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Preface

The contents of this book are related to studies of vortices measured in the earth and planetary
sciences together with vortex dynamics related to different fluid problems. The 13 chapters that
are presented in the book are directed to the detailed analysis of vortex dynamics in general flow
problems together with studies of the presence, evolution, and dynamics of vortices in physical
processes of general knowledge. The book is intended to serve as a reference guide to scientists,
engineers, and students with an interest on the advances in those areas of research.

The book first provides information on vortices measured in the plasma wake of planet Venus
and then on the interaction of tropical cyclones with a dipole vortex in the Earth. In addition, a
study on vortices and waves in rotating shallow water applying to the earth’s atmosphere is
also presented. Studies on vortex dynamics in fluid problems first describe the modeling of
the distribution of airplane wake vortex and then on interfaces in free-shear layer flows. Axi‐
symmetric flows with swirl in vorticity stream functions are then described, and thermal con‐
ductivities and fluid layer effects are examined. The dynamics of vortices in relativistic fluids
are also examined together with a study of the gyrotropic dynamics of magnetic vortices.
Two-dimensional solitons and vortices are at the same time discussed together with a relaxa‐
tion theory for point vortices. Contributions related to the dynamics of vortices observed in
other fields of observation are also presented by discussing the development of the vortex bio‐
reactor and also vortex spinning systems in vortex yarn structures.

Much of what is described in the book is updated information on issues that further improve
the importance of vorticity to the understanding of problems in fluid dynamics and also the
application of those problems to many scientific goals. This statement is primarily directed to
emphasize the advantages of fluid dynamics in the mathematical follow-up of basic matters in
science. The edition of the book was conducted through the initiative of InTech with the pro‐
fessional work of its staff. The contribution of many scientists and researchers in various areas
included in the book provides a substantial amount of innovative information that improves
our understanding of vortex dynamics.

Much of the revision of the contents of this book was derived from the participation of the editor
on the application of fluid dynamics to various physical problems. The initiative to carry out that
effort in response to the invitation by the editorial board of InTech originated from contact with
various colleagues who provided useful information in various areas of research in fluid dynam‐
ics. Important participation was first contributed by Dr. A. Poveda at UNAM, by Dr. M. Dryer at
NOAA, and later by Prof. E. N. Parker at the University of Chicago. Encouragement has been
available from Guadalupe Hernandez Ramos and other family members and remains in memory
from that of his late parents (Jesus Pérez-de-Tejada and Rogelia Jaime).

Professor Héctor Pérez-de-Tejada
Institute of Geophysics, UNAM

Ciudad Universitaria, Mexico City, Mexico
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Vortex Structure in the Plasma Flow Channels of 
the Venus Wake

Héctor Pérez-de-Tejada, Rickard Lundin and  
Devrie S. Intriligator

Additional information is available at the end of the chapter

Abstract

An overall description of the solar wind that streams into the Venus wake and the iono-
spheric plasma that is driven from that planet’s magnetic polar region is examined from 
measurements conducted with the various spacecraft that have probed the Venus plasma 
environment (Mariner 5, Venera 9-10, Pioneer Venus Orbiter, Venus Express). It is shown 
that the plasma properties in the Venus wake describe conditions that are less suitable for 
steady gyrotropic trajectories of the planetary particles but require the assumption that 
they are also subject to a fluid dynamic description that introduces structures similar to 
those generated through kinetic forces. Most notable is that there is evidence of deceler-
ated solar wind proton fluxes measured within plasma channels that are mostly popu-
lated by outflowing planetary ions and that the solar wind particles moving in the wake 
execute trajectories that resemble motion along a vortex shape with motion directed even 
back toward the planet in the Venus inner wake. The plasma flow channels are mostly 
restricted to the vicinity of the midnight plane and extend downstream from the mag-
netic polar region.

Keywords: solar wind in the Venus wake, vortex structures in the Venus wake, plasma 
channels in the Venus ionosphere, erosion of the Venus ionosphere, acceleration of 
planetary ions in the Venus wake

1. Introduction

From the early measurements of the Venus plasma environment conducted with the Mariner 5 
and the Venera 9-10 spacecraft it was noted that the profiles of the dynamic  properties of the 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



solar wind particles and those of its convected magnetic field exhibit sudden fluctuations 
that reveal sharp variations of the particles’ physical properties and that result from insta-
bilities unrelated to steady gyrotropic trajectories. At the same time, measurements show 
changes in the temperature and speed of the solar wind that indicate variations different 
from those produced by mass loading with planetary ions. A suitable example was provided 
from measurements conducted with the Venera spacecraft [1] and that are reproduced in 
Figure 1. The temperature and speed profiles obtained as the vehicle probed the Venus wake 
show a bow shock crossing by 00:00 MT, which is marked by a brief burst in the ion tempera-
ture profile and a minor decrease in the speed profile. Further within the boundary layer 
of the Venus wake there is a more noticeable transition marked with a sudden increase of 
the ion temperature by 01:50 MT, which is followed by a subsequent rise downstream with 
irregular sharp changes before reaching a third transition by 03:00 MT at the outer extent 
of the wake. Together with such variation there is also a sharp decrease of the solar wind 
speed at the same transition by 01:50 MT and that is followed with subsequent lower values 
further downstream leading to a velocity boundary layer. The presence of that sharp transi-
tion is significant in the sense that marks a feature unexpected from mass loading processes 
where gradual changes in the plasma properties should be produced when approaching 
the planet. Most notable, however, is the fact that enhanced ion temperatures are encoun-
tered at and downstream from that transition. The higher temperatures revealed from the 
data in Figure 1 at and downstream from that transition are not expected either from mass 
loading processes but suggest that other physical processes become dominant. At the same 
time, the various temperature ion peaks shown in the temperature profile downstream from 
the plasma transition at 01:50 MT indicate variations more accordant with instabilities than 
with conditions expected along a steady gyrotropic trajectory. Additional information on 
enhanced plasma temperatures within the boundary layer of the Venus wake and that was 
measured with a different experiment in the Venera spacecraft [2] was obtained from data 
taken in different orbits. Their results show that enhanced temperatures are measured with 
decreasing distance from the wake in a pattern that could not be expected from mass load-
ing processes.

Equally significant are the kinetic and thermal speed profiles together with the magnetic 
field profiles that were reported from the flyby of the Mariner 5 spacecraft along and near 
the Venus wake as it moved towards the dayside [3, 4]. Such profiles are reproduced in 
Figure 2 to show that enhanced thermal speed values UT and hence larger ion tempera-
tures are measured across a boundary layer located between −100 min and −40 min before 
closest approach throughout the crossing of that spacecraft around Venus. Strong and fre-
quent changes in the magnitude and direction of the magnetic field are also observed (top 
panel). The observed fluctuating orientation of the magnetic field leads as well to question 
the conventional description of the motion of the planetary ions in terms of steady gyro-
tropic trajectories since their acceleration through the convective electric field of the solar 
wind will be rapidly modified to produce, instead, stochastic trajectories. Similar fluctuat-
ing variations of the magnetic field direction were also recently reported from the Venus 
Express measurements conducted in a comparable region of the Venus wake [5].
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As a whole, the experimental evidence indicates that mass loading processes and gyrotropic 
trajectories derived from the application of a steady convective electric field of the solar wind 
to the planetary ions are not sufficient to account for the observed changes in the plasma 
properties in the Venus magnetosheath; namely, the presence of a sharp plasma transition 
embedded in that region together with enhanced ion temperatures seen at and downstream 
from that transition.

Figure 1. Ion speed and temperature measured along the orbit of Venera 10 on April 19, 1976. The orbit of Venera is 
shown at the top. The temperature burst was recorded during a flank crossing of the shock wave. The boundary layer is 
apparent by the increase in temperature and decrease in speed and is bounded by the intermediate transition at position 
labeled 2. The discontinuity in the boundary layer temperature profile corresponds to the boundary of the magneto-tail. 
Moscow time (MT) is shown along the abscissa [1].
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Figure 2. (Upper panel) Magnetic field signature (magnitude |B| and direction angles), thermal speed UT, density n, and 
kinetic speed U of the solar wind measured near Venus with the Mariner 5. (Lower panel) Flyby trajectory of the Mariner 
5 near Venus in cylindrical coordinates [3].
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2. Magnetic and kinetic forces

It is currently accepted that magnetic forces are sufficient to drive planetary ions away 
from the Venus wake. From measurements conducted with the Venus Express spacecraft it 
has been found, however, that conditions in the wake show the opposite since the motion 
of the plasma particles is super-Alfvenic [6]; namely, their kinetic energy density is larger 
than the local magnetic energy density. An example of this behavior is shown in Figure 3 
where the energy spectra of the solar wind and those of the O+ planetary ions measured in 
orbit 123 of the Venus Express are shown in the top panels. Their density and speed values 
(third, fourth, and fifth panels) together with the magnetic field intensity (bottom panel) 
lead to the kinetic energy density of the particle ions in the wake and the magnetic energy 
density profiles that are shown in Figure 4. Those profiles are important since they unveil 
that the kinetic forces in the wake are dominant in directing the motion of the planetary 
ions. As a result, the effects of the magnetic forces in the region where the planetary ions 
are measured are not dominant. In those regions the magnetic forces do not dictate the 
manner in which the planetary ions stream and are distributed through the wake. Much 
of this behavior is conducted through wave-particle interactions that enable the planetary 
ions to become accelerated and produce in turn the enhanced plasma temperatures that are 
measured at and downstream from the plasma transition in the magnetosheath as shown 
in Figures 1 and 2.

Different from the conditions encountered within the magnetic barrier in the vicinity of the 
dayside ionopause where the local solar wind flow is subalfvenic and thus the magnetic forces 
become dominant in the acceleration of the planetary ions, the recovery of the solar wind flow 
as it streams around Venus towards the wake leads to a plasma regime in which kinetic forces 
are strengthened and dominate the motion of the planetary particles. Such peculiar evolution 
can be appreciated in the magnetic field profile in Figure 3 where small (≤ 5 nT) magnetic 
field intensity values are measured (between 01:30 UT and 01:50 UT) by the (01:45 UT - 01:55 
UT) time range where the kinetic energy density of the planetary ions is large as it is shown in 
Figure 4. As a result, the trajectory of those particles is guided in a manner different from that 
produced by magnetic forces and their motion should be more accordant with that expected 
from fluid dynamics. In particular, the solar wind flow that streams over the magnetic polar 
regions of the Venus ionosphere where smaller magnetic field intensity values are measured 
may directly carve the upper ionosphere and produce plasma flow channels that extend 
downstream into the wake. Evidence of those features is available from measurements in the 
Pioneer Venus Orbiter (PVO) and in the Venus Express spacecraft (VEX). In the PVO plasma 
data there are regions within the nightside ionosphere where the local electron density drops 
to small values in the form of ionospheric holes [7]. In such regions there are enhanced mag-
netic field intensity values but, in the wake, the measured magnetic field decreases and the 
speed and density of the solar wind lead the planetary ions to move under superalfvenic flux 
conditions.

The data in Figure 3 provide a good example where the speed and the density of the H+ and 
the O+ ions together with the low magnetic field intensity values measured in the near wake 
in the 01:30–01:50 UT time interval lead to a super-Alfvenic ion flow as shown in Figure 4.

Vortex Structure in the Plasma Flow Channels of the Venus Wake
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An important property of the plasma flow channels that have been further identified in the 
Venus wake from the Venus Express measurements is that they are observed mostly in the 
vicinity of the midnight plane as they evolve from the magnetic polar region. The plasma 
data reproduced in Figure 3 is useful to stress this property since the planetary ions detected 
as the spacecraft approached the planet from the wake (in the 02:30–02:40 UT time interval) 
are located at small Y ~ 0.05 coordinate values and thus in the vicinity of the midnight plane. 
In such time interval there is evidence of O+ ion fluxes together with decelerated solar wind 
protons (with spectra in the 10–100 eV energy range) showing that a large fraction of their 

Figure 3. Energy spectra of H+ and O+ ion fluxes (first and second panels) measured in the Venus wake during orbit 
123 of the Venus Express spacecraft [6]. Density and speed values of those ion components are shown the third, fourth, 
and fifth panels. The magnitude and the components of the magnetic field vector are shown in the bottom panel.
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momentum has been transferred to the planetary ions. In fact, from the speed and the density 
profiles obtained from the spectra of both ion components it is found that at the two consecu-
tive measurements when VEX moved across the plasma channel (at ~ 02:34 UT and at ~ 02:38 
UT) the local deficiency in the value of the momentum flux of the solar wind protons is nearly 
equal to the momentum flux of the O+ ion fluxes obtained in each measurement. The outcome 
of this result strongly supports the view that an efficient erosion process occurs between the 
solar wind protons and the planetary ions.

As it is indicated schematically in Figure 5, the observation of outflowing planetary ion 
fluxes within the wake is mostly restricted within the plasma channels and in the vicinity 
of the magnetic polar region near the midnight plane, but the erosion process should not be 
dominant by the flanks of the wake. This constraint provides an explanation for the absence 

Figure 4. (Lower panel) Kinetic pressure of the O+ ions (profiles marked in red) and the H+ ions, together with the 
profile of the magnetic field pressure measured through the Venus wake during orbit 123 of the Venus Express 
spacecraft [6]. (Upper panel) Ratio values of the total kinetic pressure of the plasma to the magnetic field pressure 
derived from the profiles shown in the lower panel. The outbound bow shock crossing occurs at ~02:53 UT and the 
peak value of that ratio detected at ~01:50 UT is provided by the kinetic pressure of the O+ ions.
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of ~keV solar wind proton fluxes in an ionospheric hole reported from VEX measurements at 
large angles from the midnight plane and in the vicinity of the equator [8] (see their Section 
4.2). In fact, along the VEX trajectory in the 19 May 2010 orbit reported in Figure 2 of [8] 
(between 05:21:37 and 05:30:15 UT) the spacecraft is located by 0.73 < Y < 0.87 RV and between 
Z = −0.12 and Z = 0.21 RV and thus far from the midnight plane and close to the equatorial 
plane, and also far from a magnetic polar region since 1.45 < X < 1.72 RV. Consequently, the 
statement indicated in [8] in the sense that H+ ions fluxes are not measured at the time when 
the Venus Express is within an ionospheric hole is incorrect. In fact, the spectra of the deceler-
ated solar wind protons shown in Figure 3 were obtained as the spacecraft traveled through 
a plasma channel in the close vicinity of a magnetic polar region near the midnight plane.

3. Vortex structure in the Venus wake

From the early analysis of the motion of the solar wind in the Venus wake with the PVO 
plasma data it was noted that in specific orbits the solar wind fluxes can be directed back 
into the planet from the wake [10, 11]. The velocity distribution of those particles in the inner 
wake is reproduced in Figure 6 (upper panel) in cylindrical coordinates to indicate that the 
solar wind ions are forced to execute a nearly ~180° turn in their trajectory direction follow-
ing the form of a fluid dynamic vortex structure. This issue was more extensively examined 
using the Venus Express measurements by collecting the direction of motion of the solar wind 

Figure 5. Schematic view of plasma flow channels that form by the magnetic polar regions of the Venus ionosphere and 
that are then deviated toward the dawn side (+Y) direction, together with the region above them where planetary ions 
are eroded by the solar wind [9].
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ated solar wind protons shown in Figure 3 were obtained as the spacecraft traveled through 
a plasma channel in the close vicinity of a magnetic polar region near the midnight plane.

3. Vortex structure in the Venus wake

From the early analysis of the motion of the solar wind in the Venus wake with the PVO 
plasma data it was noted that in specific orbits the solar wind fluxes can be directed back 
into the planet from the wake [10, 11]. The velocity distribution of those particles in the inner 
wake is reproduced in Figure 6 (upper panel) in cylindrical coordinates to indicate that the 
solar wind ions are forced to execute a nearly ~180° turn in their trajectory direction follow-
ing the form of a fluid dynamic vortex structure. This issue was more extensively examined 
using the Venus Express measurements by collecting the direction of motion of the solar wind 

Figure 5. Schematic view of plasma flow channels that form by the magnetic polar regions of the Venus ionosphere and 
that are then deviated toward the dawn side (+Y) direction, together with the region above them where planetary ions 
are eroded by the solar wind [9].
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particles observed in many orbits across the Venus wake [12]. A summary of those results is 
reproduced in Figure 6 (lower panel) where the solar wind velocity vectors are also presented 
in cylindrical coordinates. The figure applies to the Venus inner wake where the velocity vec-
tors clearly show a gradual deviation away from the incident solar wind direction until they 
become oriented back into the planet (R. Lundin, personal communication 2016). An alterna-
tive interpretation of the sunward directed motion of the solar wind particles in that region in 
terms of magnetic forces is not consistent with the measured super-Alfvenic flow conditions 
in which the kinetic energy density of the plasma in the wake is larger than the local magnetic 
field energy density [6].

