate it exists, and to initialise the storage location, in case it does not
exists. In case state representation was changed, this has to be tolerated.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

37

R.CDep.3 (support for closed artefacts): As before, additional mechanisms have to be estab-
lished for any kind of closed binaries.

R.CDep.4 (additional infrastructure): In order to achieve the deployment and wiring of indi-
vidual components, but also the whole project software, an orchestrator is necessary.

6. A research-oriented solution to software releases

In the following, we take the requirements put up in Section 2 and describe how we apply
Continuous Integration, Continuous Delivery, and Continuous Deployment to support proto-
type integration as well as software releases for large-scale, widely distributed research projects.
We also present how we address the additional requirements put up throughout Sections 3-5.

Section 6.1 presents the overall concepts and strategy we apply. The subsequent sections deal
with the realisation of the individual pipelines. In each of these, we present our approach
from a conceptual as well as a technical point of view and discuss the tools used. In addition,
we present similar tools available on the market that could be used to provide the same or
similar functionality.

6.1. Overview and concept

Sections 3–5 detail that the combined use of Continuous Integration, Continuous Delivery,
and Continuous Deployment addresses almost all of the requirements established in Section 2.
Table 1 presents the coverage of requirements and methodology taken. Only the need to cater

Continuous Integration Continuous
Delivery

Continuous Deployment

R.1 X X

R.2 X X X

R.3 X

R.4 X X

R.5 X X

R.6 X X

R.A (X) (X) (X)

R.B X X

R.C X X

R.D X

R.E X

Table 1. Requirement mapping.

Dependability Engineering38

for closed code and binaries (R.A) is not naturally taken into account by any of the method-
ologies. It is, however, represented by the follow-up requirements R.CI.2, R.CI.3, R.CDel.3,
R.CDep.3, and R.CDep.4 and has to be addressed by all three methodologies.

The following paragraphs sketch our approach on a high technical and management level.

6.1.1. General software set-up

Our approach centres around a project-wide code hosting platform that supports private
repositories for code that shall not go public (R.CI.3). This platform is enhanced with a project-
wide build and test server (R.CI.1) and further with an orchestration service linked to these
two (R.Dep.4). Whenever possible, we rely on private hardware to host the needed infrastruc-
tures as well as the various environments of the deployment pipeline. In case this cannot be
achieved, we fall back to a public cloud provider such as Amazon EC2 or Microsoft Azure.

6.1.2. Management process

In order to be able to apply Continuous Anything, decisions on the management level are
required. These include first and foremost, the decision of the consortium to enact the methodol-
ogy (R.CI.4). Once this decision is taken, the next step is to break down the overall project software
into smaller components. This is a manual process that requires discussion and communication.

For each of the components an individual software repository is created and a responsible
gets assigned. In an ideal case, exclusively members from one local team are responsible for
one of these components. For each of the components then test cases are defined that detail
how the component is supposed to interact with other components and more importantly
that reflect requirements and goals of the project. Finally, an early integration pipeline for
each component is realised that runs the tests. Only at this point, it is necessary that the devel-
opers of a component agree on a common technology including the programming language.
Different components can agree on different languages.

In a next step, components are composed to deployable artefacts and for each of them a
delivery pipeline is established. Acceptance tests are created and function as both a valida-
tion of the artefact’s functionality as well as a representation of the project’s requirements.
Furthermore, a strategy towards packaging (R.Del.1) and configuration (R.Del.2) is decided
upon. While it is principally possible to use different formats and approaches for different
artefacts, the delivery pipeline benefits from unifying these.

In a last step, the consortium agrees on the number of environments to be used as well as the
transition paths between environments (R.CDep.1). This is also the step where services with
closed binaries get integrated in the whole system (R.CDep.3).

6.2. Continuous Integration

As clarified in Section 3, Continuous Integration requires additional infrastructure to be pro-
vided by the project. In particular, it demands for the operation of a code repository, a build
server, and a test server.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

39

R.CDep.3 (support for closed artefacts): As before, additional mechanisms have to be estab-
lished for any kind of closed binaries.

R.CDep.4 (additional infrastructure): In order to achieve the deployment and wiring of indi-
vidual components, but also the whole project software, an orchestrator is necessary.

6. A research-oriented solution to software releases

In the following, we take the requirements put up in Section 2 and describe how we apply
Continuous Integration, Continuous Delivery, and Continuous Deployment to support proto-
type integration as well as software releases for large-scale, widely distributed research projects.
We also present how we address the additional requirements put up throughout Sections 3-5.

Section 6.1 presents the overall concepts and strategy we apply. The subsequent sections deal
with the realisation of the individual pipelines. In each of these, we present our approach
from a conceptual as well as a technical point of view and discuss the tools used. In addition,
we present similar tools available on the market that could be used to provide the same or
similar functionality.

6.1. Overview and concept

Sections 3–5 detail that the combined use of Continuous Integration, Continuous Delivery,
and Continuous Deployment addresses almost all of the requirements established in Section 2.
Table 1 presents the coverage of requirements and methodology taken. Only the need to cater

Continuous Integration Continuous
Delivery

Continuous Deployment

R.1 X X

R.2 X X X

R.3 X

R.4 X X

R.5 X X

R.6 X X

R.A (X) (X) (X)

R.B X X

R.C X X

R.D X

R.E X

Table 1. Requirement mapping.

Dependability Engineering38

for closed code and binaries (R.A) is not naturally taken into account by any of the method-
ologies. It is, however, represented by the follow-up requirements R.CI.2, R.CI.3, R.CDel.3,
R.CDep.3, and R.CDep.4 and has to be addressed by all three methodologies.

The following paragraphs sketch our approach on a high technical and management level.

6.1.1. General software set-up

Our approach centres around a project-wide code hosting platform that supports private
repositories for code that shall not go public (R.CI.3). This platform is enhanced with a project-
wide build and test server (R.CI.1) and further with an orchestration service linked to these
two (R.Dep.4). Whenever possible, we rely on private hardware to host the needed infrastruc-
tures as well as the various environments of the deployment pipeline. In case this cannot be
achieved, we fall back to a public cloud provider such as Amazon EC2 or Microsoft Azure.

6.1.2. Management process

In order to be able to apply Continuous Anything, decisions on the management level are
required. These include first and foremost, the decision of the consortium to enact the methodol-
ogy (R.CI.4). Once this decision is taken, the next step is to break down the overall project software
into smaller components. This is a manual process that requires discussion and communication.

For each of the components an individual software repository is created and a responsible
gets assigned. In an ideal case, exclusively members from one local team are responsible for
one of these components. For each of the components then test cases are defined that detail
how the component is supposed to interact with other components and more importantly
that reflect requirements and goals of the project. Finally, an early integration pipeline for
each component is realised that runs the tests. Only at this point, it is necessary that the devel-
opers of a component agree on a common technology including the programming language.
Different components can agree on different languages.

In a next step, components are composed to deployable artefacts and for each of them a
delivery pipeline is established. Acceptance tests are created and function as both a valida-
tion of the artefact’s functionality as well as a representation of the project’s requirements.
Furthermore, a strategy towards packaging (R.Del.1) and configuration (R.Del.2) is decided
upon. While it is principally possible to use different formats and approaches for different
artefacts, the delivery pipeline benefits from unifying these.

In a last step, the consortium agrees on the number of environments to be used as well as the
transition paths between environments (R.CDep.1). This is also the step where services with
closed binaries get integrated in the whole system (R.CDep.3).

6.2. Continuous Integration

As clarified in Section 3, Continuous Integration requires additional infrastructure to be pro-
vided by the project. In particular, it demands for the operation of a code repository, a build
server, and a test server.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

39

6.2.1. Concepts

Due to the openness towards programming languages, the build server needs to cater for any
reasonable programming language (R.E). We achieve that through specialised build envi-
ronments. These build environments are used for the automated compiling and testing the
components code (R.2) and are easily configurable and versioned (R.B) by the researchers
themselves (R.1, R.3). The downloadable build artefacts are stored in the repository (R.C)
with the appropriate access rights.

Access rights to each repository can be specifically set with permissions ranging from pri-
vate (R.CI.2) over internal to public. Sometimes one (e.g. an industry partner) is not able to
share their code or configuration parameters with the whole consortium or even publicly.
Therefore, we limit access to code and encrypt certain configuration variables so only the
actual owner has access to them (R.CI.2).

Regarding completely closed and private source code, which must not reside on the shared
infrastructure (R.CI.3, R.CDel.3), we make the assumption that the build artefacts of these
component are tested by their owners and their binaries available for use in the project. For
closed binaries, we establish a customised deployment process (R.CDep.3).

6.2.2. Selected tooling

For our approach, we selected Git enhanced with GitLab (R.CI.1) as a source code repository.
The primary reason for selecting this combination is due to state-of-the-art version control
provided by Git as well as the user interface and eco-system provided by GitLab. Each soft-
ware component is stored in an own Git repository.

As a build server we use GitLab Runner. On the one hand side this is due to its deep integra-
tion with GitLab, but on the other hand side, this is also due to its openness and flexibility also
in supporting exotic demands (e.g. R.E). It achieves this, by enabling the use of custom build
environments, giving the research teams a maximum amount of control.

Technically, each repository defines the build environment of the component stored in that
repository. The environment also defines the integration pipeline and contains at least the two
mandatory steps compiling and testing. When triggered, builds, and tests get executed in an
instance of the defined build environment.

Due to the fact that we do not impose any programming languages, we do not rely on any
specific build and dependency management frameworks. The same is true for testing frame-
works. Here, the only requirement is that it can be included in the pipeline.

6.2.3. Tooling alternatives

The functionality we achieve through our set-up can also be realised through the use of other
tools. For instance, Mercurial or SVN could be used as source code repository. Jenkins and
Travis are alternatives for build servers.

With respect to build automation Maven is the de-facto standard for Java, while C program-
mers rely on make and pip could be used for Python. Testing can be implemented by JUnit or
one of its derivatives for other languages.

Dependability Engineering40

6.3. Continuous Delivery

From Section 4, it is clear that the main challenge with Continuous Delivery are to decide on
the packaging format and the configuration strategy.

6.3.1. Concept

For being able to easily start and use a component (R.4), we are packaging the artefact from
Continuous Integration to make it executable. This process is automated by the build server
(R.2). Once all the components from every partner have been packaged getting an instance of
the application as a whole is comparatively low effort (R.5).

In contrast to the integration pipeline, not all repositories will have a delivery pipeline.
Instead, multiple build artefacts can be combined to one packages artefact. For each packaged
artefact, a root repository is selected that defines the delivery pipeline.

Similar to the integration pipeline, the process of packaging the component is specific to each
repository. While the packaging format should usually be consistent for every component, it
might be necessary to integrate with other build artefacts and external components, which is
the task of the delivery pipeline.

While Continuous Anything does not demand for a specific packaging format on the concept
level, the format should be (i) lightweight, to keep the delivery feedback cycle short, (ii) self-
contained, to make acceptance testing easier, and (iii) configurable to cater for usage in different
scenarios.

In order to support closed artefacts (R.CDel.3), we enhance the build server with a custom
API that maintainers of closed artefacts are supposed to invoke (either automatically or
manually) when a new version of their binary is available. This will then trigger the delivery
pipeline for that artefact, if available or the delivery pipeline of artefacts that make use of it.

6.3.2. Selected tooling

Our approach does not impose any specific packaging format. Yet, for artefacts with standard
demands, we encourage the use of Docker images, as they offer a good trade-off between
isolation and ease of use. Containers are not as heavy weight as virtual machines, but still
the software runs isolated. The resulting Docker images are pushed to an image repository,
which is internal to GitLab for private artefacts or the public Docker hub for public ones.

For configuration, we suggest the use of environment variables for Docker containers as
encouraged by good practises. For acceptance testing, we use the Selenium framework that
enables record and playback of user interaction on interfaces.

6.3.3. Tooling alternatives

For packaging scenarios that demand higher isolation, virtual machines are the best choice.
Here, Packer is a tool for the automated generation of virtual machine images. For configuration
management, Puppet is an option, whereas for instance the Debian Package Manager can be
used for creating distribution packages.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

41

6.2.1. Concepts

Due to the openness towards programming languages, the build server needs to cater for any
reasonable programming language (R.E). We achieve that through specialised build envi-
ronments. These build environments are used for the automated compiling and testing the
components code (R.2) and are easily configurable and versioned (R.B) by the researchers
themselves (R.1, R.3). The downloadable build artefacts are stored in the repository (R.C)
with the appropriate access rights.

Access rights to each repository can be specifically set with permissions ranging from pri-
vate (R.CI.2) over internal to public. Sometimes one (e.g. an industry partner) is not able to
share their code or configuration parameters with the whole consortium or even publicly.
Therefore, we limit access to code and encrypt certain configuration variables so only the
actual owner has access to them (R.CI.2).

Regarding completely closed and private source code, which must not reside on the shared
infrastructure (R.CI.3, R.CDel.3), we make the assumption that the build artefacts of these
component are tested by their owners and their binaries available for use in the project. For
closed binaries, we establish a customised deployment process (R.CDep.3).

6.2.2. Selected tooling

For our approach, we selected Git enhanced with GitLab (R.CI.1) as a source code repository.
The primary reason for selecting this combination is due to state-of-the-art version control
provided by Git as well as the user interface and eco-system provided by GitLab. Each soft-
ware component is stored in an own Git repository.

As a build server we use GitLab Runner. On the one hand side this is due to its deep integra-
tion with GitLab, but on the other hand side, this is also due to its openness and flexibility also
in supporting exotic demands (e.g. R.E). It achieves this, by enabling the use of custom build
environments, giving the research teams a maximum amount of control.

Technically, each repository defines the build environment of the component stored in that
repository. The environment also defines the integration pipeline and contains at least the two
mandatory steps compiling and testing. When triggered, builds, and tests get executed in an
instance of the defined build environment.

Due to the fact that we do not impose any programming languages, we do not rely on any
specific build and dependency management frameworks. The same is true for testing frame-
works. Here, the only requirement is that it can be included in the pipeline.

6.2.3. Tooling alternatives

The functionality we achieve through our set-up can also be realised through the use of other
tools. For instance, Mercurial or SVN could be used as source code repository. Jenkins and
Travis are alternatives for build servers.

With respect to build automation Maven is the de-facto standard for Java, while C program-
mers rely on make and pip could be used for Python. Testing can be implemented by JUnit or
one of its derivatives for other languages.

Dependability Engineering40

6.3. Continuous Delivery

From Section 4, it is clear that the main challenge with Continuous Delivery are to decide on
the packaging format and the configuration strategy.

6.3.1. Concept

For being able to easily start and use a component (R.4), we are packaging the artefact from
Continuous Integration to make it executable. This process is automated by the build server
(R.2). Once all the components from every partner have been packaged getting an instance of
the application as a whole is comparatively low effort (R.5).

In contrast to the integration pipeline, not all repositories will have a delivery pipeline.
Instead, multiple build artefacts can be combined to one packages artefact. For each packaged
artefact, a root repository is selected that defines the delivery pipeline.

Similar to the integration pipeline, the process of packaging the component is specific to each
repository. While the packaging format should usually be consistent for every component, it
might be necessary to integrate with other build artefacts and external components, which is
the task of the delivery pipeline.

While Continuous Anything does not demand for a specific packaging format on the concept
level, the format should be (i) lightweight, to keep the delivery feedback cycle short, (ii) self-
contained, to make acceptance testing easier, and (iii) configurable to cater for usage in different
scenarios.

In order to support closed artefacts (R.CDel.3), we enhance the build server with a custom
API that maintainers of closed artefacts are supposed to invoke (either automatically or
manually) when a new version of their binary is available. This will then trigger the delivery
pipeline for that artefact, if available or the delivery pipeline of artefacts that make use of it.

6.3.2. Selected tooling

Our approach does not impose any specific packaging format. Yet, for artefacts with standard
demands, we encourage the use of Docker images, as they offer a good trade-off between
isolation and ease of use. Containers are not as heavy weight as virtual machines, but still
the software runs isolated. The resulting Docker images are pushed to an image repository,
which is internal to GitLab for private artefacts or the public Docker hub for public ones.

For configuration, we suggest the use of environment variables for Docker containers as
encouraged by good practises. For acceptance testing, we use the Selenium framework that
enables record and playback of user interaction on interfaces.

6.3.3. Tooling alternatives

For packaging scenarios that demand higher isolation, virtual machines are the best choice.
Here, Packer is a tool for the automated generation of virtual machine images. For configuration
management, Puppet is an option, whereas for instance the Debian Package Manager can be
used for creating distribution packages.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

41

For configuration through key values stores, a myriad of different tools exists, ranging from
Consul to classic databases, for example, MySQL, or even NoSQL databases, for example,
MongoDB.

6.4. Continuous Deployment

Building on the decision we made in Section 6.3 by choosing Docker as packaging format, we
need to align that to the additional requirements we set in Section 5. The following shows how
we implement the Continuous Deployment of said containers.

6.4.1. Concept

We usually use the three basic environments development, stating, and production unless
the project has special demands (R.CDep.1). Each repository with a delivery pipeline also has
a deployment pipeline that automatically updates the development environment once a new
packed artefact is available. Based on the development environment, the transitions between
the other stages are handled as follows (R.CDep.2): (i) Upon manual decision, the artefacts
deployed to development get redeployed in staging by overwriting the previous version. In
addition, state from production is copied to staging for testing purposes. (ii) Going from stag-
ing to production is similar, except that no data are copied.

All environments are handled by an orchestrator and operated on a project-hosted infra-
structure (R.CDep.4). For enabling state transition (R.CDep.2), this infrastructure comes with
volumes to persist state and support mapping of state. For dealing with disclosed artefacts
(R.CDep.3), we allow that callbacks are registered for each of them. These callbacks are used
in order to trigger a new deployment or reset of the respective deployed artefact, as well as a
transition of these deployed artefacts between their environments. The realisation of the call-
back is dependent on the responsible for the artefact. In addition, we introduce another API
at the build server that owners of the closed artefact shall use to notify the environment about
changes in their environment.

6.4.2. Selected tooling

The deployment in our system is done by the Rancher orchestration tool. For artefacts realised
as containers, Rancher applies rancher-compose and docker-compose.yml files. These
describe the actual configuration and a representation of the artefact to be deployed. Here, we
can define the container (or virtual machine) image to use, the location of the state, and the
desired configuration. Rancher also enables integrating external components.

6.4.3. Tooling alternatives

For orchestration of containers and virtual machines a plethora of different tools exist. These
are either cloud-provider specific such as Amazon CloudFormation and OpenStack Heat, or
reside outside the platform. In earlier work, we compare the features of these tools [19].

Dependability Engineering42

7. Discussions

Koetter et al. [10] are arguing that due to the tight schedule and different commitment of part-
ners, a prototype integration is hard to achieve as it is too costly. This leads to only partially
integrated systems that do not fully support all features. We argue that with our system,
we have a clear and easy integration workflow that can be adopted by almost any (distrib-
uted) team with modern software development lifecycles and be adapted to existing ones.
Therefore, we believe that our approach tackles the reported requirements and issues. Yet,
our approach described in Section 6 is just one solution, from an overwhelming number of
choices to make regarding the selection of tools and methods to realise Continuous Anything.
The best possible technical realisation depends on what is currently used at the sides of the
consortium members and familiarity of tools.

Nevertheless, team agreement as well as a clearly communicated and implemented meth-
odology is more important than tool selection. The latter should always follow actual needs.

7.1. Project management culture

While Continuous Anything comes natural with the application of agile software develop-
ment strategies, these are less an issue in distributed research projects. In this environment,
it is hard to impossible to organise for instance daily stand up meetings or even weekly or
bi-weekly sprints. As elaborated in Section 2 this is due to different schedules of the various
stakeholders, the fact that barely anyone in the distributed team is dedicated full time to
software development, and particularly that people travel a lot in order to promote the actual
research work they do.

A possible way to work around the lack of a central pillar of the overall approach is to isolate
responsibilities as much as possible and to only assign people from individual organisations
to particular software components and have them organise the development process inter-
nally. This is the task of the project management.

A further core task of the project management besides organising the necessary infrastructure
is to make sure that the integration strategy is rigorously followed from the beginning. This
comprises the absence of shadow code, a common, shared understanding of how to use version
control systems and when to apply changes to the master branch and other branches.

7.2. Software development culture

From all methodologies discussed, Continuous Integration can bring the most benefit. It is impor-
tant to note, though, that everyone in the team has to agree on these practices being used. This
might create some new pain points within the development team, but it is crucial that everyone
understand the principles and share a common goal. This explicitly means that a non-trivial effort
should be spent on test coverage. It is worth mentioning that for research-oriented environments
daily commits of code are not necessary, but rather weekly or half-weekly commits are sufficient.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

43

For configuration through key values stores, a myriad of different tools exists, ranging from
Consul to classic databases, for example, MySQL, or even NoSQL databases, for example,
MongoDB.

6.4. Continuous Deployment

Building on the decision we made in Section 6.3 by choosing Docker as packaging format, we
need to align that to the additional requirements we set in Section 5. The following shows how
we implement the Continuous Deployment of said containers.

6.4.1. Concept

We usually use the three basic environments development, stating, and production unless
the project has special demands (R.CDep.1). Each repository with a delivery pipeline also has
a deployment pipeline that automatically updates the development environment once a new
packed artefact is available. Based on the development environment, the transitions between
the other stages are handled as follows (R.CDep.2): (i) Upon manual decision, the artefacts
deployed to development get redeployed in staging by overwriting the previous version. In
addition, state from production is copied to staging for testing purposes. (ii) Going from stag-
ing to production is similar, except that no data are copied.

All environments are handled by an orchestrator and operated on a project-hosted infra-
structure (R.CDep.4). For enabling state transition (R.CDep.2), this infrastructure comes with
volumes to persist state and support mapping of state. For dealing with disclosed artefacts
(R.CDep.3), we allow that callbacks are registered for each of them. These callbacks are used
in order to trigger a new deployment or reset of the respective deployed artefact, as well as a
transition of these deployed artefacts between their environments. The realisation of the call-
back is dependent on the responsible for the artefact. In addition, we introduce another API
at the build server that owners of the closed artefact shall use to notify the environment about
changes in their environment.

6.4.2. Selected tooling

The deployment in our system is done by the Rancher orchestration tool. For artefacts realised
as containers, Rancher applies rancher-compose and docker-compose.yml files. These
describe the actual configuration and a representation of the artefact to be deployed. Here, we
can define the container (or virtual machine) image to use, the location of the state, and the
desired configuration. Rancher also enables integrating external components.

6.4.3. Tooling alternatives

For orchestration of containers and virtual machines a plethora of different tools exist. These
are either cloud-provider specific such as Amazon CloudFormation and OpenStack Heat, or
reside outside the platform. In earlier work, we compare the features of these tools [19].

Dependability Engineering42

7. Discussions

Koetter et al. [10] are arguing that due to the tight schedule and different commitment of part-
ners, a prototype integration is hard to achieve as it is too costly. This leads to only partially
integrated systems that do not fully support all features. We argue that with our system,
we have a clear and easy integration workflow that can be adopted by almost any (distrib-
uted) team with modern software development lifecycles and be adapted to existing ones.
Therefore, we believe that our approach tackles the reported requirements and issues. Yet,
our approach described in Section 6 is just one solution, from an overwhelming number of
choices to make regarding the selection of tools and methods to realise Continuous Anything.
The best possible technical realisation depends on what is currently used at the sides of the
consortium members and familiarity of tools.

Nevertheless, team agreement as well as a clearly communicated and implemented meth-
odology is more important than tool selection. The latter should always follow actual needs.

7.1. Project management culture

While Continuous Anything comes natural with the application of agile software develop-
ment strategies, these are less an issue in distributed research projects. In this environment,
it is hard to impossible to organise for instance daily stand up meetings or even weekly or
bi-weekly sprints. As elaborated in Section 2 this is due to different schedules of the various
stakeholders, the fact that barely anyone in the distributed team is dedicated full time to
software development, and particularly that people travel a lot in order to promote the actual
research work they do.

A possible way to work around the lack of a central pillar of the overall approach is to isolate
responsibilities as much as possible and to only assign people from individual organisations
to particular software components and have them organise the development process inter-
nally. This is the task of the project management.

A further core task of the project management besides organising the necessary infrastructure
is to make sure that the integration strategy is rigorously followed from the beginning. This
comprises the absence of shadow code, a common, shared understanding of how to use version
control systems and when to apply changes to the master branch and other branches.

7.2. Software development culture

From all methodologies discussed, Continuous Integration can bring the most benefit. It is impor-
tant to note, though, that everyone in the team has to agree on these practices being used. This
might create some new pain points within the development team, but it is crucial that everyone
understand the principles and share a common goal. This explicitly means that a non-trivial effort
should be spent on test coverage. It is worth mentioning that for research-oriented environments
daily commits of code are not necessary, but rather weekly or half-weekly commits are sufficient.

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

43

Continuous Delivery is especially helpful for research projects, since the described Big Bang
Integrations usually happen multiple times during a project lifecycle; each time with a high
risk of failing. The risk to failure puts a lot of stress on the whole consortium. In contrast, real-
ising Continuous Delivery does not introduce new challenges except agreeing on a common
packaging format.

Once Continuous Delivery has been realised, implementing Continuous Deployment is low
effort. It is a crucial step to lower the effort for all consortium members to get access to a run-
ning instance of the project outcome.

8. Conclusions

In this chapter, we have presented our approach of Continuous Anything, a combination of
Continuous Integration, Continuous Delivery, and Continuous Deployment in order to sup-
port the prototype integration to distributed research projects.

Our approach makes prototype integration a core element of the project plan and puts it on
the same level as project management and financial administration. It does so by defining a
framework that distributes and shares responsibility of integration work while at the same time
clearly holding individuals responsible for dedicated software components. Through a high
degree of automation, it keeps the overall integration work low, but still provides immediate
feedback on the quality of the integration status. It is important to note that the quality of indi-
vidual software components remains in the hands of their developers. It is them who decide
which and if unit tests are necessary. In contrast, our framework requires that integration tests
be available that ensure that interfaces between components work as intended. This approach
allows an easy isolation of errors and the identification of responsible programmers in case of
failures or problems.

Acknowledgements

This work has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under grant agreements No. 732667 (RECAP), 732258 (CloudPerfect), and
644690 (CloudSocket).

Author details

Simon Volpert, Frank Griesinger and Jörg Domaschka*

*Address all correspondence to: joerg.domaschka@uni-ulm.de

Institute of Information Resource Management, Ulm University, Ulm, Germany

Dependability Engineering44

References

[1] Rother M. Toyota Kata. United States: McGraw-Hill Professional Publishing; 2009

[2] Duvall PM, Matyas S, Glover A. Continuous Integration: Improving Software Quality and
Reducing Risk. Pearson Education; 2007

[3] Marick B. How to misuse code coverage. In: Proceedings of the 16th International Con-
ference on Testing Computer Software; 1999. pp. 16-18. http://www.exampler.com/test-
ing-com/writings/coverage.pdf

[4] Fowler M. Testing Strategies in a Microservice-Architecture [Internet]. Nov 18, 2014.
Available from: https:// martinfowler.com/articles/microservice-testing/ [Accessed: July
15, 2017]

[5] Fowler M. Continuous Integration [Internet]. May 1, 2006. Available from: https://www.
martinfowler.com/articles/continuousIntegration.html [Accessed: July 15, 2017]

[6] Sandberg AB, Crnkovic I. Meeting industry: Academia research collaboration chal-
lenges with agile methodologies. In: Proceedings of the 39th International Conference
on Software Engineering: Software Engineering in Practice Track. Piscataway, NJ, USA:
IEEE Press; 2017

[7] Eddy BP et al. CDEP: Continuous delivery educational pipeline. In: Proceedings of the
SouthEast Conference. New York, NY, USA: ACM; 2017

[8] Guillot I et al. Case studies of industry-academia research collaborations for software devel-
opment with agile. In: CYTED-RITOS International Workshop on Groupware. Springer;
2017

[9] Fagerholm F et al. The RIGHT model for continuous experimentation. Journal of Systems
and Software. 2017;123:292-305

[10] Koetter F, Kochanowski M, Maier F, Renner T. Together, yet apart – The research prototype
architecture dilemma. CLOSER 2017 Proceedings of the 7th International Conference on
Cloud Computing and Services Science. Porto, Portugal: SciTePress; April 24-26, 2017.
pp. 646-653

[11] Eckstein J. Agile Software Development with Distributed Teams: Staying Agile in a Global
World. United States: Addison-Wesley; 2013

[12] Sharma S, editor. The DevOps Adoption Playbook: A Guide to Adopting DevOps in a
Multi-Speed IT Enterprise. United States: Wiley; 2017

[13] Humble J, Farley D. Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation. UK: Pearson Education; 2010

[14] Davis J, Daniels K. Effective DevOps: Building a Culture of Collaboration, Affinity, and
Tooling at Scale. US: O'Reilly Media, Inc.; 2016

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

45

Continuous Delivery is especially helpful for research projects, since the described Big Bang
Integrations usually happen multiple times during a project lifecycle; each time with a high
risk of failing. The risk to failure puts a lot of stress on the whole consortium. In contrast, real-
ising Continuous Delivery does not introduce new challenges except agreeing on a common
packaging format.

Once Continuous Delivery has been realised, implementing Continuous Deployment is low
effort. It is a crucial step to lower the effort for all consortium members to get access to a run-
ning instance of the project outcome.

8. Conclusions

In this chapter, we have presented our approach of Continuous Anything, a combination of
Continuous Integration, Continuous Delivery, and Continuous Deployment in order to sup-
port the prototype integration to distributed research projects.

Our approach makes prototype integration a core element of the project plan and puts it on
the same level as project management and financial administration. It does so by defining a
framework that distributes and shares responsibility of integration work while at the same time
clearly holding individuals responsible for dedicated software components. Through a high
degree of automation, it keeps the overall integration work low, but still provides immediate
feedback on the quality of the integration status. It is important to note that the quality of indi-
vidual software components remains in the hands of their developers. It is them who decide
which and if unit tests are necessary. In contrast, our framework requires that integration tests
be available that ensure that interfaces between components work as intended. This approach
allows an easy isolation of errors and the identification of responsible programmers in case of
failures or problems.

Acknowledgements

This work has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under grant agreements No. 732667 (RECAP), 732258 (CloudPerfect), and
644690 (CloudSocket).

Author details

Simon Volpert, Frank Griesinger and Jörg Domaschka*

*Address all correspondence to: joerg.domaschka@uni-ulm.de

Institute of Information Resource Management, Ulm University, Ulm, Germany

Dependability Engineering44

References

[1] Rother M. Toyota Kata. United States: McGraw-Hill Professional Publishing; 2009

[2] Duvall PM, Matyas S, Glover A. Continuous Integration: Improving Software Quality and
Reducing Risk. Pearson Education; 2007

[3] Marick B. How to misuse code coverage. In: Proceedings of the 16th International Con-
ference on Testing Computer Software; 1999. pp. 16-18. http://www.exampler.com/test-
ing-com/writings/coverage.pdf

[4] Fowler M. Testing Strategies in a Microservice-Architecture [Internet]. Nov 18, 2014.
Available from: https:// martinfowler.com/articles/microservice-testing/ [Accessed: July
15, 2017]

[5] Fowler M. Continuous Integration [Internet]. May 1, 2006. Available from: https://www.
martinfowler.com/articles/continuousIntegration.html [Accessed: July 15, 2017]

[6] Sandberg AB, Crnkovic I. Meeting industry: Academia research collaboration chal-
lenges with agile methodologies. In: Proceedings of the 39th International Conference
on Software Engineering: Software Engineering in Practice Track. Piscataway, NJ, USA:
IEEE Press; 2017

[7] Eddy BP et al. CDEP: Continuous delivery educational pipeline. In: Proceedings of the
SouthEast Conference. New York, NY, USA: ACM; 2017

[8] Guillot I et al. Case studies of industry-academia research collaborations for software devel-
opment with agile. In: CYTED-RITOS International Workshop on Groupware. Springer;
2017

[9] Fagerholm F et al. The RIGHT model for continuous experimentation. Journal of Systems
and Software. 2017;123:292-305

[10] Koetter F, Kochanowski M, Maier F, Renner T. Together, yet apart – The research prototype
architecture dilemma. CLOSER 2017 Proceedings of the 7th International Conference on
Cloud Computing and Services Science. Porto, Portugal: SciTePress; April 24-26, 2017.
pp. 646-653

[11] Eckstein J. Agile Software Development with Distributed Teams: Staying Agile in a Global
World. United States: Addison-Wesley; 2013

[12] Sharma S, editor. The DevOps Adoption Playbook: A Guide to Adopting DevOps in a
Multi-Speed IT Enterprise. United States: Wiley; 2017

[13] Humble J, Farley D. Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation. UK: Pearson Education; 2010

[14] Davis J, Daniels K. Effective DevOps: Building a Culture of Collaboration, Affinity, and
Tooling at Scale. US: O'Reilly Media, Inc.; 2016

Continuous Anything for Distributed Research Projects
http://dx.doi.org/10.5772/intechopen.72045

45

[15] Kim G et al. The DevOps Handbook: How to Create World-Class Agility, Reliability, and
Security in Technology Organizations: IT Revolution Press; 2016

[16] Boehm BW. A spiral model of software development and enhancement. Computer. 1988;
21(5):61-72

[17] Beck K et al. Manifesto for Agile Software Development [Internet]. 2001. Available from:
http://agilemanifesto.org [Accessed: July 15, 2017]

[18] Booch G. Object oriented design with applications. Redwood City, CA, USA: Benjamin-
Cummings Publishing Co., Inc.; 1991. ISBN: 0-8053-0091-0

[19] Baur D, Seybold D, Griesinger F, Tsitsipas A, Hauser CB, Domaschka J. Cloud orchestra-
tion features: Are tools fit for purpose? In: 8th International Conference on Utility and
Cloud Computing. Piscataway, NJ, USA: IEEE Computer Society; 2015

Dependability Engineering46

Chapter 4

Software Fault Injection: A Practical Perspective

Lena Feinbube, Lukas Pirl and Andreas Polze

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.70427

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.70427

Software Fault Injection: A Practical Perspective

Lena Feinbube, Lukas Pirl and Andreas Polze

Additional information is available at the end of the chapter

Abstract

Software fault injection (SFI) is an acknowledged method for assessing the dependability
of software systems. After reviewing the state-of-the-art of SFI, we address the challenge
of integrating it deeper into software development practice. We present a well-defined
development methodology incorporating SFI—fault injection driven development
(FIDD)—which begins by systematically constructing a dependability and failure cause
model, from which relevant injection techniques, points, and campaigns are derived. We
discuss possibilities and challenges for the end-to-end automation of such campaigns.
The suggested approach can substantially improve the accessibility of dependability
assessment in everyday software engineering practice.

Keywords: fault injection, dependability, fault tolerance, testing, test-driven development

1. Introduction

On 22 October 2012, a major service degradation at Amazon Web Services (AWS)1 affected
several popular online services for several hours. It was caused by a latent memory leak bug,
activated under stress due to a failed domain name system (DNS) update after a hardware
maintenance event. The leaky software agent repeatedly tried in vain to contact the replaced
server. In this process, memory was leaked until customer requests could no longer be handled.

AWS is a system so complex that it challenges exhaustive formal verification. The issue could,
however, have been anticipated by structured experimental dependability assessment, e.g.,
using fault injection. Indeed, Netflix customers remained unaffected.2 Resiliency testing had
prepared the company for such events, and failover of Netflix servers worked quickly.

1http://aws.amazon.com/de/message/680342/
2http://techblog.netflix.com/2012/10/post-mortem-of-october-222012-aws.html

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[15] Kim G et al. The DevOps Handbook: How to Create World-Class Agility, Reliability, and
Security in Technology Organizations: IT Revolution Press; 2016

[16] Boehm BW. A spiral model of software development and enhancement. Computer. 1988;
21(5):61-72

[17] Beck K et al. Manifesto for Agile Software Development [Internet]. 2001. Available from:
http://agilemanifesto.org [Accessed: July 15, 2017]

[18] Booch G. Object oriented design with applications. Redwood City, CA, USA: Benjamin-
Cummings Publishing Co., Inc.; 1991. ISBN: 0-8053-0091-0

[19] Baur D, Seybold D, Griesinger F, Tsitsipas A, Hauser CB, Domaschka J. Cloud orchestra-
tion features: Are tools fit for purpose? In: 8th International Conference on Utility and
Cloud Computing. Piscataway, NJ, USA: IEEE Computer Society; 2015

Dependability Engineering46

Chapter 4

Software Fault Injection: A Practical Perspective

Lena Feinbube, Lukas Pirl and Andreas Polze

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.70427

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.70427

Software Fault Injection: A Practical Perspective

Lena Feinbube, Lukas Pirl and Andreas Polze

Additional information is available at the end of the chapter

Abstract

Software fault injection (SFI) is an acknowledged method for assessing the dependability
of software systems. After reviewing the state-of-the-art of SFI, we address the challenge
of integrating it deeper into software development practice. We present a well-defined
development methodology incorporating SFI—fault injection driven development
(FIDD)—which begins by systematically constructing a dependability and failure cause
model, from which relevant injection techniques, points, and campaigns are derived. We
discuss possibilities and challenges for the end-to-end automation of such campaigns.
The suggested approach can substantially improve the accessibility of dependability
assessment in everyday software engineering practice.

Keywords: fault injection, dependability, fault tolerance, testing, test-driven development

1. Introduction

On 22 October 2012, a major service degradation at Amazon Web Services (AWS)1 affected
several popular online services for several hours. It was caused by a latent memory leak bug,
activated under stress due to a failed domain name system (DNS) update after a hardware
maintenance event. The leaky software agent repeatedly tried in vain to contact the replaced
server. In this process, memory was leaked until customer requests could no longer be handled.

AWS is a system so complex that it challenges exhaustive formal verification. The issue could,
however, have been anticipated by structured experimental dependability assessment, e.g.,
using fault injection. Indeed, Netflix customers remained unaffected.2 Resiliency testing had
prepared the company for such events, and failover of Netflix servers worked quickly.

1http://aws.amazon.com/de/message/680342/
2http://techblog.netflix.com/2012/10/post-mortem-of-october-222012-aws.html

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

This incident highlights a central issue with the current state of dependability research. There
is a vast gap between the impressive theoretical achievements made in past decades, includ-
ing various formal methods, and real-world software engineering practice.

Similar incidents suggest that efforts to increase systems’ dependability should be shifted toward
the software layers. As complexity grows, these concerns are becoming ever more challenging.

2. Fundamentals

Software dependability research is as old as the science of computing itself. In the early nine-
teenth century, Charles Babbage designed his famous difference engines with the main intent
of reducing the error rate in complex mathematical computations [1].

As we have started to rely on software in many safety-critical aspects of our daily lives,
software dependability is more relevant than ever. At the same time, the problem is getting
harder. If the number of flaws (bugs) per source code lines is roughly constant, software
projects increasing in code size would become more and more prone to failures. This is aggra-
vated by the complexity caused by the interaction of different components.

Therefore, software dependability needs to take a holistic, system-wide approach, and
dependability means need to scale to increasingly complex software projects. This includes
means for fault forecasting and dependability assessment, which are the focus of this chapter.

2.1. Terminology

Software dependability has been characterized by a broad range of terminology [2]. We
employ the wording by Avižienis, Kanoun, Kopetz, Landwehr, Laprie, and Randell, described
in multiple documents dated between 1985 and 2004. The most comprehensive version [3] is
used as main reference. In this terminology, dependability is threatened first by faults:

A fault is the adjudged or hypothesized cause of an error.

In software, the terms bug, defect, or flaw are often used as synonyms for fault. When activated,
a fault can lead to an undesired system state, denoted as error:

An error is that part of the system state that may cause a subsequent failure.

There is an n:m relationship between faults and their resulting error states. A fault, when
activated under varying environmental and internal conditions, might lead to different error
states. In turn, each error state might be caused by different—potentially multiple—faults.
Finally, error states may lead to an externally visible failure:

A system failure is an event that occurs when the delivered service deviates from correct service.

2.2. Dependability assessment

How can the dependability of a complex software system be assessed and compared with
other versions or other systems?

Dependability Engineering48

The complexity of software is caused by three factors:

1. The internal state space of the program, given by all variables and their values.

2. The space of input and output values of the program, which may be infinite.

3. Interaction with the environment, which is influenced, for instance, by scheduling, resource
states, and interfaces to other software components.

These complexities challenge the scalability of any dependability assessment approach. There
are two ends to the spectrum of such methodologies, which we classify as formal methods and
empirical methods. While the spectrum is continuous and the boundaries may be fuzzy, the
main differences lie in their coverage, in the assets they use (static source code vs. runtime
information), and in the scalability to large software systems.

The aim of formal methods is to exhaustively prove that a program (an implementation)
obeys a specification. Various efforts toward complete formal software verification have been
made despite theoretical limitations as well as scalability issues.

Empirical methods for software dependability take the approach of showing that a software
system operates correctly at the example of one or many executions of the program. While
such approaches never provide absolute guarantees, they are generally better scalable and
applicable to larger, more complex, and rapidly evolving systems. Of course, as the often-
cited Dijkstra famously noted,3

Program testing can be used to show the presence of bugs, but never to show their absence!

2.3. Software fault injection

Software fault injection (SFI) denotes the artificial insertion—injection—of faults and error states
into a running software system. It can be applied beyond the limits of formal verification
methods because it does not assume a complete formal specification of the system under test.
The experimental approach of SFI can be implemented efficiently and with little intrusiveness.

In the simplest case, SFI can confront an interface with randomly generated values. More
sophisticated SFI operates based on detailed failure cause models and can rely on formal speci-
fications to work more efficiently and to guarantee certain fault space coverage criteria. SFI tools
can compare the dependability of different systems and answer research questions such as:

• How high is the coverage of fault tolerance mechanisms and how well do they work?

• How do faults influence quality metrics such as performance, precision, or availability?

• Are there single points of failure in the system?

Fault injection can be considered a complimentary technique to software testing. While soft-
ware tests are designed to assert correct behavior of the system under a representative work-
load, fault injection asserts correct behavior under an additional faultload.

3https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html

Software Fault Injection: A Practical Perspective
http://dx.doi.org/10.5772/intechopen.70427

49

This incident highlights a central issue with the current state of dependability research. There
is a vast gap between the impressive theoretical achievements made in past decades, includ-
ing various formal methods, and real-world software engineering practice.

Similar incidents suggest that efforts to increase systems’ dependability should be shifted toward
the software layers. As complexity grows, these concerns are becoming ever more challenging.

2. Fundamentals

Software dependability research is as old as the science of computing itself. In the early nine-
teenth century, Charles Babbage designed his famous difference engines with the main intent
of reducing the error rate in complex mathematical computations [1].

As we have started to rely on software in many safety-critical aspects of our daily lives,
software dependability is more relevant than ever. At the same time, the problem is getting
harder. If the number of flaws (bugs) per source code lines is roughly constant, software
projects increasing in code size would become more and more prone to failures. This is aggra-
vated by the complexity caused by the interaction of different components.

Therefore, software dependability needs to take a holistic, system-wide approach, and
dependability means need to scale to increasingly complex software projects. This includes
means for fault forecasting and dependability assessment, which are the focus of this chapter.

2.1. Terminology

Software dependability has been characterized by a broad range of terminology [2]. We
employ the wording by Avižienis, Kanoun, Kopetz, Landwehr, Laprie, and Randell, described
in multiple documents dated between 1985 and 2004. The most comprehensive version [3] is
used as main reference. In this terminology, dependability is threatened first by faults:

A fault is the adjudged or hypothesized cause of an error.

In software, the terms bug, defect, or flaw are often used as synonyms for fault. When activated,
a fault can lead to an undesired system state, denoted as error:

An error is that part of the system state that may cause a subsequent failure.

There is an n:m relationship between faults and their resulting error states. A fault, when
activated under varying environmental and internal conditions, might lead to different error
states. In turn, each error state might be caused by different—potentially multiple—faults.
Finally, error states may lead to an externally visible failure:

A system failure is an event that occurs when the delivered service deviates from correct service.

2.2. Dependability assessment

How can the dependability of a complex software system be assessed and compared with
other versions or other systems?

Dependability Engineering48

The complexity of software is caused by three factors:

1. The internal state space of the program, given by all variables and their values.

2. The space of input and output values of the program, which may be infinite.

3. Interaction with the environment, which is influenced, for instance, by scheduling, resource
states, and interfaces to other software components.

These complexities challenge the scalability of any dependability assessment approach. There
are two ends to the spectrum of such methodologies, which we classify as formal methods and
empirical methods. While the spectrum is continuous and the boundaries may be fuzzy, the
main differences lie in their coverage, in the assets they use (static source code vs. runtime
information), and in the scalability to large software systems.

The aim of formal methods is to exhaustively prove that a program (an implementation)
obeys a specification. Various efforts toward complete formal software verification have been
made despite theoretical limitations as well as scalability issues.

Empirical methods for software dependability take the approach of showing that a software
system operates correctly at the example of one or many executions of the program. While
such approaches never provide absolute guarantees, they are generally better scalable and
applicable to larger, more complex, and rapidly evolving systems. Of course, as the often-
cited Dijkstra famously noted,3

Program testing can be used to show the presence of bugs, but never to show their absence!

2.3. Software fault injection

Software fault injection (SFI) denotes the artificial insertion—injection—of faults and error states
into a running software system. It can be applied beyond the limits of formal verification
methods because it does not assume a complete formal specification of the system under test.
The experimental approach of SFI can be implemented efficiently and with little intrusiveness.

In the simplest case, SFI can confront an interface with randomly generated values. More
sophisticated SFI operates based on detailed failure cause models and can rely on formal speci-
fications to work more efficiently and to guarantee certain fault space coverage criteria. SFI tools
can compare the dependability of different systems and answer research questions such as:

• How high is the coverage of fault tolerance mechanisms and how well do they work?

• How do faults influence quality metrics such as performance, precision, or availability?

• Are there single points of failure in the system?

Fault injection can be considered a complimentary technique to software testing. While soft-
ware tests are designed to assert correct behavior of the system under a representative work-
load, fault injection asserts correct behavior under an additional faultload.

3https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html

Software Fault Injection: A Practical Perspective
http://dx.doi.org/10.5772/intechopen.70427

49

3. Software fault injection—state-of-the-art

Fault injection is a versatile tool for dependability assessment. When an injected fault causes
a system failure, this can indicate insufficient fault tolerance mechanisms. In general, the sys-
tem can only be assumed robust and dependable when all its layers and components are fault
tolerant and their fault tolerance has been verified empirically or formally.

Various fault injection implementation strategies with different characteristics exist. One clas-
sification thereof was given in Ref. [4] and is presented here in an adapted form.

Any fault injection tool relies on a trigger mechanism that causes the artificially generated
fault or error to be inserted into normal program execution:

• Time-based: fault injection takes place at predetermined time intervals.

• Location-based: faulty values are written into predefined memory locations.

• Execution-driven: fault injection occurs dynamically, depending on the control flow.

While time-based fault injection can often easily be implemented non-intrusively, this is
not the case for location-based fault injection, which is suitable for memory corruption, but
impedes controlling the fault load dynamically. Execution-based fault injection allows for
complex and realistic fault models, but is also not applicable to black box applications.

SFI can take place at different injection times:

• Before runtime: the program is modified upfront, for instance, by using source code muta-
tion to add faults (software bugs) to the code.

• During runtime: faults are injected during program execution.

• At the loading time of external components: here, injection triggers may be the dynamic bind-
ing of external libraries or the adding of other dependencies during runtime.

Further, we distinguish between synchronous triggers, such as exception handling mecha-
nisms, and asynchronous triggers, such as hardware interrupts.

Another question is which representations of a program, called injection artifacts, are to
modify for fault injection purposes:

• Machine language or binary files

• Intermediate representations of the source code

• Source code

In general, as with other testing and profiling approaches, the behavior of a software system
inevitably changes under faultload. To minimize this change, approaches should be as little
intrusive as possible. The questions which fault injection approach to use, when to, and where
to apply it using which faultload determine the effectiveness and efficiency of SFI.

Dependability Engineering50

3.1. Software fault injection approaches

A comprehensive survey of SFI techniques has been presented by Natella et al. [5]. This sec-
tion presents selected SFI tools at different layers of abstraction within the software stack.

3.1.1. Operating system-level fault injection

The tool Ballista [6] has been used to compare different OS′ dependability by exercising sys-
tem calls with both valid and invalid parameters. It bridges the gap between software testing
and SFI by using test input selection methods, based on coverage criteria, to choose adequate
fault injection targets.

Crashme4 is a simple tool that tests the robustness of operating systems by attempting to exe-
cute random byte sequences as procedures. Despite its simplistic nature, crashme uncovered
severe flaws in different operating systems and hypervisors.

Trinity5 was a widely used “fuzzer”—i.e., a tool generating randomized inputs—for Linux
system call interfaces, incorporating knowledge about file pointers and other OS-specific
resource descriptors. The tool has been used to find many bugs in the Linux kernel.

3.1.2. Fault injection at interfaces

Targeting interfaces between software libraries, the SFI tool suite execution driven fault injection
(EDFI) [4], enables the definition of fine-grained fault loads and extensible dynamic fault trig-
gers. It relies on a combination of dynamic and static source code instrumentation.

Library fault injector (LFI) [7] injects faults at the interface between an application and its dynam-
ically linked libraries. It applies binary analysis to obtain a fault model, describing which values
and error codes can be returned from a C-style library and to analyze whether they are handled.

Further language-specific libraries for testing the robustness against interface faults exist,
many of which are included in language runtimes, such as Libfiu6 and Microsoft TestApi.7

3.1.3. Fault injection in distributed systems

In distributed systems, fault injection has a long history, mainly considering hardware and
message passing in their failure cause models.

Orchestra [8] defines an architecture for inserting a protocol fault injection layer in the network
stack, which applies filters to messages sent and received, to inject faults into them.

Chaosmonkey,8 which has evolved into the SimianArmy resiliency testing tool suite, targets
applications built upon AWS by making single-node instances unavailable. The approach of

4http://people.delphiforums.com/gjc/crashme.html
5https://codemonkey.org.uk/projects/trinity/
6https://blitiri.com.ar/p/libfiu/
7https://testapi.codeplex.com/
8https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey

Software Fault Injection: A Practical Perspective
http://dx.doi.org/10.5772/intechopen.70427

51

3. Software fault injection—state-of-the-art

Fault injection is a versatile tool for dependability assessment. When an injected fault causes
a system failure, this can indicate insufficient fault tolerance mechanisms. In general, the sys-
tem can only be assumed robust and dependable when all its layers and components are fault
tolerant and their fault tolerance has been verified empirically or formally.

Various fault injection implementation strategies with different characteristics exist. One clas-
sification thereof was given in Ref. [4] and is presented here in an adapted form.

Any fault injection tool relies on a trigger mechanism that causes the artificially generated
fault or error to be inserted into normal program execution:

• Time-based: fault injection takes place at predetermined time intervals.

• Location-based: faulty values are written into predefined memory locations.

• Execution-driven: fault injection occurs dynamically, depending on the control flow.

While time-based fault injection can often easily be implemented non-intrusively, this is
not the case for location-based fault injection, which is suitable for memory corruption, but
impedes controlling the fault load dynamically. Execution-based fault injection allows for
complex and realistic fault models, but is also not applicable to black box applications.

SFI can take place at different injection times:

• Before runtime: the program is modified upfront, for instance, by using source code muta-
tion to add faults (software bugs) to the code.

• During runtime: faults are injected during program execution.

• At the loading time of external components: here, injection triggers may be the dynamic bind-
ing of external libraries or the adding of other dependencies during runtime.

Further, we distinguish between synchronous triggers, such as exception handling mecha-
nisms, and asynchronous triggers, such as hardware interrupts.

Another question is which representations of a program, called injection artifacts, are to
modify for fault injection purposes:

• Machine language or binary files

• Intermediate representations of the source code

• Source code

In general, as with other testing and profiling approaches, the behavior of a software system
inevitably changes under faultload. To minimize this change, approaches should be as little
intrusive as possible. The questions which fault injection approach to use, when to, and where
to apply it using which faultload determine the effectiveness and efficiency of SFI.

Dependability Engineering50

3.1. Software fault injection approaches

A comprehensive survey of SFI techniques has been presented by Natella et al. [5]. This sec-
tion presents selected SFI tools at different layers of abstraction within the software stack.

3.1.1. Operating system-level fault injection

The tool Ballista [6] has been used to compare different OS′ dependability by exercising sys-
tem calls with both valid and invalid parameters. It bridges the gap between software testing
and SFI by using test input selection methods, based on coverage criteria, to choose adequate
fault injection targets.

Crashme4 is a simple tool that tests the robustness of operating systems by attempting to exe-
cute random byte sequences as procedures. Despite its simplistic nature, crashme uncovered
severe flaws in different operating systems and hypervisors.

Trinity5 was a widely used “fuzzer”—i.e., a tool generating randomized inputs—for Linux
system call interfaces, incorporating knowledge about file pointers and other OS-specific
resource descriptors. The tool has been used to find many bugs in the Linux kernel.

3.1.2. Fault injection at interfaces

Targeting interfaces between software libraries, the SFI tool suite execution driven fault injection
(EDFI) [4], enables the definition of fine-grained fault loads and extensible dynamic fault trig-
gers. It relies on a combination of dynamic and static source code instrumentation.

Library fault injector (LFI) [7] injects faults at the interface between an application and its dynam-
ically linked libraries. It applies binary analysis to obtain a fault model, describing which values
and error codes can be returned from a C-style library and to analyze whether they are handled.

Further language-specific libraries for testing the robustness against interface faults exist,
many of which are included in language runtimes, such as Libfiu6 and Microsoft TestApi.7

3.1.3. Fault injection in distributed systems

In distributed systems, fault injection has a long history, mainly considering hardware and
message passing in their failure cause models.

Orchestra [8] defines an architecture for inserting a protocol fault injection layer in the network
stack, which applies filters to messages sent and received, to inject faults into them.

Chaosmonkey,8 which has evolved into the SimianArmy resiliency testing tool suite, targets
applications built upon AWS by making single-node instances unavailable. The approach of

4http://people.delphiforums.com/gjc/crashme.html
5https://codemonkey.org.uk/projects/trinity/
6https://blitiri.com.ar/p/libfiu/
7https://testapi.codeplex.com/
8https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey

Software Fault Injection: A Practical Perspective
http://dx.doi.org/10.5772/intechopen.70427

51

injecting faults into deployed systems was first successfully employed by Netflix and has
been adapted by other companies.

With the advent of cloud computing, there has been a paradigm shift from trying to avoid
failures at all costs to embracing faults as opportunities for making the system more resil-
ient. The amount of effort put into the fault tolerance and resilience of cloud applications
is often determined by service level agreements (SLAs), and the trade-offs between devel-
opment effort, costs for redundancy, availability, and consistency are usually application-
specific and based on management decisions.

3.2. Software failure cause models

Software failures are complex in their nature, origins, and manifestations. For SFI, a detailed
understanding of the causality chains leading to software failure is needed. Software failure
causes have been studied in various domains of software engineering research, providing a
broad and heterogeneous spectrum of published models.

In a systematic literature study [2], we found that there is a lack of dynamic fault activation
and error models. Such models are especially relevant for SFI. As shown in Figure 1, most of
the papers—123 out of 156 publications—discuss a static, code-based fault model.

As software is becoming more and more crucial to dependability, so are software-focused
failure cause models. Recent efforts to standardize knowledge about software failure causes
include orthogonal defect classification (ODC) [9] and the common weakness enumeration
(CWE) database.9

Additional layers of abstraction, as introduced, for example, by cloud management stacks,
call for novel and more targeted failure cause models.

9https://cwe.mitre.org

Figure 1. Literature study of failure cause models—most research targets static aspects.

Dependability Engineering52

4. Problem statement

SFI is a versatile tool for dependability assessment and for testing the fault tolerance of increasingly
complex systems. However, it is not yet widely used in real-world software systems outside the
safety-critical and embedded domains. There is a gap between comparatively formal approaches,
such as model-driven engineering, and what we choose to call ad hoc software engineering.

Formal approaches suffer from several limitations. They are successful in rather constrained
domains, where full formal specification and fault modeling are possible. They are generally
not applicable in modern scenarios involving rapidly changing requirements, under specified
execution environments and fast-evolving software dependencies.

On the other hand, ad hoc software engineering is limited to implementing a software sys-
tem according to some partial and informal specification. The resulting product is tested by
its developers—usually without making strong coverage guarantees—and released without
little other dependability assessment.

We assume that ad hoc software engineering constitutes most state-of-the-art software sys-
tems and is currently the most pragmatic approach in many situations, where fully formal-
ized approaches are out of scope for technical as well as organizational reasons.

The following sections suggest how to improve ad hoc software engineering explicitly con-
sidering dependability aspects and by making software fault injection a pivotal dependability
assessment means throughout the development process.

5. Methodology

We introduce Fault Injection Driven Development (FIDD), depicted in Figure 2, which integrates
SFI into the development process. The following sections elaborate on its details.

5.1. Creating a dependability and failure cause model

To make the faultload introduced by SFI representative, two aspects need to be understood:
The dependability model should capture the intended behavior in the presence of faults. This
includes redundancy configurations, as well as error detection and recovery mechanisms. The
failure cause model contains faults, errors, and fault activation conditions [10] that are antici-
pated and somehow addressed in the system architecture.

Modeling can serve to understand a complex system’s dependability aspects to qualita-
tively discuss dependability bottlenecks or to quantitatively evaluate dependability metrics.
Numerous modeling languages with varying expressiveness have been proposed. Here, we
distinguish between structural and behavioral modeling languages.

Structural languages reflect the system structure typically at a higher level of abstraction
such as components. The interactions and error propagation between components are in the

Software Fault Injection: A Practical Perspective
http://dx.doi.org/10.5772/intechopen.70427

53

injecting faults into deployed systems was first successfully employed by Netflix and has
been adapted by other companies.

With the advent of cloud computing, there has been a paradigm shift from trying to avoid
failures at all costs to embracing faults as opportunities for making the system more resil-
ient. The amount of effort put into the fault tolerance and resilience of cloud applications
is often determined by service level agreements (SLAs), and the trade-offs between devel-
opment effort, costs for redundancy, availability, and consistency are usually application-
specific and based on management decisions.

3.2. Software failure cause models

Software failures are complex in their nature, origins, and manifestations. For SFI, a detailed
understanding of the causality chains leading to software failure is needed. Software failure
causes have been studied in various domains of software engineering research, providing a
broad and heterogeneous spectrum of published models.

In a systematic literature study [2], we found that there is a lack of dynamic fault activation
and error models. Such models are especially relevant for SFI. As shown in Figure 1, most of
the papers—123 out of 156 publications—discuss a static, code-based fault model.

As software is becoming more and more crucial to dependability, so are software-focused
failure cause models. Recent efforts to standardize knowledge about software failure causes
include orthogonal defect classification (ODC) [9] and the common weakness enumeration
(CWE) database.9

Additional layers of abstraction, as introduced, for example, by cloud management stacks,
call for novel and more targeted failure cause models.

9https://cwe.mitre.org

Figure 1. Literature study of failure cause models—most research targets static aspects.

Dependability Engineering52

4. Problem statement

SFI is a versatile tool for dependability assessment and for testing the fault tolerance of increasingly
complex systems. However, it is not yet widely used in real-world software systems outside the
safety-critical and embedded domains. There is a gap between comparatively formal approaches,
such as model-driven engineering, and what we choose to call ad hoc software engineering.

Formal approaches suffer from several limitations. They are successful in rather constrained
domains, where full formal specification and fault modeling are possible. They are generally
not applicable in modern scenarios involving rapidly changing requirements, under specified
execution environments and fast-evolving software dependencies.

On the other hand, ad hoc software engineering is limited to implementing a software sys-
tem according to some partial and informal specification. The resulting product is tested by
its developers—usually without making strong coverage guarantees—and released without
little other dependability assessment.

We assume that ad hoc software engineering constitutes most state-of-the-art software sys-
tems and is currently the most pragmatic approach in many situations, where fully formal-
ized approaches are out of scope for technical as well as organizational reasons.

The following sections suggest how to improve ad hoc software engineering explicitly con-
sidering dependability aspects and by making software fault injection a pivotal dependability
assessment means throughout the development process.

5. Methodology

We introduce Fault Injection Driven Development (FIDD), depicted in Figure 2, which integrates
SFI into the development process. The following sections elaborate on its details.

5.1. Creating a dependability and failure cause model

To make the faultload introduced by SFI representative, two aspects need to be understood:
The dependability model should capture the intended behavior in the presence of faults. This
includes redundancy configurations, as well as error detection and recovery mechanisms. The
failure cause model contains faults, errors, and fault activation conditions [10] that are antici-
pated and somehow addressed in the system architecture.

Modeling can serve to understand a complex system’s dependability aspects to qualita-
tively discuss dependability bottlenecks or to quantitatively evaluate dependability metrics.
Numerous modeling languages with varying expressiveness have been proposed. Here, we
distinguish between structural and behavioral modeling languages.

Structural languages reflect the system structure typically at a higher level of abstraction
such as components. The interactions and error propagation between components are in the

Software Fault Injection: A Practical Perspective
http://dx.doi.org/10.5772/intechopen.70427

53

Figure 2. Overview of our fault injection–driven development methodology.

Dependability Engineering54

focus of such languages. Structural languages support human understanding of the system’s
dependability, but due to their coarse-grained nature, the mathematical expressiveness of
such models is limited.

Behavioral dependability models describe the internal states of the system and their evolve-
ment over time. They are fine-grained and suited for quantitative analyses. The choice of
modeling language depends on the considered granularity, among other factors. Our focus
lies on structural languages, for example, fault trees [11].

5.2. Generation of SFI campaigns

SFI experiments should be driven by user expectations and a structured understanding of the
system assumptions, encapsulated in the dependability model. Here, we outline an approach,
which creates an efficient and representative campaign of SFI experiments.

First, we use the dependability model to answer the question where to reasonably inject faults.
Internal state changes or external events, which can contribute to fault activation, or directly
cause a detectable error state, are called fault injection points (FIPs). They can be extracted from
dependability models, for example, by listing all basic events of a fault tree.

Since software follows complex interaction patterns and fault tolerance mechanisms are
largely sequence-dependent, the constellations of injected failure causes are critical. We
believe the “one fault at the time” assumption, which is common with hardware fault injec-
tion, to be unrealistic for software systems, where synergistic effects are ubiquitous.

During a period of system runtime, a set of FIPs can be injected. Such SFI experiments add a
certain faultload to the system. From the dependability model, we extract only experiments,
which are expected to succeed. Experiments, which are not assumed to be tolerable, are less
relevant, since they cannot verify whether the system adheres to its specification.

Considering the trade-off between test effort and coverage, we then find a reasonable balance
by selecting a subset of experiments, while still attempting to cover all significant fault-toler-
ance mechanisms. Such a subset of experiments constitutes a campaign.

One selection criterion for experiments may be maximality in terms of induced faultload. The
algorithm for applying this criterion is discussed in more detail in Ref. [12]. Maximal experi-
ments may expose unforeseen synergistic effects. The significance of such effects has lately
been acknowledged by safety-critical industries and their guiding standards [13].

5.3. Campaign execution

To make SFI practically applicable and thus more prominent in software development pro-
cesses, its entire process requires automation. To achieve this, SFI automation frameworks are
needed. These should be flexible, configurable, and suited for a broad range of applications.
Based on user-provided or automatically generated fault injection campaigns, the experi-
ments should be carried out automatically. Suitable performance and dependability metrics
for analysis should be gathered.

Software Fault Injection: A Practical Perspective
http://dx.doi.org/10.5772/intechopen.70427

55

Figure 2. Overview of our fault injection–driven development methodology.

Dependability Engineering54

focus of such languages. Structural languages support human understanding of the system’s
dependability, but due to their coarse-grained nature, the mathematical expressiveness of
such models is limited.

Behavioral dependability models describe the internal states of the system and their evolve-
ment over time. They are fine-grained and suited for quantitative analyses. The choice of
modeling language depends on the considered granularity, among other factors. Our focus
lies on structural languages, for example, fault trees [11].

5.2. Generation of SFI campaigns

SFI experiments should be driven by user expectations and a structured understanding of the
system assumptions, encapsulated in the dependability model. Here, we outline an approach,
which creates an efficient and representative campaign of SFI experiments.

First, we use the dependability model to answer the question where to reasonably inject faults.
Internal state changes or external events, which can contribute to fault activation, or directly
cause a detectable error state, are called fault injection points (FIPs). They can be extracted from
dependability models, for example, by listing all basic events of a fault tree.

Since software follows complex interaction patterns and fault tolerance mechanisms are
largely sequence-dependent, the constellations of injected failure causes are critical. We
believe the “one fault at the time” assumption, which is common with hardware fault injec-
tion, to be unrealistic for software systems, where synergistic effects are ubiquitous.

During a period of system runtime, a set of FIPs can be injected. Such SFI experiments add a
certain faultload to the system. From the dependability model, we extract only experiments,
which are expected to succeed. Experiments, which are not assumed to be tolerable, are less
relevant, since they cannot verify whether the system adheres to its specification.

Considering the trade-off between test effort and coverage, we then find a reasonable balance
by selecting a subset of experiments, while still attempting to cover all significant fault-toler-
ance mechanisms. Such a subset of experiments constitutes a campaign.

One selection criterion for experiments may be maximality in terms of induced faultload. The
algorithm for applying this criterion is discussed in more detail in Ref. [12]. Maximal experi-
ments may expose unforeseen synergistic effects. The significance of such effects has lately
been acknowledged by safety-critical industries and their guiding standards [13].

5.3. Campaign execution

To make SFI practically applicable and thus more prominent in software development pro-
cesses, its entire process requires automation. To achieve this, SFI automation frameworks are
needed. These should be flexible, configurable, and suited for a broad range of applications.
Based on user-provided or automatically generated fault injection campaigns, the experi-
ments should be carried out automatically. Suitable performance and dependability metrics
for analysis should be gathered.

Software Fault Injection: A Practical Perspective
http://dx.doi.org/10.5772/intechopen.70427

55

In a previous work, we have presented two such SFI frameworks at different layers of
abstraction:

Hovac [14] is an SFI framework for multithreaded applications, implemented in C++, which
enables the customizable injection of various faults by using application programming inter-
face (API) hooking, a nonintrusive technique requiring no source code access. The imple-
mented faults and error states are based on the community-based CWE database.

We are currently also working on a tool suite, Faultmill, which fully automates the generation
and orchestration of SFI campaigns in distributed systems. It relies on user-provided depend-
ability models and provides a user-friendly interface for integrating custom fault injection
scripts and executables.

5.4. Analysis and feedback

A remaining open question is which conclusions to draw from the results of campaigns, and
how they can be leveraged to improve the overall process. If all experiments in the campaign
succeed, this validates the initial dependability model. Furthermore, by gathering quality
metrics, such as runtime or accuracy, the degradation under faultload can be quantified.

Known from software testing, coverage measures provide a quality metric for the assessment
process itself. In a nutshell, they express how well a set of experiments (unit tests, SFI cam-
paigns, or others) covers the vast space of possible behaviors. To provide feedback on the
campaign, we suggest applying structural coverage criteria on the model.

6. Case study: SFI contest

The remainder of this chapter discusses a concise case study of applying SFI in software
development teams: an SFI contest was carried out in a student seminar. Within the contest,
we explored approaches and challenges of FIDD within a software development team. The
contest took place during one semester within a course for 6 ECTS.

Students were divided into two teams, working on an application that renders a Bitmap
image of the Julia fractal10 in parallel using OpenMP.11 Both teams were first asked to develop
a fault model for this program, defining which types, frequencies, and severities of faults they
were planning to implement in their fault injector. Subsequently, they were asked to specify
the intended behavior of their own implementation under faultload.

The fault injection was implemented in a virtual machine (VM) running a (modified) Ubuntu
Linux. VMs were configured using Vagrant12 for portability. A fuzzing script was developed
by us, which executed the students’ fault-tolerant program within the fault-injecting VM
environment, providing corner case and randomly generated input arguments.

10http://mathworld.wolfram.com/JuliaSet.html
11http://www.openmp.org/
12https://www.vagrantup.com/docs/getting-started/

Dependability Engineering56

6.1. Failure cause and dependability model

Each team first developed a failure cause model to be assessed with SFI. This process required
some coordination between the teams to ensure that failure causes were on similar layers of
abstraction. The resulting classes of failure cause are customized to a multithreaded C/C++
application running in a potentially unreliable execution environment:

• Incorrect arguments: unexpected parameters are passed to function calls or interfaces.

• Memory errors: the allocation of memory may fail or the memory may be corrupted.

• Resource scarcity: resources such as CPU time and file handles may be limited as well.

• I/O errors: I/O operations may be unreliable—they may fail, stall, or return errors.

• Data type errors: assumptions made on the data type or layout may be violated.

• Erroneous system time: the current time, queried by a system call, may be incorrect. This
simulates time lags in distributed systems, as well as software or hardware flaws.

The intended system behavior under faultload was specified by both teams and took the
failure cause model into consideration. While (due to time constraints) the specifications were
not completely formalized but rather formulated in natural language, they offer some notable
insights.

First, the specification contained quantitative aspects, such as “if dynamic memory allocation
fails more than five times, we assume a permanent error, which is not tolerable.” Moreover,
many assumptions on the environment were made. This stresses the importance of environ-
ment-aware failure cause models. Finally, little focus was placed by students on performance
and other quality metrics. This may indicate the necessity of more research and education
regarding trade-offs among nonfunctional software properties.

6.2. Implementation of SFI

The developed SFI approaches were based on the mentioned assumptions:

System calls were intercepted using the LD_PRELOAD13 environment variable. This variable
was used to enforce the loading of SFI libraries, which offer identical interfaces to some func-
tion calls, such as malloc. Failing I/O operations were simulated analogously. To tolerate such
injections, some critical functions, including the new-operator for C++, were re-implemented
by the students.

The scarcity of resources, for example caused by other processes on the system, was injected
by using the cgroups14 facility. The application was limited in its CPU shares and memory.
A second cgroup containing resource-intensive processes was created to put the application
under stress. One group addressed this issue by snapshotting state to hard disk periodically.

13http://man7.org/linux/man-pages/man8/ld.so.8.html
14https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

Software Fault Injection: A Practical Perspective
http://dx.doi.org/10.5772/intechopen.70427

57

In a previous work, we have presented two such SFI frameworks at different layers of
abstraction:

Hovac [14] is an SFI framework for multithreaded applications, implemented in C++, which
enables the customizable injection of various faults by using application programming inter-
face (API) hooking, a nonintrusive technique requiring no source code access. The imple-
mented faults and error states are based on the community-based CWE database.

We are currently also working on a tool suite, Faultmill, which fully automates the generation
and orchestration of SFI campaigns in distributed systems. It relies on user-provided depend-
ability models and provides a user-friendly interface for integrating custom fault injection
scripts and executables.

5.4. Analysis and feedback

A remaining open question is which conclusions to draw from the results of campaigns, and
how they can be leveraged to improve the overall process. If all experiments in the campaign
succeed, this validates the initial dependability model. Furthermore, by gathering quality
metrics, such as runtime or accuracy, the degradation under faultload can be quantified.

Known from software testing, coverage measures provide a quality metric for the assessment
process itself. In a nutshell, they express how well a set of experiments (unit tests, SFI cam-
paigns, or others) covers the vast space of possible behaviors. To provide feedback on the
campaign, we suggest applying structural coverage criteria on the model.

6. Case study: SFI contest

The remainder of this chapter discusses a concise case study of applying SFI in software
development teams: an SFI contest was carried out in a student seminar. Within the contest,
we explored approaches and challenges of FIDD within a software development team. The
contest took place during one semester within a course for 6 ECTS.

Students were divided into two teams, working on an application that renders a Bitmap
image of the Julia fractal10 in parallel using OpenMP.11 Both teams were first asked to develop
a fault model for this program, defining which types, frequencies, and severities of faults they
were planning to implement in their fault injector. Subsequently, they were asked to specify
the intended behavior of their own implementation under faultload.

The fault injection was implemented in a virtual machine (VM) running a (modified) Ubuntu
Linux. VMs were configured using Vagrant12 for portability. A fuzzing script was developed
by us, which executed the students’ fault-tolerant program within the fault-injecting VM
environment, providing corner case and randomly generated input arguments.

10http://mathworld.wolfram.com/JuliaSet.html
11http://www.openmp.org/
12https://www.vagrantup.com/docs/getting-started/

Dependability Engineering56

6.1. Failure cause and dependability model

Each team first developed a failure cause model to be assessed with SFI. This process required
some coordination between the teams to ensure that failure causes were on similar layers of
abstraction. The resulting classes of failure cause are customized to a multithreaded C/C++
application running in a potentially unreliable execution environment:

• Incorrect arguments: unexpected parameters are passed to function calls or interfaces.

• Memory errors: the allocation of memory may fail or the memory may be corrupted.

• Resource scarcity: resources such as CPU time and file handles may be limited as well.

• I/O errors: I/O operations may be unreliable—they may fail, stall, or return errors.

• Data type errors: assumptions made on the data type or layout may be violated.

• Erroneous system time: the current time, queried by a system call, may be incorrect. This
simulates time lags in distributed systems, as well as software or hardware flaws.

The intended system behavior under faultload was specified by both teams and took the
failure cause model into consideration. While (due to time constraints) the specifications were
not completely formalized but rather formulated in natural language, they offer some notable
insights.

First, the specification contained quantitative aspects, such as “if dynamic memory allocation
fails more than five times, we assume a permanent error, which is not tolerable.” Moreover,
many assumptions on the environment were made. This stresses the importance of environ-
ment-aware failure cause models. Finally, little focus was placed by students on performance
and other quality metrics. This may indicate the necessity of more research and education
regarding trade-offs among nonfunctional software properties.

6.2. Implementation of SFI

The developed SFI approaches were based on the mentioned assumptions:

System calls were intercepted using the LD_PRELOAD13 environment variable. This variable
was used to enforce the loading of SFI libraries, which offer identical interfaces to some func-
tion calls, such as malloc. Failing I/O operations were simulated analogously. To tolerate such
injections, some critical functions, including the new-operator for C++, were re-implemented
by the students.

The scarcity of resources, for example caused by other processes on the system, was injected
by using the cgroups14 facility. The application was limited in its CPU shares and memory.
A second cgroup containing resource-intensive processes was created to put the application
under stress. One group addressed this issue by snapshotting state to hard disk periodically.

13http://man7.org/linux/man-pages/man8/ld.so.8.html
14https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

Software Fault Injection: A Practical Perspective
http://dx.doi.org/10.5772/intechopen.70427

57

In some scientific and distributed computations, an incorrect system time can lead to errors.
Although this was not the case for the example application, the system time was manipulated
using libfaketime.15

Bit-level memory errors were implemented by halting the program using ptrace and manipu-
lating random memory areas. This injection of low-level faults turned out to be hard to pre-
dict and tolerate—it was addressed with redundant, checkpointed computations.

6.3. Lessons learned

In the contest, the most fault-tolerant application started five redundant processes, each
checkpointing its state in short intervals. Under faultload, this application became so slow
that the test scripts which were running it timed out.

There is an inherent trade-off between performance and fault tolerance, which induces run-
time overhead for error detection, containment, and removal. This trade-off needs further
analysis and specification.

In practice, the continuous integration of the SFI environment (a VM, submitted by the stu-
dents) with the program template required a surprising amount of manual work due to
software dependencies and hidden environmental assumptions. As full automation of SFI
campaigns remains an engineering challenge, standardization of SFI interfaces is desirable.

As already mentioned, developing a dependability model and a failure cause model required
a substantial amount of communication among the teams. While several efforts have been
made, such as ODC and the CWE database, there is yet no established failure cause model,
which is commonly known and used among software developers. Such a model would have
been a powerful communication tool in the contest.

7. Discussion and conclusion

Software dependability is harder to ensure in complex systems with many layers of abstrac-
tion, interacting components, concurrency, and increased distribution.

SFI is a promising approach for evaluating the dependability of software systems, which
scales even for large and complex systems, as the success of ChaosMonkey exemplifies. It
is especially suited for ad hoc software engineering, where a formal understanding of the
system is missing. Yet, SFI is not yet established in general software development practice.

We have introduced Fault Injection Driven Development (FIDD), a structured approach for
applying SFI. We discuss how even starting without any specification or documented fault
model, it is possible to make the dependability aspects explicit and create a fully automated
environment, in which repeated fault injection campaigns assure dependability and yield
relevant insights.

15https://github.com/wolfcw/libfaketime

Dependability Engineering58

The case study of an SFI student contest underlines the necessity of FIDD-like methodologies
and provides insights into organizational and engineering challenges.

Many opportunities for further research remain: as discussed, most current failure cause
models are not suited for SFI. They do not take dynamic aspects of software failures into
account. However, dynamic fault activation and error models provide valuable input for SFI
and are, therefore, topic of our ongoing research.

Practical experience shows that SFI frameworks are tedious to implement if they are to sup-
port full automation of campaign execution and extensibility. To support the reuse of such
frameworks, some form of standardized interfaces for SFI would be immensely useful.

Acknowledgements

The authors would like to thank all participants of the student contest at HPI, during the
winter semester 2016/17.

Author details

Lena Feinbube*, Lukas Pirl and Andreas Polze

*Address all correspondence to: lena.feinbube@hpi.de

Hasso-Plattner-Institute, University Potsdam, Germany

References

[1] Babbage C. Passages from the Life of a Philosopher. Longman, Green, Longman, Roberts,
& Green; London; 1864

[2] Feinbube L, Tröger P, Polze A. The Landscape of Software Failure Cause Models. arXiv
preprint arXiv:1603.04335. 2016

[3] Avižienis A, Laprie J-C, Randell B, Landwehr C. Basic concepts and taxonomy of depend-
able and secure computing. IEEE Transactions on Dependable and Secure Computing.
2004;1(1):11-33

[4] Giuffrida C, Kuijsten A, Tanenbaum AS. EDFI: A dependable fault injection tool for
dependability benchmarking experiments. In: 2013 IEEE 19th Pacific Rim International
Symposium on Dependable Computing (PRDC); 2013

[5] Natella R, Cotroneo D, Madeira HS. Assessing dependability with software fault injec-
tion: A survey. ACM Computing Surveys (CSUR). 2016;48(3):44

Software Fault Injection: A Practical Perspective
http://dx.doi.org/10.5772/intechopen.70427

59

In some scientific and distributed computations, an incorrect system time can lead to errors.
Although this was not the case for the example application, the system time was manipulated
using libfaketime.15

Bit-level memory errors were implemented by halting the program using ptrace and manipu-
lating random memory areas. This injection of low-level faults turned out to be hard to pre-
dict and tolerate—it was addressed with redundant, checkpointed computations.

6.3. Lessons learned

In the contest, the most fault-tolerant application started five redundant processes, each
checkpointing its state in short intervals. Under faultload, this application became so slow
that the test scripts which were running it timed out.

There is an inherent trade-off between performance and fault tolerance, which induces run-
time overhead for error detection, containment, and removal. This trade-off needs further
analysis and specification.

In practice, the continuous integration of the SFI environment (a VM, submitted by the stu-
dents) with the program template required a surprising amount of manual work due to
software dependencies and hidden environmental assumptions. As full automation of SFI
campaigns remains an engineering challenge, standardization of SFI interfaces is desirable.

As already mentioned, developing a dependability model and a failure cause model required
a substantial amount of communication among the teams. While several efforts have been
made, such as ODC and the CWE database, there is yet no established failure cause model,
which is commonly known and used among software developers. Such a model would have
been a powerful communication tool in the contest.

7. Discussion and conclusion

Software dependability is harder to ensure in complex systems with many layers of abstrac-
tion, interacting components, concurrency, and increased distribution.

SFI is a promising approach for evaluating the dependability of software systems, which
scales even for large and complex systems, as the success of ChaosMonkey exemplifies. It
is especially suited for ad hoc software engineering, where a formal understanding of the
system is missing. Yet, SFI is not yet established in general software development practice.

We have introduced Fault Injection Driven Development (FIDD), a structured approach for
applying SFI. We discuss how even starting without any specification or documented fault
model, it is possible to make the dependability aspects explicit and create a fully automated
environment, in which repeated fault injection campaigns assure dependability and yield
relevant insights.

15https://github.com/wolfcw/libfaketime

Dependability Engineering58

The case study of an SFI student contest underlines the necessity of FIDD-like methodologies
and provides insights into organizational and engineering challenges.

Many opportunities for further research remain: as discussed, most current failure cause
models are not suited for SFI. They do not take dynamic aspects of software failures into
account. However, dynamic fault activation and error models provide valuable input for SFI
and are, therefore, topic of our ongoing research.

Practical experience shows that SFI frameworks are tedious to implement if they are to sup-
port full automation of campaign execution and extensibility. To support the reuse of such
frameworks, some form of standardized interfaces for SFI would be immensely useful.

Acknowledgements

The authors would like to thank all participants of the student contest at HPI, during the
winter semester 2016/17.

Author details

Lena Feinbube*, Lukas Pirl and Andreas Polze

*Address all correspondence to: lena.feinbube@hpi.de

Hasso-Plattner-Institute, University Potsdam, Germany

References

[1] Babbage C. Passages from the Life of a Philosopher. Longman, Green, Longman, Roberts,
& Green; London; 1864

[2] Feinbube L, Tröger P, Polze A. The Landscape of Software Failure Cause Models. arXiv
preprint arXiv:1603.04335. 2016

[3] Avižienis A, Laprie J-C, Randell B, Landwehr C. Basic concepts and taxonomy of depend-
able and secure computing. IEEE Transactions on Dependable and Secure Computing.
2004;1(1):11-33

[4] Giuffrida C, Kuijsten A, Tanenbaum AS. EDFI: A dependable fault injection tool for
dependability benchmarking experiments. In: 2013 IEEE 19th Pacific Rim International
Symposium on Dependable Computing (PRDC); 2013

[5] Natella R, Cotroneo D, Madeira HS. Assessing dependability with software fault injec-
tion: A survey. ACM Computing Surveys (CSUR). 2016;48(3):44

Software Fault Injection: A Practical Perspective
http://dx.doi.org/10.5772/intechopen.70427

59

[6] Koopman P, Sung J, Dingman C, Siewiorek D, Marz T. Comparing operating systems
using robustness benchmarks. In: Proceedings of the Sixteenth Symposium on Reliable
Distributed Systems; 1997

[7] Marinescu PD, Candea G. LFI: A practical and general library-level fault injector. In:
2009 IEEE/IFIP International Conference on Dependable Systems & Networks; 2009

[8] Dawson S, Jahanian F, Mitton T. Orchestra: A Fault Injection Environment for Distributed
Systems. In: Technical Report; 1996

[9] Chillarege R, Bhandari IS, Chaar JK, Halliday MJ, Moebus DS, Ray BK, Wong M-Y.
Orthogonal defect classification-a concept for in-process measurements. IEEE Tran-
sactions on Software Engineering; 1992

[10] Tröger P, Feinbube L, Werner M. What activates a bug? A refinement of the Laprie
terminology model. 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE); 2015

[11] Vesely WE, Goldberg FF, Roberts NH, Haasl DF. Fault Tree Handbook. DTIC Document;
1981

[12] Feinbube L, Pirl L, Tröger P, Polze A. Software fault injection campaign generation
for cloud infrastructures. In: 2017 IEEE International Conference on Software Quality,
Reliability and Security Companion; 2017

[13] International Organization for Standardization. Road vehicles—Functional safety. 2011;
(ISO 26262:2011(E))

[14] Herscheid L, Richter D, Polze A. Hovac: A configurable fault injection framework for
benchmarking the dependability of C/C++ applications. In: Proceedings of the 2015
International Conference on Software Quality, Reliability, and Security; 2015

Dependability Engineering60

Chapter 5

Stochastic Reward Net-based Modeling Approach for
Availability Quantification of Data Center Systems

Tuan Anh Nguyen, Dugki Min and Eunmi Choi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74306

Provisional chapter

Stochastic Reward Net-based Modeling Approach for
Availability Quantification of Data Center Systems

Tuan Anh Nguyen, Dugki Min and Eunmi Choi

Additional information is available at the end of the chapter

Abstract

Availability quantification and prediction of IT infrastructure in data centers are of para-
mount importance for online business enterprises. In this chapter, we present comprehen-
sive availability models for practical case studies in order to demonstrate a state-space
stochastic reward net model for typical data center systems for quantitative assessment of
system availability. We present stochastic reward net models of a virtualized server sys-
tem, a data center network based on DCell topology, and a conceptual data center for
disaster tolerance. The systems are then evaluated against various metrics of interest,
including steady state availability, downtime and downtime cost, and sensitivity analysis.

