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Preface

Since the first environmental monitoring satellite launched back in 1972, remote sensing has
been the primary data source, collecting environmental data faithfully and unbiasedly. In
the past five decades or so, the broader geospatial community has witnessed a rapid growth
in satellite remote sensing, evolving from the one and only legendary Landsat 1, offering 4-
band spectral resolution, 80-meter spatial resolution, 18-day temporal resolution, and a 6-bit
radiometric resolution multispectral scanner satellite image, to various satellite images that
nowadays offer a  hundred bands in spectral resolution, submeter in spatial resolution, daily
revisit capacity in temporal resolution, and 10 or 12 bits in radiometric resolution in compar‐
ison. The evolution was impressive, yet the advance in data collection still continues, not
only with satellite remote sensing, but also other forms of remote sensing. In recent years,
light detection and ranging has become popular in terms of collecting surface model data. In
even more recent years, drones or unmanned aerial systems have caught our attention with
their ability to capture environmental data with unprecedented spatial detail and the mobili‐
ty to launch and collect data on demand.

Along with the wealth of data come the methodologies to process the data as well as applica‐
tions that utilize the data on real-world issues. Much cutting-edge research on new theories
and/or understanding of remote sensing technology has been published in journals or schol‐
arly outlets. Relatively little attention has been given to the applications of remote sensing.

Through years of teaching remote sensing and digital image processing, we have heard
many cases of the use of remote sensing and geospatial technologies in different environ‐
ments. Most of our students are working professionals. They work in different fields of the
geospatial industry or environmental sciences. Though the principles are similar, results can
vary dramatically, depending on the environment to which remote sensing was applied. We
are always amazed at how remote sensing with simple methodology or processing can pro‐
vide remarkable results. Besides being wowed, it is always a little unsettling to hear people
saying “Oh, that is a good idea; maybe my company should do that.” People may well know
how remote sensing was used in their field, but often don’t know how remote sensing was
used in other disciplines.

Sharing results and experience is an important part of our teaching and learning. This in‐
spired us to have this book dedicated to sharing experience, either by advancing our theory
and understanding of remote sensing technology or by solving real-world issues with exist‐
ing remote sensing technology. It is our hope that scientists, scholars, and working profes‐
sionals all over the world can share their remote sensing experience. If it solves your
problem, it may solve others’ problems. Contrarily, if it solves others’ problems, it may solve
my problem. Every project is a learning experience and worthy of sharing. 
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Abstract

Accurate phenology information detection is the basis for other remote-sensing based 
agriculture applications. So far, there have been a lot of phenology estimation models 
based on remote-sensing data, but little attention was paid to microscopic mechanism of 
crops and the environmental factors. The main purpose of this chapter is to apply a new 
phenology detection model, which combined physical mechanism-based crop models 
with remote-sensing data to detect the critical phenological stages of corn in Northeast 
China (Jilin and Liaoning Provinces). Compared to the phenology observations from the 
agriculture meteorological stations, the corn phenology estimation accuracy in Northeast 
China using only MODIS data is much lower than that in the US field sites. The main 
reason might be the small size of single piece of cropland in northeastern China, which 
led to the mixed MODIS pixels. Accordingly, Landsat and MODIS data fusion methods 
were applied to get time-series images with Landsat-like spatial resolution and MODIS-
like temporal resolution, and quantitative and qualitative validation was conducted to 
evaluate and verify the accuracy of the data fusion. The results show that data fusion 
of Landsat and MODIS improved the spatial resolution and decreased the influence of 
mixed pixels.

Keywords: air temperature, data fusion, land surface temperature, remote sensing, crop 
phenology

1. Introduction

Accurate measurements of regional-to-global-scale vegetation dynamics and phenology 
information improve our understanding of inter-annual vegetation change in terrestrial 
ecosystems, as well as climatic and other environmental variations from year to year [1–7]. 
The phenological stages of crops provide essential information for agricultural activities 
such as irrigation scheduling and fertilizer management [26]. In addition, accurate detection 
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of key crop growth stages is a key input for crop yield estimation based on remote-sensed 
vegetation index (VI) data and crop model applications integrated with remote sensing data 
[8–11].

The traditional approaches to estimating crop phenology have been through ground obser-
vations and the use of crop models (e.g., Simple and Universal CROp growth Simulator 
(SUCROS) [12], Hybrid-Corn [14], WOrld FOod STudies (WOFOST) [13–15]). The crop 
models can estimate crop growth dates with a high level of accuracy [root mean square 
error (RMSE): 0–4 days], but they require a number of detailed information inputs such as 
crop (e.g., cultivar used and plant population), weather (e.g., temperature, rainfall, solar 
radiation and wind speed) conditions [14, 16] and soil (e.g., initial soil moisture). On the 
one hand, the use of these crop models is usually limited by the availability of the required 
data inputs; on the other hand, the models need to be calibrated for particular species and 
site-specific conditions based on ground data [11, 16], and the ground observations col-
lected by observers are not cost-efficient. Accordingly, the traditional methods are site-
specific and typically cannot monitor crop phenology beyond the field scale over larger 
areas [11].

Satellite remote sensing observations from global imaging sensors offer considerable poten-
tial to provide the information of regional spatio-temporal patterns of the key crop growth 
stages of cash crops in a consistent, time- and cost-efficient manner [11]. The commonly used 
remote-sensing based phenology detection methods can be divided into four groups [11]: 
(1) threshold methods that estimate phenological stages by using either a fixed or dynamic 
threshold [17–20]; (2) moving window methods that determine the phenology dates by veg-
etation index (VI) changes of a time-series VI curve in a defined moving temporal window 
(e.g., 20 days) [21–23]; (3) function fitting methods that apply mathematical functions (e.g., 
logistic [24], Fourier transformation, wavelet [25]) to fit the time-series VI curves to a given 
function and extract phenological stages through the detection of defined feature points (e.g., 
second derivative equals 0) on the function curves; and (4) the shape model method [two-step 
filtering (TSF) approach developed by Sakamoto et al. [26]] that applies a novel shape-model 
fitting concept to times-series VI curves for date identification and by Zeng et al. [11] who 
proposed a hybrid method with environmental factors taken into consideration by integrat-
ing crop models.

The first three remote-sensing-based phenology detection methods summarized above are 
generally based on mathematical methods that directly detect the feature points as the transi-
tion dates of vegetation [24, 27, 28]. Usually, these dates represent general vegetation growth 
stages (e.g., greenup onset, peak greenness and dormancy onset [24]) but have little asso-
ciation with the specific agronomic stages of a specific kind of crops (e.g., corn, soybeans) 
[11]. Some key crop growth stages (e.g., R1 (beginning bloom), R3 (beginning pod) stages 
of soybeans) are challenging or impossible to be detected by finding feature points of the VI 
time-series curve. In addition, these methods are often sensitive to observation errors and 
noise caused by cloud coverage, atmospheric constituents (e.g., water vapor), bi-directional 
reflectance distribution function (BRDF) effect and the mixed-pixel effect in time-series VI 
data products [11, 26].
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The TSF approach is potential for the specific agronomic stages detection of specific crops 
with a high estimation accuracy [root mean square error (RMSE) ranging from 2.9 to 7.0 days 
and from 3.2 to 6.9 days for corn and soybeans, respectively] [26]. However, this method 
was based on an assumption that the shape model is linearly scalable to fit the time-series 
VI curve through geometrical scaling, regardless of all the factors that would influence the 
crop’s growth pattern expressed in the VI data [11, 26]. For example, air temperature is gener-
ally one of the decisive factors that affect the growth rate of all crops. Photoperiod is even a 
more important factor for some photosensitive crops, as longer daylength may decrease the 
development rate by delaying reproductive development (e.g., soybeans). As a result, the 
time-series VI profile of a crop’s growth pattern under different environmental conditions can 
vary from year to year [11].

Zeng et al. [11] proposed a hybrid phenology detection approach that incorporates the “shape-
model fitting” concept of the TSF method [26] and simulation concept of traditional crop 
model that incorporates other environmental factors that influence crop development [11]. 
The approach is designed to detect the critical vegetative stages (V1 and V6) and reproduc-
tive stages (R1–R6) of corn from the MODIS 250-m Wide Dynamic Range Vegetation Index 
(WDRVI) time-series data. This method was tested over a 10-year period (2003–2012) for three 
experimental field sites to calibrate and quantitatively assess its performance with ground-
based crop phenology observations for each site. It was also tested regionally over eastern 
Nebraska and the state of Iowa to evaluate its ability to characterize spatio-temporal variation 
of the targeted corn and soybean phenology stage dates across a larger major crop-producing 
region.

In this chapter, this method was tested in northeastern China where the environment is dif-
ferent with that in the US. As the piece of farmland is smaller than that in the US, the results 
were affected by mixed pixels from the MODIS observations. Then data fusing method was 
used to generate time-series VI data with high spatial and temporal resolution data, based on 
which phenological information of corn was estimated.

2. Study area

Northeast China, an important agricultural production base, plays a significant role in the 
national food security. In addition, it is a major corn producing area and named as one of 
the world’s three golden Corn Belts. Jilin and Liaoning province were selected as the study 
area to further study the phenology estimation in nonirrigated region with small plots of 
cropland.

The ground-based data are from 30 agricultural meteorological stations (Figure 1). It mainly 
includes crop species, growth stage, soil moisture and air temperature. The ground-based 
crop growth stage observations were conducted by agronomists once every 1–10 days during 
the growing seasons and recorded in every 10 days. The recorded stages include VE, VT, R1, 
R4, R6 stages if they were match to general stage system (vegetation (V)-stage or reproductive 
(R)-stage) according to their growth stage names.
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3. Data description and preprocessing

3.1. WDRVI data

The original source data for the WDRVI time-series data set used in this study include the 
MODIS 8-day composite, 250 m surface reflectance data (MOD09Q1, Collection 5) and 
30 m Landsat Surface Reflectance Climate Data Records (CDRs). The WDRVI developed by 
Gitelson [29] offers valuable alternative VI to monitor crops because its sensitivity is at least 
three times greater than that of NDVI at moderate-to-high LAI values and maintains a linear 
relationship across the range of LAI values for both corn and soybeans [11, 26, 29, 30].

3.2. Average air temperature data calculated from MODIS land surface temperature 
products

Average air temperature is a critical input for crop models in this chapter. It is estimated 
by both daily daytime and nighttime 1-km land surface temperature (LST) data (MOD11A1, 
Collection 5) by a linear regression model [11, 31], and the calibration and validation were 
based on the observations from the meteorological stations in the study areas of China. The 
daily averaged air temperature (Tavg) was calculated by averaging the daily maximum and 

Figure 1. The study area in northeastern China.
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minimum air temperatures [11]. The 8-day composite air temperature was then calculated by 
averaging daily Tavg of cloud-free days during the 8 day composite period [11].

3.3. Land use data layer

GlobeLand30 datasets were selected as the regional land use classification data of China, 
which was developed under the “Global Land Cover Mapping at Finer Resolution” project 
led by National Geomatics Center of China (NGCC) China [32]. An area-ratio threshold of 
75% was adopted to select all MODIS 250 m pixels across the region that was covered pre-
dominately by corn [11, 26].

3.4. Using spatial and temporal adaptive reflectance fusion model algorithm to 
blend Landsat and MODIS surface reflectance

Before data fusion, preprocessing of Landsat and MODIS data was conducted, including 
format conversion, atmospheric correction, geometrical correction, resampling, reprojec-
tion, registration, mosaicking and cropping. Using more than one pair of reference images, 
particularly those observed in different stages of the growing season, can reduce the impact 
of the cloud and improve the estimation accuracy [33]. Using the reference images in dif-
ferent stages of the growing season may avoid some mistakes caused by harvest and fal-
low. In addition, using the reference images that were observed closer to the time of the 
Landsat images to be estimated can improve the estimation accuracy [34]. In this chapter, 
three cloud-free Landsat images observed in the beginning, middle and end of growing sea-
son respectively were selected as the reference images as possible to be blended with 250 m 
8-day MODIS reflectance image using spatial and temporal adaptive reflectance fusion 
model (STARFM) method. The two reference images observed in the beginning and mid-
dle of the growing season were used to estimate time-series high spatial resolution images 
of the beginning and middle of the growing season. Correspondingly, the two reference 
images observed in the middle and end of the growing season were used to estimate time-
series high spatial resolution images of the middle and end of the growing season. The qual-
ity flag data and cloud mask of both MODIS and Landsat were used to identify the pixels 
with cloud or low quality.

4. Methodology

4.1. Crop models for corn

Plant growth processes are mainly influenced by interactions among genotype, environment 
conditions and crop management [35, 36]. In this chapter, we assumed that the influence of 
genotype and crop management (i.e., proper management of pests and diseases and fertilizer 
applications was implemented) was minimal as compared to environmental factors [11]. For 
this chapter, the developmental stages of corn were assumed to be most closely related to air 
temperature [37–39].
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The models that describe the relationship between crop development and environment 
factors include linear and nonlinear models. Nonlinear approaches have been shown to 
provide better predictions of plant development stages than linear models for a number 
of different crops including corn [40], soybeans [15], wheat [41], potato [42], rice [43], as 
nonlinear models often describe the biological processes underlying crop growth in more 
detail [44, 45].

The Wang-Engel (WE) model [45], nonlinear models, simulates crop development with 
response functions that range from 0 to 1. The temperature response function in the WE 
model is described by a beta function with three parameters (i.e., minimum, optimum and 
maximum air temperatures). When the temperature is below the minimum or above the 
maximum temperature, crop development stops and the temperature response function 
equals zero. When the temperature is at optimum, which is a value between minimum and 
maximum temperature (e.g., 28°C for corn), development takes place at the maximum rate 
and temperature response function equals one [45]. The WE model was originally devel-
oped for winter wheat [45] but has also been used to simulate the development of other 
annual crops including corn [44] and soybeans [15] with positive results. Accordingly, the 
WE model was used in this study to describe the development of corn responding to air 
temperature Eqs. (1)–(4).

   r  corn   =  r  max   f (T)   (1)

  f (T)  = 0, if T ≥ Tup or T ≤ Tbase  (2)

  f (T)  =  [2   (T − Tbase)    α    (Topt − Tbase)    α  −   (T − Tbase)    2α ]  /  [  (Topt − Tbase)    2α ] , Tbase ≤ T ≤ Tup  (3)

  α = ln (2)  / ln [ (Tup − Tbase)  /  (Topt − Tbase) ]   (4)

where rmax is the maximum development rate (per day). T is the average near surface air tem-
perature estimated from MODIS data. f(T) is a temperature response function, which varies 
from 0 to 1.Tup, Tbase and Topt are the abovementioned three parameters (maximum, minimum, 
and optimum air temperature, respectively).

4.2. Combining crop models with time-series WDRVI data

Photothermal time which combined both temperature and photoperiod information was used 
to describe leaf appearance rate and phenological response of various plant species [46–48]. 
To combine the crop model and time-series MODIS WDRVI data, photothermal time (accu-
mulated photothermal time, APTT) was used instead of calendar time [Day of Year (DOY)] 
on the time axis in this chapter. It was defined as the accumulated development rate (∑r) 
calculated by temperature and photoperiod response function (Eq. 5). Usually, the planting 
date varied from year to year to ensure that APTT value was calculated from the same onset 
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of growth, a starting point of APTT was set as the beginning of greenness of the crops (S0) 
derived by the Zhang’s method [24].

  APTT =   ∑ 
onset

    rmaxf (T)  × f (P)   (5)

where onset is when corn reaches the beginning of greenness detected by the Zhang’s 
method [24]. f(T) and f(P) are temperature and photoperiod response functions, respec-
tively. While as the growth of corn is insensitive to photoperiod to some extent, f(P) equals 
constant 1. In order to combine APTT time and time-series WDRVI data, the APTT was cal-
culated at the same eight-day interval with the eight-day composite periods of the MODIS 
WDRVI data [11].

4.3. Building a shape model

Before building the shape model, the Savitzky–Golay Filter method [49] was used to de-noise 
and rebuild the time-series VI data. In order to generate the shape model from an idealized 
temporal VI for both crops, the shape model in this study built under APTT with higher peak 
WDRVI value (>80). In order to generate the shape model from an idealized temporal VI for 
corn, the smoothed WDRVI time series data were stretched in the Y direction to make sure 
that the peak WDRVI value equals the median peak value and shifted in the X direction by 
detecting the beginning of the growing season with the Zhang’s method to make sure that the 
time-series curves have the same onset. After the preliminary Y-scale and X-shift, the discrete 
points of smoothed WDRVI data were used to build the shape models for corn. They were 
fitted by the sum of three sine functions [11]. The predefined APTT X0 for each phenological 
stage was calculated by averaging the APTT of each phenological stage’ transition dates of all 
the observations used to build the shape model [11].

4.4. Fitting the smoothed WDRVI data on the shape model

The smoothed WDRVI time series data for each year were stretched by a Y-scale to make 
sure that the peak value was equal to the median peak value. Then, the shape model is fitted 
on the smoothed WDRVI time-series data. The optimum scaling parameters (X-scale, Y-scale) 
that approximate the fit of the smoothed WDRVI data to the shape model were calculated 
based on the smallest root mean square error (RMSE) between the shape model and the scaled 
smoothed WDRVI data [11], see Eqs. (6) and (7).

  RMSE =  √ 
____________

   ∑ 
S0

  
Xe

      (f (x)  − g (x) )    2     (6)

  g (x)  = yscale × h (xscale ×  (x − xshift) )   (7)

The function h(x) refers to the smoothed WDRVI data, f(x) is the shape model and g(x) is 
transformed from the smoothed WDRVI data for a given site or year, where x is the APTT 
value.
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5. Results and discussion

5.1. Results in northeastern China using MODIS only

5.1.1. Shape model

The smoothed WDRVI curve with peak larger than 80 was selected to establish the corn shape 
model in the study area to reduce the impact of mixed pixels, noises, environmental stress on 
crop growth and phenology (Figure 2).

5.1.2. Phenology estimation results

Due to the lack of regional-scale crop phenological observations in Northeast China, phenol-
ogy estimation accuracy was only validated in a field scale by comparing with the observa-
tions from agricultural meteorological stations and the estimated phenological stages derived 
from the time-series WDRVI data of the corn field in the stations. The RMSE of the estimated 
five corn growth stages varies from 3.78 to 8.41 days with little system bias (Figure 3 and 
Table 1). The estimation accuracy was higher in the field sites of University of Nebraska (with 
RMSE varied from 1.99 to 4.30 days) [11]. The RMSE of the estimated five phenological stages 
is within 15 days, which indicates that the phenology estimation model is also effective in 
northeastern China.

Similar to the results in the field sites of the University of Nebraska Lincoln, lower estimation 
accuracy was observed at the beginning and end of the growing season (such as V1, R6) than 
that at the middle stage of the growing season when vegetation cover reaches the peak, such 
as R1 stage (Table 1). As in the beginning and end of the growing season, the vegetation index 
is more sensitive to noise and susceptible to weeds and other noncrop plants [50, 51].

Figure 2. The shape model of corn from the stations in northeastern China derived by curve fitting with characteristic 
points indicating the start of the specific phenological stages.
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5.1.3. The comparison between the model from northeastern China and the field sites from 
Nebraska

The shape models of corn which were built on the data from the field sites of University of 
Nebraska-Lincoln and the agricultural meteorological stations in northeastern China were 
compared and shown in Figure 4. The needed APTT time of corn in two study areas was 
about the same, while there were some differences between the derived time-series VI curves 
from the study areas in the USA and China [11]. The time-series VI curves from the field sites 
of University of Nebraska-Lincoln and the Corn Belt in the USA were generally in agree-
ment with each other: the curves reach the peak and then drop quickly after a slow decline, 
while the curves derived from corn field in northeastern China drop rapidly after reaching 
the peak [11].

Figure 3. Comparison of phenological dates of corn in the stations of northeastern China between ground-based 
observation data and MODIS-derived estimation.

Stages RMSE (days) R

V1 8.41 0.70

VT 6.59 0.64

R1 3.78 0.53

R4 5.60 0.53

R6 6.33 0.61

V1-R1 8.43 0.45

R1-R6 5.56 0.66

V1-R6 7.39 0.74

Table 1. Accuracy assessment of the estimated phenological date and period against the ground-based observations by 
calculating RMSE and R for corn in northeastern China.
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The diameters of the farmland in the Corn Belt of USA are usually greater than 250 m, the 
size of MODIS pixels in red and near-infrared bands, and the VI observations from MODIS 
were less influenced by mixed pixels. Therefore, the time-series VI curves from this area may 
be closer to reality, which decrease rapidly after a slow decline following the peak. While in 
northeastern China, the size of the cropland is usually smaller than 250 m, the mixed pixels 
may cause error to time-series VI curves. Although the shape of the time-series VI curves in 
some stations of northeastern China is to some extent consistent with those in the Corn Belt 
of USA, the shape model from northeastern China was built by fitting the data with mixed 
pixels and pure pixels, which results in the loss of some characteristic details of the time-series 
VI curves.

The predefined APTT time required for some phenological stages in the field of the USA and 
China is about the same, such as the R1 and R6 stages, while there are obvious differences at 
some stage. The needed APTT time for the corn from the Corn Belt of USA reached V1 stage 
even less than the needed APTT time for VE stage of corn from the agricultural meteorologi-
cal stations in northeastern China. One reason may be the description of phenology for corn 
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The smoothed WDRVI curve of corn field in each meteorological station was calculated from 
time-series fused data and MODIS data, respectively. The smoothed WDRVI curves with 
peak larger than 80 in 2013 were selected to establish the corn shape model in the study area 
to reduce the impact of mixed pixels, noises, environmental stress on crop growth and phe-
nology (Figure 5).

5.2.2. Phenology estimation results

The error of five corn growth stages estimated from fused data is basically within 10 days 
(Figure 6). The RMSE of the results varies from 2.63 to 6.23. The estimation accuracy is higher 
than that derived from MODIS data only (3.78–8.41 days) (Table 2). Similar to the results 
in the field sites of the University of Nebraska Lincoln [11], lower estimation accuracy was 
observed at the beginning and end of the growing season (such as V1, R6) than that at the 
middle stage of the growing season when vegetation cover reaches the peak, such as R1 stage 
(Table 2).

5.2.3. The comparison between the model from the MODIS only data and the data fusion of 
Landsat and MODIS

The estimation accuracy of five corn growth stages from MODIS data only is lower than that 
derived from MODIS and Landsat fused data. As the mixed pixels in MODIS data may include  
artificial surface, water bodies, fallow land, etc. around the cropland, which may result in a 
decrease in the WDRVI data of the entire MODIS pixel where the station locates and influ-
ence the phenology estimation accuracy. Similarly, the forests area around the cropland might 
increase the WDRVI value in the early and late stages of crop growth. By sampling 9 × 9  
window of the 30 m pixels (270 × 270 m) centered on the farmland of the station, Figure 7 
shows the time-series WDRVI curves derived from MODIS data only and the fused data in 
2013. The trend of the fused time-series WDRVI data is the same with that of MODIS derived 
data, as cloud and other noise affect the MODIS data as well as the fused result with MODIS 

Figure 5. The shape model of corn derived from (a) MODIS data only and (b) fused data with MODIS and Landsat data 
in 2013 by curve fitting with characteristic points indicating the specific phenological stages.
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data and Landsat data. However, the fusion of MODIS and Landsat data can reduce the influ-
ence of mixed pixels to a certain extent. For example, station 1 is mixed with cultivated land 
and artificial surface, in which the proportion of artificial surface in the two sites 9 × 9 windows 
was 50.6%. The fused data of this site are higher than the observed values of MODIS images. 

Figure 7. The time-series WDRVI curves of three stations derived from MODIS data only and fused data in 2013.

Figure 6. Comparison of phenological dates of corn in the stations of northeastern China between ground-based 
observation data and MODIS-derived estimation.

Stages Fused data RMSE(days) MODIS only RMSE(days)

V1 6.07 7.91

VT 6.23 7.18

R1 2.63 4.77

R4 4.30 6.40

R6 5.54 8.39

Table 2. Accuracy assessment of the estimated phenological date against the ground-based observations by calculating 
RMSE for corn in 2013.

Recent Advances and Applications in Remote Sensing14

Station 2 and station 3 are mixed with cultivated land and fallow land. The fused data of these 
two sites are higher than that obtained from MODIS images, especially in the middle of grow-
ing stage when WDRVI value is high in cropland, but low in fallow land.

6. Conclusion

This chapter applied a hybrid remote sensing-based crop phenology estimation method 
for corn that incorporated the simulation concept of crop growth models with the shape-
model fitting concept of the TSF method developed by Sakamoto et al. [26], in Northeast 
China (Jilin and Liaoning Provinces), which is an important grain production base in China. 
Compared to the field phenology observations from the agriculture meteorological stations, 
the corn phenology estimation accuracy in Northeast China using only MODIS data is much 
lower than that in the US field sites (RMSE of corn phenology estimate in Northeast China 
ranges from 3.78 to 8.41 days). The main reason might be the small size of single piece 
of cropland in northeastern China, which led to the mixed MODIS pixels. Accordingly, 
Landsat and MODIS data fusion methods were applied to get time-series images with 
Landsat-like spatial resolution and MODIS-like temporal resolution, and quantitative and 
qualitative validation was conducted to evaluate and verify the accuracy of the data fusion. 
The results show that data fusion of Landsat and MODIS ensured the temporal resolution 
of time-series images, to some extent, improved the spatial resolution and decreased the 
influence of mixed pixels.
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Abstract

This chapter addresses an important practical task of classification of multichannel
remote sensing data with application to multitemporal dual-polarization Sentinel radar
images acquired for agricultural regions in Ukraine. We first consider characteristics of
dual-polarization Sentinel radar images and discuss what kind of filters can be applied
to such data. Several examples of denoising are presented with analysis of what proper-
ties of filters are desired and what can be provided in practice. It is also demonstrated
that the use of preliminary denoising produces improvement of classification accuracy
where despeckling that is more efficient in terms of standard filtering criteria results in
better classification.

Keywords: Sentinel, dual polarization, radar image, classification, agricultural area

1. Introduction

Remote sensing (RS) systems have become tools of intensive everyday use for numerous
applications in ecology, forestry, oceanology, agriculture, and disaster monitoring [1–5]. This
is due to significant advances and achievements in science and technology. Firstly, imagers’
characteristics such as spatial resolution, swath width, receiver input signal-to-noise ratio,
bandwidth and throughput, and near real-time data delivery have improved considerably.
Secondly, it has become possible to process more data both onboard and on-land in real time
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or quickly enough. Thirdly, many existing spaceborne RS systems provide data with frequency
needed (convenient) for performing monitoring for scenes under interest.

In particular, such monitoring is possible using RS data by Sentinel-1 A/B two-polarization
synthetic aperture radar (SAR) that has been put into operation recently [6]. There are several
positive features of data (images) provided by this SAR. Firstly, radars are known to be able to
operate well (to acquire images) during day and night in almost all weather conditions [7, 8].
Secondly, polarization radars (Sentinel SAR produces VV and VH polarization images) offer
more opportunities for effectively solving different classification tasks than single-channel
radars [8, 9]. Thirdly, Sentinel SAR is characterized by spatial resolution about 10 m, and data
are available free of charge for noncommercial use. Finally, Sentinel satellites carry out global
coverage with 6-day revisit frequency.

All together, these facilities of Sentinel SAR provide excellent prerequisites for solving tasks of
agricultural monitoring where multitemporal radar images can be employed either separately
or jointly with other types of images including optical and infrared ones [10–12]. However,
radar images also have certain drawbacks. One of them is the presence of noise-like phenom-
enon called speckle [7, 13]. Although speckle intensity and probability density function (PDF)
can be different depending upon the number of looks and other factors [7, 14, 15], speckle is
the main factor that deteriorates radar image quality and prevents their efficient processing
[16, 17] and classification [18].

Taking this into account, speckle noise has to be reduced. Speckle removal (despeckling) is not
an easy task. There are several known peculiarities of speckle. Firstly, it is supposed to be pure
multiplicative noise [7, 13]. Secondly, it has PDF that is usually non-Gaussian [7, 16]. Thirdly,
speckle often possesses spatial correlation [19] that has to be taken into account.

There are many existing image processing software packages, which allow performing radar
image pre-filtering such as ESA SNAP toolbox, ENVI, etc. In particular, they provide such
good filters as Frost, Lee, refined Lee, etc. [6, 13]. However, there are three aspects worth taking
into consideration. Firstly, selection of a proper filter and its parameters (scanning window
size, thresholds, etc.) should be done based on careful analysis of speckle properties for SAR
data supposed to be used (Sentinel SAR data in our case). Secondly, there are good despeckling
filters that have not been yet implemented in toolboxes including filters based on discrete
cosine transform (DCT) and/or that belong to a new family of nonlocal filters [20, 21]. Thirdly,
efficiency of filtering should be assessed with respect to a final task as crop or agricultural area
classification in our case where type of data, methodology of classifier learning, and other
factors have essential impact on final classification [9].

The goal of this chapter is threefold. Analysis of speckle characteristics has to be carried out, and
the obtained data can be considered as a prerequisite for choosing a proper technique (or several
possible methods) of radar image processing. Performance of different despeckling methods has
to be evaluated and compared where emphasis should be done on modern techniques. Besides,
our intention is to assess the impact of filtering techniques on crop classification accuracy and
provide practical recommendations.

Recent Advances and Applications in Remote Sensing22

2. Image and noise model and its parameters

In this book chapter, we focus on processing Sentinel SAR images. It is known from the
literature that the dominant factor degrading SAR image quality is speckle which is supposed
to be a specific type of pure multiplicative noise [7, 14], i.e.:

Ink ij ¼ Itruek ij μk ij, i ¼ 1,…, I, j ¼ 1,…, J, k ¼ 1,…, K, (1)

where Ink ij denotes the ijth sample of the kth component for a considered multichannel image, μk ij

is the ijth value of the multiplicative noise in the kth component image, Itruekij is the true value for the

kijth pixel, I and J define the data size, and K denotes the number of components (K = 2 for two-
polarization data that are mainly considered below). Random variable μk ij is supposed to have

unity mean and variance σ2μk that, in general, can be different for different component images.

To the best of our knowledge, the assumption on pure multiplicative nature of speckle in
Sentinel images has not been tested. Other properties of speckle such as spatial correlation
have not been thoroughly analyzed yet as well. Thus, we have performed a preliminary
analysis. First, our study has been performed for manually selected image fragments. Exam-
ples of such fragments (all of rectangular shape) are shown by frames for vertical-vertical (VV)
and vertical-horizontal (VH) polarization components of SAR image fragments presented in
Figure 1. Analysis has confirmed the assumption that speckle is pure multiplicative. The
estimated value of its relative variance σ2μk is about 0.05 for both components (k = 1 and 2), i.e.,

we deal with multi-look data. Automatic blind estimation [19] has resulted in almost the same
estimates of σ2μk that varied only slightly (no more than 10–15% for 19 analyzed VV and 19

studied VH images) (Figure 2).

Figure 1. An example of Sentinel SAR images in Kiev region of Ukraine with marked homogeneous regions.
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Visual inspection of images in Figure 1 also shows that they are similar and different simulta-
neously. The objects might have different contrasts with respect to background or neighbor
objects. Some objects can be present in image with one polarization and be absent in image of
other polarizations. For example, there is a rectangular shape high-intensity object in the
central part of VV image (Figure 1, left) that is not observed in VH image (Figure 1, right).

Cross-correlation factor values for VV and VH polarizations (under condition that they are
jointly registered or superimposed with high accuracy) are about 0.8. Speckle has been found
practically uncorrelated between component images. These properties will be taken into
account in consideration of filters to be applied.

Another important property of speckle is its spatial correlation. There are different approaches
to describe and analyze it. One approach is to obtain 2D autocorrelation functions in homoge-
neous image areas [7, 22]. Under condition of a priori known σ2μk, such areas can be detected by

comparing relative variance σ2k r loc (calculated by Eq. 2) to Th� σ2μk. Here, it is supposed that the

considered area is of rectangular shape defined by indices imin; imax in one direction and
jmin; jmax in the other direction; Th is threshold that can be set approximately equal to 1.2; Ikloc
is the local mean (calculated by Eq. 3):

σ2k r loc ¼
Ximax

i¼imin

Xjmax

j¼jmin

Ink ij � Ikloc
� �2

= imax � imin þ 1ð Þ jmax � jmin þ 1
� �

I
2
kloc

� �
, (2)

Ikloc ¼
Ximax

i¼imin

Xjmax

j¼jmin

Ink ij= imax � imin þ 1ð Þ jmax � jmin þ 1
� �� �

: (3)

Figure 2. The sensed region (Figure 1) in Ukraine to south from Kiev marked in map.
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Below we characterize speckle correlation in another manner, using spectrum in DCT domain.
The reasons for this will become clear later, in Section 3. Suppose that we have found N
homogeneous image blocks of size 8�8 pixels, i.e., blocks for which

σ2k n ¼
Ximinþ7

i¼imin

Xjminþ7

j¼jmin

Ink ij � Ikn
� �2

= 64I
2
kn

� �
≤Th� σ2μk, (4)

where Ikn is the local mean for the nth block. 2D DCT is then calculated for each nth block with
obtaining Dn l;mð Þ, l ¼ 1,…, 8; m ¼ 1,…, 8 where lm are indices of spatial frequencies, l = 1 and
m = 1 relate to DC (direct current) term proportional to the block mean, and alternating current
(AC) DCT components with larger l andm relate to higher spatial frequencies. Power spectrum
shape estimate is obtained through Eq. 5. Then, the normalized DCT spectrum is obtained
through Eq. 6:

Figure 3. Examples of estimated normalized DCT spectra in 8�8 blocks.
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bDp l;mð Þ ¼
XN
n¼1

D2
m l;mð Þ=D2

n 1; 1ð Þ� �
=n, l ¼ 1,…, 8; m ¼ 1,…, 8, (5)

bDnorm l;mð Þ ¼ 63bDp l;mð Þ=
X8

l¼1

X8
m¼1

bDp l;mð Þ
� �

� bD
p

1; 1ð Þ
0
@

1
A, l ¼ 1,…, 8; m ¼ 1,…, 8, (6)

where, in fact, bDnorm l;mð Þ is not of interest for us since it is not taken into account in denoising
(see the details in Section 3). There exist also other methods of estimation [23] including blind
methods [24, 25].

The obtained estimates are presented in Figure 3 for both polarization components. Bin heights
that reflect spectrum values clearly demonstrate that speckle is spatially correlated (spectrum
values are considerably smaller for higher spatial frequencies). These correlation properties are
quite similar for VVand VH polarizations as well as for different images analyzed.

Thus, it is possible to state that speckle in Sentinel SAR images is practically pure multiplicative
with σ2μk ≈ 0:05, k ¼ 1, 2. Its distribution is not Gaussian—this has been shown by Gaussianity

tests. Speckle is spatially correlated and practically independent for different polarizations. All
these properties should be taken into consideration at image processing stage.

3. Filters and their impacts on images

First of all, let us recall requirements to filters applied to radar image processing. The main
requirement is, certainly, effective suppression of speckle noise. However, edge/detail/texture
preservation is important as well. Additional requirement is to retain mean level in homoge-
neous image regions (some filters do not perform this automatically, without specific correction
[26]). This is important since mean in homogeneous regions is strictly connected with calibration
[7]. Finally, computational efficiency is important, especially in the considered application since
standard size of Sentinel SAR images we deal with is large, ~25k � 16k pixels. Note that some
requirements are contradictory [27]. In particular, it is difficult to provide a trade-off between
speckle suppression and edge/detail/texture preservation.

If we deal with multichannel images (multispectral, hyperspectral, multipolarization ones),
there are two main approaches to their filtering [28]. The first is component-wise processing,
i.e., if each component image is processed as single-channel image [13]. This approach is, in
general, simpler. There exist more methods. It is easier to take into account speckle properties
including its spatial spectrum. Processing of multichannel images can be done in parallel.

The second approach is 3D (vectorial) processing [20, 29]. This group of filters is able to take
correlation of image components into account. This, under certain conditions, allows improv-
ing the efficiency of noise suppression. However, these methods can run into problems of
different properties of noise (noise variance can be not the same, spectrum can be not identical,
etc.). Then, either special methods of component image preprocessing are needed [30], or the
use of 3D processing benefits in full extent becomes impossible.

Recent Advances and Applications in Remote Sensing26

Below we consider representatives of both groups of methods. All studied filters are based on
DCT. The reasons for this are the following. Firstly, DCT is one of the best data decorrelating
transforms approaching Karhunen-Loeve transform. This property is important in denoising
and data representation. Secondly, DCT denoising is carried out in sliding blocks [31]. Due to
this, it is easily adapted to signal-dependent noise [32] and its spatial correlation [28]. Thirdly,
2D DCT is a standard operation in image processing (in particular, in compression), and its
efficient software and hardware implementations exist.

Thus, in addition to known despeckling techniques available in ESA SNAP toolbox, we also
study filtering techniques based on DCT. For all modifications considered below, the main
principles of processing are the same. Denoising is carried out in blocks of square shape,
usually of size 8�8 pixels although other variants are possible. In each block, direct 2D DCT
is performed. Then, amplitudes of obtained DCT coefficients are compared to thresholds, and
one or another type of threshold operation is accomplished (the coefficient with indices (1,1) is
remained unchanged in any case). Then, inverse 2D DCT is done, and as the result, filtered
values are obtained for all pixels that belong to a given block.

There are different modifications of DCT-based denoising that concern block overlapping and
threshold type. Denoising can be done with nonoverlapping, partly overlapping, and fully
overlapping blocks. In the latter case, neighbor blocks are shifted by only one pixel with
respect to each other in horizontal or vertical direction. Processing with full overlapping of
blocks takes more time compared to processing with partly overlapping or nonoverlapping
blocks. But the use of fully overlapping blocks provides the best efficiency of filtering in terms
of standard quantitative criteria as peak signal-to-noise ratio (PSNR) and visual quality met-
rics. So, we will further employ this variant of DCT-based denoising. Note that for most image
pixels, one has 64 filtered values coming from different block positions. They are averaged
(although other methods of aggregation are possible).

There are hard, soft, and combined types of threshold. Below we employ the former type since
hard thresholding is the most simple and efficient. This means that if a DCT coefficient is larger
than a corresponding threshold, then it is remained unchanged. Otherwise, a zero value is
assigned.

Multiplicative nature of speckle and its spatial correlation can be taken into consideration in
different manners. Consider possible variants more in detail. If processing is component-wise,
signal-dependent (locally adaptive) and frequency-dependent thresholds can be used. The
local thresholds in an nth block are determined as

T n; l;mð Þ ¼ βσ nð ÞD0:5
norm l;mð Þ, l ¼ 1,…, 8; m ¼ 1,…, 8, (7)

where σ nð Þ is local noise standard deviation for the nth block that can be approximately calculated
as σ nð Þ ¼ σμIn (index k is omitted for simplicity) and β is the filter parameter usually set equal to
2.7 for hard thresholding [32]. This approach to filtering will be further referred as Filter 1.

Another way of component-wise processing mentioned earlier is based on utilizing homomor-
phic or variance-stabilizing transforms. A general form of logarithmic-type homomorphic

transform (HT) is Ihij ¼ c log d Inij
� �

[7, 33] where c and d are transform parameters that are both
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If we deal with multichannel images (multispectral, hyperspectral, multipolarization ones),
there are two main approaches to their filtering [28]. The first is component-wise processing,
i.e., if each component image is processed as single-channel image [13]. This approach is, in
general, simpler. There exist more methods. It is easier to take into account speckle properties
including its spatial spectrum. Processing of multichannel images can be done in parallel.

The second approach is 3D (vectorial) processing [20, 29]. This group of filters is able to take
correlation of image components into account. This, under certain conditions, allows improv-
ing the efficiency of noise suppression. However, these methods can run into problems of
different properties of noise (noise variance can be not the same, spectrum can be not identical,
etc.). Then, either special methods of component image preprocessing are needed [30], or the
use of 3D processing benefits in full extent becomes impossible.
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Below we consider representatives of both groups of methods. All studied filters are based on
DCT. The reasons for this are the following. Firstly, DCT is one of the best data decorrelating
transforms approaching Karhunen-Loeve transform. This property is important in denoising
and data representation. Secondly, DCT denoising is carried out in sliding blocks [31]. Due to
this, it is easily adapted to signal-dependent noise [32] and its spatial correlation [28]. Thirdly,
2D DCT is a standard operation in image processing (in particular, in compression), and its
efficient software and hardware implementations exist.

Thus, in addition to known despeckling techniques available in ESA SNAP toolbox, we also
study filtering techniques based on DCT. For all modifications considered below, the main
principles of processing are the same. Denoising is carried out in blocks of square shape,
usually of size 8�8 pixels although other variants are possible. In each block, direct 2D DCT
is performed. Then, amplitudes of obtained DCT coefficients are compared to thresholds, and
one or another type of threshold operation is accomplished (the coefficient with indices (1,1) is
remained unchanged in any case). Then, inverse 2D DCT is done, and as the result, filtered
values are obtained for all pixels that belong to a given block.

There are different modifications of DCT-based denoising that concern block overlapping and
threshold type. Denoising can be done with nonoverlapping, partly overlapping, and fully
overlapping blocks. In the latter case, neighbor blocks are shifted by only one pixel with
respect to each other in horizontal or vertical direction. Processing with full overlapping of
blocks takes more time compared to processing with partly overlapping or nonoverlapping
blocks. But the use of fully overlapping blocks provides the best efficiency of filtering in terms
of standard quantitative criteria as peak signal-to-noise ratio (PSNR) and visual quality met-
rics. So, we will further employ this variant of DCT-based denoising. Note that for most image
pixels, one has 64 filtered values coming from different block positions. They are averaged
(although other methods of aggregation are possible).

There are hard, soft, and combined types of threshold. Below we employ the former type since
hard thresholding is the most simple and efficient. This means that if a DCT coefficient is larger
than a corresponding threshold, then it is remained unchanged. Otherwise, a zero value is
assigned.