A useful configuration of the velocity vectors in a vortex flow structure is also available 
from their projection on the YZ plane (perpendicular to the solar wind direction) which 
is reproduced in Figure 7 [13]. While the region of observation mostly extends over the 
southern hemisphere in the near wake (X < −1.5 RV) there is a clear rotation of the veloc-
ity vectors centered around a position located north from the ecliptic plane (at Z = 0) and 
east from the midnight plane (at Y = 0). Also peculiar is that the magnitude of the velocity 

Figure 6. (Upper panel) Velocity vectors of the solar wind ion fluxes measured during different energy cycles marked 
with rectangles in two PVO orbits projected on one quadrant across the Venus wake in cylindrical coordinates [10, 11]. 
(Lower panel) Average updated direction of solar wind ion fluxes collected from many VEX orbits projected on 
cylindrical coordinates (Lundin, R., personal communication, 2016).
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vectors directed toward positive Y values by the upper part of the diagram is larger than 
that of the velocity vectors directed toward negative Y values in the lower part of the dia-
gram. This difference may imply that the velocity vectors of the solar wind particles have 
a larger component along the Sun-Venus direction (away from the figure) in the Southern 
Hemisphere thus producing a more extended vortex structure along the X-axis in that 
hemisphere. Further studies are required to examine the rotation period of the solar wind 
as it moves in the vortex structure together with its evolution and extent in the YZ plane. 
Much of what has been addressed here stresses the value of fluid dynamic concepts to the 
interpretation of the plasma data and that has been obtained in measurements around 
Venus and in its wake [14]. However, the physical principles that substantiate the fluid 
response of the solar wind as it streams around the Venus ionosphere and that should be 
related to wave-particle interactions among the particle populations have not yet been 
properly identified.

In summary, from the analysis of the plasma and magnetic field measurements conducted 
with various spacecraft across the Venus wake it has been learned that planetary ions that 
stream in the vicinity of the midnight plane are mostly seen to be accelerated by the kinetic 

Figure 7. Velocity vectors of the solar wind H+ ions (1-300 eV) measured with the Venus Express spacecraft in the Venus 
near wake when projected on the YZ plane transverse to the solar wind direction (Y and Z are the horizontal and the 
vertical axis). Data are averaged in 1000 × 1000 km columns at X < −1.5 RV [13].
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energy of the solar wind rather than by the local magnetic field forces. Plasma channels 
with decelerated solar wind ion fluxes are mostly detected near the midnight plane, and 
contrary to the claims made in Ref. [8], there should not be a conflict when they are not 
encountered by the equatorial flanks of the wake and far from the midnight plane [15]. 
Under such conditions the decelerated solar wind ions follow trajectories that are con-
sistent with fluid dynamic motion and that lead them to produce vortex structures in the 
Venus wake.
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Abstract

The purpose of this chapter is to discuss certain disturbances around the pole of a
Venus–type planet that result as a response to barotropic instability processes in a zonal
flow. We discuss a linear instability of normal modes in a zonal flow through the
barotropic vorticity equations (BVEs). By using a simple idealization of a zonal flow,
the instability is employed on measurements of the upper atmosphere of Venus. In 1998,
the tropical cyclone Mitch gave way to the observational study of a dipole vortex. This
dipole vortex might have helped to intensify the cyclone and moved it towards the SW.
In order to examine this process of interaction, the nonlinear BVE was integrated in time
applied to the 800–200 hPa average layer in the previous moment when it moved
towards the SW. The 2-day integrations carried out with the model showed that the
geometric structure of the solution can be calculated to a good approximation. The
solution HLC moves very fast westwards as observed. On October 27, the HLA headed
north-eastward and then became quasi-stationary. It was also observed that HLA and
HLC as a coupled system rotates in the clockwise direction.

Keywords: polar vortices Venus, barotropic vorticity equation, normal mode instabil-
ity, tropical cyclone, American monsoon system.

1. Introduction

The air at the equatorial regions rises when heated by the sun and as it does, it cools down and
sinks. Rising air creates low pressure, sinking air creates high pressure. High altitude winds
move towards the poles and surface winds move towards the equator, creating a simple
convective motion known as the Hadley cells. These Hadley cells are the atmospheric circula-
tion system driven by solar heated ground. On Earth, the Coriolis effect breaks each circulation
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cell into several separate cells, which are easily visible from space. Global circulation or local
weather systems moves fromWest to East at mid–latitudes in the Northern Hemisphere (NH).
Two main factors that cause these patterns are atmospheric heating and planetary rotation.

Vortices are structures observed in planets with atmospheres. Earth, Mars, Venus, Jupiter and
Saturn. On Earth, these atmospheric vortices are called cyclones and anticyclones. A cyclone or
“Low” is a storm or a system of winds that rotates around a centre of low atmospheric
pressure. An anticyclone or “High” is a system of winds that rotates around a centre of high
atmospheric pressure.

Winds in a cyclone blow counterclockwise in the NH while they move clockwise in the
Southern Hemisphere (SH). Winds in an anticyclone blow in the opposite direction. Cyclones
that form over tropical regions are called tropical cyclones. The semi-permanent and transient
cyclones or anticyclones are associated with weather systems. Polar vortex, Bermuda High, the
Siberian High and the Aleutian Low are examples of semi-permanent systems. The subtropical
high pressure belts that exist in the atmosphere overlaps with the descending legs of the
Hadley cells. These semi-permanent subtropical centres of high pressure develop as direct
responses to solar heating produced by the differential heating of continents and oceans. The
role of the cyclones and anticyclones in the general circulation of the atmosphere is to exchange
heat and moisture between the equator and the poles.

The polar vortex, also called “Circumpolar vortex”, is an upper level low-pressure zone, with a
prevailing wind pattern that circulates in the Arctic, flowing from west to east lying near the
Earth's pole, that is usually kept in place by the jet stream that divides cold air from warm air.
The jet stream is a relatively narrow band of strong winds in the upper levels of the atmo-
sphere that blow from West to East; however, it often shifts to the North or South. The
strongest occurrence of jet stream takes place during both the Northern and Southern Hemi-
sphere winters. The 50� −60� N=S region is where the polar jet is located with the subtropical
jet near 30� N. The interface between the cold dry air mass from the pole and the warm moist
air mass from the south, defines the location of the polar front, extending from the surface up
to the troposphere. An upper-level front on Earth is usually associated with the mid-latitude
jet [1], while the cold collar on Venus is a ring of cooler air that surrounds the polar vortex and
which denotes a darker area between 60� and 80� [2].

The Earth and Venus are about the same size. Venus has a radius of av ¼ 6051:8km and the
Earth has a mean radius a ¼ 6371 km: Venus moves around the Sun, completing one orbit in
every 224 earth days. Most of the planets and the sun in our solar system rotate in the counter-
clockwise direction when viewed from above their North Poles. Venus, however, rotates in the
opposite direction. Venus spins extremely slowly, completing one rotation every 243 earth
days, so on Venus the Coriolis effect is very weak. It is also weak in Earth’s tropics. A day in
Venus is longer than its year. Venus's retrograde turn means that the planet's North Pole
actually lies below the ecliptic plane.

The atmosphere on Venus is extremely dense, the temperature increases downwards from
100 to 40 km except in an inversion layer about 60−70km. The range of 1−360mbar have altitudes
of 55–85 km, with surface pressures of 90 mbar and clouds beginning at 43 km [3]. In 1974, a
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hemispheric vortex centred at the South Pole of Venus was observed at the time of Mariner 10.
In 1979, images of Venus from Pioneer showed a similar vortex at North Pole. The winds were
stronger at the equator, and slowed down towards the poles, creating a visible “V” shape on
images of the cloud layers. In fact, the Venus clouds upper-deck rotates around the planet in
just 4–5 days, which is in a much faster pace than in the underlying surface [4]. This is called
super-rotation, because it is in the same direction as the rotation of the planet, but much
stronger. The super-rotation is not that of an actual rigid body. Two essential questions remain
to be answered: what are these eddies at the polar region? Where do they come from? They
come from the processes of barotropic instability [5]. In Section 2, the fact that certain distur-
bances around the Venus pole arise as a response to barotropic instability processes of a zonal
flow is demonstrated.

On Earth, tropical cyclones originate over tropical or subtropical regions in the Indian Ocean,
western North Pacific and South Pacific Ocean, forming between 5� and 30� N and typically
move westwards, north and north-westwards. When tropical cyclones reach subtropical lati-
tudes, they often move north-eastwards. Also, the coasts of Mexico and Central America are
influenced by the presence of the northern Atlantic and north-eastern Pacific tropical cyclones.
A question remains to be answered on the movement of tropical cyclones: what pushes them
south-westward. In particularly, tropical cyclone Mitch moved south-westward by October
26–30, [6]. The overall motion of Mitch was slow, less than 5mph, this resulted in a tremendous
amount of rainfall, primarily over Central America, which killed thousands of people. Section
3 of this present chapter, provides an observational study of a dipole vortex associated with the
tropical cyclone Mitch, and the barotropic vorticity equations (BVEs) used to study the move-
ment toward Southwest. The dipole vortex is an interesting feature that occurs during the
intersection of the local summer months (September–November), formed in coupled monsoon
systems: the late North American monsoon system (NAMS) and early South American mon-
soon system (SAMS).

2. Polar vortices in planetary atmosphere

A polar vortex, also known as the “Circumpolar Whirl”, is a large-scale circulation in the
middle and upper troposphere, generally centred in the Polar Regions. These polar vortices
form when heated air from equatorial latitudes rises, and then spirals towards the poles. In
fact, the upper deck of clouds on Venus rotates around the planet much faster than the
underlying surface. This is also called super-rotation, because the rotation is in the same
direction as the rotation of the planet, but faster [4].

At the cloud top altitude of 67−72km, the main properties of the mean zonal velocity profile
are well known. Hueso and Sanchez-Lavega [3] presented an update on the average zonal
and meridional mean profile wind of the upper cloud at 66−73km for Venus SH from −90� to
near −5� as observed with VIRTIS-M UV day-side data. Comparing with previous results by
Sanchez-Lavega [7] and Moissl [8], they present the same general behaviour at all altitudes.
Moissl [8] showed that a profile zonal wind from −85� to 20� with a zonal wind speed of
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85� −90m=s almost constant with latitude is observed at low latitudes. The latitude zonal
wind profile shows a gradually increase reaching 100m=s near 45� S, indicating the presence
of a weak midlatitude jet. South of this latitude the wind speed decreases to zero towards
the poles.

We assume that there is a similar circulation in the Northern Hemisphere in Venus, as
observed in the “V” shaped clouds that move westwards. Therefore, we may be reconstructing
a simple idealization of a symmetric zonal flow around Venus’ equator based on the measure-
ments taken from the upper atmosphere of Venus broadly consistent with the work of Refs. [3,
7, 8, 9]. This latitude profiles of symmetric zonal wind at the upper cloud layer at 66−73km is
shown in Figure 1.

In latitudes between −50� and 50�, strong winds of up to 100 m=s with –10 m=s oscillations
were observed. In latitudes between −4� and 4� strong winds of up to −108 m=s were observed,
indicating the presence of a weak jet near the equator. Zonal winds closer to the poles gradu-
ally slowdown at latitude of about 48� on Venus. In both the Northern and Southern Hemi-

spheres a small jet stream was found along with a meridional shear of ∂u∂y ¼ −0:027ms−1km−1 [3].

Figure 1. Zonal wind profiles idealized at the upper cloud layer of Venus taken and adapted from Ref. [3]. The horizontal
axis is μ ¼ sinφ:
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Venus’ atmosphere can be divided into two broad layers. The first layer rotates in 4 Earth days
and the second one is underneath. Let the height of Venusian atmosphere be Hv, we may
consider that the Venusian atmosphere resides between two concentric spheres with different
radii av and avt ¼ av þHv. Assuming that the mean level of this spherical shell rotated around
the planet in just 4 Earth days or at an angular velocity Ωva ¼ −2:893· 10−6s−1, it would be
much faster than the underlying surface or Venus angular velocity Ων ¼ −3 · 10−7 s−1.

Widely used to understand many features of the large scale dynamics of the barotropic Earth
atmosphere, we might consider the vertical component of the barotropic vorticity equation
(BVE) for an ideal fluid non-divergent on a unit sphere S, which can be written in the non-
dimensional form as follows [10]:

∂ΔΨ
∂t

þ JðΨ,ΔΨþ 2μÞ ¼ 0 (1)

whereΨðλ,μÞ denotes the stream function. The spherical coordinates are longitude λ, latitude φ
or μ ¼ sinφ, −π≤λ≤π, − π

2 ≤φ≤
π
2. Δ is the Laplace operator on a sphere and JðΨ, ηÞ is the Jacobian

operator. The equation is non-dimensionalized with the Earth radius a as the length scale and the
inverse of the Earth angular velocity 7:292 · 10−5s−1 as the timescale. The relative vorticity is
ξ¼ ΔΨ and the absolute vorticity is η ¼ ξþ 2μ. On Venus, the Coriolis parameter would be
neglected, since it is two orders of magnitude lower than the Earth’s one. The relative vorticity
expressed in terms of wind vector ðu, vÞ:

ξðλ,μÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
1−μ2

p ∂ν
∂λ

−
ffiffiffiffiffiffiffiffiffiffi
1−μ2

q ∂u
∂μ

þ μuffiffiffiffiffiffiffiffiffiffi
1−μ2

p (2)

Where

u ¼ −
ffiffiffiffiffiffiffiffiffiffi
1−μ2

q ∂Ψ
∂μ

, ν ¼ 1ffiffiffiffiffiffiffiffiffiffi
1−μ2

p ∂Ψ
∂λ

(3)

are the velocity components that relates to the stream function.

Eq. (1) captures many features of the large scale dynamics of the barotropic Earth’s atmo-
sphere, providing better understanding of the low–frequency variability, teleconnection pat-
terns and the synoptic blocking events [11–15]. A mechanism that generates low-frequency
variability is the instability of non-zonal basic flow as proposed by Simmons et al. [11]. The
four classes of BVE (for ideal flow) solutions known by now are the simple zonal flows ~Ψ ðμÞ
and more complicated flows called Rossby–Haurwitz (RH) waves, Wu–Verkley waves [16]
and modons [17–21].

The temperature and pressure on Earth are similar to those above 50 km on Venusian atmo-
sphere. This implies that Earth's BVE can be applied to Venus middle atmosphere [2, 5]. The
instability caused by the existence of a sufficiently large horizontal shear in the wind field of a
basic flow is known as barotropic instability [22]. In continuation with the study of that polar
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dipole vortex might result from the barotropic and baroclinic instabilities of the Venusian
atmosphere [5, 23–25]. We were interested in exploring the instability of a zonal flow in
super-rotation and the instability of zonal basic flow as shown in Figure 1.

In order to examine the resulting perturbation in the linear barotropic model, Skiba and Perez–
Garcia [26] developed a numerical spectral method for normal mode stability study of ideal
flows on a rotating sphere, which was tested on zonal flows [27].

The linearized equation for ξ
0
is:

∂ξ
0

∂t
þ Jð ~Ψ, ξ

0 þ 2μÞ þ JðΔ−1ξ
0
, ~ξ þ 2μÞ ¼ 0; (4)

Where ξ
0 ¼ Δψ

0
is relative vorticity of the perturbation, the wide tilde mark represents basic

flow, and primes refer to infinitesimal perturbation. In the form of a normal mode

ψ
0 ðλ,μ, tÞ ¼ Ψ̂ðλ,μÞeωt, ξ

0 ðλ,μ, tÞ ¼ ΔΨ̂ðλ,μÞeωt ¼ Gðλ,μÞeωt, (5)

leads to the spectral problem

LG ¼ ωG (6)

For the linearized operator LG ¼ Jð~G;Δ−1GÞ−Jð ~Ψ,GÞ, ω ¼ ωr þ iωi, is the eigenvalue, G the

eigenfunction and Ψ̂ðλ,μÞ ¼ Ψ̂rðλ,μÞ þ iΨ̂ iðλ,μÞ ¼ jΨ̂ðλ,μÞjeiθ is the amplitude. Here

θðλ,μÞ ¼ arg θðλ,μÞ ¼ arctan Ψ̂ rðλ,μÞ
Ψ̂ iðλ,μÞ

n o
is the initial phase of the mode. In the normal mode

(linear) stability analysis, the basic state must be regarded as a steady state. A mode ψ
0
is

unstable if ωr > 0, decaying if ωr < 0, neutral if ωr ¼ 0; and stationary if ωi ¼ 0.

