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Preface 
 

Space science and technology applications are the key instruments in modern 
information and industrial society. Natural resources study, environmental 
monitoring, communication and TV reporting around the world, satellite navigation 
systems (GPS), and precise climate and weather analyses, all depend on space science 
and technology achievements. 

There is no doubt that over the past 50 years, space observations of the Earth have 
accelerated the cross-disciplinary collection, analysis, interpretation, and, ultimately 
our understanding of the dynamic processes that govern the planet. Taking into 
account this momentum, we can assume that the next decades will bring more 
significant and remarkable discoveries, as well as the capability to predict Earth 
processes and reduce the impact of negative consequences in order to protect human 
lives and property.  
 
Using space science and technology achievements and providing full and open access 
to international audiences capitalizes on the investment in satellite technology and 
creates a more interdisciplinary and integrated Earth science community. International 
data sharing and collaboration on satellite missions lessens the burden on individual 
nations to maintain Earth observational capacities.  
 
Satellite Earth observations often reveal known phenomena and processes to be more 
complex than previously understood. Recently, a wide array of cases related to Earth 
study have become clearer thanks to space science and technology applications. This 
brings forth the indisputable benefits of multiple synergistic observations including 
orbital, suborbital, and in-situ measurements. 
 
The valuable benefits of satellite observations of Earth are successfully realized only 
when the essential infrastructure, such as appropriate space data, models, computing 
facilities like software, ground networks, successful integration of both space and 
ground data, and trained personnel are in place. The scientific advances resulting from 
Earth observations from space illustrate the successful synergy between science and 
technology. 
 
Innovative space technologies help us to monitor environmental protection 
agreements, forecast the impact of climate change, and deal with natural disaster. 



XII Preface

Using a number of satellites for the daily synoptic global view of Earth, has 
revolutionized Earth studies greatly, and ushered in a new era of multidisciplinary 
Earth study sciences with an emphasis on dynamics at all accessible spatial and 
temporal scales, even in remote areas. This new capability plays a critically important 
role in helping society manage planetary-scale resources and environmental 
challenges. 

There is no doubt that one of the most important and controversial uses of satellites 
today is that of the study and investigation of the Earth's surface environment. Many 
satellites study features on the ground, the behavior of the oceans, or the 
characteristics of the Earth's upper  atmosphere. Satellites that observe the Earth to 
collect scientific data are usually referred to as “Earth observation satellites.” 
Sometimes the interpretation of their data has been controversial because the 
interpretation is difficult and people have used the data to call for substantial changes 
in human behavior. 

Today a huge of area of space technology is demonstrating evidence that it can be 
used as an excellent instrument in Earth observation applications. It is based on data 
collection using the satellite as well as other available platforms for remote sensing 
data.. 

Observations from space provide global and consistent measurements of the Earth at 
daily intervals or better; measurements which are not available by any other means. 
We use a sophisticated array of instruments, operating at all wavelengths of the 
electromagnetic spectrum, that can penetrate the atmosphere, including visible light, 
and ultraviolet, infrared and, microwave radiation. 

Remote sensing data collection uses a wide range of electromagnetic energy which is 
emitting, transmitting, or reflecting from the Earth surface. Appropriate detection 
systems need to be implemented for further data processing.  

The application of space technologies has been proven to play a key role in sustainable 
development, at national, regional, and global levels. Earth observation technologies 
and techniques are considered to be of great importance and to have great impact. 
Today, radar remote sensing is one of the new and modern Earth observation 
technologies with promising results and a promising future. It is an established 
technique for precise assessment of land surface movements, and generating high 
quality digital elevation models (DEM) from spaceborne and airborne data. Modern 
space technology technique is able to produce DEM with the precision of just tens of 
meters and its movement map results have sub-centimeter precision. The technique 
has many applications in the context of Earth sciences such as in topographic 
mapping, environmental modeling, rainfall-runoff studies, landslide hazard zonation, 
and seismic source modeling. 

Space technology has been found to be a successful application for studying climate 
change, as it can compare dynamic processes using current and past data.  
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This book presents different aspects of Earth observation studies with the exploration 
and application of space science and technological achievements.  
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Earth Observation – Space Technology 
Rustam B. Rustamov, Saida E. Salahova,  

Maral H. Zeynalova and Sabina N. Hasanova 
Institute of Physics, Azerbaijan National Academy of Sciences, 

ENCOTEC –Engineering & Consulting Technologies, 
Institute of Botany, Azerbaijan National Academy of Sciences, 

Architecture and Construction University/ENCOTEC LLC, 
Baku,  

Azerbaijan 

1. Introduction 
For monitoring of the Earth thousands of satellites have been sent into space on missions 
to collect data related different spheres of the Earth investigations and studies. Today, the 
ability to forecast weather, climate, and natural hazards, environmental monitoring and 
ecological issues depend critically on these satellite-based observations. Based on this data 
it is possible to gather satellite images frequently enough to create the model of the 
changing planet, improving the understanding of Earth's dynamic processes and helping 
society to manage limited resources and environmental challenges. Earth observations 
from space open and makes requirement to address scientific and societal challenges of 
the future. 

Space technologies play the significant role in the sustainable development in national, 
regional and global level. Modern and advances of the Earth observation techniques are 
taking a great importance amongst existing traditional technologies. Radar remote sensing is 
one of the new Earth observation technologies with promising results and future. 
Interferometric SAR (InSAR) is a sophisticated radar remote sensing technique for 
combining synthetic aperture radar (SAR) complex images to form interferogram and 
utilizing its phase contribution to land topography, surface movement and target velocity. 
Presently considerable applications of InSAR technique are developed. It is an established 
technique for precise assessment of land surface movements and generating high quality 
digital elevation models (DEM) from spaceborne and airborne data. InSAR is able to 
produce DEM with the precision of a couple of ten meters whereas its movement map 
results have sub-centimeter precision. The technique has many applications in the context of 
Earth sciences such as in topographic mapping, environmental modeling, rainfall-runoff 
studies, landslide hazard zonation, and seismic source modeling. 

Making observations of the land, sea and air from space allow scientists to develop and 
improve their models of the Earth. Space instruments provide continuous global 
measurements of the Earth for many years at a time. Currently this includes to consider 
following issues: 
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 Expertise in obtaining information on the surface and atmosphere using remote sensing 
methods;  

 Expertise in modeling environmental phenomena;  
 Expertise in and provision of facilities for generating archiving and distributing 

environmental data;  
 Expertise in and facilities for characterizing spectral properties of environmental 

components;  
 Expertise in and facilities for atmospheric research using radars;  
 Expertise in the technology and practice of remote sensing at mm and sub-mm 

wavelengths;  
 Carrying out a program of research in aspects of environmental science;  
 Developing e-science applications in environmental research.  

2. Earth observation systems 
It is necessary to emphasize that one of the most important and controversial uses of 
satellites today is that of monitoring the Earth's environment. Many satellites study features 
on the ground, the behavior of the oceans, or the characteristics of the atmosphere. Satellites 
that observe the Earth to collect scientific data are usually referred to as “Earth observation 
satellites.” Sometimes the interpretation of their data has been controversial because the 
interpretation is difficult and people have used the data to call for substantial changes in 
human behavior. 

One of the popular satellite for Earth observation the Envisat is an advanced polar-orbiting 
Earth-observation satellite that provides measurements of the atmosphere, ocean, land and 
ice. It was launched in March 2002 on an Ariane 5 rocket into an 800km polar orbit by the 
European Space Agency (ESA). Originally was planned for five years, the life of Envisat has 
been extended till 2013. 

It is necessary to mention that the satellite also helps scientists access data for analyzing 
long-term climatic changes. 

The recent advances and developments in information and communication technologies, 
education and health care, agriculture and agro-food processing, geo-strategic initiatives, 
infrastructure and energy and critical technologies and strategic industries have been 
realized in light of the space technologies. Earth observation techniques which apply optical 
and thermal spectra of the electromagnetic wavelengths have so far developed considerably. 
Although there is done a lot in this area beforehand, a long way is still ahead. The background 
of using microwaves for remote sensing goes far the decades ago while it was remaining in the 
experimental domain and exploratory status for years. It is only in the recent couple of 
decades that radar remote sensing techniques have been commercialized and used widely. 
Radar remote sensing is actually accounted for as a new earth observation technology with 
promising results and future. Its potentials and capacities by itself and being a strong 
complementary tool for optical and thermal remote sensing are undeniable currently. 

i. Radar and SAR techniques for remote sensing  

Obviously, the use of radar systems opens a wide opportunity to reduce an obstacles 
existing in the traditionally used technologies. For the time being it became very interesting 
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and important explorations and examining a new radar technologies, their unique 
possibilities to comply the needs and answering the questions that the classic optical and 
thermal remote sensing techniques have been unable or difficult to tackle has grown the 
expectation that radar technologies can take place due to a more flexibility in bridging the 
gaps for sustainable development for which the optical and thermal remote sensing is an 
important tool while the latter techniques show shortage in some cases and areas. 

Currently, radar remote sensing that is mainly developed on the Synthetic Aperture Radar 
(SAR) technique represents its values and potentials increasingly. Radar is a useful tool for 
land and planetary surface mapping. It is a good mean for obtaining a general idea of the 
geological setting of the area before proceeding for field work. Time, incidence angle, 
resolutions and coverage area all play important role at the outcome. 

ii. InSAR techniques 

SAR interferometry (InSAR), Differential InSAR (DInSAR), Persistent Scatterer (PSInSAR) is 
the a new achieved techniques in radar remote sensing systems. By using InSAR technique 
very precise digital elevation models (DEM) can be produced which privilege is high 
precision in comparison to the traditionally used methods. DEM refers to the process of 
demonstrating terrain elevation characteristics in 3-D space, but very often it specifically 
means the raster or regular grid of spot heights. DEM is the simplest form of digital 
representation of topography, while digital surface model (DSM) describes the visible 
surface of the Earth. 

Considerable applications of InSAR have been developed leaving it an established technique 
for high-quality DEM generation from spaceborne and airborne data and that it has 
advantages over other methods for the large-area DEM generation. It is capable of 
producing DEMs with the precision of a couple of ten meters while its movement map 
results have sub-centimeter precision over time spans of days to years. Terrestrial use of 
InSAR for DEM generation was first reported in 1974. It is used for different means 
particularly in geo-hazards and disasters like earthquakes, volcanoes, landslides and land 
subsidence. 

2.1 Earth observation satellites 

The first satellite to be used for Earth observation purposes was Explorer VII, launched in 
October 1959. This satellite was equipped with an infrared sensor designed to measure the 
amount of heat reflected by the Earth. This measurement, referred to as the “radiation 
budget,” is a key to understanding global environmental trends, for it represents the 
difference between the amount of incoming energy from the sun and the outgoing thermal 
and reflected energy from the Earth. But it was not until the launch of the Earth Radiation 
Budget Satellite (ERBS) in 1984 by the National Aeronautics and Space Administration 
(NASA) that more authoritative readings of this important figure were obtained. Many 
Earth observation satellites like ERBS use specialized sensors that operate in non-visible 
wavelengths like the infrared, allowing them to gather data on many different types of 
atmospheric and ground phenomena. 

The most important early Earth observation satellites were members of the Nimbus series. 
NASA launched eight Nimbus satellites between 1964 and 1978, with only one failing to  
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reach orbit. Although they started out as part of the weather satellite program, the Nimbus 
satellites were not weather satellites, but carried a number of instruments for measuring the 
temperature and humidity of the atmosphere. This was a major advance, for earlier weather 
satellites like Tiros (Television Infrared Observation Satellite) had only been capable of 
taking visible light photographs of clouds and could not provide the kinds of traditional 
weather measurements that meteorologists normally used. Eventually many of the 
instruments demonstrated on Nimbus, named “sounders,” were incorporated into later 
weather satellites. Atmospheric sounders are now common on many meteorological 
satellites, as well as on scientific satellites and even planetary space probes (Belew & 
Stuhlinger, 1973) , (Covault, 1991).  

In July 1972, NASA launched the Earth Resources Technology Satellite (ERTS-1) into orbit. 
ERTS-1 used advanced instruments to view the Earth's surface in several infrared 
wavelengths. These sensors enabled scientists to assess vegetation growth, monitor the 
spread of cities, and make many other measurements of how the Earth's surface was 
changing. ERTS was so successful that it was followed by two more satellites named 
Landsat. By the early 1980s, with the launch of Landsat 4, the satellites became an 
“operational” system rather than an experimental one and their data was heavily used 
around the world by farmers, urban planners, geologists and environmentalists. Landsat 
and similar satellites are often referred to as “remote sensing satellites,” a term that is 
usually used to refer to satellites that focus on the ground rather than the oceans or 
atmosphere. 

In the mid 1970s NASA also conducted numerous observation experiments aboard the 
Skylab space station. Skylab was equipped with handheld as well as fixed cameras using 
special film. It also had an array of other instruments. Data the crews obtained during their 
three visits to Skylab was used to refine the instruments on other satellites, such as Landsat. 
Skylab also demonstrated the value of other observations, such as tracking icebergs and the 
breakup of sea ice (Skylab, 1977) . 

In 1978 NASA launched SeaSat, an ocean observation satellite with a synthetic aperture 
radar, or SAR. SAR works by taking several radar images from different positions and 
combining them to produce a more detailed single image. SeaSat's radar produced detailed 
images of the surface of the ocean, providing valuable data on waves and the interaction of 
the ocean's surface with the winds. Although SeaSat's mission ended prematurely due to a 
malfunction, it demonstrated the immense value of space-based SARs. 

Approximately around the same time the United States was experimenting with SeaSat, the 
Soviet Union launched a similar series of satellites known as Okean. Later, during the late 
1980s, the Soviet Union orbited several large radar satellites. These spacecraft, launched 
aboard Proton rockets, produced radar maps of the Earth's surface and were also used to 
measure waves on the oceans' surface. In 1991 the Soviet Union launched Almaz-1, which 
was another of this series of satellites but the first that the Soviet government openly 
acknowledged. Although they announced that this was a civilian Earth observation satellite 
and sought international customers, many experts speculated about the military uses of 
these satellites and their role in searching for objects such as submarines, which can create 
waves on the ocean surface when traveling at high speed at shallow depths. Because such 
data has military uses, SAR technology has always been sensitive. Although the Soviets 
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Earth Observation 

 

8 

For successful Earth observation issues sustainable development can be defined as 
maintaining a delicate balance between the human need to improve lifestyles and feeling of 
well-being on one hand, and preserving natural resources and ecosystems, on which we and 
future generations depend (Parviz, 2010).   

In general the seven dimensions including spiritual, human, social, cultural, political, 
economic and ecological can be considered for the sustainable development where the main 
components are economy, society and environment. Approaching sustainable development 
requires establishing a continuous balance between three latter components. An effectiveness 
of the space technology applications on the environmental, economical and social issues are 
quite apparent. The recent developments in information and communication technologies, 
education and health care, agriculture and agro-food processing, geo-strategic initiatives, 
infrastructure and energy, and critical technologies and strategic industries, construction, 
engineering and engineering management have been realized in light of the space 
technologies. Earth observation techniques are considered of great importance amongst these 
technologies. Earth observation techniques which apply optical and thermal spectra of the 
electromagnetic wavelengths have so far developed considerably. Although there is done a lot 
in this area beforehand, a long way is still ahead. The background of using microwaves for 
remote sensing goes far the decades ago while it was remaining in the experimental domain 
and exploratory status for years. It is only in the recent couple of decades that radar remote 
sensing techniques have been commercialized and used widely. Radar remote sensing is 
actually accounted for as a new earth observation technology with promising results and 
future. Its potentials and capacities by itself and being a strong complementary tool for optical 
and thermal remote sensing are undeniable currently. 

2.2 Application of radar remote sensing and SAR techniques  

As it was previously indicated InSAR is a sophisticated processing of radar data for 
combining synthetic aperture radar (SAR) single look complex (SLC) images to form 
interferogram and utilizing its phase contribution to generate DEM, surface deformation 
and movement maps and target velocity. The interferogram contains phase difference of 
two images to which the imaging geometry, topography, surface displacement, atmospheric 
change and noise are the contributing factors. 

Satellite-based InSAR began in the 1980s using Seasat data, although the technique’s 
potential was expanded in the 1990s with launch of ERS-1 (1991), JERS-1 (1992), Radarsat-
1 and ERS-2 (1995). They provided the stable well-defined orbits and short baselines 
necessary for InSAR. The 11-day NASA STS-99 mission in February 2000 used two SAR 
antennas with 60-m separation to collect data for the Shuttle Radar Topography Mission 
(SRTM). As a successor to ERS, in 2002 ESA launched the Advanced SAR (ASAR) aboard 
Envisat. Majority of InSAR systems has utilized the C-band sensors, but recent missions like 
ALOS PALSAR and TerraSAR-X are using L- and X-band. ERS and Radarsat use the 
frequency of 5.375GHz for instance. Numerous InSAR processing packages are also used 
commonly. IMAGINE-InSAR, EarthView-InSAR, ROI-PAC, DORIS, SAR-e2, Gamma, 
SARscape, Pulsar, IDIOT and DIAPASON are common for interferometry and DEM 
generation. 

It is obvious that digital elevation model (DEM) is important for surveying and other 
applications in engineering. Its accuracy is paramount; for some applications high accuracy 
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does not matter but for some others it does. Numerous DEM generation techniques with 
different accuracies for various means are used. DEMs can be generated through different 
methods which are classified in three groups that are DEM generation by: 

i. geodesic measurements,  
ii. photogrammetry and  
iii. remote sensing. 

In DEM generation by geodesic measurements, the planimetric coordinates and height 
values of each point of the feature are summed point-by-point and using the acquired data 
the topographic maps are generated with contour lines. The 1:25000-scale topographic maps 
are common example. The method uses contour-grid transfer to turn the vector data from 
the maps into digital data. For DEM generation by photogrammetry, the photographs are 
taken from an aircraft or spacecraft and evaluated as stereo-pairs and consequently 3-D 
height information is obtained. 

DEM generation by remote sensing can be made in some ways, including stereo-pairs, laser 
scanning (LIDAR) and InSAR. There are three types of InSAR technique that is single-pass, 
double-pass and three-pass. In double-pass InSAR, a single SAR instrument passes over the 
same area two times while through the differences between these observations, height can 
be extracted. In three-pass interferometry (or DInSAR) the obtained interferogram of a 
double-pass InSAR for the commonly tandem image pairs is subtracted from the third 
image with wider temporal baseline respective to the two other images. In single-pass 
InSAR, space-craft has two SAR instrument aboard which acquire data for same area from 
different view angles at the same time. With single-pass, third dimension can be extracted 
and the phase difference between the first and second radar imaging instruments give the 
height value of the point of interest with some mathematical method. SRTM used the single-
pass interferometry technique in C- and X-band. Earth’s height model generated by InSAR-
SRTM with 90-m horizontal resolution is available while the DEM with 4-to-4.5-m relative 
accuracy is also available for restricted areas around the world. 

InSAR ability to generate topographic and displacement maps in wide applications like 
earthquakes, mining, landslide, volcanoes has been proven. Although other facilities like GPS, 
total stations, laser altimeters are also used, comparison between InSAR and these tools reveals 
its reliability. Laser altimeters can generate high resolution DEM and low resolution 
displacement maps in contrary to InSAR with the spatial resolution of 25m. However, most 
laser altimeters record narrow swaths. Therefore, for constructing a DEM by laser altimeter, 
more overlapping images are required. Displacement map precision obtained by terrestrial 
surveying using GPS and total stations is similar or better than InSAR. GPS generally provides 
better estimation of horizontal displacement and with permanent benchmarks slow 
deformations is monitored for years without being concerned about surface de-correlation. 
The most important advantage of InSAR over GPS and total stations are wide continuous 
coverage with no need for fieldwork. Therefore, wide and continuous coverage, high 
precision, cost effectiveness and feasibility of recording data in all weather conditions are its 
main privileges. However, it is important that the InSAR displacement result is in the line-of-
the-sight direction and to decompose this vector to parallel and normal components the 
terrestrial data or extra interferograms with different imaging geometry are required. It is 
shown that DEM generated by photogrammetric method is more accurate than the others. It 
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has approximately 5.5m accuracy for open and 6.5m for forest areas. SRTM X-band DSM is 4m 
less accurate for open and 4.5m less accurate for forest areas. 

Data availability and atmospheric effects limit using InSAR, however processing of its data 
is challenging. For each selected image pair, several processing steps have to be performed. 
One of the current challenges is to bring the techniques to a level where DEM generation can 
be performed on an operational basis. This is important not only for commercial exploitation 
of InSAR data, but also for many government and scientific applications. Multi pass 
interferometry is affected by the atmospheric effects. Spatial and temporal changes due to 
the 20% of relative humidity produce an error of 10cm in deformation. Moreover, for the 
image pairs with inappropriate baseline the error introduced to the topographic maps is 
almost 100m. In topographic mapping this error can be reduced by choosing interferometric 
pairs with relatively long baselines, while in the displacement case the solution is to average 
independent interferograms. 

InSAR DEM advantages: Distinction between SAR imaging and the optical systems are 
more profound than the ability of SAR to operate in conditions that would cause optical 
instruments to fail. There are basic differences in the physical principles dominating the two 
approaches. Optical sensors record the intensity of radiation beamed from the sun and 
reflected from the features. The intensity of the detected light characterizes each element of 
the resulting image or pixel. SAR antenna illuminates its target with coherent radiation. 
Since the crests and troughs of the emitted electromagnetic wave follow a regular sinusoidal 
pattern, both the intensity and the phase of returned waves can be measured. 

InSAR has some similarities to stereo-optical imaging in that two images of the common 
area, viewed from different angles, are appropriately combined to extract the topographic 
information. The main difference between interferometry and stereo imaging is the way to 
obtain topography from stereo-optical images. Distance information is inherent in SAR data 
that enables the automatic generation of topography through interferometry. In other words 
DEMs can be generated by SAR interferometry with greater automation and less errors than 
optical techniques. Moreover, using DInSAR surface deformations can be measured 
accurately. 

Different DEM generation methods of Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) stereoscopy, ERS tandem InSAR, and SRTM-InSAR are 
used. Both the ERS-InSAR and SRTM DEMs are free of weather conditions, but ASTER 
DEM quality may be affected by cloud coverage in some local areas. InSAR has the potential 
of providing DEMs with 1-10cm accuracy, which can be improved to millimeter level by 
DInSAR. Its developments are rapid however it is our requirements that say which one is 
better for use. 

2.2.1 Earth observation for river flood issues 

Rivers of Azerbaijan can be divided into the three main groups regarding their water flow 
specifications:    

1. Perennial rivers;   
2. Seasonal rivers that flow only during the melting of snow in spring;  
3. Episodic rivers that flow in episodes after a downpour of rain of flash flood.  
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These three groups differ from each other for the volume of underwater supply to their 
streams. Perennial rivers are fed by a constantly flowing baseflow (groundwater). Seasonal 
rivers are fed by an elevated water table during the rainy period, while episodic rivers are 
not at all dependent on base flow.  

Like in all other countries, rivers have different feeding sources in Azerbaijan. Most rivers 
are fed by snow, rainfalls and ground waters. Snow is the predominant feeding source for 
the rivers of the Major Caucasus, while ground waters contribute the most to water supply 
of rivers in the Minor Caucasus. The Kur and Araz rivers pass Azerbaijan in their lower and 
middle courses.  

The Kura river is the largest river of Azerbaijan. It stretches for 1,515 kilometers and covers 
an area of 188 thousand sq. km. The Kura originates from the Hel River in Turkey, passes 
through Azerbaijan and flows into the Caspian Sea in south-eastern part of the country. The 
Araz River covers an area of 86 thousand sq. km until its junction with the Kura River. It 
originates from the Bingol mountains in Turkey at the altitude of 3300 meters. On the whole, 
the Araz River forms Azerbaijan's border with Turkey and Iran. It passes through 
Azerbaijan in its lower 80 kilometers and joins the Kura River near Sabirabad. These two 
rivers belong to the group of rivers, flowing at full under the influence of snow and rainfalls 
in spring and rainfalls in autumn.  

Weather produces the greatest impact on the river flow in Azerbaijan. Intensive rise in 
temperature causes melting of snow at heights of over 1500. The melting of snow further 
intensifies after heavy rainfalls of April and May. Snow melts more intensively in the high 
altitudes (over 2500-3000 meters) from early April through May until June. The melting 
process influences river flow even in summer time. Thus, melted snow water, absorbed by 
soil, emerges on the surface and raises water level in rivers. Low river basins (except for 
those of the Talysh region) are less influenced by the precipitation in spring and summer 
periods. Winter and autumn rainfalls account for the most part of precipitations in the 
Talysh region. Rivers are less full of water in summer in Azerbaijan. Heavy rainfalls that 
may from time to time occur in July and August, lead to floods, causing agricultural 
damages. Severe floods have been registered in the rivers of southwestern slopes of Major 
Caucasus Zengezur part. Rivers of the Major and Minor Caucasus mainly flow in hot 
seasons, while rivers of the Talysh regions flow in colder seasons of year. Rivers, flowing in 
hot seasons account for most part of all rivers (60-80%).  

Such seasonal flows are difficult for industrial use. On the whole, rivers of the Azerbaijan 
Republic are divided into two groups, according to their water regime:  

1. rivers of full-flowing regime;  
2. rivers of flood regime.  

Flood rivers are the Lenkoran rivers and episodic rivers of Gobustan. Other rivers are 
included into the first group of rivers.  

Complex topography and other natural factors cause a non-standard flow across the 
country. The flow increases with altitudes and reaches its top at a certain height (2800, on 
the north-eastern slope of the Major Caucasus, 2000-2200-on its southern slope and 2200-
2400 on the Minor Caucasus). The flow starts to decline from above the indicated height. 
Due to the orographic specifications of the Talysh mountains, the flow is inconsistent with 
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the average height. It decreases with the increase of altitude in the Talysh mountains, while 
in Peshteser and Burovar mountains it rises with the altitude.  

The full-flowing rivers of the Azerbaijan Republic mainly flow on the southern slope of the 
Minor Caucasus. The average flow of such rivers exceeds 45 l-cm. The flow falls to 5 l-cm till 
the Alazan-Ayrichay lowland. The flow module of rivers of the north-eastern slope of the 
Major Caucasus 18 l-cm. The increase of flow with the increase of altitude is relatively 
uniform in this part of the Major Caucasus. The intensive increase in the module of flow is 
registered on the area between the Yah mountain chains and the Major Caucasus 
mountains. (upper Qusar, Qudyal and other rivers.). The Average annual module of flow is 
from swings hesitates from 10 to 20 l-cm.  

The flow of rivers, originating in the slopes of the Yah mountains, differs from that of the 
rivers, flowing from the Major Caucasus. The flow increases intensively and reaches from 6 
to 18 l-cm at a height of 1000-2000 meters, due to high level of precipitation. The flow 
gradually decreases till the Caspian Sea shore down to 0.5 l-cm. the flow decreases 
beginning from the north-west of till south east of the seaside lowland and reaches zero 
level on the Apsheron peninsula. Compared with the Major Caucasus, the flow in the Minor 
Caucasus is more complicated, due to its orographic complexity and differing location of 
mountain chains. The highest flow has been registered in the rivers flowing from the slopes 
of Gamish and Qapidjic mountains (over 28 l-cm).  

In the Karabakh plateau precipitation is absorbed by soil rocks, thus turning the region into 
the arid area, while in some places it bursts onto the surface thus increasing the water level 
in the rivers. That is typical of the upper Terter, Hekeri and other regions as under water 
provides 70-80% of water to them. The flow fluctuates from 0.8 to 22 l-cm in south east of 
the Minor Caucasus (rivers, originating in the Caucasus mountains) and from 0.5 to 10 l-cm 
in the Nakhchivan Autonomous Republic. The flow gradually decreases to the level even 
lower than 0.5 l-cm on the plains on the side of Araz. In the Talish region the flow increases 
in the direction from the north to south and from the west to east. The flow reaches its peak 
(over 25 l-cm ) in Tengerud and Astara river basins in the central part of the region, while it 
reaches its minimum north of the Vilesh river, as well as in the Lenkeran and Vilesh rivers. 
Gobustan, Nakhchevan and Kura-Araz plains account for the lesser part of water system in 
Azerbaijan.  

Rivers of Azerbaijan carry large quantity of sediment, the result of erosion in the river 
basins. The rivers in Azerbaijan are the most polluted rivers in the world. Their average 
annual pollution rate changes from 0.07 to 9 kg-1 cubic mete per region. It reaches its top on 
the north slope of Major Caucasus and minimum-on the Karabakh plateau. The surface 
erosion is intensive in the north slope of the Major Caucasus(100-6800 t/sq/km) , and it 
becomes weaker on the Karabakh plateau (5-10 t/sq.km). The surface erosion in the rivers of 
the Major Caucasus (0.53 mm) is by 13 higher from that of the Minor Caucasus (0.03 mm per 
year) and Talish mountains (0.04 mm per year).  

The hydrological system of the Azerbaijan Republic contains 10.3 billion cubic meters of 
water reserves. These water reserves together with those, entering Azerbaijan from neighbor 
countries (20.6 billion cubic meters) make up 30.9 billion cubic meters. Each square meters of 
the country receives 90 thousand cubic meters of reserves, while the annual per capita 
volume of water reserves total 1270 cubic meters. The basin of the river Kura accounts from 
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most part of the water reserves. The nonunifomal distribution of water reserves across the 
region and around the year hammers the utilization of these reserves and as a result of that 
the reserves are not able to meet constantly growing demands for fresh water. The situation 
requires the regulation of water flow. 60 water reservoirs of the country with the capacity of 
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of these reserves are used in different spheres (irrigation, water supply, industry, fishery, 
etc). The establishment of water reservoirs of the Middle Kura plays the important role to 
meeting demands for water. Currently, serious measures are undertaken to preserve pure 
water reserves and to prevent their polluting with communal and industrial wastes.  

The Canals of the Azerbaijan Republic are the main source of irrigation. The canals used for 
the said purpose extend to 47058.8 kilometers., with canals, used by several farms, 
accounting for 8580.3 kilometers and those, used only by one farm-for 38478.5 kilometers. 
The amount of 11 billion cubic meters of water is used in irrigation each year. Irrigated area 
of Azerbaijan totals 1.4 million hectares. 

3. Space technology in disaster monitoring, mitigation and preparedness 
3.1 Natural disaster in global change 

One of the main impacts of the global changes is the natural disaster. Natural disaster can be 
playing a significant indicator for the foregoing issue. Natural disaster is increasingly of 
global concern and its impact and actions in one region can have an impact on disaster in 
another and vice versa. This compounded by increasing vulnerabilities related to climate 
change, climate variability as well as other contributions like changing demographic, 
technological and socio-economic conditions, environmental degradations etc.  

There is a highly need for international acknowledgement that efforts to reduce disaster 
risks which must be systematically integrated into policies, plans and programmes for 
comprehensive approach of global change and endorsed through bilateral, regional and 
international cooperation, including partnership.  

The importance of promoting of natural disaster impacts reduce efforts on the international 
and regional levels as well as the national and local levels has been recognized in the past 
few years in a number valuable and significant multilateral  frameworks and declarations. 

The following main areas can be covers the challenges of objectives of the natural disaster as 
a key element of the global changes: 

i. Governance – organizational, legal and policy framework; 
ii. Natural disaster identification, assessment, monitoring and early warning; 
iii. Knowledge management and education; 
iv. Reducing underlying natural disaster factors; 

Foregoing items can be discussed as a items for further developments. Given the close 
linkages between disaster risk factors and environmental and natural resource management 
issues, a huge potential exists for the exploitation of existing resources and established 
practices aiming at greater disaster reduction. The need for carefully drawn up forest, 
vegetation, soil, water and land management measures is increasingly recognized and such 
investigations are being effectively employed to learn the global change.   
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While countries valued the increased availability of advanced technologies, some were 
disappointed that their technical capabilities or data were insufficient to make more 
effective use of them. However, take advantage of space technology and its advance 
methodology applications for earth observation are being developed and will be executed 
through global and regional strategically partnerships. The United Nations Office for Outer 
Space Affairs and the action team of the Committee on the Peaceful Uses of Outer Space are 
proceeded to implement an integrated global system for the management of natural 
disaster. A global multilateral imitative, involving both developed and developing 
countries, including for the countries of the former Soviet Union and Southern European 
countries with the transit economy has developed a framework document for a 10-years 
plan to implement a Global Earth Observation Systems. One of the its objectives is the global 
observation of earth for the aim of global change, reduction of losses from natural disasters 
and improved understanding, assessment and prediction of weather and climate system 
variables. 

The value of methodology and advanced technology for global change is widely recognized. 
Their use has increased as the tools have improved, costs have decreased and local access 
has increased. Methodology and techniques related to the remote sensing, geographical 
information systems, space-based observations, computer modeling and prediction and 
information and communication technologies have proved very useful, especially in earth 
observation systems, mapping, monitoring, territorial or local assessments and early 
warning activities in case of the natural disaster occurs.  

The use of advance methodology and associated data sets in global observation suggests 
possibility for synergy and shared approaches with global change management. With 
decreasing costs, those tools have become much more readily available as routine capacities 
and more useful at local scales in many countries.  

States and regional and international organizations should support and encourage the 
capacities of regional mechanisms and organizations to develop regional plans, policies and 
common practices, as appropriate, in support of networking coordination, exchange of 
information and experience, scientific monitoring of earth observation outcomes and 
institutional capacity development and to deal with natural disaster. 

In view of the particular vulnerabilities and insufficient capacities of least developed 
countries to respond to and recover from natural disasters, support is needed by the least 
developed countries as a matter of priority, in executing substantive programmes and 
relevant institutional mechanism for the implementation of the framework of action, 
including through financial and technical assistance for and capacity building in natural 
disaster as an effective and sustainable means to prevent and respond to natural disaster. 

There is a highly need of the establishing standards for the systematic collection and 
archiving of comprehensive national records pertaining to the many related aspects of earth 
observation. In the meantime evaluating country-wide assessments of earth observation and 
conducting natural disaster assessments, incorporating technical dimensions would be a 
significant contribution for this issue.   

There is an important to assume that earth observation is a national and local priority with 
strong institutional bases for implementation. It has to be executed key activities within the 
national institutions and legislative framework as resources – assess existing human 
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resource capacities, community participation – promote community participation through 
the adaptation of specific policies, the promotion of networking, strategic management of 
volunteer resources. 

Global Earth observation is a voluntary partnership of governments and international 
organizations. It provides a framework within which these partners can develop new 
projects and coordinate their strategies, integrate research activities, share results for 
common interest and investments.  

Remote sensing one of the key instrument of the Earth observation provides an important 
source of data for environmental monitoring and natural disaster mapping and in fact 
several satellites can service a map the terrain with one meter resolution. 

Natural disaster monitoring with integration of space technology can be focused for 
following significant: 

 indication of change throughout of Earth observation by means of natural disaster;  
 reduce loss of life and property from natural disaster; 
 satellite data evaluation with further understanding, assessing, predicting, mitigating 

and adapting to climate variability and change; 
 effect of natural disaster factors on understanding of the human health       

The use of remote sensing and development of GIS will increase the access of the 
developing world to global change data and harness global Earth observation efforts in 
support of global environmental challenges for natural disaster issues. 

The ability to model potential flood inundation areas and map actual extent of inundation, 
timing, and intensity under different environmental conditions is central to understanding 
the dynamics between vegetation, soils, geomorphology, and land productivity in a 
floodplain. In many regions, the lack of hydrologic and spatial data, constrains the accurate 
delimitation of flood inundation zones. In spite of these factors, different techniques 
involving GIS and remote sensing could be used for rapid general zonations of areas 
susceptible to flooding to reduce costly monitoring infrastructure.  This study showed the 
ability of a DEM-based surface and a wetness layer derived from a Landsat ETM image to 
identify potential areas to flood inundation in the Kura River Basin, Salyan districts of 
Azerbaijan. The analyses involved tests in relation to a map of flooded areas derived from 
soils and geomorphology maps. The statistical tests showed that there is a significant 
relationship between potential inundation areas derived from a DEM-based surface and 
satellite image-based dataset with potential inundation areas derived from existent 
cartographic information on soils and geomorphology. However, the relationships were 
weak. This analysis showed that the integration of ancillary geomorphologic and soils data, 
simple DEM-based surfaces, and satellite images maybe a useful first approach to 
characterize flood inundation areas. 

3.2 Methods 

The use and application of space technology in a huge case in particularly for the case of 
river flood reduction is a more suitable means due to the covering a large areas, high 
accuracy, availability of application in the unacceptability areas etc (Finkl,2000). Moreover, 
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according to the created and developed database there is an advantage to be very sensitive 
to any available change occurred in the investigated sites. 

The benefit analysis of disaster risk reduction involves a number of particular challenges, 
including:   

 Little related information may be available on the frequency and intensity of the hazard 
event, particularly in a developing country context, implying uncertainty about the 
level of risk.  

 Many of the benefits of any disaster risk reduction measures, whether undertaken in the 
context of a disaster risk reduction project or as part of another type of development 
project, are related to the direct and indirect losses that will not ensue should the 
related hazard event occur over the life of the project, rather than streams of positive 
benefits that will take place, as would be the case for other investments.  

For carrying out of the goals undertaken within the framework of the project execution the 
following methods have been used: 

 The use of ALOS space imagery to be created the land use / land cover basic map for 
the investigated area using urban, agriculture, garden, scrub, open area, river, stream, 
canal, road, railroad  basic classes; 

The use of Landsat ETM space imagery to be detected potential flood inundation areas 
within the Kura River watershed in the Salyan district of Azerbaijan using a tasseled cap 
transformation;  

The derive 1 m Digital Elevation Model (DEM) from contour lines and elevation points of 
the investigated area to be generated a deterministic model of potential inundated areas for 
the region using the DEM and a convex-areas surface;  

 The evaluate the sensitivity of each approach to be characterized the flood inundations 
through statistical tests involving comparison of flooding areas extracted from an 
inventory of soils and a geomorphology maps.  

Investigated area description: The geographical area of interest is the Kura River basin in 
Saylan district of Azerbaijan (Figure 1). The area comprises approximately 24 km2. The Kura 
watershed is one of Azerbaijan’s most important agricultural production areas. During the 
last 10 years, it was affected by 5 excessive floods, causing a lot of damage to people and 
goods. The one of major source of Azerbaijan freshwater is the Kura River.  The mean 
discharge of 1,144 m3 sec-1 for the Kura River is the highest among the main rivers in the 
Azerbaijan, representing 39% of the total discharge from this lowland region.  Mean 
precipitation in the Kura River drainage system is 885 mm year-1, which may range from 
less than 400 to more 1,800 mm during any one year. 

3.3 Satellite data processing  

ALOS imagery was acquired 10 June 2007 (Figure 2). The image was georeferenced to UTM 
zone 39 North, WGS84 using a first degree polynomial rectification algorithm with 30 
ground control points (GCPs) extracted from a digitized topographic map at the scale of 
1:100 000. The root mean square (RMS) error was equal to 0.5 pixel (5 m). 
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Fig. 1. 1:100 000 topographic map of the study area. 

 
Fig. 2. ALOS imagery of the selected area. 
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Generation of a Digital Elevation Model: The digital elevation model (DEM) was 
generated from digitized contour lines and elevation points from topographic map           
(Figure 3). The digitized lines in shapefile format were converted to points in ArcGIS 9.2 
using the “Feature to Point” transformation tools. The points were interpolated using the 
IDW – inverse distance weighting method.  

 

Fig. 3. The flowchart of Digital Elevation Model Generation procedure. 

Inverse distance weighting method: Inverse distance weighting is a simple interpolation 
method, in which a neighborhood around the interpolated point is identified and a 
weighted average is taken of the observation values within this neighborhood. The weights 
are a decreasing function of distance. Generally, one can define the mathematical form of the 
weighting function and the size of the neighborhood expressed as a radius or a number of 
points. 

The simplest weighting function (w) is the inverse power: 

  1
nw d

d
  

with 0n  . The value of power can be specified depending upon data characteristics. The 
most common choice is   2n  . 

The neighborhood size determines how many points are included in the inverse distance 
weighting. The neighborhood size can be specified in terms of its radius, the number of 
points, or a combination of the two. If a radius is specified, the user also can specify an 
override in terms of a minimum and/or maximum number of points. Invoking the override 
option will expand or contract the circle as needed. If the user specifies the number of 
points, an override of a minimum and/or maximum radius can be included. It also is 
possible to specify an average radius based upon a specified number of points. Again, there 
is an override to expand or contract the neighborhood to include a minimum and/or 
maximum number of points. For example, given the following distribution of points with a 
known value Z:  
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and we want to interpolate a grid surface based on the spatial distribution of the points and 
their values, 

 
then, using IDW we would assign a value to particular cell based on a number of neighbors 
and their distance to this cell, 
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Which can be generalized as  
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where D is the interpolated value, di is the distance from the cell to a point with a known 
value, and Vi is the value of a particular point. 

In this study, IDW with a second order power was used to interpolate the elevation values 
because of the coarse detail of the original data and the general objectives of the research. 
IDW is a fast and simple interpolation method, which can be used when the values of points 
are spatially auto correlated, like in the case of elevation points. Other interpolation 
methods such as Kriging, could be used when higher accuracy is required.  

 
Fig. 4. Digital Elevation Model of the selected area with high points and isolines. 

Identification of potential flood inundation areas: A convex surface was obtained with the 
formula: 

Filled DEM – mean filled DEM 

Where values < 0 where identified as convex zones (Figure 5). The mean DEM was 
calculated using standard GIS neighborhood operations. The areas selected as potential 
flooding areas where those that were convex and fall within an elevation range between -26 
m and – 21 m, which is approximately the elevation range corresponding to the lower 
alluvial plain which is generally affected when severe flooding occurs.  
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Fig. 5. Determination of convex areas based on the difference between the DEM and a mean 
DEM. 

Potential flood inundation areas mapping: The study and identification of the potentially 
flood inundation areas in advance is a useful and important aspect of the natural disaster 
impact reduction.  

For this reason the areas potentially flood inundation with a high probability of flooding has 
been developed and mapped.  In this measurements and calculations the staring point has 
been undertaken as -26m.  

The result reflects the potential flood inundation areas based on the height data supposed 
being as -22m. The result of data calculation and processing from DEM (Figure 4)  has been 
demonstrated in a Figure 6. RF indicated zones reflect potentially flood inundation areas in 
case of the river level will be increased up to 4m. 

This methodology can be successfully applied for potentially flood inundation areas after 
implementation of geodetic measurements related to the river level for acceptance of the 
high accuracy data. 

Field trip measurements: The main aim of conducted field trips was identification of the 
inundation areas of the Kura river selected for investigation. One of the needs of this 
approach was defined due to the luck of the appropriate space data related to the seasonal 
date with a reach of flood impact of the area.  

For the foregoing mentioned reason two field trips have been conducted for the selected 
area of investigation Salyan district of Azerbaijan. Those trips were implemented in summer 
season due to the heavy snow melting and autumn season due to the reach of raining when 
the river flood is more impacted among the all Kura river basin.  

Field trips implementations have been scheduled and developed from the stage of the 
selection more sensitive areas of inundation in place. After those actions the counter of the 
river has been marked using the sticks installed among the river counter. Coordinates of the 
counters have been measured using GPS.  



 
Earth Observation 

 

22

 
Fig. 6. Forecasting of the potentially flood inundation areas. 

Based on those measurements all points of counters were installed on topographical map 
with further bounded of the space image. 

The same actions have been applied for the seasons both summer and autumn. The results 
received from those measurements allow to compare the seasonal river level depends of the 
weather impacts. At the time it is the way to identify the expected inundation areas. 

Based on those results as well as existed database for the river level change there is 
approach of study and identification of the dynamic change of the Kura river level. It is 
advantages of development of GIS technology which can be play a significant place on river 
flood problem solution especially valuable and extremely important instrument for local 
authority decision makers. 

4. Conclusion 
In this chapter have been reflected aspects of the use of space science and technology 
achievements in Earth observation systems. Furthermore it is described currently advances 
of space technology systems for Earth observation.      

One of the main targets of this chapter is to develop of an advance tool for monitoring, data 
collection, data processing, review and report on progress and challenges in the 
implementation of disaster risk reduction and recovery actions undertaken at the national 
level. An advance tool has been undertaken of the use and application of modern 
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achievements of space science and technology for the natural disaster events particularly the 
river flood.   

Furthermore, the other target of project is to be undertaken to assist the local authorities to 
build up useful database in disaster risk reduction in particularly for the selected area with a 
more sensitively part of country in point of view the river flood in Azerbaijan. In the 
meantime the next issue was to demonstrate a contribution of the possibility and advantage 
of use of remote sensing methods and GIS technology based on space image data collection 
and data processing for application of similarity problem solving. 

It was a highly desirable to create a favorable conditions and mechanisms to be able to 
develop the strengthened coordination and interaction for appropriate partners at the 
national level and facilitate explanation of the present status of the selected area and 
prioritization of strategic areas needed to be considered for purpose of natural disaster risk 
reduction. 

Azerbaijan is the country of the Commonwealth of Independent States (CIS) with the transit 
economies. The Millennium Development with the eight Goals and Hyogo Framework 
Actions with three strategic goals and five priorities for actions have been related to the CIS 
countries.  

The river flood is not a reason of damage impact of property and human life. The 
consequences are a huge as the eventually tracking with malaria, drinking water problem 
etc. The same problems with appropriate impact of scale occurs in case of Kura river when 
happens river flood. All this indicated accepts have to be undertaken for further successful 
management in order to be able to reduce the effect of natural disaster on river flood. An 
appropriate sufficient with high accuracy database has to be developed for local authorities 
for decision making.     

The other very significant problem is the intended to be undertaken of diversion of the Kura 
river bed which plans to be started to construct in the upcoming period which will reduce of 
river flood impact for saving human life and properties.  
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1. Introduction 
Large satellites continue to be affordable only to big national projects or extremely wealthy 
organizations. As such, emerging countries and small organizations are adopting smaller 
spacecrafts as means to their space exploration endeavours by forcing the miniaturization 
age to the space industry. In this chapter we evaluate the possibilities of using nanosatellites 
with the aim of achieving the best return of scientific output. 

Adopted almost exclusively by small organization with limited budgets (universities, 
private firms or research institutes), nanosatellites have as their main requirement the 
maintaining off the overall costs at minimum. Unlike the traditional space missions, the 
nanosatellites use commercial off the shelf components - COTS - in order to decrease costs 
and fast track the design. This was identified as a liability since the space industry generally 
requires extensive qualification campaigns for flight hardware. But this is also a strong point 
since satellites can be designed, built, launched and operated in a fraction of the time 
required for conventional spacecrafts and at costs orders of magnitude lower. 

The small scale counter parts of the traditional space missions represent the tool for Earth 
observation and near Earth space monitoring in the new age of space explorations. Almost 
10 years ago the beginning of this new age became clear with the introduction of the 
CubeSat standard.  

Generally, the nanosatellite term designates satellites in the 1 – 10 kg mass range. However, 
the most representative for this class is the CubeSat which restricts developers to a volume 
of approximately 10 x 10 x 10 cm3 (Cal Poly SLO, 2009). Recently there have been 
developments of sub-nano (pico class) spacecrafts weighing several hundred grams, or even 
smaller to femtosats – the so called satellites on a chip. However, their characteristics are yet 
unknown as they are only in the early design phase at present. 

Although there are many representative of the nano class, the standardization of the launcher 
interface and the deployer (P-POD) has helped the CubeSat to receive general acceptance as 
the de facto standard. Previous experience with small satellites existed before the CubeSats, 
but their introduction marks the moment when a critical mass of developers begun working 
on similar designs using similar components. The simultaneous introduction of the P-POD 



 
Earth Observation 26

also brought a standardized interface to various rockets. As such it became easier for the 
developers to address launching organizations for a group of small satellites. 

As nanosatellite developers, we propose the adoption of these types of spacecrafts to 
support Earth observation, space environment monitoring and space qualification efforts at 
minimal costs.  

1.1 Typical characteristics of nanosatellites 

The definition of the satellite classes is not very rigid. Contrary to general perception, the 
exterior dimensions are not defining the nanosatellite. Typically, when speaking of a nano 
class spacecraft we refer to a sub 10 kg satellite. Consequently, the mass restriction is also a 
size restriction limiting the exterior dimensions to tens of centimetres. The only standard 
that imposes restrictions on dimensions is the CubeSat – a cube with a 100 mm edge length 
permitting small protuberances up to 6.5 mm on each side. The standard also limits the 
mass of the spacecraft at 1.33 kg – recently upgraded from 1 kg. A deviation from the initial 
standard allows the use of the space equivalent for two or three CubeSats (or even halves) 
for a single satellite extending the maximum length at more than 200/300 mm but 
maintaining the other two dimensions unchanged. These variations from the standard are 
named double or triple CubeSats to differentiate them from the single cube models. It is 
worth mentioning that even if the standard permits it, there have been no double CubeSats 
launched but only single or triple units.  

The main characteristic of the nanosatellite are given by their size, which is in the order of 
tens of centimetres. All the other subsystems need to be scaled down to accommodate the 
design requirements. There are two approaches in designing a spacecraft of the nano class: 
either start from the payload and scale the satellite to that payload (traditional method very 
unusual for small satellites) or scale the payload to the overall dimensions and try to 
accommodate the other subsystems. The later is the new method that involves setting a 
design for the payload and revisiting it if after adding the rest of the subsystems the overall 
restrictions are not met. This might require going into many iterations for the design of the 
payload and the subsystems.  

1.1.1 Electrical power 

The accessible power on board a satellite depends on the total surface area available for 
solar cells. Using the formula in equation (1) we can compute the maximum power one 
square side can generate. The first term is the solar constant (the power from the Sun light 
available on Earth’s orbit on a dm2), the second term is the surface area exposed to the Sun 
light, while the third term is the conversion coefficient between light and electricity. 

��������[�] � 1���� � ����� ∙ �����[���] ∙ �[�]100  (1)

For the 10 kg satellite a gross estimation of the size is a cube with the edge length of 200 mm. 
If we presume that no deployable solar panels are used, the total surface available for 
photovoltaic cells is 4 dm2 for each of the 6 sides. Considering the solar constant at 13.68 
W/dm2, and the average conversion coefficient 25%, the total power available when not in 
eclipse must be lower than 18 W. This value does not take into account Earth’s albedo.  
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The single unit CubeSat is situated at the lower limit of the nano scale according to the 
definition, so the available surface and electric power is even lower. Repeating the previous 
calculations for a 10 cm cube gives a value of 4.5 W for the maximum instantaneous power 
available without deployable solar panels. Just like with the previous estimate we assume 
no variation of the conversion coefficient associated with the increase of the temperature on 
the photovoltaic cells and we presumed the satellite in an orientation corresponding to the 
maximum surface area directly exposed to the Sun. Orbit averages for the power will be 
significantly lower than the computed values if we take into account the time the satellite 
spends on eclipse – typically 30% of the orbit period. Deployable solar panels have been 
included in launched CubeSats, especially for triple units, but for single unit as well 
(Nakaya et al., 2003; Genbrugge et al., 2009).  

1.1.2 Orbit 

Due the average power being on the order of watts or tens of watts the nanosatellites are 
constrained on accessible orbits as well. The limited power available for the transceivers 
restricts the range between the ground station and the spacecraft. Consequently, 
nanosatellites are launched on low Earth orbits (LEO). The typical orbit is circular at almost 
90o inclination and its altitude is near 700 km. The second, less encountered orbit class is also 
circular but at 300 – 350 km and its inclination much lower – Genesat-1 and satellites 
launched from the ISS or the Shuttle. These orbits are at the lower limit of the trapped 
radiation belts and although the particle fluxes are higher than at sea level they are inferior 
to those on higher altitude orbits. This is the main reason that COTS components are feasible 
to be used on board nanosatellites. 

9 CubeSat class satellites will be launched on a non characteristic orbit on board the VEGA 
maiden flight. The orbit has changed several times but the current values for the perigee and 
the apogee are 300 km and 1450 km with the inclination at 69.5o.  The higher altitude of the 
apogee takes the satellites inside the proton belt. The satellites launched on this mission 
would further evaluate the possibility of using COTS at high radiation fluxes. 

The orbit of the nanosatellite also impacts the communication between the ground station 
and the spacecraft. For the orbits we previously mentioned a full period is approximately 90 
minutes and each day there are between 3 and 5 windows of communications when the 
satellite is in range of the spacecraft and 3-10 minutes on each interval. These values are 
averages for a location at 45o latitude. There is daily re-visitation for satellites on LEO and 
this fits well into the objective of using nanosatellites for Earth observation applications. 

1.2 Currently available technologies 

Being in development for over a decade, different technologies have been adopted by the 
nanosatellite designers and advances have been made for increasing the capability of these 
spacecrafts. We are now at a time when the efforts are starting to show results and in-
mission demonstrations of these technologies are beginning. 

1.2.1 Processing power 

A second important restriction imposed by the energy available on board is the processing 
power that can be feasibly accommodated on small satellites. Hence the on board computers 
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typically found on nanosatellites launched in the past decade are microcontrollers 
functioning at frequencies of several MHz. The reason is not the lack of advanced processors 
that could be integrated, but the need to limit the functioning periods for them as they drain 
the batteries rapidly. The proposed solution is to use a mixed approach: low power 
microcontrollers for general functions and high power processor for demanding tasks like 
attitude determination and control systems (AOCS) or data processing in payload units. 
This method has already been applied by the integration of units functioning at hundreds of 
MHz on board nanosatellites already launched or being scheduled for launch.  

Launched in 2008, the Japanese nanosatellite Cute-1.7 + APD II used the main boards of two 
commercial off the shelf (COTS) personal device assistant (PDA) running at 400 MHz as the 
main components of the on board computer and data handling system (OBDH) (Ashida et 
al., 2008). Scheduled for launch on the VEGA maiden flight, the Goliat CubeSat integrates a 
dual core 600 MHz digital signal processor (DSP) for on board image compression (Balan et 
al., 2008).  

  

Fig. 1. Hitachi NPD-20JWL PDA on board Cute 1.7 + APDII (left) and the DSP board on 
board Goliat (right). 

The trend of adapting commercial portable devices like PDAs and smartphones for use on 
board nanosatellites fits the general guidelines of low cost design through the use of COTS 
subsystems. Additionally, mass produced mobile devices are benefiting from extensive 
research in miniaturization and reduction of power consumption, levels that can’t be 
achieved with the limited budgets of a small satellite research project. Therefore the 
orientation of nanosatellites developers toward using smartphone processor boards as part 
of theirs satellite’s OBDH system is natural. 

The most popular mobile platforms of the moment, iPhone and Android, have proven flight 
experience at the edge of the atmosphere, on board weather balloons at altitudes higher than 
30 km. Taking the idea a step further, a team of researchers in UK plans on building and 
launching a triple unit CubeSat that will fly a complete smartphone (Surrey Satellite 
Technology Ltd, 2011). The smartphone will be the payload and the demonstration of its 
orbit functioning is intended. Part of the test also implies switching off the main 
microcontroller of the satellite and passing all the OBDH functions to the smartphone. 

Besides costs and power optimization there are other benefits of adapting the processors of 
mobile devices to satellites: better development tools for software with better version 
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control, usability of the same code among several devices facilitating the upgrade of the 
hardware with minimal software changes, a single low voltage power supply (typically 3.3 
V) and a single data interface, numerous integrated peripherals (magnetometers, 
accelerometers, gyroscopes, temperature sensors). These benefits also come with the loss of 
some of the customization as there is little possibility to intervene on the hardware (sensor 
calibration, removing unnecessary modules) and some parts of the software. The number of 
additional interfaces is also limited and typically a single serial connection exists: Bluetooth. 
Additionally, USB host mode connection is being proposed as standard for smartphones 
running the next release of Android OS (version 3.1). 

As part of our research, we propose the use of the on board data connections – mainly Wi-Fi, 
but GPRS or 3G also – as communication platforms for nanosatellites flying in close or 
dispersed orbital formations. If Wi-Fi devices allow ad-hoc networking, the use of the mobile 
phone data connections will necessitate the existence of a cell node managing the network. 

1.2.2 Attitude and orbit control systems 

Most advanced applications require precise determination of the orbit and the attitude of 
the satellite. Others also need capabilities to change the orientation and some even the 
position of the satellite. This is the technology field where most nanosatellite research is 
focused. Miniaturized attitude determination sensors existed at the time nanosatellites 
started being launched and various sensors were rapidly integrated: Sun sensors, 
magnetometers, Earth horizon sensors, star trackers.  

Beside early attempts at using permanent magnets or magneto-torquers to stabilize the 
satellite or change its orientation, recent developments have been made at integrating 
reaction/momentum/inertial wheels on board even the CubeSats – see Fig. 2 (Balan et al, 
2008; Bozovic et al, 2008). The CanX-2 was developed and launch for testing some of the 
critical components of the AOCS system required in the formation flying demonstration 
mission of CanX-4 and CanX-5. As such, the triple unit CubeSat included a complex attitude 
determination system based on multiple sun sensors and a magnetometer. It also integrated 
a single reaction wheel for evaluation purposes together with a propulsion system 
evaluation unit. The team reported successful operation for all the AOCS subsystems 
evaluated (Sarda et al., 2010). 

 
Fig. 2. Motors and reaction wheels on the mechanical structure of Goliat (left), motor and the 
inertial wheel assembly for the SwissCube (right). 
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For nanosatellites bigger than single unit CubeSats, different commercial solutions have 
emerged recently. One such example is the MAI-x00 series which offer complete attitude 
determination and control for small satellites in packages from half a CubeSat to 1 CubeSat 
(Maryland Aerospace Inc., 2011). Position actuator products are not as advanced for small 
satellite, and either cold gas or micro thrusters are considered. A different approach is the 
use of aerodynamic breaking in close orbital formation scenarios. For two or even more 
CubeSats launched from the same deployer, the initial velocities are the same. Any change 
in the orientation results in a change of the surface area normal to the trajectory and in a 
change of the aerodynamic drag. Such a solution will work only in preventing the spacecraft 
separation and it actuates only in the direction of the orbit. Any difference in the velocities 
of the two spacecrafts for the other two axes would render the method unusable (Balan et 
al., 2009). 

After a decade of nanosatellites missions the technologies have evolved enabling the 
exploitation of the new class of spacecrafts for more complex applications. As the 
subsystems available have evolved, sufficient flight data has been gathered for essential 
components and their reliability is guaranteed. 

2. Earth observation and near Earth environment monitoring 
The objectives of small spacecrafts were initially only educational while science and Earth 
observation were just viewed as secondary goals. However the nanosatellites’ missions have 
quickly begun to evolve to more complex science with increased demand for reliability. 
From the industry perspective, nanosatellites now represent an easy access to space for 
simple instruments or for test bed applications. Among the instruments best suited are the 
sensors for monitoring the radiation environment on LEO, the magnetic field and some of 
the upper atmosphere phenomena. The inclusion of digital cameras on board nanosatellites 
did not have Earth observation objectives at first. Initially the imaging experiments were 
included for their public outreach potential.  

The Earth observation potential of nanosatellites is still disregarded since optic instruments 
are considered too large for integration on nanosatellites. However as the exploitation 
potential of the new class of spacecrafts was revealed, the idea of Earth observation even on 
CubeSats starts to gain more general acceptance with every new launch. A camera having 
one of the highest focal lengths mounted on a CubeSat is part of the Goliat mission. Its 
integration proved very difficult as the optical lens and sensor assembly occupy almost half 
of the interior of the spacecraft. 

One of the advantages of LEO is the proximity to the surface and to the upper atmosphere. 
Earth Observation doesn’t target only the monitoring of the land or water masses, but also 
the monitoring of phenomena in the atmosphere. Small focal distance cameras are ideal at 
imaging the movement of large cloud formations (like with tropical storms or large scale 
meteorological manifestations). Also, we mentioned earlier the re-visitation interval of 
approximately 12 hours which is important for events with high dynamicity. These time 
intervals can be further decreased if several nanosatellites (a constellation) are deployed on 
the same orbit in successive launches. The satellites cover the same area at time intervals 
several hours apart with the actual timing depending on the number of spacecrafts 
launched.  
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A special application for low resolution image acquisition that could be implemented on 
nanosatellites involves multi-spectral imaging on board satellites flying in a close orbital 
formation. An identically built satellite is to be repeated and the optical systems will be the 
same among all the members of the orbital formation. Unlike the large spacecrafts, the 
imaging sensors on each satellite can be single-spectral, and the wavelength for the 
maximum sensitivity is the one that differs. For redundancy multiple spacecrafts will 
monitor each spectral band and the image acquisition will be commanded to all satellites. 
Multi-band images can be reconstructed either on ground or on the network on orbit. 
However, for each band a single image will be sent to the ground station, resulted from the 
fusion of all the images taken by satellites with the same spectral band sensitivity – see Fig. 3 
(Balan et al., 2009).  

 
Fig. 3. Formation flying scenario with distributed sensors, in flight data processing and 
single data stream communications. 

One of the key application of nanosatellites is as support in disaster management efforts. In 
these situations low re-visitation periods are required to monitor major floods, fires or other 
large scale natural disasters. For these types of conditions, rapid information delivery is 
more important than resolution as there is an immediate need to roughly identify the areas 
already affected and the ones most exposed to danger. Nanosatellites can therefore be used 
in conjunction with large spacecrafts to identify precisely the locations where higher 
resolution images are required and request the specific areas to be monitored.  

Several approaches have been proposed to address the problem of the size of the optical 
systems. Among them, worth mentioning are the use of complex deployable lens mounts 
and the use of multiple sensors. A nanosatellite that successfully demonstrated deployable 
optics is the 8 kg, 19 cm x 19 cm x 30 cm PRISM nanosatellite developed by the Intelligent 
Space Systems Laboratory (ISSL) of University of Tokyo (Komatsu & Nakasuka, 2009).  

The advantage of nanosatellites is their reduced costs. If multiple identical such spacecraft 
are to be built, the costs are decreased even more. As such, it is natural to consider 
multiple satellites scenarios in which the imaging of the same area, or adjacent sectors 
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would result in a representation of higher resolution. The solution is not complete if the 
image processing is set to be conducted on ground as all the raw data from the sensors 
must be forwarded to the ground station. This situation is not feasible for nanosatellites as 
there is a limited data rate caused by the limited power. Therefore the use of on board 
processing for all the data acquired by the distributed sensors is a necessity. As resources 
are limited on nanosatellites, the ideal method for implementing complex data processing 
is by using the hardware on each of the spacecrafts and dividing tasks among processors 
based on their availability, like in grid computing. This complex image processing method 
was not yet implemented on launched satellites. The main issue is with scaling down the 
data fusion algorithms so they can be implemented on the limited hardware resource on 
board nanosatellites. 

Precise Earth observation requires the use of key technologies identified in the previous 
section. The most obvious among the requirements is the need to determine the position 
and orientation of the satellite with the accuracy needed by the application – 
approximately 10% of the ground target size. The same resolution is required when 
controlling the orientation actuators. Once the image has been stored on board, the data 
must be sent to the ground station. The reported data rate in nanosatellite to ground 
station communications has increased in the last couple of years with the use of S-band 
transceivers and the utilization of the experience acquired during the operations of the 
first spacecrafts. Given the limited emission power, the data throughput can be increased 
if directive antennas shall be developed for use on the nanosatellites. Furthermore, even if 
the data rate is not increased, the amount of data transferred to the ground station can be 
increased by optimizing the radio communications windows. At present, with mid-
latitude ground stations, the communications windows are less than 10% of the orbital 
period. A second ground station could increase the percentage, but either the separation 
among ground stations must be of hundreds to thousands kilometres, or each ground 
station must target a different satellite and different data streams are to be transferred. 
Single ground stations that can have greater communication windows must be situated in 
the Polar Regions if the polar orbits remain the custom for nanosatellites. An alternative is 
represented by the ground station networks currently being proposed – GENSO – but 
these are tailored for educational purposes and need to be adapted to the different needs 
of the commercial applications. 

It is expected that the time from design to delivery for a nanosatellite missions to further 
decrease, and the mission costs to continue to go down together with it, due to the rapidly 
increase in the nanosatellites subsystems and components market. 

3. Multiple satellites mission for Space Situational Awareness (SSA) 
The multi satellite missions are best suited for small spacecrafts due to the small costs and 
rapid production associated with them. We present distributed measurements as a new way 
to better and faster understand complex phenomena by using simultaneous data gathering 
in the target environment. A group of nanosatellites (constellations or formations) is the 
most cost-effective way to implement this approach in space. Furthermore, distributed data 
collection can be correlated with distributed processing to enable single data stream 
transmissions between the spacecrafts in orbit and the ground station as opposed to the 
multiple streams associated with independent multiple satellites. This solution better  
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section. The most obvious among the requirements is the need to determine the position 
and orientation of the satellite with the accuracy needed by the application – 
approximately 10% of the ground target size. The same resolution is required when 
controlling the orientation actuators. Once the image has been stored on board, the data 
must be sent to the ground station. The reported data rate in nanosatellite to ground 
station communications has increased in the last couple of years with the use of S-band 
transceivers and the utilization of the experience acquired during the operations of the 
first spacecrafts. Given the limited emission power, the data throughput can be increased 
if directive antennas shall be developed for use on the nanosatellites. Furthermore, even if 
the data rate is not increased, the amount of data transferred to the ground station can be 
increased by optimizing the radio communications windows. At present, with mid-
latitude ground stations, the communications windows are less than 10% of the orbital 
period. A second ground station could increase the percentage, but either the separation 
among ground stations must be of hundreds to thousands kilometres, or each ground 
station must target a different satellite and different data streams are to be transferred. 
Single ground stations that can have greater communication windows must be situated in 
the Polar Regions if the polar orbits remain the custom for nanosatellites. An alternative is 
represented by the ground station networks currently being proposed – GENSO – but 
these are tailored for educational purposes and need to be adapted to the different needs 
of the commercial applications. 

It is expected that the time from design to delivery for a nanosatellite missions to further 
decrease, and the mission costs to continue to go down together with it, due to the rapidly 
increase in the nanosatellites subsystems and components market. 

3. Multiple satellites mission for Space Situational Awareness (SSA) 
The multi satellite missions are best suited for small spacecrafts due to the small costs and 
rapid production associated with them. We present distributed measurements as a new way 
to better and faster understand complex phenomena by using simultaneous data gathering 
in the target environment. A group of nanosatellites (constellations or formations) is the 
most cost-effective way to implement this approach in space. Furthermore, distributed data 
collection can be correlated with distributed processing to enable single data stream 
transmissions between the spacecrafts in orbit and the ground station as opposed to the 
multiple streams associated with independent multiple satellites. This solution better  

 
Nanosatellites: The Tool for Earth Observation and Near Earth Environment Monitoring 33 

addresses the issues of limited data rate in small satellites communications caused by the 
low available power and not using directive antennas. Unlike with imaging applications, the 
amount of data from multiple instruments in a close orbital formation can easily be 
transmitted from a single satellite even if measurements from each sensor are included. Raw 
signals from every event will however have the same impact as images on the size of data to 
be transmitted, but in the case of unusual results, the actual values recorded can be sent in 
multiple transmissions without impacting the stream of on board processed data. 

The potential of small satellites, nanosatellites and CubeSats especially, to contribute 
valuable data necessary to the modelling and the prediction of the space environment in the 
context of the SSA has recently begun being recognized and the need to aggregate all the 
data from recent small satellites launches is identified (Holm et al, 2009). Extrapolating on 
this trend we consider there is a further need for a unified data collection structure with 
multiple points of acquisition and multiple similar – identical or complementary – sets of 
sensors. Nanosatellites are the perfect propositions for demonstrating the benefits of this 
type of missions due to the reduced mission costs and their rapid development.  

One of the main directions in the field of near Earth space monitoring is the research and 
development of spacecrafts built for multi-satellite missions. Space weather’s influence on 
our daily life increases constantly with the miniaturization as devices become more sensible 
to outside interferences. Within the context of a new maximum in the solar activity, the 
perturbations of space supported services are becoming more frequent so we base our 
mission proposition on the need to investigate this domain. Multiple spacecrafts missions, in 
either constellation or formation configurations, will serve as points of observations for the 
evolution of the complex environment of nuclear particles in conjunction with the dynamic 
magnetic field of the planet.  

Based on the experience in developing the radiation detection experiment on board Goliat, 
we proposed the further investigation of the nuclear particles in LEO and the magnetic field, 
in order to identify correlations between local variations of the two. Observations on the 
dynamics of the phenomena are possible by using the distributed sensors and the short re-
visitation intervals. All spacecrafts are to be identical from the hardware point of view. The 
minimal requirements for the radiation sensors are the need for differentiation based on 
particle type and the capability of measuring the energy of each event so as to obtain the 
representation of the radiation spectrum at each satellite. Precise magnetic field 
measurements require caution in separating the interferences generated by the spacecraft’s 
own subsystems. This is why magnetometers need to be mounted as far from the satellite as 
possible, usually at the end of a deployable boom. Each spacecraft needs also to integrate 
precise attitude determination for both position and orientation of the magnetometer’s axes 
with respect to the Earth.  

Space weather monitor nanosatellites can be launched in solitary missions as demonstrators, 
but greater value can be added by launching several in a close orbital formation. In the first 
months of their mission, they will synchronize data collection between them and the data 
transmissions to the ground station are centralized through a single point of contact – one 
member of the formation. As the atmospheric drag starts affecting each satellite differently, 
their relative velocities change and the distances among satellites will increase. The 
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formation transforms into a constellation and the phenomena recorded are no longer local, 
but become global. 

The same approach can be applied to multiple applications in the context of SSA. The mixed 
configuration mission can theoretically fulfil both roles: being launched as a close orbital 
formation and, once the fuel has run out, gradually migrating to a dispersed formation and 
then becoming a constellation. The simplest demonstration would require launching three 
identical single unit CubeSats from the same PPOD and then test the formation flying 
capabilities on board these three spacecrafts. Such a mission can serve as a test bed for larger 
nanosatellites. During the demonstration various hardware and, equally important, 
software can be tested to facilitate future missions. 

4. Case study: Goliat, building a CubeSat for Earth observation & near Earth 
environment monitoring 
The authors of this chapter worked at developing Romania’s first CubeSat class satellite - 
Goliat. Among its goals an important part is the demonstration of Earth observation and 
near Earth environment monitoring capabilities on board nanosatellites.  

4.1 Goliat platform subsystems 

Goliat is a single unit CubeSat developed by a Romanian consortium led by the Romanian 
Space Agency. The project was directed toward students at two universities in Bucharest 
that were tasked at designing and building the satellite in order to have them educated in 
the work practices of the space industry. The project involved not only building the satellite, 
but also setting up a ground station infrastructure at two locations near two major cities in 
Romania: Bucharest and Cluj-Napoca.  