Multiplicative nature of speckle and its spatial correlation can be taken into consideration in
different manners. Consider possible variants more in detail. If processing is component-wise,
signal-dependent (locally adaptive) and frequency-dependent thresholds can be used. The
local thresholds in an nth block are determined as

T n; l;mð Þ ¼ βσ nð ÞD0:5
norm l;mð Þ, l ¼ 1,…, 8; m ¼ 1,…, 8, (7)

where σ nð Þ is local noise standard deviation for the nth block that can be approximately calculated
as σ nð Þ ¼ σμIn (index k is omitted for simplicity) and β is the filter parameter usually set equal to
2.7 for hard thresholding [32]. This approach to filtering will be further referred as Filter 1.

Another way of component-wise processing mentioned earlier is based on utilizing homomor-
phic or variance-stabilizing transforms. A general form of logarithmic-type homomorphic

transform (HT) is Ihij ¼ c log d Inij
� �

[7, 33] where c and d are transform parameters that are both
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larger than unity. These parameters can be chosen in different ways depending upon certain
conditions. The main aspect here is that in multilook SAR images subject to such a HT, speckle
converts to pure additive noise with non-Gaussian PDF. Its variance can be calculated as

σ2h ≈ c
2σ2μ= ln dð Þð Þ2.

After this direct HT, a DCT-based filter version for additive noise is applied. Since additive
noise is spatially correlated as well and its normalized DCT spectrum is practically the same as
for original data, frequency-dependent thresholds are determined as

T n; l;mð Þ ¼ βσhD
0:5
norm l;mð Þ, l ¼ 1,…, 8; m ¼ 1,…, 8, (8)

where the recommended β is the same as earlier. After filtering, inverse HT is performed, and it
is desired to carry out mean level correction [26]. This variant of filtering will be further
referred as Filter 2. According to our studies, it performs slightly worse compared to Filter 1.
One reason is that additional distortions are introduced by direct and inverse HTs.

Joint processing of two component images that we plan to perform for the considered applica-
tion can be carried out in two ways. The first one [20] is to use one component as basic one and
to perform data correction for the second component image with providing equal mean values
for each block of these images. Then, 3D DCT is performed in each block, and σ nð Þ is set
according to (4) where In from the basic image is used for its calculation.

Another, practically equivalent, variant is to carry out variance-stabilizing transforms sepa-
rately for each component images in such a manner that σ2h1 ¼ σ2h2. If σ

2
μ1 ≈σ

2
μ2 as we have in our

case, parameters of logarithmic transform c and d can be the same. After this, 3D is done in
each block, then thresholding follows, after this inverse 3D DCT is carried out. Due to separa-
bility of 3D transform into two-element 1D DCT and 2D DCT, obtaining of sum and difference
images is possible. Then, their separate processing is applied with further inverse two-element
DCT for each pixel. Threshold (8) is used in this case. The described denoising method is
further called Filter 3.

There is one condition that should be satisfied for both presented 3D filtering techniques.
Normalized spectra for component images should be the same or, at least, almost identical.
Preliminary analysis carried out in Section 2 has demonstrated that this condition is satisfied.
So, we have averaged estimates of normalized spectra obtained for all analyzed fragments of
19 VV and 19 VH radar images.

It is worth recalling that methods for predicting noise suppression efficiency have been pro-
posed previously [27, 34]. Equivalent noise variance can be determined for original image with
speckle as
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Then, the proposed methods of efficiency prediction are able to either predict the ratio
MSEout

k =σ2eq k where
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and Ifk ij, i ¼ 1,…, I; j ¼ 1,…, J; k ¼ 1,…, K is the kth component image after despeckling or

improvement of PSNR (IPSNR) equal to 10 log 10 σ2eq k=MSEout
k

� �
[35, 36]. Experiments carried

out with 512�512 pixel fragments of Sentinel SAR images have shown that IPSNR for Filter 1
varies within the limits from 5 to 12 dB, i.e., images enhance sufficiently.

Let us prove this by two examples. Figure 4a presents original image with VV polarization.
The output of Filter 1 is shown in Figure 4b. In turn, Figure 4c represents the output of Filter 2.
Finally, Figure 4d shows the output of the modification [30] applied within the scheme [26]
instead of standard BM3D (block matching three-dimensional) filter. Note that this is only an
example for the latter filter applied to image fragment of limited size. We have not applied it to
processing large-size Sentinel data further subject to classification since this filter requires too
much time for image denoising.

Figure 4. Original SAR image (a) and outputs of three denoisers: Filters 1 (b), Filter 2 (c), and nonlocal filter with HT (d).
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DCT for each pixel. Threshold (8) is used in this case. The described denoising method is
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Preliminary analysis carried out in Section 2 has demonstrated that this condition is satisfied.
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out with 512�512 pixel fragments of Sentinel SAR images have shown that IPSNR for Filter 1
varies within the limits from 5 to 12 dB, i.e., images enhance sufficiently.

Let us prove this by two examples. Figure 4a presents original image with VV polarization.
The output of Filter 1 is shown in Figure 4b. In turn, Figure 4c represents the output of Filter 2.
Finally, Figure 4d shows the output of the modification [30] applied within the scheme [26]
instead of standard BM3D (block matching three-dimensional) filter. Note that this is only an
example for the latter filter applied to image fragment of limited size. We have not applied it to
processing large-size Sentinel data further subject to classification since this filter requires too
much time for image denoising.
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The filtering results represented in Figure 4 look quite similarly. Efficient speckle suppression
is provided, while edge/detail preservation is good enough. Visual inspection carried by us
and quantitative data in [30] show that the output of Filter 2 is the most smeared and some
artifacts are present. Due to linearity nature of the main used computational procedures (DCT)
of the considered filters, all computational costs can be easily reduced using parallel-wised
algorithms or hardware. On the following computer configuration—Intel Core i7, 16 GB RAM—
the entire calculation time for one image (recall that average size of images is ~25k � 16k
pixels) is about 17 min. We also note that such time can be reduced by realizing the considered
denoising methods in low-level programming language due to filter simplicity.

We have also analyzed filter outputs for 3D despeckling methods. One example is given in
Figure 5. Original image of VV polarization is presented in Figure 5a. Again, a good compro-
mise between speckle suppression and edge/detail preservation is provided.

However, visual analysis is not able to draw conclusions what filter will suit the final goal of
reaching high classification accuracy in the best way. Thus, three denoising techniques (Filters
1, 2, and 3) described above have been used to improve SAR image quality before classifica-
tion. Note that for multitemporal SAR data, more sophisticated 3D filtering methods can be

Figure 5. Original (noisy) image (a) and outputs of Filter 3 (b) and filters in [20].
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applied, but our task here is to establish connection between filtering efficiency and classifica-
tion accuracy. We expect that the use of Filter 2 and Filter 3 will produce comparable or better
classification than Filter 1 and other filters available in known toolboxes.

4. Classification of multichannel radar images

There are many classifiers that can be applied. Popular ones such as support vector machine
(SVM), decision tree (DT), and random forest (RF) classifiers were often employed for remote
sensing image classification in the recent years. Many papers have demonstrated comparable
or better performance of neural networks (NN) [37–40]. Although the NN training can be
resource- and time-consuming, the corresponding classifiers have several positive features
compared to SVM and DT. In particular, NNs are usually fast at processing new data that is
important in processing of large volumes of radar data. Besides, they are able to produce
probabilistic outputs, which can be employed for characterizing reliability (quality) of the final
results (classification map). Hence, for classification, we have used a specific type of NN—an
ensemble of feedforward neural networks, namely, multilayer perceptrons (MLPs). This type
of classifiers was validated earlier for five Joint Experiment of Crop Assessment and Monitor-
ing (JECAM) test sites in several countries, and it outperformed other considered techniques
[41, 42]. The architecture of the used approach is represented in Figure 6. A committee
(ensemble) of MLPs was used to improve performance of individual classifiers [9, 10]. The
committee was obtained using a variant of the bagging technique [43] where MLPs with
different parameters were trained using the same training data. This approach has several
advantages. It is rather simple, non-computationally intensive and proved to be efficient for
various applications. Outputs from the used MLPs were integrated using the method of
average committee. According to this technique, the average class probability over all elemen-
tary classifiers is calculated, and the class that has the highest average posterior probability for
the given input sample is chosen [9]. The following equation describes this procedure:

cer ¼
1
Q

XQ

q¼1

pqr , c∗ ¼ arg max
c¼1, C

pec, (11)

where c∗ is the class to which the input sample is assigned by the committee of classifiers, per
denotes the resulting posterior probability of the committee, pec is posterior probability for each
of MLPs, Q is the total number of classifiers in the committee, and C denotes the number of
classes. There are two differences between average committee procedure and a majority voting
technique: (i) the former approach gives probabilistic output, which can be employed as an
indicator of reliability for classifying a particular pixel or area; (ii) there is no ambiguity when
two or more classes have got the same number of “votes.”

Let us give some details. Our MLP classifier used hyperbolic tangent activation function for
neurons in the hidden layer and logistic activation function in the output layer. We utilized a
cross-entropy (CE) error function for training our neural network. This provided better perfor-
mance in terms of speed of training and classification accuracy [9, 44]:
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applied, but our task here is to establish connection between filtering efficiency and classifica-
tion accuracy. We expect that the use of Filter 2 and Filter 3 will produce comparable or better
classification than Filter 1 and other filters available in known toolboxes.

4. Classification of multichannel radar images

There are many classifiers that can be applied. Popular ones such as support vector machine
(SVM), decision tree (DT), and random forest (RF) classifiers were often employed for remote
sensing image classification in the recent years. Many papers have demonstrated comparable
or better performance of neural networks (NN) [37–40]. Although the NN training can be
resource- and time-consuming, the corresponding classifiers have several positive features
compared to SVM and DT. In particular, NNs are usually fast at processing new data that is
important in processing of large volumes of radar data. Besides, they are able to produce
probabilistic outputs, which can be employed for characterizing reliability (quality) of the final
results (classification map). Hence, for classification, we have used a specific type of NN—an
ensemble of feedforward neural networks, namely, multilayer perceptrons (MLPs). This type
of classifiers was validated earlier for five Joint Experiment of Crop Assessment and Monitor-
ing (JECAM) test sites in several countries, and it outperformed other considered techniques
[41, 42]. The architecture of the used approach is represented in Figure 6. A committee
(ensemble) of MLPs was used to improve performance of individual classifiers [9, 10]. The
committee was obtained using a variant of the bagging technique [43] where MLPs with
different parameters were trained using the same training data. This approach has several
advantages. It is rather simple, non-computationally intensive and proved to be efficient for
various applications. Outputs from the used MLPs were integrated using the method of
average committee. According to this technique, the average class probability over all elemen-
tary classifiers is calculated, and the class that has the highest average posterior probability for
the given input sample is chosen [9]. The following equation describes this procedure:
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where c∗ is the class to which the input sample is assigned by the committee of classifiers, per
denotes the resulting posterior probability of the committee, pec is posterior probability for each
of MLPs, Q is the total number of classifiers in the committee, and C denotes the number of
classes. There are two differences between average committee procedure and a majority voting
technique: (i) the former approach gives probabilistic output, which can be employed as an
indicator of reliability for classifying a particular pixel or area; (ii) there is no ambiguity when
two or more classes have got the same number of “votes.”

Let us give some details. Our MLP classifier used hyperbolic tangent activation function for
neurons in the hidden layer and logistic activation function in the output layer. We utilized a
cross-entropy (CE) error function for training our neural network. This provided better perfor-
mance in terms of speed of training and classification accuracy [9, 44]:
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E wð Þ ¼ �ln p Tjwð Þ ¼ �
XS
s¼1

XC
c¼1

tscln ysc, (12)

where E(w) denotes the CE error function that is dependent on the neurons’ weight coefficients
w, T is the set of vectors of target outputs in the training set that is composed of S samples, and tsc
and ysc denote the target and MLP outputs, respectively. In the target output for class c, all
components of vector ts are set to 0, except for the cth component, which is set to 1. The CE error
E(w) had to be minimized. This was done by the scaled conjugate gradient algorithm by varying

Figure 6. Architecture of an ensemble of feed forward NNs based on multilayer perceptrons (MLPs).
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weight coefficients w. Backpropagation method was utilized for NN training. To prevent NN
overfitting, we used early stopping and weight decay (L2 regularization) techniques.

Classification of multitemporal radar images was performed on a per-pixel basis [45]. We have
considered all SAR images available during the crop growth period. Note that the use of
multitemporal images allows more accurate classification of crops than a single-date image.

5. Classification results

Filtering approaches for Sentinel-1 images were verified in the south part of Ukraine (yellow
rectangle in Figure 2). Zoomed results after different filters are shown for fragment (marked by
star) in Figure 2 that has coordinates (33.73052, 47.18544). Such a territory is an intensive
agricultural area; it corresponds to different climatic zones (humid continental) and has many
different land cover types (forest on the north and agricultural crop in the southern part). The
crop calendar is September–July for winter crops and April–October for spring and summer
crops. A typical field size is 30–250 ha.

Figure 7. Example of using different filters applied to Sentinel-1A images (R channel, VV polarization; G channel, VH
polarization): (A) image without filtering, (B) refined Lee filter, (C) Filter 1, and (D) Filter 3.
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w, T is the set of vectors of target outputs in the training set that is composed of S samples, and tsc
and ysc denote the target and MLP outputs, respectively. In the target output for class c, all
components of vector ts are set to 0, except for the cth component, which is set to 1. The CE error
E(w) had to be minimized. This was done by the scaled conjugate gradient algorithm by varying

Figure 6. Architecture of an ensemble of feed forward NNs based on multilayer perceptrons (MLPs).
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weight coefficients w. Backpropagation method was utilized for NN training. To prevent NN
overfitting, we used early stopping and weight decay (L2 regularization) techniques.

Classification of multitemporal radar images was performed on a per-pixel basis [45]. We have
considered all SAR images available during the crop growth period. Note that the use of
multitemporal images allows more accurate classification of crops than a single-date image.

5. Classification results

Filtering approaches for Sentinel-1 images were verified in the south part of Ukraine (yellow
rectangle in Figure 2). Zoomed results after different filters are shown for fragment (marked by
star) in Figure 2 that has coordinates (33.73052, 47.18544). Such a territory is an intensive
agricultural area; it corresponds to different climatic zones (humid continental) and has many
different land cover types (forest on the north and agricultural crop in the southern part). The
crop calendar is September–July for winter crops and April–October for spring and summer
crops. A typical field size is 30–250 ha.

Figure 7. Example of using different filters applied to Sentinel-1A images (R channel, VV polarization; G channel, VH
polarization): (A) image without filtering, (B) refined Lee filter, (C) Filter 1, and (D) Filter 3.
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We preprocessed time series of 10 Sentinel-1A images with different filters available in ESA
SNAP toolbox and Filter 1, Filter 2, and Filter 3. The comparison of those filters with non-
filtered image for July 7, 2016, is shown in Figure 7. It is not easy to evaluate quality of filtering
visually (user’s opinions can be subjective). Therefore, we provide crop classification maps
based on the same in situ data for time series of images obtained by each filter. For each time
series of images, we independently trained an ensemble of neural networks. For this, we
collected 153 data samples for nine classes, and all the accuracies were evaluated on indepen-
dent set, which consisted of 146 samples for nine classes. Under the term “sample,”we assume
one polygon that consists of homogeneous pixels and all of them relate to the same class.

For ground-truth data collecting, we have used the along the roads approach. During these
trips, we have collected georeferenced type of crops for definite fields. After that, collected data
were divided into two independent datasets: one was used for training and another one for
validation (as ground-truth data). So, for training and validation, we have used independent
datasets with 153 and 146 samples, respectively.

The obtained crop classification maps after applying different filters are shown in Figure 8. In
Tables 1 and 2, we present the comparison of user accuracy (UA), producer accuracy (PA),
overall accuracy (OA), and Kappa coefficient for all classes [46] from crop classification map
using different filters for SAR data in 2016.

Figure 8. Example of crop classification maps based on different filters for Sentinel-1A images: (A) without filtering, (B)
refined Lee filter, (C) Filter 1, and (D) Filter 3.
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The overall accuracy of the crop classification map without applying any filtering is 82.6%. The
lowest accuracy among all the available filters is provided by Median filter; classification
accuracy is higher by +3.2% than classification of original (non-filtered) data. The proposed
Filter 1 and Filter 2 have similar results with a nonsignificant gain of +0.3 and +0.1% compared
to refined Lee, respectively. The most accurate crop map was obtained based on images
preprocessed by the Filter 3. The gain of using this method is +6.1% compared to classification
of original data and +1.3% compared to the refined Lee filter. It is worth noting that Filter 3

Class No filter Boxcar Frost Gamma map IDAN Lee

UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, %

Artificial 4.6 42.1 10.8 43.1 15.7 42.1 7.1 43.1 5.9 56 10.2 43.5

Winter wheat 65.5 73.5 79.7 76.3 78.4 76.9 79.6 76 71.9 67.3 79.5 76.6

Maize 62.7 49.8 79.6 54.5 78.1 55.4 78.7 55.8 93.2 62.5 79.8 56.2

Sunflower 96.5 90.2 96.6 92.9 96.5 92.9 96.7 92.4 96.5 94.7 96.7 92.9

Soybeans 37 61.3 41.9 65.6 42.6 65.1 39.6 65.2 51.5 69.2 41.3 65.4

Forest 52.9 88.3 55.4 92.1 56.4 92.9 61.5 91.9 23.9 42 54.9 92.5

Grassland 38.5 83.6 44.3 92.1 44.9 92 44.3 85.5 48 93.3 47.1 92.1

Bare land 49.8 23.2 68 51 67.4 52.4 71.3 46.6 36.9 22.4 60.8 47.4

Water 98.1 99.9 97.6 100 98.7 99.9 93.2 100 99.5 100 99.1 100

OA, %/kappa 82.6/0.7 86.4/0.76 86.7/0.77 86/0.75 86.2/0.76 86.5/0.76

Table 1. Comparison of user accuracy (UA), producer accuracy (PA), overall accuracy (OA), and kappa coefficient (in the
lowest raw) for different filters for SAR data in 2016.

Class Lee sigma Median Refined Lee DCTF DCTF HT 3D DCTF

UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, %

Artificial 9.4 43.5 7.8 38.9 6.8 45.4 3.7 52.3 8.9 81.9 8.4 65.3

Winter wheat 69.5 71.8 75.8 76 80.3 77.6 78.1 76.1 85.3 75.1 86.1 70.5

Maize 92.6 61.3 78.5 55 82.1 57.9 92.7 73.5 95 78.7 94.9 82.6

Sunflower 96.7 94.9 96.5 92.3 96.7 93.8 97.2 95.1 96.8 95.3 96.6 95.2

Soybeans 51.6 69.9 40.5 63.7 45.5 66.8 58.1 71.1 56.6 72.5 59.5 72.3

Forest 45.5 79.2 55.3 93.3 66.5 91.9 48.2 58.7 9.5 19.9 29.1 48.4

Grassland 53.9 89.6 45.8 91.3 46.3 92.8 44.6 94.2 48.8 90.9 48.6 91.1

Bare land 36.9 26.6 63.5 44 62.6 47.9 32.1 14.9 23.4 9.3 48.6 29.8

Water 95.3 100 96 100 99.3 100 99.7 100 99.8 100 99.7 100

OA, %/kappa 87.0/0.77 85.8/0.75 87.4/0.78 87.7/0.78 87.5/0.78 88.7/0.80

Table 2. Comparison of user accuracy (UA), producer accuracy (PA), overall accuracy (OA), and kappa coefficient (in the
lowest raw) for different filters for SAR data in 2016.
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We preprocessed time series of 10 Sentinel-1A images with different filters available in ESA
SNAP toolbox and Filter 1, Filter 2, and Filter 3. The comparison of those filters with non-
filtered image for July 7, 2016, is shown in Figure 7. It is not easy to evaluate quality of filtering
visually (user’s opinions can be subjective). Therefore, we provide crop classification maps
based on the same in situ data for time series of images obtained by each filter. For each time
series of images, we independently trained an ensemble of neural networks. For this, we
collected 153 data samples for nine classes, and all the accuracies were evaluated on indepen-
dent set, which consisted of 146 samples for nine classes. Under the term “sample,”we assume
one polygon that consists of homogeneous pixels and all of them relate to the same class.

For ground-truth data collecting, we have used the along the roads approach. During these
trips, we have collected georeferenced type of crops for definite fields. After that, collected data
were divided into two independent datasets: one was used for training and another one for
validation (as ground-truth data). So, for training and validation, we have used independent
datasets with 153 and 146 samples, respectively.

The obtained crop classification maps after applying different filters are shown in Figure 8. In
Tables 1 and 2, we present the comparison of user accuracy (UA), producer accuracy (PA),
overall accuracy (OA), and Kappa coefficient for all classes [46] from crop classification map
using different filters for SAR data in 2016.

Figure 8. Example of crop classification maps based on different filters for Sentinel-1A images: (A) without filtering, (B)
refined Lee filter, (C) Filter 1, and (D) Filter 3.
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The overall accuracy of the crop classification map without applying any filtering is 82.6%. The
lowest accuracy among all the available filters is provided by Median filter; classification
accuracy is higher by +3.2% than classification of original (non-filtered) data. The proposed
Filter 1 and Filter 2 have similar results with a nonsignificant gain of +0.3 and +0.1% compared
to refined Lee, respectively. The most accurate crop map was obtained based on images
preprocessed by the Filter 3. The gain of using this method is +6.1% compared to classification
of original data and +1.3% compared to the refined Lee filter. It is worth noting that Filter 3

Class No filter Boxcar Frost Gamma map IDAN Lee

UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, %

Artificial 4.6 42.1 10.8 43.1 15.7 42.1 7.1 43.1 5.9 56 10.2 43.5

Winter wheat 65.5 73.5 79.7 76.3 78.4 76.9 79.6 76 71.9 67.3 79.5 76.6

Maize 62.7 49.8 79.6 54.5 78.1 55.4 78.7 55.8 93.2 62.5 79.8 56.2

Sunflower 96.5 90.2 96.6 92.9 96.5 92.9 96.7 92.4 96.5 94.7 96.7 92.9

Soybeans 37 61.3 41.9 65.6 42.6 65.1 39.6 65.2 51.5 69.2 41.3 65.4

Forest 52.9 88.3 55.4 92.1 56.4 92.9 61.5 91.9 23.9 42 54.9 92.5

Grassland 38.5 83.6 44.3 92.1 44.9 92 44.3 85.5 48 93.3 47.1 92.1

Bare land 49.8 23.2 68 51 67.4 52.4 71.3 46.6 36.9 22.4 60.8 47.4

Water 98.1 99.9 97.6 100 98.7 99.9 93.2 100 99.5 100 99.1 100

OA, %/kappa 82.6/0.7 86.4/0.76 86.7/0.77 86/0.75 86.2/0.76 86.5/0.76

Table 1. Comparison of user accuracy (UA), producer accuracy (PA), overall accuracy (OA), and kappa coefficient (in the
lowest raw) for different filters for SAR data in 2016.

Class Lee sigma Median Refined Lee DCTF DCTF HT 3D DCTF

UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, %

Artificial 9.4 43.5 7.8 38.9 6.8 45.4 3.7 52.3 8.9 81.9 8.4 65.3

Winter wheat 69.5 71.8 75.8 76 80.3 77.6 78.1 76.1 85.3 75.1 86.1 70.5

Maize 92.6 61.3 78.5 55 82.1 57.9 92.7 73.5 95 78.7 94.9 82.6

Sunflower 96.7 94.9 96.5 92.3 96.7 93.8 97.2 95.1 96.8 95.3 96.6 95.2

Soybeans 51.6 69.9 40.5 63.7 45.5 66.8 58.1 71.1 56.6 72.5 59.5 72.3

Forest 45.5 79.2 55.3 93.3 66.5 91.9 48.2 58.7 9.5 19.9 29.1 48.4

Grassland 53.9 89.6 45.8 91.3 46.3 92.8 44.6 94.2 48.8 90.9 48.6 91.1

Bare land 36.9 26.6 63.5 44 62.6 47.9 32.1 14.9 23.4 9.3 48.6 29.8

Water 95.3 100 96 100 99.3 100 99.7 100 99.8 100 99.7 100

OA, %/kappa 87.0/0.77 85.8/0.75 87.4/0.78 87.7/0.78 87.5/0.78 88.7/0.80

Table 2. Comparison of user accuracy (UA), producer accuracy (PA), overall accuracy (OA), and kappa coefficient (in the
lowest raw) for different filters for SAR data in 2016.
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positive gains were observed not only for overall accuracy but also for PA and UA for each
class, excluding forest and bare land.

6. Conclusions

One aim of this study was to analyze properties of Sentinel SAR images. It has been shown
that speckle is quite intensive and spatially correlated. These peculiarities have been taken into
account in choosing proper filters for data preprocessing.

Another aim was to compare the impact of different filters for SAR imagery denoising on crop
classification accuracy. Ten SAR images with VV and VH polarization acquired by Sentinel-1A
satellite for the Ukraine territory were explored. For speckle suppression, all available filters
from the ESA SNAP toolbox were evaluated along with those based on DCT, namely, DCTF,
DCTF HT, and 3D DCTF. Filter quality estimation has been performed in terms of overall crop
classification accuracy. An ensemble of feed forward neural networks, in particular MLPs, was
used as this method was validated for multiple JECAM test sites and proved to be efficient for
multitemporal image classification.

The best performance using available filters in SNAP toolbox in terms of overall accuracy was
achieved by the refined Lee filter. At the same time, all proposed DCT-based filters outper-
formed common filters from the SNAP toolbox. 3D DCTF provided the most accurate crop
classification map after removing the speckle, and that is essential for crop area estimation and
for solving other applied problems. It should be noted that 3D DCTF improved not only
overall accuracy but also PA and UA for each class (especially for summer crops), excluding
forest and bare land.

Author details

Vladimir Lukin1*, Oleksii Rubel1, Ruslan Kozhemiakin1, Sergey Abramov1, Andrii Shelestov2,
Mykola Lavreniuk2, Mykola Meretsky2, Benoit Vozel3 and Kacem Chehdi3

*Address all correspondence to: lukin@ai.kharkov.com

1 National Aerospace University, Kharkov, Ukraine

2 National Technical University of Ukraine, Ukraine

3 University of Rennes 1, France

References

[1] Schowengerdt R. Remote Sensing: Models and Methods for Image Processing. 3rd ed.
Cambridge: Academic Press; 2006. 560 p. DOI: 10.978.00804/80589

Recent Advances and Applications in Remote Sensing36

[2] Blanes I, Magli E, Serra-Sagrista JA. Tutorial on image compression for optical space
imaging systems. IEEE Geoscience and Remote Sensing Magazine. 2014;2(3):8-26. DOI:
10.1109/MGRS.2014.2352465

[3] Kravchenko A, Kussul N, Lupian E, Savorsky V, Hluchy L, Shelestov A. Water resource
quality monitoring using heterogeneous data and high-performance computations. Cyber-
netics and Systems Analysis. 2008;44(4):616-624. DOI: 10.1007/s10559-008-9032-x

[4] Kogan F, Kussul N, Adamenko T, Skakun S, Kravchenko A, Krivobok A, Shelestov A,
Kolotii A, Kussul O, Lavrenyuk A. Winter wheat yield forecasting: A comparative anal-
ysis of results of regression and biophysical models. Journal of Automation and Informa-
tion Sciences. 2013;45(6):68-81. DOI: 10.1615/JAutomatInfScien.v45.i6.70

[5] Skakun S, Kussul N, Shelestov A, Kussul O. The use of satellite data for agriculture drought
risk quantification in Ukraine. Geomatics, Natural Hazards and Risk. 2015;7(3):901-917.
DOI: 10.1080/19475705.2015.1016555

[6] European Space Agency. Earth Online [Internet]. 2006. Available from: https://earth.esa.
int/documents/653194/656796/Speckle_Filtering.pdf [Accessed: 2017-06-07]

[7] Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images. USA: SciTech Pub-
lishing; 2004. 486 p. DOI: 10.978.18911/21319

[8] Lee JS, Pottier E. Polarimetric Radar Imaging: From Basics to Applications. USA: CRC
Press; 2009. 438 p. DOI: 10.1080/01431161.2010.535193

[9] Skakun S, Kussul N, Shelestov A, Lavreniuk M, Kussul O. Efficiency assessment of
multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite
imagery for crop classification in Ukraine. IEEE Journal of Selected Topics in Applied Earth
Observation and Remote Sensing. 2016;9(8):3712-3719. DOI: 10.1109/JSTARS.2015.2454297

[10] Kussul N, Skakun S, Shelestov A, Lavreniuk M, Yailymov B, Kussul O. Regional scale
crop mapping using multi-temporal satellite imagery. International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences. 2015;XL-7/W3:45-52.
DOI: 10.5194/isprsarchives-XL-7-W3-45-2015

[11] Kolotii A, Kussul N, Shelestov A, Skakun S, Yailymov B, Basarab R, LavreniukM, Oliinyk T,
Ostapenko V. Comparison of biophysical and satellite predictors for wheat yield forecasting
in Ukraine. International Archives of the. 2015;XL-7/W3:39-44. DOI: 10.5194/isprsarchives-
XL-7-W3-39-2015

[12] Kussul N, Lemoine G, Gallego F, Skakun S, Lavreniuk M, Shelestov A. Parcel-based crop
classification in Ukraine using Landsat-8 data and sentinel-1A data. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing. 2016;9(6):2500-2508.
DOI: 10.1109/JSTARS.2016.2560141

[13] Touzi R. Review of speckle filtering in the context of estimation theory. IEEE Transactions
on Geoscience and Remote Sensing. 2002;40(11):2392-2404. DOI: 10.1109/TGRS.2002.803727

Despeckling of Multitemporal Sentinel SAR Images and Its Impact on Agricultural Area Classification
http://dx.doi.org/10.5772/intechopen.72577

37



positive gains were observed not only for overall accuracy but also for PA and UA for each
class, excluding forest and bare land.
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One aim of this study was to analyze properties of Sentinel SAR images. It has been shown
that speckle is quite intensive and spatially correlated. These peculiarities have been taken into
account in choosing proper filters for data preprocessing.

Another aim was to compare the impact of different filters for SAR imagery denoising on crop
classification accuracy. Ten SAR images with VV and VH polarization acquired by Sentinel-1A
satellite for the Ukraine territory were explored. For speckle suppression, all available filters
from the ESA SNAP toolbox were evaluated along with those based on DCT, namely, DCTF,
DCTF HT, and 3D DCTF. Filter quality estimation has been performed in terms of overall crop
classification accuracy. An ensemble of feed forward neural networks, in particular MLPs, was
used as this method was validated for multiple JECAM test sites and proved to be efficient for
multitemporal image classification.

The best performance using available filters in SNAP toolbox in terms of overall accuracy was
achieved by the refined Lee filter. At the same time, all proposed DCT-based filters outper-
formed common filters from the SNAP toolbox. 3D DCTF provided the most accurate crop
classification map after removing the speckle, and that is essential for crop area estimation and
for solving other applied problems. It should be noted that 3D DCTF improved not only
overall accuracy but also PA and UA for each class (especially for summer crops), excluding
forest and bare land.
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Abstract

Airborne discrete return light detection and ranging (LiDAR) point clouds covering
forested areas can be processed to segment individual trees and retrieve their morpho-
logical attributes. Segmenting individual trees in natural deciduous forests, however,
remained a challenge because of the complex and multi-layered canopy. In this chapter,
we present (i) a robust segmentation method that avoids a priori assumptions about the
canopy structure, (ii) a vertical canopy stratification procedure that improves segmenta-
tion of understory trees, (iii) an occlusion model for estimating the point density of each
canopy stratum, and (iv) a distributed computing approach for efficient processing at
the forest level. When applied to the University of Kentucky Robinson Forest, the
segmentation method detected about 90% of overstory and 47% of understory trees with
over-segmentation rates of 14 and 2%. Stratifying the canopy improved the detection
rate of understory trees to 68% at the cost of increasing their over-segmentations to 16%.
According to our occlusion model, a point density of ~170 pt/m2 is needed to segment
understory trees as accurately as overstory trees. Lastly, using the distributed approach,
we segmented about two million trees in the 7440-ha forest in 2.5 hours using 192
processors, which is 167 times faster than using a single processor.

Keywords: individual tree segmentation, multi-layered stand, vertical canopy
stratification, segmentation evaluation, point density, canopy occlusion effect, big data,
distributed computing

1. Introduction

Global forests cover about 30% of the land surface of the earth, include 80% of plant biomass,
and account for 75% of primary productivity of biosphere, providing essential and unreplaceable
ecosystem services to humans and the life on the planet [1]. Forest management has traditionally
been based on stand (forested area with similar vegetation characteristics) attributes collected
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Abstract

Airborne discrete return light detection and ranging (LiDAR) point clouds covering
forested areas can be processed to segment individual trees and retrieve their morpho-
logical attributes. Segmenting individual trees in natural deciduous forests, however,
remained a challenge because of the complex and multi-layered canopy. In this chapter,
we present (i) a robust segmentation method that avoids a priori assumptions about the
canopy structure, (ii) a vertical canopy stratification procedure that improves segmenta-
tion of understory trees, (iii) an occlusion model for estimating the point density of each
canopy stratum, and (iv) a distributed computing approach for efficient processing at
the forest level. When applied to the University of Kentucky Robinson Forest, the
segmentation method detected about 90% of overstory and 47% of understory trees with
over-segmentation rates of 14 and 2%. Stratifying the canopy improved the detection
rate of understory trees to 68% at the cost of increasing their over-segmentations to 16%.
According to our occlusion model, a point density of ~170 pt/m2 is needed to segment
understory trees as accurately as overstory trees. Lastly, using the distributed approach,
we segmented about two million trees in the 7440-ha forest in 2.5 hours using 192
processors, which is 167 times faster than using a single processor.
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1. Introduction

Global forests cover about 30% of the land surface of the earth, include 80% of plant biomass,
and account for 75% of primary productivity of biosphere, providing essential and unreplaceable
ecosystem services to humans and the life on the planet [1]. Forest management has traditionally
been based on stand (forested area with similar vegetation characteristics) attributes collected
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using field sampling and interpretation of aerial photography [2]. Field sampling is inevitably
limited to a small percentage because of the large acquisition costs, which results in rough
estimates of stand attributes while ignoring large variability in terrain and vegetation within
stands [3]. Recent advances in remote sensing, geographic information systems, and information
science have the potential to bring dramatic changes to forest data acquisition and management
by providing inventory information at unprecedented spatial and temporal resolutions. Specifi-
cally, discrete return airborne light detection and ranging (LiDAR) technology has extensively
been used in the past two decades in forestry [4, 5]. Due to its ability to penetrate vegetation
canopy, LiDAR data captured in the shape of 3D point clouds contain vertical information from
which vegetation structural characteristics can be retrieved, even from understory canopy layers.
Airborne point clouds has successfully been used to derive digital surface models representing
top surface of objects above the ground, as well as digital elevation models (DEMs) representing
bare ground surface excluding the above ground objects [6]. Earlier studies built relationships
between the LiDAR-derived variables and vegetation attributes using field sampling and extrap-
olated those relationships to the LiDAR coverage area and/or to the entire forest [7]. Although
such methods can remarkably reduce field work and increase precision, they are insufficient for
detailed forest management at the individual tree level [8].

Detailed tree-level forest management requires individual trees to be segmented from the LiDAR
point clouds. Although numerous tree segmentation methods have been developed, they have
major focus on conifer forests or forests with relatively open canopy where assumptions about
size and shape of tree crowns are made [9]. Deciduous forests present considerably more
complex vegetation conditions due to large variation in tree shapes and sizes, larger number of
species, and denser canopywhere individual trees are considerably more challenging to segment
[8]. In addition, retrieval of understory trees using airborne LiDAR is much harder because of the
reduced amount of LiDAR points penetrating below the main cohort formed by overstory trees
[10]. Typically, the detection rate of overstory (dominant and co-dominant) trees is around 90%
while the detection rate of understory (intermediate and overtopped) trees is below 50%. Trivi-
ally, a minimum point density is the basic requirement for a reasonable segmentation of trees,
which is typically not satisfied for understory trees in a dense forest [11, 12]. Furthermore,
LiDAR data covering an entire forest is much more voluminous than the memory of a worksta-
tion and may also take an unreasonable time to be sequentially processed using an external
memory algorithm. Because large-scale LiDAR data is typically arranged in several tiles for
efficient management and delivery, distributed processing of different tiles is straightforward.
However, the data representing tree crowns located across tile boundaries are split into two or
more pieces that need to be processed by different computing units. Only few studies have
considered distributed processing of large geospatial data addressing the boundary problem
[13]—specifically there are no studies considering forest data. This is increasingly important
when obtaining tree-level information for areas other than small plots, which is often the ideal
objective. Moreover, continuous advancements of sensor technology and platforms [14] is
resulting in point clouds to be acquired with greater resolutions, increasing the need for more
efficient and scalable processing schemes.

To address these limitations, in this chapter we present: (i) a robust tree segmentation method,
which is designed to be applied in closed-canopy deciduous forests, (ii) a vertical canopy
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stratification procedure that separates the canopy into an overstory layer and multiple under-
story canopy layers, (iii) a LiDAR pulse occlusion model in terms of point density to further
investigate the inferior segmentation quality of understory trees, and (iv) a distributed com-
puting approach that addresses the tile boundary problem to efficiently and accurately process
the data at the forest level.

2. Methodology

2.1. Robust tree segmentation

The main inputs of the tree segmentation method [15] are the LiDAR point cloud and the
LiDAR-derived DEM. A pre-processing step bins the point cloud to a horizontal grid with cell
width equals to the average footprint (AFP) of the point cloud (equals to the reciprocal of
square root of the point density) and selects the highest point within each grid cell as a LiDAR
surface point (LSP). Using the DEM, heights above ground are calculated for all LSPs and
ground and lower vegetation (below 4 m) points in the LSPs are removed from further
analysis. Based on the vegetation structure, this yields some gaps with no vegetation in the
remaining LSP dataset, which are utilized later for segmentation. The next pre-processing step
smoothens LSPs to reduce small variation in vegetation elevation within tree crowns while
maintaining important vegetation patterns. We used a Gaussian smoothing filter with stan-
dard deviation of 2 � AFP.

After pre-processing, the segmentation method includes the following routines: (1) locate the
global maximum (GMX) among LSPs, assumed to represent the apex of the tallest tree,
(2) generate vertical profiles originating from the GMX location and stretching outwards,
(3) identify the individual LSP along each profile that represents the crown boundary via
between-tree gap detection and local minimum (LM) inspection, (4) create a convex hull of
boundary points delineating the tree crown, and (5) cluster all LSPs encompassed within the
convex hull as the current tallest tree crown. These routines iterate until all LSPs have been
clustered into tree crowns. Clusters representing crowns with diameter below a minimum
detectable crown width (MDCW), set here as 1.5 m, are considered noise. Figure 1a shows
the flowchart of the tree segmentation method and Figure 1b illustrates an iteration of a tree
clustering.

2.1.1. Profile generation

After identifying the GMX, eight uniformly spaced vertical profiles (every 45�) originating
from it and stretching a maximum horizontal distance of 20 m are generated. The width of
each profile was set to 2 �AFP to ensure a sufficient number of LSPs representing vegetation
characteristics. After the crown boundary is determined for each profile (explained below),
the maximum crown radius (r) is used to determine the chord height (x) between two
maximum crown radii profiles separated by the angular spacing (φ) (Figure 2) using the
following equation:
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point clouds. Although numerous tree segmentation methods have been developed, they have
major focus on conifer forests or forests with relatively open canopy where assumptions about
size and shape of tree crowns are made [9]. Deciduous forests present considerably more
complex vegetation conditions due to large variation in tree shapes and sizes, larger number of
species, and denser canopywhere individual trees are considerably more challenging to segment
[8]. In addition, retrieval of understory trees using airborne LiDAR is much harder because of the
reduced amount of LiDAR points penetrating below the main cohort formed by overstory trees
[10]. Typically, the detection rate of overstory (dominant and co-dominant) trees is around 90%
while the detection rate of understory (intermediate and overtopped) trees is below 50%. Trivi-
ally, a minimum point density is the basic requirement for a reasonable segmentation of trees,
which is typically not satisfied for understory trees in a dense forest [11, 12]. Furthermore,
LiDAR data covering an entire forest is much more voluminous than the memory of a worksta-
tion and may also take an unreasonable time to be sequentially processed using an external
memory algorithm. Because large-scale LiDAR data is typically arranged in several tiles for
efficient management and delivery, distributed processing of different tiles is straightforward.
However, the data representing tree crowns located across tile boundaries are split into two or
more pieces that need to be processed by different computing units. Only few studies have
considered distributed processing of large geospatial data addressing the boundary problem
[13]—specifically there are no studies considering forest data. This is increasingly important
when obtaining tree-level information for areas other than small plots, which is often the ideal
objective. Moreover, continuous advancements of sensor technology and platforms [14] is
resulting in point clouds to be acquired with greater resolutions, increasing the need for more
efficient and scalable processing schemes.

To address these limitations, in this chapter we present: (i) a robust tree segmentation method,
which is designed to be applied in closed-canopy deciduous forests, (ii) a vertical canopy
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stratification procedure that separates the canopy into an overstory layer and multiple under-
story canopy layers, (iii) a LiDAR pulse occlusion model in terms of point density to further
investigate the inferior segmentation quality of understory trees, and (iv) a distributed com-
puting approach that addresses the tile boundary problem to efficiently and accurately process
the data at the forest level.