Keywords: virtualized servers system, data center system, disaster tolerant data center

1. Introduction

Data centers (DCs) have been the core-centric of modern ICT ecosystems in recent decades.
Computing resources and crucial telecommunications are centralized in a data center to
constantly facilitate online business and to connect people from distant parts of the world
through the internet. Giant internet companies such as Facebook, Amazon, and Google have
built huge state-of-the-art centers to house their own IT infrastructure. According to a study by
the Ponemon Institute [1] regarding the cost of data center outages from 63 DCs located in the
United States over a 12-month period, the average cost due to unplanned outages in 2016 was
US$ 740,357, which steadily increased by 46% from US$ 505,502 since it was first studied in
2010. Specifically, a minute of downtime costs around US$ 7900 on average. However, online
businesses actually face more severe revenue losses due to IT service downtime. In early 2016,
Amazon suffered an incredible business loss of US$ 66,240/minute due to server downtime

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.74306

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[6] Koopman P, Sung J, Dingman C, Siewiorek D, Marz T. Comparing operating systems
using robustness benchmarks. In: Proceedings of the Sixteenth Symposium on Reliable
Distributed Systems; 1997

[7] Marinescu PD, Candea G. LFI: A practical and general library-level fault injector. In:
2009 IEEE/IFIP International Conference on Dependable Systems & Networks; 2009

[8] Dawson S, Jahanian F, Mitton T. Orchestra: A Fault Injection Environment for Distributed
Systems. In: Technical Report; 1996

[9] Chillarege R, Bhandari IS, Chaar JK, Halliday MJ, Moebus DS, Ray BK, Wong M-Y.
Orthogonal defect classification-a concept for in-process measurements. IEEE Tran-
sactions on Software Engineering; 1992

[10] Tröger P, Feinbube L, Werner M. What activates a bug? A refinement of the Laprie
terminology model. 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE); 2015

[11] Vesely WE, Goldberg FF, Roberts NH, Haasl DF. Fault Tree Handbook. DTIC Document;
1981

[12] Feinbube L, Pirl L, Tröger P, Polze A. Software fault injection campaign generation
for cloud infrastructures. In: 2017 IEEE International Conference on Software Quality,
Reliability and Security Companion; 2017

[13] International Organization for Standardization. Road vehicles—Functional safety. 2011;
(ISO 26262:2011(E))

[14] Herscheid L, Richter D, Polze A. Hovac: A configurable fault injection framework for
benchmarking the dependability of C/C++ applications. In: Proceedings of the 2015
International Conference on Software Quality, Reliability, and Security; 2015

Dependability Engineering60

Chapter 5

Stochastic Reward Net-based Modeling Approach for
Availability Quantification of Data Center Systems

Tuan Anh Nguyen, Dugki Min and Eunmi Choi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74306

Provisional chapter

Stochastic Reward Net-based Modeling Approach for
Availability Quantification of Data Center Systems

Tuan Anh Nguyen, Dugki Min and Eunmi Choi

Additional information is available at the end of the chapter

Abstract

Availability quantification and prediction of IT infrastructure in data centers are of para-
mount importance for online business enterprises. In this chapter, we present comprehen-
sive availability models for practical case studies in order to demonstrate a state-space
stochastic reward net model for typical data center systems for quantitative assessment of
system availability. We present stochastic reward net models of a virtualized server sys-
tem, a data center network based on DCell topology, and a conceptual data center for
disaster tolerance. The systems are then evaluated against various metrics of interest,
including steady state availability, downtime and downtime cost, and sensitivity analysis.

Keywords: virtualized servers system, data center system, disaster tolerant data center

1. Introduction

Data centers (DCs) have been the core-centric of modern ICT ecosystems in recent decades.
Computing resources and crucial telecommunications are centralized in a data center to
constantly facilitate online business and to connect people from distant parts of the world
through the internet. Giant internet companies such as Facebook, Amazon, and Google have
built huge state-of-the-art centers to house their own IT infrastructure. According to a study by
the Ponemon Institute [1] regarding the cost of data center outages from 63 DCs located in the
United States over a 12-month period, the average cost due to unplanned outages in 2016 was
US$ 740,357, which steadily increased by 46% from US$ 505,502 since it was first studied in
2010. Specifically, a minute of downtime costs around US$ 7900 on average. However, online
businesses actually face more severe revenue losses due to IT service downtime. In early 2016,
Amazon suffered an incredible business loss of US$ 66,240/minute due to server downtime

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.74306

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

over a period of approximately 15 minutes. The causes of system outages in DCs span from
uncertain failures of IT parts/blocks to natural disasters. Therefore, a quantification of IT
infrastructure availability in DCs under various scenarios in advance of system development
is of paramount importance for big tech companies.

Availability assessment approaches are primarily based on measurement and modeling
methods. Model-based approaches are fast and relatively inexpensive methods for system
availability analysis in comparison with measurement-based methods. System modeling can
be accomplished using discrete-event simulation [2, 3], analytical models, or a hybrid of both
approaches. Analytical models fall into four main categories [4–7]: (i) non-state-space models
(reliability graph (RelGraph), reliability block diagram (RBG), or fault tree (FT)), state-space
models (Markov chains, Stochastic Petri net (SPN), stochastic reward net (SRN), etc.), hierar-
chical models, and fixed-point iterative models. Non-state-space modeling paradigms provide
a relatively quick evaluation of basic metrics for a system (reliability, availability, MTTF) with a
proper capture of overall system architecture. State-space models, on the other hand, can
capture sophisticated behaviors and operations of a system. This approach can handle failure/
repair dependencies and complex interactions between system components. To avoid the
largeness problem (or state-space explosion problem) in state-space models, we use hierarchi-
cal modeling techniques of non-state-space and state-space models at upper and lower levels,
as well as fix-point iterative models. In this chapter, we focus on studying complex system
operations in DCs captured by using an SRN.

The structure of this chapter is organized into six sections. Section 2 provides preliminary
concepts of availability modeling and analysis of data center systems (DCS). Subsequently,
several case studies are presented. Section 3 offers an availability model of a unit system of the
virtualized server (VSS) in DCs. In Section 4, we present availability modeling of a data center
network (DCN) based on DCell topology. We present an SRNmodel for a DC in order to study
disaster tolerance in Section 5. Finally, we present conclusions in Section 6.

2. Availability quantification of data center systems: basic concepts

Availability A(t) of a DCS represents the probability of its operating system taking the correct
state at an instant t, regardless of the number of failures and repairs during the interval (0,t).
Instantaneous/point availability A(t) is related to the system reliability, as defined in Eq. (1).

A tð Þ ¼ R tð Þ þ
ðt
0
R t� xð Þg xð Þdx (1)

R(t) is the instantaneous reliability at t of the system, which is defined in Eq. (2):

R tð Þ ¼
ð∞
t
f xð Þdx (2)

f(x) is the probability density function of a random variable X, which represents the system’s
lifetime or time to failure.

Dependability Engineering62

g(x) is a renewal process rate in the interval (0,t), as defined in Eq. (3)

g xð Þ ¼ f xð Þ þ
ðx
0
g x� uð Þf uð Þdu (3)

m(x)dx is the probability that a renewal process cycle will be completed in the time interval [x,
x + dx]. R(t-x) is the probability that the systemworks properly for the remaining time interval t-x.
R(t-x)m(x)dx is the probability of the case that a fault has occurred and that after the repair/renewal
(which occurred at the instance x, 0 < x < t), the system resumed functioningwith no further faults.
If a system is not repairable, the concept of A(t) is identical with that of reliability R(t).

Steady-state availability (SSA) is the system availability after a long running time, where the
limiting value A(t) tends to decrease from 1 at the initial instant, as defined in Eq. (4) and Eq. (5).

A ¼ limA tð Þ
t!∞

¼ MTTF
MTTFþMTTR

(4)

A ¼ limA tð Þ
t!∞

¼ μ
λþ μ

(5)

The failure rate (λ) implies the frequency of system failure is determined by the total number of
failures within an item population, divided by the total time expended by that population,
during a particular measurement interval under the stated conditions. Repair rate (μ) implies
the frequency of system repair determined as the average number of repairs over a period of
maintenance time. Mean time to failure (MTTF) represents the expected time in which a system
functions correctly before its first failure. Mean time to repair (MTTR) represents the expected
time required for system repair. In the case where failure/repair events comply with exponen-
tial distributions, MTTF and MTTR represent an arithmetic inversion of failure and repair
rates, as shown in Eq. (6). SSA can be computed from Eq. (5).

MTTF ¼ 1
λ

MTTR ¼ 1
μ

(6)

In industry, system administrators are usually concerned with system downtime (measured in
minutes per year) and downtime cost (with a cost unit C per minute of system downtime). These
values can be computed with Eq. (7) and (8).

Downtime ¼ 1� Að Þ∗8760∗60 (7)

Downtime Cos t ¼ C∗ 1� Að Þ∗8760∗60 (8)

Sensitivity analysis is performed to assess the importance of system parameters by two tech-
niques. (i) Repeatedly substitute specific parameter values in one range at a time while
the others remain constant, and observe system behaviors in accordance with the variation of
the selected parameter. This approach studies the system responses upon a broad range of the
parameters under consideration. (ii) Differential sensitivity analysis: compute partial derivatives
of the measure of interest with respect to each system parameter as determined in Eq. (9) or
(10) to yield a scaled sensitivity.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

63

over a period of approximately 15 minutes. The causes of system outages in DCs span from
uncertain failures of IT parts/blocks to natural disasters. Therefore, a quantification of IT
infrastructure availability in DCs under various scenarios in advance of system development
is of paramount importance for big tech companies.

Availability assessment approaches are primarily based on measurement and modeling
methods. Model-based approaches are fast and relatively inexpensive methods for system
availability analysis in comparison with measurement-based methods. System modeling can
be accomplished using discrete-event simulation [2, 3], analytical models, or a hybrid of both
approaches. Analytical models fall into four main categories [4–7]: (i) non-state-space models
(reliability graph (RelGraph), reliability block diagram (RBG), or fault tree (FT)), state-space
models (Markov chains, Stochastic Petri net (SPN), stochastic reward net (SRN), etc.), hierar-
chical models, and fixed-point iterative models. Non-state-space modeling paradigms provide
a relatively quick evaluation of basic metrics for a system (reliability, availability, MTTF) with a
proper capture of overall system architecture. State-space models, on the other hand, can
capture sophisticated behaviors and operations of a system. This approach can handle failure/
repair dependencies and complex interactions between system components. To avoid the
largeness problem (or state-space explosion problem) in state-space models, we use hierarchi-
cal modeling techniques of non-state-space and state-space models at upper and lower levels,
as well as fix-point iterative models. In this chapter, we focus on studying complex system
operations in DCs captured by using an SRN.

The structure of this chapter is organized into six sections. Section 2 provides preliminary
concepts of availability modeling and analysis of data center systems (DCS). Subsequently,
several case studies are presented. Section 3 offers an availability model of a unit system of the
virtualized server (VSS) in DCs. In Section 4, we present availability modeling of a data center
network (DCN) based on DCell topology. We present an SRNmodel for a DC in order to study
disaster tolerance in Section 5. Finally, we present conclusions in Section 6.

2. Availability quantification of data center systems: basic concepts

Availability A(t) of a DCS represents the probability of its operating system taking the correct
state at an instant t, regardless of the number of failures and repairs during the interval (0,t).
Instantaneous/point availability A(t) is related to the system reliability, as defined in Eq. (1).

A tð Þ ¼ R tð Þ þ
ðt
0
R t� xð Þg xð Þdx (1)

R(t) is the instantaneous reliability at t of the system, which is defined in Eq. (2):

R tð Þ ¼
ð∞
t
f xð Þdx (2)

f(x) is the probability density function of a random variable X, which represents the system’s
lifetime or time to failure.

Dependability Engineering62

g(x) is a renewal process rate in the interval (0,t), as defined in Eq. (3)

g xð Þ ¼ f xð Þ þ
ðx
0
g x� uð Þf uð Þdu (3)

m(x)dx is the probability that a renewal process cycle will be completed in the time interval [x,
x + dx]. R(t-x) is the probability that the systemworks properly for the remaining time interval t-x.
R(t-x)m(x)dx is the probability of the case that a fault has occurred and that after the repair/renewal
(which occurred at the instance x, 0 < x < t), the system resumed functioningwith no further faults.
If a system is not repairable, the concept of A(t) is identical with that of reliability R(t).

Steady-state availability (SSA) is the system availability after a long running time, where the
limiting value A(t) tends to decrease from 1 at the initial instant, as defined in Eq. (4) and Eq. (5).

A ¼ limA tð Þ
t!∞

¼ MTTF
MTTFþMTTR

(4)

A ¼ limA tð Þ
t!∞

¼ μ
λþ μ

(5)

The failure rate (λ) implies the frequency of system failure is determined by the total number of
failures within an item population, divided by the total time expended by that population,
during a particular measurement interval under the stated conditions. Repair rate (μ) implies
the frequency of system repair determined as the average number of repairs over a period of
maintenance time. Mean time to failure (MTTF) represents the expected time in which a system
functions correctly before its first failure. Mean time to repair (MTTR) represents the expected
time required for system repair. In the case where failure/repair events comply with exponen-
tial distributions, MTTF and MTTR represent an arithmetic inversion of failure and repair
rates, as shown in Eq. (6). SSA can be computed from Eq. (5).

MTTF ¼ 1
λ

MTTR ¼ 1
μ

(6)

In industry, system administrators are usually concerned with system downtime (measured in
minutes per year) and downtime cost (with a cost unit C per minute of system downtime). These
values can be computed with Eq. (7) and (8).

Downtime ¼ 1� Að Þ∗8760∗60 (7)

Downtime Cos t ¼ C∗ 1� Að Þ∗8760∗60 (8)

Sensitivity analysis is performed to assess the importance of system parameters by two tech-
niques. (i) Repeatedly substitute specific parameter values in one range at a time while
the others remain constant, and observe system behaviors in accordance with the variation of
the selected parameter. This approach studies the system responses upon a broad range of the
parameters under consideration. (ii) Differential sensitivity analysis: compute partial derivatives
of the measure of interest with respect to each system parameter as determined in Eq. (9) or
(10) to yield a scaled sensitivity.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

63

Sτ Að Þ ¼ ∂A
∂τ

(9)

SSτ Að Þ ¼ ∂A
∂τ

τ
A

� �
(10)

Stochastic reward net (SRN) [8] has been an appropriate modeling paradigm to capture opera-
tional complexities in industrial hardware and software systems [9–14]. According to a specific
description of system operations, ones can model system behaviors using place(s), transition(s)
and arc(s) as three main components in an SRN model. To represent a certain entity of the
system to be considered, we use token(s) (normally denoted by a dot or an integer number to
represent a number of corresponding entities) which reside in each place of the SRN model.
And to capture its operational state variations, we use (input/output) arcs to connect transition(s)
to place(s) or place(s) to transition(s), respectively. A firing of a transition is triggered when a
certain condition of system state is matched in order to allow the token(s) in a place are
removed, and then deposited in another place. The transitions of tokens in an SRN model
captures the system’s operations while the residence of tokens in places represent the system’s
operational state at a time, which is call marking. The Boolean condition attached to each
transition which is to enable/disable the transition is called the guard. A set of guard functions
can be defined to articulate the behaviors of system state dependence and transition. A
marking-dependence (denoted by a # sign attached to a transition) is incorporated when the
transition’s rate is dependent on the marking of the SRN model at a time. Other features of
SRN including inhibitor arcs, multiplicities, and input arcs can simplify the construction of
SRN models.

SRN-based availability quantification framework is presented in Figure 1. The availability quanti-
fication framework consists of three stages: (i) requirement specification, (ii) SRN-based system
modeling and (iii) system analysis. Service level agreement (SLA) [15, 16] between system
owner and customer details system specification and requirements. In the stage (i), taking into

Figure 1. SRN-based availability quantification framework.

Dependability Engineering64

account the literature review based on prior art and contemporary development of the system,
ones can define problem statements to be modeled and observed. In the stage (ii), the person in
charge of modeling and evaluating the system can refer various default values of system
parameters from previous work. He/she can propose the architecture design and detailed
behaviors taken into consideration of the system. The SRN is used to capture the pre-defined
system operations. The SRN system model is then analyzed and the system availability evalu-
ation is performed with regard to various output measures of interest via different analysis
approaches such as steady-state availability and/or sensitivity analysis.

3. Case study I: a virtualized server system

3.1. System architecture

Figure 2 shows a general VSS architecture. A VSS is a computing unit in a DC which consists
of a number of physical servers (also called hosts H1, H2, …, Hn). Each server is in turn
virtualized using bare-metal virtualization technology [17–19]. Thus, each server hosts its
own hypervisor (hereinafter, called the virtual machine monitor (VMM)). The physical server
is capable of running a number of virtual machines (VM) on top of its VMM. For the sake of
fault tolerance and data storage of VMMs and VMs, the physical servers are interconnected via
a network pipeline to each other, and to a shared storage area network (SAN).

To focus on modeling complex behaviors of a virtualized system in a detailed manner, we
consider a small-size VSS consisting of two hosts (H1 and H2) connected to a shared SAN.
Each host runs its own virtual machine monitors VMM1 and VMM2, respectively. Two VMs
are also created on each host, VM1 for host H1 and VM2 for host H2. In the next section, we
will present SRN models of the above-mentioned subsystems. The models capture in detail
various failure modes and recovery methods, including hardware failures in physical hosts
and SAN [20, 21], failures due to non-aging related Mandelbugs on both VMM and VM
subsystems [22], and software aging-related failures and corresponding time-interval software
rejuvenation techniques for VMM and VM subsystems [23, 24]. Furthermore, we incorporate

Figure 2. A virtualized server system with two physical servers.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

65

Sτ Að Þ ¼ ∂A
∂τ

(9)

SSτ Að Þ ¼ ∂A
∂τ

τ
A

� �
(10)

Stochastic reward net (SRN) [8] has been an appropriate modeling paradigm to capture opera-
tional complexities in industrial hardware and software systems [9–14]. According to a specific
description of system operations, ones can model system behaviors using place(s), transition(s)
and arc(s) as three main components in an SRN model. To represent a certain entity of the
system to be considered, we use token(s) (normally denoted by a dot or an integer number to
represent a number of corresponding entities) which reside in each place of the SRN model.
And to capture its operational state variations, we use (input/output) arcs to connect transition(s)
to place(s) or place(s) to transition(s), respectively. A firing of a transition is triggered when a
certain condition of system state is matched in order to allow the token(s) in a place are
removed, and then deposited in another place. The transitions of tokens in an SRN model
captures the system’s operations while the residence of tokens in places represent the system’s
operational state at a time, which is call marking. The Boolean condition attached to each
transition which is to enable/disable the transition is called the guard. A set of guard functions
can be defined to articulate the behaviors of system state dependence and transition. A
marking-dependence (denoted by a # sign attached to a transition) is incorporated when the
transition’s rate is dependent on the marking of the SRN model at a time. Other features of
SRN including inhibitor arcs, multiplicities, and input arcs can simplify the construction of
SRN models.

SRN-based availability quantification framework is presented in Figure 1. The availability quanti-
fication framework consists of three stages: (i) requirement specification, (ii) SRN-based system
modeling and (iii) system analysis. Service level agreement (SLA) [15, 16] between system
owner and customer details system specification and requirements. In the stage (i), taking into

Figure 1. SRN-based availability quantification framework.

Dependability Engineering64

account the literature review based on prior art and contemporary development of the system,
ones can define problem statements to be modeled and observed. In the stage (ii), the person in
charge of modeling and evaluating the system can refer various default values of system
parameters from previous work. He/she can propose the architecture design and detailed
behaviors taken into consideration of the system. The SRN is used to capture the pre-defined
system operations. The SRN system model is then analyzed and the system availability evalu-
ation is performed with regard to various output measures of interest via different analysis
approaches such as steady-state availability and/or sensitivity analysis.

3. Case study I: a virtualized server system

3.1. System architecture

Figure 2 shows a general VSS architecture. A VSS is a computing unit in a DC which consists
of a number of physical servers (also called hosts H1, H2, …, Hn). Each server is in turn
virtualized using bare-metal virtualization technology [17–19]. Thus, each server hosts its
own hypervisor (hereinafter, called the virtual machine monitor (VMM)). The physical server
is capable of running a number of virtual machines (VM) on top of its VMM. For the sake of
fault tolerance and data storage of VMMs and VMs, the physical servers are interconnected via
a network pipeline to each other, and to a shared storage area network (SAN).

To focus on modeling complex behaviors of a virtualized system in a detailed manner, we
consider a small-size VSS consisting of two hosts (H1 and H2) connected to a shared SAN.
Each host runs its own virtual machine monitors VMM1 and VMM2, respectively. Two VMs
are also created on each host, VM1 for host H1 and VM2 for host H2. In the next section, we
will present SRN models of the above-mentioned subsystems. The models capture in detail
various failure modes and recovery methods, including hardware failures in physical hosts
and SAN [20, 21], failures due to non-aging related Mandelbugs on both VMM and VM
subsystems [22], and software aging-related failures and corresponding time-interval software
rejuvenation techniques for VMM and VM subsystems [23, 24]. Furthermore, we incorporate

Figure 2. A virtualized server system with two physical servers.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

65

hierarchically complex dependencies between subsystems, including the dependences of a VM
on its VMM, a VM on the shared SAN, and a VMM on its host. Without loss of generality, the
proposed SRN model represents the sophisticated operations of, and interactions between
subsystems, in a typical virtualized system as a computing unit brick in a practical DC.
The model can be further extended in the future by incorporating a large scale cloud system
as in [25].

3.2. SRN models of VSS

The SRN system model is presented in Figure 3. We use a two-state SRN model to capture the
operational state (UP) and failed state (DOWN) of the physical parts, including host 1 (H1),
host 2 (H2), and SAN, as shown in Figure 3(a)–(c), respectively.

The VMM subsystem models are shown in Figure 3(d) and (f) for VMM1 and its clock,
respectively, and in Figure 3(e) and (g) for VMM2 and its clock, respectively. Without loss of
generality, a model of a VMM (either VMM1 or VMM2) subsystem consists of six states
(represented by shaded places): (i) normally running state (PVMMup), (ii) failure state due to
non-Mandelbugs (PVMMf), (iii) down-state due to a failure of its underlying host (PVMMdn), (iv)
failure-probable state due to aging problems (PVMMfp), (v) aging-failure state due to aging of
equipment (PVMMaf), and (vi) rejuvenation-process state (PVMMrej). Initially, there is a token in
PVMMup to represent a running VMM. If it fails due to a non-aging Mandelbug, the transition
time TVMMf is fired to transit the token into PVMMf. Recovery is captured by TVMMrepair. After
running for a long time, the VMM suffers a high failure probability while remaining opera-
tional. Therefore, it goes to the failure-probable state PVMMfp as TVMMfp is fired. Failure due to
aging occurs soon after TVMMaf is fired and the VMM goes to the aging-failure state PVMMaf. Its
recovery is represented by the firing of TVMMar. If the VMM’s underlying host goes down (i.e., a
token is deposited in PHf in respective Figure 3(a) or (b)) while the VMM is in the UP states
(normal PVMMup or failure-probable PVMMfp), the VMM immediately enters the down-state
PVMMdn through the immediate fired transitions tVMMupdn or tVMMfpdn. A reset is necessary for
the VMM to go up (captured by TVMMreset) after its host is recovered. In the meantime, the
VMM clock is initiated by a token in PVMMclock, which counts time by firing a timed transition
TVMMclockinterval that complies with the cVMM-stage Erlang distribution. Every software rejuve-
nation process interval on a VMM is represented by a firing of TVMMclockinterval, and the token in
PVMMclock is removed and deposited in PVMMpolicy. Thus, rejuvenation is triggered if there is a
VMM in PVMMup or PVMMfp by firing the immediate transitions tVMMuprej or tVMMrej. Also, the
token in PVMMpolicy of the VMM clock model is moved to PVMMtrigger. The VMM represented by
a token in PVMMrej is then rejuvenated and returned to the normal state PVMMup as TVMMrej is
fired. The VMM clock is reset as tVMMclockreset is fired to start a new interval of time-based
software rejuvenation on a VMM. The modeling of VMM1 on host H1 and VMM2 on host H2
are identical based on the general model description as above.

Modeling of VM subsystems is shown in Figure 3(h) and (j) for VM1 subsystem and its clock,
respectively, and Figure 3(i) and (k) for VM2 subsystem and its clock, respectively. The models
initiate with two tokens in PVMup representing two VMs on each host. In general, the SRN
model of a VM subsystem also consists of six states as in the VMM subsystem does including:
(i) normal state (PVMup), (ii) failure state due to non-aging Mandelbugs (PVMf), (iii) down-state

Dependability Engineering66

due to a failure of underlying VMM (PVMdn), (iv) failure-probable state due to aging problems
(PVMfp), (v) aging-failure state due to a failure of aging (PVMaf) and (vi) rejuvenation-process
state (PVMrej). The operations of the VM subsystem in correspondence with the transitions of

Figure 3. SRN system model of a VSS: (a) Host 1, (b) Host 2, (c) SAN, (d) VMM1, (e) VMM2, (f) VMM1’s clock, (g)
VMM2’s clock, (h) VM1, (i) VM2, (j) VM1’s clock, and (k) VM2’s clock.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

67

hierarchically complex dependencies between subsystems, including the dependences of a VM
on its VMM, a VM on the shared SAN, and a VMM on its host. Without loss of generality, the
proposed SRN model represents the sophisticated operations of, and interactions between
subsystems, in a typical virtualized system as a computing unit brick in a practical DC.
The model can be further extended in the future by incorporating a large scale cloud system
as in [25].

3.2. SRN models of VSS

The SRN system model is presented in Figure 3. We use a two-state SRN model to capture the
operational state (UP) and failed state (DOWN) of the physical parts, including host 1 (H1),
host 2 (H2), and SAN, as shown in Figure 3(a)–(c), respectively.

The VMM subsystem models are shown in Figure 3(d) and (f) for VMM1 and its clock,
respectively, and in Figure 3(e) and (g) for VMM2 and its clock, respectively. Without loss of
generality, a model of a VMM (either VMM1 or VMM2) subsystem consists of six states
(represented by shaded places): (i) normally running state (PVMMup), (ii) failure state due to
non-Mandelbugs (PVMMf), (iii) down-state due to a failure of its underlying host (PVMMdn), (iv)
failure-probable state due to aging problems (PVMMfp), (v) aging-failure state due to aging of
equipment (PVMMaf), and (vi) rejuvenation-process state (PVMMrej). Initially, there is a token in
PVMMup to represent a running VMM. If it fails due to a non-aging Mandelbug, the transition
time TVMMf is fired to transit the token into PVMMf. Recovery is captured by TVMMrepair. After
running for a long time, the VMM suffers a high failure probability while remaining opera-
tional. Therefore, it goes to the failure-probable state PVMMfp as TVMMfp is fired. Failure due to
aging occurs soon after TVMMaf is fired and the VMM goes to the aging-failure state PVMMaf. Its
recovery is represented by the firing of TVMMar. If the VMM’s underlying host goes down (i.e., a
token is deposited in PHf in respective Figure 3(a) or (b)) while the VMM is in the UP states
(normal PVMMup or failure-probable PVMMfp), the VMM immediately enters the down-state
PVMMdn through the immediate fired transitions tVMMupdn or tVMMfpdn. A reset is necessary for
the VMM to go up (captured by TVMMreset) after its host is recovered. In the meantime, the
VMM clock is initiated by a token in PVMMclock, which counts time by firing a timed transition
TVMMclockinterval that complies with the cVMM-stage Erlang distribution. Every software rejuve-
nation process interval on a VMM is represented by a firing of TVMMclockinterval, and the token in
PVMMclock is removed and deposited in PVMMpolicy. Thus, rejuvenation is triggered if there is a
VMM in PVMMup or PVMMfp by firing the immediate transitions tVMMuprej or tVMMrej. Also, the
token in PVMMpolicy of the VMM clock model is moved to PVMMtrigger. The VMM represented by
a token in PVMMrej is then rejuvenated and returned to the normal state PVMMup as TVMMrej is
fired. The VMM clock is reset as tVMMclockreset is fired to start a new interval of time-based
software rejuvenation on a VMM. The modeling of VMM1 on host H1 and VMM2 on host H2
are identical based on the general model description as above.

Modeling of VM subsystems is shown in Figure 3(h) and (j) for VM1 subsystem and its clock,
respectively, and Figure 3(i) and (k) for VM2 subsystem and its clock, respectively. The models
initiate with two tokens in PVMup representing two VMs on each host. In general, the SRN
model of a VM subsystem also consists of six states as in the VMM subsystem does including:
(i) normal state (PVMup), (ii) failure state due to non-aging Mandelbugs (PVMf), (iii) down-state

Dependability Engineering66

due to a failure of underlying VMM (PVMdn), (iv) failure-probable state due to aging problems
(PVMfp), (v) aging-failure state due to a failure of aging (PVMaf) and (vi) rejuvenation-process
state (PVMrej). The operations of the VM subsystem in correspondence with the transitions of

Figure 3. SRN system model of a VSS: (a) Host 1, (b) Host 2, (c) SAN, (d) VMM1, (e) VMM2, (f) VMM1’s clock, (g)
VMM2’s clock, (h) VM1, (i) VM2, (j) VM1’s clock, and (k) VM2’s clock.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

67

tokens in the SRNmodel are similarly described as those of the VMM subsystem. However, the
SRNmodel of the VM subsystem is further extended by incorporating (i) marking-dependence
represented by a “#” mark nearby selected timed transitions (TVMfp, TVMf, TVMreset) to capture
the cases in which two VMs in the same state compete with each other in order to transit to a
new state and (ii) dependence between the VM subsystem and SAN. The second dependence is
captured by the immediate transitions tVMupo, tVMfo, tVMdno, tVMfpo, tVMafo, and tVMrejo in the VM
model, and tVMclocko, tVMpolicyo, and tVMtriggero in the VM clock model. As the SAN fails (depicted
by a token in PSANf), these transitions are fired to remove tokens in the VM model and VM
clock model, regardless of their locations representing the loss of VM images on SAN and VM
clock functionalities. Nevertheless, as soon as the SAN is recovered, two VMs are immediately
created on the SAN, and they are booted onto a VMM of a corresponding host. The creation of
multiple VMs is captured by tVMstop, whereas the booting of a VM in the sequence is captured
by TVMboot with marking-dependence. The VM clock is also started after the recovery of a SAN,
as captured by PVMclockstop and two immediate transitions tVMclockstop and tVMclockstart.

3.3. Availability analysis scenarios and results

We implemented the SRN models in the Stochastic Petri Net Package (SPNP) [26]. Input
parameters are selected based on previous work [20, 27], as shown in Table 1.

Input Description Transitions Value Input Description Transitions Value

μhr Host repair TH1r, TH2r 3 days λhf Host fail TH1f, TH2f 1 years

λvmmf VMM non-aging
failure

TVMM1f, TVMM2f 2654 hours λvmf VM non-aging
failure

TVM1f, TVM2f 2893 hours

μvmmr VMM reset TVMM1reset,
TVMM2reset

1 min δvmr VM repair TVM1repair,
TVM2repair

30 min

δvmmr VMM repair TVMM1repair,
TVMM2repair

100 min μvmr VM restart TVM1reset,
TVM2reset

50s

βvmmfp VMM failure-
probable

TVMM1fp, TVMM2fp 2 months βvmfp VM failure-probable TVM1fp, TVM2fp 1 month

λvmmaf VMM aging-
failure

TVMM1af, TVMM2af 2 weeks λvmaf VM aging failure TVM1af, TVM2af 1 week

μvmmar VMM aging
recovery

TVMM1ar,TVMM2ar 120 min μvmar VM aging recovery TVM1ar, TVM2ar 120 min

τvmm VMM clock
interval

TVMM1clockinterval,
TVMM1clockinterval

1 week τvm VM clock interval TVM1clockinterval,
TVM2clockinterval

3.5 days

βvmmrej VMM
rejuvenation

TVMM1rej, TVMM1rej 2 min βvmrej VM rejuvenation TVM1rej, TVM2rej 1 min

λsf
μsr

SAN fail
SAN repair

TSANf

TSANrepair

1 year
3 days

ηvmb VM booting after
VMM rejuvenation

TVM1boot,
TVM2boot

50s

cVMM cVMM-stage
Erlang
distribution

x 10 cVM cVM-stage Erlang
distribution

X 10

Table 1. Input parameters of SRN models.

Dependability Engineering68

• Steady-state availability: We conducted numerical experiments in seven case studies with
regard to different rejuvenation combinations. The case studies are described along with
analysis results of SSA of VMM and SSA of VM in Table 2. The reward functions used to
compute SSAs are defined as

SSAVMM ¼
1 : if #PVMM1up þ #PVMM1fp þ #PVMM2up þ #PVMM2fp

� �
> 0

0 : otherwise

8<
:

SSAVM ¼
1 : if #PVM1up þ #PVM1fp þ #PVM2up þ #PVM2fp

� �
> 0

0 : otherwise

8<
:

(11)

where #PX is the number of token in place PX. The results show that the following:

i. Time-based rejuvenation techniques with default parameters, when implemented on
both VMM and VM subsystems in combination does not gain the highest SSA for the
virtualized system. When a VMM undergoes a rejuvenation process, it pulls down all
VMs running on top of the VMM;

ii. Rejuvenation on VMM exposes more effectiveness in gaining higher SSA in comparison
to the VM.

iii. An appropriate rejuvenation combination implemented on either a VMM or VM with
proper clock intervals can actually enhance system availability.

• Sensitivity analysis of SSA: The sensitivity analysis is observed in five case studies w.r.t the
variation of: (i) only VMM1 clock’s interval; (ii) only VM1 clock’s interval; (iii) both VMM1
and VMM2 clocks’ interval; (iv) both VM1 and VM2 clocks’ interval; and (v) all clock
intervals with the same duration, as shown in Figure 4. The findings are as follows:

Cases Description SSA of VMM SSA of VM

I Rejuvenation is applied on all VMM and VM subsystems in both hosts. 0.999912470996 0.991769547666

II Rejuvenation is not applied only on one of VMM subsystems in two hosts but
applied on both VM subsystems in two hosts.

0.999908948744 0.991766082049

III Rejuvenation is applied on both VMM subsystems in two hosts but not
applied to only one of two VM subsystems.

0.999912470996 0.991770317258

IV Rejuvenation is not applied on haft side of the system including VMM1 and
VM1 subsystems but applied on VMM2 and VM2 subsystems.

0.999908948744 0.991766912872

V Rejuvenation is not applied on both VMM subsystems in two hosts but
applied on both VM subsystems.

0.999905284754 0.991763344539

VI Rejuvenation is applied on both VMM subsystems in two hosts, but not
applied on both VM subsystems.

0.999912470996 0.991771080172

VII Rejuvenation is not applied on VMM and VM subsystems in both hosts. 0.999905284754 0.99176419998

Table 2. Analysis scenarios of VSS and SSAs of VMM and VM subsystems.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

69

tokens in the SRNmodel are similarly described as those of the VMM subsystem. However, the
SRNmodel of the VM subsystem is further extended by incorporating (i) marking-dependence
represented by a “#” mark nearby selected timed transitions (TVMfp, TVMf, TVMreset) to capture
the cases in which two VMs in the same state compete with each other in order to transit to a
new state and (ii) dependence between the VM subsystem and SAN. The second dependence is
captured by the immediate transitions tVMupo, tVMfo, tVMdno, tVMfpo, tVMafo, and tVMrejo in the VM
model, and tVMclocko, tVMpolicyo, and tVMtriggero in the VM clock model. As the SAN fails (depicted
by a token in PSANf), these transitions are fired to remove tokens in the VM model and VM
clock model, regardless of their locations representing the loss of VM images on SAN and VM
clock functionalities. Nevertheless, as soon as the SAN is recovered, two VMs are immediately
created on the SAN, and they are booted onto a VMM of a corresponding host. The creation of
multiple VMs is captured by tVMstop, whereas the booting of a VM in the sequence is captured
by TVMboot with marking-dependence. The VM clock is also started after the recovery of a SAN,
as captured by PVMclockstop and two immediate transitions tVMclockstop and tVMclockstart.

3.3. Availability analysis scenarios and results

We implemented the SRN models in the Stochastic Petri Net Package (SPNP) [26]. Input
parameters are selected based on previous work [20, 27], as shown in Table 1.

Input Description Transitions Value Input Description Transitions Value

μhr Host repair TH1r, TH2r 3 days λhf Host fail TH1f, TH2f 1 years

λvmmf VMM non-aging
failure

TVMM1f, TVMM2f 2654 hours λvmf VM non-aging
failure

TVM1f, TVM2f 2893 hours

μvmmr VMM reset TVMM1reset,
TVMM2reset

1 min δvmr VM repair TVM1repair,
TVM2repair

30 min

δvmmr VMM repair TVMM1repair,
TVMM2repair

100 min μvmr VM restart TVM1reset,
TVM2reset

50s

βvmmfp VMM failure-
probable

TVMM1fp, TVMM2fp 2 months βvmfp VM failure-probable TVM1fp, TVM2fp 1 month

λvmmaf VMM aging-
failure

TVMM1af, TVMM2af 2 weeks λvmaf VM aging failure TVM1af, TVM2af 1 week

μvmmar VMM aging
recovery

TVMM1ar,TVMM2ar 120 min μvmar VM aging recovery TVM1ar, TVM2ar 120 min

τvmm VMM clock
interval

TVMM1clockinterval,
TVMM1clockinterval

1 week τvm VM clock interval TVM1clockinterval,
TVM2clockinterval

3.5 days

βvmmrej VMM
rejuvenation

TVMM1rej, TVMM1rej 2 min βvmrej VM rejuvenation TVM1rej, TVM2rej 1 min

λsf
μsr

SAN fail
SAN repair

TSANf

TSANrepair

1 year
3 days

ηvmb VM booting after
VMM rejuvenation

TVM1boot,
TVM2boot

50s

cVMM cVMM-stage
Erlang
distribution

x 10 cVM cVM-stage Erlang
distribution

X 10

Table 1. Input parameters of SRN models.

Dependability Engineering68

• Steady-state availability: We conducted numerical experiments in seven case studies with
regard to different rejuvenation combinations. The case studies are described along with
analysis results of SSA of VMM and SSA of VM in Table 2. The reward functions used to
compute SSAs are defined as

SSAVMM ¼
1 : if #PVMM1up þ #PVMM1fp þ #PVMM2up þ #PVMM2fp

� �
> 0

0 : otherwise

8<
:

SSAVM ¼
1 : if #PVM1up þ #PVM1fp þ #PVM2up þ #PVM2fp

� �
> 0

0 : otherwise

8<
:

(11)

where #PX is the number of token in place PX. The results show that the following:

i. Time-based rejuvenation techniques with default parameters, when implemented on
both VMM and VM subsystems in combination does not gain the highest SSA for the
virtualized system. When a VMM undergoes a rejuvenation process, it pulls down all
VMs running on top of the VMM;

ii. Rejuvenation on VMM exposes more effectiveness in gaining higher SSA in comparison
to the VM.

iii. An appropriate rejuvenation combination implemented on either a VMM or VM with
proper clock intervals can actually enhance system availability.

• Sensitivity analysis of SSA: The sensitivity analysis is observed in five case studies w.r.t the
variation of: (i) only VMM1 clock’s interval; (ii) only VM1 clock’s interval; (iii) both VMM1
and VMM2 clocks’ interval; (iv) both VM1 and VM2 clocks’ interval; and (v) all clock
intervals with the same duration, as shown in Figure 4. The findings are as follows:

Cases Description SSA of VMM SSA of VM

I Rejuvenation is applied on all VMM and VM subsystems in both hosts. 0.999912470996 0.991769547666

II Rejuvenation is not applied only on one of VMM subsystems in two hosts but
applied on both VM subsystems in two hosts.

0.999908948744 0.991766082049

III Rejuvenation is applied on both VMM subsystems in two hosts but not
applied to only one of two VM subsystems.

0.999912470996 0.991770317258

IV Rejuvenation is not applied on haft side of the system including VMM1 and
VM1 subsystems but applied on VMM2 and VM2 subsystems.

0.999908948744 0.991766912872

V Rejuvenation is not applied on both VMM subsystems in two hosts but
applied on both VM subsystems.

0.999905284754 0.991763344539

VI Rejuvenation is applied on both VMM subsystems in two hosts, but not
applied on both VM subsystems.

0.999912470996 0.991771080172

VII Rejuvenation is not applied on VMM and VM subsystems in both hosts. 0.999905284754 0.99176419998

Table 2. Analysis scenarios of VSS and SSAs of VMM and VM subsystems.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

69

i. Figure 4(a) and (b) shows that rejuvenation processes on VMM reduce SSA of the
VM, but those on VM can improve. A proper combination of rejuvenation processes
on the VMM and VM can yield an efficient impact for maintaining high values of
SSA of VM.

ii. Figure 4(c) and (d) shows that there is no dependence of a VMM on its VM incorpo-
rated in the modeling of the proposed VSS yet. Also, rejuvenation implemented on
both VMM subsystems of both hosts obviously gains higher SSA of VMM than it
would if implemented on only one of the VMM subsystems.

4. Case study II: a DCell-based data center network

4.1. A typical DCN architecture

In this section, the DCell in consideration is expanded in size up to a network of virtualized
servers complying a DCell topology. A DCell [28] is recursively constructed based on the most
basic element DCell0 as follows:

i. A DCell0 consists of n physical servers connected to an n-port switch.

Figure 4. Sensitivity analysis of SSA of VMM and VM subsystems: (a) SSA of VM with respect to VMM clocks’ intervals,
(b) SSA of VMwith respect to VM clocks’ intervals, (c) SSA of VMMwith respect to VMM clocks’ intervals, and (d) SSA of
VMM with respect to VM clocks’ intervals.

Dependability Engineering70

ii. A DCell1 is composed of n + 1 DCell0s. Each server of a DCell0 in a DCell1 has two links.
One connects to its switch, the other connects to the corresponding server in another
DCell0, complying with a predetermined DCell routing algorithm. Consequently, every
pair of DCell0s in a DCell1 has an exact unique link between each other.

iii. A DCellk is a level-k of DCellk-1.

To apply the proposed modeling approach using SRN, we focus on studying a special case of
DCell-based DCN at level 1 (DCell1). Particularly, a cell DCell0 consists of two physical servers
and one shared switch. DCell1 is composed of three DCell0s, as shown in Figure 5. We assume
that each server has two NICs, one for connecting to the switch in the same cell, and the other
for direct connection between the server in a cell and the corresponding server in another cell,
which complies with DCell network routing topology. The system architecture is detailed as
follows: (i) DCell0[0] consists of switch S0, two hosts H00 and H01, a number of VMs (n00 of
VM00 and n01 of VM01) on the hosts H00 and H01, respectively; (ii) the description of other
cells goes in the same manner.

4.2. Proposed SRN model

The SRN system model of the DCell-based DCN is presented in Figure 6. To simplify the
modeling and to focus on sophisticated interactions between VMs and servers in a cell and in
different cells of the network, we use two-state SRN models (consisting of UP and DOWN
states) for physical parts of the system, including hosts and switches, as shown in Figure 6(a)–(j).
Initially, there is a token in the UP state for each model of a certain physical part, which is

Figure 5. An architecture of a DCell-based data center network.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

71

i. Figure 4(a) and (b) shows that rejuvenation processes on VMM reduce SSA of the
VM, but those on VM can improve. A proper combination of rejuvenation processes
on the VMM and VM can yield an efficient impact for maintaining high values of
SSA of VM.

ii. Figure 4(c) and (d) shows that there is no dependence of a VMM on its VM incorpo-
rated in the modeling of the proposed VSS yet. Also, rejuvenation implemented on
both VMM subsystems of both hosts obviously gains higher SSA of VMM than it
would if implemented on only one of the VMM subsystems.

4. Case study II: a DCell-based data center network

4.1. A typical DCN architecture

In this section, the DCell in consideration is expanded in size up to a network of virtualized
servers complying a DCell topology. A DCell [28] is recursively constructed based on the most
basic element DCell0 as follows:

i. A DCell0 consists of n physical servers connected to an n-port switch.

Figure 4. Sensitivity analysis of SSA of VMM and VM subsystems: (a) SSA of VM with respect to VMM clocks’ intervals,
(b) SSA of VMwith respect to VM clocks’ intervals, (c) SSA of VMMwith respect to VMM clocks’ intervals, and (d) SSA of
VMM with respect to VM clocks’ intervals.

Dependability Engineering70

ii. A DCell1 is composed of n + 1 DCell0s. Each server of a DCell0 in a DCell1 has two links.
One connects to its switch, the other connects to the corresponding server in another
DCell0, complying with a predetermined DCell routing algorithm. Consequently, every
pair of DCell0s in a DCell1 has an exact unique link between each other.

iii. A DCellk is a level-k of DCellk-1.

To apply the proposed modeling approach using SRN, we focus on studying a special case of
DCell-based DCN at level 1 (DCell1). Particularly, a cell DCell0 consists of two physical servers
and one shared switch. DCell1 is composed of three DCell0s, as shown in Figure 5. We assume
that each server has two NICs, one for connecting to the switch in the same cell, and the other
for direct connection between the server in a cell and the corresponding server in another cell,
which complies with DCell network routing topology. The system architecture is detailed as
follows: (i) DCell0[0] consists of switch S0, two hosts H00 and H01, a number of VMs (n00 of
VM00 and n01 of VM01) on the hosts H00 and H01, respectively; (ii) the description of other
cells goes in the same manner.

4.2. Proposed SRN model

The SRN system model of the DCell-based DCN is presented in Figure 6. To simplify the
modeling and to focus on sophisticated interactions between VMs and servers in a cell and in
different cells of the network, we use two-state SRN models (consisting of UP and DOWN
states) for physical parts of the system, including hosts and switches, as shown in Figure 6(a)–(j).
Initially, there is a token in the UP state for each model of a certain physical part, which is

Figure 5. An architecture of a DCell-based data center network.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

71

depicted by a black dot which represents the initial normal working state of the physical hosts
and switches. Contrary to the presented case-study of VSS in Section 3, we do not take into
account the modeling of the VMM subsystem. Instead, we combine host and VMM in a unique
model by considering the mean time to failure equivalent (MTTFeq) and mean time to repair
equivalent (MTTReq) of the VMM subsystem as input parameters in the two-state models of
hosts. Also, we simplify the modeling of the VM subsystem by using only two-state SRNmodels
as shown in Figure 6(g) (VM subsystem model). There is an initial number of VMs on each host
in a general case as represented by tokens in UP states. Specifically, there are n00 of VMs in
PVM00up, and n01 of VMs in PVM01up in cell DCell0[0]. In DCell0[1], the numbers of VMs initially
running in a normal state on each host are n10 of VM10, and n11 of VM11, which are hosted on
H10 and H11, respectively. Those numbers in DCell0[2] are n20 of VM20 and n21 of VM21. Unlike
the SRN model of a single unit of VSS in Figure 3, we capture in the SRN system model the VM
live migration techniques within a cell and between different cells for the sake of fault tolerance
and improvement of system availability.

Figure 6. SRN system model of a DCell-based data center network.

Dependability Engineering72

The VM migration is implemented between two hosts in a cell when a host in the cell experi-
ences downtime due to a certain failure. In cell DCell0[0] for instance, the VM live migration is
triggered to migrate all running VMs from the host H00 to the host H01 immediately when the
host H00 fails (represented by a token in PH00dn). The immediate transition tH00f is triggered to
remove all tokens in PVM00up and deposit them in PVM01mig. As the timed transition TVM01mig is
fired, the tokens in PVM01mig are removed and deposited in PVM01up, representing the comple-
tion of VM live migration processes from H00 to H01. If host H01 fails (i.e., a token is placed in
PH01dn), the VM live migration is performed fromH01 toH00 and is captured by the immediate
transition tH01f (to trigger VM live migration processes), the place PVM00mig (the state of a VM in
migration), and the timed transition TVM00mig (to represent the migration processes that take
time to complete). The description of VM live migration within a cell occurs in the same
manner for other cells DCell0[1] and DCell0[2].

In the case of a failed switch in a cell, VM live migration is performed between two hosts in
two different cells via a peer-to-peer connection. For instance, if switch S0 fails, the connections
between the two hosts H00 and H01 in cell DCell0[0] and the two host connections to outside
users are disrupted. However, the number of VM00 and VM01 are still running on hosts H00
andH01, respectively. It is necessary to migrate these VMs to other cells in order to enhance the
overall availability of the system. The VM migration processes from cell DCell0[0] to the other
two cells are triggered by the two immediate transitions tVM01m (to migrate VMs from DCell0[0]
to DCell0[1]) and tVM02m (to migrate VMs from DCell0[0] to DCell0[2]). After that, the tokens in
PVM00up are removed and deposited in PVM01m and are then deposited in PVM10up in cell
DCell0[1] as TVM01m is fired. The transition of tokens PVM00up in DCell0[0] to PVM10up in cell
DCell0[1] captures the migration of VM on host H00 after a failure of switch S0 between the
two different cells. On the other side, the tokens in PVM01up are removed and deposited in
PVM02m and are then deposited in PVM20up in cell DCell0[2]. This represents the migrations of
VMs on host H01 after the failure of switch S0 from cell DCell0[0] to cell DCell0[2].

Without loss of generality, the VM live migration techniques within a cell and between two
cells are described in detail as above for cell DCell0[0]. These migrations apply similarly to the
other cells DCell0[1] and DCell0[2].

4.3. Availability evaluation

The proposed SRNmodels are all implemented in SPNP. The default input parameters are listed
inTable 3. To reduce the complexity of model analysis, we initiate only one VMon each hostH00

Input Description Values Input Description Values

λH Host failure rate 800 hours μH Host repair rate 9.8 hours

λVM VM failure rate 4 months μVM VM repair rate 30 min

λS Switch failure rate 1 year μS Switch repair rate 24 hours

ωmig Network bandwidth within a DCell0 1 GB/s ωm Network bandwidth between two DCell0s 256 Mb/s

SVM VM image size 10 GB n00, n01 No. Of initial VMs in Dcell0[0] 1

Table 3. Default input parameters for SRN system model of a DCN.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

73

depicted by a black dot which represents the initial normal working state of the physical hosts
and switches. Contrary to the presented case-study of VSS in Section 3, we do not take into
account the modeling of the VMM subsystem. Instead, we combine host and VMM in a unique
model by considering the mean time to failure equivalent (MTTFeq) and mean time to repair
equivalent (MTTReq) of the VMM subsystem as input parameters in the two-state models of
hosts. Also, we simplify the modeling of the VM subsystem by using only two-state SRNmodels
as shown in Figure 6(g) (VM subsystem model). There is an initial number of VMs on each host
in a general case as represented by tokens in UP states. Specifically, there are n00 of VMs in
PVM00up, and n01 of VMs in PVM01up in cell DCell0[0]. In DCell0[1], the numbers of VMs initially
running in a normal state on each host are n10 of VM10, and n11 of VM11, which are hosted on
H10 and H11, respectively. Those numbers in DCell0[2] are n20 of VM20 and n21 of VM21. Unlike
the SRN model of a single unit of VSS in Figure 3, we capture in the SRN system model the VM
live migration techniques within a cell and between different cells for the sake of fault tolerance
and improvement of system availability.

Figure 6. SRN system model of a DCell-based data center network.

Dependability Engineering72

The VM migration is implemented between two hosts in a cell when a host in the cell experi-
ences downtime due to a certain failure. In cell DCell0[0] for instance, the VM live migration is
triggered to migrate all running VMs from the host H00 to the host H01 immediately when the
host H00 fails (represented by a token in PH00dn). The immediate transition tH00f is triggered to
remove all tokens in PVM00up and deposit them in PVM01mig. As the timed transition TVM01mig is
fired, the tokens in PVM01mig are removed and deposited in PVM01up, representing the comple-
tion of VM live migration processes from H00 to H01. If host H01 fails (i.e., a token is placed in
PH01dn), the VM live migration is performed fromH01 toH00 and is captured by the immediate
transition tH01f (to trigger VM live migration processes), the place PVM00mig (the state of a VM in
migration), and the timed transition TVM00mig (to represent the migration processes that take
time to complete). The description of VM live migration within a cell occurs in the same
manner for other cells DCell0[1] and DCell0[2].

In the case of a failed switch in a cell, VM live migration is performed between two hosts in
two different cells via a peer-to-peer connection. For instance, if switch S0 fails, the connections
between the two hosts H00 and H01 in cell DCell0[0] and the two host connections to outside
users are disrupted. However, the number of VM00 and VM01 are still running on hosts H00
andH01, respectively. It is necessary to migrate these VMs to other cells in order to enhance the
overall availability of the system. The VM migration processes from cell DCell0[0] to the other
two cells are triggered by the two immediate transitions tVM01m (to migrate VMs from DCell0[0]
to DCell0[1]) and tVM02m (to migrate VMs from DCell0[0] to DCell0[2]). After that, the tokens in
PVM00up are removed and deposited in PVM01m and are then deposited in PVM10up in cell
DCell0[1] as TVM01m is fired. The transition of tokens PVM00up in DCell0[0] to PVM10up in cell
DCell0[1] captures the migration of VM on host H00 after a failure of switch S0 between the
two different cells. On the other side, the tokens in PVM01up are removed and deposited in
PVM02m and are then deposited in PVM20up in cell DCell0[2]. This represents the migrations of
VMs on host H01 after the failure of switch S0 from cell DCell0[0] to cell DCell0[2].

Without loss of generality, the VM live migration techniques within a cell and between two
cells are described in detail as above for cell DCell0[0]. These migrations apply similarly to the
other cells DCell0[1] and DCell0[2].

4.3. Availability evaluation

The proposed SRNmodels are all implemented in SPNP. The default input parameters are listed
inTable 3. To reduce the complexity of model analysis, we initiate only one VMon each hostH00

Input Description Values Input Description Values

λH Host failure rate 800 hours μH Host repair rate 9.8 hours

λVM VM failure rate 4 months μVM VM repair rate 30 min

λS Switch failure rate 1 year μS Switch repair rate 24 hours

ωmig Network bandwidth within a DCell0 1 GB/s ωm Network bandwidth between two DCell0s 256 Mb/s

SVM VM image size 10 GB n00, n01 No. Of initial VMs in Dcell0[0] 1

Table 3. Default input parameters for SRN system model of a DCN.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

73

and H01 in cell DCell0[0] in the default case, and there are no other VMs in the other cells.
However, we also evaluate the impact of the number of VMs in the DCN on the overall system
availability. In this case-study, we consider two different evaluation scenarios: (I) a standalone
DCell0 (with two hosts and one switch), and (II) the proposed three-cell DCN (as modeled
above). The reward rates used to compute SSA of the two cases are defined as follows:

AI ¼
1 : if #PVM00up þ #PVM01up > 0

� �
&& #PS0up ¼¼ 1

� �

0 : otherwise

8<
:

AII ¼

1 : if #PVM00up þ #PVM01up > 0
� �

&& #PS0up ¼¼ 1
� �� �

k #PVM10up þ #PVM11up > 0
� �

&& #PS1up ¼¼ 1
� �� �

k #PVM20up þ #PVM21up > 0
� �

&& #PS2up ¼¼ 1
� �� �

0 : otherwise

8>>>>>>>>><
>>>>>>>>>:

(12)

• Steady-state availability:

• We first evaluate SSA and downtime of the two scenarios as shown in Table 4. We
assume that a minute of system downtime incurs a penalty of 16,000 USD for the
system owner according to the SLA signed with customers [29]. The results clearly
show that the proposed three-cell DCN obtains much higher availability, and thus
reduce downtime minutes and downtime cost penalty in a year than a standalone cell
with only two physical servers.

• We also evaluate the impact of the initial number of VMs in a DCN on the system’s
overall availability, as shown in Table 5. The results show that as we increase the
initial number of VMs, the overall system availability also increases. The increased
SSA in the proposed three-cell DCN is also faster than in the standalone DCell0.
However, if the initial number of VMs (represented by the total number of tokens in
the proposed SRN system model) obtains a large value, it causes a memory error in
computing the system availability due to the largeness problem of the SRN model.

• Sensitivity analysis of SSA: We observe the variation of SSA in accordance with changes in
the selected input parameters, including MTTF and MTTR of hosts, VMs and switches,
and VM migration rate between two hosts in a cell or in two different cells, as shown in
Figure 7. The results show that:

Case Description SSA No. of nines Downtime (min/year) Downtime cost (USD/year)

I Standalone DCell0 0.997240422469 2.55 1450.4 23,206,943

II Proposed three-cell DCN 0.999950276761 4.30 26.1 418,152

Table 4. Steady-state availability and downtime cost.

Dependability Engineering74

• SSA is improved as we increase MTTFs and VM migration rates, and as we decrease
MTTRs.

• In Figure 7(a), we see that the switch is an important component of the network
because its MTTF is small. Thus, the SSA clearly drops down vertically in comparison
to the MTTFs of other components. Furthermore, MTTF of a host is a significant
parameter in the long-run since it causes a better enhancement in the overall avail-
ability than the other MTTFs.

• In Figure 7(b), we clearly find that the repair time of a switch does not affect the SSA
because we perform VM migration between cells to tolerate the failures of switches.
This ensures that VMs can be migrated to other cells, regardless of the failure/recov-
ery of a certain switch. However, we can see that the recovery of a VM has a greater
impact on SSA than that of a host.

• In Figure 7(c), the migration rates of VMs between cells can clearly enhance SSA in
comparison with those within a cell. However, the low value of the VM migration
rate within a cell severely drops the system’s availability.

nVM I II

SSA #nines SSA #nines

1 0.997064755072 2.532356 0.999773875854 3.646

2 0.997240422469 2.559157 0.999950276761 4.303

3 0.997240488479 2.559168 0.999950574780 4.306

4 0.997240519634 2.559173 0.999950839446 4.308

5 0.997240550678 2.559178 0.999951101800 4.311

6 0.997240759564 2.559210 m.e m.e

(m.e: memory error)

Table 5. Impact of number of VMs.

Figure 7. Sensitivity analysis with respect to impacting parameters. (a) MTTF, (b) MTTR, (c) VM migration rate.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

75

and H01 in cell DCell0[0] in the default case, and there are no other VMs in the other cells.
However, we also evaluate the impact of the number of VMs in the DCN on the overall system
availability. In this case-study, we consider two different evaluation scenarios: (I) a standalone
DCell0 (with two hosts and one switch), and (II) the proposed three-cell DCN (as modeled
above). The reward rates used to compute SSA of the two cases are defined as follows:

AI ¼
1 : if #PVM00up þ #PVM01up > 0

� �
&& #PS0up ¼¼ 1

� �

0 : otherwise

8<
:

AII ¼

1 : if #PVM00up þ #PVM01up > 0
� �

&& #PS0up ¼¼ 1
� �� �

k #PVM10up þ #PVM11up > 0
� �

&& #PS1up ¼¼ 1
� �� �

k #PVM20up þ #PVM21up > 0
� �

&& #PS2up ¼¼ 1
� �� �

0 : otherwise

8>>>>>>>>><
>>>>>>>>>:

(12)

• Steady-state availability:

• We first evaluate SSA and downtime of the two scenarios as shown in Table 4. We
assume that a minute of system downtime incurs a penalty of 16,000 USD for the
system owner according to the SLA signed with customers [29]. The results clearly
show that the proposed three-cell DCN obtains much higher availability, and thus
reduce downtime minutes and downtime cost penalty in a year than a standalone cell
with only two physical servers.

• We also evaluate the impact of the initial number of VMs in a DCN on the system’s
overall availability, as shown in Table 5. The results show that as we increase the
initial number of VMs, the overall system availability also increases. The increased
SSA in the proposed three-cell DCN is also faster than in the standalone DCell0.
However, if the initial number of VMs (represented by the total number of tokens in
the proposed SRN system model) obtains a large value, it causes a memory error in
computing the system availability due to the largeness problem of the SRN model.

• Sensitivity analysis of SSA: We observe the variation of SSA in accordance with changes in
the selected input parameters, including MTTF and MTTR of hosts, VMs and switches,
and VM migration rate between two hosts in a cell or in two different cells, as shown in
Figure 7. The results show that:

Case Description SSA No. of nines Downtime (min/year) Downtime cost (USD/year)

I Standalone DCell0 0.997240422469 2.55 1450.4 23,206,943

II Proposed three-cell DCN 0.999950276761 4.30 26.1 418,152

Table 4. Steady-state availability and downtime cost.

Dependability Engineering74

• SSA is improved as we increase MTTFs and VM migration rates, and as we decrease
MTTRs.

• In Figure 7(a), we see that the switch is an important component of the network
because its MTTF is small. Thus, the SSA clearly drops down vertically in comparison
to the MTTFs of other components. Furthermore, MTTF of a host is a significant
parameter in the long-run since it causes a better enhancement in the overall avail-
ability than the other MTTFs.

• In Figure 7(b), we clearly find that the repair time of a switch does not affect the SSA
because we perform VM migration between cells to tolerate the failures of switches.
This ensures that VMs can be migrated to other cells, regardless of the failure/recov-
ery of a certain switch. However, we can see that the recovery of a VM has a greater
impact on SSA than that of a host.

• In Figure 7(c), the migration rates of VMs between cells can clearly enhance SSA in
comparison with those within a cell. However, the low value of the VM migration
rate within a cell severely drops the system’s availability.

nVM I II

SSA #nines SSA #nines

1 0.997064755072 2.532356 0.999773875854 3.646

2 0.997240422469 2.559157 0.999950276761 4.303

3 0.997240488479 2.559168 0.999950574780 4.306

4 0.997240519634 2.559173 0.999950839446 4.308

5 0.997240550678 2.559178 0.999951101800 4.311

6 0.997240759564 2.559210 m.e m.e

(m.e: memory error)

Table 5. Impact of number of VMs.

Figure 7. Sensitivity analysis with respect to impacting parameters. (a) MTTF, (b) MTTR, (c) VM migration rate.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

75

5. Case study III: a Disaster Tolerant Data Center (DTDC)

5.1. A typical system architecture of a DTDC

This case-study considers disaster tolerance of cloud computing in a DCS. The system is com-
posed of two different DCs (DC1 and DC2), which are geographically located in two distant
regions, as shown in Figure 8. In each DC, we place a VSS of two physical servers (H1 and H2 in
DC1, and H3 and H4 in DC2). All physical machines are assumed to be identical. Each server is
initially capable of running a VM (VM1~VM4 runs on H1~H4, respectively). Shared network
attached storage (NAS) is equipped in each DC to provide distributed storage and a VMmigra-
tion mechanism between two hosts in the same DC. To implement disaster tolerance and recov-
ery strategies between DCs, a back-up server is incorporated to provide VM data backup. The
back-up server allows periodic synchronization of VM data between DCs. This allows the most-
updated VM data to be recovered onto an operational DC after a disaster strikes on another DC.

Furthermore, to enhance the system’s overall availability, we use the (active-standby) fail-over
technique and VM switching mechanism. Specifically, when a VM on a certain host fails, a
standby VM on the same host wakes up and takes over the operations of the failed VM. If there
is no standby VM on the same host, the standby VM on the remaining host goes up and takes
place on the failed host.

If a host in a DC fails, its VMs in the standby state are switched on in order to load onto the
remaining host. Various VM migration mechanisms are also taken into account in this system.
VM live-migration is performed between two hosts in a DC when one of the hosts fails. VM
migration between two DCs is triggered when a DC undergoes a system failure when two
hosts enter a downtime period simultaneously. When a disaster devastates a DC, VM migra-
tion between the back-up server (in a safe zone) and the remaining operational DC is
implemented as a means of disaster recovery.

5.2. Availability modeling of a DTDC

The SRN system model for availability quantification of the studied DTDC is shown in Figure 9.
We use simplified two-state SRNmodels (UP andDOWN) to capture general failure and recovery
behaviors of physical parts in the system, including the physical hosts H1–H4 (Figure 9(a), (b), (j),

Figure 8. A conceptual architecture of a disaster tolerant data center system.

Dependability Engineering76

and (i), respectively), NAS1 in DC1, and NAS2 in DC2 (Figure 9(c) and (h), respectively). We use
immediate transitions tHupo, tHdowno, tNASupo, and tNASdowno to remove tokens in the up and down
places of the host andNASmodels in order to represent the entire operational termination of aDC
when a disaster strikes. When the disaster passes and the reconstructed DC starts a new opera-
tional cycle, the immediate transitions tHupin and tNASupin are used to deposit new tokens in the up
states of the host and NAS models. The occurrence of a disaster at a site is also represented by
using a two-state model as shown in Figure 9(d) and (g) for the occurrence of a disaster at DC1
and DC2, respectively. The two-state SRN model in Figure 9(f) captures the operational and
failure states of the back-up server.

The modeling of VM subsystems in DC1 and DC2 are shown in Figure 9(e) and (k), respec-
tively. Since we initially assume that all hosts and VMs are identical, the modeling of the two
DCs is also identical. The model initializes N tokens in PVM1up, and the other N tokens in
PVM2std represent N operational VMs with their N standby VMs at the beginning. Each VM
sub-model mainly has four states, including the operational state (PVMup), failure state (PVMfail),
standby state (PVMstd), and synchronization state (PVMsync). If a VM fails, it moves from the
upstate PVMup to the failure state PVMfail. When the failed VM is repaired, it moves to the
standby state PVMstd. At this point, the active-standby fail-over mechanism of VMs is captured
as follows. When a VM fails, a standby VM (represented by a token in PVMstd) on the same host
(before the disaster) or on the remaining host (after the disaster) transits to PVMsync in order to
synchronize the most-updated data on the NAS of that DC corresponding to the previously
failed VM. It then goes up to PVMup and takes the place of the failed VM. Dependence marks
are placed near timed transitions TVMfail and TVMrepair to represent the competition between

Figure 9. SRN system model of a disaster tolerant data center.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

77

5. Case study III: a Disaster Tolerant Data Center (DTDC)

5.1. A typical system architecture of a DTDC

This case-study considers disaster tolerance of cloud computing in a DCS. The system is com-
posed of two different DCs (DC1 and DC2), which are geographically located in two distant
regions, as shown in Figure 8. In each DC, we place a VSS of two physical servers (H1 and H2 in
DC1, and H3 and H4 in DC2). All physical machines are assumed to be identical. Each server is
initially capable of running a VM (VM1~VM4 runs on H1~H4, respectively). Shared network
attached storage (NAS) is equipped in each DC to provide distributed storage and a VMmigra-
tion mechanism between two hosts in the same DC. To implement disaster tolerance and recov-
ery strategies between DCs, a back-up server is incorporated to provide VM data backup. The
back-up server allows periodic synchronization of VM data between DCs. This allows the most-
updated VM data to be recovered onto an operational DC after a disaster strikes on another DC.

Furthermore, to enhance the system’s overall availability, we use the (active-standby) fail-over
technique and VM switching mechanism. Specifically, when a VM on a certain host fails, a
standby VM on the same host wakes up and takes over the operations of the failed VM. If there
is no standby VM on the same host, the standby VM on the remaining host goes up and takes
place on the failed host.

If a host in a DC fails, its VMs in the standby state are switched on in order to load onto the
remaining host. Various VM migration mechanisms are also taken into account in this system.
VM live-migration is performed between two hosts in a DC when one of the hosts fails. VM
migration between two DCs is triggered when a DC undergoes a system failure when two
hosts enter a downtime period simultaneously. When a disaster devastates a DC, VM migra-
tion between the back-up server (in a safe zone) and the remaining operational DC is
implemented as a means of disaster recovery.

5.2. Availability modeling of a DTDC

The SRN system model for availability quantification of the studied DTDC is shown in Figure 9.
We use simplified two-state SRNmodels (UP andDOWN) to capture general failure and recovery
behaviors of physical parts in the system, including the physical hosts H1–H4 (Figure 9(a), (b), (j),

Figure 8. A conceptual architecture of a disaster tolerant data center system.

Dependability Engineering76

and (i), respectively), NAS1 in DC1, and NAS2 in DC2 (Figure 9(c) and (h), respectively). We use
immediate transitions tHupo, tHdowno, tNASupo, and tNASdowno to remove tokens in the up and down
places of the host andNASmodels in order to represent the entire operational termination of aDC
when a disaster strikes. When the disaster passes and the reconstructed DC starts a new opera-
tional cycle, the immediate transitions tHupin and tNASupin are used to deposit new tokens in the up
states of the host and NAS models. The occurrence of a disaster at a site is also represented by
using a two-state model as shown in Figure 9(d) and (g) for the occurrence of a disaster at DC1
and DC2, respectively. The two-state SRN model in Figure 9(f) captures the operational and
failure states of the back-up server.

The modeling of VM subsystems in DC1 and DC2 are shown in Figure 9(e) and (k), respec-
tively. Since we initially assume that all hosts and VMs are identical, the modeling of the two
DCs is also identical. The model initializes N tokens in PVM1up, and the other N tokens in
PVM2std represent N operational VMs with their N standby VMs at the beginning. Each VM
sub-model mainly has four states, including the operational state (PVMup), failure state (PVMfail),
standby state (PVMstd), and synchronization state (PVMsync). If a VM fails, it moves from the
upstate PVMup to the failure state PVMfail. When the failed VM is repaired, it moves to the
standby state PVMstd. At this point, the active-standby fail-over mechanism of VMs is captured
as follows. When a VM fails, a standby VM (represented by a token in PVMstd) on the same host
(before the disaster) or on the remaining host (after the disaster) transits to PVMsync in order to
synchronize the most-updated data on the NAS of that DC corresponding to the previously
failed VM. It then goes up to PVMup and takes the place of the failed VM. Dependence marks
are placed near timed transitions TVMfail and TVMrepair to represent the competition between

Figure 9. SRN system model of a disaster tolerant data center.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

77

failure and repair of VMs on the same host. The VM live-migration technique is triggered as a
host fails, which is captured by an immediate transition tVMm, a place PVMSm, and a timed
transition TVMmigrate. For instance, when host H1 fails, the VM live-migration is triggered to
migrate running VMs from the failed H1 to the running H2. Thus, tVMm12 is triggered to fire. A
number of tokens in PVM1up are removed and deposited at PVMS1m12 as it waits for migration.
The timed transition TVM2migrate is then fired to depict the migration process of VMs onto host
H2. The tokens in PVMS1m12 are removed and deposited in PVM2up. The reversed migration from
host H2 to H1 is captured by tVMm21, PVMS1m12, and TVM1migrate in the same manner. The places
PVMS1m and PVMS2m represent the storage of VMs on NAS1 and NAS2. When the two hosts in a
DC enter downtime, all tokens in the VM sub-models of VM1 and VM2 are removed by
immediate transitions tVMupo, tVMfailo, tVMstdo, and tVMsynco (attached to four main states of VM
sub-models) and deposited in PVMS1m via tVMS1min. However, if a disaster strikes, the all tokens
are removed from the places in the VM sub-models via the out-going immediate transitions
tVMupo, tVMfailo, tVMstdo, tVMsynco, tVMSmo, and tVMSmo. As the failed data center is reconstructed, a
pre-defined number of VMs are created on the NAS, which is captured by depositing tokens in
PVMSm via tVMSmin. The VMs are then assigned to hosts via the time transition TVMSmin.

The VM migration techniques between the two DCs, and between the backup server and the
two DCs, are modeled in Figure 9(l). The place PVMB represents the storage of VMs in the back-
up server. When a DC is destroyed due to a disaster, its VMs are stored in the back-up server
and represented by creating new tokens in PVMB via the timed transition TVMBin. When there is
a remaining DC in its operational state, the tokens in PVMB are transmitted to the
corresponding PVMSmig via the timed transition TVMSpre. The tokens are then deposited in
PVMSm via the timed transition TVMSm of the respective DC model with an imperfect coverage
factor CBmig. If this process fails with coverage factor (1-CBmig), the tokens are moved to PVMS2mf

via TVMSmf and returned to PVMB via TVMSmfrec. This transition of tokens captures the VM
migration from the back-up server to the operational DC. In the case when the back-up server
fails, the immediate transitions tVMBo, tVMSmigo, and tVMSmfo remove all tokens in PVMB, PVMSmig,
and PVMSmf to represent the loss of VM image files on the back-up server. The VMs will be
created on the back-up server as soon as it is recovered. The VMmigration between two DCs is
triggered when two hosts in a DC enter downtime simultaneously. In this case, we propose the
two hosts H1 and H2 in DC1 also stay in a downtime period simultaneously. A number of
VMs on DC1 are still stored in NAS1, represented by tokens in PVMS1m. Thus, it is necessary to
migrate these VMs onto the running DC2. The tokens are then transmitted to PVMS12mig after a
pre-migration process (TVMS12pre). The VM migration process is finalized with an imperfect
coverage factor Cmig as the transition TVMS12mig is fired. If this migration process fails with
coverage factor (1-Cmig), the tokens are moved to PVMS12migfo and returned to NAS1 in the
original DC1 via TVMS12migrec. The VM migration from DC2 to DC1 is performed similarly and
captured by the places PVMS21mig, PVMS21migf, the timed transition TVMS21pre, TVMS21mig (with
imperfect coverage factor Cmig), TVMS21migf (with coverage factor 1-Cmig), and TVMS21migrec.

5.3. Availability evaluation

The SRN system model is implemented in SPNP. Default input parameter values are shown in
Table 6. We assume that the number of VMs on a host is only one in order to reduce
complexity in model computation and analysis.

Dependability Engineering78

• Steady state availability: We evaluate the availability of the DTDC in seven operational
scenarios by varying imperfect VMmigration coverage factors between the backup server
and the DCs and disaster occurrence frequency as follows: (I) The system of two
standalone DCs without DTconfronts disasters at the mean time to occurrence of 100 years
(default value); (II) The system with default parameters; (III-V) The network connection
has a high probability of failure (i.e., low probability of success in VM migration pro-
cesses) and the system is planted in an area with mean disaster time set alternatively to
100, 200, and 300 years; (VI-VIII) In contrast to cases (III)-(V), the migration between
distant parts may succeed with high probability and the DCs location experiences disas-
ters with mean time to occurrence also set to 100, 200, and 300 years. The results of SSA
and downtime evaluation are shown in Table 7 such that following criteria are satisfied:

Input Description Assigned transitions Values

λHf Host failure rate TH1f, TH2f, TH3f, TH4f 800 hours

μHr Host recovery rate TH1r, TH2r, TH3r, TH4r 9.8 hours

λNASf NAS failure rate TNAS1f, TNAS2f 45 years

μNASr NAS recovery rate TNAS1r, TNAS2r 4 hours

λDCoccur Time to disaster occurrence at a DC TDC1occur, TDC2occur 100 years

μDCr DC recovery rate after a disaster TDC1r, TDC2r 1 year

λBf Backup DC failure rate TBf 50,000 hours

μBr Backup DC recovery rate TBr 30 min

λVMfail VM failure rate TVM1fail, TVM2fail, TVM3fail, TVM4fail 4 months

μVMrepair VM repair rate TVM1repair, TVM2repair, TVM3repair,
TVM4repair

30 min

δVMsync VM synchronization rate TVM1sync, TVM2sync, TVM3sync, TVM4sync 5 min

ωVMmigrate VM migration rate between hosts TVM1migrate, TVM2migrate, TVM3migrate,
TVM4migrate

5s

γVMSmin VM loading rate into a host TVMS1min1, TVMS1min2, TVMS2min3,
TVMS2min4

1 s

ηVMSpre VM pre-migration rate between DCs and backup server TVMS12pre, TVMS21pre, TVMS1pre,
TVMS2pre

5 min

θVMSmigrec VM return rate to NAS after a migration failure TVMS12migrec, TVMS21migrec 1 min

θVMSmfsync VM synchronization rate with backup DC after a
migration failure

TVMS1mfsync, TVMS2mfsync 1 min

CBmig Imperfect factor of VM migration from backup DC 0.95

Cmig Imperfect factor of VM migration between DCs 0.85

N Number of VMs in a host 1

SVM Size of VM image and related data 4GB

ωNET Network speed 20 MB/s

Table 6. Default input parameters.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

79

failure and repair of VMs on the same host. The VM live-migration technique is triggered as a
host fails, which is captured by an immediate transition tVMm, a place PVMSm, and a timed
transition TVMmigrate. For instance, when host H1 fails, the VM live-migration is triggered to
migrate running VMs from the failed H1 to the running H2. Thus, tVMm12 is triggered to fire. A
number of tokens in PVM1up are removed and deposited at PVMS1m12 as it waits for migration.
The timed transition TVM2migrate is then fired to depict the migration process of VMs onto host
H2. The tokens in PVMS1m12 are removed and deposited in PVM2up. The reversed migration from
host H2 to H1 is captured by tVMm21, PVMS1m12, and TVM1migrate in the same manner. The places
PVMS1m and PVMS2m represent the storage of VMs on NAS1 and NAS2. When the two hosts in a
DC enter downtime, all tokens in the VM sub-models of VM1 and VM2 are removed by
immediate transitions tVMupo, tVMfailo, tVMstdo, and tVMsynco (attached to four main states of VM
sub-models) and deposited in PVMS1m via tVMS1min. However, if a disaster strikes, the all tokens
are removed from the places in the VM sub-models via the out-going immediate transitions
tVMupo, tVMfailo, tVMstdo, tVMsynco, tVMSmo, and tVMSmo. As the failed data center is reconstructed, a
pre-defined number of VMs are created on the NAS, which is captured by depositing tokens in
PVMSm via tVMSmin. The VMs are then assigned to hosts via the time transition TVMSmin.

The VM migration techniques between the two DCs, and between the backup server and the
two DCs, are modeled in Figure 9(l). The place PVMB represents the storage of VMs in the back-
up server. When a DC is destroyed due to a disaster, its VMs are stored in the back-up server
and represented by creating new tokens in PVMB via the timed transition TVMBin. When there is
a remaining DC in its operational state, the tokens in PVMB are transmitted to the
corresponding PVMSmig via the timed transition TVMSpre. The tokens are then deposited in
PVMSm via the timed transition TVMSm of the respective DC model with an imperfect coverage
factor CBmig. If this process fails with coverage factor (1-CBmig), the tokens are moved to PVMS2mf

via TVMSmf and returned to PVMB via TVMSmfrec. This transition of tokens captures the VM
migration from the back-up server to the operational DC. In the case when the back-up server
fails, the immediate transitions tVMBo, tVMSmigo, and tVMSmfo remove all tokens in PVMB, PVMSmig,
and PVMSmf to represent the loss of VM image files on the back-up server. The VMs will be
created on the back-up server as soon as it is recovered. The VMmigration between two DCs is
triggered when two hosts in a DC enter downtime simultaneously. In this case, we propose the
two hosts H1 and H2 in DC1 also stay in a downtime period simultaneously. A number of
VMs on DC1 are still stored in NAS1, represented by tokens in PVMS1m. Thus, it is necessary to
migrate these VMs onto the running DC2. The tokens are then transmitted to PVMS12mig after a
pre-migration process (TVMS12pre). The VM migration process is finalized with an imperfect
coverage factor Cmig as the transition TVMS12mig is fired. If this migration process fails with
coverage factor (1-Cmig), the tokens are moved to PVMS12migfo and returned to NAS1 in the
original DC1 via TVMS12migrec. The VM migration from DC2 to DC1 is performed similarly and
captured by the places PVMS21mig, PVMS21migf, the timed transition TVMS21pre, TVMS21mig (with
imperfect coverage factor Cmig), TVMS21migf (with coverage factor 1-Cmig), and TVMS21migrec.

5.3. Availability evaluation

The SRN system model is implemented in SPNP. Default input parameter values are shown in
Table 6. We assume that the number of VMs on a host is only one in order to reduce
complexity in model computation and analysis.

Dependability Engineering78

• Steady state availability: We evaluate the availability of the DTDC in seven operational
scenarios by varying imperfect VMmigration coverage factors between the backup server
and the DCs and disaster occurrence frequency as follows: (I) The system of two
standalone DCs without DTconfronts disasters at the mean time to occurrence of 100 years
(default value); (II) The system with default parameters; (III-V) The network connection
has a high probability of failure (i.e., low probability of success in VM migration pro-
cesses) and the system is planted in an area with mean disaster time set alternatively to
100, 200, and 300 years; (VI-VIII) In contrast to cases (III)-(V), the migration between
distant parts may succeed with high probability and the DCs location experiences disas-
ters with mean time to occurrence also set to 100, 200, and 300 years. The results of SSA
and downtime evaluation are shown in Table 7 such that following criteria are satisfied:

Input Description Assigned transitions Values

λHf Host failure rate TH1f, TH2f, TH3f, TH4f 800 hours

μHr Host recovery rate TH1r, TH2r, TH3r, TH4r 9.8 hours

λNASf NAS failure rate TNAS1f, TNAS2f 45 years

μNASr NAS recovery rate TNAS1r, TNAS2r 4 hours

λDCoccur Time to disaster occurrence at a DC TDC1occur, TDC2occur 100 years

μDCr DC recovery rate after a disaster TDC1r, TDC2r 1 year

λBf Backup DC failure rate TBf 50,000 hours

μBr Backup DC recovery rate TBr 30 min

λVMfail VM failure rate TVM1fail, TVM2fail, TVM3fail, TVM4fail 4 months

μVMrepair VM repair rate TVM1repair, TVM2repair, TVM3repair,
TVM4repair

30 min

δVMsync VM synchronization rate TVM1sync, TVM2sync, TVM3sync, TVM4sync 5 min

ωVMmigrate VM migration rate between hosts TVM1migrate, TVM2migrate, TVM3migrate,
TVM4migrate

5s

γVMSmin VM loading rate into a host TVMS1min1, TVMS1min2, TVMS2min3,
TVMS2min4

1 s

ηVMSpre VM pre-migration rate between DCs and backup server TVMS12pre, TVMS21pre, TVMS1pre,
TVMS2pre

5 min

θVMSmigrec VM return rate to NAS after a migration failure TVMS12migrec, TVMS21migrec 1 min

θVMSmfsync VM synchronization rate with backup DC after a
migration failure

TVMS1mfsync, TVMS2mfsync 1 min

CBmig Imperfect factor of VM migration from backup DC 0.95

Cmig Imperfect factor of VM migration between DCs 0.85

N Number of VMs in a host 1

SVM Size of VM image and related data 4GB

ωNET Network speed 20 MB/s

Table 6. Default input parameters.

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

79

• The safer DCs locations (longer frequency of disaster occurrence) results in a higher
system SSA.

• DCs should be placed in isolated areas to avoid any severe damage from disastrous
events, even though the network connection between distant parts of the system
might deal with more failure during VM migration processes.

• Higher SSA values are obtained with more reliable network connections, i.e. for
network connections that can guarantee a higher success rate for transmission
between distant parts of the system.

• Sensitivity analysis: As shown in Figure 10, we analyzed the sensitivity of the system’s SSA
with respect to different parameters, including imperfect coverage factors of VM migra-
tion (CBmig and Cmig), time to disaster occurrences (λDCoccur), VM image size (SVM), and
network bandwidth (ωNET). The impact of SVM and ωNET is shown in Figure 10(f). The

Case CBmig Cmig λDCoccur SSA No. of nines Downtime (min/year) Downtime cost (USD/year)

I x X 100 years 0.989455392105 1.98 5542.2 8,675,934.6

II 0.95 0.85 100 years 0.999843164703 3.80 82.4 1,318,922.1

III 0.1 0.1 100 years 0.998942162067 2.98 556.0 8,895,993.9

IV 0.1 0.1 200 years 0.999635096345 3.44 191.8 3,068,693.8

V 0.1 0.1 300 years 0.999795681447 3.69 107.4 1,718,237.3

VI 0.9 0.9 100 years 0.999841085616 3.80 83.5 1,336,406.4

VII 0.9 0.9 200 years 0.999946639371 4.27 28.0 448,741.5

VIII 0.9 0.9 300 years 0.999968676113 4.50 16.5 263,421.4

Table 7. SSA and downtime analyses.

Figure 10. Sensitivity analysis of a DTDC steady state availability: (a) CBmig, (b) Cmig, (c) λDCoccur, (d) SVM, (e) ωNET, (f)
ωNET, SVM.

Dependability Engineering80

results show that: (i) the disaster tolerance solution with a back-up center would improve
SSA, even when connections between the back-up center with DCs incur imperfections in
VM migration processes; (ii) imperfections in the VM migration processes between DCs
slightly impact SSA when it increases; (iii) the system’s SSA is improved vastly if DCs are
located in safe areas with lower disaster occurrence frequency; (iv) larger VMs can reduce
the overall availability of the system; (v) a faster network connection between distant
locations can actually boost the system’s availability, especially for network speeds rang-
ing in 0-20 Mb/s, if the speed increases much higher, the effect is not much different from
the default parameters; (vi) the variation of both (ωNET, SVM) confirms the fact that higher
network speed and smaller VM sizes result in apparently higher SSA, whereas slower
network and larger VMs severely reduce the system’s availability.

6. Conclusion(s)

This chapter presented a set of availability models based on stochastic reward net for compre-
hensive system availability evaluation in data center systems. The data center systems scale
during evaluation was increased from a system of two virtualized servers (considered as a unit
block in data centers) in Section 3, to a typical network of virtualized servers complying with a
DCell topology in Section 4. Finally, the evaluated data centers are scaled up to a two-site data
center for disaster tolerance with a back-up center. A variety of fault and disaster tolerant
techniques were incorporated in the systems in order to achieve high availability. The systems
were evaluated under various case studies with regards to different metrics of interest, includ-
ing steady state availability and its sensitivity with respect to a number of impac factors. The
analysis results show comprehensive system behaviors and improved availability in accor-
dance with incorporated techniques in the data center systems.

Acknowledgements

This research was supported by the Ministry of Science, ICT (MSIT), Korea, under the Infor-
mation Technology Research Center (ITRC) support program (IITP-2018-2016-0-00465) super-
vised by the Institute for Information & communications Technology Promotion (IITP).

Author details

Tuan Anh Nguyen1,2*, Dugki Min1 and Eunmi Choi3

*Address all correspondence to: anhnt2407@gmail.com

1 Office of Research, University-Industry Cooperation Foundation, Konkuk University, Seoul,
South Korea

2 Department of Computer Engineering, Konkuk University, Seoul, South Korea

3 School of Management Information Systems, Kookmin University, Seoul, South Korea

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

81

• The safer DCs locations (longer frequency of disaster occurrence) results in a higher
system SSA.

• DCs should be placed in isolated areas to avoid any severe damage from disastrous
events, even though the network connection between distant parts of the system
might deal with more failure during VM migration processes.

• Higher SSA values are obtained with more reliable network connections, i.e. for
network connections that can guarantee a higher success rate for transmission
between distant parts of the system.