 
Fig. 4. Goliat Flight Model. 
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The satellite was selected to be launched on Vega’s inaugural flight on an elliptical orbit 
having the perigee at 300 km and the apogee at 1450 km. The satellite’s life on this orbit is 
between 1 and 3 years due to rapid altitude decay caused by atmospheric drag. 

4.1.1 Mechanical structure 

Goliat was built in accordance with the CubeSat specification as a single unit satellite. The 
skeletonized version of Pumpkin’s mechanical structure is the basis of Goliat’s design. The 
+Z side of the satellite was full metal and not skeletonized as optics mounting and several 
other components required a harder fixture. The structure is made out of aluminium alloys 
with the rails hard anodized.  

4.1.2 OBDH 

Two MSP430F1612 microcontrollers are the backbone of the satellite. One of the onboard 
computer (OBC) units was acquired from Pumpkin, while the other one was a custom 
solution built on an internal design. The two processors are running at 7.2 MHz and 
communicate with each other via a serial peripheral interface (SPI). The OBC board also 
includes a SD card interfaced on SPI as well. Other subsystems are also communicating 
using the SPI link: the camera processor board and the control unit of the UHF radio. 
Additionally each microcontroller connects on a serial interface to various components: 
camera processor board, 2.4 GHz transceiver, magnetometers, GPS. Data from two 
experiments (radiation measurement and micro-meteoroid impact instrument) and from the 
housekeeping sensors is collected at the microcontrollers on the built-in ADC channels. An 
independent microcontroller unit was implemented on the electronic power supply (EPS) 
board to manage this subsystem. 

4.1.3 Radio communications 

Goliat has two data links for radio communications. The primary data link unit uses a 1 W 
commercial transceiver operating in the 2.4 GHz band. This unit is controlled and it is 
directly interfaced to one of the MSP430 microprocessors. It is scheduled to operate only 
when in range of the ground station and its main purpose is to transmit data from the 
experiments and to receive commands from the operators in the control room.  

The secondary transceiver is a beacon operating in the 70 cm radio amateur UHF band. It 
is built from a portable radio-amateur transceiver and a custom built AFSK modem 
controlled by a third MSP430F1612 microcontroller. This radio module is meant only at 
transmitting but receiving capabilities have been added to act as back-up for the main 
radio unit. The data transmission on this link will be continuous on the entire orbit and 
both Morse code and AFSK packets with housekeeping data will be transmitted. This unit 
is controlled by a different OBC than the 2.4 GHz transceiver so full redundancy is 
available on the spacecraft. 

4.1.4 Electronic power supply 

The EPS subsystem features the power generation, energy storage and voltage conditioning 
functions of the satellite. The first component of the subsystem is made up by the solar  
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panels. 18 photovoltaic cells measuring 41 mm x 42.2 mm and having an efficiency of 
approximately 25% are distributed on the 6 sides of the satellite. Three sides contain 4 cells 
each while three sides contain only two cells each. The estimated average power from the 
solar panels is a little over 2 W. The cells are grouped so the voltage reaching the main EPS 
board is 4 V. 

Due to the noise sensitive nature of one of the on board experiments, the main requirement 
of the EPS design was that no switching power supply should be present on the satellite’s 
supply lines. This imposes the use of LDO regulators which are highly ineffective. More so, 
the need of a 5 V supply line, coupled with the less than 5 V output voltage of the solar 
panels, requires the use of a battery pack with the nominal voltage above 5 V. Li-Ion 
batteries were selected due to having the highest energy density per mass. The ping-pong 
architecture of the EPS uses two Li-Ion battery packs with their nominal voltage at 7.2 V. A 
battery pack always supplies the satellite, while the other is charging from a step-up 
converter that has the voltage from the solar panels as its input. 

4.1.5 ADCS 

For the determination of Goliat’s position there are two independent methods. First uses a 
commercial GPS receiver while the second one involves sending the orbital parameters as a 
*.tle file (two line elements) and then calculate the position using an orbit propagator 
implemented on one of the microcontrollers. For orientation the satellite uses a triple axis 
magnetometer and an IGRF implementation on the same microcontroller to compare the 
data for the actual position and determine the orientation of the satellite with respect to the 
Earth. 

Goliat is meant to demonstrate a simple reaction wheel system for changing the orientation 
of CubeSats. Due to the mission constraints only two wheels were able to be included in the 
satellite design. The attitude control system is made of two high precision reaction wheels 
mounted on top of two micro-motors and the assemblies are attached to the aluminium 
structure in the centre of two perpendicular sides of the satellite.  

4.2 Payload 

The payload of Goliat consists of three independent experiments for near Earth environment 
monitoring and Earth observation. 

The first of them is named SAMIS and it is a micro-meteoroid detection instrument that 
uses a thin film piezo-element to measure the energy of the impact between the satellite 
and the micrometer sized particles on LEO. The measurement of the flux of particles 
encountered by the satellite will take place continuously after the commissioning of the 
spacecraft.  

Dose-N is the second on board experiment and it targets the measurement of the total 
ionizing dose on Goliat’s orbit. The experiment’s added value increases with the new Vega 
orbit since the satellite’s trajectory is no longer circular and a range of altitudes in the 
radiation environment is to be mapped. If the 700 km altitude orbit was at the lower limit 
at the trapped proton belt, the elliptical orbit enters the region and exposes the satellite’s 
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components to higher radiation fluxes. The radiation detection instrument uses a 
scintillating material that generates visible radiation when interacting with nuclear 
particles. The light is detected by a photodiode that has its maximum sensitivity at the 
same wave length as the photons emitted by the scintillators (430 nm). The signal from the 
photodiode is integrated and the amplitude of the output signal measured by the 
microcontrollers as the total energy deposited in the integration time frame. Measurements 
will be taken at equally distanced positions along the trajectory of the spacecraft and dose 
measurements will be correlated with resets and other errors in the functioning of the 
satellite. 

 

 
 

Fig. 5. Micro-meteoroid impact sensor (left) and radiation detector (right). Integrated on 
Goliat. 

The third and the last of the experiments on board Goliat is a narrow angle camera (NAC). 
The sensor of the camera consists of a 2048 x 1536 matrix of pixels, the highest resolution 
fitted on a single unit CubeSat. The pixel size is 3.2 µm x 3.2 µm. For the electronics of the 
experiment a commercial solution with the sensor board stacked on top the processor board 
was used. The processor board features a Blackfin ADSP-BF561 dual core DSP running at 
600 MHz. A µClinux operating system is installed on the microcontroller and software 
written in C/C++ can be compiled on the device. A dual interface, serial and SPI, is used to 
communicate with the other microcontrollers on the satellite and with the SD card. The 
power consumption for the two stacked boards is typically at 1 W and does not exceed 2.25 
W according to the manufacturer. 

For a typical nanosatellite orbit – circular at 700 km altitude – the expected equivalent area 
in a 3 mega pixel image is a 50 x 70 km region. The expected pixel resolution is tens of 
meters, enabling the identification of geographical features and even of large constructions 
at the ground. The elliptical orbit for the Vega launch will make possible testing the camera  
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at various altitudes in the 300 to 1450 km range. For the project a special lens mount was 
designed and built at PRO Optica in Bucharest. The optics had to be accommodated inside 
the satellite and compliance with the CubeSat standard was desired. The optics had to meet 
the restrictions of accommodating the other subsystems while maximizing the focal length. 
A 6o field of view was achieved at a 57 mm focal length. 

The main objective of the Goliat satellite is to demonstrate the potential of nanosatellites to 
execute complex experiments at low costs. An auxiliary objective was the development of a 
flight proven satellite platform that could be adapted for future application oriented space 
missions. 

 

Fig. 6. The narrow angle camera on board Goliat: processor board (red), sensor board (blue), 
optics (yellow). 

5. Conclusions 
Nanosatellites are definitely the most rapid changing sector of the space industry in the last 
decade. Their development has taken many by surprise and their momentum is just starting 
to grow now that technologies essential for better exploiting their potential are becoming 
available. We are expecting their growth to continue due to the further reduction in costs 
and the decrease of the development cycle associated with the trend of standardizing the 
bus of the spacecraft. 

At first missing, technologies like small scale AOCS systems, OBDH modules, and even low 
power, high data rate transceivers have rapidly evolved driven by their requirement in 
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building complex subsystems. It is now cheap to build more than one satellite and satellites 
are becoming smarter when connecting them in a network. Furthermore, the applications 
proposed for the new types of spacecrafts and missions promise to revolutionize space 
operations with the outside of the box thinking associated with doing things at a smaller 
scale.  

Space is finally becoming accessible to projects with limited budgets, through nanosatellites, 
the new tools for near Earth explorations. 
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Clarification of SAR Data Processing Systems 
and Data Availability to Support InSAR 

Applications in Thailand 
Ussanai Nithirochananont and Anuphao Aobpaet 

Geo-Informatics and Space Technology Development Agency, 
Thailand 

1. Introduction  

The Geo-Informatics and Space Technology Development Agency (GISTDA) was 
established since 2000, and it is the major organization in Thailand that responsible for geo-
informatics and all space technology development activities under ministry of science and 
technology. Currently, GISTDA acquired data from Earth Observation Satellites such as 
THEOS, LANDSAT-5, RADARSAT-1 and -2, etc. by using remote sensing systems which 
extensively to be used in the past and tremendously useful from now on for acquiring the 
satellite data. Consequently, the recognition on the development of this technology and 
operation acceptant are very beneficial. Moreover, the users are necessary to understand the 
data processing procedures, as for their applications which depend on the satellite imageries 
and data processing quality. This article describes and discusses mainly about the data 
processing and production systems of SAR sensor, including the application example on 
Bangkok land subsidence using InSAR. 

GISTDA has archives of many European, Canadian and Japanese SAR images of Thailand 
that are instantly available to InSAR applications in Thailand. With our capability to 
acquire the data direct down-link using 9- and 13-meter antennas, it provides the 
potential of times series SAR data available for the environmental change detection using 
InSAR techniques.  

In Thailand, the land deformations are not a new phenomenon for major cities and some 
specific zone whose location lay on the tectonic plate. The applications such as land 
subsidence, flash flood induced land slide, coastal erosion and fault monitoring are 
subjected to the country apprehension. However, the irregular deformation patterns put 
severe demands to the traditional geodetic techniques such as levelling survey, GNSS etc. 
with respect to the number of stations and the time interval between consecutive measuring 
sessions. Therefore, to overcome the limitations, InSAR (Interferometric Synthetic Aperture 
Radar) techniques provide a high spatial resolution and accuracy at the sub-centimetre level. 
InSAR has all weather, day and night, capability, and the sampling rate of current space-
borne systems is improving, 45 days (ALOS-PALSAR), 24 days (RADARSAT-1 and 
RADARSAT-2) to 11 days (TerraSAR-X), which is satisfactorily high to the monitoring of 
land deformations.  
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For SAR data, the production requests were submitted through a Product Generation 
System (PGS) interface for RADARSAT-1, RADARSAT-2 and APEX CMDR via Vexcel 
control processor system for ALOS-PALSAR at the ground receiving station facility. The 
necessarily data employed in most research for deformation is required to be in single look 
complex (SLC) products in CEOS format where generally each of them consists of five files 
containing various descriptive records. Each image pixel is represented by complex I and Q 
numbers to maintain the amplitude and phase information which makes it suitable for 
interferometric processing. Therefore, the clarification such as the processing algorithm, 
system configuration, data available to support applications will be provided to certify the 
potential of using SAR data in Thailand. Finally, a case study on using InSAR techniques for 
land subsidence monitoring in Bangkok and its vicinity area will show that the successful 
cooperation between data provider and the user will lead to conquer the best practice. 

2. Brief background of satellite remote sensing in Thailand 
Historically, Thailand Satellite Remote Sensing Program of the National Research Council of 
Thailand (NRCT) was established on September 14, 1971 (NRCT, 2000) with the main reason 
of participating in NASA Earth Resources Technology Satellite (ERTS) Program. The 
program was promoted to become the Remote Sensing Division under NRCT in 1979, and 
internationally known as the Thailand Remote Sensing Center (TRSC). Subsequently, in late 
1981,  the ground receiving station was set up to acquire Landsat-MSS data, and it was 
capable of receiving and processing data from major remote sensing satellites throughout 
consistent upgrading of the facilities. In 1982, Thailand Ground Receiving Station was set up 
as first of its kind in Southeast Asia with the available satellite data such as LANDSAT, 
SPOT, NOAA, ERS and MOS at that time.  

On June 27, 2000, the Cabinet was approved the establishment of Geo-Informatics and Space 
Technology Development Agency (GISTDA) as the self-governing public organization for 
conducting technological research, development and applications of satellite remote sensing 
and GIS, related space technologies for providing relevant services to Thai and  
international community. Basically, GISTDA is the merging of the TRSC and the IGIS 
section of Information Center of MOST. Therefore, GISTDA is the national main 
organization implementation of remote sensing, GIS, and satellite development programs 
for Thailand. Due to the main mission, Thailand Earth Observation Center (TEOC) has 
become the common name of TRSC since then.  

One of the big movement of space activity in Thailand has been recorded on October 1, 2008, 
that Thailand Earth Observation Satellite (THEOS) was successfully launched by Dnepr 
launcher from Yasny, Russian Federation. THEOS is the first operational earth observation 
satellite of Thailand. The THEOS program was developed by GISTDA, EADS Astrium, the 
prime contractor, initiated work on the satellite in 2004. Nowadays, GISTDA is developing a 
worldwide network of distributors to allow the users to use and access to all GISTDA 
products which is able primarily to access via web-site www.gistda.or.th.  

On the other hand, Synthetic Aperture Radar (SAR) satellite systems formerly in function at 
TEOC include European Remote Sensing Satellite 1 (ERS-1) from the European Space 
Agency's (ESA) which was launched by July 1991, and the Japanese Earth Resources satellite 
(JERS-1), launched in February 1992. The ERS-1 sensor operated in the C-band frequency 
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For SAR data, the production requests were submitted through a Product Generation 
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(approx. 5.6 cm wavelength) and JERS-1 operated in the L-band frequency (approx. 23 cm 
wavelength). Both sensors have a nominal spatial resolution of approximately 30 m. The 
ERS-1 satellite, with a projected lifespan of three years, was followed by an ERS-2 satellite to 
continue SAR data acquisition into the late 1990s.  

The operations of SAR data at that time has been applied to several major applications such 
as land-use and land-cover information mapping, coastal monitoring, crop monitoring, etc. 
The mission record of SAR data had been started with ERS-1 in March 1993 after almost 2 
year launched, and the contract had been expired in September 1995. In parallel, JERS-1 SAR 
ground system had been functioned from October 1993 until October 1998, respectively. 
Before the coming of RADARSAT-1 (Canadian Space Agency) in July 2000, TEOC had set 
up the new contract with ESA again for acquiring SAR data from ERS-2 mission which 
records from August 1996 to October 1999. Currently, the RADARSAT-1 (2000-present), 
RADARSAT-2 (2010-present) and ALOS-PALSAR (2007-2011) have been the main SAR 
satellite acquisition of TEOC. However, please note that, JAXA announced that ALOS 
satellite has been completed its operation due to power generation anomaly since May 12, 
2011.  

TEOC plays an important role in the area of remote sensing technology in the country and 
also in the Asian region. The center has some collaborative activities with several 
international agencies including NASA, JAXA, ESA, CSA, etc. TEOC is located at 
Ladkrabang district, Bangkok, which is about 4 kilometers from Suwanaphum International 
airport. It has radius coverage of 2,500 km, covering 17 countries such as Malaysia, 
Singapore, Philippines, Indonesia, Brunei, Myanmar, Laos, Vietnam, Cambodia, Thailand, 
Bangladesh, India, Nepal, Sri Lanka, Phutan, Taiwan, and South China and Hong Kong (see 
figure 1). 

3. Fundamentals of synthetic aperture radar 
Synthetic Aperture Radar (SAR) is a powerful active coherent imaging system that operates 
in the microwave frequency band. The system could be placed onboard an airbourne or a 
spacebourne plarform. It provides capabilities of working in daylight-independent and  all-
weather condition, and penetrating cloud cover. These capabilities allow SAR an attractive 
instrument for many applications i.e. change detection, disaster management and 
environmental monitoring. New applications increase as new technologies are developed. 

SAR system imaging the Earth’s surface by transmitting pulses and collecting echoes 
reflected from an illuminated area. To perform this, the transmitter generates pulses of 
electromagnetic energy at the regular time interval and sends to the antenna. Then the 
antenna radiates the energy from the transmitter in a directional beam. Each pulse travels at 
the speed of light to the target area. The returning echo energy are also picked up by the 
same antenna and passed to the receiver. By measuring the time delay between the 
transmitted pulses and the reflected return pulse or echo, SAR system is able to determine 
the distance of the target. 

To construct an image, time delay of the received echo must be precisely measured in two 
orthogonal dimensions. One dimension is parallel to the antenna beam while another is 
orthogonal to the antenna beam. In the first dimension, parallel to the antenna beam, the 
SAR system places the received echo at the correct distance from the platform’s sensor,  
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Fig. 1. TEOC Area Coverage for direct downlink. 

along the x-axis of the image. The x-dimension is referred as range direction, or cross-track. 
For the second dimension, orthogonal to the antenna beam, the received echoes are placed 
in the y-axis of the image, according to the current position of the platform’s sensor. The y-
dimension is called azimuth direction, or along-track. 

The basic geometry of imaging SAR is shown in figure 2. As illustrated, a platform, which 
could be an airplane or a satellite, travelling along the flight track with velocity V at altitude 
H. It carries a SAR antenna that illuminates the Earth’s surface with pulse of electromagnetic 
energy. SAR antenna is typically rectangular with dimensions of length L and width W. The 
antenna is oriented parallel to the flight track and looking sideward to the area on the 
ground. The distance from the flight track to the target is denoted as range direction and 
direction along the flight track is referred as the azimuth direction. An area on the ground 
covered by the consecutive pulses is called swath. Antenna beam footprint is an area on the 
ground reflected by the pulse.   is defined as the incident angle or look angle. 

In fact the SAR system images an area on the ground but for simplicity, a single point on the 
ground is considered. This point is known as a point target. The data received from the SAR 
system are referred as raw data. The data are then demodulated to in-phase-quadrature-
phase (I-Q) baseband data. The demodulated SAR signal, s , received from a point target 
can be modeled as (Cumming & Wong, 2005) 
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Fig. 2. Basic geometry of imaging SAR. 
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The raw data is not an image due to the point targets are spread out in range and azimuth 
direction. It will be compressed in two dimensions by SAR data processor, to produce the 
image. The purpose of SAR processing is to convert the raw data into an interpretable 
image. Several algorithms have been developed and each algorithm has its advantages in 
either imaging quality or computation efficient. In the following section two SAR image 
processing techniques will be briefly introduced: the range–Doppler and the sprectral 
analysis. 
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There are three SAR satellites acquiring data at the TEOC: RADARSAT-1, RADARSAT-2 
and ALOS. RADARSAT-1 is Canadian first commercial Earth observation satellite launched 
on November 1995. It employs a SAR sensor operating in the C-band frequency (5.3 GHz). 
The RADARSAT-1 SAR sensor has two right-looking operational modes, Single Beam mode 
and ScanSAR mode. The modes of observation offer the real-time swath width ranging from 
a narrow high-resolution beam of 50-km, Fine beam in Single Beam mode, to a full 500-km 
swath in ScanSAR mode. 

The Next-generation SAR satellite, RADARSAT-2, follow-on RADARSAT-1, was launched 
on December 2007. All RADARSAT-1 operational modes maintain in RADARSAT-2. The 
major extended capabilities are a new observation beam, ultra-fine with 3-meter resolution, 
a fully polarimetric imaging and ability to look either left or right side of satellite track. 
More details on the RADARSAT-1 and RADARSAT-2 satellites are provided by (Ahmed et 
al., 1990; Thompson et al., 2001). 

The Advanced Land Observing Satellite (ALOS) is Japan’s research earth observation 
satellite operated by JAXA. It was launched on January 2006. The ALOS carries three 
remote-sensing instruments onboard: (i) the Panchromatic Remote-sensing Instrument for 
Stereo Mapping (PRISM), the Advanced Visible and Near Infrared Radiometer type 2 
(AVNIR-2) and the Phase Array type L-band Synthetic Aperture Radar (PALSAR). PRISM 
and AVNIR-2 are optical sensors while PALSAR is a microwave sensor. In this paper , we 
mainly focuses on the data processing system for PALSAR data only. 

The PALSAR is L-band synthetic aperture radar operating in the microwave L-band 
frequency (1270 MHz). It was designed to achieve cloud-free, all-weather and day-and-night 
collecting high-resolution land observations data on a global scale. PALSAR has three 
imaging modes: single-polarimetric stripmap mode, ScanSAR mode, and multi-polarimetric 
mode. More information on the ALOS satellite can be found in (Japan Aerospace 
Exploration Agency [JAXA], 2008). 

4. SAR processing algorithms 
SAR processing algorithm is a processing tool used for transforming unfocused raw SAR 
signal data into a complex image data. Each processing algorithm is suitable for different 
SAR data types. For continuous SAR data such as data from the stripmap in SAR imaging 
mode, the most common algorithm is the Range-Doppler (RD) algorithm, but the burst data 
such as data from the scanning SAR imaging mode, the Spectral Analysis (SPECAN) 
algorithm, is best suitable. 

The Range-Doppler algorithm is the most common algorithm used in most SAR processor. 
The algorithm was developed since SEASAT program. This algorithm has simplicity of one-
dimensional operations and archive block processing efficiency by using frequency domain 
operations in both range and azimuth. These two directions processing can be 
independently performed by using range cell migration correction (RCMC) between the two 
one-dimensional operations. 

Computation of the RD algorithm is divided into two processing steps: range compression 
and azimuth compression. The unfocused raw SAR data compression in each direction is 
first taking the fast Fourier transform (FFT), and then multiplied in frequency domain by the 
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reference function and finally taking the inverse fast Fourier transform (IFFT). For azimuth 
compression the RCMC is applied after the azimuth FFT. The most important modification 
of this algorithm called secondary range compression (SRC) has been added to handle data 
with a moderate amount of squint. 

The SPECAN algorithm was developed to produce a quick-look image for real-time SAR 
processing. It is the most efficient processing algorithm for ScanSAR data. The key 
property is computing efficiency which makes the algorithm require less memory than the 
RD algorithm does but may suffer from some image quality effects. The compression in 
range direction is the same as in the RD algorithm but different in the azimuth 
compression.  

After range compression, the RCMC is applied before the azimuth compression. The RCMC 
is efficiency performed a linear correction only. The compression in azimuth direction 
performs deramping and FFT. Then there are two possible optional way, mutli-looking and 
phase compensation. The multilook processing is to be performed as the RD algorithm 
while the phase compensation replaces when single-look processing is to be performed. 
Reference [4] provides more details of these algorithms. 

5. SAR data processing systems 
SAR data processing system (SDPS) is used to transform unprocessed raw SAR data or 
signal data into georeferenced and geocoded image data. The TEOC has two SDPS: the 
RADARSAT SDPS for data from RADARSAT-1 and RADARSAT-2 SAR sensors and ALOS 
SDPS for data from ALOS PALSAR sensor. The RADARSAT SDPS is a sub-system of the 
Product Generation System (PGS) developed by MDA. ALOS SDPS is a sub-system of the 
ALOS Data Reception and Processing (ALOSRP) system developed by JAXA. The PGS and 
ALOSRP also have a capability to process data from optical sensor satellite such as 
LANDSAT TM for the PGS or ALOS AVNIR-2 for the ALOSRP. 

5.1 RADARSAT SAR data processing system 

The RADARSAT SAR data processing system is a sub-system of the Product Generation 
System used to transform RADARSAT-1 and RADARSAT-2 raw SAR data into the 
georeferenced and geocoded image data. This system is a hybrid computer system between 
UNIX and Windows platform. An advantage of this system is combining power, scalability 
and reliability of the UNIX with the ease of operation of the Windows. The physical 
architecture diagram of the RADARSAT SDPS is illustrated in figure 3. 

In figure 3, the multi-CPU UNIX server is the SGI Origin 350 executes the core processing 
software of the RADARSAT SDPS. Its processors are based on Microprocessor without 
Interlocked Pipeline Stages (MIPS) architecture so that they can take advantage of the 
multiprocessor environment to parallelize the processing operations to provide efficient, 
scalable, and accurate data product generation. The Archive Management System (AMS) is a 
component to manage the archived data in Framed Raw Expanded Data (FRED) format. It 
tracks and retrieves a large volume of archived data in online, near-line and offline 
locations. The Windows terminals are Windows operating system HP Workstation used to 
control and monitor the processing. 
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Fig. 3. RADARSAT SDPS Physical Architecture. 

The RADARSAT SDPS is driven by a graphical user interface called Human Machine 
Interface (HMI) on the Windows terminal. The HMI provides the operator with full control 
over the product generation process via operator control panel. The product generation 
process is initiated by creating a work order. Work orders can be reviewed and edited via a 
work order editor panel. Multiple work orders executes in parallel, which each operator can 
customize to display only information of interest.  

For image quality assessment, the HMI also provides the image viewer to perform visual 
quality assessment on an image. Image viewer tools includes map overlays, measuring 
distances, displaying average image intensity, displaying Doppler centroid plots and 
displaying product coverage. Map overlays turn on the overlays in the image to see various 
map features. Measuring distance allows operator to measure distance between any two 
points in the image. Average image intensity displays the image intensity in both range and 
azimuth direction. Doppler centroid plots display SAR Doppler centroid estimation results 
graphically. Product coverage used to check the product coverage against the expected 
product boundaries. 

The RADARSAT SDPS software can be divided into four processing modules: Data Ingest 
module, SAR Processor module, Geocoded module and Product Formatting module. The 
logical architecture diagram of RADARSAT SDPS software is illustrated in figure 4. 

The Data Ingest module is responsible for retrieving archived data in FRED format and 
transferring as signal data to the SAR processor module. The archived data sources could be 
(i) Magnetic Tape Device Storage (MTDS), (ii) Direct Archive System (DAS) or (iii) Robotic 
Tape Library (RTL). The MTDS is the offline storage, currently uses super digital linear tape 
(SDLT), the DAS is an online storage stores downlink data from RADARSAT satellites in the 
redundant array of independent disks (RAID), and RTL is the near-line storage using the 
automatic tape archive. 

The SAR Processor module is used to focus the raw SAR data into single-look and multi-
look image data. It consists of two major software-based SAR processors: the Single-Beam  
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Fig. 4. RADARSAT SDPS Logical Architecture. 

processor and the ScanSAR processor. The Single-Beam processor employs the Range-
Doppler algorithm as a processing algorithm and suitable for processing Single Beam mode 
data while the ScanSAR processor employs the SPECAN algorithm as a processing 
algorithm and suitable for processing ScanSAR mode data. The processed data are 
georefernced image data stored on disk to be transferred to the Product Formatting module 
or the Geocoded module. 

The Geocoded module is an optional module performs prior to the Product Formatting 
module. This module supports both systematic and precision geocoding. The digital 
elevation model (DEM) is employed to produces the systematic geocoded data. The ground 
truth sources in the form of ground control points (GCP) are used to refine a satellite 
acquisition model for the precision geocoded data. The output of the Geocoded module is 
geocoded image data stored on disk to be transferred to the Product Formatting module. 

The Product Formatting module receives processed image data from the SAR processor 
module and the Geocoded module, formats the data, according to the MDA’s data 
product specifications and then writes to output media. The data product format may be 
CEOS or GeoTIFF. Available output media of the data product can be in the form of disk, 
CD, DVD or electronics delivery i.e. FTP. The data product can be also archived back to 
the AMS. 
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Available data products generated from the RADARSAT SDPS are five georeferenced data 
products and two geocoded data products. There are single-look complex (SLC), SAR 
georeferenced fine resolution (SGF), SAR georeferenced extra-fine resolution (SGX), 
ScanSAR narrow (SCN), ScanSAR wide (SCW), SAR systematic geocoded (SSG) and SAR 
precision geocoded (SPG). 

The throughput of the RADARSAT SDPS generates one standard georeferenced or 
systematic geocoded data product within twenty minutes. For the eight operation hours, 
minimum standard thirty SSG data products can be generated. The efficient resources 
sharing and parallel processing architecture of the system enabling up to twelve work 
orders can be processed at the same time. 

5.2 ALOS SAR data processing system 

The ALOS SAR data processing system is a sub-system of the ALOS Data Reception and 
Processing system used to transform ALOS raw PALSAR data into the standard data 
products and higher level data products. The ALOS SDPS consists of processing cluster 
servers, higher level processing servers, a product generation server, an archive server and a 
workstation terminal. All servers are Linux-based Dell server with Xeon processor. The 
physical architecture diagram of the ALOS SDPS is illustrated in figure 5. 

In figure 5, the processing cluster servers and the higher level processing servers are 
multiple processors, multiple users and multiple work-order environments, so it can 
provide high capacity and excellent performance of the system. The data archive server is 
used to collect and maintain data received directly from ALOS satellite, and received as 
level 0 from JAXA, as well as higher level data products. All archived data are stored on the 
automatic tape archive in Sky Telemetry Format (STF). A workstation terminal is used for 
controlling and monitoring processing of data product via a product generation server. The 
throughput of the ALOS SDPS for each product and each sensor is at least ten scenes per 
eight working hours. 
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Fig. 5. ALOS SDPS Physical Architecture. 
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minimum standard thirty SSG data products can be generated. The efficient resources 
sharing and parallel processing architecture of the system enabling up to twelve work 
orders can be processed at the same time. 

5.2 ALOS SAR data processing system 

The ALOS SAR data processing system is a sub-system of the ALOS Data Reception and 
Processing system used to transform ALOS raw PALSAR data into the standard data 
products and higher level data products. The ALOS SDPS consists of processing cluster 
servers, higher level processing servers, a product generation server, an archive server and a 
workstation terminal. All servers are Linux-based Dell server with Xeon processor. The 
physical architecture diagram of the ALOS SDPS is illustrated in figure 5. 

In figure 5, the processing cluster servers and the higher level processing servers are 
multiple processors, multiple users and multiple work-order environments, so it can 
provide high capacity and excellent performance of the system. The data archive server is 
used to collect and maintain data received directly from ALOS satellite, and received as 
level 0 from JAXA, as well as higher level data products. All archived data are stored on the 
automatic tape archive in Sky Telemetry Format (STF). A workstation terminal is used for 
controlling and monitoring processing of data product via a product generation server. The 
throughput of the ALOS SDPS for each product and each sensor is at least ten scenes per 
eight working hours. 
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Fig. 5. ALOS SDPS Physical Architecture. 
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The ALOS SDPS software can be divided into four processing modules: Data Ingest module, 
PALSAR Processor module, Higher Level Processor module and Product Formatting 
module. The logical architecture diagram of the ALOS SDPS is illustrated in figure 6. 
 

Data Ingest SAR Processor

Direct Downlink RDA - SIM
Processor

SPECAN - SRC
Processor

Signal Data

Work Station Terminal

RTL

Data from JAXA

Higher Level 
Processor

Single
Poralimetric

Multi -
Polarimetric

CEOS

Product Formatting

Intermediate
Image Data

Product

Operator

Standard
Image Data

Higher Level
Image Data

Control Control Control

Output Media  
 

Fig. 6. ALOS SDPS Logical Architecture. 

The Data Ingest module is used for retrieving archived data or level 0 data in STF format 
from the Robotic Tape Library (RTL). There are two possible archived data sources: (i) direct 
receiving ALOS PALSAR data received at the TEOC (Wide Area Observation Mode or WB1 
only) and (ii) imported data from JAXA stored on DTF-2 and LTO-4. The archived data is 
then transferred to the PALSAR Processor module. 

The PALSAR Processor module used to focus on the raw SAR data into standard image data 
and intermediate image data. It consists of two major software-based SAR processors: the 
Single Beam processor and the ScanSAR processor. The Single Beam processor employs the 
Range-Doppler algorithm with squint imaging mode (RDA-SIM) as a processing algorithm. 
It is suitable for processing Single Beam mode data. The ScanSAR processor employs 
SPECAN algorithm with chirp transform and secondary range compression (SPECAN-SRC) 
as a processing algorithm. It is suitable for processing Scanning SAR mode data. 
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When the STF archived data arrives at the PALSAR Processor module, the sky telemetry 
data and corresponding parameter are extracted and formatted into CEOS format. Then the 
formatted data are processed with Doppler parameter file by either of two SAR processors 
depending on the input data type. The processed data are stored on disk. The RDA-SIM 
processor can produce the standard SLC image data (L1.1), and level 1.5 (L1.5) image data 
referred to georeferenced and geocoded images. The data product is CEOS format with the 
available output media on CD, DVD or electronics delivery i.e. FTP. 

6. SAR image quality characteristics 
The image quality characteristic consists of a large variety of different parameters. The basic 
image quality parameters for general users are range resolution, azimuth resolution, peak 
side lobe ratio, integrated side lobe ratio and absolute location error. The specifications of 
these parameters are defined by the satellite operating agency and each satellite differently. 
The specifications of the image quality characteristics for RADARSAT-1 SLC Wide beam 
mode data products and ALOS level 1.1 Fine beam mode data products are summarized in 
table 1 and table 2. (MacDonald, Dettwiler and Associates [MDA], 2000; Earth Remote 
Sensing Data Analysis Center [ERSDAC], 2009) provide a full set of image quality 
characteristics for RADARSAT-1 and ALOS data products respectively. 

 

Parameter Specification 

Range Resolution (RR) 15.7 m 

Azimuth Resolution (AR) 8.9 m 

Peak Side Lobe Ratio (PSLR) < -20.0 dB 

Integrated Side Lobe Ratio (ISLR) -11.2 dB 

Absolute Location Error (ALE) < 750 m 
 

Table 1. RADARSAT-1 SLC wide beam data products image quality characteristics. 

 

Parameter Specification 

Range Resolution (RR) 16.0 m – 17.1 m 

Azimuth Resolution (AR) 5.8 m 

Peak Side Lobe Ratio (PSLR) < -20.0 dB 

Integrated Side Lobe Ratio (ISLR) < -15.0 dB 

Absolute Location Error (ALE) < 750 m 
 

Table 2. ALOS level 1.1 fine beam data products image quality characteristics. 



 
Earth Observation 

 

52

When the STF archived data arrives at the PALSAR Processor module, the sky telemetry 
data and corresponding parameter are extracted and formatted into CEOS format. Then the 
formatted data are processed with Doppler parameter file by either of two SAR processors 
depending on the input data type. The processed data are stored on disk. The RDA-SIM 
processor can produce the standard SLC image data (L1.1), and level 1.5 (L1.5) image data 
referred to georeferenced and geocoded images. The data product is CEOS format with the 
available output media on CD, DVD or electronics delivery i.e. FTP. 

6. SAR image quality characteristics 
The image quality characteristic consists of a large variety of different parameters. The basic 
image quality parameters for general users are range resolution, azimuth resolution, peak 
side lobe ratio, integrated side lobe ratio and absolute location error. The specifications of 
these parameters are defined by the satellite operating agency and each satellite differently. 
The specifications of the image quality characteristics for RADARSAT-1 SLC Wide beam 
mode data products and ALOS level 1.1 Fine beam mode data products are summarized in 
table 1 and table 2. (MacDonald, Dettwiler and Associates [MDA], 2000; Earth Remote 
Sensing Data Analysis Center [ERSDAC], 2009) provide a full set of image quality 
characteristics for RADARSAT-1 and ALOS data products respectively. 

 

Parameter Specification 

Range Resolution (RR) 15.7 m 

Azimuth Resolution (AR) 8.9 m 

Peak Side Lobe Ratio (PSLR) < -20.0 dB 

Integrated Side Lobe Ratio (ISLR) -11.2 dB 

Absolute Location Error (ALE) < 750 m 
 

Table 1. RADARSAT-1 SLC wide beam data products image quality characteristics. 

 

Parameter Specification 

Range Resolution (RR) 16.0 m – 17.1 m 

Azimuth Resolution (AR) 5.8 m 

Peak Side Lobe Ratio (PSLR) < -20.0 dB 

Integrated Side Lobe Ratio (ISLR) < -15.0 dB 

Absolute Location Error (ALE) < 750 m 
 

Table 2. ALOS level 1.1 fine beam data products image quality characteristics. 

Clarification of SAR Data Processing Systems and  
Data Availability to Support InSAR Applications in Thailand 

 

53 

Impulse response function is a two-dimensional signal appearing in a processed image as a 
result of the compression of returned energy from a point target. The width of the impulse 
response function at a power level 3 dB below the peak of the function is defined to be the 
impulse response width (IRW). The IRW is commonly referred to as the resolution, and its 
values are given separately for the two dimensions of the image. The IRW in the range 
direction is defined as the range resolution (RR), and the IRW in the azimuth direction  
is defined as azimuth resolution (AR). The azimuth resolution is constant within each 
beam.  

A side lobe of the impulse response function is any local maximum other than those within 
the contour around the peak, which passes through points 3 dB below the main lobe peak. 
Side lobes are measured relatively to the main lobe peak. The peak side lobe ratio (PSLR) is 
defined to be the ratio of the maximum side lobe level and the main lobe level. The 
integrated side lobe ratio (ISLR) is defined to be the ratio of the integrated energy in the side 
lobe region of the two dimensional (range and azimuth) impulse response function relative 
to the integrated energy in the main lobe region. The absolute location error (ALE) is 
specified as the distance along the ground between the actual geographical location of a 
point within a processed image and the location as determined from the data product. It 
may be separated in two direction, range absolute location error (RALE) and azimuth 
absolute location error (AALE). 

7. SAR interferometry 
A more recent geodetic measurement technique is interferometric synthetic aperture radar 
(InSAR) which based on the combination of two radar images. It’s earliest the measurement 
for allowing us to retrieve a Digital Elevation Model, and it has been developed to measure 
the large-scale surface deformation monitoring or so call Differential InSAR (D-InSAR). The 
principle of D-InSAR is to first obtain two interferograms of a study area, and then make a 
differential between for the detection of deformation information. Then, the topographic 
phase will be removed, and leave just only deformation phase. However, there are several 
limitations essentially due to temporal and geometric decorrelation. These limitations are 
well addressed in the time series InSAR techniques, which will be introduced in the 
following.  

7.1 Permanent scatterer InSAR (PSI) 

First algorithms of Permanent Scatterer technique were developed by (Ferretti et al., 2000, 
2001). Similar processing strategies have been developed by (Crosetto et al., 2003; Lyons et 
al., 2003; Werner et al., 2003; Kampes, 2005). This method has been very successful for 
InSAR analysis of radar scenes containing large numbers of man-made structures. The 
numbers of differential interferograms are generated with respect to a single master (see 
figure 7). Pixels are selected based on its amplitude stability along the whole set of images, 
but the stable scatterers with low amplitude may not be detected.  

In contrast, StaMPS (Hooper et al., 2007) algorithm uses spatial correlation of phase 
measurements, so it is applicable in areas undergoing non-steady deformation with no prior 
knowledge of the variation in deformation rate. PS pixels are defined by phase stability, so 
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PS candidates are selected on the basis of their phase characteristics. It takes advantage of 
pixels dominated by a single scatterer to reduce the influence of atmosphere and 
decorrelation. Then, the phase is corrected for non-spatially correlated errors and 
“unwrapped” using a statistical-cost approach (Hooper, 2010). After phase unwrapping, 
spatially-correlated DEM error is estimated from the correlation of phase with 
perpendicular baseline. The phase is the re-unwrapped with the DEM error subtracted, to 
improve unwrapping accuracy for larger baselines. Atmospheric artefacts are estimated by 
high-pass temporal filtering and low-pass spatial filtering. Finally, we can subtract this 
signal from the estimate value of phase and leave just deformation phase while spatial 
uncorrelated error terms can be modeled as noise.  

 
Fig. 7. Interferograms for PS using single master with no spectral filtering. 
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7.2 Small baseline subset (SBAS) 

The Small Baseline Subset (SBAS) proposed by (Berardino et al., 2001, 2002) that the data 
pairs involved in the generation of the interferograms are carefully selected in order to 
minimize the spatial baseline. Thus, the mitigation of the decorrelation phenomenon and 
topography errors will be reduced. The SBAS method was initially exploited the 
investigation of large scale deformations by calculating the time sequence deformation and 
estimating DEM error and the atmospheric artifact in a similar way as PS. Noise is then 
further reduced by multilooking and applying range and azimuth filters (Just et al., 1994) 
with the aim of unwrapping them spatially. SB methods (Hooper, 2008) on the other hand 
seek to minimize the separation in time, in space and Doppler frequency of acquisition pairs 
to maximize the correlation of the interferograms formed. Slow-varying filtered phase (SFP) 
pixels are identified among the candidate pixels the same way as for PS pixels. For each 
pixel in the topographically corrected interferograms, its phase can be considered to the 
wrapped sum of five terms as (Hooper, 2008) 

 , , , , , , , , , , , ,int x i def x i top x i atm x i orb x i n x i           (2) 

where , ,def x i  is the deformation phase in the satellite line-of-sight (LOS) direction, , ,top x i  is 
the topographic phase caused by uncertainty in the DEM, , ,atm x i  is the atmospheric phase 
delay, , ,orb x i  is orbital phase error, and , ,n x i  is the noise term.  

 
Fig. 8. Interferograms for SBAS using multiple masters with spectral filtering. 
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All phases error can be subtracted, and leave just deformation phase as the same algorithm 
used for PSI. Note that different sets of pixels are selected based on different sets of 
interferograms (single master with no spectral filtering vs. multiple masters with spectral 
filtering (see figure 8). 

8. Application of SAR interferometry in Thailand 
8.1 Land subsidence in Bangkok, Thailand 

Land subsidence in Bangkok is caused primarily by groundwater over-pumping for the past 
decade. Monitoring has been carried out by levelling survey technique. The technique 
cannot provide many benchmarks due to the cost and the difficulty to maintain the overall 
benchmarks. The locations of the benchmarks are also limited by the urban development to 
access any area that should be considered. On the other hand, InSAR technology has 
become more interested since it is overcome the limitation of levelling survey technique, and 
it has been firstly applied by (Kuehn et al., 2004) during the time spanning February 1996 to 
October 1996. They reported the maximum subsidence rate -30 mm per year in the southeast 
and southwest alongside Chao Phraya River. However, with only 4 images and the short 
time span, it was difficult to estimate the deformation reliably due to decorrelation noise 
and variable atmospheric phase delay. Nevertheless, the maximum subsidence rates for this 
area agreed with the levelling survey.  

Later on, (Worawattanamateekul, 2006) applied PSI technique using ERS1 and ERS2 data (16 
and 10 interferograms) for the time period of 1992-2000. However, the limited number of 
interferograms made it difficult to achieve reliable results from PSI analysis, as indicated by 
the accuracy of -6 to -8 mm per year reported by the study. (Aobpaet et al., 2008) applied L-
Band ALOS-PALSAR to evaluate the potential and possibility of land subsidence detection 
using the DInSAR technique. The subsidence map derived from ALOS PALSAR L-band 
between November 25, 2007 and April 11, 2008 for Bangkok revealed the spatial extent of 
the deformations and subsidence estimates. However, the subsidence might not reflect long-
term subsidence rates because of the short temporal base line and the seasonal cycle of 
surface movement. (Aobpaet et al., 2009) showed the potential of time series analysis by 
detecting more than 200,000 pixels that could be used as monitoring points. The results 
showed a maximum subsidence rate of around -15 mm per year in eastern central Bangkok. 
However, the study area is preliminary study on sub-scene basis for the processing 
approach in order to reduce analyzing time and modifying parameters.  

The latest study has been successes on apply InSAR time series algorithms, the Persistent 
Scatterer and Small Baseline, to remotely detect subsidence in Bangkok (Aobpaet et al., 
2011). The data set is composed of 19 images acquired in fine beam mode by the 
RADARSAT-1 satellite (see figure 9a). More or less 300,000 pixels were successfully detected 
as monitoring points in the analysis, a two order of magnitude greater than the number of 
ground monitoring points (see figure 10). The average pixel density in the study area is 120 
PS per km2 with over 150 PS per km2 in the urbanized areas. The subsidence velocities fall 
mostly between 0 to -24 mm per year (see figure 9b). Finally, the validation of the results 
against levelling surveys has been performed and found agreement at one standard 
deviation in 87% of cases. They concluded that InSAR time series analysis shows strong 
potential as an alternative tool for monitoring land subsidence in Bangkok. 
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(a) 

 
(b) 

Fig. 9. (a) The study area of Bangkok has been presented using RADARSAT-1 data in Fine 
beam mode with the coverage area 2,500 km2. (b) The subsidence rate from InSAR indicated 
that the maximum subsidence rate is -24 mm per year relative to all pixels in the whole 
scene with respect to the reference benchmark represented by black star. 
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Fig. 10. The south-east Chao Phraya river estuary area which many permanent structures 
can serve as monitoring points which represent the subsidence rate in mm per year. 

9. Conclusion 
The establishment of the GISTDA and the long history of Thailand Earth Observation 
Center are the significants development and contribution to remote sensing activities in 
Thailand. From that time, Thailand has become one of the most successful countries for the 
space technology development program especially in remote sensing applications such as 
flood monitoring, fire monitoring, rice crop monitoring, disaster management, etc. Thus, the 
capability of direct acquisition in real-time data from SAR satellites such as RADARSAT-1 
and RADARSAT-2 make the user who interested in InSAR can set up the plan to acquiring 
the data from current SAR satellite in time series analysis. Moreover, TEOC was the ALOS 
sub node, so the large ALOS data archive is still very attractive for the users’ intent to study 
the past disaster or relate applications that may helpful for the prediction model creation.  

Finally, the fully operational of TEOC can provide the customers and the users with rapid 
real-time satellite data for various applications to meet the country’s requirement. The 
application of land subsidence in Bangkok reveals the potential of InSAR time series 
analysis, but the knowledge how to get the data is much challenged since the large amount 
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of data is required. With the clarification of TEOC systems for especially SAR user, we 
believe that TEOC will be able to serve as a complimentary component to the development 
of remote sensing technology and space activities in Thailand and international.  
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1. Introduction 
One traditional, although visionary goal of the remote sensing (RS) community is the 
development of operational satellite-based measurement systems suitable for automating 
the quantitative analysis of large-scale spaceborne multi-source multi-resolution image 
databases (Gutman et al., 2004). In past years this goal was almost exclusively dealt with by 
research programs focused on land cover (LC) and land cover change (LCC) detection at 
global scale (Gutman et al., 2004) (pp. 451, 452). In recent years the objective of developing 
operational satellite-based measurement systems has become increasingly urgent due to 
multiple drivers. While cost-free access to large-scale low spatial resolution (SR) (above 40 
m) and medium SR (from 40 to 20 m) spaceborne image databases has become a reality 
(GEO, 2005; GEO, 2008a; GEO, 2008b; Gutman et al., 2004; Sart et al., 2001; Sjahputera et al., 
2008), in parallel, the demand for high SR (between 20 and 5 m) and very high SR (VHR, 
below 5 m) commercial satellite imagery has continued to increase in terms of data quantity 
and quality, which has boosted the rapid growth of the commercial VHR satellite industry 
(Sjahputera et al., 2008). In this scientific and commercial context an increasing number of 
on-going international research projects aim at the development of operational services 
requiring harmonization and interoperability of Earth observation (EO) data and derived 
information products generated from a variety of spaceborne imaging sensors at all scales - 
global, regional and local. Among these on-going programs it is worth mentioning the 
Global EO System of Systems (GEOSS) conceived by the Group on Earth Observations 
(GEO) (GEO, 2005; GEO, 2008b), the Global Monitoring for the Environment and Security 
(GMES), which is an initiative led by the European Union (EU) in partnership with the 
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European Space Agency (ESA) (ESA, 2008; GMES, 2011), the National Aeronautics and 
Space Administration (NASA) Land Cover and Land Use Change (LCLUC) program 
(Gutman et al., 2004) (p. 3) and the U.S. Geological Survey (USGS)-NASA Web-Enabled 
Landsat Data (WELD) project (USGS & NASA, 2011).  

Unfortunately, to date, the increasing rate of collection of EO imagery of enhanced spatial, 
spectral and temporal quality outpaces the automatic or semi-automatic capability of 
generating information from huge amounts of multi-source multi-resolution RS data sets 
(Gutman et al., 2004). This may explain why the percentage of data downloaded by 
stakeholders from the ESA EO image archives is estimated at about 10% or less (D'Elia, 
2009).   

If productivity in terms of quality, quantity and value of high-level output products 
generated from input EO imagery is low, this is tantamount to saying that existing scientific 
and commercial RS image understanding (classification) systems (RS-IUSs), such as 
(Definiens Imaging GmbH, 2004; Esch et al., 2008; Richter, 2006), score poorly in operational 
contexts (Tapsall et al., 2010). For example, RS-IUSs capable of proving their 
competitiveness at local/regional scale, such as the inductive supervised (labeled) data 
learning Support Vector Machines (SVMs) (Bruzzone & Carlin, 2006; Bruzzone & Persello, 
2009), typically lack robustness and scalability for seamless application to LC and LCC 
problems at national, continental and global scale. As an example of these difficulties the 
interested reader may refer to (Chengquan Huang et al., 2008), where an SVM training 
algorithm and model selection strategies are applied to every image of a multi-temporal 
image mosaic at global scale. If the conjecture that existing RS-IUSs are affected by low 
productivity holds in general, it applies in particular to two-stage segment-based RS-IUSs 
which have recently gained widespread popularity and are currently considered the state-
of-the-art in both scientific and commercial RS image mapping applications (Castilla et al., 
2009; Mather, 1994). In literature the conceptual foundation of two-stage segment-based RS-
IUSs is well known as geographic (2-D) object-based image analysis (GEOBIA), including a 
so-called iterative geographic OO image analysis (GEOOIA) approach  (Baatz et al., 2008) 
(Hay & Castilla, 2006), also called object-oriented (image) analysis (OOA) (Castilla et al., 
2008). 

To summarize, in operational contexts (other than toy problems at small spatial scale and 
coarse semantic granularity) a RS-IUS can be considered as a low performer when at least 
one among several operational quality indicators (QIs) scores low. In (Baraldi et al., 
2010a), a set of QIs eligible for use with an operational RS-IUS comprises the following: 
degree of automation (equivalent to ease of use; it is monotonically decreasing with the 
number of system-free parameters to be user-defined), classification and spatial accuracies 
(Baraldi et al., 2005), efficiency (e.g., computational time, memory occupation), robustness 
to changes in input parameters, robustness to changes in the input data set, scalability, 
timeliness (defined as the time span between data acquisition and high-level product 
delivery to the end user; it increases monotonically with manpower and computing time) 
and economy. In RS common practice, one or many of the aforementioned QIs of existing 
RS-IUSs tend to score low at local to global scale. This observation appears in line with a 
well-known opinion by Zamperoni according to which computer vision (CV) remains, to 
date, far more problematic than might be reasonably expected (Zamperoni, 1996). In 
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addition to CV, other scientific disciplines such as Artificial Intelligence (AI)/Machine 
Intelligence (MAI) and Cybernetics/Machine Learning (MAL), whose origins date back to 
the late 1950s, still remain unable to provide their ambitious cognitive objectives with 
operational solutions (Diamant, 2005; Diamant, 2008; Diamant, 2010a; Diamant, 2010b).1 

To outperform existing scientific and commercial image understanding approaches, a new 
trend of research and development is found in both CV (Cootes and Taylor, 2004) and RS 
literature (Mather, 1994; Matsuyama & Shang-Shouq Hwang, 1990; Pekkarinen et al., 2009). 
This new trend aims at developing novel hybrid models for retrieving sub-symbolic 
(sensory, non-semantic, objective) continuous variables (e.g., leaf area index, LAI) and 
symbolic (categorical, semantic, subjective) discrete variables (e.g., land cover types) from 
optical multi-spectral (MS) imagery. By definition, hybrid models combine both statistical 
(inductive, bottom-up, fine-to-coarse, driven-without-knowledge, learning-from-examples) 
and physical (deductive, top-down, coarse-to-fine, prior knowledge-based, learning-by-
rules) models to take advantage of the unique features of each and overcome their 
shortcomings (Matsuyama & Shang-Shouq Hwang, 1990; Shunlin Liang, 2004). 

The original contribution of this work is to revise, integrate and enrich previous analyses 
found in related papers about recent developments in the design and implementation of an 
operational automatic multi-sensor multi-resolution near real-time two-stage hybrid 
stratified hierarchical RS-IUS (Baraldi et al., 2006a; Baraldi et al., 2010a; Baraldi et al., 2010b; 
Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). These novel developments encompass 
the four levels of analysis of an information processing system (Baraldi, 2011a; Marr, 1982), 
namely: (i) computational theory (system architecture), (ii) knowledge/information 
representation, (iii) algorithm design and (iv) implementation. 

Starting from these recent achievements the present work provides an in-depth analysis of 
Emanuel Diamant's works including original speculations on the conceptual framework of 
MAI together with image segmentation and edge detection algorithms provided as proofs of 
his concepts (Diamant, 2005; Diamant, 2008; Diamant, 2010a; Diamant, 2010b). To overcome 
the conceptual and algorithmic drawbacks highlighted in Diamant's works, this manuscript 
proposes revised/new definitions of the following concepts: objective continuous sub-
symbolic sensory data, continuous physical information, subjective discrete semi-symbolic 
data structure, discrete semantic-square (semantic2) information and prior knowledge base. 
Continuous physical information is defined as a hierarchical description (multi-scale 
encoding/decoding or intra-scale transcoding) of an objective continuous sensory data set 
based on a given mathematical vocabulary/language, e.g., a fast Fourier transform (FFT) of 
a time signal. Discrete semantic2 information is naturally (automatically, instantaneously) 
generated from the simultaneous combination of three components: (I) an objective 
continuous sensory data set, (II) an external subjective supervisor (observer) and (III) 
his/her own subjective prior ontology (model of the (3-D) world existing before looking at 
the objective sensory data at hand) whose hierarchical form is equivalent to that of a story in 
a natural language, comprising a title, an abstract, sections, paragraphs, sentences and 
words. In practical contexts these definitions imply the following. 

                                                 
1 In Italian, acronym AI reminds of the English expression: 'ouch'. Acronym MAI means 'never'. 
Acronym MAL means 'pain'. Acronym MAT means 'fool'. These choices are arbitrary, but not by 
chance. Ancient Latins used to say: Nomen est omen... (meaning: 'true to its name'). 
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a. It is impossible to extract semantic2 information from objective continuous sensory data 
because the latter, per se, are provided with no semantics at all.  

b. It is possible to correlate discrete semantic2 information to objective continuous sensory 
data. Unfortunately, correlation between continuous sensory data and a finite and 
discrete set of categorical variables, corresponding to independent random variables 
generating separable data structures (data aggregations, data clusters, data objects), is 
low in real-world RS image mapping problems at large data scale or fine semantic 
granularity, other than toy problems at small data scale and coarse semantic 
granularity. This low correlation effect is due to the combination of two factors. 

i. According to the central limit theorem the distribution of the sample average of n 
independent and identically distributed (iid) random variables (corresponding to, 
say, categorical variables) approaches the normal distribution, featuring no 
"distinguishable" data sub-structure, as the sample size n increases. In other words, 
the separability of "distinguishable" data structures in a given measurement space of 
a given objective sensory data set is monotonically non-increasing (i.e., it decreases or 
remains equal) with the finite number of discrete semantic concepts (e.g., land cover 
classes) involved with the cognitive (classification) problem at hand. 

ii. In a given measurement space, within-class variability (vice versa, inter-class 
separability) is monotonically non-decreasing (i.e., it increases or remains equal) 
(vice versa, non-increasing) with the magnitude of the sample set per categorical 
variable when this variable-specific sample set size is "large" according to large-
sample statistics (although large sample is a synonym for 'asymptotic' rather than a 
reference to an actual sample magnitude, a sample set cardinality of 3050 samples 
per random variable is typically considered sufficiently large that, according to a 
special case of the central limit theorem, the distribution of many sample statistics 
becomes approximately normal). For example, in (Chengquan Huang et al., 2008), 
where a time-consuming SVM training and classification model selection strategies 
are applied to every image of a world-wide RS image mosaic to separate forest 
from non-forest pixels, a so-called training data automation (TDA) procedure 
identifies a forest peak in a one-band first-order statistic (histogram) of a local 
image window. The size of this local image window must be fine-tuned based on 
heuristics because the inter-class spectral separability between classes forest and 
non-forest (vice versa, within-class variability) decreases (vice versa, increases) 
monotonically with the local window size above a certain (empirical) threshold 
(minimum window size, below which the collected sample is not statistically 
significant). 

Some practical conclusions of potential interest to the RS, CV, AI and MAL communities 
stem from these speculations. Firstly, in operational contexts (e.g., RS image classification 
problems at national, continental and global scale), other than toy problems (e.g., RS image 
mapping at coarse spatial resolution and local/regional scale), inductive classifiers capable 
of learning from a finite labeled data set should be considered structurally inadequate to 
correlate (rather than extract, see this text above) discrete semantic2 information with 
objective sensory data provided, per se, with no semantics at all.  

Secondly, to increase the operational QIs of existing two-stage hybrid RS-IUSs, any first-
stage inductive MAL-from-examples approach should be replaced by a deductive Machine 
Teaching (MAT)-by-rules sub-system capable of generating a preliminary classification first 
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stage in the Marr sense (Baraldi et al., 2006a; Baraldi et al., 2010a; Baraldi et al., 2010b; 
Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 2011b; Marr, 1982). As a proof of this concept the 
operational automatic prior knowledge-based multi-sensor multi-resolution  near real-time 
Satellite Image Automatic Mapper™ (SIAM™) is selected from existing literature (Baraldi et 
al., 2006a; Baraldi et al., 2010a; Baraldi et al., 2010b; 1 Baraldi et al., 2010c;  Baraldi, 2011a; 
Baraldi, 2011b). 

Inductive systems capable of learning 
from data, either labeled (supervised) or 

unlabeled (unsupervised) 

Statistical pattern 
recognition systems that 
learn from finite data 

Unlabeled (unsupervised) 
data clustering algorithms, 
to detect hidden data 
structures (interpret the 
data at hand). 

Predictive learning systems, 
aiming at characterizing 
future samples generated 
from the same probability 
distribution of the training 
dataset. 

Unlabeled (unsupervised) data learning Labeled (supervised) data  learning  

Data 
quantization  

Entropy 
maximization  

Probability 
density function 
estimation  

Classification  Function 
regression  

Discrete sub-symbolic 
cluster map of the (finite) 

unlabeled dataset 

Discrete symbolic 
classification map of 
the (finite) unlabeled 

dataset  
Fig. 1. The taxonomy of statistical pattern recognition systems proposed in (Baraldi et al.,  
2006b). Clustering algorithms and classification systems map an unlabeled input data 
sample into a discrete and finite set of sub-symbolic and symbolic labels, respectively. These 
discrete output maps are called (sub-symbolic) cluster maps (consisting of, say, cluster 1, 
cluster 2, etc.) and (symbolic) classification maps (consisting of, say, symbolic labels such as 
land cover classes broad-leaf forest, needle-leaf forest, etc.), respectively. 
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Thirdly, in RS-IUSs, MAL-from-data algorithms, either labeled (supervised) or unlabeled 
(unsupervised), either context-insensitive (e.g., pixel-based) or context-sensitive (e.g., 2-D 
object-based), should be adapted to work on a driven-by-knowledge stratified (semantic 
masked/layered) basis and moved to the second stage of a novel two-stage stratified 
hierarchical hybrid RS-IUS architecture recently proposed in RS literature (Baraldi et al., 2006a; 
Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). 

The rest of this work is organized as follows. For publication reasons it consists of Part I and 
Part II. In Part I Section 2 related works, concepts and definitions are revised to provide this 
multi-disciplinary study with a significant survey value and make it self-contained. Part I 
Section 2 includes the following sub-sections: definitions and synonyms involved with 
inductive and deductive inference mechanisms (see Part I Section 2.1), a critical review of 
the history of AI/MAI and Cybernetics/MAL including a summary of Diamant's definitions 
of objective data, physical information, semantic information, knowledge and intelligence 
(refer to Part I Section 2.2), a definition of the cognitive process of vision (see Part I Section 
2.3), a critical analysis of the inherent ill-posedness of inductive data learning algorithms 
(see Part I Section 2.4), a review of Diamant's image segmentation and contour detections 
algorithms presented as proofs of his concepts summarized in Part I Section 2.2 (refer to Part 
I Section 2.5), a discussion of the four levels of understanding of a RS-IUS (see Part I Section 
2.6), a presentation (see Part I Section 2.7) of the Quality Assurance Framework for EO 
(QA4EO) guidelines (GEO/CEOSS, 2008) delivered by the Working Group on Calibration 
and Validation (WGCV) of the Committee of Earth Observations (CEOS), the space arm of 
the Group on Earth Observations (GEO) (GEO, 2005; GEO, 2008b), and a list of operational 
QIs of an RS-IUS (refer to Part I Section 2.8). 

Part II includes a review session (see Part II Section 2) and an original contribution (from 
Part II Section 3 to Part II Section 7). In Part II Section 2 different families of existing RS-
IUSs, namely, multi-agent hybrid RS-IUSs, two-stage segment-based RS-IUSs and two-stage 
stratified hierarchical hybrid RS-IUSs, are compared at the architectural level of analysis 
(refer to Part I Section 2.6). Part II Section 3 discusses theoretical inconsistencies and 
algorithmic drawbacks found in Diamant's works (discussed in Part I Section 2.2 and Part I 
Section 2.5, respectively). Revised/novel definitions of objective continuous sensory data, 
continuous physical information, discrete semantic2 information and prior knowledge are 
provided in Part II Section 4. In Part II Section 5 practical consequences of the novel 
definitions provided in Part II Section 4 are considered for CV, AI and MAL applications. 
Part II Section 6 presents the operational automatic multi-sensor multi-resolution near real-
time SIAM™ as a proof of the original concepts proposed in this work. Conclusions are 
reported in Part II Section 7. 

2. Related works, concepts, definitions and synonyms 
To provide this multi-disciplinary paper with a significant survey value and make it self-
contained, a variety of related works, concepts and definitions collected from AI, MAL, CV 
and RS literature are revised in this section. 

2.1 Inference mechanisms: Deductive top-down coarse-to-fine physical models and 
inductive bottom-up fine-to-coarse statistical models 

Starting from classical philosophy to end up with MAL it is well known that the general 
notion of inference (learning) comprises two types of learning mechanisms. 
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2. Related works, concepts, definitions and synonyms 
To provide this multi-disciplinary paper with a significant survey value and make it self-
contained, a variety of related works, concepts and definitions collected from AI, MAL, CV 
and RS literature are revised in this section. 

2.1 Inference mechanisms: Deductive top-down coarse-to-fine physical models and 
inductive bottom-up fine-to-coarse statistical models 

Starting from classical philosophy to end up with MAL it is well known that the general 
notion of inference (learning) comprises two types of learning mechanisms. 
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1. “Induction, i.e., progressing from particular cases (e.g., training data) to general (e.g., 
estimated dependency or model)” (Cherkassky & Mulier, 2006). Inductive inference 
systems are also called inference systems capable of learning-from-examples, bottom-up, fine-
to-coarse, data-driven, driven-without-knowledge, statistical models, statistical pattern 
recognition systems (Matsuyama & Shang-Shouq Hwang, 1990; Shunlin Liang, 2004). 
Statistical models are capable of learning from either labeled (supervised) or unlabeled 
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extract from an image) or subjective expectations (e.g., what we expect to see in an 
image). In the words of Cherkassky and Mulier, “induction amounts to forming 
generalizations from particular true facts. This is an inherently difficult (ill-posed) 
problem and its solution requires a priori knowledge in addition to data” (Cherkassky & 
Mulier, 2006) (p. 39). To summarize, inductive data learning problems are inherently ill-
posed and require a priori knowledge in addition to (either labeled or unlabeled) 
sensory data to become better posed. 

2. “Deduction, i.e., progressing from general (e.g., model) to particular cases (e.g., output 
values)” (Cherkassky & Mulier, 2006). Deductive inference systems are also called inference 
systems capable of learning-by-rules, top-down, coarse-to-fine, model-driven, prior knowledge-
based, driven-by-knowledge, physical models, physical pattern recognition systems 
(Matsuyama & Shang-Shouq Hwang, 1990; Shunlin Liang, 2004), see Fig. 1. Physical 
models are abstracts of reality. They consist of prior knowledge of the physical laws of 
the (3-D) world which is available before (prior to) looking at the objective sensory data 
at hand. 

As output, statistical and physical quantitative models of the (3-D) world (e.g., quantitative 
models of land surfaces observed from space) generate either continuous sub-symbolic 
variables (e.g., LAI) or discrete symbolic (categorical) variables (e.g., land cover types).  

In addition to the synonyms presented above, the following terms are considered synonyms 
in the rest of this paper (Matsuyama & Shang-Shouq Hwang, 1990; Shunlin Liang, 2004). 

 Sub-symbolic, non-semantic, sensory, instantaneous, continuous, numerical, quantitative, 
objective, absolute, varying variables or sensations. 

 Symbolic, discrete and semantic, categorical, linguistic, qualitative, subjective, abstract, vague, 
persistent, stable variables or percepts, concepts, classes of (3-D) objects in the (3-D) world, (3-
D) object-models. 

In RS data applications, quantitative models are traditionally sorted into three major 
categories: statistical, physical and hybrid, whose main advantages and limitations are so well 
known in existing literature as to be summarized by Shunlin Liang in the following few 
words (Shunlin Liang, 2004).  

a. Statistical models are inductive data learning systems (refer to this text above). 
Therefore, they are inherently difficult to solve (ill-posed) and their solution requires a 
priori knowledge in addition to data (Cherkassky & Mulier, 2006). Statistical pattern 
recognition systems are based on correlation relationships between objective sensory data 
(e.g., RS imagery) and either continuous (e.g., LAI) or categorical (e.g., land surface)  
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variables. Statistical models are easy to develop, e.g., a human expert is not required 
to search for an explicit deterministic function, if any, between, say, a target physical 
variable (e.g., LAI) and sensory data. However, they are effective for summarizing 
local data exclusively, i.e., they are usually (always?) site-specific (Shunlin Liang, 
2004). For example, in RS common practice no machine capable of learning from 
either unlabeled or labeled data scores high in operational contexts such as satellite 
image mapping at national/ continental/ global scale. As a proof of this concept, in 
(Chengquan Huang et al., 2008), a time-consuming SVM (Bruzzone & Carlin, 2006) 
training and classification model selection strategies are enforced for every RS image 
in a world-wide image mosaic. In addition, supervised data learning algorithms, 
either context-insensitive (e.g., pixel-based) or context-sensitive (e.g., (2-D) object-
based (Definiens Imaging GmbH, 2004; Esch et al., 2008)), require the collection of 
reference training samples which are typically scene-specific, expensive, tedious, 
difficult or impossible to collect (Gutman et al., 2004). This means that in practical RS 
data applications where supervised data learning algorithms are employed, the cost, 
timeliness, quality and availability of adequate reference (training/testing) datasets 
derived from field sites, existing maps and tabular data have turned out to be the 
most limiting factors on RS data product generation and validation (Gutman et al., 
2004). Finally, since statistical models are inherently ill-posed, they are difficult to 
maintain, adapt, modify and scale according to changing input data sets, sensor 
specifications and/or user requirements. For example, the free parameter selection 
phase of any image segmentation algorithm tends to be difficult because: (i) it is 
based on heuristic (empirical) criteria (correlation relationships) and (ii) due to its 
inherent ill-posedness (artificial insufficiency (Matsuyama & Shang-Shouq Hwang, 
1990)), any image segmentation algorithm is site-specific and simultaneously affected 
by both omission and commission segmentation errors within each image at hand 
(Burr & Morrone, 1992; Corcoran & Winstanley, 2007; Corcoran et al., 2010; Delves et 
al., 1992; Hay & Castilla, 2006; Matsuyama & Shang-Shouq Hwang, 1990; Petrou & 
Sevilla, 2006; Vecera & Farah, 1997). 

b. Physical models consist of prior knowledge concerning the physical laws of the (3-D) 
world which is available before looking at the objective sensory data at hand. They 
follow the physical laws of the real (3-D) world to establish cause-effect relationships. 
They have to be learnt by a human expert based on intuition, expertise and evidence 
from data observation. Thus, unfortunately, it takes a long time for human experts to 
learn physical laws of the real (3-D) world and tune physical models (Mather, 1994; 
Shunlin Liang, 2004). On the other hand, physical models are more intuitive to debug, 
maintain and modify than statistical models. In other words, if the initial physical 
model does not perform well, then the system developer knows exactly where to 
improve it by incorporating the latest knowledge and information. For example, with a 
non-adaptive decision-tree classifier it is easy to find the node of the decision process in 
which a misclassification error occurs. In practice, a non-adaptive decision-tree classifier 
is well-posed (i.e., every data sample is assigned a semantic label according to a specific 
rule set), but subjective (i.e., different system developers may generate different non-
adaptive decision-tree classifiers in the same application domain), refer to this text 
above. 
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c. Hybrid models combine both statistical and physical models to take advantage of the 
unique features of each and overcome their shortcomings (refer to the two previous 
paragraphs) (Matsuyama & Shang-Shouq Hwang, 1990; Shunlin Liang, 2004). 

2.2 Brief history of AI/MAI and Cybernetics/MAL 

In every ML textbook and in the world wide web it is easy to find historical information on 
the multiple rises and falls of expectations and achievements in scientific disciplines such as 
Cybernetics/MAL and AI/MAI related to the inductive and deductive inference paradigms 
respectively (refer to Part I Section 2.1). 

2.2.1 1940s, 1950s and 1980s: Bottom-up inductive Cybernetics/MAL  

In the 1940s and 1950s, a number of researchers, mostly located at Princeton University and 
the Ratio Club in England, started exploring the connection between neurology and 
information theory to develop electronic networks capable of exhibiting rudimentary 
intelligence conceived as self-organizing network properties. This new scientific discipline, 
called Cybernetics, investigates the capability of complex distributed processing systems, 
consisting of multiple processing elements (agents) dynamically interacting in multiple 
ways based on simple local rules, to display emergent macro behaviors and persistent 
network structures from an input data flow, i.e., local rules lead to global network 
properties. For example, data regularities detected by a self-organizing network of 
processing elements are equivalent to a compression of input information with which the 
distributed system can provide an abstract representation of the external environment.  