2. Methodology

2.1. Robust tree segmentation

The main inputs of the tree segmentation method [15] are the LiDAR point cloud and the
LiDAR-derived DEM. A pre-processing step bins the point cloud to a horizontal grid with cell
width equals to the average footprint (AFP) of the point cloud (equals to the reciprocal of
square root of the point density) and selects the highest point within each grid cell as a LiDAR
surface point (LSP). Using the DEM, heights above ground are calculated for all LSPs and
ground and lower vegetation (below 4 m) points in the LSPs are removed from further
analysis. Based on the vegetation structure, this yields some gaps with no vegetation in the
remaining LSP dataset, which are utilized later for segmentation. The next pre-processing step
smoothens LSPs to reduce small variation in vegetation elevation within tree crowns while
maintaining important vegetation patterns. We used a Gaussian smoothing filter with stan-
dard deviation of 2 � AFP.

After pre-processing, the segmentation method includes the following routines: (1) locate the
global maximum (GMX) among LSPs, assumed to represent the apex of the tallest tree,
(2) generate vertical profiles originating from the GMX location and stretching outwards,
(3) identify the individual LSP along each profile that represents the crown boundary via
between-tree gap detection and local minimum (LM) inspection, (4) create a convex hull of
boundary points delineating the tree crown, and (5) cluster all LSPs encompassed within the
convex hull as the current tallest tree crown. These routines iterate until all LSPs have been
clustered into tree crowns. Clusters representing crowns with diameter below a minimum
detectable crown width (MDCW), set here as 1.5 m, are considered noise. Figure 1a shows
the flowchart of the tree segmentation method and Figure 1b illustrates an iteration of a tree
clustering.

2.1.1. Profile generation

After identifying the GMX, eight uniformly spaced vertical profiles (every 45�) originating
from it and stretching a maximum horizontal distance of 20 m are generated. The width of
each profile was set to 2 �AFP to ensure a sufficient number of LSPs representing vegetation
characteristics. After the crown boundary is determined for each profile (explained below),
the maximum crown radius (r) is used to determine the chord height (x) between two
maximum crown radii profiles separated by the angular spacing (φ) (Figure 2) using the
following equation:
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x ¼ r 1� cos φ=2ð Þð Þ (1)

If the chord height is greater than the AFP, the angular spacing is decreased to half and the
number of profiles is doubled. The new chord height is calculated again based on the updated
maximum crown radius and the new profile angular spacing. Doubling the number of profiles
iterates until the chord height becomes smaller than the AFP. In this way, the number of
profiles adapts incrementally according to the maximum LiDAR-derived crown radius to
smoothly delineate the tree crowns.

2.1.2. Crown boundary identification

To identify the crown boundary along a profile, inter-tree crown gaps are firstly detected. These
gaps are assumed to correspond to relatively large horizontal distance between two consecutive
LSPs along the profile, which are identified using a statistical outlier detection method. Horizon-
tal distances between consecutive points along the profile follow a Poisson distribution. When
transformed to their square root or to their logarithm, the resulting distribution reasonably

Figure 1. (a) Flowchart of the tree segmentation method used to identify tree locations and delineate tree crowns and (b)
illustration of the process of clustering the tallest tree crown.
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approximates a normal distribution, which is more appropriate for the outlier detection method.
To be conservative, transformed distance values larger than six times the interquartile range from
the third quartile are considered inter-tree gaps. After gaps are detected, only the LSPs between
the GMX and the first gap remain for further analysis and the LSPs located beyond the first gap
are removed from the profile. At this point, the profile is assumed to represent either the crown
of the current tallest tree or the crowns of multiple adjacent trees, growing close together with
overlapping crowns.

In the next step, the remaining LSPs are inspected starting from the GMX to locate an LM,
which is defined as an LSP with elevation lower than its two adjacent LSP neighbors. Once an
LM is located, two windows on both sides of it are considered to determine if the LM
represents the crown boundary. The left window expands from the LM to the GMX. The size
of the right window is estimated based on the steepness of the crown (Sright), which is calcu-
lated as the median of the absolute slopes between consecutive points (i, i + 1) located within a
distance of MDCW to the right of the LM (MDCWright):

Sright ¼ tan �1 median ∣slopei, iþ1ji; iþ 1∈MDCWright

h i� �
(2)

If the LM represents the crown boundary, the LSPs within MDCWright partially represent the
crown of an overlapping and shorter tree with a steepness that is approximated by Sright. We
bound the value of Sright between the steepness of two distinct crown shapes: a sphere-shaped
crown and a narrow cone-shaped crown (two ends of the spectrum). As the height of the
adjacent tree (had) is between the heights of the GMX and the LM point, we approximate it by
the average of the GMX and the LM heights. The steepness of a narrow cone-shaped crown is
expressed as 90� � ε, where ε (set here as 5�) indicates a small deviation from nadir. The cone-
shaped crown radius (crc) can then be calculated as follows:

crc ¼ had � CLc
tan 90

� � ε
� ��Oc (3)

Figure 2. Diagram illustrating the calculation of the chord height (x) formed by two profiles of maximum crown radius (r)
separated by the angular spacing (ϕ).
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profiles adapts incrementally according to the maximum LiDAR-derived crown radius to
smoothly delineate the tree crowns.
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To identify the crown boundary along a profile, inter-tree crown gaps are firstly detected. These
gaps are assumed to correspond to relatively large horizontal distance between two consecutive
LSPs along the profile, which are identified using a statistical outlier detection method. Horizon-
tal distances between consecutive points along the profile follow a Poisson distribution. When
transformed to their square root or to their logarithm, the resulting distribution reasonably
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approximates a normal distribution, which is more appropriate for the outlier detection method.
To be conservative, transformed distance values larger than six times the interquartile range from
the third quartile are considered inter-tree gaps. After gaps are detected, only the LSPs between
the GMX and the first gap remain for further analysis and the LSPs located beyond the first gap
are removed from the profile. At this point, the profile is assumed to represent either the crown
of the current tallest tree or the crowns of multiple adjacent trees, growing close together with
overlapping crowns.

In the next step, the remaining LSPs are inspected starting from the GMX to locate an LM,
which is defined as an LSP with elevation lower than its two adjacent LSP neighbors. Once an
LM is located, two windows on both sides of it are considered to determine if the LM
represents the crown boundary. The left window expands from the LM to the GMX. The size
of the right window is estimated based on the steepness of the crown (Sright), which is calcu-
lated as the median of the absolute slopes between consecutive points (i, i + 1) located within a
distance of MDCW to the right of the LM (MDCWright):

Sright ¼ tan �1 median ∣slopei, iþ1ji; iþ 1∈MDCWright
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(2)

If the LM represents the crown boundary, the LSPs within MDCWright partially represent the
crown of an overlapping and shorter tree with a steepness that is approximated by Sright. We
bound the value of Sright between the steepness of two distinct crown shapes: a sphere-shaped
crown and a narrow cone-shaped crown (two ends of the spectrum). As the height of the
adjacent tree (had) is between the heights of the GMX and the LM point, we approximate it by
the average of the GMX and the LM heights. The steepness of a narrow cone-shaped crown is
expressed as 90� � ε, where ε (set here as 5�) indicates a small deviation from nadir. The cone-
shaped crown radius (crc) can then be calculated as follows:

crc ¼ had � CLc
tan 90

� � ε
� ��Oc (3)

Figure 2. Diagram illustrating the calculation of the chord height (x) formed by two profiles of maximum crown radius (r)
separated by the angular spacing (ϕ).
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where CLc is the ratio of the crown height to the total height and Oc indicates the crown radius
reduction due to the overlap assuming the cone-shaped tree is situated in a dense stand. On
the other hand, the slope of a sphere-shaped crown ranges from 0� to 90� with the expected
value of 32.7� (see [15]). Its crown radius (crs) can be calculated as follows:

crs ¼ had � CLs
2

�Os (4)

where CLs and Os indicate the crown to total height ratio and the crown radius reduction due
to the overlap within a dense stand for the sphere-shaped tree.

The size of the right window (wright) is then calculated by interpolating crc and crs with respect
to Sright, which is bounded between 32.7� and 90� � ε, as follows:

wright ¼ crc
90

� � ε
� �� Sright
90

� � ε
� �� 32:7

�

 !
þ crs 1� 90

� � ε
� �� Sright
90

� � ε
� �� 32:7

�

 !
(5)

Lastly, after determining both windows on both sides of the LM, the median of slopes between
consecutive LSPs of each window is calculated. If the median slope of the left window is
negative (downwards from the apex to the crown boundary) and the median slope of the right
window is positive (upwards from the crown boundary toward the apex of the adjacent tree),
the LM is identified as a boundary point. Otherwise, the current LM is considered to represent
natural height variation within the current tallest tree crown and the next LM farther from the
GMX along the profile is inspected. If no LM along the profile satisfies the crown boundary
criterion, the last LSP is identified as the crown boundary.

The crown height to total height ratio is highly variable among individual trees and species
with values typically varying between 0.4 and 0.8 [16]. The crown ratio of a narrow cone-
shaped tree tends to be larger than that of a sphere-shaped tree. Hence, for demonstrating the
application of our method, here we used 0.8 and 0.7 for CLc and CLs, respectively. Similarly,
crown radius reduction due to overlap is highly variable with a value of even less than one half
for a very dense stand. The radius of a narrow cone-shaped tree is reduced less than that of a
sphere-shaped tree because the crown of a narrow cone-shaped tree is compacted from the
sides. Thus, we used two-thirds for Oc and one-third for Os. Although these values can affect
the size of the right window (Eq. (5)), the sign of the median slope would remain the same as
long as the size is within a reasonable range. Also, considering the multiple profiles generated
for each GMX, the effect of a single potentially mislocated boundary point on the ability to
delineate tree crown is reduced.

Both routines for generation of a sufficient number of profiles and for identifying the crown
boundary of each profile are completely based on the information extracted on-the-fly from the
3D locations of the LSPs. This avoids a priori assumptions of tree crown shapes, dimensions,
and inter-crown spacing, which yields a robust tree segmentation method that can be applied
to different vegetation types.
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2.2. Vertical canopy stratification

The canopy stratification procedure [17] uses all LiDAR vegetation points binned into the
horizontal grid. It then analyzes the height histogram of all points within a circular locale
around each individual grid cell. The locale should include a sufficient number of points for
building an empirical multi-modal distribution but not extend too far to preserve locality. We
fixed the locale radius to 6 � AFP (containing about π � 62 points), which is lower bounded at
1.5 m to prohibit too small locales capturing insufficient spatial structure. To analyze the height
histogram of each locale, the histogram is smoothed using a Gaussian kernel with standard
deviation of 5 m to remove variability pertaining to vertical structure of a single crown. The
salient curves in the smoothed histogram (height ranges throughout which the second deriva-
tive of the smoothed histogram are negative) represent the canopy layers. The midpoint of the
top canopy layer and the canopy layer below it are regarded as the height threshold for
stratifying the top layer in that cell location (Figure 3). Using the height thresholds determined
for all grid cells, the top canopy layer is stratified and removed from the point cloud and the
AFP is updated according to the density of the remainder of the point cloud. The stratification
procedure iterates binning the remainder of the point cloud into a horizontal grid with the cell
size equal to the updated AFP, analyzing locales of individual grid cells, and removing layers
until the point cloud is emptied.

Figure 3. Height histogram of LiDAR points within a locale including over 100 points used for determining the height
threshold for stratifying the top canopy layer in a cell location.
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where CLc is the ratio of the crown height to the total height and Oc indicates the crown radius
reduction due to the overlap assuming the cone-shaped tree is situated in a dense stand. On
the other hand, the slope of a sphere-shaped crown ranges from 0� to 90� with the expected
value of 32.7� (see [15]). Its crown radius (crs) can be calculated as follows:
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where CLs and Os indicate the crown to total height ratio and the crown radius reduction due
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Lastly, after determining both windows on both sides of the LM, the median of slopes between
consecutive LSPs of each window is calculated. If the median slope of the left window is
negative (downwards from the apex to the crown boundary) and the median slope of the right
window is positive (upwards from the crown boundary toward the apex of the adjacent tree),
the LM is identified as a boundary point. Otherwise, the current LM is considered to represent
natural height variation within the current tallest tree crown and the next LM farther from the
GMX along the profile is inspected. If no LM along the profile satisfies the crown boundary
criterion, the last LSP is identified as the crown boundary.

The crown height to total height ratio is highly variable among individual trees and species
with values typically varying between 0.4 and 0.8 [16]. The crown ratio of a narrow cone-
shaped tree tends to be larger than that of a sphere-shaped tree. Hence, for demonstrating the
application of our method, here we used 0.8 and 0.7 for CLc and CLs, respectively. Similarly,
crown radius reduction due to overlap is highly variable with a value of even less than one half
for a very dense stand. The radius of a narrow cone-shaped tree is reduced less than that of a
sphere-shaped tree because the crown of a narrow cone-shaped tree is compacted from the
sides. Thus, we used two-thirds for Oc and one-third for Os. Although these values can affect
the size of the right window (Eq. (5)), the sign of the median slope would remain the same as
long as the size is within a reasonable range. Also, considering the multiple profiles generated
for each GMX, the effect of a single potentially mislocated boundary point on the ability to
delineate tree crown is reduced.

Both routines for generation of a sufficient number of profiles and for identifying the crown
boundary of each profile are completely based on the information extracted on-the-fly from the
3D locations of the LSPs. This avoids a priori assumptions of tree crown shapes, dimensions,
and inter-crown spacing, which yields a robust tree segmentation method that can be applied
to different vegetation types.
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2.2. Vertical canopy stratification

The canopy stratification procedure [17] uses all LiDAR vegetation points binned into the
horizontal grid. It then analyzes the height histogram of all points within a circular locale
around each individual grid cell. The locale should include a sufficient number of points for
building an empirical multi-modal distribution but not extend too far to preserve locality. We
fixed the locale radius to 6 � AFP (containing about π � 62 points), which is lower bounded at
1.5 m to prohibit too small locales capturing insufficient spatial structure. To analyze the height
histogram of each locale, the histogram is smoothed using a Gaussian kernel with standard
deviation of 5 m to remove variability pertaining to vertical structure of a single crown. The
salient curves in the smoothed histogram (height ranges throughout which the second deriva-
tive of the smoothed histogram are negative) represent the canopy layers. The midpoint of the
top canopy layer and the canopy layer below it are regarded as the height threshold for
stratifying the top layer in that cell location (Figure 3). Using the height thresholds determined
for all grid cells, the top canopy layer is stratified and removed from the point cloud and the
AFP is updated according to the density of the remainder of the point cloud. The stratification
procedure iterates binning the remainder of the point cloud into a horizontal grid with the cell
size equal to the updated AFP, analyzing locales of individual grid cells, and removing layers
until the point cloud is emptied.

Figure 3. Height histogram of LiDAR points within a locale including over 100 points used for determining the height
threshold for stratifying the top canopy layer in a cell location.
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As the height thresholds to stratify the top canopy layer are determined using overlapping
locales, the canopy layer smoothly adjusts to incorporate the vertical variability of vegetation
height to minimize under/over-segmenting tree crowns across layers. To improve segmenta-
tion of understory trees within a point cloud representing a multi-story stand, the method
presented in the previous section can be applied independently to each canopy layer (Figure 4).

2.3. Canopy occlusion model

Using the canopy stratification procedure, we model the occlusion effect of higher canopy
layers on the lower layers in terms of point density [18], which is defined as the number of
points divided by the horizontal area covered by them. Point density of the entire LiDAR point
cloud (PCD) is dependent upon different flight and sensor parameters such as flight altitude
and speed, pulse repetition rate, field of view, and swath overlap [12, 19]. These parameters

Figure 4. Illustration of the tree segmentation process in a multi-story stand by stratifying one canopy layer at a time,
removing it from the point cloud, and segmenting crowns within it. A number of understory trees seem to be missed
within the third canopy layer, which is likely due to the much lower point density compared to the first and second layers.
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also affect the fractions of points recorded for over/understory canopy layers, yet point density
of individual layers decreases with proximity to ground.

Assuming all canopy layers cover the same area as the entire point cloud, PCD equals the total
of point densities of constituting canopy layers of the point cloud plus the density of the DEM.
Because the ground is different from a canopy layer in returning LiDAR pulses, necessitating a
different density model for the DEM, we assume an infinite number of canopy layers were
placed instead of the ground to simplify the analysis. The point density of DEM approximately
equals the total of point densities of the canopy layers in place of the ground. Thus, PCD can be
calculated as the sum of point densities of an infinite number of canopy layers (the actual ones
plus those in place of the ground):

PCD ¼ d1 þ d2 þ d3 þ…þ dn n∈N (6)

where dn denotes the point density of the nth top canopy layer and converges to zero as n
increases. To normalize point densities, we divide both sides of Eq. (6) by PCD:

1 ¼ p1 þ p2 þ p3 þ…þ pn n∈N (7)

where pn denotes the fraction of LiDAR points at the nth top layer and can be estimated using a
logarithmic series distribution that has a discrete domain decreasing function supporting
natural numbers [20].

We denote the required PCD of a point cloud for reasonable segmentation of trees forming the
top canopy layer of the point cloud by PCDmin. The required PCD of a point cloud for a
reasonable segmentation of trees forming the nth top canopy layer can then be calculated
using Eq. (7). We hypothetically remove the n � 1 top canopy layers of the point cloud. The
remaining point cloud has a density fraction of 1 � (p1 + p2 + … + pn�1) of the original point
cloud. Given this density fraction should yield a density of PCDmin for the remaining point
cloud, the point density of the original point cloud for reasonable segmentation of trees
forming its nth top canopy layer (pcdmin(n)) by proportionality becomes:

pcdmin nð Þ ¼ PCDmin

1� p1 þ p2 þ…þ pn�1

� � (8)

2.4. Distributed processing of large-scale forest LiDAR data

The distributed approach for tree segmentation [21] uses a master-slave scheme, where the
master is in charge of maintaining the global tile map and coordinating how to process
individual tiles and their boundary data while the slaves perform the actual tree segmentation.
Tile boundary data (solid/striped colored regions in Figure 5) are tree crowns located across
two adjacent tiles (light-colored)—hereafter referred to as edge data—or across three or four
neighboring tiles (dark-colored)—hereafter referred to as corner data. After segmenting a tile,
all segmented crowns that are within a horizontal distance of 2 � AFP from a tile edge form
part of the boundary data. Crowns adjacent to only one edge (solid light-colored) are regarded
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also affect the fractions of points recorded for over/understory canopy layers, yet point density
of individual layers decreases with proximity to ground.

Assuming all canopy layers cover the same area as the entire point cloud, PCD equals the total
of point densities of constituting canopy layers of the point cloud plus the density of the DEM.
Because the ground is different from a canopy layer in returning LiDAR pulses, necessitating a
different density model for the DEM, we assume an infinite number of canopy layers were
placed instead of the ground to simplify the analysis. The point density of DEM approximately
equals the total of point densities of the canopy layers in place of the ground. Thus, PCD can be
calculated as the sum of point densities of an infinite number of canopy layers (the actual ones
plus those in place of the ground):

PCD ¼ d1 þ d2 þ d3 þ…þ dn n∈N (6)

where dn denotes the point density of the nth top canopy layer and converges to zero as n
increases. To normalize point densities, we divide both sides of Eq. (6) by PCD:

1 ¼ p1 þ p2 þ p3 þ…þ pn n∈N (7)

where pn denotes the fraction of LiDAR points at the nth top layer and can be estimated using a
logarithmic series distribution that has a discrete domain decreasing function supporting
natural numbers [20].

We denote the required PCD of a point cloud for reasonable segmentation of trees forming the
top canopy layer of the point cloud by PCDmin. The required PCD of a point cloud for a
reasonable segmentation of trees forming the nth top canopy layer can then be calculated
using Eq. (7). We hypothetically remove the n � 1 top canopy layers of the point cloud. The
remaining point cloud has a density fraction of 1 � (p1 + p2 + … + pn�1) of the original point
cloud. Given this density fraction should yield a density of PCDmin for the remaining point
cloud, the point density of the original point cloud for reasonable segmentation of trees
forming its nth top canopy layer (pcdmin(n)) by proportionality becomes:

pcdmin nð Þ ¼ PCDmin

1� p1 þ p2 þ…þ pn�1

� � (8)

2.4. Distributed processing of large-scale forest LiDAR data

The distributed approach for tree segmentation [21] uses a master-slave scheme, where the
master is in charge of maintaining the global tile map and coordinating how to process
individual tiles and their boundary data while the slaves perform the actual tree segmentation.
Tile boundary data (solid/striped colored regions in Figure 5) are tree crowns located across
two adjacent tiles (light-colored)—hereafter referred to as edge data—or across three or four
neighboring tiles (dark-colored)—hereafter referred to as corner data. After segmenting a tile,
all segmented crowns that are within a horizontal distance of 2 � AFP from a tile edge form
part of the boundary data. Crowns adjacent to only one edge (solid light-colored) are regarded
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as part of the associated edge data and those adjacent to exactly two edges (solid dark-colored)
are regarded as part of the associated corner data.

Figure 6 shows the flowcharts of the master and the slave processes, where it is assumed that
all processes can independently input tiles data and output results. Such an assumption can be
fulfilled by using a supercomputing with a unified file system, or by maintaining the tiles and
the results on a specialized distributed spatial data organization/retrieval system [22, 23]. The
master initializes the work by loading the tile map and assigning each slave to process a
unique tile via a process tile (PT) message. Upon receiving a PT message, a slave loads and
segments the tile and identifies the boundary data inside the tile including eight disjoint sets
(four edges and four corners). The slave outputs the segmented non-boundary trees, notifies
the master via a tile complete (TC) message conveying the boundary sets, and waits for a new
assignment. The master then updates the tile map and examines all eight boundary sets it
received from the slave to determine if any of the associated edge/corner data are ready to be
unified. Edge data are ready when both tiles sharing the edge are segmented and corner data
are ready when all four tiles sharing the corner are segmented. The master then unifies all
edge/corner data that are ready and re-assigns the waiting slave to re-segment the unified
boundary data, which is conveyed by a process boundary (PB) message. The slave process,
upon receiving the PB message, segments the boundary data, outputs the result trees, and
notifies the master via a boundary complete (BC) message. The master then re-assigns a new
tile via a PTmessage to the slave. If the master cannot locate any ready boundary data when it
receives the TC message, it proceeds with re-assigning the waiting slave to segment a new tile

Figure 5. A schematic of a tile with the two types of boundary data. The solid-colored tree crown pieces inside the tile
should be unified with the corresponding stripe-colored parts outside in a distributed computing environment.
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via a PT message. If all tiles are segmented, the master terminates the slave process by sending
a final (FIN) message. The master process continues until all slaves are finalized, implying that
all tiles and their boundary data were processed.

In the presented distributed approach, once all tiles sharing each specific edge or corner are
segmented, the edge/corner data are assigned to be processed by the slave that completed the
last tile. Assuming the master remains responsive, the slaves keep working all the time
resulting in an efficient distributed processing scheme (see [21] for a theoretical analysis of the
runtime and scalability).

2.5. Study site and LiDAR campaign

The study site is the University of Kentucky’s Robinson Forest (RF, Lat. 37.4611, Long.
�83.1555) located in the rugged eastern section of the Cumberland Plateau region of south-
eastern Kentucky in Breathitt, Perry, and Knott counties (Figure 7a). RF features a variable
dissected topography with moderately steep slopes ranging from 10 to over 100% facing
predominately northwest to southeast, and with elevations ranging from 252 to 503 m above
sea level [24]. Vegetation consists of a diverse contiguous mixed mesophytic forest made up of

Figure 6. Flowcharts of the master and the slave. The master is responsible for maintaining the tile map globally and
coordinating the slaves while a slave segments tiles and boundary data as directed by the master.
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as part of the associated edge data and those adjacent to exactly two edges (solid dark-colored)
are regarded as part of the associated corner data.

Figure 6 shows the flowcharts of the master and the slave processes, where it is assumed that
all processes can independently input tiles data and output results. Such an assumption can be
fulfilled by using a supercomputing with a unified file system, or by maintaining the tiles and
the results on a specialized distributed spatial data organization/retrieval system [22, 23]. The
master initializes the work by loading the tile map and assigning each slave to process a
unique tile via a process tile (PT) message. Upon receiving a PT message, a slave loads and
segments the tile and identifies the boundary data inside the tile including eight disjoint sets
(four edges and four corners). The slave outputs the segmented non-boundary trees, notifies
the master via a tile complete (TC) message conveying the boundary sets, and waits for a new
assignment. The master then updates the tile map and examines all eight boundary sets it
received from the slave to determine if any of the associated edge/corner data are ready to be
unified. Edge data are ready when both tiles sharing the edge are segmented and corner data
are ready when all four tiles sharing the corner are segmented. The master then unifies all
edge/corner data that are ready and re-assigns the waiting slave to re-segment the unified
boundary data, which is conveyed by a process boundary (PB) message. The slave process,
upon receiving the PB message, segments the boundary data, outputs the result trees, and
notifies the master via a boundary complete (BC) message. The master then re-assigns a new
tile via a PTmessage to the slave. If the master cannot locate any ready boundary data when it
receives the TC message, it proceeds with re-assigning the waiting slave to segment a new tile

Figure 5. A schematic of a tile with the two types of boundary data. The solid-colored tree crown pieces inside the tile
should be unified with the corresponding stripe-colored parts outside in a distributed computing environment.
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approximately 80 tree species. Overstory species include northern red oak (Quercus rubra),
white oak (Quercus alba), yellow-poplar (Liriodendron tulipifera), American beech (Fagus
grandifolia), eastern hemlock (Tsuga canadensis), and sugar maple (Acer saccharum). Understory
species include eastern redbud (Cercis canadensis), flowering dogwood (Cornus florida), spice-
bush (Lindera benzoin), pawpaw (Asimina triloba), umbrella magnolia (Magnolia tripetala), and
bigleaf magnolia (Magnolia macrophylla) [24, 25]. Average canopy cover of RF is about 93%
and it includes small opening scattered throughout. Most areas have a canopy cover of greater
than 97% and recently harvested areas have an average cover as low as 63%. Because of being
extensively logged in the 1920s, RF is considered second growth forest with the trees 80–100
years old, and is now protected from commercial logging and mining.

The LiDAR acquisition campaign over RF was performed in the summer of 2013 during leaf-
on season (May 28–30) using a Leica ALS60 sensor, which was set at 40� field of view and 200
KHz pulse repetition rate. The sensor was flown at the average altitude of 214 m above ground
at the speed of 105 knots with 50% swath overlap. Up to four returns were captured per pulse.
Using the 95% middle portion of each swath, the resulting LiDAR dataset given the swath
overlap has an average density of 50 pt/m2. The provider processed the raw LiDAR dataset
using the TerraScan software to classify LiDAR points into ground and non-ground points.
The ground points were then used to create a 1-m resolution DEM using the natural neighbor
as the fill void method and the average as the interpolation method. The LiDAR dataset was
delivered in 801 square (304.8 m side ~9.3 ha area) tiles (Figure 7b), each containing about
5 million LiDAR points on average and occupying about 400 MB of disk space.

2.6. Evaluation

2.6.1. Field data

Throughout the entire RF, 270 regularly distributed circular plots of 0.04 ha in size spaced
every 384 m were surveyed during the summer of 2013. Plot centers were georeferenced with
5 m accuracy. Within each plot, DBH (cm), tree height (m), species, crown class (dominant,
co-dominant, intermediate, overtopped), tree status (live, dead), and stem class (single,

Figure 7. (a) Terrain relief map of the University of Kentucky Robinson Forest and its general location within Kentucky,
USA and (b) LiDAR tile map of Robinson Forest consisting of 801 9.3-ha tiles.
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multiple) were recorded for all trees with DBH > 12.5 cm. In addition, horizontal distance and
azimuth from plot center to the face of each tree at breast height were collected to create a stem
map. Site variables including slope, aspect, and slope position were also recorded for each plot.
Table 1 shows a summary of the plot-level data. LiDAR data corresponding to each plot
include a 4.7-m buffer to capture complete crowns of border trees.

2.6.2. Tree segmentation evaluation

To evaluate the performance of the tree segmentation method, a score to each pair of LiDAR-
derived tree location, assumed to be the apex of the segmented crown, and stem location
measured in the field is assigned. The score is based on the tree height difference, which should
be less than 30%, and the leaning angle between the crown apex and the stem location, which
should also be less than 15� from nadir. The set of pairs with the maximum total score where
each crown or stem location appears not more than once is selected using the Hungarian
assignment algorithm and is regarded as the matched trees [15]. The number of matched trees
(MT) is an indication of the tree segmentation quality. The number of unmatched stem map
locations (omission errors—OE) and unmatched LiDAR-derived crown apexes that are not in
the plot buffer area (commission errors—CE) indicate under- and over-segmentation, respec-
tively. The segmentation accuracy is calculated in terms of recall (Re—measure of tree detec-
tion rate), precision (Pr—measure of correctness of detected trees), and F-score (F—combined
measure) using the following equations [26]:

Re ¼ MT
MT þOE

(9)

Pr ¼ MT
MT þ CE

(10)

Plot-level metric Min Max Avg. Total Percent of total

Slope (%) 0 93 50

Aspect 2 360 179

Tree count 2 41 14.7 3971

Dominant 0 3 0.5 130 3.3

Co-dominant 0 10 3.5 954 24.0

Intermediate 0 34 5.5 1481 37.3

Overtopped 0 19 4.3 1152 29.0

Dead 0 7 0.9 254 6.4

Species count 1 12 6.0 43

Shannon diversity index 0.0 2.25 1.50

Average tree height (m) 13.9 28.8 19.5

Standard deviation of tree heights (m) 1.2 12.4 5.5

Table 1. Summary of plot-level data collected from the 270 plots in Robinson Forest.
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the plot buffer area (commission errors—CE) indicate under- and over-segmentation, respec-
tively. The segmentation accuracy is calculated in terms of recall (Re—measure of tree detec-
tion rate), precision (Pr—measure of correctness of detected trees), and F-score (F—combined
measure) using the following equations [26]:

Re ¼ MT
MT þOE

(9)

Pr ¼ MT
MT þ CE

(10)

Plot-level metric Min Max Avg. Total Percent of total

Slope (%) 0 93 50

Aspect 2 360 179

Tree count 2 41 14.7 3971

Dominant 0 3 0.5 130 3.3

Co-dominant 0 10 3.5 954 24.0

Intermediate 0 34 5.5 1481 37.3

Overtopped 0 19 4.3 1152 29.0

Dead 0 7 0.9 254 6.4

Species count 1 12 6.0 43

Shannon diversity index 0.0 2.25 1.50

Average tree height (m) 13.9 28.8 19.5

Standard deviation of tree heights (m) 1.2 12.4 5.5

Table 1. Summary of plot-level data collected from the 270 plots in Robinson Forest.

Remote Sensing of Forests using Discrete Return Airborne LiDAR
http://dx.doi.org/10.5772/intechopen.71777

53



F ¼ 2� Re� Pr
Reþ Pr

(11)

3. Results and discussion

3.1. Tree segmentation evaluation

On average for the 270 plots in RF, recall of the tree segmentation method was 60%, precision
was 91%, and F-score was 70% (Figure 8). Recall values ranged from 16 to 100% and
precision values ranged from 36 to 100%. In dense plots with a relatively large number of
understory trees, several trees were missed resulting in relatively low recall values (Figure 9).
However, more than 90% of overstory trees were detected in those plots. As expected, the
overall three segmentation accuracy metrics were higher for overstory trees compared with
understory trees (Figure 8). Recall, precision, and F-score for overstory trees were 91, 85, and
86%, respectively, while for understory trees they were 48, 97, and 62%. When considering
all crown classes, the tree segmentation method was able to detect 95% of dominant, 90% of
co-dominant, 62% of intermediate, and 30% of overtopped trees in the 270 plots. In addition,
the method was able to detect 20% of dead trees.

By stratifying the canopy to layers and independently segmenting each layer, the average
precisions over the 270 plots decreased for all crown classes while average recalls increased
(Figures 8 and 9). When comparing performance measures with and without stratification
using two-tailed paired T-tests, all metrics except F-score for overstory trees showed significant
(P < .0001) changes, which is also evidenced by the non-overlapping 95% confidence intervals
in Figure 8. Recall and precision for understory trees showed the most remarkable changes: an
increase from 46 to 68% (MSE = 10.04) and a decrease from 99 to 84% (MSE = 3.97), respec-
tively. Overall, vertical stratification of canopy improved the F-scores for understory (from 61
to 73%, MSE = 1.70) as well as for all trees (from 70 to 77%, MSE = 0.66), while it barely affected

Figure 8. Average segmentation accuracies over 270 sample plots grouped by crown class.
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the F-score for overstory trees. When considering all crown classes, detection rate for dominant,
co-dominant, intermediate, overtopped, and dead trees was 96, 93, 72, 53, and 30%, respectively.
The improvements gained as a result of canopy stratification are mainly due to a strong increase
in detection rate and a moderate decrease in correctness of the detected understory trees. This
observation indicates an increased sensitivity to segment understory trees while not affecting the
segmentation of overstory trees.

3.2. Stratified canopy layers

For most of the 270 plots, the canopy stratification procedure identified 3 (68.2%) or 4 (24.1%)
canopy layers with an average number of canopy layers of 3.16 per plot. Any layer entirely
located below 4 m was excluded because it likely represents ground level vegetation, although
any of the remaining layers may extend below 4 m and even touch the ground. Starting height
and thickness of a canopy layer are defined as the medians over all grid cells used to stratify
the layer (Figure 3). The average starting height of a canopy layer ranged from 0.3 to 18.2 m
and the average thickness of a layer ranged between 6.1 and 8.8 m. Also, the average point
density ranged between 0.44 and 42.08 pt/m2 (Table 2). The average starting height, thickness,
and point density of the entire canopy (all layers aggregated) was 1.4 m, 24.8 m, and 47.5 pt/m2,
respectively. The average point density of the entire canopy agrees with the average point
density of the initial LiDAR dataset of 50 pt/m2 given that ground and ground level vegetation
returns were removed.

Figure 9. Aerial view of segmented trees within a dense plot that are matched with the ground referenced trunk locations
(colors are for the purpose of distinguishing tree crowns and do not represent any semantic). Left panel shows tree
segmentation result of the top canopy layer in which several understory trees were missed. Right panel shows tree
segmentation result of the next canopy layers where the missed understory trees were detected, though a commission
error at the understory level was introduced.
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Reþ Pr

(11)
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Thickness and point density generally decrease with lower canopy layers (Table 2). Specifi-
cally, the third and fourth top canopy layers, where the majority of understory trees are found,
have an average density lower than 1 pt/m2. Such low density is far less than the reported
optimal point density in the literature of ~4 pt/m2, where accuracies for segmenting individual
trees plateau [11, 12]. This low density of understory canopy layers is the main reason for
inferior tree segmentation accuracy of understory trees compared with overstory trees. As
reported by Kükenbrink et al. [10], at least 25% of canopy volume remain uncovered even in
small-footprint airborne LiDAR acquisition campaigns, which concurs with suboptimal point
density of lower canopy layers for tree segmentation here.

3.3. LiDAR occlusion model

In order to estimate pn in Eq. (7), we used the canopy stratification result of the 270 plot point
clouds (Table 2). We recorded a sequence of five pn values (1 ≤ n ≤ 5, zeros for missing layers)
for each point cloud. We then fitted a logarithmic series distribution to all (n, pn) pairs (N = 852,
MSE = 0.0025—Figure 10):

pn ¼ 0:266n

�ln 1� 0:266ð Þ � n
n∈N (12)

As mentioned, the reported optimal PCD for a reasonable segmentation of trees is about 4 pt/m2

[11, 12], which is the value we adopt for PCDmin. Using Eq. (8) where pn is calculated from
Eq. (12), the minimum PCD required to reasonably segment trees in as deep as the third canopy
layers would be 169.57 pt/m2. Similarly, if we require having a reasonable segmentation for as
deep as only two canopy layers, the minimum PCD becomes 30.1 pt/m2.

3.4. Distributed processing

We implemented the distributed segmentation approach without canopy stratification using
the message passing interface (MPI) and ran it on the University of Kentucky Lipscomb cluster.
Using 192 processing cores, the distributed approach segmented a grand total of 1,994,970
trees in 2.5 hours. This time is actually ~167 times shorter than using only a single computer

Canopy layer Plots (%)1 Starting height (m) Thickness (m) Point density (pt/m2)

Avg. S.D. Avg. S.D. Avg. S.D.

1 0.00 18.16 4.53 8.18 0.38 42.08 17.42

2 7.78 4.23 2.58 8.76 0.99 5.02 3.23

3 68.15 0.47 1.03 6.44 1.35 0.84 0.79

4 24.07 0.34 1.39 6.14 1.82 0.44 0.80

Aggregate 100.00 1.38 1.41 24.85 4.26 47.45 20.13

1Plots having as many number of canopy layers.

Table 2. Summary statistics of the canopy layers stripped over the 270 sample plots.
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assuming the computer has enough memory to load the entire LiDAR dataset (see [21] for a
detailed analysis of the runtime). Implementation of the approach to run under the Hadoop
MapReduce infrastructure [27] is also possible. Loading and segmentation of an individual tile is
the map phase, where the non-boundary trees is output to the file system and each of the eight
boundary data is assigned a unique key for the reduce phase. The unique key of each specific
edge/corner data must be the same across all the map tasks that share the specific edge/corner.
The reduce phase unifies all of the data it is given (edge/corner data portions having an identical
unique key), re-segment the data, and output the result to the file system. There is no explicitly
defined master process because the map-reduce infrastructure is responsible for coordination
between the map and the reduce tasks, as well as scalability and fault tolerance.

As the distributed processing approach uses the tree segmentation method as a building block
and does not require any knowledge on how the method functions, it may straightforwardly
be used to adopt any other single-processor object identification/segmentation algorithm to
scale up processing arbitrarily big spatial and geospatial datasets, such as remotely sensed
buildings, cars, planets, etc. The only caveat is that the objects may not be greater than the tile
size (they may not touch more than two adjacent edges of a tile). Also, generalization of the
approach to process 3D spatial data in a similar manner is possible. Instead of tiles that are
representing surfaces, cubes representing volumes form the data units for 3D analysis. Bound-
ary data in this case would be surface (shared between two cubes), edge (shared among four
cubes), and corner (shared among eight cubes).

Figure 10. Logarithmic series distribution estimating observed fractions of LiDAR points recorded for different canopy
layers. The distribution has a discrete domain supporting natural numbers.
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representing surfaces, cubes representing volumes form the data units for 3D analysis. Bound-
ary data in this case would be surface (shared between two cubes), edge (shared among four
cubes), and corner (shared among eight cubes).

Figure 10. Logarithmic series distribution estimating observed fractions of LiDAR points recorded for different canopy
layers. The distribution has a discrete domain supporting natural numbers.
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3.5. Global parameters of Robinson Forest

Although in theory tile size does not affect the segmentation result of the distributed approach, a
slight bias that was linearly correlated with the total length of the shared tile edges was intro-
duced in practice. To quantify the bias, we created five 1.5 � 1.5 km square blocks of LiDAR
point clouds (including ~3% of the entire RF data per block) and segmented each block using the
tree segmentation method run on a single computer. We then partitioned each block into grids of
2 � 2, 3 � 3, …, 15 � 15 sub-blocks and segmented the partitioned blocks using the distributed
approach. By comparing the number of trees segmented for different partitioning patterns, we
discovered that an average of 96 additional trees (false positives) were segmented per 1 km of
shared sub-block edge length (see [21]). Given the total length of the shared tile edges of the
entire RF data is 446.23 km (Figure 7b), the estimated number of false positives became 42,833
(2.15% of the grand total number of trees). Subtracting these false positives resulted in a grand
total of 1,952,137 segmented trees.

Due to the imperfectness of the segmentation method within each tile, a portion of the grand
total number of segmented trees was over-segmented and a portion of existing trees in the
forest was undetected. To account for the over-segmentations/undetected trees, we used the
accuracy results of the segmentation method on the 270 plots of RF (Figure 8). The detailed
accuracy result included the number of detected trees (bearing over-segmentations) and the
number of existing trees (bearing undetected trees) by crown classes (dominant, co-dominant,
intermediate, and overtopped). Within each of the 270 plots, we calculated by crown class a
fraction of the existing trees in that crown class divided by the grand total (all crown classes) of
detected trees. Table 3 shows the mean and 95% confidence interval bounds of the fractions
across the 270 plots. It also shows the adjusted estimates of number of existing trees, which
were calculated by multiplying the grand total number of detected trees using the distributed
approach to the corresponding fractions. Considering a 95% confidence interval, the total
number of existing trees in the 7441.5-ha forested area is estimated to be 2,495,170 (�5.71%),
which results in an average of 335.30 trees per ha.

Crown class Fraction of existing to grand total detected Estimated number of existing trees

Mean 95TCB (%)1 Entire forest Per ha

Dominant 0.0785 �28.80 153,178 20.59

Co-dominant 0.3069 �7.84 599,106 80.50

Intermediate 0.5376 �8.18 1,049,446 141.32

Overtopped 0.2928 �10.94 571,522 76.80

Dead 0.0625 �18.63 121,917 16.38

All 1.2782 �5.71 2,495,170 335.30

195% T-confidence bounds (DF = 269).

Table 3. Estimated number of trees categorized based on tree crown class.
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For verification purposes, we compared the LiDAR-derived tree number estimates (Table 3)
with equivalent estimates based on field measurements of the 270 plots from RF (Figure 11).
The estimates for total number of trees per ha differ by about 3% (~342 LiDAR-derived
compared with ~326 field estimated) and the estimates of number of dominant trees per ha
differ by about 30% (~21 LiDAR-derived compared with ~15 field estimated). However, the
large overlaps between the 95% confidence interval errors indicate no statistically significant
differences. The height distribution of all segmented trees in RF shows a bimodal pattern
(Figure 12), which can be attributed to the multi-story structure. A normal mixture model to
the bimodal distribution was fitted, where the larger peak (associated with overstory trees) has
a mean height of 26.9 m and a standard deviation of 6.6 m, and the smaller peak (associated
with understory trees) has a mean height of 9.4 m and a standard deviation of 2.6 m. We
compared the LiDAR-derived mean tree height estimates with those obtained from the 270
sample plots (371 overstory and 826 understory trees, Table 1). The sample mean height of
overstory trees was 25.4 m with a standard deviation of 5.3 m, and the sample mean height of
understory trees was 17.0 m with a standard deviation of 4.1 m. Considering that the LiDAR-
detected tree heights are in fact biased by presence of falsely detected trees and absence of
undetected trees, the field estimates are close to the LiDAR-detected estimates for overstory
trees. However, field estimates for understory trees are remarkably larger than the LiDAR-
detected estimates. The reason is likely that the only information used to fit the normal mixture
model was the heights of the trees while height may not be sufficient for classification, that is, a
moderately tall tree can be classified as an understory tree if it is surrounded by taller trees
while the mixture model always classifies it as overstory according to its height, and vice versa.