• Sensitivity analysis: As shown in Figure 10, we analyzed the sensitivity of the system’s SSA
with respect to different parameters, including imperfect coverage factors of VM migra-
tion (CBmig and Cmig), time to disaster occurrences (λDCoccur), VM image size (SVM), and
network bandwidth (ωNET). The impact of SVM and ωNET is shown in Figure 10(f). The

Case CBmig Cmig λDCoccur SSA No. of nines Downtime (min/year) Downtime cost (USD/year)

I x X 100 years 0.989455392105 1.98 5542.2 8,675,934.6

II 0.95 0.85 100 years 0.999843164703 3.80 82.4 1,318,922.1

III 0.1 0.1 100 years 0.998942162067 2.98 556.0 8,895,993.9

IV 0.1 0.1 200 years 0.999635096345 3.44 191.8 3,068,693.8

V 0.1 0.1 300 years 0.999795681447 3.69 107.4 1,718,237.3

VI 0.9 0.9 100 years 0.999841085616 3.80 83.5 1,336,406.4

VII 0.9 0.9 200 years 0.999946639371 4.27 28.0 448,741.5

VIII 0.9 0.9 300 years 0.999968676113 4.50 16.5 263,421.4

Table 7. SSA and downtime analyses.

Figure 10. Sensitivity analysis of a DTDC steady state availability: (a) CBmig, (b) Cmig, (c) λDCoccur, (d) SVM, (e) ωNET, (f)
ωNET, SVM.

Dependability Engineering80

results show that: (i) the disaster tolerance solution with a back-up center would improve
SSA, even when connections between the back-up center with DCs incur imperfections in
VM migration processes; (ii) imperfections in the VM migration processes between DCs
slightly impact SSA when it increases; (iii) the system’s SSA is improved vastly if DCs are
located in safe areas with lower disaster occurrence frequency; (iv) larger VMs can reduce
the overall availability of the system; (v) a faster network connection between distant
locations can actually boost the system’s availability, especially for network speeds rang-
ing in 0-20 Mb/s, if the speed increases much higher, the effect is not much different from
the default parameters; (vi) the variation of both (ωNET, SVM) confirms the fact that higher
network speed and smaller VM sizes result in apparently higher SSA, whereas slower
network and larger VMs severely reduce the system’s availability.

6. Conclusion(s)

This chapter presented a set of availability models based on stochastic reward net for compre-
hensive system availability evaluation in data center systems. The data center systems scale
during evaluation was increased from a system of two virtualized servers (considered as a unit
block in data centers) in Section 3, to a typical network of virtualized servers complying with a
DCell topology in Section 4. Finally, the evaluated data centers are scaled up to a two-site data
center for disaster tolerance with a back-up center. A variety of fault and disaster tolerant
techniques were incorporated in the systems in order to achieve high availability. The systems
were evaluated under various case studies with regards to different metrics of interest, includ-
ing steady state availability and its sensitivity with respect to a number of impac factors. The
analysis results show comprehensive system behaviors and improved availability in accor-
dance with incorporated techniques in the data center systems.

Acknowledgements

This research was supported by the Ministry of Science, ICT (MSIT), Korea, under the Infor-
mation Technology Research Center (ITRC) support program (IITP-2018-2016-0-00465) super-
vised by the Institute for Information & communications Technology Promotion (IITP).

Author details

Tuan Anh Nguyen1,2*, Dugki Min1 and Eunmi Choi3

*Address all correspondence to: anhnt2407@gmail.com

1 Office of Research, University-Industry Cooperation Foundation, Konkuk University, Seoul,
South Korea

2 Department of Computer Engineering, Konkuk University, Seoul, South Korea

3 School of Management Information Systems, Kookmin University, Seoul, South Korea

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

81

References

[1] P. Insitute. 2016 Cost of Data Center Outages. Ponemon Inst; 2016

[2] Sony M, Mariappan V, Kamat V. Stochastic modelling of failure interaction: Markov
model versus discrete event simulation. International Journal of Advanced Operations
Management. 2011;3(1):1

[3] Szczerbicka H, Trivedi KS, Choudhary PK. Discrete event simulation with application to
computer communication systems performance. In: Reis R, editor. Information Technol-
ogy. Boston: Kluwer Academic Publishers; 2004. pp. 271-304

[4] Trivedi KS, Kim DS, Roy A, Medhi D. Dependability and security models. In: Proc. 2009
7th Int. Work. Des. Reliab. Commun. Networks, DRCN 2009; Oct. 2009. pp. 11-20

[5] Han S, Nashville T. Multidisciplinary System Reliability Analysis. NASA Contract Report.
NASA CR-210969. Jun 2001. Available from: http://gltrs.grc.nasa.gov/reports/2001/CR-
2001-210969.pdf

[6] Cao Y, Sun H, Trivedi KS, Han JJ. System availability with non-exponentially distributed
outages. IEEE Transactions on Reliability. Jun 2002;51(2):193-198

[7] Trivedi KS, Kim DS, Ghosh R. System availability assessment using stochastic models.
Applied Stochastic Models in Business and Industry. Mar 2013;29(2):94-109

[8] Nguyen TA, Min D, Choi E. A comprehensive evaluation of availability and operational
cost for a virtualized server system using stochastic reward nets. The Journal of
Supercomputing. Aug 2017:1-55

[9] Han K, Nguyen TA, Min D, Choi EM. An evaluation of availability, reliability and power
consumption for a SDN infrastructure using stochastic reward net. In: Park JH, Pan Y, Yi
G, Loia V, editors. Advances in Computer Science and Ubiquitous Computing: CSA-
CUTE 2016; Singapore: Springer Singapore. 2017. pp. 637-648

[10] Raei H, Yazdani N. Performability analysis of cloudlet in mobile cloud computing. Inf.
Sci. (Ny). 2017

[11] Nguyen TA, Eom T, An S, Park JS, Hong JB, Kim DS. Availability modeling and analysis
for software defined networks. In: 2015 IEEE 21st Pacific Rim International Symposium
on Dependable Computing (PRDC); 2015 April. pp. 159-168

[12] Dantas J, Matos R, Araujo J, Maciel P. Eucalyptus-based private clouds: Availability
modeling and comparison to the cost of a public cloud. Computing. Nov 2015;97(11):
1121-1140

[13] Andrade E, Nogueira B, Matos R, Callou G, Maciel P. Availability modeling and analysis
of a disaster-recovery-as-a-service solution. Computing. Feb 2017:1-26

[14] Raei H, Yazdani N, Shojaee R. Modeling and performance analysis of cloudlet in mobile
cloud computing. Performance Evaluation. 2017;107:34-53

Dependability Engineering82

[15] Patel P, Ranabahu A, Sheth A. Service Level Agreement in Cloud Computing. Kno.e.sis
Publications. The Ohio Center of Excellence in Knowledge Enabled Computing (Kno.e.sis).
2009. Available from: http://corescholar.libraries.wright.edu/knoesis/78

[16] Garg SK, Toosi AN, Gopalaiyengar SK, Buyya R. SLA-based virtual machine manage-
ment for heterogeneous workloads in a cloud datacenter. Journal of Network and Com-
puter Applications. Aug 2014;45:108-120

[17] Nanda S, Chiueh T. A Survey of Virtualization Technologies. SUNY; 2005

[18] Daniels J. Server virtualization architecture and implementation. Crossroads. Sep. 2009;
16(1):8-12

[19] Ameen RY, Hamo AY. Survey of server virtualization. International Journal of Computer
Science and Information Security. Apr 2013;11(3):65-74

[20] Kim DS, Machida F, Trivedi KS. Availability modeling and analysis of a virtualized
system. In: 2009 15th IEEE Pacific Rim International Symposium on Dependable Com-
puting, PRDC 2009; 2009

[21] Smith WE, Trivedi KS, Tomek LA, Ackaret J. Availability analysis of blade server systems.
IBM Systems Journal. 2008;47(4):621-640

[22] Grottke M, Nikora AP, Trivedi KS. An empirical investigation of fault types in space
mission system software. In: Proceedings of 2010 IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN); 2010. pp. 447-456

[23] Machida F, Xiang J, Tadano K, Maeno Y. Combined server rejuvenation in a virtualized
data center. In: 2012 9th International Conference on Ubiquitous Intelligence and Com-
puting and 9th International Conference on Autonomic and Trusted Computing; 2012.
pp. 486-493

[24] Cui L, Li B, Li J, Hardy J, Liu L. Software aging in virtualized environments: Detection
and prediction. In: Proceedings of 2012 IEEE 18th International Conference on Parallel
and Distributed Systems; 2012. pp. 718-719

[25] Longo F, Ghosh R, Naik VK, Trivedi KS. A scalable availability model for Infrastructure-
as-a-Service cloud. In: Proceedings of 2011 IEEE/IFIP 41st International Conference on
Dependable Systems & Networks (DSN); 2011. pp. 335-346

[26] Ciardo G, Muppala J, Trivedi KS. SPNP: Stochastic petri net package. In: Proc. Third Int.
Work. Petri Nets Perform. Model. PNPM89; 1989. pp. 142-151

[27] Machida F, Kim DS, Trivedi KS. Modeling and analysis of software rejuvenation in a server
virtualized system with live VMmigration. Performance Evaluation. 2013;70(3):212-230

[28] Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S. Dcell: A scalable and fault-tolerant network
structure for data centers. In: Proceedings of the ACM SIGCOMM 2008 Conference on
Data Communication—SIGCOMM ’08. Vol. 38(4). 2008. p. 75

[29] Stansberry M. 2013 Data Center Industry Survey. Uptime Institute, LLC; 2013

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

83

References

[1] P. Insitute. 2016 Cost of Data Center Outages. Ponemon Inst; 2016

[2] Sony M, Mariappan V, Kamat V. Stochastic modelling of failure interaction: Markov
model versus discrete event simulation. International Journal of Advanced Operations
Management. 2011;3(1):1

[3] Szczerbicka H, Trivedi KS, Choudhary PK. Discrete event simulation with application to
computer communication systems performance. In: Reis R, editor. Information Technol-
ogy. Boston: Kluwer Academic Publishers; 2004. pp. 271-304

[4] Trivedi KS, Kim DS, Roy A, Medhi D. Dependability and security models. In: Proc. 2009
7th Int. Work. Des. Reliab. Commun. Networks, DRCN 2009; Oct. 2009. pp. 11-20

[5] Han S, Nashville T. Multidisciplinary System Reliability Analysis. NASA Contract Report.
NASA CR-210969. Jun 2001. Available from: http://gltrs.grc.nasa.gov/reports/2001/CR-
2001-210969.pdf

[6] Cao Y, Sun H, Trivedi KS, Han JJ. System availability with non-exponentially distributed
outages. IEEE Transactions on Reliability. Jun 2002;51(2):193-198

[7] Trivedi KS, Kim DS, Ghosh R. System availability assessment using stochastic models.
Applied Stochastic Models in Business and Industry. Mar 2013;29(2):94-109

[8] Nguyen TA, Min D, Choi E. A comprehensive evaluation of availability and operational
cost for a virtualized server system using stochastic reward nets. The Journal of
Supercomputing. Aug 2017:1-55

[9] Han K, Nguyen TA, Min D, Choi EM. An evaluation of availability, reliability and power
consumption for a SDN infrastructure using stochastic reward net. In: Park JH, Pan Y, Yi
G, Loia V, editors. Advances in Computer Science and Ubiquitous Computing: CSA-
CUTE 2016; Singapore: Springer Singapore. 2017. pp. 637-648

[10] Raei H, Yazdani N. Performability analysis of cloudlet in mobile cloud computing. Inf.
Sci. (Ny). 2017

[11] Nguyen TA, Eom T, An S, Park JS, Hong JB, Kim DS. Availability modeling and analysis
for software defined networks. In: 2015 IEEE 21st Pacific Rim International Symposium
on Dependable Computing (PRDC); 2015 April. pp. 159-168

[12] Dantas J, Matos R, Araujo J, Maciel P. Eucalyptus-based private clouds: Availability
modeling and comparison to the cost of a public cloud. Computing. Nov 2015;97(11):
1121-1140

[13] Andrade E, Nogueira B, Matos R, Callou G, Maciel P. Availability modeling and analysis
of a disaster-recovery-as-a-service solution. Computing. Feb 2017:1-26

[14] Raei H, Yazdani N, Shojaee R. Modeling and performance analysis of cloudlet in mobile
cloud computing. Performance Evaluation. 2017;107:34-53

Dependability Engineering82

[15] Patel P, Ranabahu A, Sheth A. Service Level Agreement in Cloud Computing. Kno.e.sis
Publications. The Ohio Center of Excellence in Knowledge Enabled Computing (Kno.e.sis).
2009. Available from: http://corescholar.libraries.wright.edu/knoesis/78

[16] Garg SK, Toosi AN, Gopalaiyengar SK, Buyya R. SLA-based virtual machine manage-
ment for heterogeneous workloads in a cloud datacenter. Journal of Network and Com-
puter Applications. Aug 2014;45:108-120

[17] Nanda S, Chiueh T. A Survey of Virtualization Technologies. SUNY; 2005

[18] Daniels J. Server virtualization architecture and implementation. Crossroads. Sep. 2009;
16(1):8-12

[19] Ameen RY, Hamo AY. Survey of server virtualization. International Journal of Computer
Science and Information Security. Apr 2013;11(3):65-74

[20] Kim DS, Machida F, Trivedi KS. Availability modeling and analysis of a virtualized
system. In: 2009 15th IEEE Pacific Rim International Symposium on Dependable Com-
puting, PRDC 2009; 2009

[21] Smith WE, Trivedi KS, Tomek LA, Ackaret J. Availability analysis of blade server systems.
IBM Systems Journal. 2008;47(4):621-640

[22] Grottke M, Nikora AP, Trivedi KS. An empirical investigation of fault types in space
mission system software. In: Proceedings of 2010 IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN); 2010. pp. 447-456

[23] Machida F, Xiang J, Tadano K, Maeno Y. Combined server rejuvenation in a virtualized
data center. In: 2012 9th International Conference on Ubiquitous Intelligence and Com-
puting and 9th International Conference on Autonomic and Trusted Computing; 2012.
pp. 486-493

[24] Cui L, Li B, Li J, Hardy J, Liu L. Software aging in virtualized environments: Detection
and prediction. In: Proceedings of 2012 IEEE 18th International Conference on Parallel
and Distributed Systems; 2012. pp. 718-719

[25] Longo F, Ghosh R, Naik VK, Trivedi KS. A scalable availability model for Infrastructure-
as-a-Service cloud. In: Proceedings of 2011 IEEE/IFIP 41st International Conference on
Dependable Systems & Networks (DSN); 2011. pp. 335-346

[26] Ciardo G, Muppala J, Trivedi KS. SPNP: Stochastic petri net package. In: Proc. Third Int.
Work. Petri Nets Perform. Model. PNPM89; 1989. pp. 142-151

[27] Machida F, Kim DS, Trivedi KS. Modeling and analysis of software rejuvenation in a server
virtualized system with live VMmigration. Performance Evaluation. 2013;70(3):212-230

[28] Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S. Dcell: A scalable and fault-tolerant network
structure for data centers. In: Proceedings of the ACM SIGCOMM 2008 Conference on
Data Communication—SIGCOMM ’08. Vol. 38(4). 2008. p. 75

[29] Stansberry M. 2013 Data Center Industry Survey. Uptime Institute, LLC; 2013

Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
http://dx.doi.org/10.5772/intechopen.74306

83

Chapter 6

Reliability and Aging Analysis on SRAMs Within
Microprocessor Systems

Taizhi Liu, Chang-Chih Chen and Linda Milor

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72779

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72779

Reliability and Aging Analysis on SRAMs Within
Microprocessor Systems

Taizhi Liu, Chang-Chih Chen and Linda Milor

Additional information is available at the end of the chapter

Abstract

The majority of transistors in a modern microprocessor are used to implement static ran-
dom access memories (SRAM). Therefore, it is important to analyze the reliability of SRAM
blocks. During the SRAM design, it is important to build in design margins to achieve an
adequate lifetime. The two main wearout mechanisms that increase a transistor’s thresh-
old voltage are bias temperature instability (BTI) and hot carrier injections (HCI). BTI and
HCI can degrade transistors’ driving strength and further weaken circuit performance. In
a microprocessor, first-level (L1) caches are frequently accessed, which make it especially
vulnerable to BTI and HCI. In this chapter, the cache lifetimes due to BTI and HCI are
studied for different cache configurations, namely, cache size, associativity, cache line size,
and replacement algorithm. To give a case study, the failure probability (reliability) and
the hit rate (performance) of the L1 cache in a LEON3 microprocessor are analyzed, while
the microprocessor is running a set of benchmarks. Essential insights can be provided
from our results to give better performance-reliability tradeoffs for cache designers.

Keywords: reliability analysis, SRAM stability, cache configurations, microprocessors,
semiconductor microelectronics, very-large-scale integration (VLSI)

1. Introduction

As smaller technology nodes bring significant benefits like more density and lower power
consumptions, they also pose significant reliability challenges. Not only do the manufactur-
ing variations make the resulting transistors unreliable at low-voltage operation but also they
take less time to wear out, making them more prone to failures in the field. The increasing
reliability concerns hold for all types of microelectronic devices from electronics used in aero-
space applications where reliability requirement is extremely critical, to mobile devices where
product reliability can strongly affect market share.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 6

Reliability and Aging Analysis on SRAMs Within
Microprocessor Systems

Taizhi Liu, Chang-Chih Chen and Linda Milor

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72779

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72779

Reliability and Aging Analysis on SRAMs Within
Microprocessor Systems

Taizhi Liu, Chang-Chih Chen and Linda Milor

Additional information is available at the end of the chapter

Abstract

The majority of transistors in a modern microprocessor are used to implement static ran-
dom access memories (SRAM). Therefore, it is important to analyze the reliability of SRAM
blocks. During the SRAM design, it is important to build in design margins to achieve an
adequate lifetime. The two main wearout mechanisms that increase a transistor’s thresh-
old voltage are bias temperature instability (BTI) and hot carrier injections (HCI). BTI and
HCI can degrade transistors’ driving strength and further weaken circuit performance. In
a microprocessor, first-level (L1) caches are frequently accessed, which make it especially
vulnerable to BTI and HCI. In this chapter, the cache lifetimes due to BTI and HCI are
studied for different cache configurations, namely, cache size, associativity, cache line size,
and replacement algorithm. To give a case study, the failure probability (reliability) and
the hit rate (performance) of the L1 cache in a LEON3 microprocessor are analyzed, while
the microprocessor is running a set of benchmarks. Essential insights can be provided
from our results to give better performance-reliability tradeoffs for cache designers.

Keywords: reliability analysis, SRAM stability, cache configurations, microprocessors,
semiconductor microelectronics, very-large-scale integration (VLSI)

1. Introduction

As smaller technology nodes bring significant benefits like more density and lower power
consumptions, they also pose significant reliability challenges. Not only do the manufactur-
ing variations make the resulting transistors unreliable at low-voltage operation but also they
take less time to wear out, making them more prone to failures in the field. The increasing
reliability concerns hold for all types of microelectronic devices from electronics used in aero-
space applications where reliability requirement is extremely critical, to mobile devices where
product reliability can strongly affect market share.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

BTI and HCI are two of the most dominating wearout mechanisms that increase the threshold
voltage (Vth) of a transistor. As a result of BTI and HCI, the driving strengths of the aged transis-
tors are weakened, which eventually could cause timing violations and faulty operation. During
the static-stress window when a transistor is kept ON, BTI kicks in. There are two forms of BTI:
Negative BTI (NBTI) and Positive BTI (PBTI). NBTI affects the threshold voltage of a PMOS
transistor when its gate is applied LOW; and PBTI affects the threshold voltage of a NMOS
transistor when its gate is applied HIGH. On the other hand, HCI happens when a transistor
flips from being OFF to ON or vice versa. Therefore, HCI is more acute to those transistors that
switch frequently.

In a modern microprocessor, static random access memories (SRAM) take the majority of
the transistors, and thus the reliability of the SRAM cells is essential for circuit designers.
Moreover, the first-level (L1) data cache is frequently accessed (read and written), making it
very vulnerable to HCI. But at the same time, it also stores data for a significant amount of
time, making it also vulnerable to BTI. Besides, cache efficiency is one of the most important
characteristics for microprocessor system performance. Basically, for microprocessor design-
ers, it is very important to understand both the performance and the reliability of the cache
systems. There are many prior works [1–3] focused on cache architecture to improve cache
efficiency. However, when different advanced techniques are used to achieve higher perfor-
mance, it is still unknown how the reliability of the cache is changed. In this chapter, the
failure probability of the L1 data cache is investigated for a LEON3 microprocessor when dif-
ferent design configurations are applied: associativity, cache line size, cache size, and replace-
ment algorithm. We analyzed the impact of cache configurations on failure rates and cache
efficiency so that cache designers can achieve performance-reliability tradeoff according to
their design budgets (area, power, lifetime, etc.). We also study the impact of error correcting
codes (ECC) on cache reliability.

BTI and HCI cause driving-strength mismatch in a traditional six-transistor (6T) SRAM cell.
Because SRAM stability is extremely sensitive to transistor mismatches, BTI and HCI pose a
significant problem to SRAM reliability [4–6]. In [7–9], the authors analyzed SRAM stability by
assuming two ideal stress conditions, that is, static stress (0% or 100% duty cycle) and alternat-
ing stress (50% duty cycle). However, the realistic stress conditions of the SRAM cells really
depend on customer usages (workload). In [10–13], the authors estimated the SRAM degrada-
tion due to BTI based on the realistic stress conditions considering the actual workload. On
the other hand, the impact of the HCI effect on SRAM stability is not as studied as BTI because
BTI is usually dominant due to its frequency independence. However, HCI is becoming more
concerning as operating frequencies of nowadays chips are GHz-level [14, 15]. Some prior arts
have investigated the HCI effect on SRAM cell stability [16, 17], and in [16], the simulation
results are even compared with silicon experimental results.

Other research efforts have focused on balancing the amount of time that logic ‘0’ and ‘1’ values
are stored in the cells with the aim to provide a BTI-optimal duty cycle distribution [18, 19],
and by implementing redundancy into the cache design to combat BTI-induced wearout [20].
Gunadi et al. [19] also proposed to mitigate the HCI degradation by providing a uniform distri-
bution of cache accesses across sets.

Dependability Engineering86

In this chapter, we stress SRAM cells under different stress conditions and analyze the SRAM
stability due to BTI and HCI. As a case study, the L-1 data cache of a state-of-art microproces-
sor (LEON3) is studied, and cache reliability and cache efficiency are analyzed by considering
the realistic workload when the microprocessor is running a set of benchmarks.

2. Device-level wear-out mechanisms

We first model BTI and HCI at the device level and then abstract the models to the system level.

2.1. NBTI/PBTI

Negative BTI, as known as NBTI, is the degradation for PMOS transistors when negative gate-
to-source voltage is applied. Positive BTI, known as PBTI, is the degradation of NMOS devices
under positive gate-to-source voltage. Both NBTI and PBTI can cause an increase in the thresh-
old voltage and the consequent decrease in drain current and transconductance of a MOSFET.

According to trapping/de-trapping theory [21], the threshold voltage shift (Δ V
th
) due to BTI is

modeled as a function of time under DC stress (t
DC

):

 Δ V th (DC)  = φ (T,  E F) (A + Bln (t DC)) (1)

where φ is proportional to the number of available traps and is a function of temperature,
T, and the Fermi level, E

F
 , and A and B are constants. The temperature dependence of BTI is

incorporated in φ with the Arrhenius relationship:

 φ (T,  E F)  =  φ 0  g (E F)   e − E a /kT (2)

where k is a constant, T is temperature, and E
a
 is the activation energy. Since the frequency

dependency of BTI has been considered as relatively insignificant, especially for low-
frequency signals [22], it is not included in this work. However, the duty cycle, α , can affect
the Δ V

th
 , and it is incorporated as an effective Fermi level, where E

F,eff
  = α  E

F,on
 + (1 − α)   E

F,off
 . Here, E

F,on

and E
F,off

 are the Fermi levels when the transistor is ON and OFF, respectively. The duty cycle
accounts for the time under stress, t

stress
 , and the recovery time, t

rec
 , since α =  t

stress
  /  (t stress

 + t
rec

) . The
function g (α) in Eq. (2) is a nonlinear function of α , which has g (1)  = 1 and g (0) = 0 [21]. Overall,

 Δ V th  =  φ 0   e − E a /kT  g (t stress  /  (t stress + t rec)) ∙ (A + Bln (t stress + t rec)) (3)

where φ
0
 is a constant. The constants were obtained from the experimental results in [23].

2.2. HCI

Hot carrier injection (HCI) is the phenomenon where electron or a “hole” gains sufficient kinetic
energy to overcome a potential barrier necessary to break an interface state to be injected into

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

87

BTI and HCI are two of the most dominating wearout mechanisms that increase the threshold
voltage (Vth) of a transistor. As a result of BTI and HCI, the driving strengths of the aged transis-
tors are weakened, which eventually could cause timing violations and faulty operation. During
the static-stress window when a transistor is kept ON, BTI kicks in. There are two forms of BTI:
Negative BTI (NBTI) and Positive BTI (PBTI). NBTI affects the threshold voltage of a PMOS
transistor when its gate is applied LOW; and PBTI affects the threshold voltage of a NMOS
transistor when its gate is applied HIGH. On the other hand, HCI happens when a transistor
flips from being OFF to ON or vice versa. Therefore, HCI is more acute to those transistors that
switch frequently.

In a modern microprocessor, static random access memories (SRAM) take the majority of
the transistors, and thus the reliability of the SRAM cells is essential for circuit designers.
Moreover, the first-level (L1) data cache is frequently accessed (read and written), making it
very vulnerable to HCI. But at the same time, it also stores data for a significant amount of
time, making it also vulnerable to BTI. Besides, cache efficiency is one of the most important
characteristics for microprocessor system performance. Basically, for microprocessor design-
ers, it is very important to understand both the performance and the reliability of the cache
systems. There are many prior works [1–3] focused on cache architecture to improve cache
efficiency. However, when different advanced techniques are used to achieve higher perfor-
mance, it is still unknown how the reliability of the cache is changed. In this chapter, the
failure probability of the L1 data cache is investigated for a LEON3 microprocessor when dif-
ferent design configurations are applied: associativity, cache line size, cache size, and replace-
ment algorithm. We analyzed the impact of cache configurations on failure rates and cache
efficiency so that cache designers can achieve performance-reliability tradeoff according to
their design budgets (area, power, lifetime, etc.). We also study the impact of error correcting
codes (ECC) on cache reliability.

BTI and HCI cause driving-strength mismatch in a traditional six-transistor (6T) SRAM cell.
Because SRAM stability is extremely sensitive to transistor mismatches, BTI and HCI pose a
significant problem to SRAM reliability [4–6]. In [7–9], the authors analyzed SRAM stability by
assuming two ideal stress conditions, that is, static stress (0% or 100% duty cycle) and alternat-
ing stress (50% duty cycle). However, the realistic stress conditions of the SRAM cells really
depend on customer usages (workload). In [10–13], the authors estimated the SRAM degrada-
tion due to BTI based on the realistic stress conditions considering the actual workload. On
the other hand, the impact of the HCI effect on SRAM stability is not as studied as BTI because
BTI is usually dominant due to its frequency independence. However, HCI is becoming more
concerning as operating frequencies of nowadays chips are GHz-level [14, 15]. Some prior arts
have investigated the HCI effect on SRAM cell stability [16, 17], and in [16], the simulation
results are even compared with silicon experimental results.

Other research efforts have focused on balancing the amount of time that logic ‘0’ and ‘1’ values
are stored in the cells with the aim to provide a BTI-optimal duty cycle distribution [18, 19],
and by implementing redundancy into the cache design to combat BTI-induced wearout [20].
Gunadi et al. [19] also proposed to mitigate the HCI degradation by providing a uniform distri-
bution of cache accesses across sets.

Dependability Engineering86

In this chapter, we stress SRAM cells under different stress conditions and analyze the SRAM
stability due to BTI and HCI. As a case study, the L-1 data cache of a state-of-art microproces-
sor (LEON3) is studied, and cache reliability and cache efficiency are analyzed by considering
the realistic workload when the microprocessor is running a set of benchmarks.

2. Device-level wear-out mechanisms

We first model BTI and HCI at the device level and then abstract the models to the system level.

2.1. NBTI/PBTI

Negative BTI, as known as NBTI, is the degradation for PMOS transistors when negative gate-
to-source voltage is applied. Positive BTI, known as PBTI, is the degradation of NMOS devices
under positive gate-to-source voltage. Both NBTI and PBTI can cause an increase in the thresh-
old voltage and the consequent decrease in drain current and transconductance of a MOSFET.

According to trapping/de-trapping theory [21], the threshold voltage shift (Δ V
th
) due to BTI is

modeled as a function of time under DC stress (t
DC

):

 Δ V th (DC)  = φ (T,  E F) (A + Bln (t DC)) (1)

where φ is proportional to the number of available traps and is a function of temperature,
T, and the Fermi level, E

F
 , and A and B are constants. The temperature dependence of BTI is

incorporated in φ with the Arrhenius relationship:

 φ (T,  E F)  =  φ 0  g (E F)   e − E a /kT (2)

where k is a constant, T is temperature, and E
a
 is the activation energy. Since the frequency

dependency of BTI has been considered as relatively insignificant, especially for low-
frequency signals [22], it is not included in this work. However, the duty cycle, α , can affect
the Δ V

th
 , and it is incorporated as an effective Fermi level, where E

F,eff
  = α  E

F,on
 + (1 − α)   E

F,off
 . Here, E

F,on

and E
F,off

 are the Fermi levels when the transistor is ON and OFF, respectively. The duty cycle
accounts for the time under stress, t

stress
 , and the recovery time, t

rec
 , since α =  t

stress
  /  (t stress

 + t
rec

) . The
function g (α) in Eq. (2) is a nonlinear function of α , which has g (1)  = 1 and g (0) = 0 [21]. Overall,

 Δ V th  =  φ 0   e − E a /kT  g (t stress  /  (t stress + t rec)) ∙ (A + Bln (t stress + t rec)) (3)

where φ
0
 is a constant. The constants were obtained from the experimental results in [23].

2.2. HCI

Hot carrier injection (HCI) is the phenomenon where electron or a “hole” gains sufficient kinetic
energy to overcome a potential barrier necessary to break an interface state to be injected into

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

87

the gate oxide. HCI is one of the mechanisms that adversely affect the reliability of semiconduc-
tors of solid-state devices. More specifically, some of the device parameters such as the thresh-
old voltage, channel mobility, drain saturation current, and transconductance can be degraded
due to HCI. HCI was a major concern for NMOS transistors historically, and the HCI effect
on PMOS transistors was relatively negligible. This was because holes have a smaller impact
ionization rate than electrons, and the Si − Si  O

2
 barrier for holes is also higher than electrons.

However, researchers have recently observed HCI effects on PMOS transistors [24].

As hot carriers are generated during switching of the transistors, the HCI effect is directly
proportional to the switching frequency. In this chapter, we used the predictive HCI lifetime
models for long-term performance-degradation simulations, where the Δ V

th
 degradations due

to HCI during stress time are modeled as [25–27]:

 Δ V tp/tn  =  A HCI   (r trans   t stress   t trans) n (4)

where tstress is the stress time, rtrans is the frequency-dependent transition rate, ttrans is the tran-
sition time, and A

HCI
 is a constant that depends on the inversion charge, the trap generation

energy, the hot electron mean free path, and other process-dependent factors [28, 29].

3. SRAM stability

3.1. SRAM cell

Each SRAM cell can store one bit, and it is usually implemented using six transistors, which
is well known as 6T SRAM cell. The structure of a 6T SRAM cell is shown in Figure 1. The
core of the cell is formed by two CMOS inverters (the four labeled transistors in Figure 1),
where the output potential of each inverter is fed as input into the other. The formed feedback
loop stabilizes the inverters to their respective state. Besides the inverter loop, the remaining
unlabeled two transistors in Figure 1 are the access transistors, which are controlled by the
word and bit lines, WL and BL, respectively. WL and BL are used to read and write from or
to the cell. When the word line (WL) is low, the access transistors are turned OFF, and the cell
is in standby mode. When reading, the word line (WL) is HIGH and the access transistors are

Figure 1. A typical 6T SRAM cell.

Dependability Engineering88

ON to allow the stored bit reflected at the bit lines. When writing, the word line (WL) is also
HIGH to turn access transistors ON, and the asserted bit lines are strong enough to write the
data into the inverter loop.

For the 6T SRAM cell mentioned above, all the transistors will be affected by the HCI effect
during a write access when the stored bit changes. For the BTI effect, it happens when the
stored bit is stable and the transistors are in static stress. More specifically, when the stored
bit is a ‘0,’ the PMOS transistor T

P1
 and the NMOS transistor T

N2
 are stressed because they are

turned ON, meaning they are undergoing NBTI and PBTI, respectively. On the other hand, if
a ‘1’ is stored, the other two transistors T

P2
 and T

N1
 are turned ON, and they are suffering from

NBTI and PBTI, respectively. It is worth noting that, when one pair of transistors (T
P1

 and T
N2

 ,
for example) is under stress and undergoing BTI, the other pair (T

P2
 and T

N1
) is not under stress

and is under recovery from BTI degradation. However, overall, these transistors that form the
inverter loop (T

P1
 , T

N2
 ,  T

P2
 , and T

N1
) are continuously aging regardless of whether the cell is being

read or write [30]. For the access transistors, they are only affected by BTI during the SRAM
cell is being accessed (when WL is HIGH). Thus, the access transistors are much less sensitive
to BTI than the inverter-loop transistors. In this chapter, we focus on the aging of the inverter-
loop transistors.

3.2. Extraction of activity, temperature, IR-drop profiles

BTI and HCI effect not only depends on the time that the device is under stress but also depends
on temperature. The time that the device is under stress is referred to as stress time in the fol-
lowing chapter. For BTI, the stress time is proportional to the duty cycle, that is, for a NMOS
transistor, the stress time is equal to the total time (that the circuit is working) multiplied by the
percentage so that the gate voltage is HIGH, while for PMOS transistors, it is equal to the total
time multiplied by the percentage so that the gate voltage is LOW. For HCI, the stress time is
proportional to the number of switching.

For the memory block within a microprocessor, it is not feasible to run SPICE simulations to
get the activity (duty cycle, switching) profile of each SRAM cell. In our work, we utilize a
FPGA emulation system to simulate the microprocessor. Being doing so, we are able to run
benchmarks on the microprocessor and extract the activity profile in an efficient manner. Our
framework to extract activity profiles is shown in Figure 2, which also includes the further
steps to extract thermal profiles. To extract the activity profile, we synthesized the hardware
RTL of the design into an FPGA and placed counters at the I/O ports of the data cache. The
placed counters can track both the state probabilities (duty cycle) and the toggle rates at the I/O
ports when the microprocessor is running benchmarks. The state probability is the probability
of a net at each logic state, that is, logic ‘0’ and logic ‘1,’ and the toggle rates are the number
of toggles that a net has during a unit period, for example, 1 ns. The extracted activities (state
probabilities and toggle rates) were then used for activity propagation to get the complete
activity profile of all the SRAM cells.

Besides activity extraction, the thermal profile throughout the microprocessor is also extracted.
Moreover, because the SRAM stability strongly depends on voltage, we also consider the

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

89

the gate oxide. HCI is one of the mechanisms that adversely affect the reliability of semiconduc-
tors of solid-state devices. More specifically, some of the device parameters such as the thresh-
old voltage, channel mobility, drain saturation current, and transconductance can be degraded
due to HCI. HCI was a major concern for NMOS transistors historically, and the HCI effect
on PMOS transistors was relatively negligible. This was because holes have a smaller impact
ionization rate than electrons, and the Si − Si  O

2
 barrier for holes is also higher than electrons.

However, researchers have recently observed HCI effects on PMOS transistors [24].

As hot carriers are generated during switching of the transistors, the HCI effect is directly
proportional to the switching frequency. In this chapter, we used the predictive HCI lifetime
models for long-term performance-degradation simulations, where the Δ V

th
 degradations due

to HCI during stress time are modeled as [25–27]:

 Δ V tp/tn  =  A HCI   (r trans   t stress   t trans) n (4)

where tstress is the stress time, rtrans is the frequency-dependent transition rate, ttrans is the tran-
sition time, and A

HCI
 is a constant that depends on the inversion charge, the trap generation

energy, the hot electron mean free path, and other process-dependent factors [28, 29].

3. SRAM stability

3.1. SRAM cell

Each SRAM cell can store one bit, and it is usually implemented using six transistors, which
is well known as 6T SRAM cell. The structure of a 6T SRAM cell is shown in Figure 1. The
core of the cell is formed by two CMOS inverters (the four labeled transistors in Figure 1),
where the output potential of each inverter is fed as input into the other. The formed feedback
loop stabilizes the inverters to their respective state. Besides the inverter loop, the remaining
unlabeled two transistors in Figure 1 are the access transistors, which are controlled by the
word and bit lines, WL and BL, respectively. WL and BL are used to read and write from or
to the cell. When the word line (WL) is low, the access transistors are turned OFF, and the cell
is in standby mode. When reading, the word line (WL) is HIGH and the access transistors are

Figure 1. A typical 6T SRAM cell.

Dependability Engineering88

ON to allow the stored bit reflected at the bit lines. When writing, the word line (WL) is also
HIGH to turn access transistors ON, and the asserted bit lines are strong enough to write the
data into the inverter loop.

For the 6T SRAM cell mentioned above, all the transistors will be affected by the HCI effect
during a write access when the stored bit changes. For the BTI effect, it happens when the
stored bit is stable and the transistors are in static stress. More specifically, when the stored
bit is a ‘0,’ the PMOS transistor T

P1
 and the NMOS transistor T

N2
 are stressed because they are

turned ON, meaning they are undergoing NBTI and PBTI, respectively. On the other hand, if
a ‘1’ is stored, the other two transistors T

P2
 and T

N1
 are turned ON, and they are suffering from

NBTI and PBTI, respectively. It is worth noting that, when one pair of transistors (T
P1

 and T
N2

 ,
for example) is under stress and undergoing BTI, the other pair (T

P2
 and T

N1
) is not under stress

and is under recovery from BTI degradation. However, overall, these transistors that form the
inverter loop (T

P1
 , T

N2
 ,  T

P2
 , and T

N1
) are continuously aging regardless of whether the cell is being

read or write [30]. For the access transistors, they are only affected by BTI during the SRAM
cell is being accessed (when WL is HIGH). Thus, the access transistors are much less sensitive
to BTI than the inverter-loop transistors. In this chapter, we focus on the aging of the inverter-
loop transistors.

3.2. Extraction of activity, temperature, IR-drop profiles

BTI and HCI effect not only depends on the time that the device is under stress but also depends
on temperature. The time that the device is under stress is referred to as stress time in the fol-
lowing chapter. For BTI, the stress time is proportional to the duty cycle, that is, for a NMOS
transistor, the stress time is equal to the total time (that the circuit is working) multiplied by the
percentage so that the gate voltage is HIGH, while for PMOS transistors, it is equal to the total
time multiplied by the percentage so that the gate voltage is LOW. For HCI, the stress time is
proportional to the number of switching.

For the memory block within a microprocessor, it is not feasible to run SPICE simulations to
get the activity (duty cycle, switching) profile of each SRAM cell. In our work, we utilize a
FPGA emulation system to simulate the microprocessor. Being doing so, we are able to run
benchmarks on the microprocessor and extract the activity profile in an efficient manner. Our
framework to extract activity profiles is shown in Figure 2, which also includes the further
steps to extract thermal profiles. To extract the activity profile, we synthesized the hardware
RTL of the design into an FPGA and placed counters at the I/O ports of the data cache. The
placed counters can track both the state probabilities (duty cycle) and the toggle rates at the I/O
ports when the microprocessor is running benchmarks. The state probability is the probability
of a net at each logic state, that is, logic ‘0’ and logic ‘1,’ and the toggle rates are the number
of toggles that a net has during a unit period, for example, 1 ns. The extracted activities (state
probabilities and toggle rates) were then used for activity propagation to get the complete
activity profile of all the SRAM cells.

Besides activity extraction, the thermal profile throughout the microprocessor is also extracted.
Moreover, because the SRAM stability strongly depends on voltage, we also consider the

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

89

impact of IR-drop in our work. As shown in Figure 2, the netlist was used for layout genera-
tion, and then RC parasitics from the layout, along with the activity profile, are fed to extract
the power profile and the consequent thermal profile, using the power simulator [31] and the
thermal simulator [32], respectively, for every module block of the microprocessor system.

In this chapter, we used the open-source microprocessor called LEON3 [33] as a case study.
LEON3 is well known for space applications with high-level reliability requirement. We have
implemented LEON3 with superscalar abilities on a commercial 90 nm technology process.
The logic part of the LEON3 core includes a 32-bit multiplier (MUL), a 32-bit divider (DIV), a
32-bit general purpose integer unit (IU), and a memory management unit (MMU). The memory
part of the LEON3 core consists of data caches (D-Caches) and instruction caches (I-Caches),
cache tag units (Dtags and Itags), and window-based register file (RF). In this chapter, we focus
our analysis on L1 D-Caches due to its importance to microprocessor performance and its high
sensitivity to aging effects. The proposed method is applicable to other memory blocks as well.

Standard benchmarks from MiBench [34] were used as the microprocessor applications.
Figures 3 and 4 show the distributions of the state probabilities and the transition rates,
respectively, of the data cache, when the microprocessor is running a standard benchmark.
Figure 5 shows the average temperature distribution and average IR-drop distribution when
the microprocessor is running a standard benchmark.

3.3. SRAM stability degradation analysis under BTI and HCI

In this chapter, several performance metrics were used to characterize SRAM stability, includ-
ing the read and retention static noise margins (SNMs), the read current (IREAD), the minimum
retention voltage (Vdd-min-ret), and the write margin. SNM is a key figure of merit for an
SRAM cell. It is the minimum DC noise voltage necessary to change the state of an SRAM cell
and can be extracted by nesting the largest possible square in the two voltage transfer curves

Figure 2. The FPGA-based aging assessment framework, which is used to extract the duty cycle/toggle-rate profiles,
temperature profile, and the IR-drop profile.

Dependability Engineering90

(VTC) of the involved CMOS inverters [35]. The read SNM is measured when the access
transistors are turned ON, while for the retention SNM, the access transistors are OFF. IREAD
is the current flowing through pull-down transistors during a read access, and it is inversely
proportional to access time. Vdd-min-ret is the minimum supply voltage that an SRAM can
retain the stored bit. The write margin is the minimum voltage needed to flip the state of the
cell, with the access transistors are ON. The lifetime calculations in this chapter are based on
the following assumption: when any of these four metrics mentioned above has degraded to
a predefined threshold, the SRAM cell is said to have failed and thus the lifetime of the cell
is calculated.

In this chapter, the process variations of two important parameters, channel length and thresh-
old voltage, are included, assuming they follow normal distribution with standard deviation
equal to 10% of their corresponding nominal values.

Figure 3. (a) The distribution of state probability for the 32 KB data cache shown in 1024 words and (b) the histogram of
the state probability distribution in the number of SRAM cells.

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

91

impact of IR-drop in our work. As shown in Figure 2, the netlist was used for layout genera-
tion, and then RC parasitics from the layout, along with the activity profile, are fed to extract
the power profile and the consequent thermal profile, using the power simulator [31] and the
thermal simulator [32], respectively, for every module block of the microprocessor system.

In this chapter, we used the open-source microprocessor called LEON3 [33] as a case study.
LEON3 is well known for space applications with high-level reliability requirement. We have
implemented LEON3 with superscalar abilities on a commercial 90 nm technology process.
The logic part of the LEON3 core includes a 32-bit multiplier (MUL), a 32-bit divider (DIV), a
32-bit general purpose integer unit (IU), and a memory management unit (MMU). The memory
part of the LEON3 core consists of data caches (D-Caches) and instruction caches (I-Caches),
cache tag units (Dtags and Itags), and window-based register file (RF). In this chapter, we focus
our analysis on L1 D-Caches due to its importance to microprocessor performance and its high
sensitivity to aging effects. The proposed method is applicable to other memory blocks as well.

Standard benchmarks from MiBench [34] were used as the microprocessor applications.
Figures 3 and 4 show the distributions of the state probabilities and the transition rates,
respectively, of the data cache, when the microprocessor is running a standard benchmark.
Figure 5 shows the average temperature distribution and average IR-drop distribution when
the microprocessor is running a standard benchmark.

3.3. SRAM stability degradation analysis under BTI and HCI

In this chapter, several performance metrics were used to characterize SRAM stability, includ-
ing the read and retention static noise margins (SNMs), the read current (IREAD), the minimum
retention voltage (Vdd-min-ret), and the write margin. SNM is a key figure of merit for an
SRAM cell. It is the minimum DC noise voltage necessary to change the state of an SRAM cell
and can be extracted by nesting the largest possible square in the two voltage transfer curves

Figure 2. The FPGA-based aging assessment framework, which is used to extract the duty cycle/toggle-rate profiles,
temperature profile, and the IR-drop profile.

Dependability Engineering90

(VTC) of the involved CMOS inverters [35]. The read SNM is measured when the access
transistors are turned ON, while for the retention SNM, the access transistors are OFF. IREAD
is the current flowing through pull-down transistors during a read access, and it is inversely
proportional to access time. Vdd-min-ret is the minimum supply voltage that an SRAM can
retain the stored bit. The write margin is the minimum voltage needed to flip the state of the
cell, with the access transistors are ON. The lifetime calculations in this chapter are based on
the following assumption: when any of these four metrics mentioned above has degraded to
a predefined threshold, the SRAM cell is said to have failed and thus the lifetime of the cell
is calculated.

In this chapter, the process variations of two important parameters, channel length and thresh-
old voltage, are included, assuming they follow normal distribution with standard deviation
equal to 10% of their corresponding nominal values.

Figure 3. (a) The distribution of state probability for the 32 KB data cache shown in 1024 words and (b) the histogram of
the state probability distribution in the number of SRAM cells.

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

91

Figure 5. (a) The average temperature distribution and (b) the average IR-drop distribution of the microprocessor while
running a standard benchmark.

Figure 4. (a) The distribution of transition rate for the 32 KB data cache shown in 1024 words and (b) the histogram of
the transition-rate distribution in the number of SRAM cells.

Dependability Engineering92

Figures 6 and 7 show the degradation of the read SNM, the write margin, the Vdd-min-ret,
and the IREAD of a memory cell due to BTI and HCI, respectively. As it is seen from Figure 6, BTI
severely degrades the read SNM as well as the write margin. The Vdd-min-ret is also affected,

Figure 6. The degradation of the write margin, the read SNM, the Vdd-min-ret, and the IREAD of a memory cell due to BTI
shown in (a)–(d), respectively.

Figure 7. The degradation of the write margin, the read SNM, the Vdd-min-ret, and the IREAD of a memory cell due to
HCI shown in (a)–(d), respectively.

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

93

Figure 5. (a) The average temperature distribution and (b) the average IR-drop distribution of the microprocessor while
running a standard benchmark.

Figure 4. (a) The distribution of transition rate for the 32 KB data cache shown in 1024 words and (b) the histogram of
the transition-rate distribution in the number of SRAM cells.

Dependability Engineering92

Figures 6 and 7 show the degradation of the read SNM, the write margin, the Vdd-min-ret,
and the IREAD of a memory cell due to BTI and HCI, respectively. As it is seen from Figure 6, BTI
severely degrades the read SNM as well as the write margin. The Vdd-min-ret is also affected,

Figure 6. The degradation of the write margin, the read SNM, the Vdd-min-ret, and the IREAD of a memory cell due to BTI
shown in (a)–(d), respectively.

Figure 7. The degradation of the write margin, the read SNM, the Vdd-min-ret, and the IREAD of a memory cell due to
HCI shown in (a)–(d), respectively.

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

93

while the IREAD is relatively unaffected. On the one hand, HCI, as shown in Figure 7, only
degrades IREAD and improves the other three cell performances. This is because the cell becomes
increasingly skewed under BTI as some devices degrade more than the others. This leads to
impaired noise immunity. On the other hand, all the devices undergo the same stress due to
HCI, as explained in Section 3.1.

4. Lifetime analysis

4.1. Memory cell lifetime characterization

To estimate the SRAM lifetimes due to BTI and HCI, the activity profile, thermal profile, and
IR-drop profile of the memory were collected by the framework as shown in Section 3.2. The
stress and thermal profiles are fed into the BTI and HCI models described in Section 2 to
obtain the threshold voltage degradation. Then, the thermal profile, IR-drop profile, the BTI
and HCI threshold voltage degradations, together with process parameter variations, were
used to analyze the degradation of SRAM stability via Monte Carlo SPICE simulations (2000
samples for each Monte Carlo run). As mentioned in Section 3.3, an SRAM cell is assumed to
have failed when any of the aforementioned four metrics degrades the predefined threshold
levels. Then, the lifetime of the SRAM cell is obtained by interpolating the two time stamps
where the failure happens in between. To characterize the cell lifetime, the cell is simulated
2000 times for each of the time stamps in SPICE. The time stamps basically define the level of
BTI/HCI degradations, that is, the BTI/HCI-induced threshold voltage shifts are back anno-
tated to the SPICE netlist for Monte Carlo simulations.

If we run Monte Carlo SPICE simulations for each cell for each time stamp, it would be very
time-consuming and not practical. To address the large number of cells, the state probabilities
and toggle rates are partitioned into 21 stress states (0%, 5%, 10%, …, 95%, 100%) for BTI and
HCI, respectively. This strategy can dramatically reduce the cost of SPICE simulation time
while not giving up too much accuracy. It is straightforward to assume that cells from the same
stress state share the same state probability and the same toggle rate. Furthermore, all the cells
in one stress state share the same lifetime distribution.

For BTI, the stress states are partitioned by state probabilities. The 0% stress state means that
0% of time the cell is storing a ‘1,’ while the 100% stress state means a ‘1’ is stored all the time.
For HCI, the stress states are the percentage of the maximum toggle rate that we observed,
that is, 0%, 5%, 10%, …, 100% of the maximum toggle rate. Figures 3(b) and 4(b) show an
example for the stress-state distribution for BTI and HCI, respectively, for a 32 KB data cache.
The stress-state distribution not only depends on the benchmark that is running but also
depends on the configuration of the cache system. We will discuss this impact in Section 5.

As process variations are considered, the lifetime of each SRAM cell is now a distribution rather
than a value. With Monte Carlo simulations, the lifetime distribution is computed for each
stress state. Importance sampling [36] was employed to have sufficient samples for the tail part
of the distribution. Figures 8 and 9 show the lifetime distributions for five representative stress

Dependability Engineering94

states, for BTI and HCI, respectively. As shown, for BTI, 50% stress state has the best lifetime,
while for HCI, the lowest switching rate results in the best lifetime.

Log-normal distribution is the best fit for the lifetimes in Figures 8 and 9. Once the fitted
log-normal distributions are determined, it is straightforward to obtain the failure rate of an
SRAM cell, PF

bit
 , as a function of time, t :

 PF bit  = Probability of (Lifetime < t) . (5)

Then, the failure probability of a word can be calculated, assuming no error correction codes:

 PF word  = 1 − ∏ i=1 N (1 − PF bit i
) (6)

Figure 8. The BTI lifetime distribution of an SRAM cell when it is under a specific duty cycle stress state. Five duty cycle
stress states are shown as follows: 0%, 30%, 50%, 80%, and 100%.

Figure 9. The HCI lifetime distribution of an SRAM cell when it is under a specific toggle-rate stress state. Five toggle-
rate stress states are shown: State N means a toggle rate of N times/μs.

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

95

while the IREAD is relatively unaffected. On the one hand, HCI, as shown in Figure 7, only
degrades IREAD and improves the other three cell performances. This is because the cell becomes
increasingly skewed under BTI as some devices degrade more than the others. This leads to
impaired noise immunity. On the other hand, all the devices undergo the same stress due to
HCI, as explained in Section 3.1.

4. Lifetime analysis

4.1. Memory cell lifetime characterization

To estimate the SRAM lifetimes due to BTI and HCI, the activity profile, thermal profile, and
IR-drop profile of the memory were collected by the framework as shown in Section 3.2. The
stress and thermal profiles are fed into the BTI and HCI models described in Section 2 to
obtain the threshold voltage degradation. Then, the thermal profile, IR-drop profile, the BTI
and HCI threshold voltage degradations, together with process parameter variations, were
used to analyze the degradation of SRAM stability via Monte Carlo SPICE simulations (2000
samples for each Monte Carlo run). As mentioned in Section 3.3, an SRAM cell is assumed to
have failed when any of the aforementioned four metrics degrades the predefined threshold
levels. Then, the lifetime of the SRAM cell is obtained by interpolating the two time stamps
where the failure happens in between. To characterize the cell lifetime, the cell is simulated
2000 times for each of the time stamps in SPICE. The time stamps basically define the level of
BTI/HCI degradations, that is, the BTI/HCI-induced threshold voltage shifts are back anno-
tated to the SPICE netlist for Monte Carlo simulations.

If we run Monte Carlo SPICE simulations for each cell for each time stamp, it would be very
time-consuming and not practical. To address the large number of cells, the state probabilities
and toggle rates are partitioned into 21 stress states (0%, 5%, 10%, …, 95%, 100%) for BTI and
HCI, respectively. This strategy can dramatically reduce the cost of SPICE simulation time
while not giving up too much accuracy. It is straightforward to assume that cells from the same
stress state share the same state probability and the same toggle rate. Furthermore, all the cells
in one stress state share the same lifetime distribution.

For BTI, the stress states are partitioned by state probabilities. The 0% stress state means that
0% of time the cell is storing a ‘1,’ while the 100% stress state means a ‘1’ is stored all the time.
For HCI, the stress states are the percentage of the maximum toggle rate that we observed,
that is, 0%, 5%, 10%, …, 100% of the maximum toggle rate. Figures 3(b) and 4(b) show an
example for the stress-state distribution for BTI and HCI, respectively, for a 32 KB data cache.
The stress-state distribution not only depends on the benchmark that is running but also
depends on the configuration of the cache system. We will discuss this impact in Section 5.

As process variations are considered, the lifetime of each SRAM cell is now a distribution rather
than a value. With Monte Carlo simulations, the lifetime distribution is computed for each
stress state. Importance sampling [36] was employed to have sufficient samples for the tail part
of the distribution. Figures 8 and 9 show the lifetime distributions for five representative stress

Dependability Engineering94

states, for BTI and HCI, respectively. As shown, for BTI, 50% stress state has the best lifetime,
while for HCI, the lowest switching rate results in the best lifetime.

Log-normal distribution is the best fit for the lifetimes in Figures 8 and 9. Once the fitted
log-normal distributions are determined, it is straightforward to obtain the failure rate of an
SRAM cell, PF

bit
 , as a function of time, t :

 PF bit  = Probability of (Lifetime < t) . (5)

Then, the failure probability of a word can be calculated, assuming no error correction codes:

 PF word  = 1 − ∏ i=1 N (1 − PF bit i
) (6)

Figure 8. The BTI lifetime distribution of an SRAM cell when it is under a specific duty cycle stress state. Five duty cycle
stress states are shown as follows: 0%, 30%, 50%, 80%, and 100%.

Figure 9. The HCI lifetime distribution of an SRAM cell when it is under a specific toggle-rate stress state. Five toggle-
rate stress states are shown: State N means a toggle rate of N times/μs.

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

95

where N is the number of bits in one word, PF
word

 is the failure probability of a word, and PF
bit

is the failure probability of a bit. Without ECC, we can safely assume that if there is one cell
fails to work, the whole memory system will fail. It is then straightforward to get the failure
probability of the whole SRAM block:

 PF SRAM  = 1 − ∏ i=1 N word (1 − FP word i
) (7)

where N
word

 is the number of words, PF
SRAM

 is the failure probability of of the memory block, FP
 word

i

is the probability of failure of i -th word. As PF
bit

 is a function of time, PF
word

 is also a function of
time, and so is PF

SRAM
 .

The inclusion of error correcting codes can detect and correct the internal data corruption in
SRAMs. In this chapter, BCH codes [37] were used, which consumes seven additional bits per
word and can correct one bit per word. With ECC, for a word containing N bits (including
ECC), the failure probability of a word, F

word
 , is different from Eq. (6):

 PF word  = 1 − ∏ i=1 N (1 − PF bit i
) − ∑

j=1

N
 [PF bit j

 ∗ ∏ i≠j (1 − PF bit i
)] (8)

In LEON3, the word size is N = 32 for the data cache without error correcting codes (ECC).
With ECC, the word size is N = 39. Note that Eqs. (5) and (7) are the same for with ECC and
without ECC.

5. Performance-reliability analysis for different cache configurations

In this section, we study the impact of cache configurations on cache reliability. Four categories
are considered, including cache associativity, cache size, cache line size, and the replacement
algorithm. The cache hit rates are also presented along with the cache reliability to analyze the
performance-reliability tradeoffs. Besides, we also show the impact of error correction codes
(ECC) on cache reliability.

Six benchmarks from MiBench [34] are tested: Qsort, SHA, CRC32, FFT, Basicmath, and
Dijkstra. Qsort benchmark implements the classical Qsort algorithm on a large array of strings.
SHA benchmark produces a 160-bit digest for a given input by using the classical secure hash
algorithm. CRC32 benchmark performs a 32-bit Cyclic Redundancy Check (CRC) to detect
errors in data transmission. FFT benchmark performs a fast Fourier transform on an array of
data. Basicmath benchmark has many basic mathematical calculations, which usually do not
have dedicated hardware support in embedded processors. Finally, the Dijkstra benchmark
implements the well-known Dijkstra’s algorithm to get the shortest path between every pair
of nodes on a large graph, which is stored in an adjacency matrix.

The state-probability (duty cycle) distributions are shown in Figure 10, for each of the six
benchmarks mentioned above. It can be obviously seen that the distributions are leaning to the
left. It is because in data cache memory, logic ‘0’ is more dominant than logic ‘1’ [38]. In fact,
memory is typically initialized to all ‘0’s when allocated. This means, even if the benchmark is

Dependability Engineering96

writing a ‘0’ and ‘1’ to any bit with equal likelihood, logic ‘0’ is always stored longer than logic
‘1’. There are some other reasons for ‘0’ being stored longer, including false Boolean values
and NULL pointers are represented with ‘0’s, and most data in dense-form sparse matrices
are ‘0’s [39].

In our setup, the microprocessor is running at 250 MHz frequency. For this level of frequency,
BTI is dominant and the HCI effect has a smaller impact. This is because that BTI is indepen-
dent of frequency, while HCI is frequency dependent and 250 MHz is not a very high fre-
quency. However, the HCI effect would be more impactful if the microprocessor is working
at higher frequencies.

The overall failure probability of the SRAM block is calculated based on the following equation:

 PF SRAM.Overall  = 1 − (1 − PF SRAM.BTI) ∗ (1 − PF SRAM.HCI) . (9)

where PF
SRAM.BTI

 is the failure probability due to BTI, and PF
SRAM.HCI

 is the failure probability due
to HCI.

5.1. Associativity

There are three types of cache associativity: fully associative, direct mapped, and n-way set
associative. For fully associative, data could be anywhere in the cache, making it very expensive
to implement as it must check the tag of every cache line. For direct mapped, data can only go to
a single cache line in the cache based on the memory address of the data. Set associative cache is
a trade-off between direct mapped cache and fully associative cache. The cache is divided into
‘n’ sets, and each set contains a number of cache lines. Four-way set associative means the cache
is divided into sets that can fit four blocks each, while a two-way set associative means each set
can hold two blocks. From this perspective, a fully associative cache of m cache lines is m-way
set associative, and a direct mapped cache is actually 1-way set associative. Although higher
associativity can achieve higher hit rate, it is more expensive in terms of timing and area cost.

In our work, we have implemented the LEON3 data cache with three different associativities:
1-way, 2-way, and 4-way. Other configurations are kept the same: 16-byte cache line size,
32 KB cache size, and LRU replacement algorithm.

Figure 11 shows the failure probability of the whole data cache for two illustrative bench-
marks: Basicmath and Dijkstra (other benchmarks have a similar trend). The hit rates for

Figure 10. The duty cycle distributions of SRAM cells in a two-way 32 KB data cache while the microprocessor is running
six different benchmarks.

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

97

where N is the number of bits in one word, PF
word

 is the failure probability of a word, and PF
bit

is the failure probability of a bit. Without ECC, we can safely assume that if there is one cell
fails to work, the whole memory system will fail. It is then straightforward to get the failure
probability of the whole SRAM block:

 PF SRAM  = 1 − ∏ i=1 N word (1 − FP word i
) (7)

where N
word

 is the number of words, PF
SRAM

 is the failure probability of of the memory block, FP
 word

i

is the probability of failure of i -th word. As PF
bit

 is a function of time, PF
word

 is also a function of
time, and so is PF

SRAM
 .

The inclusion of error correcting codes can detect and correct the internal data corruption in
SRAMs. In this chapter, BCH codes [37] were used, which consumes seven additional bits per
word and can correct one bit per word. With ECC, for a word containing N bits (including
ECC), the failure probability of a word, F

word
 , is different from Eq. (6):

 PF word  = 1 − ∏ i=1 N (1 − PF bit i
) − ∑

j=1

N
 [PF bit j

 ∗ ∏ i≠j (1 − PF bit i
)] (8)

In LEON3, the word size is N = 32 for the data cache without error correcting codes (ECC).
With ECC, the word size is N = 39. Note that Eqs. (5) and (7) are the same for with ECC and
without ECC.

5. Performance-reliability analysis for different cache configurations

In this section, we study the impact of cache configurations on cache reliability. Four categories
are considered, including cache associativity, cache size, cache line size, and the replacement
algorithm. The cache hit rates are also presented along with the cache reliability to analyze the
performance-reliability tradeoffs. Besides, we also show the impact of error correction codes
(ECC) on cache reliability.

Six benchmarks from MiBench [34] are tested: Qsort, SHA, CRC32, FFT, Basicmath, and
Dijkstra. Qsort benchmark implements the classical Qsort algorithm on a large array of strings.
SHA benchmark produces a 160-bit digest for a given input by using the classical secure hash
algorithm. CRC32 benchmark performs a 32-bit Cyclic Redundancy Check (CRC) to detect
errors in data transmission. FFT benchmark performs a fast Fourier transform on an array of
data. Basicmath benchmark has many basic mathematical calculations, which usually do not
have dedicated hardware support in embedded processors. Finally, the Dijkstra benchmark
implements the well-known Dijkstra’s algorithm to get the shortest path between every pair
of nodes on a large graph, which is stored in an adjacency matrix.

The state-probability (duty cycle) distributions are shown in Figure 10, for each of the six
benchmarks mentioned above. It can be obviously seen that the distributions are leaning to the
left. It is because in data cache memory, logic ‘0’ is more dominant than logic ‘1’ [38]. In fact,
memory is typically initialized to all ‘0’s when allocated. This means, even if the benchmark is

Dependability Engineering96

writing a ‘0’ and ‘1’ to any bit with equal likelihood, logic ‘0’ is always stored longer than logic
‘1’. There are some other reasons for ‘0’ being stored longer, including false Boolean values
and NULL pointers are represented with ‘0’s, and most data in dense-form sparse matrices
are ‘0’s [39].

In our setup, the microprocessor is running at 250 MHz frequency. For this level of frequency,
BTI is dominant and the HCI effect has a smaller impact. This is because that BTI is indepen-
dent of frequency, while HCI is frequency dependent and 250 MHz is not a very high fre-
quency. However, the HCI effect would be more impactful if the microprocessor is working
at higher frequencies.

The overall failure probability of the SRAM block is calculated based on the following equation:

 PF SRAM.Overall  = 1 − (1 − PF SRAM.BTI) ∗ (1 − PF SRAM.HCI) . (9)

where PF
SRAM.BTI

 is the failure probability due to BTI, and PF
SRAM.HCI

 is the failure probability due
to HCI.

5.1. Associativity

There are three types of cache associativity: fully associative, direct mapped, and n-way set
associative. For fully associative, data could be anywhere in the cache, making it very expensive
to implement as it must check the tag of every cache line. For direct mapped, data can only go to
a single cache line in the cache based on the memory address of the data. Set associative cache is
a trade-off between direct mapped cache and fully associative cache. The cache is divided into
‘n’ sets, and each set contains a number of cache lines. Four-way set associative means the cache
is divided into sets that can fit four blocks each, while a two-way set associative means each set
can hold two blocks. From this perspective, a fully associative cache of m cache lines is m-way
set associative, and a direct mapped cache is actually 1-way set associative. Although higher
associativity can achieve higher hit rate, it is more expensive in terms of timing and area cost.

In our work, we have implemented the LEON3 data cache with three different associativities:
1-way, 2-way, and 4-way. Other configurations are kept the same: 16-byte cache line size,
32 KB cache size, and LRU replacement algorithm.

Figure 11 shows the failure probability of the whole data cache for two illustrative bench-
marks: Basicmath and Dijkstra (other benchmarks have a similar trend). The hit rates for

Figure 10. The duty cycle distributions of SRAM cells in a two-way 32 KB data cache while the microprocessor is running
six different benchmarks.

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

97

1-way, 2-way, and 4-way associativity for Basicmath are 96.12%, 96.33%, 96.36%, respectively.
For Dijkstra, they are 62.23%, 64.81%, and 65.54%, respectively. It is seen from the results that
although higher associativity can get higher hit rates, it adversely impacts the reliability.

5.2. Cache line size

When the processor accesses a part of memory that is not already in the cache, it loads a
chunk of the memory around the accessed address into the cache, hoping that it will soon
be used again. When data are transferred between cache and main memory, this chunk of
data is handled in a fixed size, called cache lines. A cache can only hold a limited number of
lines, determined by the cache size. For example, a 64 KB cache with 64-byte lines has 1024
cache lines. In LEON3, cache line size can be configured as 16-byte or 32-byte. Other configu-
rations are kept the same: two-way set associative, 32 KB cache size, and LRU replacement
algorithm.

Figure 12 shows the failure probabilities for 16-byte and 32-byte cache line size for the six
tested benchmarks. It is obviously seen that, for all the tested benchmarks, 32-byte cache line
has lower failure probability than 16-byte, meaning 32-byte configuration is more reliable
than 16-byte. Besides, 32-byte also achieves better hit rates than 16-byte for four of the six

Figure 12. The failure probabilities in 6 years for 16-byte cache line and 32-byte cache line for six applications. The
hit-rate improvement is also shown, defined as the improvement of using 32-byte cache line compared to 16-byte line.

Figure 11. The failure probability as a function of time for three different associativities and two benchmarks.

Dependability Engineering98

benchmarks except for SHA and Basicmath, and hit rates for 32-byte and 16-byte are almost
the same. Overall, from our observation, larger cache line size can improve both hit rate and
reliability.

The reason for that is, a cache miss in a 32 Byte cache line can produce more recovery cycles
up to 256 (32 × 8) SRAM cells, which is twice as with a 16-byte cache line (16 × 8 SRAM cells).
The more BTI recovery cycles, the better reliability the cache would have.

5.3. Cache size

In our experiments, we have set five different cache sizes for the data cache of LEON3: 4, 16,
32, 64, and 128 KB. Other configurations are kept the same: two-way set associative, 16-byte
cache linesize, and LRU replacement algorithm. In Figure 13, the hit rate and probability that
the data cache fails in 6 years are presented for different cache sizes. As expected, the larger
the cache size, the cache is more vulnerable and less reliable. For hit rate, although larger cache
size always results in better hit rates, the improvement is little when cache size is larger than
32 KB. It is also worth noting that larger cache size causes more area and more power.

5.4. Replacement algorithm

If all the cache lines in the cache are in use, when the microprocessor accesses a new line, one
of the lines currently in the cache must be evicted to make room for the new line. The policy
that the microprocessor uses to choose the entry to evict is called the replacement policy.

The heuristic of any replacement policy is that it tries to predict which existing entry is the
least likely to be used in the future. The most common replacement policy in modern proces-
sors is least recently used (LRU) policy. The Least-Recent-Replaced (LRR) algorithm evicts
the cache entry, which is least recently replaced. Another replacement policy is random
replacement, meaning that a random cache line is selected for eviction. Among them, random

Figure 13. The hit rate and the failure probability in 6 years are shown for five different cache sizes and for three
applications.

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

99

1-way, 2-way, and 4-way associativity for Basicmath are 96.12%, 96.33%, 96.36%, respectively.
For Dijkstra, they are 62.23%, 64.81%, and 65.54%, respectively. It is seen from the results that
although higher associativity can get higher hit rates, it adversely impacts the reliability.

5.2. Cache line size

When the processor accesses a part of memory that is not already in the cache, it loads a
chunk of the memory around the accessed address into the cache, hoping that it will soon
be used again. When data are transferred between cache and main memory, this chunk of
data is handled in a fixed size, called cache lines. A cache can only hold a limited number of
lines, determined by the cache size. For example, a 64 KB cache with 64-byte lines has 1024
cache lines. In LEON3, cache line size can be configured as 16-byte or 32-byte. Other configu-
rations are kept the same: two-way set associative, 32 KB cache size, and LRU replacement
algorithm.

Figure 12 shows the failure probabilities for 16-byte and 32-byte cache line size for the six
tested benchmarks. It is obviously seen that, for all the tested benchmarks, 32-byte cache line
has lower failure probability than 16-byte, meaning 32-byte configuration is more reliable
than 16-byte. Besides, 32-byte also achieves better hit rates than 16-byte for four of the six

Figure 12. The failure probabilities in 6 years for 16-byte cache line and 32-byte cache line for six applications. The
hit-rate improvement is also shown, defined as the improvement of using 32-byte cache line compared to 16-byte line.

Figure 11. The failure probability as a function of time for three different associativities and two benchmarks.

Dependability Engineering98

benchmarks except for SHA and Basicmath, and hit rates for 32-byte and 16-byte are almost
the same. Overall, from our observation, larger cache line size can improve both hit rate and
reliability.

The reason for that is, a cache miss in a 32 Byte cache line can produce more recovery cycles
up to 256 (32 × 8) SRAM cells, which is twice as with a 16-byte cache line (16 × 8 SRAM cells).
The more BTI recovery cycles, the better reliability the cache would have.

5.3. Cache size

In our experiments, we have set five different cache sizes for the data cache of LEON3: 4, 16,
32, 64, and 128 KB. Other configurations are kept the same: two-way set associative, 16-byte
cache linesize, and LRU replacement algorithm. In Figure 13, the hit rate and probability that
the data cache fails in 6 years are presented for different cache sizes. As expected, the larger
the cache size, the cache is more vulnerable and less reliable. For hit rate, although larger cache
size always results in better hit rates, the improvement is little when cache size is larger than
32 KB. It is also worth noting that larger cache size causes more area and more power.

5.4. Replacement algorithm

If all the cache lines in the cache are in use, when the microprocessor accesses a new line, one
of the lines currently in the cache must be evicted to make room for the new line. The policy
that the microprocessor uses to choose the entry to evict is called the replacement policy.

The heuristic of any replacement policy is that it tries to predict which existing entry is the
least likely to be used in the future. The most common replacement policy in modern proces-
sors is least recently used (LRU) policy. The Least-Recent-Replaced (LRR) algorithm evicts
the cache entry, which is least recently replaced. Another replacement policy is random
replacement, meaning that a random cache line is selected for eviction. Among them, random

Figure 13. The hit rate and the failure probability in 6 years are shown for five different cache sizes and for three
applications.

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

99

replacement policy is the simplest. It has low area overhead but suffers from poor cache effi-
ciency. LRR algorithm uses one extra bit in the tag part, and it also has low area overhead.
LRU algorithm typically has the best performance but with the cost of the highest area over-
head among the three.

In this chapter, we have configured LEON3 to three different replacement algorithms, LRR,
LRU, and Random. Other configurations are kept the same: two-way set associative, 16-byte
cache line size, and 32 KB cache size.

Figure 14 shows the failure probabilities for the three replacement algorithms as well as the
hit-rate improvement of LRU and LRR compared to Random. As expected, LRU has the best
hit rate for all the tested benchmarks. However, seen from the results, it has lower reliability
compared to LRR and Random. The reason for the abovementioned results is LRU has better
hit rate and fewer misses, which result in fewer recovery cycles.

Figure 15. The failure probabilities of the two-way 32 KB data cache with and without ECC codes are shown as a function
of time for three applications.

Figure 14. The failure probabilities in 6 years for 16-byte cache line and 32-byte cache line for six applications. The
hit-rate improvement is also shown, defined as the improvement of using 32-byte cache line compared to 16-byte line.

Dependability Engineering100

5.5. Error correcting codes

Error correcting codes (ECC) is used to detect and correct internal data corruptions in SRAMs.
It uses some extra bits to check the data consistency and to correct the corrupted data. As
mentioned, BCH codes [37] was used which consumes seven additional bits per word and
can correct one bit per word, meaning the number of bits per word is 39 with the inclusion of
ECC for LEON3.

Figure 15 shows the failure probabilities of the data cache for with and without ECC. Again,
the failure probabilities are a function of time. Three illustrative benchmarks are present (other
benchmarks have similar results). As shown in the results, ECC can significantly improve
cache reliability.

6. Insights and conclusions

We have shown the reliability and performance of the data cache for different configurations.
For associativity, larger associativity has better performance but worse reliability. According to
the results, two-way set associative cache achieves the optimal performance-reliability balance.
For cache line size, 32-byte cache line is better than 16-byte in both performance and reliability.
Cache size is of great significance to cache reliability. We also observed that when cache size
increases larger than 16 KB, the cache reliability dramatically drops while the performance (hit
rate) has very limited improvement. For replacement algorithm, ‘Random’ replacement policy
has the worst hit rate but the best reliability, while the popular LRU algorithm has the best hit
rate but the worst reliability among the three. Therefore, tradeoffs can be made between the
three replacement algorithms. ECC always improves reliability with area and power overhead.

Overall, experimental results show that the cache size and ECC codes are of great significance
to cache reliability, while other metrics have smaller impact. According to the performance-
reliability evaluation, an optimal tradeoff could be achieved for the cache design in a micro-
processor system.

Author details

Taizhi Liu*, Chang-Chih Chen and Linda Milor

*Address all correspondence to: taizhiliu88@gatech.edu

Georgia Institute of Technology, Georgia

References

[1] Jouppi NP et al. Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In: Proceedings of 17th International
Symposium on Computer Architecture (ISCA-17). 1990. pp. 364-373

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

101

replacement policy is the simplest. It has low area overhead but suffers from poor cache effi-
ciency. LRR algorithm uses one extra bit in the tag part, and it also has low area overhead.
LRU algorithm typically has the best performance but with the cost of the highest area over-
head among the three.

In this chapter, we have configured LEON3 to three different replacement algorithms, LRR,
LRU, and Random. Other configurations are kept the same: two-way set associative, 16-byte
cache line size, and 32 KB cache size.

Figure 14 shows the failure probabilities for the three replacement algorithms as well as the
hit-rate improvement of LRU and LRR compared to Random. As expected, LRU has the best
hit rate for all the tested benchmarks. However, seen from the results, it has lower reliability
compared to LRR and Random. The reason for the abovementioned results is LRU has better
hit rate and fewer misses, which result in fewer recovery cycles.

Figure 15. The failure probabilities of the two-way 32 KB data cache with and without ECC codes are shown as a function
of time for three applications.

Figure 14. The failure probabilities in 6 years for 16-byte cache line and 32-byte cache line for six applications. The
hit-rate improvement is also shown, defined as the improvement of using 32-byte cache line compared to 16-byte line.

Dependability Engineering100

5.5. Error correcting codes

Error correcting codes (ECC) is used to detect and correct internal data corruptions in SRAMs.
It uses some extra bits to check the data consistency and to correct the corrupted data. As
mentioned, BCH codes [37] was used which consumes seven additional bits per word and
can correct one bit per word, meaning the number of bits per word is 39 with the inclusion of
ECC for LEON3.

Figure 15 shows the failure probabilities of the data cache for with and without ECC. Again,
the failure probabilities are a function of time. Three illustrative benchmarks are present (other
benchmarks have similar results). As shown in the results, ECC can significantly improve
cache reliability.

6. Insights and conclusions

We have shown the reliability and performance of the data cache for different configurations.
For associativity, larger associativity has better performance but worse reliability. According to
the results, two-way set associative cache achieves the optimal performance-reliability balance.
For cache line size, 32-byte cache line is better than 16-byte in both performance and reliability.
Cache size is of great significance to cache reliability. We also observed that when cache size
increases larger than 16 KB, the cache reliability dramatically drops while the performance (hit
rate) has very limited improvement. For replacement algorithm, ‘Random’ replacement policy
has the worst hit rate but the best reliability, while the popular LRU algorithm has the best hit
rate but the worst reliability among the three. Therefore, tradeoffs can be made between the
three replacement algorithms. ECC always improves reliability with area and power overhead.

Overall, experimental results show that the cache size and ECC codes are of great significance
to cache reliability, while other metrics have smaller impact. According to the performance-
reliability evaluation, an optimal tradeoff could be achieved for the cache design in a micro-
processor system.

Author details

Taizhi Liu*, Chang-Chih Chen and Linda Milor

*Address all correspondence to: taizhiliu88@gatech.edu

Georgia Institute of Technology, Georgia

References

[1] Jouppi NP et al. Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In: Proceedings of 17th International
Symposium on Computer Architecture (ISCA-17). 1990. pp. 364-373

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

101

[2] Albonesi DH. Selective cache ways: On-demand cache resource allocation. In: Proceedings
of 32nd International Symposium on Microarchiteure (MICRO-32). 1999. pp. 248-259

[3] Jaleel A et al. High performance cache replacement using re-reference interval predic-
tion (RRIP). In: Proceedings of 37th International Symposium on Computer Architecture
(ISCA-37). 2010. pp. 60-71

[4] Kaczer B et al. Atomistic approach to variability of bias-temperature instability in cir-
cuit simulations. In: Proceedings of IEEE International Reliability Physics Symposium
(IRPS). 2011. pp. XT.3.1-XT.3.5

[5] Huard V et al. NBTI degradation: From transistor to SRAM arrays. In: Proceedings of
IEEE International Reliability Physics Symposium (IRPS). 2008. pp. 289-300

[6] Bansal A et al. Impact of NBTI and PBTI in SRAM bit-cells: Relative sensitivities and
guidelines for application-specific target stability/performance. In: Proceedings of IEEE
International Reliability Physics Symposium (IRPS). 2009. pp. 745-749

[7] Lin JC et al. Time dependent Vccmin degradation of SRAM fabricated with high-k gate
Dielectris. In: Proceedings of IEEE International Reliability Physics Symposium (IRPS).
2007. pp. 439-444

[8] Kang K et al. Impact of negative-bias temperature instability in nanoscale SRAM array:
Modeling and analysis. In: TCAD. 2007. pp. 1770-1781

[9] Bansal A et al. Impacts of NBTI and PBTI on SRAM static/dynamic noise margins and
cell failure probability. Journal Microelectronics and reliability. 2009;49:642-649

[10] Bansal A, Kim J-J, Rao R. Usage-based degradation of SRAM arrays due to bias tempera-
ture instability. In: Proceedings of IEEE International Reliability Physics Symposium
(IRPS). 2012. pp. 2F.6.1-2F.6.4

[11] Weckx P et al. Defect-based methodology for workload-dependent circuit lifetime pro-
jections-Application to SRAM. In: Proceedings of IEEE International Reliability Physics
Symposium (IRPS). 2013. pp. 3A.4.1-3A.4.7

[12] Angot D et al. The impact of high Vth drifts tail and real workloads on SRAM reliability.
In: Proceedings of IEEE International Reliability Physics Symposium (IRPS). 2014. pp.
CA.10.1-CA.10.6

[13] Mintarno E et al. Workload dependent NBTI and PBTI analysis for a sub-45 nm commercial
microprocessor. In: Proceedings of IEEE International Reliability Physics Symposium
(IRPS). 2013. pp. 3A.1.1-3A.1.6

[14] Khan S et al. Trends and challenges of SRAM reliability in the nano-scale era. In: Proceedings
of Design and Technology of Integrated Systems in Nanoscale Era (DTIS). 2010. pp. 1-6

[15] Indaco M et al. On the impact of process variability and aging on the reliability of emerg-
ing memories (embedded tutorial). In: Proceedings of European Test Symposium (ETS).
2014. pp. 1-10

Dependability Engineering102

[16] Huard V et al. Managing SRAM reliability from bitcell to library level. In: Proceedings of
IEEE International Reliability Physics Symposium (IRPS). 2010. pp. 655-664

[17] Qin J et al. SRAM stability analysis considering gate oxide SBD, NBTI and HCI. In:
Proceedings of International Integrated Reliability Workshop (IIRW). 2007. pp. 33-37

[18] Siddiqua T et al. Recovery boosting: A technique to enhance NBTI recovery in SRAM arrays.
In: Proceedings of IEEE Computer Society Annual Symposium VLSI. 2010. pp. 393-398

[19] Gunadi E et al. Combating aging with the colt duty cycle equalizer. In: Proceedings of
43rd International Symposium on Microarchiteure (MICRO-43). 2010. pp. 103-114

[20] Shin J et al. A proactive Wearout recovery approach for exploiting microarchitectural
redundancy to extend cache SRAM lifetime. In: Proceedings of 35th International
Symposium on Computer Architecture (ISCA-35). 2008. pp. 353-362

[21] Wirth GI, da Silva R, Kaczer B. Statistical model for MOSFET bias temperature insta-
bility component due to charge trapping. IEEE Transactions on Electron Devices.
2011;58(8):2743-2751

[22] Fernandez R, Kaczer B, Nackaerts A, Demuynck S, Rodriguez R, Nafria M, Groeseneken
G. AC NBTI studies in the 1 Hz–2 GHz range on dedicated on-chip CMOS circuit. In:
Proceedings of International Electron Devices Meeting. 2006

[23] Zafar S, Kim YH, Narayanan V, Cabral C, Paruchuri V, Doris B, Stathis J, Callegari A,
Chudzik M. A comparative study of NBTI and PBTI (charge trapping) in SiO2/HFO2
stacks with FUSI, TiN, Re Gates. In: Proceedings of Symposium VLSI Technology. 2006.
pp. 23-25

[24] Chen S-Y, Tu C-H, Kao P-W, Lin M-H, Haung H-S, Lin J-C, Wang M-C, Wu S-H, Jhou Z-W,
Chou S, Ko J. Investigation of DC hot-carrier degradation at elevated temperatures for
p-channel metal-oxide-semiconductor field-effect transistors. Japanese Journal of Applied
Physics. 2008;47(3):1527-1531

[25] Wang W, Reddy V, Krishnan AT, Vattikonda R, Krishnan S, Cao Y. Compact modeling
and simulation of circuit reliability for 65-nm CMOS technology. IEEE Transaction on
Device and Materials Reliability. 2007;7(4):509-517

[26] Liu T, Chen C-C, Cha S, Milor L. System-level variation-aware aging simulator using a uni-
fied novel gate-delay model for bias temperature instability, hot carrier injection, and gate
oxide breakdown. Microelectronics Reliability. 2015. DOI: 10.1016/j.microrel.2015.06.008.

[27] Liu T, Chen C-C, Kim W, Milor L. Comprehensive reliability and aging analysis on
SRAMs within microprocessor systems. Microelectronics Reliability. 2015. DOI: 10.1016/j.
microrel.2015.06.078

[28] Ma C, Li B, Zhang L, He J, Zhang X, Lin X, Chan M. A unified FinFET reliability model
including high K gate stack dynamic threshold voltage, hot carrier injection, and nega-
tive bias temperature instability. In: Proceedings of International Symposium Quality
Electronic Design (ISQED). 2009. pp. 7-12

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

103

[2] Albonesi DH. Selective cache ways: On-demand cache resource allocation. In: Proceedings
of 32nd International Symposium on Microarchiteure (MICRO-32). 1999. pp. 248-259

[3] Jaleel A et al. High performance cache replacement using re-reference interval predic-
tion (RRIP). In: Proceedings of 37th International Symposium on Computer Architecture
(ISCA-37). 2010. pp. 60-71

[4] Kaczer B et al. Atomistic approach to variability of bias-temperature instability in cir-
cuit simulations. In: Proceedings of IEEE International Reliability Physics Symposium
(IRPS). 2011. pp. XT.3.1-XT.3.5

[5] Huard V et al. NBTI degradation: From transistor to SRAM arrays. In: Proceedings of
IEEE International Reliability Physics Symposium (IRPS). 2008. pp. 289-300

[6] Bansal A et al. Impact of NBTI and PBTI in SRAM bit-cells: Relative sensitivities and
guidelines for application-specific target stability/performance. In: Proceedings of IEEE
International Reliability Physics Symposium (IRPS). 2009. pp. 745-749

[7] Lin JC et al. Time dependent Vccmin degradation of SRAM fabricated with high-k gate
Dielectris. In: Proceedings of IEEE International Reliability Physics Symposium (IRPS).
2007. pp. 439-444

[8] Kang K et al. Impact of negative-bias temperature instability in nanoscale SRAM array:
Modeling and analysis. In: TCAD. 2007. pp. 1770-1781

[9] Bansal A et al. Impacts of NBTI and PBTI on SRAM static/dynamic noise margins and
cell failure probability. Journal Microelectronics and reliability. 2009;49:642-649

[10] Bansal A, Kim J-J, Rao R. Usage-based degradation of SRAM arrays due to bias tempera-
ture instability. In: Proceedings of IEEE International Reliability Physics Symposium
(IRPS). 2012. pp. 2F.6.1-2F.6.4

[11] Weckx P et al. Defect-based methodology for workload-dependent circuit lifetime pro-
jections-Application to SRAM. In: Proceedings of IEEE International Reliability Physics
Symposium (IRPS). 2013. pp. 3A.4.1-3A.4.7

[12] Angot D et al. The impact of high Vth drifts tail and real workloads on SRAM reliability.
In: Proceedings of IEEE International Reliability Physics Symposium (IRPS). 2014. pp.
CA.10.1-CA.10.6

[13] Mintarno E et al. Workload dependent NBTI and PBTI analysis for a sub-45 nm commercial
microprocessor. In: Proceedings of IEEE International Reliability Physics Symposium
(IRPS). 2013. pp. 3A.1.1-3A.1.6

[14] Khan S et al. Trends and challenges of SRAM reliability in the nano-scale era. In: Proceedings
of Design and Technology of Integrated Systems in Nanoscale Era (DTIS). 2010. pp. 1-6

[15] Indaco M et al. On the impact of process variability and aging on the reliability of emerg-
ing memories (embedded tutorial). In: Proceedings of European Test Symposium (ETS).
2014. pp. 1-10

Dependability Engineering102

[16] Huard V et al. Managing SRAM reliability from bitcell to library level. In: Proceedings of
IEEE International Reliability Physics Symposium (IRPS). 2010. pp. 655-664

[17] Qin J et al. SRAM stability analysis considering gate oxide SBD, NBTI and HCI. In:
Proceedings of International Integrated Reliability Workshop (IIRW). 2007. pp. 33-37

[18] Siddiqua T et al. Recovery boosting: A technique to enhance NBTI recovery in SRAM arrays.
In: Proceedings of IEEE Computer Society Annual Symposium VLSI. 2010. pp. 393-398

[19] Gunadi E et al. Combating aging with the colt duty cycle equalizer. In: Proceedings of
43rd International Symposium on Microarchiteure (MICRO-43). 2010. pp. 103-114

[20] Shin J et al. A proactive Wearout recovery approach for exploiting microarchitectural
redundancy to extend cache SRAM lifetime. In: Proceedings of 35th International
Symposium on Computer Architecture (ISCA-35). 2008. pp. 353-362

[21] Wirth GI, da Silva R, Kaczer B. Statistical model for MOSFET bias temperature insta-
bility component due to charge trapping. IEEE Transactions on Electron Devices.
2011;58(8):2743-2751

[22] Fernandez R, Kaczer B, Nackaerts A, Demuynck S, Rodriguez R, Nafria M, Groeseneken
G. AC NBTI studies in the 1 Hz–2 GHz range on dedicated on-chip CMOS circuit. In:
Proceedings of International Electron Devices Meeting. 2006

[23] Zafar S, Kim YH, Narayanan V, Cabral C, Paruchuri V, Doris B, Stathis J, Callegari A,
Chudzik M. A comparative study of NBTI and PBTI (charge trapping) in SiO2/HFO2
stacks with FUSI, TiN, Re Gates. In: Proceedings of Symposium VLSI Technology. 2006.
pp. 23-25

[24] Chen S-Y, Tu C-H, Kao P-W, Lin M-H, Haung H-S, Lin J-C, Wang M-C, Wu S-H, Jhou Z-W,
Chou S, Ko J. Investigation of DC hot-carrier degradation at elevated temperatures for
p-channel metal-oxide-semiconductor field-effect transistors. Japanese Journal of Applied
Physics. 2008;47(3):1527-1531

[25] Wang W, Reddy V, Krishnan AT, Vattikonda R, Krishnan S, Cao Y. Compact modeling
and simulation of circuit reliability for 65-nm CMOS technology. IEEE Transaction on
Device and Materials Reliability. 2007;7(4):509-517

[26] Liu T, Chen C-C, Cha S, Milor L. System-level variation-aware aging simulator using a uni-
fied novel gate-delay model for bias temperature instability, hot carrier injection, and gate
oxide breakdown. Microelectronics Reliability. 2015. DOI: 10.1016/j.microrel.2015.06.008.