The key features of complex network systems adaptive to data are that: (i) to understand 
how it works, a self-organizing network must be run (learning by doing), which is to say 
that learning, intended as self-organizing network capability, emerges without anyone 
needing to define what learning and intelligence are all about, (ii) the global behavior 
outlasts any of the network processing elements (persistence of the whole over time), (iii) it 
is the competition among processing elements and their (lateral) connections which leads to 
the emergence of specialized network (sub-)structures; without competition all processing 
units would behave alike and no specializations of the units would evolve (Fritzke, 1997; 
Lawley, 2003; Martinetz & Schulten, 1994). 

By the late 1950s,  in spite of the low technological development of electronic devices, 
electronic networks such as W. Grey Walter's turtles and the Johns Hopkins Beast were 
considered eligible for proving the cybernetic concepts. However, during the 1960s, 
symbolic AI approaches had achieved great success at simulating high-level thinking in 
small demonstration programs. So, by 1960 approaches based on cybernetics were 
abandoned or pushed into the background.  

Next, by the 1980s progress in symbolic AI seemed to stall. Many researchers started 
believing that symbolic systems would never be able to imitate all the processes of human 
cognition, such as perception, learning and pattern recognition. Again, a number of 
researchers looked for a "sub-symbolic" distributed approach capable of solving specific AI 
sub-problems. The basic idea was: "Why trouble oneself trying to grasp the principles of 
intelligence? Let us give the machine the chance to find (in a bottom-up approach) the best 
way to mimic intelligence" (Diamant, 2010b). In the middle 1980s interest in "connectionism" 
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in general and so-called artificial neural networks in particular was revived by the works of 
David Rumelhart and others who focused on Multi-Layer Perceptrons (MLPs) and their 
Back-Propagation (BP) parameter adaptation algorithm. These and other distributed 
processing approaches, such as fuzzy learning systems and evolutionary computation, are 
now studied collectively by the emerging discipline of MAL (also called computational 
intelligence).  

Finally, from the 1990s to date, MAL has achieved its greatest successes due to a 
combination of factors: the increasing computational power and memory capacity of 
computers, a greater emphasis on solving specific "tractable" MAL sub-problems and a new 
commitment by researchers to solid mathematical/statistical methods (Alpaydin, 2010; 
Bishop, 1995; Cherkassky & Mulier, 2006; Duda et al., 2001; Mitchell, 1997). In practice, once 
its first idealistic objective failed, MAL has been "broken into pieces, disintegrated and 
fragmented into many partial tasks and goals" to make its problem domain more "tractable" 
(Diamant, 2010b).  

2.2.2 1956-1974, 1980s to date: Top-down deductive AI/MAI 

Starting from the seminal work of Turing in 1950, the origin of AI dates back to the summer 
of 1956 when a conference on the campus of Dartmouth College was attended by John 
McCarthy, Marvin Minsky, Allen Newell and Herbert Simon who became the leaders of AI 
research for many decades. John McCarthy, who coined the term in 1956, defines AI as "the 
science and engineering of making intelligent machines" (Diamant, 2010b). 

Intelligent agents must be able to set goals and achieve them by making choices that 
maximize the utility (or "value") of the available choices. To be termed intelligent these 
agents must be able to make predictions about how their actions will affect the present 
status of the world. This means they need a way to represent the current status of the world, 
to make predictions about the world's future status as a consequence of their actions, to 
have a periodical check to see if the world status matches their predictions and to change 
their plan as this becomes necessary, thus requiring the agent to reason under uncertainty. 

Back in 1956 the excitement and hopes to reach AI goals in a short time were quite high. 
Herbert Simon predicted that "machines will be capable, within twenty years, of doing any 
work a man can do" (Diamant, 2010b). Marvin Minsky agreed by writing that "within a 
generation ... the problem of creating 'artificial intelligence' will substantially be solved". 
Reported by Diamant (Diamant, 2010b), Steve Grand sayed that “Rodney Brooks has a copy 
of a memo from Marvin Minsky in which he suggested charging an undergraduate for a 
summer project with the task of solving vision. I don’t know where that undergraduate is 
now, but I guess he hasn’t finished yet”. 

Many of the cognitive problems AI was expected to solve require extensive prior knowledge 
of the (3-D) world. A representation of "what exists in the (3-D) world" pertaining to the 
cognitive problem at hand is called world model (Matsuyama & Shang-Shouq Hwang, 1990) 
or ontology (borrowing a word from traditional philosophy). The graphical representation 
and implementation of an ontology is twofold. 

 An inverted tree whose leaves are at the bottom level (layer 0), where semantic 
primitives (hereafter called semi-concepts) are found (Diamant, 2005; Diamant, 2010a; 
Diamant, 2010b; Diamant, 2008).  
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 A semantic net (concept net) is defined as a graph, either directed or non-oriented, either 
cyclic or acyclic, consisting of nodes linked by edges. Nodes represent concepts, i.e., 
classes of (3-D) objects in the world (see Part I Section 2.1), while edges represent 
relations, e.g., PART-OF, A-KIND-OF, spatial relations either topological (e.g., 
adjacency, inclusion) or non-topological (e.g., distance, angle), temporal transitions 
between nodes, physical model-based relationships between causes and effects, etc. 
(Hudelot et al., 2008; Matsuyama & Shang-Shouq Hwang, 1990; Pakzad et al., 1999). 

Unfortunately, the number of atomic facts about the world that an average person knows is 
astronomical. It means that AI projects whose goal is to build a complete knowledge base of 
commonsense knowledge would require enormous amounts of laborious ontological 
engineering where one abstract concept must be built, by hand, at a time. In practice, it takes 
a long time for human experts to define ontologies, learn physical laws of the real (3-D) 
world and tune physical models based on human intuition, domain expertise and evidence 
from data observation. Within a decade or so it became clear that AI problems were 
immense, maybe even intractable. In 1974, in response to ongoing criticism and pressure to 
fund more productive projects, the U.S. and British governments cut off all exploratory 
research related to AI.  

However, in the 1970s, computers with large memories became available. This drove AI 
researchers to began building prior knowledge into AI problem-specific "tractable" 
applications. In the early 1980s this led to the first commercial success of expert systems, a 
form of AI programs that simulated the knowledge base and analytical skills of human 
experts. By 1985 the market for AI reached over a billion dollars. At the same time, Japan's 
fifth generation computer project inspired the U.S and British governments to restore 
funding for academic research in the AI field. However, beginning with the collapse of the 
Lisp Machine market in 1987, AI once again fell into disrepute and a second, longer lasting, 
AI winter began.  

Finally, from the 1990s to date, AI achieved its greatest successes, albeit somewhat behind 
the scenes. This success was due to a combination of factors, which are not surprisingly the 
same as those working in favor of the recent achievements of MAL (also refer to Part I 
Section 2.2.1), namely: the increasing computational power and memory capacity of 
computers, a greater emphasis on solving specific "tractable" AI sub-problems, a new 
commitment by researchers to solid mathematical/statistical methods and more rigorous 
scientific standards (Alpaydin, 2010; Bishop, 1995; Cherkassky & Mulier, 2006; Duda et al., 
2001; Mitchell, 1997), and the creation of new ties between AI and other fields working on 
similar problems, such as MAL, knowledge representation (e.g., fuzzy logic) and 
uncertainty engineering (e.g., sensitivity analysis, error propagation). For example, a major 
goal of contemporary AI is to have the computer understand enough concepts to be able to 
learn by reading from sources like the internet, and thus be able to add to its own ontology. 
This is called Natural Language Processing, which gives machines the ability to read and 
understand the languages that humans speak. 

Among the longest-standing AI questions that have remained unanswered, consider the 
following.  

 Should AI simulate natural intelligence by studying psychology or neurology? Or is 
human biology as irrelevant to AI research as bird biology is to aeronautical 
engineering?  
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 In the attempt to develop hybrid inference systems where both statistical and physical 
models are combined to overcome their shortcomings (see Section 2.1), how, when and 
where do continuous sensory objective sub-symbolic data become discrete symbolic 
subjective information? This is the well-known information gap existing between (sub-
symbolic, sensory, instantaneous, numerical, quantitative, absolute, non-semantic) 
sensations and (symbolic, linguistic, qualitative, vague, discrete and semantic, persistent, 
stable) percepts (refer to Part I Section 2.1), which has been thoroughly investigated in 
both philosophy and psychophysical studies of perception (Matsuyama & Shang-Shouq 
Hwang, 1990). In practice, “we are always seeing objects we have never seen before at 
the sensation level, while we perceive familiar objects everywhere at the perception 
level” (Matsuyama & Shang-Shouq Hwang, 1990). 

2.2.3 Fundamental flaws responsible for AI and MAL derailment: The Diamant 
perspective 

When did AI and MAL derail from their original and ambitious goals? Diamant's answer is: 
They did it right at their origin dating back to the late 1950s (refer to Part I Section 2.2.1 and 
Part I Section 2.2.2, respectively) due to the following fundamental flows (Diamant, 2010b).  

a. The lack of proper definitions to distinguish between objective data, physical 
information, semantic information, knowledge and intelligence. These definitions deal 
with the well-known information gap between physical and semantic information 
thoroughly investigated in both philosophy and psychophysical studies of perception 
(see Part I Section 2.2.2). In Diamant's words: "In my view, philosophy is not a swear-
word. Philosophy is a keen attempt to approach the problem from a more general 
standpoint, to see the problem from a wider perspective, and to yield, in such a way, a 
better comprehension of the problem’s specificity and its interaction with other world 
realities. Otherwise we are ... prone to dead-ends and local traps" (Diamant, 2010b). 

b. Misunderstanding of the very nature of semantic information. Unlike physical 
information, semantics is not a property of the raw data, but the property of an external 
observer who observes and scrutinizes the data. Since semantics is assigned to physical 
data structures by an external observer, it cannot be learned from the sensory data.  

The Diamant explanations of these concepts are quoted below (Diamant, 2005; Diamant, 
2008; Diamant, 2010a; Diamant, 2010b). 

2.2.3.1 Kolmogorov's complexity theory 

Among definitions of “data”, “information”, and “knowledge”, the definition of information 
is the most controversial. To provide it, Diamant relies on Kolmogorov’s complexity theory 
(actually developed independently by Kolmogorov, Chaitin, and Solomonoff), whose 
concern is: What is the best way to represent a single data object? What are the laws of 
minimizing the length of a description of a single data object? Such a short-length 
compressed description is the information that we are seeking about a particular data object.  

Theoretically two extreme cases can be distinguished: (1) the elements of a data set are 
absolutely random and  (2) the elements of a data set form "observable" data structures. In 
the first case the data set can be represented only by the original sequence of its data 
elements. In the second case the presence of observable data structures consisting of data 
elements can be taken into account, which leads to a more compact and concise 
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Theoretically two extreme cases can be distinguished: (1) the elements of a data set are 
absolutely random and  (2) the elements of a data set form "observable" data structures. In 
the first case the data set can be represented only by the original sequence of its data 
elements. In the second case the presence of observable data structures consisting of data 
elements can be taken into account, which leads to a more compact and concise 
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(compressed) description. In terms of Kolmogorov’s theory, this compressed description 
(encoding) must be a  trustworthy (which does not mean lossless) abstract (summary) of the 
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more and more fine-grained data details (structures) can be revealed and described. 
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MAI are collected. According to Diamant, "what these two collections undoubtedly exhibit... is 
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them, and therefore are of little use when it comes to our practical problem-solving" (Diamant, 
2010b). As a result, Diamant is forced to search for his own definitions. 

Starting from the Kolmogorov complexity theory (see Section 2.2.3.1), Diamant provides the 
following definitions about data, information and knowledge. 

1. (Objective) "data is an agglomeration of elementary facts" (Diamant, 2010a). 
2. (Physical and semantic) "information is a description" (based on a) "language and/or 

alphabet" (Diamant, 2010a). 
3. (Physical and semantic) "information is a hierarchy of decreasing level descriptions" 

(Diamant, 2010a). 
4. (Physical?) "information elicitation (extraction) does not require incorporation of any 

high-level knowledge" (Diamant, 2010b; Diamant, 2008). 
5. "Two kinds of information must be distinguished: objective (physical) information and 

subjective (semantic) information.  
a. By physical information we mean the description of data structures that are 

discernable in a data set" (Diamant, 2010b). (Noteworthy,) "successful recovery and 
description of image structures (e.g., successful image segmentation) does not lead 
to image understanding. The (data) structures that are observed in an image reflect 
aggregations of nearby data elements on the basis of similarity among their 
physical attributes (e.g., color or brightness in visual signals, frequency and 
intensity in audio signals). These (are called) 'primary (data) structures' or 'physical 
(data) structures'" (Diamant, 2010a). "Physical information, being a natural 
property of the data, can be extracted instantly from the data and no special rule is 
needed for such a task accomplishment" (Diamant, 2010b). (It is) "physical 
information... the only information present in an image, and therefore the only 
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information that can be extracted from an image " (Diamant, 2008). (In  other 
words,) "defining (primary data structures) is certainly a well-grounded procedure 
that does not raise any objections, because objective (physical) nature laws 
underpin such a procedure" (Diamant, 2010a) (refer to point 4. above).  

To summarize, according to Diamant, physical information, non-semantic primary 
data structures and discernable non-semantic image segments are synonyms. 

b. "By semantic information we mean the description of the relationships that may 
exist between the physical (data) structures of a given data set" (Diamant, 2010b). 
(In other words,) "'primary (data) structures'... undergo a further grouping and 
aggregation, which leads to formation of 'secondary (data) structures' (consisting of 
primary data structures) that can be called... 'semantic (data) structures'" (Diamant, 
2010a)."Unlike physical information, semantics is not a property of the raw data. 
Semantics is assigned to physical data structures by an external observer who 
watches and scrutinizes the data... Semantics is a shared convention, a mutual 
agreement between the members of a particular group of viewers or users. Its 
assignment (to the primary data structures) has to be made on the basis of a 
consensus knowledge that is shared among the group members, and which an 
artificial semantic-processing system has to possess at its disposal... Therefore 
semantics cannot be learned straightforwardly from the raw data" (Diamant, 
2010b). (In other words,) "the knowledge about the rules that underpin secondary 
(data) structures formation is a property of human observers and not an inherent 
property of the data" (Diamant, 2010a). (Since) "semantic information is a 
convention, an agreement, a property shared between a company of particular 
observers, it cannot be learned (from physical data) by any means. It can be 
exchanged, transferred, relocated between the group members, or between humans 
and intelligent machines (robots) collaborating with them in a working group, but 
it cannot be learned (from data)" (Diamant, 2010b). (This implies that) "MAL 
techniques are ... not applicable for the purposes of semantic information extraction 
(from the raw data set)... (Acquisition) of this knowledge presumes availability of a 
different and usually overlooked special learning technique, which would be best 
defined as Machine Teaching (MAT) – a technique that would facilitate externally-
prepared-knowledge transfer to the system’s disposal" (Diamant, 2010b).  

To summarize, according to Diamant semantic information and semantic secondary 
data structures, generated from subjective aggregation (semantic labeling) of non-
semantic primary data structures, e.g., image segments, by an external observer, are 
synonyms. In addition, what Diamant calls MAT is known in traditional AI as 
knowledge engineering, which is a process of codifying human knowledge into an 
expert system  (Laurini and Thompson, 1992). 

6. "Both physical and semantic information descriptions are similar in that: (1) they are 
character strings, (2) they are top-down coarse-to-fine hierarchies, and (3) they are 
implemented according to a certain vocabulary/language. There is only a small 
difference – physical information can be described in a variety of languages while 
semantic information can be represented only in a human natural language... Therefore 
the most suitable form of semantic information representation should be a narrative, a 
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story, a tale. The usual top-down hierarchical structure of such a story (a narrative, a 
tale) is well known from other linguistic studies. Moving top-down, a story comprises a 
story title, abstract, chapter or section partition, paragraph subdivision, separate 
phrases and sentences which end up with single words (congregations of letters) 
actually composing a phrase. Further structural descent leads in linguistics to syntaxes. 
But in our case – the lowest level of a semantic structure is stuffed with physical 
information which represents the physical structure of a meaningful object designated 
by the word in a phrase... At the lowest level of a semantic description (hierarchy) a 
physical information sub-hierarchy is always present" (Diamant, 2010a). 

To summarize, according to Diamant semantic information comprises physical information 
at the lowest level of a semantic description (hierarchy) equivalent to an inverted tree 
(see Part I Section 2.2.2). 

7. (Prior) "knowledge is memorized (semantic) information (stored in the system’s 
memory, which incorporates physical information)" (Diamant, 2010b). 

8. "Data is not information, but knowledge is information (semantic information 
memorized in system’s memory)" (Diamant, 2010b). 

9. "Intelligence (cognition) is the system’s ability to process (semantic) information" 
(Diamant, 2010b). 

Together with the aforementioned theoretical considerations, Diamant presents an 
unlabeled (unsupervised) multi-scale image segmentation algorithm and a single-scale 
unlabeled (unsupervised) image contour detector as proofs of his concepts (Diamant, 2005). 
A critical analysis of these theoretical and algorithmic contributions by Diamant can be 
found in Part II Section 3.  

2.3 Vision as an ill-posed image understanding problem 

The main role of a biological or artificial visual system is to backproject the information in 
the (2-D) image domain to that in the (3-D) scene domain (Matsuyama & Shang-Shouq 
Hwang, 1990). In greater detail, the goal of a visual system is to provide plausible (multiple) 
symbolic description(s) of the scene depicted in an image by finding associations between 
sub-symbolic (non-semantic, sensory, instantaneous, numerical, absolute, quantitative, 
varying, objective, see Part I Section 2.1) (2-D) image features or sensations with symbolic 
(semantic, subjective, linguistic, qualitative, vague, abstract, persistent, stable, see Part I 
Section 2.1) (3-D) objects (concepts or percepts) in the scene (e.g., a building, a road, etc.). 
Sub-symbolic (2-D) image features are either points or regions or, vice versa, region 
boundaries, i.e., edges, provided with no semantic meaning. In literature, (2-D) image 
regions are also called segments, (2-D) objects, patches, parcels, or blobs (Carson et al., 1997; 
Lindeberg, 1993; Yang & Wang, 2007).  

There is a well-known information gap between symbolic information in the (3-D) scene and 
sub-symbolic information in the (2-D) image, e.g., due to dimensionality reduction and 
occlusion phenomena, see Fig. 2 (also refer to Part I Section 2.2.2 and Part I Section 2.2.3). 
This is called the intrinsic insufficiency of image features (Matsuyama & Shang-Shouq 
Hwang, 1990). This information gap is also related to the inherent ill-posedness of inductive 
inference (see Part I Section 2.1). It means that the problem of image understanding is 
inherently ill-posed and, consequently, very difficult to solve (Matsuyama & Shang-Shouq 
Hwang, 1990; Cherkassky & Mulier, 2006). 
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Context-insensitive (color) Context-sensitive (e.g., texture, geometry, morphology)  
Fig. 2. Inherently ill-posed image understanding problem (vision). There is a well-known 
information gap between physical information and semantic information. This is the same 
information gap existing between (sub-symbolic, sensory, instantaneous, numerical, 
quantitative, absolute, non-semantic) sensations and (symbolic, linguistic, qualitative, 
vague, discrete and semantic, persistent, stable) percepts (concepts) which has been 
thoroughly investigated in both philosophy and psychophysical studies of perception. In 
practice, “we are always seeing objects we have never seen before at the sensation level, 
while we perceive familiar objects everywhere at the perception level” (Matsuyama & 
Shang-Shouq Hwang, 1990). The original automatic SIAM™ software button (executable), 
adopted as preliminary classification first stage of a novel two-stage stratified hierarchical 
hybrid RS-IUS architecture (see Part II, Section 2), generates as output a mutually exclusive 
and totally exhaustive set of symbolic spectral-based semi-concepts, also called spectral 
categories or land cover class sets, e.g., ‘vegetation’ (Baraldi et al., 2006a; Baraldi et al., 2010a; 
Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). The semantic 
meaning of a spectral-based semi-concept is: (a) superior to zero, which is the semantic 
value of traditional sub-symbolic image features, namely, pixels, (2-D) image segments or 
edges, and (b) equal or inferior to the semantic meaning of target (3-D) land cover classes 
(e.g., needle-leaf forest), also called concepts or (3-D) object-models in the (3-D) world. 

The aforementioned information gap coincides with the well-known information gap existing 
between (sub-symbolic, sensory, quantitative, objective, varying) sensations and (symbolic, 
semantic, qualitative, subjective, stable) percepts, traditionally investigated in both 
philosophy and psychophysical studies of perception (Matsuyama & Shang-Shouq Hwang, 
1990) (see Part I Section 2.2.2).  

In functional terms, biological vision combines preattentive (low-level) visual perception 
with an attentive (high-level) vision mechanism (Gouras, 1991; Kandel, 1991; Mason & 
Kandel, 1991).  
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1. Preattentive (low-level) vision extracts picture primitives based on general-purpose 
image processing criteria independent of the scene under analysis. It acts in parallel on 
the entire image as a rapid (< 50 ms) scanning system to detect variations in simple 
visual properties. It is known that the human visual system employs at least four spatial 
scales of analysis (Wilson & Bergen, 1979). Marr calls the output of the low-level vision 
first stage primal sketch or preliminary map (Marr, 1982). 

2. Attentive (high-level) vision operates as a careful scanning system employing a focus of 
attention mechanism. Scene subsets, corresponding to a narrow aperture of attention, 
are looked at in sequence and each step is examined quickly (20–80 ms). 

Finally, it is worth mentioning that, according to Marr, "vision goes symbolic almost 
immediately, right at the level of zero-crossing (primal sketch)... without loss of 
information" (Marr, 1982) (p. 343). In practice, Marr suggests the following. 

a. The output of preattentive vision (primal sketch) is symbolic. This is tantamount to 
saying that: 
 vision goes symbolic within the preattentive vision phase, 
 the primal sketch is a preliminary semantic map whose symbolic labels belong to a 

finite and discrete set of 3-D object-classes or concepts in the real (3-D) world. 
b. The symbolic output of preattentive vision (refer to point (a) above) is lossless, i.e., 

when the input image is reconstructed from its semantic description, then small, but 
genuine image details (high spatial frequency image components) must be well 
preserved. 

It is also noteworthy that, in contradiction with his own intuition about what functional 
properties characterize a biological vision system, the CV system implemented by Marr is 
unable to accomplish either of the two aforementioned goals (a) and (b). For example, the 
Marr pre-attentive vision module consists of a contour detector (zero-crossing) whose 
output is a sub-symbolic primal sketch. This is not at all surprising. It accounts in general for 
the customary distinction between a model and the algorithm used to identify it (Baraldi et 
al., 2010a; Baraldi, 2011a) (also refer to Part I Section 2.6) and, in particular, for the seminal 
nature of the conceptual work by Marr followed by his early dramatic death. 

2.4 A few comments about the inherent ill-posedness of inductive MAL from either 
labeled or unlabeled data 

Inductive machine learning from either labeled or unlabeled data (see Fig. 1) has been 
central to MAL research from the beginning. In particular, “induction amounts to forming 
generalizations from particular true facts. This is an inherently difficult (ill-posed) problem 
and its solution requires a priori knowledge in addition to data” (Cherkassky & Mulier, 
2006) (p. 39), to make the ill-posed inductive learning-from-data problem better posed (see 
Part I Section 2.1). Unfortunately, although acknowledged by a significant portion of 
existing literature, the inherent ill-posedness of inductive MAL from either labeled or 
unlabeled data appears ignored or neglected by the majority of scientists and practitioners 
involved with MAL common practice.  

2.4.1 Inherently ill-posed unlabeled data learning 

Unlabeled (unsupervised) data learning is the ability to find discrete patterns or sub-
symbolic labeled data structures in an input stream of unlabeled data vectors. Well-known 
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examples of discrete sub-symbolic data structures distinguishable in a stream of unlabeled 
data vectors are: (a) discrete sub-symbolic clusters (e.g., cluster 1, cluster 2, etc.) in a finite 
unlabeled data set belonging to a multi-dimensional measurement space and (b) discrete 
sub-symbolic (2-D) image segments (e.g., segment 1, segment 2, etc) found in a 2-D one-
band (e.g., panchromatic) or multi-band (chromatic) image domain (see Fig. 1). 

Inherently ill-posed unlabeled data clustering and image segmentation are further discussed 
below.  

2.4.1.1 Inherently ill-posed unlabeled data clustering  

Since the goal of clustering is to group the data at hand rather than to provide an accurate 
characterization of unobserved (future) samples generated from the same probability 
distribution, then the task of clustering may fall outside the framework of predictive 
learning (Cherkassky & Mulier, 2006). In spite of this, clustering analysis often employs 
unsupervised data learning approaches originally developed for vector quantization (such 
as the well-known k-means unsupervised data learning algorithm belonging to the family of 
the crisp competitive minimum-distance-to-means algorithms (Baraldi & Blonda, 1999a; 
Baraldi & Blonda, 1999b)), which is a predictive learning problem, see Fig. 1 (Cherkassky & 
Mulier, 2006).  

Unlabeled data clustering is an inherently ill-posed data mapping problem. In fact, the goal 
of clustering is to separate a finite unlabeled dataset at hand into a finite and discrete set of 
“natural”, hidden data structures on the basis of an often subjectively chosen measure of 
similarity/dissimilarity, i.e.,  a similarity measure chosen subjectively based on its ability to 
create “interesting” clusters (Backer & Jain, 1981; Baraldi & Alpaydin, 2002a; Baraldi & 
Alpaydin, 2002b; Cherkassky & Mulier, 2006; Fritzke, 1997). Thus, the subjective (ill-posed) 
nature of the nonpredictive data clustering problem precludes an absolute judgment as to 
the relative effectiveness of all clustering techniques (Backer & Jain, 1981). In spite of this, 
the inherent ill-posedness of unlabeled data clustering problems is not clearly stated in 
existing literature where, as a consequence, dozens of papers proposing alternative 
clustering algorithms are published every year (perhaps in search of a “final” best clustering 
algorithm which cannot exist…) (Xu & Wunsch II, 2005). 

Crisp (hard) competitive minimum-distance-to-means algorithms, such as the k-means data 
quantization approach, try to minimize a sum-of-squares error function (Cherkassky & 
Mulier, 2006; Bishop, 1995). To reduce the risk of being trapped in a local minimum of the 
error function, soft-to-hard rather than hard competitive clustering algorithms have been 
conceived (Baraldi & Blonda, 1999a; Baraldi & Blonda, 1999b). In addition, it is well known 
that both crisp and fuzzy k-means data clustering algorithms cannot perform well with non-
convex types of data, i.e., they are effective if and only if data clusters are hyperspherical 
(Duda et al., 2001). To overcome this problem, a k-means unsupervised data learning 
algorithm capable of defining automatically the number of clusters splits a non-convex data 
cluster, say, a data cluster shaped like a banana, into several hyperspheres. Thus, these 
hyperspheres should be linked to map the banana-like data cluster. To perform non-convex 
unlabeled data mapping, topologically preserving data clustering algorithms have been 
developed (Baraldi & Alpaydin, 2002a; Baraldi & Alpaydin, 2002b; Fritzke, 1997; Martinetz 
& Schulten, 1994).    
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In terms of degree of automation, which decreases monotonically with the number of 
system-free parameters to be user-defined, it is noteworthy that, to make the inherently ill-
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2.4.1.2 Inherently ill-posed (2-D) image region extraction/contour detection 

In literature, a so-called Low-Level Vision Expert (LLVE) (Matsuyama & Shang-Shouq 
Hwang, 1990) includes a battery of low-level sub-symbolic (non-semantic) general-purpose 
domain-independent inductive-learning (fine-to-coarse, bottom-up, driven-without-
knowledge, see Part I Section 2.1) inherently ill-posed image processing (unlabeled data-
driven) algorithms working at the signal level. This set of low-level image processing 
algorithms may comprise (Matsuyama & Shang-Shouq Hwang, 1990): edge-preserving 
noise filtering (Acton & Landis, 1997; Perona & Malik, 1990), either intensity- or color-based 
region/edge detection (Baraldi & Parmiggiani, 1996a; Canny, 1986), texture-based 
region/edge detection (Jain & Healey, 1998), region growing (Baraldi & Parmiggiani, 
1996b), region extraction from not-close contours (Baraldi & Parmiggiani, 1995), etc.  

In a (2-D) image domain, region extraction is the dual problem of edge detection and they 
are both inherently ill-posed visual tasks. In the rest of this paper, for simplicity’s sake, in 
line with (Matsuyama & Shang-Shouq Hwang, 1990), all the aforementioned image 
processing operators are called "segmentation" algorithms. As output, an image 
segmentation algorithm generates image features, namely points and regions (also called 
segments, [2-D] objects, parcel or blobs (Carson et al., 1997; Lindeberg, 1993; Yang & Wang, 
2007), also refer to Part I Section 2.3) or, vice versa, region boundaries, i.e., edges, provided 
with no semantic meaning. In general, a sub-symbolic image segment is: (1) made of 
connected pixels considered homogeneous in color and/or texture based on: (i) a subjective 
measure of similarity/dissimilarity and (ii) a subjective decision rule (e.g., thresholding), 
and (2) provided with a non-semantic label equivalent to a numerical segment-based 
identifier (integer value). 

The inherent ill-posedness of any image segmentation algorithm is due to both systematic 
and accidental errors. The so-called intrinsic insufficiency of image segments is due to 
occlusion problems and dimensionality reduction (Matsuyama & Shang-Shouq Hwang, 
1990) (refer to Part I Section 2.3). In addition, image segments are always affected by a so-
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called artificial insufficiency (Matsuyama & Shang-Shouq Hwang, 1990) due to the image 
segmentation algorithm at hand. This latter source of segmentation errors is related to the 
well-known uncertainty principle according to which, for any contextual (neighborhood) 
property, we cannot simultaneously measure that property while obtaining accurate 
localization (Corcoran & Winstanley, 2007; Petrou & Sevilla, 2006). 

In practical contexts the inherent ill-posedness of any image segmentation algorithm implies 
the following.  

(a) In real-world image segmentation problems (other than toy problems), it is inevitable 
for erroneous segments to be detected while genuine segments are omitted (Matsuyama 
& Shang-Shouq Hwang, 1990) (p. 18). 

(b) Any image segmentation algorithm must rely on user-defined segmentation-free 
parameters based on subjective (heuristic, empirical) criteria on a site-specific basis (see 
Part I Section 2.1). As a consequence, any image segmentation algorithm can be 
considered difficult to use, i.e., its degree of automation is low, while its robustness to 
changes in the input data set and changes in input parameters are both low. 

To overcome these shortcomings many researchers in the field of cognitive psychology 
believe that object segmentation cannot be achieved in a completely bottom-up manner, 
which is tantamount to saying that segmentation and classification are strongly coupled 
(Corcoran & Winstanley, 2007; Corcoran et al., 2010; Vecera & Farah, 1997). In particular, 
Vecera and Farah proved that the process of human visual segmentation can be strongly 
influenced by top-down human (subjective) factors such as prior knowledge of the image at 
hand in addition to desires and expectations of an external observer (Vecera & Farah, 1997).  

To date, the inherent ill-posedness of any image region/boundary detection algorithm is 
acknowledged by a relevant portion of the CV and RS communities (Burr & Morrone, 1992; 
Corcoran & Winstanley, 2007; Corcoran et al., 2010; Delves et al., 1992; Hay & Castilla, 
2006; Matsuyama & Shang-Shouq Hwang, 1990; Petrou & Sevilla, 2006; Vecera & Farah, 
1997). For example, Castilla et al. observe that (Castilla et al., 2008): " Image understanding 
is a complex cognitive process for which we may still lack key concepts. In particular, most 
image segmentation methods have been developed heuristically without a deeper 
examination of the semantic implications of the segmentation process." Well-known image 
segmentation algorithms, including eCognition® by Definiens AG (Definiens Imaging 
GmbH, 2004), "... are conceptually inconsistent with the object-oriented approach (OOA)... 
an underlying hypothesis of any segmentation method is that there is a correspondence 
between radiometric similarity in the image and semantic similarity in the imaged 
landscape. Thus, it is expected that image objects (segments) coincide with landscape 
objects (patches)." Unfortunately, the same Size-Constrained Region Merging (SCRM) 
algorithm proposed by Castilla et al. makes no exception to their criticism since its 
"correspondence between radiometric similarity and semantic similarity is not 
straightforward" (Castilla et al., 2008).  

To summarize, according to Castilla et al. the conceptual framework of OBIA requires 
generation of symbolic image segments as output. This is the same claim made by cognitive 
psychology (see this text above) (Corcoran & Winstanley, 2007; Corcoran et al., 2010; Vecera 
& Farah, 1997). This also agrees with Marr's statement: "vision goes symbolic immediately, 
right at the level of zero-crossing (primal sketch)... without loss of information" (Marr, 1982) 
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(p. 343), refer to Part I Section 2.3. As a consequence, if this conjecture holds, then existing 
commercial image segmentation algorithms, whose claim is to be at the basis of the GEOBIA 
success (Definiens Imaging GmbH, 2004; Esch et al., 2008), are actually in contrast with the 
true conceptual framework of GEOBIA, which requires detection of semantic image 
segments (e.g., landscape objects or patches).  

Unfortunately, in spite of the aforementioned contributions found in existing literature, 
most members of the CV and RS communities, including Diamant (Diamant, 2005; Diamant, 
2008; Diamant, 2010a; Diamant, 2010b) (refer to Part I Section 2.5), appear to ignore the 
inherently ill-posed (subjective) nature of the image segmentation (region extraction/ 
contour detection) problem. As a consequence, literally dozens of “novel” segmentation 
(region extraction/contour detection) algorithms are published each year (Zamperoni, 
1996). For example, due to the availability of a commercial GEOBIA software developed by 
a German company (Definiens Imaging GmbH, 2004; Esch et al., 2008), OBIA approaches 
are currently considered the state-of-the-art in both scientific and commercial RS image 
mapping applications (Castilla et al., 2008; Hay & Castilla, 2006).  

In commercial GEOBIA systems, to reduce the number of empirical segmentation 
parameters (Esch et al., 2008), a multi-scale (hierarchical) iterative segmentation first stage is 
employed (Definiens Imaging GmbH, 2004). As output, a hierarchical segmentation 
algorithm generates multi-scale segmentation solutions in the hope that the target image 
will appear correctly segmented at some scale. However, quantitative multi-scale 
assessment of segmentation quality indices requires ground truth data at each scale which 
are impossible or impractical to obtain in RS common practice (Corcoran & Winstanley, 
2007). Therefore, the “best” segmentation map must be selected by the user on an a posteriori 
basis from the available set of multi-scale segmentation solutions according to heuristic, 
subjective and/or qualitative criteria analogous to those employed in the selection of prior 
segmentation parameters. In practice, exploitation of a hierarchical segmentation algorithm 
does not make a driven-without-knowledge segmentation first stage easier to use. In 
addition, hierarchical segmentation algorithms are computationally intensive and require 
large memory occupation. 

The conclusion is that, to date, in spite of its commercial success, GEOBIA remains affected 
by a lack of general methodological consensus and research (Hay & Castilla, 2006). Scientific 
disagreement on the conceptual framework of GEOBIA finds its origin in the well-known 
information gap existing between physical information (sensations) and semantic 
information (percepts) (Matsuyama & Shang-Shouq Hwang, 1990) (see Part I Section 2.2.2 
and Part I Section 2.3). Since GEOBIA appears unable to generate semantic image segments 
(e.g., landscape objects) in the pre-attentive vision phase, it appears unsuitable for filling the 
information gap between raster sub-symbolic imagery and vector symbolic geospatial 
information (typically dealt with by geographic information systems, GIS). 

2.4.2 Labeled data learning for classification and function approximation 

Labeled (supervised) data learning approaches deal with either classification or function 
approximation (regression) problems whose output variables are discrete semantic and 
continuous non-semantic respectively, see Fig. 1 (Alpaydin, 2010; Bishop, 1995; Cherkassky 
& Mulier, 2006; Mather, 1994; Mitchell, 1997).  
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In classification problems where the available training data set is assumed to be fully 
reliable (which may not always be the case (Bruzzone & Persello, 2009)), the goal of a 
classifier capable of learning from labeled data is to achieve a perfect fit of the training data 
set (to reduce to zero the training error) and, at the same time, make good semantic 
predictions for new (previously unobserved) inputs (to reduce to zero the testing error). An 
adaptive classifier can be trained in various ways, namely, on-line (sequential learning 
(Bishop, 1995), stochastic learning (Cherkassky & Mulier, 2006), when a large or infinite 
input data sequence is available and/or real-time adaptation is required), batch (it requires 
the storage of a complete and finite training data set (Bishop, 1995)) and semi-batch (Wilson 
& Martinez, 2000). In addition, there are many statistical classifiers. The most widely used 
statistical classifiers are the plug-in parametric maximum likelihood (ML) classifier, the non-
parametric Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) networks, kernel 
methods (also called memory-based, which require the storage of a complete data set 
(Mitchell, 1997)) such as the SVM and the k-nearest neighbor (K-NN) algorithm, the naive 
Bayes classifier, adaptive (statistical) decision-trees such as the Classification And 
Regression Tree (CART), adaptive rule-based systems, mixture of experts (Jordan & Jacobs, 
1994), etc. (Alpaydin, 2010; Bishop, 1995; Cherkassky & Mulier, 2006; Duda et al., 2001; 
Mitchell, 1997).  

Classifier performance depends greatly on the characteristics of the labeled data set to be 
classified (Baraldi et al., 2006b). In other words, there is no single classifier that works best 
on all given problems; this is also referred to as the "no free lunch" theorem. In practical 
contexts, classification model selection, i.e., determining a suitable classifier for a given 
problem, is still more an art than a science.  

In reinforcement learning the agent is rewarded for good responses and punished for bad 
ones. These can be analyzed in terms of decision theory, using concepts such as utility 
(Cherkassky & Mulier, 2006).  

Function regression (curve fitting) takes a finite set of numerical continuous input-output 
pair samples and attempts to discover an unknown continuous (smooth) deterministic 
function which, together with added Gaussian noise, would generate those target outputs 
from the inputs (Bishop, 1995). The goal of function approximation is not to learn an exact 
representation (interpolation) of the training data, but rather to build a statistical model of 
the physical process that generates the training labeled data. This statistical model ought to 
be capable of the best trade-off between: (a) achieving a good fit of the training data (to keep 
low the bias term of a sum-of-squares error function) and (b) obtaining a reasonably smooth 
function that is not over-fitted to the training data (to keep the variance term of a sum-of-
squares error function low). This is important if the self-organizing (adaptive) function 
approximation system is to exhibit good generalization, i.e., to make good numerical 
predictions for new (previously unobserved) inputs (Bishop, 1995).  

To summarize, to properly deal with discrete semantic or continuous non-semantic output 
values, labeled (supervised) data learning systems feature different functional hypotheses 
and properties. For example: 

 they adopt different cost functions, namely, the cross-entropy error function for 
adaptive classifiers versus the sum-of-squares error for function approximation 
approaches (Bishop, 1995) (p. 230). 
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 When the training labeled data set is assumed to be fully reliable the goal of adaptive 
classifiers is to reduce to zero both training and testing errors (e.g., if the training error 
is equal to zero then a classifier is called consistent (Baraldi & Alpaydin, 2002b; 
Mitchell, 1997)). Vice versa, reducing to zero the bias term in function regression is not 
recommended because it would imply over-fitting to the training data assumed to be 
inherently affected by Gaussian noise (which is not the case for exact interpolators) 
(Bishop, 1995).  

2.5 Diamant's image segmentation and contour detection algorithms as proofs of his 
concepts 

As proofs of his concepts (see Part I Section 2.2.3) Diamant presents an image segmentation 
algorithm and a contour detection algorithm which are summarized below. 

2.5.1 Multi-scale image segmentation algorithm 

In (Diamant, 2005), a multi-scale image segmentation algorithm is presented and applied to 
a toy problem, namely, a panchromatic (one-band) image of 640 × 480 pixels in size. The 
proposed segmentation algorithm is as follows. 

1. Low-pass (smoothing) dyadic (sub-sampling by a factor of 2) image decomposition 
(down-scaling). Image decomposition levels are identified with integer numbers l = 0,..., 
L, L+1, where level 0 identifies the input image at full spatial resolution. Value L > 0 is 
set to 4, thus the maximum down-scale level is L+1 = 5. A simple dyadic multi-scale 
panchromatic (one-band) image decomposition and averaging operator is applied as 
follows. 

gl+1(x,y) = [gl(2x,2y) +  gl(2x + 1,2y) + gl(2x + 1,2y + 1) +  

 + gl(2x,2y + 1)]/4,      l= 0, ..., L > 0, (1-1) 

where gl+1(x,y) is the gray-level value of a (down-scaled parent) pixel at the (x,y) 
coordinate position in a higher (l+1)-level image while gl(2x,2y) and its three nearest 
neighbors listed in Eq. (1-1) are the corresponding (up-scaled children) pixels within an 
image array at the lower level l.  

2. Single-scale image segmentation algorithm run at the top (coarsest) (L+1)-level of the 
decomposition pyramid. Diamant claims that since the image size at the top level of the 
pyramid is significantly reduced and a severe data averaging is attained, any well-
known segmentation methodology would suffice. Diamant's proprietary segmentation 
technique firstly outlines image boundaries (contours) (see Part I Section 2.4.1.2). 
Secondly, contiguous pixels of "similar" appearance (based on an unknown similarity 
measure and decision rule) within non-closed contours are aggregated in spatially 
connected segments (this is apparently a region growing from non-closed contours 
approach, e.g., refer to (Baraldi & Parmiggiani, 1995)). Thirdly, the segment-based mean 
intensity image, called characteristic intensity, is computed (this is a piecewise constant 
image approximation of the input image generated by replacing every pixel with the 
mean value of the segment where that pixel is located).  
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3. (Coarse-to-fine spatial resolution) mean image and segmentation map up-scaling. At 
each level l = L + 1, ..., 1, with step -1, the mean image and the segmentation map are 
expanded to the size of the image at the nearest lower level (l-1) (at finer spatial 
resolution). The expansion rule is simple and the same for both up-scaling operations: 
the value of each parent pixel at level l is assigned to its four children at level (l-1). 
Diamant claims that since image regions feature a low inter-segment intensity 
variability, the majority of newly assigned pixels are determined in a sufficiently 
correct manner. Only pixels lying on object boundaries or seeds of newly emerging 
objects can significantly deviate from their up-scaled assigned value. Taking the 
corresponding l-level of the down-scaled image as a reference, these pixels can easily 
(!?) be detected and subjected to a refinement cycle. Here they are allowed to adjust 
themselves to the ‘‘proper’’ nearest neighbors, which certainly belong to one of the 
previously labeled regions or to the newly emerging ones. Unlike the lossless image 
decomposition/reconstruction procedure provided by Burt and Adelson's 
Gaussian/Laplacian pyramid (Burt & Adelson, 1983), in the Diamant case the exact 
reconstruction of an image is not required. In Diamant's opinion "only (?!) in special 
cases - medical, scientific, military, fine-art, and a couple (!?) of other applications  - 
the reconstruction fidelity of the original image can be critically important" (Diamant, 
2005), which is to say it is critical in all quantitative rather than qualitative CV 
applications! For example, RS image understanding applications require small, but 
genuine image details, say, roads, to be well preserved, which is tantamount to 
saying that RS image applications are among the "couple (!?) of other applications" 
where high fidelity in multi-scale encoding (decomposition)/decoding 
(reconstruction) is required. 

A critical analysis of the Diamant image segmentation algorithm can be found in Part II 
Section 3.1. 

2.5.2 Single-scale image contour detection algorithm 

In (Diamant, 2005) Diamant presents a single-scale image contour detection algorithm and 
applies it to a toy problem, namely, a panchromatic image 256 × 256 pixels in size. This 
contour detector provides a measure of local information, Iloc(x,y), as a product of two terms.  

 Iloc(x,y) = Iint(x,y) × Itop(x,y)            (1-2) 

where (x,y) are the central pixel coordinates in a (2-D) image array, factor Iint(x,y) is the 
intensity change component and factor Itop(x,y) is considered a measure of topological 
confidence (uncertainty). In Eq. (1-2) term Iint(x,y) is estimated as follows.  

 Iint(x,y) =    
8

1

1 , ,
8 c n

n
g x y g x y


  0.            (1-3) 

Thus, in Eq. (1-2) the first term Iint(x,y) is estimated as the mean absolute difference between 
the central pixel gray value, gc(x,y), and the gray levels of its 8-adjacency neighbors, gn(x, y), 
n = 1, ..., 8. 

In Eq. (1-2) the second term Itop(x,y) is computed in two steps. Firstly, an expression for a 
pixel’s interrelationship with its surrounding is defined as follows. 
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(reconstruction) is required. 

A critical analysis of the Diamant image segmentation algorithm can be found in Part II 
Section 3.1. 

2.5.2 Single-scale image contour detection algorithm 

In (Diamant, 2005) Diamant presents a single-scale image contour detection algorithm and 
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contour detector provides a measure of local information, Iloc(x,y), as a product of two terms.  

 Iloc(x,y) = Iint(x,y) × Itop(x,y)            (1-2) 

where (x,y) are the central pixel coordinates in a (2-D) image array, factor Iint(x,y) is the 
intensity change component and factor Itop(x,y) is considered a measure of topological 
confidence (uncertainty). In Eq. (1-2) term Iint(x,y) is estimated as follows.  
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Thus, in Eq. (1-2) the first term Iint(x,y) is estimated as the mean absolute difference between 
the central pixel gray value, gc(x,y), and the gray levels of its 8-adjacency neighbors, gn(x, y), 
n = 1, ..., 8. 

In Eq. (1-2) the second term Itop(x,y) is computed in two steps. Firstly, an expression for a 
pixel’s interrelationship with its surrounding is defined as follows. 
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It is worthy of note that status(x, y) is equivalent to a contrast value computed by an 
isotropic mexican-hat operator centered on pixel (x, y). The shortest status(x, y) description 
(encoding) would be in a binary form, for example, 0 if status is negative, and 1 otherwise. 
Status(x, y) is evaluated for every pixel (x, y) in an image and mapped into a binary status 
map of the same size as the input image. Secondly, the spatial (topological) interactions of a 
pixel with its 8-adjacency neighbors can be estimated using the binary status map: 

 Itop(x,y) = p (1 - p) = (m/8) [(8 - m)/8], m  {0, 8},            (1-5)  

where p is the probability that the central pixel and its surrounding ones share the same 
status, such that m  {0, 8} is the number of 8-adjacency pixels that share the same status 
with the central pixel in the 2-D array position (x, y). Any Itop(x, y) value is computed for 
every pixel (x, y) and saved in a special image of the size of the input image. 

Diamant considers peaks (local extrema) in Iloc(x,y) = Eq. (1-2) = Iint(x,y) × Itop(x,y) = Eq. (1-
3) × Eq. (1-5) as signs of a visible edge present at a given location. However, establishing a 
proper threshold for local extrema has always been a hard and sophisticated matter. To 
overcome this difficulty, Diamant proposes to gather a cumulative histogram of Iloc 
values. At first, a number of equal intervals (bins) is selected and a histogram (first-order 
statistic) of the Iloc image is constructed in sequence for every histogram bin as follows: if 
the pixel-based Iloc value is greater than or equal to the bin’s lower bound, then this bin 
counter is increased by one. As a result, the first bin represents the cardinality of all Iloc 
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A critical analysis of the Diamant image contour detection algorithm can be found in Part II 
Section 3.3. 

2.6 Four levels of understanding of an RS-IUS 

It is important to remember that there are four levels of analysis (understanding) of any 
information processing device, including RS-IUSs. They are listed below (Baraldi et al., 
2010b; Baraldi, 2011a; Marr, 1982).  
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i. Computational theory (system architecture). According to Marr, the linchpin of success 
in attempting to solve the CV problem is that of addressing the computational theory 
rather than algorithms or implementations (Marr, 1982). In other words, if the vision 
device architecture is inadequate, even sophisticated algorithms can produce low-
quality outputs. On the contrary, improvement in the vision system architecture might 
achieve twice the benefit with half the effort (which is an adaptation of the original 
words by Wang (Fangju Wang, 1990)). For example, a two-stage stratified hierarchical 
hybrid RS-IUS architecture (see Part II Fig. 3) has been proposed in recent literature 
(Baraldi et al., 2006a; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; 
Baraldi, 2011a; Baraldi, 2011b), as an alternative to the current state-of-the-art two-stage 
GEOBIA architecture, hereafter referred to as two-stage segment-based hybrid RS-IUS 
architecture (see Part II Fig. 2). 

ii. Knowledge/information representation. According to Wang, “if knowledge 
representation is poor, even sophisticated algorithms can produce inferior outputs. On 
the contrary, improvement in representation might achieve twice the benefit with half 
the effort” (Fangju Wang, 1990).  For example, in (Baraldi et al., 2010c; Baraldi, 2011b) a 
crisp-to-fuzzy SIAM™ transition has been accomplished to model class mixtures. 

iii. Algorithm design. This level deals with the design of the algorithm selected to fill each 
of the data processing modules comprised in the system architecture (refer to point (i) 
above). According to (Page-Jones, 1988), structured system design is "everything but 
code". 

iv. Implementation. This level deals with the source code generation for every algorithm 
designed at point (iii) above. 

2.7 Quality Assurance Framework for EO (QA4EO) 

Delivered by the Working Group on Calibration and Validation (WGCV) of the Committee 
of Earth Observations (CEOS), the space arm of the Group on Earth Observations (GEO) 
(GEO, 2005; GEO, 2008b), the QA4EO guidelines (GEO/CEOSS, 2008) consider mandatory 
the following actions: (i) calibration and validation (Cal/Val) activities from sensor build to 
end-of-life and (ii) every sensor-derived data product must be provided with metrological/ 
statistically-based quality indicators (QIs) featuring a degree of uncertainty in measurement. 
Unfortunately, in RS common practice, these international guidelines are often ignored by 
scientists, practitioners and whole institutions (Baraldi, 2009). 

2.7.1 Calibration and validation  (Cal/Val) activities from sensor build to end-of-life 

QA4EO considers mandatory an appropriate coordinated program of Cal/Val activities 
throughout all stages of a spaceborne mission, from sensor build to end-of-life 
(GEO/CEOSS, 2008). This ensures the harmonization and interoperability of multi-source 
observational data and derived products required by international programs such as the on-
going GEOSS and GMES projects (GEO, 2008b; GEO, 2005) (refer to Part I Section 1). 

In spite of the QA4EO recommendations and although it is regarded as common knowledge 
in the RS community, radiometric calibration, i.e., the transformation of dimensionless digital 
numbers (DNs) into a physical unit of measure related to a community-agreed radiometric 
scale, is often neglected in literature and surprisingly ignored by scientists, practitioners and 
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institutions involved with RS common practice including large-scale spaceborne image 
mosaicking and mapping (Baraldi et al., 2006a; Baraldi, 2009; Baraldi et al., 2010a; Baraldi et 
al., 2010b; Baraldi, 2011a). 

A relevant extension of the QA4EO recommendation for radiometric calibration of multi-
source EO data is the following. 

"Radiometric calibration not only ensures the harmonisation and interoperability of multi-
source observational data according to the QA4EO guidelines, but is a necessary, although 
insufficient, condition for automating the quantitative analysis of EO data" (Baraldi et al., 
2006a; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi, 2011a) in RS data understanding 
problems other than toy problems at small data scale and coarse semantic granularity. By 
definition, a data processing system is automatic when it requires no user-defined parameter 
to run, therefore its user-friendliness cannot be surpassed (refer to Part I Section 2.8). 

This necessary condition for automatic EO data understanding agrees with common 
sense, summarized by the expression: “garbage in means garbage out”. In the 
terminology of MAL and CV, the radiometric calibration constraint augments the degree 
of prior knowledge of a RS-IUS required to complement the intrinsic insufficiency (ill-
posedness) of (2-D) image features, i.e., radiometric calibration makes the inherently ill-
posed CV problem better posed (Baraldi et al., 2010a; Baraldi, 2011a; Matsuyama & 
Shang-Shouq Hwang, 1990).  

To summarize, in disagreement with the QA4EO guidelines, most existing scientific and 
commercial RS-IUSs, such as those listed in Table 1, do not require RS images to be 
radiometrically calibrated and validated. As a consequence, according to the 
aforementioned necessary condition for automating the quantitative analysis of EO data, 
these RS-IUSs are semi-automatic and/or site-specific (since one scene may represent, say, 
apples, while any other scene, even if contiguous or overlapping, may represent, say, 
oranges), refer to Table 1. Secondly, Table 1 shows that unlike SIAM™, the ERDAS 
Atmospheric Correction for satellite imagery (ATCOR3) (Richter, 2006) requires as input 
an MS image radiometrically calibrated into surface reflectance values exclusively. This 
implies that the ERDAS ATCOR3 software considers mandatory the inherently ill-posed 
and difficult-to-solve MS image atmospheric correction pre-processing stage which 
requires user intervention to make it better posed (Baraldi, 2011a). Thus, unlike SIAM™, 
the ERDAS ATCOR3 satisfies the necessary condition for automating the quantitative 
analysis of EO data, but is insufficient to provide a RS image classification problem with 
an automatic workflow requiring no user-defined empirical parameter to be based on 
heuristic criteria. 

2.7.2 Quality Indicators (QIs) with a degree of uncertainty 

In addition to considering mandatory an appropriate coordinated program of Cal/Val 
activities throughout all stages of a spaceborne mission, from sensor build to end-of-life (see 
Section 2.7.1), the QA4EO guidelines require that every sensor-derived data product 
generated across a satellite-based measurement system’s processing chain be provided with 
metrological/ statistically-based QIs featuring a degree of uncertainty in measurement 
(GEO/CEOSS, 2008). Unfortunately, in RS common practice, as well as in existing literature,  
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Commercial RS-
IUSs  

Sub-symbolic 
(asemantic) versus 

symbolic (semantic) 
information 

primitives, namely, 
pixels / (2-D) objects 
(regions, segments) / 

strata 

Radiometric calibration (RAD. CAL.) 
requirement according to the 

international QA4EO guidelines 

PCI Geomatics 
GeomaticaX  

Sub-symbolic pixels NO RAD. CAL. Þ semi-automatic and site-
specific  

eCognition Server 
by Definiens AG 

Unsupervised data 
learning sub-symbolic 

objects 

NO RAD. CAL. Þ semi-automatic and site-
specific 

Pixel- and Segment-
based versions of 
the Environment for 
Visualizing Images 
(ENVI) by ITT VIS  

Either sub-symbolic 
pixels or unsupervised 

data learning sub-
symbolic objects 

NO RAD. CAL. Þ semi-automatic and site-
specific  

ERDAS IMAGING 
Objective  

Supervised data 
learning symbolic 

objects 

NO RAD. CAL. Þ semi-automatic and site-
specific  

ERDAS 
Atmospheric 
Correction-3 
(ATCOR3) (Richter, 
2006) 

Sub-symbolic pixels Consistent with the QA4EO 
recommendations: surface reflectance, 
SURF  Þ inherently ill-posed atmospheric 
correction first stage Þ semi-automatic and 
site-specific.  

Novel two-stage 
stratified 
hierarchical RS-IUS 
employing SIAM™ 
as its preliminary 
classification first 
stage 

Prior knowledge-based 
symbolic pixels  
symbolic objects  

symbolic strata 

Consistent with the QA4EO 
recommendations:  top-of-atmosphere 
(TOA) reflectance (TOARF) or surface 
reflectance (SURF) values, with TOARF  
SURF  atmospheric correction is 
optional. Automatic and robust to changes 
in RS optical imagery acquired across time, 
space and sensors.  

Table 1. Existing commercial RS-IUSs and their degree of match with the international 
QA4EO quidelines. 

these international guidelines are often ignored by scientists, practitioners and whole 
institutions (Baraldi, 2009). For example, most works published in RS literature assess and 
compare spaceborne image classification algorithms in terms of mapping accuracy 
exclusively, which corresponds to only one of several operational QIs of a RS-IUS (refer to 
Part I Section 2.8). Moreover, these classification accuracy estimates are rarely provided with 
a degree of uncertainty in measurement. This violates well-known laws of sample statistics 
(Congalton & Green, 1999; Foody, 2002; Jain et al., 2000), together with common sense 
envisaged under the international guidelines of the QA4EO (GEO/CEOSS, 2008). 
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these international guidelines are often ignored by scientists, practitioners and whole 
institutions (Baraldi, 2009). For example, most works published in RS literature assess and 
compare spaceborne image classification algorithms in terms of mapping accuracy 
exclusively, which corresponds to only one of several operational QIs of a RS-IUS (refer to 
Part I Section 2.8). Moreover, these classification accuracy estimates are rarely provided with 
a degree of uncertainty in measurement. This violates well-known laws of sample statistics 
(Congalton & Green, 1999; Foody, 2002; Jain et al., 2000), together with common sense 
envisaged under the international guidelines of the QA4EO (GEO/CEOSS, 2008). 
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It is well known, but often forgotten in common practice that any evaluation measure is 
inherently non-injective (Baraldi, 2011a). For example, in classification map accuracy 
assessment and comparison, different classification maps may produce the same confusion 
matrix while different confusion matrices may generate the same confusion matrix 
accuracy measure, such as overall accuracy. These observations suggest that no single 
universally acceptable measure of quality, but instead a variety of quality indices, should be 
employed in practice (Congalton & Green, 1999; Foody, 2002). To date, this general 
conclusion is neither obvious nor community-agreed. For example, this conclusion implies 
that when a test image and a reference (original) image pair is given, common attempts to 
identify a unique (universal) reliable image quality index, such as the relative 
dimensionless global error ERGAS proposed in (Wald et al., 1997), the universal image 
quality index Q (Wang & Bovik, 2002), the global image quality measure Q4 (Alparone et 
al., 2004), and the quality index with no reference QNR (Alparone et al., 2006), are 
inherently undermined as contradictions in terms. 

In recent years the issue of uncertainty in spatial data has become increasingly recognized 
by the RS and geographic information systems (GIS) communities (Friedl et al., 2001). 
Spatial uncertainty analysis investigates sources of inaccuracies in geospatial data 
acquisition and understanding and investigates error propagation through a RS (2-D) image 
processing chain. For example, post-classification change detection between two 
classification maps of overall accuracy OA1  [0, 1] and OA2  [0, 1], respectively, features a 
change detection OA (COA) such that COA  (OA1 × OA2) (Lunetta & Elvidge, 1999). For 
example, Friedl et al. identify three primary sources of errors in spatial information 
generated from RS imagery (Friedl et al., 2001).  

1. Errors introduced through the image acquisition process (e.g., spectral and spatial 
image distorsion). 

2. Errors produced by the application of image processing techniques, namely, (a) image 
pre-processing algorithms (e.g., atmospheric correction, geometric correction, 
radiometric calibration) and (b) image understanding techniques (e.g., spatial and 
semantic accuracies in classification mapping).   

3. Errors associated with interactions between the instrument time, spatial and spectral 
resolution and the physical nature and scale of an ecological process on the ground 
(e.g., pixels affected by class mixture).  

2.8 Operational Quality Indicators (QIs) of an RS-IUS 

In operational contexts a RS-IUS is defined as a low performer if at least one among several 
operational QIs scores low. Typical operational qualities of a RS-IUS encompass the 
following (Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi, 2011a).  

i. Degree of automation. For example, a data processing system is automatic when it 
requires no user-defined parameter to run, therefore its user-friendliness cannot be 
surpassed. When a data processing system requires neither user-defined parameters 
nor reference data samples to run, it is termed “fully automatic” (Qiyao Yu & Clausi, 
2007). 

ii. Effectiveness, e.g., classification accuracy and spatial accuracy (Baraldi et al., 2005; 
Persello & Bruzzone, 2010). 
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iii. Efficiency, e.g., computation time, memory occupation. 
iv. Economy (costs). Related to manpower and computing power. For example, open 

source solutions are welcome to reduce costs of software licenses. Supervised data 
learning approaches (e.g., SVMs, OBIA systems, etc.) require reference training samples 
which are typically scene-specific, expensive, tedious, difficult or impossible to collect. 

v. Robustness to changes in the input data set, e.g., changes due to noise in the data. 
vi. Robustness to changes in input parameters, if any exist. 
vii. Maintainability / scalability / re-usability to keep up with changes in users’ needs and 

sensor properties. 
viii. Timeliness, defined as the time span between data acquisition and product delivery to 

the end user. It increases monotonically with manpower, e.g., the manpower required 
to collect site-specific training samples.  

The aforementioned list of operational QIs is neither irrelevant nor obvious. For example, a low 
score in operational QIs may explain why the literally hundreds of so-called novel low-level 
(sub-symbolic) and high-level (symbolic) image processing algorithms presented each year 
in scientific literature typically have a negligible impact on commercial RS image processing 
software (Zamperoni, 1996). This conjecture is consistent with the fact that most works 
published in RS literature assess and compare spaceborne image classification algorithms in 
terms of mapping accuracy exclusively, which corresponds to the sole operational 
performance indicator (ii) listed above. Moreover, these classification accuracy estimates are 
rarely provided with a degree of uncertainty in measurement. This violates well-known 
laws of sample statistics (Congalton & Green, 1999; Foody, 2002; Jain et al., 2000), together 
with common sense envisaged under the international guidelines of the QA4EO (see Part I 
Section 2.7.2) (GEO/CEOSS, 2008). 

3. Conclusions 
The goal of this work is to revise, integrate and enrich previous analyses found in related 
papers about recent developments in the design and implementation of an operational 
automatic multi-sensor multi-resolution near real-time two-stage hybrid stratified 
hierarchical RS-IUS (Baraldi et al., 2006a; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi, 
2011a).  

For publication reasons this work is split into Part I and Part II. In Part I Section 2, related 
works, concepts and definitions are revised to provide this paper with a significant survey 
value and make it self-contained. In Part II Section 2, the survey of past works is 
completed. The original contribution of this work can be found in Part II Section 3 to Part 
II Section 7.  
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1. Introduction 
The goal of this work is to revise, integrate and enrich previous analyses found in related 
papers about recent developments in the design and implementation of an operational 
automatic multi-sensor multi-resolution near real-time two-stage hybrid stratified 
hierarchical remote sensing (RS) image understanding system (RS-IUS) (Baraldi et al., 2006; 
Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi, 2011a).  

For publication reasons this work consists of two companion papers, Part I and Part II 
respectively. In Part I related papers, concepts and definitions are revised from existing 
literature to provide this work with a significant survey value and make it self-contained. 
The survey of past works is completed in Part II Section 2, where differences at the 
architectural level between different families of existing RS-IUSs, namely, multi-agent 
hybrid RS-IUSs, two-stage segment-based RS-IUSs and two-stage stratified hierarchical 
hybrid RS-IUSs, are highlighted. 

The original contribution of Part II is to propose novel definitions of objective continuous 
sub-symbolic sensory data, continuous physical information, subjective discrete semi-
symbolic data structure, discrete semantic-square (semantic2) information (which is 
naturally generated from the simultaneous combination of three components: (I) an 
objective continuous sensory data set, (II) an external subjective supervisor (observer) and 
(III) his/her own subjective prior ontology equivalent to a model of the (3-D) world existing 
before looking at the objective sensory data at hand) and prior knowledge base.  

In practical contexts the aforementioned original definitions imply the following. 
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a. It is impossible to extract semantic2 information from objective continuous sensory data 
because the latter, per se, are provided with no semantics at all.  

b. It is possible to correlate discrete semantic2 information to objective continuous sensory 
data. Unfortunately, correlation between continuous sensory data and a finite and discrete 
set of categorical variables, corresponding to independent random variables generating 
separable data structures (data aggregations, data clusters, data objects), is low in real-
world RS image mapping problems at large data scale or fine semantic granularity, other 
than toy problems at small data scale and coarse semantic granularity. 

Some practical conclusions of potential interest to the RS, computer vision (CV), artificial 
intelligence (AI) and machine learning (MAL) communities stem from these speculations. 
Firstly, in operational contexts (e.g., RS image classification problems at national/ 
continental/ global scale), other than toy problems (e.g., RS image mapping at coarse spatial 
resolution and local/regional scale), inductive classifiers capable of learning from a finite 
labeled data set are considered structurally inadequate to correlate (rather than extract, see 
this text above) discrete semantic2 information with objective sensory data provided, per se, 
with no semantics at all.  

Secondly, to increase the operational quality indicators (QIs) of existing two-stage hybrid RS-
IUSs (namely, degree of automation, accuracy, efficiency, robustness to changes in input 
parameters, robustness to changes in the input data set, scalability, timeliness and economy), 
any first-stage inductive MAL-from-examples approach should be replaced by a deductive 
Machine Teaching (MAT)-by-rules capable of generating a preliminary classification first stage 
where small, but genuine image details are well preserved (Baraldi et al., 2006; Baraldi et al., 
2010a; Baraldi et al., 2010b; Baraldi, 2011a).  

Thirdly, in RS-IUSs, MAL-from-data algorithms, either labeled (supervised) or unlabeled 
(unsupervised), either context-insensitive (e.g., pixel-based) or context-sensitive (e.g., 2-D 
object-based), should be adapted to work on a driven-by-knowledge stratified (semantic 
masked, layered) basis and moved to the second stage of a novel two-stage stratified 
hierarchical hybrid RS-IUS architecture recently proposed in RS literature (Baraldi et al., 2006a; 
Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). 

As a proof of these concepts, the operational automatic multi-sensor multi-resolution near 
real-time Satellite Image Automatic Mapper™ (SIAM™), recently presented in RS literature1 
(Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 
2011a; Baraldi, 2011b),  is adopted as first stage. 

The rest of Part II of this work is organized as follows. Part II Section 3 discusses theoretical 
inconsistencies and algorithmic drawbacks found in Diamant's works (discussed in Part I 
Section 2.2 and Part I Section 2.5). Revised/novel definitions of objective continuous sensory 
data, continuous physical information, discrete semantic2 information and prior knowledge 
are provided in Part II Section 4. In Part II Section 5 practical consequences of the novel 
definitions provided in Part II Section 4 are considered for CV, AI and MAL applications. 
Part II Section 6 presents the operational automatic multi-sensor multi-resolution near real-
time SIAM™ as a proof of the original concepts proposed in this work. Conclusions are 
reported in Part II Section 7. 
                                                 
1 SIAM™ - Patent pending - © Andrea Baraldi  University of Maryland. 
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2. Related works (continued): Taxonomy of hybrid RS-IUS architectures 
As reported in Part I Section 2.1, there is a new trend of research and development in both 
CV (Cootes & Taylor, 2004) and RS literature (Matsuyama & Shang-Shouq Hwang, 1990; 
Shunlin Liang, 2004) to outperform existing scientific and commercial image understanding 
systems. This novel trend focuses on the development of quantitative hybrid models for 
retrieving sub-symbolic continuous variables (e.g., LAI) and symbolic categorical discrete 
variables (e.g., land cover composition) from multi-spectral (MS) imagery. By definition, 
hybrid models combine both statistical and physical models to take advantage of the unique 
features of each and overcome their shortcomings (see Part I Section 2.1). The study of 
hybrid quantitative models is also called AI systems integration. In this section, the 
taxonomy of hybrid RS-IUSs is summarized in line with (Baraldi et al., 2010a). It consists of: 

 multi-agent hybrid RS-IUSs, 
 two-stage segment-based RS-IUSs, whose conceptual foundation is well known in RS 

literature as as geographic (2-D) object-based image analysis (GEOBIA), including a so-
called iterative geographic OO image analysis (GEOOIA) approach  (Baatz et al., 2008). 
and 

 two-stage stratified hierarchical hybrid RS-IUSs employing SIAM™ as preliminary 
classification first stage. 

2.1 Multi-agent hybrid RS-IUSs 

In existing literature multi-agent hybrid RS-IUSs provide application-specific combinations 
of inductive and deductive inference mechanisms (Matsuyama & Shang-Shouq Hwang, 
1990). A traditional multi-agent hybrid RS-IUS architecture comprises the following 
modules (see Fig. 1). 

1. (3-D) Scene domain knowledge, also called world model (Matsuyama & Shang-Shouq 
Hwang, 1990). It is represented as a semantic network consisting of classes of objects as 
nodes and relationships between classes as arcs between nodes (refer to Part I Section 
2.2.2). 

2. A Low-Level Vision Expert (LLVE, refer to Part I Section 2.4.1.2) (Matsuyama & Shang-
Shouq Hwang, 1990). In general, an LLVE can be applied either image-wide or within a 
local image area specified by a Specialized Object Model Selection Expert (SOMSE, see 
this text below) (Mather, 1994). LLVE includes a battery of low-level sub-symbolic (non-
semantic) general-purpose domain-independent inductive-learning (fine-to-coarse, 
bottom-up) driven-without-knowledge inherently ill-posed image processing 
algorithms called image segmentation for simplicity's sake (also refer to Part I Section 
2.4.1.2) (Matsuyama & Shang-Shouq Hwang, 1990). As output, the image segmentation 
first stage provides image features, namely points and regions (segments, [2-D] objects, 
parcel or blobs (Carson et al., 1997; Lindeberg, 1993; Yang & Wang, 2007), see Part I 
Section 2.3) or, vice versa, region boundaries, i.e., edges, provided with no semantic 
meaning (see Part I Section 2.4.1.2).  

3. A high-level interpretation second stage employing a combination of top-down (model-
driven) and bottom-up (data-driven) inference mechanisms to establish the 
correspondence between sub-symbolic (2-D) image features extracted from the image 
domain and symbolic (3-D) object models stored in the world model to construct 
plausible structural (semantic) description(s) of the depicted scene (refer to Part I Section 
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2.3). The combination of top-down with bottom-up inference strategies achieves two 
operational advantages: (a) provides better conditions for an otherwise ill-posed driven-
without-knowledge segmentation first stage (refer to Part I Section 2.3) and (b) allows 
restriction of intensive processing to a small portion of the image data (Matsuyama & 
Shang-Shouq Hwang, 1990), analogously to a focus of visual attention in pre-attentive 
biological vision (Mason & Kandel, 1991; Gouras, 1991; Kandel, 1991). The high-level 
processing second stage comprises (Matsuyama & Shang-Shouq Hwang, 1990): (I) a 
Spatial Reasoning Expert (SRE) whose aim is to trigger the instantiation, within a 
candidate local area, of plausible generic (3-D) object models found in the available world 
model, e.g., house, and (II) a SOMSE (refer to this text above) which uses domain-
dependent knowledge about specific applications to: (i) prune the search space of 
specialized (3-D) object models (e.g., rectangular house, L-shaped house, etc.) linked by A-
KIND-OF relations to the generic target (3-D) object model (e.g., house) provided by SRE; 
(ii) transform the 3-D appearance properties of the specialized (3-D) object model into a 
selected set of 2-D appearance properties based on the imaging sensor model; (iii) 
transform a target spatial relation in fuzzy terms (e.g., in front of) provided by SRE into a 
local area based on a trial-and-error heuristic search with no concrete theoretical basis and 
(iv) provide a consistency examination between quantitative absolute image features 
collected by LLVE in a local area and the target 2-D appearance constraints. In other 
words, the 2-D appearance properties must be satisfied by image features extracted by 
LLVE from a local area. Since the image structure in a local area is very simple compared 
with that of the entire image, image feature extraction performed by an object model-
driven and locational constrained LLVE can be very efficient and reliable compared with 
that performed by the same LLVE run image-wide at the first stage (Matsuyama & Shang-
Shouq Hwang, 1990) (p. 41). 