A zonal basic flow with horizontal shear can be constructed analytically by ~ΨðμÞ ¼ w PnðμÞ in
which PnðμÞ is a Legendre Polynomial ðLPÞ, with μ ¼ sinφ, and w, an arbitrary constant. The
simplest super-rotation zonal flow is analytically constructed so that the equatorial easterly jet
streams (the mean zonal wind in the equatorial latitude is −105 m=s decreasing to zero at the
pole) are preserved with a weak easterly wind around poles: ~ΨðμÞ ¼ −wP1ðμÞ ¼ −wμðw ¼
−0:226 is the rotation velocityÞ. We used the Rayleigh-Kuo necessary condition for the instabil-

ity [28, 29]: Let ~ΨðμÞ be a zonal flow on the sphere, then a normal mode may be unstable only

if the derivative ∂~η
∂μ of the absolute vorticity ~η ¼ ~ΨðμÞ þ 2μ changes its sign at least in one point

of the interval ð−1;þ 1Þ. Since in the mean level of Venus’ atmosphere the absolute vorticity

~η ¼ ~ΨðμÞ þ 2rμ, where r ¼ −3:96 · 10−2, then in our case, ∂~η∂μ ¼ 2ðwþ rÞ is a constant and hence

there is no unstable normal mode, this is neutral. However for the zonal flow ~ΨðμÞ ¼ wPnðμÞ,
∂~η
∂μ ¼ 2r − wχn

∂Pn
∂μ where χn ¼ nðnþ 1Þ, then there is a critical amplitude w for developing the

instability, due to the sphere rotation [26, 27].
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Rossby-Haurwitz wave has proved to be very useful in interpreting the large-scale wave
structures in the Earth atmospheric circulation of middle latitudes. Not only should the zonal
wind profile be consistent with Venusian climatology (Figure 1), but attention must also be
given to the absolute vorticity of the zonal flow in the equatorial region. The effect of the mean
flow, given by a linear combination Legendre polynomials and a Rossby-Haurwitz wave, was
provied by Refs. [15, 27]. The zonal basic flow, demonstrated in Figure 2, can be approximated
by the following,

Figure 2. Isolines of the amplitudes Ψ̂ rðλ,μÞ of four most unstable modes corresponding to: ωr ¼ 86:08 ðaÞ,
ωr ¼ 64:31 ðbÞ,ωr ¼ 67:23 ðcÞ and ωr ¼ 47:61 ðdÞ.
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~ΨðμÞ ¼ ∑
5

j¼0
w2jþ1P0

2jþ1ðμÞ þ ∑
2

j¼1
w2jP0

2jðμÞ, (7)

where Pm
n ðμÞ is the associated Legendre function of degree n and zonal wave numberm, and w

0

are constants and w5 is very small. Then,

∂~η
∂μ

¼ 2r− ∑
5

j¼0
χ2jþ1w2jþ1

∂P0
2jþ1

∂μ
−∑

2

j¼1
χ2jw2j

∂P0
2j

∂μ
(8)

changes its sign at least in one point of the interval ð−1;þ 1Þ, and thus Eq. (7) may have
unstable normal modes.

Observational evidence indicates that the zonal flow pattern on the Earth can be approxi-
mately represented by a linear combination of seven Legendre polynomials of odd parity [15,
30]. The zonal flow has the maximum westerly of 33m=s at 35� North and South, and an
easterly wind of 5m=s at the equator. This zonal wind field resembles the upper troposphere
during the northern winter. The stability analysis showed that unstable perturbations are
observed in the neighbourhood of subtropical jets, and the dominant zonal wave number of
the modes are m ¼ 7 and m ¼ 5 (see Figure 3 of [15]).

However, Skiba [31] showed that for a zonal flow PL and a RHwave, the amplitude Ψ̂, of each
unstable or decaying mode must satisfy the condition,

Figure 3. Isolines of the monthly stream function multiplied by 107 for April (a) and May (b) mean 200-250 mbar
respectively. Tropical cyclone tracks in (a) are adapted from Ref. [36].
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χΨ̂ ¼ EðΨ̂Þ
kðΨ̂Þ (9)

where χΨ̂ is the square of Fjörtoft's [32] average spectral number of the mode amplitude Ψ̂,

and KðΨ̂Þ ¼ 1
2 ‖∇Ψ̂‖2 ¼ 1

2 ∑∞
n¼1 χn∑

n
m ¼ −n

��Ψ̂m

n

��2 and EðΨ̂Þ ¼ 1
2 ‖ΔΨ̂‖2 ¼ 1

2 ∑∞
n¼1χ

2
n∑

n
m ¼ −n

��Ψ̂m

n

��2

are the total kinetic energy, and entrophy of Ψ̂, and Ψ̂m
n is the Fourier coefficient.

In this part of our chapter we shall study the normal mode numerical stability, in the case of
zonal flow in Figure 1, then Eq. (6) is solved by representing all variables as series of spherical
harmonics, by employing triangular truncation T21 and by taking the Coriolis parameter as
2rμ. The main parameters of the first four most unstable modes, ω ¼ ωr þ iωi, spectral number
χΨ̂ of the mode amplitude, e-folding time τe ¼ 1

2πjωrj and period T ¼ 1
jωij of the mode are given

in Table 1.

As shown in Figure 2, for the first two most unstable modes, disturbances are located at the
northern side of the largest jet stream of the North Hemisphere and for the third most unstable
mode the disturbances are generated at the southern side of the largest jet stream in the South
Hemisphere. From Ref. [26] we get the equation that describes the evolution of the total kinetic

energy Kðψ0Þ of an infinitesimal perturbation ψ
0
to a zonal flow ~ΨðμÞ on sphere S,

dKðψ0 Þ
dt

¼ −∫
ffiffiffiffiffiffiffiffiffiffi
1−u2

p
ðu0

v
0 Þ � ∂~u

∂μ
ds − ∫

μffiffiffiffiffiffiffiffiffiffi
1−μ2

p ðu0
v
0 Þ � ~u ds (10)

The sign of dKðψ
0 Þ

dt depends on the signs of the products ðu0
v
0 Þ � ~u and ðu0

v
0 Þ � ∂u∂μ in various regions

of the sphere. In regions of generation of the energy of perturbations, the inclination of main
axes of localized perturbations in the stream function field must be opposite to the inclination
of zonal velocity profile, that is, in the regions where product ðu0

v
0 Þ � ∂u∂μ is positive [11]. Whereas

the first integral dominates principally at the sides of the jets located in the tropics and mid-
latitudes, the second integral can be significant in the central parts of strong jets, especially
when such jets are located in the polar regions, where μffiffiffiffiffiffiffi

1−μ2
p is large [26, 27]).

Figure 2(d) shows the four modes most unstable with the V shapes, along the equatorial
region. Data from the Vertis on Venus Express [33], also near the equator, show that similar

Modes ωr ωi χΨ̂ τe T

1 86:03 215:53 86:26 1:84· 10−3, 4:63· 10−3,

2 64:28 −309:52 89:39 2:47· 10−3, 3:23· 10−3,

3 57:16 236:45 76:94 2:78· 10−3, 4:22· 10−3,

4 47:63 66:01 56:55 3:34· 10−3, 1:51· 10−2,

Table 1. The most unstable mode of the Venus’ polar zonal flow described by Figure 2.
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“V” structure of cloud layers were observed, as shown in this chapter, which could be associ-
ated with the barotropic instability processes. Further experiments were performed with
different values for r ¼ Ωv

Ω ¼ 0 (the Coriolis parameter neglected). The results proved to be
similar to those presented in Table 1. So the generated unstable disturbances are due to intense
zonal wind shear.

Unstable perturbation or vortices behaviour develops in the polar regions of Venus as a
response to processes of barotropic instability of a zonal flow. These results are consistent with
earlier studies of barotropic instability on Venus given in Refs. [24, 34, 35] and others, who
were seeking a possible origin for the Venus polar dipole features observed by Pioneer Venus.

New data of zonal wind of the middle atmosphere to cover a wide range of latitudes in the NH
will help to know about the unstable perturbation that develops in the polar regions of Venus
NH as a response to processes of barotropic instability. It has been shown that the Venus polar
dipole is a permanent feature in the Venusian atmosphere and that it is confined to latitudes
higher than 75� S [25, 33].

Simmons et al. [11] showed that barotropic instability can be responsible for a low-frequency
variability of Earth's atmosphere, and Perez-Garcia [15] demonstrated that unstable perturba-
tions are observed in the neighbourhood of subtropical jets on the Earth. Then an analytic
dipole vortex may be constructed on the Venus Polar Regions. This would be called a Verkley's
polar modon [17] with different dynamical configurations. Venusian atmosphere has given us
not just the opportunity to learn from this initial work, but also to continue research on this
topic. Our next challenge is to analyse the barotropic instability of the Zonal Flow seen in
Figure 1, coupled with Verkley’s polar modon.

3. Global monsoon system, tropical dipole vortices and tropical cyclones

NCAR-ds627.0 and NCEP/NCAR Reanalysis data were used. In particular, we used the relative
humidity, the zonal (u) and meridional (v) components of the wind field at different pressure
levels. These wind components are further used in the calculation of their corresponding velocity
potential and stream function.

Figure 3 shows the mean of 200−250mbar stream function monthly and tropical cyclone tracks
for April. A noticeable feature in Figure 3(a) is the basic patterns of the circulation associated
with monsoon land heating at the equator in the African region monsoon, 10�−40� E, Asian-
Australian monsoon, 60�−180� E and South-American monsoon, 80�−40� W. The Australian
summer monsoon influences the climate of the Australian tropics during the period of Decem-
ber–March [37]. The onset of the Australian summer monsoon occurs in late December and
typically retreats in April [38].

The early arrival of the Indian summer monsoon and North American early summer monsoon
are shown in Figure 3(b). The wet season of the Asian monsoon system begins in May and
ends in October and the dry phase occurs in the other half of the year [39]. The set of these local
monsoon systems is called the global monsoon system [40]. Liu and Zorita [41] defined the
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local summer as May through September (MJJAS) in NH and November through March
(NDJFM) for SH.

The American monsoon is determined by the dynamic processes of the interaction between the
American continent, the eastern Pacific, the Atlantic Ocean and the overlying atmosphere [42].
The intense heat from the land creates rising of air and a surface low pressure, with low-level air
flowing towards the convective regions anddivergence in the upper troposphere, then the tropical
cyclone moves towards the convective regions of the heated continents (Figures 3(a) and 4(b)).

An important feature of the upper troposphere of a monsoon system is the high-level anticy-
clone (HLA) located above and to the north of the monsoon trough. The clockwise flow around
this anticyclone contains an easterly jet stream in its southern flank called tropical easterly jet
[43] and in the lower troposphere, for example, in North America late summer contains a
maritime-continental thermal low (Figure 5).

In the Indian Ocean, the tropical cyclones mainly occur during pre-monsoon and post-
monsoon seasons. In western North Pacific, TC most generally begins from June and ends
in November [44]. Gray [45] estimates that the majority of TCs originate in or are just pole-
wards of the Intertropical Convergence Zone [ITCZ] or monsoon trough. The upper tropo-
spheric flow patterns over the region of storm formation control their formation and
movement. Some storms recurve under the influence of a high-level anticyclone or an
approaching westerly troughs of middle latitudes that extends into the upper levels of lower
latitudes where east winds occur in the surface layers.

Figure 4. Isolines of the monthly stream function multiplied by 107 for September (a) and October (b) mean 200–250
mbar, respectively. Tropical cyclone tracks in (b) are adapted from Ref. [36].
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In the Atlantic Ocean, the tropical cyclones mainly occur during May–October. In the lower
troposphere, westward traveling tropical wave disturbances move in the trade wind flow
across the Atlantic Ocean. They begin appearing as early as April/May and continue until
October/November. Burpee [46] documented a mechanism for the origins of these waves, the
instability of the African easterly jet.

An interesting feature occurs during months of May, September-November in the American
monsoon system, in which its upper levels are formed with an anticyclone HLA on the
northern side and an anticyclone HLC (high-level cyclone at NH) on its southern side. As a
result, in certain periods, for example between September and November, the HLC and HLA
remain coupled and then form a bipolar vortex or coupled monsoon system North American
monsoon system (NAMS) late, and South American monsoon system (SAMS) early [6]. This
bipolar vortex has a similar configuration to the Gill-Matsuno wave [47].

The genesis of Mitch was given by Refs. [6, 48–50]. In this chapter, we are interested in
studying its trajectory. Why did it changed its direction south-westward during the period of
October 26–28, 1998? And how the interaction with HLA and HLC may have contributed to
change its path south-westward? Due to the variation of the Coriolis parameter, a cyclone
embedded in a resting atmosphere moves north-westwards [51].

Figure 5. Sea level pressure composite, mean October 17–November 04, 1998, adapted from NOAA/ESRL.
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In Figure 6(a) and (c) we get a general idea that the trajectory HLA and HLC took. By October
26–27, 00Z, HLA acquired a movement almost axi–symmetric with a north-eastern flow on its
southeast side. HLC was moving west-north-westward very quickly, while HLA headed
north-eastward, merging together as a coupled system (Bipolar Vortex), apparently starting
an anticyclonic rotation (Figure 6(a–c)). Because Mitch was much closer to HLA, it was guided
by the HLA circulation.

On October 26th HLAwas situated on the Mexican plateau along with three other anticyclone
disturbances, while HLC also had three more perturbations involved with it. The tracks of
HLA and HLC and their multiple disturbances by October 27 are shown in Figure 6(b),
merging together, demonstrating their clockwise rotation.

During October 27–28, HLA changed direction, returning south-westward; however, HLC
dispersed in a westward direction. In order to examine these interaction processes, the numer-

Figure 6. Streamline mean 850–200 mbar and tracks (wide lines) of vortices HLC, HLA and tropical cyclone Mitch, the
maps is for days 26 (a), 27 (b) and 28 (c) of October 1998-00Z respectively. The small circle in (b) indicates the dates 00Z
(white) and 12Z (black).

Figure 7. Streamline mean 850-200 mbar of non-divergent wind for October 26, 1998-00Z (a), and streamline mean 850–
200 mbar calculated for October 28-00Z in the integration of BVE (b). Wide lines represent tracks of vortices HLC, HLA
and Mitch in the period October 26–28, 1998-00Z.
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ical spectral of nonlinear barotropic model (1), in truncation T31, was integrated in the time,
with the initial stream-function corresponding to October 26th-00Z, 800–200 mbar mean layer
(see Figures 6(a) and 7(a)).

The 2-day integrations carried out with the model show that the geometric structure (compar-
ing Figures 6 and 7) of the solution can be calculated to a good approximation. On October
27th, the solution HLC moved westward very fast, while HLA headed north-eastward and
then became quasi-stationary. Also, HLA and HLC as a coupled system rotated in a clockwise
direction as given in Figure 6(c).

The formation, development and evolution of the tropical cyclone Mitch was not a process by
which isolated vortices were solely involved, but rather a result of a very complicated and
precise conditions, which interacted among themselves and by nearby flows. In the case
described here, these nearby flows were associated with the bipolar vortex formed by late
NAMS and early SAMS.
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ical spectral of nonlinear barotropic model (1), in truncation T31, was integrated in the time,
with the initial stream-function corresponding to October 26th-00Z, 800–200 mbar mean layer
(see Figures 6(a) and 7(a)).

The 2-day integrations carried out with the model show that the geometric structure (compar-
ing Figures 6 and 7) of the solution can be calculated to a good approximation. On October
27th, the solution HLC moved westward very fast, while HLA headed north-eastward and
then became quasi-stationary. Also, HLA and HLC as a coupled system rotated in a clockwise
direction as given in Figure 6(c).