[27] Liu T, Chen C-C, Kim W, Milor L. Comprehensive reliability and aging analysis on
SRAMs within microprocessor systems. Microelectronics Reliability. 2015. DOI: 10.1016/j.
microrel.2015.06.078

[28] Ma C, Li B, Zhang L, He J, Zhang X, Lin X, Chan M. A unified FinFET reliability model
including high K gate stack dynamic threshold voltage, hot carrier injection, and nega-
tive bias temperature instability. In: Proceedings of International Symposium Quality
Electronic Design (ISQED). 2009. pp. 7-12

Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
http://dx.doi.org/10.5772/intechopen.72779

103

[29] Tu CH, Chen SY, Chuang AE, Huang HS, Jhou ZW, Chang CJ, Chou S, Ko J. Transistor
variability after CHC and NBTI stress in 90 nm pMOSFET technology. Electronics
Letters. 2009;45(15):854-856

[30] Calimera A et al. Partitioned cache architectures for reduced NBTI-induced aging. In:
Proceedings of DATE. 2011. pp. 1-6

[31] PrimeTime Power Modeling Tool. [Online]. Available: http://www.synopsys.com/Tools/
Implementation/SignOff/PrimeTime/Pages/default.aspx [Accessed June, 2014]

[32] HotSpot Temperature Modeling Tool. [Online]. Available: http://lava.cs.virginia.edu/
HotSpot [Accessed March, 2014]

[33] LEON3 Processor. Available: http://gaisler.com/index.php/downloads/leongrlib [Accessed
December, 2015]

[34] Mibench benchmark: http://www.eecs.umich.edu/mibench

[35] Seevinck E, List FJ, Lohstroh J. Static-noise margin analysis of MOS SRAM cells. IEEE
Journal of Solid-State Circuits. 1987;22(5):748-754

[36] Kang R, Joshi R, Nassif S. Mixture importance sampling and its application to the analy-
sis of SRAM designs in the presence of rare failure events. In: Proceedings of Design
Automation Conference. 2006. pp. 69-72

[37] Sklar B, Harris FJ. The ABCs of linear block codes. IEEE Signal Processing Magazine.
2004;21:14-35

[38] Ricketts A et al. Investigating the impact of NBTI on different power saving cache strate-
gies. In: Proceedings of DATE. 2010. pp. 592-597

[39] Pekhimenko G et al. Base-delta-immediate compression: practical data compression
for on-chip caches. In: Proceedings of of 21st International Conference on Parallel
Architecture and Compilation Techniques (PACT-12). 2012. pp. 377-388

Dependability Engineering104

Chapter 7

Advances in Engineering Software for Multicore
Systems

Ali Jannesari

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72784

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72784

Advances in Engineering Software for Multicore Systems

Ali Jannesari

Additional information is available at the end of the chapter

Abstract

The vast amounts of data to be processed by today’s applications demand higher com-
putational power. To meet application requirements and achieve reasonable application
performance, it becomes increasingly profitable, or even necessary, to exploit any available
hardware parallelism. For both new and legacy applications, successful parallelization is
often subject to high cost and price. This chapter proposes a set of methods that employ an
optimistic semi-automatic approach, which enables programmers to exploit parallelism on
modern hardware architectures. It provides a set of methods, including an LLVM-based
tool, to help programmers identify the most promising parallelization targets and under-
stand the key types of parallelism. The approach reduces the manual effort needed for
parallelization. A contribution of this work is an efficient profiling method to determine
the control and data dependences for performing parallelism discovery or other types of
code analysis. Another contribution is a method for detecting code sections where parallel
design patterns might be applicable and suggesting relevant code transformations. Our
approach efficiently reports detailed runtime data dependences. It accurately identifies
opportunities for parallelism and the appropriate type of parallelism to use as task-based
or loop-based.

Keywords: parallelism, multicore/manycore systems, software engineering,
code analysis, profiling

1. Introduction

Stagnating single core processor performance caused a new hardware trend in the past
years that resulted in the replication of cores and the popularity and ubiquity of multi-
core and manycore architectures. Many applications and software systems that face grow-
ing demand for computational power can leverage this hardware trend for their needs and
achieve reasonable performance via software parallelization. The only way for application

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[29] Tu CH, Chen SY, Chuang AE, Huang HS, Jhou ZW, Chang CJ, Chou S, Ko J. Transistor
variability after CHC and NBTI stress in 90 nm pMOSFET technology. Electronics
Letters. 2009;45(15):854-856

[30] Calimera A et al. Partitioned cache architectures for reduced NBTI-induced aging. In:
Proceedings of DATE. 2011. pp. 1-6

[31] PrimeTime Power Modeling Tool. [Online]. Available: http://www.synopsys.com/Tools/
Implementation/SignOff/PrimeTime/Pages/default.aspx [Accessed June, 2014]

[32] HotSpot Temperature Modeling Tool. [Online]. Available: http://lava.cs.virginia.edu/
HotSpot [Accessed March, 2014]

[33] LEON3 Processor. Available: http://gaisler.com/index.php/downloads/leongrlib [Accessed
December, 2015]

[34] Mibench benchmark: http://www.eecs.umich.edu/mibench

[35] Seevinck E, List FJ, Lohstroh J. Static-noise margin analysis of MOS SRAM cells. IEEE
Journal of Solid-State Circuits. 1987;22(5):748-754

[36] Kang R, Joshi R, Nassif S. Mixture importance sampling and its application to the analy-
sis of SRAM designs in the presence of rare failure events. In: Proceedings of Design
Automation Conference. 2006. pp. 69-72

[37] Sklar B, Harris FJ. The ABCs of linear block codes. IEEE Signal Processing Magazine.
2004;21:14-35

[38] Ricketts A et al. Investigating the impact of NBTI on different power saving cache strate-
gies. In: Proceedings of DATE. 2010. pp. 592-597

[39] Pekhimenko G et al. Base-delta-immediate compression: practical data compression
for on-chip caches. In: Proceedings of of 21st International Conference on Parallel
Architecture and Compilation Techniques (PACT-12). 2012. pp. 377-388

Dependability Engineering104

Chapter 7

Advances in Engineering Software for Multicore
Systems

Ali Jannesari

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72784

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72784

Advances in Engineering Software for Multicore Systems

Ali Jannesari

Additional information is available at the end of the chapter

Abstract

The vast amounts of data to be processed by today’s applications demand higher com-
putational power. To meet application requirements and achieve reasonable application
performance, it becomes increasingly profitable, or even necessary, to exploit any available
hardware parallelism. For both new and legacy applications, successful parallelization is
often subject to high cost and price. This chapter proposes a set of methods that employ an
optimistic semi-automatic approach, which enables programmers to exploit parallelism on
modern hardware architectures. It provides a set of methods, including an LLVM-based
tool, to help programmers identify the most promising parallelization targets and under-
stand the key types of parallelism. The approach reduces the manual effort needed for
parallelization. A contribution of this work is an efficient profiling method to determine
the control and data dependences for performing parallelism discovery or other types of
code analysis. Another contribution is a method for detecting code sections where parallel
design patterns might be applicable and suggesting relevant code transformations. Our
approach efficiently reports detailed runtime data dependences. It accurately identifies
opportunities for parallelism and the appropriate type of parallelism to use as task-based
or loop-based.

Keywords: parallelism, multicore/manycore systems, software engineering,
code analysis, profiling

1. Introduction

Stagnating single core processor performance caused a new hardware trend in the past
years that resulted in the replication of cores and the popularity and ubiquity of multi-
core and manycore architectures. Many applications and software systems that face grow-
ing demand for computational power can leverage this hardware trend for their needs and
achieve reasonable performance via software parallelization. The only way for application

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

developers to speed up an individual application is to match the new hardware cores with
thread-level parallelism in the form of task-based or loop-based parallelism. However, suc-
cessful parallelization is often error prone, difficult, and time-consuming, especially if it is
done manually. Further, applying auto-parallelization is generally limited to loops with
specific criteria, and it is based on the polyhedral model [1, 2] for compiler optimization.
Additionally, auto-parallelization often fails to identify and exploit available parallelism
for many applications, since it does not leverage runtime information such as pointers and
array indices.

To keep application developers motivated and encourage them to achieve a performance
improvement, automated tools and methods are necessary that support them during a semi-
automatic parallelization process to reduce the manual efforts and facilitate the paralleliza-
tion workflow. Hence, effective programming toolchain and methodologies for using an
optimistic code-based approach to parallelize software with minimum programming effort
and user intervention are in great demand.

There are three major problems in the software parallelization process that often cause the
parallelization process to suffer from high complexity and low productivity. The first prob-
lem is gaining a thorough and complete understanding of the software code to identify
detailed control and data dependences. In order to guarantee the program correctness, the
parallelized program must have proper synchronization operations to preserve data depen-
dences and the right order of data accesses to produce the same results as the sequential
code does.

The second problem is extracting coarse-grained parallelism. Because of the available hard-
ware parallelism in multicore/manycore processors, they are powerful in executing multiple
code sections simultaneously. But the software programming toolchain is not mature to help
programmers partition and map their code to the new available cores. Coarse-grained par-
allelism such as task-based parallelism is expected to be a promising solution for using the
available hardware parallelism of the new cores and finding parallelism between arbitrary
code sections.

The third problem is generating parallel code which can express this coarse-grained parallel-
ism effectively for a diverse number of target platforms. After generating the parallel code,
validation and verification will be applied, and for further performance improvements on
specific targets, optimization techniques and auto-tuning methods are necessary.

This work summarizes the results of methods and approaches, which set out to improve the
abovementioned problems. The main goal of the work was to make semiautomatic paral-
lelization more feasible and attractive for a broader audience of application developers by
providing tools and methods that use an optimistic code-based approach and support key
activities of the manual parallelization process in a simpler, more effective and intuitive way
than existing tools.

The remainder of the chapter is structured as follows: in the next section, we highlight
the main contributions and the essential results of this work. In Section 3, we explain our

Dependability Engineering106

approach to dependence profiling and decomposition. In Section 4, we briefly present our
methods for task extraction and parallel pattern identification. Sections 5 and 6 deal with code
transformation and correctness analysis, respectively. In Sections 7 and 8, several applications
of our framework and its limitations are discussed. Section 9 reviews related work. Section 10
concludes the chapter and discusses possible extensions.

2. Contribution summary

The most important goal of this work is to provide a set of methods as an end-to-end
solution to support programmers during the semiautomatic parallelization process, from
the initial code analysis to code generation and optimization. The methods follow an opti-
mistic code-based approach to effectively analyze different code sections based on the
actual runtime dependence analysis. In this way, parallelization opportunities of applica-
tions can be identified at an early stage of the code analysis, which maximizes flexibility
and also facilitates the parallelization process. The approach is implemented as a tool
called Discovery of Potential Parallelism (DiscoPoP) [3] and is based on the LLVM com-
piler infrastructure.

The main accomplishments, which are illustrated in Figure 1, can be summarized as follows:

• Dependence profiling. We instrument and execute the program to obtain its control and
data dependences with practical overhead [4]. Our data-dependence profiler serves as
foundation for different program analyses based on data dependences.

• Decomposition. The concept of computational units (CUs) is used to extract the basic
blocks for building parallel programs [5]. A CU follows the read-compute-write pattern,
which means that a program state is first read from memory, a new state is computed, and
finally the new state is written back to memory. We generate the CU graph of a program
based on its CUs and the dependences that exist among them.

• Task extraction and parallel pattern identification. We search for potential parallelism in
the program by merging CUs/partitioning the CU graph [3]. The output is a prioritized list
of parallelization opportunities [6]. In a next step, we identify suitable parallel design pat-
terns to support the parallel algorithm structure [7, 8].

• Code transformation. In simple cases, the program is automatically transformed into its
parallel version based on available parallelism and the identified parallel design patterns
[9]. In other cases, suggestions for parallelization are presented.

• Correctness analysis. Additionally, an automated method to generate unit tests targeting
concurrency bugs such as data races has been developed to validate the resulting code
[10, 11].

• Numerous applications and case studies, in which we confirm the functionality of our
approach and show its capability as a parallelism discovery tool. In many cases, we can

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

107

developers to speed up an individual application is to match the new hardware cores with
thread-level parallelism in the form of task-based or loop-based parallelism. However, suc-
cessful parallelization is often error prone, difficult, and time-consuming, especially if it is
done manually. Further, applying auto-parallelization is generally limited to loops with
specific criteria, and it is based on the polyhedral model [1, 2] for compiler optimization.
Additionally, auto-parallelization often fails to identify and exploit available parallelism
for many applications, since it does not leverage runtime information such as pointers and
array indices.

To keep application developers motivated and encourage them to achieve a performance
improvement, automated tools and methods are necessary that support them during a semi-
automatic parallelization process to reduce the manual efforts and facilitate the paralleliza-
tion workflow. Hence, effective programming toolchain and methodologies for using an
optimistic code-based approach to parallelize software with minimum programming effort
and user intervention are in great demand.

There are three major problems in the software parallelization process that often cause the
parallelization process to suffer from high complexity and low productivity. The first prob-
lem is gaining a thorough and complete understanding of the software code to identify
detailed control and data dependences. In order to guarantee the program correctness, the
parallelized program must have proper synchronization operations to preserve data depen-
dences and the right order of data accesses to produce the same results as the sequential
code does.

The second problem is extracting coarse-grained parallelism. Because of the available hard-
ware parallelism in multicore/manycore processors, they are powerful in executing multiple
code sections simultaneously. But the software programming toolchain is not mature to help
programmers partition and map their code to the new available cores. Coarse-grained par-
allelism such as task-based parallelism is expected to be a promising solution for using the
available hardware parallelism of the new cores and finding parallelism between arbitrary
code sections.

The third problem is generating parallel code which can express this coarse-grained parallel-
ism effectively for a diverse number of target platforms. After generating the parallel code,
validation and verification will be applied, and for further performance improvements on
specific targets, optimization techniques and auto-tuning methods are necessary.

This work summarizes the results of methods and approaches, which set out to improve the
abovementioned problems. The main goal of the work was to make semiautomatic paral-
lelization more feasible and attractive for a broader audience of application developers by
providing tools and methods that use an optimistic code-based approach and support key
activities of the manual parallelization process in a simpler, more effective and intuitive way
than existing tools.

The remainder of the chapter is structured as follows: in the next section, we highlight
the main contributions and the essential results of this work. In Section 3, we explain our

Dependability Engineering106

approach to dependence profiling and decomposition. In Section 4, we briefly present our
methods for task extraction and parallel pattern identification. Sections 5 and 6 deal with code
transformation and correctness analysis, respectively. In Sections 7 and 8, several applications
of our framework and its limitations are discussed. Section 9 reviews related work. Section 10
concludes the chapter and discusses possible extensions.

2. Contribution summary

The most important goal of this work is to provide a set of methods as an end-to-end
solution to support programmers during the semiautomatic parallelization process, from
the initial code analysis to code generation and optimization. The methods follow an opti-
mistic code-based approach to effectively analyze different code sections based on the
actual runtime dependence analysis. In this way, parallelization opportunities of applica-
tions can be identified at an early stage of the code analysis, which maximizes flexibility
and also facilitates the parallelization process. The approach is implemented as a tool
called Discovery of Potential Parallelism (DiscoPoP) [3] and is based on the LLVM com-
piler infrastructure.

The main accomplishments, which are illustrated in Figure 1, can be summarized as follows:

• Dependence profiling. We instrument and execute the program to obtain its control and
data dependences with practical overhead [4]. Our data-dependence profiler serves as
foundation for different program analyses based on data dependences.

• Decomposition. The concept of computational units (CUs) is used to extract the basic
blocks for building parallel programs [5]. A CU follows the read-compute-write pattern,
which means that a program state is first read from memory, a new state is computed, and
finally the new state is written back to memory. We generate the CU graph of a program
based on its CUs and the dependences that exist among them.

• Task extraction and parallel pattern identification. We search for potential parallelism in
the program by merging CUs/partitioning the CU graph [3]. The output is a prioritized list
of parallelization opportunities [6]. In a next step, we identify suitable parallel design pat-
terns to support the parallel algorithm structure [7, 8].

• Code transformation. In simple cases, the program is automatically transformed into its
parallel version based on available parallelism and the identified parallel design patterns
[9]. In other cases, suggestions for parallelization are presented.

• Correctness analysis. Additionally, an automated method to generate unit tests targeting
concurrency bugs such as data races has been developed to validate the resulting code
[10, 11].

• Numerous applications and case studies, in which we confirm the functionality of our
approach and show its capability as a parallelism discovery tool. In many cases, we can

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

107

 reproduce manual parallelization strategies. We further demonstrate how DiscoPoP can
serve as a basis for different kinds of program analyses such as the exposure of communica-
tion patterns [12] or the optimization of transactional memory [13, 14].

In the remainder of the chapter, we describe the above contributions in more detail, followed
by a quick look at ongoing developments and a review of related work.

Figure 1. Main elements of the DiscoPoP parallelization approach.

Dependability Engineering108

3. Dependence profiling and decomposition

A key result of this work is a profiling method that reports data dependences of the executed
program efficiently in terms of time and space. The reported data dependences are used to
build the computational units that serve to analyze the program.

3.1. Dependence profiling

In order to parallelize the sequential code, we need to identify the control and data depen-
dences of the program. Data dependences can be obtained in two major ways: static and
dynamic analyses. Static approaches determine data dependences at compile time without
executing the program. However, many parallelization opportunities are ignored due to the
lack of runtime information. In contrast, dynamic dependence profiling instruments the inter-
mediate or binary code and tracks dependences at runtime. It treats the execution of a user
program as an instruction stream interrupted by previously inserted calls to instrumentation
functions that help detect dependences. Since dynamic profiling tracks only the branches that
are actually executed, it is inherently input sensitive, and it identifies control and data depen-
dences for the actual program execution. Despite this, the results are still useful, which is why
such profiling forms the basis of many program analysis tools. Moreover, by changing inputs
and computing the union of all collected dependences, the input sensitivity can be mitigated.

However, a limitation of data-dependence profiling is high runtime and memory overhead.
The time overhead may significantly prolong the analysis, sometimes requiring an entire
night [15]. The memory overhead may prevent the analysis completely [16]. This is because
dependence profiling requires all memory accesses and locations to be instrumented and
recorded. To lower the overhead, current profiling approaches limit their scope to the subset
of the dependence information needed for the analysis they have been created for. In this way,
they reduce the generality and reusability.

To provide a general foundation for different kinds of analyses, we present a generic data-
dependence profiler with practical overhead, capable of supporting a broad range of depen-
dence-based program analysis and optimization techniques for both sequential and parallel
programs. The profiler is based on LLVM-IR, and it provides detailed information, including
source-code location, variable name, and thread ID.

The proposed profiler is parallelized and utilizes a lock-free design [17] to achieve efficiency.
It leverages signatures [18], a concept borrowed from transactional memory to reduce memory
consumption. A signature is a data structure that encodes an approximate representation of an
unbounded set of elements with a bounded amount of state. It is widely used in transactional
memory systems to uncover conflicts [18]. A data dependence is similar to a conflict in transac-
tional memory because it exists only if two or more memory operations access the same memory
location in some order. Therefore, a signature is also suitable for detecting data dependences.

We evaluated our approach using the NAS parallel benchmark suite (NAS) [19] and Starbench
parallel benchmark suite (Starbench) [20]. The performance results are shown in Table 1.

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

109

 reproduce manual parallelization strategies. We further demonstrate how DiscoPoP can
serve as a basis for different kinds of program analyses such as the exposure of communica-
tion patterns [12] or the optimization of transactional memory [13, 14].

In the remainder of the chapter, we describe the above contributions in more detail, followed
by a quick look at ongoing developments and a review of related work.

Figure 1. Main elements of the DiscoPoP parallelization approach.

Dependability Engineering108

3. Dependence profiling and decomposition

A key result of this work is a profiling method that reports data dependences of the executed
program efficiently in terms of time and space. The reported data dependences are used to
build the computational units that serve to analyze the program.

3.1. Dependence profiling

In order to parallelize the sequential code, we need to identify the control and data depen-
dences of the program. Data dependences can be obtained in two major ways: static and
dynamic analyses. Static approaches determine data dependences at compile time without
executing the program. However, many parallelization opportunities are ignored due to the
lack of runtime information. In contrast, dynamic dependence profiling instruments the inter-
mediate or binary code and tracks dependences at runtime. It treats the execution of a user
program as an instruction stream interrupted by previously inserted calls to instrumentation
functions that help detect dependences. Since dynamic profiling tracks only the branches that
are actually executed, it is inherently input sensitive, and it identifies control and data depen-
dences for the actual program execution. Despite this, the results are still useful, which is why
such profiling forms the basis of many program analysis tools. Moreover, by changing inputs
and computing the union of all collected dependences, the input sensitivity can be mitigated.

However, a limitation of data-dependence profiling is high runtime and memory overhead.
The time overhead may significantly prolong the analysis, sometimes requiring an entire
night [15]. The memory overhead may prevent the analysis completely [16]. This is because
dependence profiling requires all memory accesses and locations to be instrumented and
recorded. To lower the overhead, current profiling approaches limit their scope to the subset
of the dependence information needed for the analysis they have been created for. In this way,
they reduce the generality and reusability.

To provide a general foundation for different kinds of analyses, we present a generic data-
dependence profiler with practical overhead, capable of supporting a broad range of depen-
dence-based program analysis and optimization techniques for both sequential and parallel
programs. The profiler is based on LLVM-IR, and it provides detailed information, including
source-code location, variable name, and thread ID.

The proposed profiler is parallelized and utilizes a lock-free design [17] to achieve efficiency.
It leverages signatures [18], a concept borrowed from transactional memory to reduce memory
consumption. A signature is a data structure that encodes an approximate representation of an
unbounded set of elements with a bounded amount of state. It is widely used in transactional
memory systems to uncover conflicts [18]. A data dependence is similar to a conflict in transac-
tional memory because it exists only if two or more memory operations access the same memory
location in some order. Therefore, a signature is also suitable for detecting data dependences.

We evaluated our approach using the NAS parallel benchmark suite (NAS) [19] and Starbench
parallel benchmark suite (Starbench) [20]. The performance results are shown in Table 1.

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

109

While performing an exhaustive dependence search with 16 profiling threads, our lock-free
parallel design limited the average slowdown to 78× and 93× for NAS and Starbench, respec-
tively. Using a signature with 108 slots, the memory consumption did not exceed 649 MB
(NAS) and 1390 MB (Starbench).

3.2. Decomposition

The most difficult and challenging part in parallelizing sequential programs is to identify
which code sections are able to run in parallel. While identifying such code sections, most of
the current parallelism discovery techniques focus on specific language constructs. In con-
trast, we propose the concept of computational units (CUs) to concentrate on the computa-
tions performed by a program independently of any language constructs.

In our approach, a program is treated as a collection of computations communicating with
one another using a number of variables. Each computation is represented as a computational
unit (CU). A CU is a collection of instructions following the read-compute-write pattern: a set
of variables is read and used to perform a computation, and then the result is written back to
another set of variables. The two sets of variables are called read set and write set, respectively.
These two sets do not necessarily have to be disjoint. Load instructions reading variables in
the read set form the read phase of the CU, and store instructions writing variables in the write
set form the write phase of the CU. A CU is defined by a read-compute-write pattern because,
in practice, tasks communicate with one another by reading and writing variables that are
global to them, while computations are performed locally.

We build a CU graph, in which vertices are statically generated CUs and edges are dynamic
data dependences. Data dependences in a CU graph are always among instructions in read
phases and write phases. Dependences that are local to a CU are hidden because they do
not prevent parallelism among CUs. Our tool also generates the program execution tree
(PET) of a program. This tree contains information about program control dependences and
execution paths. Nodes of the tree are control regions of the program. We map the CU graph
of a program onto its execution tree to determine CUs for every region. Figure 2 shows
the CU graph of a program mapped onto its PET. PET and CU graphs serve for different
kinds of code analyses as they contain the information such as CUs and their correspond-
ing instructions, data and control dependences, etc. In this work we mainly use them for
parallelization.

Benchmark Average slowdown Average memory consumption (MB)

1T 8T 16T 8T 16T

NAS 190 97 78 473 649

Starbench 191 101 93 505 1390

Table 1. Performance results of profiler in DiscoPoP.

Dependability Engineering110

4. Task extraction and parallel pattern identification

In the following section, we focus on using PET and CU graphs for parallelism discovery and
supporting the parallelization process. Additionally, we describe how to use them to detect
parallel design patterns in the given sequential code automatically.

4.1. Task extraction

DiscoPoP suggests parallelism among strongly connected components (SCCs) and chains in the
CU graph of a program [21]. An SCC is a subgraph of the CU graph in which every CU is reach-
able from every other CU. It forms a complex knot of dependences that defy internal parallel-
ization. A chain is a group of CUs that are connected in a row without a branching or joining
point in between. We merge chains because a CU contains only a few instructions and there is
no benefit in considering each CU as a separate task. The CUs grouped as SCCs or chains could
form separate tasks and be executed in parallel, if there are no dependences between them.
Parallelism is also possible when dependences are weakly connected. DiscoPoP discovers these
parallelization opportunities by calculating affinity between CUs and applying the minimum
cut algorithm [22] to the CU graph. It calculates the affinity for every pair of CUs based on the
number of dependences and shared instructions between them. DiscoPoP suggests to partition
the CU graph with a minimum number of dependences and affected shared instructions.

Figure 2. CU graph mapped onto the program execution tree.

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

111

While performing an exhaustive dependence search with 16 profiling threads, our lock-free
parallel design limited the average slowdown to 78× and 93× for NAS and Starbench, respec-
tively. Using a signature with 108 slots, the memory consumption did not exceed 649 MB
(NAS) and 1390 MB (Starbench).

3.2. Decomposition

The most difficult and challenging part in parallelizing sequential programs is to identify
which code sections are able to run in parallel. While identifying such code sections, most of
the current parallelism discovery techniques focus on specific language constructs. In con-
trast, we propose the concept of computational units (CUs) to concentrate on the computa-
tions performed by a program independently of any language constructs.

In our approach, a program is treated as a collection of computations communicating with
one another using a number of variables. Each computation is represented as a computational
unit (CU). A CU is a collection of instructions following the read-compute-write pattern: a set
of variables is read and used to perform a computation, and then the result is written back to
another set of variables. The two sets of variables are called read set and write set, respectively.
These two sets do not necessarily have to be disjoint. Load instructions reading variables in
the read set form the read phase of the CU, and store instructions writing variables in the write
set form the write phase of the CU. A CU is defined by a read-compute-write pattern because,
in practice, tasks communicate with one another by reading and writing variables that are
global to them, while computations are performed locally.

We build a CU graph, in which vertices are statically generated CUs and edges are dynamic
data dependences. Data dependences in a CU graph are always among instructions in read
phases and write phases. Dependences that are local to a CU are hidden because they do
not prevent parallelism among CUs. Our tool also generates the program execution tree
(PET) of a program. This tree contains information about program control dependences and
execution paths. Nodes of the tree are control regions of the program. We map the CU graph
of a program onto its execution tree to determine CUs for every region. Figure 2 shows
the CU graph of a program mapped onto its PET. PET and CU graphs serve for different
kinds of code analyses as they contain the information such as CUs and their correspond-
ing instructions, data and control dependences, etc. In this work we mainly use them for
parallelization.

Benchmark Average slowdown Average memory consumption (MB)

1T 8T 16T 8T 16T

NAS 190 97 78 473 649

Starbench 191 101 93 505 1390

Table 1. Performance results of profiler in DiscoPoP.

Dependability Engineering110

4. Task extraction and parallel pattern identification

In the following section, we focus on using PET and CU graphs for parallelism discovery and
supporting the parallelization process. Additionally, we describe how to use them to detect
parallel design patterns in the given sequential code automatically.

4.1. Task extraction

DiscoPoP suggests parallelism among strongly connected components (SCCs) and chains in the
CU graph of a program [21]. An SCC is a subgraph of the CU graph in which every CU is reach-
able from every other CU. It forms a complex knot of dependences that defy internal parallel-
ization. A chain is a group of CUs that are connected in a row without a branching or joining
point in between. We merge chains because a CU contains only a few instructions and there is
no benefit in considering each CU as a separate task. The CUs grouped as SCCs or chains could
form separate tasks and be executed in parallel, if there are no dependences between them.
Parallelism is also possible when dependences are weakly connected. DiscoPoP discovers these
parallelization opportunities by calculating affinity between CUs and applying the minimum
cut algorithm [22] to the CU graph. It calculates the affinity for every pair of CUs based on the
number of dependences and shared instructions between them. DiscoPoP suggests to partition
the CU graph with a minimum number of dependences and affected shared instructions.

Figure 2. CU graph mapped onto the program execution tree.

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

111

Finally DiscoPoP ranks parallelization opportunities to prioritize them based on three met-
rics [21]. The first is instruction coverage. It provides an estimate of how much time is spent
in a code section. The second is speedup, which reflects potential speedup if the code sec-
tion is parallelized. The third is CU imbalance. It reflects when suggested parallelization may
lead to a bottleneck. Our experiments with Barcelona OpenMP Tasks Suite (BOTS) [23], NAS,
PARSEC benchmark suite (PARSEC) [24], and Starbench showed that all of the code sections
identified as parallelizable by our approach are parallelized in the existing parallel versions
of the benchmark programs [3, 21, 25, 26].

4.2. Parallel pattern identification

Parallel design patterns are reusable solutions for common problems that occur during the
development of parallel programs. They have been developed to help programmers to design
and implement parallel applications efficiently [27, 28]. However, identifying a suitable paral-
lel pattern for a specific code region in a sequential application is a difficult task. Also, trans-
forming the application according to structures supporting those parallel patterns is very
challenging.

We propose an approach that automatically finds parallel patterns in the algorithm struc-
ture design space of sequential applications using template matching [7, 8]. The approach
generates a pattern vector, which plays the role of the template to be matched to the pro-
gram. For each hotspot in the program, we create the pattern-specific graph vector accord-
ing to the dependences of the corresponding CU graph. The correlation coefficient of the
pattern vector and the graph vector of the selected hotspot tells us whether the pattern exists
in the selected section or not. So far, we support the detection of pipeline, do-all, task-level
parallelism such as master/worker, geometric decomposition, and reduction patterns. Our
tool not only indicates whether a parallel design pattern has been found in some section of
the program but also shows how the code must be divided to fit the appropriate structure
of the pattern.

We evaluated our approach with 17 sequential applications from four different benchmark suites,
i.e., Starbench, BOTS, PARSEC, and PolyBench [29]. We successfully detected pipeline, task par-
allelism, geometric decomposition, fusion, and reduction. We compared the detected patterns
with the existing parallel versions of the benchmarks and confirmed our results [7, 8]. For those
benchmarks for which the parallel version does not exist, we implemented the detected patterns.
We achieved a speedup of 14× with 32 threads for the best case of our hand-implemented parallel
version of the ludcmp application in PolyBench [8].

5. Code transformation

After finding parallelization opportunities in the program, generating parallel code to run
on the hardware is another main step of the parallelization process. The code transformation
component [9] in DiscoPoP transforms sequential C/C++ code into parallel code, following

Dependability Engineering112

the detected parallel design pattern. Transformation is performed on the AST level using the
Clang libraries [30]. The transformation module traverses the Clang AST of the source code
to locate simple detected patterns such as do-all or task-level parallelism and the correspond-
ing code sections. Then a source-code rewriting module rewrites the targeted source-code
strings in the Clang AST context using Intel TBB parallel constructs—the parallel_for and flow
graph templates. The transformation process does not require users to annotate parallel code
sections in advance. The parallel for-loop transformation is automatic, and the parallel-task
transformation using the flow graph template requires user assistance. The user needs to
specify the buffering policy in the synchronization join node of the flow graph.

We have evaluated applications from NAS, PARSEC, and Intel CnC samples. The obtained
results confirm that our approach is able to achieve promising performance with minor user
interference. The average speedups of loop parallelization and task parallelization are up to
3.12× and 9.92×, respectively [9].

6. Correctness analysis

The parallelized code is expected to deliver the same output as its sequential counterpart. To
assure the correctness, we use automated unit testing [10, 31, 32] and sophisticated race detec-
tion methods [11, 33]. For data races, our library-independent race detection approach [33] is
applied to the generated parallel code for finding potential data races. Also, automated unit
tests based on dynamic and static analyses are generated, which can be used during the paral-
lelization process for finding atomicity violations and verifying the parallel code.

A notorious class of concurrency bugs is race conditions related to nonatomic updates on
correlated variables, potentially leading to broken invariants, which make up about 30% of
all non-deadlock concurrency bugs. We propose to combine the benefits of automatic parallel
unit test generation with the advantages of race detection. To achieve this, our framework
uses the existing unit test generator AutoRT [34, 35] to identify possible correlation violations
in function pairs accessing correlated variables. We automatically generated 81 parallel unit
tests for correlated variables in eight different applications. After analyzing the unit tests, a
race detector for correlated variables reported more than 85% of the race conditions violating
variable correlations [36]. Furthermore, we were able to reduce the number of redundantly
generated tests by up to 50%.

7. Further applications of the DiscoPoP framework

Considering the modern parallel programming models and hardware platforms, communi-
cation patterns play an important role for energy efficiency and performance of the gener-
ated parallel code. We investigated communication patterns in shared-memory applications,
which are useful for applying optimizations and finding performance bottlenecks.

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

113

Finally DiscoPoP ranks parallelization opportunities to prioritize them based on three met-
rics [21]. The first is instruction coverage. It provides an estimate of how much time is spent
in a code section. The second is speedup, which reflects potential speedup if the code sec-
tion is parallelized. The third is CU imbalance. It reflects when suggested parallelization may
lead to a bottleneck. Our experiments with Barcelona OpenMP Tasks Suite (BOTS) [23], NAS,
PARSEC benchmark suite (PARSEC) [24], and Starbench showed that all of the code sections
identified as parallelizable by our approach are parallelized in the existing parallel versions
of the benchmark programs [3, 21, 25, 26].

4.2. Parallel pattern identification

Parallel design patterns are reusable solutions for common problems that occur during the
development of parallel programs. They have been developed to help programmers to design
and implement parallel applications efficiently [27, 28]. However, identifying a suitable paral-
lel pattern for a specific code region in a sequential application is a difficult task. Also, trans-
forming the application according to structures supporting those parallel patterns is very
challenging.

We propose an approach that automatically finds parallel patterns in the algorithm struc-
ture design space of sequential applications using template matching [7, 8]. The approach
generates a pattern vector, which plays the role of the template to be matched to the pro-
gram. For each hotspot in the program, we create the pattern-specific graph vector accord-
ing to the dependences of the corresponding CU graph. The correlation coefficient of the
pattern vector and the graph vector of the selected hotspot tells us whether the pattern exists
in the selected section or not. So far, we support the detection of pipeline, do-all, task-level
parallelism such as master/worker, geometric decomposition, and reduction patterns. Our
tool not only indicates whether a parallel design pattern has been found in some section of
the program but also shows how the code must be divided to fit the appropriate structure
of the pattern.

We evaluated our approach with 17 sequential applications from four different benchmark suites,
i.e., Starbench, BOTS, PARSEC, and PolyBench [29]. We successfully detected pipeline, task par-
allelism, geometric decomposition, fusion, and reduction. We compared the detected patterns
with the existing parallel versions of the benchmarks and confirmed our results [7, 8]. For those
benchmarks for which the parallel version does not exist, we implemented the detected patterns.
We achieved a speedup of 14× with 32 threads for the best case of our hand-implemented parallel
version of the ludcmp application in PolyBench [8].

5. Code transformation

After finding parallelization opportunities in the program, generating parallel code to run
on the hardware is another main step of the parallelization process. The code transformation
component [9] in DiscoPoP transforms sequential C/C++ code into parallel code, following

Dependability Engineering112

the detected parallel design pattern. Transformation is performed on the AST level using the
Clang libraries [30]. The transformation module traverses the Clang AST of the source code
to locate simple detected patterns such as do-all or task-level parallelism and the correspond-
ing code sections. Then a source-code rewriting module rewrites the targeted source-code
strings in the Clang AST context using Intel TBB parallel constructs—the parallel_for and flow
graph templates. The transformation process does not require users to annotate parallel code
sections in advance. The parallel for-loop transformation is automatic, and the parallel-task
transformation using the flow graph template requires user assistance. The user needs to
specify the buffering policy in the synchronization join node of the flow graph.

We have evaluated applications from NAS, PARSEC, and Intel CnC samples. The obtained
results confirm that our approach is able to achieve promising performance with minor user
interference. The average speedups of loop parallelization and task parallelization are up to
3.12× and 9.92×, respectively [9].

6. Correctness analysis

The parallelized code is expected to deliver the same output as its sequential counterpart. To
assure the correctness, we use automated unit testing [10, 31, 32] and sophisticated race detec-
tion methods [11, 33]. For data races, our library-independent race detection approach [33] is
applied to the generated parallel code for finding potential data races. Also, automated unit
tests based on dynamic and static analyses are generated, which can be used during the paral-
lelization process for finding atomicity violations and verifying the parallel code.

A notorious class of concurrency bugs is race conditions related to nonatomic updates on
correlated variables, potentially leading to broken invariants, which make up about 30% of
all non-deadlock concurrency bugs. We propose to combine the benefits of automatic parallel
unit test generation with the advantages of race detection. To achieve this, our framework
uses the existing unit test generator AutoRT [34, 35] to identify possible correlation violations
in function pairs accessing correlated variables. We automatically generated 81 parallel unit
tests for correlated variables in eight different applications. After analyzing the unit tests, a
race detector for correlated variables reported more than 85% of the race conditions violating
variable correlations [36]. Furthermore, we were able to reduce the number of redundantly
generated tests by up to 50%.

7. Further applications of the DiscoPoP framework

Considering the modern parallel programming models and hardware platforms, communi-
cation patterns play an important role for energy efficiency and performance of the gener-
ated parallel code. We investigated communication patterns in shared-memory applications,
which are useful for applying optimizations and finding performance bottlenecks.

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

113

7.1. Communication pattern detection for auto-tuning

Communication patterns extracted from parallel programs can provide a valuable source
of information for auto-tuning and runtime workload scheduling on heterogeneous sys-
tems. Once identified, such patterns can help find the most promising optimizations.
Communication patterns can be detected using different methods, including sandbox simula-
tion, memory profiling, and hardware counter analysis. However, these analyses usually suf-
fer from high runtime and memory overhead, necessitating a tradeoff between accuracy and
resource consumption. More importantly, none of the existing methods exploit fine-grained
communication patterns on the level of individual code regions.

We extended the DiscoPoP profiler by adding a communication pattern detection component
and employed an asymmetric signature memory method to detect communication among
threads [12]. Shared-memory systems have fundamental differences in comparison with
distributed memory system. Shared-memory applications bring additional irregularity and
complexity to data sharing, which imposes further difficulty on finding the communication
pattern. Communications are implicit and automatically occur through memory accesses,
when one thread writes a value and another one reads it. We experimentally validated our
communication pattern detection approach with programs in the SPLASH [37] benchmark
suite and successfully identified the typical communication patterns existing in parallel pro-
grams [12]. The runtime overhead of our extended profiler is around 225×, while the required
amount of memory remains fixed.

7.2. Optimization techniques for transactional memory

Transactional memory (TM) is a promising paradigm that facilitates programming for
shared-memory systems. We used DiscoPoP and reported optimization techniques in soft-
ware transactional memory (STM) [13]. We demonstrated that varying STM parameters such
as the size of transaction, readset, and writeset significantly change the execution time of the
STM programs. By applying machine learning and using DiscoPoP results, we optimized
these parameters. The experimental results with NAS revealed that we are able to improve
the performance of STM programs by up to 54.8%. In another work [14], we used DiscoPoP
for restricted transactional memory (RTM) on Intel’s Haswell processor and showed that
the performance of RTM varies across applications. While RTM enhances performance of
some applications relative to software transactional memory (STM), it degrades performance
in some others. Using DiscoPoP, we proposed an adaptive system that switches between
HTM and STM in transaction granularity and predicts the optimal TM system for a given
transaction.

8. Limitations

Methods to analyze programs are generally divided into two categories: static and dynamic
methods. Static methods analyze source or intermediate code and are restricted to information

Dependability Engineering114

that can be obtained before running the program, i.e., at compile time. Static approaches are fast
but also conservative because they have limited support for runtime information. In contrast,
dynamic approaches identify dependences only if they exist at runtime. Although dynamic
approaches relax the conservative assumptions made by static approaches on dynamic data,
they are input sensitive, that is, their outcome may depend on the particular program execu-
tion. To mitigate this limitation, dynamic approaches generally execute the target program
with a range of representative inputs, a practice we adopt as well when using our dynamic
dependence profiler. Additionally, we plan to derive conditional correctness guarantees, tak-
ing the specific nature of the missing dependences into account. This would allow users to run
the program in parallel if the missed dependences are irrelevant for a given input configuration.

Our parallelism detection approach is dependent on the profiler’s output. Due to the use
of signature technology (as an approximation), the dependence profiler could have a very
low rate of false positives and false negatives. If these appear in the profiler results, then our
dependence analysis and accordingly the parallelism detection results could be affected.

The pattern detection approach is dependent on the coding style of a programmer. For exam-
ple in a Starbench program, we found a pipeline pattern because the programmer used point-
ers to access arrays and used the increment operator (++) on pointers. However, if a loop index
variable (loop indexing) had been used in the sequential code, we would have detected a do-
all loop pattern based on our pattern detection algorithm (template matching).

MPMD-style task parallelism (Multiple Program Multiple Data) could be found in few evalu-
ated benchmarks, which lead to minor speedups. More intensive investigations are needed to
apply such kind of parallelism to real-world applications.

Recently, we developed a prototypical visualization component to display the output of
DiscoPoP. However, a more advanced and user-friendly graphical user interface to visually
guide application developers in a stepwise manner when parallelizing a program would be
desirable. This feature could create higher incentives for developers and make the paralleliza-
tion workflow easier, particularly for DiscoPoP’s code-based semiautomatic parallelization
approach.

9. Related work

Profiling and parallelism discovery has always been a central topic in the field of parallel pro-
gramming. Early approaches mainly analyze source code statically and predict parallelism
based on theoretical models [38, 39]. Bobbie [40] presented a method to partition a program for
parallelization. The method adopts syntax-driven data-dependence analysis and detects paral-
lelism based on Bernstein’s conditions [41]. It uses bipartite graph matching to partition the code.

Compiler-based auto-parallelization based on the polyhedral model [1, 2, 42] is generally
restricted to program loops with specific criteria (e.g., affine linear loop boundaries and array
indices). A dynamically speculative extension of these criteria expands the applicability of this
method to a certain extent [43]. Another work [28] that is not restricted to loops only identifies

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

115

7.1. Communication pattern detection for auto-tuning

Communication patterns extracted from parallel programs can provide a valuable source
of information for auto-tuning and runtime workload scheduling on heterogeneous sys-
tems. Once identified, such patterns can help find the most promising optimizations.
Communication patterns can be detected using different methods, including sandbox simula-
tion, memory profiling, and hardware counter analysis. However, these analyses usually suf-
fer from high runtime and memory overhead, necessitating a tradeoff between accuracy and
resource consumption. More importantly, none of the existing methods exploit fine-grained
communication patterns on the level of individual code regions.

We extended the DiscoPoP profiler by adding a communication pattern detection component
and employed an asymmetric signature memory method to detect communication among
threads [12]. Shared-memory systems have fundamental differences in comparison with
distributed memory system. Shared-memory applications bring additional irregularity and
complexity to data sharing, which imposes further difficulty on finding the communication
pattern. Communications are implicit and automatically occur through memory accesses,
when one thread writes a value and another one reads it. We experimentally validated our
communication pattern detection approach with programs in the SPLASH [37] benchmark
suite and successfully identified the typical communication patterns existing in parallel pro-
grams [12]. The runtime overhead of our extended profiler is around 225×, while the required
amount of memory remains fixed.

7.2. Optimization techniques for transactional memory

Transactional memory (TM) is a promising paradigm that facilitates programming for
shared-memory systems. We used DiscoPoP and reported optimization techniques in soft-
ware transactional memory (STM) [13]. We demonstrated that varying STM parameters such
as the size of transaction, readset, and writeset significantly change the execution time of the
STM programs. By applying machine learning and using DiscoPoP results, we optimized
these parameters. The experimental results with NAS revealed that we are able to improve
the performance of STM programs by up to 54.8%. In another work [14], we used DiscoPoP
for restricted transactional memory (RTM) on Intel’s Haswell processor and showed that
the performance of RTM varies across applications. While RTM enhances performance of
some applications relative to software transactional memory (STM), it degrades performance
in some others. Using DiscoPoP, we proposed an adaptive system that switches between
HTM and STM in transaction granularity and predicts the optimal TM system for a given
transaction.

8. Limitations

Methods to analyze programs are generally divided into two categories: static and dynamic
methods. Static methods analyze source or intermediate code and are restricted to information

Dependability Engineering114

that can be obtained before running the program, i.e., at compile time. Static approaches are fast
but also conservative because they have limited support for runtime information. In contrast,
dynamic approaches identify dependences only if they exist at runtime. Although dynamic
approaches relax the conservative assumptions made by static approaches on dynamic data,
they are input sensitive, that is, their outcome may depend on the particular program execu-
tion. To mitigate this limitation, dynamic approaches generally execute the target program
with a range of representative inputs, a practice we adopt as well when using our dynamic
dependence profiler. Additionally, we plan to derive conditional correctness guarantees, tak-
ing the specific nature of the missing dependences into account. This would allow users to run
the program in parallel if the missed dependences are irrelevant for a given input configuration.

Our parallelism detection approach is dependent on the profiler’s output. Due to the use
of signature technology (as an approximation), the dependence profiler could have a very
low rate of false positives and false negatives. If these appear in the profiler results, then our
dependence analysis and accordingly the parallelism detection results could be affected.

The pattern detection approach is dependent on the coding style of a programmer. For exam-
ple in a Starbench program, we found a pipeline pattern because the programmer used point-
ers to access arrays and used the increment operator (++) on pointers. However, if a loop index
variable (loop indexing) had been used in the sequential code, we would have detected a do-
all loop pattern based on our pattern detection algorithm (template matching).

MPMD-style task parallelism (Multiple Program Multiple Data) could be found in few evalu-
ated benchmarks, which lead to minor speedups. More intensive investigations are needed to
apply such kind of parallelism to real-world applications.

Recently, we developed a prototypical visualization component to display the output of
DiscoPoP. However, a more advanced and user-friendly graphical user interface to visually
guide application developers in a stepwise manner when parallelizing a program would be
desirable. This feature could create higher incentives for developers and make the paralleliza-
tion workflow easier, particularly for DiscoPoP’s code-based semiautomatic parallelization
approach.

9. Related work

Profiling and parallelism discovery has always been a central topic in the field of parallel pro-
gramming. Early approaches mainly analyze source code statically and predict parallelism
based on theoretical models [38, 39]. Bobbie [40] presented a method to partition a program for
parallelization. The method adopts syntax-driven data-dependence analysis and detects paral-
lelism based on Bernstein’s conditions [41]. It uses bipartite graph matching to partition the code.

Compiler-based auto-parallelization based on the polyhedral model [1, 2, 42] is generally
restricted to program loops with specific criteria (e.g., affine linear loop boundaries and array
indices). A dynamically speculative extension of these criteria expands the applicability of this
method to a certain extent [43]. Another work [28] that is not restricted to loops only identifies

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

115

parallel tasks in the static dependence graphs using integer linear programming. Generally,
compiler-based auto-parallelization is often conservative and fails to identify available paral-
lelism for many applications, because runtime information such as the values of pointers and
array indices are often not known at compile time. In practice, the parallelization of software
usually happens manually, and often, it is more appropriate to follow the provided guide-
lines for parallel design patterns [44].

Without considering runtime behavior of the target program, some key parallelism usu-
ally could remain undetected in static approaches. To overcome this disadvantage, profiling
techniques to gather runtime data emerged [45, 46]. Such methods are usually referred to as
dynamic parallelism discovery approaches. Additionally, most of these approaches have a
cost model to produce results. Kremlin [47] determines the length of the critical path in a given
code region. Based on this knowledge, Kremlin calculates a metric called self-parallelism to
quantify the parallelism of a code region. The tool reports self-parallelism for each region
in a descending order. Alchemist [48] identifies predefined constructs that can be treated as
candidates for asynchronous execution in sequential programs. It estimates the effectiveness
of parallelizing a certain construct using Valgrind [49]. Kremlin and Alchemist mainly focus
on loops, which are easier to profile and quantify.

At the same time, other dynamic parallelism discovery approaches deal with task parallel-
ism as tasking became popular and widely supported in almost all mainstream parallel pro-
gramming libraries and frameworks. Ketterlin et al. [50] profiles sequential programs and
represents them using execution trees. It further attaches data dependences to the nodes of
the execution tree and discovers task parallelism where two or more nodes are independent
of one another. The SLX Tool Suite, formerly known as MAPS [51], concentrates on parallel-
ism discovery for applications on multiprocessor system on chip (MPSoC). It identifies code
sections called coupled blocks. These code blocks are identified with constraints requiring that
they should be schedulable and should be tightly coupled by data dependences. Each coupled
block is considered as a task, and two tasks can run in parallel if there is no data dependence
between them.

Tareador [52] provides a set of annotations for marking down tasks in the code. It takes a
relatively brute-force approach by enumerating possible decompositions and does not take
the control flow into account, which may lead to tasks that are not easy to implement. Intel
Advisor XE [53] is a prototyping tool for different programming languages such as C, C++, C#,
and Fortran. It also performs a correctness check, which is essentially a data-race detector and
has a large time overhead. Also pattern detection and code transformation are not supported
by Intel Advisor XE.

The approach presented by Tournavitis et al. [54] uses both static analysis and dynamic profil-
ing to detect potential parallelism. A machine learning-based prediction mechanism maps the
parallelism onto different architectures. It generates parallel code using OpenMP annotations
and targets loop-based parallelism. However, the code transformation is relatively simple.
The tool does not perform high-level code restructuring that could exploit coarse-grained task
parallelism. In recent work [55], the tool exploits pipeline parallelism.

Dependability Engineering116

OpenRefactoryC [56] is a tool providing many refactoring methods for C programs, but it
does not automatically transform sequential code to parallel code. The approach presented
in [57] transforms serial C++ code to parallel code using OpenMP directives. However, it
requires users to define the high-level abstractions in advance.

Similar to all the dynamic parallelism discovery approaches, the DiscoPoP approach adopts
profiling techniques to gather runtime data. However, our method discovers parallelism
based on computational units (CUs), which are derived statically, and parallel design pat-
terns. We identify CUs in sequential programs and build the CU graph as the representation
of a program. Based on the CU graph, we can perform different analyses and detect parallel
design patterns. A CU clearly distinguishes the inputs and outputs of a computation, allow-
ing a direct application of Bernstein’s conditions [41]. Bernstein’s conditions describe when
two program segments are independent and can be executed in parallel. In addition, our
method discovers both task-based and loop-based parallelisms using the same framework. A
CU in our approach acts as a task, a stage in a pipeline, or an iteration of a loop or a subset of
either of these based on the context, which distinguishes our work from related work.

10. Conclusion and outlook

In this chapter, we propose an optimistic code-based approach to assist semiautomatic paral-
lelization in multicore architectures, focusing on general-purpose applications. Our approach
is implemented as an integrated tool based on LLVM. Program analysis and parallelism dis-
covery are performed at the LLVM-IR level and are not limited to any programming language
or specific language constructs.

The proposed approach presents an alternative to conservative and usually loop-centric auto-
parallelization. Application developers can take advantage of our methods to identify and
exploit parallelism that is not necessarily limited to loop parallelism for many applications.
Our semiautomatic approach can reduce the high cost and price of the manual error-prone
parallelization process. At the same time, many legacy applications can benefit from the avail-
able hardware parallelism using our approach.

There is no doubt that parallel programming is challenging and involves a steep learning
curve. Developers must think about the application in new ways. It is possible to work
months on parallelizing an application and end up with incorrect results, or the resulting
parallel program runs slower than the sequential one. For this reason, the techniques and
tools used for parallelism discovery, debugging, and tuning the performance during the par-
allelization process play a very significant role. Our approach supports application develop-
ers during this process. It encourages average programmers to use parallel programming
by creating incentives and insight for developers and making the parallelization workflow
easier.

Considering the hardware trend and future smart cyber-physical systems (smart factory
4.0), energy-efficient programming is a key feature in improving productivity and efficiency.

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

117

parallel tasks in the static dependence graphs using integer linear programming. Generally,
compiler-based auto-parallelization is often conservative and fails to identify available paral-
lelism for many applications, because runtime information such as the values of pointers and
array indices are often not known at compile time. In practice, the parallelization of software
usually happens manually, and often, it is more appropriate to follow the provided guide-
lines for parallel design patterns [44].

Without considering runtime behavior of the target program, some key parallelism usu-
ally could remain undetected in static approaches. To overcome this disadvantage, profiling
techniques to gather runtime data emerged [45, 46]. Such methods are usually referred to as
dynamic parallelism discovery approaches. Additionally, most of these approaches have a
cost model to produce results. Kremlin [47] determines the length of the critical path in a given
code region. Based on this knowledge, Kremlin calculates a metric called self-parallelism to
quantify the parallelism of a code region. The tool reports self-parallelism for each region
in a descending order. Alchemist [48] identifies predefined constructs that can be treated as
candidates for asynchronous execution in sequential programs. It estimates the effectiveness
of parallelizing a certain construct using Valgrind [49]. Kremlin and Alchemist mainly focus
on loops, which are easier to profile and quantify.

At the same time, other dynamic parallelism discovery approaches deal with task parallel-
ism as tasking became popular and widely supported in almost all mainstream parallel pro-
gramming libraries and frameworks. Ketterlin et al. [50] profiles sequential programs and
represents them using execution trees. It further attaches data dependences to the nodes of
the execution tree and discovers task parallelism where two or more nodes are independent
of one another. The SLX Tool Suite, formerly known as MAPS [51], concentrates on parallel-
ism discovery for applications on multiprocessor system on chip (MPSoC). It identifies code
sections called coupled blocks. These code blocks are identified with constraints requiring that
they should be schedulable and should be tightly coupled by data dependences. Each coupled
block is considered as a task, and two tasks can run in parallel if there is no data dependence
between them.

Tareador [52] provides a set of annotations for marking down tasks in the code. It takes a
relatively brute-force approach by enumerating possible decompositions and does not take
the control flow into account, which may lead to tasks that are not easy to implement. Intel
Advisor XE [53] is a prototyping tool for different programming languages such as C, C++, C#,
and Fortran. It also performs a correctness check, which is essentially a data-race detector and
has a large time overhead. Also pattern detection and code transformation are not supported
by Intel Advisor XE.

The approach presented by Tournavitis et al. [54] uses both static analysis and dynamic profil-
ing to detect potential parallelism. A machine learning-based prediction mechanism maps the
parallelism onto different architectures. It generates parallel code using OpenMP annotations
and targets loop-based parallelism. However, the code transformation is relatively simple.
The tool does not perform high-level code restructuring that could exploit coarse-grained task
parallelism. In recent work [55], the tool exploits pipeline parallelism.

Dependability Engineering116

OpenRefactoryC [56] is a tool providing many refactoring methods for C programs, but it
does not automatically transform sequential code to parallel code. The approach presented
in [57] transforms serial C++ code to parallel code using OpenMP directives. However, it
requires users to define the high-level abstractions in advance.

Similar to all the dynamic parallelism discovery approaches, the DiscoPoP approach adopts
profiling techniques to gather runtime data. However, our method discovers parallelism
based on computational units (CUs), which are derived statically, and parallel design pat-
terns. We identify CUs in sequential programs and build the CU graph as the representation
of a program. Based on the CU graph, we can perform different analyses and detect parallel
design patterns. A CU clearly distinguishes the inputs and outputs of a computation, allow-
ing a direct application of Bernstein’s conditions [41]. Bernstein’s conditions describe when
two program segments are independent and can be executed in parallel. In addition, our
method discovers both task-based and loop-based parallelisms using the same framework. A
CU in our approach acts as a task, a stage in a pipeline, or an iteration of a loop or a subset of
either of these based on the context, which distinguishes our work from related work.

10. Conclusion and outlook

In this chapter, we propose an optimistic code-based approach to assist semiautomatic paral-
lelization in multicore architectures, focusing on general-purpose applications. Our approach
is implemented as an integrated tool based on LLVM. Program analysis and parallelism dis-
covery are performed at the LLVM-IR level and are not limited to any programming language
or specific language constructs.

The proposed approach presents an alternative to conservative and usually loop-centric auto-
parallelization. Application developers can take advantage of our methods to identify and
exploit parallelism that is not necessarily limited to loop parallelism for many applications.
Our semiautomatic approach can reduce the high cost and price of the manual error-prone
parallelization process. At the same time, many legacy applications can benefit from the avail-
able hardware parallelism using our approach.

There is no doubt that parallel programming is challenging and involves a steep learning
curve. Developers must think about the application in new ways. It is possible to work
months on parallelizing an application and end up with incorrect results, or the resulting
parallel program runs slower than the sequential one. For this reason, the techniques and
tools used for parallelism discovery, debugging, and tuning the performance during the par-
allelization process play a very significant role. Our approach supports application develop-
ers during this process. It encourages average programmers to use parallel programming
by creating incentives and insight for developers and making the parallelization workflow
easier.

Considering the hardware trend and future smart cyber-physical systems (smart factory
4.0), energy-efficient programming is a key feature in improving productivity and efficiency.

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

117

Whether we develop an application for mobile devices or data centers, we want to reduce
energy, e.g., to increase the battery life of a mobile device or lower the customer’s data center
utility bill. Thus, the role of programmers to reduce the energy and develop power-efficient
applications is very important. Our future work considers energy-efficient software devel-
opment during the parallelization process. Ongoing work focuses on developing an energy
efficiency method to be integrated in our parallelization approach. Energy conservation with-
out performance degradation is challenging and has become an important trend. Our initial
results suggest that we can propose energy-efficient task decomposition and programming
constructs during the parallelization process. Our preliminary evaluation shows up to 21%
improvements of energy consumption after applying our optimizations. Our overarching
goal is to improve efficiency while maintaining productivity.

Acknowledgements

I would like to thank all my colleagues and collaborators who contributed to the results
described in this chapter. In particular, I would like to thank Ehsan Atoofian (Lakehead
University, Canada), Rohit Atre (TU Darmstadt, Germany), Michael Beaumont (RWTH
Aachen University, Germany), Daniel Fried (UC Berkeley, USA), Michael Gerndt (TU Munich,
Germany), Wolfram Gottschlich (University of Passau, Germany), Kurt Keutzer (UC Berkeley,
USA), Nico Koprowski (Daimler AG, Germany), Zhen Li (SAP, Germany), Arya Mazaheri (TU
Darmstadt, Germany), Korbinian Molitorisz (Agilent Technologies, Germany), Mohammad
Norouzi (TU Darmstadt, Germany), Jochen Schimmel (Karlsruhe Institute of Technology,
Germany), Thireshan Jeyakumaran (Lakehead University, Canada), Walter Tichy (Karlsruhe
Institute of Technology, Germany), Zia Ul Huda (TU Darmstadt, Germany), Felix Wolf (TU
Darmstadt, Germany), Yang Xiao (Lakehead University, Canada), and Bo Zhao (Humboldt
University of Berlin).

Author details

Ali Jannesari

Address all correspondence to: jannesari@iastate.edu

Department of Computer Science, Iowa State University, USA

References

[1] Feautrier P. Automatic parallelization in the polytope model. In: The Data Parallel
Programming Model: Foundations, HPF Realization, and Scientific Applications. London:
Springer-Verlag; 1996. pp. 79-103. [Online]. Available: http://dl.acm.org/citation.cfm?id =
647429.723579

Dependability Engineering118

[2] Griebl M, Lengauer C, Wetzel S. Code generation in the polytope model. In: Proceedings of
the 1998 International Conference on Parallel Architectures and Compilation Techniques,
ser. PACT ‘98. Washington, DC: IEEE Computer Society; 1998. p. 106. [Online]. Available:
http://dl.acm.org/citation.cfm?id=522344.825673

[3] Li Z, Atre R, Huda ZU, Jannesari A, Wolf F. Unveiling parallelization opportunities in
sequential programs. Journal of Systems and Software. July 2016;117:282-295

[4] Li Z, Jannesari A, Wolf F. An efficient data-dependence profiler for sequential and parallel
programs. In: Proceedings of the 29th IEEE International Parallel and Distributed Processing
Symposium (IPDPS). Hyderabad, India: IEEE Computer Society; May 2015. pp. 484-493

[5] Atre R, Jannesari A, Wolf F. The basic building blocks of parallel tasks. In: Proceedings
of the International Workshop on Code Optimisation for Multi and Many Cores;
San Francisco, CA. ACM; February 2015. pp. 1-12

[6] Li Z, Jannesari A, Wolf F. Discovery of potential parallelism in sequential programs.
In: Proceedings of the 42nd International Conference on Parallel Processing Workshops
(ICPPW), Workshop on Parallel Software Tools and Tool Infrastructures (PSTI); Lyon,
France. October 2013. pp. 1004-1013

[7] Huda ZU, Jannesari A, Wolf F. Using template matching to infer parallel design patterns.
ACM Transactions on Architecture and Code Optimization. 21 January 2015;11(4):1-64

[8] Huda ZU, Atre R, Jannesari A, Wolf F. Automatic parallel pattern detection in the algo-
rithm structure design space. In Proceedings of the 30th IEEE International Parallel and
Distributed Processing Symposium (IPDPS); Chicago. IEEE Computer Society; May
2016. pp. 43-52

[9] Zhao B, Li Z, Jannesari A, Wolf F, Wu W. Dependence-based code transformation for
coarse-grained parallelism. In: Proceedings of the International Workshop on Code
Optimisation for Multi and Many Cores; San Francisco. ACM; February 2015. pp. 1-10

[10] Jannesari A, Wolf F. Automatic generation of unit tests for correlated variables in parallel
programs. International Journal of Parallel Programming (IJPP). March 2016;44(3):644-662
[Online]. Available: http://dx.doi.org/10.1007/s10766-015-0363-8

[11] Jannesari A. Detection of high-level synchronization anomalies in parallel programs.
International Journal of Parallel Programming (IJPP). August 2015;43(4):656-678

[12] Mazaheri A, Jannesari A, Mirzaei A, Wolf F. Characterizing loop-level communication
patterns in shared memory applications. In: Proceedings of the 44th International Confe-
rence on Parallel Processing (ICPP); Beijing, China. September 2015. pp. 759-768

[13] Xiao Y, Li Z, Atoofian E, Jannesari A. Automatic optimization of software transac-
tional memory through linear regression and decision tree. In: Proceedings of 15th
International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP); Zhangjiajie, China, ser. Lecture Notes in Computer Science, Vol. 9531. Springer
International Publishing; November 2015. pp. 61-73

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

119

Whether we develop an application for mobile devices or data centers, we want to reduce
energy, e.g., to increase the battery life of a mobile device or lower the customer’s data center
utility bill. Thus, the role of programmers to reduce the energy and develop power-efficient
applications is very important. Our future work considers energy-efficient software devel-
opment during the parallelization process. Ongoing work focuses on developing an energy
efficiency method to be integrated in our parallelization approach. Energy conservation with-
out performance degradation is challenging and has become an important trend. Our initial
results suggest that we can propose energy-efficient task decomposition and programming
constructs during the parallelization process. Our preliminary evaluation shows up to 21%
improvements of energy consumption after applying our optimizations. Our overarching
goal is to improve efficiency while maintaining productivity.

Acknowledgements

I would like to thank all my colleagues and collaborators who contributed to the results
described in this chapter. In particular, I would like to thank Ehsan Atoofian (Lakehead
University, Canada), Rohit Atre (TU Darmstadt, Germany), Michael Beaumont (RWTH
Aachen University, Germany), Daniel Fried (UC Berkeley, USA), Michael Gerndt (TU Munich,
Germany), Wolfram Gottschlich (University of Passau, Germany), Kurt Keutzer (UC Berkeley,
USA), Nico Koprowski (Daimler AG, Germany), Zhen Li (SAP, Germany), Arya Mazaheri (TU
Darmstadt, Germany), Korbinian Molitorisz (Agilent Technologies, Germany), Mohammad
Norouzi (TU Darmstadt, Germany), Jochen Schimmel (Karlsruhe Institute of Technology,
Germany), Thireshan Jeyakumaran (Lakehead University, Canada), Walter Tichy (Karlsruhe
Institute of Technology, Germany), Zia Ul Huda (TU Darmstadt, Germany), Felix Wolf (TU
Darmstadt, Germany), Yang Xiao (Lakehead University, Canada), and Bo Zhao (Humboldt
University of Berlin).

Author details

Ali Jannesari

Address all correspondence to: jannesari@iastate.edu

Department of Computer Science, Iowa State University, USA

References

[1] Feautrier P. Automatic parallelization in the polytope model. In: The Data Parallel
Programming Model: Foundations, HPF Realization, and Scientific Applications. London:
Springer-Verlag; 1996. pp. 79-103. [Online]. Available: http://dl.acm.org/citation.cfm?id =
647429.723579

Dependability Engineering118

[2] Griebl M, Lengauer C, Wetzel S. Code generation in the polytope model. In: Proceedings of
the 1998 International Conference on Parallel Architectures and Compilation Techniques,
ser. PACT ‘98. Washington, DC: IEEE Computer Society; 1998. p. 106. [Online]. Available:
http://dl.acm.org/citation.cfm?id=522344.825673

[3] Li Z, Atre R, Huda ZU, Jannesari A, Wolf F. Unveiling parallelization opportunities in
sequential programs. Journal of Systems and Software. July 2016;117:282-295

[4] Li Z, Jannesari A, Wolf F. An efficient data-dependence profiler for sequential and parallel
programs. In: Proceedings of the 29th IEEE International Parallel and Distributed Processing
Symposium (IPDPS). Hyderabad, India: IEEE Computer Society; May 2015. pp. 484-493

[5] Atre R, Jannesari A, Wolf F. The basic building blocks of parallel tasks. In: Proceedings
of the International Workshop on Code Optimisation for Multi and Many Cores;
San Francisco, CA. ACM; February 2015. pp. 1-12

[6] Li Z, Jannesari A, Wolf F. Discovery of potential parallelism in sequential programs.
In: Proceedings of the 42nd International Conference on Parallel Processing Workshops
(ICPPW), Workshop on Parallel Software Tools and Tool Infrastructures (PSTI); Lyon,
France. October 2013. pp. 1004-1013

[7] Huda ZU, Jannesari A, Wolf F. Using template matching to infer parallel design patterns.
ACM Transactions on Architecture and Code Optimization. 21 January 2015;11(4):1-64

[8] Huda ZU, Atre R, Jannesari A, Wolf F. Automatic parallel pattern detection in the algo-
rithm structure design space. In Proceedings of the 30th IEEE International Parallel and
Distributed Processing Symposium (IPDPS); Chicago. IEEE Computer Society; May
2016. pp. 43-52

[9] Zhao B, Li Z, Jannesari A, Wolf F, Wu W. Dependence-based code transformation for
coarse-grained parallelism. In: Proceedings of the International Workshop on Code
Optimisation for Multi and Many Cores; San Francisco. ACM; February 2015. pp. 1-10

[10] Jannesari A, Wolf F. Automatic generation of unit tests for correlated variables in parallel
programs. International Journal of Parallel Programming (IJPP). March 2016;44(3):644-662
[Online]. Available: http://dx.doi.org/10.1007/s10766-015-0363-8

[11] Jannesari A. Detection of high-level synchronization anomalies in parallel programs.
International Journal of Parallel Programming (IJPP). August 2015;43(4):656-678

[12] Mazaheri A, Jannesari A, Mirzaei A, Wolf F. Characterizing loop-level communication
patterns in shared memory applications. In: Proceedings of the 44th International Confe-
rence on Parallel Processing (ICPP); Beijing, China. September 2015. pp. 759-768

[13] Xiao Y, Li Z, Atoofian E, Jannesari A. Automatic optimization of software transac-
tional memory through linear regression and decision tree. In: Proceedings of 15th
International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP); Zhangjiajie, China, ser. Lecture Notes in Computer Science, Vol. 9531. Springer
International Publishing; November 2015. pp. 61-73

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

119

[14] Jeyakumaran T, Atoofian E, Xiao Y, Li Z, Jannesari A. Improving performance of trans-
actional applications through adaptive transactional memory. In: Proceedings of the
24th Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP); Heraklion Crete, Greece. February 2016

[15] Rul S, Vandierendonck H, De Bosschere K. A profile-based tool for finding pipeline par-
allelism in sequential programs. Parallel Computing. September 2010;36(9):531-551

[16] Kim M, Kim H, Luk CK. SD3: A scalable approach to dynamic data- dependence pro-
filing. In: Proceedings of the 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 43. IEEE Computer Society; 2010. pp. 535-546

[17] Fraser K, Harris T. Concurrent programming without locks. ACM Transactions on
Computer System. May 2007;25(2). DOI: 10.1145/1233307.1233309

[18] Sanchez D, Yen L, Hill MD, Sankaralingam K. Implementing signatures for transactional
memory. In: Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 40. IEEE Computer Society; 2007. pp. 123-133

[19] Bailey DH, Barszcz E, Barton JT, Browning DS, Carter RL, Fa-toohi RA, Frederickson PO,
Lasinski TA, Simon HD, Venkatakrishnan V, Weeratunga SK. The NAS parallel bench-
marks. The International Journal of Supercomputer Applications. 1991;5(3):63-73

[20] Andersch M, Juurlink B, Chi CC. A benchmark suite for evaluating parallel programming
models. In: Proceedings of the 24th Workshop on Parallel Systems and, Algorithms, ser.
PARS ‘11. 2011. pp. 7-17

[21] Li Z, Jannesari A, Wolf F. Discovering parallelization opportunities in sequential pro-
grams—A closer-to-complete solution. In: Proceedings of the First International Workshop
on Software Engineering for Parallel Systems. 2014. pp. 1-10

[22] Luxburg U. A tutorial on spectral clustering. Statistics and Computing. December
2007;17(4):395-416 [Online]. Available: http://dx.doi.org/10.1007/ s11222-007-9033-z

[23] Duran A, Teruel X, Ferrer R, Martorell X, Ayguade E. Barcelona openmp tasks suite:
A set of benchmarks targeting the exploitation of task parallelism in openmp. In:
Proceedings of the 2009 International Conference on Parallel Processing, ser. ICPP ‘09.
Washington, DC: IEEE Computer Society; 2009. pp. 124-131. [Online]. Available: http://
dx.doi.org/10.1109/ICPP.2009.64

[24] Bienia C, Kumar S, Singh JP, Li K. The parsec benchmark suite: Characterization and
architectural implications. In: Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ‘08. New York: ACM;
2008. pp. 72-81. [Online]. Available: http://doi.acm.org/10.1145/1454115.1454128

[25] Li Z, Atre R, Ul-Huda Z, Jannesari A, Wolf F. Discopop: A profiling tool to identify par-
allelization opportunities. In: Tools for High Performance Computing 2014. Springer
International Publishing; August 2015, ch. 3. pp. 37-54

Dependability Engineering120

[26] Li Z, Zhao B, Jannesari A, Wolf F. Beyond data parallelism: Identifying parallel tasks in
sequential programs. In: Proceedings of 15th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP); Zhangjiajie, China, ser. Lecture Notes in
Computer Science, Vol. 9531. Springer International Publishing, November 2015. pp. 569-582

[27] Jahr R, Gerdes M, Ungerer T. A pattern-supported parallelization approach. In: Procee-
dings of the 2013 International Workshop on Programming Models and Applications for
Multicores and Manycores, ser. PMAM ‘13. New York: ACM; 2013. pp. 53-62. [Online].
Available: http: //doi.acm.org/10.1145/2442992.2442998

[28] Streit K, Doerfert J, Hammacher C, Zeller A, Hack S. Generalized task parallelism. ACM
Transactions on Architecture and Code Optimization. April 25, 2015;12(1):1-8. [Online].
Available: http://doi.acm.org/10.1145/2723164

[29] http://www.cs.ucla.edu/~pouchet/software/PolyBench/.

[30] http://clang.llvm.org.

[31] Jannesari A, Koprowski N, Schimmel J, Wolf F. Generating classified parallel unit tests. In:
Tests and Proofs: Proceedings of the 8th International Conference, TAP 2014, Held as Part
of STAF 2014; July 24-25, 2014; York. Springer International Publishing; December 2014.
pp. 117-133

[32] Jannesari A, Koprowski N, Schimmel J, Wolf F, Tichy WF. Detecting correlation vio-
lations and data races by inferring non-deterministic reads. In: 2013 International
Conference on Parallel and Distributed Systems (ICPADS). December 2013. pp. 1-9

[33] Jannesari A, Tichy WF. Library-independent data race detection. IEEE Transactions on
Parallel and Distributed Systems (TPDS). 2013;PP(99):1-11

[34] Schimmel J, Molitorisz K, Jannesari A, Tichy WF. Automatic generation of parallel unit
tests. In: Proceedings of the 8th International Workshop on Automation of Software Test
(AST); San Francisco. ACM; May 2013. pp. 40-46

[35] Schimmel J, Molitorisz K, Jannesari A, Tichy WF. Combining unit tests for data race
detection. In: Proceedings of 10th IEEE/ACM International Workshop on Automation of
Software Test (AST 2015). IEEE; May 2015. pp. 43-47. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2819261. 2819275

[36] Jannesari A, Westphal-Furuya M, Tichy WF. Dynamic data race detection for corre-
lated variables. In: Proceedings of the 11th International Conference on Algorithms
and architectures for parallel processing—Volume Part I, ser. ICA3PP’11. Berlin,
Germany: Springer-Verlag; 2011. pp. 14-26. [Online]. Available: http://dl.acm.org/cita-
tion.cfm?id=2075416.2075421

[37] Woo SC, Ohara M, Torrie E, Singh JP, Gupta A. The splash-2 programs: Characterization
and methodological considerations. In: Proceedings of the 22Nd Annual International
Symposium on Computer Architecture, ser. ISCA ‘95. New York: ACM; 1995. pp. 24-36.
[Online]. Available: http://doi.acm.org/10.1145/223982.223990

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

121

[14] Jeyakumaran T, Atoofian E, Xiao Y, Li Z, Jannesari A. Improving performance of trans-
actional applications through adaptive transactional memory. In: Proceedings of the
24th Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP); Heraklion Crete, Greece. February 2016

[15] Rul S, Vandierendonck H, De Bosschere K. A profile-based tool for finding pipeline par-
allelism in sequential programs. Parallel Computing. September 2010;36(9):531-551

[16] Kim M, Kim H, Luk CK. SD3: A scalable approach to dynamic data- dependence pro-
filing. In: Proceedings of the 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 43. IEEE Computer Society; 2010. pp. 535-546

[17] Fraser K, Harris T. Concurrent programming without locks. ACM Transactions on
Computer System. May 2007;25(2). DOI: 10.1145/1233307.1233309

[18] Sanchez D, Yen L, Hill MD, Sankaralingam K. Implementing signatures for transactional
memory. In: Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 40. IEEE Computer Society; 2007. pp. 123-133

[19] Bailey DH, Barszcz E, Barton JT, Browning DS, Carter RL, Fa-toohi RA, Frederickson PO,
Lasinski TA, Simon HD, Venkatakrishnan V, Weeratunga SK. The NAS parallel bench-
marks. The International Journal of Supercomputer Applications. 1991;5(3):63-73

[20] Andersch M, Juurlink B, Chi CC. A benchmark suite for evaluating parallel programming
models. In: Proceedings of the 24th Workshop on Parallel Systems and, Algorithms, ser.
PARS ‘11. 2011. pp. 7-17

[21] Li Z, Jannesari A, Wolf F. Discovering parallelization opportunities in sequential pro-
grams—A closer-to-complete solution. In: Proceedings of the First International Workshop
on Software Engineering for Parallel Systems. 2014. pp. 1-10

[22] Luxburg U. A tutorial on spectral clustering. Statistics and Computing. December
2007;17(4):395-416 [Online]. Available: http://dx.doi.org/10.1007/ s11222-007-9033-z

[23] Duran A, Teruel X, Ferrer R, Martorell X, Ayguade E. Barcelona openmp tasks suite:
A set of benchmarks targeting the exploitation of task parallelism in openmp. In:
Proceedings of the 2009 International Conference on Parallel Processing, ser. ICPP ‘09.
Washington, DC: IEEE Computer Society; 2009. pp. 124-131. [Online]. Available: http://
dx.doi.org/10.1109/ICPP.2009.64

[24] Bienia C, Kumar S, Singh JP, Li K. The parsec benchmark suite: Characterization and
architectural implications. In: Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ‘08. New York: ACM;
2008. pp. 72-81. [Online]. Available: http://doi.acm.org/10.1145/1454115.1454128

[25] Li Z, Atre R, Ul-Huda Z, Jannesari A, Wolf F. Discopop: A profiling tool to identify par-
allelization opportunities. In: Tools for High Performance Computing 2014. Springer
International Publishing; August 2015, ch. 3. pp. 37-54

Dependability Engineering120

[26] Li Z, Zhao B, Jannesari A, Wolf F. Beyond data parallelism: Identifying parallel tasks in
sequential programs. In: Proceedings of 15th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP); Zhangjiajie, China, ser. Lecture Notes in
Computer Science, Vol. 9531. Springer International Publishing, November 2015. pp. 569-582

[27] Jahr R, Gerdes M, Ungerer T. A pattern-supported parallelization approach. In: Procee-
dings of the 2013 International Workshop on Programming Models and Applications for
Multicores and Manycores, ser. PMAM ‘13. New York: ACM; 2013. pp. 53-62. [Online].
Available: http: //doi.acm.org/10.1145/2442992.2442998

[28] Streit K, Doerfert J, Hammacher C, Zeller A, Hack S. Generalized task parallelism. ACM
Transactions on Architecture and Code Optimization. April 25, 2015;12(1):1-8. [Online].
Available: http://doi.acm.org/10.1145/2723164

[29] http://www.cs.ucla.edu/~pouchet/software/PolyBench/.

[30] http://clang.llvm.org.

[31] Jannesari A, Koprowski N, Schimmel J, Wolf F. Generating classified parallel unit tests. In:
Tests and Proofs: Proceedings of the 8th International Conference, TAP 2014, Held as Part
of STAF 2014; July 24-25, 2014; York. Springer International Publishing; December 2014.
pp. 117-133

[32] Jannesari A, Koprowski N, Schimmel J, Wolf F, Tichy WF. Detecting correlation vio-
lations and data races by inferring non-deterministic reads. In: 2013 International
Conference on Parallel and Distributed Systems (ICPADS). December 2013. pp. 1-9

[33] Jannesari A, Tichy WF. Library-independent data race detection. IEEE Transactions on
Parallel and Distributed Systems (TPDS). 2013;PP(99):1-11

[34] Schimmel J, Molitorisz K, Jannesari A, Tichy WF. Automatic generation of parallel unit
tests. In: Proceedings of the 8th International Workshop on Automation of Software Test
(AST); San Francisco. ACM; May 2013. pp. 40-46

[35] Schimmel J, Molitorisz K, Jannesari A, Tichy WF. Combining unit tests for data race
detection. In: Proceedings of 10th IEEE/ACM International Workshop on Automation of
Software Test (AST 2015). IEEE; May 2015. pp. 43-47. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2819261. 2819275

[36] Jannesari A, Westphal-Furuya M, Tichy WF. Dynamic data race detection for corre-
lated variables. In: Proceedings of the 11th International Conference on Algorithms
and architectures for parallel processing—Volume Part I, ser. ICA3PP’11. Berlin,
Germany: Springer-Verlag; 2011. pp. 14-26. [Online]. Available: http://dl.acm.org/cita-
tion.cfm?id=2075416.2075421

[37] Woo SC, Ohara M, Torrie E, Singh JP, Gupta A. The splash-2 programs: Characterization
and methodological considerations. In: Proceedings of the 22Nd Annual International
Symposium on Computer Architecture, ser. ISCA ‘95. New York: ACM; 1995. pp. 24-36.
[Online]. Available: http://doi.acm.org/10.1145/223982.223990

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

121

[38] Burke M, Cytron R, Ferrante J, Hsieh W. Automatic generation of nested, fork-join paral-
lelism. The Journal of Supercomputing. 1989;3(2):71-88 [Online]. Available: http://dx.doi.
org/10.1007/BF00129843

[39] Sarkar V. Automatic partitioning of a program dependence graph into parallel tasks.
IBM Journal of Research and Development. 1991;35(5.6):779-804

[40] Bobbie P. Partitioning programs for parallel execution: A case study in the Intel iPSC/2
environment. International Journal of Mini & Microcomputers. 1997;19(2):84-96

[41] Bernstein A. Analysis of programs for parallel processing. IEEE Transactions on Elect-
ronic Computers. 1966;15(5):757-763

[42] Bondhugula U, Hartono A, Ramanujam J, Sadayappan P. A practical automatic polyhedral
parallelizer and locality optimizer. In: Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ‘08. New York: ACM;
2008. pp. 101-113. [Online]. Available: http://doi.acm.org/10.1145/1375581.1375595

[43] Martinez Caamano JM, Wolff W, Clauss P. Code Bones: Fast and Flexible Code
Generation for Dynamic and Speculative Polyhedral Optimization. Cham: Springer
International Publishing; 2016. pp. 225-237 [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-43659-3_17

[44] Mattson T, Sanders B, Massingill B. Patterns for Parallel Programming. 1st ed. Boston:
Addison-Wesley Professional; 2004

[45] Rul S, Vandierendonck H, De Bosschere K. A profile-based tool for finding pipeline par-
allelism in sequential programs. Parallel Computing. 2010;36(9):531-551

[46] Huang J, Jablin TB, Beard SR, Johnson NP, August DI. Automatically exploiting cross-
invocation parallelism using runtime information. In: IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO). IEEE; 2013. 1-11

[47] Garcia S, Jeon D, Louie CM, Taylor MB. Kremlin: Rethinking and rebooting gprof for
the multicore age. SIGPLAN Notices. June 2011;46(6):458-469. [Online]. Available: http://
doi.acm.org/10.1145/1993316.1993553

[48] Zhang X, Navabi A, Jagannathan S. Alchemist: A transparent dependence distance
profiling infrastructure. In: Proceedings of the 7th annual IEEE/ACM International
Symposium on Code Generation and Optimization. IEEE Computer Society; 2009. 47-58

[49] Nethercote N, Seward J. Valgrind: A framework for heavyweight dynamic binary instru-
mentation. SIGPLAN Notices. June 2007;42(6):89-100 [Online]. Available: http://doi.acm.
org/10.1145/1273442.1250746

[50] Ketterlin A, Clauss P. Profiling data-dependence to assist parallelization: Framework,
scope, and optimization. In: Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society; 2012. 437-448

Dependability Engineering122

[51] Ceng J, Castrillon J, Sheng W, Scharwächter H, Leupers R., Ascheid G, Meyr H, Isshiki T,
Kunieda H. Maps: An integrated framework for mpsoc application parallelization. In:
Proceedings of the 45th Annual Design Automation Conference, ser. DAC ‘08. ACM;
2008. pp. 754-759

[52] Subotic V, Ayguadé E, Labarta J, Valero M. Automatic Exploration of Potential Parallelism
in Sequential Applications. Cham: Springer International Publishing; 2014. pp. 156-171
[Online]. Available: http://dx.doi.org/10.1007/ 978-3-319-07518-1_10

[53] http://software.intel.com/en-us/intel-advisor-xe.