   (3-D) World model 
1. 3-D object model appearance 

properties. 
2. Generalization / specialization hierarchy 

based on A-KIND-OF relations. 
3. Hierarchy based on PART-OF relations. 
4. Ontology of fuzzy spatial relations 

between different classes of objects. 

Low-Level Vision Expert 
(LLVE) 

Specialized Object Model 
Selection Expert 

(SOMSE) 

(2-D) Image 

Spatial Reasoning Expert 
(SRE) 

Query Answer 

Query Answer 

1÷4 

1, 2 

3-D scene features 

2-D image features 

 
Fig. 1. Multi-agent hybrid systems for RS image understanding (derived from Figure 2.1 in 
(Matsuyama & Shang-Shouq Hwang, 1990), p. 36). 
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Legenda. Y: Yes, N: No, C: Complete, I: Incomplete (radiometric calibration offset parameters are set to zero), (E)TM: (Enhanced) 
Thematic Mapper, B: Blue, G: Green, R: Red, NIR: Near Infra-Red, MIR: Medium IR, TIR: Thermal IR, SR: Spatial Resolution, Pan: 
Panchromatic. 
Blue columns: visible channels typical of water and haze. Green column: NIR band typical of vegetation. Brown columns: MIR channels 
characteristics of bare soils. Red column: TIR channel. 

 

SIAM™ 
system of 
systems 

 B –
(E)TM1, 
0.45-
0.52 
(m) 

G –
(E)TM2, 
0.52-
0.60 
(m) 

R –
(E)TM3, 
0.63-
0.69 
(m) 

NIR –
(E)TM4, 
0.76-0.90 
(m) 

MIR1 –
(E)TM5, 
1.55-1.75 
(m) 

MIR2 –
(E)TM7, 
2.08-2.35 
(m) 

TIR –
(E)TM6, 
10.4-12.5 
(m) 

SR 
(m) 

Rad. 
Cal. 
Y/N, 
C/I 

Pan 
SR 
(m) 

Notes 

L-SIAM™ 
(95/47/18 Sp. 
Cat.) 

Landsat-4/-5 
TM 

       30 Y-C  Refer to 
Table I in 
(Baraldi 
et al., 
2006a). 

Landsat-7 
ETM+ 

       30 Y-C 15 Same as 
above. 

MODIS         250, 
500, 
1000 

Y-C  Same as 
above. 

ASTER        15-
30 

Y-C  Same as 
above. 

CBERS-2B        N   
S-SIAM™ 
(68/40/15 Sp. 
Cat.) 

SPOT-4 
HRVIR  

    20 Y-I 10 Refer to 
Table II in 
(Baraldi 
et al., 
2006a). 

SPOT-5 HRG     10 Y-I 2.5 - 
5 

Same as 
above. 

SPOT-4/-5 
VMI 

    1100 Y-I  Same as 
above. 

IRS-1C/-1D 
LISS-III 

    23.5 Y-I   

IRS-P6 LISS-
III 

    23.5 Y-I   

IRS-P6 
AWiFS 

    56 Y-I   

AV-SIAM™ 
(82/42/16 Sp. 
Cat.) 

NOAA 
AVHRR 

    1100 Y  Refer to 
Table II in 
(Baraldi 
et al., 
2006a). 

MSG     3000 Y  Same as 
above. 

AA-SIAM™ 
(82/42/16Sp. 
Cat.) 

ENVISAT 
AATSR 

     1000 Y  Same as 
above. 

ERS-2 ATSR-
2 

     1000 Y   

I-SIAM™ 
(52/28/12Sp. 
Cat.) 

IKONOS-2     4 Y 1  
QuickBird-2     2.4 Y 0.61  
WorldView-2     2.0 Y 0.5  
GeoEye-1     1.64 Y 0.41  
OrbView-3     4 Y 1  
RapidEye-1 to 
-5 

    6.5 Y-I   

ALOS AVNIR-
2 

    10 Y   

KOMPSAT-2     4 N 1  
TopSat     5 N 2.5  
FORMOSAT-
2 

    8 N 2  

D-SIAM™ 
(52/28/12Sp. 
Cat.) 

Landsat-1/-2/-
3/-4/-5 MSS 

   79 Y   

IRS-P6 LISS-
IV 

   5.8 Y-I   

SPOT-1/-2/-3 
HRV 

   20 Y-I 10  

DMC    22-
32 

N   

  
Table 1. SIAM™ system of systems. List of spaceborne optical imaging sensors eligible for 
use as input. 
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Multi-agent hybrid systems typically suffer from two main limitations. 

 In addition to the intrinsic insufficiency of image features, e.g., due to occlusion and 
dimensionality reduction (refer to Part I Section 2.3), these systems are affected by the 
so-called artificial insufficiency caused by the inherent ill-posedness of the image 
segmentation problem (Matsuyama & Shang-Shouq Hwang, 1990) (see Part I Section 
2.4.1.2). This means that in RS common practice any first-stage image segmentation 
algorithm is simultaneously affected by both omission and commission segmentation 
errors. Although the inherent ill-posedness of image segmentation is acknowledged by 
a reasonable portion of existing literature (Burr & Morrone, 1992; Corcoran et al., 2010; 
Corcoran & Winstanley, 2007; Delves et al., 1992; Hay & Castilla, 2006; Matsuyama & 
Shang-Shouq Hwang, 1990; Petrou & Sevilla, 2006; Vecera & Farah, 1997), this is often 
forgotten by a large segment of the RS community where literally dozens of “novel” 
segmentation algorithms are published each year (Zamperoni, 1996) (refer to Part I 
Section 2.4.1.2).  

 Semantic nets lack flexibility and scalability to cope with changes in sensor 
characteristics and users’ changing needs, i.e., they are unsuitable for commercial RS 
image processing software toolboxes and remain limited to scientific applications. 

To overcome these limitations, an alternative two-stage stratified hierarchical hybrid RS-IUS 
architecture, such as that shown in Fig. 3, was proposed in recent literature (Baraldi et al., 
2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi, 2011a; Baraldi, 2011b; Baraldi et al., 
2010c). 

2.2 Two-stage segment-based RS-IUSs 

Two-stage segment-based RS-IUSs comprise an inductive driven-without-knowledge image 
segmentation first stage and a second-stage object-based classifier, see Fig. 2. The latter can 
be implemented based on deductive or inductive inference mechanisms, say, as a prior 
knowledge-based non-adaptive decision-tree or a supervised data learning classifier (e.g., a 
Support Vector Machine, SVM (Bruzzone & Carlin, 2006)).  

Due to the availability of a commercial GEOBIA software developed by a German company 
(Definiens Imaging GmbH, 2004; Esch et al., 2008), two-stage segment-based RS-IUSs have 
recently gained widespread popularity and are currently considered the state-of-the-art in 
both scientific and commercial RS image mapping application domains (Mather, 1994; 
Pekkarinen, Reithmaier & Strobl, 2009). In practice, under the guise of ‘flexibility’ current 
commercial 2-D object-based software provides overly complicated options to choose from 
(Hay & Castilla, 2006). This means that with their increasing diffusion commercial two-stage 
segment-based RS-IUSs show an increasing lack of productivity (Tapsall et al., 2010), 
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preliminary classification first stage 

Accounting for the customary distinction between a model and the algorithm used to 
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Multi-agent hybrid systems typically suffer from two main limitations. 
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Fig. 2. Two-stage segment-based hybrid RS-IUS architecture adopted, for example, by the 
eCognition commercial software toolbox (Definiens Imaging GmbH, 2004). Preliminary 
image simplification is pursued by means of an (ill-posed hierarchical) image segmentation 
approach which generates as output a segmented (discrete) map, either single-scale or 
multi-scale.  Worthy of note is that first-stage output sub-symbolic informational primitives, 
namely, labeled segments (2-D objects, parcels), e.g., segment 1, segment 2, etc., are 
provided with no semantic meaning. 

implementations proposed by Shackelford and Davis in recent years (Shackelford & Davis, 
2003a; Shackelford & Davis, 2003b). This novel RS-IUS architecture comprises the following 
phases (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; 
Baraldi, 2011a; Baraldi, 2011b).  

a. A radiometric calibration pre-processing stage, where DNs are transformed into top-of-
atmosphere reflectance (TOARF) or surface reflectance (SURF) values, with TOARF  
SURF, the latter being an ideal (atmospheric noise-free) case of the former. This 
radiometric calibration constraint not only ensures the harmonization and 
interoperability of multi-source observational data in line with the Quality Assurance 
Framework for EO (QA4EO) guidelines (GEO/CEOSS, 2008), but  is considered a 
necessary, although not sufficient, condition for input Earth observation (EO) imagery 
to be automatically interpreted (see Part I Section 2.7.1). It is worth mentioning that a 
RS-IUS suitable for mapping TOARF values into surface categories makes the 
inherently ill-posed (therefore, difficult to solve) atmospheric correction problem an 
optional MS image pre-processing stage unlike competing classification approaches 
employing surface reflectance spectra, such as the ERDAS ATCOR3 (Richter, 2006) (see 
Part I Section 2.7.1). 
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Fig. 3. Novel hybrid two-stage stratified hierarchical RS-IUS architecture. This data flow 
diagram (DFD) shows processing blocks as rectangles and sensor derived data products as 
circles. In this example, a SPOT-5 MS image is adopted as input.  The panchromatic (PAN) 
image can be generated from the MS image. The MS image is input to the preliminary 
classification first stage and, if useful, to second-stage class-specific classification modules. 
The PAN image is exclusively employed as input to second-stage stratified class-specific 
context-sensitive classification modules, where color information is dealt with by 
stratification. For example, stratified texture detection is computed in the PAN image 
domain, which reduces computation time. 

b. A first-stage application-independent per-pixel (non-contextual) top-down (prior 
knowledge-based, see Part I Section 2.1) preliminary classifier in the Marr sense (Marr, 
1982). 

c. A second-stage battery of stratified hierarchical context-sensitive application-dependent 
modules for class-specific feature extraction and classification. 

In (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 
2011a; Baraldi, 2011b), the abovementioned first-stage pixel-based preliminary classifier was 
designed and implemented as an original operational automatic near-real-time per-pixel 
multi-source multi-resolution application-independent SIAM™. To employ as input a 
radiometrically calibrated MS image acquired by almost any of the ongoing or future 
planned satellite optical missions, SIAM™ is designed as an integrated system of systems. It 
comprises a “master” 7-band Landsat-like SIAM™ (L-SIAM™) together with five down-
scaled (“slave”, derived) versions of L-SIAM™ whose input is a MS image featuring a 
spectral resolution that overlaps with, but is inferior to, Landsat’s. To summarize, SIAM™ 
combines six sub-systems (refer to Table 1).  
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In (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 
2011a; Baraldi, 2011b), the abovementioned first-stage pixel-based preliminary classifier was 
designed and implemented as an original operational automatic near-real-time per-pixel 
multi-source multi-resolution application-independent SIAM™. To employ as input a 
radiometrically calibrated MS image acquired by almost any of the ongoing or future 
planned satellite optical missions, SIAM™ is designed as an integrated system of systems. It 
comprises a “master” 7-band Landsat-like SIAM™ (L-SIAM™) together with five down-
scaled (“slave”, derived) versions of L-SIAM™ whose input is a MS image featuring a 
spectral resolution that overlaps with, but is inferior to, Landsat’s. To summarize, SIAM™ 
combines six sub-systems (refer to Table 1).  
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i. A “master” 7-band L-SIAM™ capable of detecting 95/ 47/ 18 spectral categories at 
fine/ intermediate/ coarse semantic granularity (see Fig. 4). The legend of the 
preliminary classification map generated by L-SIAM™ at fine semantic granularity is 
shown in Table 2. 

ii. A four-band Satellite Pour l'Observation de la Terre (SPOT)-like SIAM™ (S-SIAM™), 
which detects 68/ 40/ 15 spectral categories at fine/ intermediate/ coarse semantic 
granularity (see Fig. 5).  

iii. A four-band National Oceanic and Atmospheric Administration (NOAA) Advanced 
Very High Resolution Radiometer (AVHRR)-like SIAM™ (AV-SIAM™), which detects 
82/ 42/ 16 spectral categories at fine/ intermediate/ coarse semantic granularity.   

iv. A five-band ENVISAT Advanced Along-Track Scanning Radiometer (AATSR)-like 
SIAM™ (AA-SIAM™), which detects 82/ 42/ 16 spectral categories at fine/ 
intermediate/ coarse semantic granularity.  

v. A four-band IKONOS-like SIAM™ (I-SIAM™), which detects 52/ 28/ 12 spectral 
categories at fine/ intermediate/ coarse semantic granularity (see Fig. 6). The legend of 
the preliminary classification map generated by I-SIAM™ at fine semantic granularity 
is shown in Table 3. 

vi. A three-band Disaster Monitoring Constellation (DMC)-like SIAM™ (D-SIAM™), 
which detects 52/28/12 spectral categories at fine/intermediate/coarse semantic 
granularity.  

"High" leaf area index (LAI) vegetation types (LAI values decreasing left to right)
"Medium" LAI vegetation types (LAI values decreasing left to right)
Shrub or herbaceous rangeland
Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland) 
Bare soil or built-up
Deep water, shallow water, turbid water or shadow
Thick cloud and thin cloud over vegetation, or water, or bare soil
Thick smoke plume and thin smoke plume over vegetation, or water, or bare soil
Snow and shadow snow
Shadow
Flame
Unknowns  
Table 2. Preliminary classification map legend adopted by L-SIAM™ at fine semantic 
granularity. Pseudo-colors of the 95 spectral categories are gathered based on their spectral 
end member (e.g., bare soil or built-up) or parent spectral category (e.g., "high" LAI 
vegetation types). The pseudo-color of a spectral category is chosen as to mimic natural 
colors of pixels belonging to that spectral category. 

 "High" leaf area index (LAI) vegetation types (LAI values decreasing left to right)
"Medium" LAI vegetation types (LAI values decreasing left to right)
Shrub or herbaceous rangeland
Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland) 
Bare soil or built-up
Deep water or turbid water or shadow
Smoke plume over water, over vegetation or over bare soil
Snow or cloud or bright bare soil or bright built-up
Unknowns  
Table 3. Preliminary classification map legend adopted by I-SIAM™ at fine semantic 
granularity. Pseudo-colors of the 52 spectral categories are gathered based on their spectral 
end member (e.g., bare soil or built-up) or parent spectral category (e.g., "high" LAI 
vegetation types). The pseudo-color of a spectral category is chosen as to mimic natural 
colors of pixels belonging to that spectral category. 
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Fig. 4 to Fig. 6 show qualitatively that, in disagreement with a common opinion in the RS 
community where GEOBIA is considered indispensable for spaceborne VHR image 
understanding (Bruzzone & Carlin, 2006; Bruzzone & Persello, 2009; Persello & Bruzzone, 
2010), the pixel-based SIAM™ is very successful in the automatic mapping of RS imagery, 
including VHR images (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi 
et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). This means that SIAM™ is not affected by the 
well-known salt-and-pepper classification noise effect which traditionally affects ordinary 
pixel-based classifiers (e.g., maximum-likelihood classifiers (Cherkassky and Mulier, 2006)), 
which is tantamount to saying that SIAM™ is successful in modeling the within-spectral-
category variance.  

 
Fig. 4(a). Web-Enabled Landsat Data (WELD) Project (USGS & NASA, 2011). This is a joint 
NASA and USGS project providing seamless consistent mosaics of fused Landsat-7 
Enhanced TM Plus (ETM+) and MODIS data radiometrically calibrated into top-of-
atmosphere reflectance (TOARF) and surface reflectance. These mosaics are made freely 
available to the user community. Each consists of 663 fixed location tiles. Spatial resolution: 
30 m. Area coverage: Continental USA and Alaska. Period coverage: 7-year. Product time 
coverage: weekly, monthly, seasonal and annual composites. 
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Fig. 4(b). Including the map of Alaska at the top right. Preliminary classification map 
automatically generated by L-SIAM™ from the 2008 annual WELD mosaic shown in Fig. 
4(a). Output spectral categories are depicted in pseudo colors. Map legend: refer to Table 2. 
To generate this map at national scale L-SIAM™ was run overnight by L. Boschetti (Univ. of 
Maryland) in Dec. 2010. To the best of this author’s knowledge, this is the first example of 
such a high-level product automatically generated at both the NASA and USGS.  
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Fig. 5(a). 4-band GMES-IMAGE2006 Coverage 1 mosaic,  consisting of approximately two 
thousand 4-band IRS-P6 LISS-III, SPOT-4, and SPOT-5  images, mostly acquired during the 
year 2006, depicted in false colors: Red – Band 4 (Short Wave InfraRed, SWIR), Green – Band 
3 (Near IR, NIR), Blue – Band 1 (Visible Green). Down-scaled spatial resolution: 25 m. 

 
Fig. 5(b). Preliminary classification map automatically generated by S-SIAM™ from the 
mosaic shown in Fig. 5(a). Output spectral categories are depicted in pseudo colors. A map 
legend  similar to Table 2 is adopted: water and shadow areas are in blue, clouds in white, 
snow and ice in light blue, vegetation types in different shades of green, rangeland types in 
different shades of light green, barren land types in different shades of brown and grey. To 
the best of this author’s knowledge, this is the first example of such a high-level product 
automatically generated at the European Commission – Joint Research Center (EC-JRC).  
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Fig. 6(a). QuickBird-2 image, 2.4 m spatial resolution, acquisition date 2010-03-16, 
radiometrically calibrated into TOARF values, depicted in false colors (R: 3, G: 4, B: 1). 
Default image histogram stretching: ENVI linear stretching 2%.  

 
Fig. 6(b). Automatic Q-SIAM™ preliminary mapping of the QB-2 image shown in Fig. 6(a). 
Spectral categories are depicted in pseudo colors. Map legend: see Table 3. It is noteworthy 
that, within the Q-SIAM™ mutually exclusive and completely exhaustive classification 
scheme, cloud detection is per se an interesting operational product with relevant 
commercial applications and, to the best of these authors' knowledge, without alternative 
solutions in either commercial or scientific RS-IUSs. 
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Fig. 7(a). Zoomed area of a Landsat 7 ETM+ image of Virginia, USA (path: 16, row: 34, 
acquisition date: 2002-09-13), depicted in false colors (R: band ETM5, G: band ETM4, B: band 
ETM1), 30 m resolution, calibrated into TOARF values. 

 
Fig. 7(b). 2nd-stage stratified vegetated land cover classification map generated in series 
with the L-SIAM™ first stage from Fig. 7(a). This 2nd-stage map consists of 19 
vegetated/non-vegetated land cover classes, depicted in pseudo-colors, including: crop field 
or grassland, broad-leaf forest, needle-leaf forest and non-vegetated pixels (in black). Input 
features are: spectral layers generated by L-SIAM™, (achromatic) brightness and multi-scale 
isotropic texture features extracted from the brightness image. 
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To the best of this author’s knowledge no unifying automatic multi-sensor multi-resolution 
near real-time RS image classification platform alternative to SIAM™ can be found in 
existing literature. This is tantamount to saying that SIAM™ provides the first operational 
example of an automatic multi-sensor multi-resolution near real-time EO system of systems 
envisaged under on-going international research programs such as the Global EO System of 
Systems (GEOSS) conceived by the Group on Earth Observations (GEO) (GEO, 2005; GEO, 
2008a) and the Global Monitoring for the Environment and Security (GMES), which is an 
initiative led by the European Union (EU) in partnership with the European Space Agency 
(ESA) (ESA, 2008; GMES, 2011) (see Part I Section 1). 

Fig. 7 shows an example of an automatic 2nd-stage stratified rule-based vegetated land 
cover classification system in series with the L-SIAM™ first stage. The two-stage automatic 
classifier employing L-SIAM™ as preliminary classification first stage (refer to Fig. 3) is 
input with a 7-band Landsat image radiometrically calibrated into TOARF values, shown in 
Fig. 7(a). The 2nd-stage stratified rule-based vegetated land cover classification system in 
series with the L-SIAM™ first stage employs as input features: spectral-based layers (strata, 
generated by L-SIAM™ at first stage), (achromatic) brightness and multi-scale isotropic 
texture extracted from the brightness image. The 2nd-stage classifier provides as output a 
classification map consisting of 19 vegetated/non-vegetated land cover classes, depicted in 
pseudo-colors, including: crop field or grassland, broad-leaf forest, needle-leaf forest and 
non-vegetated pixels (in black), see Fig. 7(b).  

3. Inconsistencies and limitations of the Diamant computational theory and 
algorithms 
An original analysis of the Diamant definitions reported in Part I Section 2.2.3 and 
Diamant's image segmentation and contour detection algorithms summarized in Part I 
Section 2.5 is provided below. 

3.1 Comments on the Diamant definitions of data, information and knowledge 

According to this author, the Diamant definitions reported in Part I Section 2.2.3 are affected 
by three major drawbacks. 

i. Diamant states that "information elicitation (extraction) does not require incorporation 
of any high-level knowledge" (Diamant, 2010a; Diamant, 2010b), which is tantamount to 
saying that detection of non-semantic primary data structures (data objects), e.g., (2-D) 
image segments, in an unlabeled data set, e.g., a (2-D) image, does not require 
incorporation of any high-level (prior) knowledge. Based on this statement it is possible 
to conclude that despite his theoretical anti-conformism, namely, his willingness to 
replace the MAL-from-examples paradigm with the MAT-by-rules approach, Diamant 
is a conformist in practice. In fact, the Diamant image contour detection and image 
segmentation algorithms (see Part I Section 2.5) fit existing CV system architectures well 
established in literature, such as, respectively, the Marr CV system architecture, 
conceived in the 1980s and comprising a zero-crossings (contour detection) primal 
sketch, and RS-IUSs where an image segmentation first stage is adopted in agreement 
with the GEOBIA approach (see Part I Section 2.4.1.2). In other words, there is a clear 
contradiction in terms between the Diamant claim of replacing the MAL-from-examples 
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with a MAT-by-rules paradigm and his practical proofs of concept, consisting of image 
segmentation and contour detection algorithms 100% consistent with the same MAL-
from-examples paradigm he intends to overcome. 

ii. If the Diamant CV system coincides with a Marr CV system or an GEOBIA approach 
(refer to paragraph (i) above), then, in practical contexts, its operational QIs (see Part I 
Section 2.8) are expected to score as low as Marr's or OBIA's (refer to Part I Section 1, Part I 
Section 2.4.1.2 and Part II Section 2). At the level of understanding of an information 
processing system known as computational theory (system architecture, see Part I Section 
2.6), GEOBIA scores low in operational contexts because, according to the present author,  
it goes symbolic as late as possible, namely, at the output of its second and last stage (see 
Fig. 2). This is in contrast with an important intuition by Marr stating that “vision goes 
symbolic almost immediately, right at the level of zero-crossings (first-stage primal 
sketch)… without loss of information” (Marr, 1982) (p. 343) (see Part I Section 2.3).  

iii. To recover from the gap existing between Diamant's theoretical anti-conformism, but 
practical conformism  (refer to paragraphs (i) and (ii) above), it is sufficient to observe 
that statements such as "information elicitation (aggregation) does not require 
incorporation of any high-level knowledge" (Diamant, 2010a; Diamant, 2010b), are in 
clear contradiction with a relevant section of existing literature (see Part I Section 
2.4.1.2). In particular, Diamant considers primary data structures, equivalent to non-
semantic data objects (e.g., image segments), as "natural data structures which reflect 
some similarities among neighboring elements in the data. Therefore, defining them is 
certainly a well-grounded procedure that does not raise any objection, because objective 
(physical) laws underpin such a procedure" (Diamant, 2010a) (see Part I Section 2.2.3.2). 
In other words, "physical information, being a natural property of the data, can be 
extracted instantly from the data, and any special rules for such task accomplishment are 
not needed" (Diamant, 2010a). Unfortunately, no well-grounded (well-posed) inductive 
learning-from-unlabeled-data approach exists (see Part I Section 2.1). For example, both 
unlabeled data clustering and (2-D) image segmentation algorithms are inherently ill-
posed (see Part I Section 2.4.1). By adopting the Diamant terminology it is possible to 
state that detection of "discernable" data structures is not at all a physical problem of 
objective nature: it is rather a typical semantic problem of a qualitative (subjective) 
nature, where prior knowledge (provided by an external supervisor) must come into 
play to make the inherently ill-posed inductive learning-from-data problem better 
posed, although subjective (see Part I Section 2.1). This is tantamount to saying that the 
conceptual foundation of GEOBIA, i.e., the relationship between inherently ill-posed 
sub-symbolic (2-D) image segments and symbolic (3-D) landscape objects, remains 
affected by a lack of general consensus and research (Hay & Castilla, 2006) (see Part I 
Section 2.4.1.2). 

To conclude, Diamant appears to have totally misunderstood one of two facts about the 
MAL-from-examples paradigm. These two facts hold true for MAL from unlabeled data and 
MAL from labeled data algorithms, respectively, as described below. 

a. MAL from unlabeled (unsupervised) data (see Part I Section 2.1 and Part I Section 2.4.1). 
Any machine learning from unlabeled data approach (e.g., unlabeled data clustering, 
image segmentation) is inherently ill-posed and requires prior knowledge to become 
better posed. It means that any attempt to extract non-semantic primary data structures 
(data objects), e.g., image segments and unlabeled data clusters, from an unlabeled data 
set (e.g., an image) without incorporation of high-level knowledge provided by an 
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with a MAT-by-rules paradigm and his practical proofs of concept, consisting of image 
segmentation and contour detection algorithms 100% consistent with the same MAL-
from-examples paradigm he intends to overcome. 

ii. If the Diamant CV system coincides with a Marr CV system or an GEOBIA approach 
(refer to paragraph (i) above), then, in practical contexts, its operational QIs (see Part I 
Section 2.8) are expected to score as low as Marr's or OBIA's (refer to Part I Section 1, Part I 
Section 2.4.1.2 and Part II Section 2). At the level of understanding of an information 
processing system known as computational theory (system architecture, see Part I Section 
2.6), GEOBIA scores low in operational contexts because, according to the present author,  
it goes symbolic as late as possible, namely, at the output of its second and last stage (see 
Fig. 2). This is in contrast with an important intuition by Marr stating that “vision goes 
symbolic almost immediately, right at the level of zero-crossings (first-stage primal 
sketch)… without loss of information” (Marr, 1982) (p. 343) (see Part I Section 2.3).  
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2.4.1.2). In particular, Diamant considers primary data structures, equivalent to non-
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certainly a well-grounded procedure that does not raise any objection, because objective 
(physical) laws underpin such a procedure" (Diamant, 2010a) (see Part I Section 2.2.3.2). 
In other words, "physical information, being a natural property of the data, can be 
extracted instantly from the data, and any special rules for such task accomplishment are 
not needed" (Diamant, 2010a). Unfortunately, no well-grounded (well-posed) inductive 
learning-from-unlabeled-data approach exists (see Part I Section 2.1). For example, both 
unlabeled data clustering and (2-D) image segmentation algorithms are inherently ill-
posed (see Part I Section 2.4.1). By adopting the Diamant terminology it is possible to 
state that detection of "discernable" data structures is not at all a physical problem of 
objective nature: it is rather a typical semantic problem of a qualitative (subjective) 
nature, where prior knowledge (provided by an external supervisor) must come into 
play to make the inherently ill-posed inductive learning-from-data problem better 
posed, although subjective (see Part I Section 2.1). This is tantamount to saying that the 
conceptual foundation of GEOBIA, i.e., the relationship between inherently ill-posed 
sub-symbolic (2-D) image segments and symbolic (3-D) landscape objects, remains 
affected by a lack of general consensus and research (Hay & Castilla, 2006) (see Part I 
Section 2.4.1.2). 

To conclude, Diamant appears to have totally misunderstood one of two facts about the 
MAL-from-examples paradigm. These two facts hold true for MAL from unlabeled data and 
MAL from labeled data algorithms, respectively, as described below. 

a. MAL from unlabeled (unsupervised) data (see Part I Section 2.1 and Part I Section 2.4.1). 
Any machine learning from unlabeled data approach (e.g., unlabeled data clustering, 
image segmentation) is inherently ill-posed and requires prior knowledge to become 
better posed. It means that any attempt to extract non-semantic primary data structures 
(data objects), e.g., image segments and unlabeled data clusters, from an unlabeled data 
set (e.g., an image) without incorporation of high-level knowledge provided by an 
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external supervisor is a fatal misconception, committed by Diamant himself, stemming 
from the fallacies (inherent ill-posedness) of the MAL-from-examples paradigm. 

b. MAL from labeled (supervised) data (see Part I Section 2.1 and Part I Section 2.4.2). It is 
true that, in Diamant's words, "knowledge about the rules that underpin (semantic) 
secondary (data) structures formation (from primary data structures considered as non-
semantic and driven-without-knowledge) is a property of human observers (or their 
artificial counterparts) and not an inherent property of the data... (therefore) attempts to 
extract semantics from data are a fatal misconception stemming from the fallacies of the 
data-processing paradigm..." (Diamant, 2010a). This quote implies that no semantic 
information can be extracted from objective sensory data, but a correlation function can 
be established between semantic concepts and objective data for toy data 
understanding problems exclusively (refer to Part I Section 1 and Part I Section 2.1). 

3.2 Comments on the Diamant image segmentation algorithm 

In practical terms, the image segmentation algorithm proposed by Diamant can be subjected 
to the following criticisms. 

 Not enough information is provided for the implementation to be reproduced. In 
practice the Diamant image segmentation algorithm cannot be duplicated and, 
therefore, cannot be tested by others. 

 Diamant does not provide his image segmentation algorithm with QIs such as those 
listed in Part I Section 2.8. For example, based on Diamant's paper it is impossible to 
assess the following operational QIs. 
 Degree of automation. The following questions remain unanswered. What is the 

number of the image segmentation-free parameters to be user-defined? Have these 
user-defined parameters a physical meaning? What is their range of change?  

 Robustness to changes in input parameters to be user-defined.  
 Robustness to changes in the input data set acquired across time, space and 

sensors. In his paper (Diamant, 2005) Diamant applies his image segmentation 
algorithm to a single toy problem whose input data set consists of a panchromatic 
image 640×480 pixels in size. What about color images? What about satellite 
imagery? What about synthetic images of known visual properties? 

 Scalability.  For example, does this image segmentation algorithm apply to data 
sets of different spatial scales, e.g., mosaics of hundreds of satellite images to 
generate classification maps at global scale where small but genuine image details 
(e.g., one pixel-wide roads) must be well preserved? I am afraid it does not... Does 
it apply to different sensors and users? 

 Efficiency in computation time and memory occupation. 
 Accuracy in terms of spatial quality of the segment boundaries (Baraldi et al., 2005; 

Persello & Bruzzone, 2010). 
The conclusion is that based on existing literature the overall quality of the Diamant 
image segmentation algorithm remains unknown, which is often the case with the 
dozens of alternative image segmentation algorithms published in RS and CV literature 
each year (refer to Part I Section 2.4.1.2). Perhaps it is also due to these implementation 
shortcomings that so many researchers and practitioners ignored or criticized 
Diamant's methodological speculations. 
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 The Diamant image segmentation algorithm is not quantitatively compared (see Part I 
Section 2.8) against at least one alternative approach in a test image set consisting of 
both real and synthetic images (Baraldi et al., 2010c). 

 The image segmentation algorithm proposed in (Diamant, 2005) is not technically 
sound. 
 In (Diamant, 2005) Diamant writes "segmentation/classification" and then "spatially 

connected regional groups (of pixels)" as "clusters" rather than segments, blobs or 
regions (see Part I Section 2.3). It is well known that (2-D) image  segmentation, 
labeled (supervised) data classification and unlabeled (unsupervised) data clustering 
are completely different inductive learning-from-data problems (see Part I Section 
2.4). Mixing these terms is a relevant conceptual mistake. 

 It is well known that image region extraction is the dual task of edge detection, in 
fact they are both inherently ill-posed inductive learning-from-unlabeled data 
problems (see Part I Section 2.4.1.2). In (Diamant, 2005), quite surprisingly Diamant 
acknowledges the ill-posedness of edge detection, but appears to ignore the 
inherent ill-posedness (subjective nature) of image region extraction acknowledged 
by a relevant portion of existing literature (see Part I Section 2.4.1.2). In fact, he 
states: "the efficiency of (my own) unsupervised top-down directed region-based 
(learning from unlabeled data) image segmentation is hard to disprove today" 
(Diamant, 2005). For example, by replacing pixels belonging to the same segment 
with their segment-based mean value (often called mean image), Diamant's image 
segmentation algorithm provides as output a piecewise constant approximation of 
the input image. Of course, researchers and practitioners interested in texture 
segmentation would find the Diamant piecewise constant image segmentation of 
little utility. In fact, the Diamant image segmentation algorithm incorporates no 
texture model. In practice, it detects texture elements (textons) rather than textures 
(made of textons) in the image. This accounts for the subjective nature of the image 
segmentation problem which is apparently ignored by Diamant. 

 Breaking points and failure modes of the implemented algorithm are not documented 
in the paper. 

 Conclusions are not properly supported by results contained in the manuscript. Indeed 
claims such as "the efficiency of (my own) unsupervised top-down directed region-
based (learning from unlabeled data) image segmentation is hard to disprove today" 
(Diamant, 2005) are completely unjustified in both theoretical and practical terms (see 
previous comments). 

To summarize, the Diamant image segmentation algorithm appears as "yet another image 
segmentation algorithm" (Baraldi et al., 2010a) based on heuristics whose superiority against 
alternative approaches is completely unproved. In other words, the image segmentation 
algorithm proposed by Diamant cannot be considered as adequate proof of his concepts (see 
Part I Section 2.2.3.2). 

3.3 Comments on the Diamant contour detector 

In practical terms, the contour detection algorithm proposed by Diamant can be subjected to 
the following criticisms. 
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 The Diamant image segmentation algorithm is not quantitatively compared (see Part I 
Section 2.8) against at least one alternative approach in a test image set consisting of 
both real and synthetic images (Baraldi et al., 2010c). 

 The image segmentation algorithm proposed in (Diamant, 2005) is not technically 
sound. 
 In (Diamant, 2005) Diamant writes "segmentation/classification" and then "spatially 

connected regional groups (of pixels)" as "clusters" rather than segments, blobs or 
regions (see Part I Section 2.3). It is well known that (2-D) image  segmentation, 
labeled (supervised) data classification and unlabeled (unsupervised) data clustering 
are completely different inductive learning-from-data problems (see Part I Section 
2.4). Mixing these terms is a relevant conceptual mistake. 

 It is well known that image region extraction is the dual task of edge detection, in 
fact they are both inherently ill-posed inductive learning-from-unlabeled data 
problems (see Part I Section 2.4.1.2). In (Diamant, 2005), quite surprisingly Diamant 
acknowledges the ill-posedness of edge detection, but appears to ignore the 
inherent ill-posedness (subjective nature) of image region extraction acknowledged 
by a relevant portion of existing literature (see Part I Section 2.4.1.2). In fact, he 
states: "the efficiency of (my own) unsupervised top-down directed region-based 
(learning from unlabeled data) image segmentation is hard to disprove today" 
(Diamant, 2005). For example, by replacing pixels belonging to the same segment 
with their segment-based mean value (often called mean image), Diamant's image 
segmentation algorithm provides as output a piecewise constant approximation of 
the input image. Of course, researchers and practitioners interested in texture 
segmentation would find the Diamant piecewise constant image segmentation of 
little utility. In fact, the Diamant image segmentation algorithm incorporates no 
texture model. In practice, it detects texture elements (textons) rather than textures 
(made of textons) in the image. This accounts for the subjective nature of the image 
segmentation problem which is apparently ignored by Diamant. 

 Breaking points and failure modes of the implemented algorithm are not documented 
in the paper. 

 Conclusions are not properly supported by results contained in the manuscript. Indeed 
claims such as "the efficiency of (my own) unsupervised top-down directed region-
based (learning from unlabeled data) image segmentation is hard to disprove today" 
(Diamant, 2005) are completely unjustified in both theoretical and practical terms (see 
previous comments). 

To summarize, the Diamant image segmentation algorithm appears as "yet another image 
segmentation algorithm" (Baraldi et al., 2010a) based on heuristics whose superiority against 
alternative approaches is completely unproved. In other words, the image segmentation 
algorithm proposed by Diamant cannot be considered as adequate proof of his concepts (see 
Part I Section 2.2.3.2). 

3.3 Comments on the Diamant contour detector 

In practical terms, the contour detection algorithm proposed by Diamant can be subjected to 
the following criticisms. 
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 Status = Eq. (1-4), is nothing new, but a well-known isotropic zero dc-value mexican-hat 
operator for contrast detection (Canny, 1986; Burt, & Adelson,1983; Marr, 1982; Jain & 
Healey, 1998). 

 Intensity information, Iint = Eq. (1-3), is another contrast value. However, it does not 
feature zero dc-value. This means the following. 
 Correlation between Iint = Eq. (1-3) and status = Eq. (1-4) can be relevant, i.e., Iloc = 

Eq. (1-2) = Eq. (1-3) × Eq. (1-5) is the product of two correlated contrast values 
where one-of-two is absolute valued. 

 Term Iint = Eq. (1-3) is not consistent with the psychophysical phenomenon of the 
Mach bands: where a luminance (radiance, intensity) ramp meets a plateau, there 
are spikes of brightness (perceived luminance), whereas there are none in the 
luminance profile. This is the sole case of continuity in the luminance profile 
capable of generating spikes of brightness (Baraldi & Parmiggiani, 1996a). 

 The Diamant contour detection is single scale. On the contrary, it is known that the 
human visual system employs at least four spatial scales of analysis (Wilson & Bergen, 
1979) (see Part I Section 2.3). 

 The Diamant contour detector is not quantitatively compared (see Section 2.7) against at 
least one alternative approach in a test image set consisting of both real and synthetic 
images (Baraldi et al., 2010c). 

To summarize, the Diamant contour detector appears to be neither new nor biologically 
plausible. It can be considered as "yet another contour detector" (Baraldi et al., 2010a) based 
on heuristics whose superiority against  alternative approaches is completely unproved. In 
other words, the contour detector proposed by Diamant cannot be considered as adequate 
proof of his concepts (see Part I Section 2.2.3.2). 

4. Revised/novel definitions of objective continuous sub-symbolic sensory 
data, continuous physical information, subjective discrete semi-symbolic 
data structure, discrete semantic-square (semantic2) information and prior 
knowledge base 
As a revision of Diamant's works (Diamant, 2005; Diamant, 2008; Diamant, 2010a; Diamant, 
2010b), a new set of definitions of: (i) sub-symbolic objective primary data element in an 
objective sensory data set, (ii) semi-symbolic subjective secondary data structure, (iii) 
objective physical information, (iv) subjective semantic-square (semantic2) information and 
(v) subjective prior knowledge base (ontology or model of the 3-D world) provided by an 
external subjective supervisor (human, God or equivalent machine). 

4.1 Levels of aggregation of objective continuous sub-symbolic sensory data 

There are five fine-to-coarse possible levels of aggregation of objective continuous sub-
symbolic sensory data. These levels of aggregation are either sub-symbolic (non-semantic), 
semi-symbolic or symbolic. Semi-concepts are defined as stable concepts (percepts, classes 
of 3-D objects in the world) whose semantic meaning is adopted at the bottom level (layer 0) 
of an ontology (see Part I Section 2.2.2). The semantic information of semi-concepts (e.g., in a 
RS image, land cover semi-concepts are spectral categories such as water or shadow, snow or 
ice, bare soil or built-up, vegetation, etc.) is superior to that of objective data, whose semantic 
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information is null, but equal or inferior (i.e., not superior) to that of concepts belonging to 
higher levels of abstraction (aggregation) in the ontology at hand (e.g., in a RS image 
classification taxonomy such as the International Global Biosphere Programme (IGBP) land 
cover classification scheme (FAO, 2000), target (3-D) land cover classes are water bodies, snow 
or ice, barren, urban and built-up, needle-leaf forest, broad-leaf forest, mixed forest, shrubland, 
grassland, cropland, etc.) (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi 
et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). An ontology is a hierarchical abstract 
representation (model) of the (3-D) world. For example, well-known examples of RS data 
classification taxonomies are the aforementioned IGBP land cover classification scheme 
(FAO, 2000), the Co-ordination of Information on the Environment (CORINE) (European 
Commission Joint Research Center, 2005), the U.S. Geological Survey (USGS) classification 
hierarchy (Lillesand & Kiefer, 1994) and the Food and Agriculture Organization of the 
United Nations (FAO) Land Cover Classification System (LCCS) (Di Gregorio & Jansen, 
2000; Herold et al., 2006). An ontology can be modeled as a semantic network consisting of a 
hierarchical class taxonomy, represented as an inverted tree whose leaves are at the bottom 
layer 0, plus relationships between classes as arcs between nodes (refer to Part I Section 
2.2.2). 

The five fine-to-coarse possible levels of aggregation of objective sub-symbolic sensory data 
are listed below.  

1. An unlabeled objective continuous (quantitative) sub-symbolic (non-semantic) 
sensory scalar data element. For example, a one-band pixel value in an image, a 
character in a vocabulary, etc. This is a scalar (simple, atomic, elementary, primitive) 
fact (measurement, sign, symbol, character, element) resulting from an observation 
(examination, inspection, monitoring, measurement) of the (3-D) world.  

2. An unlabeled objective continuous sub-symbolic primary data vector / primary data 
n-tuple / primary data element, where n  1 is the vector dimensionality. Each primary 
data n-tuple consists of n  1 scalar data elements, e.g., a multi-spectral pixel value in an 
image, a word in a dictionary, etc. In the rest of this paper, if an unlabeled objective data 
set consisting of primary data elements is discrete and finite (e.g., an image as a 2-D 
data array), then its cardinality is identified as p (e.g., an image consists of p pixels). In 
this case primary data elements may be identified by integer numbers, e.g., a pixel is 
identified by a (row, column) coordinate pair in a (2-D) image domain. A set of sub-
symbolic primary data elements (e.g., an image) can be described according to a given 
mathematical vocabulary/language. For example, a 2-D array of pixels (image) can be 
encoded as a 2-D spatial frequency function by means of a 2-D fast Fourier transform 
(FFT).  

3. A finite set (e.g., a (2-D) image array) of p unlabeled objective continuous sub-
symbolic primary data elements (e.g., pixels), with p  {1, ). To be described in 
physical terms, a set of objective sub-symbolic primary data elements requires a 
mathematical vocabulary/language, e.g., a 2-D FFT of a (2-D) image. This is related to 
the concept of continuous physical information in an objective sensory data set (refer to 
this text below). 

4. A labeled subjective discrete semi-symbolic secondary data structure / secondary data 
object. It consists of one or more primary data elements of a given objective data set 
grouped together (based on any possible subjective aggregation criterion) and labeled 
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information is null, but equal or inferior (i.e., not superior) to that of concepts belonging to 
higher levels of abstraction (aggregation) in the ontology at hand (e.g., in a RS image 
classification taxonomy such as the International Global Biosphere Programme (IGBP) land 
cover classification scheme (FAO, 2000), target (3-D) land cover classes are water bodies, snow 
or ice, barren, urban and built-up, needle-leaf forest, broad-leaf forest, mixed forest, shrubland, 
grassland, cropland, etc.) (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi 
et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). An ontology is a hierarchical abstract 
representation (model) of the (3-D) world. For example, well-known examples of RS data 
classification taxonomies are the aforementioned IGBP land cover classification scheme 
(FAO, 2000), the Co-ordination of Information on the Environment (CORINE) (European 
Commission Joint Research Center, 2005), the U.S. Geological Survey (USGS) classification 
hierarchy (Lillesand & Kiefer, 1994) and the Food and Agriculture Organization of the 
United Nations (FAO) Land Cover Classification System (LCCS) (Di Gregorio & Jansen, 
2000; Herold et al., 2006). An ontology can be modeled as a semantic network consisting of a 
hierarchical class taxonomy, represented as an inverted tree whose leaves are at the bottom 
layer 0, plus relationships between classes as arcs between nodes (refer to Part I Section 
2.2.2). 

The five fine-to-coarse possible levels of aggregation of objective sub-symbolic sensory data 
are listed below.  

1. An unlabeled objective continuous (quantitative) sub-symbolic (non-semantic) 
sensory scalar data element. For example, a one-band pixel value in an image, a 
character in a vocabulary, etc. This is a scalar (simple, atomic, elementary, primitive) 
fact (measurement, sign, symbol, character, element) resulting from an observation 
(examination, inspection, monitoring, measurement) of the (3-D) world.  

2. An unlabeled objective continuous sub-symbolic primary data vector / primary data 
n-tuple / primary data element, where n  1 is the vector dimensionality. Each primary 
data n-tuple consists of n  1 scalar data elements, e.g., a multi-spectral pixel value in an 
image, a word in a dictionary, etc. In the rest of this paper, if an unlabeled objective data 
set consisting of primary data elements is discrete and finite (e.g., an image as a 2-D 
data array), then its cardinality is identified as p (e.g., an image consists of p pixels). In 
this case primary data elements may be identified by integer numbers, e.g., a pixel is 
identified by a (row, column) coordinate pair in a (2-D) image domain. A set of sub-
symbolic primary data elements (e.g., an image) can be described according to a given 
mathematical vocabulary/language. For example, a 2-D array of pixels (image) can be 
encoded as a 2-D spatial frequency function by means of a 2-D fast Fourier transform 
(FFT).  

3. A finite set (e.g., a (2-D) image array) of p unlabeled objective continuous sub-
symbolic primary data elements (e.g., pixels), with p  {1, ). To be described in 
physical terms, a set of objective sub-symbolic primary data elements requires a 
mathematical vocabulary/language, e.g., a 2-D FFT of a (2-D) image. This is related to 
the concept of continuous physical information in an objective sensory data set (refer to 
this text below). 

4. A labeled subjective discrete semi-symbolic secondary data structure / secondary data 
object. It consists of one or more primary data elements of a given objective data set 
grouped together (based on any possible subjective aggregation criterion) and labeled 
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as one semi-symbolic secondary data structure. Each label belongs to a discrete and 
finite set of semi-concepts. The semantic meaning of semi-concepts (e.g., vegetation) is 
superior to zero (like that of unlabeled primary data elements) and not superior (i.e., 
equal or inferior) to that of concepts in the real (3-D) world. A discrete and finite 
quantitative data set consisting of p unlabeled objective primary data elements (e.g., a 
multi-spectral image consisting of p pixels, refer to point 3. above) always consists of a 
discrete and finite set of semi-symbolic secondary data structures whose cardinality is 
identified hereafter as s, such that inequality (s  p) always holds. It is noteworthy that if 
equality (s == p) holds, this does not correspond to a trivial case since secondary data 
structures are semi-symbolic while primary data elements are sub-symbolic. To the best 
of this author's knowledge, it is at the level of subjective semi-symbolic secondary data 
structures that the view of the present author starts diverging from all existing CV 
algorithms and implementations, including GEOBIA-based RS-IUSs and Diamant's 
image segmentation and contour detection algorithms. This degree of novelty is 
consistent with well-known evidence collected in CV and MAL domains. For example:  
 A large section of the scientific community acknowledges that detection of data 

structures in an unlabeled objective data set, such as the detection of unlabeled 
data clusters and unlabeled (2-D) image segments (see Part I Section 2.4.1), is an 
inherently subjective (which is tantamount to saying semantic, since words 
subjective and semantic are synonyms, refer to Part I Section 2.1) ill-posed problem, 
therefore difficult to solve, which requires prior (semantic) knowledge to become 
better posed (tractable) (refer to Part I Section 2.1).  

 According to Marr, "vision goes symbolic immediately, right at the level of zero-
crossing (primal sketch)... without loss of information" (Marr, 1982) (p. 343) (refer 
to Part I Section 2.3). Secondary semi-symbolic data structures (e.g., image 
segments labeled as vegetation) can be described (encoded) according to a given 
pair of one mathematical and one natural vocabulary/language to account for, 
respectively, their objective (quantitative) and subjective (semantic, qualitative) 
properties. For example, semi-symbolic image segments can be described by a 
segment description table whose columns consist of: (a) a segment-specific 
semantic label belonging to a discrete and finite set of semi-concepts (refer to this 
text above) and (b) segment-specific quantitative descriptors such as (Matsuyama 
& Shang-Shouq Hwang, 1990): (i) locational properties (e.g., minimum enclosing 
rectangle), (ii) photometric properties (e.g., mean, standard deviation, etc.), (iii) 
geometric/shape properties (e.g., area, perimeter, compactness, straightness of 
boundaries, elongatedness, rectangularity, number of vertices, etc.), (iv) texture 
properties, (v) morphological properties, (vi) spatial non-topological 
relationships between objects (e.g., distance, angle/orientation, etc.), (vii) spatial 
topological relationships between objects (e.g., adjacency, inclusion), etc. (Baraldi 
et al., 2010a).  

In practice, the following definition holds. 

Discrete semi-symbolic secondary data structure = Continuous sub-symbolic primary 
data element(s) + discrete semi-symbolic label belonging to a discrete and finite set of 
semi-concepts (e.g., in RS image understanding, possible semi-concepts are spectral 
categories equivalent to land cover class sets consisting of one or more land cover 
classes; examples of spectral categories are vegetation, water or shadow, bare soil or built-
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up, etc. (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi, 2011a; 
Baraldi, 2011b; Baraldi et al., 2010c)). 

This also means that the set of discrete semi-symbolic secondary data structures 
incorporates the continuous objective sensory data set. 

5. A finite set of (s  p) labeled secondary subjective semi-symbolic data structures, 
which include the objective sensory data set (refer to point 4. above), with s  {1, p}. In 
this author's terminology, it is called preliminary classification map or primal sketch. 
These terms are: 
 in line with the CV system proposed by Marr at the level of computational theory 

(see Part I Section 2.6) when he states: "vision goes symbolic almost immediately, 
right at the level of zero-crossings (primal sketch)… without loss of information" 
(Marr, 1982) (p. 343) (refer to Part I Section 2.3) 

 In contrast with the CV system proposed by Marr at the level of algorithm design and 
implementation (see Part I Section 2.5), where the term primal sketch identifies the 
non-symbolic output of a zero-crossings algorithm, which is an instance of the 
unlabeled data learning class of image edge detectors/region extractors (Marr, 1982). 

It is noteworthy that in a (2-D) preliminary classification map domain, a labeled semi-
symbolic segment may be defined as a spatially connected set of secondary semi-
symbolic data structures featuring the same label, say, connected pixels featuring label 
vegetation. Therefore, in a (2-D) preliminary classification map domain, semi-symbolic 
pixels belong to semi-symbolic image segments which belong to semi-symbolic image 
strata (layers) defined as image-wide sets of semi-symbolic segments featuring the same 
semi-symbolic label. In other words, in the preliminary classification map domain, three 
spatial types co-exist: semi-symbolic pixels in semi-symbolic image segments in semi-
symbolic image strata. This would end the bad-faith antagonism between unlabeled 
pixels versus labeled non-symbolic segments (e.g., segment 1, segment 2, etc.) which 
affects traditional pixel-based versus object-based RS-IUSs and CV systems (refer to 
Part I Table 1). A labeled subjective semi-symbolic quantitative data set can be 
described (encoded) according to a given pair of one mathematical and one natural 
vocabulary/language capable of accounting for both the quantitative and semantic 
(qualitative, subjective) nature of labeled subjective semi-symbolic secondary data 
structures (refer to point 4. above).  

4.2 Continuous physical information 

Continuous physical (quantitative, objective, sensory) information. This is a hierarchical 
(i.e., multi-scale, including one-scale as a special case) description (representation), 
namely, down-scale encoding (decomposition), up-scale decoding (reconstruction) or one-
scale transcoding (from one data format to another at the same hierarchical level), of the 
physical objective data set based on a given mathematical non-natural 
vocabulary/language. This hierarchical description/ representation of the objective sensory 
data set can be either lossless or lossy, depending on the exact/non-exact reconstruction 
(decoding) of the original data set from its representation (encoding). For example, an FFT 
of a time-signal is a one-scale transcodification of the signal from the time to the frequency 
domain. A well-known example of down-scale encoding/up-scale decoding is the 
Gaussian-Laplacian image pyramid (Burt & Adelson, 1983). It means that physical 
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information stems from the combination of an objective data set with a mathematical non-
natural vocabulary/language. To summarize the concept of physical information, we can 
write the following definition. 

Continuous objective data set + (arbitrary) multi-scale down-scale encoding, up-scale 
decoding or one-scale transcoding/description/data format = hierarchical physical 
information encompassing down-scale/ fine-to-coarse resolution/ compression/ encoding, 
up-scale/ coarse-to-fine resolution/ decompression/ decoding, and/or one-scale 
transcodification (from one data format to another at the same hierarchical level), either 
lossless or lossy.  

4.3 Discrete semantic-square information 

Discrete semantic-square (semantic2) (where semantic is a synonym of categorical, 
symbolic, subjective, abstract, qualitative, vague, but persistent, stable, see Part I Section 2.1) 
information (concepts, percepts) stems from the semantic2 labeling of an objective data 
set performed by an external subjective supervisor (human, God or equivalent machine) 
provided with a subjective hierarchical prior knowledge base (ontology or model of the 
(3-D) world, equivalent to an inverted tree with leaves at the bottom level 0, see Part I 
Section 2.2.2). Semantic2 labeling occurs when a subjective supervisor (first source of 
subjectivity), provided with his/her own subjective ontology (second source of 
subjectivity), observes and scrutinizes the objective data set, consisting of p sub-symbolic 
primary data elements (refer to point 3. in Section 4.1), to achieve the following. 

a. At the bottom level 0 of the inverted tree (ontology, see Part I Section 2.2.2), a 
semi-symbolic label, belonging to a discrete and finite set of semi-concepts (e.g., 
in a RS image, spectral categories are vegetation, water or shadow, bare soil or built-
up, etc.), is assigned to each sub-symbolic primary data element (e.g., each pixel 
in a RS image) of a set of p sub-symbolic primary data elements to form a finite 
and discrete set of s semi-symbolic secondary data elements, with s  p (refer to 
point 5. in Section 4.1). 

b. At hierarchical levels  1 of the inverted tree (see Part I Section 2.2.2), a hierarchical 
symbolic label is assigned to the set of s semi-symbolic secondary data elements 
based on symbolic reasoning (Matsuyama & Shang-Shouq Hwang, 1990). 

This definition of semantic2 labeling disagrees at the level of the aforementioned point a. 
with the traditional definition of semantic labeling provided by MAL, which encompasses 
existing CV systems (e.g., Diamant's (Diamant, 2005)) and RS-IUSs (e.g., (Definiens Imaging 
GmbH, 2004; Matsuyama & Shang-Shouq Hwang, 1990)). In fact, point a. above states that 
semantic2 information stems naturally (automatically, instantaneously) from the 
simultaneous interaction of three necessary and sufficient components. 

i. An objective sensory data set (consisting of facts, measures, etc.) described in terms of 
continuous physical information (representation, description) based on a mathematical 
vocabulary/language. 

ii. A subjective supervisor/actor (human, God or equivalent machine). He/she acts as the 
first source of subjectivity in the labeling (mapping) process. To be considered as such, a 
supervisor must be the carrier of a prior semantic knowledge base (ontology). He/she 
acts as follows: 
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 observes the objective data set and 
 interprets/scrutinizes the objective data set to match (label) data with his/her own 

ontology. 
iii. A subjective hierarchical (multi-scale) prior ontology which exists before looking at the 

data. Since it deals with semantic information, a prior knowledge base is subjective by 
definition (since subjective and semantic are synonyms, refer to Part I Section 2.1). In 
practice, this ontology acts as the second source of subjectivity in the labeling 
(mapping) process. According to Diamant this hierarchical ontology is equivalent to a 
narrative story or tale which requires a natural language to comprise, in a top-down 
representation: the story title, index, sections, paragraphs, sentences and words. It is 
graphically represented and implemented as a semantic net or inverted tree whose 
leaves are at the bottom level 0 where physical information is incorporated (refer to this 
text above and Part I Section 2.2.2). 

The aforementioned points i.-iii. imply that objective sensory data, per se, do not possess 
any semantic2 information, but physical information exclusively. Rather, semantic2 
information incorporates objective data as one-of-three components. This also means that 
nobody should disagree with Diamant when he repeats over and over that sensory data do 
not possess semantic information, therefore semantic information cannot be extracted from 
sensory data (Diamant, 2010a). On the contrary, Diamant's statement should not be 
considered original at all because it has been perfectly acknowledged in philosophy for 
hundreds of years, as well as in psychophysical studies of perception (Matsuyama & Shang-
Shouq Hwang, 1990) and MAL in the last 50 years (Cherkassky & Mulier, 2006). This 
concept is summarized below. 

 Philosophy and psychophysical studies of perception. The statement that sensory 
data do not possess semantic information is tantamount to saying there is an 
information gap between physical information and semantic information, which is 
the well-known information gap between (sensory and varying) sensations and 
(vague, but stable) perceptions. In practice, “we are always seeing objects we have 
never seen before at the sensation level, while we perceive familiar objects 
everywhere at the perception level” (Matsuyama & Shang-Shouq Hwang, 1990) 
(see Part I Section 1 and Part I Section 2.2.2).  

 MAL. In unlabeled data learning algorithms (e.g., unlabeled data clustering), no 
semantics is detected as output (e.g., unlabeled data cluster 1, unlabeled data cluster 
2), see Fig. 1. In labeled data learning algorithms for classification applications (see 
Part I,Fig. 1), no semantic information is extracted from a finite set of training data 
pairs consisting of an (objective data vector, subjective discrete label), but a 
correlation function can be estimated between continuous sensory data and a discrete 
and finite set of subjective labels (refer to Part I Section 2.1 and Part I Section 2.4.2). 

The foregoing comments also mean that Diamant is right, although vague, when he states 
that "semantics is a property of a human observer" (Diamant, 2010a). To state this more 
precisely, since semantic2 information naturally (automatically, instantaneously) stems 
from the interaction of three necessary and sufficient components i.-iii. (see above in this 
text), then semantic2 information cannot be separated from any of its three components. 
For example, let us think of a piano (symbolic data structure) whose objective presence (fact) 
requires the simultaneous presence of a subjective human actor (or equivalent machine) to 
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generate whatever sound (semantic information). The sound (generated semantic 
information) is neither in the piano, nor in the piano player, nor in his/her prior knowledge 
of what a piano is all about, but in the instantaneous combination of these three factors. This 
also means that semantic2 information quite obviously changes with the objective data set, 
the subjective human supervisor and his/her own subjective ontology. In particular (refer 
to this text above), semantic2 information means there are two subjective actors in the 
semantic labeling of objective sensory data, namely, the subjective external observer and 
scrutinizers (or equivalent machine) and his/her own ontology or semantic (abstract) 
model of the world. In fact, it is well known that all humans do not adopt the same 
ontology and two humans who adopt the same ontology do not apply this ontology the 
same way through time in interpreting a given observation. For example, two players will 
never generate the same music when playing the same musical score on the same piano. Not 
even the same player will ever generate the same music when playing twice the same 
musical score on the same piano. To summarize these concepts we can write the following 
definition. 

Objective sensory data set + subjective supervisor provided, as such, with a subjective prior 
hierarchical knowledge base (ontology) = hierarchical semantic2 (subjective2) information, 
which includes physical information at the bottom level 0 of the inverted tree which deals with 
the semantic granularity of semi-concepts assigned to semi-symbolic secondary data 
structures. 

4.4 Subjective hierarchical (multi-scale) prior knowledge base 

Subjective hierarchical (multi-scale) prior knowledge base (ontology, model of the (3-D) 
world) equivalent to a semantic net or inverted tree with leaves at the bottom level 0 
where physical information is incorporated. Refer to this text above.  

4.5 Intelligence 

Intelligence (cognition) is the system’s ability to aggregate bottom-up (from-data-to-concepts) 
and disassemble top-down (from-concepts-to-data) semantic information (which incorporates 
physical information) across the hierarchical levels of a subjective prior knowledge base. 

4.6 Information processing system 

An information processing system, cognitive system or intelligent system transforms an 
input sensory data set into an output instantiation of a story in natural language whose 
hierarchical structure is provided by an ontology or inverted tree retained in the system’s 
memory before looking at the sensory data. 

To summarize, the aforementioned novel definitions sketch a RS-IUS where information 
goes symbolic during the pre-attentive vision phase to generate a semi-symbolic primal 
sketch (preliminary classification map). This is in line with the CV system proposed by Marr 
at the level of computational theory (see Part I Section 2.6) when he states: "vision goes 
symbolic almost immediately, right at the level of zero-crossings (primal sketch)" (Marr, 
1982), p. 343 (see Part I Section 2.3). However, it differs from the CV system proposed by 
Marr at the level of primal sketch implementation (see Part I Section 2.6) consisting of a sub-
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symbolic zero-crossing algorithm (Marr, 1982). In addition, the novel RS-IUS sketched above 
differs at the level of both computational theory and algorithm design and implementation 
from existing CV systems such as GEOBIA systems (Definiens Imaging GmbH, 2004; Esch et 
al., 2008), including Diamant's (Diamant, 2005; Diamant, 2008; Diamant, 2010a; Diamant, 
2010b), where an unlabeled data learning (driven-without-knowledge) algorithm is adopted 
at the first stage. 

5. Practical consequences of the proposed definitions on CV, AI and MAL 
system design and implementation strategies 
Practical consequences of the definitions proposed in Part II Section 4 on CV, AI and MAL 
system design and implementation strategies are several, more detailed, better posed and, 
therefore, far more relevant than Diamant's (Diamant, 2010a). Thus, they should benefit 
from more favorable consideration by the scientific community. 

1. Definitions provided in Part II Section 4 are consistent with the Marr statement: "vision 
goes symbolic almost immediately, right at the level of zero-crossings (primal sketch)… 
without loss of information” (Marr, 1982) (p. 343) (refer to Part I Section 2.3). This is 
tantamount to saying that exploitation of the deductive subjective prior knowledge-
based inference paradigm must regard the preattentive visual phase whose output, the 
so-called primal sketch (Marr, 1982), must be as follows: 
 semantic in nature (see Part I Section 2.3), therefore it is called preliminary 

classification map;  
 capable of preserving small, but genuine image details (high spatial frequency 

image components). This requirement is inconsistent with existing image 
segmentation algorithms which are inherently affected by the uncertainty principle 
according to which, for any contextual (neighborhood) property, we cannot 
simultaneously measure that property while obtaining accurate localization 
(Corcoran & Winstanley, 2007; Petrou & Sevilla, 2006) (see Part I Section 2.4.1.2). 

Although he stated that vision goes symbolic right at the output of the preattentive 
vision phase, which has to affect the architectural level of understanding of a CV system 
(see Part I Section 2.6), Marr selected a sub-symbolic edge detection (zero-crossing) 
algorithmic for primal sketch generation (Marr, 1982). By embracing the Marr 
computational theory rather than his algorithmic solutions, the present author 
concludes that, as output, the preattentive visual phase no longer generates sub-
symbolic image primitives, namely, non-semantic points and edges or, vice versa, 
image regions (which is what was implemented by Marr (Marr, 1982)), but semi-
symbolic secondary data structures, namely, semi-symbolic pixels in semi-symbolic 
segments in semi-symbolic strata (see Part II Section 4) (Baraldi et al., 2006; Baraldi et 
al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). 

2. It is impossible to extract semantic2 information from objective continuous sensory 
data because the latter, per se, are provided with no semantics at all. This is the well-
known information gap between semantic2 information and physical information (refer 
to Part I Section 2.2.2 and Part I Section 2.3).  

3. Although it is impossible to extract semantic2 information from objective continuous 
sensory data, it is possible to correlate discrete semantic2 information to objective 
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continuous sensory data. This conclusion is by no means novel as it is well known in 
literature. For example, Shunlin Liang summarizes this concept in a few words: 
statistical pattern recognition systems are based on correlation relationships between 
objective sensory (e.g., RS) data and either continuous (e.g., LAI) or categorical (e.g., 
land surface) variables (see Part I Section 2.1) (Shunlin Liang, 2004). Unfortunately, low 
or no correlation can be found between continuous sensory data and a finite and 
discrete set of categorical variables, corresponding to independent random variables 
generating "distinguishable" data structures (data aggregations, data clusters) in real-
world data mapping problems at large data scale or fine semantic granularity, other 
than toy problems at small data scale and coarse semantic granularity. This low 
correlation effect is due to the combination of two factors. 
 According to the central limit theorem, the distribution of the sample average of g 

independent and identically distributed (iid) random variables (corresponding to, 
say, g categorical variables) approaches the normal distribution, featuring no 
"distinguishable" data sub-structure, as the sample size g increases. In other words, 
the separability of "distinguishable" data structures in a given objective sensory 
data set belonging to a given measurement space is monotonically non-increasing 
with (i.e., it decreases with or remains equal to) the finite number of discrete 
semantic concepts involved with the cognitive (classification) problem at hand. 

 Within-class variability (vice versa, inter-class separability) is monotonically non-
decreasing (i.e., it increases or remains equal) (vice versa, non-increasing) with the 
magnitude of the sample set per categorical variable when this variable-specific 
sample set size is "large" according to large-sample statistics (although large 
sample is a synonym for 'asymptotic' rather than a reference to an actual sample 
magnitude, a sample set cardinality of 3050 samples per random variable is 
typically considered sufficiently large that, according to a special case of the central 
limit theorem, the distribution of many sample statistics becomes approximately 
normal). For example, in (Chengquan Huang et al., 2008), where an SVM training 
and classification model selection strategies are applied to every image in a RS 
image mosaic at global scale to separate forest from non-forest pixels, a so-called 
training data automation (TDA) procedure identifies a forest peak in a one-band 
first-order statistic (histogram) of a local image window. The size of this local 
image window must be fine-tuned based on heuristics because inter-class spectral 
separability between classes forest and non-forest (vice versa, within-class 
variability) decreases (vice versa, increases) monotonically with the local window 
size above a certain (empirical) threshold (minimum window size, below which the 
collected sample is not statistically significant). 

4. As an extension of points 2. and 3. above, unlabeled (unsupervised) data learning 
algorithms, namely, driven-without-knowledge image segmentation algorithms and 
unlabeled data clustering algorithms (see Part I Section 2.4.1), should be considered 
highly inappropriate (like using a fork for cutting food: unless the food is particularly 
soft, it will never work) when the objective sensory data acquisition occurs in the 
domain of  real-world data mapping problems at large data scale or fine semantic 
granularity (where the separability of "distinguishable" data structures in a given 
objective sensory data set belonging to a given measurement space is expected to be 
low), other than toy problems at small data scale and coarse semantic granularity. 
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Does this mean the relevant effort spent by the MAL community to develop driven-
without-knowledge image segmentation algorithms (Castilla et al., 2008) or, say, self-
organizing topology-preserving unlabeled data clustering algorithms (Fritzke, 1997; 
Martinetz & Schulten, 1994), has been worthless? Fortunately, not. It rather means the 
following. 
i. The main application domain of, say, self-organizing topology-preserving 

unlabeled data clustering algorithms should remain the modeling of stationary and 
non-stationary distributions, see Part I Fig. 1. 

ii. When an unlabeled (unsupervised) data learning algorithm, either a driven-
without-knowledge image segmentation algorithm or an unlabeled data clustering 
algorithm (see Part I Section 2.4.1), is adopted as the first stage of a two-stage 
hybrid cognitive system, CV system or RS-IUS, it should be considered highly 
inappropriate. In particular: 
I It should be replaced by a deductive MAT-by-rules approach where 

community-agreed prior knowledge is conveyed to generate as output a 
lossless semi-symbolic product (consisting of semi-concepts).  For example, in 
a RS-IUS, the MAT-by-rules first stage should generate a preliminary 
classification map (see Part II Section 4) where small, but genuine image details 
are well preserved (refer to this text above). 

II If useful,  it should be: 
a. adapted to work on a driven-by-knowledge stratified (semantic masked) 

basis and  
c. next, moved to the second stage of a two-stage stratified hierarchical 

hybrid cognitive system. For example, a two-stage stratified hierarchical 
hybrid RS-IUS architecture has been proposed in recent literature, see Fig. 
3 (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et 
al., 2010c; Baraldi, 2011a; Baraldi, 2011b). 

5. As an extension of points 2. and 3. above, labeled (supervised) data learning classifiers 
(see Part I Section 2.4.2) should be considered highly inappropriate (like using a fork 
for cutting food; unless the food is particularly soft, it will never work) in real-world 
data mapping problems at large data scale or fine semantic granularity (where within-
class variability is monotonically non-decreasing (i.e., it increases or remains equal) 
with the cardinality of the objective sensory data set), other than toy problems at small 
data scale and coarse semantic granularity. This conclusion is by no means novel. 
Rather, it is well known in literature. For example, Shunlin Liang summarizes this 
concept in few words: statistical model are usually site-specific  (see Part I Section 2.1) 
(Shunlin Liang, 2004). Does this mean the relevant effort spent by the MAL community 
to develop supervised data learning classifiers has been worthless? Fortunately, no. It 
rather means the following. 
i. The main application domain of supervised data learning algorithms should be 

considered function regression where input and output variables are continuous 
non-semantic, see Fig. 1. 

ii. When a supervised data learning classifier (see Part I Section 2.4.2) is adopted as 
the first stage of a two-stage hybrid cognitive system, CV system or RS-IUS, it 
should be considered highly inappropriate. An experimental proof of this concept 
is that supervised MAL algorithms (say, SVMs), either context-insensitive (e.g., 
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pixel-based) or context-sensitive (Bruzzone & Carlin, 2006; Bruzzone & Persello, 
2009; Persello & Bruzzone, 2010), considered successful in terms of operational QIs 
(refer to Part I Section 2.7.2) at local/regional scale, become impracticable in 
mapping RS image mosaics consisting of hundreds of images at 
national/continental/global scale (Chengquan Huang et al., 2008). In these real 
world problems the cost, timeliness, quality and availability of adequate reference 
(training) data sets derived from field sites, existing maps and tabular data are 
currently considered the most limiting factors on RS data product generation and 
validation (Gutman et al., 2004). In particular, the first-stage supervised data 
learning classifier of a two-stage hybrid RS-IUS should be: 
I replaced by a deductive MAT-by-rule approach where community-agreed 

prior knowledge is conveyed to generate a preliminary classification map (see 
Part II Section 4) where small, but genuine image details are well preserved 
(refer to this text above); 

II if useful,  it should be: 
a. adapted to work on a driven-by-knowledge stratified (semantic masked) 

basis and  
d. next, moved to the second stage of a two-stage stratified hierarchical 

hybrid RS-IUS architecture proposed in recent literature, see Fig. 3 
(Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi, 
2011a; Baraldi, 2011b; Baraldi et al., 2010c). 