Figure 11. Estimated number of trees using LiDAR compared to field-collected along with the 95% confidence intervals.
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4. Conclusions

Airborne LiDAR point clouds covering forested areas contain a wealth of information about
the horizontal and vertical structure of vegetation. This information can be used to segment
individual trees and subsequently retrieve their morphological attributes. However, existing
tree segmentation methods are forest type specific and are majorly focused on conifer stands
and/or forests with open canopy. We presented a robust tree segmentation method that does
not require prior assumptions about the crown shapes/sizes nor tree spacing. Applying the
proposed approach to RF, a deciduous natural forest with complex vegetation and stand
structures, we observed overall segmentation accuracies of ~87% for overstory trees and ~61%
for understory trees. We also presented a canopy stratification procedure to separate the point
cloud to an overstory and multiple understory canopy layers. We applied the tree segmenta-
tion method independently to each canopy layer, which improved the overall segmentation
accuracy of understory trees from ~61 to ~73%. Using the canopy stratification, we developed a
LiDAR pulse occlusion model in terms of point density and estimated that a density of about
170 pt/m2 is required to segment understory trees found as deep as the third canopy layer as
accurately as overstory trees. Lastly, we presented a distributed computing approach to scale
up tree segmentation of the entire RF, which segmented about two million trees in 2.5 hours
using 192 cores. The approach enabled locating individual tree and retrieving the point cloud
segments representing tree crowns for large forested areas in a timely manner.

Figure 12. Height distribution of nearly two million trees segmented in Robinson Forest superimposed with estimated
normal mixture model.
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The presented work in this chapter provides methods for processing discrete return LiDAR
point clouds of complex and large forested areas. Together with the advancements of the
LiDAR sensor technology and platforms enabling acquisition of denser point clouds, accurate
and remote quantification of forest resources at the individual tree level is expected to become
feasible in near future, which in turn facilitates accurate monitoring, management, and conser-
vation activities of these resources.
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Abstract

Global navigation satellite system-reflectometry (GNSS-R) as an efficient tool for remote
sensing has gained increasing interests in the last two decades, due to its unique charac-
teristics. It uses GNSS signals as sources of opportunity, providing precise, continuous, all-
weather, and 24 hours’ detections, which play a key role in many land applications. The
fundamental theoretical part of GNSS-R technique is examined at first. Then, GNSS-R
methodologies applied in the soil moisture content, vegetation biomass sensing, and
altimetry applications are also detailed. One retrieval method uses only RH (right-hand)
reflected data. Another retrieval method for soil moisture content (SMC) aimed to cali-
brate the measurement by using water reflections, based on the bistatic equations with LH
(left-hand) reflected and RH direct signals. The other method for SMC retrieval is related
to the polarimetric ratio (PR), the ratio of LH/RH reflected signals can reveal the fluctua-
tions of the SMC. Another vital parameter vegetation biomass was observed by using the
variation of reflectivity of the LH and RH reflected components. Finally, the C/A code
method was used for exploring the possibility to the altimetry estimation. The features of
GNSS-R technique made it a promising remote sensing technique in hydrology, climatol-
ogy carbon cycles, and other potential applications.

Keywords: GNSS-reflectometry (GNSS-R), soil moisture content, vegetation biomass,
altimetry, polarimetric measurement

1. Introduction to GNSS

Global navigation satellite systems (GNSSs) are satellite constellations orbiting the Earth to
provide continuous positioning and timing information for users on the globe. It mainly includes
the United States’ NAVSTAR global positioning system (GPS), European Union’s Galileo,
Russia’s Glonass, China’s BeiDou, and Japan’s Quasi-Zenith satellite system (QZSS). For now,
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GNSS-R technique made it a promising remote sensing technique in hydrology, climatol-
ogy carbon cycles, and other potential applications.
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such systems are used not only for navigation positioning but also for object detection in various
disciplines, such as archeology (a 3-dimension map is generated using the combined signals of
GPS, Glonass, and QZSS to detect each artifact), air traffic (the surveillance-broadcast system of
air traffic control obtains aircraft positions by using GNSS signals), weather (forecast can be
made through the atmospheric bending measurement of GNSS satellite signals), and others.
The huge potential of GNSSs has led international governments and researchers made efforts
on it [1]. Up to now, the United States’ NAVSTAR GPS and the Russian GLONASS have begun
providing global coverage for a long time. In December 2016, the European’s Galileo formally
announced to start its initial service to provide its full operational capability. China is in the
process of expanding its regional BeiDou Navigation Satellite System into global compass
navigation system in the very near 2020. India and Japan are also in the process of developing
their regional navigation systems [2].

1.1. GPS system

GPS is the United States’ global positioning system (GPS) developed since 1973. The number of
satellites, the positions, and the relative inclinations was optimized to ensure an adequate
global coverage. In 1978, the first operational prototype satellite was launched. In 1993, the
initial capability and the full GPS system were declared [3]. As a universal positioning system,
GPS provides an accurate, continuous, three-dimensional position and velocity information to
the user with the appropriate receiver on Earth. Now, it is the most used navigation system in
the world and fully operative both for military purpose and civilian aims [4].

The GPS signals are transmitted with right-hand circular polarization (RHCP) so that the
ionosphere attenuation does not affect the signal reception. Each GPS satellite transmits

Figure 1. GNSS frequency bands.
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microwave carrier signals at three bands: L1 (1575.42 MHz) carries the navigation message
and the standard positioning services (SPS), L2 (1227.6 MHz) is used to measure the iono-
sphere delay by precise positioning services (PPS), and L5 (1176.45 MHz) was introduced to
increase the accuracy for safety-of-life transportation applications [5]. The frequency plan
and the band of GPS are shown in Figure 1, together with the information of Galileo and
Glonass [6].

2. Theory of GNSS-reflectometry

GNSS-reflectometry is usually called for short as GNSS-R. Its main principle is to receive and
further extract information from the GNSS signals which were reflected off the Earth surface. It
works as a bistatic radar, in which the transmitter and the receiver are separated by a signifi-
cant distance, comparable to the expected distance to the target. The concept can be expanded
that the receiver receives multiple signals simultaneously from different transmitters, in which
case, it is multistatic radar. Comparing with the other existing remote sensing tools, GNSS-R
has following advantages: 1. The additional transmitter is not needed; 2. Many signal sources
can be chosen, including GPS, Galileo, GLONASS, and BeiDou/Compass; 3. Use spread-
spectrum communication technology for receivers to receive weak signals; 4. It provides a
wide range of applications, for example, soil moisture retrieval, vegetation biomass detection,
altimetry estimation, sea wind and wave height, and so on [1, 7–13].

2.1. GNSS-R geometry

In the case of GNSS-reflectometry, the transmitter and receiver are in the different locations,
and the scattered signals can be originated from a variety of geometries, given a target that
scatters sufficient power to the direction of the receiver. For the land surface, the typical bistatic
geometry consists of a transmitter and receiver above the surface, with scattering taking place
mainly from the region of the surface surrounding a specular reflection point. The specific
geometry is depicted in Figure 2.

Figure 2 depicts signals transmitted from a GPS satellite (about 20,200 km height), scattered
from the land surface along the specular direction, and received by a receiver equipped on an
aircraft. The direct signal is received by the zenith antenna for processing positioning informa-
tion or system calibration, and the reflected signal is received by the nadir antenna for
remotely sensing the land surface. The incident RHCP GPS signal is predominantly left-hand
circular polarization (LHCP) after specular scattering. The specular point is defined as a
reflection point characterized that the incident and reflected angles are equal (Snell’s Law).
The strong coherent scattering component concentrated about a narrow area called the first
Fresnel zone around the specular point. The size of this active region is usually considered to
be the first Fresnel zone for which the differential phase change across the surface is constrained
to λ/2 radians, where λ is the signal wavelength [14]. Surface roughness causes scattering from a
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GNSS-reflectometry is usually called for short as GNSS-R. Its main principle is to receive and
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works as a bistatic radar, in which the transmitter and the receiver are separated by a signifi-
cant distance, comparable to the expected distance to the target. The concept can be expanded
that the receiver receives multiple signals simultaneously from different transmitters, in which
case, it is multistatic radar. Comparing with the other existing remote sensing tools, GNSS-R
has following advantages: 1. The additional transmitter is not needed; 2. Many signal sources
can be chosen, including GPS, Galileo, GLONASS, and BeiDou/Compass; 3. Use spread-
spectrum communication technology for receivers to receive weak signals; 4. It provides a
wide range of applications, for example, soil moisture retrieval, vegetation biomass detection,
altimetry estimation, sea wind and wave height, and so on [1, 7–13].

2.1. GNSS-R geometry

In the case of GNSS-reflectometry, the transmitter and receiver are in the different locations,
and the scattered signals can be originated from a variety of geometries, given a target that
scatters sufficient power to the direction of the receiver. For the land surface, the typical bistatic
geometry consists of a transmitter and receiver above the surface, with scattering taking place
mainly from the region of the surface surrounding a specular reflection point. The specific
geometry is depicted in Figure 2.

Figure 2 depicts signals transmitted from a GPS satellite (about 20,200 km height), scattered
from the land surface along the specular direction, and received by a receiver equipped on an
aircraft. The direct signal is received by the zenith antenna for processing positioning informa-
tion or system calibration, and the reflected signal is received by the nadir antenna for
remotely sensing the land surface. The incident RHCP GPS signal is predominantly left-hand
circular polarization (LHCP) after specular scattering. The specular point is defined as a
reflection point characterized that the incident and reflected angles are equal (Snell’s Law).
The strong coherent scattering component concentrated about a narrow area called the first
Fresnel zone around the specular point. The size of this active region is usually considered to
be the first Fresnel zone for which the differential phase change across the surface is constrained
to λ/2 radians, where λ is the signal wavelength [14]. Surface roughness causes scattering from a
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glistening zone around the specular reflection point. The scattering component, also called
incoherent or diffuse component, consists of power scattered randomly in all directions, with its
magnitude smaller than coherent component.

When the distance from the surface to the transmitter is much larger than the distance from the
surface to the receiver (or vice versa), the semi-major axis a and semi-minor axis b of the first
Fresnel ellipse are dependent on the incidence angle θ, and minimum height of the transmitter
or receiver H was given by [15]:

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δH cos ϑð Þp

cos θð Þð Þ2 , b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δH cos θð Þp
cos θð Þ , (1)

where δ is the phase change measured in wavelengths (λ=2 for the first Fresnel zone) and θ is
the incident angle.

As the signal scattering, the time delay and the frequency of the received signals change. The
narrowly spaced iso-range ellipses (lines of equal delay across the surface) and iso-Doppler
hyperbolas (lines of equal Doppler frequency across the surface) can be mapped across the
Earth as shown in Figure 3. At each point in the glistening zone, the path delay and reflection
angles are different. This results in a range of different path delays (between the transmitter
and receiver) and Doppler frequencies at the receiver. Lines of constant delay or iso-range lines
can be drawn as ellipses centered at the point of specular reflection. The lines with the same
radial velocity are the cuts of the cone surfaces with the earth plane, i.e., parabola. At fixed
radio frequency (RF), the radial velocity is proportional to the Doppler frequency. Therefore,
the cone can also be called Doppler cone, and the cone cuts with the earth surface called iso-
Doppler lines [16, 17].

In Figure 3, the red ellipses represent the first Fresnel zone. The uneven ring belts indicate
equal-code delay lines (yellow lines). The black curves are the Equal-Doppler lines. GPS
satellites are far from the Earth and thus the Fresnel belts are small. The surface property can
be extracted through analyzing the reflected signal and the direct one.

Figure 2. GNSS-R as a bistatic radar geometry.
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2.2. Bistatic radar equations

In general, the total scatter power prpq measured by a bistatic radar can be expressed as [18]:

prpq ¼ pcpq þ pipq, (2)

where subscripts q and p denote the incident and scattered polarizations. pcpq and pipq are the

coherent power and incoherent power, respectively.

2.2.1. Coherent component from smooth surface

For the coherent component in the case of like polarized GPS bistatic radar, the bistatic
equation can be written as [18],

Pc
lr ¼

Pt
rG

t

4π Rst þ Rrsð Þ2
Grλ2

4π
Γlr: (3)

Subscript lr represents the scattering when a satellite incident signal (right-hand polarized) is
scattered by the surface and inverts the polarization to the left-hand, Pt

r is the transmitted
RHCP signal power, Gt is the transmitter antenna gain, Gr is the receiver antenna gain, and λ is
the wavelength (19.042 cm for GPS L1 signal). Rrs is the distance between the receiver and the
specular point, Rst is the distance between the satellite and the specular point, and Γlr is the
power reflectivity of the reflecting surface.

Figure 3. Iso range and iso-Doppler lines across the Earth’s surface around the specular reflection point.
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2.2.2. Coherent component from rough surface

As the smooth surface begins to transition to a rough surface, the coherent component of the
reflected power is decreased. Therefore, the term Γlr in Eq. (3) decreased from that of the
smooth surface case due to increasing roughness, which was described by [14].

Γlr θð Þ ¼ Rlr θð Þj j2χ zð Þ, (4)

where Rlr is the Fresnel reflection coefficient and χ zð Þ is the probability density function of the
surface height z.

The Fresnel reflection coefficient Rlr can be expressed as linearly polarization modes [7]:

Rlr ¼ Rrl¼
1
2

Rvv � Rhhð Þ, (5)

Rrr ¼ Rll¼
1
2

Rvv þ Rhhð Þ, (6)

where Rvv and Rhh are the Fresnel coefficients for horizontal and vertical polarization [19]:

Rhh θð Þ ¼ cosθ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εr � sin 2θ

p

cosθþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εr � sin 2θ

p , (7)

Rvv θð Þ ¼ εr cosθ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εr � sin 2θ

p

εr cosθþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εr � sin 2θ

p , (8)

εr ¼ ε=ε0 � j60λσ, (9)

where θ is the incident angle, in which ε is the dielectric constant of the surface, ε0 is the
dielectric constant of the air, λ is the wavelength of the signal, and σ is the electric conductivity.

Most of the natural surface can be modeled by a Gaussian height distribution. Thus, the
reflectivity can be written as:

Γlr θð Þ ¼ Rlr θð Þj j2 e�h cosϑð Þ2 : (10)

h was called roughness parameter, and it is defined as:

h ¼ 4k2σ2, (11)

where k is the wave number (2π=λ) and σ is the standard deviation of the surface. When it is a
smooth surface (h ¼ 0), the reflectivity Rlr is simply the square of the Fresnel reflection coefficient.

2.3. Coordinate reference systems

Latitude, longitude, and height are three coordinates used to characterize the user’s position
on Earth. A reference system with respect to the coordinates must be defined correspondingly.
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In the beginning, the World Geodetic System 1984 ellipsoid (WGS84) in an Earth-centered,
Earth-fixed (ECEF) coordinate system is defined for typical GPS measurements. The ECEF
coordinates represent positions as (x, y, z). The x-axis points in the direction of 0

�
longitude

(passing through the intersection of the Greenwich meridian with the equatorial plane), and
the +y-axis points in the direction of 90

�
east longitude. The z-axis is chosen to be normal to the

equatorial plane in the direction of the geographical north pole, thereby completing the right-
handed coordinate system. The ECEF system enables users to know the positions with respect
to the center of the Earth. The ellipsoid coordinate origin of WGS84 (latitude, longitude, and
attitude) is meant to be located at the Earth’s center of mass. It is a simplest geometric model,
which best fits the entire Earth surface [20].

Since the Earth is not spherical and not uniform in density, the Earth Geoid Model 1996
(EGM96) was defined as the locus of all points with the same gravity potential (equipotential
surface) best fitting with the mean sea level on the Earth [21]. When the height is indicated
relevant to the mean sea level, it refers to the geoid model. The height of the geoid is denotedN
with respect to the ellipsoid, which is shown in Figure 4. At each point, a geoidal height (N) is
defined along the line perpendicular to the ellipsoid. It is measured from the ellipsoid to the
geoid. Height h is the distance measured from the ellipsoid to the object. H indicates the height
with respect to the geoid called orthometric height.

Georeferencing specular points on maps were done based on the ECEF coordinate system, by
assuming the surface is locally flat and the surface height remains the same with that of the
receiver projection position. However, a typical onboard GPS receiver and Google Earth
software provide the ellipsoid height h based on the EGM96 model. Therefore, the EGM96
coordinates information was transferred in WGS84 and further converted to ECEF coordi-
nates, in order to calculate the elevation angle with respect to the satellite position (x, y, z). On
the other hand, the orthometric height H is useful, such as in the altimetry application. Hence,
some computations are needed as Eq. 12 [3].

H ≈ h�N: (12)

Figure 4. Relation of an ellipsoid, geoid, and terrain heights.
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3. GNSS-R applications

3.1. Background and objective

After GNSS signals reflected off the Earth surface, the scattered signal received by the GNSS-R
system contains the information of the surface. Hence, GNSS-R as an Earth’s surface remote
sensing tool has been widely studied for characterizing the reflecting surface. Several retrieval
methods for soil moisture content (SMC), altimetry, and vegetation biomass estimation can be
used to reveal the geographical and biological parameters of the Earth surface.

For altimetry application, the GPS Bistatic technique for altimetry application was first pro-
posed by Martin-Neira [17]. The aim of the GNSS altimetry is to detect the height between the
receiver and the reflecting surface. In principle, the altimetry techniques can be applied to any
surface, but their performance will depend on the detecting environment [22–24].

For soil moisture application, frequencies in the range of 1–3 GHz have been shown to be
ideally suited to sense soil moisture due to reduced atmospheric attenuation [25]. Njoku and
O'Neill [26] showed that P-band (0.775 GHz) and L-band (1.4 GHz) frequencies are optimal for
sensing soil moisture in the top 0–4 and 0–2 cm surface layers, respectively.

For biomass content sensing, a couple of papers mentioned that a retrieval method with very
preliminary analysis is available. The one provided by Zavorotny et al. [27] proposed model-
ing GPS reflected signals having a different polarization state that can be used for sensing a
homogeneous soil of rough land surface. The results were obtained by modeling the impact
of soil moisture from the ratio between expected power levels in orthogonal polarizations
(LR=RR, HR=VR), in function of the elevation angle. By varying the soil moisture level (x-
axis) and different incident angles (the angle between the propagation path and the normal
to the surface), the ratio of two orthogonal polarizations received power proved to be
independent of the surface roughness factor and sensitive to the soil moisture. With this
established theoretical hypothesis, the algorithm with respect to the orthogonal polarization
was developed and presented as follows.

In the following, the retrieval methods for the SMC, vegetation sensing, and altimetry applica-
tions are applied and discussed in the framework of Italian SMAT-F2 (System of Advanced
monitoring of the Territory—phase 2) project. First, the SMC retrieval and vegetation biomass
sensing methods are detailed. With considering different kinds of measured signals, three kinds
of retrieval methods based on the bistatic configuration are presented. Then, the C/A code
altimetry method, which provides the possibility for altimetry estimation, will be discussed.

3.2. Methodologies

3.2.1. Overview of soil moisture retrieval methods

Soil dielectric constant and soil moisture retrieval play fundamental aspects in agriculture and
water cycle attracting interests from many researchers and have started to produce some
results. Three different methodologies were implemented mainly for this kind of applications:
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1. Multipath effect and its relation to soil moisture: it uses a standard ground-based nearly
hemispherical RHCP antenna to receive the direct signal (see Figure 5(a)). The reflected
signal originated from ground creates multipath effects, since it interferes with the direct
signal. The total received signal amplitude has a sinusoid behavior with the change of sine
of elevation angle. By measuring the received SNR ratio, it is possible to retrieve soil
moisture information [9, 27].

2. Interference pattern technique (IPT): usually a horizontal-pointing vertically polarized
antenna is used (see Figure 5(b)). This technique consists of measuring the power fluctua-
tions related to the signal resulting from the simultaneous reception (and interference) of
the direct and the reflected GNSS signals. It is similar to a multipath effect. In this case, the
two rays approach is adopted. Soil moisture retrieval is based on finding a specific ‘notch’
point from the interference pattern, versus satellite elevation [22, 28–30].

3. Bistatic method: this is based on the separate reception of direct and reflected signals using
two different antennas and on the separate measurement of signal powers. Depending on
the antenna configuration, three possible observing systems exploiting the bistatic geome-
try can be further identified:

a. A down-looking LHCP antenna and an up-looking RHCP antenna: an LHCP antenna
receives reflected GPS signal from the surface (see Figure 5(c)). The power reflectivity
could be obtained either by using a bistatic radar equation [31] or from the power ratio
between the reflected signal and the direct signal [32, 33]. The reflectivity is then a
function of the dielectric constant of the soil, the elevation angle, and the surface
roughness. By properly choosing the surface roughness parameter (elevation is known
from the direct signal) for a certain scattering model (see for example [34]) such as the
small perturbation method (SPM) and Kirchhoff approach (KA), the dielectric con-
stant can be retrieved.

b. One RHCP up-looking antenna and two down-looking antennas (or channels) with
one RHCP polarized and the other LHCP polarized [7, 12, 35]. With this configuration
(see Figure 5(d)), it is possible to measure both the co-polar component of the terrain
reflectivity by using the LHCP signal and the cross-polar component by using the
RHCP antenna. The ratio of these two reflectivities was in good correlation with SMC,
and it was independent of the surface roughness.

c. A similar configuration to the one described in (3.a) but with horizontally (H) and
vertically (V) polarized antenna for both the up and down-looking directions (see
Figure 5(e)): this configuration has been tested through some simulation studies [36].
The ratio between the reflected and the direct power on the horizontal polarization
and the same ratio on the vertical polarization depend on the soil reflectivity and
surface roughness. If the power ratio between the two channels with orthogonal
polarization is considered, the influence of the surface roughness can be canceled. It
was verified that the final expression holds under different scattering models, which
means that it could be applied to a wide range of surface roughness. This dielectric
constant retrieval approach is based on the use of the ratio of power densities scattered
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3.2. Methodologies

3.2.1. Overview of soil moisture retrieval methods

Soil dielectric constant and soil moisture retrieval play fundamental aspects in agriculture and
water cycle attracting interests from many researchers and have started to produce some
results. Three different methodologies were implemented mainly for this kind of applications:
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atHH and VV polarizations along the specular direction for different incidence angles.
Since the ratio is a function of both the elevation angle and the dielectric constant, a
minimum least square technique was applied to better define the dielectric constant,
by measuring at least two different elevation angles.

The retrieval of the soil moisture from the dielectric constant at microwave band (especially in
L band) has been widely investigated, and several well-accepted theoretical and empirical
models have been established, such as [25, 28, 37, 38]. The information of soil texture in terms

Figure 5. System schemes for different observing strategies.
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of percentage of clay and sand should be known and provided in input to such models. A
further model described by Topp et al. [39] does not depend on any input information, since it
models the relative permittivity as a third-order polynomial function of soil moisture.

3.2.2. Bistatic methods for soil moisture retrieval

In this section, the algorithms used for SMC and vegetation sensing are applied based on the
(5.a): bistatic method. The retrieval process aims to establish the link between received
reflected signals and the dielectric constant of the soil. Moreover, the retrieval of dielectric
constant is the key component to the retrieval of soil moisture, since there are several well-
established models giving this relationship as introduced in the last section.

3.2.2.1. Only LH reflected GPS signals are measured

Assuming a perfectly smooth surface and regardless the surface roughness and incoherent

components (Γlr ¼ Rlr ϑð Þð Þ2), the dielectric constant is retrieved from the LHCP-reflected SNR
which can be processed by the open loop approach.

The expression of SNR is derived from bistatic radar equation:

SNRreflect
peak ¼ 1

4
PtGt

4π R1 þ R2ð Þ2
Grλ2GD

4πPN
Rvv � Rhhð Þ2, (13)

where Pt is transmitted signal power, Gt and Gr are antenna gains of transmitter and receiver,
respectively. λ is signal wavelength (about 19 cm for GPS L1 signal). R1 and R2 represent the
distances between specular point and transmitter or receiver. The superscript c denotes the
coherent component, PN is noise power, and GD is the processing gain due to the de-spread of
the GPS C/A code. The value of the correlation gain is determined by the chipping rate of the
GPS L1 C/A code (1:023e6 Hz) and 1 ms processing interval. It results:

Gpr ¼ 10 log 10
1:023e6

1000

� �
¼ 30:1dB: (14)

Fresnel reflection coefficients of HH and VV are given in Eqs. (7) and (8). The dielectric
constant is then easy to be solved by combining the Eqs. (7), (8), and (13). Input parameters
such as Pt, Gt, Gr, and GD are usually seen to be constants. Since they are system parameters of
GPS, PN should be estimated or calculated properly. R1, R2, and θ are geographic information
which can be calculated through receiver positions. SNR is the input parameter obtained from
signal postprocessing. Knowing all the above input parameters, the dielectric constant can be
solved numerically.

3.2.2.2. Both LH reflected and RH direct GPS signals are measured

In this case, both SNRs are obtained from RH direct signal and LH reflected signal. The
dielectric constant can be retrieved from the power ratio of LHCP reflected SNR over direct
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of percentage of clay and sand should be known and provided in input to such models. A
further model described by Topp et al. [39] does not depend on any input information, since it
models the relative permittivity as a third-order polynomial function of soil moisture.

3.2.2. Bistatic methods for soil moisture retrieval

In this section, the algorithms used for SMC and vegetation sensing are applied based on the
(5.a): bistatic method. The retrieval process aims to establish the link between received
reflected signals and the dielectric constant of the soil. Moreover, the retrieval of dielectric
constant is the key component to the retrieval of soil moisture, since there are several well-
established models giving this relationship as introduced in the last section.

3.2.2.1. Only LH reflected GPS signals are measured

Assuming a perfectly smooth surface and regardless the surface roughness and incoherent

components (Γlr ¼ Rlr ϑð Þð Þ2), the dielectric constant is retrieved from the LHCP-reflected SNR
which can be processed by the open loop approach.

The expression of SNR is derived from bistatic radar equation:
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where Pt is transmitted signal power, Gt and Gr are antenna gains of transmitter and receiver,
respectively. λ is signal wavelength (about 19 cm for GPS L1 signal). R1 and R2 represent the
distances between specular point and transmitter or receiver. The superscript c denotes the
coherent component, PN is noise power, and GD is the processing gain due to the de-spread of
the GPS C/A code. The value of the correlation gain is determined by the chipping rate of the
GPS L1 C/A code (1:023e6 Hz) and 1 ms processing interval. It results:

Gpr ¼ 10 log 10
1:023e6

1000

� �
¼ 30:1dB: (14)

Fresnel reflection coefficients of HH and VV are given in Eqs. (7) and (8). The dielectric
constant is then easy to be solved by combining the Eqs. (7), (8), and (13). Input parameters
such as Pt, Gt, Gr, and GD are usually seen to be constants. Since they are system parameters of
GPS, PN should be estimated or calculated properly. R1, R2, and θ are geographic information
which can be calculated through receiver positions. SNR is the input parameter obtained from
signal postprocessing. Knowing all the above input parameters, the dielectric constant can be
solved numerically.

3.2.2.2. Both LH reflected and RH direct GPS signals are measured

In this case, both SNRs are obtained from RH direct signal and LH reflected signal. The
dielectric constant can be retrieved from the power ratio of LHCP reflected SNR over direct
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RHCP SNR, provided that direct RH signals are processed with the same open-loop approach
to get SNR.

The SNR expression of the peak power for the direct RHCP signal is:

SNRdirect
peak ¼ PtGt

4πR3
2
Grλ2GD

4πPN
, (15)

where R3 is the distance between the transmitter and receiver. It must be noted that receiver
gain Gr and noise power PN given in Eq. (15) are not equal to those given in Eq. (13) for the
reflected signal path, and this is the reason why calibration is needed. By making the ratio of
Eq. (13) to Eq. (15) canceling the same parameters and summarizing the uncertainties of Gr and
PN into a single calibration parameter C, we have:

SNRreflect
peak

SNRdirect
peak

¼ R3
2

4 R1 þ R2ð Þ2 Rvv � Rhhð Þ2 � C: (16)

Now, input parameters of R1, R2, θ and R3 are only needed, and they are easy to obtain from
positioning information. Calibration parameter C can be either ignored if there is no way to
calibrate the system or calculated through over-water measurement. The dielectric constant
can be obtained from Eq. (16), given all the input parameters defined.

3.2.2.3. Both LH reflected and RH reflected GPS signals are measured

The retrieval process has linked the measured reflected LHCP and RHCP power (or SNR) to
the normalized bistatic radar cross section σoqp, which has been widely studied and modeled for

different surface roughness and scattering models, such as Kirchhoff Approximation in
stationary-phase approximation (Kirchhoff Geometrical Optics, KGO), Kirchhoff approxima-
tion in physical optics approximation (KPO), and small perturbation method (SPM) [34].

Applying polarization scattering matrix [40] and combining some basic electromagnetic field
theories, the cross-polarization power ratio of LHCP to RHCP has the relation with normalized
bistatic radar cross section of linear polarizations:

ffiffiffiffiffiffi
Pr
lr

p
ffiffiffiffiffiffi
Pr
rr

p ¼
ffiffiffiffiffiffiffiffiffi
σohh

p þ ffiffiffiffiffiffiffiffiffi
σovv

p�� ��
ffiffiffiffiffiffiffiffiffi
σohh

p � ffiffiffiffiffiffiffiffiffi
σovv

p�� �� : (17)

Note here that in Eq. (17), σo is approximated by the special case of σoqp specð Þ in the specular

direction for simplicity, and therefore, the cross polarization terms of σohv and σovh are com-
puted to be zero for the models of KGO, KPO, and SPM in the specular direction case. Also, σo

for hh and vv polarizations given by these three models are all products of a polarization
sensitive parameter, usually the Fresnel reflection coefficient and other polarization indepen-
dent surface roughness parameters (detailed expressions are given by [Ulaby, 1982]). Then, the
expression shown in Eq. (17) can be simplified as:
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ffiffiffiffiffiffiffi
Plr

rp
ffiffiffiffiffiffiffiffi
Prr

rp ¼ Rhhj j þ Rvvj jj j
Rhhj j � Rvvj jj j , (18)

where R is the Fresnel reflection coefficient as given in Eqs. (7) and (8). This equation also holds
the condition of specular reflection, and the result shows that the cross-polarization power
ratio of LHCP to RHCP of reflected signals is independent with surface roughness and is only
a function of dielectric constant and incident angle.

The received power for both lr and rr is obtained as input parameters after post-processing.
The dielectric constant of the soil is solved after taking all the parameters.

3.2.3. Retrieval methods for vegetation biomass sensing

The GNSS signals in bistatic configuration were obtained by the cross-correlation between direct
and reflected signals with the pseudo-random noise (PRN) code replica, respectively. The output
of the cross-correlation is called Delay-Doppler map (DDM), and Delay Waveforms (DW) is a
row from DDM with the Doppler frequency set to a constant value of where the peak is. The
phase information of the signal is lost during the integration process, resulting in amplitude

< ∣Ypq∣ > or power < Ypq
�� ��2 > waveforms for the incident q-polarized to p-polarized scattered

signals. The observable polarimetric parameters Γlr and Γrr represent the cross and co-polar
reflectivity can be defined as in [12]:

Γpq ¼
Ypeak

ref lected, pðΔτ;f Þ
Ypeak
direct, qð0;f Þ

* +������

������

2

, (19)

where Δτ is the delay difference between the direct and the reflected paths, and the f is
assumed to be the Doppler frequency shift of the signal. With ground-based or low-altitude
receivers, it also can be assumed to be the same, f d ≈ f r ¼ f . The above equation obtained both
the coherent and incoherent component of the received direct and reflected signals. However,
the unstable airborne platform, terrain variation, and fading phenomenon may impair the
estimation of the coherent scattering component. By adding the time series, an averaging
procedure can be used to remove the contribution of the incoherent component on the final
observed reflectivity. It was written as:

Γpq ¼ <
Yr,p tð Þ
Yd,q tð Þ

>

�����

�����
2

¼<
Yr,p tð Þ
Yd,q tð Þ

�����

�����
2

> �δ2
Yr,p tð Þ
Yd,q tð Þ

���
���
: (20)

After the reduction of the incoherent component from the received signal, the received signal is
mainly composed of coherent components. Therefore, the spatial resolution can be roughly
estimated from the first Fresnel zone [31]. For instance, the 600 m flight altitude and 40o

incident angle lead to an elliptical active scattering area with a minor axis of 24 m and a major
axis of 32 m. Finally, the reflectivities Γlr and Γrr and the ratio of Γlr=Γrr, which was called
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RHCP SNR, provided that direct RH signals are processed with the same open-loop approach
to get SNR.
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gain Gr and noise power PN given in Eq. (15) are not equal to those given in Eq. (13) for the
reflected signal path, and this is the reason why calibration is needed. By making the ratio of
Eq. (13) to Eq. (15) canceling the same parameters and summarizing the uncertainties of Gr and
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positioning information. Calibration parameter C can be either ignored if there is no way to
calibrate the system or calculated through over-water measurement. The dielectric constant
can be obtained from Eq. (16), given all the input parameters defined.

3.2.2.3. Both LH reflected and RH reflected GPS signals are measured

The retrieval process has linked the measured reflected LHCP and RHCP power (or SNR) to
the normalized bistatic radar cross section σoqp, which has been widely studied and modeled for

different surface roughness and scattering models, such as Kirchhoff Approximation in
stationary-phase approximation (Kirchhoff Geometrical Optics, KGO), Kirchhoff approxima-
tion in physical optics approximation (KPO), and small perturbation method (SPM) [34].

Applying polarization scattering matrix [40] and combining some basic electromagnetic field
theories, the cross-polarization power ratio of LHCP to RHCP has the relation with normalized
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Note here that in Eq. (17), σo is approximated by the special case of σoqp specð Þ in the specular

direction for simplicity, and therefore, the cross polarization terms of σohv and σovh are com-
puted to be zero for the models of KGO, KPO, and SPM in the specular direction case. Also, σo

for hh and vv polarizations given by these three models are all products of a polarization
sensitive parameter, usually the Fresnel reflection coefficient and other polarization indepen-
dent surface roughness parameters (detailed expressions are given by [Ulaby, 1982]). Then, the
expression shown in Eq. (17) can be simplified as:
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where R is the Fresnel reflection coefficient as given in Eqs. (7) and (8). This equation also holds
the condition of specular reflection, and the result shows that the cross-polarization power
ratio of LHCP to RHCP of reflected signals is independent with surface roughness and is only
a function of dielectric constant and incident angle.

The received power for both lr and rr is obtained as input parameters after post-processing.
The dielectric constant of the soil is solved after taking all the parameters.

3.2.3. Retrieval methods for vegetation biomass sensing

The GNSS signals in bistatic configuration were obtained by the cross-correlation between direct
and reflected signals with the pseudo-random noise (PRN) code replica, respectively. The output
of the cross-correlation is called Delay-Doppler map (DDM), and Delay Waveforms (DW) is a
row from DDM with the Doppler frequency set to a constant value of where the peak is. The
phase information of the signal is lost during the integration process, resulting in amplitude
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where Δτ is the delay difference between the direct and the reflected paths, and the f is
assumed to be the Doppler frequency shift of the signal. With ground-based or low-altitude
receivers, it also can be assumed to be the same, f d ≈ f r ¼ f . The above equation obtained both
the coherent and incoherent component of the received direct and reflected signals. However,
the unstable airborne platform, terrain variation, and fading phenomenon may impair the
estimation of the coherent scattering component. By adding the time series, an averaging
procedure can be used to remove the contribution of the incoherent component on the final
observed reflectivity. It was written as:
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After the reduction of the incoherent component from the received signal, the received signal is
mainly composed of coherent components. Therefore, the spatial resolution can be roughly
estimated from the first Fresnel zone [31]. For instance, the 600 m flight altitude and 40o

incident angle lead to an elliptical active scattering area with a minor axis of 24 m and a major
axis of 32 m. Finally, the reflectivities Γlr and Γrr and the ratio of Γlr=Γrr, which was called
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polarimetric ratio (PR), are the three observable parameters used to investigate the SMC and
the vegetation biomass of the terrain.

3.2.4. GPS C/A-code altimetry

The geometry of the reflecting surface with the receiver and transmitter is shown in Figure 6
under the assumption of a flat Earth and ray optics. The path delay (δ) between the direct and
the reflected signals can be taken as a delay difference (Nsamples) in the DDM obtained from
Eq. 21.

δ ¼ c
f s
Nsamples ¼ c

f s
� Nchip

1023 1ms=
� f s, (21)

where C is the light speed and f s is the sampling frequency of the GNSS-reflectometer, and
Nchips is the number of chips in one period.

Assuming that the signals are parallel as shown in Figure 6, it gives that θ ¼ α for the
incoming signals. Height h is possible to be derived from the following equation [41, 42]:

h ≈
δ

2 sinα
, (22)

where δ is the excess path and θ is equal to the elevation angle α. Therefore, the estimated
altitude of the receiver h depends on the measured delay between the two signals and the
elevation of the satellite.

3.2.5. Data processing

The GNSS-R system used for the acquisition of the received power can measure both the direct
GPS signal and the reflected one using two independent acquisition channels: one for the
direct signal and the other for the reflected signal. The receiver consists of two commercial

Figure 6. GNSS altimetry geometry with signals considered in a parallel condition.
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front-ends (FEs) connected to two antennas: for instance, a traditional hemispherical GNSS L1
patch antenna pointed upward for the measurement of the direct signal. A high-gain LHCP
antenna pointed downward for measuring the reflected signal as shown in Figure 7. Each FE is
connected to a PC for data storage. The antennas and the FEs are mounted on a Kevlar bar. A
typical tripod is used for more efficient adjustment of the orientation of the antennas.

The raw data of direct and reflected signals are collected and postprocessed with the software
SOPRANO [43] for obtaining the peak power and SNR for each satellite. An open-loop approach
is used for processing to obtain delay-Doppler maps (DDMs) and the corresponding delay
waveforms. SNR time series were estimated from several noncoherently integrated delay wave-
forms generated by cross-correlation of the incoming data and local replica C/A codes.

Generally, increasing coherent integration time can help the low SNR to generate the DDM, but
the performance may worsen when it exceeds a certain value. In this case, the coherent integra-
tion time was 1 ms because of the length of the GPS C/A code (1 ms). On the other hand, since
the reflected signal power was attenuated by the surface as well as by the noise effects, it could
not detect the real signal power. A noncoherent integration time technique (called averaging)
was adopted during the postprocessing in order to mitigate the noise. Generally, it is in the range
of 100-1000 ms. The noncoherent integration time, in this case is 500 ms. Moreover, the informa-
tion of positions and altitude was recalculated, which was used to calculate the specular points
on object areas. During the experiment, satellite positions (x, y, z) in an ECEF coordinate were
collected by a GPS recorder. In the meanwhile, the receiver position (latitude, longitude, attitude)
in geoid coordinate was collected in a file (.kml) which can be opened by the Google Earth
software. The flowchart of obtaining the navigation message is shown in Figure 8.
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f s
Nsamples ¼ c

f s
� Nchip

1023 1ms=
� f s, (21)
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2 sinα
, (22)
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Figure 6. GNSS altimetry geometry with signals considered in a parallel condition.
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and satellite positions both in ECEF coordinates, elevation angle can be calculated with respect
to the local tangent plane.

4. Results and discussions

A low-altitude airborne experiment was carried out by a P92 Digisky airplane over the
Avigliana lake (45.099�N, 7.369�E) in Italy. An image of the experimental area from Google
Map is shown in Figure 9.

In this area, there are two lakes, the size of the northern lake (bigger) is approximately 1 km x
1.3 km, while that of the southern lake (smaller) is 700 m � 1.1 km. The area was selected for
the experiment because of the following reasons. First, the presence of two lakes of the
experiment can provide the reflections and the known permittivity for calibration. Second, in
the North and South directions of the two lakes, there are some grass areas which the flight

Figure 8. Flowchart of processing navigation message.
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will go over, and in the West and East directions, the flight coverage areas are full of forest.
This kind of geographical environment provides the possibility to investigate the roughness
and vegetation biomass at the same time.

The elevation and azimuth angles were obtained, as shown in Figure 8. The sky plot of GPS
satellites at the 1570th second of the flight is shown in Figure 10.

The reflected LHCP signal was collected through a high gain dual polarization antenna. With
the direct RH signal obtained, the reflectivity was computed by the SNR of LH/RH signal

Figure 9. Avigliana area.

Figure 10. Sky plot of satellites on 18th June 2015.
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component. The SMC was obtained by using the method introduced in Section 3.2.2. The SMC
estimation result of PRN 15 with high elevation angle is shown in Figure 11, calibrated by the
water reflectivity of 0.67. The color of the specular points is proportional to the estimated soil
moisture (the red color denotes totally dry soil, and the green color represents humidity 100%).

The flight flew covered lake and two forest areas from east to west. The flight route was
denoted by the yellow color in Figure 12. Since the reflection point begins from the forest in
the east (mid-biomass) to big lake (flat) then stop with the forest in the west (big-biomass) as
shown in Figure 12, it can be used to investigate the vegetation biomass sensing.