The formation, development and evolution of the tropical cyclone Mitch was not a process by
which isolated vortices were solely involved, but rather a result of a very complicated and
precise conditions, which interacted among themselves and by nearby flows. In the case
described here, these nearby flows were associated with the bipolar vortex formed by late
NAMS and early SAMS.
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Abstract

This chapter is primarily concerned with the generation of inertia-gravity wave by
vortical flows (spontaneous emission) in shallow water system on an f-plane. Sound
waves are generated from vortical flows (aeroacoustics). There are many theoretical and
numerical works regarding this subject. A shallow water system is equivalent to a two-
dimensional adiabatic gas system, if the effect of Earth's rotation is negligibly small.
Then gravity waves are analogous to sound waves. While it is widely known that the
effect of the Earth's rotation suppresses inertia-gravity wave radiation, there are few
studies about spontaneous emission in rotating shallow water. Here, the generation of
inertia-gravity waves by unsteady vortical flows is investigated analytically and numer-
ically as an extension of aeroacoustics. A background of this subject is introduced briefly
and several recent works including new results are reviewed. Main findings are cyclone-
anticyclone asymmetry in spontaneous emission and a local maximum of intensity of
gravity waves emitted from anticyclones at intermediate value of the Coriolis parameter
f, which are caused by the source originating in the Coriolis acceleration. All different
experimental settings show the similar results, suggesting the robustness of these fea-
tures.

Keywords: geophysical fluid dynamics, inertia-gravity wave, spontaneous emission,
shallow water flows, aeroacoustics

1. Introduction

Sound waves are generated from vortical flows (aeroacoustics). After the pioneering work of
Lighthill [1], many theoretical and numerical works regarding this subject have been done.
There are several good review papers and text books, for example, see [2–5].

Inertia-gravity waves, in which buoyancy and Coriolis force provide the restoring force, are
important in the atmosphere and ocean, because they drive general circulation in the middle
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atmosphere [6] and contribute to the ocean energy budget [7, 8]. Traditionally, rotating shallow
water system has been used to study nonlinear interactions between vortex and wave [9]
because this system is the simplest system in which both vortical flows and inertia-gravity
waves can exist. One of the typical examples is the Rossby adjustment process [10, 11], in
which initial unbalanced state is assumed. Then inertia-gravity waves (hereafter inertia-grav-
ity waves are referred to gravity waves) are radiated from unbalanced state toward balanced
state. However, there are few works regarding the generation of gravity waves by unsteady
motions of nearly balanced vortical flows in rotating shallow water system.

Ford's pioneering work [12] has shown that gravity waves are radiated from unsteady vortical
flows. This type of gravity wave radiation is referred to as “spontaneous emission” [13], because
initial balanced flows radiate gravity waves spontaneously during the time evolution. Since a
shallow water system is equivalent to a two-dimensional adiabatic gas system if the effect of
Earth's rotation is negligibly small, gravity waves are analogous to sound waves. Using the
acoustic analogy of Lighthill [1], Ford [12, 13] introduced a source of gravity waves. For the
purpose of practical motivation, this new paradigm of spontaneous emission is intensively
investigated; for example, see [14] and references therein. Recently, the theory of generation
mechanism has been proposed [15, 16]. While it is pointed out that spontaneous emission in the
shallow water system is different from that in the continuous stratified system [17], fundamental
works from a viewpoint of geophysical fluid dynamics are nevertheless important [18].

As an extension of Ford's works [12, 13], several numerical works are performed in shallow
water system on an f-plane [19, 20] and a sphere [21]. While it is widely known that the effect of
the Earth's rotation suppresses inertia-gravity wave radiation, previous studies [20, 21] have
reported that the effect of the Earth's rotation intensify gravity wave radiation in some param-
eter space. In this chapter, recent results of the inertia-gravity wave radiation from nearly
balanced vortical flows as an extension of sound wave generation from vortical flows are
reviewed. Inertia-gravity wave radiation from various types of vortical flows, such as a
corotating vortex pair [22], elliptical vortex (Kirchhoff vortex) [23] and merging of (equal or
unequal) vortices [24, 25], are investigated in a wide range of parameter space. All these works
have reported that cyclone-anticyclone asymmetry in spontaneous emission and a local max-
imum of intensity of gravity waves emitted from anticyclones at intermediate value of the
Coriolis parameter f.

This chapter is organized as follows. In Section 2, the analytical derivation of the far fields of
gravity waves is introduced for the cases of a corotating point vortex pair and an almost
circular Kirchhoff vortex. The derived forms are verified quite well by the numerical simula-
tion (Section 3). In addition, the results of gravity wave radiation from the merging of (equal or
unequal) vortices are also introduced. Section 4 gives brief summary points and future issues.

2. Analytical estimate

In this section, the analytical derivation of the far fields of gravity waves from vortical flows is
introduced. The derived form includes the effect of Earth's rotation in the source term, which
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causes the cyclone-anticyclone asymmetry. Two examples of the corotating point vortex pair
and Kirchhoff vortex are shown. See Refs. [22] and [23] for details.

2.1. Basic equation

Basic equations are the shallow water equations on an f-plane, written as

∂uc
∂t

þ uc
∂uc
∂x

þ vc
∂uc
∂y

� f vc ¼ �g
∂h
∂x

, (1)

∂vc
∂t

þ uc
∂vc
∂x

þ vc
∂vc
∂y

þ f uc ¼ �g
∂h
∂y

, (2)

∂h
∂t

þ uc
∂h
∂x

þ vc
∂h
∂y

þ h
∂uc
∂x

þ ∂vc
∂y

� �
¼ 0, (3)

where u ¼ ðuc, vcÞ is the horizontal velocity vector, where uc and vc are the velocity compo-
nents in the x and y directions in the Cartesian coordinates, respectively. The total depth of the
fluid h ¼ ηþ h0, in which η is the surface displacement from the average depth of the fluid h0.
The Coriolis parameter and gravitational acceleration are f and g, respectively.

Eqs. (1)–(3) are the same as for vortex sound (aeroacoustics) if the effect of the Earth's rotation
is negligibly small. From Eqs. (1)–(3), Lighthill-Ford equation is obtained [1, 12]:

∂2

∂t2
þ f 2 � c20∇

2
� �

∂h
∂t

¼ ∂2

∂xi∂xj
Tij, (4)

where x1 ¼ x, x2 ¼ y and the Einstein summation convention is used. Note that c0 ¼
ffiffiffiffiffiffiffi
gh0

p
and

∇2 are the phase speed of the fastest gravity wave and the horizontal Laplacian, respectively.
Here, Tij is written as

Tij ¼
∂ðhuiujÞ

∂t
þ f
2
ðEikhujuk þ EjkhuiukÞ þ g

2
∂
∂t
ðh� h0Þ2δij, (5)

where E12 ¼ �E21 ¼ 1, E11 ¼ E22 ¼ 0, u1 ¼ uc, u2 ¼ vc and δij is the Kronecker delta. Since the
left-hand side of Eq. (4) is the wave operator of a linear gravity wave, the right-hand side can
be regarded as the source of gravity waves under the assumption in the limit of small Froude
number [12, 13], Fr (where Fr ≡ U=c0 is the ratio of the flow velocity U to the phase speed of
gravity waves). Note that Fr corresponds to Mach number (the ratio of the flow velocity to the
phase speed of sound waves) in the field of aeroacoustics.

2.2. Source and far field

In the source Tij, the primary source of gravity waves for the nonrotating case is the first term
on the right-hand side of Eq. (5), which is associated with the vortical flows. Then, for the
relevant term on the right-hand side of Eq. (4), the following approximation holds
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∂2ðhuiujÞ
∂xi∂xj

≈ h0∇�ðω · uÞ þ h0∇2 1
2
u2

� �
, (6)

for nondivergent flow (∇�u ¼ 0 and h ≈ h0) under the assumption of Fr≪1 with compact
source of the vortical motion. The second term on the right-hand side of Eq. (6) can be
neglected, because this term is OðFr2Þ smaller than that from the first term for Fr≪1.

For the rotating case, on the other hand, the second term on the right-hand side of Eq. (5)
becomes also important for relatively larger f [20, 21]. Then, for the relevant term on the right-
hand side of Eq. (4), the following approximation holds

∂2

∂xi∂xj

f
2
ðEikhujuk þ EjkhuiukÞ ¼ ∂2

∂xi∂xj
f hEikujuk ≈ � f h0∇�½k · ðω· uÞ�, (7)

for nondivergent flow (∇�u ¼ 0 and h ≈ h0). This is the source originating in the Coriolis
acceleration.

The Green's function of Eq. (4) in the two-dimensional domain incorporating time variation is
defined from the Klein-Gordon equation:

∇2 � 1
c20

∂2

∂t2
� μ2

� �
G2ðx, t, x0

, t0Þ ¼ �δðx� x
0 Þδðt� t0Þ, (8)

where μ ¼ f =c0. The form of Green's function is

G2ðx, t, x0
, t0Þ ¼ c0

2π

cos
�
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20ðt� t0Þ2 � jx� x0 j2

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20ðt� t0Þ2 � jx� x0 j2

q θs

�
c0ðt� t0Þ � jx� x

0 j
�
, (9)

where θs is the Heaviside function. Finally, by analogy with the derivation of the far field of
sound waves, the integral form of far field of gravity waves is formally expressed as
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G2
∂
∂t0

∇�ðω ·uÞ � f∇�½k · ðω· uÞ�
� �

dx
0
dt

0
: (10)

2.3. Typical examples

To solve Eq. (10) analytically, two cases of a corotating point vortex pair and an almost circular
Kirchhoff vortex are introduced as examples. Figure 1 shows the schematics of these experi-
mental configurations.

A point vortex pair with the same sign and strength corotates. For aeroacoustics, analytical [4]
and numerical [26] studies are performed in this configuration. Zeitlin [9] also derived an
analytical solution in nonrotating shallow water. A vortex pair with a circulation Γ positioned
at distance 2l corotates at an angular velocity Ω ¼ Γ=4πl2. The positions are
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2
u2

� �
, (6)
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x ¼ ðx1, x2Þ ¼ s ≡
�
s1ðtÞ, s2ðtÞ

�
¼ �l

�
cos ðΩtÞ, sin ðΩtÞ

�
: (11)

Then the vorticity ω and velocity u ¼ ðu1,u2Þ associated with the vortices are written as

ω ¼ Γk½δðx� sÞ þ δðxþ sÞ�, (12)

u ¼ �Ωk · s at x ¼ �s, (13)

where k is a unit vector in the z direction and δ is a delta function. Assuming that the
characteristic velocity scale U ¼ Ωl ≪ c0, then,

ω · u ¼ �ΓΩs½δðx� sÞ � δðxþ sÞ�: (14)

From Eq. (6) the source associated with vortical flows is equivalent to the two-dimensional
quadrupole

∇�ðω · uÞ ≈ ∂2

∂xi∂xj

�
SijδðxÞ

�
, (15)

where

Sij ¼ ΓΩl2 1þ 2 cos 2Ωt sin 2Ωt
sin 2Ωt 1� cos 2Ωt

� �
: (16)

Similarly, from Eq. (7) the source originating in the Coriolis acceleration is expressed as

�f∇�½k· ðω · uÞ� ≈ f
∂2

∂xi∂xj

�
EikSkjδðxÞ

�
: (17)

Figure 1. Schematics of experimental configurations for the cases of (a) a corotating point vortex pair and (b) an almost
circular Kirchhoff vortex.
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As for the case of the Kirchhoff vortex, the derivation is in the same line as a corotating point
vortex pair. The Kirchhoff vortex has a patch of constant vorticity,Ω, inside an ellipse and zero
vorticity outside. It is an exact solution of the two-dimensional, incompressible and inviscid
flow equations [27]. Howe [4] derived far field of sound waves from the Kirchhoff vortex
analytically. An almost circular Kirchhoff vortex with a small aspect ratio is the ellipse defined
by the polar equation for ε ≪ 1

r ¼ a 1þ ε cos 2θ�Ωt
2

� �� �
, (18)

where the semimajor axis of the ellipse is a ¼ að1þ εÞ, the semiminor axis is b ¼ að1� εÞ. The
ellipse rotates at angular velocity Ω=4. The velocity within the core is

u ¼ ðu1,u2Þ ¼ � 1
2
Ωr sinθþ ε sin θ�Ωt

2

� �
, � cosθþ ε cos θ�Ωt

2

� �� �
: (19)

Then, to first order in ε, the source associated with vortex and the source originating in the
Coriolis acceleration are again expressed as Eqs. (15) and (17), respectively, where

Sij ¼ επΩ2a4

8

� cos ðΩt=2Þ sin ðΩt=2Þ
sin ðΩt=2Þ � cos ðΩt=2Þ

�
: (20)

After substituting Eqs. (15) and (17) in Eq. (10), the delta function can be integrated

∂hðx, tÞ
∂t

¼ h0
c20

∂2

∂xi∂xj
∫
∞

�∞
G2

∂
∂t0

ðSijÞ þ f EikSkj

� �
dt

0
: (21)

Recalling that the following approximation in the far field (r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
≫ 1),

∂2

∂xi∂xj
¼ δij

r
� xixj

r3

� �
∂
∂r

þ xixj
r2

∂2

∂r2
≈
xixj
r2

∂2

∂r2
, (22)

then it follows from Eq. (21):

∂hðx, tÞ
∂t

¼ h0
c20

∂2

∂r2
∫
∞

�∞
G2

xixj
r2

∂

∂t0
ðSijÞ þ f EikSkj

� �
dt

0

¼
2ΓΩ2l2h0

c20
1� f

2Ω

� �
∂2

∂r2
∫
∞

�∞
G2 sin ð2θ� 2Ωt0Þdt0 , for a corotating vortex pair

επΩ3a4h0
16c20

1� 2f
Ω

� �
∂2

∂r2
∫
∞

�∞
G2 sin 2θ�Ωt0

2

� �
dt

0
, for the Kirchhoff vortex:

8>>><
>>>:

(23)

With the form of Green's function Eq. (9), Eq. (23) for a corotating vortex pair is written as
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With the form of Green's function Eq. (9), Eq. (23) for a corotating vortex pair is written as
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∂hðx, tÞ
∂t

¼ 1−
f
2Ω

� �
ΓΩ2l2h0
πc0

∂2

∂r2
∫
t

−∞

sin ð2θ−2Ωt0Þ cos ðμ ffiffiffi
τ

p Þffiffiffi
τ

p θs

�
c0ðt−t0Þ−r

�
dt′

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

, (24)

where τ ¼ c20ðt� t0Þ2 � r2. The integral in Eq. (24), labeled as B, can be calculated by changing
variables, t� t0 ¼ ðr=c0Þcoshϕ and

ffiffiffi
τ

p ¼ sinhϕ. By using the integral form of Hankel's func-
tion H0ðxÞ, B is expressed as

B ¼ 1
2c0

Re iπHð1Þ
0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ω
c0

� �2

� μ2

s0
@

1
A

2
4

3
5 sin ð2θ� 2ΩtÞ

�sgnðf ÞsgnðΩÞ 1
2c0

Im iπHð1Þ
0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ω
c0

� �2

� μ2

s0
@

1
A

2
4

3
5 cos ð2θ� 2ΩtÞ;

(25)

where the sign function sgnðxÞ is defined so that sgnð0Þ ¼ 1. Hð1Þ
2 ðαxÞ ≈ �Hð1Þ

0 ðαxÞ for αx ≫ 1

are also used for ðr=c0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2=4� f 2

q
≫ 1. Then the following approximation can be used

∂2B
∂r2

≈
Ω
2c0

� �2

� μ2

" #
B, (26)

because d2Hð1Þ
0 ðαxÞ=dx2 ¼ α2=2

�
Hð1Þ

2 ðαxÞ �Hð1Þ
0 ðαxÞ

�
≈ � α2Hð1Þ

0 ðαxÞ. Finally, the following

form for the far field of gravity waves is obtained for a corotating point vortex pair,

∂hðx, tÞ
∂t

¼ 2ΓΩ4l2h0
c40

1� f
2Ω

� �
1� f

2Ω

� �2
" #

Y0
r
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ω2 � f 2

q� �
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�

�sgnðf ÞsgnðΩÞJ0
r
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ω2 � f 2

q� �
cos ð2θ� 2ΩtÞ

�
; (27)

where Hð1Þ
0 ðαxÞ ¼ J0ðαxÞ þ iY0ðαxÞ is used, in which J0 and Y0 are the zeroth-order Bessel

functions of the first and second kind, respectively. The similar procedure from Eqs. (24) to
(27) can be applied for the Kirchhoff vortex, then
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256c40

1� 2f
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1
A cos 2θ�Ω

2
t

� ��
: (28)
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Eqs. (27) and (28) are applicable for both cyclone (Ω > 0) and anticyclone (Ω < 0) vortices
regardless of the signs of f. In the absence of the Earth's rotation for f ! 0, Eqs. (27) and (28)
correspond to the analytical form of the vortex sound [4, 26]. In contrast, there are several
important effects for finite f. First, spontaneous emission is suppressed for large f because of a
small value in the square root and second parentheses. Second, the source Eq. (7) originating in
the Coriolis acceleration acts oppositely to the gravity wave radiation caused by the second
term in the first parentheses. Meanwhile, the source Eq. (7) originating in the Coriolis acceler-
ation cancels out the source Eq. (6) associated with vortex, since the same signs of Ω and f for
cyclone. In contrast, those two sources magnify each other for anticyclone. Then, gravity waves
are intensely radiated from anticyclone. Simple explanations for the suppression of gravity
wave radiation at large f are reported [9]. Note also that it is possible to derive analytical

estimate in the case of evanescent gravity waves for Ω2=4 ≤ f 2 [22].