6. SIAM™ as a proof of the efficacy of the required shift of learning paradigm 
from MAL-from-examples to MAT-by-rules at the first stage of two-stage 
hybrid RS-IUSs 
To the best of this author's knowledge SIAM™ provides the first experimental proof of the 
efficacy of the required switch of learning paradigm from MAL-from-examples to MAT-by-
rules at the first stage of a two-stage hybrid RS-IUS architecture (refer to Part II Section 2.3), 
see Table 4. SIAM™ is an operational (good-to-go, press-and-go, turnkey) software button 
(executable). In particular, SIAM™ is automatic, efficient, scalable, accurate and robust to 
changes in the input data acquired across time, space and sensors. For example, the 
automatic SIAM™ is consistent and accurate across sensors at the national/ continental/ 
global scale (refer to Part II Section 2.3) (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et 
al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 2011b), whereas semi-automatic 
inductive data learning neural network approaches, such as SVMs, require to be re-trained 
(supervised) image-wide (Chengquan Huang et al., 2008).  

SIAM™ belongs to the family of physical models that follow the physical laws of the real 
(3-D) world to represent an abstract of the reality (see Part I Section 2.1) (Shunlin Liang, 
2004). In particular, SIAM™ follows the physical laws of spaceborne optical imaging 
devices to provide a two-stage hybrid RS-IUS with a first-stage deductive prior 
knowledge-based inference mechanism. Unfortunately, it takes a long time for human 
experts to learn physical laws of the real (3-D) world and tune physical models based on 
human intuition, domain expertise and evidence from data observations (Mather, 1994; 
Shunlin Liang, 2004). For example, the development of the SIAM™ dates back to the year 
2002 (Baraldi, 2011a). 
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Quality Indicators (Qis) State-of-the-art RS-IUSs SIAM™
Degree of automation: (a) number, physical meaning 
and range of variation of user-defined parameters, 
(b)collection of the required training data set, if any.

VL, L VH (fully automatic, it cannot be 
surpassed)

Effectiveness : (a) semantic accuracy and (b) spatial 
accuracy.

M, H, VH VH

Semantic information level Land cover class (e.g., deciduous 
forest)

Spectral semi-concept (e.g., 
vegetation)

Efficiency: (a) computation time and (b) memory
occupation.

VL, L in training (hours per images) VH (5 m to 30 s per Landsat image 
in a laptop)

Robustness to changes in input image VL (specific training per image) VH
Robustness to changes in input parameters VL VH (it cannot be surpassed)
Scalability to changes in the sensor’s specifications
or user’s needs.

VL VH (it works with any existing 
spaceborne sensor)

Timeliness (from data acquisition to high-level 
product generation, increases with manpower and 
computing power).

VH (e.g., the collection of reference 
samples is a difficult and expensive

task)

VL, i.e., timeliness is reduced to 
almost zero

Economy (inverse of costs increasing  with 
manpower and computing power).

VL, L, high costs in manpower and 
also computing power

VH, i.e., costs in manpower and 
computing power are reduced to 

almost zero  
Table 4. QIs of SIAM™ versus state-of-the-art RS-IUSs' (refer to Part I Section 2.8). Legend of 
fuzzy sets: Very low (VL), Low (L), Medium (M),  High (H), Very High (VH). Legend of 
colors: Red-Bad, Blue-Average, Green-Good 

Part I Section 2.2.2 reported the question: is human biology as irrelevant to AI research as 
bird biology is to aeronautical engineering? Actually, biological vision has always 
represented a fundamental source of inspiration for the CV community. While SIAM™ 
considers its degree of biological plausibility as a value added, straightforward imitation of 
biological vision solutions is not always possible. This is the reason why SIAM™ cannot be 
considered highly plausible in biological terms although it is very useful in practice. For 
example, SIAM™ cannot work with panchromatic imagery whereas the human visual 
system is perfectly able to interpret gray-tone images. 

7. Conclusions 
It is well known that semantic information is not in objective sensory data, which is 
tantamount to saying there is a well-known information gap between semantic2 information 
and physical information. This conceptual work observes that semantic2 information is 
naturally (automatically, instantaneously) generated by the simultaneous interaction of a 
subjective external supervisor who observes and scrutinizes an objective sensory data set 
based on his/her own subjective prior knowledge base (ontology, model of the 3-D world). 
Semantic2 information resulting from this interaction takes the intermediate form of semi-
symbolic secondary data structures that incorporate physical information at the bottom level 
(layer 0) of an ontology represented as an inverted tree.  

A shift of learning paradigm from MAL-from-examples to MAT-by-rules in the first stage of 
two-stage hybrid RS-IUSs is recommended. Experimental proof of this concept is provided 
by the operational automatic SIAM™ recently proposed in RS literature. 
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biological vision solutions is not always possible. This is the reason why SIAM™ cannot be 
considered highly plausible in biological terms although it is very useful in practice. For 
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system is perfectly able to interpret gray-tone images. 

7. Conclusions 
It is well known that semantic information is not in objective sensory data, which is 
tantamount to saying there is a well-known information gap between semantic2 information 
and physical information. This conceptual work observes that semantic2 information is 
naturally (automatically, instantaneously) generated by the simultaneous interaction of a 
subjective external supervisor who observes and scrutinizes an objective sensory data set 
based on his/her own subjective prior knowledge base (ontology, model of the 3-D world). 
Semantic2 information resulting from this interaction takes the intermediate form of semi-
symbolic secondary data structures that incorporate physical information at the bottom level 
(layer 0) of an ontology represented as an inverted tree.  

A shift of learning paradigm from MAL-from-examples to MAT-by-rules in the first stage of 
two-stage hybrid RS-IUSs is recommended. Experimental proof of this concept is provided 
by the operational automatic SIAM™ recently proposed in RS literature. 
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The practical conclusion of this conceptual work is twofold. 

1. In line with a relevant section of existing literature (Shunlin Liang, 2004), labeled 
(supervised) data learning classifiers (see Part I Section 2.4.2) should be considered 
highly inappropriate, being affected by low operational QIs (see Part I Section 2.8), in 
dealing with real-world data mapping problems at large data scale (e.g., RS image 
mapping at national/ continental/ global scale) or fine semantic granularity, except in 
the case of toy problems at small data scale and coarse semantic granularity (e.g., RS 
image mapping at coarse spatial resolution and local/regional scale). This awareness 
should be divulged among the RS, CV, AI and MAL communities.  

2. Any inductive MAL-from-examples algorithm, whether labeled (supervised, e.g., 
SVMs) or unlabeled (e.g., image segmentation, unlabeled data clustering), whether 
context-insensitive (e.g., pixel-based) or context-sensitive (e.g., (2-D) object-based), 
employed as the first stage of a two-stage hybrid cognitive system, CV system or RS-
IUS, should be: 
a. replaced by a deductive MAT-by-rules approach where community-agreed prior 

knowledge is conveyed and,   
b. if useful, adapted to work on a driven-by-knowledge stratified (semantic masked) 

basis and moved to the second stage of a two-stage stratified hierarchical hybrid 
cognitive system. For example,  a two-stage stratified hierarchical hybrid RS-IUS 
architecture has been proposed in recent literature, see Fig. 3 (Baraldi et al., 2006; 
Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; 
Baraldi, 2011b). 

This required shift of the learning paradigm from MAL-from-examples to MAT-by-rules 
adopted in the first stage of a two-stage hybrid RS-IUS is similar in nature to previous 
conceptual shifts occurring between deductive coarse-to-fine (from symbolic concepts to 
sub-symbolic data) AI/MAI and inductive fine-to-coarse (from sub-symbolic data to 
symbolic concepts) Cybernetics/MAL, see Part I Section 2.2. What is novel about the 
proposed shift of the learning paradigm from MAL-from-examples to MAT-by-rules at the 
first stage of a two-stage hybrid RS-IUS is the following. 

 Its aim is to accomplish the following fundamental observation by Marr: “vision 
goes symbolic almost immediately, right at the level of zero-crossings (primal 
sketch)… without loss of information” (Marr, 1982) (p. 343) (see Part I Section 1, 
Part I Section 2.2.2 and Part I Section 2.3), which means that exploitation of the 
deductive subjective prior knowledge-based inference paradigm must regard the 
preattentive visual phase whose output product, known as primal sketch, must be: 
(i) semantic in nature (in disagreement with the Marr algorithmic solution of zero-
crossings), therefore it is called preliminary classification map (see Part II Section 4) 
and (ii) capable of preserving small, but genuine image details, unlike existing 
image segmentation algorithms affected by the uncertainty principle (Corcoran & 
Winstanley, 2007; Petrou & Sevilla, 2006) (see Part I Section 2.4.1.2). 

 It comes together with a novel conceptual framework consisting of explicit 
definitions of: (i) sub-symbolic objective primary data element in an objective 
sensory data set, (ii) semi-symbolic subjective secondary data structure, (iii) 
objective physical information, (iv) subjective semantic2 information and (v) 
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subjective prior knowledge base (ontology or model of the 3-D world (Matsuyama 
& Shang-Shouq Hwang, 1990)) provided by an external subjective supervisor 
(human, God or equivalent machine), refer to Part II Section 4.  

 It affects exclusively the inductive learning-from-data first stage of traditional two-
stage hybrid CV systems (e.g., Marr's (Marr, 1982), Diamant's (Diamant, 2005; 
Diamant, 2008; Diamant, 2010a; Diamant, 2010b)) or RS-IUSs, whether or not this 
first stage is implemented as an inductive algorithm capable of learning from either 
unlabeled (unsupervised) or labeled (supervised) data, whether context-insensitive 
(e.g., pixel-based) or context-sensitive (e.g., (2-D) object-based). If useful, these 
inductive data learning algorithms may be adapted to run on a driven-by-
knowledge stratified (semantic masked, layered) basis and moved to the second 
stage of a novel two-stage stratified hierarchical hybrid RS-IUS architecture 
proposed in recent literature, see Fig. 3 (Baraldi et al., 2006; Baraldi et al., 2010a; 
Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). 

 It comes together with a novel two-stage stratified hierarchical hybrid RS-IUS 
architecture employing a first-stage spectral rule-based preliminary classification 
algorithm based on prior spectral knowledge, see Fig. 3 (Baraldi et al., 2006; Baraldi 
et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 
2011b). 

 It comes together with an operational (namely, automatic, efficient, accurate, 
robust, scalable, see Part I Section 2.8) Satellite Image Automatic Mapper™ 
(SIAM™) implementation (software executable), equivalent to an automatic (good-
to-go, press-and-go, turnkey) software button, provided as an experimental proof 
of the efficacy of the required shift in learning paradigm from MAL-from-examples 
to MAT-by-rules at the first stage of a two-stage hybrid RS-IUS architecture, see 
Fig. 3 (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 
2010c; Baraldi, 2011a; Baraldi, 2011b).  

To summarize, to the best of this author's knowledge this is the first time a novel 
computational theory (RS-IUS architecture) is supported by operational (good-to-go, press-
and-go, turnkey) algorithmic and implementation solutions as proofs of concept. For 
example, this was not the case of the Marr (Marr, 1982) or the Diamant CV systems 
(Diamant, 2005; Diamant, 2008; Diamant, 2010a; Diamant, 2010b), whose computational 
theories (see Part I Section 2.6) are both inconsistent with algorithmic solutions adopted by 
their authors. As a consequence, these two CV systems become two more instances of the 
well-known class of two-stage segment-based hybrid CV systems, also termed GEOBIA 
systems, traditionally affected by a lack of general consensus and research (Hay & Castilla, 
2006; Matsuyama & Shang-Shouq Hwang, 1990). 

The proposed conclusions of potential interest to the RS, CV, AI and MAL communities are 
supported by unquestionable independent sources of evidence listed below.  

 Since the late 1950s, the original ambitious goals of AI/MAI and Cybernetics/MAL 
have been fragmented into “practical” and “manageable” problems equivalent to "a 
family of relatively disconnected efforts” (Diamant, 2005; Diamant, 2008; Diamant, 
2010a; Diamant, 2010b). 
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 It is well-known in literature that inductive learning-from-examples "is an inherently 
difficult (ill-posed) problem and its solution requires a priori knowledge in addition to 
data” (Cherkassky & Mulier, 2006) (p. 39) (see Part I Section 2.1). In practical contexts 
this means the following. 
 Unlabeled (unsupervised) data learning algorithms, namely, unlabeled data 

clustering (Backer & Jain, 1981; Baraldi & Alpaydin, 2002a; Baraldi & Alpaydin, 
2002b; Cherkassky & Mulier, 2006; Fritzke, 1997) and unlabeled (2-D) image 
segmentation algorithms (Burr & Morrone, 1992; Corcoran et al., 2010; Corcoran & 
Winstanley, 2007; Delves et al., 1992; Hay & Castilla, 2006; Matsuyama & Shang-
Shouq Hwang, 1990; Petrou & Sevilla, 2006; Vecera & Farah, 1997), are recognized 
as inherently ill-posed problems subjective in nature by a relevant portion of 
existing literature. 

 Labeled (supervised) data learning classifiers are unable to establish correlation 
relationships between objective sensory (e.g., RS) data and categorical variables 
(e.g., land cover classes) at large data scale or fine semantic granularity. For 
example, in (Chengquan Huang et al., 2008) a forest/non-forest one-class SVM 
battery of classifiers must be re-trained and re-selected for every image in an image 
mosaic at global scale. Vice versa, labeled data learning classifiers are exclusively 
suitable for finding correlation relationships between objective sensory data and 
categorical variables at small data scale and coarse semantic granularity (e.g., in RS 
data mapping problems at coarse spatial resolution and local/regional scale). In 
fact, in practical RS data applications where supervised data learning algorithms 
are employed at large spatial scale, fine spatial resolution or fine semantic 
granularity (Chengquan Huang et al., 2008), the cost, timeliness, quality and 
availability of adequate reference (training/testing) datasets derived from field 
sites, existing maps and tabular data have turned out to be the most limiting factors 
on RS data product generation and validation (Gutman et al., 2004). 

 The prior knowledge-based SIAM™ is provided with unsurpassed operational QIs (see 
Part I Section 2.8) in the mapping of RS image mosaics at national/ continental/ global 
scale (e.g., refer to Table 4). 

To the best of this author's knowledge, while the proposed practical conclusions of potential 
interest to the RS, CV, AI and MAL communities are supported by the aforementioned 
independent sources of evidence, these conclusions are not contradicted by any practical 
achievement gained by the RS, CV, AI and MAL communities in recent years. Thus, rather 
than being agreed or disagreed upon, these conclusions ought to be accepted by the 
scientific community unless proved otherwise when the increasing rate of collection of RS 
data of enhanced spatial, spectral and temporal quality will no longer outpace our capability 
of generating (rather than extracting) semantic2 information from RS data provided, per se, 
with no semantics at all. 
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1. Introduction 
Recent years have seen advances in remote sensing in many fields with applications at a 
spatial scale which range from global to local. As a consequence, the need to observe the 
Earth with more specialized and sophisticated sensors and data analysis techniques to 
obtain more accurate information has increased. On the 8th October 2009 a new second next-
generation Worldview-2 satellite was launched by DigitalGlobe: it represents the latest 
innovation among sensors for the acquisition of remote sensed imagery. It has an advanced 
agility due to control moment gyros (like Worldview-1) and combines an average revisiting 
time of 1.1 days around the globe with a large scale collection capacity. Moreover, it is also 
the first commercial satellite able to provide panchromatic imagery at 46 cm of spatial 
resolution and 8-band multispectral imagery at 1.84 m spatial resolution. In addition to the 
standard panchromatic and multispectral BLUE, GREEN, RED and NEAR INFRARED 
(NIR1) bands the Worldview-2 sensor has:  

1. a shorter wavelength blue band, COASTAL, ranging from 400 to 450 nm, planned for 
bathymetric studies, for water color analyses and substantially influenced by 
atmospheric scattering;  

2. a YELLOW band, ranging from 585 to 625 nm, significant for the “Yellowness” of 
vegetation both on land and water; 

3. a RED EDGE band, ranging from 705 to 745 nm, strategically centered at the onset of 
the high reflectivity portion of vegetation response so potentially significant in the 
measurement of plant health; 

4. a longer wavelength NEAR INFRARED band (NIR2), ranging from 860 to 1040 nm, 
partially overlapping the NIR1 band and sensitive to atmospheric water vapor 
absorption. 

In literature, many studies deal with the use of the add on bands of the Worldview-2 
sensor with respect to the traditional bands of the most common commercial satellites 
searching for new indexes in different application fields such as bathymetry [1], or 
vegetation and agricultural purposes ([2], [3]). In [4] the authors analyze the high 
correlation among some bands of the Worldview-2, like COASTAL and BLUE bands or 
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NIR1 and NIR2 bands which could mean redundant and useless information associated 
with some of the add on bands. 

The aim of this work is the study of the performance of the whole spectral information 
offered by the Worldview-2 sensor for the characterization and the classification of some 
selected land cover targets. Three main land cover targets were recognized: "Water”, “Bare 
lands” and “Vegetated lands”. The Worldview-2 image was, firstly, used for a finer 
discrimination of different sub-classes on the ground belonging to the land cover targets 
with the application of an unsupervised approach and the help of a certified CORINE-like 
Land Use Map, at a 1:10.000 scale. A hyperspectral image acquired by the airborne MIVIS 
sensor was used to analyze the spectral profiles characterizing each distinct sub-class. Then 
a standard Maximum Likelihood classifier was applied to the Worldview-2 image with 
different input configurations as below: 

1. the 4 bands (R,G,B,NIR1) common to the standard commercial multispectral sensors at 
very high spatial resolution; 

2. the 4 bands R,G,B,NIR1 adding on, one at a time, the new bands; 
3. the new complete configuration with 8 spectral bands. 

The accuracy of the classification map was estimated using a set of test fields randomly 
selected on the ground truth map. 

ITT ENVI© and GRASS software were used to analyze and process data. 

2. The Worldview-2 data 
The data set analyzed was a Worldview-2 image granted by DigitalGlobe over an area of 
100 km2 chosen by the authors among the available archive acquisitions. The scene, acquired 
on the 13th June 2010, includes the region known as the “Natural Oasis of Lago Salso”, an 
area essentially wet and marshy, sited in the south-east of the Capitanata in the Apulia 
Region, Italy. The Natural Oasis of Lago Salso is characterized by the presence of a wetland 
of considerable importance (one of the most important in southern Italy) as a breeding and 
step birds station. The area falls in the Natura 2000 network, found within the boundaries of 
the Site of Community Interest (SCI) IT 9110005 “Zone umide della Capitanata” and of the 
Special Protection Area (SPA) IT9110038 “Paludi presso il Golfo di Manfredonia”. The 
Natural Oasis of Lago Salso falls also within the Gargano National Park. The Natural Oasis 
has an extent of about 1040 ha and only 500 ha are wetland “sensu strictu”, the remaining 
part is covered by cultivated or partially abandoned areas. Agricultural areas cover a wide 
surface  formerly occupied by coastal lagoons (until the 1950s) and subsequently buried and 
used for agricultural purposes. SCI and SPA have an extent, respectively, of 14,109 ha and 
14,437 ha. Water bodies are subject to fluctuations of water levels over the year, creating 
ecological gradients due to the variation of salt rates and moisture in soil. Soil salinity 
gradually increases with soil elevation, reaching a maximum just above mean high sea level 
(MHSL). Above the MHSL, the salinity tends to decrease due to progressively less frequent 
flooding. The zonation of the vegetation of salt marshes is typically associated with the 
tolerance to these ecological gradients. 
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NIR1 and NIR2 bands which could mean redundant and useless information associated 
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Fig. 1. RGB composition in the visible spectrum of Worldview–2 image. 

2.1 Preprocessing  

The image was calibrated in order to produce the reflectance image and to obtain the 
spectral profiles of some targets in the scene to compare with a previously acquired 
hyperspectral data set. The processing includes the following steps: 

1. transformation of digital numbers into the spectral radiance values at TOA (Top Of 
Atmosphere). This first calibration step, known as absolute radiometric calibration, 
consists of multiplying radiometrically corrected image pixels by the appropriate 
absolute radiometric calibration factor to get band-integrated radiance (W/m2·sr) and 
then dividing the result by the appropriate effective bandwidth to get spectral radiance 
(W/m2·sr·μm). The absolute radiometric calibration factor and effective bandwidths are 
delivered with the image and available in the image metadata files (extension .IMD); 

2. transformation of TOA spectral radiance into TOA reflectance. TOA reflectance is 
defined as the ratio of radiance reflected from a surface target to the solar irradiance 
incident on the surface. It is obtained using the formula: 
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                                      (1) 

where θS is the Solar Zenith Angle, L is the spectral radiance for a defined pixel and 
wavelength and Es is the mean solar spectral irradiance. The term dES is the earth-sun 
distance in astronomical units as a function of the viewing day and time.  

Reflectance values belong to the range [0, 1]. 
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3. Selection and characterization of targets 
An existing certified CORINE-like land use map at 1:10000 scale [5] was considered as 
ground truth. The map was produced in 2006. It originally showed a set of 40 land use 
thematic classes: after a first screening only land cover classes were selected. An 
unsupervised analysis was used to cluster the EO data into a certain number of spectrally 
different signatures. To accomplish this task the “K-Means” algorithm was considered and 
the 8 bands of the Worldview-2 image were used as input. After a few attempts, a number 
of 20 unlabelled classes (with a maximum number of 50 iterations until the convergence and 
1% as the change threshold to end the iterative process) were selected. Comparing the 
clusters with the ground truth information resulted in the splitting/merging of certain 
classes, for a total number of 18 land cover classes. As shown in Figure 2 where a 
bathymetry map of the test site is represented, the 8 band segmented map reports 3 
differentiated clusters in correspondence with the ground truth class labeled as “Sea”. These 
three different signatures could be associated with different depth values of the sea.  

 
Fig. 2. Bathymetric map (a) and 8-band segmented map (b). 

The 18 selected classes, grouped into 4 main land cover targets of interest were “Water”, 
“Bare lands”, “Vegetated lands” and “Artificial”, as shown in Table 1. The target “Artificial” 
was eliminated due to its poor presence in the scene. A sample of each considered class is 
shown in Figure 3. 
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TARGET N° Label 
TRAINING 

pixels 
(TOT.21948) 

TEST 
pixels 

(TOT.26428) 

WATER 

1 SEA WATER 1 (deep) 1365 1270 

2 SEA WATER 2 (medium deep) 938 1845 

3 SEA WATER 3 (coastal) 2009 2067 

4 RIVER WATER 1322 2012 

5 MARSH WATER 1924 1991 

BARE LAND 

6 ARABLE LAND WITHOUT VEGETATION 1 (dark 
brown) 1224 1245 

7 ARABLE LAND WITHOUT VEGETATION 2 (light 
brown) 1104 1409 

8 ARABLE LAND WITHOUT VEGETATION 3 
(orange) 1483 1646 

9 ARABLE LAND WITHOUT VEGETATION 4 (very 
light brown) 1316 1198 

10 SAND 857 730 

VEGETATED 
LAND 

11 ARABLE LAND WITH VEGETATION 1 (intense 
green) 1250 918 

12 VEGETATED MARSHY AREA 1 (dark green) 1272 537 

13 NOT ARBOREOUS VEGETATION 1031 3252 

14 FORESTED AREA 561 1693 

15 ARABLE LAND WITH VEGETATION 2 (light 
green) 1302 742 

16 VEGETATED MARSHY AREA 2 (less dark green) 1154 748 

ARTIFICIAL 
17 ARTIFICIAL STRUCTURES 984 1521 

18 ARABLE LAND WITH SCREENING COVERS 852 1265 

Table 1. Different land cover classes selected for supervised classification. 

3.1 Analysis of the targets’ spectral profiles  

The analysis of the targets’ spectral profiles was carried out by means of a dataset 
composed by an MIVIS airborne system hyperspectral image, acquired on 25th May 2009 
at 06:18 UTC. The selection of this image was possible because of the comparable period 
of acquisition with respect to the Worldview-2 image. MIVIS (Multispectral Infrared and 
Visible Imaging Spectrometer) is a hyperspectral sensor consisting of 4 spectrometers 
which acquire radiation coming from the surface in the VNIR (20 bands between 0.411 
and 0.819 μm), in the NIR (8 bands between 1.145 and 1.54 μm), in the MIR (64 bands 
between 1.992 and 2.474 μm) and in the TIR (10 bands between 8.34 and 12.42 μm). The 
result of the MIVIS images pre-processing step is an image with pixels given in radiance 
values (μW/cm2·sr·nm). In order to compare Worldview-2 and MIVIS spectral profiles the 
analysis was focused on the 20 bands of the VNIR spectrometer which match with the 
Worldview-2 bands. Details of the VNIR MIVIS bands and comparison with the 
Worldview-2 bands are shown in Table 2. 



 
Earth Observation 

 

142 

 
Fig. 3a. The different classes grouped in the target “Water”. 

 
Fig. 3b. The different classes grouped in the target “Bare Land”. 
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Fig. 3a. The different classes grouped in the target “Water”. 

 
Fig. 3b. The different classes grouped in the target “Bare Land”. 
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Fig. 3c. The different classes grouped in the target “Vegetated Land”. 

MIVIS Worldview-2
Bands Centre (nm) FWHM (nm) Bands Lower Edge (nm) Upper Edge (nm) 

1 441 20 COASTAL 400 450 
2 460 20

BLUE 450 510 3 480 20
4 500 20
5 521 20

GREEN 510 580 
6 541 20
7 561 20
8 581 20
9 601 20

YELLOW 585 625 
10 621 20
11 641 20

RED 630 690 12 661 20
13 681 20
14 701 20

RED EDGE 705 745 15 721 20
16 740 20
17 760 20

NIR1 770 895 
18 779 20
19 798 20
20 819 20

NIR2 860 1040 

Table 2. MIVIS and Woldview-2 spectral details. 
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Because of its flexible airborne platform for remote sensing, the MIVIS system is able to 
acquire images with a good spatial resolution. The MIVIS acquisition used for this analysis 
was made at a height of 1.5 Km so the spatial resolution is 3 m at nadir. In order to compare 
MIVIS spectra with those produced by Worldview-2, the pixel values of MIVIS images were 
also converted into reflectance.  

Due to the unknown quality of the MIVIS data pre-processing calibration, the comparison 
between the Worldview-2 and the MIVIS profiles has to be considered in terms of spectral 
profile trends. In addition, no atmospheric correction was made to both the images [6]. As a 
consequence, the consideration that the atmosphere contributes in a different way to the 
reflectance measured by sensors, due to the different day of acquisition and the different 
flight height of sensors, should be observed. In Figure 4, a subset of the MIVIS acquisition 
corresponding to the Worldview-2 image is shown. Close to the right edge of the frame a 
slight pattern of sunglint is visible. It is presumed that it influences the reflectance of the sea.  

The spectral analysis was carried out by selecting regions which can be considered 
representative of the 18 classes identified by the unsupervised analysis and the ground truth 
map. A time interval of about one year between the MIVIS and Worldview-2 acquisitions 
restricts the selection of target areas to regions not affected by significant changes between 
the two dates. In fact there could be some arable lands where crops changed for agricultural 
practices or were covered with screening covers. Moreover, it should be considered that the 
two images were acquired in two different spring months corresponding to the different 
phenological status of the same crop. 

 
Fig. 4. MIVIS image acquired on 25th May 2009 at 06:18UTC. 
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In Figure 5, Worldview-2 (top) and MIVIS (bottom) water target spectral profiles are shown.  
As it can be noticed for all the target profiles, there is an atmospheric contribution to the 
Worldview-2 reflectance. In particular, in the range of shorter wavelengths of the COASTAL 
and the BLUE bands, the Rayleigh scattering is the prevailing contribution while for the 
longer wavelengths, like the NIR2 band, the water vapor absorption is dominant. The 
gaseous absorption results as visible also for the MIVIS profiles. It can be noted that: 

- “Sea Water 1”, “Sea Water 2” and “Sea Water 3” correspond to: deep water (far from 
the coast), intermediate deep water and coastal water, respectively. The Worldview-2 
reflectance profiles, which tend to converge at shorter wavelengths due to atmospheric 
effects, show increasing reflectance values for sea regions closer to the coast due to the 
increasing contribution of suspended sediments [7]; 

- this behavior is not evident in MIVIS spectral profiles because of the presence of a slight 
sunglint contribution which implies an increase of reflectance values in the eastern part 
of the image. This portion of the image corresponds to a sea region with a high and 
intermediate depth. The presence of glint is also evident when considering the spectral 
profiles which show the typical solar irradiance trend;  

 
Fig. 5. Worldview-2 (top) and MIVIS (bottom) spectral profiles of water classes. 

- “Sea Water 3” and “River Water” MIVIS spectral profiles are characterized by 
particulate material and/or a land-derived yellow substance which can influence the 
reflectance [8];  

- with regard to the “Marsh Water” classified regions, they are relative to a series of 
waterbodies alternating with different kinds of vegetated areas belonging to the Natural 
Oasis of Lago Salso (Figure 6). Specifically, it encompasses three waterbodies with depths 
ranging from 50 to 170 cm, depending on the seasonal level and the regional operational 
necessities which are fed by a small river. This class shows a spectral profile which starts 
to be strongly affected by the bottom vegetation contribution.  



 
Earth Observation 

 

146 

 
Fig. 6. Natural Oasis of Lago Salso. 

In Figure 7, Worldview-2 (top) and MIVIS (bottom) spectral profiles for vegetated land 
regions are shown. MIVIS spectral profiles of the six vegetated land classes show the typical 
vegetation trend.  The absorption of chlorophyll in the BLUE and the RED regions of the 
spectrum can be observed. A peak at the GREEN region which gives rise to the green color 
of vegetation was noted. In the NIR the reflectance is much higher than that in the visible 
band due to the cellular structure in the leaves. The slope of the spectrum profile between 
RED and NIR is characteristic of the vegetation species and gives information about plant 
health [9]. Spectral profiles also show a reduction in band 20 (Table 1) due to atmospheric 
absorption. Analyzing MIVIS spectra some considerations about vegetated land classes can 
be made. The class labeled as “Arable Land with Vegetation 2” shows a reduced increase of 
reflectance in the wavelength range between RED and NIR and a peak of reflectance in 
correspondence with the GREEN range which is less evident with respect to the other 
profiles. Considering the particular color of the regions and the presence of an almost 
regular texture, it is possible that this class is related to arable fields covered by a thick net 
typical of local agricultural practices. 

Classes labeled as “Vegetated Marshy Areas 1” and “Vegetated Marshy Areas 2” are relative 
to different kinds of vegetation characterizing the “Natural Oasis of Lago Salso” (Figure 6). 
The Worldview-2 profiles, due to atmospheric effects, do not show the typical trend of 
vegetation spectra in the visible range. The absorption peak in the BLUE range is suppressed 
by the Rayleigh scattering contribution which decreases with an increase in wavelength. On 
the contrary, the range of the spectrum from RED to NIR1 can be useful for vegetation 
characterization and, except for a few differences (which could be explained considering the 
time interval between the two acquisitions) MIVIS and Worldview-2 spectral profiles are 
sufficiently in agreement. The class labeled as “Forested Area “is mainly composed of the 
Siponto pine forest (Figure 8) sited in a coastal area on the Manfredonia Gulf. The spectral 
profile obtained by MIVIS and confirmed by Worldview-2 shows a low reflectance in the 
NIR spectral range which is correlated to lower vegetation LAI [10].   

In Figure 9, Worldview-2 (top) and MIVIS (bottom) spectral profiles for bare land regions 
are shown. In this case the trend of MIVIS spectral profiles are in agreement with the 
Worldview-2 ones; although, the better spectral resolution of MIVIS is able to acquire finer 
spectral signatures for every class. 
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Fig. 7. Worldview-2 (top) and MIVIS (bottom) spectral profiles of vegetated land classes. 

 
Fig. 8. Siponto Pine Forest. 

It can be noted that “Arable Land without Vegetation 1”, “Arable Land without Vegetation 
2” and “Arable Land without Vegetation 3” are characterized by a spectral signature similar 
in shape but with an increasing average reflectance. This can be explained considering that 
the reflectance level decreases for soil with increasing moisture [11] and so the different 
targets could be associated with different moisture content. “Sand”, instead, shows a 
spectral profile which differs from the other ones probably due to the extremely different 
composition of the soil. 
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Fig. 9. Worldview-2 (top) and MIVIS (bottom) spectral profiles of Bare Land classes. 

4. Processing, results and discussion 
For the supervised analysis, the standard statistic “Maximum Likelihood” (ML) algorithm 
was considered. The 18 classes of table 1, recognized on the scene with the guide of the 
segmentation step and better characterized with the help of MIVIS data, were selected. 
Randomly selected training (TR) and test (TE) sets were used respectively to train the 
algorithm and to assess the accuracy of the produced maps. For the accuracy of all the 
classes, the Overall Accuracy percentage (OA%) (i.e. number of correctly classified pixels 
divided by the total of  pixels) with the estimation of the relative confidence interval with a 
significance of 95% [12] as computed. For the accuracy of each class, the Mapping Accuracy 
percentage (MA%), [13], [14], was computed. It is defined as:  

 % 100correctlyclassified

correctlyclassified omission commission

pixels
MA

pixels pixels pixels
 

 
       (2) 

where:  

pixelsomission is the number of pixels assigned to other classes along the row of the confusion 
matrix relevant to the class considered; 

pixelscommission is the number of pixels assigned to other classes along the column of the 
confusion matrix relevant to the class considered. 

According to [15], many input configurations to the classifier were tested considering, 
firstly, the standard 4 spectral bands of the image and then adding a fifth band among the 4 
add on bands of Worldview-2 in order to analyze the specific contribution of each band.  
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Finally all the 8 band contributions were considered. The results obtained for all the classes 
with different input bands to the supervised classifier are shown in table 3. 
 

Input Configuration OA_TR% ±δ_TR% OA_TE% ±δ_TE% 
4 BANDS 98.63 0.15 75.31 0.52 

5 BANDS WITH COASTAL 99.60 0.08 78.09 0.50 
5 BANDS WITH YELLOW 98.62 0.15 77.96 0.50 

5 BANDS WITH RED EDGE 98.87 0.14 79.00 0.49 
5 BANDS WITH NIR2 98.94 0.13 78.92 0.49 

8 BANDS 99.71* 0.07 85.50* 0.42 

Table 3. Results in the supervised classification. 

In training and testing, with an increase in the number of the bands there is an increase in 
the OA% because more information was added as input to the classifier to improve 
discrimination among classes. Observing the generalization ability, in testing, an 
improvement of 10% was achieved with the use of 8 bands with respect to 4 bands. The 
asterisk indicates the best value.  

The same analysis was carried out for each target (“Water”-“Bare land”-“Vegetated land”) 
in order to evaluate the contribution that each of the add on 4 bands could give to 
characterize the specific target. A finer detailed discrimination among the classes is 
expected.  For the target “Water” the MA% in testing in the different input configurations to 
the classifier are shown in Table 4. 
 

Input Configuration 
SEA 

WATER 1 
(deep)

SEA WATER 2
(medium deep)

SEA 
WATER 3
(coastal)

RIVER 
WATER 

MARSH 
WATER 

4 BANDS 83.33 66.84 70.27 55.81 81.86 
5 BANDS WITH 

COASTAL 80.41 66.39 72.48 65.53* 83.92 

5 BANDS WITH 
YELLOW 86.68 84.97* 90.11* 59.01 81.81 

5 BANDS WITH RED 
EDGE 96.28 77.83 76.87 62.80 84.13 

5 BANDS WITH NIR2 99.52* 72.47 63.35 59.00 93.51* 
8 BANDS 100** 91.70** 90.63** 82.88** 99.04** 

Table 4. MA% in test for the classes belonged to the target Water. 

The best MA% value is obtained with the use of 8 bands, as indicated with a double asterisk, 
with an average improvement of 20% with respect to the use of only 4 bands. Analyzing the 
contribution of each add on band to the single class, it emerged that (the best value due to 
the add on bands has been marked with a single asterisk): 

 the discrimination of “Sea Water 1” (deep) and “Marsh Water” is improved by the NIR2 
band. “Marsh Water” is water with the presence of vegetation under and over the 
surface and this could explain the role of NIR2;  
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 the discrimination of “Sea Water2 ” (medium deep) and “Sea Water 3” (coastal) is 
improved by the YELLOW band that appears to be able to recognize water with 
hanging deposits; 

 the discrimination of “River Water”, substantially muddy water, is improved by the 
COASTAL band which appears able to recognize a mixture of water and mud. 

For the target “Bare land”, the MA% in testing in the different input configurations to the 
classifier are shown in Table 5. 

Input 
Configuration 

ARABLE LAND 
WITHOUT 

VEGETATION 1
(dark brown)

ARABLE LAND 
WITHOUT 

VEGETATION 2
(light brown) 

ARABLE LAND 
WITHOUT 

VEGETATION 3
(orange)

ARABLE LAND 
WITHOUT 

VEGETATION 4 
(very light brown) 

SAND 

4 BANDS 80.84 38.62 48.72 55.20 39.10 

5 BANDS 
 WITH 

COASTAL 
75.05 38.08 49.48 58.74 41.40* 

5 BANDS  
WITH 

YELLOW 
81.31* 50.53* 48.51 56.31 39.07 

5 BANDS  
WITH RED 

EDGE 
78.71 49.78 55.96* 60.28 40.71 

5 BANDS  
WITH NIR2 80.55 50.17 55.99* 65.01** 39.16 

8 BANDS 86.15** 57.67** 61.17** 64.10 44.24** 

Table 5. MA% in test for the classes belonged to the target Bare Land. 

For all the different spectral signatures, the best MA% value is obtained with the use of 8 
bands, as indicated with a double asterisk, with an average improvement of 10% with respect 
to the use of only 4 bands. The class “Arable Land without Vegetation 4” is an exception which 
can be justified by a high misclassification with the class “Arable Land without Vegetation 3”. 
Analyzing the contribution of each add on band to the single class, it emerged that (the best 
value due to the add on bands has been marked with a single asterisk): 

 the discrimination of “Arable Land without Vegetation 1" (dark brown) and “Arable 
Land without Vegetation 2" (light brown) is improved by the YELLOW band; 

 the discrimination of “Arable Land without Vegetation 3” (orange) is improved by the 
NIR2 band and by the RED EDGE, whereas “Arable Land without Vegetation 4” (very 
light brown) is improved only by the NIR2 band; 

 the discrimination of “Sand” is improved by the COASTAL band. 

The different spectral profiles could be explained by the different pedological composition 
of soil or its different water content. For the “Vegetated land” target, the MA% test 
classification values obtained with different input bands are shown in Table 6. 

The best MA% value is obtained with 8 bands, as evidenced by a double asterisk in the 
table, with an average improvement of about 3% for “Forested Area” and “Vegetated 
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 the discrimination of “Sea Water2 ” (medium deep) and “Sea Water 3” (coastal) is 
improved by the YELLOW band that appears to be able to recognize water with 
hanging deposits; 

 the discrimination of “River Water”, substantially muddy water, is improved by the 
COASTAL band which appears able to recognize a mixture of water and mud. 

For the target “Bare land”, the MA% in testing in the different input configurations to the 
classifier are shown in Table 5. 

Input 
Configuration 

ARABLE LAND 
WITHOUT 

VEGETATION 1
(dark brown)

ARABLE LAND 
WITHOUT 

VEGETATION 2
(light brown) 

ARABLE LAND 
WITHOUT 

VEGETATION 3
(orange)

ARABLE LAND 
WITHOUT 

VEGETATION 4 
(very light brown) 

SAND 

4 BANDS 80.84 38.62 48.72 55.20 39.10 

5 BANDS 
 WITH 

COASTAL 
75.05 38.08 49.48 58.74 41.40* 

5 BANDS  
WITH 

YELLOW 
81.31* 50.53* 48.51 56.31 39.07 

5 BANDS  
WITH RED 

EDGE 
78.71 49.78 55.96* 60.28 40.71 

5 BANDS  
WITH NIR2 80.55 50.17 55.99* 65.01** 39.16 

8 BANDS 86.15** 57.67** 61.17** 64.10 44.24** 

Table 5. MA% in test for the classes belonged to the target Bare Land. 

For all the different spectral signatures, the best MA% value is obtained with the use of 8 
bands, as indicated with a double asterisk, with an average improvement of 10% with respect 
to the use of only 4 bands. The class “Arable Land without Vegetation 4” is an exception which 
can be justified by a high misclassification with the class “Arable Land without Vegetation 3”. 
Analyzing the contribution of each add on band to the single class, it emerged that (the best 
value due to the add on bands has been marked with a single asterisk): 

 the discrimination of “Arable Land without Vegetation 1" (dark brown) and “Arable 
Land without Vegetation 2" (light brown) is improved by the YELLOW band; 

 the discrimination of “Arable Land without Vegetation 3” (orange) is improved by the 
NIR2 band and by the RED EDGE, whereas “Arable Land without Vegetation 4” (very 
light brown) is improved only by the NIR2 band; 

 the discrimination of “Sand” is improved by the COASTAL band. 

The different spectral profiles could be explained by the different pedological composition 
of soil or its different water content. For the “Vegetated land” target, the MA% test 
classification values obtained with different input bands are shown in Table 6. 

The best MA% value is obtained with 8 bands, as evidenced by a double asterisk in the 
table, with an average improvement of about 3% for “Forested Area” and “Vegetated 
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Marshy Areas” and of about 30% for “Arable Land with Vegetation 1” and “Arable Land 
with Vegetation 2” with respect to the use of only 4 bands. For each class, the best result 
obtained by a specific band is evidenced by a single asterisk in the table. 

 

Input 
Configuration 

ARABLE 
LAND WITH 

VEGETATION
1 

(intense green)

ARABLE 
LAND WITH 

VEGETATION
2 

(light green) 

VEGETATED 
MARSHY  
AREA 1 

(dark green)

VEGETATED 
MARSHY  
AREA 2 

(less dark 
green) 

NOT 
ARBOREOUS 
VEGETATION 

FORESTED 
AREA 

4 BANDS 70.91 55.20 93.69 90.42 60.50 93.50 

5 BANDS 
WITH 

COASTAL 
75.89 86.48* 95.89* 92.90* 74.88* 95.80* 

5 BANDS 
WITH 

YELLOW 
74.07 53.30 95.20 92.49 60.97 94.69 

5 BANDS 
WITH RED 

EDGE 
85.25* 56.90 95.20 92.96 68.27 95.64* 

5 BANDS 
WITH NIR2 75.02 60.96 92.86 90.79 69.68 94.88 

8 BANDS 92.08** 89.83** 96.93** 95.38** 90.84** 97.02** 

Table 6. MA% in test for the classes belonged to the target Vegetated Land. 

5. Conclusions 
This paper describes the experimental activity aimed at the exploitation of the new 
Worldview-2 sensor with respect to the effectiveness of the new add on COASTAL, 
YELLOW, RED EDGE and NIR2 bands. Firstly, an unsupervised analysis for data spectral 
clustering was applied to discriminate among the different spectral signatures, then a 
supervised image classification produced a land cover map. Standard/commercial tools 
were used. In the first step the clusters in the spectral domain were interpreted with the help 
of a detailed ground truth map and compared with a hyperspectral data set. This analysis 
showed that the 8-band sensor is extremely useful to better discriminate different spectral 
sub-signatures corresponding to the same land cover category. This means that the major 
capability of the new sensor resides in the capacity of investigating the “ground” diversity 
underlying the apparent homogeneity of conventional land cover/land use map 
categorization. From the supervised classification, it was possible to detect changes in the 
bathymetry for the “Sea Water” classes by using the COASTAL band; moreover, the lowest 
wavelength band appears to be significant for the recognition of mixed patterns of water 
and terrain. The YELLOW band appears significant to detect the presence of hanging 
deposits or to elicit terrain composition, as characterized by a certain degree of 
“yellowness”. Finally, the RED EDGE and the NIR2 bands seem useful for a better 
discrimination of ground sites characterized by a mixing of water and vegetation. The 
increase in thematic accuracy was 10%, passing from the “traditional” 4-band to the new 8-
band sensor.  
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Convex Set Approaches for Material
Quantification in Hyperspectral Imagery

Juan C. Valdiviezo-N and Gonzalo Urcid
Optics Department, INAOE

Mexico

1. Introduction

Emerging as the combination of optics and spectroscopy, the development of high resolution
imaging spectrometers has allowed a new perspective for the monitoring, identification and
quantification of natural resources in Earth’s surface, that is known today as hyperspectral
remote sensing. An imaging spectrometer is an instrument that images the energy reflected
or scattered by an object in hundred of spectral bands at different portions of the
electromagnetic spectrum. Although these devices have been developed for remote sensing
purposes, their applications have substantially increased in the last years because of their
capabilities in materials identification, being also used in biology, medicine and related areas
(Huebshman et al, 2005). In contrast to multispectral devices where each imaged spectral
band covers a wide spectral range, a hyperspectral sensor has a higher spectral resolution
that usually is less than 10 nm; thus, the number of spectral bands captured by the sensors
represents an important difference between both technologies. Once the hyperspectral data
have been appropriately calibrated taking into account the illumination factors and the
atmospheric effects, the spectral information registered at each pixel of the image allows a
direct identification of any imaged object based on its spectrum.

When Earth observation is the application, a hyperspectral sensor usually presents a low
spatial resolution caused by either the characteristics of the instrument or the flight altitude
of the aerial platform, which causes that the spatial resolution decreases as the distance from
the Earth increases. Considering such a sensor having a spatial resolution in the order of
meters, the spectral reflectance captured in a single pixel of the image would be comprised
by the mixed reflectance spectra of different materials or objects present in that physical area.
Therefore, the image data will be formed by a number of pixels whose spectral information
corresponds to the mixture of the constituent materials spectra. Many authors in the literature
have proposed to represent these spectral mixtures as a linear combination of constituent
materials spectra with their corresponding abundances (Boardman, 1993; Keshava, 2003;
Winter, 1999). This model, frequently known as the constrained linear mixing model (CLMM),
has been the basis for some autonomous techniques oriented toward the unsupervised
identification of constituent materials from hyperspectral imagery, and can be considered as a
convex set representation.

This chapter presents a general overview of the techniques based on a convex set
representation that have been used to identify the constituent materials from a hyperspectral
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scene. Besides the presentation of some classical methods used for this purpose, we are going
to emphasize a recently published technique whose properties are based on lattice algebra
to approximate a minimum convex set. The organization of this chapter is as follows. In
Section 2 the physical foundations concerning the hyperspectral imaging process, including
data characteristics and their appropriate calibration will be presented. In Section 3 we will
state the necessary mathematical background to understand fundamental concepts such as
minimum convex sets, affine independence, and their relation with constituent materials in
hyperspectral data. Section 4 will describe some classical as well as recent techniques to
achieve the autonomous endmember determination process. Section 5 will start with a brief
mathematical background on lattice algebra that is necessary to understand the endmember
determination method that will be described later. The section will be complemented with
the presentation of two canonical lattice associative memories whose geometrical properties
are used to define a convex hull from hyperspectral data. In Section 6 we will provide two
application examples to illustrate the autonomous identification of natural resources from two
scenes registered, respectively, over the Gulf of Mexico, and the Belstville area in Maryland
(USA). Thus, the endmember identification will be realized using lattice associative memories
and another novel method known as vertex component analysis (VCA). Finally, in section 6 we
will give some pertinent comments and conclusions of this chapter.

2. Hyperspectral imaging

The development of more sophisticated imaging technologies in combination with high
resolution spectrometers has given place to a new perspective in remote sensing, in which it is
possible to register simultaneously the spatial and spectral information of the energy reflected
from Earth’s surface. These instruments, known as imaging spectrometer systems, image the
Sun radiance reflected from or emitted by materials on the surface, in hundred of narrow and
contiguous spectral bands usually in the reflective solar portion of the spectrum (from 0.35
to 2.5 μm). In remote sensing terminology, the region from approximately 0.35 to 1.0 μm is
known as the visible/near infrared (VNIR) and the range from 1.0 to 2.5 μm is known as the short
wavelength infrared (SWIR). Therefore, the resulting hyperspectral data consist of an image
cube conformed by a number of radiance images that can be used to estimate the reflectance
spectra of the scene. Thus, the information contained in a single pixel of a hyperspectral
image can be used to compare and identify any object based on its characteristic spectrum, at
a specific location of the zone of interest.

2.1 Physical foundations

There are fundamental matter-energy interaction processes that constitute the basis of the
information captured by spectrometer instruments. The electromagnetic radiation coming
from the sun can be modified in its direction, intensity or polarization when reaching the
Earth’s surface. These radiation changes depend on the physical and chemical constitution of
the materials comprising the surface, and can be classified as radiation transmission, reflection,
absorption or emission. When an electromagnetic wave propagating in free space reaches
the frontier of a different medium, one part of its energy can be transmitted through the
material and the other part can be reflected by the surface. Thus, the portion of energy that
has been transmitted can be absorbed by some molecules at certain frequencies, causing an
increment of the energy in their electrons and a change in the energy level. After a short
time in the excitation state, the electrons return to their original state producing an emission
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scene. Besides the presentation of some classical methods used for this purpose, we are going
to emphasize a recently published technique whose properties are based on lattice algebra
to approximate a minimum convex set. The organization of this chapter is as follows. In
Section 2 the physical foundations concerning the hyperspectral imaging process, including
data characteristics and their appropriate calibration will be presented. In Section 3 we will
state the necessary mathematical background to understand fundamental concepts such as
minimum convex sets, affine independence, and their relation with constituent materials in
hyperspectral data. Section 4 will describe some classical as well as recent techniques to
achieve the autonomous endmember determination process. Section 5 will start with a brief
mathematical background on lattice algebra that is necessary to understand the endmember
determination method that will be described later. The section will be complemented with
the presentation of two canonical lattice associative memories whose geometrical properties
are used to define a convex hull from hyperspectral data. In Section 6 we will provide two
application examples to illustrate the autonomous identification of natural resources from two
scenes registered, respectively, over the Gulf of Mexico, and the Belstville area in Maryland
(USA). Thus, the endmember identification will be realized using lattice associative memories
and another novel method known as vertex component analysis (VCA). Finally, in section 6 we
will give some pertinent comments and conclusions of this chapter.

2. Hyperspectral imaging

The development of more sophisticated imaging technologies in combination with high
resolution spectrometers has given place to a new perspective in remote sensing, in which it is
possible to register simultaneously the spatial and spectral information of the energy reflected
from Earth’s surface. These instruments, known as imaging spectrometer systems, image the
Sun radiance reflected from or emitted by materials on the surface, in hundred of narrow and
contiguous spectral bands usually in the reflective solar portion of the spectrum (from 0.35
to 2.5 μm). In remote sensing terminology, the region from approximately 0.35 to 1.0 μm is
known as the visible/near infrared (VNIR) and the range from 1.0 to 2.5 μm is known as the short
wavelength infrared (SWIR). Therefore, the resulting hyperspectral data consist of an image
cube conformed by a number of radiance images that can be used to estimate the reflectance
spectra of the scene. Thus, the information contained in a single pixel of a hyperspectral
image can be used to compare and identify any object based on its characteristic spectrum, at
a specific location of the zone of interest.

2.1 Physical foundations

There are fundamental matter-energy interaction processes that constitute the basis of the
information captured by spectrometer instruments. The electromagnetic radiation coming
from the sun can be modified in its direction, intensity or polarization when reaching the
Earth’s surface. These radiation changes depend on the physical and chemical constitution of
the materials comprising the surface, and can be classified as radiation transmission, reflection,
absorption or emission. When an electromagnetic wave propagating in free space reaches
the frontier of a different medium, one part of its energy can be transmitted through the
material and the other part can be reflected by the surface. Thus, the portion of energy that
has been transmitted can be absorbed by some molecules at certain frequencies, causing an
increment of the energy in their electrons and a change in the energy level. After a short
time in the excitation state, the electrons return to their original state producing an emission
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Fig. 1. Two types of scanning systems used to register a hyperspectral scene; the number of
spectral bands are determined by the detectors that cover specific wavelength intervals λ.

of energy at lower frequencies. These interaction processes are used in spectroscopy for the
characterization of materials in nature since they absorb or emit electromagnetic radiation at
different wavelengths depending on their physical constitution. Hence, the materials covering
the Earth’s surface can be identified in hyperspectral data according to some absorption or
emission bands present in the spectra recorded by the sensor.

For remote sensing purposes imaging spectrometers are placed onboard aerial platforms,
mainly satellites or airplanes. Thus, the fundamental parts conforming hyperspectral remote
sensing systems are: (1) optics to collect light, (2) a mechanism to scan the instantaneous field
of view (IFOV) of the spectrometer over a scene, and (3) a set of spectrometers. The image
acquisition process is as follows. A scanning mirror coupled to the mechanical system and the
platform motion are used as part of the scanning process to collect the reflected energy coming
from the surface. Furthermore, the scanning process of each line of the image can be realized
using different systems. If the optics forms an image of a single point on the ground such
that a line scanner scans a long line that is cross tracked to the platform motion, the scanner
is called a “whiskbroom system”. If the optics forms the image of a large slit such that no
scan mechanism is needed other than the platform motion to form an image, the scanner is
called a “pushbroom system” (see Fig. 1). Still another kind of systems use a linear variable
filter over a two dimensional array of photodetectors (Jensen, 2007). After the collection of
energy has been realized, the incoming light is then leaded through a set of spectrometers that
splits the light into many narrow bands of energy by means of a dispersive element that can
be either a grating or a prism. The energy coming from the dispersive elements is recorded
by photodetectors whose sensibility responds to a specific wavelength interval, giving place
to several image spectral bands.

2.1.1 Spatial and spectral resolution

In imaging spectrometers there are two basic characteristics that define the degree of
resolution of the system. The spatial resolution is a measure of the minimum detail on the
surface that can be captured for a given remote sensor. Thus, spatial resolution depends on the
proper characteristics of the sensor and the flight altitude of the aerial platform. In particular,
for a grating spectrograph hyperspectral imager, the spatial resolution is set by the size of the

155Convex Set Approaches for Material Quantification in Hyperspectral Imagery



4 Will-be-set-by-IN-TECH

pixels of the charge couple device (CCD) camera in the y direction and the microscope system
magnification. However, in the x direction, the resolution depends on the spectrometer slit
width and the microscope system magnification (Huebshman et al, 2005). Let Δx and Δy be
respectively the x and y dimensions of the CCD pixels and the magnification be M. Note that
the slit width of the spectrometer ws is always going to be larger than Δx. Then, the spatial
resolution in the y direction is 2Δy/M, while in the x direction is 2ws/M. Moreover, other
common definition of spatial resolution relating the pixel size and the flight altitude refers to
the physical area over the surface occupied by a single pixel. Clearly, the resolution increases
as the altitude of the aerial platform decreases.

On the other hand, the spectral resolution refers to the number and bandwidth of spectral bands
that a sensor can register. In fact, spectral resolution depends on spectrometer components
which includes the slit width, the dispersion of the grating or prism, and the sensor device
pixel size. For example, for a CCD pixel size of 10 square microns, the dispersion at normal
operation is determined to be approximately 40 nm per mm or, equivalently, 0.4 nm per pixel.

2.2 Reflectance estimation from sensors

The light intercepted by the entrance aperture of a sensor is the quantity know as radiance.
Given that the spectral reflectance is a physical quantity that is related to material properties,
it is necessary to estimate the reflectance spectra1 from radiance information captured in
hyperspectral data. For this purpose, the background energy level of the Sun must be removed
and the scattering and absorbing effects of the atmosphere must be compensated for. There
are three main techniques that can be used in order to estimate the spectral reflectance, which
can be considered as being either an image, empirical, or model based approach. An image
based approach uses only data measured by the instrument, requiring that the images include
regions of relatively uniform reflectance. Thus, any absorption presented in the measured
reflectance of these regions will be related with one of the mentioned effects and therefore,
such effects can be compensated for the complete image. Dividing each image spectrum by the
flat field spectrum, the scene is converted to relative reflectance. On the other hand, empirical
methods employ both remotely sensed data and field measurements of reflectance, denoted
by r(λ), to solve a linear equation of at-sensor radiance, such that,

L(λ) = br(λ) + c , (1)

where L(λ) is the radiance captured by the sensor that varies with wavelength λ, and b, c
represent, respectively, multiplicative and additive terms that adjust the sensor radiance.

Model based approaches seek to represent all factors involved in the radiance acquired at a
pixel by pixel basis including atmospheric perturbations. For this purpose, a simulated solar
irradiance spectrum is used, then the method estimates the solar radiance in the day and hour
of image acquisition and the absorption and scattering effects of the atmosphere. Hence, the
solar radiance impinging on sensor Ls as a function of wavelength λ can be modeled as

Ls(λ) =
1
π
(Er(λ) + MT)τθ + Lp , (2)

1 Recall that reflectance is defined as the ratio of the energy reflected from a material to the incident light
falling on it.
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operation is determined to be approximately 40 nm per mm or, equivalently, 0.4 nm per pixel.

2.2 Reflectance estimation from sensors

The light intercepted by the entrance aperture of a sensor is the quantity know as radiance.
Given that the spectral reflectance is a physical quantity that is related to material properties,
it is necessary to estimate the reflectance spectra1 from radiance information captured in
hyperspectral data. For this purpose, the background energy level of the Sun must be removed
and the scattering and absorbing effects of the atmosphere must be compensated for. There
are three main techniques that can be used in order to estimate the spectral reflectance, which
can be considered as being either an image, empirical, or model based approach. An image
based approach uses only data measured by the instrument, requiring that the images include
regions of relatively uniform reflectance. Thus, any absorption presented in the measured
reflectance of these regions will be related with one of the mentioned effects and therefore,
such effects can be compensated for the complete image. Dividing each image spectrum by the
flat field spectrum, the scene is converted to relative reflectance. On the other hand, empirical
methods employ both remotely sensed data and field measurements of reflectance, denoted
by r(λ), to solve a linear equation of at-sensor radiance, such that,

L(λ) = br(λ) + c , (1)

where L(λ) is the radiance captured by the sensor that varies with wavelength λ, and b, c
represent, respectively, multiplicative and additive terms that adjust the sensor radiance.

Model based approaches seek to represent all factors involved in the radiance acquired at a
pixel by pixel basis including atmospheric perturbations. For this purpose, a simulated solar
irradiance spectrum is used, then the method estimates the solar radiance in the day and hour
of image acquisition and the absorption and scattering effects of the atmosphere. Hence, the
solar radiance impinging on sensor Ls as a function of wavelength λ can be modeled as

Ls(λ) =
1
π
(Er(λ) + MT)τθ + Lp , (2)

1 Recall that reflectance is defined as the ratio of the energy reflected from a material to the incident light
falling on it.
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where E is the irradiance on the Earth’s surface, r(λ) is the reflectance of the surface, MT is
the spectral radiant exitance at temperature T, τθ is the transmissivity of the atmosphere at
zenith angle θ and Lp is the spectral path radiance of the atmosphere (Farrand, 2005). Solving
Eq. (2) gives accurate results in reflectance estimation since it includes all factors contributing
to the image acquisition process. Model based approaches are also employed to estimate
atmospheric properties directly from the hyperspectral data.

2.3 Imaging spectrometers

One of the first hyperspectral instruments placed onboard an aircraft for Earth observation
is the Airborne, Visible and Infrared Imaging Spectrometer (AVIRIS). The sensor was developed at
NASA’s Jet Propulsion Laboratory and it is composed by a whiskbroom scanning mirror and a
linear array of 224 silicon and indium-antimonide sensors. The fine spectral resolution of the
instrument, around 10 nm, allows to acquire 224 spectral bands in the spectral range from 0.4
to 2.5 μm. When the sensor is placed onboard the ER-2 aircraft, flying at an altitude of 20 km
above ground level, the spatial resolution of the sensor is around 400 m2, having a 30◦ total
field of view, and an IFOV of 1.0 mrad. However, if the instrument is placed on an aircraft
flying at an altitude of 4 km over the sea level, the spatial resolution of the sensor is about 16
m2.

Furthermore, CHRIS is a current European imaging spectrometer that is operating in its ninth
year. The instrument has a spatial resolution of 17 m in up to 62 bands. The data captured
by the sensor is serving in more than 50 countries to support a wide range of applications,
such as, land surface and coastal zone monitoring. Other imaging spectrometers that are in
use today are the hyperspectral digital imagery collection experiment (HYDICE) and the image
spectrometers belonging to SpecTir (SpecTir, 2009).

Besides the current hyperspectral sensors, three missions are planned to work within the
next five years. Italy’s ASI space agency plans to launch a medium resolution hyperspectral
imaging mission, known as Prisma, in 2012. The instrument will combine a hyperspectral
sensor with a panchromatic medium resolution camera, being able to acquire 235 spectral
bands in the VNIR and SWIR. The German Aerospace Center (DLR) and the German Research
Centre for Geosciences (GFZ) are planning to launch the EnMAP hyperspectral satellite in 2014;
the sensor is designed to register Earth’s surface in over 200 narrow color bands at the same
time. In 2015, NASA plans to launch the Hyperspectral Infrared Imager, known as HyspIRI. The
HyspIRI mission includes two instruments mounted on a satellite in Low Earth Orbit. The
first, an imaging spectrometer, will measure from the visible to short wavelength infrared at
a resolution of 10 nm. Also, a multispectral sensor will cover from 3 to 12 μm in the mid and
thermal infrared. Both instruments have a spatial resolution of 60 m at nadir. Thus, HyspIRI
will acquire 210 spectral bands, whose data will be used to study the world’s ecosystems and
provide critical information on natural disasters, such as, the processes that indicate volcanic
eruption, the nutrients and water status of vegetation, deforestation, among others (Esa, 2010).

3. Mathematical background

In this section, a general mathematical background is given for several endmember search
techniques briefly described in the next section. Many of these techniques developed and
used for the unsupervised classification of materials in hyperspectral data have been based
on convex sets theory; hence, it is necessary to define some important concepts such as
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minimum convex sets and endmembers together with its geometrical representation in
multidimensional spaces. In the following definitions, we assume that a finite set X of
n-dimensional vectors with real entries is given. Thus, using column notation we can denote
this set as X = {x1, . . . , xk} ∈ Rn where k is the number of vectors.

3.1 Convex sets and affine independence

In the theory of convex sets, a set of vectors X = {x1, . . . , xk} ⊂ Rn, also considered as points,
is said to be convex if a straight line joining any two points resides within the set X (Lay, 2007).
Being {aξ} ⊂ R a set of scalars for all ξ ∈ K = {1, . . . , k}, a linear combination of vectors in
X is an expression of the form ∑k

ξ=1 aξxξ . Then, X is said to be a linearly independent set if

the unique solution to the equation ∑k
ξ=1 aξxξ = 0 is given by aξ = 0 for ξ ∈ K. Otherwise,

the vectors in X are said to be linearly dependent. Furthermore, from a geometrical point of
view, an affine combination is a linear combination of X subject to the condition ∑k

ξ=1 aξ = 1.
If, in addition to the preceding condition, we require that aξ ≥ 0 ∀ξ ∈ K then the set is called
a convex combination of vectors. The set of all convex combinations formed with elements of X
is known as the convex hull of X, denoted as C(X).

The notion of affine independence is of fundamental importance in the theory of convex
sets and is defined as follows. Let Kη = K \ {η} denote the index set from which index
η has been deleted. If the set of vector differences, X� = {xξ − xη : ξ ∈ Kη} is linearly
independent for some η ∈ K, it can be shown that X� is a linearly independent set ∀η ∈ K.
Therefore, the set X = {x1, . . . , xk} ⊂ Rn is said to be affine independent if and only if the
set X� = {xξ − xη : ξ ∈ Kη} ⊂ Rn is a linearly independent set for some η ∈ K (Gallier,
2001). Notice that the vectors x1, . . . , xk are affinely independent if the unique solution to the
simultaneous equations ∑k

ξ=1 aξxξ = 0 and ∑k
ξ=1 aξ = 0 is given by aξ = 0 for all ξ ∈ K.

Hence, linear independence implies affine independence. It follows from this definition that
any two distinct points are affinely independent, any three non-collinear points are affinely
independent, and in general any m points in Rn, with m ≤ n + 1 are affinely independent
if and only if they are not points of a common (m − 2)-dimensional linear subspace of Rn.
The convex hull of affinely independent points form a simplex that is the minimum convex
set formed by n + 1 vertices. In particular, if X is affinely independent, then C(X) is an
m-dimensional simplex or m-simplex. Thus, a 0-simplex is simply a point, a 1-simplex is a line
segment determined by two affinely independent points, a 2-simplex is a triangle determined
by three affinely independent points, while a 3-simplex is a tetrahedron defined by four
affinely independent points.

3.2 The constrained linear mixing model

As discussed in the previous section, a noticeable characteristic of hyperspectral images
is that most of the pixels contain mixtures of the spectra of constituent materials in the
scene. According to the physical interaction of light with matter, it is possible to represent
such mixtures using a non-linear model if we consider that photons contribute with each
molecule separately. However, in this representation the estimation of the proportions of each
constituent material could be a difficult task. A more practical representation, known as the
constrained linear mixing model (CLMM), has been used to represent the spectral mixtures at a
pixel basis in hyperspectral data; the CLMM model has shown to be a good approximation for
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the abundance estimation of constituent materials when dealing with spectral mixtures, and
it is mathematically expressed by,

x =
p

∑
i=1

ais
i + r = Sa + r (3)

ai ≥ 0 ∀i and
p

∑
i=1

ai = 1 , (4)

where x ∈ Rn is a spectral pixel acquired over n bands, S = {s1, s2, . . . , sp} is an n × p
matrix whose columns are the spectra of constituent materials (also known as endmembers),
a=(a1, a2, . . . , ap)t is a p-dimensional vector of corresponding fractional abundances present in
x and r is a noise vector (Keshava, 2003). The CLMM requires the set S of p endmembers be
linearly independent and, in general, that the number of endmembers be much less than the
dimensionality of the data pixel spectra (p � n).

In a geometrical representation, the CLMM described above can also be thought as a minimum
convex set enclosing most of the hyperspectral data, where the p pure pixels spectra are the
vertices of the corresponding simplex (see Fig. 2). Moreover, because of the spatial position
of pure pixels, these vertices are technically known as endmembers. This way, any other
spectral pixel of the image belongs to this convex set and can be completely represented by
those endmembers. The last statement is the cornerstone of the geometrical based approach
so frequently used to extract the constituent materials spectra from hyperspectral data.
Furthermore, the estimation of fractional abundances for each endmember can be performed
through the inversion of Eq. (3) subject to the imposed restrictions specified by Eq. (4). This
process, known as spectral unmixing (or demixing), allows to quantify the proportion of each
endmember in every image pixels. A simple and direct numerical method is provided, in the
unconstrained case, by the least square estimation method expressed by

a = S+x = (StS)−1Stx, (5)

where S+ denotes de Moore-Penrose pseudoinverse matrix. This estimation exists when the
S matrix is of full rank. The abundances that result from this estimation do not necessarily
satisfy the constraints imposed in Eq.(4). Therefore, full additivity can be satisfied using
the method of Lagrange Multipliers, while the non-negativity condition can be enforced by
applying the non-negative least squares numerical method (Lawson & Hanson, 1974). It is also
possible to employ a hybrid method in order to satisfy both constraints simultaneously.

4. Autonomous methods for endmember determination

Because the goal in the analysis of hyperspectral data is the quantification of materials
comprising the scene, it is important to determine experimentally or even numerically
the endmembers spectra. An experimental identification of these spectra implies the use
of another device such as a spectroradiometer or a spectrometer to measure directly the
reflectance spectra of materials belonging to the area under study; however this methodology
is impractical in many situations because it requires an additional effort to collect samples
from the zone of interest. A more practical methodology is to extract the same information
as much as possible directly from the image data. In addition, assuming most pixels in the
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Fig. 2. Left: a 2-simplex whose vertices are three spectrally pure pixels in the image. Right: a
3-simplex defined by four spectrally pure pixels in the image defining a tetrahedron. Both
simplex encloses all the spectral data.

image are conformed of spectral mixtures, then constituent materials are identified as those
pixels having the spectrum of only one material. Based on this hypothesis, several authors
have recently proposed and developed different methodologies used for the autonomous
identification of spectrally pure pixels from the image itself. In this section we will make
a review of some important techniques that have been applied for this purpose and whose
methodology takes the constrained linear mixing model to represent the spectral mixtures at
image pixels.

One of the earliest efforts for endmember extraction was proposed by Boardman and is known
as pixel purity index (PPI) (Boardman, 1995). The algorithm is based on the geometry of convex
sets to extract the vertices of a convex hull. Starting with a dimensionality reduction applied
to the original data cube by using the minimum noise fraction transform, PPI generates a
large number of random n-dimensional vectors, known as “skewers”, through the dataset.
Every pixel vector in the input data is projected onto each skewer, and its position is specified.
The data that correspond to extreme points in the direction of a skewer are identified and
placed on a list, indicating an increment in their pixel purity score. After many repeated
projections, those pixels with a score above a certain threshold are determined as candidate
“pure” pixels. From the resulting set of endmembers spectra, one can manually select those
pixels that correspond to pure spectra. It is important to remark that the PPI algorithm was
originally conceived as a guide to endmember determination since it requires to compare the
determined spectra with those obtained from a spectral library in order to identify the final
set of endmembers.

The minimum volume transform (MVT) algorithm, computes the minimum volume simplex
enclosing the data (Craig, 1994). This proposal is based on the observation that scatter
diagrams of multispectral remote sensing data tend to be triangular or pyramidal for the
two or three band cases, respectively. Hence, they radiate away from the dark-point, which
represents the sensor’s response to an unilluminated object. Therefore, a minimum volume
transform may be described as a non-orthogonal linear transformation of the multivariate data
to new axes passing through the dark-point, and whose directions are chosen such that they
embrace the data cloud. Thus, the determined MVT can be used to unmix images into new
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enclosing the data (Craig, 1994). This proposal is based on the observation that scatter
diagrams of multispectral remote sensing data tend to be triangular or pyramidal for the
two or three band cases, respectively. Hence, they radiate away from the dark-point, which
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spatial variables showing the proportions of the different cover types present in the remotely
sensed scene.