Based on the method introduced in Section 3.2.3, the reflectivities Γlr and Γrr and the ratio of
the two polarization (lr and rr) PR can be calculated and shown in Figure 13. From 720 s, the
big increment 6 dB of the average lr appears in the lake (L1) compared to the forest. The lr
component is quite sensitive with SMC. The average rr in forests (F1 and F2) is 2–4 dB lower
than the lake (L1). In addition, considering the average lr and rr in forests (F1 and F2), both

Figure 11. Soil moisture content estimation of PRN 15.

Figure 12. Flight route (yellow line) and PR level of reflection point georeferenced in Google Map.
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average in F2 are higher than F1. It could be considered that the vegetation biomass in F2 is
lower than F1. It confirms the fact and further implies that both polarizations are sensitive to
vegetation biomass. Moreover, the biggest PR level is the presence of the lake. Therefore, the
PR can be taken as a good parameter for soil moisture estimation regardless of the vegetation
biomass. The PR level is 5.6 dB in the lake, 3.9 dB in F1, and 2.3 in F2.

For the altimetry estimation, the C/A code method (see Section 3.2.4) was applied on the
unsmooth surface to obtain the target height. Due to bandwidth and the equipment, the altimetry

Figure 13. PR level, Γlr and Γrr level.

Figure 14. Altimetry estimation of PRN 15 from 1015s (a), 1062s (b).

Remote Sensing in Land Applications by Using GNSS-Reflectometry
http://dx.doi.org/10.5772/intechopen.72901

83



component. The SMC was obtained by using the method introduced in Section 3.2.2. The SMC
estimation result of PRN 15 with high elevation angle is shown in Figure 11, calibrated by the
water reflectivity of 0.67. The color of the specular points is proportional to the estimated soil
moisture (the red color denotes totally dry soil, and the green color represents humidity 100%).

The flight flew covered lake and two forest areas from east to west. The flight route was
denoted by the yellow color in Figure 12. Since the reflection point begins from the forest in
the east (mid-biomass) to big lake (flat) then stop with the forest in the west (big-biomass) as
shown in Figure 12, it can be used to investigate the vegetation biomass sensing.

Based on the method introduced in Section 3.2.3, the reflectivities Γlr and Γrr and the ratio of
the two polarization (lr and rr) PR can be calculated and shown in Figure 13. From 720 s, the
big increment 6 dB of the average lr appears in the lake (L1) compared to the forest. The lr
component is quite sensitive with SMC. The average rr in forests (F1 and F2) is 2–4 dB lower
than the lake (L1). In addition, considering the average lr and rr in forests (F1 and F2), both

Figure 11. Soil moisture content estimation of PRN 15.

Figure 12. Flight route (yellow line) and PR level of reflection point georeferenced in Google Map.

Recent Advances and Applications in Remote Sensing82

average in F2 are higher than F1. It could be considered that the vegetation biomass in F2 is
lower than F1. It confirms the fact and further implies that both polarizations are sensitive to
vegetation biomass. Moreover, the biggest PR level is the presence of the lake. Therefore, the
PR can be taken as a good parameter for soil moisture estimation regardless of the vegetation
biomass. The PR level is 5.6 dB in the lake, 3.9 dB in F1, and 2.3 in F2.

For the altimetry estimation, the C/A code method (see Section 3.2.4) was applied on the
unsmooth surface to obtain the target height. Due to bandwidth and the equipment, the altimetry

Figure 13. PR level, Γlr and Γrr level.

Figure 14. Altimetry estimation of PRN 15 from 1015s (a), 1062s (b).

Remote Sensing in Land Applications by Using GNSS-Reflectometry
http://dx.doi.org/10.5772/intechopen.72901

83



resolution is limited, according to 1 sample 23.07 m. The altimetry estimation results of satellite
PRN 15 with high elevation angle are presented in Figure 14.

Figure 14 shows two figures of height estimation of PRN 15 start from 1015s and 1062s. The
elevation angle of PRN 15 is 76�. The estimation height is quite same with GPS recorder. The
estimation deviation in Figure 14 (a) is bigger than Figure 14 (b). It confirmed that the best
condition for altimetry application is when using high elevation angle on the water surface,
which can greatly avoid the interference of forest and cities. The accuracy of the altimetry
estimation depends on the bandwidth, algorithm, and equipment, and it shows that it is quite
affected by the environment as introduced in the beginning of Section 3.

5. Conclusion

In this chapter, the global navigation satellite system-reflectometry (GNSS-R) technique as a
method of remote sensing that receives and processes microwave signals reflected from vari-
ous surfaces to extract useful information is reported. GNSS-R technique has gained wide-
spread attention in a variety of applications. This work assesses the capability of measuring
soil moisture and vegetation biomass by means of reflected signals from global navigation
satellites from a theoretical and experimental point of view.

The SMC was obtained and georeferenced in Google Maps. The type of terrain ranged from
water (on the lakes) to terrain with small bushes to built-up areas. The results showed good
correlation with the types of the underlying terrain. It was observed that the LH was rather
more sensitive to SMC. The different SMC areas were detected with different PR values. The
ratio of the two polarizations was independent of roughness, and it proved to be an optimum
parameter for soil moisture estimation. Moreover, it was found that increasing the biomass
quantity decreased the Γlr and Γlr polarization components, since the reflected signal compo-
nents are attenuated from leaves, trunks, crowns, and so on. The altimetry estimation is based
on the calculation of the delay differences between the two signals. In principle, the altimetry
techniques can be applied to any surface, but their performance will depend on the scattering
behavior. Therefore, GNSS-R altimetry has only been used on strongly reflecting surfaces and
geometries, such as waters and smooth ice. The accuracy of the derived height is limited also
due to the bandwidth and the sampling frequency of the equipment.
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Abstract

High-frequency surface-wave radar (HFSWR) has been successfully applied for moving
target detection and remote sensing of ocean surface dynamic parameters for decades.
Compared with conventional instruments such as buoys, anemometers, and microwave
radars, HFSWR can be employed to an all-weather and all-time surveillance far beyond
the visible horizon. Moreover, based on agility and maneuverability, shipborne HFSWR
can not only enhance the survivability in complex ocean environment but also enlarge the
detection distance on open sea, which will gradually become a popular deployment
situation. In this chapter, ocean surface cross sections for shipborne HFSWR with linear
platform motion and sway motion are derived theoretically. Then, the methods for ocean
surface wind direction, wind field, and current extraction are presented. The computer
simulations and experimental results of the real data are given to verify the detection
accuracy and the distance limit of the abovementioned methods.

Keywords: shipborne HFSWR (high-frequency surface-wave radar), ocean surface cross
section, ocean surface wind field, ocean surface current

1. Introduction

High-frequency surface-wave radar (HFSWR) has been widely applied to early warning for
decades, including the detection of airborne targets and surface targets. Its vertically polarized
electromagnetic wave (3–30 MHz) follows the curvature of the Earth along the air-water
interface and has a very low propagation loss on the ocean surface. In addition to early
warning uses, HFSWR provides a unique ocean surface dynamics parameters remote-sensing
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capability based on the Doppler spectrum characteristics of the sea echo backscattered from
the ocean surface. Compared with conventional instruments such as buoys, anemometers, and
line-of-sight radar, HFSWR can provide an all-time, all-weather, and cost-effective surveillance
far beyond the visible horizon.

HFSWR can be classified into onshore and shipborne cases based on the platform where it is
employed. Besides the advantages of onshore HFSWR, shipborne case has the agility and
maneuverability, which can not only enhance the survivability in complex ocean environment
but also enlarge the detection distance on open sea. Thus, ocean remote sensing with ship-
borne HFSWR is expected to receive increasing attentions.

The main objective of this chapter is to reveal the potential and experimental results of remote
sensing of ocean surface wind field and current with shipborne HFSWR, which is organized into
four sections. Section 1 describes the concept of operation for shipborne HFSWR, the general
characteristics and nominal capabilities of such systems, as well as their potential roles in early
warning uses and ocean remote-sensing applications. Section 2 represents the first- and second-
order ocean surface cross sections derived for an omnidirectional receiving sensor in monostatic
shipborne HFSWR, where the essential characteristics of the sea echo backscattered from the
ocean surface are shown. Understanding the characteristics of sea echo is essential for further
theoretical and experimental investigation in remote-sensing applications. Section 3 discusses the
potential of remote sensing of ocean surface wind field with shipborne HFSWR. The wind field
of the region covered by radar can be measured using a single receiving antenna, which is more
beneficial for shipborne platform with limited deck space. Experimental results verify the detec-
tion accuracy and distance limit of the presented method. Section 4 discusses the feasibility of
ocean surface current inversion in shipborne HFSWR.

2. Ocean surface cross sections for shipborne HFSWR

To investigate the potential of ocean remote sensing with shipborne HFSWR, ocean surface
cross sections, which incorporates abundant ocean dynamic parameter information such as
wind direction and speed, ocean surface current, and wave spectrum parameters, should be
first studied. In this section, we discuss the first- and second-order ocean surface cross sections
in shipborne HFSWR with a uniform linear motion [1, 2]. Moreover, we explore the effects of
the radar platform motion and sea-state parameters on Doppler spectrum and present that the
spreading characteristic of the first-order Doppler spectra can be utilized to resolve the wind
direction ambiguity problem. Following this research, we develop the corresponding cross
sections in shipborne HFSWR with both uniform linear motion and sway motion [3]. Further-
more, the effects of sway motion on Doppler spectra are discussed in detail.

2.1. First-order ocean surface cross section

2.1.1. First-order radar cross-section model

For a shipborne source, a small displacement from the origin, ρ!v, is caused by the forward
movement of the platform at a constant speed, as shown in Figure 1, ρ1 and ρ2 denote the
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planar distances. Then, by analogy to the derivations in [4], the first-order cross section for
shipborne HFSWR with a uniform linear motion is derived [1]
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where ωd is the Doppler frequency, k0 is the wavenumber of the transmitting signal, m ¼ �1
corresponds to the receding and approaching waves, respectively, S �ð Þ is the directional wave
height spectrum, δ �ð Þ is the Dirac delta function, g is the gravitational acceleration, v is the
speed of shipborne platform, S �ð Þ can be represented as a product of a P-M spectrum [5] and
a modified cardioid directional factor G �ð Þ [6]. The directional factor is shown in Figure 2,
where θ is the incident direction of echo and α∗ is the wind direction. When the shipborne
platform is stationary (i.e., v ¼ 0), it is readily checked that the results in Eq. (1) can be reduced
onshore case.

2.1.2. Experimental and simulated results

2.1.2.1. Experimental result

The fundamental data-collecting experiment was conducted on the Yellow Sea of China [7], the
radar carrier frequency f 0 ¼ 5:283 MHz, α∗ ≈ 90 ∘ , the range resolution Δρ ¼ 5 km, v ¼ 10 knots.
The simulated result with Gaussian noise and experimental result are, respectively, displayed in
Figure 3a and b.

The simulated result with Gaussian noise in Figure 3a indicates that the platform motion
results in the spreading sea clutter spectrum, whose theoretical width is indicated by the
long-dashed lines. Such a simulated spreading spectrum is confirmed by the experimental
result in Figure 3b with the similar overall shape.

Figure 1. Geometry of the first-order scatter with platform-forward movement.
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2.1.2.2. Simulated results

Effects of the wind direction on the first-order cross section are displayed. Simulation param-
eters include f 0 ¼ 5:283MHz, Δρ ¼ 5 km, and α∗ ¼ 45 ∘ , 315 ∘ . Simulation results of shipborne
HFSWR for v ¼ 10 knots and onshore HFSWR for v ¼ 0 knots are shown in Figure 4.

For onshore case, the results show that the wind direction ambiguity exists, where the first-
order echo has the same characteristics for different wind directions. Moreover, the first-order
Bragg peaks simultaneously contain the sea clutter returns from different directions. Studies
on wind direction extraction have to be conducted based on the receiving array or the compact
antenna system in Coastal Ocean Dynamics Applications Radar (CODAR) system, where the
problem of wind direction ambiguity is still unavoidable.

For shipborne case, however, the simulated cross sections show that the ratios of the spreading
first-order Bragg lines vary with the wind directions, which demonstrates that shipborne
HFSWR has the potential of wind direction extraction. Meanwhile, the wind directions of the
whole sea area covered by radar may be obtained based on the spreading mechanism of the
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θ

Figure 2. Wind distribution in relation to radar beam direction.
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Figure 3. First-order ocean surface cross sections: (a) simulated result and (b) experimental result.
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first-order spectrum. Thus, compared with onshore method, it should be more easily realized in
wind direction extraction by the use of a single receiving sensor instead of the receiving array.

2.2. Second-order ocean surface cross section

By analogy to the derivation in [8], the second-order cross section for shipborne HFSWR with a
uniform linear motion is derived as the summation of the hydrodynamic and electromagnetic
components.

2.2.1. Hydrodynamic component

The hydrodynamic component can be directly obtained by replacing the first-order ocean

wave spectrum S K
!
;ω

� �
in Eq. (1) with the second-order spectrum S2 K

!
;ω

� �
, which can be

finally given by [2]
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Figure 4. First-order cross section for (a) shipborne case with α∗ ¼ 45 ∘ . (b) Shipborne case with α∗ ¼ 315 ∘ . (c) Onshore
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problem of wind direction ambiguity is still unavoidable.
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HFSWR has the potential of wind direction extraction. Meanwhile, the wind directions of the
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first-order spectrum. Thus, compared with onshore method, it should be more easily realized in
wind direction extraction by the use of a single receiving sensor instead of the receiving array.

2.2. Second-order ocean surface cross section

By analogy to the derivation in [8], the second-order cross section for shipborne HFSWR with a
uniform linear motion is derived as the summation of the hydrodynamic and electromagnetic
components.

2.2.1. Hydrodynamic component

The hydrodynamic component can be directly obtained by replacing the first-order ocean
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A Fourier transform of Eq. (5) yields the power density spectrum. Then, the second-order
ocean surface cross section can be calculated by normalizing the power density spectrum per
unit area, which is simplified by [2]
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2.2.3. Total second-order ocean surface cross section

Apart from the coupling coefficients, the hydrodynamic and electromagnetic cross sections in
Eqs. (2) and (6) are identical. Thus, the total second-order ocean surface cross section in
shipborne HFSWR can be written as [2]
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where the total coupling coefficient Γ ¼ ΓH þ ΓEM.

2.2.4. Simulation results

2.2.4.1. Simulated cross sections for different platform speeds

Simulation parameters: f 0 ¼ 5:283MHz, α∗ ¼ 90 ∘ , and wind speed U ¼ 15 knots. From

Figure 5a, the Bragg peaks are located at f B,M ¼ �0:2344Hz, and the
ffiffiffi
2

p
f B,M peaks (the

harmonic peaks) and 23=4f B,M peaks (the electromagnetic “corner reflector” peaks) are also
visible. From Eqs. (1) and (7), sea echoes at different incident directions correspond to different
Doppler frequencies because an angle f exists between echo incident direction and the direc-
tion of the platform-forward movement. That is, the radar Doppler spectra are spread, as

Figure 5. Simulated cross sections for (a) onshore case and (b) shipborne case with v ¼ 10 knots.
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A Fourier transform of Eq. (5) yields the power density spectrum. Then, the second-order
ocean surface cross section can be calculated by normalizing the power density spectrum per
unit area, which is simplified by [2]
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2.2.3. Total second-order ocean surface cross section

Apart from the coupling coefficients, the hydrodynamic and electromagnetic cross sections in
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where the total coupling coefficient Γ ¼ ΓH þ ΓEM.

2.2.4. Simulation results

2.2.4.1. Simulated cross sections for different platform speeds

Simulation parameters: f 0 ¼ 5:283MHz, α∗ ¼ 90 ∘ , and wind speed U ¼ 15 knots. From

Figure 5a, the Bragg peaks are located at f B,M ¼ �0:2344Hz, and the
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f B,M peaks (the

harmonic peaks) and 23=4f B,M peaks (the electromagnetic “corner reflector” peaks) are also
visible. From Eqs. (1) and (7), sea echoes at different incident directions correspond to different
Doppler frequencies because an angle f exists between echo incident direction and the direc-
tion of the platform-forward movement. That is, the radar Doppler spectra are spread, as

Figure 5. Simulated cross sections for (a) onshore case and (b) shipborne case with v ¼ 10 knots.
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shown in Figure 5b. The dashed lines denote the theoretical spreading domains of the first-
order sea clutter Doppler spectrum.

2.2.4.2. Simulated cross sections for different radar frequencies

Simulation parameters: U ¼ 15 knots, v ¼ 10 knots, and α∗ ¼ 90 ∘ . From Figure 6, the spread-
ing domain increases and the energies of the second-order spectra increase with the increasing
radar frequency. This shows that a high radar frequency may be negative for moving target
detection and remote sensing.

2.2.4.3. Simulated cross sections for different wind speeds

Simulations parameters: α∗ ¼ 90 ∘ , v ¼ 10 knots, and f 0 ¼ 5:283MHz. Simulation results show
that the energies of the first- and second-order spectra increase as the wind speed increases, as

Figure 6. Simulated cross sections for (a) f 0 ¼ 5:283 MHz and (b) f 0 ¼ 8 MHz.

Figure 7. Simulated cross sections for (a) U ¼ 12 knots and (b) U ¼ 15 knots.
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shown in Figure 7. The first- and second-order spectra may be overlapped when the wind
speed is high, which may be unfavorable for remote sensing of ocean surface wind direction
and speed. This is because the wind direction is extracted from the ratio of the positive and
negative Bragg energies, and the wind speed relates to the energies of the second-order
backscatter echo.

2.2.4.4. Simulated cross sections for different wind directions

Simulation parameters: U ¼ 15 knots, v ¼ 10 knots, and f 0 ¼ 5:283MHz. From Figure 8, it is
apparent that the spreading first-order Bragg lines vary with wind direction. However, the
Bragg line energies may be contaminated by the second-order contributions. Thus, the high sea
state may influence wind direction extraction from the spreading Bragg lines in shipborne
HFSWR.

2.3. Ocean surface cross sections for shipborne HFSWR with sway motion

In practice, the shipborne platform exists six-degree-of-freedom (DOF) motion due to the
interaction between the platform and the complicated ocean environment. In this subsection,
following the research in the previous subsection, we derive corresponding cross sections
which incorporate both the uniform linear motion and the sway motion [3].

2.3.1. First-order cross section

For a shipborne source in Figure 9, the small displacement δρ! from the origin is induced by the

uniform linear motion ρ!v ¼ vtbρv and the sway motion δρ!0 ¼ a sin ωpt
� �bρp. Following the

above-mentioned research, the first-order cross section can be written as [3]

Figure 8. Simulated cross sections for (a) α∗ ¼ 45 ∘ and (b) α∗ ¼ 315 ∘ .
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where ωp and a are the sway frequency and amplitude related to sea state, respectively. bρp is

the unit vector of δρ!0, Jn �ð Þ represents the nth order Bessel function, and θK is the direction of

the wave vector K
!
.

2.3.2. Second-order cross section

Similar to the derivation in Section 2.2, the second-order cross section for this new shipborne
platform motion model can be derived as [3]
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2.3.3. Simulation results

For convenience, the sea echo Doppler spectral cross section is decomposed as the sum of the
first- and second-order scattering terms

Figure 9. First-order scatter geometry in shipborne HFSWR with sway motion.
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σ ωdð Þ ¼ σ1 ωdð Þ þ σ2 ωdð Þ (10)

It can be inferred from Eq. (10) that the derived cross sections could be reduced to the existing
results. Specifically, in the case of no uniform linear motion (i.e., v ¼ 0), it is readily checked
that the derived expressions are consistent with Walsh’s results for an antenna on a floating
platform [4, 8]. For the platform without sway motion (i.e., a ¼ 0), Eq. (10) agrees well with
Xie’s results [1, 2]. For a ¼ 0 and v ¼ 0, it is possible to reduce the derived results to the well-
known cross sections derived by Barrick [5, 9] or Walsh [10] for onshore monostatic HF radar.
This means that the derived cross section can be reasonably regarded as Xie’s results in
shipborne HFSWR are modulated by sway motion, or Walsh’s results in HF radar on a floating
platform are spread due to a uniform linear motion.

2.3.3.1. Cross sections for different platform speeds

Simulation parameters: f 0 ¼ 5:283MHz, α∗ ¼ 90 ∘ , and U ¼ 15 knots. In Figure 10, A and A0

indicate the Doppler frequencies of sea echo with f ¼ 0, whereas B and B0 represent the Doppler
frequencies of sea echo with f ¼ π. For a given radar-operating frequency in Eq. (10), it is evident
that the broadening region of the first-order sea echo is proportional to v. Because such Doppler
spreading can potentially mask the target echo of interest, a significant challenge in shipborne
HFSWR is the detection of moving targets whose Doppler frequencies appear in the spreading
region. When the platform moves at a high speed, the first-order sea echo spectrum will overlap.
To avoid the effect of Doppler overlap on wind direction extraction with shipborne HFSWR, the

platform speed should be limited by a theoretical maximum value vmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gλ0= 4πð Þp

. Addition-
ally, it can be inferred that additional spectra induced by sway motion will repeatedly emerge and
be located with uniform spacing of sway frequency, as shown in Figure 10.

2.3.3.2. Cross sections for different wind directions

Simulation parameters: f 0 ¼ 5:283MHz,U ¼ 15 knots, and v ¼ 10 knots. From Figure 11, there
exists obvious envelop distortion in the Doppler spectrum, which is indicated by the circles.
Under this condition, the positive and negative Bragg line energies are contaminated by the
second-order contributions [2], and the “corner reflector” peaks in the positive Doppler

Figure 10. Simulated cross sections for (a) v ¼ 4 knots and (b) v ¼ 10 knots.
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frequencies of sea echo with f ¼ π. For a given radar-operating frequency in Eq. (10), it is evident
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spreading can potentially mask the target echo of interest, a significant challenge in shipborne
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be located with uniform spacing of sway frequency, as shown in Figure 10.
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Under this condition, the positive and negative Bragg line energies are contaminated by the
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Figure 10. Simulated cross sections for (a) v ¼ 4 knots and (b) v ¼ 10 knots.
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spectrum are also masked by these sway-induced contributions. In remote-sensing applica-
tions, the sea echoes scattered from the ocean surface could be interpreted to extract the wave
height spectrum, as well as to estimate the surface current and wind field. Therefore, the
envelop distortions in the Doppler spectra may degrade the performance of ocean remote
sensing. Specifically, this would be detrimental to the wind direction extraction from the ratio
of the positive and negative Bragg line energies in shipborne HFSWR.

3. Remote sensing of ocean surface wind field with shipborne HFSWR

In this section, the potential of remote sensing of ocean surface wind direction and speed with
shipborne HFSWR are presented [11, 12], respectively. Based on the spreading mechanism of
the first-order Bragg lines, the unambiguous wind direction is extracted by the use of a single
receiving sensor. Due to this single-side system consisting of a transmitter and a receiving
sensor, it can be realized more easily and with less system cost, and it is more suitable for a
shipborne platform with limited deck space.

3.1. Space: time distributions of first-order sea echo

From Eq. (1), it can be inferred that the locations of positive and negative Bragg lines are
determined by the angle f, which is consistent with the space-time distribution of the first-
order sea clutter [7]

f d ¼ f dp cosf� f B (11)

where f d ¼ ωd=2π, f dp ¼ 2v=λ, f B ¼ ffiffiffiffiffiffiffiffiffiffiffi
g=πλ

p
is the first-order Bragg frequency in monostatic

onshore HFSWR. Different Doppler frequencies in Bragg region correspond to the sea echoes
from different incident directions and vice versa; therefore, the first-order Doppler spectrum is

Figure 11. Simulated cross sections for different wind directions. (a) α∗ ¼ 45 ∘ and (b) α∗ ¼ 315 ∘ .
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spread due to the forward movement of the platform. Then, the spreading domains of the first-
order Doppler spectrum should be

�f B � 2v=λ;�f B þ 2v=λ
� �

, f B � 2v=λ; f B þ 2v=λ
� �

(12)

Taking the differential of f d in Eq. (11), the Doppler frequency resolution Δf d can be expressed
as a function of the azimuth resolution Δf, which can be expressed as

Δf d ¼ f dp sinf � Δf (13)

Analogously to Doppler beam sharpening (DBS), the azimuth resolution can be obtained by

Δf ¼ Δf d= f dp sinf
� �

forf 6¼ 0 (14)

Generally, HFSWR can provide a very high-frequency resolution with long coherent integra-
tion time (CIT). Therefore, the shipborne HFSWR may provide a higher transverse resolution
than onshore HFSWR with a huge antenna array aperture.

3.2. Wind direction extraction in shipborne HFSWR

3.2.1. Mathematical model

For onshore HFSWR, wind directions are sensitive to the ratio of energies of positive and
negative Bragg peaks, which can be used to measure the wind direction [13]. To extract the
wind direction with shipborne HFSWR, analogously to onshore HFSWR case, the ratio R of
the positive and negative Bragg lines energies, Bþ and B�, is defined by

R ¼ 10 � log 10 Bþ=B�ð Þ (15)

where Bþ
B� ¼ σ ωdð Þ

σ �ωdð Þ ¼ G θþπ�α∗ð Þ
G θ�α∗ð Þ . The application prerequisite of Eq. (15) is that the two spreading

domains of the first-order Doppler spectrum in Eq. (12) are not overlapped, which means the
maximum permitted speed of shipborne platform vmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gλ= 4πð Þp

.

Together with the modified cardioid directional factor in Eq. (1), the abovementioned ratio can
be finally simplified as

R ¼ 10 log 10
ξþ 1� ξð Þ sin 4 θ�α∗

2

� �

ξþ 1� ξð Þ cos 4 θ�α∗

2

� �
 !

(16)

where ξ ¼ 0:004 is the strength ratio of upwind returns to downwind returns. For the conve-
nience of description of Eq. (16), we can define y as

y ¼ sin 2 θ� α∗

2

� �
(17)
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spread due to the forward movement of the platform. Then, the spreading domains of the first-
order Doppler spectrum should be

�f B � 2v=λ;�f B þ 2v=λ
� �

, f B � 2v=λ; f B þ 2v=λ
� �

(12)

Taking the differential of f d in Eq. (11), the Doppler frequency resolution Δf d can be expressed
as a function of the azimuth resolution Δf, which can be expressed as

Δf d ¼ f dp sinf � Δf (13)

Analogously to Doppler beam sharpening (DBS), the azimuth resolution can be obtained by

Δf ¼ Δf d= f dp sinf
� �

forf 6¼ 0 (14)
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3.2.1. Mathematical model

For onshore HFSWR, wind directions are sensitive to the ratio of energies of positive and
negative Bragg peaks, which can be used to measure the wind direction [13]. To extract the
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where Bþ
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.

Together with the modified cardioid directional factor in Eq. (1), the abovementioned ratio can
be finally simplified as
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where ξ ¼ 0:004 is the strength ratio of upwind returns to downwind returns. For the conve-
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Therefore, once y is calculated from Eq. (16), possible wind directions can be deduced by

α∗
p ¼ θ� 2arcsin

ffiffiffi
y

p� �
(18)

where � sign indicates the wind direction ambiguity.

3.2.2. Method for resolving wind direction ambiguity

For a fully developed sea area, wind directions are generally considered to be spatially uni-
form or slow-varying over adjacent ocean patch. That means the differences of wind directions
in adjacent ocean patches should be zero or near zero. Figure 12a describes four adjacent ocean
patches with corresponding incident directions. For ocean patch A with the incident direction
fA, the energies of positive and negative Bragg lines can be derived, as shown in Figure 12b.
Then, two possible wind directions α∗

A1 and α∗
A2 can be calculated by Eq. (18). Similarly, the

possible wind directions α∗
B1 and α∗

B2 for ocean patch B can also be derived. We define

Δαij ¼ α∗
Bi � α∗

Aj

���
��� i; j ¼ 1; 2ð Þ (19)

The value of α∗
Bi that minimizes Δαij is considered as the real wind direction of ocean patch B.

Therefore, the wind directions of the whole ocean area covered by radar can be measured by
sequentially applying this method.

3.2.3. Simulation and discussion

3.2.3.1. Simulation for wind direction extraction

Simulation parameters:f 0 ¼ 5:283MHz, v ¼ 10 knots. Consider that the input wind direction
α∗ slowly increasing from 135 ∘ to 180 ∘ is given for simulation. Due to the directional ambigu-
ity, it is difficult to determine the unique wind direction from the two possible solutions with a
single incident direction f as shown in Figure 13a. However, the problem of wind direction

Figure 12. (a) Possible wind directions of four spatially adjacent ocean patches A, B, C, and D. (b) Doppler spectrum.
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ambiguity can be effectively removed by comparing the possible results of adjacent sea cells, as
shown in Figure 13b, where the circles denote the slow-varying wind directions for simula-
tion. Simulation results visually illustrate the process of removing the directional ambiguity,
and the good agreement between the derived wind direction and the simulation parameter
shows the potential of unambiguity wind direction extraction with shipborne HFSWR.

3.2.3.2. Discussions of basic applications in shipborne HFSWR

In experiment, the effects of the coverage region shift due to platform motion, the real sailing
conditions (fluctuations of platform speed and course) during CIT, and the external Gaussian
noise on the wind direction extraction should be studied.

3.2.3.2.1. Effect of covered region shift due to platform motion

In order to investigate the effect of covered region shift, the ratio Rshift is defined as

Rshift ¼ Δr
ΔR

(20)

where Δr ¼ vT is the covered region shift during CIT T, ΔR ¼ Δf � ρ is the transverse resolu-
tion, Δf is the azimuth resolution in Eq. (14), and ρ is the radar detection range.

Then, Eq. (20) can be rewritten as

Rshift ¼ 2v2T2 sinf
λρ

≤
2v2T2

λρ
(21)

Reviewing the typical radar parameters in [7]: f 0 ¼ 5:283MHz, v ¼ 10 knots, ρ ¼ 100 km, and
T ¼ 150 s, Rshift < 0:21 can be obtained. That means Δr is nearly one-fifth of ΔR during T. In
addition, wind directions are considered to be uniform or slow-varying within adjacent ocean
patches. As mentioned earlier, we consider that the covered region shift during T would not
significantly influence the presented method.

Figure 13. (a) Possible wind directions. (b) Determination of unique wind direction.
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ambiguity can be effectively removed by comparing the possible results of adjacent sea cells, as
shown in Figure 13b, where the circles denote the slow-varying wind directions for simula-
tion. Simulation results visually illustrate the process of removing the directional ambiguity,
and the good agreement between the derived wind direction and the simulation parameter
shows the potential of unambiguity wind direction extraction with shipborne HFSWR.

3.2.3.2. Discussions of basic applications in shipborne HFSWR

In experiment, the effects of the coverage region shift due to platform motion, the real sailing
conditions (fluctuations of platform speed and course) during CIT, and the external Gaussian
noise on the wind direction extraction should be studied.

3.2.3.2.1. Effect of covered region shift due to platform motion

In order to investigate the effect of covered region shift, the ratio Rshift is defined as

Rshift ¼ Δr
ΔR

(20)

where Δr ¼ vT is the covered region shift during CIT T, ΔR ¼ Δf � ρ is the transverse resolu-
tion, Δf is the azimuth resolution in Eq. (14), and ρ is the radar detection range.

Then, Eq. (20) can be rewritten as

Rshift ¼ 2v2T2 sinf
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≤
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(21)

Reviewing the typical radar parameters in [7]: f 0 ¼ 5:283MHz, v ¼ 10 knots, ρ ¼ 100 km, and
T ¼ 150 s, Rshift < 0:21 can be obtained. That means Δr is nearly one-fifth of ΔR during T. In
addition, wind directions are considered to be uniform or slow-varying within adjacent ocean
patches. As mentioned earlier, we consider that the covered region shift during T would not
significantly influence the presented method.
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3.2.3.2.2. Effect of real sailing conditions

In order to explore the effect of real sailing conditions, the sailing data [7] are exploited to
derive the synthetic Doppler spectra. For comparison, then, the ideal Doppler spectra also are
derived. The simulation parameters are f 0 ¼ 5:283MHz, v ¼ 10 knots, α∗ ¼ 90 ∘ , and
U ¼ 25 knots.

A comparison of the ideal and synthetic spectra shows that the spreading regions of the latter
are slightly more obvious, as shown in Figure 14. Although slight fluctuation exists in the
speed and course, no apparent differences are found between the ideal and synthetic spectra
except for the margin. In experiment, accordingly, the middle regions of the spreading spectra
(e.g., f∈ 30 ∘ ; 150 ∘½ �) should be exploited to measure the wind direction.

3.2.3.2.3. Effect of external Gaussian noise

To examine the performance of the proposed method in externally noise-limited environment,
time series of the backscattered electric field is provided as follows:

Enð Þ1 f; tð Þ ¼ M �
X

K
!,ω

P
K
! ,ω

ffiffiffiffi
K

p
ejωtej ρþvt cosfð ÞKΔρsinc K � 2k0ð ÞΔρ=2� �

(22)

where M is a constant, P
K
! ,ω is Fourier coefficients of ocean surface components, K and ω are

the wavenumber and radian angular frequency, respectively, Δρ is the range resolution, and
Sinc �ð Þ is the sinc function.
The spreading spectra with the Gaussian noise can be derived by a periodogram method
[14, 15]. The simulated spectra from 150 s time series are shown in Figure 15, where
f 0 ¼ 5:283MHz, ρ ¼ 100 km, v ¼ 5:07m=s, Δρ ¼ 5 km, and α∗ slowly increasing from 0 ∘ in
the stern to 45 ∘ at the prow of shipborne platform. It is obvious that the noise floors decrease
with the increasing signal-to-noise ratio (SNR). That means a high SNR can improve the
performance of the wind direction estimation.

Figure 14. Ideal and the synthetic spreading Doppler spectra.
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3.2.3.2.4. Effect of comprehensive factors

Together with the real sailing speed and heading data, the influence of external noise is shown
in Figure 16. The performance is estimated via 100 independent Monte Carlo simulations for
each SNR, where the simulation parameters are the same as those in Figure 15. It is apparent
that the error of the wind direction estimation gradually decreases with the increasing SNR.
There is no obvious deviation between the two error curves. Therefore, external Gaussian
noise is the major factor affecting the performance of the wind direction estimation.

3.2.4. Experimental results

Shipborne HFSWR data were collected for moving target detection on 26 September 2016, in
Taiwan Strait, China, by the Harbin Institute of Technology with a carrier frequency of

Figure 15. Simulated spreading spectra with Gaussian noise: (a) SNR = 10 dB and (b) SNR = 20 dB.

Figure 16. Wind direction error caused by external Gaussian noise and comprehensive factors.
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6.45 MHz. Due to the directional ambiguity problem, partial data collected by shipborne
HFSWR sailing along the coast with a suitable speed can be exploited to validate the proposed
method.

In this experiment, the data collected by a single antenna during CIT from 08:47:37 to 08:49:46
were used for wind direction extraction. The average speed of the platform is 4.67 m/s. The CIT
is 129 s and the number of pulse during CIT is 512. The signal bandwidth is 50 kHz. The
detection limit and azimuth are 120 km and 53.4�–151.1� north, respectively. It should be noted
that an integral shift method is used to alleviate the effect of ocean surface current.

The radar-measured wind direction results are shown in Figure 17. Forecast data supported by
the FUJIAN MARINE FORECASTS (FJMF) are exploited to preliminarily validate the perfor-
mance of the presented method because of the lacking of in situ data. A comparison of
Figures 17 and 18 shows that the radar-measured results agree well with the local wind
direction forecasts over the same period. Given the data-observed time, Figure 18a is consid-
ered as the reference of the real wind field. That is, “real” wind directions are slow-varying
from 27.5� to 10.6� northeast, and “real” wind speeds are slow-varying from 13.8 to 8 m/s in
the detection region form north to south. A histogram of radar-measured wind direction
results is shown in Figure 19. Only samples whose sampling number is greater than 10 are
exploited to verify the performance of the wind direction measurement; 55.42% of the radar-
measured results are located in the range of the “real” wind direction. The percentage can
achieve 90.07% if the “real” wind direction range is extended to 0.6�–37.5� northeast. Mean-
while, the average value and the root-mean-square error (RMSE) of the radar-measured results
are 14.56� northeast and 9.85�, respectively.

Figure 17. Wind direction map derived by shipborne HFSWR. Dot: Shipborne radar. Arrow: Ship course.
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3.3. Wind field extraction in shipborne HFSWR

In Section 3.2, we proposed a method for extracting the unambiguous wind direction with an
empirical spreading parameter value of 2. In view of [16, 17], the spreading parameter depends
on the wind speed, which may be variable in the experiment. The optimum value for the
spreading parameter should be estimated from the shipborne HFSWR experiment data itself.
In this section, a method for simultaneously deriving the unambiguous wind direction and the
unique spreading parameter will be presented. Then, a relationship between the wind speed
and the spreading parameter will be developed by the drag coefficient. Therefore, the wind
field can be measured by sequentially using the presented method.

Figure 18. Wind field map at (a) 8:00 and (b) 11:00 on September 26, 2016. Dot: Shipborne radar.

Figure 19. Histogram of derived wind directions for the degree interval of 3� each.
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3.3. Wind field extraction in shipborne HFSWR
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empirical spreading parameter value of 2. In view of [16, 17], the spreading parameter depends
on the wind speed, which may be variable in the experiment. The optimum value for the
spreading parameter should be estimated from the shipborne HFSWR experiment data itself.
In this section, a method for simultaneously deriving the unambiguous wind direction and the
unique spreading parameter will be presented. Then, a relationship between the wind speed
and the spreading parameter will be developed by the drag coefficient. Therefore, the wind
field can be measured by sequentially using the presented method.
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3.3.1. Method for deriving unambiguous wind direction

Assuming that the spreading parameter s is a variable argument, analogously to Section 3.2.2,
Eq. (15) can be rewritten as

R ¼ 10 log 10
ξþ 1� ξð Þys

ξþ 1� ξð Þ 1� yð Þs
� �

(23)

where

y ¼ sin 2 θ� α∗

2

� �
(24)

Therefore, the possible wind directions can be deduced by

α∗
p ¼ θ� 2arcsin

ffiffiffi
y

p� �
(25)

where α∗
p varies with s, the � sign indicates the ambiguity of wind direction.

For each incident direction of sea echoes, analogously to Section 3.2.3, the derived wind
directions for different spreading parameters can be determined by Eq. (25), as shown in
Figure 20a. Obviously, the intersection of these two curves should be the unique solution for
the wind direction and the spreading parameter. Figure 20b shows a two-solution case, and
then the sea echo at the third incident direction from the adjacent cell will be necessary to
determine the unique solution.

3.3.2. Method for calculating wind speed

A relationship between s and the wind speed U is developed by a momentum transfer factor μ,
which can be written as [18]

Figure 20. Relationship between the wind direction and the spreading parameter. (a) One-solution case. (b) Two-solution
case.
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s ¼ 0:2 μ� 0:1
� ��1 μ > 0:1

2 μ < 0:1

(
(26)

where μ ¼ CDð Þ1=2 4π=gλð Þ1=2U=κ, κ ¼ 0:4 is von Karman’s constant and CD is a drag coeffi-
cient proposed by Wu [19]

CD ¼ 0:8þ 0:065Uð Þ � 10�3 (27)

Substituting Eq. (27) into Eq. (26) and using the Cardano formula, we have

s ¼ 0:2 U
κ

ffiffiffiffiffiffiffiffiffiffiffi
4π
gλCD

q
� 0:1

� ��1
U > U∗
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where U∗ is related to the radar frequency.

When U > U∗, using the Cardano formula, we can derive the one-to-one correspondence
relationship between U and s. Therefore, s can be considered as an indicator of U.

3.3.3. Simulation results

Simulation parameters: f 0 ¼ 5:283MHz, v ¼ 10 knots, the true wind direction and speed are
α∗
T ¼ 90 ∘ and UT ¼ 25 knots, respectively. The true spreading parameter is sT ≈ 2:1 calculated

by Eq. (28).

The relationship between the derived wind directions α∗ and s is shown in Figure 21a. The
solid curve indicates α∗ versus s for the incident direction of f1 ¼ 100 ∘ , while the dashed curve
represents the situation of the incident direction of f2 ¼ 110 ∘ . The intersection of these two
curves determines a solution for α∗ and s. Therefore, the extracted wind direction and the

Figure 21. Deriving wind field. (a) Determination of α∗
E and sE. (b) Determination of U.
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� �

(23)
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2

� �
(24)
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α∗
p ¼ θ� 2arcsin

ffiffiffi
y

p� �
(25)
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Figure 20. Relationship between the wind direction and the spreading parameter. (a) One-solution case. (b) Two-solution
case.
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spreading parameter are α∗
E ≈ 90:02

∘ and sE ¼ 2:10, respectively. The corresponding wind
speed is UE ≈ 24:98 knots calculated by Eq. (28), as shown in Figure 21b.

3.3.4. Experimental results

The experimental data and the “real”wind field have been described in Section 3.2.4. Figure 22
intuitively shows the radar-measured wind field distribution. From Figure 22, the majority of
wind directions are north-northeast and north. Meanwhile, wind speeds gradually decrease
and wind directions are slow-varying from north-northeast to north in the detection region
from north to south. Therefore, the radar-measured results are in good agreement with the
local wind field forecast.

Experimental results in Sections 3.2.4 and 3.3.4 show that the wind direction and field estima-
tion in shipborne HFSWR have derived very encouraging results. However, there are some
“bad points” that appear over the edge of the detection area, as shown in Figures 17 and 22,
where a larger deviation exists. This may be because the effect of directional ambiguity is not
totally eliminated due to the complex coastline structures. In addition, the ocean surface
current, six oscillating motions of shipborne platform, and swell may be have negative effects
on the wind direction and field estimations. Note that the method for wind field estimation is

Figure 22. Wind direction map derived by shipborne HFSWR. The wind direction map is displayed with a range
resolution interval each. Dot: Shipborne radar. Arrow: Ship course.
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presented for a fully developed sea area and the wind speed inversion is conducted out only
under the condition of U > U∗. Otherwise, the second-order spectra or other methods should
be introduced. These are the subjects of ongoing investigations.