Examples of the far field of gravity waves (dΦ=dt, where Φ ≡ gh is the geopotential height)
from the corotating point vortex pair and Kirchhoff vortex are shown in Figure 2. Here, the
Rossby number (Ro ≡ Ul=f L) and Froude number (Fr ≡ Ul=

ffiffiffiffiffiffi
Φ0

p
) are defined by the typical

values, where the velocity Ul and the length L scales are chosen as the velocity and the length
of each vortex configuration. The values of Ω ¼ 0:1, Ul ¼ 0:5, l ¼ 1:0 and Φ0 ¼ 25=36 for the
corotating vortex pair and those of Ul ¼ 0:2, L ¼ a ¼ 1:0 and Φ0 ¼ 4=9 for the Kirchhoff vortex
are fixed to be consistent with those of numerical simulations. The value of Ω ¼ 0:449�
0:025ð0:95� bÞ for the Kirchhoff vortex is also chosen for different values of b in order to keep
Ul ¼ 0:2 as a constant value. The double spiral patterns for both cases clearly show the rotating
quadrupole features of the radiated gravity waves. The wave patterns depend on the vortical
flows and their parameter values, namely, Ω, Ro, Fr and the aspect ratio. Anticyclone radiates
gravity waves more intensely than cyclone at relatively large f (Figure 2a and b) and there is no
cyclone-anticyclone asymmetry in spontaneous emission for the nonrotating case of f ¼ 0
(Figure 2c).

The intensity of gravity waves for both cases of the corotating vortex pair, Ivp and the Kirchhoff
vortex, Ikv, are defined by

Figure 2. Snapshots of the far fields (r ≤ 100) of gravity waves (dΦ=dt, where Φ ≡ gh) radiated from the corotating point
vortex pair and Kirchhoff vortex: (a) cyclone, (b) anticyclone corotating vortex pair with Ro ¼ 10 ðf ¼ 1=10Þ and Fr ¼ 0:6
(gh0 ¼ 25=36) and (c) cyclone Kirchhoff vortex with Ro ¼ ∞ ðf ¼ 0Þ, b ¼ 0:8 (a ¼ 0:9, ε ¼ 1=9) and Fr ¼ 0:3 (gh0 ¼ 4=9).
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Ivp ¼ ∫
2π

0

∂Φ
∂t

� �2

rdθ ≈
64π2Ω9l8

c30
1� f

2Ω

� �2

1� f
2Ω

� �2
" #3

2

, (29)

Ikv ≈
ε2π2Ω9a8

16384c30
1� 2f

Ω

� �2

1� 2f
Ω

� �2
" #3

2

, (30)

to estimate the dependence on f of gravity waves from both cyclone and anticyclone. Here,

J0ðαxÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=παx

p
cos ðαx� π=4Þ and Y0ðαxÞ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=παx

p
sin ðαx� π=4Þ for αx ≫ 1 are used to

derive Eqs. (29) and (30). These values are the same at any r in the field. Figure 3 shows Ivp
(Eq. 29) and Ikv (Eq. 30) for three b cases (b ¼ 0:95, 0:9, and 0:8). For anticyclone vortex, a local
maximum appears at f =2Ω ¼ �0:4 (Ro ~ 12.5, f ~ 2/25) for the corotating point vortex pair and
2f =Ω ¼ �0:4 (Ro ~ 1, f ~ 1/10) for the Kirchhoff vortex. The cyclone-anticyclone asymmetry is
similar to both cases, though vortical flows are completely different. Note that Ro is different
among the vortices for the same value of f because the velocity and length scales depend on the
vortical configuration.

3. Numerical simulation

To verify the analytical solution, a numerical simulation with a newly developed spectral
method in an unbounded domain has been performed. The numerical results are in excellent
agreement with the analytical results of Eqs. (27) and (28) [22, 23]. Furthermore, additional
numerical simulations have been performed for the cases of merging of (equal or unequal)
vortices, in which analytical solution cannot be derived [24, 25]. In this section, the results of
numerical simulation as well as model settings are introduced.

Figure 3. Analytical estimates of the dependence on f of the intensity of gravity waves: (a) the corotating vortex pair, Ivp,
calculated from Eq. (29) and (b) the Kirchhoff vortex, Ikv , calculated from Eq. (30) with b ¼ 0:95 (a ¼ 0:975, ε ¼ 1=39; solid
line), b ¼ 0:9 (a ¼ 0:95, ε ¼ 1=19; broken line) and b ¼ 0:8 (a ¼ 0:9, ε ¼ 1=9; dotted line).
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3.1. Model settings

Shallow water equations on an f-plane in polar coordinates are used for the numerical simula-
tion. The equations of relative vorticity ζ, divergence δ and geopotential height Φ are

∂ζ
∂t

¼ � 1
r
∂ðrvζaÞ

∂r
� 1

r
∂ðuζaÞ
∂θ

, (31)

∂δ
∂t

¼ 1
r
∂ðruζaÞ

∂r
� 1

r
∂ðvζaÞ
∂θ

� ΔðEþ ΦÞ, (32)

∂Φ
∂t

¼ � 1
r
∂ðrvΦÞ

∂r
� 1

r
∂ðuΦÞ
∂θ

, (33)

where u and v are the velocities in the azimuthal (θ) and radial ðrÞ directions, respectively and

relative vorticity ζ ¼ 1
r
∂ðruÞ
∂r

� 1
r
∂v
∂θ

¼ Δψ, (34)

divergence δ ¼ 1
r
∂ðrvÞ
∂r

þ 1
r
∂u
∂θ

¼ Δχ, (35)

Laplacian Δ ¼ 1
r
∂
∂r

r
∂
∂r

� �
þ 1
r2

∂2

∂θ2 , (36)

kinetic energy E ¼ 1
2
ðu2 þ v2Þ, (37)

absolute vorticity ζa ¼ f þ ζ, (38)

where ψ and χ are the stream function and velocity potential, respectively.

Eqs. (31)–(33) are solved by a conformal mapping from a sphere Piðλ,φÞ with radius R to a
plane Qiðr;θÞ in the numerical simulation [28]. Figure 4 shows a schematic of this mapping.
With the aid of the following relation,
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the transformation of the coordinates is expressed as
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: (40)

Then the phenomena on a two-dimensional unbounded plane can be calculated on a sphere
with an ordinary spectral method of spherical harmonics by this mapping. Since grid points
are arranged nonuniformly (many grid points are positioned in the near field of vortical flows,
while few are in the far field of gravity waves), this method enables us to simulate nonlinear
interactions between vortical flows and gravity waves with high accuracy [22–25].
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Additional advantage is that the term of the hyper viscosity, which is intended to dissipate
unresolved small scales numerically in the spectral model, acts as a sponge layer. By the
conformal mapping, the usual form of hyper viscosity can be written as

νð�1Þpþ1 4Δ

ð1� sinφÞ2
 !p

P, (41)

where ν, p and P ¼ ðζ, δ,ΦÞ are the viscosity coefficient, order of viscosity and physical vari-
ables, respectively. Eq. (41) acts as a usual hyper viscosity in the near field of vortical flow for
small φ. On the other hand, the viscosity becomes large and acts as a sponge layer for large φ
in the far filed where waves are propagating. Eq. (41) is easy to code in the numerical
simulation because Laplacian operator on a sphere is simply calculated by spherical har-
monics.

3.2. Verification

As an initial state, a corotating Gaussian vortex pair is used to mimic a point vortices, which is
expressed as

ζ ¼ �A1exp �ðx� x1Þ2 þ ðy� y1Þ2
2σ2

( )
� A2exp �ðx� x2Þ2 þ ðy� y2Þ2

2σ2

( )
, (42)

where ðx, yÞ ¼ ðrcosθ, rsinθÞ. The values of A1, A2, σ, ðx1, y1Þ ¼ ðlcosθ1, lsinθ1Þ and

ðx2, y2Þ ¼
�
lcosðθ1 þ πÞ, lsinðθ1 þ πÞ

�
determine the amplitudes, radius and positions of the

vortices, respectively (see also Figure 1a). The values of A1 ¼ A2 ¼ 20, σ ¼ 0:05, l ¼ 0:5 and

Figure 4. Schematic of the mapping method from Piðλ,φÞ on sphere to Qiðr,θÞ on a plane.
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θ1 ¼ π=4 are fixed and then the maximum velocity Uvp ≈ 0:5 becomes a constant value. The

Rossby number Ro ≡ Uvp=f l and the Froude number Fr ≡ Uvp=
ffiffiffiffiffiffi
Φ0

p
are defined by the basic

state, where Φ0 = 25/36 determines the average depth. Then, Frð¼ 0:6Þ is fixed and Ro is
reciprocal of f. The field of Φ is set to be in gradient balance with ζ.

Similarly, elliptical Gaussian vortex positioned at the origin is used to mimic the Kirchhoff
vortex

ζ ¼ �Aexp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaxÞ2 þ ðbyÞ2

q

lkv

0
@

1
A

n8><
>:

9>=
>;
, (43)

where A, a, b, n and lkv determines the amplitude, the length of semimajor axis and semiminor
axis, the steepness and the core area of elliptical vortex, respectively. The values of a ¼ 1:0,
n ¼ 10, and lkv ¼ 1:0 are fixed, then the semimajor axis of elliptical vortex is fixed to ∼1, while
b is swept to change the aspect ratio. Then, a and ε are determined by b solely (see also
Figure 1b). A ¼ 0:449� 0:025ð0:95� bÞ is also set to keep the maximum velocity Ukv ≈ 0:2 as
a constant value. The Rossby number Ro ≡ Ukv=f lkv and the Froude number Fr ≡ Ukv=

ffiffiffiffiffiffi
Φ0

p
are

defined by the basic state, where Φ0 = 4/9 determines the average depth. Again, Frð¼ 0:3Þ is
fixed and Ro is reciprocal of f. Note again that Ro is different among the vortices for the same
value of f because the velocity and length scales depend on the vortical configuration. The field
of Φ is set to be in gradient balance with ζ, too. Figure 5 shows examples of initial Gaussian
vortex pair with Ro ¼ 10 ðf ¼ 1=10Þ and Fr ¼ 0:6 and elliptical Gaussian vortex with
Ro ¼ 1 ðf ¼ 1=10Þ, Fr ¼ 0:3 and b ¼ 0:9 (a ¼ 0:95, ε ¼ 1=19). The vorticity ζ, velocity u in the θ
direction and geopotential height Φ are shown for the corotating vortex pair (along the section
of center of the vortices) and for the elliptical vortex (along the sections of semimajor axis and
semiminor axis of the vortex).

The number of grid points is set to be 2048 + 1024 in the θ and r directions, with the
truncation wavenumber of spherical harmonics T ¼ 682 and R ¼ 8. Then the grid interval in
the r direction (Δr) in the near field (r ≤ 2) is Δr ≤ 0:0249 and the farthest grid points are
positioned at r ~ 13,632. The viscosity coefficient and order of viscosity are set to be ν ¼ 10�11

and p¼ 3, respectively. Fourth-order Runge-Kutta method is used for the time integration. For
the corotating vortex pair 8,000 total time steps are conducted to the end of time 200 with a
time interval Δt ¼ 0:025, while for the elliptical vortex, 10,000 time steps are conducted with a
Δt ¼ 0:02.

In both configurations, the numerical simulations with several Ro for fixed Fr are performed
for cyclone and anticyclone vortex individually, starting from above initial state. Gravity
waves are spontaneously radiated from both cyclone and anticyclone vortical flows for large
enough Ro, while anticyclones rotate in the opposite direction to cyclones. Figure 6 shows line
plots of radiated gravity waves dΦ=dt against r from cyclone and anticyclone for both cases of
the corotating vortex pair and Kirchhoff vortex. The line plots in the θ ¼ π=4 section at t ¼ 200
are shown for the numerical simulation (broken lines), while appropriate times are chosen for
the analytical estimates (solid lines) to coincide with the numerical results. The amplitudes of
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gravity waves in the far field between the analytical and numerical results are almost the same
for all cases. While there is no cyclone–anticyclone asymmetry for the nonrotating case (f ¼ 0),
the anticyclones radiate gravity waves more intensely than cyclones for relatively small Ro
cases. Local maximum appears around 2f =Ω ∼ − 0.4 only for the cases of anticyclone, as
expected in Section 2.3. All cases with different Ro are remarkably good overlapped between
analytical estimates and numerical results, except for the elliptical vortex with for b ¼ 0:8.

The intensity of gravity waves for both cases calculated from Eqs. (29) and (30) in the numer-
ical simulation agree well with analytical estimates (not shown). The results indicate that the
analytical estimates give the far fields of gravity waves quite accurately and the newly devel-
oped numerical model is well verified. Furthermore, cyclone-anticyclone asymmetry and the
local maximum of gravity waves for anticyclone are also confirmed for both cases of the
corotating vortex pair and Kirchhoff-like elliptical vortex. Note that for the elliptical vortex
with for b ¼ 0:8, the aspect ratio increases gradually in the time evolution, more elongated
elliptical vortex with filaments appears. Then the amplitude of the source becomes larger than
that used in the analytical estimate. Significant deviation for the shape of vortex from the ideal
elliptical vortex causes the large discrepancy between the analytical and numerical results for
b ¼ 0:8 [23].

Figure 5. Initial corotating cyclone vortex pair (top panels) with Ro ¼ 10 ðf ¼ 1=10Þ and Fr ¼ 0:6 (Φ0 = 25/36) and elliptical
cyclone vortex (bottom panels) with Ro ¼ 1 ðf ¼ 1=10Þ, Fr ¼ 0:3 (Φ0 = 4/9) and b ¼ 0:9 (a ¼ 0:95, ε ¼ 1=19): ζ (a, d), u (b, e)
andΦ (c, f) are shown. In the top panels, solid lines indicate the values along the section of center of vortex. In bottompanels,
the solid lines indicate the values along the section of semi-major axis, while dotted lines indicate those of semi-minor axis.
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3.3. Extended experiments

As extended experiments, the results of the merging of (equal and unequal) vortices are
introduced here [24, 25]. As an initial state, a pair of corotating Gaussian vortices expressed
by Eq. (42) with different values of A1 ¼ 2:165, σ ¼ 0:16 is used. By defining asymmetric
parameter d ≡ A2=A1, d ¼ 1:0 is used for the symmetric vortex merger, while d < 1:0 is swept
for asymmetric vortex merger. The Rossby number Ro ≡ Uvm=f l and the Froude number
Fr ≡ Uvm=

ffiffiffiffiffiffi
Φ0

p
are defined by the basic state again, where Uvm ≈ 0:2 is the maximum velocity

(fixed). The average depth is set to Φ0 = 4/9 so that Fr ¼ 0:3 (fixed). Then, again, Ro is reciprocal
of f. The field of Φ is set to be in gradient balance with ζ. Figure 7 shows initial Gaussian vortex
(cyclone) with Ro ¼ 4 ðf ¼ 1=10Þ and Fr ¼ 0:3 for symmetric (d ¼ 1:0) and asymmetric merger
(d ¼ 0:7). The other experimental settings are the same as Subsection 3.2.