The NFIND-R algorithm is an iterative simplex volume expansion procedure that assumes the
volume contained by an n-simplex whose vertices are specified by the purest pixels is always
greater than any other volume formed by other combination of pixels (Winter, 1999). The
input for the algorithm is the full data cube, which after subsequent projection is reduced
in dimension. The selection of these vertices is initially realized by a random selection of a
set of q vectors as endmembers candidates and then computing the volume of the simplex
formed by these initial endmembers. The process continues iteratively by replacing every
endmember one at a time with a pixel in the image and computing the respective volume.
Hence, the pixel purity likelihood is evaluated by calculating the volume for every pixel in
the place of each endmember. If the replacement results in a volume increase, then the pixel
replaces the corresponding endmember. The procedure is repeated until there is no more
replacement of endmembers; hence, the final spectra are considered as pure pixels and can be
used as endmembers to estimate their corresponding abundances. It is important to remark
that the accuracy in the method depends on the initial selection of endmembers.

The algorithm termed as vertex component analysis (VCA), is an unsupervised technique that
relies on singular value decomposition and principal component analysis as subprocedures
assuming the existence of pure pixels (Nascimento & Bioucas-Dias, 2005). In particular, VCA
exploits the fact that endmembers are vertices of a simplex and that the affine transformation
of a simplex is also a simplex. This algorithm iteratively projects data onto a direction
orthogonal to the subspace spanned by the endmembers already determined. The new
endmember spectrum is the extreme of the projection and the main loop continues until all
given endmembers are exhausted.

The minimum volume enclosing symplex (MVES) algorithm is an autonomous technique
supported on a linear programming solver that does not require the existence of pure pixels in
the hyperspectral data (Chan et al, 2009). For the case when there exist pure pixels, the MVES
technique leads to unique identification of endmembers. In particular, dimension reduction
is accomplished by affine set fitting and Craig’s unmixing criterion (Craig, 1994) is applied
to formulate hyperspectral unmixing as an MVES optimization problem. The algorithm
first determines the affine parameters set, solves by linear programming an initial feasibility
problem with linear convex constraints, and iteratively optimizes two linear programming
problems with nonconvex objective functions. Notice that the algorithm requires knowing in
advance the number of endmembers to be found.

5. Lattice based approach for endmember extraction

5.1 Lattice algebra operations

The use of lattice algebra for science and engineering applications in which the usual matrix
operations of addition and multiplication are replaced by corresponding lattice operations,
has increased in the last years. These ideas have been applied in diverse areas, such as pattern
recognition (Ritter et al, 1998), associative memories in image processing (Ritter et al, 2003;
Ritter & Gader, 2006; Urcid & Valdiviezo, 2009), computational intelligence (Graña, 2008),
industrial applications modeling and knowledge representation (Kaburlasos & Ritter, 2007),
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and hyperspectral image segmentation (Graña et al, 2009; Ritter et al, 2009; Ritter & Urcid,
2010; Valdiviezo & Urcid, 2007).

The basic numerical operations of taking the maximum or minimum of two numbers, denoted
as functions max(x, y) and min(x, y), will be written as binary operators using the “join” and
“meet” symbols employed in lattice theory, i.e., x ∨ y = max(x, y) and x ∧ y = min(x, y). We
use lattice matrix operations that are defined componentwise using the underlying structure
of R−∞ or R∞ as semirings. For example, the maximum of two matrices X, Y of the same size
m × n is defined as (X ∨ Y)ij = xij ∨ yij for i = 1, . . . , m and j = 1, . . . , n. Inequalities between
matrices are also verified componentwise, for example, X ≤ Y if and only if xij ≤ yij. Also,
the conjugate matrix X∗ is defined as −Xt where Xt denotes usual matrix transposition. Given
an m × p matrix X and a p × n matix Y with entries in R, we define a pair of dual matrix
operations named as the max-sum and the min-sum denoted, respectively by X ∨ Y and X ∧ Y
and whose i, j-th entry for i = 1, . . . , m and j = 1, . . . , n, respectively, is given by (X ∨ Y)ij =�p

k=1(xik + ykj) and (X ∧ Y)ij =
�p

k=1(xik + ykj). For p = 1 these lattice matrix operations
reduce to the outer sum of two vectors x = (x1, . . . , xn)t ∈ Rn and y = (y1, . . . , ym)t ∈ Rm,
defined by the m × n matrix

y × xt =

⎛
⎜⎝

y1 + x1 . . . y1 + xn
...

. . .
...

ym + x1 . . . ym + xn

⎞
⎟⎠ . (6)

5.2 Lattice associative memories

Lattice based operations have been applied for pattern recognition problems as the
computational model for a novel class of neural networks that are used as associative
memories (Ritter et al, 1998). In general, let (x1, y1), . . . , (xk, yk) be k vector pairs with xξ =

(xξ
1, . . . , xξ

n)
t ∈ Rn and yξ = (yξ

1, . . . , yξ
m)

t ∈ Rm for ξ ∈ K. Given a set of vector associations
{(xξ , yξ) : ξ ∈ K} we define a pair of associated matrices (X, Y), where X = (x1, . . . , xk) and
Y = (y1, . . . , yk), with an association given by (xξ , yξ) for ξ ∈ K. Thus, X is of dimension n × k

with i, j-th entry xj
i and Y is of dimension m× k with i, j-th entry yj

i . Two m× n lattice associative
memories able to store k vectors such that, for ξ = 1, . . . , k, the memory recalls yξ when is
presented the vector xξ are defined as follows: the min-memory WXY and the max-memory
MXY, both of size m × n, that store a set of associations (X, Y) are given by the expressions

WXY =
k�

ξ=1

[yξ × (−xξ)t] ; wij =
k�

ξ=1

(yξ
i − xξ

j ), (7)

MXY =
k�

ξ=1

[yξ × (−xξ)t] ; mij =
k�

ξ=1

(yξ
i − xξ

j ). (8)

The left part of Eqs. (7) and (8) are in matrix form, while the expressions to the right
correspond to the i, j-th entry of min-W and max-M memories, respectively. In this case the
memories are named lattice hetero-associative memories (LHAMs); if X = Y, we have a lattice
auto-associative memory (LAAM), the case used for endmember determination. Furthermore,
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y1 + x1 . . . y1 + xn
...

. . .
...

ym + x1 . . . ym + xn

⎞
⎟⎠ . (6)

5.2 Lattice associative memories

Lattice based operations have been applied for pattern recognition problems as the
computational model for a novel class of neural networks that are used as associative
memories (Ritter et al, 1998). In general, let (x1, y1), . . . , (xk, yk) be k vector pairs with xξ =

(xξ
1, . . . , xξ

n)
t ∈ Rn and yξ = (yξ

1, . . . , yξ
m)

t ∈ Rm for ξ ∈ K. Given a set of vector associations
{(xξ , yξ) : ξ ∈ K} we define a pair of associated matrices (X, Y), where X = (x1, . . . , xk) and
Y = (y1, . . . , yk), with an association given by (xξ , yξ) for ξ ∈ K. Thus, X is of dimension n × k

with i, j-th entry xj
i and Y is of dimension m× k with i, j-th entry yj

i . Two m× n lattice associative
memories able to store k vectors such that, for ξ = 1, . . . , k, the memory recalls yξ when is
presented the vector xξ are defined as follows: the min-memory WXY and the max-memory
MXY, both of size m × n, that store a set of associations (X, Y) are given by the expressions

WXY =
k�

ξ=1

[yξ × (−xξ)t] ; wij =
k�

ξ=1

(yξ
i − xξ

j ), (7)

MXY =
k�

ξ=1

[yξ × (−xξ)t] ; mij =
k�

ξ=1

(yξ
i − xξ

j ). (8)

The left part of Eqs. (7) and (8) are in matrix form, while the expressions to the right
correspond to the i, j-th entry of min-W and max-M memories, respectively. In this case the
memories are named lattice hetero-associative memories (LHAMs); if X = Y, we have a lattice
auto-associative memory (LAAM), the case used for endmember determination. Furthermore,
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the main diagonals of both memories, i.e., wii and mii, consist entirely of zeros. Since Y = X,
X ∨ X∗ = (X∗)∗ ∨ X∗ = (X ∧ X∗)∗, then M = W∗. Hence, the min- and max-memories are
dual to each other in the sense of matrix conjugation and mij = −wji.

5.3 Endmember determination from LAAMs

For a given set of vectors X = {x1, . . . , xk} ∈ Rn and the corresponding matrix memories WXX
and MXX computed from X, rewritten as W = {w1, . . . , wn} and M = {m1, . . . , mn} to specify
their column vectors, an n-dimensional convex hull enclosing most if not all of the vectors in
the given space can be derived. The points defining the convex hull will correspond to the
vertices of an n-simplex and can be extracted from the columns of W and M. An important
fact of the column values of LAAMs is that the relationship with the set of original data X
is not direct, for example, W usually has negative values by definition. Hence, an additive
scaling is required to relate the column values with the data set X. Thus, two scaled matrices,
denoted respectively as W and M, are defined for all i = 1, . . . , n according to the following
expressions,

w i = ui + wi ; ui =
k∨

ξ=1

xξ
i ; u = ∨k

ξ=1xξ , (9)

m i = vi + mi ; vi =
k∧

ξ=1

xξ
i ; v = ∧k

ξ=1xξ , (10)

where u and v denotes, respectively, the maximum and minimum vector bounds of X, and whose
entries are defined for all i = 1, . . . , n.

Once the columns of W and M have been scaled, a fundamental result from this method is that
the set of points M ∪W ∪ {u, v}, forms a convex polytope B with 2(n + 1) vertices that contains
X. These points must satisfy the affine independence condition and any subset of them can
be used as endmembers. As it was proven in (Ritter & Urcid, 2010), the following theorems
establish sufficient conditions to extract two subsets, W � and M� of affine independent vectors
from the columns of both W and M. The first theorem provides four equivalent conditions
that furnish a computationally simple test for the affine independence of the sets W and M;
the symbols wi and mi denote the i-th row of W and M, respectively; also, c = (c, . . . , c)
denotes a constant vector.

Theorem 1. If i, j ∈ {1, . . . , n}, then the following statements are equivalent: (1) wi − wj = c,
(2) w i = w j, (3) mi − mj = c, and (4) m i = m j.

An important consequence of the Theorem 1 is that to verify that W or M is affinely
independent, all that one needs to do is to check that no two vectors of W or M are identical.
The next theorem provides a simple method for deriving a set of affine independent vectors
from W and M. In this notation, J� denotes an arbritrary non-empty subset of J.

Theorem 2. W � ⊂ W is affinely independent if and only if w i �= w j for all distinct pairs {i, j} ⊂
J� . Similarly, M� ⊂ M is affinely independent if and only if m i �= m j for all distinct pairs
{i, j} ⊂ J�.
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In the next section we will use this method to derive affinely independent sets from M ∪ W ∪
{u, v} as endmembers of particular data sets X.

6. Identification of endmembers: application examples

The validity in the convex set representation for endmembers identification, discussed in
the previous sections, can be illustrated through experiments using real hyperspectral data
sets. In fact, the aim of the application examples is to provide enough details in the use of a
novel endmember determination technique. In particular, lattice auto-associative memories,
WXX and MXX, have shown to be an efficient procedure for the autonomous endmember
determination, from which a subset of final endmembers can be selected to accomplish
hyperspectral image segmentation. As a complement to the theoretical results given before,
the endmembers output set from the VCA algorithm will be presented and compared with
that set obtained with the LAAMs method. At the end of this section, we present composite
abundance maps generated from the estimation of endmember proportions using constrained
linear unmixing on each hyperspectral scene.

The following data sets were taken from the SpecTir’s extensive hyperspectral baseline
environmental dataset (SpecTir, 2009). The available information about the image acquisition
indicates that a VNIR-SWIR hyperspectral instrument, covering a wavelength range from 0.395
to 2.45 μm, was used to collect the images. Each scene has a spectral resolution of 5 nm,
with a number of 360 spectral bands. Thus, a single hyperspectral cube is conformed by
600 lines × 320 pixels × 360 bands (about 132 Mbytes). Given the high spectral resolution of a
hyperspectral image, a common practice to avoid redundant information consists in a spectral
dimensionality reduction of the data cube by application of a chosen technique, such as
principal component analysis, minimum noise fraction transform, or adjacent band removal
of highly correlated bands (Keshava, 2003). These reductions are often necessary to eliminate
undesirable effects produced during the acquisition process and to diminish computational
requirements. Hence, in the hyperspectral cubes used for this simulation, the number of
spectral bands was reduced to 90 by making a selection of spectral bands at subintervals of
20 nm covering the same wavelength interval. This spectral reduction allows to speed up the
computation times with no significant effects in the endmembers identification task.

Example 1. Gulf of Mexico wetland sample

This hyperspectral cube was registered over the Lower Suwanee National Wildlife Refuge, which
is located in the north coast of the Gulf of Mexico belonging to the USA. The Refuge lodges one
of the largest undeveloped river-delta estuarine systems in this nation. Some of the numerous
wildlife species that inhabit the zone are: swallow-tailed kites, bald eagles, West Indian
manatees, Gulf sturgeon, whitetailed deer, and eastern wild turkeys. Natural salt marshes,
tidal flats, bottomland hardwood swamps, and pine forests provide habitat for thousands
of creatures. This particular hyperspectral data set was acquired at a spatial resolution of 4
m2, covering tidal wetlands and multiple national wildlife reserves during the period of May
to June 2010. In fact, the images captured the state of vegetation at the time of flights and
can be used to locate the presence or absence of hydrocarbons at the surface of vegetation.
Also, since the data were acquired prior to the oil disaster (occurred in 2010), they can be
compared to images from later flights to assist in the damage assessments. Figure 3 shows
two color composite images of the Gulf Coast hyperspectral scene. The left part of the figure
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Fig. 3. Color images of the Gulf Coast hyperspectral scene used for example 1. Left: image
formed by combining bands 54 (red), 34 (green) and 14 (blue). Right: combination of bands
81 (red), 217 (green), and 54 (blue).

was formed by combining bands 54 (red, λ = 693 nm), 34 (green, λ = 584 nm) and 14 (blue, λ =
469.5 nm), giving the appearance of a true color image; the right part was formed with bands
81 (red, λ = 851 nm ), 217 (green, λ = 1631 nm) and 54 (blue, λ = 693 nm), whose combination
using two infrared bands highlights the vegetation areas in green, orange and brown colors.

For the endmember determination process, we first form the set X = {x1, . . . , xk} ∈ Rn,
where k = 600 × 320 =192,000 and n = 90, arranged with the total number of spectral vectors
comprising the scene. The second step consists in the computation of the memories WXX and
MXX from X, with Eqs. (7) and (8). Using the vectors v and u calculated from Eqs. (9) and (10),
the columns of W and M are then scaled to obtain W and M. In order to determine a subset of
affinely independent vectors, it is necessary to prove that no two columns of W or M are equal.
For the application in hand, the resulting W and M are conformed, respectively by 90 affinely
independent columns and, therefore, each one provides us with 90 “candidate” endmembers.
In addition, because of the additive scaling previously performed, the column vectors from W
present an “upward spike” since wii = ui, and vectors from M presents a “downward spike”
due to mii = vi. It is then necessary to realize a simple smoothing procedure considering the
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nearest one or two spectral samples next to wii or mii, and is given, for any i ∈ {1, . . . , n}, by

zii =

⎧⎨
⎩

z1,2 ⇔ i = 1,
1
2 (zi−1,i + zi+1,i) ⇔ 1 < i < n,

zn−1,n ⇔ i = n,
(11)

where z can be equal to w or m. Notice that the LAAMs method always gives a number of
candidate endmembers that is either equal or slightly less than the spectral dimensionality. In
practice, contiguous columns are highly correlated being necessary to use some techniques to
discard most of these potential endmembers. For example, minimum mutual information
has been used to obtain a final set of endmembers (Graña et al, 2007); a matrix of linear
correlation coefficients followed by a threshold process to get a subset of selected endmembers
pairs with low correlation coefficients is introduced in (Ritter & Urcid, 2010). Here we use a
simpler technique based on the fact that the LAAMs based method forms �√n + 1� subsets,
each with �√n + 1� column vectors taken from W (respectively M); then, a representative
from each group is selected as endmember. Although this technique provides a reasonable
number of approximate true endmembers, in practical situations where a reduced number
of materials comprises the hyperspectral scene, it is necessary to perform a final selection
by considering those spectra that are spectrally different from the others. Therefore, in
this application example, from the 20 endmembers candidates derived from W ∪ M a final
selection of uncorrelated endmembers provided a reduced set containing 5 spectral vectors
that forms the columns of S; thus, S = {w2, w24, w43, w54, w79}.

On the other hand, the VCA algorithm was applied to the same hyperspectral data set.
According to the implementation, the algorithm requires as input parameter the number of
endmembers to be determined; the corresponding output includes the endmembers spectra
as well as the pixel positions in the image from they were extracted. Repeated iterations
specifying the same number of endmembers produce almost the same output set, with
differences in the order in which endmembers appear. After testing different input values,
such as 5, 7, 9, and 10, we decided to use the number of endmembers determined with
the LAAMs method as the input parameter to the VCA algorithm. Hence, the set S of
endmembers identified with VCA is conformed by S = {x27876, x90661, x97850, x84588, x191634}.
Figure 4 displays three endmembers spectra determined from the columns selection from the
set W ∪ M, and whose spectral curves correspond to natural resources in the hyperspectral
scene of the Gulf Coast. Similarly, Figure 5 shows three endmembers spectra obtained with
application of the VCA algorithm. In both cases, normalization of reflectance data values
in spectral distributions is linearly scaled from the range [0, 6000] to the unit interval [0,1].
Finally, observe that there is a similarity between spectral curves, which is indicated for curves
drawn with the same colors.

Example 2. Belstville area.

The following example was performed using a hyperspectral cube registered over the
Belstville area, located in northern Prince George’s County in Maryland, USA. The area
includes agriculture and vegetation samples. Similar to the previous image, the data cube
used for this experiment is of size 600 × 320 × 90, at approximately the same wavelength
interval. The left part of Figure 6 displays a color composite image formed by combination
of bands 54 (red, λ=693 nm), 34 (green, λ=583.9 nm), and 14 (blue, λ=469.5 nm) simulating
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Fig. 4. Three endmembers spectra determined with application of the LAAMs method to the
hyperspectral cube of the Gulf of Mexico. The associated column values selected from
W ∪ M are: w2, w24, w54.

a true color image; the right part of the same Figure shows a combination of bands 81 (red,
λ=851 nm), 54 (green, λ=693 nm), and 34 (blue, λ=583.9 nm) that allows to emphasize the
vegetation areas in red tones. This way, the set of all spectral vectors of the image was formed
by X = {x1, . . . , xk}, where k = 600 × 320 = 192, 000 and n = 90. Following the same
procedure described in the previous example for endmember determination, we compute the
memories WXX and MXX = −Wt

XX, as well as the vector bounds u and v used to obtain
the matrices W and M. Once the affine independence condition is checked, the resulting
scaled memories are of size 90 × 90. According to the previous discussion, the spikes effects
generated in the diagonal of both memories are removed using Eq. (11), and a selection of
20 endmembers candidates is made from the set W ∪ M. Finally, the election of spectrally
different column vectors is performed to form the final set of endmembers, whose column
vectors are defined by S = {w24, w37, w47, w64, m46, m57, m62}. Therefore, the matrix S will
be used in Eq. 3 to estimate the fractional abundance of each endmember.

The VCA algorithm was applied to the set X containing all the spectral vectors of the image.
As the previous example, the number of column vectors selected from the LAAMs method
was established as the input parameter of the algorithm. The resulting endmembers spectra
determined by VCA were used to form the matrix S = {s1, . . . , s7}, whose spectra are
associated to the column vectors {x191845, x191419, x9630, x111446, x114301, x191724, x65969}. Figure
7 displays four of the final endmembers set obtained with the selection of vectors from W ∪ M;
Figure 8 shows four of the endmembers spectra determined by the VCA algorithm that are
similar to those computed with the LAAMs method. The similarity between spectral curves
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Fig. 5. Three endmembers spectra obtained with application of the VCA algorithm to the
hyperspectral cube of the Gulf of Mexico. The column vectors sj for j = 1, . . . , 5 indicate the
corresponding column of the S matrix.

can be identified for curves drawn in the same color. Although the spectral curves in both sets
seem to be alike, a similarity measure must be applied in order to quantify these similarities.
Here, we have computed the correlation coefficients between the sets obtained with the LAAMs
method and the VCA algorithm, for each one of the application examples. Table 1 presents the
correlation coefficients computed for the spectral curves displayed in Figures 4, 5 and 7, 8,
respectively.

Gulf of Mexico Beltsville

VCA & LAAMs Corr. Coef. VCA & LAAMs Corr. Coef.
s2 and w24 0.980 s1 and w37 0.965
s3 and w54 0.974 s2 and w24 0.944
s4 and w2 0.641 s3 and w64 0.912

− − s4 and w47 0.939

Table 1. Correlation coefficients for similar spectra obtained with the LAAMs method and the
VCA algorithm from the hyperspectral images of the Gulf of Mexico and Beltsville.

6.1 Constrained linear unmixing

The spectral unmixing process can be realized by means of the inversion expressed in Eq.
(5), subject to the restrictions of full additivity and non-negativity of abundance coefficients.
Notice that Eq. (3) is an overdetermined system of linear equations such that n > p. For the
examples here discussed, both matrices W and M have full rank, thus their column vectors
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Fig. 6. Color images of Beltsville hyperspectral scene used fot example 2. Left: image formed
by combining bands 54 (red), 34 (green) and 14 (blue). Right: combination of bands 81 (red),
54 (green), and 34 (blue).

are linearly independent. In addition, the set of final endmembers, either determined with the
LAAMs method or those identified by the VCA algorithm, is a linear independent set whose
pseudoinverse matrix is unique. Although the unconstrained solution corresponding to Eq.
(5), where n > p (n = 90 and p = 7 or p = 5), has a single solution, some coefficients
may be negative for many pixel spectra and do not sum up to unity. If full additivity is
enforced, negative coefficients appear. Therefore, the best approach consists of imposing
non-negativity for the abundance proportions, relaxing full additivity by considering the
inequality ∑

p
i=1 ap < 1. For the examples here presented we use the non-negative least squares

(NNLS) algorithm that solves the problem of minimizing the Euclidian norm �Sa − x�2
subjected to the condition a > 0 (Lawson & Hanson, 1974).

Figure 9 displays the color abundance maps of the endmembers determined with each one
of the methods here discussed. These maps were generated using the NNLS numerical
method implemented in Matlab 7.6; in these images, brighter areas represent maximum
distribution of the corresponding endmember. The left part of Figure 9 shows the distribution
of four natural resources that were determined with implementation of the LAAMs method
in the hyperspectral cube of the Gulf Coast. The right part of the same Figure displays the
distribution of three natural resources that were determined using the VCA algorithm. In
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Fig. 7. Four endmembers spectra determined with application of the LAAMs method to the
hyperspectral cube of Beltsville. The associated column vectors selected from W ∪ M are:
w24, w37, w47, w64.

Fig. 8. Four endmembers spectra obtained with application of the VCA algorithm to the
hyperspectral cube of Belstville. The column vectors sj for j = 1, . . . , 7 indicate the
corresponding column of the S matrix.
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Fig. 9. Color abundance maps of natural resources determined with the autonomous
identification of endmembers in the hyperspectral cube of the Gulf Coast. Left: abundances
of four endmembers determined with the LAAMs method, whose distribution of colors
corresponds to yellow = w2, magenta = w24, green = w43, blue = w54. Right: abundances of
three endmembers determined with the VCA algorithm whose distribution of colors is
yellow = s4, magenta = s2, green = s3. Brighter areas mean higher distributions of the
corresponding natural resource.

both cases we present only the abundance maps that provide meaningful information; thus,
the maps presenting redundant information or predominant dark areas were not included.
Although the region is characterized by the presence of wetlands, it has not been possible to
use a set of reference spectra to identify the natural resources. Furthermore, Figure 10 displays
the color abundance maps of the endmembers determined with the LAAMs method (left part),
as well as the VCA algorithm (right part) from the hyperspectral data cube of Beltsville.
Although the set S has conformed by seven endmembers spectra, we have included in both
cases the abundance maps that best match the distribution of vegetation according to a visual
inspection of Figure 6. In this example, it is evident that the identification of vegetation types,
produced with each one of the methods, presents similar results for the segmentations colored
in yellow and magenta. However, the results presents important differences particularly in the
green and blue segmentations. These differences are mainly caused by the endmember search
procedure used in each technique; in addition, the fact that spectral curves of vegetation types
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are alike, varying in certain absorption bands, contributes with the disagreements in these
segmentation results.

Fig. 10. Color abundance maps of vegetation types obtained with the autonomous
identification of endmembers in the Belstville hyperspectral image. Left: abundances of four
endmembers determined with the LAAMs method whose distribution of colors corresponds
to magenta = w24, yellow = w67, blue = m46, green = m62. Right: abundances of four
endmembers determined with the VCA algorithm, whose distribution of colors is magenta =
s2, yellow = s3, blue = s5, green = s7. Brighter areas correspond to higher distributions of the
corresponding natural resource.

7. Conclusion

The use of high resolution image spectrometers for Earth observation purposes has given
place to different applications oriented toward the identification, classification and monitoring
of natural resources from remotely sensed data. In this chapter we have described the
physical foundations behind the acquisition and calibration of hyperspectral imagery that
constitute the basis of modern hyperspectral instruments, such as AVIRIS, HYDICE, and
SpecTir’s imaging spectrometers. Also, we have made a review of past, as well as recent
methods for the autonomous endmember determination process based on the geometry of
convex sets. The mathematical foundation behind these methods is to model the spectral
mixtures acquired at a pixel basis as a linear combination of constituent materials. Hence,

172 Earth Observation



20 Will-be-set-by-IN-TECH

are alike, varying in certain absorption bands, contributes with the disagreements in these
segmentation results.

Fig. 10. Color abundance maps of vegetation types obtained with the autonomous
identification of endmembers in the Belstville hyperspectral image. Left: abundances of four
endmembers determined with the LAAMs method whose distribution of colors corresponds
to magenta = w24, yellow = w67, blue = m46, green = m62. Right: abundances of four
endmembers determined with the VCA algorithm, whose distribution of colors is magenta =
s2, yellow = s3, blue = s5, green = s7. Brighter areas correspond to higher distributions of the
corresponding natural resource.

7. Conclusion

The use of high resolution image spectrometers for Earth observation purposes has given
place to different applications oriented toward the identification, classification and monitoring
of natural resources from remotely sensed data. In this chapter we have described the
physical foundations behind the acquisition and calibration of hyperspectral imagery that
constitute the basis of modern hyperspectral instruments, such as AVIRIS, HYDICE, and
SpecTir’s imaging spectrometers. Also, we have made a review of past, as well as recent
methods for the autonomous endmember determination process based on the geometry of
convex sets. The mathematical foundation behind these methods is to model the spectral
mixtures acquired at a pixel basis as a linear combination of constituent materials. Hence,

172 Earth Observation Convex Set Approaches for Material Quantification in Hyperspectral Imagery 21

the aim of these techniques is to determine the constituent materials that are identified as
the purest pixels in the scene. Among the methods discussed, we have emphasized a lattice
algebra based method that uses two canonical associative memories, the min-WXX and the
max-MXX, to determine a 2(n + 1)-simplex enclosing the hyperspectral data set. Thus, any
subset of vertices of the simplex can be used as the endmember set to perform the unmixing
process. The application of the LAAMs method and the VCA algorithm for the autonomous
segmentation of real hyperspectral scenes taken from the SpecTir’s imaging spectrometer has
shown the effectiveness of convex set approaches. Although there exist some differences in the
results obtained with both methods, any of them can be used for unsupervised hyperspectral
segmentation, in particular if there is no reference data of the area, as the example cases treated
in this chapter.
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1. Introduction  

The use of remote sensing techniques for the study of forest fires is a subject that started 
already several years ago and whose possibilities have been increasing as new sensors were 
incorporated into earth observation international programmes and new goals were reached 
based on the improved techniques that have been introduced. Three main topics can be 
distinguished, in which remote sensing provides results that can be applied directly to the 
subject of forest fires: risk of fire spreading, detection of hot-spots and establishment of fire 
thermal parameters and, finally, cartography of affected areas. In the last years, other two 
important topics are getting increasing interest; the first one is the estimation of severity, 
related to the post-fire phase, and the other one is the atmospheric impact of fire emissions.  

With respect to the risk of fires, remote sensing has provided very valuable results in real 
time, which was the required aim. However, in order to be able to predict the existence of 
fires, it is necessary to incorporate indicators of very heterogeneous types which sometimes 
fall out of the field of earth observation studies; indicators related to economy, social and 
human activities or historical statistics among others, should, for example, be taken into 
account. That’s why remote sensing must be restricted to a very limited aspect which makes 
it only suitable for the estimation of the spreading risk related to the vegetation dryness and 
surface temperature values. The main magnitude used as an indicator is the vegetation 
index, above all, the NDVI (Normalized Difference Vegetation Index). The first results in the 
estimation of the fire risk, although not in real time, were obtained through analyses by the 
satellites belonging to NOAA (National Oceanographic and Atmospheric Administration) 
series, by means of AVHRR (Advanced Very High Resolution Radiometer) sensor. Later on, 
further indicators coming from the same sensors were incorporated so as to improve the 
algorithms and include the information relative to meteorological conditions like the surface 
temperature obtained through satellites. The combination of the NDVI with the surface 
temperature has given place to a mixed index in which the lineal regression slope in both 
magnitudes established cells of terrain, presents a good correlation with the vegetation 
evapotranspiration and water stress (Nemani & Running, 1989). The use of the slope in this 
relation has been incorporated through different algorithms by different authors in order to 
establish another risk indicator (Illera et al., 1996); thus, Casanova et al., (1998) introduced it 
to work in real time within the operation in Mediterranean countries. The possibility of 
using the spectral information in the middle infrared, in the 1.6 m region, has given place 
to the introduction of other indicators related to the fuel’s moisture since the vegetation’s 
reflectivity in this wavelength interval is strongly influenced by the water contained in it. 
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Hunt & Rock (1989) suggested a new vegetation index similar in the equation to the NDVI 
but including the reflectance in the near infrared and the reflectance in the 1.6 m region, an 
index indicating the fuel’s moisture. At first, this index could only be applied to the Landsat-
TM (Thematic Mapper) sensor for the creation of fuel maps (Chuvieco et al., 2002). Today, it 
can be used in real time on the AVHRR and MODIS (Moderate Resolution Imaging 
Spectroradiometer) sensors to be incorporated to the risk maps as a new indicator.  

The detection of hot spots and, together with it, the establishment of fire parameters, is the 
most complex task of the ones presented here, due to the orbital configuration of the current 
spacecrafts. The methodologies are very clear from the point of view of physics, but the 
restrictions of the current sensors introduce difficulties in order to get quality results. By 
detection, it is understood the task of determining the location of a hot spot independently 
of its size. By monitoring, it is understood the establishment of the most important fire 
parameters with a view to obtain relevant information on this phenomenon. Among these 
parameters are the fire’s temperature, the area taken by the fire, the energy intensity and, 
when the sensor’s capacity allows it, the establishment of the advancing fire line. In order to 
place this subject of study in its appropriate context, it must be pointed out that fire 
detection with an aim to create alarms that facilitate a rapid extinction is a necessity that 
hasn’t been fully resolved yet. Despite its limitations the NOAA-AVHRR sensor has been 
the most important for fire detection and has provided a benchmark for subsequent sensors. 
An excellent revision of the algorithms used on AVHRR can be found in Li et al (2001). The 
case of the European sensor (A)ATSR (Advanced Along Track Scanning Radiometer) and 
the World Fire Atlas from 1997 published by the ESA with the ERS-1 and ERS-2 (European 
Remote Sensing Satellite) satellites data (Arino & Rosaz, 1999) has been used to demonstrate 
its suitability to fire detection and assessment of vegetation fire emissions. The appearance 
of the MODIS sensor heralded a significant step forward in the observation of forest fires 
(Giglio et al., 2003) and, at this moment, the MODIS fire product is a consolidated product 
and a reference for global Earth observation. Fire product has been identified as an 
important input for global change analysis; however, although the radiometric availability is 
satisfactory, the main problem is the time resolution to operate in real time. Detection of 
high temperature events through geostationary satellites has been taken into account with 
the different perspective. The improvements introduced in the sensors have allowed us to 
use geostationary satellites beyond their meteorological capabilities, adapting them to Earth 
observation; this is the response to the need for series of stable fire activity observations for 
the analysis of global change, changes in land use and risk monitoring. The GOES 
(Geostationary Operational Environmental Satellite) has been the worldwide reference for 
fire monitoring through geostationary platforms. Since 2000, the Geostationary Wildfire 
Automated Biomass Burning Algorithm (WF_ABBA) has been generating products for the 
western hemisphere in real-time with a time resolution of 30 minutes and this detection 
system has been operational within the NOAA NESDIS programme since 2002. The GOES-
East and GOES-West spacecrafts are located in the Equator, providing diurnal coverage of 
North, Central and South America and data based on fire and smoke detection. The results 
provided by the GOES programme have been the starting point of a global geostationary 
system for fire monitoring, initially comprising four geostationary satellites that were 
already operational: two GOES platforms, from the USA, the European MSG (Meteosat 
Second Generation) and the Japanese MTSAT (Multifunctional Transport Satellite, covering 
Southeast Asia and several parts of India as observation regions. The minimum fire  
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detection sizes of GOES, MSG and MTSAT, with time resolution less than 30 minutes has 
allowed the international community to think in a global observation network in real time. 
The implementation of this network is the aim of the Global Observations of Forest Cover 
and Land Cover Dynamics (GOFC/GOLD) FIRE Mapping and Monitoring program, 
internationally focussing on decision-taking concerning research into Global Change. The 
GOFC/GOLD FIRE program and the Committee on Earth Observation Satellites (CEOS) 
Land Product validation held a workshop dedicated to the applications of the geostationary 
satellites for forest fire monitoring (Prins et al., 2004). 

The cartography of areas affected by fires is a subject that has been dealt with in depth. 
Remote sensing has proved to be very useful in the study of forest fires cartography and 
severity since the time resolution does not prevent the subsequent evaluation of the 
consequences. Different radiometric procedures have been used based on the application of 
fixed thresholds to the NDVI in the case of low spatial resolution; the results are satisfactory 
but the difficulty of these procedures lies in the search of a fixed threshold value, because 
what seems quite probable is the dependence of the threshold values according to the area 
analysed and the time of the year in which the study is carried out. Methodologies based on 
neural networks (Al-Rawi et al., 2001) have also been applied although they have the 
difficulty of training the neural net so that the final results will depend on the variability of 
the statistical sample used in the preparation of the neural net. The multi-temporal use of 
the NDVI for the radiometric analysis and the establishment of thresholds on the NDVI 
through a spatial contextual analysis is a procedure has been used for low spatial resolution. 
In the case of high spatial resolution, several procedures have been suggested using many 
different methodologies to be applied to the TM sensor, on board of Landsat satellites being 
one of the most frequent the spectral classification. However, an important problem is that it 
requires the distribution of data probability; another disadvantage is that in order to obtain 
higher quality results a supervised classification of the zones must be carried out, requiring 
interaction by user. Within the automatic methodologies, the lineal transformations have 
shown a great capacity for the obtaining of results. Thus, the application of the Principal 
Components to the reflectance bands obtains almost immediate cartographic results, since 
they can be analysed visually through a RGB (Red Green Blue) composite of the output 
components. An issue linked to the fire cartography is the estimation of severity. Each 
summer large fires affect to the Mediterranean Europe due to changes in traditional land use 
patterns which have led to an unusual accumulation of forest fuels, notably increasing fire 
risk and fire severity. According with Roldán-Zamarrón et al. (2006), there is interest in 
finding a quick and affordable methodology for obtaining fire severity maps that can be 
made available only a few days after the fire, as this information could prove very valuable 
in the early stages of rehabilitation planning for large fires. These maps should be based on 
independent data sources, such as remote sensing, employ automatic or semiautomatic 
methods, and produce results of an acceptable reliability. Remote sensing techniques are a 
useful tool in order to generate maps showing different degrees of damage affecting 
vegetation after a large wildfire in an effective manner. Objective of these severity maps is to 
locate priority intervention areas and plan forest restoration works. 

2. Fires and climate 
Following the GCOS (Global Climate Observing System) document “Systematic 
Observation Requirements for Satellite-based products for Climate”, and ESA Climate 
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Initiative, the emissions of greenhouse gases (GHGs) and aerosols from fires are important 
climate forcing factors, contributing on average between 25-35% of total CO2 emissions to 
the atmosphere, as well as CO, methane and aerosols. Hence, estimates of GHG emissions 
due to fire are essential for realistic modelling of climate and its critical component, the 
global carbon cycle. Fires caused deliberately for land clearance (agriculture and ranching) 
or accidentally (lightning strikes, human error) are a major factor in land-cover changes, and 
hence affect fluxes of energy and water to the atmosphere. Burnt area, as derived from 
satellites, is considered as the primary variable that requires climate-standard continuity. It 
can be combined with information on burn efficiency and available fuel load to estimate 
emissions of trace gases and aerosols. Measurements of burnt area can be used as a direct 
input to climate and carbon cycle models, or, when long time series of data are available, to 
parameterize climate-driven models for burnt area. Burnt area, combined with other 
information (burn efficiency and available fuel load) provides estimates of emissions of trace 
gases and aerosols. Measurements of burnt area can be used as a direct input to climate and 
carbon-cycle models, or, when long time series of data are available, to parameterise 
climate-driven models for burnt area (fire is dealt with in many climate and biosphere 
models using the latter approach). Fire-induced emissions are a significant terrestrial source 
of GHGs, with large spatial and interannual variability. Detection of active fires serves as 
part of the validation process for burnt area (i.e., is the burnt area associated with previous 
observations of active fire). Detection of active fires provides an indicator of seasonal, 
regional and interannual variability in fire frequency and shifts in geographic location and 
timing of fire events. Strong empirical relations exist between the FRP (Fire Radiative 
Power) and rates of combustion; so, the use of multiple FRP observations to integrate over 
the lifetime of the fire provides an estimate of the total CO2 emitted. FRP provides a means 
to derive a CO2 emissions estimate from remotely-sensed observations without relying on 
difficult-to-acquire ancillary data on fuel load and combustion completeness factors. 

3. Fire detection 

3.1 Physic principle of fire detection 

As is to be expected, the process of the detection of hot spots is based on the use of bands in 
the middle and thermal infrared spectrum. There are three laws of Physics that govern the 
detection process: law of Plank, Wien’s displacement law and Stefan-Boltzmann’s law. The 
radiance emission corresponding to a body with a temperature of 300 K, as can be the 
Earth’s mean temperature, will have a maximum value close to 10 m, and a spectral band 
situated in this one would receive a very strong signal. For a temperature of 800 K, the 
maximum value will have displaced to wavelengths close to 3.6 m and whereas the signal 
here would be very intense, it wouldn’t be nearly as intense in higher wavelengths. The fire 
detection is based precisely on this inversion, which is possible to detect with thermal bands 
situated in the spectral regions of 11-12 m and 3-4 m. Figure 1, shows this physic principle 
graphically. The location of two generic bands, in the middle and thermal infrared, are also 
shown. It’s clear that at a temperature of 300K, the radiance received in MIR (Middle 
InfraRed) is lower than the one received in TIR (Thermal InfraRed). However, at 500 K, this 
behaviour has inverted and now the radiance is higher in MIR. 

The basic principle followed for the location of the spectral bands in a sensor, is described 
through two questions; first: what I want to see? And second: where the atmosphere allows  
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Fig. 1. Law of Planck, showing blackbody emission for different temperatures values of 
source, and location of MIR and TIR spectral bands (adapted from Li et al, 2001). 

me to do? Fortunately, atmospheric absorption is selective in several spectral bands; the 
water vapour absorption is very strong below 3.4 m but there is a atmospheric window in 
the interval [3.5-4.2 m]; so, the MIR bands must be located  preventing the absorption of 
water vapour in the 3-4 m region. In the case of TIR region, there is a strong absorption 
band centred at 9.6m, due to ozone, but there is an atmospheric window in the interval of 
[10-12 m], with a weak effect of water vapour; its easy to remove this effect by means of 
two spectral bands located in this window (split-window technique, Price 1984). 

A technical problem to take into account is that the radiance obtained by the sensor, coming 
from a concrete pixel in which there is a fire, does not only depend on the fire’s temperature 
and, as it is logical, on the temperature of the surrounding surface, but also on the location 
of the fire inside the pixel since, at the end, the sensor’s PSF (Point Spread Function) will 
determine the filtering that is carried out on the original image. In any case, to obtain a 
positive detection from an active fire is easy. The main problem to detect fires is to obtain a 
positive detection when the fire does not exist; that is: a false alarm. The false detections, in 
the 4 m region, are due to radiance not only is coming from the emission, but there also 
exists a component due to the effect of reflection. That’s why we can find ourselves in 
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situations in which a high radiance signal does not necessarily correspond to a high-
temperature pixel, except in the case of night observation, when the reflection component, 
evidently, does not exist. As is to be expected, the radiance that gets to the sensor in that 
part of the spectrum where the reflection and the emission effects superimpose, as is the 4 

m case. The value of the reflected component Lreflection is 0 cos( )sunE 


, with sun being the 

sun’s zenith angle, E0 the extraterrestrial sun’s irradiance in that spectral band and   the 
spectral reflectance (the atmospheric effect are not included). The emission component, 
Lemission is    1 · , surfaceB T  , in which B(,T) is the function of Planck,  the wavelength in 

that spectral band and Tsurface the surface temperature observed by the sensor. Note that 
=(1-) and =(1-), with  the emissivity. If a surface has a high value of reflectance in the 
MIR region, radiance coming from source is high and brightness temperature will be higher 
than surface temperature in several Kelvin. As an example, it can be observed that for a 
reflectance value of 20% and a sun’s zenith angle of 30º the brightness temperature can 
increase more than 20 K higher due to reflectance effect. When the contribution of the 
reflection component is very marked and as a consequence the radiance increases in the 
middle infrared band, a pixel appears with an apparent high temperature that can be 
mistaken with a hot spot, producing a false alarm. These situations are more frequent in the 
highest spatial resolution sensors and when high reflectance surfaces coincide with sun-
satellite geometrical situations close to specular reflection conditions. This is the case of 
small water surfaces, for example, and it is called sun glint. It must be pointed out that the 
problem of the appearance of false alarms is more difficult to solve than the detection itself 
due to the difficulty in separating both effects. Finally, it must be mentioned that clouds are 
also an important source of false alarms due to the sun’s reflection. Their reflectance is high 
and they cause a strong signal in the MIR spectral band in situations of very high sun zenith 
angles. 

3.2 Fire detection using heliosynchronous platforms 

Not only was the NOAA-AVHRR sensor the first one to provide results, but it has also been 
a research platform in the development of hot-spot detection algorithms. This has been 
possible thanks to its high time resolution (among the polar heliosynchronous sensors) and 
to which the physic principles of detection mentioned above can be applied. It must be 
pointed out, however, that the AVHRR sensor has important limitations. The most 
important of these is the low saturation level, 320-331 K (Robinson, 1991), of the main band 
involved in the detection, the 3.7m band. This limit is so low that a fire with a temperature 
of 1000 K on a non-reflective surface of 300K only needs a 13x 13 m2 surface to reach the 
pixel’s saturation. This important drawback makes the sensor suitable for the detection of 
hot-spots but in most cases, it makes it unsuitable for the analysis at a sub-pixel level. In 
spite of its limitations it is unavoidable to use this sensor as a comparative reference for 
subsequent, more operative sensors such as MODIS (Ichoku et al., 2003). The detection has 
been developed through different algorithms that can be schematically classified into 
algorithms based on fixed thresholds and contextual algorithms, whose parameters have 
been adapted to the different zones of study. Both types of algorithms have advantages and 
disadvantages and their application will depend on the type of sensors to which they are 
going to be applied. The detection algorithms based on fixed thresholds, also called multi-
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channel, are based on the establishment of minimum temperature values in different 
spectral bands from which the detection is established. The most common scheme is to 
consider that a pixel is affected by a fire when the following conditions are fulfilled 
simultaneously: 

 ; ; ;MIR MIR MIR TIR DIF TIR TIR NIR NIRT V T T V T V R V      (1) 

where TMIR and TTIR refer to the brightness temperature in the spectral bands of the 3.7 m 
and 11 m regions respectively, and V is the adopted threshold. In the former test, the first 
two conditions are the ones that carry out the detection of hot-spots strictly speaking 
according to the physic principles previously stated. The TMIR test is for fire detection and 
the TMIR-TTIR test is to carry out the differentiation between the fire, which has high values in 
the MIR, and the hot surfaces which have high values both in the MIR and TIR. The TTIR  test 
is a cloud filter to apply the test to images in which the cloud cover has not been removed 
through other procedures. The RNIR test is to filter the reflectance in sun-glint situations that 
are responsible for the appearance of false alarms. The threshold values established are 
varied. They depend on the algorithm and, above all, on the geographic area due to the 
influence of the background temperature. Thus, normally low surface temperature values 
use lower MIR threshold values without the appearance of false alarms. Two examples of 
this type of algorithms, operating on NOAA-AVHRR, are the used by the CCRS (Canadian 
Centre of Remote Sensing) (Li et al., 2000) and the ESA (European Space Agency) (Arino and 
Mellinote, 1998). The disadvantage of the algorithms based on fixed thresholds is that the 
values established depend on the zone of study and their environmental temperatures. In 
order to avoid this dependence, contextual algorithms can be used. They are based on the 
obtaining of threshold values carrying out a statistical analysis of the environment. The 
basic scheme is summarised in the following test: 

 · ; · ; ·MIR MIR MIR MIR TIR DIF DIF NIR NIR NIRT f T T f R f             (2) 

where  and  are the mean values and the standard deviation in the environment of the 
pixel analysed and f is a factor that has to be established. The environment is analysed in a 
matrix with a size of NxN pixels, being N an odd value depending on the sensor to which it 
is applied. Two  examples are the IGBP (International Geosphere and Biosphere 
Programme) algorithm (Justice & Malingreau, 1993), and an adaptation of the current 
algorithm on MODIS (Kaufman et al., 1998). Contextual algorithms have the advantage of 
making the detection process independent from the season and the zone analysed, since the 
thresholds are obtained by means of a statistical analysis of the environment. However, they 
have a serious drawback when they are applied to images in which the clouds have not been 
filtered since cloud edges cause false alarms. A variant to the basic contextual algorithm 
exposed is the one suggested by Lasaponara et al. (1998), in which the mean statistical 
parameters and the standard deviation are determined by using not just the spatial 
environment but also the temporal one, extending the matrix of analysis to the images of 
previous days, looking for the changes in the brightness temperature not only in a spatial 
scale but in a temporal interval too. 

The launch of the MODIS sensor in 1999 on the Terra platform and in 2002 on Aqua with 36 
different-spatial-resolution spectral bands has provided much more reliable results in 
detection. This sensors includes two spectral bands in the 4 m spectral zone with saturation 
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values very high to the MIR AVHRR band and the applied algorithm uses a large number of 
bands to consolidate the results. Another important characteristic of MODIS is an excellent 
radiometric resolution of 12 bits (instead AVHRR sensor with 10 bits) very interesting to fire 
monitoring. The original algorithm has been improved (Giglio et al., 2003) and it carries out 
three test phases: cloud cover filtering, detection and consolidation test. The cloud-and-
water-filtering phase uses three spectral bands: the reflectances in bands 1 and 2 with a 
spatial resolution of 250 meters, centred in 0.65 m and 0.86 m, respectively, and the 
temperature in the band of 12 m, T12. Thus, the pixels fulfilling any of the three following 
conditions will be rejected: having a T12 value lower than 265 K or a sum of reflectances 
higher than 0.9 or T12 lower than 285 K and sum of reflectances higher than 0.7 
simultaneously. First, the detection phase establishes the potential pixels that must be 
analysed according to the criteria used by AVHRR with fixed thresholds, analysing the 
temperature in band 21, around 4 m, establishing a threshold of 310 K and the difference of 
this band with band 31, around 11 m, with a threshold difference of 10 K. Later, the 
identification of fire pixels, among the potential ones, is carried out through two procedures: 
first, an absolute test for the ones that have a T4m value higher than 360 K during the day 
and 320 K at night. Secondly, an alternative test which carries out a characterisation of the 
environment’ s temperature through a contextual analysis on the pixels that were not 
considered potential and with a variable window until a significant number of points is 
obtained. This contextual analysis is similar to the one used by the AVHRR algorithms, but 
it follows additional steps to eradicate false alarms and it differentiates between day and 
night pixels. The methodology considers three different sources of false alarms: the first one 
is the possibility of sun-glint, which is solved through a geometrical analysis with the sun-
pixel-satellite directions in order to reject situations of specular reflection; the second one are 
hot desert pixels and the third one the coast lines. The two latter are solved through the 
establishment of temperature and reflectance thresholds simultaneously. Finally, the 
consolidation phase establishes a statistical analysis to obtain well-confirmed pixels affected 
by a fire. This is due to the fact that the spatial resolution of MODIS in the thermal is 2 km, 
with step of 1km. This may cause that the same fire, located in a zone where two pixels are 
superimposed can be revealed by both of them. The consolidation test is carried out on the 
pixels adjacent to the one which is being analysed. More details about the algorithm can be 
seen in (Giglio et al., 2003). It must be pointed out that MODIS has two bands in the MIR 
region used in detection: bands 21 and 22, both centred in the 3.9 m. The difference is that 
the saturation level for the first one is 500K whereas for the second one it is 331. However, 
band 22 has less noise and a smaller error in the calibration. That’s why, if the pixel is not 
saturated, the algorithm uses band 22. Otherwise, band 21 is used.  

In spite of the tools we have shown for fire detection, it must be said that their results have 
not been brought into operation due to the lack of continuity in the monitoring of 
heliosynchronic satellites. Several monitoring programmes have been designed based on the 
co-ordination of several satellites in different orbital planes in order to increase the number 
of daily observations on a concrete place. Projects such as FUEGO originally and 
FUEGOSAT nowadays, are funded by ESA in order to obtain a product that can be put into 
operation for the monitoring of forest fires. On the other hand, the effectiveness in detection, 
of the sensors mentioned, could be improved through the design of sensors specially 
dedicated to fire detection. There was a prototype satellite fulfilling these characteristics and 
that has provided results to be analysed. It is the BIRD (Bi-spectral Infrared Detection), 
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designed by the DLR German laboratory, as a sensor prototype, and its detection capacities 
have been very satisfactory thanks to its design (Briess et al., 2003); the HSRS (Hot Spot 
Recognition Sensor System), with a visual field of 19º (190 km), a spatial resolution of 370 m 
and a radiometric resolution of 14 bits. Apart from the new spatial resolution in the thermal 
and its excellent radiometric resolution, this sensor is able to establish a dynamic rank of 
calibration that is completed with two successive expositions of the scene with a short time 
of integration; this makes it possible to establish a saturation limit close to 1000K, with a 
temperature resolution in the interval [0.1-0.2 K]. The algorithm includes 5 consecutive tests 
through which different threshold values of analysis are established: an adaptive test in the 
MIR to detect potential hot-spots, a threshold in the NIR to reject the sun reflection, which is 
a source of false alarms during day observations, a threshold adaptive to the MIR/NIR 
fraction of radiances to reject clouds and other high-reflective objects, a threshold adaptive 
to the MIR/TIR fraction of radiances to reject hot surfaces and finally, the gathering of pixels 
that are adjacent to the fire to obtain the fire’s temperature and area parameters. It is 
important to mention that all the adaptive thresholds mentioned are obtained through the 
contextual spatial analysis. BIRD satellite must be considered as a very low-cost prototype 
to operate with several units in orbital co-ordination. The fire parameters provided by BIRD 
have been able to locate the flaming front very accurately (Wooster et al., 2003).  

3.3 Fire detection using geostationary platforms 

As we have mentioned in the section “Introduction”, the geostationary sensors can improve 
the fire detection results, due to its very short revisit time, even when spatial resolution is 
very limited due to location in space of geostationary platforms. Currently, the users 
international community feels that a real-time global observation network may become a 
reality by means of geostationary sensors such as GOES, MSG and MTSAT. This is one of 
the objectives of the Global Observations of Forest Cover and Land Cover Dynamics 
(GOFC/GOLD) FIRE Mapping and Monitoring program, focussing internationally on 
decision-taking concerning research into Global Change and its ecological and 
environmental implications. Major efforts are also being made by ESA-EUMETSAT to 
increase the use of MSG in environmental observation tasks. SEVIRI (Spinning Enhanced 
Visible and Infrared Imager) on board MSG platforms is a very interesting example of 
suitable sensor to perform forest fire monitoring in real time (Calle et al., 2006). Some 
analyses are shown in the particular case of the geographical latitude of the Mediterranean 
Europe where, during the last years, detection campaigns and dissemination of results in 
real time have been carried out. The theoretical analysis of the minimum detectable size, 
including atmospheric effects and saturation conditions, are especially important to delimit 
the operational range of this sensor in Mediterranean latitudes, where the effects of forest 
fires are increasingly devastating each year, both in terms of financial as well as human 
losses. MSG-SEVIRI is geostationary sensor with a time resolution of 15 minutes; so, the 
comparison between successive scenes provides reliable results once the difference 
temperature threshold is established for such an interval. Thus, if a Time Thermal Gradient, 
TTG, higher to the one considered as normal, is detected, we will have a high temperature 
event. In order to estimate this gradient let’s consider a day’s thermal evolution as a 
sinusoidal curve responding to the form: 2_ · sin( ) ; ;MIR Temp A wt B w

T
     where T is 

the day’s period in units of 15 minutes (T=96), A is semi-daily thermal oscillation and B is  
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a not relevant coefficient. According to this model, the maximum difference in the MIR 
standard temperature between two consecutive SEVIRI scenes is 1.5K for a diurnal-cycle 
thermal oscillation of around 30K, which is typical of summer days in middle latitudes. This 
estimation agrees with the experimental values found in the analysis of the series of MIR 
temperature evolution curves selected for different test sites in the Mediterranean Europe, 
during summer. Like this, the maximum temperature difference found, in absolute values, in 
the 98.2% of cases was lower than 2K. The averaged of differences found, only considering 
the intervals with thermal variability [05:00-11:00 GMT and [14:00-20:00 GMT, was 1.2K, 
with a standard deviation of 0.5 K. So, we have considered appropriate to establish a 
threshold of 4K as the temperature increase value to detect the beginning of a fire without 
providing false alarms. In any case, it must be pointed out that there are two daily periods 
very well defined: from sunrise to midday, in which the temperature is increasing and where 
the estimation of 4K is appropriate, and the second one between midday and sunset, for 
which a value of 2-4K would be enough, being a negative gradient. During night periods 
detection is easier. In order to estimate minimum fire size detectable by the SEVIRI sensor, 
simulations have been done by means of MODTRAN radiative transfer code (Berk et al., 1996) 
by introducing different surface and fire temperatures according to different time thermal 
gradient values. Radiance observed by sensor was simulated as:  · 1 ·sensor fire surfaceL p L p L    

where p is the surface fraction affected by fire and where two homogeneous phases have 
been considered: fire and surface; Lfire and Lsurface are the radiances incoming from fire and 
surface. Spectral radiance was integrated with 20 cm-1 resolution by means of spectral 
response function and considering different atmospheric attenuation conditions. Results are 
shown in figure 2, for a standard atmosphere of middle latitude summer and aerosol depth 
according to visibility 23 km. Abscissa axis shows the potential fire temperature and 
ordinate axis shows the minimum detectable area expressed in ha. Different magnitudes of 
influence must be analysed separately,being the most important the threshold of TTG 
considered, T

t



, but geographic latitude of observation too. The figure contains the results 

for three different values of the gradient: 4, 6 and 2K/15_minutes and for two locations-
type, at 20º and 50º latitude. With respect to the latitude, it must be taken into account that 
although the pixels’s area in the nadir point is 9 km2, at latitude of 20º it is 10km2 and at 50º 
it has increased up to 18 km2. Thus, for a required gradient of 4K/15_min. and a fire of 
600K, the detectable area at 20º latitude is 0.5 ha, whereas at 50º latitude it would be 1ha. The 
geographic longitude has not been analysed since it has a very low distortion in the pixels’ 
area. With respect to the thermal gradient, 4K/15_min is the reference for the analysis 
carried out in previous paragraphs. The figure shows results for a value 2K/15_min that can 
be applied in the descendant period of daily thermal evolution [14.00-20:00, because during 
this period 0T

t
 

is expected and the value 2K/15_min could be enough. This means that 

during the evening, fires are more easily detected through this methodology and the fire 
starting can be established at 600K with 0.24 ha at 20º latitude and 0.48 ha at 50º latitude. As 
can be seen, the detectable sizes during the day at 20º latitude are similar to the ones in the 
evening at 50º latitude. Latitude has influence in the variability of the pixel’s area and in the 
atmospheric transmittance, with the cenital angle, which has also been taken into account to 
obtain results. Results obtained for different atmospheric profiles do not differ too much. 
Another very important magnitude to be considered is the surface temperature since the 
considered methodology is presented with continuity throughout the day and night, a 
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a not relevant coefficient. According to this model, the maximum difference in the MIR 
standard temperature between two consecutive SEVIRI scenes is 1.5K for a diurnal-cycle 
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period for which different values are presented. It must be pointed out that lower surface 
temperatures make the detection considerably easier. Thus, if we go down from 300K to 
290K, there is a decrease in the minimum detectable area of around 20-23%. This value is 
constant for different fire temperatures and also independent from the latitude considered. 

0
5

10
15
20
25
30
35
40

400 450 500 550 600 650 700 750 800

Fire temperature (K)

M
in

im
um

 d
et

ec
ta

bl
e 

si
ze

 (H
a)

20º-4K 50º-4K 20º-6K 50º-6K 20º-2K 50º-2K

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

600 650 700 750 800

 
Fig. 2. Minimum size of fire (ha) to be detected by SEVIRI, for different fire temperature and 
latitude, applying TTG values of 2, 6 and 4K/15_minutes, taking into account atmospheric 
attenuation (taken from Calle et al., 2006). 

Establishing the outbreak of a fire, as accurately as possible, is crucial to alerting fire-
fighting teams as quickly as possible. If the detection process takes into account the 
comparison with the previous image the delay can be up to 30 minutes in the worst cases. 
To show some representative results we have analyzed the day on which Spain’s worst fire 
in the previous decades in terms of human losses occurred. This fire, which started between 
12:30 and 12:45 on 16th July 2005, spread for over five consecutive days and devastated 
around 13,000ha. Figure 3 shows the image of the 3.9 m spectral band corresponding to a 
few hours after the fire. The visual analysis of the image shows the existence of many fires in 
Spain and Portugal. Given their importance, two have been highlighted and shown. 
Number 1 is the fire in Guadalajara (Spain) and number 2, one of the fires that affected the 
natural park of Lago de Sanabria (Zamora, Spain) during the summer of 2005, whose initial 
characteristics, as will be seen, differ from the first. In the figure, we have indicated the wind 
direction in fire #1 from the smoke plume, which is perfectly visible and which will be 
useful later to analyze the spread of the fire. Below in the same figure are the two thermal 
evolution diagrams corresponding to these fires. The diagram shows the temperature 
evolution of band 3.9 m, in ºC, in the primary axis of the ordinate according to the time of 
the day, between 06:00 and 16:00 GMT. The secondary axis of the ordinate shows the 
evolution of the time thermal gradient of the same band, in ºC/15_minutes. If we compare 
both temperature evolution curves, we can see that they are practically identical on the 
primary axis up to the moment at which the fire starts, at 12:30 in #1 and at 13:45 in #2 
despite being different vegetation covers with different fuel moisture content since they 
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occur in different climate zones. The analysis of the curve of the time thermal gradient is 
much more conclusive. The change in the temperature value is 1.5ºC/15_minutes in both 
curves prior to the outbreak of the fire reaching a maximum of 2.3 in #1 and 1.8 in #2, which 
are exceptional considering the rest of the values. Case #2 was a fire that started with a time 
thermal gradient of 4.2ºC/15_minutes in the first scene at 14:00 GMT, immediately jumping 
to 15ºC/15_minutes in the following scene at 14:15 GMT. It is clear that it began between 
13:45 and 14:00 as the figure shows. The case of fire #1 presents a much more abrupt 
beginning, with a time thermal gradient of 8ºC/15_minutes in the first scene at 12.45 GMT. 
In this case, the fire broke out between 12:30 and 12:45 GMT. Apart from its initial causes, 
the characteristics of a fire at its onset depend on the combustible material and moisture. In 
this comparison, it is not surprising that the outbreak was slower in case #2, whose gradient 
was below #1, as this was a climate zone with higher moisture content.   

 
Fig. 3. This figure shows the methodology to detect the start of a fire for two different cases. 
The upper part of the figure shows the 3.9 µm band, highlighting several fires validated by 
MODIS) as well as wind direction. The second part shows the thermal  evolution, in the left 
scale, and the time thermal gradient, in the right scale, in ºC/15_minutes, for the two 
selected cases. (Calle et al., 2006). 

The methodology proposed to detect the beginning of the fire is no longer valid as the fire 
keeps developing since the temperature differences between the different scenes experiment 
strong variations. Even the frequent appearance of saturated pixels causes sharp changes 
that cannot be analysed. Further, for the subsequent monitoring of the fire, a methodology 
for detecting hot spots (after the starting) is required. Detection methods on other sensors 
used as a reference are sometimes based on physical models. However, experimental  
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statistical models have shown better results and are easier to apply as the contextual models 
operating on AVHRR and MODIS, as we have seen in the paragraph before. 

3.4 Spatial characterization of fire detection 

The pixel dimension is the main parameter that characterises sensors concerning their 
spatial resolution. However, the radiance quantification and image interpretation need an 
appropriate analysis to obtain several physical parameters. The review of Cracknell (1998), 
describes spatial and radiometric considerations regarding the pixel precisely. In order to 
answer the question “what’s in a pixel?”, title of the mentioned paper, it is firstly necessary 
to carry out an accurate analysis of the target area that emits the radiance reaching the 
sensor which, in fact, never coincides exactly with the spatial resolution assigned to it nor 
with the square shape that it is imagined for the matrix elements of an image. The simplified 
concept of image as a mosaic of elements is quite far from the reality, something that 
becomes evident when trying to observe image detail or compare images from different 
sensors with similar spatial resolution. Moreover, the concept of spatial resolution is often 
identified with Ground Sampling Distance (GSD), defined as the distance between centres of 
neighbour pixels, or the use of Instantaneous Geometric Field of View (IGFOV), the 
geometric size of the image projected by the detector on the ground through the optical 
system introducing confusion in the sensor’s spatial characterization. Since there are sensors 
with similar IGFOV but different Modulation Transfer Function (MTF), it is more realistic to 
define a quantity in the topic of MTF. The concept of Effective Instantaneous Field Of View 
(EIFOV) introduced by NASA, 1973, is defined as the resolution corresponding to a spatial 
frequency for which the MTF system is 0.5. The MTF shape in the frequency domain and, 
consequently, the Point Spread Function (PSF) in the spatial domain has not a special 
relevance when the surface observed shows a homogeneous distribution of radiance; 
nevertheless, when there are heterogeneous distribution of radiance inside the pixel, as is 
frequently the case of forest fires, PSF and deconvolution processes must be considered. In 
this paragraph, results by using real MTF functions of the SEVIRI sensor, are shown. 

On the other hand, many thermal parameters in remote sensing are estimated by solving 
multi-spectral processes, such as the estimation of the temperature using split-window 
procedures or the estimation of thermal parameters in hot-spots through Dozier’s method 
(Dozier, 1981; Matson and Dozier, 1981). In these estimations, it is assumed that the pixels of 
the bands involved correspond to the same spatial target and contribute with the same 
sensitivity to the radiance measurement. However, even in the case of a perfect co-
registration between bands, this assumption would not be true since each band has a 
different PSF. This is one of the problems mentioned by Wooster et al. 2005, in order to 
propose a single-channel method to estimate the fire temperature instead of applying a bi-
spectral method. In addition, the influence of the PSF has been highlighted as responsible 
for the differences in the Fire Radiative Power (FRP) when different sensors are compared. 
Concerning geostationary satellites, MSG is providing operational results in fire detection 
and biomass burning in Africa (Wooster et al., 2005) and Mediterranean countries (Calle et 
al., 2006) and Geostationary Operational Environmental Satellites (GOES) are used 
operationally in South-Central-North-America (Prins and Menzel, 1994). The issue of fire 
detection is understood in the framework of global geostationary fire monitoring 
applications and requires evaluating the impact of the MTF’s shape in the estimation of 
thermal parameters.  
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In order to estimate the impact of PSF shape on detection suitability, it’s interesting to 
analyze a sensor with low spatial resolution, as SEVIRI sensor onboard of MSG satellite 
(Calle et al., 2009). Pixel affected by fire appears a a typical cross shape when fire is detected, 
due to PSF effects and overlapping between pixels. Figure 4 shows a three-dimensional 
graph where the brightness temperature in the 3.9 m band (vertical axis) is shown versus 
the fire temperature (left part of figure) and background temperature (right part of figure) 
and the distance from the pixel centre (PSF impact), where the background temperature is 
300 K (left), the fire temperature is 500 K (rigth) and the one-dimensional burning area is 
50m (both cases). Saturation plane is shown in the figures. Note that for low fire 
temperatures (below 450 K, taking into account that we are talking of flaming and 
smouldering mixed phases, the PSF impact is not noticeable. However, large differences in 
brightness temperature are found in hotter fires. In order to explain the importance of a 10 
K-difference in the 3.9 m band, note that if a contextual detection algorithm is applied the 
detection will be lost when the standard brightness temperature deviation around the pixel 
is higher than 3 K. 
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Fig. 4. Left part: Brightness temperature in the 3.9 m band (vertical axis) versus fire 
temperature and distance from pixel centre (PSF impact); background temperature 300 K is 
considered. Rigth part: Brightness temperature in the 3.9 m spectral band (vertical axis) 
versus background temperature and distance from pixel centre (PSF impact). fire 
temperature of 500 K is considered. One-dimensional burning size of 50 m. (Calle et al., 
2009) 

4. Fire monitoring 
The concept of detection is very clear, but it is not so clear the concept of monitoring. It 
could be said that monitoring comprises all the aspects related to the knowledge of a fire 
while it is taking place. Thus, we can talk of the fire temperature, the active area, the fire’s 
energy intensity and the fire’s front. However, all these parameters are subject to the 
technical possibilities of the spatial sensor used, especially the spatial resolution in the 
thermal spectrum. The main problem with monitoring tasks lies in the necessity of having 
available the time resolution typical of geostationary satellites in order to be able to know  
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Fig. 4. Left part: Brightness temperature in the 3.9 m band (vertical axis) versus fire 
temperature and distance from pixel centre (PSF impact); background temperature 300 K is 
considered. Rigth part: Brightness temperature in the 3.9 m spectral band (vertical axis) 
versus background temperature and distance from pixel centre (PSF impact). fire 
temperature of 500 K is considered. One-dimensional burning size of 50 m. (Calle et al., 
2009) 
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not just the instant value of the above mentioned parameters, but also their evolution 
throughout the fire’s development. However, these sensors are currently very far from 
providing detailed results. Next, we will see the type of information we can get according to 
the capacities of different sensors. 

For the knowledge of fire parameters, we need first an analysis at a sub-pixel level through 
the application of Dozier’s methodology (1981). This methodology allows us to establish 
both the fire temperature and the fraction of the area that is burning simultaneously. This 
procedure can be applied to any sensor and it is based on the solution of the following 
system of equations: given a pixel affected by a fire at a temperature Tf  that occupies the 
fraction of the pixel p, and it is surrounded by a surface at a temperature Tsurf., then the 
radiances detected in the MIR and TIR bands will be given by the expressions: 
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where LMIR and L,TIR are the radiances observed by the sensor in the spectral regions of 
3.7m and 11m respectively and B(,T) is the function of Planck. This system of equations 
provides the fire temperature value and the fraction of the pixel that is burning. 

Before analysing some approximations taken in this methodology, we must point out two 
very important restrictions concerning its operating capacity. In the first place, it must be 
said that the equations are based on the establishment of the radiance emitted by the 
thermal spectrum. The 11 m region has no other nature, but the radiance observed in the 
MIR region has a reflection component that has been analysed in the false alarms section. 
That’s why, the application of these equations to diurnal images should include an 
additional solar term. Otherwise, they would only be valid for night images. On the other 
hand, in order to obtain reliable results, it is necessary to avoid saturation as much as 
possible.  

Dozier’s system of equations is very simple to understand although many of the 
approximations it takes are not realistic and should be analysed. In the first place, the pixel 
observed is divided into two parts, fire and surface, those are considered homogenous, but 
this is not the case, especially because of the surface’s heterogeneity. On the other hand, the 
atmospheric effects have been neglected in this scheme. The most serious approximation 
with respect to the error magnitude is probably found in the establishment of a surface 
temperature value. Dozier suggested for this value the mean value of the pixels surrounding 
the fire but not affected by it. It must be highlighted that the results obtained depend to a 
great extent on this parameter. Simulations carried out on a real fire changing the surface 
temperature value (Calle et al., 2005) show that the error in the surface temperature affects 
the fire temperature with a value multiplied by 10. Finally, another approximation taken is 
not to include in the equations the emissivity of the radiance received by the sensor. 
Although it is true that the fire performance is very similar to that of a blackbody, the same 
does not happen with the non-affected surface, which seems to have variable values. The 
deduction of the emissivity is justified in the fact that the zones observed for fire purposes 
are always forest zones and the emissivity values in this kind of environment are comprised 
in the interval [0.983-0.995] for the TIR band. A more realistic scheme derived from Dozier’s 
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methodology is the one suggested by Giglio & Kendall (2001). This scheme modifies the 
former one by including terms of emissivity, atmospheric effects and sun reflection in the 
radiance equation of the MIR band. The following are the modified equations of Dozier: 

 
   

   
, ,

, ,

, 1

, 1 0 1

MIR MIR MIR f surf MIR atm MIR

TIR TIR TIR f surf TIR atm TIR

L pB T p L pL

L p B T p L pL p

 

 

    


     

 (4) 

where Latm,MIR and Latm,TIR  are the radiances emitted by the atmosphere to the sensor in the 
MIR and TIR bands respectively. These terms are worthless with respect to the radiances 
emitted by the surface, Lsurf,MIR  and Lsurf,TIR, and can be disregarded.  is the atmosphere’s 
spectral transmittance. The difference in these equations with respect to the original ones 
lies in the intervention of the radiances of the surrounding pixels instead of the temperature 
and finally, although they are taken into account, the surface’s emissivity and temperature 
are not usually known explicitly. The techniques mentioned for the obtaining of fire 
parameters imply some difficulties related to the errors that are made. In the first place, they 
are not analytic equations so that their solution must be found by means of numerical 
calculation techniques. However, it must be said that their solution comes, in the end, from 
a convergent system. Other important sources of errors have their origin in different 
magnitudes that have been analysed by Giglio & Kendall (2001) and that will be mentioned 
here next. 