4. Remote sensing of ocean surface current with shipborne HFSWR

HFSWR system has been widely deployed for remote sensing of ocean surface current. With
the development of signal-processing technology of HFSWR, shipborne HFSWR has gradually
become a more potential deployment situation with its agility and maneuverability. Some
experimental results and theoretical analyses have been conducted to explore the feasibility of
remote sensing of ocean surface current in shipborne HFSWR [20–23]. In the previous works,
however, the hull itself is either stationary or moving at a low speed without considering a
high-speed case and effects of six DOFs motion on radar Doppler spectra. In this section, the
potential of remote sensing of ocean surface radial current with shipborne HFSWR is
presented [24]. Moreover, a stream function method is introduced to obtain current vector
field using an improved music signal classification (MUSIC) algorithm and unitary transfor-
mation technique [25].

4.1. Remote sensing of ocean surface radial current

4.1.1. Received signal model

The shipborne platform exists six-DOF motion besides the forward movement owing to the
effect of the complex ocean environment, which will introduce the superposed amplitude and
phase modulations to the backscatter echoes [23], as shown in Figure 23. Considering antenna
pattern, external noise, forward movement, and six-DOF motion, the time domain model of
the received echo signal of the sea surface can be expressed as [25]

Figure 23. Diagram of six-DOF motion of shipborne platform.
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x R; tð Þ ¼
X
r, s

σ Rr;θs; tð Þa tð Þg θs; tð Þp θs; tð Þ þ e tð Þ (29)

where σ Rr;θs; tð Þ is the first-order radar cross section of ocean surface, Rr and θs are the
detection range and azimuth, respectively, a tð Þ and p θs; tð Þ are the amplitude and phase of the
array steering vector, respectively, g θs; tð Þ is the receiving antenna pattern, and e tð Þ is the
background noise.

4.1.2. Effect of six-DOF motion on ocean surface radial current estimation

In the previous section, a single antenna is used to estimate the directions of arrival (DOA) of
sea echoes. In this case, however, the effects of ocean surface current are not considered. In
order to estimate ocean surface radical current accurately, an antenna array with a high-
resolution technique is necessary. Theoretical analyses [26] and experimental results [27] have
demonstrated that MUSIC algorithm can achieve a good azimuthal resolution in ocean surface
current estimation with short aperture. In this section, therefore, the MUSIC algorithm is
employed to derive DOA.

From Section 2.1, the first-order Doppler spectra are spread due to the forward movement of
shipborne HFSWR, and the spreading region increases with the increasing speed of the plat-
form. That means the Bragg energies have been distributed into more peaks, and the spreading
peaks exhibit many more Doppler sampling points which can be exploited to estimate DOA.
From Figure 24a, the sampling points increase with the increasing platform speed. However,
the performance of radial current estimation decreases. In particular, a higher RMSE appears
when the ship is still, which may be because of lacking of sampling points. Meanwhile, the
radial current RMSE is really high when the ship moves at a high speed, which may be caused
by a low SNR. Therefore, the relationship between the RMSE and the platform speed would be
a significant reference for the real sailing speed.

Figure 24. (a) Measurement errors of different platform speeds. (b) Effects of six-DOF motion.
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From Figure 24b, the radial current RMSEs increase with the increasing amplitude of rotation
(pitch, roll, and yaw) and sway. In particular, the surge has no severe influence on the mea-
surement performance, which may be because the surge is generally in the direction of the
platform-forward movement. Additionally, yaw plays the most important effect on the radial
current estimation. Simulation results show the feasibility of remote sensing of ocean surface
radial current in shipborne HFSWR. In addition, the performance of the current estimation is
sensitive to the variation of amplitude of six-DOF motion besides surge, rather than the
forward movement of the platform.

4.2. Remote sensing of ocean surface current vector field

4.2.1. Method for current vector measurement using RVSR-MUSIC

From Section 4.1, the estimate accuracy of DOA algorithm has significant influence on the
performance of ocean surface current measurement. In order to take advantage of the limited
radar data to improve the estimate accuracy of DOA, a real-valued MUSIC algorithm based on
sparse-representing technique (RVSR-MUSIC) has been presented [25]. Once RVSR-MUSIC
has been exploited to estimate DOA, the sea clutter spectra of shipborne HFSWR can be
extracted with high resolution, and the Doppler frequency shift and the corresponding azi-

muth can be derived. Then, the radial velocity bVr of ocean surface current at azimuth bf can be
expressed as

bVr ¼ λ
2

bf d ∓
ffiffiffiffiffi
g
πλ

q
� 2v cos bf
λ

0
@

1
A (30)

where λ is the radiation wavelength, bf d is the Doppler frequency shift, g is the gravitational

acceleration, and bf is the corresponding azimuth.

As shown in Figure 25, the radial velocity of ocean surface current Vr x; yð Þ in azimuth f can be
written as [25]

Vr x; yð Þ ¼ xu x; yð Þ þ yw x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p (31)

According to the introduction of stream function in [28], we have [25]

V x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 x; yð Þ þ w2 x; yð Þ

q
(32)

γ x; yð Þ ¼ tan �1 w x; yð Þ=u x; yð Þ½ � , if u x; yð Þ ≥ 0
πþ tan �1 w x; yð Þ=u x; yð Þ½ �, else

(
(33)

where V x; yð Þ and γ x; yð Þ are the amplitude and the direction of ocean surface current vector

V
!

x; yð Þ, respectively.
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4.2.2. Simulation results

Simulations are conducted under these conditions: the number of the receiving antenna is
M ¼ 7, the space between antennas is d ¼ λ=2, the radar-operating frequency f 0 ¼ 7:5MHz,
the radar modulation period Tr ¼ 0:5 s, and the platform speed v ¼ 10m=s [25]. We assume a
uniform ocean surface current field with a velocity of 0.5 m/s. Three different methods includ-
ing spatial smoothing MUSIC (SS-MUSIC), complex-valued SR-MUSIC (CVSR-MUSIC), and
RVSR-MUSIC are exploited to estimate ocean surface radial current by 50 independent Monte
Carlo trials, as shown in Figure 26. It is obvious that RVSR-MUSIC is the most efficient
algorithm for ocean surface radial current estimation.

Figure 27 shows the amplitude errors of the uniform current field using RVSR-MUSIC algo-
rithm for radial current measurements and the second-order stream function for surface
current vector measurements. It is apparent that a majority of amplitude errors are within
0.1 m/s. Simulation results demonstrate that the remote sensing of ocean surface current field
using a single shipborne HFSWR is feasible. RVSR-MUSIC algorithm obtains the best estima-
tion performance compared with other algorithms.

Figure 25. Geometrical relation between 2D surface current vector and radial current.

Figure 26. Performance estimation of ocean surface current. (a) Radial current profile. (b) RMSE of radial current versus SNR.
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Analyses of the simulation results show that the presented method here has derived very
encouraging results. However, the effects of practical conditions in shipborne HFSWR should
be considered. First, when HFSWR is mounted on a ship, the iron body distorts the electro-
magnetic field severely, which will lower azimuth resolution. Second, the nonideal motions
will introduce a superposed amplitude and phase modulation to the backscatter echoes. Third,
although RVSR-MUSIC algorithm can increase estimation accuracy and reduce the computa-
tional cost, unitary transformation is based on a centro-symmetrical array (CSA), which will
severely limit the applications. In addition, the prerequisite of this method is that two-
dimensional (2D) ocean surface current field is horizontally nondivergent (or incompressible).
These are the subjects of ongoing investigations.
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Abstract

Aquatic invasive plants are well known for causing severe impacts to local ecosystems,
such as degrading water quality, decreasing biodiversity, consuming natural resources,
among other impacts. Major water bodies in US had experienced such impacts. To miti-
gate such impacts, the U.S. Fish and Wildlife Service and the Ohio River Valley Water
Sanitation Commission had put significant amounts of effort toward identifying and
removing aquatic invasive plants along the Ohio River shorelines. Field work played a
significant role in such identification and removal, but at great expense on labor and time.
River systems are dynamic, coupled with similarities between spectral reflectance from
submerged plants and background water bodies, limited success was reported from
literature regarding the use of remote sensing with selected images on detecting aquatic
plants. This study utilized Google Earth historical images between 2003 and 2015 along a
section of Ohio River known as the Racine Pool and examined and recorded the appear-
ances of aquatic plants. Visible aquatic plants or suspicious submerged objects were
digitized and converted to ESRI shapefiles and grids. Spatial analyses and overlays were
then performed between grids to derive a map showing frequency of appearance. Such
frequency of appearance may serve the purposes of predicting future sighting and/or
guides for directing field work in hopes to save labor and time.
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1. Introduction

The proliferation of invasive plants in lakes, ponds, and inland wetlands is of increasing
environmental concern; as such plants have the potential to degrade natural ecosystems by
compromising water quality, decreasing the usable area of water bodies, and degrading
aquatic habitats. Four invasive plant species (purple loosestrife (Lythrum salicaria L.), hydrilla
(Hydrilla verticillata), water-milfoil (Myriophyllum), and curly pondweed (Potamogeton crispus L.))
have been identified as potential weed threats within the Ohio River Basin [1–4]. Ohio River
Valley Water Sanitation Commission has the responsibility of educating people on the facts
about the Ohio River, as well as monitor water quality and overall condition of the Ohio River
[5]. Field surveys were conducted to survey lakes, ponds, and inland wetlands in this area to
identify andmonitor the extent of these invasive plants. An effective early detection andwarning
system utilizing remotely sensed images could greatly benefit the area and significantly reduce
labor- and time-costs associated with field surveys.

Though remote sensing had been widely used in various environmental applications [6–8],
there were only few studies using remote sensing on detecting submerged aquatic plants.
The main difficulty in such a task is the similarity between spectral reflectance from sub-
merged aquatic plants and their background water bodies. It becomes particularly challeng-
ing under circumstances where there are high amounts of sediment or suspected particles in
the water. Use of remote sensing to identify or detect objects relies heavily on unique
spectral reflectance from objects [9, 10]. When such unique spectral reflectance from objects
is neither visible nor statistically significant, successful detection or identification of objects
will be limited.

Figure 1. Study area: the Racine Pool section of Ohio River.
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1.1. Research objective

The research objective of this project is to use time series remote sensing images to derive a
likelihood of sighting submerged aquatic plants along a section of Ohio River known as the
Racine Pool.

1.2. Study area

The study area is the Racine Pool along the Ohio River. It is geographically defined as an upper
boundary at 39.118468174 (39� 70 600) N 81.740928386 (81� 440 2700) W and a lower boundary at
38.914896204 (38� 540 4800) N 81.91346283 (81� 540 5400) W as seen in Figure 1 from a snapshot of
Google Earth. The ground work confirmed the following aquatic invasive plants: site 1 on
August 3, 2010 at 38.93543 N 81.80331 W; site 2 on August 3, 2010 at 38.92042 N 81.77196 W;
and site 3 on July 2, 2010 at 38.87984 N 81.87103 W. Table 1 summarizes sites of ground work
and associated dates and coordinates, they are also shown in Figure 1.

2. Previous attempts to identify submerged aquatic invasive plants

2.1. Formosat-2 images

Formosat-2 images are unique in regard to their spatial and temporal resolution [11, 12]. Multi-
spectral Formosat-2 images contain four bands (blue, green, red and near infrared) at an 8-m
pixel size. Panchromatic Formosat-2 images contain one band at a 2-meter pixel size. Therefore,
applying proper pan-sharpening processes will result in a multispectral image of four bands
with 2-m pixel size. With such superior spatial resolution, these images are capable of monitoring
heterogeneous areas, including urban areas. Most impressive is the ability to collect images daily.
Due to the satellites’ unique design and orbit, it is capable of collecting images of the same area
every day, providing unparalleled capacity for monitoring rapid-change events, such as natural
diseases.

Formosat-2 is managed by the Taiwan National Space Organization (NSPO). To facilitate
world-wide applications, NSPO partnered with the Colorado, US-based Apollo Mapping to
sell and distribute Formosat-2 images of the entire world. NSPO maintained the rights to sell
and distribute Formosat-2 images of Taiwan. Two scenes of Formosat-2 images of the Racine
Pool were acquired on October 28, 2010 (as shown in Figure 2) and November 1, 2010 (as

Site Date Lat/Long UTM

Site 1 August 3, 2010 38.93543 N 81.80331 W 430376.315441 X 4309917.960553 Y

Site 2 August 3, 2010 38.92042 N 81.77196 W 433079.384833 X 4308228.797736 Y

Site 3 July 2, 2010 38.87984 N 81.87103 W 424447.956561 X 4303802.923941 Y

Table 1. Site locations in Racine Pool section.
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shown in Figure 3). Table 2 summarizes sections of the Ohio River under study and Formosat-
2 images acquired.

2.2. Image processing and results

According to Table 2, there were only 3 or 4 months between the site visit and Formosat-2
image. They were in close proximity in terms of temporal disparity. Upon close visual inspec-
tion of the Formosat-2 image, something unexpected drew our attention. As shown in Figure 4,
site 3 was highlighted on Formosat-2 image with false color display (R,G,B/4,3,2). The Ohio
River is a spectrally homogeneous water body, without any major visual spectral anomaly,
except shadows from trees along the shoreline. With site visits and confirmed sightings,
spectral anomaly was expected around site 3, where the crosshair is.

Several multispectral digital image processing (such as supervised classification, unsupervised
classification, principal component analysis, band ratio, and others), regular image processing
(such as RGB enhancement, HSV transformation, color clustering, and others), or even single
band processing (such as threshold, density slicing classification, edge enhancement, and
others) were applied on the Formosat-2 image trying to identify any spectral anomaly. Unfor-
tunately, none of these techniques can identify spectral anomaly with confidence.

With such a disappointing result, the research team started over and reexamined data,
ground truth, methodology, and the overall situation. It was soon discovered that river

Figure 2. Formosat-2 image of Racine Pool section taken on October 28, 2010.
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dynamics may be the cause for such disappointing results. River ecosystem is dynamic; it
changes from time to time due to then-current local environments and weather conditions
[13–15]. There are many factors that may affect a river ecosystem, especially how a river looks
on satellite images. These factors may include water level, flow velocity, and sediment level,
just to name a few.

With such dynamic conditions, working with a single satellite image is like taking a snapshot
of a racing car. The satellite image captured the then-current condition, which may only be true
to that particular moment but not even the moment before or after. These two Formosat-2
images truthfully recorded the conditions of the Ohio River on 10/28/2010 and 11/1/2010.
However, aquatic plants were sighted on 7/2/2010, 4 months prior to the satellite image was
taken. During these 4 months, many things may happen and change the overall appearance of
a river, which in turn may affect the visibility of aquatic plants.

Name Location Formosat-2 image date Ground work date m/d/y

Racine Pool Upper: 39.11847 (39� 70 600) N
81.74093 (81� 440 2700) W

Lower: 38.91490 (38� 540 4800) N
81.91346 (81� 540 5400) W

10/28/2010
11/1/2010

#1: 8/3/2010
#2: 8/3/2010
#3: 7/2/2010

Table 2. Sections of Ohio River under study and images acquisition.

Figure 3. Formosat-2 image of Racine Pool section taken on November 1, 2010.
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3. Historical Google Earth images

To demonstrate the nature of river dynamics, historical images from Google Earth from 2003 to
2011 were taken and arranged side by side for comparison, as shown in Figure 5, with a close-
up visual inspection of a particular pair of images (October 2011 in Figure 5(j) and November
2011 in Figure 5(k)) shown in Figure 6. As one may observe from Figure 6(a) and (b), there
clearly is a linear object appearing along shoreline on Figure 6(b), but it is only faintly visible
on Figure 6(a). Just a month apart from each other, the appearance of this aquatic object
dramatically changed, proving river ecosystem is dynamic, changing its appearance through
time. Thus, the visibility of aquatic object is not consistent, depending on then-current condi-
tions. Knowing this, it is not surprising that this particular aquatic object can be seen in some of
the images shown in Figure 5, but not others. One may also notice that in Figure 5(h), shadows
from trees along the shorelines added confusions and challenges on identifying this aquatic
object. These historical Google Earth images and their abilities to visually identify this partic-
ular aquatic object are summarized in Table 3. Note this: this particular site is site 3 with a
confirmed sighting of aquatic plants on 7/2/2010 by field crews during their field work. It is
only nature and logic to assume that this spectral anomaly or aquatic object is the reported
aquatic plants. It is also safe to conclude that, even with confirmed sighting, the visibility of
this particular aquatic plant is not consistent through time as demonstrated in Figure 5.

Figure 4. Site 3 on Formosat-2 satellite image with false color display (R,G,B/4,3,2).
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4. Development of a frequency of sighting map

4.1. Warning system and predictive model

Warning system or early warning system had been used in many conservation efforts trying to
point out potential threats to a particular ecosystem [16–19]. In many cases, warning system is

Figure 5. Historical Google Earth images of site 3. (a) Image of December 2003, (b) image of September 2004, (c) image of
August 2005, (d) image of July 2006, (e) image of October 2006, (f) image of August 2007, (g) image of September 2009,
(h) image of October 2009, (i) image of December 2010, (j) image of October 2011, (k) image of November 2011.
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Figure 4. Site 3 on Formosat-2 satellite image with false color display (R,G,B/4,3,2).
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4. Development of a frequency of sighting map

4.1. Warning system and predictive model

Warning system or early warning system had been used in many conservation efforts trying to
point out potential threats to a particular ecosystem [16–19]. In many cases, warning system is

Figure 5. Historical Google Earth images of site 3. (a) Image of December 2003, (b) image of September 2004, (c) image of
August 2005, (d) image of July 2006, (e) image of October 2006, (f) image of August 2007, (g) image of September 2009,
(h) image of October 2009, (i) image of December 2010, (j) image of October 2011, (k) image of November 2011.
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a result of a predictive model, in which a particular ecosystem is simplified to or modeled by a
combination of several factors with associated weights [16, 20, 21]. Success had been reported
[18, 19, 22], particularly on solid land where changes are steady or reliable, comparing to
aquatic environments.

A critical step in modeling is to identify key factors and their associated weights [23, 24]. These
factors and/or weights can be derived from empirical work, literature search, or statistical
analysis. In environmental modeling, factors should be something that can be clearly identified
and observed in the real world. For example, elevation is to be between 1000 and 1500 m above
sea level, slope is to be between 5 and 10�, aspect is to be facing south between southeast and
southwest, and so on.

As demonstrated by historical Google Earth images in Figure 5, aquatic objects may be visible
or not, depending on then-current river conditions. When it is not visible, it does not mean that
the aquatic object (aquatic plants in this case) has been removed or is not present. It simply

Figure 6. A close-up visual inspection of (a) October 2011 and (b) November 2011 images.

Google Earth image date Sub Figure 5 Spectral anomaly

December 2003 (a) N

September 2004 (b) N

August 2005 (c) N

July 2006 (d) Y

October 2006 (e) Y

August 2007 (f) Y

September 2009 (g) Y

October 2009 (h) Y

December 2010 (i) Y

October 2011 (j) Y

November 2011 (k) Y

Table 3. Dates of historical Google Earth images of site 3.
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indicates that the acquired images or photos cannot detect the existence of aquatic objects. They
may be disguised. With such uncertainty in appearance, and subsequent ground truthing work,
traditional modeling approach may not be suitable or even not workable in aquatic environ-
ments. A new approach which is realistic and suitable to aquatic environments is necessary.

Instead of using modeling approach, this study proposed an methodology to survey historical
images and create a frequency of sighting map.

4.2. Temporal resolution of remote sensing images

Since the successful launch of Landsat-1 back in 1972, there had been a great wealth of satellite
images monitoring our environments. With advances of modern technologies, satellite images
are becoming of better quality with more resolution power, such as hyperspectral images with
hundreds of spectral bands [25–27] or ultra-fine spatial resolution image with sub-meter pixel
size [28–30].

In addition to spatial resolution and spectral resolution, another characteristic of remote
sensing systems is temporal resolution or the repetitive coverage of the ground by the system
itself. Though remotely sensed images have been widely used to identify vegetation in various
conditions [31–33], majority of such projects focused on only selected images to identify objects
under study, mainly utilizing spatial resolution or spectral resolution. Temporal resolution, on
the other hand, had been overlooked in the mainstream remote sensing research. This study
looks to survey historical images of the Racine Pool section of the Ohio River, and it requires a
rich image history and a decent temporal resolution.

Google acquired Keyhole Inc., in 2004, and soon launched Google Earth in 2005 [34]. It became
a huge hit in the broader geographic information system (GIS) community, as well as the
general public. With Google Earth, everyone has free access to satellite images or aerial photos
of the entire earth, not only recent images but also historical images. These historical images is
an invaluable resource in many environmental projects requiring low cost (or even free) and
historical images. Major drawbacks on these historical Google Earth images include inconsis-
tent time interval between images (as short as a month or sometimes as far as years), inconsis-
tent image quality (sun angle, image brightness, color/gray level, pixel size, etc.), lack of image
metadata, and so on. Historical Google Earth images was a useful tool and resource to
demonstrate the river dynamics earlier in this study. It is selected again as the image source
for the new methodology.

4.3. Frequency of sighting from historical Google Earth images

Eleven sets of Google Earth images of the study area between 2003 and 2015 were selected for
this project. Though Google provides images before 2003, many earlier images were excluded
from this project due to image quality, such as pixel size, color detail, and so on. Table 4
summarizes year and month of these historical Google Earth images.

Each historical Google Earth image was displayed on computer monitor and visually
inspected. If a spectral anomaly is visible during visual inspection, such spectral anomaly was
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indicates that the acquired images or photos cannot detect the existence of aquatic objects. They
may be disguised. With such uncertainty in appearance, and subsequent ground truthing work,
traditional modeling approach may not be suitable or even not workable in aquatic environ-
ments. A new approach which is realistic and suitable to aquatic environments is necessary.

Instead of using modeling approach, this study proposed an methodology to survey historical
images and create a frequency of sighting map.

4.2. Temporal resolution of remote sensing images

Since the successful launch of Landsat-1 back in 1972, there had been a great wealth of satellite
images monitoring our environments. With advances of modern technologies, satellite images
are becoming of better quality with more resolution power, such as hyperspectral images with
hundreds of spectral bands [25–27] or ultra-fine spatial resolution image with sub-meter pixel
size [28–30].

In addition to spatial resolution and spectral resolution, another characteristic of remote
sensing systems is temporal resolution or the repetitive coverage of the ground by the system
itself. Though remotely sensed images have been widely used to identify vegetation in various
conditions [31–33], majority of such projects focused on only selected images to identify objects
under study, mainly utilizing spatial resolution or spectral resolution. Temporal resolution, on
the other hand, had been overlooked in the mainstream remote sensing research. This study
looks to survey historical images of the Racine Pool section of the Ohio River, and it requires a
rich image history and a decent temporal resolution.

Google acquired Keyhole Inc., in 2004, and soon launched Google Earth in 2005 [34]. It became
a huge hit in the broader geographic information system (GIS) community, as well as the
general public. With Google Earth, everyone has free access to satellite images or aerial photos
of the entire earth, not only recent images but also historical images. These historical images is
an invaluable resource in many environmental projects requiring low cost (or even free) and
historical images. Major drawbacks on these historical Google Earth images include inconsis-
tent time interval between images (as short as a month or sometimes as far as years), inconsis-
tent image quality (sun angle, image brightness, color/gray level, pixel size, etc.), lack of image
metadata, and so on. Historical Google Earth images was a useful tool and resource to
demonstrate the river dynamics earlier in this study. It is selected again as the image source
for the new methodology.

4.3. Frequency of sighting from historical Google Earth images

Eleven sets of Google Earth images of the study area between 2003 and 2015 were selected for
this project. Though Google provides images before 2003, many earlier images were excluded
from this project due to image quality, such as pixel size, color detail, and so on. Table 4
summarizes year and month of these historical Google Earth images.

Each historical Google Earth image was displayed on computer monitor and visually
inspected. If a spectral anomaly is visible during visual inspection, such spectral anomaly was
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digitized as a KML polygon using available tools from Google Earth. Figure 7 demonstrates
this process. Figure 7(a) shows the 08/2007 Google Earth image of site 2, with visible spectral
anomalies. Such spectral anomalies were then digitized as a KML polygon using available tools
from Google Earth, as shown in Figure 7(b). Figure 7(c) shows the 10/2009 Google Earth image
of site 2, with no visible spectral anomaly. Therefore, no polygon was digitized for this area.

Google Earth image year Month

2003 December

2004 September

2005 August

2006 July

2007 August

2009 August

2010 December

2011 October

2012 March

2013 October

2015 October

Table 4. Historical Google Earth images selected for this project.

Figure 7. Example of digitizing spectral anomalies from Google Earth images. (a) 08/2007 Google Earth image of site 2
with visible spectral anomalies. (b) Digitizing this anomaly with a KML polygon. (c) 10/2009 Google Earth image of site 2
with no visible spectral anomaly. No KML polygon was digitized on 10/2009 Google Earth image.
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After all of the 11 historical Google Earth images were visually inspected and associated KML
polygon digitized, a database of polygons showing potential aquatic plants in the study area,
by image year, was created. These KML polygons were then converted to ArcGIS shapefile
format for some clean-up work, and then converted to ArcGIS grids or raster format for further
process. With grids or raster format, all of these spectral anomalies from all of these image
years were then analyzed and overlaid through image algebra. The final result is a map or grid
showing the frequency of visible spectral anomaly (referred to as frequency of sighting map) in
the study area. Figure 8 shows a portion of the frequency of sighting map, focusing on site 2.
The frequency is color-coded, as shown in Figure 8. Different colors indicate different frequen-
cies through the surveyed image years. For example, a frequency of 7 indicates that in the
surveyed 12 image years, a spectral anomaly (potential aquatic plants) showed up in this
particular area 7 times. In such a case, it is a high occurrence rate. Areas of higher frequency
indicate more occurrences or sightings in the past. With more occurrences in the past, it is
believed that it will lead to higher likelihood of occurrence in the future.

4.4. Discussions

The end results of this study are a frequency of sighting map of aquatic plants in the Racine
Pool of the Ohio River. The frequency is obtained from surveying historical Google Earth
images. Some of the consecutive Google Earth images are years apart from each other. In a
dynamic environment, such long time interval is not ideal. A further study can acquire histor-
ical satellite images with reliable temporal resolution to obtain a higher quality of frequency of
sighting map.

This frequency of sighting map can serve as a suggestive guide for field work. As budget
difficulties rise, performing regular field work may become challenging. A suggestive guide
may save time and money on field work. More resources may be directed to areas of higher

Figure 8. A portion of the frequency of sighting map showing site 2.
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digitized as a KML polygon using available tools from Google Earth. Figure 7 demonstrates
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anomalies. Such spectral anomalies were then digitized as a KML polygon using available tools
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particular area 7 times. In such a case, it is a high occurrence rate. Areas of higher frequency
indicate more occurrences or sightings in the past. With more occurrences in the past, it is
believed that it will lead to higher likelihood of occurrence in the future.
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The end results of this study are a frequency of sighting map of aquatic plants in the Racine
Pool of the Ohio River. The frequency is obtained from surveying historical Google Earth
images. Some of the consecutive Google Earth images are years apart from each other. In a
dynamic environment, such long time interval is not ideal. A further study can acquire histor-
ical satellite images with reliable temporal resolution to obtain a higher quality of frequency of
sighting map.

This frequency of sighting map can serve as a suggestive guide for field work. As budget
difficulties rise, performing regular field work may become challenging. A suggestive guide
may save time and money on field work. More resources may be directed to areas of higher
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frequency, as they have higher potential of showing aquatic plants and therefore bigger threats
to the river ecosystem.

Remote sensing had proven successful on developing a warning system for aquatic plants in
the Racine Pool of the Ohio River. Though a warning system is in place, it is still critical to
continuously monitor the environment and update the warning system. A future study with
secured funding can schedule satellite images with reasonable temporal resolution to continu-
ously monitor aquatic plants.

5. Conclusion

River is a dynamic ecosystem, with its appearance changing depending on then-current local
environments. A snapshot of such dynamic environment can only truly represent a moment of
truth when the snapshot was taken. Previous attempts trying to identify aquatic plants with
remote sensing had results in unsatisfying results. Based on lessons learned from previous
attempts, this study utilized historical Google Earth images from 2003 to 2015 to identify
aquatic plants. Once aquatic plants were identified, they were digitized and overlaid to form
a frequency of sighting map. This frequency of sighting map, which indicates the frequency of
confirmed aquatic plants in the past 12 years, can serve as a suggestive guide for future field
work should budget difficulties restrict or limit resources for field work. In some degrees, it
serves the same function as a predictive model.
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Abstract

Today, the presence of green areas in cities plays an important role for the well-being of 
its inhabitants and its sustainable development. Modern cities need green spaces for envi-
ronmental, psychological, esthetic, economic, and social reasons. In this meaning, Chilean 
cities, although Chile is still considered by the United Nations1 as a developing economy, 
are no exception. Given the importance of this common good, it is necessary to optimize 
its permanent care. An incident factor in the deterioration of vegetation in urban and rural 
areas is stress, which can be of biotic or abiotic origin. One way to systematize care of trees 
is by the application of multispectral sensors and modern digital image processing. Once 
plantations or trees are spectrally characterized, one can proceed to develop plant health 
mitigation programs. This article shows the potential of remote sensing for tree stress detec-
tion, in the central south of Chile. Focus is given on rural areas as forestry for the Chilean 
economy is of great importance. These approaches can easily be adapted to urban scenarios.

Keywords: trees, stress, remote sensing, image processing, rural, Chile

1. Introduction

Public open green spaces, urban and national parks, playgrounds, plazas, and even trees, 
grass, and shrubs on sidewalks or elsewhere, are important elements meant for recreation or to 
enhance the esthetic appeal of a neighborhood. So does vegetation planted or loosely installed 
on rooftops. A couple of particular benefits can be identified in this context. Not only green 
infrastructure helps to mitigate the urban heat island effect by filtering air and reducing runoff 
but also contribute to a couple of economical and environmental benefits. A study of low-income 

1http://www.un.org/en/development/desa/policy/wesp/wesp_current/2014wesp_country_classification.pdf
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Philadelphia neighborhoods published in [1] shows that newly planted trees boosted sale prices 
of nearby houses by 2%. Parks and green spaces, accessible by public, which include protected 
natural lands, ecological reserves, wetlands, and other green areas are critical to provide healthy 
habitats for humans, wildlife, and plants. The preservation of regional ecosystems is crucial for 
natural landscapes in a time cities tend to grow faster and faster.

Furthermore, some important health benefits such as better perceived general health, reduced 
stress levels, reduced depression, associated with access to public open space and parks, such 
as the Central Park in New York, USA (Figure 1), have been discovered. The World Health 
Organization (WHO) stated out that major public health risk is caused by physical inactivity 
during a prolonged period of time. In general, citizens or visitors of public green spaces prefer 
spaces that are highly attractive (e.g. due to high level of diversity), widely open, and in their 
nearby vicinity, see [2].

To grant access to green spaces and parks, for example, trail networks can be generated to link 
cities with parks or individual parks between each other. City parks can be made accessible 
through bikeways or even old rail tracks that can be transformed into greenways.

On the one hand and according to [3], in Chile, there are about 1.5 million hectares of planta-
tions of Pinus radiata D. Don whose main use is commercial. Especially, the Chilean central 
south is considered as the most important region for the commercial forestry sector nationwide 
as climate conditions favor tree growth. The national forest institute INFOR indicates that only 
between the region Maule and Aysén, there are approximately 1.4 million hectares of P. radiata, 
both ponderosa as radiata, equivalent to 95% of the P. radiata trees planted across the country.

On the other hand, Chilean national parks and nature reserves play a fundamental role. In 
Chile, there are 36 national parks, 49 nature reserves, and 16 nature monuments. Fifty-eight 
(over 50%) of them are located in the central south. Flora and fauna are protected by law and 
its sustainable conservation is of public interest.

Figure 1. Urban public green space Central Park, New York, United States of America (https://de.wikipedia.org/wiki/
Central_Park#/media/File:New_York_City-Manhattan-Central_Park_(gentry).Jpg).
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In Chile, current pest and damage monitoring is mainly realized outdoors by specially trained 
personnel in order to detect symptoms and damages. The method used is based on polls or 
surveys that involve the visual inspection of trees in areas under threat and already affected 
areas, as described in [4]. It is necessary to have a tool or develop a methodology, that allows 
the detection of any disease in time and to take appropriate measures.

Our natural environment is changing constantly. It may be that these changes are natural 
(season of year, climate and weather, etc.), caused by human beings (construction, agricul-
ture, etc.), or a combination of both. Today more than ever exists the necessity to understand 
natural processes and manage carefully the human activities. However, to carry out and 
establish a complex monitoring and analysis system of nature-human interaction, geospatial 
information is required. This information is generated based on observations that have been 
transformed into data, which finally is processed, thus achieving to extract what is particu-
larly required, as for example, the physical state of nature. The observations can be acquired 
in different ways either through direct measurements, where the instrument must be in the 
same place where the object is located, or through remote measurements, the instrument is 
located at a considerable distance from the object and does not have physical contact with it.

According to [5], stress in nature can be defined as an external factor coming from any source 
that has a negative influence on a plant. It differs between biotic factors by the intervention 
of other living beings and abiotic, which are of a physical and/or chemical nature. The extent 
to which stress affects a plant is determined through measuring the survival of the plant, the 
crop yield, growth, or primary assimilation processes.

Detecting stress in plants is not a straightforward task. While on-site inspection by experi-
enced professionals in the area can identify high-damaged trees or plants very accurately, the 
time required for inspecting larger areas is the most limiting factor for such a task. Through 
methods such as remote sensing, it is possible to study large surfaces in a much shorter time 
and with a high degree of reliability. Particularly, it is necessary to study certain plant char-
acteristics such as visible symptoms of damage in the cup of trees and branches structure or 
properties associated with the reflection of electromagnetic energy coming from solar lighting.

2. Remote sensing

Remote sensing as defined by [6–8] and others, which includes a huge variety of procedures 
that allows to derive information about our environment, is based on the observation realized 
by a sensor located at a large distance (without having physical contact with the objects) of 
the reflected and/or emitted electromagnetic radiation. So, the goal is to capture the degree of 
interaction between electromagnetic energy and the objects with which it comes into contact. 
This way, it is possible to determine the degree of reflection and absorption of electromagnetic 
energy by any kind of object, whether it is natural or artificial.

One has to distinguish between two types of observing systems: active and passive sensor 
systems (Figure 2). The main difference between these systems is the source of the electro-
magnetic radiation emitted, which finally enters in contact with the objects.
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The electromagnetic spectrum is formed by the energy distribution of the radiant energy 
according to its wave length λ and extends from gamma rays (shorter wavelength) until radio 
frequency (longer wavelength). However, remote sensing systems tend to make use of spe-
cific intervals within the electromagnetic spectrum, basically the visible, infrared, and micro-
wave spectra Figure 3. This relies on the fact that within these spectra, atmospheric windows 
can be observed in which the transmission of the electromagnetic radiation is not altered by 
absorption and distortion.

The most relevant in the field of remote sensing are:

• Visible spectrum (λ = 0.38–0.78 μm).

• Near infrared (λ = 0.78–3.0 μm).

Figure 2. Principle of active and passive remote sensing sensors (adapted from https://en.wikipedia.org/wiki/Remote_
sensing#/media/File:Remote_Sensing_Illustration.jpg).
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• Short-wave infrared (λ = 3.0–50 μm).

• Thermal infrared (λ = 50–1 mm).

• Microwaves (λ = 1 mm–1 m).

Figure 3. Electromagnetic spectrum (adapted from: https://en.wikipedia.org/wiki/Electromagnetic_spectrum#/media/
File:Electromagnetic-Spectrum.svg).
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2.1. Vegetation study based on remote sensing techniques

One of the most outstanding features of the majority of all remote sensing sensors is that they 
allow carrying out scientific studies on vegetation due to observations made not only in the 
visible but also in the infrared spectrum. This is where the magnitude of reflection is highly 
correlated with the amount of biomass, which is intact in the plants. In simple words, this 
phenomenon can be explained as the greater the degree of energy absorption in the near infra-
red, the lower the amount of active biomass and vice versa. More healthy vegetation shows 
less reflection in the visible spectrum.

The spectral plant characteristics relate to the photosynthetic activity of the pigments and the 
water stored in the leaves. The low degree of reflection in the visible spectrum is due to the 
absorbing effect of leaf pigments, mainly chlorophyll b, phycoerythrin, and phycocyanin, see 
Figure 4. However, there is a specific range in the spectrum in which absorption of electromag-
netic energy is almost zero. Around 525 nm, which is located at the green band, the leaves have 
a high degree of reflection, which causes the human eyes to see the vegetation in this color.

Having knowledge of this theoretical background, it is possible to realize scientific studies on 
vegetation and their health. For example, through the normalized difference vegetation index 
(NDVI), it is possible to calculate the degree of active biomass in vegetation, considering the 
intensity of the reflection and emission of radiation in certain bands of the electromagnetic spec-
trum. This can be correlated to health and growth of a plant. The NDVI is calculated as follow:

  NDVI =  (NIR − R)  /  (NIR + R)   

where NIR is the near infrared and R is the red band of a specific sensor.

An example is shown in Figure 3, which shows the result of calculating the NDVI for the 
Biobío region during second half of December 2014. Possible values for the NDVI range 
between −1.0 and +1.0. In this context, it was standardized so that a zero value indicates the 
absence of vegetation while values higher than 0.5 indicate little or sick vegetation. Values 
superior to 0.7 represent areas where vegetation is vigorous and healthy.

2.2. Systems for tree stress detection based on imagery

In countries like the USA, Canada, Australia, Germany, and Brazil described in [9–13], various 
techniques for forest monitoring were successfully implemented in the past. The possibility 
to derive the health of forest plantation through observations acquired by remote sensors has 
been demonstrated repeatedly, as in [14]. There are also examples of the proof of both the 
use of aerial photographs and satellite images. In Australia, aerial photographs were used 
for the detection of forest decline in native eucalyptus trees. Some of the most important 
aspects described by [15] considered during the planning and implementation of monitoring 
were that photographs should be acquired during a cloudy day to ensure a better view of 
the undergrowth and to avoid very likely pronounced reflectance, which could jeopardize 
the interpretation of the data. In addition, it requires a monitoring system available anytime 
that takes advantage of weather conditions, favorable for imaging. In China, since 1992, a 
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project funded by United Nations Development Program (UNDP) has been developed with 
the objective to establish a monitoring system consisting of an airborne video camera for 
sketchmapping, color infrared (CIR) digital camera, and a geographic information system, 
according to [14]. In Germany, and according to [12], it established a permanent monitoring 
program with archived observations since 1983 through satellite imagery (Landsat TM), CIR 
aerial images, and an airborne multispectral scanner. The image scale that was used in most 
cases was between 1:5000 and 1:6000, according to [16]. However, the tree classification and 
ground truthing was carried out in-situ.

For urban areas, it is possible to think of similar systems and solutions. Remote sensing sys-
tems, which in the past have already been successfully used in monitoring and detection of 
rural forest damage, can be adopted to monitor vegetation, and in particular trees, in cities 
although there is no coverage of large areas with a single species. For ornamental species, a 
higher ground sampling distance (GSD) needs to be considered beside a hyperspectral system. 
Therefore, a satellite-based approach should not be chosen, but rather opt for a different plat-
form such as a drone equipped with an appropriate hyperspectral sensor. This way, it will be 
possible to study and detect individual trees and take appropriate measures that already have 
been checked and approved by the governmental authorities such as the Chilean Agricultural 
and Livestock Service Servicio Agricultura y Ganadero (SAG). Ref. [17] presented a review 
of latest advances made in recent years in both the technological part and with respect to the 
processing of hyperspectral observations in the field of urban forests. Typical applications 

Figure 4. Leaves absorbing light at different wavelengths (adapted from https://de.wikipedia.org/wiki/Photosynthese#/
media/File:Engelmannscher_Bakterienversuch.svg).

Remote Sensing to Detect and Monitor Trees in Various Environments: Case Studies in Chile
http://dx.doi.org/10.5772/intechopen.72903

143



2.1. Vegetation study based on remote sensing techniques

One of the most outstanding features of the majority of all remote sensing sensors is that they 
allow carrying out scientific studies on vegetation due to observations made not only in the 
visible but also in the infrared spectrum. This is where the magnitude of reflection is highly 
correlated with the amount of biomass, which is intact in the plants. In simple words, this 
phenomenon can be explained as the greater the degree of energy absorption in the near infra-
red, the lower the amount of active biomass and vice versa. More healthy vegetation shows 
less reflection in the visible spectrum.

The spectral plant characteristics relate to the photosynthetic activity of the pigments and the 
water stored in the leaves. The low degree of reflection in the visible spectrum is due to the 
absorbing effect of leaf pigments, mainly chlorophyll b, phycoerythrin, and phycocyanin, see 
Figure 4. However, there is a specific range in the spectrum in which absorption of electromag-
netic energy is almost zero. Around 525 nm, which is located at the green band, the leaves have 
a high degree of reflection, which causes the human eyes to see the vegetation in this color.

Having knowledge of this theoretical background, it is possible to realize scientific studies on 
vegetation and their health. For example, through the normalized difference vegetation index 
(NDVI), it is possible to calculate the degree of active biomass in vegetation, considering the 
intensity of the reflection and emission of radiation in certain bands of the electromagnetic spec-
trum. This can be correlated to health and growth of a plant. The NDVI is calculated as follow:

  NDVI =  (NIR − R)  /  (NIR + R)   

where NIR is the near infrared and R is the red band of a specific sensor.