Starting from above initial state, vortices evolve with time. The time evolutions for cyclones
with Ro ¼ 4 and Fr ¼ 0:3 for the symmetric (d ¼ 1:0) and asymmetric merger (d ¼ 0:7) are
shown in Figure 8. Vortices merge in a similar way for both cases of equal vortices and unequal
vortices. Initially, vortices corotate with each other (t ≲ 45) and then merge into a single vortex
ð45 ≲ t ≲ 65). After merging, the vortex rotates with nutation from an elliptical shape to an
axisymmetric one (65 ≲ t). Spontaneous emission is observed at all three stages, while amplitude

Figure 6. The far filed ðr ≤ 100Þ of gravity waves ðdΦ=dtÞ for the corotating vortex pair (top panels) with Ro ¼ 10 and
Fr ¼ 0:6 and elliptical vortex (bottom panels) with Ro ¼ 1, Fr ¼ 0:3, and b ¼ 0:9. The analytical estimates Eqs. (27) and
(28) (solid lines) and the numerical results in the θ ¼ π=4 section at t ¼ 200 (broken lines) are shown for (a, c) cyclones and
(b, d) anticyclones.
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of gravity waves for the asymmetric merger is significantly smaller than that of the symmetric
merger. The wavelength of the gravity waves from the corotating vortices becomes shorter
gradually with time due to an increase of the rotation rate. Then it becomes almost constant after
merging into a single vortex.

A series of numerical simulations at different values of Ro (0:5 ≤ Ro ≤ ∞) is performed. The time
evolutions of ∂Φ=∂t at several r values are shown in Figure 9 for both cyclones and anticy-
clones with Ro ¼ 4 and Fr ¼ 0:3 for the symmetric (d ¼ 1:0) and asymmetric merger (d ¼ 0:7).
While vortical flows evolve with time in a similar manner (not shown), gravity waves radiated
from them are considerably different between cyclones and anticyclones. At large Roð≥ 4Þ,
both cyclones and anticyclones radiate gravity waves in the three stages of vortical flows:

Figure 7. Initial Gaussian cyclone vortex pair with Ro ¼ 4 ðf ¼ 1=10Þ and Fr ¼ 0:3 for symmetric (d ¼ 1:0, solid line) and
asymmetric merger (d ¼ 0:7, dotted line): ζ (a), u (b) and Φ (c) are shown. One (weaker) vortex is shown (for unequal
vortices).

Figure 8. Snapshots of the time evolution of cyclones with Ro ¼ 4 ðf ¼ 1=10Þ and Fr ¼ 0:3 for symmetric merger (d ¼ 1:0,
top panels) and asymmetric merger (d ¼ 0:7, bottom panels): ζ for (a, e) t = 0, (b, f) t = 45, (c, g) t = 90 and ∂Φ=∂t for (d, h) t =
135 (d). ζ is shown in the near field (r ≤ 2), while ∂Φ=∂t is shown in the far field (r ≤ 50).
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corotating (t ≲ 45), merging (45 ≲ t ≲ 65) and after merging (65 ≲ t). At smaller Roð≤ 0:8Þ,
however, gravity waves from cyclones decrease significantly. There are almost no gravity
waves, except for the initial geostrophic adjustment. On the other hand, gravity waves from

Figure 9. Time evolutions of ∂Φ=∂t (colored lines multiplied by 104) from symmetric merger (top panels) and asymmetric
merger (bottom panels) wtih Ro ¼ 4 and Fr ¼ 0:3: (a, c) cyclone and (b, d) anticyclone. Black dotted lines indicate the
phase speed of the fastest gravity waves.

Figure 10. Dependence on f of the maximum value of the gravity wave flux averaged in the θ direction at r ¼ 45 for the
(a) symmetric merger and (b) asymmetric merger.
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anticyclones are radiated even when gravity waves from corotating vortices are hardly observed,
namely, spontaneous emission is observed after merging into a single vortex. Therefore, signifi-
cant cyclone-anticyclone asymmetry appears at small Ro.

In order to estimate the intensity of gravity waves quantitatively, a pseudo-energy flux is
derived and calculated as the gravity wave flux [12, 21]. This quantity is conserved when
gravity waves propagate into the far field. Figure 10 shows the maximum values of the gravity
wave flux averaged in the θ direction at r ¼ 45 for several Ro values (0:5 ≤ Ro ≤ ∞). Generally,
the maximum values are caused by gravity waves from the time of merging. Cyclone-anticy-
clone asymmetry is confirmed clearly. Anticyclones radiate gravity waves more intensely than
cyclones and they have a local maximum of gravity wave flux at f ~ 0.2 for both cases. See Refs.
[24] and [25] for details.

4. Concluding remarks

4.1. Summary points

1. Far field of inertia-gravity wave radiated from the corotating point vortex pair and
Kirchhoff vortex with nearly circular shape is derived analytically in the f-plane shallow
water system. Cyclone-anticyclone asymmetry in gravity waves from vortical flows and a
local maximum of intensity of gravity waves from anticyclones at an intermediate f
appear. This is caused by the effect of the Earth's rotation.

2. The derived analytical estimate is well verified for both cases of the corotating vortex pair
and Kirchhoff vortex with a small aspect ratio by the numerical simulation with a newly
developed spectral method in an unbounded domain.

3. The numerical experiments extend to the cases of symmetric and asymmetric vortex
merger, in which analytical estimate cannot be derived. In both cases, cyclone-anticyclone
asymmetry clearly appears and the local maximum at intermediate f exists only for
anticyclones.

4. Within all parameter values and vortical flows used in the present work, there is a
cyclone-anticyclone asymmetry at finite values of f. Gravity waves from anticyclones are
larger than those from cyclones and have a local maximum at intermediate f. The source
originating in the Coriolis acceleration has a key role in cyclone-anticyclone asymmetry in
spontaneous emission. This feature would be robust and ubiquitous in the rotating shal-
low water system.

4.2. Future issues

1. The derived analytical forms would give useful references for testing the accuracy of the
numerical model from a viewpoint of developing new numerical methods.

2. Cyclone-anticyclone asymmetry may be related with the change of the dominant balanced
state from quasi-geostrophic one to gradient wind one [29].
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3. There are additional effects which cause the discrepancy between analytical and numeri-
cal results, such as nutation of vortex, change of the rotation rate and filaments of the
vortex.

4. More comprehensible understanding of cyclone-anticyclone asymmetry in spontaneous
emission from general complicated vortical flows is needed not only in the rotating
shallow water system but also in the continuous stratified system.
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Abstract

Aircraft wake vortex is a pair of intensive counter-rotating airflow generated by a flying
aircraft. Wake vortex is one of the most dangerous hazards in aviation because it may
cause a following aircraft to roll out of control, particularly during the taking off and
landing phases. The real-time detection of wake vortex is a frontier scientific problem
emerging from many fields like aviation safety and atmospheric physics, and the
dynamics and scattering characteristics of it remain as key problems to develop
corresponding detection technologies. This chapter aims at presenting a simulation
scheme for the dynamics of wake vortex under different weather conditions. For wake
vortex generated in clear air, changes of the atmospheric dielectric constant produced by
the density variation and water vapour variation are analysed; for wake vortex gener-
ated in rainy condition, the raindrop distribution in the wake vortex is also analysed.
Both of them are essential for further analysing the scattering characteristics and devel-
oping new detection algorithms.

Keywords: wake vortex, dynamics, clear air, wet weather

1. Introduction

Wake vortex is an inevitable physical phenomenon that exists in the rear zone of a flying
aircraft, which rotates intensively and has a complex structure. The wake vortex generated by
a large aircraft could be very hazardous to aviation safety since it might cause a following
aircraft to roll out of control, particularly during the departure and landing phases.

In Air Traffic Management (ATM) field, International Civil Aviation Organization (ICAO)
established a series of flight interval rules. These rules can ensure the flight safety in most time,
but they are too conservative. In order to reach a good balance between avoiding the encountering
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hazard of wake vortex and increasing the transport capacity of airports, much attention has
been paid on the real-time monitoring and detection of wake vortex in the past decades. Some
major ATM programmes like Single European Sky ATM Research (SESAR) and Next Genera-
tion Air Transportation System, USA (NextGen) have also launched many projects on this
topic, and the representative research institutes include Thales, Office National d'Etudes et de
Recherches Aerospatiales (ONERA), Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR),
Université catholique de Louvain (UCL), National Aeronautics and Space Administration
(NASA), Federal Aviation Administration (FAA), Lincoln Lab, Boeing, and so on. In all these
studies, the characteristics, detection technology and parameter retrieval are the key issues,
and the characteristics of wake vortex serve as the basis for the rest studies.

In aviation safety, we mainly concern the clear air condition and wet weather condition.
According to the scattering theory, the scattering of wake vortex in clear air is mainly deter-
mined by the fluctuation of dielectric constant inside the wake; while under wet condition, the
key scattering factor becomes the massive number of precipitation droplets carried by the
velocity of wake vortex. In this chapter, we present simulation schemes for the dielectric
constant distribution and droplet distribution of wake vortex. The distributions are caused by
the dynamics of wake vortex and serve as the physical basis for scattering analysis.

First, we study the dielectric constant distribution of wake vortex generated in clear air.

2. Dielectric constant of wake vortex generated in clear air

2.1. Two key parameters for determining the dielectric constant of wake vortex

The relative dielectric constant of atmosphere (εr) can be well depicted by the following
expression [1]:

εr ¼ 1þ 0:776· 10−6
p
T

1þ 7780q
T

� �� �2
(1)

where p,T,q are the pressure (pa), absolute temperature (K), and water vapour content (kg/kg),
respectively. Generally, the second term in the square bracket is much smaller than 1, so the
variation in dielectric constant between wake vortex and ambient air can be approximated as
follows when the Taylor expansion is taken into account:

Δεr ¼ εr−εr;a≈1:552· 10−6
p
T

1þ 7780q
T

� �
−
pa
Ta

1þ 7780qa
Ta

� �� �
(2)

In the expression, the parameters with subscript “a” refer to the ambient parameters and those
without “a” refer to the wake vortex's parameters.

As is known, an isentropic process is a process in which there is neither heat exchange nor any
friction effect [2]. Typically, the wake vortex of a subsonic airplane can be assumed as an
isentropic flow, and the thermodynamic parameters at different points along a streamline can
be written as follows:
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p
pa

¼ ρ
ρa

� �γ

,
T
Ta

¼ ρ
ρa

� �γ−1

(3)

where γ ¼ 1:4 is the adiabatic coefficient for air. Consequently, the variation in dielectric
constant is transformed to

Δεr≈1:552 · 10−6 ·
pa
Ta

ðξ−1Þ þ 7780
pa
Ta

2 ðξ2−γq−qaÞ
� �

(4)

Here we have denoted ξ ¼ ρ=ρa, and the effects due to density and water vapour are mixed in

the term ξ2−γq. In order to separate the two factors, this term is transformed to

ξ2−γq ¼ ½1þ ðξ−1Þ�2−γðqa þ ΔqÞ (5)

with Δq ¼ q−qa being the water vapour variation between the local wake and the ambient air.
Since the variations in density and water vapour for wake vortex are very small, say ξ−1 << 1
and Δq << qa, the dielectric constant variation can be approximated as follows when the
Taylor expansion is adopted:

Δεr≈1:552 · 10−6
pa
Ta

2 · f½Ta þ 7780ð2−γÞqa�ðξ−1Þ þ 7780Δqg (6)

In this expression there are two undetermined parameters, ξ and Δq. They are separated into
two different terms:

Δεr ¼ Δεdr þ Δεvr (7)

The first term is determined by the density variation ξ:

Δεdr ≈1:552 · 10
−6 pa
Ta

2 ðTa þ 4668qaÞðξ−1Þ (8)

and the second term is determined by the water vapour variation Δq:

Δεvr ≈1:207· 10
−2 pa
Ta

2 Δq (9)

In this manner, the key of modelling the dielectric constant is to determine the two parameters,
ξ and Δq.

2.2. Effect of density variation on the dielectric constant

2.2.1. Velocity field of wake vortex

When the stationary phase of a subsonic wake vortex is taken into account, the dynamics can
be well characterized by the steady Lamb momentum equation [2]:

Modelling of Temporal‐Spatial Distribution of Airplane Wake Vortex for Scattering Analysis
http://dx.doi.org/10.5772/66544

57



Ω ·V þ 1
2
jVj2 ¼ −

1
ρ
∇p (10)

where V is the total velocity of wake vortex, and Ω ¼ ∇ ·V is the vorticity. In this expression,
the velocity and density are separated, which makes it convenient to work out the thermody-
namics parameters according to the velocity field.

Typically, when no cross-wind is considered, a stable-stage wake is composed of two contour
rotating vortices of the same strength, and they descend at a velocity Vd. In this manner, in a
coordinate system descending with the vortex cores, the wake vortex is steady, and the velocity
for a given point P can be written as (see Figure 1):

V ¼ −Vd þ VL þ VR (11)

where VL and VR are the velocities deduced by the left and right vortices, and Vd is the
descending velocity. In Figure 1, the parameter Γ is the circulation which defines the strength
of the wake vortex.

• In the expression, the deduced velocity of each vortex can be presented by existing
velocity profile models, such as Rankine model, Lamb-Oseen model, and so on. Among
them, the Rankine model is a widely used one, and the corresponding tangential velocity
(Vθ) follows [3]:

VθðrÞ ¼ Γ0

2πr
r2=r2c , r < rc
1, r≥rc

�
(12)

where r is the distance of a given point to the vortex centre, rc≈0:052b0 the vortex core radius,
and b0 the vortex spacing. As shown in Figure 2, the velocity outside the vortex core is
irrotational, while the inside part is with a uniform vorticity:

Figure 1. Velocity of counter-rotating vortices.
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ω0 ¼ Γ0

πr2c
(13)

• The descending velocity can be derived from the deduced velocity of a vortex core:

Vd ¼ −
Γ0

2πb0
ŷ (14)

2.2.2. Stream function of wake vortex

When the velocity components are determined, the vorticity is finally obtained as

Ω ¼ ∇ ·V ¼ ω0HðrÞ (15)

In this expression, we have considered ∇·Vd ¼ 0, andHðrÞ is an identification function for the
left vortex core region (CL) and right one (CR):

HðrÞ ¼
−1, r ∈ CL
1, r ∈ CR
0, otherwise

8<
: (16)

As a result, we have

Ω ·V ¼ ω0HðrÞð−vx̂ þ uŷÞ ¼ ω0HðrÞ∇ψ (17)

where u and v are the velocity components in x and y directions, and ψ is the stream function:

u ¼ ∂ψ
∂y

, v ¼ −
∂ψ
∂x

(18)

In this manner, the Lamb momentum equation for wake vortex is rewritten as

Figure 2. Rankine velocity profile.

Modelling of Temporal‐Spatial Distribution of Airplane Wake Vortex for Scattering Analysis
http://dx.doi.org/10.5772/66544

59



ω0HðrÞ∇ψþ 1
2
jVj2 ¼ −

1
ρ
∇p: (19)

Furthermore, integrating the above equation from a point r to infinity gives

I ¼ −ω0HðrÞψþ 1
2
V2

d−
1
2
jV j2 ¼ −

ð∞
r

1
ρ
dp (20)

where we have considered V∞ ¼ Vdŷ, and the total stream function ψ is

ψ ¼ −Vdxþ ψL þ ψR þ C (21)

with the four terms on the right-hand side being the up-wash flow at infinity, the stream
function due to the left vortex and right vortex, and a constant.

For a Rankine vortex, the stream function follows

ψRankine ¼ −
Γ
4π

r2

r20
−1þ ln r20, r < rc;

ln r2, r ≥ rc:

8<
: (22)

Then ψL and ψR can be obtained by replacing the circulation Γ with −Γ0 and Γ0, respectively.

Also, the constant C is chosen to meet ψðrÞ ¼ 0 when r is on the vortex core boundary:

C ¼ ψ1ðrÞ ¼ Vdx−ψL−ψR (23)

Due to the impact between two vortices, the constant C has a very slight variation along the
vortex core boundary. In practice, the average of ψ1ðrÞ along one vortex core boundary is
chosen as the constant.

As a result, combination of the total stream function and velocity gives the distribution of
integral I as shown in Eq. (20), which is then used to calculate the density distribution of wake
vortex.