First, a source of error in the results is the error in the calculation of the surface’s radiance 
introduced in the equations. The values for the fire temperature and size are more sensitive 
to errors in the radiance of 11.0µm than in the 3.7µm. At low temperatures, this is not a big 
error, but, with a high fire temperature, the error increases noticeably both in the fraction of 
the pixel affected and in the fire temperature itself. Another source of error to consider is the 
one corresponding to the atmospheric transmittance. However, in this case, the errors made 
in the temperature and fraction of the pixel affected, are compensated in the MIR and TIR 
bands as long as such errors are caused by either an underestimation or an overestimation 
in both cases. Otherwise, the errors in the results will add up. Thus, an overestimation in the 
MIR transmittance overestimates the temperature calculated whereas an overestimation in 
the TIR transmittance produces the opposite effect. A third source of error in the 
calculations is due to the instrument’s noise, although in this case it introduces an accidental 
systematic error. Finally, the omission of the atmospheric radiance that reaches the sensor is 
less important than the causes considered formerly, so that in no case does the temperature 
go over 1.5K or the area over 2%. A very interesting aspect in the theory developed is the 
one that refers to the fire’s emissivity. A fire has always been considered as a blackbody. In 
fact, and strictly speaking, this is only true when the length of the flame seen from the 
sensor is larger than 6 metres (Langaas, 1995). This would make us reconsider this aspect in 
the case of smaller fires so that in these cases we should consider the fire as a grey body. In 
these cases that separate from the characteristics of a blackbody, the errors made for 
considering that the fire has an emissivity one, result in an underestimation of both the fire 
temperature and the fire area, and they are independent from the fraction of the pixel that is 
affected and the fire temperature. In spite of all the methodology developed, it is important 
to point out that a forest fire is, in reality, a very complex phenomenon in which different 
series of phenomena overlap. In this situation, we could ask ourselves what the parameter 
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affected and the fire temperature. In spite of all the methodology developed, it is important 
to point out that a forest fire is, in reality, a very complex phenomenon in which different 
series of phenomena overlap. In this situation, we could ask ourselves what the parameter 
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we call “fire temperature” is exactly and what the “burning area” is. The model presented is 
a simplification from the real phenomenon since, up until now, only two phases have been 
differentiated: the fire flame and the surface. In reality, it should at least be considered the 
middle phase corresponding to the smouldering. However, it must be taken into account 
that the introduction of further terms in the model would imply having more spectral bands 
available in order to obtain more equations and to be able to find all the unknown 
quantities. We are going to consider this aspect so as to reach some conclusions in relation 
with the appropriate spectral information. Kaufman et al., (1998) introduced a modification 
in Dozier’s methodology in order to include the flame phase, which is hotter, and the 
smouldering phase, which is in the middle between the surface and the flame. Thus, if we 
call pf and ps to the fractions of the pixel corresponding to the flame and the smouldering 
respectively, the bi-spectral equations will be as follows: 
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so that pf + ps  =p is fulfilled. The analysis and discussion will be done through the flaming 

ratio function, f, defined as 
 

f

f s

p
f

p p



. This relation is related to the importance that 

the flame phase has in the fire observed. Since in order to obtain more detailed information, 
more observation wavelengths are needed, Giglio & Justice (2003) established the errors 
found according to the pair of wavelengths used to solve the bi-spectral equations so as to 
establish the most appropriate pair for this purpose, always considering the atmospheric 
windows for the observation. These authors carried out simulations with combinations of 
wavelengths in the interval [1.6, 3.8 m] for the MIR region and in the interval [2.4, 11 m] 
for the TIR region so that λTIR was always higher than λMIR.  The most relevant conclusions 
of this analysis were that the shortest pairs of wavelengths provided higher fire 
temperatures and smaller areas since the decrease in λ implies a major importance in the 
flame phase whereas an increase in λ gives more importance to the smouldering phase. It is 
also interesting that the results of the pair [3.8, 11.0 μm] and of the pair [3.8, 8.5 µm] are 
practically identical, with differences inferior to 5K for the temperature and 5% for the area. 
This means that the spectral difference in the AVHRR and MODIS sensors, which 
correspond to the first pair, and in BIRD, which corresponds to the second, are not 
significant. 

MODIS has several bands situated in the spectral region of 4µm. One of them has a 
saturation value of 500K (band 21), which makes this sensor especially suitable for the 
establishment of fire parameters since it is difficult to find saturated pixels. It must be taken 
into account that it is very rare when this monitoring phase can be applied to the AVHRR 
sensor since, although the detection is possible, band 3 is very frequently saturated. 
Likewise, BIRD prototype is especially suitable for the obtaining of parameters and the 
establishment of the FRP (Free Radiative Power) (Kaufman and Justice, 1998). By definition, 
the FRE (Fire Radiative Energy) is basically the portion of chemical energy released during 
the burning of the vegetation and emitted as radiation during the combustion process. These 
parameters are comprised within the goal of fire analysis and the FRP is precisely the most 
important one because it contains information both on the emissions produced in the 
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atmosphere by these events (Kaufman et al., 1996) and on the fire’s destructive power. These 
authors have suggested that the quantification of the radiated energy during the combustion 
process in the fire could supply a measurement related to the quantity of vegetation 
consumed per unit of time. Consequently, it would provide a measurement of the emissions 
produced during fires and, therefore, it would provide valuable support information to the 
processes of climate change obtained through remote-sensing. In spite of being a qualitative 
measurement of great value, we must take into account that the combustion phase is a 
mixture of physic processes through which the fire’s energy is distributed, apart from the 
radiation phase, as is the case of the air mass convection above the fire and the conduction 
towards the interior of the earth. 

For the MODIS sensor case, Kaufman & Justice (1998), have suggested an empiric 
expression in order to fix the intensity, in MWatts, from the brightness temperature of the 
pixel affected by the fire. This expression corresponds to: 

  19 8 8
,4.34·10

MIR MIR bFRP T T   (6) 

where TMIR is the brightness temperature of the band of the 4 m of the pixel affected by the 
fire and TMIR,b is the same temperature in the adjacent pixels. In order to carry out a validation 
of the results obtained at a sub-pixel level, that is, the fire’s temperature and the fire’s area, a 
comparison with the intensity values calculated through Stefan-Boltzmann’s law and the 
previous formula has been carried out. This has been exclusively done for the MODIS sensor 
and on the large fires that affected Spain and Portugal during the summer of 2003. Besides, the 
comparison has been done for the Terra and Aqua spacecraft and at two processing levels: 
level of individual burning pixels and level of averaged clusters. The results of this comparison 
can be found in Calle et al. (2005), in which the two processing levels are represented 
separately. The almost exact coincidence of the values, which are even better in the case of the 
analysis at a cluster level, proves the reliability of the magnitudes temperature and area of fire. 
It is very important to highlight the fact that the coincidence between the empiric expression 
and Stefan-Boltzmann’s law, after applying Dozier methodology) are coming from the analysis 
of clusters. However, when results are compared at the level of individual pixels, the 
differences are much more noticeable; so, the use of empiric expression is recommended.  
When sensor has a high spatial resolution in the thermal bands, the sub pixel analysis is a 
useful tool in order to discriminate the increasing direction of fire: that is, the flaming front. 
The figure 5 shows the results of the application of the sub-pixel analysis on one of the active 
fires that have been described. It corresponds to the superposition of the fire’s temperatures on 
the BIRD sensor over NIR image, showing the affected fire area.  

The real usefulness of remote-sensing in the early detection of fires will take place when the 
time resolution of the sensors implied is around 15 minutes or less. At present, this 
characteristic is only available in the geostationary satellites, but they have the problem of their 
low spatial resolution. The advantage of geostationary sensors is that it’s possible to obtaining, 
not only the FRP but the FRE too. The fire radiative energy will be: FRE FRP dt . In any case, 

the comparison of FRP results among sensors is only valid for qualitative purposes since in 
certain fires the lowest spatial resolution implies an important underestimation of this 
magnitude. This happens for example when comparing MSG and MODIS or MODIS and 
BIRD. With respect to the latter ones, Wooster et al (2003) found differences of up to 46%. 



 
Earth Observation 

 

194 

atmosphere by these events (Kaufman et al., 1996) and on the fire’s destructive power. These 
authors have suggested that the quantification of the radiated energy during the combustion 
process in the fire could supply a measurement related to the quantity of vegetation 
consumed per unit of time. Consequently, it would provide a measurement of the emissions 
produced during fires and, therefore, it would provide valuable support information to the 
processes of climate change obtained through remote-sensing. In spite of being a qualitative 
measurement of great value, we must take into account that the combustion phase is a 
mixture of physic processes through which the fire’s energy is distributed, apart from the 
radiation phase, as is the case of the air mass convection above the fire and the conduction 
towards the interior of the earth. 

For the MODIS sensor case, Kaufman & Justice (1998), have suggested an empiric 
expression in order to fix the intensity, in MWatts, from the brightness temperature of the 
pixel affected by the fire. This expression corresponds to: 

  19 8 8
,4.34·10

MIR MIR bFRP T T   (6) 

where TMIR is the brightness temperature of the band of the 4 m of the pixel affected by the 
fire and TMIR,b is the same temperature in the adjacent pixels. In order to carry out a validation 
of the results obtained at a sub-pixel level, that is, the fire’s temperature and the fire’s area, a 
comparison with the intensity values calculated through Stefan-Boltzmann’s law and the 
previous formula has been carried out. This has been exclusively done for the MODIS sensor 
and on the large fires that affected Spain and Portugal during the summer of 2003. Besides, the 
comparison has been done for the Terra and Aqua spacecraft and at two processing levels: 
level of individual burning pixels and level of averaged clusters. The results of this comparison 
can be found in Calle et al. (2005), in which the two processing levels are represented 
separately. The almost exact coincidence of the values, which are even better in the case of the 
analysis at a cluster level, proves the reliability of the magnitudes temperature and area of fire. 
It is very important to highlight the fact that the coincidence between the empiric expression 
and Stefan-Boltzmann’s law, after applying Dozier methodology) are coming from the analysis 
of clusters. However, when results are compared at the level of individual pixels, the 
differences are much more noticeable; so, the use of empiric expression is recommended.  
When sensor has a high spatial resolution in the thermal bands, the sub pixel analysis is a 
useful tool in order to discriminate the increasing direction of fire: that is, the flaming front. 
The figure 5 shows the results of the application of the sub-pixel analysis on one of the active 
fires that have been described. It corresponds to the superposition of the fire’s temperatures on 
the BIRD sensor over NIR image, showing the affected fire area.  

The real usefulness of remote-sensing in the early detection of fires will take place when the 
time resolution of the sensors implied is around 15 minutes or less. At present, this 
characteristic is only available in the geostationary satellites, but they have the problem of their 
low spatial resolution. The advantage of geostationary sensors is that it’s possible to obtaining, 
not only the FRP but the FRE too. The fire radiative energy will be: FRE FRP dt . In any case, 

the comparison of FRP results among sensors is only valid for qualitative purposes since in 
certain fires the lowest spatial resolution implies an important underestimation of this 
magnitude. This happens for example when comparing MSG and MODIS or MODIS and 
BIRD. With respect to the latter ones, Wooster et al (2003) found differences of up to 46%. 

 
Forest Fires and Remote Sensing 

 

195 

350                         750  K                 1200

 
Fig. 5. This figure shows the fire temperatures, obtained by means of Dozier methodology. 
At this spatial resolution is very clear to recognize the flaming front and the spreading 
direction of fire (Calle et al., 2005). 

5. Atmospheric impact of fire emissions 
The gases belonging to carbon cycle, CO and CO2, are trace gases located in the atmosphere, 
mostly as the result of anthropogenic activities. Despite not being a greenhouse gas, the 
carbon monoxide plays a significant role in the carbon cycle; it is not a direct precursor of 
CO2, but it essentially affects the budgets of OH radicals and O3 present in the atmosphere 
(see Bergamaschi et al., 2000, for an extended explanation about the modelling of the global 
CO cycle). The anthropogenic activities related to release carbon into the atmosphere can be 
divided in two well-defined groups: on the one hand, the urban pollutant emissions from 
vehicles and other industrial processes; on the other, from fires and global biomass burning 
emissions. The estimation of CO profiles and CO total column has been identified as a very 
important objective in order to improve our understanding of climate global system. The 
EOS (Earth Observing System) Science Steering Committee has proposed: "The fate of 
carbon monoxide, remotely detected from space, in conjunction with a few other critical 
meteorological and chemical parameters, is crucial to our understanding of the chemical 
reaction sequences that occur in the entire troposphere and govern most of the 
biogeochemical trace gases" (EOS, 1987). In the same line, the WMO (World Meteorological 
Organization) has proposed: "Definition of trends and distributions for troposphere CO is 
essential. A satellite-borne CO sensor operating for extended periods could help 
enormously" (WMO, 1985). The global estimation of CO based on satellite imagery involves 
a series of technical difficulties; the most important one is the associated error of the 
measurements.  
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The combustion by fire is a chemical reaction with heat release where the main products 
generated are, if combustion is completed, H2O, CO2, and N2. In the case of high 
combustion temperatures, NO2 and NO are released too.  However it must be pointed out 
that the main cause of CO fire-related emissions is the incomplete or inefficient burning of 
wood, biomass and fossil fuels. Concerning wildfires, two phases are considered: the 
flaming phase (in which CO2 and nitrogen are released), and smouldering phase (in 
which CO and hydrocarbons are released). Two procedures provide estimations of CO 
emissions, a direct procedure and an indirect one. The indirect method estimates CO mass 
from the knowledge of the previous burned biomass. This value can be obtained from 
satellite cartography of fire-affected areas and the vegetation index, which is the main 
indicator of biomass quantity on a global scale. The adjustment of the measurements is 
carried out by introducing the combustion efficiency coefficients of this particular gas. 
This procedure was first proposed by Seiler and Crutzen (1980), who estimated CO 
emissions according to the following indirect parameters: i) burned land cover area (m2), 
ii) above-ground biomass density of burned area (kg-dry-matter/m2), iii) burning 
efficiency of the above-ground biomass (that is, the fraction of biomass burned) 
dimensionless, and iv) the emission factor (g of CO [kg dry matter]-1), which varies 
according to the type of vegetation and ecosystem. Note that many errors arise, from this 
indirect procedure, due to the uncertainty in the coefficients and, especially, in the 
biomass estimation, which is the main quantitative parameter. 

The second procedure is the direct estimate of carbon content in the atmosphere by means 
of remote sensing. The SCIAMACHY (SCanning Imaging Absorption SpectroMeter for 
Atmospheric CHartographY) onboard the European satellite ENVISAT (Bovensmann et 
al., 1999) has provided more measurements, of the most important trace gases, than any 
other sensor up to the present. The CO total column is retrieved from a small spectral 
fitting window located in SCIAMACHY channel 8 (2.324-2.335 m); finally, the results of 
its measurements are adjusted according to the parameters of trace gas. Dils et al., (2006) 
have carried out a series of comparisons between SCIAMACHY measurements and 
ground-station data.  In the case of CO and CH4, with similar algorithms, they have 
shown that the measurements provide good description of seasonal and latitudinal 
variability. However, they show important discrepancies in concrete cases. Besides, they 
show long periods in which the algorithm does not provide any data. The MOPITT 
(Measurements of Pollution in the Troposphere) instrument, onboard the Terra spacecraft, 
has proved to be the most operative sensor for the continuous estimation of CO. On the 
other hand, scientists from the NCAR (National Centre for Atmospheric Research), 
funded by NASA, have spread data and results concerning the global distribution of CO 
based on MOPITT measurements (http://www.acd.ucar.edu/), which have revealed the 
seasonal dynamics of CO throughout the planet and direct correlations between the 
increase in the CO total column measured by MOPITT and large fires. The validation of 
the results reveals the suitability of the MOPITT’s spatial scale for monitoring 
continuously (at regional and global scale) observations of the spatial oscillations related 
to the atmospheric CO. Hereby, large horizontal gradients in the distribution of CO at the 
synoptic scale have been observed. These variations in CO can be as large as 50–100% and 
occur over spatial scales of around 100 km. These events, usually during several days, can 
span horizontal distances of 600-1000 km, and can appear over a range of pressure levels 
from 850 to 150 hPa (Liu et al., 2006). 
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The biomass burning is a very important source of ozone and methane precursors and the 
main factor of CO emissions. High levels of carbon monoxide pollution are found around 
the world, and they result from different types of biomass burning in different locations. 
High levels of CO are linked to widespread fire activity, such as agricultural burning in 
central Africa in January through March, or in Central America in April through June. 
Carbon monoxide molecules can last from a few weeks to several months in the atmosphere, 
and they travel long distances, without regard for national or international boundaries. 
Emissions from biomass burning accounts for about one quarter of the CO released to the 
atmosphere, with an average of around 600 Mt CO per year (Khalil et al., 1999). The 
occurrence of biomass burning, the size of fire, the different phases of fire considered (e.g. 
smouldering and flaming) and fire parameters (e.g. fire radiative power and temperature) 
vary greatly with time and space. Andreae and Merlet (2001) estimated that mean CO 
emission from vegetation fires in savanna and tropical forests is 342 Mt CO per year, while 
the total CO emission for all non-tropical forest fires is 68 Mt CO per year.  

The pattern of fire occurrence in Africa and Amazonia is quite different to others regions in 
the planet with higher population density. The fire occurrence, in Africa and Amazonia, is 
dominated by the displacement of ITCZ (Inter Tropical Convergence Zone). During the 
winter of North hemisphere the ITCZ, and therefore the tropical rain, is located in the South 
of equator and Amazonia; so, the fire occurrence is stronger in the North of equator and vice 
versa. The figure 6 shows the results of seasonal study of CO in the North equatorial Africa 
([4.5N-15N] and [17W-37E]), South equatorial Africa ([22S-3S] and [10E-40E]) and Amazonia 
([20S-7.5S] and [65W-50W]). The bar diagram shows fire occurrence from MODIS (Giglio et 
al., 2003; Davies et al., 2009) in the period 2003-2008. In the background, in grey colour, the 
original data of CO total column, from MOPITT, are shown. In black colour, the inverse Fast 
Fourier Transform calculated by means of main harmonics with higher spectral energy. 
Finally, CO values from SCIAMACHY, averaged for each month, are displayed for the 
period 2003-2005, in order to compare results between MOPITT and SCIAMACHY sensors. 
Comparison between CO from MOPITT and SCIAMACHY have been carried out by 
Buchwitz et al. (2007) showing results over cities; so, this comparison over large fires, is a 
complementary result in order to know the spatial capabilities of these source of data. 

Concerning analysis of results over Africa, northward equator, two main harmonics with 
maximum spectral energy, for each year, can be observed. First maximum is located in the 
period of January and February, showing a very good correlation with fire occurrence. The 
second maximum, weaker, is located in August, exactly when fire occurrence in the South of 
equatorial Africa is stronger. Concerning comparison between MOPITT (daily data) and 
SCIAMACHY CO total column is similar between them (having MOPITT data more 
amplitude). This is an expected difference, once SCIAMACHY data are averaged values. As 
we have underlined in the paragraph before, during the summer of North hemisphere the 
displacement of ITCZ is the responsible of a stronger fire occurrence in the South equator. 
Three main maximums, for each year, can be observed. The first maximum, with the shape 
of a peak, is located at the end of September, showing a very good correlation with the main 
fire occurrence in the year. The second maximum, weaker, is located at the end of January 
when fire occurrence in the North of equatorial Africa is stronger (see discussion before). 
The main difference with North equatorial Africa is the presence of a third harmonic 
providing an increasing tendency, of CO values, during June-September. As it’s possible to  
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Fig. 6. Results of seasonal study of CO in Africa (North and South of equator) and 
Amazonia. A comparison between CO emissions and fire occurrences is shown. CO total 
column original values and Inverse FFT transform is underlined. Left part of each graph 
contains XCO2 evolution for 2003-05. (Calle et al., 2011). 
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observe in the figure 6, both geographical bands present a correlation between CO values 
and fire occurrence. But CO maximum values have a delay of 15-20 days with respect to 
maximum fire occurrence; additionally the local maximum of North band presents a 
coincidence with main maximum of South band; that is: influence between them due to CO 
transport processes in the atmosphere. In any case, the influence of North over the South is 
stronger. Concerning comparison between MOPITT (daily data) and SCIAMACHY CO total 
column is very similar between them. The pattern of fire occurrence in Amazonia is the 
same of the South of equatorial Africa, due to the ITCZ behaviour.  

6. Conclusion 
In the light of the results, the geostationary sensors prove to be a highly efficient tool in real-
time forest fire management and monitoring. Despite not being originally designed as an 
Earth observation tool, but as a meteorological satellite, its excellent time resolution has 
proved useful for the detection of events which vary due to radiometric rather than spatial 
characteristics, as is the case of forest fires. On-going parameterization of fires has a strong 
influence on the subsequent treatment of forest regeneration. Major efforts are currently 
being made in the establishment of fire severity, where the main magnitude involved is the 
FRE in large fires for subsequently establishing intensity and include this magnitude in 
atmospheric emission models. This correlation between FRE and severity was not possible 
with polar sensors due to their lack of continuous observation. Another important 
magnitude that can be established from the FRE is the height of the flame, including some 
characteristics of the fuel, which could help the analysis of the fire front and other 
magnitudes linked to its advance. This is an essential magnitude since it is used by fire 
fighting services to determine the infrastructure necessary to combat fires. Both, the EOS 
Science Steering Committee and the WMO, have pointed out, as a main objective, the 
measurement and control of carbon monoxide as part of the control framework of trace 
gases involved in the carbon cycle. Forest fires are an important source of CO and CO2 
worldwide. However, the global estimates carried out have been based on indirect methods 
which require the previous determination of the burned areas and the introduction of 
burning efficiency coefficients, which are difficult to determine. In order to apply direct 
methods for emissions estimating, atmospheric sensors as MOPITT and SCIAMACHY have 
proven their ability to extract important conclusions about carbon cycle gases at global scale. 

7. References 
Al-Rawi, K-L-, Casanova, J.L. & Calle, A. (2001). Burned area mapping system and fire 

detection system, based on neural networks and NOAA-AVHRR imagery. 
International Journal of Remote Sensing, 22, 2015-2032. ISSN: 0143-1161 

Andreae, M. O. and Merlet, P. (2001). Emission of trace gases and aerosols from biomass 
burning. Global Biogeochemical Cycles, 15:955–966. ISSN: 0886-6236 

Arino, O. and Rosaz, J.M. (1999), 1997 and 1998 World ATSR FIRE Atlas using ERS-2 ATSR-
2 Data, Proceedings of the Joint Fire Science Conference, Boise, 15-17, June 1999. 

Arino, O., and Mellinotte, J.M. (1998). The 1993 Africa fire map, International Journal of 
Remote Sensing, 19:2019-2023. ISSN: 0143-1161 



 
Earth Observation 

 

200 

Bergamaschi, P., Hein, R., Heimann, M. and Crutzen, P. J. (2000): Inverse modelling of the 
global CO cycle, 1. Inversion of CO mixing ratios. Journal of Geophysical  Research, 
105:1909–1927. ISSN: 0148-0227 

Berk, A., Bernstein, L.W. and Robertson, D.C. (1996), MODTRAN: A moderate resolution 
model for LOWTRAN 7, Philips Laboratory, Report AFGL-TR-83-0187, Hanscom 
ARB, MA. 

Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Nöel, S., Rozanov, V. V., Chance, 
K. V. and Goede, A. (1999). SCIAMACHY- Mission Objectives and Measurement 
Modes. Journal of Atmospheric Sciences, 56:127–150. ISSN 0022-4928 

Briess, K., Jahn, H., Lorenz, E., Oertel, D., Skrbek, W. & Zhukov, B. (2003). Fire recognition 
potential of the bi-spectral detection  (BIRD) satellite. International Journal of Remote 
Sensing, 24, 865-872. ISSN: 0143-1161 

Buchwitz, M., Khlystova, I.,  Bovensmann, H., and Burrows, J.P. (2007). Three years of global 
carbon monoxide from SCIAMACHY: comparison with MOPITT and first results 
related to the detection of enhanced CO over cities. Atmospheric Chemistry and 
Physics, 7:2399–2411. ISSN: 1680-7316 

Calle, A., Romo, A., Sanz, J. & Casanova, J.L. (2005). Analysis of forest fire parametres using 
BIRD, MODIS and MSG-SEVIRI sensors. New Strategies for European Remote Sensing, 
Millpress, Rotterdam, ISBN 90 5966 003. 

Calle, A., Casanova, J.L. and Romo, A. (2006). Fire detection and monitoring using MSG 
Spinning Enhanced Visible and Infrared Imager (SEVIRI) data. Journal of 
Geophysical Research, 111, G04S06, doi:10.1029/2005JG000116. 

Calle, A., Casanova, J.L. and Romo, A. (2009). Impact of point spread function of MSG-
SEVIRI on active fire detection. International Journal of Remote Sensing, 30(17), 4567–
4579. ISSN: 0143-1161 

Calle, A., Salvador, P. and González, F. (2011). Study of the impact of wildfires emissions, 
through MOPITT CO total column, at different spatial scales. International Journal of 
Remote Sensing (in press). ISSN: 0143-1161 

Casanova, J.L., Calle, A.  and  González-Alonso F. (1998). A Forest Fire Risk Assessment 
obtained in real time by means of NOAA satellite images. Forest Fire Research. III. 
International Conference on Forest Fire Research and 14th Conference on Fire and Forest 
Meteorology. Vol I: 1169-1179. ISBN: 972-97973-0-7 

Chuvieco, E., Riaño, D., Aguado, I. and Cocero, D. (2002). Estimation of fuel moisture 
content from multitemporal analysis of Landsat Thematic Mapper reflectance data: 
applications in fire danger assessment. International Journal of Remote Sensing, 23 
(11):2145-2162. ISSN: 0143-1161 

Cracknell, A.P. (1998). Review article synergy in remote sensing-what’s in a pixel? 
International Journal of Remote Sensing, 19, 2025-2047. ISSN: 0143-1161 

Davies, D.K., Ilavajhala, S., Wong, M.M., and Justice, C.O. (2009). Fire Information for 
Resource Management System: Archiving and Distributing MODIS Active Fire 
Data. IEEE Trans. on Geoscience and Remote Sensing, 47 (1):72-79. ISSN: 0196-2892 

Dils, B., et al. (2006). Comparisons between SCIAMACHY and ground-based FTIR data for 
total columns of CO, CH4, CO2 and N2O. Atmospheric Chemistry and Physics, 
6:1953–1976. ISSN: 1680-7316 

Dozier, J. (1981). A method for satellite identification of surface temperature fields of 
subpixel resolution. Remote Sensing of Environment, 11: 221-229. ISSN: 0034-4257 



 
Earth Observation 

 

200 

Bergamaschi, P., Hein, R., Heimann, M. and Crutzen, P. J. (2000): Inverse modelling of the 
global CO cycle, 1. Inversion of CO mixing ratios. Journal of Geophysical  Research, 
105:1909–1927. ISSN: 0148-0227 

Berk, A., Bernstein, L.W. and Robertson, D.C. (1996), MODTRAN: A moderate resolution 
model for LOWTRAN 7, Philips Laboratory, Report AFGL-TR-83-0187, Hanscom 
ARB, MA. 

Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Nöel, S., Rozanov, V. V., Chance, 
K. V. and Goede, A. (1999). SCIAMACHY- Mission Objectives and Measurement 
Modes. Journal of Atmospheric Sciences, 56:127–150. ISSN 0022-4928 

Briess, K., Jahn, H., Lorenz, E., Oertel, D., Skrbek, W. & Zhukov, B. (2003). Fire recognition 
potential of the bi-spectral detection  (BIRD) satellite. International Journal of Remote 
Sensing, 24, 865-872. ISSN: 0143-1161 

Buchwitz, M., Khlystova, I.,  Bovensmann, H., and Burrows, J.P. (2007). Three years of global 
carbon monoxide from SCIAMACHY: comparison with MOPITT and first results 
related to the detection of enhanced CO over cities. Atmospheric Chemistry and 
Physics, 7:2399–2411. ISSN: 1680-7316 

Calle, A., Romo, A., Sanz, J. & Casanova, J.L. (2005). Analysis of forest fire parametres using 
BIRD, MODIS and MSG-SEVIRI sensors. New Strategies for European Remote Sensing, 
Millpress, Rotterdam, ISBN 90 5966 003. 

Calle, A., Casanova, J.L. and Romo, A. (2006). Fire detection and monitoring using MSG 
Spinning Enhanced Visible and Infrared Imager (SEVIRI) data. Journal of 
Geophysical Research, 111, G04S06, doi:10.1029/2005JG000116. 

Calle, A., Casanova, J.L. and Romo, A. (2009). Impact of point spread function of MSG-
SEVIRI on active fire detection. International Journal of Remote Sensing, 30(17), 4567–
4579. ISSN: 0143-1161 

Calle, A., Salvador, P. and González, F. (2011). Study of the impact of wildfires emissions, 
through MOPITT CO total column, at different spatial scales. International Journal of 
Remote Sensing (in press). ISSN: 0143-1161 

Casanova, J.L., Calle, A.  and  González-Alonso F. (1998). A Forest Fire Risk Assessment 
obtained in real time by means of NOAA satellite images. Forest Fire Research. III. 
International Conference on Forest Fire Research and 14th Conference on Fire and Forest 
Meteorology. Vol I: 1169-1179. ISBN: 972-97973-0-7 

Chuvieco, E., Riaño, D., Aguado, I. and Cocero, D. (2002). Estimation of fuel moisture 
content from multitemporal analysis of Landsat Thematic Mapper reflectance data: 
applications in fire danger assessment. International Journal of Remote Sensing, 23 
(11):2145-2162. ISSN: 0143-1161 

Cracknell, A.P. (1998). Review article synergy in remote sensing-what’s in a pixel? 
International Journal of Remote Sensing, 19, 2025-2047. ISSN: 0143-1161 

Davies, D.K., Ilavajhala, S., Wong, M.M., and Justice, C.O. (2009). Fire Information for 
Resource Management System: Archiving and Distributing MODIS Active Fire 
Data. IEEE Trans. on Geoscience and Remote Sensing, 47 (1):72-79. ISSN: 0196-2892 

Dils, B., et al. (2006). Comparisons between SCIAMACHY and ground-based FTIR data for 
total columns of CO, CH4, CO2 and N2O. Atmospheric Chemistry and Physics, 
6:1953–1976. ISSN: 1680-7316 

Dozier, J. (1981). A method for satellite identification of surface temperature fields of 
subpixel resolution. Remote Sensing of Environment, 11: 221-229. ISSN: 0034-4257 

 
Forest Fires and Remote Sensing 

 

201 

Giglio, L & Kendall, J.D., (2001). Application of the Dozier retrieval to wildfire 
characterization. A sensitivity analysis. Remote Sensing of Environment, 77, 34-49. 
ISSN: 0034-4257  

Giglio, L. & Justice, C.O. (2003). Effect of wavelength selection on characterisation of fire size 
and temperature. Int. Journal of Remote Sensing, 24,3515-3520. ISSN:0143-1161  

Giglio, L., Descloitres, J., Justice, C.O. & Kaufman, Y.J. (2003). An enhanced contextual fire 
detection algorithm for MODIS. Remote Sensing of Environment, 87:273-282. ISSN: 
0034-4257 

Hunt, E.R. & Rock, C.R. (1989). Detection of changes in leaf water content using near and 
medium infrared reflectances. Remote Sensing of Env., 30:43-54. ISSN:0034-4257 

Ichoku, C., Kaufman, Y.J., Giglio, L., Li, Z., Fraser, R.H., Jin, J-Z & Park, W.M. (2003). 
Comparative analysis of daytime fire detection algorithms using AVHRR data for 
the 1995 fire season in Canada: perspective for MODIS. International Journal of 
Remote Sensing, 24, 1669-1690. ISSN: 0143-1161  

Illera, P. Fernández, A., Calle, A. and Casanova, J.L. (1996). Evaluation of fire danger in 
Spain by means of NOAA-AVHRR images. EARSeL Journal Advance in Remote 
Sensing, 4-4:33-43. ISSN: 1017-4613 

Justice, C.O & Malingreau, J.P.(editors). (1993). The IGBP satellite fire detection algorithm 
workshop technical report, IGBP-DIS Working paper 9, NASA/GSFC, Greenbelt, 
Maryland, USA, February, 1993.  

Khalil, M. A. K, Pinto, J. P. and Shearer, M. J. (1999). Atmospheric carbon monoxide. 
Chemosphere: Global Change Science, 1, IX –XI. ISSN: 1465-9972 

Kaufman, Y. & Justice, C. (1998). MODIS Fire Products. MODIS Science Team. EOS ID#2741 
Kaufman, Y.J., Justice, C., Flyn, L. Kendall, J. Prins, E., Ward, D.E., Menzel, P. & Setzer, A. 

(1998). Potencial global fire monitoring from EOS-MODIS. Journal of Geophysical  
Research, 103, 32215-32238. ISSN: 0148-0227 

Langaas, S. (1995). A critical review of sub-resolution fire detection techniques and 
principles using thermal satellite data.  PhD thesis, Department of Geography, 
University of Oslo, Norway.   

Lasaponara, R. Cuomo, V. and Tramutoli, V. (1998). Satellite forest fire detection in the 
Italian ecosystems using AVHRR data. XII Int. Conference on Forest Fire Research 
Luso 16/20 nov. 1998, vol II, 2013-2028 

Li, Z., Nadon, S., Chilar, J. &  Stocks, B. (2000). Satellite mapping of Canadian boreal forest 
fires: Evaluation and comparison of algorithms. International Journal of Remote 
Sensing, 21, 3071-3082. ISSN: 0143-1161 

Li, Z., Kaufman, Y.J., Ichoku, C, Fraser, R., Trishchenkp, A., Giglio, L. Jin, J and Yu, X. (2001). 
A review of AVHRR-based active fire detection algorithms: Principles, limitations 
and recommendations in Global and Regional vegetation fire monitoring from 
space: Planning a coordinated international effort, SPB Academic Publishing, The 
Hague, Netherlands, pp. 199-225.  

Liu, J., Drummond, J.R., Jones, D.B.A., Cao, Z., Bremer, H. Kar, J. Zou, J., Nichitiu, F. and 
Gille, J.C. (2006). Large horizontal gradients in atmospheric CO at the synoptic 
scale as seen by spaceborne Measurements of Pollution in the Troposphere. Journal 
of Geophysical Research, 111, D02306, doi:10.1029/2005JD006076. 



 
Earth Observation 

 

202 

Matson, M. and Dozier, J. (1981). Identification of sub-resolution high temperatures sources 
using a thermal IR sensor. Photogrametric Engineering and Remote Sensing, 47(9), 
1311-1318. ISSN: 0099-1112   

Nemani, R.R. and Running, S.W., (1989). Estimation of regional surface resistance to 
evapotranspiration from NDVI and thermal IR AVHRR data. Journal of Applied 
Meteorology, 28 (4): 276-274. ISSN: 0894-8763 

Price, J. C. 1984, Land surface temperature measurements from the split window channels of 
the NOAA 7 AVHRR, Journal of Geophysical Research. D5:7231-7237. ISSN: 0148-0227 

Prins, E.M. and Menzel, W.P. 1994. Trends in South American burning detected with the 
GOES VAS from 1983-1991. Journal of Geophysical Research, 99 (D8), 16719-16735. 
ISSN: 0148-0227 

Prins, E., Govaerts, Y. and Justice, C.O. (2004), Report on the Joint GOFC/GOLD Fire and 
CEOS LPV Working Group Workshop on Global Geostationary Fire Monitoring 
Applications, GOFC/GOLD Report No. 19. 23-25 March 2004. EUMETSAT, 
Darmstadt, Germany. 

Robinson, J.M., (1991). Fire from space: Global fire evaluation using infrared remote sensing. 
International Journal of Remote Sensing, 12: 3-24. ISSN: 0143-1161 

Roldán-Zamarrón, A., S. Merino-de-Miguel, F. González-Alonso, S. García-Gigorro, and J. 
M. Cuevas (2006), Minas de Riotinto (south Spain) forest fire: Burned area 
assessment and fire severity mapping using Landsat 5-TM, Envisat-MERIS, and 
Terra-MODIS postfire images, Journal of Geophysical Research, 111, G04S11, 
doi:10.1029/2005JG000136.  

Seiler, W. and Crutzen, P. J. (1980). Estimates of gross and net fluxes of carbon between the 
biosphere and the atmosphere from biomass burning. Climate Change, 2:207– 247. 
ISSN:0165-0009 

Wooster, M.J., Zhukov, B & Oertel, D. (2003). Fire radiative energy for quantitative study of 
biomass burning: derivation from the BIRD experimental satellite and comparison 
to MODIS fire products. Remote Sensing of Environment, 86, 83-107. ISSN: 0034-4257 

Wooster, M.J., Roberts, G., Perry, G.L.W and Kaufman, Y.J (2005). Retrieval of biomass 
combustion rates and totals from fire radiative power observations: FRP derivation 
and calibration relationships between biomass consumption and fire radiative 
energy release. Journal of Geophysical Research, 110, D24311, doi: 
10.1029/2005JD006318 



 
Earth Observation 

 

202 

Matson, M. and Dozier, J. (1981). Identification of sub-resolution high temperatures sources 
using a thermal IR sensor. Photogrametric Engineering and Remote Sensing, 47(9), 
1311-1318. ISSN: 0099-1112   

Nemani, R.R. and Running, S.W., (1989). Estimation of regional surface resistance to 
evapotranspiration from NDVI and thermal IR AVHRR data. Journal of Applied 
Meteorology, 28 (4): 276-274. ISSN: 0894-8763 

Price, J. C. 1984, Land surface temperature measurements from the split window channels of 
the NOAA 7 AVHRR, Journal of Geophysical Research. D5:7231-7237. ISSN: 0148-0227 

Prins, E.M. and Menzel, W.P. 1994. Trends in South American burning detected with the 
GOES VAS from 1983-1991. Journal of Geophysical Research, 99 (D8), 16719-16735. 
ISSN: 0148-0227 

Prins, E., Govaerts, Y. and Justice, C.O. (2004), Report on the Joint GOFC/GOLD Fire and 
CEOS LPV Working Group Workshop on Global Geostationary Fire Monitoring 
Applications, GOFC/GOLD Report No. 19. 23-25 March 2004. EUMETSAT, 
Darmstadt, Germany. 

Robinson, J.M., (1991). Fire from space: Global fire evaluation using infrared remote sensing. 
International Journal of Remote Sensing, 12: 3-24. ISSN: 0143-1161 

Roldán-Zamarrón, A., S. Merino-de-Miguel, F. González-Alonso, S. García-Gigorro, and J. 
M. Cuevas (2006), Minas de Riotinto (south Spain) forest fire: Burned area 
assessment and fire severity mapping using Landsat 5-TM, Envisat-MERIS, and 
Terra-MODIS postfire images, Journal of Geophysical Research, 111, G04S11, 
doi:10.1029/2005JG000136.  

Seiler, W. and Crutzen, P. J. (1980). Estimates of gross and net fluxes of carbon between the 
biosphere and the atmosphere from biomass burning. Climate Change, 2:207– 247. 
ISSN:0165-0009 

Wooster, M.J., Zhukov, B & Oertel, D. (2003). Fire radiative energy for quantitative study of 
biomass burning: derivation from the BIRD experimental satellite and comparison 
to MODIS fire products. Remote Sensing of Environment, 86, 83-107. ISSN: 0034-4257 

Wooster, M.J., Roberts, G., Perry, G.L.W and Kaufman, Y.J (2005). Retrieval of biomass 
combustion rates and totals from fire radiative power observations: FRP derivation 
and calibration relationships between biomass consumption and fire radiative 
energy release. Journal of Geophysical Research, 110, D24311, doi: 
10.1029/2005JD006318 

9 

Ocean Reference Stations 
Meghan F. Cronin1, Robert A. Weller2, Richard S. Lampitt3 and Uwe Send4 

1NOAA Pacific Marine Environmental Laboratory, Seattle WA 
2Woods Hole Oceanographic Institution, Woods Hole, MA 

3National Oceanography Centre, Southampton 
4Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 

1,2,4USA 
3UK 

1. Introduction 

OceanSITES is an international network of deep ocean observatories that provide reference 
time-series for ocean and climate studies. While moorings form the backbone of the 
network, some stations comprise frequent shipboard observations. With dozens of advanced 
sensors on these platforms, the time-series are high quality, high resolution (hourly or better 
in many cases), and long (decades long in some cases). Most stations are interdisciplinary, 
measuring various aspects of the physical and biogeochemical environment from the sea 
floor to the atmosphere. All data are made publicly available, in a common format, many in 
near-real time. In this chapter we describe the motivation for, and the requirements and 
challenges of this network. Because the network includes more than 105 stations, for 
practical reasons, our overview of individual stations will focus on the subset of stations that 
make data available in near-real time. Our goal here is to provide an introduction to the 
network and provide information and links that will help the reader explore the network further.  

2. Water world 
We live on a water world. Over 70% of the Earth surface is covered by oceans. On the 
remaining 30%, human population is not distributed evenly, but instead is most dense in 
coastal regions. The oceans can affect climate and weather by absorbing, transporting, and 
emitting heat and gases such as carbon dioxide (Figure 1). Without the poleward heat 
transport by the ocean currents, the tropics would tend to steadily warm, while the poles 
would steadily cool. In the high latitudes, heat loss and ice formation generate very dense 
water at the surface that sinks to the interior and bottom of the ocean, driving the global 
thermohaline circulation. The oceans also absorb CO2, thus reducing the effects of 
anthropogenic climate change. 

Because of the high heat content of water, the ocean temperature has much less variability 
than the atmosphere, particularly the atmosphere over land. While at a given location over 
land surface air temperature can have a range of up to 90°C, air temperature at a given 
location over open ocean generally has a range of less than 20°C, and the overall ocean 
temperature range is roughly 30°C (Figure 2). As such, the oceans typically have a  
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Fig. 1. Mean net surface heat flux in units watts per m2 based on ECMWF 40-year reanalyses 
(ERA40) (top) and net surface CO2 flux in units grams of carbon per m2 per year, based on 
the Takahashi et al. (2009) air-sea CO2 flux climatology (bottom). A positive flux indicates a 
flux from the ocean to the atmosphere. Note that the color scale is inverted for the CO2 flux. 
At the equator, heat enters the ocean through the surface and CO2 outgasses. White contours 
indicate mean dynamic sea level height (Rio & Hernandez, 2004). 

moderating effect on weather and climate. Indeed, because 2.5 m of water has the same heat 
capacity per unit area as the whole height of the atmosphere, relatively small changes in the 
sea surface temperature distribution can have a significant influence on the atmosphere above, 
particularly in warm water regions such as the tropics, as shown in Figure 3 and discussed 
below. Approximately 41% of rainfall over land is of maritime origin (Oki & Kanae, 2006). 
Evaporation, which provides this precipitable water, is strongly dependent upon temperature. 
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Significantly more moisture is evaporated where the surface water is warm, fueling deep 
convection and precipitation (Figure 3). Small shifts in the location and temperature of very 
warm water can thus cause shifts in the atmospheric convection and weather patterns, both 
locally and global (Ding et al., 2011; Wallace & Gutzler, 1981). 

 
Fig. 2. Air temperature range based upon daily averaged ERA40 values in units degrees 
Celsius. 

Because of the Earth’s rotation, the direct ocean response to wind forcing is an upper ocean 
transport that is to the right of the wind in the Northern Hemisphere (NH) and to the left of 
the wind in the Southern Hemisphere (SH). The easterly trade wind and westerly jet stream, 
and the placement of the continents, thus tend to cause convergence and divergence 
patterns that result in higher sea level in the subtropics and lower sea level in the subpolar 
regions (Figure 1). To a certain extent, the sea level height anomalies can be considered as 
streamlines of the surface flow. Water, that would tend to flow downhill, is deviated to the 
right in the NH and to the left in the SH, so that the adjusted flow is along the anomalous 
sea level height isobars. Consequently, the trade winds and jet streams result in an 
anticyclonic subtropical gyre in each of the ocean basins. The NH westerly jet stream also 
supports a cyclonic subpolar gyre in the North Pacific and North Atlantic, while in the SH, 
the jet stream drives an eastward flowing Antarctica Circumpolar Current. Directly at the 
equator, the axis of rotation is perpendicular to the vertical axis (gravity), making vertical 
motion near the equator much more dynamic both in the atmosphere and ocean. This, 
together with the effects of the warm water on precipitable water, causes the ocean and 
atmosphere to be much more coupled in the tropics than elsewhere. Changes in the ocean 
surface temperature can result in changes in the atmospheric deep convection and winds, 
which can in turn affect the ocean temperature structure.  

While the ocean drift in most parts of these gyres is slow (~25 cm/s), in some parts, such as 
the western boundary currents and the circumpolar current, speeds can be up to 2 m/s near 
the surface and 25 cm/s at depth, corresponding to a transport of order 100 x 106 m3/s. 
While the analogy has its limits, these ocean currents can be considered as a conveyor belt, 
carrying heat, salt, and marine ecosystems. Warm currents carry heat poleward, and return 
currents and the deep thermohaline circulation carry cool water equatorward, resulting in a 
large-scale meridional overturning circulation. 
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Fig. 3. Mean surface temperature from ERA40 in units °C (only values greater than 0 are 
shown), and precipitation from the Global Precipitation Climatology Project in units mm per 
day (contoured).  

Marine life, which lives within this dynamic environment, can be quite sensitive to the 
ocean temperature. Many animals reproduce, feed, or migrate only within a limited 
temperature range. Temperature also affects the buoyancy of the water, which can trap 
nutrients and dissolved inorganic carbon within the euphotic zone where photosynthesis 
and primary production occur. During blooms, CO2 is used in the production of both 
organic and inorganic biogenic particles, a portion of which sink into the deeper ocean and 
are regenerated into CO2 through respiration and dissolution. This export of CO2 is referred 
to as the “biological pump” of the carbon cycle. During respiration, oxygen is depleted. 
Anoxic water, devoid of dissolved O2, is generally barren of macroscopic life. Temperature 
also affects the solubility of dissolved gasses and thus the concentrations of dissolved O2 
and CO2: As the surface water cools, it can hold and absorb more CO2. Thus as the surface 
water cools and sinks, atmospheric CO2 is absorbed into the water and exported into the 
deep ocean, a process referred to as the “solubility pump” of the carbon cycle.  

The distribution of CO2 within the ocean is also critical to the pH of the water and the 
concentration of carbonate ions, which is a basic building block of skeletons and shells for a 
many marine organisms, including corals, shellfish, and marine plankton (Feely et al., 2004). 
As the ocean absorbs more anthropogenic CO2, the CO2 reacts with the seawater to form 
carbonic acid (H2CO3). This then dissociates to form a bicarbonate ion (HCO₃⁻) and a 
hydrogen ion (H⁺), which can react with carbonate ions (CO₃²⁻) to form bicarbonate 
(HCO₃⁻). The net effect of the increased CO2 is thus a decrease in pH and a decrease in the 
carbonate ion concentration, a process referred to as ocean acidification (Feely et al., 2010). 
The reduction in carbonate ion affects the saturation state of calcium carbonate (CaCO3) and 
is critically important as it directly affects the ability of some CaCO3 secreting organisms to 
produce their shells or skeletons. When pteropods were exposed to undersaturated water, 
their CaCO3 shells showed notable dissolution (Orr et al., 2005).  
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Like global weather maps of wind, barometric pressure, and atmospheric humidity and 
temperature properties, global maps of the ocean circulation, sea level, and temperature and 
salinity properties are needed to visualize, quantify, and understand the ocean physical 
variability (Cazenave et al., 2010; Schmitt et al., 2010; Talley et al., 2010; Wijffels et al., 2010). 
For understanding and quantifying the ocean and atmosphere interactions, maps of the air-
sea fluxes of heat, moisture, momentum, and gasses are needed (Fairall et al., 2010; Gulev et 
al., 2010). Likewise, for understanding and quantifying changes to the carbon cycle, maps of 
the atmospheric and seawater pCO2, dissolved O2 concentration, pH, and nutrients are 
needed (Gruber et al., 2010). Monitoring and predicting O2 concentration levels is critical for 
assessing the effects of the biological pump both on the carbon cycle and the ecosystem. 
Monitoring and mapping changes in the ocean acidification is likewise critical for 
understanding the biological impacts of increased of anthropogenic CO2 (Feely et al., 2010).  

To make these maps, satellites, ships, floats, drifters, and moored buoys gather data that are 
routinely ingested into numerical models (Eyre et al., 2010). However, across the broad 
ocean, as compared to the land, observations are sparse. To validate and assess these modeled 
fields, as well as to assess satellite remotely sensed fields, in situ observations are needed as 
reference data (Send et al., 2010). Reference data are also needed for evaluating the processes and 
mechanisms that affect the ocean environment and ecosystems, and for developing 
parameterizations of processes that cannot be fully resolved within the numerical models 
(Lampitt et al., 2010a). 

3. Reference ocean data 
3.1 Requirements 

Reference data, by definition, must be high quality, with quantified uncertainty that is small 
relative to the signal that is being measured. Uncertainties are determined by the 
measurement resolution, by investigation of sensor performance in the field, and through 
calibrations that are traceable to a standard at national metrology institutes such as the U.S. 
National Institute of Standards and Technology. Measurement resolution is determined by 
the sensor’s precision and sampling frequency. If the sampling frequency is lower than the 
Nyquist frequency of the signal, errors can arise due to aliasing. In particular, biases can 
result if the sample frequency is identical to the signal frequency. For example, in regions 
such as the tropics where the diurnal cycle is large, surface temperature measurements will be 
biased high if the samples are only during the daytime. Likewise, in regions where the annual 
cycle is large, measurements may be biased high if they are only sampled during the summer. 

Figure 4 shows the spectral bandwidth of various oceanographic signals that have 
periodicities that range from order of seconds (surface waves), to minutes (internal waves in 
very high stratification), hours (diurnal cycle, tides, inertial oscillations, internal waves), 
days (storm forced variability, hydrodynamic instabilities, mesoscale eddies), months 
(planetary waves, seasonal cycle), years (El Niño, gyre-scale variability), decades (gyre-scale, 
meridional overturning), and longer (anthropogenic forcing). For some processes that 
depend upon variables in a nonlinear way, variability in these parameters at one scale may 
affect variability in the process at another scale. Turbulence generally causes a cascade of 
energy from low to high frequency. However, high-frequency variability can also, in some 
cases, rectify into the longer scales. For example, since the efficiency of surface forcing 
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depends upon the stratification, large diurnal co-variations in the forcing and stratification in 
the tropics can rectify and impact intraseasonal and longer timescales, thus affecting the 
coupled ocean-atmosphere interactions (Bernie et al., 2007; Guemas et al., 2011; Shinoda, 2005). 

 
Fig. 4. Time and space scales of ocean variability (courtesy D. Chelton, Oregon State 
University, after Dickey (2001)). 

3.2 A network of open ocean reference stations 

For resolving high-frequency variability, moorings are the ideal platform, as the resolution 
of the moored sensors is generally limited only by constraints on the battery life and 
duration objectives. With the mooring refreshed at regular intervals (generally 6–12 
months), these stations can provide long-term, high-resolution, accurate time-series. 
Moorings thus form the backbone of the global network of OceanSITES reference stations 
(Lampitt et al., 2010a; Send et al., 2010). The OceanSITES network, shown in Figure 5, is an 
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element of the Global Ocean Observing System, which is a system within the Global Earth 
Observing Systems of Systems (GEOSS). 

 
Fig. 5. OceanSITES network of reference stations, as of 2010 (figure courtesy 
http://www.oceansites.org/network/). Stations with near-real-time data are shown as 
green circles. Observatories without data telemetry are shown as blue squares. Transport 
stations are shown as small green squares and regular transport transects are shown as 
green lines. Planned stations are shown as orange diamonds; discontinued stations and 
transects are indicated in red. 

At present, the OceanSITES network is a collection of stations operated by scientists 
throughout the world, supported through their national agencies, who agree to the basic 
requirements of data quality and open data with common formats. The vision is that the 
OceanSITES network would be interdisciplinary: “a worldwide system of deepwater 
reference stations: providing high resolution measurements, the full depth of the ocean, 
multi-year time scales, dozens of variables, real-time access.” Indeed the OceanSITES 
acronym stands for OCEAN Sustained Interdisciplinary Timeseries Environment 
observation System. In practice, however, not every station monitors the full suite of 
physical and biogeochemical variables that characterize the local ocean environment. Within 
the array, moored buoys that carry meteorological sensors to characterize the exchanges or 
fluxes of heat, momentum, freshwater, and gases (e.g., carbon dioxide) across the air-sea 
interface are referred to as air-sea “flux” stations. These moorings also generally carry 
sensors on their anchor line to monitor the physical and sometimes biogeochemical 
environment in the upper ocean. Other moorings and frequently visited stations, referred to 
as “observatories,” have as their primary objective monitoring the biogeochemical 
properties within much of the water column. Finally, the purpose of the “transport” stations 
is to monitor the ocean currents and transport.  
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3.3 Data latency 

While some of the mooring stations have surface buoys that allow telemetry of near-real-
time data; other mooring stations are entirely subsurface, and must be recovered to obtain 
the data. This can introduce a delay in the data availability of more than a year. With 
telemetered data, analyses can begin almost immediately, thus accelerating the research. 
Telemetry also acts as important insurance on the data. If the mooring is lost, the 
telemetered data may be the only source of the data. Having telemetry also allows the 
operators to identify and address problems in current and future deployments, thus 
minimizing data gaps. Finally, in some cases, the telemetered near-real-time data are used to 
assimilate into a short-term weather forecast, for which every hour of latency implies an 
hour of forecast. 

Due to the sparse nature of oceanographic data, there is often a desire to assimilate all data 
possible, including reference data. Model operators often argue that an individual 
measurement is weighted in a way that it will not introduce a bullseye pattern in the fields 
and make the product appear falsely accurate when compared with the reference time-
series. Reference data are, by definition, supposed to be independent of the products for 
which they are used to assess. A World Meteorological Organization (WMO) data 
identification number containing the digits “84” indicate that they are reference data. 
Protocols are being developed to identify when reference data are being assimilated. 

The delayed mode data, available after internally recording instruments are recovered and 
processed, also have unique value. Because of limited bandwidth and technical challenges 
for telemetry of ocean data, the real-time data are only a subset of the data available on the 
moorings. Internally recorded data may have sampling rates of every 1 minute and faster, 
whereas hourly data may be what was telemetered. Further, the recovered instruments are 
post-calibrated; thus, the delayed mode data have less uncertainty associated with their 
accuracy. In general, the delayed mode data are the highest quality data at a reference stations. 

4. The OceanSITES network of reference moorings 
In the following section we provide an overview of individual stations within the 
OceanSITES network, focusing on stations that telemeter data to shore. These include all of 
the air-sea flux stations, many of which also serve as biogeochemical observatories or are 
coordinated with nearby observatory and transport stations. A few subsurface observatories 
also have a small surface buoy used exclusively for telemetry. Because of the complexity of 
the network it is not possible to describe the network in its entirety. Our purpose here is to 
provide an introduction and information for further exploration of the network. As a start, 
the reader is directed to the OceanSITES network website: http://www.oceansites.org. 

At roughly $30,000-50,000 per day, shiptime is a significant component of the overall cost of 
the deep ocean mooring array. These costs and the limited number of global-class research 
vessels have necessitated efficient use of the fleet. For example, mooring maintenance 
cruises are often used for long-term coordinated observations. Likewise, while the stations 
themselves carry a suite of sensors for monitoring multiple variables, the stations also offer 
opportunities for other coordinated observations. Nearly all stations have been sites of process 
studies, involving multiple platforms (ships, extra moorings, drifters, floats, aircraft, etc.). In the 
following overview, we describe some of these activities, although a full list is not feasible. 
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4.1 Tropics 

4.1.1 The Global Tropical Moored Buoy Array (GTMBA) 

The network has its densest coverage in the tropics (Figure 6). The tropical moored buoy 
array began in the eastern equatorial Pacific in the early 1980s and expanded to cover 8°S–
8°N across the Pacific with moorings and shiptime at present provided by the US National 
Oceanic Atmospheric Administration (NOAA) and the Japan Agency for Marine-Earth 
Science and Technology (JAMSTEC). The NOAA portion of the Pacific array is referred to as 
the Tropical Atmosphere and Ocean (TAO) array and the JAMSTEC portion is referred to as 
the Triangle Trans-Ocean Buoy Network (TRITON) array. As discussed below, the primary 
purpose of the TAO/TRITON array is to observe, better understand, and predict the El 
Niño-Southern Oscillation (ENSO). In 1997, the array expanded into the Atlantic with 
moorings from NOAA and shiptime provided by Brazil, France, and the US. The primary 
purpose of the Atlantic array, referred to as the Prediction and Research Moored Array in 
the Atlantic (PIRATA), is to observe, better understand, and predict seasonal, interannual, 
and longer variability, including both ENSO-like and meridional modes of variability. In 
2000, the array expanded into the Indian Ocean, with moorings provided by the US, Japan, 
India, and China, and shiptime provided by India, Indonesia, France, Japan, and the 
Agulhas Somali Current Large Marine Ecosystems project. The primary purpose of the 
Research Moored Array for African-Australian Monsoon Analysis and Prediction (RAMA) 
is to advance monsoon research and forecasting.  

 
Fig. 6. Global Tropical Moored Buoy Array, as of July 2011. Flux reference stations are 
indicated by a blue square. Courtesy M. McPhaden, NOAA Pacific Marine Environmental 
Laboratory (PMEL). 

Within the tropical Pacific, surface trade winds tend to blow from the cool waters off of 
South America to the warm waters off of Indonesia, where the wind converges and rises in 
deep convective clouds. As can be seen in Figure 7, as the warm water shifts eastward, the 
region of wind convergence and deep convection shifts eastward, resulting in the ENSO 
cycle, with teleconnections to global weather and climate patterns (Bouma et al., 1997; Diaz 
& Markgraf, 2000).  

The standard suite of sensors on the tropical buoys includes wind speed and direction, air 
temperature and humidity, surface salinity, and surface and subsurface temperature. A 
number of the moorings, however, are enhanced with additional sensors to monitor the air- 
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Fig. 7. Zonal wind (left) and upper 300 m heat content (right) time-series along the 
equatorial Pacific, as measured by the Pacific Tropical Atmosphere Ocean (TAO) /Triangle 
Trans-Ocean Buoy Network (TRITON) array. This figure was generated using the data 
display webpage, courtesy of the TAO project office of NOAA PMEL: 
http://www.pmel.noaa.gov/tao/jsdisplay/. 

sea heat, moisture, and carbon dioxide fluxes; upper ocean salinity; and currents. The most 
heavily instrumented of these sites are designated as flux stations. The entire GTMBA, 
together with these specialized flux stations, contribute to the OceanSITES network of deep 
ocean reference stations (Figure 5).  

Through the decades there have been several large international process studies built around 
the array, including the Coupled Ocean Atmosphere Response Experiment in the western 
tropical Pacific in 1992–1993 (Webster & Lukas, 1992), the Eastern Pacific Investigation of 
Climate in 2001 (Cronin et al., 2002; Raymond et al., 2004), and the GasEx 2001 study of 
physical, chemical, and biological factors controlling pCO2 fluxes in the eastern equatorial 
Pacific (Sabine et al., 2004). In the Atlantic, African Monsoon Multidisciplinary Analyses 
(AMMA) occurred 2005–2007 (Lebel et al., 2011). The Cooperative INDian Ocean experiment 
on intraseasonal variability in the Year 2011 / Dynamics of the Madden-Julian Oscillation 
(CINDY/DYNAMO) experiment in the Indian Ocean is planned for 2011. Maintenance cruises 
for the array have also been opportunities for ship-based ancillary projects, including regular 
hydrographic and Acoustic Doppler Current Profiler (ADCP) sections (Johnson et al., 2002); 
water sample (Behrenfeld et al., 2006) and atmospheric boundary layer measurements (Fairall  
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et al., 2008); underway surface pCO2 (Feely et al., 2006) and chlorophyll fluorescence 
(Behrenfeld et al., 2006); and regular deployments of ARGO floats (Roemmich et al., 2009) 
and surface drifters (Lumpkin & Pazos, 2007), among other activities. For more information 
on the Pacific TAO/TRITON array, see McPhaden et al. (1998); for the Atlantic PIRATA 
array, see Bourlès et al. (2008); and for the Indian Ocean RAMA array, see McPhaden et al. 
(2009). Data and information can be accessed through the GTMBA project website: 
http://www.pmel.noaa.gov/tao/global/global.html. 

4.1.2 Stratus reference station mooring west of Chile 

The Stratus reference station mooring, located west of Chile at 20°S, 85°W in 4450 m depth 
water, was initiated in 2000. During the 1990s it became clear that nearly all coupled general 
circulation models had significant biases in the tropical Pacific that impeded their ability to 
properly reproduce the ENSO variability (Mechoso et al., 1995). In particular, nearly all 
models had too warm SST and too little stratus cloud in the eastern boundary region just 
west of Chile. As a result, these models tended to produce convective rainfall north and 
south of the equator, rather than just north of the equator as shown in Figure 3. The air-sea 
fluxes as well as the dynamics of the ocean and atmosphere in this data sparse region were 
poorly known, and any further progress required new data from the region. Thus, in 2000, 
with support from NOAA, a reference surface mooring, referred to as the “Stratus” 
mooring, was deployed at 20°S, 85°W. The mooring provides quality surface meteorology 
and air-sea fluxes of heat, freshwater and momentum, and CO2. Annual cruises to maintain 
the buoy have provided opportunities for intensive ship-based measurements, particularly 
of the atmospheric boundary layer (Bretherton et al., 2004). In 2008, the international process 
study VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) 
(Wood et al., 2011) was anchored by the Stratus mooring. For more information on the 
Stratus reference mooring see Colbo & Weller (2007). The project website can be found at: 
http://uop.whoi.edu/projects/Stratus/stratus.html. 

4.1.3 Northwest Tropical Atlantic Station (NTAS) 

The NTAS surface mooring was established in 4700 m depth water near 15°N, 51°W to 
investigate surface forcing and oceanographic response in a region of the tropical Atlantic 
with strong sea surface temperature (SST) anomalies and the likelihood of energetic local 
air–sea interaction on interannual to decadal timescales. Two modes of coupled air-sea 
variability are found in the tropical Atlantic, a dynamic mode similar to the Pacific ENSO 
and a thermodynamic mode characterized by changes in the cross-equatorial SST gradient. 
Forcing for these modes may be by synoptic atmospheric variability, remote forcing from 
ENSO, and extratropical forcing from the North Atlantic Oscillation (NAO). Relationships 
between tropical SST variability, the NAO, and the meridional overturning circulation, as 
well as between the two tropical modes, are poorly understood. 

The NTAS site is co-located with the easternmost subsurface mooring of the Meridional 
Overturning Variability Experiment (MOVE) “transport” array, which monitors the deep 
southward branch of the North Atlantic meridional overturning circulation west of the Mid-
Atlantic Ridge. Annual cruises to NTAS are shared with MOVE. Funding for NTAS and 
MOVE is primarily from NOAA. For more information see Kanzow et al. (2008). The NTAS 
and MOVE project websites can be found at: http://uop.whoi.edu/projects/NTAS/ 
ntas.html, and http://mooring.ucsd.edu/index.html?/projects/move/move_results.html. 
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4.1.4 Tropical Eastern North Atlantic Time-Series Observatory (TENATSO) and Cape 
Verde Atmospheric Observatory (CVAO) 

CVAO meteorological and atmospheric chemistry measurements and TENATSO-moored 
physical and biogeochemical measurements in the tropical eastern North Atlantic were 
initiated in 2006. In 2008, routine ship visits to TENATSO were initiated to collect physical 
and biogeochemical measurements at TENATSO. CVAO is located on a small Cape Verde 
island (Sao Vicente) at 16.8°N, 24.9°W, while the TENATSO ocean station is located in 3600 
m depth water ~93 km north of the island at 17.6°N, 24.2°W. Like other tropical stations, this 
is a region of intense air-sea interaction. Being downwind of the Mauritanian upwelling, the 
ocean and atmospheric data can be used to link biological productivity and atmospheric 
composition. The location is critical for climate and greenhouse gas studies and for 
investigating dust impacts on marine ecosystems. CVAO atmospheric reference data 
contribute to the Global Atmospheric Watch (GAW) program of the WMO, and TENATSO 
is part of the EuroSITES network (http://www.eurosites.info/), which contributes to the 
global OceanSITES network. CVAO and TENATSO are funded by Germany, UK, and the 
EU. For more information, see: Read et al. (2008). CVAO and TENATSO websites can be 
found at: http://ncasweb.leeds.ac.uk/capeverde/, http://tenatso.ifm-geomar.de/, and 
http://www.eurosites.info/tenatso.php.  

4.2 North Pacific  

4.2.1 Kuroshio Extension observatories and JAMSTEC biogeochemical observatories 
K2 and S1 

The NOAA Kuroshio Extension Observatory (KEO) surface mooring is located south of the 
Kuroshio Extension jet at 32.3°N, 144.5°E in 5700 m depth water, and the JAMSTEC KEO 
(JKEO) surface mooring is located north of the jet at 38°N, 146.5°E in 5400 m depth water. 
KEO was initiated in 2004 during the Kuroshio Extension System Study (KESS) (Donohue et 
al., 2008) and JKEO was initiated in 2007. Both KEO and JKEO monitor the air-sea fluxes of 
heat, moisture, momentum, and carbon dioxide, as well as the upper ocean temperature, 
salinity, and near-surface currents in the region of very large ocean heat loss in the western 
North Pacific (Figure 1). The large heat fluxes occur during winter, when cold, dry 
continental air blows over the warm ocean current. As can be seen in Figure 1, similar 
regions of high ocean surface heat loss are seen in all basins (Cronin et al., 2010). This strong 
oceanic warming of the atmosphere can affect the surface winds, clouds, storm 
development, and, potentially, the storm track. The large air-sea heat fluxes also can affect 
the formation of water masses, or mode water. The KEO site is located in the subtropical 
mode water formation region and the JKEO site is located in the central mode water 
formation region (Oka et al., 2011a, 2011b). Mode waters are formed and modified at the 
surface, and, after they subduct beneath the surface layer, they generally preserve these 
characteristics as they circulate through the ocean (Hanawa & Talley, 2001; Oka & Qiu, 
2011).  

Beginning in 2011, KEO will be enhanced with additional sensors to monitor ocean 
acidification and the net biological production of oxygen in the surface waters. The carbon 
cycle and its biological pump are also being monitored at the JAMSTEC biogeochemical 
observatories, which include K2 in the western subarctic Pacific at 47°N, 160°E in 5200 m 
depth water and S1 in the western subtropical gyre at 30°N, 145°E in 5900 m water depth. 
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K2 was initiated in 2001 and S1 was initiated in 2010. Both the western and eastern regions 
of the subarctic Pacific are expected to experience significant effects of ocean acidification 
during the next century from the absorption of anthropogenic CO2 (Orr et al., 2005). 

Routine measurements from the JAMSTEC mooring maintenance cruises have included 
hydrographic, atmospheric profile sounding sections, and underway meteorological and 
oceanographic measurements, among other activities (Tokinaga et al., 2009). All four 
stations are visited regularly during JAMSTEC biogeochemical cruises. For more 
information on the KEO array, see Cronin et al. (2008) and Konda et al. (2010). For Station 
K2, see Kawakami et al. (2007). Project websites can be found at: 
http://www.pmel.noaa.gov/keo/, http://www.jamstec.go.jp/iorgc/ocorp/ktsfg/data/jkeo/ 
and http://www.jamstec.go.jp/res/ress/hondam/index_e.html. 

4.2.2 Hawaii Ocean Time-series (HOT) 

One of the most iconic long time-series is the famous “Keeling” curve showing the increase 
in atmospheric CO2 observed at Mauna Loa since 1958 (Figure 8). While the atmospheric 
CO2 has seasonal peak-to-peak variations of ~7 parts per million (ppm), over the past five 
decades, the CO2 concentration has steadily increased by more than 10 times that amount 
due to anthropogenic sources.  

 
Fig. 8. Time-series of atmospheric CO2 at Mauna Loa, in parts per million volume (ppmv; 
red), surface ocean pCO2 (atm; blue) and surface ocean pH (green) from the Hawaii Ocean 
Time-series Station ALOHA. Note that the increase in oceanic CO2 over the past 17 years is 
consistent with the atmospheric increase within the statistical limits of the measurements. 
From Doney et al. (2009), after Feely et al. (2008).  
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A corresponding oceanic time-series at an observatory station in 4780 m depth water, 100 
km north of the island of Oahu, was initiated in 1988 through the Hawaii Ocean Time-series 
(HOT) program, funded primarily by the US National Science Foundation (NSF). As shown 
in Figure 8 (Doney et al., 2009; Feely et al., 2008) the rise in pCO2 is observed in the surface 
waters, and because it interacts with seawater to form carbonic acid as discussed in Section 
2, this rise is also associated with a decrease in the water’s pH. Essentially, the absorption of 
anthropogenic CO2 is causing the waters to become more corrosive.  

As shown in Figure 8, the sea surface CO2 has rapid natural variability due to variations in the 
ocean temperature, mixing, upwelling, and biological processes. While much of this variability 
is captured in the monthly cruises to the HOT ALOHA (A Longterm Oligotrophic Habitat 
Assessment) observatory, there is significant variability at higher frequencies. Thus, with 
funding from NOAA and additional funding from NSF, in 2004, a surface reference station 
flux mooring was deployed at the observatory site. The mooring measures surface oceanic and 
atmospheric pCO2 at three hourly intervals, and meteorological and other physical 
measurements even more frequently. For more information on the HOT program, see Karl et 
al. (2003). The project websites can be found at: http://hahana.soest.hawaii.edu/ 
hot/hot_jgofs.html and http://uop.whoi.edu/projects/WHOTS/whots.html. 