An example is shown in Figure 3, which shows the result of calculating the NDVI for the 
Biobío region during second half of December 2014. Possible values for the NDVI range 
between −1.0 and +1.0. In this context, it was standardized so that a zero value indicates the 
absence of vegetation while values higher than 0.5 indicate little or sick vegetation. Values 
superior to 0.7 represent areas where vegetation is vigorous and healthy.

2.2. Systems for tree stress detection based on imagery

In countries like the USA, Canada, Australia, Germany, and Brazil described in [9–13], various 
techniques for forest monitoring were successfully implemented in the past. The possibility 
to derive the health of forest plantation through observations acquired by remote sensors has 
been demonstrated repeatedly, as in [14]. There are also examples of the proof of both the 
use of aerial photographs and satellite images. In Australia, aerial photographs were used 
for the detection of forest decline in native eucalyptus trees. Some of the most important 
aspects described by [15] considered during the planning and implementation of monitoring 
were that photographs should be acquired during a cloudy day to ensure a better view of 
the undergrowth and to avoid very likely pronounced reflectance, which could jeopardize 
the interpretation of the data. In addition, it requires a monitoring system available anytime 
that takes advantage of weather conditions, favorable for imaging. In China, since 1992, a 

Recent Advances and Applications in Remote Sensing142

project funded by United Nations Development Program (UNDP) has been developed with 
the objective to establish a monitoring system consisting of an airborne video camera for 
sketchmapping, color infrared (CIR) digital camera, and a geographic information system, 
according to [14]. In Germany, and according to [12], it established a permanent monitoring 
program with archived observations since 1983 through satellite imagery (Landsat TM), CIR 
aerial images, and an airborne multispectral scanner. The image scale that was used in most 
cases was between 1:5000 and 1:6000, according to [16]. However, the tree classification and 
ground truthing was carried out in-situ.

For urban areas, it is possible to think of similar systems and solutions. Remote sensing sys-
tems, which in the past have already been successfully used in monitoring and detection of 
rural forest damage, can be adopted to monitor vegetation, and in particular trees, in cities 
although there is no coverage of large areas with a single species. For ornamental species, a 
higher ground sampling distance (GSD) needs to be considered beside a hyperspectral system. 
Therefore, a satellite-based approach should not be chosen, but rather opt for a different plat-
form such as a drone equipped with an appropriate hyperspectral sensor. This way, it will be 
possible to study and detect individual trees and take appropriate measures that already have 
been checked and approved by the governmental authorities such as the Chilean Agricultural 
and Livestock Service Servicio Agricultura y Ganadero (SAG). Ref. [17] presented a review 
of latest advances made in recent years in both the technological part and with respect to the 
processing of hyperspectral observations in the field of urban forests. Typical applications 

Figure 4. Leaves absorbing light at different wavelengths (adapted from https://de.wikipedia.org/wiki/Photosynthese#/
media/File:Engelmannscher_Bakterienversuch.svg).
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Figure 5. Case study locations in the central south of Chile (adapted from: http://www.geoportal.cl/Visor/).

include mapping of surfaces covered with trees, transport network planning, studying urban 
heat islands, and measurement of vegetation stress, etc. However, since [18] published the 
need for continuous monitoring of the urban forest, few solutions were proposed. For exam-
ple, [19] discuss different geospatial solutions and techniques, including GIS, remote sensing, 
and global positioning system (GPS). The combination of these tools allows collection of reli-
able forest information at different scales. [20] presented an approach based on hyperspectral 
imagery to classify urban tree species. In order to improve the reliability of the classification 
results, it is also proposed to use various techniques such as principal component analysis, 
indexes, and statistics. This way they managed to identify 91.4% of the species present in a 
sample consisting of a total of 500 urban trees. To date, there are very few operational systems. 
One of the most advanced systems is the one proposed by [21]. This work not only presents 
a discussion with respect to the platform but also with respect to the sensor. The conclusion 
indicates that the ideal system to detect and monitor stress in plants consists of a combination 
of an unmanned aerial platform, a hyperspectral sensor, and a couple of simulation tools.

The following five case studies, all related to tree stress, show the actual situation in the 
Chilean central south, see Figure 5. Stress caused by climate, insects, weeds, and even vol-
canic eruptions often affect trees in the Chilean central south. Satellite images help to detect 
them at almost real time and by the calculation of geospatial statistics and indices, which 
furthermore make it possible to quantify tree health.
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3. Pine plantations affected by Sirex woodwasp

3.1. Background

During the last decades Sirex noctilio Fabricius, 1773, a Hymenoptera of the Siricidae fam-
ily, which is composed of more than 40 species of wasps, has produced extensive damage 
worldwide in forest plantations of Pinus radiata D. Don and its different subfamilies. This 
damage can lead to death of the infected tree, in almost 80% of the cases observed worldwide. 
Although, its origin is in Europe, Siberia, and Mongolia, due to exportation of wood, disper-
sion of the wood wasp was uncontrollable and today it is present in Australia, New Zealand, 
South Africa, and South America. In Chile, it is present since 2001. Several municipalities in 
the Maule, Biobío, La Araucanía, Los Ríos, Los Lagos, and Aysen region are under quarantine 
and the Agriculture and Livestock Service is forced permanently to establish new quarantine 
areas. Furthermore, in the Biobío and Maule region, the Agriculture and Livestock Service has 
established phytosanitary measures to get control over the plague. First, a biological control 
program against S. Noctilio was established. A complex of specific natural enemies is created 
in laboratory and released in the affected plantations. The second action consists in the control 
of wood transport from quarantined areas to other areas that might be endangered.

The main objective of this case study was to identify a suitable and reproducible methodology 
to timely detect S. Noctilio infections. Such a methodology can be very helpful when it comes 
to monitor large pine plantations, which are difficult to access.

3.2. Methodology

The study area is located in the commune of Quilaco, Biobío region (Figure 6) and comprises 
approximately 1800 km2, and almost 70% is currently affected by S. noctilio. Therefore, it has been 
declared that quarantine area with a radius of 20 km for locations might be affected by S. noctilio.

Figure 6. Study area where S. Noctilio has been detected (adapted from: http://www.geoportal.cl/Visor/).
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Figure 7. NDVI comparison 2010–2011.

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite images 
taken on November 2010 and February 2011 were used in this study. NDVI calculations were 
carried out to detect variations in time in photosynthetic activities of pine trees.

3.3. Results and conclusions

The results indicate that in the study area, certain sectors show a significant decline in photo-
synthetic activity during summer period of 2010 and 2011, a fact that was verified by both, cal-
culating the NDVI, see Figure 7, and information provided by the Agricultural and Livestock 
Service. Based on an initial study of one of these specific sectors, identified by the Agriculture 
and Livestock Service in 2011 as a new outbreak of S. noctilio, it was possible to conclude that 
the photosynthetic activity decreased in the study area during a period of time of 4 months 
(November 2010–February 2011). In a second sector, photosynthetic activity also decreased 
during the same period, but it was not possible to clearly determine its cause because the 
Agricultural and Livestock Service had not declared this sector infested by S. noctilio. 
Nevertheless, it is important to highlight that an attack by S. noctilio was likely for two reasons. 
First, the index of normalized difference vegetation was 0.624 in 2011, which in comparison to 
the other sector is only 9% higher. And second, in the nearby area (within the range of natural 
displacement capability of S. noctilio), two outbreaks of S. noctilio already had been registered.

So, due to the rapid development of the forest pest, it was possible to detect changes in pho-
tosynthetic activity of the vegetation as well as areas of new infections.

4. Weed detection in eucalyptus plantations

4.1. Background

Early weed control for forest plantations is a recurrent, fundamental, and critical activity that 
has to be carried out by any forestry company. It must be conducted applying serious strate-
gies, correct treatment times, and reasonable application of herbicide. This control must be 
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variable and flexible in time and magnitude, as on the one hand weed emerges in spring and 
summer months due to soil moisture left by the winter and on the other hand, weed growth 
augments with higher temperatures and daylight hours. Therefore, and due to the fact that in 
Chile approximately 500,000 ha are forest plantations, it is of great importance to count with 
a control system to manage lots of very complex geospatial information.

4.2. Methodology

In order to particularize the problem and transform it into local scale, Forestal Mininco S.A., 
a Chilean company dedicated to timber production, plants and seeds, is constantly working 
on automation processes and efficient management of huge volume of geoinformation gen-
erated during weed control activities. It is expected that financial and human resources can 
be optimized, by assigning certain levels of priority to plantations with high potentials to be 
damaged by weed during spring and summer period.

The main objective of this case study is to quantify the area affected by weed within the for-
est plantation denominated Fundo Porvenir, located between Mulchén and Collipulli in the 
Biobío region, see Figure 8. Almost 400 ha of different species of eucalyptus, such as E. globulus 
Labill., E. nitens H. Deane & Maiden, and E. saligna SM. can be found in the study area.

SPOT-6 high resolution satellite images, see Figure 9, were acquired because of their ground 
sampling distance and capacity to make observations in the infrared band of the electromag-
netic spectrum. These two properties allow detecting small vegetation species, such as weed. 

Figure 8. Study area with eucalyptus plantations (adapted from: http://www.geoportal.cl/Visor/).
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Name (Tree species) Total [Ha] Undergrowth [Ha] Occupation % Priority

S1 (Eucalyptus nitens) 46.2 28.7 62.1 1

S2 (Eucalyptus nitens) 35.9 18.6 51.8 2

S3 (Eucalyptus nitens) 48.3 15.7 32.5 3

S4 (Eucalyptus nitens) 66.2 19.3 29.2 4

S5 (Eucalyptus globulos) 193.7 26.4 13.6 5

S6 (Eucalyptus Smith) 24.3 2.1 8.6 6

Countryside Porvenir 414.6 110.8 26.7

Table 1. Undergrowth in forest plantation.

The most convenient date to select the image acquisition is closely coupled with the type of 
phenomenon that has to be studied according to [22]. So, image acquisition was during the 
last days of October.

First of all, a visible inspection of both, satellite image and terrain, for training site defini-
tion and subsequent ground truthing of the classification results, Figure 9, was carried out. 
Supervised classification was statistically analyzed using confusion matrix and Cohen’s 
Kappa statistic.

4.3. Results and conclusions

Figure 9 shows the original SPOT 6 satellite image and the result of the supervised classification.

Table 1 summarizes information gathered regarding surface, species, area occupied by weeds, 
and the respective occupancy rate in the specific sectors (S1–S6), see Figure 10. Based on these 
percentages, control priority levels were established.

Figure 9. SPOT 6 image and result of supervised classification.
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Quality assessment based on field work, to compare classification results and vegetation 
found in the study area, provides the confusion matrix of the supervised classification. The 
result indicates that with 95% probability, the overall accuracy is 82%. The reliability to clas-
sify weed is about 90%. The results are shown in Table 2.

The Kappa statistic indicates that the classification is 76% better than expected to do so ran-
domly. Field verification for 100% coverage was found.

As a direct conclusion, which can be drawn from the results, sector 1 (Eucalyptus nitens Sur 1) 
occupancy rate of 62% has to be treated first and with urgency. Sector 2 (Eucalyptus nitens Este) 

Figure 10. Specific sectors S1–S6.

Water Native 
forest

Plantation Weed Road Soil Total Consumer’s 
accuracy (%)

Water 20 0 0 0 0 5 25 80

Native forest 0 22 0 0 0 5 27 81

Plantation 0 0 35 0 0 1 36 97

Weed 0 0 2 37 0 0 39 94.9

Road 0 0 0 4 6 29 39 15.4

Soil 0 0 0 0 0 90 90 100

Total 20 22 37 41 6 130

Producer’s 
accuracy

100% 100% 94.6% 90.2% 100% 69.2%

Overall accuracy: 82%

Table 2. Confusion matrix of supervised classification.
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with an occupancy rate of 52% also can be considered as critical. Occupation rate in all the 
other sectors is less alarming.

Nevertheless, it is recommendable to develop sustainable strategies, which allow weed control in 
order to guarantee tree growth and reduce tree death. As death of trees may imply considerable 
economic losses, it is even more important to count with relevant information. Satellite imagery 
and image processing can be used for trustworthy studies on weed growth and its extension.

5. Tree growth monitoring

5.1. Background

As mentioned by [23], in the Biobío region, forestry is one of the main economic activities. 
So, it has become necessary to perform serious analysis of growth in each plantation to have 
a record about its past and present development. In general, this task is poorly realized by a 
couple of experts employed by the forestry companies. Time and available financial resources 
are the two main limiting factors and therefore an alternative strategy, which allows reliable 
information generation that has to be envisaged in the near future.

5.2. Methodology

The area of interest corresponds to a part of the sector called Verdun of about 154.000 ha, 
owned by Forestal Mininco S.A., located south west of the city of Mulchén, see Figure 11. 
Plantations of Eucalyptus globulus Labill. and Eucalyptus nitens H. Deane & Maiden can be 
found there. The E. nitens plantation is under permanent treatment as an experiment for 
improvement of the species is carried out. It should also be noted that these types of planta-
tions (Eucalyptus) around Mulchén have become the new landscape. For local residents, it is 
the main source of employment.

Red clay soil is dominant in the study area. Rainy weather during winter and dry during 
summer period are the main climate characteristics. Furthermore, the river Mulchén limits 
the area, what guarantees permanent water supply, and in consequence, better growth of the 
species. The study areas topography is almost plane with the exception of a small hill, which 
is located in the middle it.

The main objective of this case study was to demonstrate how remote sensing can help to 
carry out long-term studies on tree growth, in particular, using high resolution satellite imag-
ery, which became more and more accessible during the last decade.

The images used for this study correspond to three aerial photographies with a spatial reso-
lution of 30 cm (2009–2011), a SPOT 5 (2007), a QuickBird satellite image (2008) with spatial 
resolution of 5 m each, and an image taken from Google Earth, basically for visual image 
interpretation in 2007.

Beside the visual interpretation, a principal component analysis (PCA) and a RGB to HSV 
transformation were carried out.
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5.3. Results and conclusions

With regard to the visual interpretation of the images, it was possible to clearly identify the 
transition phase between harvesting and reforesting. Horizontal growth of the vegetation 
cover and the newly planted eucalyptus species has augmented significantly.

The PCA method allows detecting vegetation cover that can be analyzed considering fur-
thermore reflectance and in-situ gathered forest relevant information, such as the stand den-
sity. The resulting PCA components 1, 2, and 3 are shown in Figure 12. Tree growth can be 
observed in the first principal component as 98 and 65% of the information that can be found 
in the aerial photographies and the satellite image, respectively. The development of the euca-
lyptus plantations in the course of the years became detectable.

Figure 11. Tree growth monitoring study area (adapted from: http://www.geoportal.cl/Visor/).

Figure 12. PCA components 1, 2, and 3 (left to right) for 2010 image of the study area.
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Figure 13. Original 2010 RGB image (left) and transformed IHS image (right).

In case of the RGB to IHS transformation, see Figure 13, mainly an estimation of tree growth 
through the comparison of soil covered by forest with soil covered by other type of vegetation 
was possible.

In particular, with this type of comparison, it was possible to highlight the importance of influ-
encing factors such as water, soil, and temperature. They are fundamental characteristics for any 
plantation, which have to be studied. Nowadays, it is possible to make use of high resolution sat-
ellite imagery and determine surface characteristics in areas where tree plantations are planned.

6. Water stress detection and analysis in the Andean Precordillera

6.1. Background

The United Nations Organization (UNO) has recognized that desertification is a major prob-
lem of economic, social, and environmental concerns that affects many countries from all 
regions of the world. The United Nations Convention to Combat Desertification (UNCCD) 
defines desertification as: land degradation in arid, semi-arid, and dry subhumid regions resulting 
from various factors, including climatic variations and human activities. So, [24] indicate that deserti-
fication occurs as a result of long-term imbalance between manmade demand for ecosystem 
services and what ecosystems can provide. As a result of this degradation process, soil loses its 
fertility and in consequence, its production potential due to the destruction of vegetation cover 
and water shortages. Often, manmade interventions promote and enhance this process due 
to inappropriate and excessive activities such as cultivation, overgrazing, and deforestation.

In Chile, about two-thirds of the national territory is affected by soil degradation caused by 
desertification. The “Preliminary Map of desertification in Chile” prepared by the National 
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Forestry Corporation (CONAF) in 1999 and published in [25], is the only study of desertifica-
tion in the country so far. The map, originally considered five principal indicators: erosion, 
poverty, xerophytism rate, length of the dry period, and a temporal trend indicator. It was con-
cluded that of the 290 rural communes, 270 (93%) had some degree of desertification, of which 
76 (27%) were severely affected and 108 (36%) were moderately affected by desertification.

In the central south of the Biobío region, the Biobío province limits the north with the Ñuble 
province, south to the Araucanía region, east to the Argentine border, and the west with the 
Arauco province. It is the only one of the four provinces within the Biobío region without 
coastline. Considering [26], it can be stated that the Biobío region has 353,315 inhabitants and 
covers an area of 16,226 km2. According to the preliminary map, which was generated by 
CONAF in 1999 (the only study on desertification that covers the whole national territory), 
the Biobío province was classified as moderately affected by desertification.

The main objective of this case study is to quantify desertification process that took place dur-
ing the last 15 years in the Andean Precordillera.

6.2. Methodology

Based on Landsat 5 and 7 satellite images, of the Andean Precordillera in the Biobio province, 
see Figure 14, preliminary identification of areas vulnerable to desertification were detected 
by moisture stress index (MSI) calculation. In general, MSI measures the water stress in plants 
and ranges from 0 to 3 (from excess to lack of water, as found in [27]). The satellite images 
were captured during March in 2000, 2005, 2010, and 2015. The results were statistically ana-
lyzed using the Pearson product–moment correlation coefficient, considering precipitation 
records of four climate observation stations within the study area.

Figure 14. Andean Precordillera in the Biobío region (adapted from: http://www.geoportal.cl/Visor/).
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Figure 13. Original 2010 RGB image (left) and transformed IHS image (right).
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Figure 15. The original Landsat satellite images and the results of the MSI calculation are shown.

6.3. Results and conclusions

In this particular study, areas vulnerable to desertification were identified where the MSI 
value did not reach a critical level (below 0.4 or above 2). The study reveals that these areas 
steadily increased every year except to 2015, due to an increase in rainfall during 2014, which 
temporally reduced the stress in the vegetation and in consequence led to a negative trend for 
possible desertification. The original satellite images and the results are shown in Figure 15 
and Table 3, respectively.

A negative correlation is observable between surface vulnerable to desertification and pre-
cipitation (−0.978). This means that a lack of precipitation leads to an augmentation of areas 
vulnerable to desertification processes.

At present, 16% of the Andean Precordillera of the Biobío province is vulnerable to desertifica-
tion, a number that is significantly lower as in 1999 (28.5%). However, it is important to mention 
that this is something misleading because in the period from 2000 to 2010, a considerable increase 
of the area vulnerable to desertification can be detected. This means that in 2010, almost half of 
the Andean Precordillera was affected. The observed decrease in 2015 is due to the increased 
rainfall in 2014. The surface area vulnerable to desertification that is seen in 2015 decreased con-
siderably in comparison to 2010, but still stays above 16% of the total study area surface.

Year Vulnerable surface 
(%)

Variation of vulnerable surface  
(compared to previous year) (%)

Precipitations (mm)

2000 28.50 - 1745.6

2005 36.02 7.52 1644.8

2010 49.36 13.34 1529.7

2015 16.19 −33.18 1792.3

Table 3. Vulnerable surface variation during the last 15 years.
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It can be concluded that desertification is a long-term process, which has to be monitored. 
Short-term variations can be detected by the use of satellite imagery and image processing. 
Nevertheless, to identify trends in desertification, precipitation, and temperature records 
have to be considered within long-term studies.

7. Monitoring of vegetation recuperation after volcanic eruption 
event

7.1. Background

The emission of gas and ash during the eruption of the Volcanic Complex Puyehue–Cordón 
Caulle located 83 km northeast of the city of Osorno in the Los Lagos Region, Figure 16, in 
2011 produced severe damage in the surrounding area of the volcano. For 10 days, an erup-
tive column with a height of approximately 9 km emerged and affected the Nahuel Huapi 
area with intense ash fall, at a distance of 100 km northeast of the crater. Furthermore, ash 
deposits affected flora and fauna in the southeast of the crater for a prolonged time period. 
Photosynthetic activity of vegetation decreased significantly as volcanic ash deposits affected 
old growth forest, which is predominant in the National Park Puyehue.

The objective of this case study was to monitor vegetation recovery after volcanic eruption. 
Of our particular interest, was the quantification of vegetation affected by ash deposits and to 
determine how and why it recovered.

Figure 16. Volcanic complex Puyehue – Cordón Caulle and area affected by ash fall after 2011 eruption (adapted from: 
http://www.geoportal.cl/Visor/). And identification of three particular study sites.
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7.2. Methodology

Satellite imagery and in-situ data collection are used to carry out a three-step methodology. 
At first, a visual image interpretation is carried out, based on a visual analysis of Landsat 7 
ETM+ satellite imagery acquired in 2011 and 2012. Landsat 7 ETM+ typical band combina-
tions for true and false color visualization (3, 2, 1, 4, 3, 2, 5, 4, 2), according to [28]. The natural 
color band combination (3, 2, 1), is considered to visualize the landscape as it appears in 
reality. With the help of band 3, it is possible to discriminate vegetation slopes, band 2 allows 
assessing vegetation vigor, and band 1 permits to distinguish soil from vegetation. False color 
combinations such as 4, 3, 2 and 5, 4, 2 are employed to highlight biomass content in plants 
(band 4) and moisture content in vegetation and soils (band 5).

Second, an analytical image analysis based on NDVI calculation is carried to determine veg-
etation health and photosynthetic activity potential.

The final step consists of ground truthing of the generated results. Therefore, between the 
months of January and February 2012, and during December 7 and 8 in 2012, field work was 
realized to obtain reliable first-hand information about, for example, the percentage of ash-
covered/dead/sprouting vegetation within the area of interest.

Three specific sectors were identified inside the Puyehue National Park, where dominating for-
ests are evergreen and different landforms can be observed. They were chosen because they were 
accessible for research and because reference data for comparison was facilitated by Corporación 
Nacional Forestal – National Forest Cooperation (CONAF). The first (1) corresponds to a small 
area near Aguas Calientes (southwest of the crater) in hilly country, the second (2) encompasses 
the border crossing complex Cardinal A. Samoré (south of the crater) in the Gol-Gol valley, and 
the third (3) includes an area near Route 215 next to the side of Laguna El Pato (southeast of the 
crater) in the high mountains of the Andes. All these sectors are of almost equal size and cover 
an area of approximately 43 ha. In 2011, experts of CONAF had already carried out intensive 
fieldwork and studies to detect vegetation affected by volcanic ash deposits.

7.3. Results and conclusions

Figure 17 shows the original Landsat 7 satellite images and the calculated NDVI values inside 
each study area (deliminated by a white rectangle).

A quantitative analysis of NDVI-related statistical measures (Table 4) indicates that in all 
three sectors, the potential of photosynthetic activity increased steadily. Nevertheless, only 
for sector 2 a significant change in vegetation recovery was detected. This is mainly due to 
wind-terrain interaction, as sector 2 is in a valley, strong winds that are typically there, helped 
to clean ash-covered foliage. For sectors 1 and 3, such recovery was not possible due to exter-
nal factors like prolonged snow cover during observation period. Furthermore steepness of 
the terrain is also of great importance. Vegetation is not exposed to strong winds that might 
help to reduce ash cover. In consequence, only rainfall might help to do so.

The calculated NDVI values were compared with data collected during field trips and it was 
possible to prove that ash fall in vegetation caused dryness of the leaves in evergreen trees. 
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This led to a decrease in the potential of photosynthetic activity. Several reports published by 
CONAF allowed to proof the results and to identify the most affected vegetation during and 
after the eruption event.

Although the eruption of Cordón Caulle in 2011 did severe damage to Flora and Fauna, 
as indicated in [29, 30], a slow recuperation of the vegetation affected by ash deposits was 
observed. The decrease in contamination could be related to a combination of two phenom-
ena: the cessation of volcanic activity and to climate (rainfall and prevailing winds in the 
study area). Recovery of photosynthetic activity started almost immediately after volcanic ash 
deposits were washed away by rain and wind.

Figure 17. NDVI for each of the three study areas (middle) and for 2011 (left) and 2012 (right).

Mean Variance Year

Sector 1 0.236 0.002 2011

0.486 0.011 2012

Sector 2 0.042 0.001 2011

0.383 0.003 2012

Sector 3 −0.039 0.002 2011

0.041 0.010 2012

Table 4. NDVI variations in the different sectors.
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8. Conclusions

The use of geospatial tools for future management of trees is possible due to the characteristics 
of remote sensing and the ongoing development of image processing techniques. Nowadays, 
imagery is available on the Internet free of charge as well as some well-developed software 
suites for image processing. All over the world exists the necessity to carry out scientific stud-
ies on vegetation, migration processes, urban growth, and so on, to face climate change and to 
be aware of a changing world we live in. As shown, lots of investigation is ongoing at present 
and there is no limitation due to geographic location or data availability.

The five case studies presented in this chapter show that geospatial data, such as imagery and 
climate data is available, even in Chile. And that its study and analysis permit to develop strate-
gies to monitor a wide range of natural phenomena. Desertification, weeds, forest plagues, and 
natural disasters are only some examples, which have to be studied in order to find answers 
on critical situations. As this works very well in rural sectors, it is possible to adapt them and 
to apply them in urban areas.

There is no doubt that once a suitable platform will be developed or established, for example, 
unmanned aerial vehicle (UAV) equipped with a multispectral camera, urban green areas 
can also be monitored. Its use will be vital for a number of strategic activities such as land 
use planning, installing green areas and urban parks, tree management plans, tree planning, 
fertilization, phytosanitary applications, removal, replacement, or gradual replacement tree 
in specific areas, among others.
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Abstract

This chapter presents a new application of scanning interferometric synthetic aperture 
radar (ScanSAR) interferometry in monitoring land surface deformation caused by large 
earthquakes. To make better use of the ScanSAR data and obtain a wider deformation 
observation, this research studied and analyzed certain key elements of ScanSAR inter-
ferometry, including coherence, co-registering, methods of removing orbit errors, cor-
rection of atmosphere effects, and geoid undulation. The wide swath mode (WSM) is 
also known as the ScanSAR mode by which synthetic aperture time is shared by adja-
cent sub-swaths and azimuth resolution that is traded off for a wider coverage. So, it is 
possible to monitor a larger area of earthquake deformation. In this study, we obtained 
ScanSAR and Image Mode (IM) data and analyzed coherence, co-registering, meth-
ods of removing orbit errors, correction of atmosphere effects, and geoid undulation 
to monitor land surface deformation caused by large earthquakes in the 405 × 405 km 
field of the Wenchuan earthquake and Yutian earthquake, respectively, in China. The 
results obtained agree well with that of the investigations of the crustal motion in the 
study areas.
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that is, all of the sub-swaths processed images were obtained to form a wider ScanSAR image. 
A wider swath can allow for multiple observations of an area in a single orbit cycle. In other 
words, the region in question can be observed by the sensors in several different orbit tracks 
[3–5]. Although resolution of the ScanSAR mode is relatively low, its many merits such as 
wider swaths and short intervals [6] for the deformation of a large area can contribute to 
effective imaging.

The ScanSAR concept was first introduced in the 1980s and the ScanSAR mode of Radarsat 
satellite was designed in 1988. Burst mode radar was first applied to the Magellan mission to 
map the Venus surface in order to reduce data volume and allow the use of other instruments 
in between radar bursts [5, 7, 8]. To our knowledge, the first ScanSAR amplitude image of 
the Earth was in 1996 [9]. The first ScanSAR interferogram was obtained by using ScanSAR 
data of Radarsat satellite in 1999 [10]. The ScanSAR mode was initially used on the National 
Aeronautics and Space Administration (NASA) Spaceborne Imaging Radar C-band (SIR-
C) mission in 1994 [7, 10]. Many SAR sensors such as Envisat, Radarsat-2, Advanced Land 
Observing Satellite (ALOS), COSMO-SkyMed, and TerraSAR-X are capable of imaging in the 
ScanSAR mode. On Envisat, the ScanSAR mode was called as Wide Swath Mode (WSM) and 
has five sub-swaths. Unfortunately, communication with Envisat was lost on April 8, 2012 
and, consequently, the mission officially ended on May 9, 2012. The Sentinel-1A satellite was 
launched in April 2014 and can operate the satellite SAR sensor that is capable of imaging in 
the ScanSAR mode. The ScanSAR mode is called as Interferometric Wide-swath mode (IW).

With many of the current SAR satellites carrying advanced imaging capabilities, ScanSAR 
mode acquisitions are replacing the conventional strip-map mode acquisitions for portions of 
a SAR mission [11]. In light of future SAR missions and modifications of existing SAR mission 
imaging strategies, a detailed study of ScanSAR interferometry for ground motion monitor-
ing of large earthquakes will provide significant input for mission planning and InSAR appli-
cations [6].

To use ScanSAR data for deformation monitoring, same as Image Mode (IM) data, many 
studies have been focused on the following three points: (1) imaging algorithms [12–15]; (2) 
removing coherence of spaceborne ScanSAR interferometry [3–5]; and (3) developing new 
algorithms of ScanSAR interferometry [12, 13].

With regard to ScanSAR interferometry, scholars have studied how to form the interfer-
ence [4–6, 12, 13], but the effects of errors are yet to be studied systematically. For example, 
ScanSAR interferometry was applied in Wenchuan earthquake [16, 17]; however, in the study 
of monitoring the surface deformation, they only considered the influence of the atmosphere 
on the results using Medium Resolution Imaging Spectrometer (MERIS) data. In fact, to 
obtain a high accuracy ScanSAR interferogram, some key techniques such as geoid undula-
tion, correction of atmosphere effects, and reducing orbit error besides removing coherence 
and mosaicking of wide swath SAR data were studied. In this chapter, we applied these key 
techniques to the wider deformation fields of ENVISAT ScanSAR images to monitor the land 
deformation caused by large earthquakes such as Wenchuan (2008) and Yutian (2008), respec-
tively, in China.
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2. Settings and data processing

The ScanSAR mode is able to image multiple strips of land called sub-swaths from a single 
satellite pass. This can be achieved by electronically steering the radar beam through a set of 
elevation or look angles. Each sub-swath is collected in the burst mode, wherein the inter-
burst gap time corresponds to the time when the sensor is imaging the remaining sub-swaths 
[5]. The raw data from each sub-swath are processed to burst mode images and merged into 
a composite ScanSAR image. In the ScanSAR mode, the satellite electronically steers the beam 
between sub-swaths, while in the strip-map mode, the beam is maintained within a single 
sub-swath. The elevation angle is often cycled enough during ScanSAR operation to maintain 
contiguous ground coverage. The process of ScanSAR interferometry is shown in Figure 1, 
which includes mosaicking bursts, image co-registration, common band filtering, and so on. 
In addition to mosaicking bursts to sub Single Look Complex (SLC) and sub-interferograms, 
the other is the same as the IM interferometry.

The principle of ScanSAR interferometry in the burst is the same as that of IM [5, 6, 12, 13]. If 
the SAR satellite at certain time intervals orbits (typically tens to 100 m) and scans on a region 
repeatedly, the spatial positions are S1 and S2, respectively, during the two different flight 
processes. The spatial interferometric baseline vector is B and named baseline length. The 

Figure 1. The data processing of ScanSAR interferometry.
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angle between the baseline vector B and horizontal vector is baseline obliquity, and θ is the 
incident angle. In addition, two spatial positions, S1 and S2 to ground point P are r and r+ 𝛥𝛥r . 
At the same time, the interferometric baseline is divided into a parallel baseline component 

 which is parallel to the line-of-sight direction and vertical baseline compo-
nent  (perpendicular to the view direction). According to the principle of 
conventional Differential Interferometric Synthetic Aperture Radar (DInSAR), the interfero-
metric phase of the ScanSAR interferogram can be expressed as:

  
(1)

where  φ  is the total phase after unwrapping and  𝛥𝛥p  is surface deformation of the line of sight. 
If surface deformation is obtained using two pass methods, surface deformation of the line of 
sight, i, can be written as:

  
(2)

From Eq. (2), it can be seen that surface deformation of the line of sight is closely related to the 
ground phase  and Digital Elevation Model (DEM)error. If Eq. (2) is transformed as the 

derivation of B, h, and a, the results are as follows:

  

(3)

That is,

  

(4)

where   σ  
B
    is the error of baseline,   σ  

a
    is the error of baseline obliquity, and   σ  

h
    is DEM error. 

According to the abovementioned equation, regardless of baseline length error, baseline 
obliquity errors will affect the results of ScanSAR interferometry, and the influence degree is 
related to the slant range. However, DEM error is related to both the oblique distance, angle of 
incidence, and the vertical baseline length. In addition to these errors, the atmospheric refrac-
tion phase is also an influencing factor. Undoubtedly, in order to obtain deformation data of 
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large earthquakes with ScanSAR interferometry, the following techniques and methods were 
applied to eliminate these errors in the monitoring of land deformation.

2.1. Removing influence of geoid difference

In order to obtain deformation data of the region in question through DInSAR, it is neces-
sary to use two or more scenes of SAR data to form a differential interferogram. Since the 
SAR data are not sufficient and an outlay of the research project is not relatively scarce, 
there is only one way to use DEM to get a differential interferogram. Currently, DEM such 
as Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission 
and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) are referenced 
to the Earth Gravitational Model 1996 (EGM96) geoid datum, while in interferometry SAR 
(InSAR), data processing is established on the ellipsoidal height (e.g., WGS84); therefore, both 
data are inconsistent.

In this study, geodetic height was obtained based on the EGM96 gravity field model. To con-
vert EGM96 height into geodetic height, geoid gap N can be calculated using the following 
formula [18]:

  
(5)

According to Eq. (5), the elevation of SRTM or GDEM data is converted into geodetic height.

2.2. Correction of atmosphere effects

Atmospheric refraction is an important source of error for interferometric synthetic aperture 
radar, the reason is that the radar signal propagation in atmosphere by tropospheric and iono-
spheric refraction is delayed, or it gets ahead of its phase. With other similar mode interfer-
ence, atmospheric effects with other errors (such as DEM and baseline error) also seriously 
affect the final deformation monitoring results for ScanSAR interferometry; however, unlike 
other laws of error influence, atmospheric effects are not affected by radar imaging geometry 
but are only related to the atmospheric relative states of the two ground observations. The 
ionosphere at about 60–2000 km height has inhomogeneous bodies from several kilometers 
to hundreds of thousands of meters. SAR satellites are inclined cone when exposed to the 
ground; at the same time, the scanning area of the ground is less than a few hundred kilome-
ters, so it has less influence. In general, it is basically eliminated by the difference in the spatial 
domain. Tropospheric delay can be divided into two parts, the dry and wet delay. Dry delay is 
generated by no water vapor atmospheric delay and accounts for about 90% of the total delay, 
and the model accuracy can reach submillimeter range. In addition, the time domain is rela-
tively stable and has the characteristics of large-scale changes in the airspace, while dry delay 
is negligible after double difference. The wet delay is caused by the water vapor in the atmo-
sphere, which accounts for about 10% of the total delay. However, it is difficult to establish a 
real-time and accurate model due to the uneven distribution of water vapor in the atmosphere 
and the rapid change. Therefore, the main error of troposphere delay is caused by wet delay.
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real-time and accurate model due to the uneven distribution of water vapor in the atmosphere 
and the rapid change. Therefore, the main error of troposphere delay is caused by wet delay.

Monitoring Land Surface Deformation with Satellite ScanSAR Images: Case Studies on Large…
http://dx.doi.org/10.5772/intechopen.72834

165



In order to reduce or remove the wet delay of ScanSAR interferometry [5, 6, 12, 13], the atmo-
spheric effects of corrections were analyzed based on medium-resolution imaging spectrom-
eter (MERIS) data. When compared with the correction method of atmospheric effects using 
external data such as Moderate Resolution Imaging Spectroradiometer (MODIS), making use 
of MERIS, correct atmospheric effects of advanced synthetic aperture radar (ASAR) interfero-
gram have great superiority, for the imaging time of ASAR and MERIS are synchronous, and 
the resolution of ScanSAR is close to the resolution of MERIS data.

The reason of correction of atmospheric effects based on MERIS data is that atmosphere delay 
information is first obtained using two MERIS data corresponding to two SAR data to be con-
verted into path delay by using function mode. In the end, this path delay will be removed 
so that atmospheric effects in the ScanSAR interferogram is corrected. The process of correct-
ing atmospheric effects is shown in Figure 2. When using MERIS data to correct atmosphere 
effects, it involves removing cloud, difference, and co-registration. As the water vapor algo-
rithm of MERIS is very sensitive to the cloud, it is necessary to use Cloud product categories 
to obtain cloud pollution and then to interpolate relevant data. To reduce interpolation errors, 
MERIS data will only be calibrated without the removal of the mask method.

2.3. Reducing orbit error

Orbit error is another key factor in ScanSAR interferometry because it influences baseline 
estimation precision. Baseline estimation is required for a number of operations, including 

Figure 2. The process of basic idea of the correction of atmospheric effects using MERIS data.
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common band filtering, flattening of the interferogram, phase unwrapping, and derivation of 
interferometric heights from the unwrapped phase [5, 6].

The baseline can be estimated using (1) orbital information, (2) fringe rate of the interfero-
gram, and (3) ground control points (after unwrapping). It is clear that the method based on 
state vectors works well when accurate state vectors are available. In the absence of reliable 
state vector information, the local fringe rate at the center of the interferogram can be used to 
obtain an estimated perpendicular baseline. The third method is the most effective because its 
coverage is very wide and the fringe rate is not always constant. Moreover, the size and influ-
ence of the baseline error can be seen more clearly in the ScanSAR interferogram.

3. Case study: Wenchuan earthquake

3.1. Background

Wenchuan earthquake struck on May 12, 2008 with M8.0 of the high strength of a large earth-
quake, which resulted in a large number of collapsed houses, about 80,000 casualties, tens of 
thousands of geological hazards, such as landslide and collapse, and debris flow. The earth-
quake led to a large number of rupture and regional ground deformation on the surface, 
including the gaining of much of the information of the earth’s dynamics [16, 19] (Figure 3). 

Figure 3. Location of Wenchuan earthquake (★is center of Wenchuan earthquake).
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After the Wenchuan earthquake, many studies were conducted to simulate the seismogenic 
structure and seismic characteristics [16, 19–22], such as tectonic activities, intensity, and 
focal mechanism, by which the research methods including field survey, gravity survey, 
GPS, and the conventional interferometric SAR were applied, and there were some valu-
able achievements [19–22]. However, since the approaches applied have their own limita-
tions and shortcomings (i.e., low precision, large discreteness, narrow scopes, influences of 
natural factors, etc.), results on the fracture zone length, direction of rupture, and rupture 
surface size for Wenchuan earthquake are different [23–25]. The co-seismic deformation 
field of the Wenchuan earthquake by ScanSAR interferometry was studied because of the 
defects of the abovementioned methods [17]. However, there were a lot of errors which 
had not been removed and considered in the processing of interferometry such as geoid 
undulation and orbit error. In addition, when atmospheric effects had been considered for 
removal, Moderate Resolution Imaging Spectroradiometer (MODIS) data was only used to 
reduce the influence of atmosphere. In fact, MERIS is better than MODIS because the MERIS 
and ScanSAR data used were derived from the ENVIronmental SATellite (ENVISAT) sat-
ellite, so as to maintain synchronization. Therefore, these factors were considered in this 
chapter.

3.2. Data and processing

The Wenchuan earthquake was so strong and its rupture zone was about 300 km. In order to 
mantle the overall earthquake deformation field, two scenes of ENVISAT ScanSAR data were 
selected to cover the deformation field, with the imaging times of January 25, 2008 (before the 
earthquake) and June 13, 2008 (after earthquake), respectively.

Before interferometry processing, the geoid difference of the GDEM of Wenchuan was com-
puted based on EGM96. The regional level of the contour line is presented in Figure 4, from 
which the maximum and minimum value of the regional level is −28.78 and − 42.98 m, respec-
tively, with a difference of 14.2 m.

The deformation zone of Wenchuan earthquake is located in the Western Sichuan province. 
In addition, the imaging time of both ASAR image and MERIS vapor products were consis-
tent with the similar spatial resolution of both ScanSAR interferogram and MERIS, so that 
the atmospheric effects can be reduced using MERIS data. Figure 5 shows the result that 
is absolute wet delay of January 25, 2008 (Figure 5a) and June 23, 2008 (Figure 5b) in the 
Wenchuan earthquake area. Figure 6 shows the corresponding relative atmospheric wet delay 
after difference. As shown in Figure 5, the weather of two periods were in good condition, 
and the regional atmospheric wet delays of the two periods were about 3 mm. Therefore, it is 
necessary for the ScanSAR differential interferogram to correct atmosphere effects based on 
the relative wet delay.

Image co-registration of ScanSAR with the same IM mode can determine the final result qual-
ity. In order to form a robust and reliable interferogram and to make the co-registration preci-
sion to remain less than 0.2-pixel, it is applied with the co-registration method based on DORIS 
precise orbit and the external DEM. After co-registration and differential interferometry, it is 
possible to obtain the sub-swath interferogram and sub-swath interferograms are mosaicked 
to the total ScanSAR interferogram. At the end, flat and topographic phases are removed from 
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the interferogram to obtain the differential interferogram as shown in Figure 7a and b after 
phase unwrapping which is the result where the baseline is mended using the ground control 
point (GCP) method.

Figure 4. Wenchuan regional level of contour lines.

Figure 5. Wenchuan area of absolute wet delay of January 25, 2008 (a) and June 23, 2008 (b) (unit mm).
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Figure 6. Relative atmospheric wet delay after difference (unit mm).