[54] Tournavitis G, Wang Z, Franke B, O’Boyle MF. Towards a holistic approach to auto-par-
allelization: Integrating profile-driven parallelism detection and machine-learning based
mapping. In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and, Implementation, ser. PLDI ‘09. ACM; 2009. pp. 177-187. [Online].
Available: http://doi.acm.org/10.1145/1542476.1542496

[55] Tournavitis G, Franke B. Semi-automatic extraction and exploitation of hierarchical pipe-
line parallelism using profiling information. In: Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, ser. PACT ‘10. ACM;
2010. 377-388. [Online]. Available: http://doi.acm.org/10.1145/1854273.1854321

[56] Hafiz M, Overbey J, Behrang F, Hall J. Openrefactory/c: An infrastructure for build-
ing correct and complex c transformations. In: Proceedings of the 2013 ACM Workshop
on Refactoring Tools, ser. WRT ‘13. ACM; 2013. 1-4. [Online]. Available: http://doi.acm.
org/10.1145/2541348.2541349

[57] Quinlan D, Schordan M, Yi Q, de Supinski BR. A c++ infrastructure for automatic intro-
duction and translation of openmp directives. In: OpenMP Shared Memory Parallel
Programming. Springer; 2003. pp. 13-25. [Online]. Available: http://dx.doi.org/10.1007/3-
540-45009-2_2

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

123

[38] Burke M, Cytron R, Ferrante J, Hsieh W. Automatic generation of nested, fork-join paral-
lelism. The Journal of Supercomputing. 1989;3(2):71-88 [Online]. Available: http://dx.doi.
org/10.1007/BF00129843

[39] Sarkar V. Automatic partitioning of a program dependence graph into parallel tasks.
IBM Journal of Research and Development. 1991;35(5.6):779-804

[40] Bobbie P. Partitioning programs for parallel execution: A case study in the Intel iPSC/2
environment. International Journal of Mini & Microcomputers. 1997;19(2):84-96

[41] Bernstein A. Analysis of programs for parallel processing. IEEE Transactions on Elect-
ronic Computers. 1966;15(5):757-763

[42] Bondhugula U, Hartono A, Ramanujam J, Sadayappan P. A practical automatic polyhedral
parallelizer and locality optimizer. In: Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ‘08. New York: ACM;
2008. pp. 101-113. [Online]. Available: http://doi.acm.org/10.1145/1375581.1375595

[43] Martinez Caamano JM, Wolff W, Clauss P. Code Bones: Fast and Flexible Code
Generation for Dynamic and Speculative Polyhedral Optimization. Cham: Springer
International Publishing; 2016. pp. 225-237 [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-43659-3_17

[44] Mattson T, Sanders B, Massingill B. Patterns for Parallel Programming. 1st ed. Boston:
Addison-Wesley Professional; 2004

[45] Rul S, Vandierendonck H, De Bosschere K. A profile-based tool for finding pipeline par-
allelism in sequential programs. Parallel Computing. 2010;36(9):531-551

[46] Huang J, Jablin TB, Beard SR, Johnson NP, August DI. Automatically exploiting cross-
invocation parallelism using runtime information. In: IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO). IEEE; 2013. 1-11

[47] Garcia S, Jeon D, Louie CM, Taylor MB. Kremlin: Rethinking and rebooting gprof for
the multicore age. SIGPLAN Notices. June 2011;46(6):458-469. [Online]. Available: http://
doi.acm.org/10.1145/1993316.1993553

[48] Zhang X, Navabi A, Jagannathan S. Alchemist: A transparent dependence distance
profiling infrastructure. In: Proceedings of the 7th annual IEEE/ACM International
Symposium on Code Generation and Optimization. IEEE Computer Society; 2009. 47-58

[49] Nethercote N, Seward J. Valgrind: A framework for heavyweight dynamic binary instru-
mentation. SIGPLAN Notices. June 2007;42(6):89-100 [Online]. Available: http://doi.acm.
org/10.1145/1273442.1250746

[50] Ketterlin A, Clauss P. Profiling data-dependence to assist parallelization: Framework,
scope, and optimization. In: Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society; 2012. 437-448

Dependability Engineering122

[51] Ceng J, Castrillon J, Sheng W, Scharwächter H, Leupers R., Ascheid G, Meyr H, Isshiki T,
Kunieda H. Maps: An integrated framework for mpsoc application parallelization. In:
Proceedings of the 45th Annual Design Automation Conference, ser. DAC ‘08. ACM;
2008. pp. 754-759

[52] Subotic V, Ayguadé E, Labarta J, Valero M. Automatic Exploration of Potential Parallelism
in Sequential Applications. Cham: Springer International Publishing; 2014. pp. 156-171
[Online]. Available: http://dx.doi.org/10.1007/ 978-3-319-07518-1_10

[53] http://software.intel.com/en-us/intel-advisor-xe.

[54] Tournavitis G, Wang Z, Franke B, O’Boyle MF. Towards a holistic approach to auto-par-
allelization: Integrating profile-driven parallelism detection and machine-learning based
mapping. In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and, Implementation, ser. PLDI ‘09. ACM; 2009. pp. 177-187. [Online].
Available: http://doi.acm.org/10.1145/1542476.1542496

[55] Tournavitis G, Franke B. Semi-automatic extraction and exploitation of hierarchical pipe-
line parallelism using profiling information. In: Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, ser. PACT ‘10. ACM;
2010. 377-388. [Online]. Available: http://doi.acm.org/10.1145/1854273.1854321

[56] Hafiz M, Overbey J, Behrang F, Hall J. Openrefactory/c: An infrastructure for build-
ing correct and complex c transformations. In: Proceedings of the 2013 ACM Workshop
on Refactoring Tools, ser. WRT ‘13. ACM; 2013. 1-4. [Online]. Available: http://doi.acm.
org/10.1145/2541348.2541349

[57] Quinlan D, Schordan M, Yi Q, de Supinski BR. A c++ infrastructure for automatic intro-
duction and translation of openmp directives. In: OpenMP Shared Memory Parallel
Programming. Springer; 2003. pp. 13-25. [Online]. Available: http://dx.doi.org/10.1007/3-
540-45009-2_2

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

123

Chapter 8

Modeling Quality of Service Techniques for Packet-
Switched Networks

Wlodek M. Zuberek and Dariusz Strzeciwilk

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71499

Provisional chapter

Modeling Quality of Service Techniques for
Packet-Switched Networks

Wlodek M. Zuberek and Dariusz Strzeciwilk

Additional information is available at the end of the chapter

Abstract

Quality of service is the ability to provide different priorities to different applications, users
or dataflows, or to guarantee a certain level of performance to a dataflow. The chapter uses
timed Petri nets to model techniques that provide the quality of service in packet-switched
networks and illustrates the behavior of developed models by performance characteristics
of simple examples. These performance characteristics are obtained by discrete-event simu-
lation of analyzed models.

Keywords: quality of service, packet-switched networks, timed Petri nets, priority
queuing, fair queuing, weighted fair queuing, performance analysis, discrete-event
simulation

1. Introduction

Quality of service (or simply QoS) is the ability to provide different priorities to different
applications, users or dataflows, or to guarantee a certain level of performance to a dataflow
[1]. For example, a computer network can guarantee certain levels of error rate or jitter, or
maximal delay of transmitted information. Quality of service guarantees are important if the
network capacity is insufficient, especially for real-time streaming multimedia applications
such as voice over internet (voice over IP), TV over internet (TV over IP), or multimedia
applications, since these are often delay sensitive and require fixed bit rate [1, 2]. Similarly,
quality of service is essential in networks where the capacity can be a limiting factor, for
example, in cellular data communication [3].

There are two principal approaches to QoS in modern packet-switched IP networks, an inte-
grated services approach based on application requirements that are exchanged with the
network, and a differentiated approach where each packet identifies a desired service level to
the network [4]. Early networks used the integrated services approach. It was realized,

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71499

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 8

Modeling Quality of Service Techniques for Packet-
Switched Networks

Wlodek M. Zuberek and Dariusz Strzeciwilk

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71499

Provisional chapter

Modeling Quality of Service Techniques for
Packet-Switched Networks

Wlodek M. Zuberek and Dariusz Strzeciwilk

Additional information is available at the end of the chapter

Abstract

Quality of service is the ability to provide different priorities to different applications, users
or dataflows, or to guarantee a certain level of performance to a dataflow. The chapter uses
timed Petri nets to model techniques that provide the quality of service in packet-switched
networks and illustrates the behavior of developed models by performance characteristics
of simple examples. These performance characteristics are obtained by discrete-event simu-
lation of analyzed models.

Keywords: quality of service, packet-switched networks, timed Petri nets, priority
queuing, fair queuing, weighted fair queuing, performance analysis, discrete-event
simulation

1. Introduction

Quality of service (or simply QoS) is the ability to provide different priorities to different
applications, users or dataflows, or to guarantee a certain level of performance to a dataflow
[1]. For example, a computer network can guarantee certain levels of error rate or jitter, or
maximal delay of transmitted information. Quality of service guarantees are important if the
network capacity is insufficient, especially for real-time streaming multimedia applications
such as voice over internet (voice over IP), TV over internet (TV over IP), or multimedia
applications, since these are often delay sensitive and require fixed bit rate [1, 2]. Similarly,
quality of service is essential in networks where the capacity can be a limiting factor, for
example, in cellular data communication [3].

There are two principal approaches to QoS in modern packet-switched IP networks, an inte-
grated services approach based on application requirements that are exchanged with the
network, and a differentiated approach where each packet identifies a desired service level to
the network [4]. Early networks used the integrated services approach. It was realized,

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71499

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

however, that in broadband networks, the core routers are required to deal with tens of
thousands of service requirements—the integrated services approach does not scale well with
the growth of the internet. Routers supporting differentiated services configure their network
schedulers to use multiple queues for packets awaiting transmission. In practice, packets
requiring low jitter (e.g., voice over IP or videoconferencing) are given priority over packets
of other types. Typically, some bandwidth is also allocated to network control packets, which
must be sent over the network without any unnecessary delay.

Modern packet-switched networks are complex structures [5], which, for modeling, require a
flexible formalism that can easily handle concurrent activities as well as synchronization of differ-
ent events and processes that occur in such networks. Petri nets [6, 7] are such formal models.

As formal models, Petri nets are bipartite directed graphs, in which two types of vertices
represent, in a very general sense, conditions and events. An event can occur only when all
conditions associated with it (represented by arcs directed to the event) are satisfied. An occur-
rence of an event usually satisfies some other conditions, indicated by arcs directed from the
event. So, an occurrence of one event causes some other event (or events) to occur, and so on.

In order to study performance aspects of systems modeled by Petri nets, the durations of
modeled activities must also be taken into account. This can be done in different ways,
resulting in different types of temporal nets. In timed Petri nets [8], occurrence times are
associated with events, and the events occur in real time (as opposed to instantaneous occur-
rences in other models). For timed nets with constant or exponentially distributed occurrence
times, the state graph of a net is a Markov chain (or an embedded Markov chain), in which the
stationary probabilities of states can be determined by standard methods [9]. These stationary
probabilities are used for the derivation of many performance characteristics of the model [10].

In this chapter, timed Petri nets are used to model priority queuing systems, which provide the
quality of service in packet-switched networks. Section 2 recalls basic concepts of Petri nets
and timed Petri nets. Section 3 discusses (strict) priority queuing and its performance charac-
teristics. Fair scheduling is described and illustrated in Section 4, while Section 5 deals with
weighted fair scheduling. A combined approach, using several types of scheduling methods, is
outlined in Section 6. Section 7 concludes the chapter.

2. Timed Petri nets

In Petri nets, concurrent activities are represented by tokens, which can move within a (static)
graphlike structure of the net. More formally, a marked inhibitor place/transition Petri net M is
defined as a pair M ¼ N ;m0ð Þ, where the structure N is a bipartite-directed graph,
N ¼ P;T;A;Hð Þ, with two types of vertices, a set of places P and a set of transitions T, a set of
directed arcs A connecting places with transitions and transitions with places, A⊆T�P ∪P�T,
and a set of inhibitor arcs H connecting places with transitions, H⊂P�T; usually A ∩H =∅. The
initial marking functionm0 assigns non-negative numbers of tokens to places of the net,m0 :P!
{0, 1,…}. Marked nets can be equivalently defined asM = (P,T,A,H,m0).

Dependability Engineering126

A place is shared if it is connected to more than one transition. A shared place p is free choice if
the sets of places connected by directed arcs and inhibitor arcs to all transitions sharing p are
identical. A shared place p is (dynamically) conflict free if for each marking reachable from the
initial marking at most one transition sharing p is enabled. A net is a free choice if all its shared
places are either free choice or (dynamically) conflict free. Only free-choice nets are used in this
chapter.

In timed nets [8], occurrence times are associated with transitions, and transition occurrences
are real-time events; i.e., tokens are removed from input places at the beginning of the occur-
rence period, and they are deposited to the output places at the end of this period. All
occurrences of enabled transitions are initiated in the same instants of time in which the
transitions become enabled (although some enabled transitions may not initiate their occur-
rences). If, during the occurrence period of a transition, the transition becomes enabled again, a
new, independent occurrence can be initiated, which will overlap with the other occurrence(s).
There is no limit on the number of simultaneous occurrences of the same transition (some-
times, this is called infinite occurrence semantics). Similarly, if a transition is enabled “several
times” (i.e., it remains enabled after initiating an occurrence), it may start several independent
occurrences in the same time instant.

More formally, a free-choice timed Petri net is a triple, T ¼ M; c; fð Þ, whereM is a marked net,
c is a choice function that assigns probabilities to transitions in free-choice classes, c! [0, 1],
and f is a timing function that assigns an (average) occurrence time to each transition of the net,
f :T!R+, where R+ is the set of non-negative real numbers.

The occurrence times of transitions can be either deterministic or stochastic (i.e., described by
some probability distribution function); in the first case, the corresponding timed nets are
referred to as D-timed nets [11]; in the second, for the (negative) exponential distribution of
occurrence times, the nets are called M-timed nets (Markovian nets) [12]. In both cases, the
concepts of state and state transitions have been formally defined and used in the derivation
of different performance characteristics of the model. In simulation applications, other dis-
tributions can also be used; for example, the uniform distribution (U-timed nets) is some-
times a convenient option. In timed Petri nets, different distributions can be associated with
different transitions in the same model providing flexibility that is used in simulation exam-
ples that follow.

In timed nets, the occurrence times of some transitions may be equal to zero, which means that
the occurrences are instantaneous; all such transitions are called immediate (while the others
are called timed). Since the immediate transitions have no tangible effects on the (timed)
behavior of the model, it is convenient to “split” the set of transitions into two parts, the set of
immediate and the set of timed transitions, and to first perform all occurrences of the (enabled)
immediate transitions, and then (still in the same time instant), when no more immediate
transitions are enabled, to start the occurrences of (enabled) timed transitions. It should be
noted that such a convention effectively introduces the priority of immediate transitions over
the timed ones, and therefore conflicts of timed and immediate transitions are not allowed in
timed nets. Detailed characterization of the behavior or timed nets with immediate and timed
transitions is given in [8].

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

127

however, that in broadband networks, the core routers are required to deal with tens of
thousands of service requirements—the integrated services approach does not scale well with
the growth of the internet. Routers supporting differentiated services configure their network
schedulers to use multiple queues for packets awaiting transmission. In practice, packets
requiring low jitter (e.g., voice over IP or videoconferencing) are given priority over packets
of other types. Typically, some bandwidth is also allocated to network control packets, which
must be sent over the network without any unnecessary delay.

Modern packet-switched networks are complex structures [5], which, for modeling, require a
flexible formalism that can easily handle concurrent activities as well as synchronization of differ-
ent events and processes that occur in such networks. Petri nets [6, 7] are such formal models.

As formal models, Petri nets are bipartite directed graphs, in which two types of vertices
represent, in a very general sense, conditions and events. An event can occur only when all
conditions associated with it (represented by arcs directed to the event) are satisfied. An occur-
rence of an event usually satisfies some other conditions, indicated by arcs directed from the
event. So, an occurrence of one event causes some other event (or events) to occur, and so on.

In order to study performance aspects of systems modeled by Petri nets, the durations of
modeled activities must also be taken into account. This can be done in different ways,
resulting in different types of temporal nets. In timed Petri nets [8], occurrence times are
associated with events, and the events occur in real time (as opposed to instantaneous occur-
rences in other models). For timed nets with constant or exponentially distributed occurrence
times, the state graph of a net is a Markov chain (or an embedded Markov chain), in which the
stationary probabilities of states can be determined by standard methods [9]. These stationary
probabilities are used for the derivation of many performance characteristics of the model [10].

In this chapter, timed Petri nets are used to model priority queuing systems, which provide the
quality of service in packet-switched networks. Section 2 recalls basic concepts of Petri nets
and timed Petri nets. Section 3 discusses (strict) priority queuing and its performance charac-
teristics. Fair scheduling is described and illustrated in Section 4, while Section 5 deals with
weighted fair scheduling. A combined approach, using several types of scheduling methods, is
outlined in Section 6. Section 7 concludes the chapter.

2. Timed Petri nets

In Petri nets, concurrent activities are represented by tokens, which can move within a (static)
graphlike structure of the net. More formally, a marked inhibitor place/transition Petri net M is
defined as a pair M ¼ N ;m0ð Þ, where the structure N is a bipartite-directed graph,
N ¼ P;T;A;Hð Þ, with two types of vertices, a set of places P and a set of transitions T, a set of
directed arcs A connecting places with transitions and transitions with places, A⊆T�P ∪P�T,
and a set of inhibitor arcs H connecting places with transitions, H⊂P�T; usually A ∩H =∅. The
initial marking functionm0 assigns non-negative numbers of tokens to places of the net,m0 :P!
{0, 1,…}. Marked nets can be equivalently defined asM = (P,T,A,H,m0).

Dependability Engineering126

A place is shared if it is connected to more than one transition. A shared place p is free choice if
the sets of places connected by directed arcs and inhibitor arcs to all transitions sharing p are
identical. A shared place p is (dynamically) conflict free if for each marking reachable from the
initial marking at most one transition sharing p is enabled. A net is a free choice if all its shared
places are either free choice or (dynamically) conflict free. Only free-choice nets are used in this
chapter.

In timed nets [8], occurrence times are associated with transitions, and transition occurrences
are real-time events; i.e., tokens are removed from input places at the beginning of the occur-
rence period, and they are deposited to the output places at the end of this period. All
occurrences of enabled transitions are initiated in the same instants of time in which the
transitions become enabled (although some enabled transitions may not initiate their occur-
rences). If, during the occurrence period of a transition, the transition becomes enabled again, a
new, independent occurrence can be initiated, which will overlap with the other occurrence(s).
There is no limit on the number of simultaneous occurrences of the same transition (some-
times, this is called infinite occurrence semantics). Similarly, if a transition is enabled “several
times” (i.e., it remains enabled after initiating an occurrence), it may start several independent
occurrences in the same time instant.

More formally, a free-choice timed Petri net is a triple, T ¼ M; c; fð Þ, whereM is a marked net,
c is a choice function that assigns probabilities to transitions in free-choice classes, c! [0, 1],
and f is a timing function that assigns an (average) occurrence time to each transition of the net,
f :T!R+, where R+ is the set of non-negative real numbers.

The occurrence times of transitions can be either deterministic or stochastic (i.e., described by
some probability distribution function); in the first case, the corresponding timed nets are
referred to as D-timed nets [11]; in the second, for the (negative) exponential distribution of
occurrence times, the nets are called M-timed nets (Markovian nets) [12]. In both cases, the
concepts of state and state transitions have been formally defined and used in the derivation
of different performance characteristics of the model. In simulation applications, other dis-
tributions can also be used; for example, the uniform distribution (U-timed nets) is some-
times a convenient option. In timed Petri nets, different distributions can be associated with
different transitions in the same model providing flexibility that is used in simulation exam-
ples that follow.

In timed nets, the occurrence times of some transitions may be equal to zero, which means that
the occurrences are instantaneous; all such transitions are called immediate (while the others
are called timed). Since the immediate transitions have no tangible effects on the (timed)
behavior of the model, it is convenient to “split” the set of transitions into two parts, the set of
immediate and the set of timed transitions, and to first perform all occurrences of the (enabled)
immediate transitions, and then (still in the same time instant), when no more immediate
transitions are enabled, to start the occurrences of (enabled) timed transitions. It should be
noted that such a convention effectively introduces the priority of immediate transitions over
the timed ones, and therefore conflicts of timed and immediate transitions are not allowed in
timed nets. Detailed characterization of the behavior or timed nets with immediate and timed
transitions is given in [8].

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

127

3. Priority queuing

The basic idea of priority scheduling [13] is that separate queues are used by servers for packets
of different priority classes, as shown in Figure 1 (there are three classes of priorities with queues
Q1, Q2, and Q3, for example, for voice, video and data packets, respectively). It is assumed that
priorities decrease with the queue numbers; i.e., Q1 is the highest priority queue. In Figure 1, a1 is
the arrival rate of packets in priority class 1, a2 is the arrival rate in class 2, and s is the service
rate; 1/s is the average transmission time of a packet over the communication channel
(represented as the server in Figure 1). For simplicity of the description, it is assumed that the
transmission times are (approximately) the same for packets of different classes, but this can
easily be replaced by rates s1, s2, and s3.

To select a packet for transmission, the scheduler first checks the highest priority queue (Q1)
and if this queue is nonempty, the scheduler uses the first packet from this queue. If Q1 is
empty, the scheduler checks the next queue in the order of priorities (i.e., Q2 and then Q3).
Consequently, a lowest priority packet is transmitted only when all other (higher priority)
queues are empty.

Figure 2 shows a Petri net model of priority queuing outlined in Figure 1. Transitions t01, t02,
and t03 with places p01, p02, and p03 are (independent) sources of packets for classes 1, 2, and 3,

a2

Q2
s

a3

Q3

a1

Q1

Figure 1. Priority queuing.

p5

t1

t2

t3

p1

p2

p3

p01

t01

p02

p03

t02

t03

Figure 2. Timed Petri net model of priority queuing.

Dependability Engineering128

respectively. The rates of generated packets are determined by the occurrence times associated
with t01, t02, and t03; a1 = 1/f(t01), etc. Also, the mode of the timed transition (M, D, or U)
determines the distribution of the interarrival times for the respective source.

Transitions t1, t2, and t3 model the transmission times for packets of classes 1, 2, and 3,
respectively. Place p5, shared by these three transitions, guarantees that no two packets can be
transmitted at the same time. Finally, the inhibitor arcs (p1, t2), (p1, t3), and (p2, t3) implement the
priorities: if there is a packet of class 1 waiting for transmission (in p1), no packet of class 2 or 3
can be transmitted; if there is a packet of class 1 or 2, no class 3 packet can be transmitted.

The priority scheme works well when the traffic intensity is small; when, however, the traffic
becomes intensive, it is quite possible that bursts of packets of higher priorities can (temporar-
ily) block the transmission of lower priority packets for extended periods of time, significantly
degrading their performance. Figure 3 shows the utilization of a transmission channel shared
by three streams of packets (as in Figure 1) as a function of traffic intensity of packets of
priority 1, ρ1, with fixed traffic intensities for packets of priorities 2 and 3 (at the values of
ρ2 = 0.5 and ρ3 = 0.25).

It can be observed that for traffic intensity ρ1 > 0.25, i.e., ρ1 > 1.0� ρ2� ρ3, channel utilization
for packets of priority 3 decreases to zero; for ρ1 ≥ 0.5, packets of priority 3 are blocked.
Similarly, for ρ1 > 0.5, the utilization of the channel for packets of priority 2 decreases, which
means that only some of such packets can be send through the channel.

Waiting times of packets with priorities 1, 2, and 3, for the case shown in Figure 3, are presented
in Figure 4. As the traffic intensity ρ1 approaches 0.25, waiting times for packets of priority 3
increase indefinitely, and for ρ1 approaching 0.5, so do waiting times of packets of priority 2.

It should be noted that for ρ1 > 0.25, queue Q3 (with infinite capacity) is nonstationary as the rate
of packets entering the queue is greater than the rate of packets removed from it (for transmission
through the channel). Similarly, queue Q2 (with infinite capacity) is also nonstationary for

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

utilization

traffic intensity ρ1

class 1

• • • • • • • • • • • • • • • • • • • ••
class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
class 3

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Figure 3. Channel utilization as a function of ρ1 with ρ2 = 0.5 and ρ3 = 0.25.

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

129

3. Priority queuing

The basic idea of priority scheduling [13] is that separate queues are used by servers for packets
of different priority classes, as shown in Figure 1 (there are three classes of priorities with queues
Q1, Q2, and Q3, for example, for voice, video and data packets, respectively). It is assumed that
priorities decrease with the queue numbers; i.e., Q1 is the highest priority queue. In Figure 1, a1 is
the arrival rate of packets in priority class 1, a2 is the arrival rate in class 2, and s is the service
rate; 1/s is the average transmission time of a packet over the communication channel
(represented as the server in Figure 1). For simplicity of the description, it is assumed that the
transmission times are (approximately) the same for packets of different classes, but this can
easily be replaced by rates s1, s2, and s3.

To select a packet for transmission, the scheduler first checks the highest priority queue (Q1)
and if this queue is nonempty, the scheduler uses the first packet from this queue. If Q1 is
empty, the scheduler checks the next queue in the order of priorities (i.e., Q2 and then Q3).
Consequently, a lowest priority packet is transmitted only when all other (higher priority)
queues are empty.

Figure 2 shows a Petri net model of priority queuing outlined in Figure 1. Transitions t01, t02,
and t03 with places p01, p02, and p03 are (independent) sources of packets for classes 1, 2, and 3,

a2

Q2
s

a3

Q3

a1

Q1

Figure 1. Priority queuing.

p5

t1

t2

t3

p1

p2

p3

p01

t01

p02

p03

t02

t03

Figure 2. Timed Petri net model of priority queuing.

Dependability Engineering128

respectively. The rates of generated packets are determined by the occurrence times associated
with t01, t02, and t03; a1 = 1/f(t01), etc. Also, the mode of the timed transition (M, D, or U)
determines the distribution of the interarrival times for the respective source.

Transitions t1, t2, and t3 model the transmission times for packets of classes 1, 2, and 3,
respectively. Place p5, shared by these three transitions, guarantees that no two packets can be
transmitted at the same time. Finally, the inhibitor arcs (p1, t2), (p1, t3), and (p2, t3) implement the
priorities: if there is a packet of class 1 waiting for transmission (in p1), no packet of class 2 or 3
can be transmitted; if there is a packet of class 1 or 2, no class 3 packet can be transmitted.

The priority scheme works well when the traffic intensity is small; when, however, the traffic
becomes intensive, it is quite possible that bursts of packets of higher priorities can (temporar-
ily) block the transmission of lower priority packets for extended periods of time, significantly
degrading their performance. Figure 3 shows the utilization of a transmission channel shared
by three streams of packets (as in Figure 1) as a function of traffic intensity of packets of
priority 1, ρ1, with fixed traffic intensities for packets of priorities 2 and 3 (at the values of
ρ2 = 0.5 and ρ3 = 0.25).

It can be observed that for traffic intensity ρ1 > 0.25, i.e., ρ1 > 1.0� ρ2� ρ3, channel utilization
for packets of priority 3 decreases to zero; for ρ1 ≥ 0.5, packets of priority 3 are blocked.
Similarly, for ρ1 > 0.5, the utilization of the channel for packets of priority 2 decreases, which
means that only some of such packets can be send through the channel.

Waiting times of packets with priorities 1, 2, and 3, for the case shown in Figure 3, are presented
in Figure 4. As the traffic intensity ρ1 approaches 0.25, waiting times for packets of priority 3
increase indefinitely, and for ρ1 approaching 0.5, so do waiting times of packets of priority 2.

It should be noted that for ρ1 > 0.25, queue Q3 (with infinite capacity) is nonstationary as the rate
of packets entering the queue is greater than the rate of packets removed from it (for transmission
through the channel). Similarly, queue Q2 (with infinite capacity) is also nonstationary for

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

utilization

traffic intensity ρ1

class 1

• • • • • • • • • • • • • • • • • • • ••
class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
class 3

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Figure 3. Channel utilization as a function of ρ1 with ρ2 = 0.5 and ρ3 = 0.25.

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

129

ρ1 > 0.5. This is the reason that, in Figure 4, waiting times are shown only for stationary regions of
behavior.

4. Fair queuing

In fair queuing [14], a transmission medium is shared (in a fair way, i.e., in “equal parts”) by all
classes of traffic (and the classes of traffic correspond to different packet flows, e.g., voice over
IP, video, etc.). Implementations of fair queuing use separate queues for different classes of
traffic, and packets are forwarded from these queue in a cyclic way, providing the same service
for all classes.

Timed Petri nets model of fair queuing with three classes of traffic (as in Figure 1) is shown in
Figure 5.

Places p1, p2, and p3 are queues for classes 1, 2, and 3, respectively. If the queues for all classes
are nonempty, the selection is performed cyclically in a loop:

p31, t11, p10, t10, p12, t22, p20, t20, p23, t33, p30, t30, p31:

This loop is modified if (at the selection time) some queues are empty. For example, if after
selecting a packet of class 1 packet, the queue for class 2 is empty, while the queue for class 3 is
nonempty, the sequence is:

p31, t11, p10, t10, p12, t32, p30, t30, p21:

If the only nonempty queue is the queue for class 1, the sequence is

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

average
waiting
time

traffic intensity ρ1

class 1

• • • • • • • • • • • • • • • • • •
•
•
•

••
class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗
∗
∗

∗

∗

∗
class 3

◦ ◦
◦
◦

◦

◦

Figure 4. Average waiting times as functions of traffic intensity ρ1 with ρ2 = 0.5 and ρ3 = 0.25.

Dependability Engineering130

p31, t12, p10, t10, p31:

Generally, there are three cases when packets are selected from (nonempty) queue 1:

• queue 1 is checked in the order of fair queuing (marked place p31) and the queue is
nonempty (i.e., transition t11 can occur),

• queue 3 is checked in the order of fair queuing (marked place p23), but the queue is empty
so queue 1 is checked as the next one and it is nonempty (i.e., transition t13 can occur),

• queue 2 is checked in the order of fair queuing, but queue 2 as well as the next queue,
queue 3, are empty, while queue 1 is nonempty (i.e., transition t12 can occur).

There are similar cases for queues 2 and 3.

It should be observed, that the set of places:

p31; p12; p23; p10; p20; p30
� �

always contains a single token (initially shown in p31 in Figure 5). The cyclic checking of
queues of fair queuing is controlled by this token.

Figure 6 shows the average waiting times for a system with fair queuing and three classes of
traffic when the traffic intensities are the same for all three classes. Since the service rates are

p1

p11

p22p2

t11

t31

t32

t33

p3 p33

t13

t12

t22

t21

t23

t1

p5

p01

t01

t10

t20

t2

t3

p02

t02

p03

t03

p10

p20

p30

t30

p12

p23

p31

Figure 5. Timed Petri net model of fair queuing.

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

131

ρ1 > 0.5. This is the reason that, in Figure 4, waiting times are shown only for stationary regions of
behavior.

4. Fair queuing

In fair queuing [14], a transmission medium is shared (in a fair way, i.e., in “equal parts”) by all
classes of traffic (and the classes of traffic correspond to different packet flows, e.g., voice over
IP, video, etc.). Implementations of fair queuing use separate queues for different classes of
traffic, and packets are forwarded from these queue in a cyclic way, providing the same service
for all classes.

Timed Petri nets model of fair queuing with three classes of traffic (as in Figure 1) is shown in
Figure 5.

Places p1, p2, and p3 are queues for classes 1, 2, and 3, respectively. If the queues for all classes
are nonempty, the selection is performed cyclically in a loop:

p31, t11, p10, t10, p12, t22, p20, t20, p23, t33, p30, t30, p31:

This loop is modified if (at the selection time) some queues are empty. For example, if after
selecting a packet of class 1 packet, the queue for class 2 is empty, while the queue for class 3 is
nonempty, the sequence is:

p31, t11, p10, t10, p12, t32, p30, t30, p21:

If the only nonempty queue is the queue for class 1, the sequence is

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

average
waiting
time

traffic intensity ρ1

class 1

• • • • • • • • • • • • • • • • • •
•
•
•

••
class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗
∗
∗

∗

∗

∗
class 3

◦ ◦
◦
◦

◦

◦

Figure 4. Average waiting times as functions of traffic intensity ρ1 with ρ2 = 0.5 and ρ3 = 0.25.

Dependability Engineering130

p31, t12, p10, t10, p31:

Generally, there are three cases when packets are selected from (nonempty) queue 1:

• queue 1 is checked in the order of fair queuing (marked place p31) and the queue is
nonempty (i.e., transition t11 can occur),

• queue 3 is checked in the order of fair queuing (marked place p23), but the queue is empty
so queue 1 is checked as the next one and it is nonempty (i.e., transition t13 can occur),

• queue 2 is checked in the order of fair queuing, but queue 2 as well as the next queue,
queue 3, are empty, while queue 1 is nonempty (i.e., transition t12 can occur).

There are similar cases for queues 2 and 3.

It should be observed, that the set of places:

p31; p12; p23; p10; p20; p30
� �

always contains a single token (initially shown in p31 in Figure 5). The cyclic checking of
queues of fair queuing is controlled by this token.

Figure 6 shows the average waiting times for a system with fair queuing and three classes of
traffic when the traffic intensities are the same for all three classes. Since the service rates are

p1

p11

p22p2

t11

t31

t32

t33

p3 p33

t13

t12

t22

t21

t23

t1

p5

p01

t01

t10

t20

t2

t3

p02

t02

p03

t03

p10

p20

p30

t30

p12

p23

p31

Figure 5. Timed Petri net model of fair queuing.

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

131

also the same for all classes, channel utilizations as well the average waiting times for are the
same in this case for all classes of traffic.

If, however, traffic intensities are different for different classes, average waiting times as well as
utilizations of the shared transmission channel are also different. Figure 7 shows the average
waiting times for the case when ρ1 = 0.5ρ, ρ2 = ρ3 = 0.25ρ.

In this case, the average waiting times for traffic classes with greater traffic intensity (class 1)
increase much faster with increasing traffic intensity than for other classes of traffic (classes
2 and 3).

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
traffic intensity ρ

class 1

average
waiting
time

• • • • • • • • • •
•

•

•

•
class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗
∗
∗

∗
class 3

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦
◦

◦

◦

Figure 6. Average waiting times as functions of traffic intensity ρ with ρ1 =ρ2 =ρ3.

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

average
waiting
time

traffic intensity ρ

class 1

• • • • • • • • •
•

•

•

•
•

class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗∗∗

∗
class 3

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦◦◦

◦

Figure 7. Average waiting times as functions of traffic intensity ρ with ρ1 = 0.5ρ, ρ2 =ρ3 = 0.25ρ.

Dependability Engineering132

5. Weighted fair queuing

Weighted fair scheduling [13] restricts the priority scheduling by introducing limits on the
number of consecutive packets of the same class that can be transmitted over the channel;
when the scheduler reaches such a limit, it switches to the next nonempty priority queue and
follows the same rule. So, if there are sufficient supplies of packets in all priority classes, the
scheduler selects w1 packets of class 1, then w2 packets of class 2, then w3 packets of class 3, and
again w1 packets of class 1, and so on, where w1, w2, and w3 are the weights for classes 1, 2 and 3,
respectively. Consequently, in such a situation (i.e., for sufficient supply of packets in all classes),
the channel is shared by the packets of all priority classes, and the proportions are

ui ¼ wi=siP
j¼1,…, k wj=sj

, i ¼ 1, 2,…k, (1)

where k is the number of priority classes and si, i = 1,…, k, is the transmission rate for packets of
class i. If the transmission rates are the same for packets of all priority classes (as is assumed for
simplicity in the illustrating examples), the properties are

ui ¼ wiP
j¼1,…, k wj

, i ¼ 1,…, k: (2)

For an example with three priority classes and the weights equal to 4, 2, and 1 for classes 1, 2,
and 3, respectively, these “utilizations bounds” are equal to 4/7, 2/7, and 1/7, for classes 1, 2,
and 3, respectively.

A Petri net model of weighted fair scheduling for three priority classes with weights 4, 2, and 1
is shown in Figure 8. The model is composed of three identical interconnected sections
corresponding to the three priority classes. The main elements of the model are the three
queues represented by places p1, p2, and p3 for classes 1, 2 and 3, respectively, and timed
transitions t1, t2, and t3 modeling the transmission of selected packets through the communi-
cation channel. The three classes of packets are generated (independently) by transitions t01,
t02, and t03 with places p01, p02, and p03.

As in fair queuing, the scheduling is based on cyclic selection of queues for the transmission of
waiting packets. This cyclic operation is represented by a (rather complex) loop with places r1, r2,
and r3; q1, q2, and q3; and also s1, s2, and s3. There is a single “control token” in this loop (shown in
place s3 in Figure 8). This token always indicates the queue that is used for transmission of packets.

The section for class 2 is shown separately in Figure 9 to make its description easier to follow.

Place r2 becomes marked only when nonempty queue 2 is used for the selection of packets.
Place w2 contains the weight of class 2 (in this case 2). Transition a2 selects a packet (from p2)
and forwards it to p20, moving a single token from w2 to u2. When the channel becomes
available (i.e., p5 becomes marked), the selected packet is forwarded from p20 to p22 and then
is transmitted (transition t2). At the same time, a token is returned by t20 to r2 to allow selecting
another packet from p2. This is repeated until:

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

133

also the same for all classes, channel utilizations as well the average waiting times for are the
same in this case for all classes of traffic.

If, however, traffic intensities are different for different classes, average waiting times as well as
utilizations of the shared transmission channel are also different. Figure 7 shows the average
waiting times for the case when ρ1 = 0.5ρ, ρ2 = ρ3 = 0.25ρ.

In this case, the average waiting times for traffic classes with greater traffic intensity (class 1)
increase much faster with increasing traffic intensity than for other classes of traffic (classes
2 and 3).

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
traffic intensity ρ

class 1

average
waiting
time

• • • • • • • • • •
•

•

•

•
class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗
∗
∗

∗
class 3

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦
◦

◦

◦

Figure 6. Average waiting times as functions of traffic intensity ρ with ρ1 =ρ2 =ρ3.

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

average
waiting
time

traffic intensity ρ

class 1

• • • • • • • • •
•

•

•

•
•

class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗∗∗

∗
class 3

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦◦◦

◦

Figure 7. Average waiting times as functions of traffic intensity ρ with ρ1 = 0.5ρ, ρ2 =ρ3 = 0.25ρ.

Dependability Engineering132

5. Weighted fair queuing

Weighted fair scheduling [13] restricts the priority scheduling by introducing limits on the
number of consecutive packets of the same class that can be transmitted over the channel;
when the scheduler reaches such a limit, it switches to the next nonempty priority queue and
follows the same rule. So, if there are sufficient supplies of packets in all priority classes, the
scheduler selects w1 packets of class 1, then w2 packets of class 2, then w3 packets of class 3, and
again w1 packets of class 1, and so on, where w1, w2, and w3 are the weights for classes 1, 2 and 3,
respectively. Consequently, in such a situation (i.e., for sufficient supply of packets in all classes),
the channel is shared by the packets of all priority classes, and the proportions are

ui ¼ wi=siP
j¼1,…, k wj=sj

, i ¼ 1, 2,…k, (1)

where k is the number of priority classes and si, i = 1,…, k, is the transmission rate for packets of
class i. If the transmission rates are the same for packets of all priority classes (as is assumed for
simplicity in the illustrating examples), the properties are

ui ¼ wiP
j¼1,…, k wj

, i ¼ 1,…, k: (2)

For an example with three priority classes and the weights equal to 4, 2, and 1 for classes 1, 2,
and 3, respectively, these “utilizations bounds” are equal to 4/7, 2/7, and 1/7, for classes 1, 2,
and 3, respectively.

A Petri net model of weighted fair scheduling for three priority classes with weights 4, 2, and 1
is shown in Figure 8. The model is composed of three identical interconnected sections
corresponding to the three priority classes. The main elements of the model are the three
queues represented by places p1, p2, and p3 for classes 1, 2 and 3, respectively, and timed
transitions t1, t2, and t3 modeling the transmission of selected packets through the communi-
cation channel. The three classes of packets are generated (independently) by transitions t01,
t02, and t03 with places p01, p02, and p03.

As in fair queuing, the scheduling is based on cyclic selection of queues for the transmission of
waiting packets. This cyclic operation is represented by a (rather complex) loop with places r1, r2,
and r3; q1, q2, and q3; and also s1, s2, and s3. There is a single “control token” in this loop (shown in
place s3 in Figure 8). This token always indicates the queue that is used for transmission of packets.

The section for class 2 is shown separately in Figure 9 to make its description easier to follow.

Place r2 becomes marked only when nonempty queue 2 is used for the selection of packets.
Place w2 contains the weight of class 2 (in this case 2). Transition a2 selects a packet (from p2)
and forwards it to p20, moving a single token from w2 to u2. When the channel becomes
available (i.e., p5 becomes marked), the selected packet is forwarded from p20 to p22 and then
is transmitted (transition t2). At the same time, a token is returned by t20 to r2 to allow selecting
another packet from p2. This is repeated until:

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

133

• there are no more token in w2 (transition c2 occurs), or

• there are no more token in p2 (transition d2 occurs).

In both cases, the token from r2 is moved to q2 and then a number of occurrences of b2 moves
all tokens form u2 back to w2. When u2 becomes unmarked, transition e2 moves the token from
q2 to s2 in order to select the next traffic class. If p3 is nonempty, transition t23 moves the token
from s2 to r3. If p3 is unmarked and p1 is marked, transition t21 moves the token from s2 to r1. If
both p1 and p3 are unmarked but p2 is marked, transition t22 moves the token from s2 to r2 and
transmission of class 2 packets continues. Finally, if none of t21, t22, and t23 is enabled, the token
remains in s2 waiting for a packet arriving to p1, p2, or p3.

It should be observed that when the traffic is intense, i.e., when the queues p1, p2, and p3 are
nonempty most of the time, the queuing mechanism repeatedly selects w1 packets from p1,
then w2 packets from p2, then w3 packets from p3, and so on. On the other hand, when the
traffic is light, all packets are transmitted with very little delay.

p3 w3
u3 p33

t33

t23

p22
w2

u2

p2

p02

t02

t12

p01

t01
p11

p1

w1

t13

t31

t22

t32

u1

e1

a1

b1
c1

d1

s1

q1

q3

a3

b3
c3

d3

e3

s3

s2

q2

b2

a2

c2
d2

t11

t03

p10 t10

r1

r2

p20 t20

p30 t30

r3

t2

t3

p5

t1

t21

Figure 8. Petri net model of weighted fair queuing with weights 4-2-1.

Dependability Engineering134

Figure 10 shows the utilization of the transmission channel shared by three classes of packets
(as in Figure 1) as a function of traffic intensity of traffic class 1, ρ1, with fixed traffic intensities
for traffic classes 2 and 3 (at the values of ρ2 = 0.5 and ρ3 = 0.25).

For ρ1 > 0.25, channel utilization for packets of priority 3 decreases from the initial value of 0.25 to
its weighted value of 0.14 (i.e., 1/7). Also, channel utilization for packets of priority 2 decreases
from its initial value of 0.5 to its weighted value of 0.28 (i.e., 2/7). At ρ1 = 0.57 (i.e., 4/7), the total
utilization of the channel becomes 100% and no further increase of utilization is possible.

Similarly as before (Figures 3 and 4), queues Q2 and Q3 are nonstationary for ρ1 > 0.25 and
queue Q1 is nonstationary for ρ1 > 0.57 (i.e., 4/7).

p22
w2

u2

p2

p02

t02

t12

t13

t22

t32

s2

b2

a2

c2
d2

r2

p20 t20 t2

p5

s3 s1t11

t23p1 p3

t21

q2
e2

p1

Figure 9. Petri net model of class 2 of weighted fair queuing.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

utilization

traffic intensity ρ1

class 1

•
•

•
•

•
•

•
•

•
•

• • • • • • •
•

class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
class 3

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Figure 10. Channel utilization as a function of ρ1 with ρ2 = 0.5 and ρ3 = 0.25.

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

135

• there are no more token in w2 (transition c2 occurs), or

• there are no more token in p2 (transition d2 occurs).

In both cases, the token from r2 is moved to q2 and then a number of occurrences of b2 moves
all tokens form u2 back to w2. When u2 becomes unmarked, transition e2 moves the token from
q2 to s2 in order to select the next traffic class. If p3 is nonempty, transition t23 moves the token
from s2 to r3. If p3 is unmarked and p1 is marked, transition t21 moves the token from s2 to r1. If
both p1 and p3 are unmarked but p2 is marked, transition t22 moves the token from s2 to r2 and
transmission of class 2 packets continues. Finally, if none of t21, t22, and t23 is enabled, the token
remains in s2 waiting for a packet arriving to p1, p2, or p3.

It should be observed that when the traffic is intense, i.e., when the queues p1, p2, and p3 are
nonempty most of the time, the queuing mechanism repeatedly selects w1 packets from p1,
then w2 packets from p2, then w3 packets from p3, and so on. On the other hand, when the
traffic is light, all packets are transmitted with very little delay.

p3 w3
u3 p33

t33

t23

p22
w2

u2

p2

p02

t02

t12

p01

t01
p11

p1

w1

t13

t31

t22

t32

u1

e1

a1

b1
c1

d1

s1

q1

q3

a3

b3
c3

d3

e3

s3

s2

q2

b2

a2

c2
d2

t11

t03

p10 t10

r1

r2

p20 t20

p30 t30

r3

t2

t3

p5

t1

t21

Figure 8. Petri net model of weighted fair queuing with weights 4-2-1.

Dependability Engineering134

Figure 10 shows the utilization of the transmission channel shared by three classes of packets
(as in Figure 1) as a function of traffic intensity of traffic class 1, ρ1, with fixed traffic intensities
for traffic classes 2 and 3 (at the values of ρ2 = 0.5 and ρ3 = 0.25).

For ρ1 > 0.25, channel utilization for packets of priority 3 decreases from the initial value of 0.25 to
its weighted value of 0.14 (i.e., 1/7). Also, channel utilization for packets of priority 2 decreases
from its initial value of 0.5 to its weighted value of 0.28 (i.e., 2/7). At ρ1 = 0.57 (i.e., 4/7), the total
utilization of the channel becomes 100% and no further increase of utilization is possible.

Similarly as before (Figures 3 and 4), queues Q2 and Q3 are nonstationary for ρ1 > 0.25 and
queue Q1 is nonstationary for ρ1 > 0.57 (i.e., 4/7).

p22
w2

u2

p2

p02

t02

t12

t13

t22

t32

s2

b2

a2

c2
d2

r2

p20 t20 t2

p5

s3 s1t11

t23p1 p3

t21

q2
e2

p1

Figure 9. Petri net model of class 2 of weighted fair queuing.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

utilization

traffic intensity ρ1

class 1

•
•

•
•

•
•

•
•

•
•

• • • • • • •
•

class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
class 3

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Figure 10. Channel utilization as a function of ρ1 with ρ2 = 0.5 and ρ3 = 0.25.

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

135

For the same weights but for different (fixed) arrival rates for classes 2 and 3, i.e., for ρ2 = 0.25
and ρ3 = 0.1, the utilization of the transmission channel as a function of traffic intensity of traffic
class 1 is shown in Figure 11.

For this case, queues Q2 and Q3 are stationary for 0 ≤ρ1 < 1 and Q3 is nonstationary for
ρ1 > 0.65 (i.e., 1.0–0.25–0.1). The average waiting times for classes 2 and 3 depend in a limited
way on the traffic intensity ρ1, as shown in Figure 12.

In weighted fair queuing, if weights are equal to the arrival rates, the traffic of lower priority
classes is (almost) independent of the traffic intensity of higher-priority classes; the effect is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

utilization

traffic intensity ρ1

class 1

•
•

•
•

•
•

•
•

•
•

•
•

• • • • ••
class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
class 3

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Figure 11. Channel utilization as a function of ρ1 with ρ2 = 0.25 and ρ3 = 0.1.

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

average
waiting
time

traffic intensity ρ1

class 1

• • • • • • •••
••

•

••
class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗∗∗
∗∗
∗∗ ∗ ∗ ∗

∗
class 3

◦ ◦ ◦ ◦ ◦ ◦ ◦◦◦
◦◦◦◦ ◦ ◦ ◦

◦

Figure 12. Average waiting times as functions of ρ1 with ρ2 = 0.25 and ρ3 = 0.1.

Dependability Engineering136

similar to assigning some (shared) transmission capacity to lower priority traffic classes.
Moreover, if this “reserved” capacity is not used, it is available to other classes of traffic.

6. Combined queuing

The basic queuing methods discussed earlier can be combined into more complex systems. For
example, the combination of priority queuing and weighted fair queuing is known as low-
latency queuing (LLQ) [15]. A simpler case of combining priority queuing and fair queuing, as
shown in Figure 13, is used as an illustration of the combined approach.

It is assumed in this example that 40% of bandwidth is allocated to the priority queue (Q1) and
that the remaining 60% of bandwidth is equally divided among queues Q2, Q3 and Q4.

a1

Q1
priority queueing

a2

Q2
s

a3

Q3
fair queueing

a4

Q4

Figure 13. Priority queuing combined with fair queuing.

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

average
waiting
time

traffic intensity ρ

class 1

• • • • • • • • • • ••••••

•
class 2

× × × × × × × × × ××
×
×
×

×

××
class 3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗
∗
∗

∗

∗
∗

class 4

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦
◦
◦

◦
◦

Figure 14. Average waiting times as functions of ρ with ρ1 = 0.4ρ and ρ2 =ρ3 =ρ4 = 0.2ρ.

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

137

For the same weights but for different (fixed) arrival rates for classes 2 and 3, i.e., for ρ2 = 0.25
and ρ3 = 0.1, the utilization of the transmission channel as a function of traffic intensity of traffic
class 1 is shown in Figure 11.

For this case, queues Q2 and Q3 are stationary for 0 ≤ρ1 < 1 and Q3 is nonstationary for
ρ1 > 0.65 (i.e., 1.0–0.25–0.1). The average waiting times for classes 2 and 3 depend in a limited
way on the traffic intensity ρ1, as shown in Figure 12.

In weighted fair queuing, if weights are equal to the arrival rates, the traffic of lower priority
classes is (almost) independent of the traffic intensity of higher-priority classes; the effect is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

utilization

traffic intensity ρ1

class 1

•
•

•
•

•
•

•
•

•
•

•
•

• • • • ••
class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
class 3

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Figure 11. Channel utilization as a function of ρ1 with ρ2 = 0.25 and ρ3 = 0.1.

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

average
waiting
time

traffic intensity ρ1

class 1

• • • • • • •••
••

•

••
class 2

∗ ∗ ∗ ∗ ∗ ∗ ∗∗∗
∗∗
∗∗ ∗ ∗ ∗

∗
class 3

◦ ◦ ◦ ◦ ◦ ◦ ◦◦◦
◦◦◦◦ ◦ ◦ ◦

◦

Figure 12. Average waiting times as functions of ρ1 with ρ2 = 0.25 and ρ3 = 0.1.

Dependability Engineering136

similar to assigning some (shared) transmission capacity to lower priority traffic classes.
Moreover, if this “reserved” capacity is not used, it is available to other classes of traffic.

6. Combined queuing

The basic queuing methods discussed earlier can be combined into more complex systems. For
example, the combination of priority queuing and weighted fair queuing is known as low-
latency queuing (LLQ) [15]. A simpler case of combining priority queuing and fair queuing, as
shown in Figure 13, is used as an illustration of the combined approach.

It is assumed in this example that 40% of bandwidth is allocated to the priority queue (Q1) and
that the remaining 60% of bandwidth is equally divided among queues Q2, Q3 and Q4.

a1

Q1
priority queueing

a2

Q2
s

a3

Q3
fair queueing

a4

Q4

Figure 13. Priority queuing combined with fair queuing.

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

average
waiting
time

traffic intensity ρ

class 1

• • • • • • • • • • ••••••

•
class 2

× × × × × × × × × ××
×
×
×

×

××
class 3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗
∗
∗

∗

∗
∗

class 4

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦
◦
◦

◦
◦

Figure 14. Average waiting times as functions of ρ with ρ1 = 0.4ρ and ρ2 =ρ3 =ρ4 = 0.2ρ.

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

137

Average waiting times for all four classes of traffic (Figure 13) as functions of traffic intensity
are shown in Figure 14.

Figure 14 shows the effects of priority scheduling (class 1) on lower priority classes (classes 2,
3, and 4) when traffic intensity approaches 1—the average waiting times increase rather
significantly for classes 2, 3, and 4 while class 1 remains practically unaffected by the increased
traffic. Also, because of fair queuing, the average waiting times for classes 2, 3, and 4 are
practically identical.

7. Concluding remarks

The Internet 2 project, launched in 2001, was probably too early for implementation of QoS
protocols with the equipment that was then available [16]. It should not be surprising that this
resulted in a conclusion that adding more bandwidth (i.e., over-provisioning) is more effective
than any of the various schemes for accomplishing QoS [17]. But cost and other factors prevent
service providers to built and maintain permanently over-provisioned networks; other
approaches must be used to guarantee the performance of services available in modern
packet-switched networks [16].

Several models of techniques used for providing quality of service in packet-switched net-
works are discussed in this chapter. These models are used to derive performance characteris-
tics of scheduling methods and to provide some insights into the behavior of packet-switched
networks. In particular, the blocking of lower priority classes of traffic, typical for priority
scheduling, can easily be observed. Also, the guaranteed levels of service of fair scheduling
and weighted fair scheduling can easily be illustrated.

It should be noted, however, that the discussed techniques are just basic elements of complex
computer networks and that the behavior of real systems is very dynamic and usually difficult
to predict [18]. Therefore, more work is needed in this area to use the networks in an efficient
and predictable way.

Also, an attractive aspect of the models would be some kind of compositionality that would
allow models to be easily combined into more complex ones, as outlined in Section 6. The
models presented in this chapter need to be revised to make such compositions straightfor-
ward.

Author details

Wlodek M. Zuberek1* and Dariusz Strzeciwilk2

*Address all correspondence to: wlodek@mun.ca

1 Department of Computer Science, Memorial University, St. John’s, NL, Canada

2 Department of Applied Informatics, University of Life Sciences, Warszawa, Poland

Dependability Engineering138

References

[1] Guerin R, Peris V. Quality of service in packet networks: Basic mechanisms and direc-
tions. Computer Networks. 1999;31:169-189

[2] Wang Z. Internet QoS: Architectures and Mechanisms for Quality of Service. San
Francisco, CA: Morgan Kaufmann; 2001

[3] Marchese M. QoS over Heterogeneous Networks. Chichester: Wiley and Sons; 2007

[4] Fergusson P, Huston G. Quality of Service: Delivering QoS on the Internet and in Corpo-
rate Networks. New York, NY: Wiley and Sons; 1998

[5] Robertazzi TG. Computer Networks and Systems: Queueing Theory and Performance
Evaluation. Berlin, Heidelberg: Springer-Verlag; 1990

[6] Murata T. Petri nets: Properties, analysis and applications. Proceedings of IEEE. 1989;77(4):
541-580

[7] Reisig W. Petri Nets — An Introduction (EATCS Monographs on Theoretical Computer
Science 4). Berlin, Heidelberg: Springer-Verlag; 1985

[8] Zuberek WM. Timed Petri nets — Definitions, properties and applications. Microelec-
tronics and Reliability (Special Issue on Petri Nets and Related graph models). 1991;31(4):
627-644

[9] Allen AA. Probability, Statistics and Queueing Theory with Computer Science Applica-
tions. 2nd ed. San Diego, CA: Academic Press; 1991

[10] Jain R. The Art of Computer Systems Performance Analysis. Berlin, Heidelberg: Springer-
Verlag; 1991

[11] Zuberek WM. D-timed Petri nets and modelling of timeouts and protocols. Transactions
of the Society for Computer Simulation. 1987;4(4):331-357

[12] Zuberek WM. M-timed Petri nets, priorities, preemptions, and performance evaluation of
systems. In: Advances in Petri Nets 1985 (LNCS 222). Berlin, Heidelberg: Springer-Verlag;
1986. p. 478-498

[13] Georges P, Divoux T, Rondeau E. Strict priority versus weighted fair queueing in switched
Ethernet networks for time-critical applications. In: Proc. 19-th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05); 2005. pp. 141-145

[14] Park KI. QoS in Packet Networks. Boston, MA: Springer Science; 2005

[15] Dekeris B, Adomkus T, Budnikas A. Analysis of QoS assurance using weighted fair
queueing (WFQ) scheduling with low latency queue (LLQ). In: Proceedings of 26-th Int.
Conference on Information Technology Interfaces (ITI’06); 2006. pp. 507-512

[16] Lindgren A, Almquist A, Schelen O. Quality of service for IEEE 802.11—A simulation
study. In: Quality of Service – IWQoS 2001 (LNCS 2092). Berlin, Heidelberg: Springer-Verlag;
2001. p. 281-287

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

139

Average waiting times for all four classes of traffic (Figure 13) as functions of traffic intensity
are shown in Figure 14.

Figure 14 shows the effects of priority scheduling (class 1) on lower priority classes (classes 2,
3, and 4) when traffic intensity approaches 1—the average waiting times increase rather
significantly for classes 2, 3, and 4 while class 1 remains practically unaffected by the increased
traffic. Also, because of fair queuing, the average waiting times for classes 2, 3, and 4 are
practically identical.

7. Concluding remarks

The Internet 2 project, launched in 2001, was probably too early for implementation of QoS
protocols with the equipment that was then available [16]. It should not be surprising that this
resulted in a conclusion that adding more bandwidth (i.e., over-provisioning) is more effective
than any of the various schemes for accomplishing QoS [17]. But cost and other factors prevent
service providers to built and maintain permanently over-provisioned networks; other
approaches must be used to guarantee the performance of services available in modern
packet-switched networks [16].

Several models of techniques used for providing quality of service in packet-switched net-
works are discussed in this chapter. These models are used to derive performance characteris-
tics of scheduling methods and to provide some insights into the behavior of packet-switched
networks. In particular, the blocking of lower priority classes of traffic, typical for priority
scheduling, can easily be observed. Also, the guaranteed levels of service of fair scheduling
and weighted fair scheduling can easily be illustrated.

It should be noted, however, that the discussed techniques are just basic elements of complex
computer networks and that the behavior of real systems is very dynamic and usually difficult
to predict [18]. Therefore, more work is needed in this area to use the networks in an efficient
and predictable way.

Also, an attractive aspect of the models would be some kind of compositionality that would
allow models to be easily combined into more complex ones, as outlined in Section 6. The
models presented in this chapter need to be revised to make such compositions straightfor-
ward.

Author details

Wlodek M. Zuberek1* and Dariusz Strzeciwilk2

*Address all correspondence to: wlodek@mun.ca

1 Department of Computer Science, Memorial University, St. John’s, NL, Canada

2 Department of Applied Informatics, University of Life Sciences, Warszawa, Poland

Dependability Engineering138

References

[1] Guerin R, Peris V. Quality of service in packet networks: Basic mechanisms and direc-
tions. Computer Networks. 1999;31:169-189

[2] Wang Z. Internet QoS: Architectures and Mechanisms for Quality of Service. San
Francisco, CA: Morgan Kaufmann; 2001

[3] Marchese M. QoS over Heterogeneous Networks. Chichester: Wiley and Sons; 2007

[4] Fergusson P, Huston G. Quality of Service: Delivering QoS on the Internet and in Corpo-
rate Networks. New York, NY: Wiley and Sons; 1998

[5] Robertazzi TG. Computer Networks and Systems: Queueing Theory and Performance
Evaluation. Berlin, Heidelberg: Springer-Verlag; 1990

[6] Murata T. Petri nets: Properties, analysis and applications. Proceedings of IEEE. 1989;77(4):
541-580

[7] Reisig W. Petri Nets — An Introduction (EATCS Monographs on Theoretical Computer
Science 4). Berlin, Heidelberg: Springer-Verlag; 1985

[8] Zuberek WM. Timed Petri nets — Definitions, properties and applications. Microelec-
tronics and Reliability (Special Issue on Petri Nets and Related graph models). 1991;31(4):
627-644

[9] Allen AA. Probability, Statistics and Queueing Theory with Computer Science Applica-
tions. 2nd ed. San Diego, CA: Academic Press; 1991

[10] Jain R. The Art of Computer Systems Performance Analysis. Berlin, Heidelberg: Springer-
Verlag; 1991

[11] Zuberek WM. D-timed Petri nets and modelling of timeouts and protocols. Transactions
of the Society for Computer Simulation. 1987;4(4):331-357

[12] Zuberek WM. M-timed Petri nets, priorities, preemptions, and performance evaluation of
systems. In: Advances in Petri Nets 1985 (LNCS 222). Berlin, Heidelberg: Springer-Verlag;
1986. p. 478-498

[13] Georges P, Divoux T, Rondeau E. Strict priority versus weighted fair queueing in switched
Ethernet networks for time-critical applications. In: Proc. 19-th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05); 2005. pp. 141-145

[14] Park KI. QoS in Packet Networks. Boston, MA: Springer Science; 2005

[15] Dekeris B, Adomkus T, Budnikas A. Analysis of QoS assurance using weighted fair
queueing (WFQ) scheduling with low latency queue (LLQ). In: Proceedings of 26-th Int.
Conference on Information Technology Interfaces (ITI’06); 2006. pp. 507-512

[16] Lindgren A, Almquist A, Schelen O. Quality of service for IEEE 802.11—A simulation
study. In: Quality of Service – IWQoS 2001 (LNCS 2092). Berlin, Heidelberg: Springer-Verlag;
2001. p. 281-287

Modeling Quality of Service Techniques for Packet-Switched Networks
http://dx.doi.org/10.5772/intechopen.71499

139

[17] Brachman A, Miszczanin J. Scheduling algorithms for different approaches to quality of
service provisioning. In: Computer Networks 2011 (CCIS 160). Berlin, Heidelberg: Springer-
Verlag; 2011. p. 135-143

[18] Tannenbaum AS. Computer Networks. 4th ed. Englewood Cliffs, NJ: Prentice-Hall; 2003

Dependability Engineering140

Chapter 9

Discretization of Random Fields Representing Material

Properties and Distributed Loads in FORM Analysis

Ireneusz Czmoch

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71500

Provisional chapter

Discretization of Random Fields Representing Material
Properties and Distributed Loads in FORM Analysis

Ireneusz Czmoch

Additional information is available at the end of the chapter

Abstract

The reliability analysis of more complicated structures usually deals with the finite
element method (FEM) models. The random fields (material properties and loads)
have to be represented by random variables assigned to random field elements. The
adequate distribution functions and covariance matrices should be determined for a
chosen set of random variables. This procedure is called discretization of a random
field. The chapter presents the discretization of random field for material properties
with the help of the spatial averaging method of one-dimensional homogeneous
random field and midpoint method of discretization of random field. The second part
of the chapter deals with the discretization of random fields representing distributed
loads. In particular, the discretization of distributed load imposed on a Bernoulli beam
is presented in detail. Numerical example demonstrates very good agreement of the
reliability indices computed with the help of stochastic finite element method (SFEM)
and first-order reliability method (FORM) analyses with the results obtained from
analytical formulae.

Keywords: FORM, SFEM, discretization, random fields, reliability

1. Introduction

In general, the safety of a structure is analyzed in the space ΩX ¼ X ∈Rnf g of basic random
variables X. For a given failure mode or serviceability requirement, represented by the limit
state surface g Xð Þ ¼ 0, the space ΩX is divided into the safe subset, ΩS ¼ X ∈Rn; g Xð Þ > 0f g,
and the failure subset, ΩF ¼ X ∈Rn; g Xð Þ ≤ 0f g. If all random variables are continuous with
the multivariate joint probability density function f X xð Þ, the failure probability is given by the
integral

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71500

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[17] Brachman A, Miszczanin J. Scheduling algorithms for different approaches to quality of
service provisioning. In: Computer Networks 2011 (CCIS 160). Berlin, Heidelberg: Springer-
Verlag; 2011. p. 135-143

[18] Tannenbaum AS. Computer Networks. 4th ed. Englewood Cliffs, NJ: Prentice-Hall; 2003

Dependability Engineering140

Chapter 9

Discretization of Random Fields Representing Material

Properties and Distributed Loads in FORM Analysis

Ireneusz Czmoch

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71500

Provisional chapter

Discretization of Random Fields Representing Material
Properties and Distributed Loads in FORM Analysis

Ireneusz Czmoch

Additional information is available at the end of the chapter

Abstract

The reliability analysis of more complicated structures usually deals with the finite
element method (FEM) models. The random fields (material properties and loads)
have to be represented by random variables assigned to random field elements. The
adequate distribution functions and covariance matrices should be determined for a
chosen set of random variables. This procedure is called discretization of a random
field. The chapter presents the discretization of random field for material properties
with the help of the spatial averaging method of one-dimensional homogeneous
random field and midpoint method of discretization of random field. The second part
of the chapter deals with the discretization of random fields representing distributed
loads. In particular, the discretization of distributed load imposed on a Bernoulli beam
is presented in detail. Numerical example demonstrates very good agreement of the
reliability indices computed with the help of stochastic finite element method (SFEM)
and first-order reliability method (FORM) analyses with the results obtained from
analytical formulae.

Keywords: FORM, SFEM, discretization, random fields, reliability

1. Introduction

In general, the safety of a structure is analyzed in the space ΩX ¼ X ∈Rnf g of basic random
variables X. For a given failure mode or serviceability requirement, represented by the limit
state surface g Xð Þ ¼ 0, the space ΩX is divided into the safe subset, ΩS ¼ X ∈Rn; g Xð Þ > 0f g,
and the failure subset, ΩF ¼ X ∈Rn; g Xð Þ ≤ 0f g. If all random variables are continuous with
the multivariate joint probability density function f X xð Þ, the failure probability is given by the
integral

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71500

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Pf ¼
ð

ΩF

f x xð Þdx (1)

The integral (Eq. (1)) can be evaluated exactly for a few cases with the most important one: the
linear limit state surface and multidimensional normal distribution function of variables X.

Development of reliability methods resulted in variety of powerful algorithms to estimate the
probability of failure for complicated mechanical and statistical models of structures. The first-
order reliability method (FORM) is the most popular approach applied in practice.

FORM algorithm starts with the nonlinear transformation. In general, non-normal random
vector X is transformed into a standard normal (Gaussian) vector Y with zero mean and unit
covariance matrix CYY ¼ I. The limit state surface g xð Þ ¼ 0 is mapped into a limit state surface
G yð Þ ¼ 0. Next, the design point y∗, that is, the point on the limit state surface with the
minimum distance to the origin of the Y space, is determined by solving the nonlinear optimi-
zation problem with a nonlinear constraint G yð Þ ¼ 0

β ¼ min
ffiffiffiffiffiffiffiffi
yTy

q
for y on G yð Þ ¼ 0 (2)

The hyperplane tangential to the limit state surface at the point y∗ is given by the formula

β� aTy ¼ 0 (3)

where a is a unit outward normal vector to the hyperplane and β is the distance between the
hyperplane and the origin (Figure 1). Since the random vector Y ¼ Y Xð Þ has standard normal
distribution, the first-order approximation of the failure probability is easily derived as follows

Pf ffi P β� aTY ≤ 0
� � ¼ Φ �β

� �
(4)

The nonlinear constrained optimization problem (Eq. (2)) can be solved with many standard
procedures as well as algorithms developed especially for this purpose, for example, algorithm
for the case of independent, non-normal random variables [1], algorithm for problems with
incomplete probability information [2].

All such solvers are iterative: for the assumed value of design point x∗kð Þ, the values of limit

state function g x∗kð Þ
� �

and its gradient ∇g x∗kð Þ
� �

are determined. Next, a new position of design

point x∗kþ1ð Þ is derived and the process continues until the convergence criteria are fulfilled. If

the safety of mechanical problem is described by the limit state function with analytical form,
then the gradient can be evaluated easily and one of the algorithms solving the optimization
problem (Eq. (2)) can be applied directly. However, if the stochastic variability of material
properties and loads is to be taken into account, SFEM approach must be applied.

In general, the limit state function g Xð Þ ¼ g R Xð Þ; S Xð Þð Þ can be represented in terms of two
vectors: resistance variables R and load effects S. The elements of resistance variables vector R

Dependability Engineering142

(e.g., yield stress, allowable strain or allowable displacement), are prescribed to finite elements
or nodes and can be treated as deterministic or random variables. In the latter case, the vector
R corresponds to the part of the vector of basic random variables X. The vector of load effects S
(e.g., stresses, displacements and deformations) contains functions of basic random variables X
such as material properties, geometrical quantities or loads. The relation S ¼ S Xð Þ is called the
mechanical transformation. In most practical cases, the load effects S have to be evaluated by
using numerical algorithms, for example, FEM.

Two main problems are to be solved in order to apply FEM in FORM analysis:

• discretization of random fields of material properties and random fields of loads

• determination of the gradient of the limit state function ∇g x∗ð Þ, when the load effect is
defined by means of the implicit mechanical transformation S ¼ S Xð Þ

The solution of the second problem is presented in many papers and books [3].

2. Probabilistic description of random fields

2.1. Basics definitions

The spatial probabilistic variability of physical quantities such as Young's modulus, thickness
of a plate and intensity of a distributed load can be described by means of random fields, w zð Þ,
where z is the vector of space coordinates. One-dimensional random fields can be defined for
beams, bars and columns, two-dimensional random fields for plates or shells, and three-
dimensional random fields for bodies.

Figure 1. Definition of the FORM reliability index β.

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

143

Pf ¼
ð

ΩF

f x xð Þdx (1)

The integral (Eq. (1)) can be evaluated exactly for a few cases with the most important one: the
linear limit state surface and multidimensional normal distribution function of variables X.

Development of reliability methods resulted in variety of powerful algorithms to estimate the
probability of failure for complicated mechanical and statistical models of structures. The first-
order reliability method (FORM) is the most popular approach applied in practice.

FORM algorithm starts with the nonlinear transformation. In general, non-normal random
vector X is transformed into a standard normal (Gaussian) vector Y with zero mean and unit
covariance matrix CYY ¼ I. The limit state surface g xð Þ ¼ 0 is mapped into a limit state surface
G yð Þ ¼ 0. Next, the design point y∗, that is, the point on the limit state surface with the
minimum distance to the origin of the Y space, is determined by solving the nonlinear optimi-
zation problem with a nonlinear constraint G yð Þ ¼ 0

β ¼ min
ffiffiffiffiffiffiffiffi
yTy

q
for y on G yð Þ ¼ 0 (2)

The hyperplane tangential to the limit state surface at the point y∗ is given by the formula

β� aTy ¼ 0 (3)

where a is a unit outward normal vector to the hyperplane and β is the distance between the
hyperplane and the origin (Figure 1). Since the random vector Y ¼ Y Xð Þ has standard normal
distribution, the first-order approximation of the failure probability is easily derived as follows

Pf ffi P β� aTY ≤ 0
� � ¼ Φ �β

� �
(4)

The nonlinear constrained optimization problem (Eq. (2)) can be solved with many standard
procedures as well as algorithms developed especially for this purpose, for example, algorithm
for the case of independent, non-normal random variables [1], algorithm for problems with
incomplete probability information [2].

All such solvers are iterative: for the assumed value of design point x∗kð Þ, the values of limit

state function g x∗kð Þ
� �

and its gradient ∇g x∗kð Þ
� �

are determined. Next, a new position of design

point x∗kþ1ð Þ is derived and the process continues until the convergence criteria are fulfilled. If

the safety of mechanical problem is described by the limit state function with analytical form,
then the gradient can be evaluated easily and one of the algorithms solving the optimization
problem (Eq. (2)) can be applied directly. However, if the stochastic variability of material
properties and loads is to be taken into account, SFEM approach must be applied.

In general, the limit state function g Xð Þ ¼ g R Xð Þ; S Xð Þð Þ can be represented in terms of two
vectors: resistance variables R and load effects S. The elements of resistance variables vector R

Dependability Engineering142

(e.g., yield stress, allowable strain or allowable displacement), are prescribed to finite elements
or nodes and can be treated as deterministic or random variables. In the latter case, the vector
R corresponds to the part of the vector of basic random variables X. The vector of load effects S
(e.g., stresses, displacements and deformations) contains functions of basic random variables X
such as material properties, geometrical quantities or loads. The relation S ¼ S Xð Þ is called the
mechanical transformation. In most practical cases, the load effects S have to be evaluated by
using numerical algorithms, for example, FEM.

Two main problems are to be solved in order to apply FEM in FORM analysis:

• discretization of random fields of material properties and random fields of loads

• determination of the gradient of the limit state function ∇g x∗ð Þ, when the load effect is
defined by means of the implicit mechanical transformation S ¼ S Xð Þ

The solution of the second problem is presented in many papers and books [3].

2. Probabilistic description of random fields

2.1. Basics definitions

The spatial probabilistic variability of physical quantities such as Young's modulus, thickness
of a plate and intensity of a distributed load can be described by means of random fields, w zð Þ,
where z is the vector of space coordinates. One-dimensional random fields can be defined for
beams, bars and columns, two-dimensional random fields for plates or shells, and three-
dimensional random fields for bodies.

Figure 1. Definition of the FORM reliability index β.

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

143

For any specific location z, random field w zð Þ is a random variable with the cumulative
distribution function

Fw w zð Þð Þ ¼ P w zð Þ ≤w½ � (5)

which is called the first-order distribution of the random field w zð Þ:
The m� th order distribution, that is, the joint cumulative distribution function of the random

vector w ¼ w z1ð Þ;…;w zmð Þ½ �T, is defined as follows:

Fw…w wð Þ ¼ P w z1ð Þ ≤w1;…;w zmð Þ ≤wm½ � (6)

The first- and second-order probability density functions of the random field w zð Þ are defined
accordingly

f w w zð Þð Þ ¼ d
dw

Fw w zð Þð Þ

f ww w z1ð Þ;w z2ð Þð Þ ¼ ∂2

∂w z1ð Þ∂w z2ð ÞFww w z1ð Þ;w z2ð Þð Þ
(7)

Following the well-known definition [4] with the help of the first-order probability density
function (Eq. (6)) and the second-order probability density function (Eq. (7)), the second-order
representation of the random field is defined by using the following functions: the mean value
function μw zð Þ, the variance function σ2w zð Þ, the covariance function, Cw z1; z2ð Þ and the corre-
lation function rw z1; z2ð Þ.
A random field w zð Þ is called strict-sense homogeneous, if its statistics are invariant to the
translation of the origin and in particular, the n� th order density function has the property

f w…w w1 z1ð Þ;…;wn znð Þð Þ ¼ f w…w w1 z1 þ zð Þ;…;wn zn þ zð Þð Þ (8)

for any separation vector z.

A random field w zð Þ is called wide-sense homogeneous or second-order homogeneous if its mean
value and variance are constant,

μw zð Þ ¼ μw σ2w zð Þ ¼ σ2w (9)

and its covariance function as well as correlation function depends only on the separation
vector z,

Cw z, 0ð Þ ¼ Cw z1, z1 þ zð Þ ¼ Cw zð Þ for any z (10)

A random field that is homogeneous in time is referred to as stationary process.

2.2. Ensemble average versus spatial average of random field

In order to estimate the statistical parameters of a random field, the sample (realization) must
be collected in separate experiments. If the sample size is sufficiently large, the estimators of

Dependability Engineering144

statistical parameters can be computed at each point of the random field domain. For example,
at the location z1, the estimator of mean value and the estimator of variance are equal to
ensemble averages

bμw z1ð Þ ¼ 1
k

Xk

i¼1

w ið Þ z1ð Þ (11)

bσ2
w z1ð Þ ¼ 1

k� 1

Xk

i¼1

w ið Þ z1ð Þ � bμw z1ð Þ
h i2

(12)

where k is the number of realizations (also called as the sample size) and w ið Þ zð Þ is the i� th
measurement of a random field.

Ensemble averages usually depend on the location vector. However, if the limit of the ensem-
ble averages are invariant with respect to location

bμw z1ð Þ ¼ limk!∞
1
k

Xk

i¼1

w ið Þ z1ð Þ ¼ limk!∞
1
k

Xk

i¼1

w ið Þ z2ð Þ ¼ μw (13)

then the random field can be considered as homogeneous, in strict- or wide-sense, which
depends on the order of probability function invariant to location vector.

On the other hand, the spatial averages over the domain can be computed for every realization
(measurement) of random field. For example, the average taken along with any single realiza-
tion of a one-dimensional random field is equal to

μw i; Lð Þ ¼ 1
L

ðL

0

w ið Þ zð Þdz (14)

and it usually depends on the character of field and the length of averaging interval L.

A homogeneous random field is called ergodic, if all statistical information can be obtained
from one realization of the random field. This means that ensemble averages are invariant with
respect to the location vector and the spatial averages are equal to the ensemble averages.
Thus, in case of a homogeneous one-dimensional random field, the ensemble and spatial
averages are equal in the limit

lim
k!∞

1
k

Xk

i¼1

w ið Þ zð Þ ¼ lim
L!∞

1
L

ðL
0
w ið Þ zð Þdz (15)

In general, it is usually difficult to prove that a random field is homogeneous, and it is even
more difficult to prove that a random field is ergodic. Great number of samples over a
sufficiently large domain should be collected. These conditions are rarely fulfilled. Thus, the
homogeneity and ergodicity is usually assumed. Most of the concepts and methods developed
in the reliability analysis are based on these assumptions.

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

145

For any specific location z, random field w zð Þ is a random variable with the cumulative
distribution function

Fw w zð Þð Þ ¼ P w zð Þ ≤w½ � (5)

which is called the first-order distribution of the random field w zð Þ:
The m� th order distribution, that is, the joint cumulative distribution function of the random

vector w ¼ w z1ð Þ;…;w zmð Þ½ �T, is defined as follows:

Fw…w wð Þ ¼ P w z1ð Þ ≤w1;…;w zmð Þ ≤wm½ � (6)

The first- and second-order probability density functions of the random field w zð Þ are defined
accordingly

f w w zð Þð Þ ¼ d
dw

Fw w zð Þð Þ

f ww w z1ð Þ;w z2ð Þð Þ ¼ ∂2

∂w z1ð Þ∂w z2ð ÞFww w z1ð Þ;w z2ð Þð Þ
(7)

Following the well-known definition [4] with the help of the first-order probability density
function (Eq. (6)) and the second-order probability density function (Eq. (7)), the second-order
representation of the random field is defined by using the following functions: the mean value
function μw zð Þ, the variance function σ2w zð Þ, the covariance function, Cw z1; z2ð Þ and the corre-
lation function rw z1; z2ð Þ.
A random field w zð Þ is called strict-sense homogeneous, if its statistics are invariant to the
translation of the origin and in particular, the n� th order density function has the property

f w…w w1 z1ð Þ;…;wn znð Þð Þ ¼ f w…w w1 z1 þ zð Þ;…;wn zn þ zð Þð Þ (8)

for any separation vector z.

A random field w zð Þ is called wide-sense homogeneous or second-order homogeneous if its mean
value and variance are constant,

μw zð Þ ¼ μw σ2w zð Þ ¼ σ2w (9)

and its covariance function as well as correlation function depends only on the separation
vector z,

Cw z, 0ð Þ ¼ Cw z1, z1 þ zð Þ ¼ Cw zð Þ for any z (10)

A random field that is homogeneous in time is referred to as stationary process.

2.2. Ensemble average versus spatial average of random field

In order to estimate the statistical parameters of a random field, the sample (realization) must
be collected in separate experiments. If the sample size is sufficiently large, the estimators of

Dependability Engineering144

statistical parameters can be computed at each point of the random field domain. For example,
at the location z1, the estimator of mean value and the estimator of variance are equal to
ensemble averages

bμw z1ð Þ ¼ 1
k

Xk

i¼1

w ið Þ z1ð Þ (11)

bσ2
w z1ð Þ ¼ 1

k� 1

Xk

i¼1

w ið Þ z1ð Þ � bμw z1ð Þ
h i2

(12)

where k is the number of realizations (also called as the sample size) and w ið Þ zð Þ is the i� th
measurement of a random field.

Ensemble averages usually depend on the location vector. However, if the limit of the ensem-
ble averages are invariant with respect to location

bμw z1ð Þ ¼ limk!∞
1
k

Xk

i¼1

w ið Þ z1ð Þ ¼ limk!∞
1
k

Xk

i¼1

w ið Þ z2ð Þ ¼ μw (13)

then the random field can be considered as homogeneous, in strict- or wide-sense, which
depends on the order of probability function invariant to location vector.

On the other hand, the spatial averages over the domain can be computed for every realization
(measurement) of random field. For example, the average taken along with any single realiza-
tion of a one-dimensional random field is equal to

μw i; Lð Þ ¼ 1
L

ðL

0

w ið Þ zð Þdz (14)

and it usually depends on the character of field and the length of averaging interval L.

A homogeneous random field is called ergodic, if all statistical information can be obtained
from one realization of the random field. This means that ensemble averages are invariant with
respect to the location vector and the spatial averages are equal to the ensemble averages.
Thus, in case of a homogeneous one-dimensional random field, the ensemble and spatial
averages are equal in the limit

lim
k!∞

1
k

Xk

i¼1

w ið Þ zð Þ ¼ lim
L!∞

1
L

ðL
0
w ið Þ zð Þdz (15)

In general, it is usually difficult to prove that a random field is homogeneous, and it is even
more difficult to prove that a random field is ergodic. Great number of samples over a
sufficiently large domain should be collected. These conditions are rarely fulfilled. Thus, the
homogeneity and ergodicity is usually assumed. Most of the concepts and methods developed
in the reliability analysis are based on these assumptions.

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

145

2.3. One-dimensional homogeneous random field

A one-dimensional homogeneous random field is often used in the reliability analysis of linear
elements such as beams, bars and frames.All the above-mentioneddefinitions are valid in this case.

The variance reduction function γw Lð Þ , which has been presented in detail in [5, 7], describes the
correlation of the moving average wL zð Þ of one-dimensional homogeneous random field w zð Þ

wL zð Þ ¼ 1
L

ðzþL=2

z�L=2
w lð Þdl (16)

where L denotes the length of the averaging segment.

The mean value function and the variance function of the random field wL zð Þ are easy to
determine

E wL zð Þ½ � ¼ E w zð Þ½ � ¼ μw (17)

Var wL zð Þ½ � ¼ σ2L ¼ γw Lð Þσ2w (18)

where γw Lð Þ is the variance reduction function, and μw and σ2w are mean value and variance
value of the one-dimensional homogeneous random field w zð Þ: The variance reduction func-
tion γw Lð Þ demonstrates how fast the point variance σ2w is reduced under local averaging. This
dimensionless function has the following properties:

γw Lð Þ ¼ γw �Lð Þ ≥ 0 γw 0ð Þ ¼ 1 (19)

and is related to the correlation function rw zð Þ of the one-dimensional homogeneous random
field w zð Þ by the integral

γw Lð Þ ¼ 1
L2

ðL

0

ðL

0

rw l1 � l2ð Þdl1dl2 ¼ 2
L

ðL

0

1� l
L

� �
rw lð Þdl (20)

Another useful scalar measure of the correlation is the scale of fluctuation θw defined by the
limit value of the variance reduction function

θw ¼ limL!∞Lγw Lð Þ (21)

It can be proved that the scale of fluctuation θw is related to the correlation function rw zð Þ

θw ¼ 2
ð∞

0

rw lð Þdl (22)

The variance reduction function and the scale of fluctuation are especially useful in the
discretization procedure of the homogeneous random field.

Dependability Engineering146

Table 1 presents four correlation models. It should be noticed that the rectangular and trian-
gular models are not proper correlation functions for the homogeneous random field, since
they do not fulfill the basic condition of weak-homogeneity. However, they are quite often
assumed, mostly as visualization tools. Triangular model demonstrates the meaning of the
scale of fluctuation in a simple way, that is, correlation between values of random field at points
separated by greater distance than the scale of fluctuation is equal to zero. The rectangular
model constitutes the upper limit for variance reduction functions. The simple form of the
exponential correlation function makes analytical computation of many integrals possible. On
the other hand, similarity between the squared exponential model and the triangular model
allows the simple physical interpretation of the scale of fluctuation, that is, the correlation
functions are equal to zero for a separation interval greater than the scale of fluctuation.

A special case of random field is the Gaussian random field, in which the random variables
w z1ð Þ,…, w znð Þ for any points z1,…, zn are jointly normal distributed. This random field is
completely determined by two functions such as the mean value function and the covariance
function. The n-th order probability density function has the joint normal density.

Figure 2 presents correlation functions and Figure 3 presents variance reduction functions for
the correlation models described in Table 1.

3. Discretization of random fields representing material properties

A vast amount of papers deal with the problem how to develop the accurate and numerically
efficient discretization methods for random fields of material properties.