2.2.3. Determination of dielectric constant due to density variation

Substituting the isentropic relationship (3) into the item on the right hand of Eq. (20) gives

I ¼ −
ð∞
r

1
ρ
dp ¼ −

ð∞
r

γ
γ−1

pa
ργ
a
dργ−1 ¼ γ

γ−1
pa
ργ
a
ðργ−1−ργ−1a Þ (24)

which can then be transformed as

ξ ¼ ρ
ρa

¼ 1þ ðγ−1Þρa
γpa

I
� � 1

γ−1

(25)
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For a wake vortex, the integral I has the same magnitude as V2
θ (generally not larger than

1000). On the other hand, ρa and pa are, respectively, on the magnitude of 1 and 105. Therefore,
the second term in Eq. (25) is much smaller than 1, and the Taylor expansion gives:

ξ≈1þ ρa

γpa
I (26)

Consequently, the effects of dielectric constant can be rewritten as

Δεdr ðrÞ≈1:552 · 10−6
paðTa þ 4668qaÞ

γRT3
a

IðrÞ: (27)

2.3. Effect of water vapour variation on the dielectric constant

Generally, the atmospheric water vapour inside the wake vortex can be modelled as a passive
scalar, which is convected by the wake vortex velocity field and is governed by the convection-
diffusion equation [4]:

∂q
∂t

þ ðV � ∇Þq−D∇2q ¼ 0, (28)

where q is the water vapour concentration,D is the diffusion coefficient for an air/water vapour
system, and V is the velocity filed of a wake.

In fluid dynamics, the Péclet number is a dimensionless number indicating the rates of con-
vection and diffusion of a flow [5]:

Pe ¼ UL
D

(29)

where L is the characteristic length, U is the velocity, and D is the mass diffusion coefficient.
Generally, a flow is convection-dominated, if the Péclet number is large. In this study, the
diffusion coefficient for air (D ¼ 2:42 · 10−5) is very small, which leads to a big Péclet number
and the flow is convection dominated. In this manner, neglecting the impact of diffusion leads
to a simplified governing equation:

∂q
∂t

þ ðV � ∇Þq ¼ 0 (30)

As is known, the initial water vapour gradient is very important to characterize the equation.
Here the stratified model is adopted in this work

qðr, tÞjt¼0 ¼ qa ¼ mqðy−y0Þ þ q0 (31)
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with q0 and mq being the offset and gradient of water vapour content, respectively. Substitut-
ing the initial condition into the governing equation gives

∂qðr, 0Þ
∂t

þ ðV � ∇Þqðr, 0Þ ¼ Vymq (32)

Therefore, Eq. (30) minus Eq. (32) leads to a new equation:

∂Q
∂t

þ ðV � ∇ÞQ ¼ −Vymq (33)

with Qðr, tÞ ¼ Δqðr, tÞ ¼ qðr, tÞ−qðr, 0Þ being the water vapour variation. At the same time, the
initial condition of Eq. (33) becomes Qðr, tÞjt¼0 ¼ qðr, tÞjt¼0−qðr, 0Þ ¼ 0; this is coincident with
the physical image that the water vapour variation is initially zero.

Eq. (33) is a hyperbola differential equation, which is often numerically difficult to solve. In the
present work, the leapfrog scheme is adopted to solve the target equation, and good conver-
gence and stability are achieved. The scheme is as follows:

Qnþ1
i, j −Qn−1

i, j

2Δt
þ u

Qn
iþ1, j−Q

n
i−1, j

2Δx
þ v

Qn
i, jþ1−Q

n
i, j−1

2Δx
¼ −vi, jmq, (34)

with u and v being the velocity components in x and y direction, respectively. In the process,
the Von Neumann method leads to the following stable condition [6]:

Δt <
1
2

Δ
Vmax

(35)

where Δt is the time step, Δ is the minimum grid spacing, and Vmax is the maximum velocity in
the wake vortex.

In addition, non-uniform grids and symmetric condition are used to reduce computational
cost. On the one hand, the velocity distribution shows that the flow in and around the vortex
core is relatively complex and the flow far from the vortex core is slowly variational. Typically,
sparse grids are adequate to characterize the slowly variational zones, but complex zones
require dense grids. In this manner, non-uniform grid scheme can be adopted to reduce the
total number of grids. On the other hand, the wake vortex is symmetric, so only half of wake
vortex needs to be computed. Overall much computational cost can be saved through the
above scheme.

If the water vapour variation, Qðr, tÞ is solved from Eq. (33), then Δεvr can be immediately
obtained according to Eq. (9).

In this above simulation, the moving coordinate system is also used. The dielectric constant
distribution can be transformed into the stationary coordinate system if the following trans-
form is used:

Vortex Structures in Fluid Dynamic Problems62



with q0 and mq being the offset and gradient of water vapour content, respectively. Substitut-
ing the initial condition into the governing equation gives

∂qðr, 0Þ
∂t

þ ðV � ∇Þqðr, 0Þ ¼ Vymq (32)

Therefore, Eq. (30) minus Eq. (32) leads to a new equation:

∂Q
∂t

þ ðV � ∇ÞQ ¼ −Vymq (33)

with Qðr, tÞ ¼ Δqðr, tÞ ¼ qðr, tÞ−qðr, 0Þ being the water vapour variation. At the same time, the
initial condition of Eq. (33) becomes Qðr, tÞjt¼0 ¼ qðr, tÞjt¼0−qðr, 0Þ ¼ 0; this is coincident with
the physical image that the water vapour variation is initially zero.

Eq. (33) is a hyperbola differential equation, which is often numerically difficult to solve. In the
present work, the leapfrog scheme is adopted to solve the target equation, and good conver-
gence and stability are achieved. The scheme is as follows:

Qnþ1
i, j −Qn−1

i, j

2Δt
þ u

Qn
iþ1, j−Q

n
i−1, j

2Δx
þ v

Qn
i, jþ1−Q

n
i, j−1

2Δx
¼ −vi, jmq, (34)

with u and v being the velocity components in x and y direction, respectively. In the process,
the Von Neumann method leads to the following stable condition [6]:

Δt <
1
2

Δ
Vmax

(35)

where Δt is the time step, Δ is the minimum grid spacing, and Vmax is the maximum velocity in
the wake vortex.

In addition, non-uniform grids and symmetric condition are used to reduce computational
cost. On the one hand, the velocity distribution shows that the flow in and around the vortex
core is relatively complex and the flow far from the vortex core is slowly variational. Typically,
sparse grids are adequate to characterize the slowly variational zones, but complex zones
require dense grids. In this manner, non-uniform grid scheme can be adopted to reduce the
total number of grids. On the other hand, the wake vortex is symmetric, so only half of wake
vortex needs to be computed. Overall much computational cost can be saved through the
above scheme.

If the water vapour variation, Qðr, tÞ is solved from Eq. (33), then Δεvr can be immediately
obtained according to Eq. (9).

In this above simulation, the moving coordinate system is also used. The dielectric constant
distribution can be transformed into the stationary coordinate system if the following trans-
form is used:

Vortex Structures in Fluid Dynamic Problems62

y′ ¼ y−Vd � t (36)

where Vd is the descending velocity, t is the evolutional time, y and y′ are the coordinates in the
moving coordinate system and stationary coordinate system, respectively.

2.4. Numerical examples

Here we give several numerical examples for the dielectric constant distribution due to differ-
ent effects. The parameters of airplane and atmosphere are as shown in Table 1.

According to the parameters, the distribution of IðrÞ can be worked out, and the intensity of
dielectric constant due to density variation can be obtained as shown in Figure 3. It is observed
that Δεdr in the vortex cores are much larger than that outside, so the vortex core could present
a big contribution to the scattering of wake vortex.

The dielectric constant due to water vapour variation (Δεvr ) can be obtained when the given
partial equation (33) is solved, and Figure 4 presents Δεvr at t ¼ 40s. It is observed that the
convection effect of water vapour results in a non-uniform laminar structure in and around the
wake vortex cores, and these structures could be good contributor to the scattering in high
frequency.

Consequently, the sum of Figures 3 and 4 gives the total distribution of dielectric constant (see
Figure 5). Comparing themagnitude ofΔεdr and that ofΔεvr shows thatΔεvr is much less thanΔεdr ,
and Δεdr dominates the magnitude of Δεr. However, Δεdr and Δεvr have different structures; they
make different contribution to the scattering in different frequency bands. Typically, the scattering
of clear air wake vortex at a frequency lower than 100MHz is mainly determined by the density
variation Δεdr ; otherwise, the water vapour variation Δεvr makes the major contribution.

2.5. Extrapolation of dielectric constant distribution

The extrapolation includes two parts: one is relate to the density distribution and another is
related to the water vapour distribution.

Parameters Value

Airplane mass M 250,000 kg

Wingspan B 68 m

Speed V 133 m/s

Ambient pressure pa 100,000 pa

Ambient absolute temperature Ta 288 K

Diffusion constant D 2:42· 10−5m2=s

Water vapour content offset q0 0.018 kg/kg

Water vapour content gradient mq −8 · 10−8 kg/(m kg)

Table 1. Parameters of airplane and atmosphere.
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Figure 3. Dielectric constant distribution due to density variation.

Figure 4. Dielectric constant distribution due to water vapour variation.

Figure 5. Total dielectric constant distribution.
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2.5.1. Extrapolation of dielectric constant related to density distribution

As shown in Eq. (27), the key of density distribution is the integral IðrÞ; this could be obtained
with the normalized parameters.

First, if the space is normalized by vortex separation b0, say ~r ¼ r=b0, the Rankine model can be
normalized as

VθðrÞ ¼ Γ0

b0
~Vθð~rÞ, (37)

with ~Vθ being the normalized velocity:

~Vθð~rÞ ¼ 1
2π~r

(
~r2=0:0522, ~r< 0:052,

1, ~r≥0:052: (38)

Other velocity profile models have similar expressions. Substituting the normalized velocity
into the integral Eq. (20) gives

IðrÞ ¼ Γ0

b0

� �2
~Ið~rÞ (39)

Where the normalized integral ~Ið~rÞ ¼
ð
~C
ð~V � ∇̃Þ~V � d~s is only related to the velocity model, and

∇̃¼ ð∂=∂~x ∂=∂~yÞT ¼ b0∇, s ¼ ðx, yÞ.

For a stably flying airplane, the lift force balances the weight, which leads to the following
initial circulation expression:

Γ0 ¼ Mg
ρaVab0

(40)

Consequently, substituting the circulation into the integral gives

Iðb0~rÞ ¼ M2g2

ρ2
aV

2
ab

4
0

~Ið~rÞ (41)

The dielectric constant related to density distribution is then rewritten as

Δεdr ðb0~rÞ≈1:552 · 10−6
R½Taðb0~rÞ þ 4668qaðb0~rÞ�

γpaðb0~rÞTaðb0~rÞ
M2g2

V2
ab

4
0

~Ið~rÞ (42)

Since the normalized integral ~Ið~rÞ ¼
ð
~C
ð~V � ∇̃Þ~V � d~s is only related the velocity model, the

following relationship can be obtained when the different airplane parameters and air condi-
tions are introduced:
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Δεdr,2ðr2Þ
Δεdr,1ðr1Þ

≈
pa,1ðr1ÞTa,1ðr1Þ½Ta,2ðr2Þ þ 4668qa,2ðr2Þ�
pa,2ðr2ÞTa,2ðr2Þ½Ta,1ðr1Þ þ 4668qa,1ðr1Þ�

�M2
2Va,1

2b0,14

M1
2Va,2

2b0,24
(43)

with r1 ¼ b0,1~r and r2 ¼ b0,2~r .

2.5.2. Extrapolation of dielectric constant related to water vapour distribution

The key of water vapour distribution is to solve the partial differentiation equation (33).

Define some related normalized parameters as follows: ~Q ¼ Q=b0,~t ¼ t=t0,~r ¼ r=b0,~V ¼ V=V0,
where V0 ¼ Γ0=b0 and t0 ¼ b0=V0. Consequently, the target partial differentiation equation is
rewritten as

∂~Q
∂~t

þ ð~V � ~∇Þ~Q ¼ −~V ymq: (44)

If the variable ~Qð~r ,~tÞ is solved from above equation, the dielectric constant related to water
vapour distribution becomes

Δεvr ðb0~r , t0~tÞ ¼ 1:207 · 10−2
pa
T2
a
b0 ~Qð~r ,~tÞ: (45)

In this manner, the dielectric constant for different airplane and air parameters is extrapolated as

Δεvr,2ðr2, t2Þ
Δεvr,1ðr1, t1Þ

≈
pa,2ðr2Þ
pa,1ðr1Þ

Ta,1ðr1Þ
Ta,2ðr2Þ
� �2 b0,2

b0,1
(46)

where r1 ¼ b0,1~r , r2 ¼ b0,2~r ¼ b0,2
b0,1

r1, t1 ¼ t0,1~t, and t2 ¼ t0,2~t ¼ t0,2
t0,1

t1. For stably flying airplane,

we have t0 ¼ ρab
3
0Va=ðMgÞ, and then the relationship becomes

t0,2
t0,1

¼ b0,2
b0,1

� �3 p0,2
p0,1

T0,1

T0,2

V0,2

V0,1

M1

M2
(47)

This is a very simple relationship.

With the combination of two extrapolation formulae, the dielectric constant distribution is then
determined. This can save a lot of computation cost when different airplane wake vortices are
to be analysed.

Another condition we always experience is wet weather condition (fog, rain, and snow).
Here we mainly concern the rainy condition since it is the most common situation around
airports.
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3. Wake vortex generated in rainy weather

In still air, the raindrops fall vertically towards the ground and reach a constant terminal
falling velocity. When an aircraft takes off or lands in rainy weather, the raindrops will be
inevitably involved in the aircraft wake vortices. Raindrops’motion in wake vortex is modified
by the vortex flow. This modification of the trajectories of the raindrops may induce changes in
raindrops’ number concentration and velocity distribution in wake vortices, therefore results
in changes in the recorded radar signal. This section presents a modelling scheme for rain-
drops’motion and distribution within the wake vortex.

3.1. Parameterization of raindrops

In still air, a falling raindrop reaches its terminal fall velocity VT with the equilibrium between
the inertial force and the drag force acting on it [7]. A widely used exponential expression
between VT(m/s) and the diameter D(mm) is given by [8]

VTðDÞ ¼ ½α1−α2 exp ð−α3DÞ�ðρ0

ρ
Þ0:4 (48)

where α1 = 9.65 m/s, α2 = 10.3 m/s, α3= 0.6 m/s, and ðρ0=ρÞ0:4 is a density ratio correction factor
adjusting deviation of the terminal fall velocity due to the air density change with the fall altitude.

Drop size distributions (DSD) have been widely used by radar meteorologists as they are
directly related to radar reflectivity [9]. In the following analysis, a suitable model to describe
the size distribution of the rainfall in Europe is adopted [10]

NðDÞ ¼ N0D2e−∧D (49)

where N0=64500R−0:5 (m-3 mm-3) with R (mm/h) being the considered rain rate, ∧ ¼
7:09R−0:27(mm−1), NðDÞðm−3mm−1Þ represents the number of raindrops of the diameter D per
unit volume per unit diameter class interval.

3.2. The motion equation of raindrops in wake vortices

Typically, the diameter of raindrops disperses between 0.5 and 4 mm. Usually their Stokes
number in wake vortex flow is approximate to 1, which makes their motion trajectories
significantly differ from the streamlines of total velocity field. To obtain those trajectories, the
motion equation of the raindrops is studied [11].

When a raindrop enters into the wake vortex flow, its movement is governed by

aðtÞ ¼ FdðtÞ
mp

þ g (50)

where t is the time, a is the acceleration of the raindrop, Fd is the fluid drag force acting on the
raindrop, mp is its mass, and g is the gravity acceleration. For a raindrop moving with velocity
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vp in the fluid whose velocity field is u½zpðtÞ�, if its diameter D ranges from 0.5 to 4 mm, the
drag force Fd can be approximately considered in the Newton regime [12] and given by

FdðtÞ ¼ 1
2
Cdρaδv

2 πD
2

� �2

, δv ¼ u½zpðtÞ�−vpðtÞ (51)

where zpðtÞ denotes raindrops’ position, δv is the relative velocity between the vortex flow and
the raindrop, and Cd is the fluid drag coefficient. The impact of air density variations in the
vortex flow on Cd can be neglected because the density of raindrops is much larger than that of
air. Thus, Cd for a raindrop of diameter D is derived by the equilibrium equation of its weight
and the drag force when falling at terminal falling velocity in still air:

Cd ¼ 4ρwgD
3ρaV

2
T

(52)

where ρw is the density of raindrops. Substituting Eqs. (51) and (52) into Eq. (50), the motion
equation of raindrops within wake vortices can be further expressed as

aðtÞ ¼ g þ g
V2

T

jδvjδv
dvpðtÞ
dt

¼ aðtÞ
dzpðtÞ
dt

¼ vpðtÞ

8>>>>><
>>>>>:

(53)

The instantaneous position and velocity of raindrops can be obtained from the above equa-
tions, but it is not easy to obtain a simple and closed expression. Here, a fourth-order four
variables Runge-Kutta algorithm is proposed to solve the equation of motion [11].