Figure 7. Differential interferogram of Wenchuan earthquake. (a) before phase unwrapping (b) after phase unwrapping.
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3.3. Results and discussions

Figure 7 shows that the size of the whole area that the ScanSAR interferogram covered is 
about 405 × 405 km, which is sufficient to reflect the total seismic deformation field and seis-
mogenic fault location of the Wenchuan earthquake. The deformation region can be roughly 
divided into three areas, while the middle one is a noncoherent region where the Wenchuan 
seismic belt is located. The noncoherent field results from the fact that the deformation 
gradient in the region exceeds the C-band monitoring ability of ASAR images. This means 
that if the deformation of two adjacent pixels exceeds  π  radian, the coherence is pure noise. 
Consequently, landslides and the destruction of vegetation investigated in the field caused by 
the earthquake led to the loss of coherence. The other two regions of the interference fringes 
with increasing distance away from the fault and is more and more sparse, but the right side 
of the noncoherent area is the footwall (i.e., Chengdu Plain), while the wrapped phase image 
shows nearly parallel extension. On the other side of the noncoherent zone is the hanging wall 
of fault which is the concentric circular interference fringe area.

According to the phase in Figure 7, considering relative atmospheric wet delay in Figure 6 and 
its space imaging geometric relationship, ScanSAR interferometry value is transformed into 
the deformation of line of sight (LOS) as shown in Figure 8. To further analyze  deformation, as  

Figure 8. Wenchuan earthquake deformation field by ScanSAR interferometry.
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the center of interferogram is a noncoherent district, the interferogram is unwrapped, respec-
tively, at different points of the upper west and lower east image as the reference point, so 
that it is possible to gain two deformation results. Figure 8 is the deformation field taken 
at the lower east corner as reference point, which shows that the deformation scope of the 
Wenchuan earthquake is very great, even the A’ba region recorded deformation. In addition, 
deformation of the Chengdu region is about 0.10 m. To analyze the deformation, its profile is 
mapped as shown in Figure 9. Based on profile of the two points, the max deformation value 
of the left part of the fault is 0.48 m, while that of the right part is −0.42 m. When compared 
with the west part, the deformation scope of the east part is narrow, while the deformation 
grades are very high, especially near the fault.

4. Case study: Yutian earthquake

4.1. Background

There was an M7.3 earthquake at the boundary of Yutian County in Hotan Prefecture, Xinjiang, 
China, on March 21, 2008, and the epicenter of earthquake (Latitude: 35.6, Longitude: 81.6) 
was 225 km from the Hetian city and about 120 km from the Yutian county, as presented 
in Figure 10. Yutian earthquake was considerably destructive. This is again an earthquake 
higher than M7.0 in the western edge of the Qinghai Tibet Block that occurred after Kunlun 

Figure 9. Deformation profile of Wenchuan earthquake along the black line in Figure 8 (unit: M).
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Mountain earthquake of magnitude 8.1 in 2001, and a M6.2 earthquake was in this region in 
2012. According to statistics, there were 33 above M3.0 earthquakes in this region from January 
2012 to November 2013. Thus, this is an earthquake-prone area and as a research hotspot [26].

Yutian earthquake occurred in the intersection of the East Kunlun earthquake belt, Kangxiwar 
fault zone and Altyn Tagh earthquake belt, which is near the edge of the West Kunlun 
Mountains, located in the southern part of Tarim Basin, belonging to Tibet and two big west-
ern active plots. Although the Yutian earthquake in the basin limits the distribution range 
of aftershocks, the earthquake deformation range still reflects the motion state of the active 
block [26]. The activities of Arkin fracture zone are the main causes of the Yutian earthquake. 
Strong earthquake activities of Arkin fault are often accompanied by earthquake activity in 
the Qinghai Tibet Plateau and its surrounding main fault zone. For example, Wenchuan M8.0 
earthquake took place more than 1 month after the Yutian earthquake, and 2 years later, the 
M7.1 Yushu earthquake occurred.

4.2. Data and processing

To monitor the total deformation field of Yutian earthquake, ASAR data of ScanSAR and two 
IM models of the ESA ENVISAT satellite were selected to study seismic deformation as shown 

Figure 10. Location of Yutian earthquake (★ is center of Wenchuan earthquake).
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in Table 1. Using Global Digital Elevation Model (GDEM) to get differential interferogram 
and the geoid difference of the GDEM of Yutian was computed based on EGM96. The regional 
level of the contour line is shown in Figure 11, in which the maximum and minimum value of 
the regional level is 62.3 and −19.8 m, respectively, and the difference between them is 42.5 m.

After co-registering and differential interferometry, sub-swath interferogram was acquired 
and then sub-swath interferograms were mosaicked to the total ScanSAR interferogram. At 
the end, the flat and topographic phase were removed from the interferogram to obtain a 
differential interferogram as seen in Figure 12a, while Figure 12b is the differential interfero-
gram obtained after phase unwrapping, and its perpendicular baseline is 75.6 m, in both cases 
the data of November 29, 2007 and April 17, 2008 were applied.

4.3. Results and discussions

As shown in Figure 12, the ScanSAR differential interferogram mantle scope is about 
405 × 405 km, almost reflecting the deformation field and fault place of the Yutian earthquake. 
At the same time, it also shows that the surface deformation influence on the scope of Yutian 
earthquake was enormous. In addition, the earthquake isoseismal is oval, and the differen-
tial interferogram is roughly divided into two areas, namely, the coherent and noncoherent 
regions. Yutian earthquake center is located in the noncoherent region (shown in Figure 12).

The noncoherent area on the left is the hanging wall of the earthquake, while the right side is 
the footwall of the earthquake. Moreover, interference fringes in these regions with increasing 
distance away from the fault are more and more sparse, but when compared with the hanging 
wall of the earthquake, footwall deformation decays earlier.

As shown on the upper right corner area in Figure 12b, even far away from the fault, the case 
still remained strips. To verify whether the interference fringes is caused by the seismic defor-
mation, another four landscape ScanSAR data before and after the earthquake were processed 
and the results are shown in Figure 13. Figure 13a is the interferometry result using two data 
of pre-earthquake and Figure 13a shows the interferometry result using two data between 
pre-earthquake and post-earthquake.

Track 
number

Imaging time 
(YY-MM-DD)

Ascending or 
Descending

Imaging 
mode

Polarization 
mode

Orbit number

434 2007-05-03 Descending WSS HH 30,862

2007-06-07 Descending WSS HH 31,363

2007–2011-29 Descending WSS HH 28,085

2008-04-17 Descending WSS HH 33,095

2008-05-22 Descending WSS HH 33,196

477 2008-04-20 Descending IM HH 33,093

2008-04-01 Descending IM HH 33,083

Table 1. SAR data to obtain deformation of Yutian earthquake.
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From Figure 13a, it is clear that the upper right corner areas of the interferogram remain as 
interference fringes even when the vertical baseline is 2.87 m; however, Figure 13b has no 
interference fringes. Undoubtedly, this proved that these stripes are not caused by a DEM 
error or other factors but Yutian earthquake. Although the region from the earthquake center 
is about 170 km and located in east Kunlun and Arkin faults, it is found that transition part 
between the region and earthquake deformation field has no interference fringes, which may 
be related to the Bayan Kara block geological structure.

Based on the spatial geometry and differential interferogram, ScanSAR interferometry obser-
vations are transformed into the deformation value of the line of sight. As shown in Figure 14, 
the rupture strip of Yutian earthquake is about 80 km. The maximum deformation of hang-
ing wall for the fault is 0.41 m and the maximum of the footwall deformation value is 0.32 m. 
When compared with the footwall, the hanging wall deformation range is narrow, but the 
deformation gradient near the fault is great. In addition, ASAR image mode data are used 
to form the interferometry and deformation results as shown in Figure 15. It is clear that the 
differential interferometry results of the image mode reflect almost fault and deformation dis-
tribution of the Yutian earthquake. The maximum deformation of the hanging wall is 0.60 m 

Figure 11. Geoid isolines of Yutian region.
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2008-04-01 Descending IM HH 33,083

Table 1. SAR data to obtain deformation of Yutian earthquake.
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From Figure 13a, it is clear that the upper right corner areas of the interferogram remain as 
interference fringes even when the vertical baseline is 2.87 m; however, Figure 13b has no 
interference fringes. Undoubtedly, this proved that these stripes are not caused by a DEM 
error or other factors but Yutian earthquake. Although the region from the earthquake center 
is about 170 km and located in east Kunlun and Arkin faults, it is found that transition part 
between the region and earthquake deformation field has no interference fringes, which may 
be related to the Bayan Kara block geological structure.

Based on the spatial geometry and differential interferogram, ScanSAR interferometry obser-
vations are transformed into the deformation value of the line of sight. As shown in Figure 14, 
the rupture strip of Yutian earthquake is about 80 km. The maximum deformation of hang-
ing wall for the fault is 0.41 m and the maximum of the footwall deformation value is 0.32 m. 
When compared with the footwall, the hanging wall deformation range is narrow, but the 
deformation gradient near the fault is great. In addition, ASAR image mode data are used 
to form the interferometry and deformation results as shown in Figure 15. It is clear that the 
differential interferometry results of the image mode reflect almost fault and deformation dis-
tribution of the Yutian earthquake. The maximum deformation of the hanging wall is 0.60 m 

Figure 11. Geoid isolines of Yutian region.
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and the maximum deformation of the footwall is 0.63 m. The noncoherent region of the IM 
interferometry is in a certain range in comparison with results from the ScanSAR mode inter-
ference. Furthermore, the non-coherent region is small and the deformation results reflected 
is not the same, which is mainly due to the higher resolution induced by IM.

Figure 13. Other differential interferogram of Yutian earthquake (wrapped). (a) Before earthquake. (b) After earthquake.

Figure 12. Differential interferogram of Yutian earthquake. (a) wrapped interferometric phase and (b) unwrapped 
interferometric phase.
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Figure 14. Wide deformation field of Yutian earthquake.

Figure 15. Result of IM mode for Yutian earthquake. (a) Interferogram. (b) Deformation result.
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5. Conclusions

In this chapter, we studied several key techniques of monitoring large area deformation 
caused by earthquakes. The wider deformation fields of ScanSAR interferometry data were 
employed to monitor the land deformation after Wenchuan earthquake (2008) and Yutian 
earthquake (2008), respectively, in China. The results show that in the deformation field of 
Yutian earthquake, the maximum deformation of hanging wall for the fault is 0.41 m and the 
maximum of the footwall deformation value is 0.32 m. But in Wenchuan earthquake, its defor-
mation field is greater than that of Yutian earthquake, which can preferably reflect the land 
deformation, especially for the deformation information of far fields. The max deformation 
value of the hanging wall part of the fault is 0.48 m, while that of the foot wall part is −0.42 m. 
These results agree well with our field investigations after the two earthquakes.

The result also indicates that ScanSAR mode can fully reflect the deformation field and the 
corresponding seismic geological structure characteristics. Although the conventional SAR 
interferometry method is relatively effective because of its narrow covering area, it is very 
important to explore the mechanism and the dynamics of earthquakes using wider deforma-
tion fields of ScanSAR images to monitor the land deformation caused by large earthquakes 
such as Wenchuan 2008 and Yutian 2008 earthquakes.
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Abstract

Remote sensing is becoming an important and useful tool in mapping large, remote areas 
and has many applications in geosciences such as geologic and geo-structural mapping, 
mineral and water exploration, hydrocarbon exploration, natural hazards analysis, and 
geomorphology. The recent advances in remote-sensing imaging acquisition and availabil-
ity of images can help geoscientists to explore and prepare maps quickly and evaluate the 
geo-potential of any specific area on the globe. Advances in remote-sensing data analysis 
techniques have improved the capacity to map the geological structures and regional char-
acteristics and can serve in mineral exploration in complex and poorly understood regions. 
In this chapter, geophysical remotely sensed data (airborne geophysics) are integrated 
with other sources of remotely sensed data to analyze three separate areas, one each for 
geological structure, lineament presence and orientation, and geothermal potential. Three 
case studies are discussed in this chapter from three countries—Afghanistan, United Arab 
Emirates, and Algeria—to show the effectiveness of remote sensing in mapping and detect-
ing geo-structural, geomorphological, and geothermal characteristics of ground surfaces.

Keywords: remote sensing, geological structures, geothermal exploration, remote areas

1. Introduction

Airborne remote sensing could be said to have started in 1858 when French balloonist 
Gaspard-Felix Tournachon took a photo of Paris from above. Sensors have ridden over time 
on balloons, to kites, to various aircraft, rockets, and finally on satellites. Sensor technology 
has come a long way from cameras and film, and we can now detect the entire useful electro-
magnetic spectrum, as well as gravity and magnetics themselves.
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



[11] Guarnieri AM. ScanSAR interferometric monitoring using the PS technique. In: Pro-
ceedings of the ERS/ENVISAT Symposium; 2000

[12] Bamler R. Adapting precision standard SAR processors to ScanSAR. IGARSS. 1995;3: 
2051-2053

[13] Guarnieri AM, Guccione P. Optimal “focusing” for low resolution ScanSAR. IEEE Trans-
actions on GARS. 2001;39(3):479-491

[14] Guarnieri AM, Prati C. ScanSAR focusing and Intexferometry. IEEE Transactions on 
Geosclence and Remote Sensing. 1996;34(4):1029-1039

[15] Guarnieri AM, Rocca F. Combination of low- and high-resolution SAR images for dif-
ferential interferometry. IEEE Transactions on Geoscience and Remote Sensing. 1999; 
37(4):2035-2049

[16] Shen ZK, Sun JB, Zhang PZ. Slip maxima at fault junctions and rupturing of barriers 
during the 2008 Wenchuan earthquake. Nature Geoscience. 2009;2:717-724

[17] Xu CJ, Wang H, Jiang GY. Study on crustal deformation of Wenchuan Ms8. 0 earthquake 
usingwide-swath ScanSAR and MODIS. Geodesy and Geodynamics. 2011;2(2):1-6

[18] Lemoine FG, Kenyon SC, Factor JK. The development of the joint NASA GSFC and 
NIMA geopotential model EGM96, NASA technical paper, Nasa/TP-1998-206861; 1998

[19] Shi C, Lou Y, Zhang H, Zhao Q, Geng J, Wang R, Fang R, Liu J. Seismic deformation of 
the mw 8.0 Wenchuan earthquake from high-rate GPS observations. Advances in Space 
Research. 2010;46(2):228-235. DOI: 10.1016/j.asr.2010.03.006

[20] Burchfiel BC. A geological and geophysical context for the Wenchuan earthquake of 12 
May 2008. GSA. 2008;18:4-11

[21] Hashimoto M, Enomoto M, Fukushima Y. Coseismic deformation from the 2008 Wenchuan, 
China, Earthquake derived from ALOS/PALSAR images. Tectonophysics. 2009, 2010; 
491(1-4):59-71

[22] Wang W-M, Zhao L-F, Li J, Yao Z-X. Rupture process of the Ms 8.0 Wenchuan earth-
quake of Sichuan¸ China. Chinese Journal of Geophysics. 2008;51:1403-1410

[23] Wei M, Sandwell D, Smith-Konter B. Optimal combination of InSAR and GPS for mea-
suring interseismic crustal deformation. Advances in Space Research. 2010;46(2):236-
249. DOI: 10.1016/j.asr.2010.03.006

[24] Song XG, Shan X, Qu C, Zhang G, Guo L, Zhang G. Coseismic surface deformation 
casused by the Wenchuan M8 earthquake from InSAR data analysis. IGARSS2009, III: 
pp. 69-73; 2009

[25] Zhang Y, Feng WP, Xu LS, Zhou CH. Spatio-temporal rupture process of the 2008 great 
Wenchuan earthquake. Science in China Series D: Earth Sciences. 2009;52(2):145-154

[26] Wu L, Xiao AC, Wang LQ. EW-trending uplifts along the southern side of the central 
segment of the AltynTagh fault, NW China: Insight into the rising mechanism of the 
Altyn Mountain during the Cenozoic. Science China Earth Sciences. 2012;55:926-939. 
DOI: 10.1007/s11430-012-4402-7

Recent Advances and Applications in Remote Sensing180

Chapter 9

Applications of Remote Sensing in Geoscience

Hakim Saibi, Mohand Bersi,
Mohamed Bodruddoza Mia,
Nureddin Mohamed Saadi,
Khalid Mohamed Saleh Al Bloushi and
Robert W. Avakian

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75995

Provisional chapter

DOI: 10.5772/intechopen.75995

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Applications of Remote Sensing in Geoscience

Hakim Saibi, Mohand Bersi, 
Mohamed Bodruddoza Mia, Nureddin Mohamed  
Saadi, Khalid Mohamed Saleh Al Bloushi and 
Robert W. Avakian

Additional information is available at the end of the chapter

Abstract
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There are a number of advantages in using remote sensing. These include large existing data-
bases such as Landsat and Satellite Pour l’Observation de la Terre (SPOT21); the ability to 
get regional views of large areas; ease of combining information from multiple sensors; no 
difficulty or danger in covering remote areas; availability of sophisticated computer analysis 
programs; a wide selection of energy bands (e.g., Infrared, ultraviolet, etc.) and of vital impor-
tance, low cost, and high speed.

Today’s wide assortment of sensors allows interpreters to overlay, combine, or even subtract 
sensors in the search of meaningful maps. Spectral signatures of various plants and common 
rocks and minerals are well established, allowing remote reconnaissance to identify areas 
favorable for energy and mineral exploration or expand such areas through sensing tech-
niques. This chapter shows only a small sample of what can be done with remote sensing, and 
the capabilities of these methods will only increase with time.

2. Application of remote sensing and remote geophysics to 
geological structural investigations in Aynak-Logar valley, 
Afghanistan

2.1. Introduction

The Aynak-Logar valley (ALV) is located around 30 km south of the capital city of Afghanistan 
(Kabul) (Figure 1). ALV is an area rich in cobalt, chromium, and copper, and other minerals 
(Figure 2). To detect the geo-structural features and understand their relationship with min-
eralization in this study area, remote-sensing and geophysical techniques were used.

Integrating remote-sensing and geophysical data has the potential to define the quantitative 
details of hitherto unknown areas and reduce the ambiguity of geological interpretation [1–5]. 
The results from remote-sensing and geophysical interpretation will support future mining 
exploration and development studies.

Figure 1. (left) Location of ALV study area in Afghanistan. (Right) ALV study area, red line shows the province boundary 
and the different districts as color coded.
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Geophysical data consist of aeromagnetic data obtained from the US Geological Survey 
(USGS) and processed using Geosoft Oasis Montaj Ver. 8. A magnetic survey is a powerful 
method to study the location of faults and other geological structures (dykes, intrusions) and 
is routinely applied in mining exploration surveys [6]. The remote-sensing data were pro-
cessed using Earth Resource (ER) Mapper Ver. 7.

The Euler deconvolution (ED) method was applied to the aeromagnetic data with the objec-
tive of making geological features such as faults, contacts, and dykes more visible and of 
estimating their depth where possible.

Geologically, the exposed rocks in the core of anticline in ALV are metamorphic, mainly 
amphibolites, and gneiss, and belong to Welayati Formation (Fm). The Loy Khwar Formation 
overlies the Welayati Fm and is composed of metasedimentary sequences and hosts the cop-
per mineralization in ALV.

Structurally, the Aynak-Logar Valley region is a pull-apart, post-orogenic basin resulting 
from the transpressive phase of two major sinistral shear faults, likely of Triassic age, trend-
ing in the NNE-SSW direction, while the main stress is in the NW-SE direction. The NW-SE 
compression causes on echelon folds in the NE-SW direction, with Triassic centers, sigmoidal 
in shape, and parallel to the edge of the major shear faults of NNE-SSW direction. This is 
due to the intensity of the deformation near the shear zone. The extension is represented by 
a NW-SE-oriented horst and graben structure that is the origin of the intrusion of ultramafic 
rocks into this region. The presence of normal faults at the boundaries of the horst and gra-
ben structures and their role in the intrusion of such rocks explain the presence of copper 
at the edges of these faults. The NE-SW faults are synthetic, with the major sinistral fault in 
the NNE-SSW direction. N-S faults are also synthetic to the major faults. During the Eocene, 

Figure 2. Map showing the mineral and structural information of the study area.
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Figure 1. (left) Location of ALV study area in Afghanistan. (Right) ALV study area, red line shows the province boundary 
and the different districts as color coded.
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NE-SW folds were created and present evidence of another deformational stage at that time 
but with NW-SE compression. The Pliocene-Oligocene forms an unconformity with Paleozoic 
and Triassic formations.

2.2. Materials and methods

2.2.1. Remote-sensing data

2.2.1.1. Landsat-enhanced thematic mapper plus (ETM+)

Landsat-7 was launched on April 15, 1999, from the Western Test Range aboard a Delta-II 
expendable launch vehicle. At launch, the satellite weighed approximately 2200 km. The 
spacecraft is about 4.3 m long and 2.8 m in diameter [7]. The Enhanced Thematic Mapper 
Plus (ETM+) instrument on board this spacecraft is an eight-band multispectral scanning 
radiometer (Table 1) capable of providing high-resolution imaging information of the 
earth’s surface. It detects spectrally filtered radiation at visible, near-infrared, mid-infrared, 
and thermal infrared frequency bands from the sunlit earth in a 183 km-wide swath when 
orbiting at an altitude of 705 km ([7]). Nominal ground sample distances or “pixel” sizes 
are 15 m in the panchromatic band; 30 m in the 6 visible, near and mid-infrared bands; and 
60 m in the thermal infrared band [7]. The satellite orbits the earth at an altitude of approxi-
mately 705 km with a sun-synchronous 98-degree inclination and a descending equatorial 
crossing time of 10 in the morning, with a repeat coverage interval of 16 days (233 orbits).

2.2.1.2. Shuttle radar topography mission

The Shuttle Radar Topography Mission (SRTM) obtained elevation data on a near-global scale 
to generate the most complete high-resolution digital topographic database of the Earth [8]. 
SRTM consisted of a specially modified radar system that flew onboard the Space Shuttle 
Endeavour during a 11-day mission in February of 2000. SRTM is an international project 
spearheaded by the National Geospatial-Intelligence Agency (NGA), National Aeronautics 
and Space Administration (NASA), the Italian Space Agency (ASI), and the German Aerospace 
Center (DLR). There are three resolution outputs available, including 1-km and 90-m spatial 

Wavelength (μm) EM region Spatial resolution

1 0.45–0.52 Blue 30 m

2 0.52–0.60 Green 30 m

3 0.63–0.69 Red 30 m

4 0.76–0.90 Near-infrared 30 m

5 1.55–1.75 Middle-infrared 30 m

6 10.40–12.50 Thermal infrared 60 m

7 2.08–2.35 Middle-infrared 30 m

8 0.52–0.90 Panchromatic 15 m

Table 1. Radiometric characteristics of ETM+ sensors.
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resolutions for the world and a 30-m spatial resolution for the US. The Global Land Cover 
Facility (GLCF) serves the main USGS editions and has “enhanced” editions. It also provides 
editions in WRS-2 tiles to approximate Landsat scenes. In this study, the 90-m resolution 
SRTM (WRS-2) data (Table 2) were used to derive the topographic features of the study areas.

2.2.2. Aeromagnetic data

The aeromagnetic data for the Aynak region were acquired in 2006 and 2008 by the USGS and 
the Naval Research Laboratory (NRL) [9, 10]. Lines were spaced 4 km apart and were flown at 
heights of 5 km or more, which is higher than ideal. The aeromagnetic data were reduced to 
the pole (RTP) using a magnetic inclination of 48.74 and a declination of 2.01 degrees.

2.2.3. Data analysis and data integration

Two Landsat-Enhanced Thematic Mapper Plus (ETM+) images were used for analysis (Figure 3). 
Three types of contrast stretching were tested by using a mathematical function to map the pixel 
values to new, enhanced values: linear stretch, histogram stretch, and special stretch [11]. These 
methods were used to enhance the contrast between lithological units in the study area and 
enhance the printed geological map. The transformation technique Hue-Intensity-Saturation 
(HIS) was applied to differentiate rock units in ALV. The HIS components (blue, red, and green) 
were allocated, respectively, using ETM bands: 631, 743, and 763 [12]. The variance of the bands 
was calculated by the optimum index factor (OIF) method [13].

Edge enhancement was applied to the ETM+ image to detect edges, and then these enhance-
ments were added back into the original images to increase contrast in the vicinity of an edge 
[14]. Individual panchromatic band (15 m) applications of the edge detection filter (Laplacian 
of Gaussian filter) were tested for lineament identification. Principal component analysis 
(PCA) was also applied to the ETM+ image to reduce the number of variables in the dataset, 
while retaining most of the original variability in the data.

PCA transforms the data into a set of uncorrelated random variables that capture all of the 
variance of the original dataset and assign as much variance as possible to the fewest number 
of variables. PCA is a very effective method for analyzing multispectral satellite imagery. 
PCA transforms the original image bands into uncorrelated output bands. PCA is often used 

Satellite Sensor Capture resolution Pixel resolution

Space Shuttle Endeavor C-band and X-band 1 arc second 30 m

3 arc second 90 m

30 arc second 1 km

Scene Type Scene Size Projection

Degree 1 degree latitude × 1 degree longitude Geographic

WRS-2 185 km × 185 km UTM

Mosaic Global Geographic

Table 2. Sensor and product characteristics of SRTM data.
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Figure 4. PCA map of the study area.

for dimensionality reduction and for creating color composite images with maximum infor-
mation content. Figure 4 shows the PCA map of the study area.
The Landsat ETM+ band combinations RGB-742 (red, green, blue) (SWIR-VNIR composite), 
RGB-543 (SWIR-NIR-VIR composite), and RGB-748 (SWIR-NIR-Panchromatic composite) 
were overlain on shaded relief maps to improve the possibility of lineament extraction [15]. 
The selected combinations have the advantage of preserving morphological features as well 

Figure 3. ETM map of the study area.
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as displaying different lithological units in various colors because bands within the very near-
infrared (VNIR) and shortwave infrared (SWIR) portions of the electromagnetic spectrum were 
used [16].

The shaded relief maps were used to simulate shading effects that were caused by the sun azi-
muth and elevation [17]. In this study, we experimented with an evaluation using an incom-
ing illumination that is perpendicular to the prevailing trend of lineaments in the study area. 
Lineament identification has become increasingly valuable to structural recognition [18, 19].

Shaded relief maps were constructed from the SRTM Digital Elevation Model (DEM) by vary-
ing the azimuth and elevation of simulated sun illumination [20]. ETM+ VNIR color compos-
ites were overlaid on SRTM map to enhance lineaments identified in the ALV.

Lineaments were manually extracted based on photographic characteristics, such as shape 
(size, pattern, shadow, tone and texture) and geomorphologic features (fault-scarp, straight 
valley and drainage patterns).

The extracted lineaments were statistically analyzed to create rose diagrams and to evaluate 
differences in lineament direction and density. The analysis and interpretation of the extracted 
lineament lengths and trends, based on the age of the geological formations, provided useful 
information about the tectonic evolution of the study area.

Figure 5. Geological map of the study area including the locations of geological faults [24–26] and interpreted lineaments 
from the remote-sensing data for the different geological ages from Proterozoic to Quaternary. The NE-SW geological-
structural trend is present and the extracted lineaments run dominantly in the NE direction.
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The aeromagnetic data were interpreted using Euler Deconvolution in order to determine the 
depth of geo-structural features (faults, contacts, dykes) and their location. The method was 
developed by [21, 22].

2.3. Results and discussions

Extracted lineaments were divided into 13 groups based on the age of the geological for-
mations. The rocks of each geological age were classified as one unit and presented in one 
color group (Figure 5). The geological formations were cut by the extracted lineaments—
Proterozoic, Cambrian, Ordovician, Silurian, Devonian, Carboniferous, Permian, Triassic, 
Cretaceous, Eocene, Oligocene, Pliocene, and Quaternary. Interpretation of these lineaments 
was based on the principle of crosscutting relationships [23]. The lineaments of each geologi-
cal age were individually statistically analyzed to create rose diagrams. Figure 6 presents the 
density map showing the location of lineaments from remote sensing. The interpreted faults 
from remote sensing are trending in the NE direction, which is in agreement with the trend 
of geological faults (Figure 7).

Figures 8 and 9 show the Euler solutions for a structural index (SI) of 0 and 1, respectively. 
The depths to the faults are ranging from 250 m to 2.5 km. The detected faults are located at 
borders of high magnetic anomalies and in agreement with the observed geological faults and 
interpreted remote-sensing geo-structural features.

Figure 6. Lineament density map extracted from the shaded maps based on 30-m DEM data and natural-color Landsat 
imagery in the study area.
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Figure 7. Rose diagrams extracted from geological map and shaded maps of the study area.

Figure 8. Euler deconvolution map of the study area with SI = 0. The background represents the RTP aeromagnetic map 
in nT overlaid on the SRTM map. Yellow lines represent geological faults.
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3. Application of remote sensing in geothermal exploration: a case 
study at Mubazzarah Green Park hot spring area, Al-Ain city, United 
Arab Emirates

3.1. Introduction

Remote sensing is an essential technique for investigating geothermal ground, volcanic, or 
hot spring areas considering the unstable ground, and in this case, poor accessibility due to a 
national park. In addition, spatial analysis and repetitive monitoring of the thermal status can 
be done at lower cost than ground techniques. Satellite remote sensing offers the possibility to 
map land surface and vegetation variables in a thermal ground, volcanic, or hot spring areas 
such as hydrothermal altered minerals, land surface temperature (LST), emissivity, radiative 
heat flux (RHF) and land cover, and so on. [27]. Landsat satellite images (TM/ETM+) have a 
long history of use in volcano monitoring, considering hydrothermal alteration, heat flux, and 
thermal anomaly mapping over the whole world [28–35].

Figure 9. Euler deconvolution map of the study area with SI = 1. The background represents the RTP aeromagnetic map 
in nT overlaid on the SRTM map. Yellow lines represent geological faults.
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To provide a continuous monitoring of our environments, Landsat program launched a new 
satellite on February 11, 2013, that is, Landsat 8 with Operational Land Imager/Thermal 
Infrared Sensor (OLI/TIRS) sensors providing a total of 11 spectral bands: 9 OLIs and 2 TIRS 
bands. Landsat 8 sensors acquire images of both day and nighttime with a revisit time of 
16 days for the same region. The OLI sensor collects data at 30-m resolution in visible, near-
infrared, and shortwave infrared as well as a 15-m resolution panchromatic band. In addition, 
this sensor has a 30-m coastal aerosol band and 30-m cirrus band for cloud detection [36–38].

3.2. Materials and methods

In this case study, we applied the Landsat 8 Operational Land Imager (OLI)/thermal Infrared 
Sensor (TIRS) image to investigate the land use—land cover, emissivity, land surface tem-
perature, and radiative heat flux of the Mubazzarah Green park hot spring area in Al-Ain city, 
United Arab Emirates (UAE) (Figure 10). The Landsat 8 OLI/TIRS image was acquired on 
December 1, 2016, and obtained from United States Geological Survey (USGS) archives free 
of cost. It has nine OLI bands of 30-m spatial resolution and two TIRS bands of 100-m spatial 
resolution. Land use-land cover (LULC) of the study area was mapped using Normalized 
Directional Vegetation Index (NDVI) value using the equation of NDVI = ρnir-ρr/ρnir + ρr; where 
ρnir is the reflectance of near-infrared band and ρr is the reflectance of the red band [27]. The 
NDVI value is a unitless ratio and ranges from +1 to −1. It is divided into four land cover 
classes: water body (NDVI <0), bared land/desert (NDVI = 0–0.2), mixed land (NDVI = 0.2–0.5) 
and vegetated (NDVI >0.5) [27]. The emissivity values in this region were calculated using 
the NDVI threshold method [39]. The Landsat 8 TIRS sensor has two thermal bands of 100 m 
in spatial resolution. We used band 10 of the sensor for land surface temperature estima-
tion using the Mono-window algorithm [35, 39]. Radiative heat flux (RHF) was estimated by 

Figure 10. Location of study area.
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using the Stefan-Boltzmann equation, that is, Qr = τ ε A (Ts
4-Ta

4), where Qr = radiative heat flux  
(W/m2), τ = atmospheric transmissivity, σ = Stefan-Boltzmann constant, ε = emissivity, A = area 
(m2), Ts = land surface temperature (k), and Ta = ambient temperature (k) [27]. Meteorological 
data were collected from local meteorological station in the UAE including relative humidity 
(42%), ambient temperature (27°C), and so on. The atmospheric transmissivity during image 
acquisition was calculated using the NASA calculator. We obtained an atmospheric transmis-
sivity of about 0.78 during the image acquisition of the study area.

Figure 11. Remote-sensing application in the green Mubazzarah Park area in Al-Ain city, UAE. (A) LULC, (B) emissivity, 
(C) LST, (D) RHF.
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3.3. Results and discussions

Total study area is the 43km2 in and around the green Mubazzarah park area in Al-Ain City, 
UAE. The LULC result shows that the water bodies cover about 112 hectares, that is, 2.63% 
of the study area (Figure 11A). The largest LULC is the bare or desert land covering about 
3721 hectares or 87.42% of the study area. The smallest LULC is the healthy vegetated region, 
which covers an area of about 59.4 hectares or 1.4% of the total study area. The mixed land, 
that is, the pixel area (30 × 30 m), contains some vegetation or some bare land or water, is pres-
ent over about 364.14 hectares or 8.55% of the total study region (Figure 11A).

The calculated emissivity value ranges from 0.98 to 0.99025 for the land covers of this study 
area (Figure 11B). The highest land surface temperature (LST) obtained was about 46°C in the 
hot spring region of the green Mubazzarah Park shown as bright red color in the Figure 11C. 
The lowest LST was about 23.44°C shown as green color in the figure. We obtained the highest 
and lowest RHF of the study area, respectively, which was about 127 and − 21 W/m2 using the 
Stefan-Boltzmann equation (Figure 11D). The calculated total radiative heat loss was about 
1927 MW. The total heat discharge rate after multiplying the total RHL using the relationship 
coefficient (6.49) was about 12,507 MW. In conclusion, the study confirmed that the applied 
methods and images are adequate to explore and monitor (if possible) the thermal status of 
any geothermal area like this hot spring region with less time and low cost.

This is an ongoing experimental project. Ground truth data is not available at the time of writ-
ing. Ground truthing or accuracy assessment is an important part of remote-sensing applica-
tions; it may be added as part of further studies or developments.

4. Application of remote sensing in mining and geological 
investigations, case study: southern part of Algeria

This case study shows an example of the application of remote sensing to geological and 
mineralogical mapping of the Central Atlantic Magmatic Province (CAMP) formations in 
southern Algeria. Remote-sensing techniques such as principal component analysis (PCA), 
band ratios, band math, and target detection wizard can detect different mineral resources 
and interesting geological structures [40]. In this section, we present applications of different 
remote-sensing methods to map the mineral resources of the CAMP formations in southern 
Algeria using Landsat 8 OLI multispectral images. The remote-sensing analysis allows us to 
create a photo-lithological map of the study area presenting sills and dykes. The CAMP for-
mations are associated to these large doleritic sills and long dikes.

4.1. General location and objectives of the study

The study area is located in the southwestern part of Algeria on the north flank of Tindouf 
basin (Figure 12). The north flank of the Tindouf basin contains two distinct regions. There is 
a high elevation region, which corresponds to the Hamada of Dra and a low elevation region 
situated in the Zemoul depression. The Zemoul depression is characterized by a steep relief, 
so a remote-sensing approach is the best way to map the CAMP outcrops in that region.
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4.2. Geological setting

The stratigraphic sequence in the study area consists of Paleozoic rocks [41, 42]. The main 
ages of the outcropping formations are Carboniferous and Devonian. The Carboniferous for-
mations are mainly sandstone, while the Devonian formations are primarily clay sediments. 
The CAMP formation is in the form of doleritic sills and dykes, the most important mass of 
dolerites outcrop in the Devonian (Figure 13).

4.3. Remote-sensing analysis

The Operational Land Imager (OLI) multispectral images were used to enhance and highlight 
the geological and structural features in the study area. The image processing techniques such as 
band ratios, principal components analysis (PCA), target detection wizard, and band math have 
proved to be a strong tools for mapping geological features for mineral exploration purposes 
[40, 44].

4.3.1. Band ratios

Ratio is a powerful image processing technique, in that it allows discrimination between dif-
ferent lithological features. It is based on the division of the radiometric value of one band by 
the radiometric value of the same pixel of another band. The 7/1, 5/3, and 4/2 ratios have been 
selected to display in RGB mode (Figure 14).

Figure 12. General location map of the study area.
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The ratio process highlighted the dolerites with dark green color; they are in the form of sills 
and long dykes. The Paleozoic are in shades of light green.

4.3.2. Principal components analysis (PCA)

The PCA technique is widely used in remote-sensing studies. The land cover reflectance in 
the OLI multispectral bands may present data redundancies, which can be avoided by using 
PCA analysis. It transforms an original correlated dataset into a substantially smaller set of 
uncorrelated variables that represents most of the information present in the original dataset 
[45]. The three first components, containing a large amount of information, were selected for 
RGB display (Figure 15).

The principal component analysis allows us to distinguish between different terrain aspects; 
the dolerites are in light yellow to white shades. The Paleozoic rocks appear in shades of 
magenta. This analysis shows that the intersection of the NE trending dykes with the center of 
the Zemoul antiform creates circular forms, which may correspond to the mineralization area.

4.3.3. Target detection wizard

The target detection wizard process allowed the detection of mineral targets by using specific 
algorithms such as adaptive coherence estimator (ACE) and spectral angle mapper (SAM). 

Figure 13. Geological map of the northern part of the Tindouf basin [43].
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These methods have been proven able in geological target detection [46–50]. They are based 
on the spectral signature of rock-forming minerals, and they try to match image spectra to 
reference target spectra. The Anorthite was selected as a target lithology. The resulting image 
shows the distribution of non-altered sills. The target detection wizard analysis shows the 
high clinopyroxene dolerites, which are less altered than others, and may show good fractura-
tion and structural indexes (Figure 16).

Figure 14. RGB display of 7/1, 5/3 and 4/2 ratios. (a) Regional area, (b) Focus area.
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4.4. Conclusions

Remote sensing in arid area such as the Tindouf basin has been proven to be a good tool 
for geological and mineralogical mapping. The use of advanced remote-sensing analy-
sis allowed us to map dolerite outcrops, estimate their alteration and fracturation level,  
and then, extract the ore indexes and potentials. The results show that all dykes concentrate 
around Al Akla area, where some circular dolerite bodies have been detected. These circular 
bodies may correspond to a mineralized area. A lithostructural map of the study area has 
been created (Figure 17). This map can be used as a base map for the field validation mission.

Figure 15. Three first components (PC3, PC2, and PC1) displayed in RGB mode, respectively.
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5. Conclusion

Here, we see a small bit of what can be done using remote sensing. As new sensors, such as 
Light Detection and Ranging (LIDAR) and new techniques like artificial intelligence (AI), come 
upon the scene, the potential for remote sensing will only grow. The modern interpreter will no 

Figure 17. Photo-lithological map of the study area.

Figure 16. The target detection wizard results showing the high Anorthite content dolerites.
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longer be hampered by maps of questionable quality in remote areas. They will be able to rou-
tinely assess the resources of vast, otherwise inaccessible areas quickly and effectively through 
the use of remote sensing.

Acknowledgements

The first author HS acknowledges the financial support of United Arab Emirates University 
(UAEU) by Research Start-Up Grant No. 8, Fund 31S264 (2016).

Author details

Hakim Saibi1*, Mohand Bersi2, Mohamed Bodruddoza Mia3,4, Nureddin Mohamed Saadi3,  
Khalid Mohamed Saleh Al Bloushi1 and Robert W. Avakian5

*Address all correspondence to: saibi.hakim@gmail.com

1 Department of Geology, College of Science, United Arab Emirates University, Al-Ain, 
United Arab Emirates

2 Department of Earth Sciences, Ferhat Abbas University, Setif, Algeria

3 Faculty of Engineering, Department of Earth Resources Engineering, Kyushu University, 
Fukuoka, Japan

4 Faculty of Earth and Environmental Science, Department of Geology, University of Dhaka, 
Bangladesh

5 Oklahoma State University Institute of Technology, USA

References

[1] Saadi NM, Aboud E, Saibi H, Watanabe K. Integrating data from remote sensing, geol-
ogy and gravity for geological investigation in the Tarhunah area, Northwest Libya. 
International Journal of Digital Earth. 2008;1(4):347-366

[2] Saadi NM, Watanabe K, Imai A, Saibi H. Integrating potential fields with remote sensing 
data for geological investigations in the Eljufra area of Libya. Earth, Planets and Space. 
2008;60:539-547

[3] Thurmond AK, Abdelsalam MG, Thurmond JB. Optical-radar-DEM remote sensing data 
integration for geological mapping in the afar depression, Ethiopia. Journal of African 
Earth Sciences. 2006;44:119-134

[4] Saibi H, Azizi M, Mogren S. Structural investigations of Afghanistan deduced from 
remote sensing and potential field data. Acta Geophysica. 2016;64(4):978-1003

[5] Mogren S, Saibi H, Mukhopadhyay M, Gottsmann J, Ibrahim EH. Analyze the spatial 
distribution of lava flows in Al-Ays Volcanic Area, Saudi Arabia, using remote sensing. 
Arabian Journal of Geosciences. 2017;10:133. DOI: 10.1007/s12517-017-2889-0

Applications of Remote Sensing in Geoscience
http://dx.doi.org/10.5772/intechopen.75995

199



5. Conclusion

Here, we see a small bit of what can be done using remote sensing. As new sensors, such as 
Light Detection and Ranging (LIDAR) and new techniques like artificial intelligence (AI), come 
upon the scene, the potential for remote sensing will only grow. The modern interpreter will no 

Figure 17. Photo-lithological map of the study area.

Figure 16. The target detection wizard results showing the high Anorthite content dolerites.

Recent Advances and Applications in Remote Sensing198

longer be hampered by maps of questionable quality in remote areas. They will be able to rou-
tinely assess the resources of vast, otherwise inaccessible areas quickly and effectively through 
the use of remote sensing.
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