Model Correlation function Variance function

Rectangular

r zð Þ ¼
1 zj j ≤ θ

2

0 zj j > θ
2

8>><
>>:

γ Lð Þ ¼
1 L ≤

θ
2

θ
L

� �
1� θ

4L

� �
L >

θ
2

8>><
>>:

Triangular
r zð Þ ¼ 1� zj j

θ
zj j ≤θ

0 zj j > θ

8<
: γ Lð Þ ¼

1� L
3θ

L ≤θ

θ
L

� �
1� θ

3L

� �
L > θ

8>>><
>>>:

Exponential r zð Þ ¼ exp �2 zj j
θ

� �
γ Lð Þ ¼ 1

2
θ
L

� �2 2L
θ � 1þ exp �2 L

θ

� �� �

Squared exponential r zð Þ ¼ exp �π z
θ

� �2� �
γ Lð Þ ¼ 2θ

L Φ L
ffiffiffiffi
2π

p
θ

� �
� 0; 5

h i
þ A

A ¼ θ2

πL2
exp �π L

θ

� �2� �
� 1

h i

Note: θ is the scale of fluctuation; L is the separation (averaging) distance; and Φ zð Þ is the Laplace function.

Table 1. Description of four correlation models.

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

147

2.3. One-dimensional homogeneous random field

A one-dimensional homogeneous random field is often used in the reliability analysis of linear
elements such as beams, bars and frames.All the above-mentioneddefinitions are valid in this case.

The variance reduction function γw Lð Þ , which has been presented in detail in [5, 7], describes the
correlation of the moving average wL zð Þ of one-dimensional homogeneous random field w zð Þ

wL zð Þ ¼ 1
L

ðzþL=2

z�L=2
w lð Þdl (16)

where L denotes the length of the averaging segment.

The mean value function and the variance function of the random field wL zð Þ are easy to
determine

E wL zð Þ½ � ¼ E w zð Þ½ � ¼ μw (17)

Var wL zð Þ½ � ¼ σ2L ¼ γw Lð Þσ2w (18)

where γw Lð Þ is the variance reduction function, and μw and σ2w are mean value and variance
value of the one-dimensional homogeneous random field w zð Þ: The variance reduction func-
tion γw Lð Þ demonstrates how fast the point variance σ2w is reduced under local averaging. This
dimensionless function has the following properties:

γw Lð Þ ¼ γw �Lð Þ ≥ 0 γw 0ð Þ ¼ 1 (19)

and is related to the correlation function rw zð Þ of the one-dimensional homogeneous random
field w zð Þ by the integral

γw Lð Þ ¼ 1
L2

ðL

0

ðL

0

rw l1 � l2ð Þdl1dl2 ¼ 2
L

ðL

0

1� l
L

� �
rw lð Þdl (20)

Another useful scalar measure of the correlation is the scale of fluctuation θw defined by the
limit value of the variance reduction function

θw ¼ limL!∞Lγw Lð Þ (21)

It can be proved that the scale of fluctuation θw is related to the correlation function rw zð Þ

θw ¼ 2
ð∞

0

rw lð Þdl (22)

The variance reduction function and the scale of fluctuation are especially useful in the
discretization procedure of the homogeneous random field.

Dependability Engineering146

Table 1 presents four correlation models. It should be noticed that the rectangular and trian-
gular models are not proper correlation functions for the homogeneous random field, since
they do not fulfill the basic condition of weak-homogeneity. However, they are quite often
assumed, mostly as visualization tools. Triangular model demonstrates the meaning of the
scale of fluctuation in a simple way, that is, correlation between values of random field at points
separated by greater distance than the scale of fluctuation is equal to zero. The rectangular
model constitutes the upper limit for variance reduction functions. The simple form of the
exponential correlation function makes analytical computation of many integrals possible. On
the other hand, similarity between the squared exponential model and the triangular model
allows the simple physical interpretation of the scale of fluctuation, that is, the correlation
functions are equal to zero for a separation interval greater than the scale of fluctuation.

A special case of random field is the Gaussian random field, in which the random variables
w z1ð Þ,…, w znð Þ for any points z1,…, zn are jointly normal distributed. This random field is
completely determined by two functions such as the mean value function and the covariance
function. The n-th order probability density function has the joint normal density.

Figure 2 presents correlation functions and Figure 3 presents variance reduction functions for
the correlation models described in Table 1.

3. Discretization of random fields representing material properties

A vast amount of papers deal with the problem how to develop the accurate and numerically
efficient discretization methods for random fields of material properties.

Model Correlation function Variance function

Rectangular

r zð Þ ¼
1 zj j ≤ θ

2

0 zj j > θ
2

8>><
>>:

γ Lð Þ ¼
1 L ≤

θ
2

θ
L

� �
1� θ

4L

� �
L >

θ
2

8>><
>>:

Triangular
r zð Þ ¼ 1� zj j

θ
zj j ≤θ

0 zj j > θ

8<
: γ Lð Þ ¼

1� L
3θ

L ≤θ

θ
L

� �
1� θ

3L

� �
L > θ

8>>><
>>>:

Exponential r zð Þ ¼ exp �2 zj j
θ

� �
γ Lð Þ ¼ 1

2
θ
L

� �2 2L
θ � 1þ exp �2 L

θ

� �� �

Squared exponential r zð Þ ¼ exp �π z
θ

� �2� �
γ Lð Þ ¼ 2θ

L Φ L
ffiffiffiffi
2π

p
θ

� �
� 0; 5

h i
þ A

A ¼ θ2

πL2
exp �π L

θ

� �2� �
� 1

h i

Note: θ is the scale of fluctuation; L is the separation (averaging) distance; and Φ zð Þ is the Laplace function.

Table 1. Description of four correlation models.

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

147

Figure 2. Four correlation functions for correlation models defined in Table 1.

Figure 3. Four variance reduction functions for correlation models defined in Table 1.

Dependability Engineering148

The variability of random field is usually more accurately represented, if the number of
random field elements or the number of series components is increased. However, greater
number of random variables leads to longer computation time for realistic problems. There-
fore, it has been an important issue to find out the optimal size of random field elements with
respect to the scale of fluctuation, that is the scalar correlation measure. The accuracy of
different methods is discussed by Zeldin and Spanos [9].

The reliability analysis of more complicated structures usually deals with FEM models. The
random fields (material properties and loads) have to be represented by random variables
assigned to random field elements. The adequate distribution functions and covariance matri-
ces should be determined for a chosen set of random variables. This procedure is called
discretization of a random field.

Two groups of methods for discretization of material random fields can be distinguished:

1. Random field elements

The value of a material property for any finite element is represented by a single random
variable, constant within a random field element. Mean value, standard deviation and covari-
ance as well as distribution function can be assigned to those random variables according to
different procedures:

• the spatial averaging method [10]

• the midpoint method [8, 9, 11]

• the interpolation method [13]

2. Random series

The random field is described in terms of series of deterministic functions and random coeffi-
cients. Two examples of this approach are as follows:

• series composed of deterministic shape functions and random variables [16]

• the Karhunen-Loeve orthogonal expansion [15, 17, 20]

Two discretization methods, namely the spatial averaging method and the midpoint method,
are presented in detail.

3.1. The spatial averaging method of one-dimensional homogeneous random field

The spatial averaging method has been developed by Vanmarcke [5]. We consider a one-
dimensional homogeneous random field w zð Þ that represents the spatial random variability of
a material property, for example, modulus of elasticity along beam. In general, the domain of
the random field can be divided into finite elements of lengths Li. The material property within
the i� th element is represented by a random variable which is assumed to be equal to the
spatial average over the i� th finite element

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

149

Figure 2. Four correlation functions for correlation models defined in Table 1.

Figure 3. Four variance reduction functions for correlation models defined in Table 1.

Dependability Engineering148

The variability of random field is usually more accurately represented, if the number of
random field elements or the number of series components is increased. However, greater
number of random variables leads to longer computation time for realistic problems. There-
fore, it has been an important issue to find out the optimal size of random field elements with
respect to the scale of fluctuation, that is the scalar correlation measure. The accuracy of
different methods is discussed by Zeldin and Spanos [9].

The reliability analysis of more complicated structures usually deals with FEM models. The
random fields (material properties and loads) have to be represented by random variables
assigned to random field elements. The adequate distribution functions and covariance matri-
ces should be determined for a chosen set of random variables. This procedure is called
discretization of a random field.

Two groups of methods for discretization of material random fields can be distinguished:

1. Random field elements

The value of a material property for any finite element is represented by a single random
variable, constant within a random field element. Mean value, standard deviation and covari-
ance as well as distribution function can be assigned to those random variables according to
different procedures:

• the spatial averaging method [10]

• the midpoint method [8, 9, 11]

• the interpolation method [13]

2. Random series

The random field is described in terms of series of deterministic functions and random coeffi-
cients. Two examples of this approach are as follows:

• series composed of deterministic shape functions and random variables [16]

• the Karhunen-Loeve orthogonal expansion [15, 17, 20]

Two discretization methods, namely the spatial averaging method and the midpoint method,
are presented in detail.

3.1. The spatial averaging method of one-dimensional homogeneous random field

The spatial averaging method has been developed by Vanmarcke [5]. We consider a one-
dimensional homogeneous random field w zð Þ that represents the spatial random variability of
a material property, for example, modulus of elasticity along beam. In general, the domain of
the random field can be divided into finite elements of lengths Li. The material property within
the i� th element is represented by a random variable which is assumed to be equal to the
spatial average over the i� th finite element

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

149

Wi ¼ 1
Li

ðLi

0

w zð Þdz (23)

The mean value of a random variable Wi is equal to the mean value of the random field w zð Þ

E Wi½ � ¼ 1
Li

ðLi

0

E w zð Þ½ �dz ¼ μw (24)

and the variance of random variable Wi is expressed in terms of the variance function γw Lð Þ of
the random field w zð Þ

Var Wi½ � ¼ γw Lið Þσ2w (25)

The formula for the covariance between two random variables Wi and Wj related to the i-th
and j-th random elements is more complicated

Cov Wi;Wj
� � ¼ σ2w

2LiLj

X3

k¼0

�1ð ÞkL2kγ Lkð Þ (26)

where the distances Lk are defined in Figure 4.

Eqs. (25 and 26) can be generalized for a random field defined in two- or three-dimensional
spaces [5]. Eq. (26) depends on the variance reduction function γw Lð Þ, which expresses a relation
between the variance of the spatial average and the size of the averaging interval L.

Figure 4. Definition of intervals used in the calculation of covariance between the spatial averages related to two random
field elements.

Dependability Engineering150

Since full information about the variability of the random field is seldom available, Vanmarcke
[5–6] suggested using in the practical analysis the approximation of the variance reduction
function by its asymptotic form

γw Lð Þ ¼
1 L ≤θw

θw

L
L > θw

8<
: (27)

where θw is the scale of fluctuation.

FORM analysis demands the knowledge about distribution functions of basic random vari-
ables. The spatial averaging method results in the normal random variables for the Gaussian
random field w zð Þ, since the integration is a linear operation. However, for non-Gaussian
random field, it is difficult to derive the distribution function of a random variable Wi defined
by Eq. (23).

Der Kiureghian [18] has suggested a heuristic model for the distribution of random variable
Wi, which is based on the concept of the weighting the random field by the shape function,
which results in the weighted variance reduction function. Figure 5 shows that the weighted
variance function has much smaller values than the original variance reduction function. If the
averaging interval Li ¼ Llong is assumed many times longer than the scale of fluctuation θw, the
distribution of random variable Wi tends to have the normal distribution according to the
central limit theorem. Then, the variance reduction function can be approximated as follows:

γw Llong
� �

≈
θw

Llong
≈
1
n

for Llong ≫θw (28)

where the parameter n≫ 1 should be determined by calculations or judgment.

According to Figure 3, which shows the variance functions of four models, as well as taking
into account Figure 5, n ≈ 10 could be assumed, which means that for the element length
which is 10 times longer than the scale of fluctuation, the normal distribution can be
assigned to the random variable Wi. For shorter elements, non-normal distribution should
be considered. On the other hand, for very short element length, the distribution of random
variable Wi is close to the first-order distribution of random field. Taking into account both
limits the approximate density distribution function of Wi has been proposed by Der
Kiureghian [18]

f Wi
wið Þ ¼ α

ffiffiffi
n

p
σw

w
wi � μw

σw=
ffiffiffi
n

p
� �

þ 1� αð Þf w zð Þ wið Þ (29)

where w uð Þ is the standard normal probability density function and f w zð Þ wð Þ is the first-order

probability density function of random field w zð Þ.
The weight parameter 0 ≤α ≤ 1 can be determined for the current length Li of random field
element by requiring that the variance of random variable Wi with the approximate density

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

151

Wi ¼ 1
Li

ðLi

0

w zð Þdz (23)

The mean value of a random variable Wi is equal to the mean value of the random field w zð Þ

E Wi½ � ¼ 1
Li

ðLi

0

E w zð Þ½ �dz ¼ μw (24)

and the variance of random variable Wi is expressed in terms of the variance function γw Lð Þ of
the random field w zð Þ

Var Wi½ � ¼ γw Lið Þσ2w (25)

The formula for the covariance between two random variables Wi and Wj related to the i-th
and j-th random elements is more complicated

Cov Wi;Wj
� � ¼ σ2w

2LiLj

X3

k¼0

�1ð ÞkL2kγ Lkð Þ (26)

where the distances Lk are defined in Figure 4.

Eqs. (25 and 26) can be generalized for a random field defined in two- or three-dimensional
spaces [5]. Eq. (26) depends on the variance reduction function γw Lð Þ, which expresses a relation
between the variance of the spatial average and the size of the averaging interval L.

Figure 4. Definition of intervals used in the calculation of covariance between the spatial averages related to two random
field elements.

Dependability Engineering150

Since full information about the variability of the random field is seldom available, Vanmarcke
[5–6] suggested using in the practical analysis the approximation of the variance reduction
function by its asymptotic form

γw Lð Þ ¼
1 L ≤θw

θw

L
L > θw

8<
: (27)

where θw is the scale of fluctuation.

FORM analysis demands the knowledge about distribution functions of basic random vari-
ables. The spatial averaging method results in the normal random variables for the Gaussian
random field w zð Þ, since the integration is a linear operation. However, for non-Gaussian
random field, it is difficult to derive the distribution function of a random variable Wi defined
by Eq. (23).

Der Kiureghian [18] has suggested a heuristic model for the distribution of random variable
Wi, which is based on the concept of the weighting the random field by the shape function,
which results in the weighted variance reduction function. Figure 5 shows that the weighted
variance function has much smaller values than the original variance reduction function. If the
averaging interval Li ¼ Llong is assumed many times longer than the scale of fluctuation θw, the
distribution of random variable Wi tends to have the normal distribution according to the
central limit theorem. Then, the variance reduction function can be approximated as follows:

γw Llong
� �

≈
θw

Llong
≈
1
n

for Llong ≫θw (28)

where the parameter n≫ 1 should be determined by calculations or judgment.

According to Figure 3, which shows the variance functions of four models, as well as taking
into account Figure 5, n ≈ 10 could be assumed, which means that for the element length
which is 10 times longer than the scale of fluctuation, the normal distribution can be
assigned to the random variable Wi. For shorter elements, non-normal distribution should
be considered. On the other hand, for very short element length, the distribution of random
variable Wi is close to the first-order distribution of random field. Taking into account both
limits the approximate density distribution function of Wi has been proposed by Der
Kiureghian [18]

f Wi
wið Þ ¼ α

ffiffiffi
n

p
σw

w
wi � μw

σw=
ffiffiffi
n

p
� �

þ 1� αð Þf w zð Þ wið Þ (29)

where w uð Þ is the standard normal probability density function and f w zð Þ wð Þ is the first-order

probability density function of random field w zð Þ.
The weight parameter 0 ≤α ≤ 1 can be determined for the current length Li of random field
element by requiring that the variance of random variable Wi with the approximate density

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

151

function ((Eq. (29)) is equal to the variance of the spatial average of random field over the
length Li, that is, γw Lið Þσ2w. It can be shown that for the element of length Li

α ¼ n
n� 1

1� γw Lið Þ� �
(30)

3.2. Midpoint method of discretization of random field

The midpoint method [3] corresponds to the interpolation method [13] with constant interpo-
lation function and is suitable for discretization of non-Gaussian random fields. In general, a
nonhomogeneous random field w zð Þ is discretized with the help of a set of random variables
defined as follows:

Wi ¼ w z ið Þ
c

� �
(31)

where z ið Þ
c determines the position of the centroid of the i-th element.

The mean value of random variable Wi and the covariance between random variables
Wi and Wj are given below, correspondingly

Figure 5. The original and weighted variance reduction functions for the random field with exponential correlation
function.

Dependability Engineering152

E Wi½ � ¼ E w z ið Þ
c

� �h i
Cov Wi;Wj

� � ¼ Cw z ið Þ
c ; z jð Þ

c

� �
(32)

where Cw z1; z2ð Þ is the covariance function of nonhomogeneous random field.

In the midpoint discretization method, the probability distribution of the random variable Wi

is equivalent to the first-order distribution of the random field w zð Þ

FWi wið Þ ¼ P Wi ≤wi½ � ¼ P w z ið Þ
c

� �
≤wi

h i
¼ Fw wi z ið Þ

c

� �� �
(33)

Thus, in case of a homogeneous random field, the probability distribution function does not
depend on the location of the centroid of the i-th element, FWi wið Þ ¼ Fw wið Þ.

3.3. Selection of the optimal size for random field mesh representing variability of a
material property

Both discretization procedures described in the previous section are based on assumption that
property (e.g., modulus of elasticity) is constant within a finite element, see [19].

In deterministic FEM, the variability of material properties is modeled by means of sufficient
number of finite elements. The structural finite element size is chosen with respect to the
gradient of the stress field.

In the same way, the variability of the random field is usually more accurately represented if
many random field elements are used in the analysis. However, finer random field mesh
increases the number of random variables, which leads to longer computation times for the
reliability analysis. Therefore, it has been an important issue to find out the optimal size of the
random field elements.

The scale of fluctuation of the random field has been shown to be a very important measure of
the correlation, since it governs the optimal size of a random field mesh. Der Kiureghian and
Ke [12] have shown that a sufficiently accurate value of the reliability index is obtained if the
random field element size is between one-half and one-quarter of the scale of fluctuation for
the midpoint method with the exponential correlation function. Hisada and Nakagiri [11] have
presented similar results.

If random field elements shorter than one-quarter of the scale of fluctuation are chosen, then
a singular correlation matrix can be obtained, indicating linear dependency of the random
variables. Then, the nonhomogeneous linear transformation to the set of uncorrelated, nor-
malized basic random variables must be proceeded by an extra transformation, which
decreases the dimension of the random variable space. However, this extra transformation
is not unique. Improper choice of the transformation can lead to numerical difficulties in the
iteration procedure for determining the reliability index. Therefore, too small random field
elements should be avoided. Liu and Liu [19] have derived a simple rule of thumb regarding
the selection of an appropriate random field mesh: a coarse mesh should be assumed in
an area where the gradient of the limit state function with respect to the random
variable representing random field is small and a finer random field mesh in an area with
large gradient.

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

153

function ((Eq. (29)) is equal to the variance of the spatial average of random field over the
length Li, that is, γw Lið Þσ2w. It can be shown that for the element of length Li

α ¼ n
n� 1

1� γw Lið Þ� �
(30)

3.2. Midpoint method of discretization of random field

The midpoint method [3] corresponds to the interpolation method [13] with constant interpo-
lation function and is suitable for discretization of non-Gaussian random fields. In general, a
nonhomogeneous random field w zð Þ is discretized with the help of a set of random variables
defined as follows:

Wi ¼ w z ið Þ
c

� �
(31)

where z ið Þ
c determines the position of the centroid of the i-th element.

The mean value of random variable Wi and the covariance between random variables
Wi and Wj are given below, correspondingly

Figure 5. The original and weighted variance reduction functions for the random field with exponential correlation
function.

Dependability Engineering152

E Wi½ � ¼ E w z ið Þ
c

� �h i
Cov Wi;Wj

� � ¼ Cw z ið Þ
c ; z jð Þ

c

� �
(32)

where Cw z1; z2ð Þ is the covariance function of nonhomogeneous random field.

In the midpoint discretization method, the probability distribution of the random variable Wi

is equivalent to the first-order distribution of the random field w zð Þ

FWi wið Þ ¼ P Wi ≤wi½ � ¼ P w z ið Þ
c

� �
≤wi

h i
¼ Fw wi z ið Þ

c

� �� �
(33)

Thus, in case of a homogeneous random field, the probability distribution function does not
depend on the location of the centroid of the i-th element, FWi wið Þ ¼ Fw wið Þ.

3.3. Selection of the optimal size for random field mesh representing variability of a
material property

Both discretization procedures described in the previous section are based on assumption that
property (e.g., modulus of elasticity) is constant within a finite element, see [19].

In deterministic FEM, the variability of material properties is modeled by means of sufficient
number of finite elements. The structural finite element size is chosen with respect to the
gradient of the stress field.

In the same way, the variability of the random field is usually more accurately represented if
many random field elements are used in the analysis. However, finer random field mesh
increases the number of random variables, which leads to longer computation times for the
reliability analysis. Therefore, it has been an important issue to find out the optimal size of the
random field elements.

The scale of fluctuation of the random field has been shown to be a very important measure of
the correlation, since it governs the optimal size of a random field mesh. Der Kiureghian and
Ke [12] have shown that a sufficiently accurate value of the reliability index is obtained if the
random field element size is between one-half and one-quarter of the scale of fluctuation for
the midpoint method with the exponential correlation function. Hisada and Nakagiri [11] have
presented similar results.

If random field elements shorter than one-quarter of the scale of fluctuation are chosen, then
a singular correlation matrix can be obtained, indicating linear dependency of the random
variables. Then, the nonhomogeneous linear transformation to the set of uncorrelated, nor-
malized basic random variables must be proceeded by an extra transformation, which
decreases the dimension of the random variable space. However, this extra transformation
is not unique. Improper choice of the transformation can lead to numerical difficulties in the
iteration procedure for determining the reliability index. Therefore, too small random field
elements should be avoided. Liu and Liu [19] have derived a simple rule of thumb regarding
the selection of an appropriate random field mesh: a coarse mesh should be assumed in
an area where the gradient of the limit state function with respect to the random
variable representing random field is small and a finer random field mesh in an area with
large gradient.

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

153

However, in many case a random element size equal to the scale of fluctuation may be
considered as adequate with respect to the reliability analysis accuracy.

4. Discretization of random fields representing distributed loads

Discretization of random field loads has not been a subject of many studies. The finite element
modeling introduces the well-known procedure for representing distributed forces p sð Þ by a
set of equivalent nodal forces. The random field of distributed loads has to be discretized
according to the structural finite element mesh. Thus, if the distributed loads are random, all
equivalent nodal forces become random variables. This approach seems obvious and it can be
applied directly to study the response variability of stochastic engineering problems [14]. How-
ever, if discretized random field load is a part of FORM calculations, then both the discretiza-
tion procedure for random field loads as well as FORM/FEM analysis should be modified in
order to get accurate results.

The general approach for the discretization procedure of the distributed body forces p sð Þ is
presented below [20]. A similar algorithm can be applied for other types of distributed loads
(surface forces and initial stresses). For the purpose of FORM analysis, it is convenient to
assume that the nodal forces for i-th element are random variables

Q ið Þ
p ¼

ð

V

N ið ÞTp sð ÞdV (34)

where N ið Þ is the displacement interpolation matrix for the i-th element in the local coordinate

system. Thus, the mean value vector of the load vector Q ið Þ
p is equal to

E Q ið Þ
p

h i
¼

ð

V

N ið ÞTE p sð Þ½ �dV (35)

The covariance matrix of the vectors of equivalent forces Q ið Þ
p and Q jð Þ

p corresponding to the i-th

and j-th finite elements has the form

Cov Q ið Þ
p ;Q jð Þ

p T
h i

¼
ð

V ið Þ

ð

V jð Þ

N ið ÞTCppN jð ÞdV ið ÞdV jð Þ (36)

where the matrix Cpp contains the cross-covariance functions between different components of
the vector random field.

In general, a load effect can be an internal force, stress or strain at any point of structure which
does not coincide with a nodal point (or Gaussian integration point). Thus, the load effect

Dependability Engineering154

S ið Þ sð Þ at a point s of i-th element can be represented as a sum of a general solution, S ið Þ
u (s) and a

particular solution, S ið Þ
p (s). The general solution S ið Þ

u (s) is the load effect as a function of geom-

etry, material properties and equivalent nodal forces applied at all nodal points. Whereas the

particular solution S ið Þ
f (s) is the load effect at the point s of the i-th element due to the distrib-

uted body forces f ið Þ sð Þ and reactions Q ið Þ
p at the i-th element.

In the FORM analysis, the vector of basic random variables X also contains nodal equivalent

forces Q ið Þ
p (where the parameter }i} runs over all finite elements). Thus, in the search for the

most likely failure point, the current values of equivalent nodal forces Q ið Þ
p have to be deter-

mined at each iteration step of FORM algorithm. Those equivalent nodal forces, valid at a
specific step of FORM iteration, correspond to unknown functions of distributed body forces

p sð Þ. In order to determine the particular solution S ið Þ
p (s), the function of the distributed body

forces p ið Þ sð Þ within the i� th finite element must be known. One way to solve this problem is
to assume that the distributed body forces can be approximated with the help of shape
functions.

p ið Þ sð Þ ¼ N ið ÞTb (37)

The matrix b can be determined from the condition that the equivalent nodal force Q ið Þ
p at the

i-th finite element due to body forces p ið Þ sð Þ should be equal to the calculated equivalent nodal
forces in the FORM algorithm. The vector bk, which is the k-th column of the matrix b and
corresponds to the k-th component of the vector p ið Þ sð Þ, is determined by solving the system of
linear equations

ð

V

N ið ÞT
k N ið Þ

k dV

0
@

1
Abk ¼ Q ið Þ

p (38)

where N ið Þ
k is the k-th row of the matrix N ið Þ:

In this way, the function of the distributed body forces p ið Þ sð Þ as well as the particular solution

S ið Þ
p (s) is determined as functions of nodal equivalent forces Q ið Þ

p .

For the distributed loads represented by the Gaussian random field, the components of vector

Q ið Þ
p , which are determined by means of a linear transformation (Eq. (34)), have the multi-

dimensional normal distribution. For the non-Gaussian random field, the probability distribu-

tion function FQ ið Þ
p

rð Þ of the vector of nodal equivalent forces Q ið Þ
p cannot be determined easily.

The first possible choice is to assume the normal distribution on the basis of the central limit
theorem. Another approximate solution has been developed [20] on the basis of the approach
presented by Der Kiureghian [18].

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

155

However, in many case a random element size equal to the scale of fluctuation may be
considered as adequate with respect to the reliability analysis accuracy.

4. Discretization of random fields representing distributed loads

Discretization of random field loads has not been a subject of many studies. The finite element
modeling introduces the well-known procedure for representing distributed forces p sð Þ by a
set of equivalent nodal forces. The random field of distributed loads has to be discretized
according to the structural finite element mesh. Thus, if the distributed loads are random, all
equivalent nodal forces become random variables. This approach seems obvious and it can be
applied directly to study the response variability of stochastic engineering problems [14]. How-
ever, if discretized random field load is a part of FORM calculations, then both the discretiza-
tion procedure for random field loads as well as FORM/FEM analysis should be modified in
order to get accurate results.

The general approach for the discretization procedure of the distributed body forces p sð Þ is
presented below [20]. A similar algorithm can be applied for other types of distributed loads
(surface forces and initial stresses). For the purpose of FORM analysis, it is convenient to
assume that the nodal forces for i-th element are random variables

Q ið Þ
p ¼

ð

V

N ið ÞTp sð ÞdV (34)

where N ið Þ is the displacement interpolation matrix for the i-th element in the local coordinate

system. Thus, the mean value vector of the load vector Q ið Þ
p is equal to

E Q ið Þ
p

h i
¼

ð

V

N ið ÞTE p sð Þ½ �dV (35)

The covariance matrix of the vectors of equivalent forces Q ið Þ
p and Q jð Þ

p corresponding to the i-th

and j-th finite elements has the form

Cov Q ið Þ
p ;Q jð Þ

p T
h i

¼
ð

V ið Þ

ð

V jð Þ

N ið ÞTCppN jð ÞdV ið ÞdV jð Þ (36)

where the matrix Cpp contains the cross-covariance functions between different components of
the vector random field.

In general, a load effect can be an internal force, stress or strain at any point of structure which
does not coincide with a nodal point (or Gaussian integration point). Thus, the load effect

Dependability Engineering154

S ið Þ sð Þ at a point s of i-th element can be represented as a sum of a general solution, S ið Þ
u (s) and a

particular solution, S ið Þ
p (s). The general solution S ið Þ

u (s) is the load effect as a function of geom-

etry, material properties and equivalent nodal forces applied at all nodal points. Whereas the

particular solution S ið Þ
f (s) is the load effect at the point s of the i-th element due to the distrib-

uted body forces f ið Þ sð Þ and reactions Q ið Þ
p at the i-th element.

In the FORM analysis, the vector of basic random variables X also contains nodal equivalent

forces Q ið Þ
p (where the parameter }i} runs over all finite elements). Thus, in the search for the

most likely failure point, the current values of equivalent nodal forces Q ið Þ
p have to be deter-

mined at each iteration step of FORM algorithm. Those equivalent nodal forces, valid at a
specific step of FORM iteration, correspond to unknown functions of distributed body forces

p sð Þ. In order to determine the particular solution S ið Þ
p (s), the function of the distributed body

forces p ið Þ sð Þ within the i� th finite element must be known. One way to solve this problem is
to assume that the distributed body forces can be approximated with the help of shape
functions.

p ið Þ sð Þ ¼ N ið ÞTb (37)

The matrix b can be determined from the condition that the equivalent nodal force Q ið Þ
p at the

i-th finite element due to body forces p ið Þ sð Þ should be equal to the calculated equivalent nodal
forces in the FORM algorithm. The vector bk, which is the k-th column of the matrix b and
corresponds to the k-th component of the vector p ið Þ sð Þ, is determined by solving the system of
linear equations

ð

V

N ið ÞT
k N ið Þ

k dV

0
@

1
Abk ¼ Q ið Þ

p (38)

where N ið Þ
k is the k-th row of the matrix N ið Þ:

In this way, the function of the distributed body forces p ið Þ sð Þ as well as the particular solution

S ið Þ
p (s) is determined as functions of nodal equivalent forces Q ið Þ

p .

For the distributed loads represented by the Gaussian random field, the components of vector

Q ið Þ
p , which are determined by means of a linear transformation (Eq. (34)), have the multi-

dimensional normal distribution. For the non-Gaussian random field, the probability distribu-

tion function FQ ið Þ
p

rð Þ of the vector of nodal equivalent forces Q ið Þ
p cannot be determined easily.

The first possible choice is to assume the normal distribution on the basis of the central limit
theorem. Another approximate solution has been developed [20] on the basis of the approach
presented by Der Kiureghian [18].

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

155

5. Discretization of transverse distributed load for a Bernoulli-Euler beam

In case of Bernoulli-Euler beam, four shape functions are applicable

N1 sð Þ ¼ 1� 3 s
L

� �2 þ 2 s
L

� �3 N2 sð Þ ¼ s 1� s
L

� �2

N3 sð Þ ¼ s
L

� �2 3� 2
s
L

� �
N4 sð Þ ¼ s2

L
s
L
� 1

� � (39)

The nodal forces equivalent to the transverse distributed load q sð Þ are defined by the integrals

Qj ¼
ðL

0

Nj sð Þq sð Þds j ¼ 1,…, 4 (40)

The distributed load q sð Þ is assumed to be a homogeneous random field, with constant mean
μq value, constant variance σ

2
q and the covariance function for the correlation function rq

Cov q sð Þ; q tð Þ� � ¼ σ2
qrq t� sj jð Þ (41)

Thus, the mean value of the nodal force Qi is just equal to

E Qi½ � ¼ μq

ðL

0

Ni sð Þds (42)

and the covariance between nodal force Q mð Þ
i at the m� th finite element and the nodal force

Q nð Þ
i at the n� th finite element is defined by the double integral

Cov Q mð Þ
i ;Q nð Þ

j

h i
¼ σ2

q

ðs2m

s1m

ðs2n

s1n

Ni sð ÞNj tð Þrq t� sj jð Þdsdt (43)

where s1m, s2m and s1n, s2n are the coordinates of the two ends of the finite elements, defined in
a common coordinate system.

If a beam is divided into N finite elements, then the random distributed load q sð Þ is modeled
by 4N random variables.

A typical limit state function for a beam can be defined at the m� th finite element

g mð Þ sð Þ ¼ R mð Þ
b sð Þ �M mð Þ sð Þ (44)

where R mð Þ
b sð Þ is the bending resistance at cross-section s (usually assumed as a basic random

variable) and M mð Þ sð Þ is the bending moment due to external loads at cross-section s, which is a
random function depending on the other basic random variables, for example, random nodal

equivalent forces Q 1ð Þ
1 ,Q 1ð Þ

2 ,Q 1ð Þ
3 ,Q 1ð Þ

4 ,…Q Nð Þ
1 ,Q Nð Þ

2 ,Q Nð Þ
3 ,Q Nð Þ

4 .

Dependability Engineering156

The bending moment M mð Þ sð Þ can be represented as a sum

M mð Þ sð Þ ¼ M mð Þ
u sð Þ þM mð Þ

q sð Þ (45)

The general solution M mð Þ
u sð Þ depends on the nodal displacements, which are the functions of

all nodal forces Q 1ð Þ
1 ,Q 1ð Þ

2 ,Q 1ð Þ
3 ,Q 1ð Þ

4 ,…Q Nð Þ
1 ,Q Nð Þ

2 ,Q Nð Þ
3 ,Q Nð Þ

4 imposed to FEM model. The par-

ticular solution M mð Þ
q sð Þ is the bending moment within the m� th element due to the distrib-

uted load q sð Þ and reactions �Q mð Þ
1 , �Q mð Þ

2 , �Q mð Þ
3 , �Q mð Þ

4 at the m� th element,

M mð Þ
q sð Þ ¼ Q mð Þ

2 �Q mð Þ
1 s�

ðs

s1m

q tð Þ s� tð Þdt (46)

At the k� th iteration step of FORM algorithm, the function of the distributed load is unknown
for the corresponding nodal forces. Therefore, the function of distributed load imposed on the
m� th finite element is assumed as a linear combination of the shape functions

q sð Þ ffi q mð Þ sð Þ ¼
X4
i¼1

biNi sð Þ (47)

and the unknown coefficients bi, which have to be determined by requiring that the equivalent
nodal forces (Eq. (40)) for the function q mð Þ sð Þ defined by relation (Eq. (47)) should be equal to
the current equivalent nodal forces. The coefficients bi as well as the distributed load q mð Þ can

be obtained as functions of the current equivalent nodal forces Q mð Þ
1 ,Q mð Þ

2 ,Q mð Þ
3 ,Q mð Þ

4 at the
m� th finite element, by solving the system of linear equations

X4

i¼1

ðs2m

s1m

Ni sð ÞNj sð Þds
2
4

3
5b ¼ Q mð Þ

j j ¼ 1,…, 4 (48)

Finally, the bending moment M mð Þ
q sð Þ is determined as a function of equivalent nodal forces

M mð Þ
q sð Þ ¼ m1 sð ÞQ mð Þ

1 þm2 sð ÞQ mð Þ
2 þm3 sð ÞQ mð Þ

3 þm4 sð ÞQ mð Þ
4 (49)

where

m1 sð Þ ¼ �s 1� 8
s
L
þ 20

s
L

� �2
� 20

s
L

� �3
þ 7

s
L

� �4
� �

m2 sð Þ ¼ 1� 60
s
L

� �2
þ 200

s
L

� �3
� 225

s
L

� �4
þ 84

s
L

� �5

m3 sð Þ ¼ �s 2
s
L
� 10

s
L

� �2
þ 15

s
L

� �3
� 7

s
L

� �4
� �

m4 sð Þ ¼ �30
s
L

� �2
þ 140

s
L

� �3
� 195

s
L

� �4
þ 84

s
L

� �5

(50)

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

157

5. Discretization of transverse distributed load for a Bernoulli-Euler beam

In case of Bernoulli-Euler beam, four shape functions are applicable

N1 sð Þ ¼ 1� 3 s
L

� �2 þ 2 s
L

� �3 N2 sð Þ ¼ s 1� s
L

� �2

N3 sð Þ ¼ s
L

� �2 3� 2
s
L

� �
N4 sð Þ ¼ s2

L
s
L
� 1

� � (39)

The nodal forces equivalent to the transverse distributed load q sð Þ are defined by the integrals

Qj ¼
ðL

0

Nj sð Þq sð Þds j ¼ 1,…, 4 (40)

The distributed load q sð Þ is assumed to be a homogeneous random field, with constant mean
μq value, constant variance σ

2
q and the covariance function for the correlation function rq

Cov q sð Þ; q tð Þ� � ¼ σ2
qrq t� sj jð Þ (41)

Thus, the mean value of the nodal force Qi is just equal to

E Qi½ � ¼ μq

ðL

0

Ni sð Þds (42)

and the covariance between nodal force Q mð Þ
i at the m� th finite element and the nodal force

Q nð Þ
i at the n� th finite element is defined by the double integral

Cov Q mð Þ
i ;Q nð Þ

j

h i
¼ σ2

q

ðs2m

s1m

ðs2n

s1n

Ni sð ÞNj tð Þrq t� sj jð Þdsdt (43)

where s1m, s2m and s1n, s2n are the coordinates of the two ends of the finite elements, defined in
a common coordinate system.

If a beam is divided into N finite elements, then the random distributed load q sð Þ is modeled
by 4N random variables.

A typical limit state function for a beam can be defined at the m� th finite element

g mð Þ sð Þ ¼ R mð Þ
b sð Þ �M mð Þ sð Þ (44)

where R mð Þ
b sð Þ is the bending resistance at cross-section s (usually assumed as a basic random

variable) and M mð Þ sð Þ is the bending moment due to external loads at cross-section s, which is a
random function depending on the other basic random variables, for example, random nodal

equivalent forces Q 1ð Þ
1 ,Q 1ð Þ

2 ,Q 1ð Þ
3 ,Q 1ð Þ

4 ,…Q Nð Þ
1 ,Q Nð Þ

2 ,Q Nð Þ
3 ,Q Nð Þ

4 .

Dependability Engineering156

The bending moment M mð Þ sð Þ can be represented as a sum

M mð Þ sð Þ ¼ M mð Þ
u sð Þ þM mð Þ

q sð Þ (45)

The general solution M mð Þ
u sð Þ depends on the nodal displacements, which are the functions of

all nodal forces Q 1ð Þ
1 ,Q 1ð Þ

2 ,Q 1ð Þ
3 ,Q 1ð Þ

4 ,…Q Nð Þ
1 ,Q Nð Þ

2 ,Q Nð Þ
3 ,Q Nð Þ

4 imposed to FEM model. The par-

ticular solution M mð Þ
q sð Þ is the bending moment within the m� th element due to the distrib-

uted load q sð Þ and reactions �Q mð Þ
1 , �Q mð Þ

2 , �Q mð Þ
3 , �Q mð Þ

4 at the m� th element,

M mð Þ
q sð Þ ¼ Q mð Þ

2 �Q mð Þ
1 s�

ðs

s1m

q tð Þ s� tð Þdt (46)

At the k� th iteration step of FORM algorithm, the function of the distributed load is unknown
for the corresponding nodal forces. Therefore, the function of distributed load imposed on the
m� th finite element is assumed as a linear combination of the shape functions

q sð Þ ffi q mð Þ sð Þ ¼
X4
i¼1

biNi sð Þ (47)

and the unknown coefficients bi, which have to be determined by requiring that the equivalent
nodal forces (Eq. (40)) for the function q mð Þ sð Þ defined by relation (Eq. (47)) should be equal to
the current equivalent nodal forces. The coefficients bi as well as the distributed load q mð Þ can

be obtained as functions of the current equivalent nodal forces Q mð Þ
1 ,Q mð Þ

2 ,Q mð Þ
3 ,Q mð Þ

4 at the
m� th finite element, by solving the system of linear equations

X4

i¼1

ðs2m

s1m

Ni sð ÞNj sð Þds
2
4

3
5b ¼ Q mð Þ

j j ¼ 1,…, 4 (48)

Finally, the bending moment M mð Þ
q sð Þ is determined as a function of equivalent nodal forces

M mð Þ
q sð Þ ¼ m1 sð ÞQ mð Þ

1 þm2 sð ÞQ mð Þ
2 þm3 sð ÞQ mð Þ

3 þm4 sð ÞQ mð Þ
4 (49)

where

m1 sð Þ ¼ �s 1� 8
s
L
þ 20

s
L

� �2
� 20

s
L

� �3
þ 7

s
L

� �4
� �

m2 sð Þ ¼ 1� 60
s
L

� �2
þ 200

s
L

� �3
� 225

s
L

� �4
þ 84

s
L

� �5

m3 sð Þ ¼ �s 2
s
L
� 10

s
L

� �2
þ 15

s
L

� �3
� 7

s
L

� �4
� �

m4 sð Þ ¼ �30
s
L

� �2
þ 140

s
L

� �3
� 195

s
L

� �4
þ 84

s
L

� �5

(50)

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

157

In order to determine the reliability index βFORM, the gradient of the limit state function
(Eq. (44)) has to be calculated. The partial derivatives of function (Eq. (44)) with respect to the
nodal forces are given below

∂g mð Þ

∂Q nð Þ
i

¼ �
X4

j¼1

∂M mð Þ
u

∂u mð Þ
j

∂u mð Þ
j

∂Q nð Þ
i

if m 6¼ n i ¼ 1,…, 4 (51)

∂g mð Þ

∂Q mð Þ
i

¼ �
X4

j¼1

∂M mð Þ
u

∂u mð Þ
j

∂u mð Þ
j

∂Q mð Þ
i

�mi sð Þ i ¼ 1,…, 4 (52)

where u mð Þ
j is the nodal displacements in the local coordinate system of the m� th element and

the derivatives
∂u mð Þ

j

∂Q nð Þ
i

are computed with the help of the SFEM algorithm (Liu Der Kiureghian,

1991).

5.1. Example of discretization of random distributed load for a simply supported beam

The deterministic simply supported beam of length L is subjected to the transverse homoge-
neous random load q sð Þ with mean value μq and variance σ2

q. Assuming the exponential

correlation function with the scale of fluctuation θq,

r τð Þ ¼ exp �2
τj j
θq

� �
(53)

the mean value and the variance of the bending moment function can be derived analytically:

E M sð Þ½ � ¼ μq
s L� sð Þ

2
Var M sð Þ½ � ¼ σ2q A

θ4
q

8
þ B

Lθ3
q

4
þ C

L3θq

3

" #
(54)

where

A ¼ 1� s
L

� � s
L
exp �2

L
θq

� �
� exp �2

s
θq

� �� �
þ s
L

s
L
� exp �2

L� s
θq

� �
� 1

� �
þ 1

B ¼ � 1� s
L

� � s
L C ¼ 1� s

L

� �2 s
L

� �2

We consider the linear limit state function g sð Þ ¼ Rb �M sð Þ where Rb is the deterministic
bending moment capacity, constant along the beam.

If the random field q sð Þ is Gaussian, then the FORM reliability index is equivalent to the
Cornell reliability index

Dependability Engineering158

βFORM sð Þ ¼ βC sð Þ ¼ Rb � E M sð Þ½ �ffi
Var M sð Þ½ �p (55)

On the other hand, the FORM reliability indices have been computed for the finite element
model of a simply supported beam. The distributed load random field q sð Þ has been
discretized according to the procedure described earlier.

The calculations have been carried out for the following data:

μq ¼ 1000 N=m, σq ¼ 200 N=m, Rb ¼ 5000 Nm, L ¼ 6 m and 5 cross-sections: s ¼ 1:02; 1:5;½
2:04; 2:52; 3� mð Þ. Three finite element sizes have been considered: Le ¼ 0:5; 1; 3 mð Þ. The scale
of fluctuation has been assumed as: θq ¼ 0:5; 1; 4; 100 mð Þ
The results of the FORM analysis presented in Table 2 are in very good agreement with the
reliability indices computed according to analytical formulae (Eq. (53–55)). Moreover, the

Finite element length Position of cross-section (m)

(m) 1.02 1.50 2.04 2.52 3.00

Scale of fluctuation = 0.5

Analytical 14.7350 7.3059 3.6040 2.1244 1.6821

0.5 14.7347 7.3055 3.6038 2.1243 1.6820

1.0 14.7345 7.3055 3.6038 2.1243 1.6820

3.0 14.7511 7.3166 3.6047 2.1247 1.6819

Scale of fluctuation = 1.0

Analytical 10.7242 5.3037 2.6112 1.5378 1.2172

0.5 10.7240 5.3036 2.6112 1.5377 1.2172

1.0 10.7239 5.3036 2.6112 1.5377 1.2172

3.0 10.7314 5.3092 2.6116 1.5378 1.2172

Scale of fluctuation = 4.0

Analytical 6.5774 3.2516 1.5997 0.9415 0.7451

0.5 6.5773 3.2517 1.5997 0.9415 0.7451

1.0 6.5773 3.2516 1.5997 0.9415 0.7451

3.0 6.5781 3.2523 1.5997 0.9415 0.7451

Scale of fluctuation = 100.0

Analytical 4.9153 2.4423 1.2062 0.7114 0.5633

0.5 4.9153 2.4423 1.2062 0.7114 0.5633

1.0 4.9153 2.4423 1.2062 0.7114 0.5633

3.0 4.9153 2.4423 1.2062 0.7114 0.5633

Table 2. Reliability indices computed according to analytical formula and FORM algorithm.

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

159

In order to determine the reliability index βFORM, the gradient of the limit state function
(Eq. (44)) has to be calculated. The partial derivatives of function (Eq. (44)) with respect to the
nodal forces are given below

∂g mð Þ

∂Q nð Þ
i

¼ �
X4

j¼1

∂M mð Þ
u

∂u mð Þ
j

∂u mð Þ
j

∂Q nð Þ
i

if m 6¼ n i ¼ 1,…, 4 (51)

∂g mð Þ

∂Q mð Þ
i

¼ �
X4

j¼1

∂M mð Þ
u

∂u mð Þ
j

∂u mð Þ
j

∂Q mð Þ
i

�mi sð Þ i ¼ 1,…, 4 (52)

where u mð Þ
j is the nodal displacements in the local coordinate system of the m� th element and

the derivatives
∂u mð Þ

j

∂Q nð Þ
i

are computed with the help of the SFEM algorithm (Liu Der Kiureghian,

1991).

5.1. Example of discretization of random distributed load for a simply supported beam

The deterministic simply supported beam of length L is subjected to the transverse homoge-
neous random load q sð Þ with mean value μq and variance σ2

q. Assuming the exponential

correlation function with the scale of fluctuation θq,

r τð Þ ¼ exp �2
τj j
θq

� �
(53)

the mean value and the variance of the bending moment function can be derived analytically:

E M sð Þ½ � ¼ μq
s L� sð Þ

2
Var M sð Þ½ � ¼ σ2q A

θ4
q

8
þ B

Lθ3
q

4
þ C

L3θq

3

" #
(54)

where

A ¼ 1� s
L

� � s
L
exp �2

L
θq

� �
� exp �2

s
θq

� �� �
þ s
L

s
L
� exp �2

L� s
θq

� �
� 1

� �
þ 1

B ¼ � 1� s
L

� � s
L C ¼ 1� s

L

� �2 s
L

� �2

We consider the linear limit state function g sð Þ ¼ Rb �M sð Þ where Rb is the deterministic
bending moment capacity, constant along the beam.

If the random field q sð Þ is Gaussian, then the FORM reliability index is equivalent to the
Cornell reliability index

Dependability Engineering158

βFORM sð Þ ¼ βC sð Þ ¼ Rb � E M sð Þ½ �ffi
Var M sð Þ½ �p (55)

On the other hand, the FORM reliability indices have been computed for the finite element
model of a simply supported beam. The distributed load random field q sð Þ has been
discretized according to the procedure described earlier.

The calculations have been carried out for the following data:

μq ¼ 1000 N=m, σq ¼ 200 N=m, Rb ¼ 5000 Nm, L ¼ 6 m and 5 cross-sections: s ¼ 1:02; 1:5;½
2:04; 2:52; 3� mð Þ. Three finite element sizes have been considered: Le ¼ 0:5; 1; 3 mð Þ. The scale
of fluctuation has been assumed as: θq ¼ 0:5; 1; 4; 100 mð Þ
The results of the FORM analysis presented in Table 2 are in very good agreement with the
reliability indices computed according to analytical formulae (Eq. (53–55)). Moreover, the

Finite element length Position of cross-section (m)

(m) 1.02 1.50 2.04 2.52 3.00

Scale of fluctuation = 0.5

Analytical 14.7350 7.3059 3.6040 2.1244 1.6821

0.5 14.7347 7.3055 3.6038 2.1243 1.6820

1.0 14.7345 7.3055 3.6038 2.1243 1.6820

3.0 14.7511 7.3166 3.6047 2.1247 1.6819

Scale of fluctuation = 1.0

Analytical 10.7242 5.3037 2.6112 1.5378 1.2172

0.5 10.7240 5.3036 2.6112 1.5377 1.2172

1.0 10.7239 5.3036 2.6112 1.5377 1.2172

3.0 10.7314 5.3092 2.6116 1.5378 1.2172

Scale of fluctuation = 4.0

Analytical 6.5774 3.2516 1.5997 0.9415 0.7451

0.5 6.5773 3.2517 1.5997 0.9415 0.7451

1.0 6.5773 3.2516 1.5997 0.9415 0.7451

3.0 6.5781 3.2523 1.5997 0.9415 0.7451

Scale of fluctuation = 100.0

Analytical 4.9153 2.4423 1.2062 0.7114 0.5633

0.5 4.9153 2.4423 1.2062 0.7114 0.5633

1.0 4.9153 2.4423 1.2062 0.7114 0.5633

3.0 4.9153 2.4423 1.2062 0.7114 0.5633

Table 2. Reliability indices computed according to analytical formula and FORM algorithm.

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

159

reliability indices computed with the help of the described discretization procedure are insen-
sitive to the scale of fluctuation and the finite element size.

6. Conclusions

The reliability analysis of more complicated structures usually deals with the FEMmodels. The
random fields (material properties and loads) have to be represented by random variables
assigned to random field elements. The adequate distribution functions and covariance matri-
ces should be determined for a chosen set of random variables. This procedure is called
discretization of a random field.

The chapter presents the discretization of random field for material properties with the help of
the spatial averaging method of one-dimensional homogeneous random field, and midpoint
method of discretization of random field.

The second part of the chapter deals with the discretization of random fields representing
distributed loads. The discretization of distributed load imposed on a Bernoulli beam is
presented in detail. An example shows that the presented procedure for discretizing random
fields representing distributed loads is very efficient, that is, the reliability indices computed
with the help of SFEM and FORM analysis are in very good agreement with the results of
analytical calculations.

Author details

Ireneusz Czmoch

Address all correspondence to: i.czmoch@il.pw.edu.pl

Department of Structural Mechanics and Computer Aided Engineering, Faculty of Civil
Engineering, Warsaw University of Technology, Warsaw, Poland

References

[1] Rackwitz R, Fiessler B. Structural reliability under combined load sequences. Computers
and Structures. 1978;9:489-494

[2] Der Kiureghian A, Liu PL. Structural Reliability Under Incomplete Probability Informa-
tion. Journal of Engineering Mechanics Division, ASCE. Jan. 1986;112(1):85-104

[3] Liu P-L, Der Kiureghian A. Finite element reliability of geometrically nonlinear uncertain
structures. Journal of Engineering Mechanics Division, ASCE. 1991;117(8):1806-1825

[4] Bury KV. Statistical Methods in Applied Science. John Wiley & Sons; 1975

Dependability Engineering160

[5] Vanmarcke EH. Random Fields: Analysis and Synthesis. Cambridge: Mass. and London
Massachusetts Institute of Technology Press; 1983

[6] Vanmarcke EH. Random fieldmodeling of the void phase of soils. Georisk.March 2007;1(1):
57-68

[7] Knabe W, Przewłócki J, Różyński G. Spatial averages for linear elements for two-
parameter random field. Probabilistic Engineering Mechanic. 1998;1:147-167

[8] Huang S, Mahadaevan S, Rebba R. Collocation-based stochastic finite element analysis
for random field problems. Probabilistic Engineering Mechanics. 2007;22:194-205

[9] Zeldin BA, Spanos PD. On Random Field Discretization in Stochastic Finite Elements.
Journal of Applied Mechanics. 1998;65:320-327

[10] Vanmarcke EH, Grigoriu M. Stochastic finite element analysis of simple beams. Journal of
Engineering Mechanics, ASCE. 1983;109(5):1203-1214

[11] Hisada T, Nakagiri S. Role of the Stochastic Finite Element Method in Structural Safety and
Reliability. 4th Int. Conf. on Structural Safety and reliability; Kobe, Japan. 1985. pp. 385-394

[12] Der Kiureghian A, Ke B-J. The stochastic finite element method in structural realiability.
Probabilistic Engineering Mechanics. 1988;3(2):83-91

[13] Liu WK, Belytschko T, Mani A. Random field finite elements. International Journal for
Numerical Methods in Engineering. 1986;23:1831-1845

[14] Yang LF, Yu B, Ju JW. System reliability analysis of spatial variance frames based on random
field and stochastic elastic modulus reduction method. Acta Mech. 2012;223:109-124

[15] Allaix DL, Carbone VI. An efficient coupling of FORM and Karhunen-Loeve series
expansion. Engineering with Computers. 2016;32:1-13

[16] Lawrence M. Basic random variables in finite element analysis. International Journal for
Numerical Methods in Engineering. 1987;24:1849-1863.

[17] Spanos PD, Ghanem R. Stochastic finite element expansion for random media. Journal of
Engineering Mechanics, ASCE. 1989;115(5):1035-1053

[18] Der Kiureghian A. Multivariate distribution models for structural reliability. In: Wittmann
FH, editor. Transaction of the 9-th conference on structural mechanics in reactor technology.
Vol. M. 17–21 Aug 1987. Lausanne. pp. 373-379

[19] Liu P-L, Liu K-G. Selection of random field mesh in finite element reliability analysis.
Journal of Engineering Mechanics, ASCE. 1993;119(4):667-680

[20] Czmoch I. Influence of Structural Timber Variability on Reliability and Damage Tolerance
of Timber Beams. Lulea University of Technology; 1998

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

161

reliability indices computed with the help of the described discretization procedure are insen-
sitive to the scale of fluctuation and the finite element size.

6. Conclusions

The reliability analysis of more complicated structures usually deals with the FEMmodels. The
random fields (material properties and loads) have to be represented by random variables
assigned to random field elements. The adequate distribution functions and covariance matri-
ces should be determined for a chosen set of random variables. This procedure is called
discretization of a random field.

The chapter presents the discretization of random field for material properties with the help of
the spatial averaging method of one-dimensional homogeneous random field, and midpoint
method of discretization of random field.

The second part of the chapter deals with the discretization of random fields representing
distributed loads. The discretization of distributed load imposed on a Bernoulli beam is
presented in detail. An example shows that the presented procedure for discretizing random
fields representing distributed loads is very efficient, that is, the reliability indices computed
with the help of SFEM and FORM analysis are in very good agreement with the results of
analytical calculations.

Author details

Ireneusz Czmoch

Address all correspondence to: i.czmoch@il.pw.edu.pl

Department of Structural Mechanics and Computer Aided Engineering, Faculty of Civil
Engineering, Warsaw University of Technology, Warsaw, Poland

References

[1] Rackwitz R, Fiessler B. Structural reliability under combined load sequences. Computers
and Structures. 1978;9:489-494

[2] Der Kiureghian A, Liu PL. Structural Reliability Under Incomplete Probability Informa-
tion. Journal of Engineering Mechanics Division, ASCE. Jan. 1986;112(1):85-104

[3] Liu P-L, Der Kiureghian A. Finite element reliability of geometrically nonlinear uncertain
structures. Journal of Engineering Mechanics Division, ASCE. 1991;117(8):1806-1825

[4] Bury KV. Statistical Methods in Applied Science. John Wiley & Sons; 1975

Dependability Engineering160

[5] Vanmarcke EH. Random Fields: Analysis and Synthesis. Cambridge: Mass. and London
Massachusetts Institute of Technology Press; 1983

[6] Vanmarcke EH. Random fieldmodeling of the void phase of soils. Georisk.March 2007;1(1):
57-68

[7] Knabe W, Przewłócki J, Różyński G. Spatial averages for linear elements for two-
parameter random field. Probabilistic Engineering Mechanic. 1998;1:147-167

[8] Huang S, Mahadaevan S, Rebba R. Collocation-based stochastic finite element analysis
for random field problems. Probabilistic Engineering Mechanics. 2007;22:194-205

[9] Zeldin BA, Spanos PD. On Random Field Discretization in Stochastic Finite Elements.
Journal of Applied Mechanics. 1998;65:320-327

[10] Vanmarcke EH, Grigoriu M. Stochastic finite element analysis of simple beams. Journal of
Engineering Mechanics, ASCE. 1983;109(5):1203-1214

[11] Hisada T, Nakagiri S. Role of the Stochastic Finite Element Method in Structural Safety and
Reliability. 4th Int. Conf. on Structural Safety and reliability; Kobe, Japan. 1985. pp. 385-394

[12] Der Kiureghian A, Ke B-J. The stochastic finite element method in structural realiability.
Probabilistic Engineering Mechanics. 1988;3(2):83-91

[13] Liu WK, Belytschko T, Mani A. Random field finite elements. International Journal for
Numerical Methods in Engineering. 1986;23:1831-1845

[14] Yang LF, Yu B, Ju JW. System reliability analysis of spatial variance frames based on random
field and stochastic elastic modulus reduction method. Acta Mech. 2012;223:109-124

[15] Allaix DL, Carbone VI. An efficient coupling of FORM and Karhunen-Loeve series
expansion. Engineering with Computers. 2016;32:1-13

[16] Lawrence M. Basic random variables in finite element analysis. International Journal for
Numerical Methods in Engineering. 1987;24:1849-1863.

[17] Spanos PD, Ghanem R. Stochastic finite element expansion for random media. Journal of
Engineering Mechanics, ASCE. 1989;115(5):1035-1053

[18] Der Kiureghian A. Multivariate distribution models for structural reliability. In: Wittmann
FH, editor. Transaction of the 9-th conference on structural mechanics in reactor technology.
Vol. M. 17–21 Aug 1987. Lausanne. pp. 373-379

[19] Liu P-L, Liu K-G. Selection of random field mesh in finite element reliability analysis.
Journal of Engineering Mechanics, ASCE. 1993;119(4):667-680

[20] Czmoch I. Influence of Structural Timber Variability on Reliability and Damage Tolerance
of Timber Beams. Lulea University of Technology; 1998

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
http://dx.doi.org/10.5772/intechopen.71500

161

Chapter 10

Energy Savings in EAF Steelmaking by Process
Simulation and Data-Science Modeling on the
Reproduced Results

Panagiotis Sismanis

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72780

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72780

Energy Savings in EAF Steelmaking by Process
Simulation and Data-Science Modeling on the
Reproduced Results

Panagiotis Sismanis

Additional information is available at the end of the chapter

Abstract

Electric-Arc-Furnace (EAF)-based process route in modern steelmaking for the production
of plates and special quality bars requires a series of stations for the secondary metal-
lurgy treatment (Ladle-Furnace, and potentially Vacuum-Degasser), till the final casting
for the production of slabs and blooms in the corresponding continuous casting machines.
However, since every steel grade has its own melting characteristics, the melting (liqui-
dus) temperature per grade is generally different and plays an important role in the final
casting temperature, which has to exceed by somewhat the melting temperature by an
amount called superheat. The superheat is adjusted at the ladle-furnace (LF) station by the
operator who decides mostly on personal experience but, since the ladle has to pass from
downstream processes, the liquid steel loses temperature not only due to the duration of
the processes till casting but also due to the ladle refractory history. Simulation software
was developed in order to reproduce the phenomena involved in a meltshop and influence
downstream superheats. Data science models were deployed in order to check the poten-
tial of controlling casting temperatures by adjusting liquid-steel exit temperatures at LF.

Keywords: continuous casting, superheat, billet, slab, grade, supervised model,
simulation

1. Introduction

The effect of superheat (SPH) on the potential of surface and sub-surface defects generation
in the continuous cast products is known for many years. Ayata et al. [1] have pointed out the
advantage of low SPH teeming upon product quality since 1995, and in the same year Thomas
[2] has discussed the need to include SPH in thermal-mechanical models for continuous

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 10

Energy Savings in EAF Steelmaking by Process
Simulation and Data-Science Modeling on the
Reproduced Results

Panagiotis Sismanis

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72780

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72780

Energy Savings in EAF Steelmaking by Process
Simulation and Data-Science Modeling on the
Reproduced Results

Panagiotis Sismanis

Additional information is available at the end of the chapter

Abstract

Electric-Arc-Furnace (EAF)-based process route in modern steelmaking for the production
of plates and special quality bars requires a series of stations for the secondary metal-
lurgy treatment (Ladle-Furnace, and potentially Vacuum-Degasser), till the final casting
for the production of slabs and blooms in the corresponding continuous casting machines.
However, since every steel grade has its own melting characteristics, the melting (liqui-
dus) temperature per grade is generally different and plays an important role in the final
casting temperature, which has to exceed by somewhat the melting temperature by an
amount called superheat. The superheat is adjusted at the ladle-furnace (LF) station by the
operator who decides mostly on personal experience but, since the ladle has to pass from
downstream processes, the liquid steel loses temperature not only due to the duration of
the processes till casting but also due to the ladle refractory history. Simulation software
was developed in order to reproduce the phenomena involved in a meltshop and influence
downstream superheats. Data science models were deployed in order to check the poten-
tial of controlling casting temperatures by adjusting liquid-steel exit temperatures at LF.

Keywords: continuous casting, superheat, billet, slab, grade, supervised model,
simulation

1. Introduction

The effect of superheat (SPH) on the potential of surface and sub-surface defects generation
in the continuous cast products is known for many years. Ayata et al. [1] have pointed out the
advantage of low SPH teeming upon product quality since 1995, and in the same year Thomas
[2] has discussed the need to include SPH in thermal-mechanical models for continuous

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

 casting. Guyot et al. [3] have discussed the effect of SPH on surface quality issues in peritec-
tic slabs. Jansto [4] has pointed out the effect of SPH on quality issues for Nb-based micro-
alloyed steels. Jacobi and Schwerdtfeger [5] talking about ripple marks on cast steel surfaces
have notified the importance of keeping SPH values low at casting; furthermore, if the super-
heat is too high for a grade, it may give rise to defects in the product. As 10°C increase per
ton of liquid steel requires theoretically 2.2 kWh of electrical energy [6], one may realize the
energy lost annually at casting if superheat is much larger than required. It is understood that
a system that will notify the LF operator to adjust the liquid steel SPH in order to match the
required casting temperature later on at the continuous caster is of paramount importance
and is under research for a long time. Offline models based on heat transfer and thermody-
namics have been developed in the past, but the focus is mostly appropriate to online statisti-
cal models which are faster to be generated and can be tuned. Nevertheless, due to the nature
of liquid steel processing there is still a great deal of work on the subject to be carried out to
reach this milestone. Gupta and Chandra [7] have developed a coupled heat transfer and a
simple regression model in order to manage to control SPH at the caster floor; great attention
was given to the holding time of liquid steel in the ladle, as well as the ladle turnaround time,
that is, the time from teeming till next tapping for a ladle; a fourth-degree polynomial was
derived as a regression formula simulating the initial temperature at the tundish (Ttun1) as a
function of the holding time (t), ladle life (LL), ladle turnaround time (TAT), exit temperature
at the LF (TLF), and previous liquid-steel in the tundish temperature (Tpast):

 T tun1  = f + 0.019LL − 0.012TAT + 0.358 T past + 0.631 T LF (1)

Where:

 f = 180.912 − 40.428t + 3.173 t 2 − 0.107 t 3 + 0.001 t 4 (2)

Based on plant data the regression coefficient R2 was found to be 0.73. Addes et al. [8] tried
to control the casting superheat temperature by specific factors depending upon the heat
sequence in the tundish, steel residence in the ladle, grade, ladle condition, tundish preheat
time, and casting speed. On the other hand, Fredman et al. [9] applied the solution of the
heat transfer equation in 2D in order to simulate the thermal state of the ladles. Tian et al.
[10, 11] developed a hybrid model based on the energy transfer at the LF and by deploying
the ensemble ELM algorithm using the modified AdaBoost.RT method to train and validate
the model by plant data that were collected from a 300 t LF. Chen et al. [12, 13] have devel-
oped a model that recommends the liquid-steel exit temperature at LF in order to achieve the
proper casting SPH; the model follows the input and output liquid steel energy in a ladle;
it has been applied in a steelmaking plant. Sonoda et al. [14] have also developed a statisti-
cal model for predicting the liquid steel temperature at the casting floor. In the recent years,
ladle-tracking systems [15, 16] have been developed that follow the route of each ladle and
in this way the refractory history can be recorded; consequently, a more reliable statistical
model can be developed that will predict the casting floor superheat temperatures by time. A
Monte-Carlo resembling simulation software was developed for this study in order to repro-
duce the phenomena involved in a meltshop with respect to process times, ladle-refractory
history, vacuum degasser (VD) or not treatment, and 30 different grades for blooms and slabs

Dependability Engineering164

 produced in the Stomana plant, Pernik, Bulgaria. The purpose of this study was to illustrate
the potential benefits of the installation of a ladle tracking system giving online data to a
supervising data-science model that will ultimately notify the proper superheat adjustment
to the LF operator. On this basis, two data-science models (a distributed random forest, DRF,
and a gradient boosting machine, GBM) were deduced to analyze the reproduced data. DRF
and GBM models were also deduced from existing plant data and even though these data
did not come from a ladle tracking system, the analysis of variance exhibited an important
statistical significance. Furthermore, a GBM model was derived for the prediction of the first
liquid-steel SPH at the tundish following the problem formulation of Gupta et al. [7].

2. Preparation of tests

2.1. Simulation tests

The approach to come up with a solution to the problem consisted of two procedures: at first,
a Monte-Carlo type of simulation [17] was developed in order to quantify the effect of various
parameters upon the required superheat (SPH) correction at the ladle-furnace (LF) station, as
well as the final attained SPH at the continuous casters; second, the generated results were
fed into machine-learning systems in order to identify the degree of correlation of predicted
superheat values at the casting machines with respect to the reproduced corrected SPH values
at the LF. Table 1 presents the selected times for the processes involved in the computations:

Although two different casters were involved in the computations, the same transfer-time val-
ues from LF or VD were used. The simulation software was developed exclusively in R [18], as
it has unique programming instructions for simulation purposes. For example, the following
two commands generate 10,000 EAF process-time values derived from a normal distribution
with an average value of μ = 60.0 and a standard deviation value of σ = 10.0:

HeatNr < − 1 : 10000

 EAF _ Pr oc < − rnorm (HeatNr, 60.0, 10.0) (3)

The greatest advantage R has is the very fast execution of instructions that are written in a
form compatible for vectorization. Commands similar to (3) were written for the generation
of process-time values for the rest of the processes illustrated in Table 1.

Twenty percent from heats produced by the EAF pass through VD treatment; furthermore,
97.5% from the VD-treated steels were selected to be billets (or blooms) and the rest slabs. The
thermal history of a ladle refractory-insulation is of paramount importance for the amount of
heat the contained liquid steel will absorb during reheating at the LF. Every time a ladle is
placed in the position for tapping from the furnace, it may come from previous heat (almost
immediately after casting) or from a refractory maintenance process that has taken some ade-
quate time to resist the liquid-steel temperature increase at LF by absorbing some heat. The
refractory insulation has also some life cycle so a new ladle may come into the production
cycle at some point. Table 2 presents some plant data related to ladle refractory maintenance
that were taken under consideration in the development of the simulation program together
with the need for extra liquid-steel temperature (SPH).

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

165

 casting. Guyot et al. [3] have discussed the effect of SPH on surface quality issues in peritec-
tic slabs. Jansto [4] has pointed out the effect of SPH on quality issues for Nb-based micro-
alloyed steels. Jacobi and Schwerdtfeger [5] talking about ripple marks on cast steel surfaces
have notified the importance of keeping SPH values low at casting; furthermore, if the super-
heat is too high for a grade, it may give rise to defects in the product. As 10°C increase per
ton of liquid steel requires theoretically 2.2 kWh of electrical energy [6], one may realize the
energy lost annually at casting if superheat is much larger than required. It is understood that
a system that will notify the LF operator to adjust the liquid steel SPH in order to match the
required casting temperature later on at the continuous caster is of paramount importance
and is under research for a long time. Offline models based on heat transfer and thermody-
namics have been developed in the past, but the focus is mostly appropriate to online statisti-
cal models which are faster to be generated and can be tuned. Nevertheless, due to the nature
of liquid steel processing there is still a great deal of work on the subject to be carried out to
reach this milestone. Gupta and Chandra [7] have developed a coupled heat transfer and a
simple regression model in order to manage to control SPH at the caster floor; great attention
was given to the holding time of liquid steel in the ladle, as well as the ladle turnaround time,
that is, the time from teeming till next tapping for a ladle; a fourth-degree polynomial was
derived as a regression formula simulating the initial temperature at the tundish (Ttun1) as a
function of the holding time (t), ladle life (LL), ladle turnaround time (TAT), exit temperature
at the LF (TLF), and previous liquid-steel in the tundish temperature (Tpast):

 T tun1  = f + 0.019LL − 0.012TAT + 0.358 T past + 0.631 T LF (1)

Where:

 f = 180.912 − 40.428t + 3.173 t 2 − 0.107 t 3 + 0.001 t 4 (2)

Based on plant data the regression coefficient R2 was found to be 0.73. Addes et al. [8] tried
to control the casting superheat temperature by specific factors depending upon the heat
sequence in the tundish, steel residence in the ladle, grade, ladle condition, tundish preheat
time, and casting speed. On the other hand, Fredman et al. [9] applied the solution of the
heat transfer equation in 2D in order to simulate the thermal state of the ladles. Tian et al.
[10, 11] developed a hybrid model based on the energy transfer at the LF and by deploying
the ensemble ELM algorithm using the modified AdaBoost.RT method to train and validate
the model by plant data that were collected from a 300 t LF. Chen et al. [12, 13] have devel-
oped a model that recommends the liquid-steel exit temperature at LF in order to achieve the
proper casting SPH; the model follows the input and output liquid steel energy in a ladle;
it has been applied in a steelmaking plant. Sonoda et al. [14] have also developed a statisti-
cal model for predicting the liquid steel temperature at the casting floor. In the recent years,
ladle-tracking systems [15, 16] have been developed that follow the route of each ladle and
in this way the refractory history can be recorded; consequently, a more reliable statistical
model can be developed that will predict the casting floor superheat temperatures by time. A
Monte-Carlo resembling simulation software was developed for this study in order to repro-
duce the phenomena involved in a meltshop with respect to process times, ladle-refractory
history, vacuum degasser (VD) or not treatment, and 30 different grades for blooms and slabs

Dependability Engineering164

 produced in the Stomana plant, Pernik, Bulgaria. The purpose of this study was to illustrate
the potential benefits of the installation of a ladle tracking system giving online data to a
supervising data-science model that will ultimately notify the proper superheat adjustment
to the LF operator. On this basis, two data-science models (a distributed random forest, DRF,
and a gradient boosting machine, GBM) were deduced to analyze the reproduced data. DRF
and GBM models were also deduced from existing plant data and even though these data
did not come from a ladle tracking system, the analysis of variance exhibited an important
statistical significance. Furthermore, a GBM model was derived for the prediction of the first
liquid-steel SPH at the tundish following the problem formulation of Gupta et al. [7].

2. Preparation of tests

2.1. Simulation tests

The approach to come up with a solution to the problem consisted of two procedures: at first,
a Monte-Carlo type of simulation [17] was developed in order to quantify the effect of various
parameters upon the required superheat (SPH) correction at the ladle-furnace (LF) station, as
well as the final attained SPH at the continuous casters; second, the generated results were
fed into machine-learning systems in order to identify the degree of correlation of predicted
superheat values at the casting machines with respect to the reproduced corrected SPH values
at the LF. Table 1 presents the selected times for the processes involved in the computations:

Although two different casters were involved in the computations, the same transfer-time val-
ues from LF or VD were used. The simulation software was developed exclusively in R [18], as
it has unique programming instructions for simulation purposes. For example, the following
two commands generate 10,000 EAF process-time values derived from a normal distribution
with an average value of μ = 60.0 and a standard deviation value of σ = 10.0:

HeatNr < − 1 : 10000

 EAF _ Pr oc < − rnorm (HeatNr, 60.0, 10.0) (3)

The greatest advantage R has is the very fast execution of instructions that are written in a
form compatible for vectorization. Commands similar to (3) were written for the generation
of process-time values for the rest of the processes illustrated in Table 1.

Twenty percent from heats produced by the EAF pass through VD treatment; furthermore,
97.5% from the VD-treated steels were selected to be billets (or blooms) and the rest slabs. The
thermal history of a ladle refractory-insulation is of paramount importance for the amount of
heat the contained liquid steel will absorb during reheating at the LF. Every time a ladle is
placed in the position for tapping from the furnace, it may come from previous heat (almost
immediately after casting) or from a refractory maintenance process that has taken some ade-
quate time to resist the liquid-steel temperature increase at LF by absorbing some heat. The
refractory insulation has also some life cycle so a new ladle may come into the production
cycle at some point. Table 2 presents some plant data related to ladle refractory maintenance
that were taken under consideration in the development of the simulation program together
with the need for extra liquid-steel temperature (SPH).

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

165

Figure 1 presents the process times that were taken under consideration in the simulation
part; the total process time is the sum of (1) the actual process time, that is, the total time spent
at EAF, LF, VD (if the grade is VD-treated), and CCM time (which is either the bloom caster,
BCCM, and slab caster, SCCM, depending upon the nature of the cast product which may be
billet/bloom or slab, respectively) and (2) the transfer time, that is, the time required for the
liquid steel movement between the process stations.

Liquid steel is transferred from the EAF to the LF station, then it may be transferred directly
to the caster or to the VD station if this type of treatment is required, and then finally to the
CCM (BCCM or SCCM). Figure 2 depicts the time spent in this type of transfer and this is
generated in the simulation software. Since VD-treated production is limited to 20% of the
products, the average transfer values from LF to VD, and VD to CCM are small; on the other
hand, since LF may send the ladle directly to CCM, or via VD, it is realized that two regions
of points can be accumulated.

Type of maintenance or ladle
condition

Average number of
heats

Standard
deviation

Extra SPH required

Average (°C) Standard deviation

New ladle 85.0 8.0 50.0 15.0

Plates change 28.333 3.0 20.0 5.0

Inner nozzle change 10.625 1.5 30.0 8.0

Porous plug change 6.538 1.5 30.0 8.0

Slag zone repair 1.0 0.5 50.0 15.0

Immediately after previous heat 30.0 5.0 10.0 2.5

Normal preheating 8.0 6.0 10.0 3.0

Idle state 2.0 1.5 40.0 10.0

Table 2. Ladle refractory maintenance data.

Process Average (μ) process time, min Standard deviation (σ), min

EAF 60.0 10.0

EAF to LF transfer time 10.0 2.5

LF 50.0 10.0

LF to VD transfer time 15.0 3.0

LF to CCM transfer time 12.0 3.5

VD 50.0 7.0

VD to CCM transfer time 10.0 3.5

SCCM (slab caster; CCM) 45.0 5.5

BCCM (bloom caster; CCM) 65.0 10.0

Table 1. Process standard times.

Dependability Engineering166

Figure 1. Boxplots representation of the distribution of the process times, actual, transfer, and total.

Figure 2. Violin plots of the total transfer-time distributions between processes.

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

167

Figure 1 presents the process times that were taken under consideration in the simulation
part; the total process time is the sum of (1) the actual process time, that is, the total time spent
at EAF, LF, VD (if the grade is VD-treated), and CCM time (which is either the bloom caster,
BCCM, and slab caster, SCCM, depending upon the nature of the cast product which may be
billet/bloom or slab, respectively) and (2) the transfer time, that is, the time required for the
liquid steel movement between the process stations.

Liquid steel is transferred from the EAF to the LF station, then it may be transferred directly
to the caster or to the VD station if this type of treatment is required, and then finally to the
CCM (BCCM or SCCM). Figure 2 depicts the time spent in this type of transfer and this is
generated in the simulation software. Since VD-treated production is limited to 20% of the
products, the average transfer values from LF to VD, and VD to CCM are small; on the other
hand, since LF may send the ladle directly to CCM, or via VD, it is realized that two regions
of points can be accumulated.

Type of maintenance or ladle
condition

Average number of
heats

Standard
deviation

Extra SPH required

Average (°C) Standard deviation

New ladle 85.0 8.0 50.0 15.0

Plates change 28.333 3.0 20.0 5.0

Inner nozzle change 10.625 1.5 30.0 8.0

Porous plug change 6.538 1.5 30.0 8.0

Slag zone repair 1.0 0.5 50.0 15.0

Immediately after previous heat 30.0 5.0 10.0 2.5

Normal preheating 8.0 6.0 10.0 3.0

Idle state 2.0 1.5 40.0 10.0

Table 2. Ladle refractory maintenance data.

Process Average (μ) process time, min Standard deviation (σ), min

EAF 60.0 10.0

EAF to LF transfer time 10.0 2.5

LF 50.0 10.0

LF to VD transfer time 15.0 3.0

LF to CCM transfer time 12.0 3.5

VD 50.0 7.0

VD to CCM transfer time 10.0 3.5

SCCM (slab caster; CCM) 45.0 5.5

BCCM (bloom caster; CCM) 65.0 10.0

Table 1. Process standard times.

Dependability Engineering166

Figure 1. Boxplots representation of the distribution of the process times, actual, transfer, and total.

Figure 2. Violin plots of the total transfer-time distributions between processes.

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

167

Furthermore, Figure 3 illustrates the partial process-time distributions of the five metallurgi-
cal stations: EAF, LF, VD, SCCM, and BCCM. One may notice that in case that the greatest
percentage (80%) of the products is not VD-treated the related process-times distributions are
broadly extended. These data sets are also generated during the simulation runs. Based on
the ladle refractory maintenance data that are presented in Table 2, the simulation program
generated the refractory history for the ladle just before EAF tapping in a probabilistic fashion
that is illustrated in Figure 4. Depending upon the ladle refractory condition a SPH correction
as presented in Table 2 was applied at the LF. Again, here, the great advantage of R upon very
fast SPH correction computation should be noted:

HeatNr  < −  10000

 SPH _ Corr  < −  replicate(HeatNr,  get _ Ladle _ SPH _ Correction()) (4)

As described by (4), the vectorization potential of instructions like replicate can perform a
computing set of commands—in a function like get_Ladle_SPH_Correction—for a large num-
ber of repetitions within a very short period of time. At Stomana meltshop, a great number of
grades are produced. In this study, a total of 24 grades for blooms and 6 grades for slabs have
been selected. Figure 5 depicts the average liquidus temperatures based on results that were
gathered in the last 17 months. As seen on the graph, the grades are designated in the range
of 1–24 for blooms and 51–56 for slabs (Figure 6).

Figure 3. Process-time distributions for the processes: EAF, LF, VD, SCCM, and BCCM.

Dependability Engineering168

2.2. Deploying the DRF and GBM models

The present chapter was based upon data provided from the Stomana meltshop which
is hosted in a steelmaking plant located in Pernik, Bulgaria, and belongs to the SIDENOR/
VIOHALCO group of companies; furthermore, another set of data was reproduced by a Monte-
Carlo simulation as explained in the previous section. The main task was to generate at least
one supervised model that will identify critical parameters that affect the casting floor SPH
by adjusting the liquid steel SPH at the LF. The H2O Flow package [19] was deployed for
this type of work. This package is available for free from the web, and it is extensively used
by many companies and scientific institutions worldwide. Two machine-learning algorithms
(models) were used from this package: the distributed random forest (DRF) [20] and the gradi-
ent boosting method (GBM) [21]. A GBM is an ensemble of either regression or classification
tree models. Both are forward-learning ensemble methods that obtain predictive results using
gradually improved estimations. Boosting is a flexible nonlinear regression procedure that
helps improve the accuracy of trees. Weak classification algorithms are sequentially applied to
the incrementally changed data to create a series of decision trees, producing an ensemble of
weak prediction models. While boosting trees increases their accuracy, it also decreases speed
and user interpretability. The gradient boosting method generalizes tree boosting to minimize
these drawbacks. Finally, the distributed random forest (DRF) is a variation of a general tech-
nique called ensemble learning. An ensemble model is composed of the combination of sev-
eral smaller simple models (often small decision trees). The random forest approach tries to
de-correlate the trees by randomizing the set of variables that each tree is allowed to use. The

Figure 4. History of ladle refractory just before EAF tapping.

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

169

Furthermore, Figure 3 illustrates the partial process-time distributions of the five metallurgi-
cal stations: EAF, LF, VD, SCCM, and BCCM. One may notice that in case that the greatest
percentage (80%) of the products is not VD-treated the related process-times distributions are
broadly extended. These data sets are also generated during the simulation runs. Based on
the ladle refractory maintenance data that are presented in Table 2, the simulation program
generated the refractory history for the ladle just before EAF tapping in a probabilistic fashion
that is illustrated in Figure 4. Depending upon the ladle refractory condition a SPH correction
as presented in Table 2 was applied at the LF. Again, here, the great advantage of R upon very
fast SPH correction computation should be noted:

HeatNr  < −  10000

 SPH _ Corr  < −  replicate(HeatNr,  get _ Ladle _ SPH _ Correction()) (4)

As described by (4), the vectorization potential of instructions like replicate can perform a
computing set of commands—in a function like get_Ladle_SPH_Correction—for a large num-
ber of repetitions within a very short period of time. At Stomana meltshop, a great number of
grades are produced. In this study, a total of 24 grades for blooms and 6 grades for slabs have
been selected. Figure 5 depicts the average liquidus temperatures based on results that were
gathered in the last 17 months. As seen on the graph, the grades are designated in the range
of 1–24 for blooms and 51–56 for slabs (Figure 6).

Figure 3. Process-time distributions for the processes: EAF, LF, VD, SCCM, and BCCM.

Dependability Engineering168

2.2. Deploying the DRF and GBM models

The present chapter was based upon data provided from the Stomana meltshop which
is hosted in a steelmaking plant located in Pernik, Bulgaria, and belongs to the SIDENOR/
VIOHALCO group of companies; furthermore, another set of data was reproduced by a Monte-
Carlo simulation as explained in the previous section. The main task was to generate at least
one supervised model that will identify critical parameters that affect the casting floor SPH
by adjusting the liquid steel SPH at the LF. The H2O Flow package [19] was deployed for
this type of work. This package is available for free from the web, and it is extensively used
by many companies and scientific institutions worldwide. Two machine-learning algorithms
(models) were used from this package: the distributed random forest (DRF) [20] and the gradi-
ent boosting method (GBM) [21]. A GBM is an ensemble of either regression or classification
tree models. Both are forward-learning ensemble methods that obtain predictive results using
gradually improved estimations. Boosting is a flexible nonlinear regression procedure that
helps improve the accuracy of trees. Weak classification algorithms are sequentially applied to
the incrementally changed data to create a series of decision trees, producing an ensemble of
weak prediction models. While boosting trees increases their accuracy, it also decreases speed
and user interpretability. The gradient boosting method generalizes tree boosting to minimize
these drawbacks. Finally, the distributed random forest (DRF) is a variation of a general tech-
nique called ensemble learning. An ensemble model is composed of the combination of sev-
eral smaller simple models (often small decision trees). The random forest approach tries to
de-correlate the trees by randomizing the set of variables that each tree is allowed to use. The

Figure 4. History of ladle refractory just before EAF tapping.

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

169

Figure 5. Liquidus temperatures for the selected grades of blooms and slabs.

final ensemble of trees is then bagged to make the random forest predictions [22]. In total, up
to 100,000 cases (rows) of data were collected by the simulation software; each case included
a heat produced at the EAF, processed at LF, and then directly transferred to the CCM, or
after an extra treatment at the VD. The software was run in a DELL Alienware laptop with the
Intel i7-6700HQ CPU (8 cores) @2.6 GHz, 16 GB RAM, running under a 64-bit Windows 10
Professional OS. At first, a cluster was generated by Java-Virtual-Machine 64-bit-software
called by a program developed for this purpose in R in which the memory size, the number of
CPU-cores, and the H2O Flow connection was initialized and established. Then the set of data
(data frame) was imported into the cluster. Each time the data frame was split in two frames, in
a random fashion: the training data frame consisted of the 75% of the data and the validation
data frame consisted of the rest 25%. The models (algorithms) were trained from the 75% of the
data and tested (validated) on the rest 25%, generating supervised models that are valid within
a measurable statistical error. Two types of running programs were executed per algorithm: in

Dependability Engineering170

the first part, a grid search was performed in order to deduce the proper tuning parameters that
potentially minimized the validation error, and in the second part, the execution of the tuned
model resulted in the derivation of the final supervised model. The grid search is time consum-
ing as it requires a trial-and-error procedure. One final remark concerning the deployment of
the H2O Flow package: it may be initiated by R and run in a stand-alone program in R, or run
in a web-based framework (e.g., Mozilla Firefox); the latter was extensively used in this study.

3. Results and discussion

Preliminary investigations showed that from the initial set of parameters that were repro-
duced by the simulation runs, only a few were found critical enough to be included in this

Figure 6. Average SPH values for the selected grades of blooms and slabs based on the current practice; together are
presented the limits of plus/minus one standard deviation (μ ± σ).