4.2.3 Station Papa in the eastern subarctic Pacific 

One of the oldest ocean time-series is Ocean Station Papa, which began in December 1949 as 
part of the ocean weathership program. Station Papa is located at 50°N, 145°W in the eastern 
subarctic Pacific in 4260 m depth water. During its first year the site was occupied by a US 
Coast Guard ship. For the next three decades it was occupied continuously by Canadian 
ships on 6-week rotations. Taking meteorological and oceanic measurements, information 
was radioed to shore and contributed to the weather forecasts during this period. With the 
advent of the satellite era in the early 1980s, the Canadian Weathership Program was 
terminated. The Line-P program funded by Canadian Fisheries and Oceans, however, 
continued to make shipboard measurements on transects from Victoria, Canada, to Station 
Papa 3–6 times per year. Standard Line-P measurements include hydrography (Crawford et 
al., 2007), O2 (Whitney et al., 2007), phytoplankton biomass and nutrient samples (Peña & 
Varela, 2007), zooplankton net tows (Mackas et al., 2007), chlorophyll, transmissivity, as well 
as dissolved inorganic carbon and total alkalinity (Wong et al., 2002), among other 
measurements. The present program samples three times per year, in February, May-June, 
and August-September. 

Through the decades, Station Papa has been the location of numerous process studies, 
including, among others: the Mixed Layer Experiment in 1977 (Davis et al., 1981), Subarctic 
Pacific Ecosystem Research in 1984 (Miller, 1993), Storm Transfer and Response Experiment in 
1980 and 1981 (Large et al., 1986), Ocean Storms in 1987 (Paduan & Niiler, 1993), and the 
SOLAS/SERIES iron enrichment experiment in 2003 (Boyd et al., 2004; de Baar et al., 2005). 
From 2007 to 2009, an NSF funded Carbon Cycle process study included support for a flux 
reference station mooring at Station Papa to monitor the carbon cycle and ocean acidification, 
in addition to the physical and meteorological environment (Emerson et al., 2011). In order to 
continue the mooring station on an ongoing basis, in 2009, support for the reference station 
mooring was transferred to NOAA. Shiptime for annual mooring maintenance has been 
provided by the Canadian Line-P program. The US NSF Ocean Observatory Initiative (OOI)  
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plans to enhance this station in the coming years with additional moorings and sensors to 
make station Papa one of its four global nodes. For more information on Station Papa and 
Line-P, see Freeland (2007) and Peña & Bograd (2007). The project websites can be found at: 
http://www.pmel.noaa.gov/stnP/ and http://www.pac.dfo-mpo.gc.ca/science/oceans-
eng.htm. 

4.2.4 Monterey Bay Aquarium Research Institute (MBARI) moorings, California 
Current Ecosystem (CCE) moorings, and the California Oceanic Cooperative 
Fisheries Investigation (CalCOFI) 

The MBARI moorings were in the California Current system at 36.7°N, 122°W in 1600 m and 
36.7°N, 122.4°W in 1800 m water depth were first deployed in 1989. The moorings carry 
physical, meteorological (air-sea flux), and biogeochemical sensors. Ecosystem productivity 
and the biogeochemical cycling of elements in the California upwelling regions is regulated 
by physical processes that vary on daily to multidecadal time scales. As with other 
observatories described here, through these concurrent measurements of physics, chemistry, 
and biology, changes in biological and chemical fluxes associated with the physical 
variability can be estimated and used to develop predictive models. These moorings are 
funded primarily through support from the David and Lucile Packard Foundation, with 
support for bio-optical measurements from NASA. For more information, see Chavez et al. 
(1997). The project website can be found at: http://www.mbari.org/oasis/. 

With funding from NOAA, two multi-disciplinary moorings, CCE1 and CCE2, are being 
sustained off Point Conception at 33.5°N, 122.5°W and 34.3°N, 120.8°W in 4000 m and 800 m 
of water, respectively. CCE1 was initiated in 2008 and CCE2 was initiated in 2010 and carry 
physical, meteorological, biogeochemical, and ecosystem sensors. The moorings contrast the 
productive upwelling regime near the coast and the open-ocean regime in the center of the 
southward flowing low-salinity Californian Current, and are co-located with repeat stations 
of the CalCOFI shipboard sampling grid, and a glider repeat transect. CCE1 and CCE2 
provide real-time data and connectivity to sensors along the mooring wire down to several 
hundred meters depth, and have spare capacity for adding and telemetering additional 
community-provided sensors. Ground-truthing for chemical and optical/acoustic ecosystem 
observations is provided by CalCOFI cruises.  The CalCOFI program began in 1949 for the 
purpose of studying the ecological aspects of the sardine population collapse off California. 
Initially monthly cruises, the present sampling is quarterly cruises to 75 stations in a 1.9 x 
105 km2 grid located off the coast of Southern California and provides unique long-term 
time-series at select locations in the southern California Current. For more information on 
CalCOFI, see: Ohman and Venrick (2003). The CCE and CalCOFI project websites can be 
found at http://mooring.ucsd.edu/cce/. 

4.3 North Atlantic  

4.3.1 Bermuda Atlantic Time-series Study (BATS)  

Biweekly ship-based observations at “Hydrostation S”, in 3300 m depth water 25 km SE of 
Bermuda, began in 1954, making this one of the few ocean time-series that exceeds 50 years. 
In October 1988, monthly cruises were extended to the BATS station located in 4500 m depth 
water approximately 80 km SE of Bermuda. These monthly (and biweekly during spring  
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bloom periods) BATS cruises had a broader focus on the biogeochemistry and hydrography 
of the Sargasso Sea ecosystem. The site is located within the North Atlantic subtropical gyre, 
similar to the HOT location in the center of the North Pacific subtropical gyre. From 1994 
through 2007, a surface mooring at this site, referred to as the “Bermuda Testbed Mooring” 
(BTM), carried a suite of meteorological, physical, and biogeochemical sensors. At present 
the BATS observations are supported primarily through NSF research grants. Funding cuts 
to the BTM, however, caused this long, high-resolution time-series to be discontinued in 
2007. As discussed later, one of the main challenges of the reference station network is 
securing sustained funding. For more information on hydrostation S, see Phillips & Joyce 
(2007); for BTM and BATS, see Dickey et al. (2001). Project websites can be found at: 
http://www.bios.edu/research/bats.html and http://www.opl.ucsb.edu/btm.html. 

4.3.2 Central Irmingir Sea (CIS)  

The CIS observatory, established in 2002, is located about 200 km east of the southern tip of 
Greenland, at 59.4 ºN, 39.4 ºW in a water depth of 2800 m. The instrumentation is optimized 
for resolving physical and biogeochemical processes in the mixed layer, with sensors that 
monitor temperature, salinity, currents, nitrate, pCO2, O2, and fluorescence, among other 
variables. Wintertime surface cooling can be intense and very deep mixed layer depths have 
been observed, indicating deep water formation. Because weather conditions have been a 
perpetual challenge, the mooring has a small surface element for real time data 
transmission, but does not carry meteorological sensors.  

The NSF OOI plans to enhance this station in the coming years with additional moorings 
and sensors to make the CIS station one of its four global nodes. Currently, CIS is funded by 
Germany and the EU. For more information, see: http://www.eurosites.info/cis.php. 

4.3.3 Porcupine Abyssal Plain (PAP)  

The PAP observatory is located in 4850 m depth water south of the North Atlantic Current, 
at 49°N, 16.5°W, in a region with a relatively flat seafloor. The mooring, equipped with 
sediment traps at three depths, was first deployed in 1989 to study and monitor the open 
ocean water column biogeochemistry, physics, and benthic biology. Capability has steadily 
increased to include upper ocean biogeochemical variables such as CO2, chlorophyll and 
nutrients in 2002. In 2009, the station was enhanced to monitor surface meteorology and 
thus the observatory became an air-sea flux station as well. PAP is located in a region with 
large ocean absorption of atmospheric CO2. Surface mixed layers are deep during winter, 
and during springtime the mixed layer becomes shallow, supporting a widespread 
phytoplankton bloom. PAP observations thus allow monitoring of the carbon cycle from the 
atmosphere to the abyss and its physical and biological pumps. 

PAP is funded primarily by the UK Natural Environment Research Council (NERC) and the 
EU, and is part of the EuroSITES network. For more information on PAP see Lampitt et al. 
(2010b). The project webpage can be found at: http://www.noc.soton.ac.uk/pap. 

4.3.4 European Station for Time-series in the Ocean Canary Islands (ESTOC) 

The ESTOC observatory, located about 100 km north of the Canary Islands at 29.2ºN, 15.5ºW 
in 3610 m depth water, was initiated in 1994 with monthly ship visits to the station that 
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included a sediment trap mooring and nearby subsurface current meter mooring. Since 
2002, the station has been occupied by a surface mooring that measures upper-ocean 
physical and biogeochemical variables and surface meteorology. In 2007, the sediment trap 
mooring was terminated and in 2008, the surface mooring was upgraded to monitor air-sea 
fluxes. As it is windward of the Canary Islands, the station avoids wake effects of the 
Canary Current and northeast trade winds. It is also far enough from coasts and islands to 
serve as a reference for satellite images and altimetry. 

Funding for ESTOC has come from the EU, the German Research Foundation (DFG), and 
national and regional projects from Spain and the Canary Islands. At present, funding from 
the governments of Spain and the Canary Islands comes primarily through the Canary 
Oceanic Platform (PLOCAN; http://plocan.eu). For more information on ESTOC, see Neuer et 
al. (2007) and González-Dávila et al. (2010). ESTOCS is part of the EuroSITES network and its 
websites can be found at: http://www.eurosites.info/estoc.php and http://www.estoc.es/. 

4.4 Mediterranean Sea 

4.4.1 Mediterranean Moored Multi-sensor Array (M3A) network 

The M3A network includes three reference stations which contribute to the EuroSITES 
and OceanSITES networks: POSEIDON/E1-M3A in the south Aegean Sea at 35.8ºN, 
24.93ºE (initiated in 2000), E2-M3A in the Adriatic Sea at 41.84ºN, 17.76ºE (initiated in 
2004), and the W1-M3A in the Ligurian Sea at 43.81ºN, 9.12ºE (also initiated in 2004). All 
three moorings carry suites of sensors to monitor the surface meteorology and air-sea 
fluxes, directional wave parameters, upper ocean temperature, salinity, currents, and 
biochemical parameters in the euphotic zone. Biogeochemistry within the Ligurian Sea is 
also monitored by the DYFAMED station described below. All three M3A stations are in 
water depth greater than 1200 m. The M3A network is funded by Italy, Greece, and the 
EU. For more information, see: http://www.eurosites.info/. 

4.4.2 Dynamics of the Atmospheric Fluxes in the MEDiterranean (DYFAMED) station 
in the Ligurian Sea 

The DYFAMED station in the Ligurian Sea at 43.42ºN, 7.87ºE was initiated in 1988 with the 
deployment of a mooring with sediment traps at 200 m and 1000 m, in water depth of 2350 
m. Since 1991, monthly cruises have been performed as well to observe the physical and 
biogeochemical variability throughout the water column. In 1999, a nearby surface mooring 
was deployed by Météo-France to monitor the surface meteorology and wave parameters. 
Ocean physical parameters are also measured at present by sensors mounted on the 
sediment trap mooring. DYFAMED is currently funded by France and the EU. For more 
information, see Marty (2002) and the project websites: http://www.obs-vlfr.fr/dyfBase, 
and http://www.eurosites.info/dyfamed.php. 

4.5 Southern Ocean 

4.5.1 Southern Ocean Time-Series (SOTS) 

SOTS (Trull et al., 2010) commenced in 1998 with a sediment trap mooring program (SAZ; 
Trull et al., 2001) located in the Sub-Antarctic Zone 650 km south of Tasmania at 46.75°S, 
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142°E, in 4600 m of water. The site was expanded in 2003 with the addition of the Pulse 
mooring, to understand biogeochemical processes in the surface ocean, and again in 2010 
with the addition of the Southern Ocean Flux Station (SOFS; Schulz et al., 2011) climate 
mooring, autonomous drifting profilers, and gliders. The Southern Ocean “Roaring Forties” 
is notorious for its storms, waves, and strong currents. Its Circumpolar Current is a route by 
which water can be carried from the South Atlantic Ocean to the South Indian Ocean and 
the South Pacific. As waters, formed at the surface in the Subantarctic Zone, sink and flow 
under warmer subtropical and tropical waters, they carry CO₂ into the deep ocean, out of 
contact with the atmosphere. Through this subduction process, oxygen and nutrients are 
also supplied to deep ocean ecosystems throughout much of the global ocean. It should be 
noted that this is the only OceanSITES surface mooring south of the Tropic of Cancer. SOTS 
is funded through the Australian Integrated Marine Observing System (IMOS; Hill, 2010; 
Meyers, 2008). For more information, see: http://imos.org.au/sofs.html. 

5. Challenges facing the network 
5.1 Long term commitment 

Obtaining long time-series requires commitment: organizational, institutional, and scientific. 
Funding organizations that can support a long-term project do not always exist. In many 
cases, these long time-series are funded through 3–5 year research grants and the time-series 
is vulnerable to the funding cycle. If the research proposal with a 3-year time horizon is 
rejected, the long time-series is discontinued, as was the case of the 13-year surface mooring 
time-series at the BATS observatory discussed above. Likewise, for the very long time-series, 
the scientists who initiated the time-series may no longer be involved. During the transition 
in leadership, the institution’s interest in the station can play a critical role in the ultimate 
success of the transition. Ultimately, the value of the station is determined by how the data 
are used, which depends upon the scientific importance of the station, the suite of 
measurements and their quality, the data latency and availability, and the ease with which 
the data can be used (Karl, 2010). 

5.2 Public data and common data formats 

OceanSITES has an active data management group that developed a self-documented 
netCDF (network common data form) format that all station operators agree to use. (For 
more information, see http://www.oceansites.org/data/). All station operators also agree 
to submit their data in this common format to Data Assembly Centers (DACS) that, in turn, 
forward data to two Global Data Assembly Centers (GDACS) that mirror each other: one at 
the NOAA National Data Buoy Center (NDBC) in the US and one at the Institut Français de 
Recherche pour l’exploitation de la MER (IFREMER) in France. Both GDACS can be 
accessed through the OceanSITES website provided above. 

5.3 Governance 

OceanSITES began as a volunteer group. Recently it has become an Action Group of the 
Data Buoy Cooperation Panel (DBCP) of the Joint WMO and International Oceanographic 
Commission’s (IOC) Technical Commission for Oceanography and Marine Meteorology 
(JCOMM) (http://www.jcomm.info/index.php?option=com_content&task=view&id=76 
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&Itemid=76). With support of a technical staffer at JCOMM and staff from the NOAA 
NDBC in the US and IFREMER in France, OceanSITES has made significant progress on 
developing governance. The executive committee includes representatives for each ocean, 
for the physical and biogeochemical communities, and from the data management panel. 
The OceanSITES data management team includes scientists and technical staff from the 
various DACS and GDACS. An emphasis has been placed on making all data openly and 
easily available at no cost to the user. 

The OceanSITES also has a scientific steering team that includes the principal investigators 
(station operators) from all OceanSITES reference stations. The scientific steering team is 
charged with developing and reviewing the network and its data requirements and data 
management, coordinating the implementation of the network, identifying gaps in the 
network and synergies with other programs, and ensuring the integration of the network 
into the overall global ocean observing system. While many of the stations were initiated 
prior to or independently from the OceanSITES network, by becoming part of the network, 
the stations can significantly increase their user base and thereby increase the value of the 
station. Admittance into the network, however, carries responsibility, particularly in terms 
of providing open and easy access to the data.  

5.4 High latitudes 

As can be seen in Figures 5 and 6, most open ocean surface moorings are located in the 
tropics. While this is in part because the tropical environment is much more benign (it is 
much easier to maintain a mooring in tropical conditions than in the “Roaring Forties”), the 
primary reason is that, as discussed earlier, the ocean and atmosphere are highly coupled in 
the tropics. The tropical oceans can thus have a strong influence on the tropical and global 
atmosphere. However, higher latitudes are important to monitor as these source regions 
form various different water masses, are living environments for important fisheries, and 
are where the CO2 solubility pump occurs and is the driver for the downwelling limb of the 
thermohaline circulation. Furthermore, model studies indicate that ocean acidification will 
lead to the high latitude surface waters becoming undersaturated with respect to calcium 
carbonate biominerals (e.g. aragonite, calcite) within a matter of decades (Orr et al., 2005). 
This would have a detrimental effect on the high latitude ecosystems and reference stations 
are needed to quantify these changes.  

As we seek to use ocean and coupled ocean-atmosphere models to investigate the ocean’s 
role in climate variability and change, there is great interest in knowing the fluxes across the 
ocean’s surface integrated over its entire surface and in assessing whether the models 
accurately represent those surface integrals. Yet, the high latitudes have few reference 
stations and our knowledge of the regional surface meteorology, air-sea exchanges, and 
physical and biogeochemical dynamics, is poor. It is thus a high priority to expand ocean 
reference stations to the high latitudes. 

6. The future 
OceanSITES seeks to encourage the sustained support of ocean reference stations. As 
discussed above, many of the stations are supported through partnerships that involve 
multiple scientists, institutions, agencies, and nations. Hope for expansion into the high 
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latitudes is at hand, as is shown by the Australian site south of Tasmania, SOTS, mentioned 
above. The US NSF OOI is also initiating four deep-ocean, full water column, 
interdisciplinary reference stations. These stations, referred to as “global nodes,” would be 
located at strategic sites within the three-dimensional circulation of the global oceans, 
including two currently existing OceanSITES reference stations: Station Papa in the eastern 
subarctic Pacific, and CIS, in the Irminger Sea southeast of Greenland. The two other global 
nodes are in the Argentine Basin at 42°S, 42°W, and in the Southern Ocean, southwest of 
Chile at 55°S, 90°W. Further contributions to the high latitude sites and continued efforts to 
develop common, multidisciplinary instrumentation to be deployed at each site would 
complete the global array of ocean reference stations. 

7. Conclusion 
We live on a water world. Weather and climate over land cannot be isolated from that over 
and within the ocean. In order to understand the global heat balance, hydrological cycle, 
and carbon cycle, it is necessary to observe, understand, and map the physical, chemical, 
and ecosystem environment with sufficient temporal, horizontal, and vertical resolution. 
This is the purpose of the Global Ocean Observing System (GOOS), which is a system 
within the GEOSS. The network of OceanSITES reference stations is an integral part of the 
GOOS. Data from these reference stations detect rapid changes and episodic events as well 
as long-term changes. These reference data are made available to the public to further our 
understanding of our changing world. The data are used to validate and assess satellite 
products and improve our ability to monitor the globe remotely. Scientific researchers are 
using these data to study mechanisms controlling the climate and ecosystems and to test 
and improve numerical models used for predicting future changes. Our ability to plan, 
adapt, and cope with future changes in weather, climate, and ecosystem depends crucially 
upon our ability to monitor and predict these changes. Through dedication and 
commitment, the OceanSITES network provides the baseline data for these efforts.  
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1. Introduction

Remote sensing data over a water body are related to the physical and biological properties
of water constituents through inherent optical properties (IOPs). These IOPs characterize
the absorption and scattering of the water column and are used as proxies to water quality
variables. The scientific procedure to derive IOPs from ship/space borne remote sensing data
can be divided into three steps: i- forward modeling, relates the radiometric data to the IOPs of
the water column; ii- parametrization, defines the minimal set of IOPs whose values completely
characterize the observed radiance; iii- inversion, derives the values of IOPs, and hence water
quality variables, from radiometric data.

Reliable methods for uncertainty quantification of earth observation (EO) products of IOPs are
important for sensor and algorithm validation, assessment, and operational monitoring. High
accuracy in both observations and algorithms may reduce considerable ranges of errors. EO
derived IOPs, however, have an inherent stochastic component. This is due to the dynamic
nature of aquatic biogeophysical quantities, intrinsic fluctuations, model approximations,
correction schemes, and inversion methods. Due to stochasticity of the measurements, as
well as model approximations and inversion ambiguity, the retrieved IOPs are not the only
possible set that caused the observed spectrum (Sydor et al., 2004). Instead, many other
IOPs sets may be derived. Each of these sets has an unknown probability of being the
derived product. The probability distribution of the estimated IOPs provides, therefore, all
the necessary information about the variability and uncertainties of derived IOPs.

Generally, uncertainty assessment of EO-data falls under one of two methods, namely
analytical deterministic or stochastic methods. Deterministic methods are based on
gradient techniques and have been used to asses the uncertainty of IOPs as derived from
EO-data. Duarte et al. (2003) analyzed the sensitivity of the observed remote sensing
reflectance due to variable concentrations of water constituents. Maritorena & Siegel (2005)
employed a deterministic technique for consistent merging of different products using their
uncertainties. Wang et al. (2005) performed a detailed study on the uncertainties of model
inversion related to fluctuations in each of the IOPs and their spectral shapes. Salama et al.
(2009) studied the uncertainty of model-inversion using the gradient-based method. They
found that the derived IOPs are linearly related to their errors. Lee et al. (2010) used analytical
derivative of the quasi-analytical algorithm (Lee et al., 2002, QAA) to estimate the uncertainty
of IOPs as derived from QQA. On the other hand, Salama et al. (2011) developed a gradient
based method to estimate the accuracy of a specific model-parameterizations setup. The
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advantage of their method is that it does not require radiometric information, however on
the cost of deriving detailed information. The main drawback of gradient-based methods
is that they depend on the used EO-model to derive the IOPs and a priori knowledge on
the radiometric uncertainty. On the other hand, stochastic methods are less dependent on
the used EO-model and can deal with non-convex functions. The basic idea of stochastic
methods is to systematically partition the region of feasible solutions into smaller subregions
and move between them using random search techniques. Stochastic uncertainty techniques
have been recently adopted to estimate the uncertainty of EO-derived IOPs. Salama & Stein
(2009) proposed a stochastic technique to quantify and separate the source of errors of IOPs
derived from EO data. The main objective of this chapter is to review the two families of
error-estimation methods and inter-compare their results.

The reminder of this chapter is organized as follow: in Section (2) we describe the ocean
color paradigm, i.e. used ocean color model, its parametrization and inversion. Deterministic
methods for error derivation are described in Section (3), whereas the principles of stochastic
methods are detailed in Section (4). The results of both families (deterministic and stochastic)
are inter-compared in Section (5) whereas, in Section (6) we present an exercise to decompose
the different sources of uncertainty. Error propagation exercise is detailed in Section (7)
followed by a discussion on the advantages and limitations of error estimation methods in
Section (8). We finalize the chapter by a summary and future developments in Section (9).

2. Ocean color model inversion

Remote sensing reflectance, the ratio of radiance to irradiance, above the water surface Rsw
can be related to the inherent optical properties (IOPs) using the ocean color model of Gordon
et al. (1988):

Rsw(λ) =
t

n2
w

2

∑
i=1

gi

(
bb(λ)

bb(λ) + a(λ)

)i
. (1)

Where Rsw(λ) is the remote sensing reflectance leaving the water surface at wavelength λ; gi
are constants taken from Gordon et al. (1988); t and nw are the sea−air transmission factor
and water index of refraction, respectively. Their values are taken from literatures (Gordon
et al., 1988; Lee, 2006; Maritorena et al., 2002). The parameters bb(λ) and a(λ) are the bulk
backscattering and absorption coefficients of the water column, respectively. The light field in
the water column is assumed to be governed by four optically significant constituents, namely:
water molecules, phytoplankton green pigment chlorophyll-a (Chl-a), colored dissolved
organic matter (CDOM) and detritus/suspended particulate matter (SPM). The absorption
and backscattering coefficients are modeled as the sum of absorption and backscattering from
water constituents:

a(λ) = aw(λ) + aph(λ) + adg(λ) (2)

bb(λ) = 0.5bw(λ) + ηbspm(λ). (3)

Where the subscripts on the right hand side of equations (2) and (3) denote water constituents:
water w; phytoplankton green pigment ph; lumped absorption effects of CDOM and detritus
dg and suspended particulate matter spm. η is the backscattering fraction, its value is
estimated from Petzold’s “San Diego harbor” scattering phase function as η ∼ 0.018 (Petzold,
1977).
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The absorption and scattering coefficients of water molecules, aw(λ) and bw(λ), are assumed
to be constant. Their values are obtained from Pope & Fry (1997) and Mobley (1994),
respectively. The total absorption of phytoplankton pigments aph(λ) is approximated as in
Lee et al. (1998),

aph(λ) � a0(λ)aph(440) + a1(λ)aph(440) ln aph(440), (4)

where a0(λ) and a1(λ) are statistically derived coefficients of Chl-a, their values are taken
from Lee et al. (1998).

The absorption effects of detritus and colored dissolved organic matter (CDOM) are combined
due to the similar spectral signature (Maritorena et al., 2002) and approximated using the
model of Bricaud et al. (1981),

adg(λ) = adg(440) exp [−s(λ − 440)] , (5)

where s is the spectral exponent of combined effects of detritus and CDOM. The scattering
coefficient of SPM bspm(λ) is parameterized as a single type of particles with a spectral
dependency exponent y (Kopelevich, 1983):

bspm(λ) = bspm(550)
(

550
λ

)y
. (6)

Equation (1) is inverted to derive five parameters from the IOCCG data set and three
parameters from the NOMAD data set. The derived parameters are called the set of IOPs
and expressed in a vector notation as iop. The exponents s and y are assumed to be
unknown (Salama et al., 2009) and are derived from the IOCCG data set as:

iop =
[

aph(440), adg(440), bspm(550), s, y
]

. (7)

The numerical inversion is carried out using the constrained Levenberg-Marquardt Algorithm
(LMA) (Press et al., 2002), where the constraints are set such that they guarantee positive and
physically meaningful values: between 0 and 100 m−1 for aph(440), adg(440) and bspm(550),
between 0 and 2.5 for y and between 0 and 0.03 for s. Optimization is started using the initial
values of Lee et al. (1999) and s = 0.021 nm−1 and y = 1.7. Maximum number of iteration is
set equal to 100.

3. Error estimation via deterministic method

3.1 Description

The uncertainty in the derived IOPs is attributed to the infinitesimal change of radiance in
equation (1) as,

ΔRsw(λ) = wph(λ)Δaph(440) + wdg(λ)Δadg(440) + wspm(λ)Δbspm(550), (8)

where ΔRsw(λ) represents the radiometric uncertainty at the wavelength λ; wph, wdg,wspm
are the partial derivatives of Rsw with respect to the derived IOPs. Equation (8) represents an
over determined linear set of equations that can only be solved if the radiometric uncertainty
is known in at least n wavelengths, with n being the number of derived IOPs.
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Analytical expressions of partial derivatives in (8) are listed hereafter. To simplify the
notations let us define the ratio ω as,

ω =
bb(λ)

c2
b

, (9)

where cb = bb(λ) + a(λ). The partial derivative wph is,

wph =
∂Rsw(λ)

∂aph(440)
=

t
n2

w
ζph

2

∑
i=1

jiωi, (10)

where ζph is the spectral dependency of Chla,

ζph = a0 + a1

[
1 + log aph(440)

]
. (11)

The parameters ji are j1 = −g1 and j2 = −2g2cb. The term wdg is expressed as,

wdg =
∂Rsw(λ)

∂adg(440)
=

t
n2

w
ζdg

2

∑
i=1

jiωi. (12)

The partial derivative wspm is expressed as,

wspm =
∂Rsw(λ)

∂bbspm(550)
=

t
n2

w

2

∑
i=0

viω
i, (13)

where v0 = g1/cb, v1 = 2g2 − g1 and v2 = j2.

Based on the above theoretical formulation in equation (8), Lee et al. (2010) obtained the
uncertainty of IOPs using the quasi analytical algorithm (Lee et al., 2002) and a prior
information on the radiometric errors. Salama et al. (2011), on the other hand, proposed a
method that produces a single (or ensemble) uncertainty measure for the collective errors in
the derived IOPs relative to the radiometric uncertainty without the need for model inversion
or prior information on the radiometric errors. In addition, the method provides the optimum
accuracy which can be achieved by a model-parametrization setup. The method of Salama
et al. (2011) is self-contained and is directly applicable to existing satellite based IOP products,
we therefore, brief this method hereafter.

3.2 Ensemble uncertainty of IOPs

Applying Taylor series approximation of the second moment on equation (8) gives:

σ2
r (λ) = w2

ph(λ)σ
2
ph(440) + w2

dg(λ)σ
2
dg(440) + w2

spm(λ)σ2
spm(550) (14)

Where σ2
r (λ) is the radiometric variance and σ2

ph(440), σ2
dg(440), and σ2

spm(550) are the
variances of the derived IOPs. The covariance terms in equation(14) is assumed to be zero,
i.e. the IOPs are mutually independent. Knowledge on the radiometric uncertainty is now
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avoided by dividing both sides of equation (14) by the radiometric variance,

i=n

∑
i=1

w2
i (λ)ψ

2
i (λ) = 1, (15)

with ψ2
i (λ) = σ2

i (λ0)/σ2
r (λ). The ensemble uncertainty of IOPs per radiometric error,

Ψ(λ), is derived from equation (15) by normalizing both sides by the squared sum of partial
derivatives and taking its square-root:

Ψ(λ) =

(
i=n

∑
i=1

w2
i (λ)ψ

2
i (λ)/

i=n

∑
i=1

w2
i (λ)

)0.5

=

(
i=n

∑
i=1

w2
i (λ)

)−0.5

. (16)

Ψ(λ) represent the ensemble uncertainty of IOPs per unit error of remote sensing reflectance
and have the unit of sr m−1. The advantages of this methods is that it can be applied on the
readily available earth observation products of IOPs (water quality proxies). Fig.(1) shows the
climatology of the ensemble uncertainty relative to the sum of derived IOPs. These figures
are generated by applying equation (16), to the monthly mean values of GSM-derived IOPs
and then averaged for each year from 1997-2007 (the year 1997 is not shown). It is clear that
there are persistent patterns of high values throughout the last decade in the subtropical gyres,
whereas lower values are observed in most coastal areas. These results are in accordance to
the global uncertainty maps of Chlorophyll-a presented by Mélin (2010) for the subtropical
gyres, whereas the coastal waters show contrary patterns, i.e. very small error. The spatial
distribution of the relative-ensemble uncertainty largely resembles the observed values of
remote sensing reflectance at 443 nm.

3.3 Detailed uncertainty of IOPs

Based on equation(8), Bates & Watts (1988) devised an elegant method to quantify the
uncertainties for each derived IOPs as,

IOPi± = IOPi ± σ
∥∥∥W · R−1

∥∥∥ t(N − m, α/2) (17)

Where IOPi± is the upper "+" and lower "-" bounds of the derived IOP; W is the matrix of
partial derivatives; σ is the standard deviation of residuals between measured and model
best-fit radiances; t(N − m, α/2) is the upper quantile for a Student’s t distribution with N −
m degrees of freedom. N is the number of bands and m is the number of unknowns. R
is the upper triangle matrix of QR decomposition of the jacobian matrix. equation (17) has
widely been used to estimate the error of derived IOP (Salama et al., 2009; Van Der Woerd &
Pasterkamp, 2008). The derivative term in equation (17), can be approximated as being the
gradient of equation (1) with respect to the derived IOPs and is computed for model-best-fit
to the observation. This approximation is derived as follows.

Observed remote sensing reflectance can be approximated as being the sum of the model
best-fit Rsm(λ) and its deviations from the observed one �(λ):

Rs(λ) = Rsm(λ) + �(λ) (18)

The term Rsm(λ) is obtained from fitting the model in equation (1) to the radiometric
observation of ocean color or/and field sensors. The error �(λ) is a lumped term that includes
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Fig. 1. Time series of ensemble-uncertainty of IOPs at 440 nm relative to the sum of derived
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model goodness-of-fit, measurements and atmospheric noises. For simplicity this term is
assumed to be nearly independent the derived IOPs. The derivative of (18), with respect
to the derived values, can then be written as:

ΔRs(λ)
Δiop

=
ΔRsm(λ)

Δiop
+

Δ�(λ)

Δiop
(19)

By definition of the least square minimization that was used to derive model-best-fit Rsm(λ),
we have:

Δ�(λ)

Δiop
≈ 0 (20)

Equation (19) can then be reduced to:

ΔRs(λ)
Δiop

≈ ΔRsm(λ)

Δiop
(21)

The simplification in equation (21) implies that the gradient of measured remote sensing
reflectance can be approximated by the gradient of the model in (1) which can easily be
computed as in equation (21).

4. Error estimation via stochastic method

4.1 Description

In this section we summarize the method of Salama & Stein (2009) as it is the only stochastic
method published so far in the field of ocean color.

Salama and Stein used prior information to obtain plausible ranges of the IOPs. These ranges
are used in a log-normal distribution to generate a first-estimate of the probability distribution
(PD) of the IOPs. This first-estimate PD is called the prior PD of the IOPs. The method,
explained hereafter, uses the prior PD to converge to a “posterior” probability distribution
that better describes the IOPs.

Prior information is obtained from known radiometric errors in Rsw and model-inversion
intrinsic errors. Radiometric errors are: (i) noise equivalent radiance of the sensor and (ii) error
in aerosol optical thickness. Sensor equivalent radiance is known from sensor specifications
and post-launch calibrations. Model approximation and inversion-accuracy can be quantified
by evaluating the performance of the employed ocean color model against measurements and
radiative transfer simulations. Atmospheric error, due to variation in aerosol optical thickness,
can be evaluated from available measurements or by using standard atmospheric correction
models. The error estimate algorithm will follow sequential steps as detailed hereafter.

An initial estimate of the confidence interval around water remote sensing reflectance can be
computed using the method of (Bates & Watts, 1988, pp.59, cf. 1.36 ) or available knowledge
on plausible fluctuations for model, noise and atmospheric residual respectively. The upper
and lower bounds of this interval are then inverted to derive the corresponding two sets of
IOPs iopu, iopl. These sets with the derived iopobs from the water remote sensing reflectance,
hereafter will be called the IOP-triplet: (iopl, iopobs, iopu) and denoted as ω. The value
log iopobs is assumed to approximate the mean of a first-estimate, i.e. prior, probability
distribution (PD) of IOPs in the logarithmic space. The prior PD is first elicited using
the IOP-triplet and prior knowledge on the log-normal shape of the IOPs as explained in
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section (4.2). The posterior probability distribution, or our gain in information, is then inferred
by maximizing the expected utility (Bernardo, 1979; Carlin & Polson, 1991) as explained in
section(4.3).

4.2 Prior probability distribution

Estimating the IOP-triplet, iopl, iopobs and iopu, is the first step towards deriving the
prior probability distribution of the IOPs. The use of flat or improper priors, e.g. uniform
distribution, may invalidate the derivation of the posterior probability (Goutis & Robert,
1998). According to the maximum entropy principle (Jaynes, 1957a;b) a proper prior
probability distribution should have the maximum entropy provided by the IOP-triplet.
However applying the maximum entropy principle on the information provided by the
IOP-triplet will give the probability values of iopl, iopobs and iopu but not the whole
probability distribution P(iop); for more detail one may consult Jaynes (1968). To overcome
this limitation, in data values, we introduce the following method to elicit the prior
distribution of IOPs assuming that they are log-normally distributed. The log-normal
assumption is based on Campbell’s work (Campbell, 1995) who pointed out that, in general,
marine bio-geophysical quantities follow a log-normal distribution i.e. their log transform has
a Gaussian distribution.

The IOP-triplet is first transformed to the log space, allowing us to use a Gaussian distribution
to simulate the PD of IOPs. Second we assume that log iopobs approximates the mean of
the prior PD of the IOPs. The Gaussian distribution of the IOPs can be standardized to a
N(0,1) distribution, i.e. normal distribution with zero mean and unity standard deviation.
The standard Gaussian variate for log iopu is,

αu =
log iopu − log iopobs

σ
, (22)

where αu is a sample drawn from the N(0,1) that corresponds to iopu. The parameters
log iopobs and σ are the expectation and the standard deviation of the population. From
equation (22) and the second set in the IOP-triplet iopl we can establish the ratio,

ru,l =
αu

αl
=

log iopu − log iopobs
log iopl − log iopobs

, (23)

and for convenience we set log iopu > log iopl. The standardization of the IOPs distribution
allows us to use the N(0,1) random number generator to simulate values of α as in
equation (22). The ratios of these random values are also computed and compared to the
ratio of the IOP-triplet in equation (23). The best fit allocates the two values αu and αl , hence
the standard deviation of the prior distribution can be computed from equation (22). The
prior probability distribution of the IOPs, is now known: N(log iopobs,σ), i.e. a Gaussian
distribution with log iopobs mean and σ standard deviation.

Random values (1000) are generated from the N(0,1) distribution such that they satisfy an
imposed acceptance-rejection condition. This condition requires that the ratio in equation (23)
defines a unique ordered pair of α. This is to enable the use of a simple searching method
with a fast convergence to the best-fit ratio. The uniqueness in this sense implies that the
squared difference between the computed ratio, from the IOP-triplet, and the best-fit is a
global minimum resolvable by the searching method and the used computer processor. Three
look-up tables (LUTs) are then created from the generated values. These LUTs correspond to
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the following three scenarios:

log iopobs > log iopu > log iopl

log iopobs < log iopl < log iopu

log iopl < log iopobs < log iopu

(24)

The generated N(0,1) values are, first, subdivided into two sets containing positive and
negative values. The ratios of the first and second LUTs are, then, computed from the ordered
descending sets as; xi/xi+1. The third LUT is generated from all possible combinations of the
unordered positive and negative sets. This will results in ratio values between 0 and 1, > 1
and < 0 for the first, second and third LUT respectively. The ratio in equation (23) is first
estimated from IOP-triplet. Based on the values of this triplet (equation 24) a lookup table
is selected and searched to find the best-fit value to the computed ratio (equation 23). This
best-fit is found either by direct search or interpolated. One of the corresponding pair is then
used in equation (22) to compute the standard deviation of the prior PD P(iop).

4.3 Posterior probability distribution

In section (4.2) we derived a proper prior distribution of the IOPs. This first-estimate, i.e.
prior distribution, is converged to a posterior distribution that better describes the IOPs using
the concept of Entropy. Entropy is a numerical measure of error associated with probability
distribution of derived IOPs or any hydrological parameter (Singh, 1998). For a population
with N sets of IOPs it is expressed as the Shannon entropy (Shannon, 1948):

H{P(iop)} = −
N

∑
1

P(iop) · log P(iop) (25)

where P(iop) is the prior probability distribution (PD) of the derived set of IOPs iop.

If we design a function D that measures the information, e.g. equation (25), between the prior
and the posterior PD, then we can derive the posterior PD such that it maximizes the expected
information to be gained in D (Bernardo, 2005; Christakos, 1990). In other words, maximizing
the function D will maximize the gained information from the posterior PD (Bernardo, 1979).
The Kullback-Leibler divergence (Kullback & Leibler, 1951), or cross-entropy, belongs to this
type of utility functions (Johnson & Geisser, 1985). It measures the divergence between the
posterior P(iop|ω) and the prior P(iop) probability distribution as:

DKL{P(iop|!)|P(iop)} =
N

∑
1

P(iop|ω) · log
P(iop|ω)

P(iop)
(26)

where P(iop|ω) is the posterior probability of iop given the IOP-triplet ω. Equation (26) can
be rewritten in view of equation (25) as:

DKL{P(iop|ω)|P(iop)} = H{P(iop|ω), P(iop)} − H{P(iop|ω)} (27)

where H{P(iop|ω), P(iop)} is expressed as:

H{P(iop|ω), P(iop)} = −
N

∑
1

P(iop|ω) · log P(iop) (28)
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Maximizing the cross-entropy in equation (26) or the corresponding expression in (27) is
equivalent to minimizing the entropy (uncertainty) of the posterior probabilities distribution,
i.e. maximizing gained information. The errors can then be estimated from the reconstructed
posterior probability distribution of IOPs P(iop|ω).

The posterior probability distribution is inferred by maximizing the utility function,
i.e. Kullback-Leibler divergence (equation 26). The maximum is found by iteration
through a sequential updating of the posterior using the prior parameters mean μ and
variance σ2 (Rubinstein & Kroese, 2004). The corresponding log-normal mean m and variance
v are computed as Kendall & Stuart (1987):

m = eμe0.5σ2
(29)

v = e2μeσ2
(

eσ2 − 1
)

(30)

The following steps describe the algorithm, as implemented, to derive the posterior PD
P(iop|ω):

1. From the water remote sensing spectrum estimate the initial radiometric confidence
interval using the method of (Bates & Watts, 1988, pp.59, cf. 1.36) or prior information
on atmospheric and noise-induced radiometric fluctuations.

2. Invert the ocean color model in equation (1) to derive the IOPs from the water remote
sensing spectrum and the upper and lower bounds. This will results in three sets of IOPs:
iopl, iopobs, iopu; IOP-triplet.

3. Based on the order of this IOP-triplet allocate the suitable LUT using equation (24).
4. Search for the best-fit ratio calculated from equation (23).
5. Use equation (22) to estimate the standard deviation of the prior PD.
6. Use the standard deviation and log iopobs to generate the prior PD.
7. Use initial values of the mean and standard deviation to generate n Monte Carlo samples

of PD.
8. Select the population that have the maximum Kullback-Leibler divergence (equation 26),

and update the initial values.
9. Repeat step 7 to 8 till convergence.
10. Update the prior PD with the resulting posterior PD (from the pervious step: 9), and

iterate steps 7 to 10 till convergence.

The convergence is defined by a threshold as follow. Keep track of the best ten candidates
which maximize equation (26). The system converges if the variance of these ten values is less
than 10−4.

5. Inter-comparison between deterministic and stochastic methods

The inter-comparison between the deterministic method, described in Section (3), and the
stochastic method, described in Section (4), is carried out using two data sets. The first, is
radiative transfer simulations of synthetic IOPs obtained from the International Ocean Color
Coordination Group (IOCCG), report-5 (Lee, 2006, IOCCG data set). The second consists
of concurrent observations from the Sea viewing Wide Field-of-view Sensor (SeaWiFS) and
measured inherent and apparent optical properties, retrieved from the NASA bio-Optical
Marine Algorithm Data set (NOMAD) Version 1.3 (Werdell & Bailey, 2005, SeaWiFS matchup
data set).
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5.1 IOCCG

IOCCG data set (Lee, 2006) of synthesized IOPs and their radiative transfer simulations at
30◦ sun zenith angle are used to inter compare the results of the deterministic and stochastic
methods. IOCCG simulated spectra, between 400 nm and 750 nm at 10 nm interval, are
inverted using the ocean color model in equation (1) to derive five variables. These variables
are: Chlorophyll-a absorption at 440 nm aph(440), detritus and CDOM absorption at 440
nm adg(440) and their spectral dependency s, SPM scattering at 550 nm bspm(550) and SPM
spectral dependency y, as shown in equation (7).

The standard deviation of the posterior PD represents the error/confidence of the derived
value iopobs. The deviation of the posterior PD from known IOPs is measured using
root-mean-square of errors (RMSE). These two values, RMSE and standard deviation, are
related through the bias, i.e the actual difference between derived and measured IOPs. Figure
(2) shows estimated errors, expressed as standard deviation using equation (30), against the
known root-mean-square of errors (RMSE). The actual RMSE is estimated from the posterior
PD and the known IOPs. The reproduced errors for the IOPs other than aph(440) have a high
accuracy with r2 values between 0.77 and 0.96. Estimated errors of aph(440) have the lowest r2

and n values. It is worth noting that the determinacy method of Bates & Watts (1988) generally
underestimates model-errors of the IOPs with lower r2 values than the presented stochastic
method. This is apparent at an almost threefold difference for the error values of aph(440). On
the other hand, the stochastic method has a tendency to overestimate the errors of the IOPs
with a better fit and improved capability, in the sense that it can be applied to populations of
any bio-geophysical variable.

5.2 NOMAD

Due to the limited number of available visible bands in this data set we reduced the number of
unknowns to three only. The first three IOPs in equation (7) are derived from SeaWiFS spectra
using the ocean color model (equation 1) and the constrained LMA technique. The values of
s and y are set to 0.021 nm−1 and 1.7 respectively. The actual RMSE values are computed
from the posterior PD and measured IOPs. The total error on derived IOPs is estimated
by applying the stochastic method using (Bates & Watts, 1988, pp.59, cf. 1.36) radiometric
confidence interval. The estimated errors are expressed as standard deviation using equation
(30) and plotted against RMSE values in figure (3). The reproduced total error values are
strongly correlated to the known RMSE values with r2 between 0.67 and 0.9 and >90% of valid
retrievals. Estimated errors from the deterministic technique (Bates & Watts, 1988), however,
did not correspond to the actual values of RMSE.

Errors are computed for the ocean color model and SeaWiFS visible bands centered at [412,
443, 490, 510, 555, 670] nm. The average values of the derived standard deviation are 1.7802,
1.1431 and 1.6177 m−1 for aph(440), adg(440) and bspm(550), respectively.

6. Uncertainty sources

6.1 Description

The total remote sensing reflectance received at the sensor altitude can be written as the sum
of several components (Gordon, 1997):

Rst(λ) = Rspath(λ) + T(λ)Rssfc(λ) + T(λ)Rsw(λ) (31)
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Fig. 2. Derived versus known errors of the IOPs estimated from the IOCCG data set for: (a)
Chl-a absorption at 440 nm; (b) CDOM and detritus absorption at 440 nm; (c) SPM scattering
at 550 nm; and (d) the total absorption at 440 nm. The data on the plots are log transformed.
The coefficients of determination r2

s and r2
d are for stochastic and deterministic method

respectively.

The subscript of the remote sensing reflectance Rs represents the contribution from: (i) the
atmosphere (path), i.e. air molecules and aerosol multiple scattering; (ii) sea-surface (sfc); and
(iii) water (w). T(λ) is the diffuse transmittance.

The contribution of air molecules, i.e. the Rayleigh scattering, to the atmospheric path
is well described in terms of geometry and atmospheric pressure (Gordon et al., 1988).
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Fig. 2. Derived versus known errors of the IOPs estimated from the IOCCG data set for: (a)
Chl-a absorption at 440 nm; (b) CDOM and detritus absorption at 440 nm; (c) SPM scattering
at 550 nm; and (d) the total absorption at 440 nm. The data on the plots are log transformed.
The coefficients of determination r2
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The subscript of the remote sensing reflectance Rs represents the contribution from: (i) the
atmosphere (path), i.e. air molecules and aerosol multiple scattering; (ii) sea-surface (sfc); and
(iii) water (w). T(λ) is the diffuse transmittance.

The contribution of air molecules, i.e. the Rayleigh scattering, to the atmospheric path
is well described in terms of geometry and atmospheric pressure (Gordon et al., 1988).
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Fig. 3. Derived versus known errors of the IOPs estimated from the NOMAD data set for: (a)
Chl-a absorption at 440 nm; (b) CDOM and detritus absorption at 440 nm; (c) SPM scattering
at 550 nm; and (d) the total absorption at 440 nm. The data on the plots are log transformed.
The coefficients of determination r2

s and r2
d are for stochastic and deterministic method

respectively.

The contribution of sea-surface reflectance Rssfc can be estimated using the probabilistic
formulations of Cox & Munk (1954) and ancillary data on wind field. Gaseous transmittance
can be calculated from ancillary data on ozone and water vapor concentrations using the
transmittance models of Goody (1964) and Malkmus (1967). For viewing angles < 60◦
the diffuse transmittance T is weakly dependent on aerosol and can be approximated
following Gordon et al. (1983). Following the aforementioned approximations will basically
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leave two unknowns; the aerosol and the water remote sensing reflectance. In other words,
the errors in Rsw can be attributed to errors in aerosol estimation and any noise in the sensor,
i.e. noise equivalent radiance (NER).

Radiometric errors in Rsw, beside to model-inversion intrinsic errors, will accumulate and
propagate to the IOPs during the retrieval. The total error of the derived IOPs can therefore
be decomposed into three major components, namely model-inversion error, sensor noise and
error in aerosol estimation. These errors are originated by various mechanisms during the
processing chain of ocean color data as explained hereafter.

Each error component, x, will be expressed as the variance σ2
x of IOPs caused by this error

x. The subscript x will be replaced by inv, ner and a to represent the contribution of
model-inversion, noise equivalent radiance and aerosol, respectively.

6.2 Model-inversion error, σ2
inv:

The employed approximations in the forward-model (equation 1) may not precisely describe
the optical processes that have caused the observed signal (Zaneveld, 1994). Moreover, the
numerical technique used for inversion provides an ambiguous solution, i.e. the derived IOPs
are not unique (Sydor et al., 2004). These assumptions and ambiguity will generate error that
is, at the one hand, inherent to the employed ocean color forward model and, on the other
hand, dependent on the accuracy of the inversion scheme which could be related to the optical
complexity of the water. Model-inversion error is quantified as a lumped sum of errors due to
the approximation in (1), the parametrization of IOPs and inversion and abbreviated as model
error.

6.3 Noise equivalent radiance, σ2
ner:

Noise equivalent radiance (NER) depends on sensor specifications and performance over
time, i.e. sensor degradation. This fluctuation could either increase or decrease the observed
remote sensing reflectance and could also be wavelength dependent or random. The effects
of NER is inversely proportional to the value of signal-to-noise ratio. Sensor degradation,
i.e. sensitivity losses over time, will cause decrease in the signal-to-noise ratio of the sensor
leading to low signal reading. Low signal can also be observed over clear water at the near
infrared part of the spectrum or over turbid water, with high CDOM, detritus and Chl-a
contents, at the blue part of the spectrum. The propagated error from NER to IOPs will
therefore be dependent on sensor specification, sensor degradation over time, water turbidity
and observing wavelength.

6.4 Variations of aerosol type and optical thickness, σ2
a :

Atmospheric correction errors are, generally, caused by unknown aerosol type and optical
thickness (AOT). The residual signals from atmospheric correction will have spectral and
spatial dependency. The spectral dependency is due to the error about the aerosol type e.g.
absorbing aerosol, while the spatial dependency is, on the one hand, related to the error
about AOT spatial variations and, on the other hand, to water turbidity (Hu et al., 2004).
It is assumed that aerosol optical thickness has a higher spatial variability than aerosol type,
so that aerosol type can be assumed to be known and homogenous. Within the validity of
this assumption, the residual signals from atmospheric correction will be caused by errors in
estimating the aerosol optical thickness.
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6.5 Decomposition

The total error of the derived IOPs, expressed as the variance σ2
t
(
σ2

inv, σ2
ner, σ2

a
)
, is thus

described as a function of the three error components, σ2
inv, σ2

ner and σ2
a . Assuming that this

function is continuous in its variables, we can approximate it by a first order Taylor series as:

σ2
t ≈ σ2

t0 +
∂σ2

t
∂σ2

inv
σ2

inv +
∂σ2

t
∂σ2

ner
σ2

ner +
∂σ2

t
∂σ2

a
σ2

a (32)

where, σ2
t0 is the value of the function σ2

t (0, 0, 0). According to the assumption that the total
error is caused by three components, the value of σ2

t0 is negligible, i.e. σ2
t0 � 0. In other

words, if we have perfect measurements, accurate atmospheric correction and exact model
parameterizations and inversion then the total error on the derived IOPs will be negligible.
The total error of the derived IOPs can thus be approximated as a weighted sum of the
individual error components as:

σ2
t ≈ w2

invσ2
inv + w2

nerσ2
ner + w2

aσ2
a (33)

where the weights winv, wner, and wa are the partial derivatives in equation (32). The
functionality in σ2

t , however, is commonly unknown and it is therefore difficult to find proper
estimates of the weights winv, wner and wa. An intuitive approach would be setting all the
weights in equation (33) to unity and check its validity:

σ2
t ≈ σ2

inv + σ2
ner + σ2

a (34)

Figure (4) depicts the relationship between the sum of the righthand side of equation (34)
and the total error on the derived IOPs. On the X axis is the total error of the IOPs as
calculated from all possible error sources σ2

t . We then calculated each error component
apart and summed their variances in the Y axis as: σ2

a + σ2
ner + σ2

a . As anticipated from
equation (33) there is a linear relationship between the actual variance and the linear sum
of individual variances with R2 values above 0.75 for the absorption coefficients of Chl-a and
detritus-CDOM. The value of R2 decreases to 0.69 for SPM scattering and 0.64 for the total
absorption. The dispersion value as measured with RMSE is large for all IOPs. The results
in figure (4) indicate that the linear sum in equation (34) is an acceptable approximation
to the total variance. Due to the large values of RMSE in figure (4), the computed relative
contribution should be treated with caution.

While model-induced error can directly be estimated from the techniques described in Brad
(1974) and Bates & Watts (1988), noise and atmospheric-induced errors should be inferred
from the available information. This information forms the prior knowledge that we will
use in the following section to derive the error of the IOPs. Prior information is obtained
from known sensor’s noise, variation in aerosol optical thickness and ocean-color model’s
approximations and inversion accuracy.

6.5.1 IOCCG

The noise is estimated based on NER values of the Medium Resolution Imaging Spectrometer
(MERIS) (Doerffer, 2008; Hoogenboom & Dekker, 1998). The variation in aerosol optical
thickness (AOT) is set to be ±0.02. This value is estimated from the variation of recorded
aerosol optical thickness by a newly calibrated sunphotometer (CIMEL) and cloud free
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Fig. 4. Sum of variances versus the total variance of the IOCCG data set for: (a) Chl-a
absorption at 440 nm; (b) absorption of detritus and CDOM at 440 nm; (c) SPM scattering at
550 nm; and (d) total absorption coefficient at 440 nm.

condition (Holben et al., 2000). The values of aerosol optical thicknesses are obtained
from sunphotometer measurements situated at (51.225 N, 2.925 E) at the 8th of June 2006.
The atmospheric paths are estimated with radiative transfer computation (Vermote et al.,
1997) using maritime aerosol model with a nadir looking sensor at 30◦ sun-zenith and 203◦
sun-azimuth angles.

The relative contribution of model, noise and atmospheric errors are shown in table (1) and
quantified for each of the derived IOP as follow. First we computed the total error, i.e. the
total error in Rsw(λ) is due to aerosol estimation and sensor noise, inversion error will add
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Fig. 4. Sum of variances versus the total variance of the IOCCG data set for: (a) Chl-a
absorption at 440 nm; (b) absorption of detritus and CDOM at 440 nm; (c) SPM scattering at
550 nm; and (d) total absorption coefficient at 440 nm.

condition (Holben et al., 2000). The values of aerosol optical thicknesses are obtained
from sunphotometer measurements situated at (51.225 N, 2.925 E) at the 8th of June 2006.
The atmospheric paths are estimated with radiative transfer computation (Vermote et al.,
1997) using maritime aerosol model with a nadir looking sensor at 30◦ sun-zenith and 203◦
sun-azimuth angles.

The relative contribution of model, noise and atmospheric errors are shown in table (1) and
quantified for each of the derived IOP as follow. First we computed the total error, i.e. the
total error in Rsw(λ) is due to aerosol estimation and sensor noise, inversion error will add
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up during the inversion. The same step is repeated for each error source in three steps: (i)
model error is estimated from the error-free Rsw(λ); (ii) atmospheric-induced error σ2

a is
computed from Rsw(λ) that contains errors due to aerosol estimation only; (iii) noise error
is calculated from Rsw(λ) that contains sensor noise only. Note that model error will add
up during the inversion in the last two steps. Now we can use equation (34) to estimate the
relative contribution of each error component to the total error of the IOPs.

Errors due to atmospheric correction are the major source of errors in the derived IOPs.
Imperfect atmospheric correction, due to the variability of aerosol optical thickness, is
responsible for more than 50% of the total error and up to 82%. One fifth of the total
errors on derived IOPs (except for the SPM scattering: one tenth) is attributed to noise-error.
Model-error has the lowest contribution (≈7%) to the total error on derived bspm(550) values,
but it has a significant contribution (≈ 16%) to y. This can be attributed to the assumed
parametrization. On the one hand, the absorption of other constituents than water molecules
is negligible at the near infrared (NIR) which will cause stability (one-to-one relation) in the
derived SPM scattering coefficient, leading to a significant contribution from the atmosphere
at the NIR region. On the other hand, the error in bspm(λ) will decrease towards the NIR
region due to the assumed exponential spectral dependency. In general, model-induced
errors are large for the spectral shape coefficients y and s. Note that the spectral shape of
chlorophyll-a absorption is imbedded in coefficient aph(440).

error components
IOPs Model Noise Aerosol
aph(440) 17 22 61
adg(440) 9 19 72
bspm(550) 7 11 82
y 16 24 60
s 28 21 51

Table 1. The average relative contribution (%) of error components on IOCCG data set.

6.5.2 NOMAD

The total error on estimated IOPs from the NOMAD data is derived from the values presented
in figure (3). Model induced errors are subtracted from the total error using equation (33)
to deduce atmospheric and noise-induced errors. The results are shown as percentages in
table (2). Main uncertainty is due to atmospheric and noise-induced errors for aph(440) and
bspm(550), while model inversion is the main source of error to adg(440) in this data set. These
results are within the validity of the linear assumption expressed in equation (33) and the
imposed values of s and y.

error components
IOPs Model Aerosol and Noise
aph(440) 10 90
adg(440) 57 43
bspm(550) 19 81

Table 2. The average relative contribution (%) of error components on SeaWiFS observations
in the NOMAD data set.
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6.5.3 Model-sensor error table

The linear sum of individual variances in equation (34) can describe about 70%, the value
of R2, of the total variance of the IOPs. This linearization of the total variance is a simple
yet effective approach. It allows us to estimate the relative contribution of the different error
components to the total error budget on the IOPs. The relative contribution of model, noise
and atmospheric errors to the total error budget using IOCCG data set are 20-40%, 10-25% and
40-80%, respectively. Model-induced errors, due to approximation and inversion, are inherent
to the derived IOPs and inversely proportional to model-inversion degree-of-freedom, while
atmospheric-induced errors are the major contributor to the total error budget on IOPs. These
results are for assumed levels of noise and atmospheric fluctuations. This suggests that error
table can be generated for specific model, sensor and range of IOPs. This model-sensor error
table can serve as a benchmark to estimate the atmospheric-induced errors in the derived
IOPs. The merit of this argument is based on the fact that the computations of model
and noise-induced errors can be quantified using water radiative transfer simulations, for
a specific range of IOPs, and known sensor’s NER. The magnitude of these errors are in
principle known for the ocean color model and the used sensor. An example of such a
table for the MERIS sensor and the ocean color model is shown in table (3). This table is
computed from table (1) for the MERIS visible bands centered at [412, 443, 490, 510, 560,
620, 665, 708, 778] nm, i.e. we simply reduced the spectral bands of IOCCG data set to fit
those of MERIS. Table (3) shows that the reduced number of spectral bands for MERIS setup
has increased model contribution to the total error approximately two fold. This will reduce
noise and atmospheric contribution to the total error, since the relative contributions of all
error components should sum to 1. Note that for weak radiometric signals, the lower bound
might end up to negative values which will lead to further reduction in the number of bands
(negative values are set to zero). This approach is demonstrated for ocean color observations
obtained from NOMAD data set. Model and noise-induced errors are simulated from the
IOCCG data set and subtracted from the total error of IOPs estimated from the NOMAD data
set. The simulation is carried out simply by selecting IOCCG wavelengths that correspond
to NOMAD spectral set-up. The simplicity of this approach can pose a limitation on the
accuracy of equation (34). On the one hand, the method shows that model approximation
and inversion are main contributors, ≈57%, to the total error of adg(440). On the other
hand, the presented stochastic method quantified these errors most efficiently. Atmospheric
and noise-induced errors are significant for aph(440) and bspm(550). This may suggests that
model-induced errors are better quantified with the current method. However, errors of SPM
scattering coefficient, which are mainly due to atmospheric residuals, are reproduced with
high accuracy.

error components
IOPs Model Noise Aerosol
aph(440) 40 13 47
adg(440) 41 13 46
bspm(550) 45 5 50
y 42 19 39
s 42 16 42

Table 3. The average relative contribution (%) of error components on derived IOPs using the
ocean color model (equation 1) and simulated MERIS bands from IOCCG data set.
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7. Spectral propagation of errors and error correlation

The presented errors of IOPs were for two wavelengths: 440 nm for the absorption coefficients
and 550 nm for the scattering coefficient, as defined by equation (7). We can use the
parameterizations in equations (4), (5) and (6) to derive analytical description of error
propagation to other wavelengths. Here below we provide an analytical derivation of error
propagation and numerical examples for two wavelengths one at the blue, 400 nm, and the
other at the red, 680 nm.

The errors of the IOPs will propagate to shorter and longer wavelengths following the
parameterizations in equations (4), (5) and (6). For example, the error in bspm(550) has
two components; one in bspm(550) itself and the other in the spectral shape y. Using the
parametrization in equation (6) we will have:

Δbspm(λ) =
∂bspm(λ)

∂bspm(550)
Δbspm(550) +

∂bspm(λ)

∂y
Δy +
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Carrying the derivation of the palatial derivatives, equation (35) can be written as:
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In this exercise we will neglect the error in the wavelength, i.e. Δλ ≈ 0 and we will show that
the derivative ∂/∂λ is negligible.

Let us take the two reference wavelengths: the blue 400 nm and the red 680 nm and assume
y = 1.7, we will have:

Δbspm(400) = 1.718Δbspm(550) + 0.547bspm(550)Δy (37)
Δbspm(680) = 0.697Δbspm(550)− 0.148bspm(550)Δy (38)

The wavelength variation term ∂/∂λ in equations (37) and (38) is neglected. It takes the values,
with λ expressed in nanometer, 7.3 × 10−3bspm(550)Δλ and 1.74 × 10−3bspm(550)Δλ for the
blue and the red wavelengths, respectively.

Equations (37, 38) show that the error in SPM scattering coefficient at the blue wavelength is
larger than that at the red wavelength if the relative error in the scattering coefficient satisfies
the condition:

Δbspm(550)
bspm(550)

> −0.681Δy (39)

In a similar approach we can quantify the propagated errors of adg(440) to other wavelengths:

Δadg(λ) = exp [−s (λ − 440)]Δadg(440)

− adg(440) (λ − 440) exp [−s (λ − 440)]Δs (40)

− s × adg(440) exp [−s (λ − 440)]Δλ
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If we assume the value s = 0.021 nm−1 and take our reference bands to be the blue (400 nm)
and red (680 nm) wavelengths we will have, with λ in meter:

Δadg(400) = 2.316Δadg(440) + 92.654 × 10−9adg(440)ΔS (41)

Δadg(680) = 6.47 × 10−3Δadg(440)− 1.554 × 10−9adg(440)ΔS (42)

The wavelength variation term ∂/∂λ is also negligible. It takes the values −4.86 ×
10−11adg(440)Δλ and −1.36 × 10−13adg(440)Δλ for the blue and the red wavelengths,
respectively. The error at the blue will be larger than that at the red if the relative error of
adg(440) satisfies the condition (from equations 41 and 42):

Δadg(440)
adg(440)

> 4.08 × 10−8Δs (43)

The parametrization of Chl-a absorption is based on the tabulated values a0 and a1, see
equation(4). These tabulated values are taken to be constant per wavelength, i.e. aph(λ) is
function of aph(440) only. The error in aph(440) will propagate to other wavelengths following
the derivative of equation (4):

Δaph(λ) = a1(λ) + a0(λ) + a1(λ) log aph(440)Δaph(440) (44)

For the two reference bands, 400 nm and 680 nm, we will have:

Δaph(400) = 0.731 + 0.012 log aph(440)Δaph(440) (45)

Δaph(680) = 0.945 + 0.149 log aph(440)Δaph(440) (46)

From equations (45, 46) it can be shown that the error at the blue band is larger than that at
the red if the following condition is satisfied:

log aph(440)Δaph(440) < −1.562 (47)

The analytical expressions in equations (36), (40) and (44) show that the errors are related
to absolute values of the IOPs. Therefore, the three error components are expected to be
correlated to water turbidity, and hence to each others. The results of the numerical examples
also demonstrate that the errors of bspm(λ) and adg(λ) will be larger at the blue than that at the
red if the relative errors of bspm(550) and adg(440) satisfy equations (36) and (40), respectively.
Whereas the error in aph(440) will propagate to other wavelengths following equation (44)
and will be larger at the blue if the condition in (47) is satisfied.

8. Advantages and limitations of error estimation methods

Estimated errors from the deterministic method (Bates & Watts, 1988) did not correspond to
the actual values of RMSE. This is due to the atmospheric and noise radiometric fluctuations.
These fluctuations are imbedded in the observed signal and do not vary with IOPs values,
i.e. different response function. Their large fluctuations may cause an ill-conditioned Jacobian
matrix that produces erroneous estimates, see (Bates & Watts, 1988, pp.59, cf. 1.36 ). It should,
nevertheless, be emphasized that the deterministic method is a well established technique to
estimate retrieval errors. It can be used for the quantification of the combined accuracy of
ocean color models and the parameterizations of IOPs, or model-parametrization setup. Its
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application produces a single (or ensemble) uncertainty measure for the collective errors in
the derived IOPs relative to the radiometric uncertainty without the need for model inversion
or prior information on the radiometric errors.

Error decomposition exercise shows that atmospheric and NER induced errors can be better
quantified when prior knowledge is available. This is important for ocean color band ratio or
single band algorithms, e.g. (Austin & Petzold, 1981; Salama et al., 2004). These algorithms are
empirical in nature, i.e. Jacobian matrix is not available. In this case, deterministic methods
to derive the error are not applicable. In contrary, the presented stochastic method is generic
and can be applied to quantify the error of any derived bio-geophysical parameter regardless
of the used derivation method. This is true if, beside to the derived quantity, two other values
are known a priori so the IOP-triplet can be constructed.

The prior values were inferred from the quantiles of the populations. In practice this
information is not available but it could be estimated from historical measurements or high
temporal observations. The later, high temporal sampling, can be realized using sensors on
board of geostationary satellites to quantify marine bio-geophysical parameters. For instance,
the visible band of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board of
the METEOSAT second generation satellite (MSG) can be used to quantify the concentrations
of SPM (Neukermans et al., 2008). With MSG 15 minutes of repeated sampling cycle, the
stochastic method can be applied on three consecutive acquisitions, i.e. each 45 minutes, to
produce SPM concentration and related-error maps. This error map provides vital input to
the recently developed SPM assimilation model (Eleveld et al., 2008). Moreover it can be used,
as weights, for ocean color products merging (Pottier et al., 2006). This generality aspect of
the presented stochastic method expands its applicability to different fields other than ocean
color. For example, Velde van der et al. (2008) developed a basis for Synthetic Aperture Radar
(SAR)-based soil moisture downscaling methodologies.

One limitation of the presented stochastic method is the choice of the acceptance-rejection
method. Although it facilitates the search for a unique pair of N(0,1) values, the derived σ
become sensitive to the ratio in (23), i.e. sensitive to the lower and upper pair (iopu,iopl) in
the IOP-triplet. This may caused the 7∼10% failure to reproduce the values of the standard
deviation. This can be attributed to the small values of α � 1 which produce large values of
σ. These large values will further be magnified by equation (30).

Using equation (Bates & Watts, 1988, pp.59, cf. 1.36) to estimate the total error as a linear
sum of all other error components is another limitation. Atmospheric or noise radiometric
fluctuations can be interpreted, by model inversion, as high/low IOPs values with high
goodness-of-fit. Using the same reasoning, bad fit to very complex signal (turbid water with
high SPM, CDOM and Chl-a contents) can be attributed to atmospheric and sensor noise
errors, although the observed signal might be error-free.

Model-sensor error tables were simulated from IOCCG data set without accounting for
sensor’s band width and response function. A more detailed simulations that includes band
width, response function of the sensor and a specific range of the IOPs should be carried out
to establish a more accurate model-sensor error tables.

Although we showed that equation (34) is an acceptable approximation to the total variance,
the computed relative contribution of errors should be treated with caution.
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9. Summary and future developments

In this chapter we reviewed the recent advances in uncertainty estimation of the earth
observation products of water quality. Both deterministic and stochastic methods are
presented and their results are inter- compared. The stochastic method is more appropriate
to estimate actual errors of ocean color derived products than the deterministic methods,
however, it is still limited to few studies and as the deterministic approach requires prior
information. The uncertainties could be decomposed only if additional information is
provided a priori. Using a simple exercise it was shown that atmospheric-induced errors
are major contributors to the total error of IOPs whereas model-induced errors are inherent to
the derived IOPs depending on the used derivation method and number of spectral bands.

The error in this chapter was estimated as the difference between ground truth measurement
and satellite derived products. Direct matching between earth observation data and just
above the water field measurements imbed, however, an inherent scale difference. This
scale difference between in-situ observation and a pixel of ocean color satellite is at least
three to four orders of magnitude for nadir match-up sites and much larger for off-nadir
ones. This huge scale difference, means that point measurement is sampling a tiny fraction
of the water body which is observed by a satellite pixel. Few studies were carried out to
address the scale difference between point and aerospace measurements directly. Most of
these studies have used re-sampling to smooth out the scale differences in the match-up
sites, see (Bailey & Werdell, 2006; Bissett et al., 2004; Harding Jr. et al., 2005; Hu et al.,
2000). For example, Hyde et al. (2007) applied a correction algorithm to SeaWiFS products of
chlorophyll-a to overcome the mismatch which was partially due to sampling size differences.
Although this assumption of spatial homogeneity have resulted in good matches for most
open ocean matchup data (Carder et al., 2004; Garcia et al., 2005; Karl & Lukas, 1996; McClain
et al., n.d.), it lowers the percentage of usable match-up points considerably (Hooker &
McClain, 2000; Mélin et al., 2005) and should be avoided for productive waters (Chang &
Gould, 2006; Darecki & Stramski, 2004; Harding Jr. et al., 2005). Salama & Su (2010; 2011),
used the differences between the earth observation products and in situ data to quantify
the sub satellite pixel spatial viabilities using both the deterministic and stochastic methods,
respectively and neglecting the error. In principle the mismatch between earth observation
derived products and in situ measured quantities is attributed to the scale difference and errors
due to noise, correction and retrieval accuracy. Current uncertainty estimation methods do not
consider the spatial dependency of errors and their relationships to the actual distribution of
IOPs. Understanding the spatial characteristics of errors is necessary to resolve the smallest
sub-scale variability of the IOPs. This aspect should be investigated in the future to define
spatial-thresholds of measurable physical processes based on their errors. Moreover, the
dependency of both deterministic and stochastic methods on the radiometric uncertainties
limit their accuracy and application to cases where such data are available with an acceptable
degree of confidence. A self-consistent and operational method is still required to estimate
the uncertainties of IOPs without additional inputs or assumptions on the radiometric
fluctuations.
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