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

171

Figure 5. Liquidus temperatures for the selected grades of blooms and slabs.

final ensemble of trees is then bagged to make the random forest predictions [22]. In total, up
to 100,000 cases (rows) of data were collected by the simulation software; each case included
a heat produced at the EAF, processed at LF, and then directly transferred to the CCM, or
after an extra treatment at the VD. The software was run in a DELL Alienware laptop with the
Intel i7-6700HQ CPU (8 cores) @2.6 GHz, 16 GB RAM, running under a 64-bit Windows 10
Professional OS. At first, a cluster was generated by Java-Virtual-Machine 64-bit-software
called by a program developed for this purpose in R in which the memory size, the number of
CPU-cores, and the H2O Flow connection was initialized and established. Then the set of data
(data frame) was imported into the cluster. Each time the data frame was split in two frames, in
a random fashion: the training data frame consisted of the 75% of the data and the validation
data frame consisted of the rest 25%. The models (algorithms) were trained from the 75% of the
data and tested (validated) on the rest 25%, generating supervised models that are valid within
a measurable statistical error. Two types of running programs were executed per algorithm: in

Dependability Engineering170

the first part, a grid search was performed in order to deduce the proper tuning parameters that
potentially minimized the validation error, and in the second part, the execution of the tuned
model resulted in the derivation of the final supervised model. The grid search is time consum-
ing as it requires a trial-and-error procedure. One final remark concerning the deployment of
the H2O Flow package: it may be initiated by R and run in a stand-alone program in R, or run
in a web-based framework (e.g., Mozilla Firefox); the latter was extensively used in this study.

3. Results and discussion

Preliminary investigations showed that from the initial set of parameters that were repro-
duced by the simulation runs, only a few were found critical enough to be included in this

Figure 6. Average SPH values for the selected grades of blooms and slabs based on the current practice; together are
presented the limits of plus/minus one standard deviation (μ ± σ).

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

171

type of study. Although, in data-science modeling, all parameters are included in the compu-
tations and the algorithms are allowed to select the most critical ones, in this analysis it was
considered to decrease the number of most important parameters in order to have the ability
to appraise better the phenomena involved. Table 3 presents the parameters that were finally
selected in this part.

The parameter SPH_Overall_ESt was computed based on some assumptions for the tem-
perature loss at the casting floor. Table 4 presents the values used for the calculation of
this term.

The values Cte1, Cte2, etc., used in every simulated test were picked up randomly from a nor-
mal distribution with the corresponding (μ, σ) values as shown in Table 4; the formula used
for parameter SPH_Overall_Est was:

SPH _ Overall _ ESt  < −  SPH _ Corr3 − Cte1 * Holding _ Time−

 Cte2 * SPH _ HtInSeq _ CORR − Cte3 * VD _ Pr oc _ tot _ Time−
 Cte4 * Tund _ Temp _ Drop

 (5)

The SPH_HtInSeq_CORR term is randomly drafted from a normal distribution of (μ, σ) equal
to (15.0, 2.0) for the heats that are cast first in a tundish casting sequence. From practice experi-
ence, an extra 15°C temperature is generally required for the first heat in a casting sequence as

Name Description

SPH_Corr3 The liquid steel SPH at the LF exit

Holding_Time The time liquid steel is contained in a ladle

VD_Proc_tot_Time Total processing time of VD process (if any for a heat)

SPH_HtInSeq_CORR SPH correction if the heat is supposed to be first in a sequence of castings in a
tundish

VAR_Grade_Sel The 30 selected grades for analysis

VAR_Grade_SPH_CCM The casting floor SPH for the 30 selected grades as experienced in the current
actual meltshop practice

SPH_Overall_ESt The simulated expected/estimated SPH at the casting floor

Table 3. Critical parameters selected for data-science modeling.

Description Average (μ) Standard deviation (σ)

Cte1 (Holding_Time, °C/hr) 0.50 0.25

Cte2 (SPH_HtInSeq_CORR) 0.80 0.07

Cte3 (VD_Proc_tot_Time, °C/hr) 1.417 0.133

Cte4 (Tund_Temp_Drop) 0.85 0.05

Table 4. Values used for the calculation of the expected casting floor SPH.

Dependability Engineering172

tundish comes from a preheating station at about 1100°C and absorbs some heat from liquid
steel. Normally, the ladle-to-tundish liquid-steel transfer operation absorbs some heat; the
Tund_Temp_Drop term corresponds to that effect and is also randomly chosen from a normal
distribution with (μ, σ) equal to (35.0, 5.0) for all heats. Figures 7 and 8 illustrate the DRF and
GBM results with respect to predicting the SPH_Overall_ESt term.

For both cases, the ANOVA (analysis of variance) [23] gave some good statistical figures; simpli-
fying results for the GBM model only, the residual standard error was 3.159 on 99,998 degrees of
freedom, the multiple R-squared was 0.9484, and the F-statistic gave 1.838·106 on 1 and 99,998 DF,
with a p value <2.2·10−16. Normally, the GBM algorithm suffices to come up with a reasonable
supervised model; however, the DRF algorithm was added for comparison purposes.

Figure 7. DRF results for the prediction of the casting floor SPH (term SPH_Overall_ESt); top graph presents grid
sensitivity analysis in order to select the proper tuning parameters and the bottom graph presents the degree of
approximation.

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

173

type of study. Although, in data-science modeling, all parameters are included in the compu-
tations and the algorithms are allowed to select the most critical ones, in this analysis it was
considered to decrease the number of most important parameters in order to have the ability
to appraise better the phenomena involved. Table 3 presents the parameters that were finally
selected in this part.

The parameter SPH_Overall_ESt was computed based on some assumptions for the tem-
perature loss at the casting floor. Table 4 presents the values used for the calculation of
this term.

The values Cte1, Cte2, etc., used in every simulated test were picked up randomly from a nor-
mal distribution with the corresponding (μ, σ) values as shown in Table 4; the formula used
for parameter SPH_Overall_Est was:

SPH _ Overall _ ESt  < −  SPH _ Corr3 − Cte1 * Holding _ Time−

 Cte2 * SPH _ HtInSeq _ CORR − Cte3 * VD _ Pr oc _ tot _ Time−
 Cte4 * Tund _ Temp _ Drop

 (5)

The SPH_HtInSeq_CORR term is randomly drafted from a normal distribution of (μ, σ) equal
to (15.0, 2.0) for the heats that are cast first in a tundish casting sequence. From practice experi-
ence, an extra 15°C temperature is generally required for the first heat in a casting sequence as

Name Description

SPH_Corr3 The liquid steel SPH at the LF exit

Holding_Time The time liquid steel is contained in a ladle

VD_Proc_tot_Time Total processing time of VD process (if any for a heat)

SPH_HtInSeq_CORR SPH correction if the heat is supposed to be first in a sequence of castings in a
tundish

VAR_Grade_Sel The 30 selected grades for analysis

VAR_Grade_SPH_CCM The casting floor SPH for the 30 selected grades as experienced in the current
actual meltshop practice

SPH_Overall_ESt The simulated expected/estimated SPH at the casting floor

Table 3. Critical parameters selected for data-science modeling.

Description Average (μ) Standard deviation (σ)

Cte1 (Holding_Time, °C/hr) 0.50 0.25

Cte2 (SPH_HtInSeq_CORR) 0.80 0.07

Cte3 (VD_Proc_tot_Time, °C/hr) 1.417 0.133

Cte4 (Tund_Temp_Drop) 0.85 0.05

Table 4. Values used for the calculation of the expected casting floor SPH.

Dependability Engineering172

tundish comes from a preheating station at about 1100°C and absorbs some heat from liquid
steel. Normally, the ladle-to-tundish liquid-steel transfer operation absorbs some heat; the
Tund_Temp_Drop term corresponds to that effect and is also randomly chosen from a normal
distribution with (μ, σ) equal to (35.0, 5.0) for all heats. Figures 7 and 8 illustrate the DRF and
GBM results with respect to predicting the SPH_Overall_ESt term.

For both cases, the ANOVA (analysis of variance) [23] gave some good statistical figures; simpli-
fying results for the GBM model only, the residual standard error was 3.159 on 99,998 degrees of
freedom, the multiple R-squared was 0.9484, and the F-statistic gave 1.838·106 on 1 and 99,998 DF,
with a p value <2.2·10−16. Normally, the GBM algorithm suffices to come up with a reasonable
supervised model; however, the DRF algorithm was added for comparison purposes.

Figure 7. DRF results for the prediction of the casting floor SPH (term SPH_Overall_ESt); top graph presents grid
sensitivity analysis in order to select the proper tuning parameters and the bottom graph presents the degree of
approximation.

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

173

Figure 8. GBM results for the prediction of the casting floor SPH (term SPH_Overall_ESt); top graph presents grid
sensitivity analysis in order to select the proper tuning parameters, and the bottom graph presents the degree of
approximation.

Order Parameter

1 SPH_Corr3

2 VD_Proc_tot_Time

3 SPH_HtInSeq_CORR

4 Holding_Time

5 VAR_Grade_SPH_CCM

6 VAR_Grade_Sel

Table 5. Relative importance of variables for the prediction of SPH_Overall_ESt (GBM model).

Dependability Engineering174

Table 5 shows the relative importance of the considered parameters for the prediction of
SPH_Overall_ESt given by the GBM model; the recommended LF-exit SPH (SPH_Corr3)
plays a great role, indeed. Ignoring the SPH_Overall_ESt term, one interesting analysis
could be the prediction of the current practice superheats (actual SPH, term VAR_Grade_
SPH_CCM) at the casting floor for the selected grades; it should be pointed out that the
selection of these grades is completely at random, that is, the simulated heats do not follow
at all the SPH data from the current meltshop practice. Nevertheless, the deduced DRF
and GBM supervised models exhibited a remarkable statistical significance: again, sim-
plifying results for the GBM model only, the residual standard error was 4.988 on 99,998
degrees of freedom, the multiple R-squared was 0.5352, and the F-statistic was 1.152·105 on

Figure 9. DRF results for the prediction of the current practice casting floor SPH (term VAR_Grade_SPH_CCM); top
graph presents grid sensitivity analysis in order to select the proper tuning parameters, and the bottom graph presents
the degree of approximation.

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

175

Figure 8. GBM results for the prediction of the casting floor SPH (term SPH_Overall_ESt); top graph presents grid
sensitivity analysis in order to select the proper tuning parameters, and the bottom graph presents the degree of
approximation.

Order Parameter

1 SPH_Corr3

2 VD_Proc_tot_Time

3 SPH_HtInSeq_CORR

4 Holding_Time

5 VAR_Grade_SPH_CCM

6 VAR_Grade_Sel

Table 5. Relative importance of variables for the prediction of SPH_Overall_ESt (GBM model).

Dependability Engineering174

Table 5 shows the relative importance of the considered parameters for the prediction of
SPH_Overall_ESt given by the GBM model; the recommended LF-exit SPH (SPH_Corr3)
plays a great role, indeed. Ignoring the SPH_Overall_ESt term, one interesting analysis
could be the prediction of the current practice superheats (actual SPH, term VAR_Grade_
SPH_CCM) at the casting floor for the selected grades; it should be pointed out that the
selection of these grades is completely at random, that is, the simulated heats do not follow
at all the SPH data from the current meltshop practice. Nevertheless, the deduced DRF
and GBM supervised models exhibited a remarkable statistical significance: again, sim-
plifying results for the GBM model only, the residual standard error was 4.988 on 99,998
degrees of freedom, the multiple R-squared was 0.5352, and the F-statistic was 1.152·105 on

Figure 9. DRF results for the prediction of the current practice casting floor SPH (term VAR_Grade_SPH_CCM); top
graph presents grid sensitivity analysis in order to select the proper tuning parameters, and the bottom graph presents
the degree of approximation.

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

175

1 and 99,998 DF, with a p-value <2.2·10−16. Figures 9 and 10 illustrate these findings for the
prediction of the important term VAR_Grade_SPH_CCM by excluding the computed term
SPH_Overall_ESt.

Table 6 illustrates the relative importance of the parameters that were considered for the pre-
diction of the current practice superheats (VAR_Grade_SPH_CCM) given by the GBM model.
The great importance of the selected grade parameter (VAR_Grade_Sel) seems as expected
due to the nature of this supervised model; however, SPH_Corr3 still appears to be very
important. Apart from the analysis so far, one extra step was taken in order to test whether the
derived results may be attributed to pure coincidence. In the position of the SPH_Overall_ESt

Figure 10. GBM results for the prediction of the current practice casting floor SPH (term VAR_Grade_SPH_CCM); top
graph presents grid sensitivity analysis in order to select the proper tuning parameters, and the bottom graph presents
the degree of approximation.

Dependability Engineering176

term, the term SPH_tun1 was placed. This resembles more to the initial tundish temperature
(1) of the Gupta et al [7] work, that exhibited a correlation coefficient R2 = 0.73; indeed, after
some manipulation the following equation was derived:

 SPH _ tun1 = f + 0.019LL − 0.012TAT − 0.011 T liq + 0.358SP H past + 0.631SP H LF (6)

One should recall that for the term SPHLF the known term SPH_Corr3 can be used. Tliq is the
liquidus temperature of the selected grades, and f is a function of the Holding_Time. The Tliq
and SPHpast terms were randomly gathered from normal distributions with (μ, σ) equal to
(1490.0, 10.0) and (40.0, 5.0), respectively. Figure 11 illustrates the derived GBM supervised
model for the prediction of the SPH_tun1 term as computed in (6).

The ANOVA for the model results presented in Figure 11 exhibited the following statistical
significance: the residual standard error was 2.446 on 56,189 degrees of freedom, the multiple
R-squared was 0.9659, and the F-statistic was 1.589·106 on 1 and 56,189 DF, with a p-value
<2.2·10−16. In Table 7, the recommended LF-exit superheat (SPH_Corr3) still appears to be of
great importance.

Although 100,000 heats were simulated, a number of data had to be excluded from the
data-science analysis in case that some SPH_tun1 predictions were outside the (10.0, 70.0)
range. The statistical significance appears to be more than satisfactory, realizing that the
parameters presented in Table 3 were taken under consideration with the only substitu-
tion of term SPH_tun1 in the place of term SPH_Overall_ESt. One final thing has to be
mentioned: normally, Monte-Carlo type simulations converge to an average value (μ) and
a standard deviation (σ) that tends to decrease as the number of repetitions (number of
heats in this case) increases. Figure 12 describes these findings by simulating meltshop
production from 1000 till 250,000 heats. The computed SPH values for μ + 3*σ exhibit a
tendency to decrease as the number of heats increases. At the same time, the reduction of
the expected SPH values, as the number of heats increases, seems to point out that there is
a tendency for improvement once some logic is involved in the recommendation of LF exit
SPH temperatures.

Order Parameter

1 VAR_Grade_Sel

2 VD_Proc_tot_Time

3 SPH_Corr3

4 Holding_Time

5 SPH_HtInSeq_CORR

Table 6. Relative importance of variables for the prediction of VAR_Grade_SPH_CCM (GBM model).

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

177

1 and 99,998 DF, with a p-value <2.2·10−16. Figures 9 and 10 illustrate these findings for the
prediction of the important term VAR_Grade_SPH_CCM by excluding the computed term
SPH_Overall_ESt.

Table 6 illustrates the relative importance of the parameters that were considered for the pre-
diction of the current practice superheats (VAR_Grade_SPH_CCM) given by the GBM model.
The great importance of the selected grade parameter (VAR_Grade_Sel) seems as expected
due to the nature of this supervised model; however, SPH_Corr3 still appears to be very
important. Apart from the analysis so far, one extra step was taken in order to test whether the
derived results may be attributed to pure coincidence. In the position of the SPH_Overall_ESt

Figure 10. GBM results for the prediction of the current practice casting floor SPH (term VAR_Grade_SPH_CCM); top
graph presents grid sensitivity analysis in order to select the proper tuning parameters, and the bottom graph presents
the degree of approximation.

Dependability Engineering176

term, the term SPH_tun1 was placed. This resembles more to the initial tundish temperature
(1) of the Gupta et al [7] work, that exhibited a correlation coefficient R2 = 0.73; indeed, after
some manipulation the following equation was derived:

 SPH _ tun1 = f + 0.019LL − 0.012TAT − 0.011 T liq + 0.358SP H past + 0.631SP H LF (6)

One should recall that for the term SPHLF the known term SPH_Corr3 can be used. Tliq is the
liquidus temperature of the selected grades, and f is a function of the Holding_Time. The Tliq
and SPHpast terms were randomly gathered from normal distributions with (μ, σ) equal to
(1490.0, 10.0) and (40.0, 5.0), respectively. Figure 11 illustrates the derived GBM supervised
model for the prediction of the SPH_tun1 term as computed in (6).

The ANOVA for the model results presented in Figure 11 exhibited the following statistical
significance: the residual standard error was 2.446 on 56,189 degrees of freedom, the multiple
R-squared was 0.9659, and the F-statistic was 1.589·106 on 1 and 56,189 DF, with a p-value
<2.2·10−16. In Table 7, the recommended LF-exit superheat (SPH_Corr3) still appears to be of
great importance.

Although 100,000 heats were simulated, a number of data had to be excluded from the
data-science analysis in case that some SPH_tun1 predictions were outside the (10.0, 70.0)
range. The statistical significance appears to be more than satisfactory, realizing that the
parameters presented in Table 3 were taken under consideration with the only substitu-
tion of term SPH_tun1 in the place of term SPH_Overall_ESt. One final thing has to be
mentioned: normally, Monte-Carlo type simulations converge to an average value (μ) and
a standard deviation (σ) that tends to decrease as the number of repetitions (number of
heats in this case) increases. Figure 12 describes these findings by simulating meltshop
production from 1000 till 250,000 heats. The computed SPH values for μ + 3*σ exhibit a
tendency to decrease as the number of heats increases. At the same time, the reduction of
the expected SPH values, as the number of heats increases, seems to point out that there is
a tendency for improvement once some logic is involved in the recommendation of LF exit
SPH temperatures.

Order Parameter

1 VAR_Grade_Sel

2 VD_Proc_tot_Time

3 SPH_Corr3

4 Holding_Time

5 SPH_HtInSeq_CORR

Table 6. Relative importance of variables for the prediction of VAR_Grade_SPH_CCM (GBM model).

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

177

Order Parameter

1 Holding_Time

2 SPH_Corr3

3 VD_Proc_tot_Time

4 SPH_HtInSeq_CORR

5 VAR_Grade_SPH_CCM

6 VAR_Grade_Sel

Table 7. Relative importance of variables for the prediction of SPH_tun1 (GBM model).

Figure 11. GBM results for the prediction of the first SPH at the casting floor based on Gupta et al. [7] (term SPH_tun1);
top graph presents grid sensitivity analysis in order to select the proper tuning parameters, and the bottom graph
presents the degree of approximation.

Dependability Engineering178

4. Conclusions

A Monte-Carlo simulation software was developed in order to reproduce meltshop data con-
cerning process times, ladle refractory history, and effect on liquid-steel temperature loss at
the casting floor. Data-science modeling was applied in order to deduce supervised algo-
rithms for the prediction of casting floor superheats based on critical parameters from repro-
duced and plant data. The results were also related with findings from a published work.
In most cases, the derived supervised models exhibited a remarkable statistical significance,
which seems to be too difficult to occur due to pure coincidence. It is very likely that a ladle
tracking system will greatly result in a better achievement of desired casting floor superheats,
and therefore, important economic savings.

Figure 12. Potential of improvement on the SPH per grade. Top graph: maximum values (μ + 3*σ) of SPH (term SPH_
Overall_ESt) with respect to simulated number of heats; 1000 heats (1), 10000 heats (2), 100000 heats (3, dotted), 250000
heats (4, dashed), current SPH practice (5, solid). Bottom graph: current average SPH values (solid), expected SPH (SPH_
Overall_ESt) values (dashed).

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

179

Order Parameter

1 Holding_Time

2 SPH_Corr3

3 VD_Proc_tot_Time

4 SPH_HtInSeq_CORR

5 VAR_Grade_SPH_CCM

6 VAR_Grade_Sel

Table 7. Relative importance of variables for the prediction of SPH_tun1 (GBM model).

Figure 11. GBM results for the prediction of the first SPH at the casting floor based on Gupta et al. [7] (term SPH_tun1);
top graph presents grid sensitivity analysis in order to select the proper tuning parameters, and the bottom graph
presents the degree of approximation.

Dependability Engineering178

4. Conclusions

A Monte-Carlo simulation software was developed in order to reproduce meltshop data con-
cerning process times, ladle refractory history, and effect on liquid-steel temperature loss at
the casting floor. Data-science modeling was applied in order to deduce supervised algo-
rithms for the prediction of casting floor superheats based on critical parameters from repro-
duced and plant data. The results were also related with findings from a published work.
In most cases, the derived supervised models exhibited a remarkable statistical significance,
which seems to be too difficult to occur due to pure coincidence. It is very likely that a ladle
tracking system will greatly result in a better achievement of desired casting floor superheats,
and therefore, important economic savings.

Figure 12. Potential of improvement on the SPH per grade. Top graph: maximum values (μ + 3*σ) of SPH (term SPH_
Overall_ESt) with respect to simulated number of heats; 1000 heats (1), 10000 heats (2), 100000 heats (3, dotted), 250000
heats (4, dashed), current SPH practice (5, solid). Bottom graph: current average SPH values (solid), expected SPH (SPH_
Overall_ESt) values (dashed).

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

179

Acknowledgements

The author is grateful to the top-management support in this study.

Author details

Panagiotis Sismanis

Address all correspondence to: psismanis@sidenor.vionet.gr

SIDENOR SA, Athens, Greece

References

[1] Ayata K, Mori H, Taniguchi K, Matsuda H. Low superheat teeming with electromag-
netic stirring. Iron and Steel Institute of Japan International. 1995;35(6):680-685

[2] Thomas B. Issues in thermal-mechanical modeling of casting processes. Iron and Steel
Institute of Japan International. 1995;35(6):737-743

[3] Guyot V, Martin JF, Ruelle A, d' Anselme A, Radot JP, Bobadilla M, Lamant JY, Pontoire
JN. Control of surface quality of 0.08% < C < 0.12% steel slabs in continuous casting. Iron
and Steel Institute of Japan International. 1996;36:S227-S230

[4] Jansto SG. Steelmaking and continuous casting process metallurgy factors influencing
hot ductility behavior of niobium bearing steels. Metal. Brno, Czech Republic;
2013. pp. 36-42

[5] Jacobi H, Schwerdtfeger K. Ripple marks on cast steel surfaces. Iron and Steel Institute
of Japan International. 2013;53(7):1180-1186

[6] Smithells CJ. Metals Reference Book. 5th ed. London: Butterworths; 1976

[7] Gupta N, Chandra S. Temperature prediction model for controlling casting superheat
temperature. Iron and Steel Institute of Japan International. 2004;44(9):1517-1526

[8] Addes VI, Sabol JD. Development and implementation of the process model for con-
trolling casting superheat temperature. In: Steelmaking Conference Proceedings. Iron &
Steel Society; 1996. pp. 333-340

[9] Fredman TP, Torrkulla J, Saxen H. Two-dimensional dynamic simulation of the thermal
state of ladles. Metallurgical and Materials Transactions B. 1999;30B:323-330

[10] Tian H, Mao Z, Wang Y. Hybrid model of molten steel temperature prediction in LF. Iron
and Steel Institute of Japan International. 2008;48(1):58-62

Dependability Engineering180

[11] Tian H, Mao Z, Wang A. New incremental learning modeling method based on multiple
models for temperature prediction of molten steel in LF. Iron and Steel Institute of Japan
International. 2009;49(1):58-63

[12] Chen S, Abraham S. On-line superheat control model for continuously cast slabs and
billets. Iron & Steel Technology. 2010;7:89-96

[13] Chen S, D'Souza C, Evans D, Dunnett K, Burns J, Sylvestre G, Cannon C. Continuous
enhancement of the EVRAZ superheat model control for slab casting. Iron & Steel
Technology. 2013;7:85-96

[14] Sonoda S, Murata N, Hino H, Kitada H, Kano M. A statistical model for predicting the
liquid steel temperature in ladle and Tundish by bootstrap filter. Iron and Steel Institute
of Japan International. 2012;52(6):1086-1091

[15] AustralTek. Physical ladle tracking system [Internet]. Available from: http://steeltrack-
ing.com/video.html [Accessed: November 5, 2017]

[16] SinterCast CGI. SinterCast tracking technologies [Internet]. Available from: http://sinter-
cast.com/technology/sintercast-tracking-technologies [Accessed: October 20, 2017]

[17] Hillier FS, Lieberman GJ. Operations Research. 2nd ed. San Francisco: Holden-Day Inc;
1974

[18] R Foundation. The R project for statistical computing [Internet]. Available from: https://
www.r-project.org/ [Accessed: August 30, 2017]

[19] H2O.ai. H2O flow [Internet]. Available from: https://www.h2o.ai/h2o/h2o-flow/ [Accessed:
August 31, 2017]

[20] Aiello S, Eckstrand E, Fu A, Landry M, Aboyoun P, Lanford J, editors. Machine learn-
ing with R and H2O [Internet]. [Updated: January 2017]. Available from: http://h2o-
release.s3.amazonaws.com/h2o/rel-tutte/2/docs-website/h2o-docs/booklets/RBooklet.
pdf [Accessed: November 5, 2017]

[21] Click C, Malohlava M, Candel A, Roark H, Parmar V, Lanford J, editors. Gradient
boosted models with H2O [Internet]. [Updated: February 2016]. Available from: https://
h2o-release.s3.amazonaws.com/h2o/rel-tukey/6/docs-website/h2o-docs/booklets/GBM_
Vignette.pdf

[22] Zumel N, Mount J. Practical Data Science with R. New York: MANNING; 2014

[23] Faraway JJ. Practical Regression and ANOVA with R. Bath: University of Bath; 2002

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

181

Acknowledgements

The author is grateful to the top-management support in this study.

Author details

Panagiotis Sismanis

Address all correspondence to: psismanis@sidenor.vionet.gr

SIDENOR SA, Athens, Greece

References

[1] Ayata K, Mori H, Taniguchi K, Matsuda H. Low superheat teeming with electromag-
netic stirring. Iron and Steel Institute of Japan International. 1995;35(6):680-685

[2] Thomas B. Issues in thermal-mechanical modeling of casting processes. Iron and Steel
Institute of Japan International. 1995;35(6):737-743

[3] Guyot V, Martin JF, Ruelle A, d' Anselme A, Radot JP, Bobadilla M, Lamant JY, Pontoire
JN. Control of surface quality of 0.08% < C < 0.12% steel slabs in continuous casting. Iron
and Steel Institute of Japan International. 1996;36:S227-S230

[4] Jansto SG. Steelmaking and continuous casting process metallurgy factors influencing
hot ductility behavior of niobium bearing steels. Metal. Brno, Czech Republic;
2013. pp. 36-42

[5] Jacobi H, Schwerdtfeger K. Ripple marks on cast steel surfaces. Iron and Steel Institute
of Japan International. 2013;53(7):1180-1186

[6] Smithells CJ. Metals Reference Book. 5th ed. London: Butterworths; 1976

[7] Gupta N, Chandra S. Temperature prediction model for controlling casting superheat
temperature. Iron and Steel Institute of Japan International. 2004;44(9):1517-1526

[8] Addes VI, Sabol JD. Development and implementation of the process model for con-
trolling casting superheat temperature. In: Steelmaking Conference Proceedings. Iron &
Steel Society; 1996. pp. 333-340

[9] Fredman TP, Torrkulla J, Saxen H. Two-dimensional dynamic simulation of the thermal
state of ladles. Metallurgical and Materials Transactions B. 1999;30B:323-330

[10] Tian H, Mao Z, Wang Y. Hybrid model of molten steel temperature prediction in LF. Iron
and Steel Institute of Japan International. 2008;48(1):58-62

Dependability Engineering180

[11] Tian H, Mao Z, Wang A. New incremental learning modeling method based on multiple
models for temperature prediction of molten steel in LF. Iron and Steel Institute of Japan
International. 2009;49(1):58-63

[12] Chen S, Abraham S. On-line superheat control model for continuously cast slabs and
billets. Iron & Steel Technology. 2010;7:89-96

[13] Chen S, D'Souza C, Evans D, Dunnett K, Burns J, Sylvestre G, Cannon C. Continuous
enhancement of the EVRAZ superheat model control for slab casting. Iron & Steel
Technology. 2013;7:85-96

[14] Sonoda S, Murata N, Hino H, Kitada H, Kano M. A statistical model for predicting the
liquid steel temperature in ladle and Tundish by bootstrap filter. Iron and Steel Institute
of Japan International. 2012;52(6):1086-1091

[15] AustralTek. Physical ladle tracking system [Internet]. Available from: http://steeltrack-
ing.com/video.html [Accessed: November 5, 2017]

[16] SinterCast CGI. SinterCast tracking technologies [Internet]. Available from: http://sinter-
cast.com/technology/sintercast-tracking-technologies [Accessed: October 20, 2017]

[17] Hillier FS, Lieberman GJ. Operations Research. 2nd ed. San Francisco: Holden-Day Inc;
1974

[18] R Foundation. The R project for statistical computing [Internet]. Available from: https://
www.r-project.org/ [Accessed: August 30, 2017]

[19] H2O.ai. H2O flow [Internet]. Available from: https://www.h2o.ai/h2o/h2o-flow/ [Accessed:
August 31, 2017]

[20] Aiello S, Eckstrand E, Fu A, Landry M, Aboyoun P, Lanford J, editors. Machine learn-
ing with R and H2O [Internet]. [Updated: January 2017]. Available from: http://h2o-
release.s3.amazonaws.com/h2o/rel-tutte/2/docs-website/h2o-docs/booklets/RBooklet.
pdf [Accessed: November 5, 2017]

[21] Click C, Malohlava M, Candel A, Roark H, Parmar V, Lanford J, editors. Gradient
boosted models with H2O [Internet]. [Updated: February 2016]. Available from: https://
h2o-release.s3.amazonaws.com/h2o/rel-tukey/6/docs-website/h2o-docs/booklets/GBM_
Vignette.pdf

[22] Zumel N, Mount J. Practical Data Science with R. New York: MANNING; 2014

[23] Faraway JJ. Practical Regression and ANOVA with R. Bath: University of Bath; 2002

Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling…
http://dx.doi.org/10.5772/intechopen.72780

181

Chapter 11

Use of Renewable Energy for Electrification of Rural
Community to Stop Migration of Youth from Rural
Area to Urban: A Case Study of Tanzania

Urbanus F Melkior, Josef Tlustý and Zdeněk Müller

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74956

Provisional chapter

Use of Renewable Energy for Electrification of Rural
Community to StopMigration of Youth from Rural Area
to Urban: A Case Study of Tanzania

Urbanus F Melkior, Josef Tlustý and Zdeněk Müller

Additional information is available at the end of the chapter

Abstract

Rural electrification is the key in developing countries to encourage youth and skilled
personnel to stay in rural for production activities. Lack of grid network in Tanzania
currently discourages youth and skilled personnel to live in rural areas. Tanzania has
diverse renewable energy which needs to be developed for electricity generation. Most of
these sources are found in rural areas but they are not developed and grid network are not
extended because of low population density. The government has put in place policy
which encourages small power producers to develop renewable energy resources. Energy
produced would be sold to the community directly or to the government owned company
for grid integration. This paper discussed three major renewable energy sources such as
wind, solar and hydro power. Electrifying rural areas will encourage youth to reside in
their communities and engaging themselves in production activities like farming and
livestock keeping. Also communication among communities and networks between rural
- urban would be improved. Establishment of small industries would lead more farm
products and earn more money. Therefore, the strong links between rural - urban com-
munities would be strengthened; hence youth migration would be stopped naturally.

Keywords: wind, solar, hydropower for rural electrification

1. Introduction

Tanzania is one among the few countries blessed with diverse primary source of energy, some
developed andmost of them undeveloped. The primary sources of energy available in Tanzania
include hydropower (big, mini, micro, and pico), geothermal, solar, wind, biomass, coal,

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.74956

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 11

Use of Renewable Energy for Electrification of Rural
Community to Stop Migration of Youth from Rural
Area to Urban: A Case Study of Tanzania

Urbanus F Melkior, Josef Tlustý and Zdeněk Müller

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74956

Provisional chapter

Use of Renewable Energy for Electrification of Rural
Community to StopMigration of Youth from Rural Area
to Urban: A Case Study of Tanzania

Urbanus F Melkior, Josef Tlustý and Zdeněk Müller

Additional information is available at the end of the chapter

Abstract

Rural electrification is the key in developing countries to encourage youth and skilled
personnel to stay in rural for production activities. Lack of grid network in Tanzania
currently discourages youth and skilled personnel to live in rural areas. Tanzania has
diverse renewable energy which needs to be developed for electricity generation. Most of
these sources are found in rural areas but they are not developed and grid network are not
extended because of low population density. The government has put in place policy
which encourages small power producers to develop renewable energy resources. Energy
produced would be sold to the community directly or to the government owned company
for grid integration. This paper discussed three major renewable energy sources such as
wind, solar and hydro power. Electrifying rural areas will encourage youth to reside in
their communities and engaging themselves in production activities like farming and
livestock keeping. Also communication among communities and networks between rural
- urban would be improved. Establishment of small industries would lead more farm
products and earn more money. Therefore, the strong links between rural - urban com-
munities would be strengthened; hence youth migration would be stopped naturally.

Keywords: wind, solar, hydropower for rural electrification

1. Introduction

Tanzania is one among the few countries blessed with diverse primary source of energy, some
developed andmost of them undeveloped. The primary sources of energy available in Tanzania
include hydropower (big, mini, micro, and pico), geothermal, solar, wind, biomass, coal,

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.74956

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

natural gas, and biogas. The primary energy used in the country is as follows: biomass (90%);
petroleum products (8%); electricity (1.5%), and the remaining (0.5%) contributed by coal and
other renewable energy sources [1]. However, more than 80% of energy obtained from biomass
is consumed in rural areas, hence contributing to deforestation as well as damaging rural
people’s health since they inhale smoke from wood when preparing food for the family.
Electricity network did not cover the rural area because extending the grid to rural areas is
not financially and economically feasible. This situation forced youth people to migrate from
the rural areas to urban areas where there is reliable electricity for various income generating
and social activities.

2. Renewable energy in Tanzania

Tanzania has plenty of renewable energy sources of which few of them are developed for
electricity generation. Currently, a large-scale hydropower resource has been developed for
electricity generation, while the small hydropower, which has good potential and is particu-
larly feasible in rural areas, is not developed for electricity generation.

Furthermore, biomass resources are mostly exploited in unsustainable ways resulting in cut-
ting of trees, hence causing the environmental degradation. The country has great potential of
organic waste generated from the agricultural sector and remains unexploited.

Tanzania has enough solar insolation which is suitable for off-grid and grid as well. The solar
insolation is high in the central part of the country. Currently, the solar energy resources are
utilized in small scale particularly for roof-mounted panels for powering domestic appliances
such as lighting and mobile phone charging.

Furthermore, wind energy resource assessment in the country indicates its viability; therefore,
the plan for developing wind farm is in progress.

This chapter will discuss the availability of renewable energy and the calculation/formula for
estimating available energy contained in the energy source.

2.1. Wind energy

2.1.1. Introduction

Wind is a widely distributed energy source, between 30�N and 30�S. Earth is unevenly heated
by the Sun resulting in the poles receiving less energy from the Sun than the Equator does, also
dry land heats up more quickly than the seas do. This difference in heating gives power to a
global atmospheric convection system reaching from the Earth’s surface to the stratosphere
which acts as a virtual ceiling. Heated air at the Equator rises and is replaced by cooler air
coming from the south and the north [2]. That is, cool winds blow toward the Equator.
Tanzania is situated near the Equator; it is affected by the air movement as well as benefits
from this prevailing condition.

Dependability Engineering184

The availability of wind varies for different regions and locations. It has been noted that there
is a period in a year that the wind speeds are higher, and some period, the wind speeds are
low. Due to seasonal variations, the potential of wind for power generation can be significantly
higher than the annual mean wind speed would indicate [3].

Thus, when embarking to the project, not only the mean wind speed but also the wind speed
frequency distribution, commonly described by a Weibull distribution, has to be taken into
account in order to estimate accurately the amount of electricity that would be generated [4].
Wind speed varies with height, depending on surface roughness and atmospheric conditions.
Daily and hourly variations in the wind speed are also important for scheduling the operation
of the conventional power plant and adjusting their output to meet these variations [5].

Based on the available information, Tanzania has plentiful wind resources, with much of it
located around the Great Lakes, the plains, and the highland plateau regions of the Rift Valley [6].

The wind is the sustainable energy source which does not create emissions and it will never
run out since it is constantly replenished by energy from the Sun. Generation of electrical
power can be done by wind turbine which converts wind energy to mechanical power to drive
an electrical generator. Wind turbines undergo natural evolution from traditional windmills
with the several blades to three blades, which rotate around a horizontal hub at the top of a
steel tower [7]. Wind passes over the blades exerting a rotating force to turn a shaft which

Figure 1. Dual purpose windmill for water pumping and electricity generation.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

185

natural gas, and biogas. The primary energy used in the country is as follows: biomass (90%);
petroleum products (8%); electricity (1.5%), and the remaining (0.5%) contributed by coal and
other renewable energy sources [1]. However, more than 80% of energy obtained from biomass
is consumed in rural areas, hence contributing to deforestation as well as damaging rural
people’s health since they inhale smoke from wood when preparing food for the family.
Electricity network did not cover the rural area because extending the grid to rural areas is
not financially and economically feasible. This situation forced youth people to migrate from
the rural areas to urban areas where there is reliable electricity for various income generating
and social activities.

2. Renewable energy in Tanzania

Tanzania has plenty of renewable energy sources of which few of them are developed for
electricity generation. Currently, a large-scale hydropower resource has been developed for
electricity generation, while the small hydropower, which has good potential and is particu-
larly feasible in rural areas, is not developed for electricity generation.

Furthermore, biomass resources are mostly exploited in unsustainable ways resulting in cut-
ting of trees, hence causing the environmental degradation. The country has great potential of
organic waste generated from the agricultural sector and remains unexploited.

Tanzania has enough solar insolation which is suitable for off-grid and grid as well. The solar
insolation is high in the central part of the country. Currently, the solar energy resources are
utilized in small scale particularly for roof-mounted panels for powering domestic appliances
such as lighting and mobile phone charging.

Furthermore, wind energy resource assessment in the country indicates its viability; therefore,
the plan for developing wind farm is in progress.

This chapter will discuss the availability of renewable energy and the calculation/formula for
estimating available energy contained in the energy source.

2.1. Wind energy

2.1.1. Introduction

Wind is a widely distributed energy source, between 30�N and 30�S. Earth is unevenly heated
by the Sun resulting in the poles receiving less energy from the Sun than the Equator does, also
dry land heats up more quickly than the seas do. This difference in heating gives power to a
global atmospheric convection system reaching from the Earth’s surface to the stratosphere
which acts as a virtual ceiling. Heated air at the Equator rises and is replaced by cooler air
coming from the south and the north [2]. That is, cool winds blow toward the Equator.
Tanzania is situated near the Equator; it is affected by the air movement as well as benefits
from this prevailing condition.

Dependability Engineering184

The availability of wind varies for different regions and locations. It has been noted that there
is a period in a year that the wind speeds are higher, and some period, the wind speeds are
low. Due to seasonal variations, the potential of wind for power generation can be significantly
higher than the annual mean wind speed would indicate [3].

Thus, when embarking to the project, not only the mean wind speed but also the wind speed
frequency distribution, commonly described by a Weibull distribution, has to be taken into
account in order to estimate accurately the amount of electricity that would be generated [4].
Wind speed varies with height, depending on surface roughness and atmospheric conditions.
Daily and hourly variations in the wind speed are also important for scheduling the operation
of the conventional power plant and adjusting their output to meet these variations [5].

Based on the available information, Tanzania has plentiful wind resources, with much of it
located around the Great Lakes, the plains, and the highland plateau regions of the Rift Valley [6].

The wind is the sustainable energy source which does not create emissions and it will never
run out since it is constantly replenished by energy from the Sun. Generation of electrical
power can be done by wind turbine which converts wind energy to mechanical power to drive
an electrical generator. Wind turbines undergo natural evolution from traditional windmills
with the several blades to three blades, which rotate around a horizontal hub at the top of a
steel tower [7]. Wind passes over the blades exerting a rotating force to turn a shaft which

Figure 1. Dual purpose windmill for water pumping and electricity generation.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

185

connects with gearbox enclosed in the nacelle. An electrical generator either induction or syn-
chronous is connected to the gearbox which will amplify speed shaft obtained from the blades
(rotor). Most wind turbines start generating electricity at wind speeds of around 3–4 m/s,
maximum power would be generated at around 15 m/s and generation stops at the wind speed
of 25 m/s by shutting down to prevent storm damage [8] (Figure 1).

Wind energy resource in Tanzania would be assessed in the different location of the country as
follows: east zone (coastal area), central zone, west zone, southwest zone, southeast zone,
northeast zone, and northwest zone (lake zone). Each zone has weather station equipped with
measuring wind speed, humidity, temperature, and rainfall. The information collected from
individual weather stations have always been submitted to Tanzania Metrological Agency for
further processing.

For this study, monthly average wind speed data for 9 years (January 2009–July 2017) mea-
sured at the height of 3 m were collected from weather stations located strategically all over the
country. The average wind speed shows that in the central zone there is reasonable wind speed
which varies from 2.8 to 6.2 m/s; therefore, the place is suitable for the wind farm as well as
isolated wind power plant (Figure 2). Average wind speed for the east zone found to be
ranging from 3.4 to 5.8 m/s but the place is not suitable for the wind farm because of the
scarcity of land but can be used for isolated power supply (Figure 3). In west zone, wind speed
ranges from 2.5 to 4.2 m/s which is suitable for isolated power supply (Figure 4). In southwest
zone, wind speed ranges from 2.2 to 4.8 m/s which is suitable for isolated power supply

Figure 2. Average wind speed for central zone of Tanzania.

Dependability Engineering186

(Figure 5). In southwest zone, wind speed ranges from 3.8 to 6.7 m/s which is suitable for
isolated power supply (Figure 6). In northwest zone, wind speed ranges from 2.8 to 4.2 m/s
which is suitable for the wind farm and isolated power supply (Figure 7). In southwest zone,
wind speed ranges from 2.7 to 4.4 m/s which is suitable for isolated power supply (Figure 8).

To date, there is no wind farm in Tanzania or even stand-alone systems in Tanzania. Therefore,
the country waived taxes such as import, value-added tax to promote renewable energy in the
country. Therefore, energy demand for grid connections or stand-alone system would be
estimated.

2.1.2. Theory and principles of wind energy conversion

Having the energy demand for grid integration or stand-alone systems, wind energy parame-
ters and equipment would be estimated. Wind turbines can extract kinetic energy from air that
passes through the area intercepted by the rotating blades only [9]. For air mass m in kg
moving at speed U in m/s, kinetic energy in Joules or Nm available for conversion is:

KE ¼ 1=2 �m�U2 or KE ¼ 1=2 � ra � V �U2:

where

ra = air density in kg/m3, V = volume of air in m3, m = mass in kg/s and can be expressed as:

Figure 3. Average wind speed for eastern zone of Tanzania.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

187

connects with gearbox enclosed in the nacelle. An electrical generator either induction or syn-
chronous is connected to the gearbox which will amplify speed shaft obtained from the blades
(rotor). Most wind turbines start generating electricity at wind speeds of around 3–4 m/s,
maximum power would be generated at around 15 m/s and generation stops at the wind speed
of 25 m/s by shutting down to prevent storm damage [8] (Figure 1).

Wind energy resource in Tanzania would be assessed in the different location of the country as
follows: east zone (coastal area), central zone, west zone, southwest zone, southeast zone,
northeast zone, and northwest zone (lake zone). Each zone has weather station equipped with
measuring wind speed, humidity, temperature, and rainfall. The information collected from
individual weather stations have always been submitted to Tanzania Metrological Agency for
further processing.

For this study, monthly average wind speed data for 9 years (January 2009–July 2017) mea-
sured at the height of 3 m were collected from weather stations located strategically all over the
country. The average wind speed shows that in the central zone there is reasonable wind speed
which varies from 2.8 to 6.2 m/s; therefore, the place is suitable for the wind farm as well as
isolated wind power plant (Figure 2). Average wind speed for the east zone found to be
ranging from 3.4 to 5.8 m/s but the place is not suitable for the wind farm because of the
scarcity of land but can be used for isolated power supply (Figure 3). In west zone, wind speed
ranges from 2.5 to 4.2 m/s which is suitable for isolated power supply (Figure 4). In southwest
zone, wind speed ranges from 2.2 to 4.8 m/s which is suitable for isolated power supply

Figure 2. Average wind speed for central zone of Tanzania.

Dependability Engineering186

(Figure 5). In southwest zone, wind speed ranges from 3.8 to 6.7 m/s which is suitable for
isolated power supply (Figure 6). In northwest zone, wind speed ranges from 2.8 to 4.2 m/s
which is suitable for the wind farm and isolated power supply (Figure 7). In southwest zone,
wind speed ranges from 2.7 to 4.4 m/s which is suitable for isolated power supply (Figure 8).

To date, there is no wind farm in Tanzania or even stand-alone systems in Tanzania. Therefore,
the country waived taxes such as import, value-added tax to promote renewable energy in the
country. Therefore, energy demand for grid connections or stand-alone system would be
estimated.

2.1.2. Theory and principles of wind energy conversion

Having the energy demand for grid integration or stand-alone systems, wind energy parame-
ters and equipment would be estimated. Wind turbines can extract kinetic energy from air that
passes through the area intercepted by the rotating blades only [9]. For air mass m in kg
moving at speed U in m/s, kinetic energy in Joules or Nm available for conversion is:

KE ¼ 1=2 �m�U2 or KE ¼ 1=2 � ra � V �U2:

where

ra = air density in kg/m3, V = volume of air in m3, m = mass in kg/s and can be expressed as:

Figure 3. Average wind speed for eastern zone of Tanzania.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

187

Figure 4. Average wind speed for western zone of Tanzania.

Figure 5. Average wind speed for southwest zone of Tanzania.

Dependability Engineering188

Figure 6. Average wind speed for southeast zone of Tanzania.

Figure 7. Average wind speed for lake zone (northwest) of Tanzania.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

189

Figure 4. Average wind speed for western zone of Tanzania.

Figure 5. Average wind speed for southwest zone of Tanzania.

Dependability Engineering188

Figure 6. Average wind speed for southeast zone of Tanzania.

Figure 7. Average wind speed for lake zone (northwest) of Tanzania.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

189

m ¼ ra �A�U

Then, available wind power P in watts is:

P ¼ 1=2 � ra � A�U3

Power density or power per unit area in W/m2 of a particular site is:

P
A
¼ 1=2 � ra �U3

Shaft power that can be obtained from a wind turbine in W is:

P ¼ 1=2 � ra � A�U3 � Cp � ηt

where P = shaft power in watts, A = swept area for the turbine in m2, U = wind speed in m/s,
ra = air density in kg/m3 (around 1.225 kg/m3 for 15�C at sea level), ηt = turbine efficiency, and
Cp = coefficient of performance that depends on rotor speed and wind speed, i.e., the tip-speed
ratio.

Typically, Cp ranges around 0.5 for large electricity-generating wind turbines and 0.35 for
water pumping wind turbines. Taking into account generator efficiency ηg, power output from

electricity-generating wind turbines is:

Figure 8. Average wind speed for northeast zone of Tanzania.

Dependability Engineering190

P ¼ 1=2 � ra � A�U3 � Cp � ηt � ηg:

2.1.3. Speed extrapolation

Wind speed measurement is usually done by using an anemometer. The anemometer has three
cups and vane for capturing wind speed and detects its direction as well. The instrument is
normally being installed in a location where wind is free with no influence from nearby object
[10]. For the installation of this instrument, economical factor as well as the degree of accuracy
is required (as the height increases, the cost of installation increases). Most of the anemometers
are installed at the height of 3–10 m; hence, there is a need for speed extrapolation to determine
the wind speed at the height of the wind turbine.

Typically, the increase in wind speed with increase in height follows a logarithmic profile that
can be reasonably approximated by the wind profile power law, using an exponent of 1/7th,
which predicts that wind speed rises proportionally to the seventh root of altitude. Doubling
the altitude of a turbine will increase the expected wind speed by 10% and the expected power
by 34%. In general, then, wind speed increases with height in some complicated and turbulent
way depending on local conditions and topography. Nevertheless, two velocity extrapolation
laws exist:

• the ‘log law’ and

• the ‘power law’

These laws can be used to predict the wind speed at the height of power generation from wind
speeds measured at a lower height.

2.1.3.1. Log law

The log law, which can be derived theoretically using several different methods, is given by:

UZ ¼ UZr � ln Z=Zoð Þ
ln Zr=Zoð Þ

where UZ = speed at the height of power generation, UZr = speed at the height of measurement,
and Zr and Zo = roughness length.

Roughness lengths range from 0.01 mm for wind flowing over smooth ice or mud to 10 mm
over rough pasture to 0.5 m over forests and woodlands.

2.1.3.2. Power law

In power law equation, wind shear is quantified as the exponent n that relates wind speeds at
two different heights. Wind shear is possible to be calculated when upper and lower wind
speed measurements are available. Wind shear depends on the nature of land surface that is
smooth or rough. The areas with trees and buildings will produce more friction and turbulence
than smooth surfaces (lakes or open cropland). The greater friction means the wind speed near

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

191

m ¼ ra �A�U

Then, available wind power P in watts is:

P ¼ 1=2 � ra � A�U3

Power density or power per unit area in W/m2 of a particular site is:

P
A
¼ 1=2 � ra �U3

Shaft power that can be obtained from a wind turbine in W is:

P ¼ 1=2 � ra � A�U3 � Cp � ηt

where P = shaft power in watts, A = swept area for the turbine in m2, U = wind speed in m/s,
ra = air density in kg/m3 (around 1.225 kg/m3 for 15�C at sea level), ηt = turbine efficiency, and
Cp = coefficient of performance that depends on rotor speed and wind speed, i.e., the tip-speed
ratio.

Typically, Cp ranges around 0.5 for large electricity-generating wind turbines and 0.35 for
water pumping wind turbines. Taking into account generator efficiency ηg, power output from

electricity-generating wind turbines is:

Figure 8. Average wind speed for northeast zone of Tanzania.

Dependability Engineering190

P ¼ 1=2 � ra � A�U3 � Cp � ηt � ηg:

2.1.3. Speed extrapolation

Wind speed measurement is usually done by using an anemometer. The anemometer has three
cups and vane for capturing wind speed and detects its direction as well. The instrument is
normally being installed in a location where wind is free with no influence from nearby object
[10]. For the installation of this instrument, economical factor as well as the degree of accuracy
is required (as the height increases, the cost of installation increases). Most of the anemometers
are installed at the height of 3–10 m; hence, there is a need for speed extrapolation to determine
the wind speed at the height of the wind turbine.

Typically, the increase in wind speed with increase in height follows a logarithmic profile that
can be reasonably approximated by the wind profile power law, using an exponent of 1/7th,
which predicts that wind speed rises proportionally to the seventh root of altitude. Doubling
the altitude of a turbine will increase the expected wind speed by 10% and the expected power
by 34%. In general, then, wind speed increases with height in some complicated and turbulent
way depending on local conditions and topography. Nevertheless, two velocity extrapolation
laws exist:

• the ‘log law’ and

• the ‘power law’

These laws can be used to predict the wind speed at the height of power generation from wind
speeds measured at a lower height.

2.1.3.1. Log law

The log law, which can be derived theoretically using several different methods, is given by:

UZ ¼ UZr � ln Z=Zoð Þ
ln Zr=Zoð Þ

where UZ = speed at the height of power generation, UZr = speed at the height of measurement,
and Zr and Zo = roughness length.

Roughness lengths range from 0.01 mm for wind flowing over smooth ice or mud to 10 mm
over rough pasture to 0.5 m over forests and woodlands.

2.1.3.2. Power law

In power law equation, wind shear is quantified as the exponent n that relates wind speeds at
two different heights. Wind shear is possible to be calculated when upper and lower wind
speed measurements are available. Wind shear depends on the nature of land surface that is
smooth or rough. The areas with trees and buildings will produce more friction and turbulence
than smooth surfaces (lakes or open cropland). The greater friction means the wind speed near

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

191

the ground is reduced. The approximate increase of speed with height for different surfaces
can be calculated from the following equation:

The purely empirical power law is given by:

UZ ¼ UZr � Z
Zr

� �n

where

n = exponent determining the wind change,

Zr = reference height,

Zo = roughness coefficient,

Uzr = wind speed at the measurement.

But, in practice, wind speed varies with elevation, time of day, season, topography, wind
speed, temperature, and other factors. However, increasing more the height of turbine will
bring the difficulties about the cost of erecting the tower as well as the cost of foundation. The
different values of n were indicated in Table 1 for the different ground natures.

2.2. Solar energy

2.2.1. Introduction

Sunlight is a general term for the electromagnetic radiation emitted by the Sun that can be
collected and turned into useful forms of energy, such as heat and electricity, using various
technologies. However, the technical feasibility and economical operation of these technologies
at a specific location depends on the available solar resource [11].

The Sun rays strike the Earth at the angles ranging from 0� (just above the horizon) to 90�

(directly overhead), because the Earth is round and it revolves the Sun and its orbit. The Earth
surface will have maximum energy only when the Sun’s rays are vertical, as the more Sun’s
rays are slanted, the long way they travel through the atmosphere, becoming more scattered
and diffuse [12]. The Earth revolves around the Sun in an elliptical orbit and is closer to the Sun
during part of the year.

S/N Type of terrain n

1. Smooth sea or sand 0.10

2. Low grass steppe 0.13

3. High grass and small bushes 0.19

4. Woodlands and urban areas 0.32

Table 1. Values of n for different ground covers.

Dependability Engineering192

When the Sun is nearer the Earth, the Earth’s surface receives a little more solar energy. The
Earth has great lines running from west-east namely Equator (0�), Tropic of Cancer (23.5�),
north of the Equator (passes through Mexico, the Bahamas, Egypt, Saudi Arabia, and India),
and Tropic of Capricorn (23.5�), south of the Equator (passes through Australia, Chile, southern
Brazil, and northern South Africa).

Figure 9 shows the energy balance, as the Sun emits solar energy of 173 � 1012 W, at the
atmospheric boundary, 30% will be reflected and 70% (121,000 � 1012 W) will reach the Earth.
As the Sun comes to Earth, its 30% of energy would be absorbed by the atmosphere and
remaining 70% is used in tidal, wind wave, evaporation, fossil fuel, hydro, geothermal, and
photosynthesis.

Sunshine is part of the radiation that is supplied by the Sun, especially light, infrared, visible,
and ultraviolet light. On Earth, the Sun is filtered through the atmosphere, and it is daylight
when the Sun is on the horizon. When the direct sunlight is not limited to the clouds, it has as
much sunlight as a mixture of bright light and heat. If it is blocked by clouds or resembles
other objects, it is like a diminishing light. Therefore, sunshine is the most important factor for
photosynthesis, the process used by plants for converting light energy to chemical energy.

Figure 9. Energy balance.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

193

the ground is reduced. The approximate increase of speed with height for different surfaces
can be calculated from the following equation:

The purely empirical power law is given by:

UZ ¼ UZr � Z
Zr

� �n

where

n = exponent determining the wind change,

Zr = reference height,

Zo = roughness coefficient,

Uzr = wind speed at the measurement.

But, in practice, wind speed varies with elevation, time of day, season, topography, wind
speed, temperature, and other factors. However, increasing more the height of turbine will
bring the difficulties about the cost of erecting the tower as well as the cost of foundation. The
different values of n were indicated in Table 1 for the different ground natures.

2.2. Solar energy

2.2.1. Introduction

Sunlight is a general term for the electromagnetic radiation emitted by the Sun that can be
collected and turned into useful forms of energy, such as heat and electricity, using various
technologies. However, the technical feasibility and economical operation of these technologies
at a specific location depends on the available solar resource [11].

The Sun rays strike the Earth at the angles ranging from 0� (just above the horizon) to 90�

(directly overhead), because the Earth is round and it revolves the Sun and its orbit. The Earth
surface will have maximum energy only when the Sun’s rays are vertical, as the more Sun’s
rays are slanted, the long way they travel through the atmosphere, becoming more scattered
and diffuse [12]. The Earth revolves around the Sun in an elliptical orbit and is closer to the Sun
during part of the year.

S/N Type of terrain n

1. Smooth sea or sand 0.10

2. Low grass steppe 0.13

3. High grass and small bushes 0.19

4. Woodlands and urban areas 0.32

Table 1. Values of n for different ground covers.

Dependability Engineering192

When the Sun is nearer the Earth, the Earth’s surface receives a little more solar energy. The
Earth has great lines running from west-east namely Equator (0�), Tropic of Cancer (23.5�),
north of the Equator (passes through Mexico, the Bahamas, Egypt, Saudi Arabia, and India),
and Tropic of Capricorn (23.5�), south of the Equator (passes through Australia, Chile, southern
Brazil, and northern South Africa).

Figure 9 shows the energy balance, as the Sun emits solar energy of 173 � 1012 W, at the
atmospheric boundary, 30% will be reflected and 70% (121,000 � 1012 W) will reach the Earth.
As the Sun comes to Earth, its 30% of energy would be absorbed by the atmosphere and
remaining 70% is used in tidal, wind wave, evaporation, fossil fuel, hydro, geothermal, and
photosynthesis.

Sunshine is part of the radiation that is supplied by the Sun, especially light, infrared, visible,
and ultraviolet light. On Earth, the Sun is filtered through the atmosphere, and it is daylight
when the Sun is on the horizon. When the direct sunlight is not limited to the clouds, it has as
much sunlight as a mixture of bright light and heat. If it is blocked by clouds or resembles
other objects, it is like a diminishing light. Therefore, sunshine is the most important factor for
photosynthesis, the process used by plants for converting light energy to chemical energy.

Figure 9. Energy balance.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

193

During photosynthesis, the plant produces carbohydrates and oxygen to form water and
carbon dioxide using sunlight as the source of energy [13].

The Sun is overhead at the Tropic of Cancer on June 21 which is the summer in the northern
hemisphere and winter in the southern hemisphere. Also, on December 21, the Sun is overhead
on the Tropic of Capricorn which is summer in the southern hemisphere and winter in the
northern hemisphere. The area bounded by the tropics that are Tropic of Cancer on the north
and Tropic of Capricorn on the south experiences tropical climate. The area under tropic
climates experiences two seasons in a year that is rainy season and dry season. However, the
area in the north of Tropic of Cancer and that at the south of Tropic of Capricorn experiences
four seasons in a year that are winter, falls, spring, and summer [14].

The amount of solar radiant energy incident on a surface per unit area and per unit time is
called irradiance or insolation. The average extraterrestrial irradiance or flux density at a mean
Earth-Sun distance and normal to the solar beam is known as the solar constant, which
is 1366.1 W/m2 according to the most recent estimate [15]. The energy delivered by the Sun is
intermittent and changes during the day and with the seasons. Photovoltaic (PV) conversion is
the direct conversion of sunlight into electricity [16]. Photovoltaic devices are rugged and
simple in design and require very little maintenance, constructed as stand-alone systems to
give outputs from microwatts to megawatts and have been used as the power sources for
calculators, watches, water pumping, remote buildings, communications, satellites and space
vehicles, and even multimegawatt scale power plants. With such a vast array of applications,
the demand for photovoltaics is increasing every year [17].

Solar energy exhibits the highest global potential since a number of factors such as latitude,
diurnal variation, climate, and geographic variation are largely responsible for determining the
intensity of the solar influx that passes through Earth’s atmosphere. The average amount of
solar energy received at Earth’s atmosphere is around 342 W/m2, of which 30% is scattered or
reflected back to space, leaving 70% (239 W/m2) available for harvesting and capture [18]. The
annual effective solar irradiance varies from 60 to 250 W/m2 worldwide.

Tanzania, an East Africa country, is situated just south of the Equator and is lying in between
the area of the Great Lakes such as Lake Victoria, Lake Tanganyika, and Lake Nyasa and the
Indian Ocean. It contains a total area of 945,087 km2 including 59,050 km2 of inland water. It is
bounded on the north by Uganda and Kenya, on the East by the Indian Ocean, on the South by
Mozambique and Malawi, on the southwest by Zambia, and on the West by Democratic
Republic of Congo, Burundi, and Rwanda. Tanzania has a latitude and longitude reading of
6�000 south and 35�000 east.

Table 2 gives the insolation level values in some areas of the country captured by the study.
Solar photovoltaic energy is uniquely useful in rural not served by the national grid to provide
basic services such as irrigation, refrigeration, communication, and lighting. Solar energy is
often more efficient than traditional sources such as kerosene. For lighting, a photovoltaic
compact fluorescent light system is more efficient than kerosene lamp, used in rural areas to
provide night lighting. Photovoltaic system also avoids high costs and pollution problem of
standard fossil fuel power plant (Figure 10).

Dependability Engineering194

2.2.2. Solar PV system sizing

The electricity generated by solar photovoltaic can be stored or used directly, fed back into grid
line or connected directly to customers. Solar PV system includes different components that
should be selected according to your system type, site location, and applications. The solar PV
system consists of the following components: solar panel, solar charge controller, inverter,
battery bank, auxiliary energy sources, and loads (appliances).

Zone Solar insolation

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Central 6.1 6.0 6.1 5.7 5.6 5.8 5.7 6.0 6.3 6.4 6.5 6.2

East 5.2 5.3 4.9 4.0 4.3 4.4 4.4 4.0 4.9 5.1 5.8 5.6

Southwest 6.0 6.1 5.7 5.9 6.2 6.3 6.1 6.6 6.7 7.0 6.7 6.2

West 4.3 4.5 4.9 4.3 4.4 4.8 4.3 4.9 4.9 4.7 4.1 4.3

Southeast 4.4 4.6 4.3 4.0 4.4 4.4 4.5 4.6 4.9 4.9 5.2 4.8

Northwest 5.4 5.0 5.4 5.4 5.4 5.0 5.2 5.4 5.4 5.4 5.7 5.4

Northeast 5.6 5.5 5.6 4.7 3.6 3.8 4.0 4.1 4.6 5.0 5.4 5.6

Table 2. Mean monthly solar insolation.

Figure 10. Solar insolation in Tanzania.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

195

During photosynthesis, the plant produces carbohydrates and oxygen to form water and
carbon dioxide using sunlight as the source of energy [13].

The Sun is overhead at the Tropic of Cancer on June 21 which is the summer in the northern
hemisphere and winter in the southern hemisphere. Also, on December 21, the Sun is overhead
on the Tropic of Capricorn which is summer in the southern hemisphere and winter in the
northern hemisphere. The area bounded by the tropics that are Tropic of Cancer on the north
and Tropic of Capricorn on the south experiences tropical climate. The area under tropic
climates experiences two seasons in a year that is rainy season and dry season. However, the
area in the north of Tropic of Cancer and that at the south of Tropic of Capricorn experiences
four seasons in a year that are winter, falls, spring, and summer [14].

The amount of solar radiant energy incident on a surface per unit area and per unit time is
called irradiance or insolation. The average extraterrestrial irradiance or flux density at a mean
Earth-Sun distance and normal to the solar beam is known as the solar constant, which
is 1366.1 W/m2 according to the most recent estimate [15]. The energy delivered by the Sun is
intermittent and changes during the day and with the seasons. Photovoltaic (PV) conversion is
the direct conversion of sunlight into electricity [16]. Photovoltaic devices are rugged and
simple in design and require very little maintenance, constructed as stand-alone systems to
give outputs from microwatts to megawatts and have been used as the power sources for
calculators, watches, water pumping, remote buildings, communications, satellites and space
vehicles, and even multimegawatt scale power plants. With such a vast array of applications,
the demand for photovoltaics is increasing every year [17].

Solar energy exhibits the highest global potential since a number of factors such as latitude,
diurnal variation, climate, and geographic variation are largely responsible for determining the
intensity of the solar influx that passes through Earth’s atmosphere. The average amount of
solar energy received at Earth’s atmosphere is around 342 W/m2, of which 30% is scattered or
reflected back to space, leaving 70% (239 W/m2) available for harvesting and capture [18]. The
annual effective solar irradiance varies from 60 to 250 W/m2 worldwide.

Tanzania, an East Africa country, is situated just south of the Equator and is lying in between
the area of the Great Lakes such as Lake Victoria, Lake Tanganyika, and Lake Nyasa and the
Indian Ocean. It contains a total area of 945,087 km2 including 59,050 km2 of inland water. It is
bounded on the north by Uganda and Kenya, on the East by the Indian Ocean, on the South by
Mozambique and Malawi, on the southwest by Zambia, and on the West by Democratic
Republic of Congo, Burundi, and Rwanda. Tanzania has a latitude and longitude reading of
6�000 south and 35�000 east.

Table 2 gives the insolation level values in some areas of the country captured by the study.
Solar photovoltaic energy is uniquely useful in rural not served by the national grid to provide
basic services such as irrigation, refrigeration, communication, and lighting. Solar energy is
often more efficient than traditional sources such as kerosene. For lighting, a photovoltaic
compact fluorescent light system is more efficient than kerosene lamp, used in rural areas to
provide night lighting. Photovoltaic system also avoids high costs and pollution problem of
standard fossil fuel power plant (Figure 10).

Dependability Engineering194

2.2.2. Solar PV system sizing

The electricity generated by solar photovoltaic can be stored or used directly, fed back into grid
line or connected directly to customers. Solar PV system includes different components that
should be selected according to your system type, site location, and applications. The solar PV
system consists of the following components: solar panel, solar charge controller, inverter,
battery bank, auxiliary energy sources, and loads (appliances).

Zone Solar insolation

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Central 6.1 6.0 6.1 5.7 5.6 5.8 5.7 6.0 6.3 6.4 6.5 6.2

East 5.2 5.3 4.9 4.0 4.3 4.4 4.4 4.0 4.9 5.1 5.8 5.6

Southwest 6.0 6.1 5.7 5.9 6.2 6.3 6.1 6.6 6.7 7.0 6.7 6.2

West 4.3 4.5 4.9 4.3 4.4 4.8 4.3 4.9 4.9 4.7 4.1 4.3

Southeast 4.4 4.6 4.3 4.0 4.4 4.4 4.5 4.6 4.9 4.9 5.2 4.8

Northwest 5.4 5.0 5.4 5.4 5.4 5.0 5.2 5.4 5.4 5.4 5.7 5.4

Northeast 5.6 5.5 5.6 4.7 3.6 3.8 4.0 4.1 4.6 5.0 5.4 5.6

Table 2. Mean monthly solar insolation.

Figure 10. Solar insolation in Tanzania.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

195

2.2.3. Determine power consumption demands

Before embarking to system design, all appliances that need to be supplied by the solar PV
system have to be identified.

• Record all power ratings of all appliances to be supplied by the solar PV;

• Estimate average hours need to operate each appliance;

• Calculate the energy need by multiplying appliance ratings with estimated hours of use
per day;

• Add the watt-hours of all appliances together to get total watt-hours per day;

• Multiply the total appliance watt-hours per day by 1.3 (the energy lost in the systems such
as panel, inverter, charger controller, battery, and wiring systems) to get the total watt-
hours per day which must be provided by the solar panels.

2.2.4. Size the PV modules

Solar PV exists in different sizes and ratings. The size of solar PV modules depends on total
peak watt-hour needed, the climate of the site location, and panel generation factor. The panel
generation factors for different locations in Tanzania are given in Table 2. The sizing of PV
modules is calculated as follows:

• Calculate the total watt-peak ratings for PV modules by taking total watt-hours needed
per day divided by the panel generation factor given in Table 1 to get the total watt-peak
rating for the PV panels needed to operate the appliances;

• Calculate the number of PV panels for the system by dividing watt-peak ratings with the
rated output watt-peak of the PV modules available. Increase any fractional part of result
to the next highest full number and that will be the number of PV modules required.

2.2.5. Inverter sizing

An inverter is the power converter used to convert direct current power (DC) to alternating
current power (AC). The inverter is needed when the available appliances need AC power. The
size of the inverter should never be lower than the total watts of appliances. Furthermore,
when inverter intended to supply inductive loads particularly electric motors and compressors
whose startup current are much higher than the usual running current, then size of the inverter
should be 3 times the capacity of those appliances to withstand surge current for short time.
The ratings of inverter supplying isolated loads must be 25–30% bigger to handle the total
amount of watts used at once.

2.2.6. Battery sizing

The batteries are important energy storage for grid and off-grid use. The type of battery
recommended for solar PV system is deep-cycle battery. Deep-cycle batteries are designed to
handle deep discharged and rapid recharged or cycle charged and discharged day after day
for years. When sizing the batteries, important information needed is how much energy is

Dependability Engineering196

consumed daily. When one is changing from grid power supply to renewable energy (solar)
monthly, electric bill can be used to estimate daily energy consumption. Furthermore, in sizing
the batteries, the intermitted energy supply from renewable energy has to be taken into
consideration by estimating days of autonomy due to clouds or rain. The standard days of
autonomy are estimated to be 3–5 days. To find out the size of the battery, calculate total watt-
hours per day used by appliances and divide the total watt-hours per day used by 0.85 for
battery loss. Then, divide the answer obtained by 0.6 for depth of discharge. Then, divide the
answer obtained by the nominal battery voltage, and then, multiply the answer obtained with
days of autonomy to get the required ampere-hour capacity of the deep-cycle battery.

2.3. Hydroenergy

2.3.1. Introduction

The geographical areas which are best for exploiting small-scale hydropower are those where
there are steep rivers flowing all year round. In those areas, water turbines could be installed
without a dam to generate electricity for home or community. A small or microhydroelectric
power system can produce enough electricity for a village [19]. Small water turbine will
produce power nonstop, as long as running water is available. Microwater current turbines
are most suited for places where there is an almost a constant flow of water throughout the
year. The underdeveloped and developing countries can use these techniques to provide
electricity to remote places where transmission line cannot be connected easily or the cost
becomes very high. Tanzania has extensive undeveloped hydroelectric resources mainly
located in the southern region [20]. Religious centers (missionaries) and individuals in Tanzania
are the first investors of microhydropower generation during the colonial period for mainly
supplying power to a specific community or for their own use [21]. Geographically, the hydro-
power potentials of Tanzania are located in the rift valley escarpments which occur in the west,
southwest, and northeast Tanzania. Studies show that 12 out 25 administrative regions of
mainland Tanzania are blessed with min-hydropower resources but only three regions (Mbeya,
Iringa, and Kilimanjaro) have at least managed to develop them.

Figure 11 shows the location of small hydropower sites which have been identified (green dot
on the map) with different plant capacities up to 1 MW. Thus, the government is encouraging
private investment in energy generation projects.

Majority of people in rural Tanzania are poverty prone and cannot afford the initial connection
costs and the monthly bills. Rural electrification projects through grid extension and grid
densification are associated with long transmission and distribution distances because of the
sparse population as well as low load centers. In these market conditions, projects need
government, multinational development agencies, NGOs, and the private sector to work
together in order to design and create opportunities that respond to the needs of the local
community.

In order to address these challenges, the government has established the Rural Energy Agency
(REA) and the Rural Energy Fund (REF). The ongoing reforms in the power sector (liberalization
and privatization) are anticipated to increase the interest of private firms investing in the hydro-
power generation.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

197

2.2.3. Determine power consumption demands

Before embarking to system design, all appliances that need to be supplied by the solar PV
system have to be identified.

• Record all power ratings of all appliances to be supplied by the solar PV;

• Estimate average hours need to operate each appliance;

• Calculate the energy need by multiplying appliance ratings with estimated hours of use
per day;

• Add the watt-hours of all appliances together to get total watt-hours per day;

• Multiply the total appliance watt-hours per day by 1.3 (the energy lost in the systems such
as panel, inverter, charger controller, battery, and wiring systems) to get the total watt-
hours per day which must be provided by the solar panels.

2.2.4. Size the PV modules

Solar PV exists in different sizes and ratings. The size of solar PV modules depends on total
peak watt-hour needed, the climate of the site location, and panel generation factor. The panel
generation factors for different locations in Tanzania are given in Table 2. The sizing of PV
modules is calculated as follows:

• Calculate the total watt-peak ratings for PV modules by taking total watt-hours needed
per day divided by the panel generation factor given in Table 1 to get the total watt-peak
rating for the PV panels needed to operate the appliances;

• Calculate the number of PV panels for the system by dividing watt-peak ratings with the
rated output watt-peak of the PV modules available. Increase any fractional part of result
to the next highest full number and that will be the number of PV modules required.

2.2.5. Inverter sizing

An inverter is the power converter used to convert direct current power (DC) to alternating
current power (AC). The inverter is needed when the available appliances need AC power. The
size of the inverter should never be lower than the total watts of appliances. Furthermore,
when inverter intended to supply inductive loads particularly electric motors and compressors
whose startup current are much higher than the usual running current, then size of the inverter
should be 3 times the capacity of those appliances to withstand surge current for short time.
The ratings of inverter supplying isolated loads must be 25–30% bigger to handle the total
amount of watts used at once.

2.2.6. Battery sizing

The batteries are important energy storage for grid and off-grid use. The type of battery
recommended for solar PV system is deep-cycle battery. Deep-cycle batteries are designed to
handle deep discharged and rapid recharged or cycle charged and discharged day after day
for years. When sizing the batteries, important information needed is how much energy is

Dependability Engineering196

consumed daily. When one is changing from grid power supply to renewable energy (solar)
monthly, electric bill can be used to estimate daily energy consumption. Furthermore, in sizing
the batteries, the intermitted energy supply from renewable energy has to be taken into
consideration by estimating days of autonomy due to clouds or rain. The standard days of
autonomy are estimated to be 3–5 days. To find out the size of the battery, calculate total watt-
hours per day used by appliances and divide the total watt-hours per day used by 0.85 for
battery loss. Then, divide the answer obtained by 0.6 for depth of discharge. Then, divide the
answer obtained by the nominal battery voltage, and then, multiply the answer obtained with
days of autonomy to get the required ampere-hour capacity of the deep-cycle battery.

2.3. Hydroenergy

2.3.1. Introduction

The geographical areas which are best for exploiting small-scale hydropower are those where
there are steep rivers flowing all year round. In those areas, water turbines could be installed
without a dam to generate electricity for home or community. A small or microhydroelectric
power system can produce enough electricity for a village [19]. Small water turbine will
produce power nonstop, as long as running water is available. Microwater current turbines
are most suited for places where there is an almost a constant flow of water throughout the
year. The underdeveloped and developing countries can use these techniques to provide
electricity to remote places where transmission line cannot be connected easily or the cost
becomes very high. Tanzania has extensive undeveloped hydroelectric resources mainly
located in the southern region [20]. Religious centers (missionaries) and individuals in Tanzania
are the first investors of microhydropower generation during the colonial period for mainly
supplying power to a specific community or for their own use [21]. Geographically, the hydro-
power potentials of Tanzania are located in the rift valley escarpments which occur in the west,
southwest, and northeast Tanzania. Studies show that 12 out 25 administrative regions of
mainland Tanzania are blessed with min-hydropower resources but only three regions (Mbeya,
Iringa, and Kilimanjaro) have at least managed to develop them.

Figure 11 shows the location of small hydropower sites which have been identified (green dot
on the map) with different plant capacities up to 1 MW. Thus, the government is encouraging
private investment in energy generation projects.

Majority of people in rural Tanzania are poverty prone and cannot afford the initial connection
costs and the monthly bills. Rural electrification projects through grid extension and grid
densification are associated with long transmission and distribution distances because of the
sparse population as well as low load centers. In these market conditions, projects need
government, multinational development agencies, NGOs, and the private sector to work
together in order to design and create opportunities that respond to the needs of the local
community.

In order to address these challenges, the government has established the Rural Energy Agency
(REA) and the Rural Energy Fund (REF). The ongoing reforms in the power sector (liberalization
and privatization) are anticipated to increase the interest of private firms investing in the hydro-
power generation.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

197

2.3.2. Functionality

Most of the river water starts flowing from higher altitude to low altitude where there are
lakes, ponds, or ocean. The river passes in the varying land pattern like steep slope, moderate
slope, and nearly flat slope. Current turbines or hydrokinetic turbines are normally installed at
the foot of steep slope, so that kinetic energy in water can be converted to mechanical energy
for producing electricity. Depending on the nature of the river, that is, when the water flow is
seasonal, then, water storage pond is constructed along the river, and when the flow is
throughout the year, power-generating systems are directly installed along the flowing water
in a river to enable turbine to rotate for producing electricity. Power produced by the moving
water depends on water density, water head, and water discharge [22, 23].

2.3.3. Cross-sectional area of natural water steam

Ar ¼ aþ b
2

� �
� h1 þ h2 þ h3 þ…hk

k

� �

where a = width of top river in meter, b = width of bottom river in meter, and h = height in
meter.

Figure 11. Hydropower potential in Tanzania.

Dependability Engineering198

2.3.4. The surface velocity

A floating object, which is largely submerged, is located at the center of the stream flow. The
time t (seconds) elapsed to traverse a certain length L (m) is recorded. The surface speed (m/s)
would be the quotient of the length L and the time t.

Vrs ¼ L
t

2.3.5. The average flow speed

To estimate the mean velocity, the above value must be multiplied by a correction factor that
may vary between 0.60 and 0.85 depending on the watercourse depth and their bottom and
riverbank roughness (0.75 is a well-accepted value).

Vr ¼ 0:75� Vrs

The flow rate (Q):

Q ¼ Ar � Vr

2.3.6. Internal diameter of penstock (Dp)

Dp ¼ 2:69� np
2 �Q2 � Lp

Hg

� �0:1875

where np = manning coefficient, Lp = penstock length in meter, and Hg = gross head in meter.

2.3.7. Penstock dimension

Penstocks can be installed under and over the ground, depending on the nature of the ground.
The penstock is built in nearly straight lines, with concrete anchor blocks at each bend and
with an expansion joint between each set of anchors. The anchor blocks have been provided to
resist the thrust and frictional forces caused by the penstock expansion and contraction. The
straight section of the penstock lies in steel saddles, made from steel plates to reduce friction
forces. For the part of penstock on the ground, it has been provided with supports of different
heights depending on the nature of the ground. Spiraled metal sheet-welded steel pipes with
flanges on both side have been considered, due to its reasonability in price and availability in
different required sizes.

Recommended minimum wall thickness of penstock:

tp ¼ Dp þ 508
400

� �
þ 1:2

The vertical weight of penstock and water subjected to support:

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

199

2.3.2. Functionality

Most of the river water starts flowing from higher altitude to low altitude where there are
lakes, ponds, or ocean. The river passes in the varying land pattern like steep slope, moderate
slope, and nearly flat slope. Current turbines or hydrokinetic turbines are normally installed at
the foot of steep slope, so that kinetic energy in water can be converted to mechanical energy
for producing electricity. Depending on the nature of the river, that is, when the water flow is
seasonal, then, water storage pond is constructed along the river, and when the flow is
throughout the year, power-generating systems are directly installed along the flowing water
in a river to enable turbine to rotate for producing electricity. Power produced by the moving
water depends on water density, water head, and water discharge [22, 23].

2.3.3. Cross-sectional area of natural water steam

Ar ¼ aþ b
2

� �
� h1 þ h2 þ h3 þ…hk

k

� �

where a = width of top river in meter, b = width of bottom river in meter, and h = height in
meter.

Figure 11. Hydropower potential in Tanzania.

Dependability Engineering198

2.3.4. The surface velocity

A floating object, which is largely submerged, is located at the center of the stream flow. The
time t (seconds) elapsed to traverse a certain length L (m) is recorded. The surface speed (m/s)
would be the quotient of the length L and the time t.

Vrs ¼ L
t

2.3.5. The average flow speed

To estimate the mean velocity, the above value must be multiplied by a correction factor that
may vary between 0.60 and 0.85 depending on the watercourse depth and their bottom and
riverbank roughness (0.75 is a well-accepted value).

Vr ¼ 0:75� Vrs

The flow rate (Q):

Q ¼ Ar � Vr

2.3.6. Internal diameter of penstock (Dp)

Dp ¼ 2:69� np
2 �Q2 � Lp

Hg

� �0:1875

where np = manning coefficient, Lp = penstock length in meter, and Hg = gross head in meter.

2.3.7. Penstock dimension

Penstocks can be installed under and over the ground, depending on the nature of the ground.
The penstock is built in nearly straight lines, with concrete anchor blocks at each bend and
with an expansion joint between each set of anchors. The anchor blocks have been provided to
resist the thrust and frictional forces caused by the penstock expansion and contraction. The
straight section of the penstock lies in steel saddles, made from steel plates to reduce friction
forces. For the part of penstock on the ground, it has been provided with supports of different
heights depending on the nature of the ground. Spiraled metal sheet-welded steel pipes with
flanges on both side have been considered, due to its reasonability in price and availability in
different required sizes.

Recommended minimum wall thickness of penstock:

tp ¼ Dp þ 508
400

� �
þ 1:2

The vertical weight of penstock and water subjected to support:

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

199

F ¼ Wp þWw
� �� Lms � cosθ

where Wp = weight of penstock per meter in KN/m, Ww = weight of water per meter KN/m,
Lms = length of penstock between midpoints of each span, and θ = angle of pipe with horizontal.

Maximum length between the supports:

Lmms ¼ 182:61�
Dp þ 0:0147
� �4 �Dp

4
� �1

3

Pw

where Pw is weight of pipe full of water.

2.3.8. Powerhouse

The planned dimension of powerhouse is sufficient for safe operation and maintenance of all
equipment included within it. A foundation is required on an adequate bearing soil stratum,
with a concrete slab cast to provide a rigid base for the turbine and generator. A channel at the
base slab is needed for outflow of water from the system. The powerhouse should be secured
to prevent unauthorized access.

2.3.9. Power generated in watts

Pt ¼ rghnQηt

where r = water density (1000 kg/m3), hn = head, and ηt = turbine efficiency.

2.3.10. Dump load

The load connected to hydropower varies time to time in a day that is peak hours and off-peak.
During a day, peak hour’s power produced is utilized by the connected load; therefore, the
machine frequency would remain within the required limit. Furthermore, during the off-peak,
load power consumed by the load is low compared to the power produced by the
hydroturbine causing the machine to accelerate, hence the frequency increases. Therefore, to
overcome this situation, a dump load in an electrical resistance heater (air or water) is installed
to the system to dissipate excess power, so that the machine frequency is kept within the
required limit. The size of dump load is usually equal to maximum power generated by the
hydroturbine so that it can handle the full generating capacity of the microhydroturbine.
Dump loads should be activated by the controller whenever power produced is not consumed
by the load or grid (integrated system), to prevent machine accelerations which might result in
system damage. Excess energy in the system is diverted to the dump load; it is envisaged most
scheme offers excess power at all times.

2.3.11. Metering

In power plant, the quantities such as current, voltage, and frequency need to be monitored by
measuring and displayed by the meters (whether analogue or digital). The load connected to

Dependability Engineering200

hydropower needs specific magnitude of voltage and current. Operating load with the low
magnitude of voltage and frequency results in efficiency reductions, while operating with
higher values results in insulation failure, hence equipment damages. Therefore, several
parameters of microhydroelectric system’s performance and status are monitored by recording
how much electricity is producing or has produced, and how much electricity is being
consumed.

3. Government initiative in promoting renewable energy through small
power producers

The first power plant was operated by diesel fuel in 1933 followed by 5-MW hydropower plant
in 1936. These two power plants were supplied to the big town, leaving the rural area and
small town with no electricity. Power generation capacity has been increasing in slow pace
until 1959 with installed capacity reaching 17.5 MW. Furthermore, the isolated power plants
operated by diesel were constructed in big towns all over the country.

The country has invested by constructing 21-MW Hale hydropower station in 1962, integrated
with the existing power plants in north part of the county. For more integration, transmission
line was constructed to integrate isolated power supply in the east part of the country. In 1969,
there is an 8-MW Nyumba ya Mungu hydropower station on the headwaters of the Pangani
River. In 1968, two hydropower plants generating units (50 MW each) to supply 100-MW
Kidatu power station were installed. The installed capacity of the hydroelectric power station
at Kidatu was doubled and reached 200 MW in 1980 [24].

All this investment in power generation plants was also accompanied by the construction of
transmission to integrate the existing power plant as well as decommissioning diesel power
plants.

The country has invested in power generation and distribution using state own company.
Now, the country has the vision of becoming a middle-income country by 2025, with the
electricity consumption of 490 kWh/capital. To support that vision, the Tanzanian government
envisages the increase of electricity generation from 1357.69 MW in 2015 to 4915 MW by 2020
and improving electricity connections to 60% of the population from 18% in 2015. On average,
the manufacturing sector will grow by over 10% per annum with its share in total exports
increasing from 24% in 2014–2015 to 30% in 2020.

In order to meet energy requirement as well as the country’s vision of becoming the middle-
income country, energy policy was reviewed in order to invite independent power producer as
one of the stakeholders in the electricity industry. The small power producers (SPPs) are
private companies that develop renewable energy generation projects on a small scale (less
than 10 MW). They are licensed to sell electricity either to local communities or to the national
grid under a power purchase agreement with Tanzania Electric Supply Company Limited
(TANESCO), a government-owned company, or to both TANESCO and the local communities.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

201

F ¼ Wp þWw
� �� Lms � cosθ

where Wp = weight of penstock per meter in KN/m, Ww = weight of water per meter KN/m,
Lms = length of penstock between midpoints of each span, and θ = angle of pipe with horizontal.

Maximum length between the supports:

Lmms ¼ 182:61�
Dp þ 0:0147
� �4 �Dp

4
� �1

3

Pw

where Pw is weight of pipe full of water.

2.3.8. Powerhouse

The planned dimension of powerhouse is sufficient for safe operation and maintenance of all
equipment included within it. A foundation is required on an adequate bearing soil stratum,
with a concrete slab cast to provide a rigid base for the turbine and generator. A channel at the
base slab is needed for outflow of water from the system. The powerhouse should be secured
to prevent unauthorized access.

2.3.9. Power generated in watts

Pt ¼ rghnQηt

where r = water density (1000 kg/m3), hn = head, and ηt = turbine efficiency.

2.3.10. Dump load

The load connected to hydropower varies time to time in a day that is peak hours and off-peak.
During a day, peak hour’s power produced is utilized by the connected load; therefore, the
machine frequency would remain within the required limit. Furthermore, during the off-peak,
load power consumed by the load is low compared to the power produced by the
hydroturbine causing the machine to accelerate, hence the frequency increases. Therefore, to
overcome this situation, a dump load in an electrical resistance heater (air or water) is installed
to the system to dissipate excess power, so that the machine frequency is kept within the
required limit. The size of dump load is usually equal to maximum power generated by the
hydroturbine so that it can handle the full generating capacity of the microhydroturbine.
Dump loads should be activated by the controller whenever power produced is not consumed
by the load or grid (integrated system), to prevent machine accelerations which might result in
system damage. Excess energy in the system is diverted to the dump load; it is envisaged most
scheme offers excess power at all times.

2.3.11. Metering

In power plant, the quantities such as current, voltage, and frequency need to be monitored by
measuring and displayed by the meters (whether analogue or digital). The load connected to

Dependability Engineering200

hydropower needs specific magnitude of voltage and current. Operating load with the low
magnitude of voltage and frequency results in efficiency reductions, while operating with
higher values results in insulation failure, hence equipment damages. Therefore, several
parameters of microhydroelectric system’s performance and status are monitored by recording
how much electricity is producing or has produced, and how much electricity is being
consumed.

3. Government initiative in promoting renewable energy through small
power producers

The first power plant was operated by diesel fuel in 1933 followed by 5-MW hydropower plant
in 1936. These two power plants were supplied to the big town, leaving the rural area and
small town with no electricity. Power generation capacity has been increasing in slow pace
until 1959 with installed capacity reaching 17.5 MW. Furthermore, the isolated power plants
operated by diesel were constructed in big towns all over the country.

The country has invested by constructing 21-MW Hale hydropower station in 1962, integrated
with the existing power plants in north part of the county. For more integration, transmission
line was constructed to integrate isolated power supply in the east part of the country. In 1969,
there is an 8-MW Nyumba ya Mungu hydropower station on the headwaters of the Pangani
River. In 1968, two hydropower plants generating units (50 MW each) to supply 100-MW
Kidatu power station were installed. The installed capacity of the hydroelectric power station
at Kidatu was doubled and reached 200 MW in 1980 [24].

All this investment in power generation plants was also accompanied by the construction of
transmission to integrate the existing power plant as well as decommissioning diesel power
plants.

The country has invested in power generation and distribution using state own company.
Now, the country has the vision of becoming a middle-income country by 2025, with the
electricity consumption of 490 kWh/capital. To support that vision, the Tanzanian government
envisages the increase of electricity generation from 1357.69 MW in 2015 to 4915 MW by 2020
and improving electricity connections to 60% of the population from 18% in 2015. On average,
the manufacturing sector will grow by over 10% per annum with its share in total exports
increasing from 24% in 2014–2015 to 30% in 2020.

In order to meet energy requirement as well as the country’s vision of becoming the middle-
income country, energy policy was reviewed in order to invite independent power producer as
one of the stakeholders in the electricity industry. The small power producers (SPPs) are
private companies that develop renewable energy generation projects on a small scale (less
than 10 MW). They are licensed to sell electricity either to local communities or to the national
grid under a power purchase agreement with Tanzania Electric Supply Company Limited
(TANESCO), a government-owned company, or to both TANESCO and the local communities.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

201

4. Strategies of retaining youth in the rural areas

Tanzania has the population of 51.6 million; about 70% of this population lives in the rural area
performing agriculture and animal keeping activities. They grow seasonal crops, food crops,
fruits as well as cash crops and long-term crops. Most of the seasonal crops are planted during
the raining season and harvested in dry season, while few of them practice irrigation agricul-
ture. For the year with low rainfall, farmers get less harvest, hence need to buy food for their
family; when rainfall is normal, they get more harvest. Moreover, they grow nonseasonal crops
like cassava, cashew nut, banana as well as fruits like oranges, mangoes, and others. During
harvesting period, the surplus food crops, fruits, and cash crops would be sold as raw due to
the lack of storage facilities and value addition machinery because of lack of electricity. For
example, coastal part of Tanzania is famous for the production of oranges. The situation in
several markets during the orange harvesting is as seen in Figure 12.

Therefore, this lack of electricity in rural areas has caused poverty and also the quality of
education is declining time to time as competent educators shifted to urban areas where there
are good infrastructures for social life. This fact has discouraged young generation to stay in
rural and they tend to migrate to urban leaving their community with no human resource to
perform economic activities (farming and livestock keeping).

Therefore, women and youth in rural areas have to be empowered through effective participa-
tion in the management of their own social, economic, and environmental objectives by

Figure 12. Oranges in the market.

Dependability Engineering202

establishing their own organizations such as local cooperatives and by applying the bottom-up
approach.

Telecommunication in most of the rural areas is affected by the lack of reliable electricity to
power microwave telecommunication links. The microwave links need reliable electricity in
order to receive and transmit the information; therefore, due to the lack of electricity, the
telecommunication providers failed to extend their service to rural areas due to economic
viability. The few microwave links found in the rural area are powered by diesel generators
which are very expensive.

On the other hand, lack of electricity causes the mobile subscribers to switch off their mobile
phone to extend the cycle of recharging their mobile phone. Furthermore, the network is
available in specific areas (especially higher elevations), where everybody is going there for
communications. Therefore, an electrifying rural area will motivate telecommunication opera-
tors to install more microwave towers that will make the availability of network in the rural
area as well as strengthen business among the communities in rural and urban areas.

Electrification of rural areas has to be done to stimulate income generation activities and value
addition as well. Having the electricity in the rural area will keep busy the rural community by
engaging themselves in several income generation activities in their area.

Electrification in the rural area will motivate establishment of small-scale industries for value
addition to farm and animal’s product. The value addition to milk product industry will
motivate rural people to keep more cattle in the modern ways of getting more milk and
manure. They will sell their milk to the processing industry where it can be processed for the
export to the urban area. The other product is the manure which can be obtained by
fermenting cow dung. The gas obtained can be used for heating purposes and the by-product
is used as the manure in farms. Furthermore, the small industries like those making tomatoes
as source, fabric from tomatoes, processing leather, food processing, and others will stimulate
more investment in those sectors. Also, integration of rural areas with neighboring urban areas
for the creation of rural off-farm employment can narrow down the migration of youth from
rural to urban as well as expand opportunities and also encourage the retention of skilled
people, including youth, in rural areas.

5. Conclusion

Renewable energy in Tanzania is not developed to generate electricity; hence, the community
in the rural areas depends fully on wood fuel for heating and kerosene for lighting. This lack of
electrical energy does not favor young people and skilled personnel to be retained in the rural
areas for income generation activities; hence, they migrate to urban area. This situation has
resulted in increase in the population in urban area engaging themselves in business, while
production of food in rural areas declines due to the shortage of human resource, hence
inadequate food in the country. The analyses of three major types of renewable energy that
are wind, solar, and hydropower have shown great potential all over the country.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

203

4. Strategies of retaining youth in the rural areas

Tanzania has the population of 51.6 million; about 70% of this population lives in the rural area
performing agriculture and animal keeping activities. They grow seasonal crops, food crops,
fruits as well as cash crops and long-term crops. Most of the seasonal crops are planted during
the raining season and harvested in dry season, while few of them practice irrigation agricul-
ture. For the year with low rainfall, farmers get less harvest, hence need to buy food for their
family; when rainfall is normal, they get more harvest. Moreover, they grow nonseasonal crops
like cassava, cashew nut, banana as well as fruits like oranges, mangoes, and others. During
harvesting period, the surplus food crops, fruits, and cash crops would be sold as raw due to
the lack of storage facilities and value addition machinery because of lack of electricity. For
example, coastal part of Tanzania is famous for the production of oranges. The situation in
several markets during the orange harvesting is as seen in Figure 12.

Therefore, this lack of electricity in rural areas has caused poverty and also the quality of
education is declining time to time as competent educators shifted to urban areas where there
are good infrastructures for social life. This fact has discouraged young generation to stay in
rural and they tend to migrate to urban leaving their community with no human resource to
perform economic activities (farming and livestock keeping).

Therefore, women and youth in rural areas have to be empowered through effective participa-
tion in the management of their own social, economic, and environmental objectives by

Figure 12. Oranges in the market.

Dependability Engineering202

establishing their own organizations such as local cooperatives and by applying the bottom-up
approach.

Telecommunication in most of the rural areas is affected by the lack of reliable electricity to
power microwave telecommunication links. The microwave links need reliable electricity in
order to receive and transmit the information; therefore, due to the lack of electricity, the
telecommunication providers failed to extend their service to rural areas due to economic
viability. The few microwave links found in the rural area are powered by diesel generators
which are very expensive.

On the other hand, lack of electricity causes the mobile subscribers to switch off their mobile
phone to extend the cycle of recharging their mobile phone. Furthermore, the network is
available in specific areas (especially higher elevations), where everybody is going there for
communications. Therefore, an electrifying rural area will motivate telecommunication opera-
tors to install more microwave towers that will make the availability of network in the rural
area as well as strengthen business among the communities in rural and urban areas.

Electrification of rural areas has to be done to stimulate income generation activities and value
addition as well. Having the electricity in the rural area will keep busy the rural community by
engaging themselves in several income generation activities in their area.

Electrification in the rural area will motivate establishment of small-scale industries for value
addition to farm and animal’s product. The value addition to milk product industry will
motivate rural people to keep more cattle in the modern ways of getting more milk and
manure. They will sell their milk to the processing industry where it can be processed for the
export to the urban area. The other product is the manure which can be obtained by
fermenting cow dung. The gas obtained can be used for heating purposes and the by-product
is used as the manure in farms. Furthermore, the small industries like those making tomatoes
as source, fabric from tomatoes, processing leather, food processing, and others will stimulate
more investment in those sectors. Also, integration of rural areas with neighboring urban areas
for the creation of rural off-farm employment can narrow down the migration of youth from
rural to urban as well as expand opportunities and also encourage the retention of skilled
people, including youth, in rural areas.

5. Conclusion

Renewable energy in Tanzania is not developed to generate electricity; hence, the community
in the rural areas depends fully on wood fuel for heating and kerosene for lighting. This lack of
electrical energy does not favor young people and skilled personnel to be retained in the rural
areas for income generation activities; hence, they migrate to urban area. This situation has
resulted in increase in the population in urban area engaging themselves in business, while
production of food in rural areas declines due to the shortage of human resource, hence
inadequate food in the country. The analyses of three major types of renewable energy that
are wind, solar, and hydropower have shown great potential all over the country.

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

203

The information collected from Tanzania Metrological Agency shows that in several parts of
the country, there is an adequate wind speed to be used for electricity generation, for grid
integration, and stand-alone systems. For electricity generation, wind speed needed is 3 m/s
and above which has been noticed. Thus, when embarking to the project, not only the mean
wind speed but also the wind speed frequency distribution, commonly described by a Weibull
distribution, has to be taken into account in order to estimate accurately the amount of
electricity to be generated. The location with poor wind speed has blessed with other types of
renewable energy; therefore, no location with no source of renewable energy.

Information collected for solar energy shows that there are good solar insolation all over the
country of 4.0 and above. The country has two seasons that are rainy season and dry season.
Normally, rainy season is between December and May, sometimes several hours of clouds in a
day which does not affect solar system. In dry season, June–November, there is enough Sun for
charging the systems. The solar insolation in the country is sufficient for grid integration as
well as isolated and the roof-mounted solar system.

The information for hydropower in the country is located at the steep rift valley in western
zone, northern zone, and west zone, which need to be developed. Most of the hydropotentials
are pico, micro, and mini which can work at isolated systems and integrated system when
there is grid networking nearby. Majority of people in rural Tanzania is poverty prone and
cannot afford the initial connection costs and the monthly bills. Rural electrification projects
through grid extension and grid densification are associated with long transmission and
distribution distances because of the sparse population as well as low load centers. In these
market conditions, projects need government, multinational development agencies, NGOs,
and the private sector to work together in order to design and create opportunities that
respond to the needs of the local community.

The government has put in place the policy to motivate small power producers (SPP), so that
renewable energy power generation would be developed. The SPP would be licensed to sell
electricity either to local communities or to the national grid under a power purchase agree-
ment with Tanzania Electric Supply Company limited (TANESCO), a government-owned
company, or to both TANESCO and the local communities.

Also, rural livelihoods have to be enhanced through effective participation of rural people and
rural communities in the management of their own social, economic, and environmental
objectives by empowering people in rural areas, particularly women and youth through
organizations such as local cooperatives and by applying the bottom-up approach.

Author details

Urbanus F Melkior*, Josef Tlustý and Zdeněk Müller

*Address all correspondence to: melkiurb@fel.cvut.cz

Department of Electrical Power Engineering, Czech Technical University, Prague,
Czech Republic

Dependability Engineering204

References

[1] https://www.usea.org/sites/default/files/event-/Tanzania%20Power%20Sector.pdf

[2] Kimambo C. Development of integrated water pumping and electricity generating wind
system for remote applications. University of Dar Es Salaam; 2007

[3] URT. Sustainable Energy for all Rapid Assessment and Gap Analysis. 2013. http://www.
se4all.org/sites/default/files/Tanzania_RAGA_EN_Released.pdf

[4] Mashauri A. A review on the renewable energy resources for rural application in Tanzania.
Dar es Salaam, Tanzania: Electrical Engineering Department, Dar es Salaam Institute of
Technology; 2011

[5] Melkior UF. Study of electrical power generation from windmill coupled with water
pump. University of Dar Es Salaam; 2010

[6] World Bank Wind Resource Mapping in Tanzania Site Identification Report. 2015. http://
pubdocs.worldbank.org/en/289831465287638659/Tanzania-Wind-Mapping-Site-Identification-
Report-WB-ESMAP-July2015.pdf

[7] http://www.iea.org/publications/freepublications/publication/Wind_2013_Roadmap.pdf

[8] Al-shemmer T. Wind Turbine, 1st ed. 2010; ISBN: 978-87-7681-692-6

[9] Teubner Stuttgart BG. Grid Integration of Wind Energy Conversion Systems. 1996; ISBN:
0-471-97143

[10] Şen Z. Wind Velocity Vertical Extrapolation by Extended Power Law. https://www.
hindawi.com/journals/amete/2012/178623

[11] Jäger K. Solar energy fundamentals, technology and systems. Delft University of Technol-
ogy; 2014. https://courses.edx.org/c4x/DelftX/ET.3034TU/asset/solar_energy_v1.1.pdf

[12] United Republic of Tanzania. Renewable Energy Policies and Practice in Tanzania

[13] http://www.nclark.net/photosynthesis.pdf

[14] Nzali AH. Insolation energy data for Tanzania. In: International Conference on Electrical
Engineering and Technology; the University of Dar es Salaam; 2001. pp. EP26-EP32

[15] Al-Tameemi MA, Chukin VV. Global water cycle and solar activity variations. Journal of
Atmospheric and Solar - Terrestrial Physics. 2016;142:55-59

[16] Hart Hubris, the troubling science, economics, and politics of climate change, Compleat
Desktops Publisher (2015). ISBN: 9780994903808

[17] Luqman M, Ahmad SR, Khan S, Ahmad U, Raza A, Akmal F. Estimation of solar energy
potential from rooftop of Punjab government servants cooperative housing society Lahore
using GIS [article ID:56795]

[18] https://gcep.stanford.edu/pdfs/assessments/solar_assessment.pdf

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

205

The information collected from Tanzania Metrological Agency shows that in several parts of
the country, there is an adequate wind speed to be used for electricity generation, for grid
integration, and stand-alone systems. For electricity generation, wind speed needed is 3 m/s
and above which has been noticed. Thus, when embarking to the project, not only the mean
wind speed but also the wind speed frequency distribution, commonly described by a Weibull
distribution, has to be taken into account in order to estimate accurately the amount of
electricity to be generated. The location with poor wind speed has blessed with other types of
renewable energy; therefore, no location with no source of renewable energy.

Information collected for solar energy shows that there are good solar insolation all over the
country of 4.0 and above. The country has two seasons that are rainy season and dry season.
Normally, rainy season is between December and May, sometimes several hours of clouds in a
day which does not affect solar system. In dry season, June–November, there is enough Sun for
charging the systems. The solar insolation in the country is sufficient for grid integration as
well as isolated and the roof-mounted solar system.

The information for hydropower in the country is located at the steep rift valley in western
zone, northern zone, and west zone, which need to be developed. Most of the hydropotentials
are pico, micro, and mini which can work at isolated systems and integrated system when
there is grid networking nearby. Majority of people in rural Tanzania is poverty prone and
cannot afford the initial connection costs and the monthly bills. Rural electrification projects
through grid extension and grid densification are associated with long transmission and
distribution distances because of the sparse population as well as low load centers. In these
market conditions, projects need government, multinational development agencies, NGOs,
and the private sector to work together in order to design and create opportunities that
respond to the needs of the local community.

The government has put in place the policy to motivate small power producers (SPP), so that
renewable energy power generation would be developed. The SPP would be licensed to sell
electricity either to local communities or to the national grid under a power purchase agree-
ment with Tanzania Electric Supply Company limited (TANESCO), a government-owned
company, or to both TANESCO and the local communities.

Also, rural livelihoods have to be enhanced through effective participation of rural people and
rural communities in the management of their own social, economic, and environmental
objectives by empowering people in rural areas, particularly women and youth through
organizations such as local cooperatives and by applying the bottom-up approach.

Author details

Urbanus F Melkior*, Josef Tlustý and Zdeněk Müller

*Address all correspondence to: melkiurb@fel.cvut.cz

Department of Electrical Power Engineering, Czech Technical University, Prague,
Czech Republic

Dependability Engineering204

References

[1] https://www.usea.org/sites/default/files/event-/Tanzania%20Power%20Sector.pdf

[2] Kimambo C. Development of integrated water pumping and electricity generating wind
system for remote applications. University of Dar Es Salaam; 2007

[3] URT. Sustainable Energy for all Rapid Assessment and Gap Analysis. 2013. http://www.
se4all.org/sites/default/files/Tanzania_RAGA_EN_Released.pdf

[4] Mashauri A. A review on the renewable energy resources for rural application in Tanzania.
Dar es Salaam, Tanzania: Electrical Engineering Department, Dar es Salaam Institute of
Technology; 2011

[5] Melkior UF. Study of electrical power generation from windmill coupled with water
pump. University of Dar Es Salaam; 2010

[6] World Bank Wind Resource Mapping in Tanzania Site Identification Report. 2015. http://
pubdocs.worldbank.org/en/289831465287638659/Tanzania-Wind-Mapping-Site-Identification-
Report-WB-ESMAP-July2015.pdf

[7] http://www.iea.org/publications/freepublications/publication/Wind_2013_Roadmap.pdf

[8] Al-shemmer T. Wind Turbine, 1st ed. 2010; ISBN: 978-87-7681-692-6

[9] Teubner Stuttgart BG. Grid Integration of Wind Energy Conversion Systems. 1996; ISBN:
0-471-97143

[10] Şen Z. Wind Velocity Vertical Extrapolation by Extended Power Law. https://www.
hindawi.com/journals/amete/2012/178623

[11] Jäger K. Solar energy fundamentals, technology and systems. Delft University of Technol-
ogy; 2014. https://courses.edx.org/c4x/DelftX/ET.3034TU/asset/solar_energy_v1.1.pdf

[12] United Republic of Tanzania. Renewable Energy Policies and Practice in Tanzania

[13] http://www.nclark.net/photosynthesis.pdf

[14] Nzali AH. Insolation energy data for Tanzania. In: International Conference on Electrical
Engineering and Technology; the University of Dar es Salaam; 2001. pp. EP26-EP32

[15] Al-Tameemi MA, Chukin VV. Global water cycle and solar activity variations. Journal of
Atmospheric and Solar - Terrestrial Physics. 2016;142:55-59

[16] Hart Hubris, the troubling science, economics, and politics of climate change, Compleat
Desktops Publisher (2015). ISBN: 9780994903808

[17] Luqman M, Ahmad SR, Khan S, Ahmad U, Raza A, Akmal F. Estimation of solar energy
potential from rooftop of Punjab government servants cooperative housing society Lahore
using GIS [article ID:56795]

[18] https://gcep.stanford.edu/pdfs/assessments/solar_assessment.pdf

Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area…
http://dx.doi.org/10.5772/intechopen.74956

205

[19] Zainuddin H, Yahaya MS, Lazi JM, Basar MFM, Ibrahim Z. Design and development of
pico-hydro generation system for energy storage using consuming water distributed to
houses. International Journal of Electrical and Computer Engineering World Academy of
Science, Engineering and Technology. 2009-11-23;3:150-155

[20] https://www.esmap.org/sites/esmap.org/files/01-KEF2013-REM_Gratwicke_Rift%20Vallery
%20Energy.pdf

[21] https://www.esmap.org/sites/esmap.org/files/TEDAP%20SPPs%2011-18.pdf

[22] Kumar A, Schei T, Ahenkorah A, Caceres Rodriguez R, Devernay JM, Freitas M, Hall D,
Killingtveit A, Liu Z. Hydropower. In: IPCC Special Report on Renewable Energy Sources
and Climate Change Mitigation. Cambridge, United Kingdom and New York, NY, USA:
Cambridge University Press; 2011

[23] Nasir BA. Design of micro-hydro electric power station. International Journal of Engineer-
ing and Advanced Technology (IJEAT) ISSN: 2249-8958. June 2013;2(5)

[24] http://www.ewura.go.tz/wp-content/uploads/2017/01/Power-System-Master-Plan-Dec.-2016.
pdf

Dependability Engineering206

Chapter 12

Time Series and Renewable Energy Forecasting

Mahmoud Ghofrani and Anthony Suherli

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71501

Provisional chapter

Time Series and Renewable Energy Forecasting

Mahmoud Ghofrani and Anthony Suherli

Additional information is available at the end of the chapter

Abstract

Reliability is a key important criterion in every single system in the world, and it is not
different in engineering. Reliability in power systems or electric grids can be generally
defined as the availability time (capable of fully supplying the demand) of the system
compared to the amount of time it is unavailable (incapable of supplying the demand). For
systems with high uncertainties, such as renewable energy based power systems, achiev-
ing a high level of reliability is a formidable challenge due to the increased penetrations of
the intermittent renewable sources such as wind and solar. A careful and accurate plan-
ning is at the utmost importance to achieve high reliability in renewable energy based
systems. This chapter will assess wind-based power system’s reliability issues, and pro-
vide a case study that proposes a solution to enhance the reliability of the system.

Keywords: availability, energy storage, renewable energy, reliability, wind

1. Introduction

The world is moving forward in technology as power systems lean toward renewable energy
more and more each year. While the idea of using renewable energy has long been the focus of
numerous researches from all over the world, the implementation itself is more complicated
than said. Dealing with renewable energy proposes new challenges that must be carefully
addressed and solved. The uncertainty of renewable energy sources, such as wind speed (for
wind turbines) or solar radiation (for solar photovoltaic (PV) panels), and the fact that it is
unreliable from time to time due to said uncertainty, are two of the major issues that rough up
the transition from fossil based energy sources to renewable energy sources. The main objec-
tive of operational and planning strategies is to enable power systems to constantly and
continuously meet the consumers’ demand or the system load. The volatility of renewable
energy sources jeopardizes the power system’s ability to reliably meet this objective.

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71501

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[19] Zainuddin H, Yahaya MS, Lazi JM, Basar MFM, Ibrahim Z. Design and development of
pico-hydro generation system for energy storage using consuming water distributed to
houses. International Journal of Electrical and Computer Engineering World Academy of
Science, Engineering and Technology. 2009-11-23;3:150-155

[20] https://www.esmap.org/sites/esmap.org/files/01-KEF2013-REM_Gratwicke_Rift%20Vallery
%20Energy.pdf

[21] https://www.esmap.org/sites/esmap.org/files/TEDAP%20SPPs%2011-18.pdf

[22] Kumar A, Schei T, Ahenkorah A, Caceres Rodriguez R, Devernay JM, Freitas M, Hall D,
Killingtveit A, Liu Z. Hydropower. In: IPCC Special Report on Renewable Energy Sources
and Climate Change Mitigation. Cambridge, United Kingdom and New York, NY, USA:
Cambridge University Press; 2011

[23] Nasir BA. Design of micro-hydro electric power station. International Journal of Engineer-
ing and Advanced Technology (IJEAT) ISSN: 2249-8958. June 2013;2(5)

[24] http://www.ewura.go.tz/wp-content/uploads/2017/01/Power-System-Master-Plan-Dec.-2016.
pdf

Dependability Engineering206

Chapter 12

Time Series and Renewable Energy Forecasting

Mahmoud Ghofrani and Anthony Suherli

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71501

Provisional chapter

Time Series and Renewable Energy Forecasting

Mahmoud Ghofrani and Anthony Suherli

Additional information is available at the end of the chapter

Abstract

Reliability is a key important criterion in every single system in the world, and it is not
different in engineering. Reliability in power systems or electric grids can be generally
defined as the availability time (capable of fully supplying the demand) of the system
compared to the amount of time it is unavailable (incapable of supplying the demand). For
systems with high uncertainties, such as renewable energy based power systems, achiev-
ing a high level of reliability is a formidable challenge due to the increased penetrations of
the intermittent renewable sources such as wind and solar. A careful and accurate plan-
ning is at the utmost importance to achieve high reliability in renewable energy based
systems. This chapter will assess wind-based power system’s reliability issues, and pro-
vide a case study that proposes a solution to enhance the reliability of the system.

Keywords: availability, energy storage, renewable energy, reliability, wind

1. Introduction

The world is moving forward in technology as power systems lean toward renewable energy
more and more each year. While the idea of using renewable energy has long been the focus of
numerous researches from all over the world, the implementation itself is more complicated
than said. Dealing with renewable energy proposes new challenges that must be carefully
addressed and solved. The uncertainty of renewable energy sources, such as wind speed (for
wind turbines) or solar radiation (for solar photovoltaic (PV) panels), and the fact that it is
unreliable from time to time due to said uncertainty, are two of the major issues that rough up
the transition from fossil based energy sources to renewable energy sources. The main objec-
tive of operational and planning strategies is to enable power systems to constantly and
continuously meet the consumers’ demand or the system load. The volatility of renewable
energy sources jeopardizes the power system’s ability to reliably meet this objective.

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71501

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Climate change concerns, and new state initiatives are some of the factors that contributed in
pushing and escalating the number of wind power based technology deployment during recent
years. The stochastic nature of wind power resources makes it difficult to perform a reliable
operation. While this issue has been frequently studied and numerous methods have been
developed, a flawless solution for every case has not yet been designed. One of the proposed
solutions is to use fast-responding units like gas generators as the operating reserves to keep up
with the demand [1, 2], although doing that reduces the system’s efficiency and increases its
operating costs [3]. Another possible solution is to install energy storage systems, which store
wind power during low-demand periods and release power during periods when the system
cannot provide sufficient power to meet the load [4]. This increases the flexibility of the power
system as the energy storage system counterbalances the unexpected wind power fluctuations to
more efficiently utilize the smoothened wind power for supplying the system demand.

In the upcoming future, energy storage systems are expected to be an essential part of electric
grids. However, its deployment depends heavily on its economic advantages when compared
to the more conventional operational practices. To come up with the most economically
beneficial plan, a cost–benefit analysis must be done for each possible technology, especially
in regulated utilities where the limited market opportunities diminish the potential economic
benefits of storage technologies over gas-fired generators [3]. To assure the effectiveness of an
energy storage system, we must approach the problem with an appropriate strategy [5, 6]. An
optimal storage sizing strategy furnishes the system with the capability to stabilize against
forecast uncertainty and integrate wind power more reliably [7–9], added with optimal sched-
uling, it also improves the system’s transmission capacity utilization.

For high wind penetrations, fast-response thermal units are used as reserve capacities to
provide the fast ramping capability required to deal with wind power fluctuations. Recent
developments in storage technologies have advanced its energy efficiency and enhanced its
capability in dealing with fast ramping. Additionally, storage systems bring forth several
benefits when compared to fast-response thermal units, such as efficiency enhancement of
renewable integration, reduced emission, and improved utilization of grid assets.

Several applications have been proposed for energy storage systems, which include but are not
limited to renewable capacity firming and reliability enhancement of renewable integration.
Each application requires a case-by-case optimal allocation strategy, which might result in
different solutions. Particularly, the matter of optimally sizing, siting, scheduling and operat-
ing storage systems to address the reliability issues of intermittent renewable integration is of
great importance. A solid, probabilistic optimization framework is needed to supplement grid
operability and reliability while at the same time reduces overall costs for systems with high
wind penetrations. The framework developed by the author in Ref. [10] is adopted for this
chapter and is provided in the next section. A case study is presented in this chapter to analyze
the reliability of renewable energy based systems and compare storage technologies and
conventional gas-fired alternatives for reliably integrating different wind penetrations. An
economic analysis is also provided to calculate costs and benefits associated with each tech-
nology to determine the most economical solution.

Dependability Engineering208

2. Methodology

The following methodology is one possible solution example to model an intermittent renew-
able energy-based power system.

2.1. Wind, load, and equipment availability modeling

We use probability distribution functions (PDFs) to model the stochastic nature of load and
wind generation, which parameters are calculated using 10 years of historical hourly data for
load and wind speed [11]. The produced model will then be used to generate hourly samples
for the planning period. We use Fuzzy C-Means (FCM) clustering to capture a statistical
model that takes into account seasonal variations [12]. We grade each of the sample points
with a value within the range of [0, 1], then we minimize the weighted distance between any
sample point and a cluster center by using an iterative algorithm. The elbow method deter-
mines the total number of clusters [13]. By combining the FCM clustering and the elbow
method, we categorize our planning days into 40 clusters of 24-hour wind speed and load
samples. We utilize the maximum likelihood method to find the parameters of the PDFs for
the samples. Two sets of 24 individual PDFs will represent each of the clusters for a 24-hour
period.

2.1.1. Wind power modeling

The total power generated by a wind turbine can be calculated by the product of a simple
kinetic energy equation through a cross sectional area A as follows [14].

P ¼ 1
2
rv3A ¼ 1

2
rv3

πd2

4
(1)

where v is the wind speed in meters per second (m/s), r represents air density in kg/m3 and d is
the rotor diameter in meters.

The power output of a wind turbine depends heavily on the speed of the wind, and the wind
speed itself can be best characterized by using the Weibull PDF, which formula is the following
[11, 15]:

f v; c; kð Þ ¼ k
c

v
c

� �k�1
e�

v
cð Þk (2)

where k is a shape vector, c is the scale vector, and v is a vector of the measured wind speed.
The average width of the wind speed distribution is determined by the shape vector k, while
the scale vector indicates where the majority of the distribution lies and how wide the
distribution-stretch is.

The wind power output can be calculated by using the power-speed curve [16]:

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

209

Climate change concerns, and new state initiatives are some of the factors that contributed in
pushing and escalating the number of wind power based technology deployment during recent
years. The stochastic nature of wind power resources makes it difficult to perform a reliable
operation. While this issue has been frequently studied and numerous methods have been
developed, a flawless solution for every case has not yet been designed. One of the proposed
solutions is to use fast-responding units like gas generators as the operating reserves to keep up
with the demand [1, 2], although doing that reduces the system’s efficiency and increases its
operating costs [3]. Another possible solution is to install energy storage systems, which store
wind power during low-demand periods and release power during periods when the system
cannot provide sufficient power to meet the load [4]. This increases the flexibility of the power
system as the energy storage system counterbalances the unexpected wind power fluctuations to
more efficiently utilize the smoothened wind power for supplying the system demand.

In the upcoming future, energy storage systems are expected to be an essential part of electric
grids. However, its deployment depends heavily on its economic advantages when compared
to the more conventional operational practices. To come up with the most economically
beneficial plan, a cost–benefit analysis must be done for each possible technology, especially
in regulated utilities where the limited market opportunities diminish the potential economic
benefits of storage technologies over gas-fired generators [3]. To assure the effectiveness of an
energy storage system, we must approach the problem with an appropriate strategy [5, 6]. An
optimal storage sizing strategy furnishes the system with the capability to stabilize against
forecast uncertainty and integrate wind power more reliably [7–9], added with optimal sched-
uling, it also improves the system’s transmission capacity utilization.

For high wind penetrations, fast-response thermal units are used as reserve capacities to
provide the fast ramping capability required to deal with wind power fluctuations. Recent
developments in storage technologies have advanced its energy efficiency and enhanced its
capability in dealing with fast ramping. Additionally, storage systems bring forth several
benefits when compared to fast-response thermal units, such as efficiency enhancement of
renewable integration, reduced emission, and improved utilization of grid assets.

Several applications have been proposed for energy storage systems, which include but are not
limited to renewable capacity firming and reliability enhancement of renewable integration.
Each application requires a case-by-case optimal allocation strategy, which might result in
different solutions. Particularly, the matter of optimally sizing, siting, scheduling and operat-
ing storage systems to address the reliability issues of intermittent renewable integration is of
great importance. A solid, probabilistic optimization framework is needed to supplement grid
operability and reliability while at the same time reduces overall costs for systems with high
wind penetrations. The framework developed by the author in Ref. [10] is adopted for this
chapter and is provided in the next section. A case study is presented in this chapter to analyze
the reliability of renewable energy based systems and compare storage technologies and
conventional gas-fired alternatives for reliably integrating different wind penetrations. An
economic analysis is also provided to calculate costs and benefits associated with each tech-
nology to determine the most economical solution.

Dependability Engineering208

2. Methodology

The following methodology is one possible solution example to model an intermittent renew-
able energy-based power system.

2.1. Wind, load, and equipment availability modeling

We use probability distribution functions (PDFs) to model the stochastic nature of load and
wind generation, which parameters are calculated using 10 years of historical hourly data for
load and wind speed [11]. The produced model will then be used to generate hourly samples
for the planning period. We use Fuzzy C-Means (FCM) clustering to capture a statistical
model that takes into account seasonal variations [12]. We grade each of the sample points
with a value within the range of [0, 1], then we minimize the weighted distance between any
sample point and a cluster center by using an iterative algorithm. The elbow method deter-
mines the total number of clusters [13]. By combining the FCM clustering and the elbow
method, we categorize our planning days into 40 clusters of 24-hour wind speed and load
samples. We utilize the maximum likelihood method to find the parameters of the PDFs for
the samples. Two sets of 24 individual PDFs will represent each of the clusters for a 24-hour
period.

2.1.1. Wind power modeling

The total power generated by a wind turbine can be calculated by the product of a simple
kinetic energy equation through a cross sectional area A as follows [14].

P ¼ 1
2
rv3A ¼ 1

2
rv3

πd2

4
(1)

where v is the wind speed in meters per second (m/s), r represents air density in kg/m3 and d is
the rotor diameter in meters.

The power output of a wind turbine depends heavily on the speed of the wind, and the wind
speed itself can be best characterized by using the Weibull PDF, which formula is the following
[11, 15]:

f v; c; kð Þ ¼ k
c

v
c

� �k�1
e�

v
cð Þk (2)

where k is a shape vector, c is the scale vector, and v is a vector of the measured wind speed.
The average width of the wind speed distribution is determined by the shape vector k, while
the scale vector indicates where the majority of the distribution lies and how wide the
distribution-stretch is.

The wind power output can be calculated by using the power-speed curve [16]:

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

209

GW ¼
0 v ≤ vi, v ≥ vo

v� vi
vr � vi

GWr vi ≤ v ≤ vr

GWr vr ≤ v ≤ vo

8>><
>>:

(3)

where GW is the output wind power, and vi, v0, vr, v represents cut-in speed, cut-out speed,
rated speed, and wind speed respectively.

2.1.2. Load modeling

The variation of the load is described by the Gaussian distribution [11]:

f l;μ; σ
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2πσ2
p exp � L� μ

� �2
2σ2

" #
(4)

where σ and μ represent the standard distribution, and mean of the Gaussian distribution
respectively, and L represents the load demand.

2.1.3. Equipment availability modeling

Forced outage rate (FOR) of an equipment is the unavailability of the equipment estimated for
a long-time period [17]. FOR models the availability of the equipment stochastically by the
binomial PDF as follows:

f q; n; pð Þ ¼ n
q

� �
pq 1� pð Þn�q (5)

where n is the number of units for each power plant and q = 0, 1, 2, …., n. The availability of
each unit p is:

p ¼ 1� FOR (6)

where FOR is basically the probability of the system’s unavailability. For systems with long
operating cycles, FOR can adequately estimate the unavailability probability of units that
operates under similar conditions. On the other hand, it is not an adequate estimator for
systems with short demand cycles. The most important period in the operation of a unit is the
start-up period, and a peaking unit (example of a system with short demand cycles) will have
less operating hours with more start-up and shut-down periods [17].

2.2. Energy storage modeling

The model of a storage system must be able to handle the energy balance between the sum of
the stored and generated energy and the load, where it stores excess energy gained from wind
generation and releases the energy to supply the peak demand. We can use compressed air
energy storage (CAES) to enhance the wind integration performance in a transmission

Dependability Engineering210

network due to its beneficial features such as large power capacity, long lifetime, and low
operation costs [18]. The charging and discharging equations of the storage system are as
follows:

St ¼ 1� dsð ÞSt�1 þ ηcsLst ∀t∈T (7)

St ¼ 1� dsð ÞSt�1 � ηdsGst ∀t∈T (8)

where St represents the energy stored in the storage system at hour t, ηcs and ηds represents the
charging and discharging efficiencies for the CAES, Lst represents the storage loading capacity
at hour t, and Gst represents the storage generating capacity at hour t, and ds represents the
self-discharge rate for CAES.

The state of charge of the storage system at any time t is within the minimum and maximum
storage capacity requirements:

Smin ≤St ≤Smax ∀t∈T (9)

where Smin and Smax are the minimum and maximum storage capacities.

The stored power must not exceed the maximum power rating at any given time as follows:

Ptj j ≤Pmax∀t∈T (10)

where Pt and Pmax are the storage power at time t and the maximum storage power respec-
tively.

The following is the ramping constraints for the storage:

GSt � GSt�1 ≤RUs ∀t∈T (11)

GSt�1 � GSt ≤RDs ∀t∈T (12)

where RUs and RDs are the ramp up and ramp down of the turbine for the storage system
respectively.

CAES has an expected lifetime of 30 years [19].

2.3. Economic modeling

The storage cost is the sum of the energy and power costs associated with each energy storage
technology. The storage cost is described by the following equation [20, 21]:

ICS ¼ CS:Smax þ CP:Pmax (13)

where ICS is the cost of investment for the storage system, CS is the energy cost for the storage
system, and CP is the power cost for the storage system.

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

211

GW ¼
0 v ≤ vi, v ≥ vo

v� vi
vr � vi

GWr vi ≤ v ≤ vr

GWr vr ≤ v ≤ vo

8>><
>>:

(3)

where GW is the output wind power, and vi, v0, vr, v represents cut-in speed, cut-out speed,
rated speed, and wind speed respectively.

2.1.2. Load modeling

The variation of the load is described by the Gaussian distribution [11]:

f l;μ; σ
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2πσ2
p exp � L� μ

� �2
2σ2

" #
(4)

where σ and μ represent the standard distribution, and mean of the Gaussian distribution
respectively, and L represents the load demand.

2.1.3. Equipment availability modeling

Forced outage rate (FOR) of an equipment is the unavailability of the equipment estimated for
a long-time period [17]. FOR models the availability of the equipment stochastically by the
binomial PDF as follows:

f q; n; pð Þ ¼ n
q

� �
pq 1� pð Þn�q (5)

where n is the number of units for each power plant and q = 0, 1, 2, …., n. The availability of
each unit p is:

p ¼ 1� FOR (6)

where FOR is basically the probability of the system’s unavailability. For systems with long
operating cycles, FOR can adequately estimate the unavailability probability of units that
operates under similar conditions. On the other hand, it is not an adequate estimator for
systems with short demand cycles. The most important period in the operation of a unit is the
start-up period, and a peaking unit (example of a system with short demand cycles) will have
less operating hours with more start-up and shut-down periods [17].

2.2. Energy storage modeling

The model of a storage system must be able to handle the energy balance between the sum of
the stored and generated energy and the load, where it stores excess energy gained from wind
generation and releases the energy to supply the peak demand. We can use compressed air
energy storage (CAES) to enhance the wind integration performance in a transmission

Dependability Engineering210

network due to its beneficial features such as large power capacity, long lifetime, and low
operation costs [18]. The charging and discharging equations of the storage system are as
follows:

St ¼ 1� dsð ÞSt�1 þ ηcsLst ∀t∈T (7)

St ¼ 1� dsð ÞSt�1 � ηdsGst ∀t∈T (8)

where St represents the energy stored in the storage system at hour t, ηcs and ηds represents the
charging and discharging efficiencies for the CAES, Lst represents the storage loading capacity
at hour t, and Gst represents the storage generating capacity at hour t, and ds represents the
self-discharge rate for CAES.

The state of charge of the storage system at any time t is within the minimum and maximum
storage capacity requirements:

Smin ≤St ≤Smax ∀t∈T (9)

where Smin and Smax are the minimum and maximum storage capacities.

The stored power must not exceed the maximum power rating at any given time as follows:

Ptj j ≤Pmax∀t∈T (10)

where Pt and Pmax are the storage power at time t and the maximum storage power respec-
tively.

The following is the ramping constraints for the storage:

GSt � GSt�1 ≤RUs ∀t∈T (11)

GSt�1 � GSt ≤RDs ∀t∈T (12)

where RUs and RDs are the ramp up and ramp down of the turbine for the storage system
respectively.

CAES has an expected lifetime of 30 years [19].

2.3. Economic modeling

The storage cost is the sum of the energy and power costs associated with each energy storage
technology. The storage cost is described by the following equation [20, 21]:

ICS ¼ CS:Smax þ CP:Pmax (13)

where ICS is the cost of investment for the storage system, CS is the energy cost for the storage
system, and CP is the power cost for the storage system.

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

211

The energy cost for CAES is 53 $/kWh, which includes the combined reservoir and the balance
of plant costs. The power cost of CAES is around 425 $/kW [20], which includes turbine,
compressor, and other power related costs.

The operation expenses are the sum of operation and maintenance (O&M) and fuel costs,
which can be described by the following equation [22]:

OCSt ¼ HR:GSt :CNGt þ COM:Pmax ∀t∈T (14)

where OCSt is the operation cost of the storage system, HR is the turbine heat rate for the
storage system, CNGt is the cost of natural gas of the storage system, and COM represents the
cost of operation and maintenance for the storage.

CNGt , COM, and HR are 4300 Btu/kWh, 5 $/MBtu and 2.5 $/kW-year [20, 22].

For a gas-fired conventional generator, the investment cost and heat rate are 695 $/kW and
8000 Btu/kWh respectively.

The total annual cost can be calculated by uniformly distributing the investment costs over the
lifetime as follows:

A ¼ d 1þ dð ÞN
1þ dð ÞNþ1 � 1

∙IC (15)

where A is the annual equivalent cost for the investment, d is the discount rate, N is the life
cycle of the investment, and IC is the investment cost.

We assume a discount rate of 10% and a lifetime of 30 years for the investment.

2.4. DC optimal power flow

We use optimal power flow (OPF) to find the steady state condition that at the same time
minimizes the total operation and reliability costs. The objective function of the deterministic
OPF is as follows:

Obj:Function ¼ Min
Xng

i¼1

aiPgi, t
2 þ biPgi, t þ ci

� �(

þ
Xnb
i¼1

IEARi � ILi, tg

¼ Min OCt þ ILCtð Þ ∀t∈T (16)

where IEARi is the interrupted energy assessment rate at each bus. ai, bi and ci are the coefficients
of the cost function for the ith generator, Pgi, t represents the power output of the i-th generator at

hour t, and ILC is the interrupted load cost.

The objective function above is subject to each of the following constraints:

Dependability Engineering212

Power balance equation:

Xnb
i¼1

Pgi,t ¼
Xnb
i¼1

Pdi, t ∀t∈T (17)

where Pdi, t is the supplied load at bus i at hour t, and nb is the bus number.

Power generation and load limitations:

Pmin
gi, t

≤Pgi, t ≤P
max
gi, t

∀t∈T (18)

Pmin
gi, t

≤Pgi, t ≤P
max
gi, t

∀t∈T (19)

where Pmin
gi, t

and Pmax
gi, t

are the lower and upper generation limits for the i-th generator at hour t

respectively.

Interrupted load:

ILi, t ¼ PDi, t � Pdi, t ∀t∈T (20)

where PDi, t is the load demand at bus i at hour t.

Generation ramp up and ramp down:

Pgi,t � Pgi,t�1
≤RUi ∀t∈T (21)

Pgi, t�1
� Pgi,t ≤RDi ∀t∈T (22)

And the transmission line limitation:

Xnb
i¼1

Hr�i � Pgi,t � Pdi, t

� �
≤ f r r∈Ω&∀t∈T (23)

where Hr�i is the generalized distribution factor of line r with respect to bus i, f r is the
maximum transmission capacity for line r, and Ω is the set of transmission lines.

2.5. Probabilistic optimal power flow

A probabilistic OPF is a more appropriate approach when dealing with uncertainties of loads
and wind power fluctuations, which process includes running the deterministic power flow
continuously to account for the majority of possible system states. This chapter utilizes an
approximate method called Hong’s point estimate method (2 m + 1 scheme) to characterize
uncertainties, which uses the first few front most statistical moments of stochastic variables to
approximate the probability functions [23].

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

213

The energy cost for CAES is 53 $/kWh, which includes the combined reservoir and the balance
of plant costs. The power cost of CAES is around 425 $/kW [20], which includes turbine,
compressor, and other power related costs.

The operation expenses are the sum of operation and maintenance (O&M) and fuel costs,
which can be described by the following equation [22]:

OCSt ¼ HR:GSt :CNGt þ COM:Pmax ∀t∈T (14)

where OCSt is the operation cost of the storage system, HR is the turbine heat rate for the
storage system, CNGt is the cost of natural gas of the storage system, and COM represents the
cost of operation and maintenance for the storage.

CNGt , COM, and HR are 4300 Btu/kWh, 5 $/MBtu and 2.5 $/kW-year [20, 22].

For a gas-fired conventional generator, the investment cost and heat rate are 695 $/kW and
8000 Btu/kWh respectively.

The total annual cost can be calculated by uniformly distributing the investment costs over the
lifetime as follows:

A ¼ d 1þ dð ÞN
1þ dð ÞNþ1 � 1

∙IC (15)

where A is the annual equivalent cost for the investment, d is the discount rate, N is the life
cycle of the investment, and IC is the investment cost.

We assume a discount rate of 10% and a lifetime of 30 years for the investment.

2.4. DC optimal power flow

We use optimal power flow (OPF) to find the steady state condition that at the same time
minimizes the total operation and reliability costs. The objective function of the deterministic
OPF is as follows:

Obj:Function ¼ Min
Xng

i¼1

aiPgi, t
2 þ biPgi, t þ ci

� �(

þ
Xnb
i¼1

IEARi � ILi, tg

¼ Min OCt þ ILCtð Þ ∀t∈T (16)

where IEARi is the interrupted energy assessment rate at each bus. ai, bi and ci are the coefficients
of the cost function for the ith generator, Pgi, t represents the power output of the i-th generator at

hour t, and ILC is the interrupted load cost.

The objective function above is subject to each of the following constraints:

Dependability Engineering212

Power balance equation:

Xnb
i¼1

Pgi,t ¼
Xnb
i¼1

Pdi, t ∀t∈T (17)

where Pdi, t is the supplied load at bus i at hour t, and nb is the bus number.

Power generation and load limitations:

Pmin
gi, t

≤Pgi, t ≤P
max
gi, t

∀t∈T (18)

Pmin
gi, t

≤Pgi, t ≤P
max
gi, t

∀t∈T (19)

where Pmin
gi, t

and Pmax
gi, t

are the lower and upper generation limits for the i-th generator at hour t

respectively.

Interrupted load:

ILi, t ¼ PDi, t � Pdi, t ∀t∈T (20)

where PDi, t is the load demand at bus i at hour t.

Generation ramp up and ramp down:

Pgi,t � Pgi,t�1
≤RUi ∀t∈T (21)

Pgi, t�1
� Pgi,t ≤RDi ∀t∈T (22)

And the transmission line limitation:

Xnb
i¼1

Hr�i � Pgi,t � Pdi, t

� �
≤ f r r∈Ω&∀t∈T (23)

where Hr�i is the generalized distribution factor of line r with respect to bus i, f r is the
maximum transmission capacity for line r, and Ω is the set of transmission lines.

2.5. Probabilistic optimal power flow

A probabilistic OPF is a more appropriate approach when dealing with uncertainties of loads
and wind power fluctuations, which process includes running the deterministic power flow
continuously to account for the majority of possible system states. This chapter utilizes an
approximate method called Hong’s point estimate method (2 m + 1 scheme) to characterize
uncertainties, which uses the first few front most statistical moments of stochastic variables to
approximate the probability functions [23].

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

213

K is the number of concentration points that we use to represent the statistical information of
the random input variable in our K�m scheme. A location xi, k and a weight wi,k(xi,k, wi,k)
represent the kth concentration of the random variable xi. In order to relate the input and
output variables to each other, we apply the non-linear function F x1; x2;…; xi;…; xmð Þ. The
location of the kth value of variable xi is determined by the following equation:

xi, k ¼ μxi
þ ξi, kσxi (24)

where μxi
is the mean for the input variable xi, ξi, k represents the standard location for the input

variable xi, and σxi is the standard deviation for the input xi. We assign a weighing factor wi,k to
the current random output variable of the kth concentration. To determine ξi, k and wi,k, for the
kth concentration of xi, we use the following equations [23]:

XK

k¼1

wi,k ¼ 1
m

(25)

XK

k¼1

wi,k ξi, k
� �j ¼ λi, jj ¼ 1,…, 2K � 1 (26)

λi, j in the equation above represents the jth standard central moment for the random variable
xi, and its probability density function f xi can be described as:

λi, j ¼
Mj xið Þ
σxi
� �j (27)

The jth central moment of the random variable xi is given by:

Mj xið Þ ¼
ð∞
�∞

xi � μxi

� �j
f xi dxi (28)

Once we obtain every concentration (xi, k, wi,k), we use the nonlinear function F to calculate the

vector of random output variables Z i; kð Þ for each point μx1
;μx2

;…; xi,k;…;μxm

� �
as follows:

Z i; kð Þ ¼ F μx1
;μx2

;…; xi,k;…;μxm

� �
(29)

By using the values from Z i; kð Þ, and the weighing factors, the jth moments of the random output
variables can be approximated by:

E Zj� � ffi
Xm

i¼1

XK

k¼1

wi,k Z i; kð Þð Þj (30)

We can extract the desired statistical information of our random output variable using a
2 m + 1 scheme by solving (25) for K = 3 and ξi,3 ¼ 0. The standard locations and weight
produced by the equation are:

Dependability Engineering214

ξi, k ¼ λi,3

2
þ �1ð Þ3�k

ffi
λi,4 � 3

4
λi,3

2

r
k ¼ 1, 2 ξi,3 ¼ 0 (31)

wi,k ¼ �1ð Þ3�k

ξi, k ξi,1 � ξi,2
� � k ¼ 1, 2 (32)

wi,3 ¼ 1
m
� 1
λi,4 � λi,3

2 (33)

λi,3 and λi,4 are the skewness and kurtosis of xi.

The scheme above sets up ξi,3 ¼ 0, which results in xi,k ¼ μxi
in (25), and yields m of the 3 m

locations at the same point. By that done, it only requires one additional function evaluation
for this particular location to complete 1 iteration of our probabilistic OPF. We update the
corresponding weight to w0 as follows:

w0 ¼
Xm

i¼1

wi,3 ¼ 1�
Xm

i¼1

1
λi,4 � λi,3

2 (34)

The deterministic DC-OPF is executed 2 m + 1 times in order to take all the random variables
into account.

2.6. Reliability analysis

Reliability analysis provides an index to measure the degree of supply availability to meet the
system demand. In the times when generated and stored energy is insufficient to supply the
load, load is interrupted to maintain the power balance in the system. Load and generation
variations as well as equipment failures are among the system uncertainties that could con-
tribute to the load interruption in a power system. For wind turbines, the reliability model is a
combination of a two-state model and power output model defined by (3). This combination is
illustrated in Figure 1 to provide the reliability model for wind generators.

The interrupted load in the system is equivalent to the amount of energy that is not supplied
for each hour of the scheduling period, which can be described as:

ENSt ¼
Xnb
i¼1

ILi, t ∀t∈T (35)

where ENSt is the energy not supplied at hour t, and ILi, t is the interrupted load at bus i at hour t.

Figure 1. Reliability model for wind generator.

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

215

K is the number of concentration points that we use to represent the statistical information of
the random input variable in our K�m scheme. A location xi, k and a weight wi,k(xi,k, wi,k)
represent the kth concentration of the random variable xi. In order to relate the input and
output variables to each other, we apply the non-linear function F x1; x2;…; xi;…; xmð Þ. The
location of the kth value of variable xi is determined by the following equation:

xi, k ¼ μxi
þ ξi, kσxi (24)

where μxi
is the mean for the input variable xi, ξi, k represents the standard location for the input

variable xi, and σxi is the standard deviation for the input xi. We assign a weighing factor wi,k to
the current random output variable of the kth concentration. To determine ξi, k and wi,k, for the
kth concentration of xi, we use the following equations [23]:

XK

k¼1

wi,k ¼ 1
m

(25)

XK

k¼1

wi,k ξi, k
� �j ¼ λi, jj ¼ 1,…, 2K � 1 (26)

λi, j in the equation above represents the jth standard central moment for the random variable
xi, and its probability density function f xi can be described as:

λi, j ¼
Mj xið Þ
σxi
� �j (27)

The jth central moment of the random variable xi is given by:

Mj xið Þ ¼
ð∞
�∞

xi � μxi

� �j
f xi dxi (28)

Once we obtain every concentration (xi, k, wi,k), we use the nonlinear function F to calculate the

vector of random output variables Z i; kð Þ for each point μx1
;μx2

;…; xi,k;…;μxm

� �
as follows:

Z i; kð Þ ¼ F μx1
;μx2

;…; xi,k;…;μxm

� �
(29)

By using the values from Z i; kð Þ, and the weighing factors, the jth moments of the random output
variables can be approximated by:

E Zj� � ffi
Xm

i¼1

XK

k¼1

wi,k Z i; kð Þð Þj (30)

We can extract the desired statistical information of our random output variable using a
2 m + 1 scheme by solving (25) for K = 3 and ξi,3 ¼ 0. The standard locations and weight
produced by the equation are:

Dependability Engineering214

ξi, k ¼ λi,3

2
þ �1ð Þ3�k

ffi
λi,4 � 3

4
λi,3

2

r
k ¼ 1, 2 ξi,3 ¼ 0 (31)

wi,k ¼ �1ð Þ3�k

ξi, k ξi,1 � ξi,2
� � k ¼ 1, 2 (32)

wi,3 ¼ 1
m
� 1
λi,4 � λi,3

2 (33)

λi,3 and λi,4 are the skewness and kurtosis of xi.

The scheme above sets up ξi,3 ¼ 0, which results in xi,k ¼ μxi
in (25), and yields m of the 3 m

locations at the same point. By that done, it only requires one additional function evaluation
for this particular location to complete 1 iteration of our probabilistic OPF. We update the
corresponding weight to w0 as follows:

w0 ¼
Xm

i¼1

wi,3 ¼ 1�
Xm

i¼1

1
λi,4 � λi,3

2 (34)

The deterministic DC-OPF is executed 2 m + 1 times in order to take all the random variables
into account.

2.6. Reliability analysis

Reliability analysis provides an index to measure the degree of supply availability to meet the
system demand. In the times when generated and stored energy is insufficient to supply the
load, load is interrupted to maintain the power balance in the system. Load and generation
variations as well as equipment failures are among the system uncertainties that could con-
tribute to the load interruption in a power system. For wind turbines, the reliability model is a
combination of a two-state model and power output model defined by (3). This combination is
illustrated in Figure 1 to provide the reliability model for wind generators.

The interrupted load in the system is equivalent to the amount of energy that is not supplied
for each hour of the scheduling period, which can be described as:

ENSt ¼
Xnb
i¼1

ILi, t ∀t∈T (35)

where ENSt is the energy not supplied at hour t, and ILi, t is the interrupted load at bus i at hour t.

Figure 1. Reliability model for wind generator.

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

215

The interrupted load is defined as a random output variable whose first moment is calculated
by (30), with j = 1. Expected energy not supplied (EENS) is then calculated for a one-year
planning duration to provide a probabilistic index for our reliability analysis.

EENS ¼
XC

c¼1

XT
t¼1

Xnb
i¼1

E ILci, t
� �

:nc (36)

where nc is the number of days within cluster c, C is the total number of clusters, c is the cluster
number, and E is the average function.

We use the energy index of reliability (EIR) to estimate the reliability of the system, which can
be calculated as follows:

EIR ¼ 1� EENS
EE

(37)

EE represents the expected energy demand of the system during the planning interval and is
defined as:

EE ¼
XC

c¼1

XT
t¼1

Xnb
i¼1

Pc
Di, t :nc (38)

2.7. Genetic algorithm optimization

We use a Genetic Algorithm (GA)-based optimization to install the energy storage with its
optimal location and size. The GA begins by initially taking a set of randomly selected
solutions, and then ranking the solutions based on their fitness values. We then perform
recombination, crossover, selection, and mutation, to evolve the solution population. Once
the satisfaction criterion is satisfied, we put the process into a halt. We assign a large penalty
factor to the violated constraint to ensure satisfying constraints.

2.8. Proposed method

We model the storage system into our POPF as a load that stores excess, unconsumed energy
generated by the system during off-peak periods. The storage system is modeled as a generator
to release the stored energy to meet the peak load when sufficient transmission capacity is
available. The location and scheduling of the storage systems are then optimized using GA. The
optimized solution is the most cost efficient as it minimizes the total operation and interrupted-
load costs for the span of the planning period. In order to optimally enhance the grid operability
for wind integration, the storage technologies must possess an adequate capacity per the sys-
tem’s need. The fitness function that we use for the proposed method is the total weighted sum
of the system’s cost for each cluster over the planning period, as follows:

Fit:Function ¼ Min
XC
c¼1

XT

t¼1
OCt þ ILCtð Þcnc (39)

Dependability Engineering216

where OC is the operation cost of the system, ILC is the interrupted-load cost of the system,
and nc represents the number of days within the cluster.

The proposed GA-based POPF can be described in the following steps:

1. Input wind speed, loads, and FOR data

2. Initialize the first population.

A. For t = 1, until t = T:

3. Initialize the first input variable by setting i = 1 and E Zð Þ ¼ 0 & E Z2� � ¼ 0

B. For i = 1, until i = m:

4. Select input random variable xi

5. Calculate ξi, k, wi,k, λi, j

6. Initialize k=1.

C. For k = 1, until k = 3:

7. Calculate xi, k

8a. If GWt > Lt, model the storage as a variable load with the following constraints:

0 ≤ LSt ≤min Smax � 1� dsð ÞSt�1;Pmaxð Þ

8b. If GWt < Lt, model the storage as a generator with the following constraints:

0 ≤GSt ≤min 1� dsð ÞSt�1 � Smin;Pmaxð Þ

9. Run Deterministic OPF using Z i; kð Þ ¼ F μx1
;μx2

;…; xi, k;…;μxm

� �

10. Calculate S for charging-discharging by using Eqs. (7 and 8)

11. Calculate OCt, ILCt, and EENSt

12. Update raw moments using the following equations:

E Zð Þ ¼ E Zð Þ þ wi,kZ i; kð Þ; E Z2� � ¼ E Z2� �þ wi,k Z i; kð Þ½ �2

13. If k = 3, go to step 14, if not, go to step C with k ¼ kþ 1.

14. If i = m, go to step 15, if not, go to step B with i ¼ iþ 1.

15. If t = T, go to step 16, if not, go to step A with t ¼ tþ 1.

16. Evaluate the fitness function and constraints

17. Generate children by using crossover and mutation

18a. If termination criteria are not met, produce next generation by selection and combination
and go to step 2.

18b. If termination criteria are met, calculate the statistical output information.

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

217

The interrupted load is defined as a random output variable whose first moment is calculated
by (30), with j = 1. Expected energy not supplied (EENS) is then calculated for a one-year
planning duration to provide a probabilistic index for our reliability analysis.

EENS ¼
XC

c¼1

XT
t¼1

Xnb
i¼1

E ILci, t
� �

:nc (36)

where nc is the number of days within cluster c, C is the total number of clusters, c is the cluster
number, and E is the average function.

We use the energy index of reliability (EIR) to estimate the reliability of the system, which can
be calculated as follows:

EIR ¼ 1� EENS
EE

(37)

EE represents the expected energy demand of the system during the planning interval and is
defined as:

EE ¼
XC

c¼1

XT
t¼1

Xnb
i¼1

Pc
Di, t :nc (38)

2.7. Genetic algorithm optimization

We use a Genetic Algorithm (GA)-based optimization to install the energy storage with its
optimal location and size. The GA begins by initially taking a set of randomly selected
solutions, and then ranking the solutions based on their fitness values. We then perform
recombination, crossover, selection, and mutation, to evolve the solution population. Once
the satisfaction criterion is satisfied, we put the process into a halt. We assign a large penalty
factor to the violated constraint to ensure satisfying constraints.

2.8. Proposed method

We model the storage system into our POPF as a load that stores excess, unconsumed energy
generated by the system during off-peak periods. The storage system is modeled as a generator
to release the stored energy to meet the peak load when sufficient transmission capacity is
available. The location and scheduling of the storage systems are then optimized using GA. The
optimized solution is the most cost efficient as it minimizes the total operation and interrupted-
load costs for the span of the planning period. In order to optimally enhance the grid operability
for wind integration, the storage technologies must possess an adequate capacity per the sys-
tem’s need. The fitness function that we use for the proposed method is the total weighted sum
of the system’s cost for each cluster over the planning period, as follows:

Fit:Function ¼ Min
XC
c¼1

XT

t¼1
OCt þ ILCtð Þcnc (39)

Dependability Engineering216

where OC is the operation cost of the system, ILC is the interrupted-load cost of the system,
and nc represents the number of days within the cluster.

The proposed GA-based POPF can be described in the following steps:

1. Input wind speed, loads, and FOR data

2. Initialize the first population.

A. For t = 1, until t = T:

3. Initialize the first input variable by setting i = 1 and E Zð Þ ¼ 0 & E Z2� � ¼ 0

B. For i = 1, until i = m:

4. Select input random variable xi

5. Calculate ξi, k, wi,k, λi, j

6. Initialize k=1.

C. For k = 1, until k = 3:

7. Calculate xi, k

8a. If GWt > Lt, model the storage as a variable load with the following constraints:

0 ≤ LSt ≤min Smax � 1� dsð ÞSt�1;Pmaxð Þ

8b. If GWt < Lt, model the storage as a generator with the following constraints:

0 ≤GSt ≤min 1� dsð ÞSt�1 � Smin;Pmaxð Þ

9. Run Deterministic OPF using Z i; kð Þ ¼ F μx1
;μx2

;…; xi, k;…;μxm

� �

10. Calculate S for charging-discharging by using Eqs. (7 and 8)

11. Calculate OCt, ILCt, and EENSt

12. Update raw moments using the following equations:

E Zð Þ ¼ E Zð Þ þ wi,kZ i; kð Þ; E Z2� � ¼ E Z2� �þ wi,k Z i; kð Þ½ �2

13. If k = 3, go to step 14, if not, go to step C with k ¼ kþ 1.

14. If i = m, go to step 15, if not, go to step B with i ¼ iþ 1.

15. If t = T, go to step 16, if not, go to step A with t ¼ tþ 1.

16. Evaluate the fitness function and constraints

17. Generate children by using crossover and mutation

18a. If termination criteria are not met, produce next generation by selection and combination
and go to step 2.

18b. If termination criteria are met, calculate the statistical output information.

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

217

3. Case study

We evaluate our proposed method by applying it on the IEEE 24-bus system with the goal of
solving for the optimal size and location for the storage units [10, 24]. In our simulations, we test
our method for different situations by inputting different wind penetrations. To take into account

Figure 2. IEEE 24-bus system.

Dependability Engineering218

possible geological restrictions for CAES deployment in a real-world situation, we excluded
busses 2, 7, 8, 11, and 17 from candidate locations on purpose. A wind farm is also pre-
determinedly installed at bus 14 in each of the case studies. A diagram of the IEEE 24-bus system
is shown in Figure 2. Tables 1–3 provide more information regarding the flow limitations,
generators’ cost functions, and IEAR values of the IEEE 24-bus system in use for the case study.

We define wind penetration (WP) as the ratio between the wind capacity installation and the
system maximum load. We use real-world historical data obtained from the BPA for the system
load [25] and from Mesonet (Ames Station) for the wind speed [26], to create a more realistic
simulation environment. To calculate the cost of electric service reliability in the IEEE 24-bus
system that we are going to run our demo on, we use the values of IEAR for our load busses [27].
The cost of the storage system, storage cost (SC), is equal to the sum of the cost of investment (A),
and its cost of operation (OCs) for the planning period. We can then calculate the cost of conven-
tional generation (OC) by excluding the storage operation cost from the total operation cost.

The objective is to achieve the maximum possible reliability level. Our scenario’s goal is to
solve for the optimal placement and sizing for the storage system to meet the reliability
objective. Our control strategy is to use the available wind energy to supply the load first,
followed by utilizing the existing conventional generation capacity, and last, if necessary, to
discharge power from the storage system to satisfy the load. The result of the simulations
including the comparison with other conventional alternatives is shown in Table 4. Same
reliability level is considered for both technologies to make a fair economic comparison. Our
storage system, which enhances the reliability of wind integration, can be economically

From bus To bus Flow limit (MW) From bus To bus Flow limit (MW)

1 2 175 11 13 500

1 3 175 11 14 500

1 5 175 12 13 500

2 4 175 12 23 500

2 6 175 13 23 500

3 9 175 14 16 500

3 24 400 15 16 500

4 9 175 15 21 500

5 10 175 15 24 500

6 10 175 16 17 500

7 8 175 16 19 500

8 9 175 17 18 500

8 10 175 17 22 500

9 11 400 18 21 500

9 12 400 19 20 500

10 11 400 20 23 500

10 12 400 21 22 500

Table 1. Transmission flow limitations.

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

219

3. Case study

We evaluate our proposed method by applying it on the IEEE 24-bus system with the goal of
solving for the optimal size and location for the storage units [10, 24]. In our simulations, we test
our method for different situations by inputting different wind penetrations. To take into account

Figure 2. IEEE 24-bus system.

Dependability Engineering218

possible geological restrictions for CAES deployment in a real-world situation, we excluded
busses 2, 7, 8, 11, and 17 from candidate locations on purpose. A wind farm is also pre-
determinedly installed at bus 14 in each of the case studies. A diagram of the IEEE 24-bus system
is shown in Figure 2. Tables 1–3 provide more information regarding the flow limitations,
generators’ cost functions, and IEAR values of the IEEE 24-bus system in use for the case study.

We define wind penetration (WP) as the ratio between the wind capacity installation and the
system maximum load. We use real-world historical data obtained from the BPA for the system
load [25] and from Mesonet (Ames Station) for the wind speed [26], to create a more realistic
simulation environment. To calculate the cost of electric service reliability in the IEEE 24-bus
system that we are going to run our demo on, we use the values of IEAR for our load busses [27].
The cost of the storage system, storage cost (SC), is equal to the sum of the cost of investment (A),
and its cost of operation (OCs) for the planning period. We can then calculate the cost of conven-
tional generation (OC) by excluding the storage operation cost from the total operation cost.

The objective is to achieve the maximum possible reliability level. Our scenario’s goal is to
solve for the optimal placement and sizing for the storage system to meet the reliability
objective. Our control strategy is to use the available wind energy to supply the load first,
followed by utilizing the existing conventional generation capacity, and last, if necessary, to
discharge power from the storage system to satisfy the load. The result of the simulations
including the comparison with other conventional alternatives is shown in Table 4. Same
reliability level is considered for both technologies to make a fair economic comparison. Our
storage system, which enhances the reliability of wind integration, can be economically

From bus To bus Flow limit (MW) From bus To bus Flow limit (MW)

1 2 175 11 13 500

1 3 175 11 14 500

1 5 175 12 13 500

2 4 175 12 23 500

2 6 175 13 23 500

3 9 175 14 16 500

3 24 400 15 16 500

4 9 175 15 21 500

5 10 175 15 24 500

6 10 175 16 17 500

7 8 175 16 19 500

8 9 175 17 18 500

8 10 175 17 22 500

9 11 400 18 21 500

9 12 400 19 20 500

10 11 400 20 23 500

10 12 400 21 22 500

Table 1. Transmission flow limitations.

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

219

evaluated by comparing the sum of its associated costs with the total cost for the conventional
alternative. The cost–benefit analysis from our simulation results shows the economic merits of
the CAES, which can be found in Table 4.

4. Conclusions

Our case study concludes that energy storage technologies are more economic and technically
sound options than fossil-fuelled generators to reliably and efficiently integrate intermittent
renewable energy such as wind. The merits of energy storage application for reliability
enhancement of renewable integration become even more highlighted when the emission costs
associated with fossil-fuelled generators are included in the evaluation. This provides the
subject of future studies.

Generator Cost function coefficients

ai $=MW2h
� �

bi $=MWhð Þ ci $ð Þ

G1 0.103 71.05 1313.6

G2 0.108 71.04 1168.1

G3 0.090 66.19 1078.8

G4 0.091 67.26 969.8

G5 0.078 71.60 958.2

G6 0.078 71.60 958.2

G7 0.100 73.90 471.6

G8 0.090 73.90 471.6

G9 0.098 69.70 445.4

G10 0.101 66.51 702.7

Table 2. Coefficients of the cost function for the generators.

BUS NO. 1 2 3 4 5 6 7 8

IEAR 6.20 4.89 5.30 5.62 6.11 5.50 5.41 5.40

BUS NO. 9 10 11 12 13 14 15 16

IEAR 2.30 4.14 — — 5.39 3.41 3.01 3.54

BUS NO. 17 18 19 20 21 22 23 24

IEAR — 3.75 2.29 3.64 — — — —

Table 3. IEAR ($/kWh) values at each bus in the IEEE bus-system.

Dependability Engineering220

Author details

Mahmoud Ghofrani* and Anthony Suherli

*Address all correspondence to: mrani@uw.edu

Electrical Engineering, Engineering and Mathematics Division, School of STEM, University of
Washington Bothell, USA

References

[1] Kamalinia S, Shahidehpour M, Khodaei A. Security-constrained expansion planning of
fast-response units for wind integration. Electric Power Systems Research. 2011;810:107-116

[2] Lee T. Optimal spinning reserve for a wind-thermal power system using EIPSO. IEEE
Transactions on Power Systems. 2007;22(1):1612-1621

[3] Denholm P, Ela E, Kirby B, Milligan M, The Role of Energy Storage with Renewable
Electricity Generation. Technical Report, NREL/TP-6A2-47187; 2010

[4] Zhao H, Wu Q, Hu S, Xu H, Rasmussen CN. Review of energy storage system for wind
power integration support. Applied Energy. 2015;137:545-553

20% WP & 2500 MW
PL*

30% WP & 3000 MW
PL

40% WP & 3500 MW
PL

50% WP & 4000 MW
PL

CS** CA*** CS CA CS CA CS CA

Optimal Placement (Bus #) 14 — 14 — 23 — 23 —

Smax (MWh) 77.81 — 778.7 — 1524 — 1858 —

Pmax (MW) 59.63 18.00 258.6 138.1 652.3 415.5 947.5 807.6

EIR %ð Þ 99.80 99.80 99.28 99.28 99.03 99.03 99.19 99.19

Wind utilization (%) 94.49 86.42 88.69 78.58 80.26 70.99 72.06 62.22

OC (109$) 0.588 0.603 0.620 0.661 0.656 0.711 0.696 0.774

GC (109$) — 0.002 — 0.012 — 0.037 — 0.077

ILC (109$) 0.041 0.041 0.194 0.194 0.324 0.324 0.295 0.295

SC (109$) 0.005 — 0.024 — 0.053 — 0.072 —

*Peak load.
**Centralized storage.
***Conventional alternative.

Table 4. Simulation results for different wind penetrations (WP).

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

221

evaluated by comparing the sum of its associated costs with the total cost for the conventional
alternative. The cost–benefit analysis from our simulation results shows the economic merits of
the CAES, which can be found in Table 4.

4. Conclusions

Our case study concludes that energy storage technologies are more economic and technically
sound options than fossil-fuelled generators to reliably and efficiently integrate intermittent
renewable energy such as wind. The merits of energy storage application for reliability
enhancement of renewable integration become even more highlighted when the emission costs
associated with fossil-fuelled generators are included in the evaluation. This provides the
subject of future studies.

Generator Cost function coefficients

ai $=MW2h
� �

bi $=MWhð Þ ci $ð Þ

G1 0.103 71.05 1313.6

G2 0.108 71.04 1168.1

G3 0.090 66.19 1078.8

G4 0.091 67.26 969.8

G5 0.078 71.60 958.2

G6 0.078 71.60 958.2

G7 0.100 73.90 471.6

G8 0.090 73.90 471.6

G9 0.098 69.70 445.4

G10 0.101 66.51 702.7

Table 2. Coefficients of the cost function for the generators.

BUS NO. 1 2 3 4 5 6 7 8

IEAR 6.20 4.89 5.30 5.62 6.11 5.50 5.41 5.40

BUS NO. 9 10 11 12 13 14 15 16

IEAR 2.30 4.14 — — 5.39 3.41 3.01 3.54

BUS NO. 17 18 19 20 21 22 23 24

IEAR — 3.75 2.29 3.64 — — — —

Table 3. IEAR ($/kWh) values at each bus in the IEEE bus-system.

Dependability Engineering220

Author details

Mahmoud Ghofrani* and Anthony Suherli

*Address all correspondence to: mrani@uw.edu

Electrical Engineering, Engineering and Mathematics Division, School of STEM, University of
Washington Bothell, USA

References

[1] Kamalinia S, Shahidehpour M, Khodaei A. Security-constrained expansion planning of
fast-response units for wind integration. Electric Power Systems Research. 2011;810:107-116

[2] Lee T. Optimal spinning reserve for a wind-thermal power system using EIPSO. IEEE
Transactions on Power Systems. 2007;22(1):1612-1621

[3] Denholm P, Ela E, Kirby B, Milligan M, The Role of Energy Storage with Renewable
Electricity Generation. Technical Report, NREL/TP-6A2-47187; 2010

[4] Zhao H, Wu Q, Hu S, Xu H, Rasmussen CN. Review of energy storage system for wind
power integration support. Applied Energy. 2015;137:545-553

20% WP & 2500 MW
PL*

30% WP & 3000 MW
PL

40% WP & 3500 MW
PL

50% WP & 4000 MW
PL

CS** CA*** CS CA CS CA CS CA

Optimal Placement (Bus #) 14 — 14 — 23 — 23 —

Smax (MWh) 77.81 — 778.7 — 1524 — 1858 —

Pmax (MW) 59.63 18.00 258.6 138.1 652.3 415.5 947.5 807.6

EIR %ð Þ 99.80 99.80 99.28 99.28 99.03 99.03 99.19 99.19

Wind utilization (%) 94.49 86.42 88.69 78.58 80.26 70.99 72.06 62.22

OC (109$) 0.588 0.603 0.620 0.661 0.656 0.711 0.696 0.774

GC (109$) — 0.002 — 0.012 — 0.037 — 0.077

ILC (109$) 0.041 0.041 0.194 0.194 0.324 0.324 0.295 0.295

SC (109$) 0.005 — 0.024 — 0.053 — 0.072 —

*Peak load.
**Centralized storage.
***Conventional alternative.

Table 4. Simulation results for different wind penetrations (WP).

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

221

[5] Gyuk IP, Eckroad S. Energy Storage for Grid Connected Wind Generation Applications.
Washington, DC, EPRI-DOE Handbook Supplement, 1008703: U. S. Department of
Energy; 2004

[6] Celli G, Mocci S, Pilo F, Loddo M. Optimal integration of energy storage in distribution
networks. In: Proc. IEEE PowerTech Conf., Bucharest. 2009

[7] Bludszuweit H, Dominguez-Navarro JA. A probabilistic method for energy storage
sizing based on wind power forecast uncertainty. IEEE Transactions on Power Systems.
2011;26(3):1651-1658

[8] Brekken TKA, Yokochi A, Jouanne AV, Yen ZZ, Hapke HM, Halamay DA. Optimal
energy storage sizing and control for wind power applications. IEEE Transactions on
Sustainable Energy. 2011;2(1):69-77

[9] Dutta S, Sharma R. Optimal storage sizing for integrating wind and load forecast uncer-
tainties. In: Proc. IEEE PES Innovative Smart Grid Technologies (ISGT). 2012

[10] Ghofrani M, Arabali A, Etezadi-Amoli M, Fadala MS. Energy storage application for
performance enhancement of wind integration. IEEE Transactions on Power Systems.
2013;28(4)

[11] Zou K, Agalgaonkar AP, Muttaqi KM, Perera S. Distribution system planning with incor-
porating DG reactive capability and system uncertainties. IEEE Transactions on Sustainable
Energy. 2012;3(1):112-123

[12] Arabali A, Ghofrani M, Etezadi-Amoli M, Fadali MS, Baghzouz Y. Genetic- algorithm-
based optimization approach for energy management. IEEE Transactions on Power
Delivery. 2013;28(1):162-170

[13] Ketchen DJ, Shook CL. The application of cluster analysis in strategic management
research: An analysis and critique. Strategic Management Journal. 1996;17:441-458

[14] Arabali A, Ghofarni M, Bassett JB, Moeini-Aghtaie M. Optimum sizing and siting of
renewable energy based DG units in distribution systems. Optimization in Renewable
Energy Systems: Recent Perspectives; 2017

[15] Nage GD. Analysis of wind speed distribution: Comparative study of Weibull to Ray-
leigh probability density function; a case of two sites in Ethiopia. American Journal of
Modern Energy. 2016;2(3):10-16

[16] Sohoni V, Gupta SC, Nema RK. A critical review on wind turbine power curve modelling
techniques and their applications in wind based energy systems. Journal of Energy.
2016;2016:1-18

[17] Billinton R, Allan RN. Reliability Evaluation of Power Systems. 2nd ed; 1984

[18] EPRI-DOE Handbook of Energy Storage for Transmission & Distribution Applications,
EPRI, Palo Alto, CA, and the U.S. Washington, DC: Department of Energy; 2003

Dependability Engineering222

[19] Luo X, Wang J, Overview of Current Development on Compressed Air Energy Storage.
EERA Technical Report; 2013

[20] Schoenung SM, Hassenzahl WV, Long- vs. short-term energy storage technologies analysis:
A life-cycle cost study: A study for the DOE energy storage systems program. Sandia
National Laboratories, SAND2003-2783. 2003

[21] Das T, JD MC. Compressed Air Energy Storage. Ames, Iowa: Iowa State University; 2012

[22] A Report Prepared for Arizona Public Service Company, Study of Compressed Air
Energy Storage with Grid and Photovoltaic Energy Generation. Arizona Research Insti-
tute for Solar Energy; 2010

[23] Hong HP. An efficient point estimate method for probabilistic analysis. Reliability Engi-
neering and System Safety. 1998;59:261-267

[24] IEEE committee report, a reliability test system. IEEE Transactions on Power Apparatus
and Systems. 1989;4(3):1238-1244

[25] Available from: http://transmission.bpa.gov/business/operations/wind/

[26] Available from: http://mesonet.agron.iastate.edu/agclimate/info.phtml

[27] Li Y. Bulk System Reliability Evaluation in a Deregulated Power Industry. A PhD Thesis
Submitted to the Department of Electrical Engineering. University of Saskatchewan

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

223

[5] Gyuk IP, Eckroad S. Energy Storage for Grid Connected Wind Generation Applications.
Washington, DC, EPRI-DOE Handbook Supplement, 1008703: U. S. Department of
Energy; 2004

[6] Celli G, Mocci S, Pilo F, Loddo M. Optimal integration of energy storage in distribution
networks. In: Proc. IEEE PowerTech Conf., Bucharest. 2009

[7] Bludszuweit H, Dominguez-Navarro JA. A probabilistic method for energy storage
sizing based on wind power forecast uncertainty. IEEE Transactions on Power Systems.
2011;26(3):1651-1658

[8] Brekken TKA, Yokochi A, Jouanne AV, Yen ZZ, Hapke HM, Halamay DA. Optimal
energy storage sizing and control for wind power applications. IEEE Transactions on
Sustainable Energy. 2011;2(1):69-77

[9] Dutta S, Sharma R. Optimal storage sizing for integrating wind and load forecast uncer-
tainties. In: Proc. IEEE PES Innovative Smart Grid Technologies (ISGT). 2012

[10] Ghofrani M, Arabali A, Etezadi-Amoli M, Fadala MS. Energy storage application for
performance enhancement of wind integration. IEEE Transactions on Power Systems.
2013;28(4)

[11] Zou K, Agalgaonkar AP, Muttaqi KM, Perera S. Distribution system planning with incor-
porating DG reactive capability and system uncertainties. IEEE Transactions on Sustainable
Energy. 2012;3(1):112-123

[12] Arabali A, Ghofrani M, Etezadi-Amoli M, Fadali MS, Baghzouz Y. Genetic- algorithm-
based optimization approach for energy management. IEEE Transactions on Power
Delivery. 2013;28(1):162-170

[13] Ketchen DJ, Shook CL. The application of cluster analysis in strategic management
research: An analysis and critique. Strategic Management Journal. 1996;17:441-458

[14] Arabali A, Ghofarni M, Bassett JB, Moeini-Aghtaie M. Optimum sizing and siting of
renewable energy based DG units in distribution systems. Optimization in Renewable
Energy Systems: Recent Perspectives; 2017

[15] Nage GD. Analysis of wind speed distribution: Comparative study of Weibull to Ray-
leigh probability density function; a case of two sites in Ethiopia. American Journal of
Modern Energy. 2016;2(3):10-16

[16] Sohoni V, Gupta SC, Nema RK. A critical review on wind turbine power curve modelling
techniques and their applications in wind based energy systems. Journal of Energy.
2016;2016:1-18

[17] Billinton R, Allan RN. Reliability Evaluation of Power Systems. 2nd ed; 1984

[18] EPRI-DOE Handbook of Energy Storage for Transmission & Distribution Applications,
EPRI, Palo Alto, CA, and the U.S. Washington, DC: Department of Energy; 2003

Dependability Engineering222

[19] Luo X, Wang J, Overview of Current Development on Compressed Air Energy Storage.
EERA Technical Report; 2013

[20] Schoenung SM, Hassenzahl WV, Long- vs. short-term energy storage technologies analysis:
A life-cycle cost study: A study for the DOE energy storage systems program. Sandia
National Laboratories, SAND2003-2783. 2003

[21] Das T, JD MC. Compressed Air Energy Storage. Ames, Iowa: Iowa State University; 2012

[22] A Report Prepared for Arizona Public Service Company, Study of Compressed Air
Energy Storage with Grid and Photovoltaic Energy Generation. Arizona Research Insti-
tute for Solar Energy; 2010

[23] Hong HP. An efficient point estimate method for probabilistic analysis. Reliability Engi-
neering and System Safety. 1998;59:261-267

[24] IEEE committee report, a reliability test system. IEEE Transactions on Power Apparatus
and Systems. 1989;4(3):1238-1244

[25] Available from: http://transmission.bpa.gov/business/operations/wind/

[26] Available from: http://mesonet.agron.iastate.edu/agclimate/info.phtml

[27] Li Y. Bulk System Reliability Evaluation in a Deregulated Power Industry. A PhD Thesis
Submitted to the Department of Electrical Engineering. University of Saskatchewan

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.71501

223

Dependability Engineering
Edited by Fausto Pedro García Márquez

and Mayorkinos Papaelias

Edited by Fausto Pedro García Márquez
and Mayorkinos Papaelias

The new technology and system communication advances are being employed in
any system, being more complex. The system dependability considers the technical
complexity, size, and interdependency of the system. The stochastic characteristic
together with the complexity of the systems as dependability requires to be under

control the Reliability, Availability, Maintainability, and Safety (RAMS). The
dependability contemplates, therefore, the faults/failures, downtimes, stoppages,

worker errors, etc. Dependability also refers to emergent properties, i.e., properties
generated indirectly from other systems by the system analyzed. Dependability,

understood as general description of system performance, requires advanced
analytics that are considered in this book. Dependability management and

engineering are covered with case studies and best practices. The diversity of
the issues will be covered from algorithms, mathematical models, and software

engineering, by design methodologies and technical or practical solutions. This book
intends to provide the reader with a comprehensive overview of the current state of
the art, case studies, hardware and software solutions, analytics, and data science in

dependability engineering.

Published in London, UK

© 2018 IntechOpen
© zhev / iStock

ISBN 978-1-78923-258-5

D
ependability Engineering

ISBN 978-1-83881-282-9

DBF_eBook (PDF) ISBN

	Dependability Engineering
	Contents
	Preface
	Chapter 1
Introductory Chapter: Introduction to Dependability Engineering
	Chapter 2
Modeling Strategies to Improve the Dependability of Cloud Infrastructures
	Chapter 3
Continuous Anything for Distributed Research Projects
	Chapter 4
Software Fault Injection: A Practical Perspective
	Chapter 5
Stochastic Reward Net-based Modeling Approach for Availability Quantification of Data Center Systems
	Chapter 6
Reliability and Aging Analysis on SRAMs Within Microprocessor Systems
	Chapter 7 - Advances in Engineering Software for Multicore Systems
	Chapter 8 - Modeling Quality of Service Techniques for Packet-Switched Networks
	Chapter 9 - Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
	Chapter 10 - Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling on the Reproduced Results
	Chapter 11 - Use of Renewable Energy for Electrification of Rural Community to Stop Migration of Youth from Rural Area to Urban: A Case Study of Tanzania
	Chapter 12 - Time Series and Renewable Energy Forecasting