3.3. Examples of trajectories of raindrops in wake vortices

In still air, the raindrop falls along a vertical trajectory to the ground. In presence of wake
vortices, the trajectory of a raindrop is depending on its diameter and the location where it
enters into the wake vortex flow. Circulation is a very important parameter to characterize
wake vortex since it describes the strength of wake vortex. For raindrops moving in the
vortex flow, their motion characteristics, that is, trajectory and velocity also largely depend
on the vortex circulation. For simplicity, only the impacted part of the wake vortex region is
shown in Figure 6, where four sets of trajectories are illustrated for raindrops of diameters
0.5, 1.0, 2.0, and 4.0 mm. Each set of trajectories corresponds to a given circulation value of
the wake vortices. For a given circulation, the corresponding trajectory and velocity of
raindrops in the wake vortices are unique. Comparisons between different trajectories give
the following conclusions: (1) the smallest raindrops are much more sensitive to the vortex
circulation and (2) the motion characteristic of raindrops in wake vortices is representative of
the vortex strength.
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3.4. Raindrops’ distribution in wake vortices

A Doppler radar will be very sensitive to raindrops’motion and possibly enable the detection
of wake vortices in rain. To better understand the impact of wake vortices on the raindrops’
motion, it is necessary to develop the methodology to quantitatively analyse the raindrops’
distribution in wake vortices.

3.4.1. Raindrops’ number concentration

The box counting method is adopted here to quantitatively compute raindrops’distribution in
wake vortices. For simplification, we consider the situation where the raindrops are falling into
the two dimensional rectangular region of wake vortex in stable phase. Before entering into the
wake vortex region, the raindrops are falling in still air with the constant terminal falling
velocity, and they are named as “initial raindrops”. The number density of initial raindrops of
diameter D (mm) is assumed to be N0ðDÞ (m−3 mm−1). In the wake vortex region, the rain-
drops’ trajectory and velocity are changed and they are denoted as “disturbed raindrops”. The
number density of disturbed raindrops is assumed to be NðD, x, yÞ (m−3 mm−1), where (x, y) are
the coordinates in the wake vortex region. Obviously, for a given wake vortex pair,
NðD, x, yÞdepends on both the diameters of raindrops and their locations in wake vortex. In

Figure 6. Raindrops’ trajectories in wake vortices with different circulation: (a) D = 0.5 mm, (b) D = 1.0 mm, (c) D = 2.0
mm, (d) D = 4.0 mm. The solid line ‘-', the dash-dotted line ‘-.', the dashed line ‘–’and the dotted line ‘...’, correspond to the
values of vortex circulation: 490 m2=s, 430 m2=s, 360 m2=s, and 300 m2=s, respectively.
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order to better illustrate the influence of wake vortices on the raindrops’ distribution, the
raindrops’ relative number concentration at a point (x, y) is defined as

ηNðD, x, yÞ ¼ NðD, x, yÞ
N0ðDÞ (54)

where ηNðD, x, yÞ depicts the change in raindrops’ concentration induced by the wake vortex.
If ηN > 1, the concentration of raindrops is enhanced, otherwise it is reduced.

In order to obtain the quantitative estimation of ηN , the wake vortex region is divided into nx · ny
grid boxes with equal size. The size of each grid box in xy plane are Δx and Δy, respectively.
Above the wake vortex region, there are nx · 1 grid boxes where the initial raindrops of diameter
D are homogeneously distributed, and the number of initial raindrops in each grid box is
recorded as Num0ðDÞ. At each time step, their positions and velocities are updated by comput-
ing the equation of motion. If some of the initial raindrops enter into the wake vortex region, the
same number of new initial raindrops is added to the first row of the nx · ny grid boxes, say, the
nx · 1 grid boxes above the wake vortex region. When all the raindrops released at initial time
arrive at the bottom of wake vortex region, the number of disturbed raindrops NumðD, x, yÞ in
each grid box in wake vortex region is counted. Thus, ηNðD, x, yÞ can be approximated by the

Figure 7. Raindrops’ number concentration in wake vortices: (a) D = 0.5 mm, (b) D = 1.0 mm, (c) D = 2.0 mm, (d) D = 4.0
mm. The colour bar indicates the value of raindrops’ number concentration in each grid box.
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ratio of the number of disturbed raindrops in a grid box centred at (x, y) to the number of initial
raindrops in a grid box above the wake vortex region, that is

ηNðD, x, yÞ ¼ NðD, x, yÞ
N0ðDÞ ≈

NumðD, x, yÞ
Num0ðDÞ (55)

Obviously, the estimation accuracy of ηNðD, x, yÞ depends on the choice of the grid box size: Δx
and Δy, and the number of initial raindrops in each grid box above the wake vortex region:
Num0ðDÞ.

Parameters Values

Aircraft wingspan 60.30 m

Aircraft maximum landing weight 259,000 kg

Aircraft landing speed 290 km/h

Grid box size 1 m + 1 m

Num0ðDÞ 100

Raindrops’diameter 0.5 mm, 1.0 mm, 2.0 mm, and 4.0 mm

Table 2. Parameters for the computation of raindrops’ number concentration.

Figure 8. Raindrops’ horizontal velocity distribution in wake vortices: (a) D = 0.5 mm and (b) D = 1.0 mm.
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In Figure 7, the raindrops’ number concentration in wake vortices is illustrated. The simulation
parameters are listed in Table 2. It can be noticed that in the wake vortex region, there are two
columns where the raindrops’ concentration is very small, even to zero. These two columns
appear symmetrically below the two vortex cores and the distance between them in (a) is much
wider than the others. Between these two columns, there are two narrow regions where the
number concentration of raindrops is enhanced. For the raindrops of 1 and 2 mm of diameter,
the number concentration value exceeds 8 in some grid boxes.

3.4.2. Raindrops’ velocity distribution

Besides the number concentration, the raindrops’ velocity distribution in each grid box is of
great interest. If the grid box size used for the box counting method is small enough and the
number of raindrops in each grid box is large enough, the velocity components of the rain-
drops in one grid box can be thought to obey Gaussian distributions. The mean value and
variance of the velocity of the raindrops in each grid box are computed. If the number
concentration of the grid box is zero, the raindrops’ velocity in this grid box is set to 0.

In Figures 8 and 9, the raindrops’ horizontal and vertical velocity distribution in wake vortices
are illustrated, respectively. From Figure 8, it is interesting to find that the raindrops’

Figure 9. Raindrops’ vertical velocity distribution in wake vortices: (a) D = 0.5 mm and (b) D = 1.0 mm.
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horizontal velocity field is similar to the wake vortex velocity field. From Figure 9, it is
interesting to find that between the two vortex cores, the raindrops’ vertical velocity is speeded
up. At the same time, the standard deviation of the raindrops’ velocity distribution in a grid
box is sufficiently low to consider it as constant within each grid box. In fact, in wake vortex,
the raindrops’ motion is affected by the vortex flow; the raindrops’ velocity field is not the
same as the superimposition of the vortex flow velocity and raindrops’ terminal velocity, but it
is representative of the wake vortex velocity characteristics.
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Abstract

Vorticity dynamics is studied near the interface between turbulent and non-turbulent
flows, the so-called turbulent/non-turbulent (T/NT) interface, with the direct numerical
simulations of planar jets and mixing layers. The statistics near the interface confirm that
the T/NT interface consists of two layers: viscous superlayer and turbulent sublayer. The
viscous superlayer with the thickness of four times of Kolmogorov length scale is found
at the outer edge of the interface, where the vorticity grows with the viscous diffusion. In
the turbulent sublayer between the viscous superlayer and the turbulent region, the strain-
vorticity interaction becomes active. In the Lagrangian statistics for the fluid particles, the
different scaling laws appear in the entrained particle movement depending on the layer:
a ballistic evolution in the viscous superlayer and the Richardson-like scaling for relative
dispersion in the turbulent sublayer. These scalings indicate that the change in the particle
position in the viscous superlayer is governed by the outward viscous diffusion of vorticity,
whereas it is governed by the inviscid small-scale eddy motions in the turbulent sublayer.
The flow topology on the particle path line shows that the fluid being entrained tends to
circumvent the core region of intense eddies near the T/NT interface.

Keywords: jet, mixing layer, turbulent/non-turbulent interface, DNS, Lagrangian sta‐
tistics

1. Introduction

Interfaces dividing turbulent and non-turbulent regions appear in various canonical turbulen‐
ces, such as boundary layers, jets, and mixing layers, where turbulence is generated from the
shear due to the wall friction or mean velocity difference. These interfaces are called turbulent/

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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non-turbulent (T/NT) interfaces. Turbulence is generated by shear motions in various circum‐
stances,  where the turbulent  fluids are  surrounded by non-turbulent  fluids.  This  locally
generated turbulence often plays an important role in the relevant phenomena. For example,
ocean-mixing layers [1], generated in the stably stratified fluid, are sometimes responsible for
the transport of heat, salinity, and plankton. The atmospheric boundary layer [2] is related to
the cooling/heating of the ground surface and the transport of contaminant. In the flows with
the T/NT interface, the turbulent region grows into the non-turbulent region with the mass,
momentum, and energy exchanges across the T/NT interface.

Corrsin and Kistler [3], in laboratory experiments with hot-wire probes, found that the essential
feature of the turbulent regions is the high vorticity, and the turbulent and non-turbulent
regions can be distinguished by the vorticity. They also predicted that a very thin layer where
the non-turbulent fluids acquire vorticity by the viscous diffusion is formed at the outer edge
of the turbulent region. This thin layer, called the viscous superlayer, was confirmed with the
recent high-resolution direct numerical simulations (DNSs) [4]. Furthermore, the statistical
approach conditioned relative to the interface [5] clearly showed that the T/NT interface is the
layer with a finite thickness. In addition to the viscous superlayer, an adjacent layer, turbulent
sublayer, was found between the turbulent core region and the viscous superlayer [6]. One of
the differences between the turbulent sublayer and the viscous superlayer is in the vorticity
dynamics; the initial growth of vorticity of the non-turbulent fluid occurs by the viscous
diffusion in the viscous superlayer with the absence of inviscid vortex stretching, whereas the
vortex stretching plays an important role in the amplification of vorticity in the turbulent
sublayer [7,8].

The T/NT interface has been studied in particular attention to the entrainment process since
this is where the non-turbulent fluid acquires vorticity and results in the transition to turbu‐
lence. Turbulent flows consist of the motions in a wide range of scales, and both small and
large scales can cause the entrainment by nibbling [9] and engulfment [10], respectively. The
experiments in the boundary layers indicated that the entrainment is the multi-scale process
[11]. The entrainment across the interface was studied in [12] with the propagation velocity of
the enstrophy isosurface. These analyses on the isosurface movement showed that the
propagation velocity is of the order of the Kolmogorov velocity vη = (νε)1/4 [13,14], where ν is
the kinematic viscosity and ε is the dissipation rate of turbulent kinetic energy, and the complex
shape of the isosurface [15] relates the propagation velocity to the total entrainment rate, which
can be written as a function of large-scale quantities [16]. The enstrophy isosurface is an
infinitely thin surface located within the T/NT interface layer. Therefore, a more precise
description of the entrainment process is the fluid movement across the entire T/NT interface
layer than across the enstrophy isosurface. During the entrainment, the irrotational particles
pass both the viscous superlayer and the turbulent sublayer. The Lagrangian analysis is useful
for studying the entrainment, and both experiments and simulations have been used for
tracking the fluid particles (tracers) being entrained from the non-turbulent regions [14,17,18].
These studies showed the evolution of turbulence characteristics during the entrainment.
However, the relation between these Lagrangian statistics and the layer structures is not clear
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because the particle tracking does not show the location within the T/NT interface layer
because the T/NT interface also moves with the convective fluid motion.

In this study, we explore the connection between the T/NT interface structure and the Lagran‐
gian statistics during the entrainment process based on our recent DNS results [19]. The DNS
is performed for mixing layers and planar jets, and used for tracking the fluid particles being
entrained. In addition to the fluid particles, the outer edge of the T/NT interface layer, defined
by the enstrophy isosurface, is also tracked with the Lagrangian markers, enabling us to
examine the location of the fluid particle within the T/NT interface layer and to relate the
Lagrangian statistics to the Eulerian counterparts. The roles of small-scale eddy structures in
the entrainment are considered from the Lagrangian and Eulerian statistics. This chapter is
organized as follows: Section 2 presents the numerical methods and parameters as well as the
conventional statistics for the validation of the DNS data. Section 3 discusses the analysis on
the T/NT interface, such as the interface detection, and the conditional analysis based on the
Eulerian and Lagrangian statistics. Finally, Section 4 closes the chapter with the conclusion.

2. Direct numerical simulations

Direct numerical simulations are performed for temporally evolving mixing layers and planar
jets [19]. These flows develop from the initial state in the computational domain, which is
periodic in the mean flow (x) and spanwise (z) directions. The flows spread in the cross-
streamwise (y) direction. We consider the computational box with the size of (Lx × Ly × Lz)
represented by (Nx × Ny × Nz) grid points. The boundaries in the y direction are treated as the
slip wall [7]. The origin of the coordinate system is at the center of the computational domain.
The DNS code is an incompressible Navier-Stokes solver based on the fractional step method
[8]. In addition to the flow field, a passive scalar ϕ is simulated with the convection-diffusion
equation. The governing equations are spatially discretized with a fully conservative finite-
difference method [20]. The second-order and fourth-order schemes are used in the cross-
streamwise and the periodic directions, respectively. The governing equations are integrated
in time with a third-order Runge-Kutta method. The Poisson equation is solved with the fast
Fourier transform along the periodic directions and the diagonal matrix algorithm along the
x direction.

The initial velocity field is obtained by superimposing the statistically homogeneous and
isotropic velocity fluctuations onto the mean velocity, which is given by
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Here, UM is the velocity difference in the mixing layers, UJ the jet velocity, H the width of the
jet inlet and θM (θJ) the initial shear layer thickness in the mixing layers (planar jets). The
angular bracket denotes the averaged value in a x − y plane. We set θJ = 0.015H. The initial
velocity fluctuations are generated by a diffusion process [21], where the characteristics length
scales are 0.07H in the planar jets and 0.25δM in the mixing layers. The initial rms velocity is
0.04UJ for |y|/H ≤ 0.5 in the planar jets and is 0.025UM for |y|/δM ≤ 3 in the mixing layer. Except
these regions, the fluctuations are not imposed on the mean velocity. The initial scalar profiles
are given by
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Run ML04 ML08 PJ50 PJ90

Flow type Mixing layer Mixing layer Planar jet Planar jet

Re 400 800 5000 9000

L x 16πθM 16πθM 2.4πH 2.6πH

L y 16πθM 16πθM 4.8πH 3.8πH

L z 8πθM 8πθM 2.4πH 1.3πH

N x 512 1 024 512 1 024

N y 500 700 850 1 150

N z 256 512 512 512

Time step dt 0.08θM/UM 0.04θM/UM 0.012H/UJ 0.006H/UJ

Δx = Δz 1.5η 1.2η 1.5η 1.4η

Δy (y = 0) 1.0η 1.1η 1.2η 1.2η

Reλ 105 151 94 158

η 0.064θM 0.041θM 0.0096H 0.0059H

λ 20.8η 23.3η 14.8η 20.3η

Table 1. Physical and computational parameters of the DNS. The displayed turbulence characteristics are from the
turbulent core regions.

The Reynolds numbers Re are defined by UMθM/ν and UJH/ν. We perform the DNS for the
planar jets with Re = 5 000 and 9 000 and for the mixing layers with Re = 400 and 800. The
Schmidt number of ϕ is Sc = ν/D = 1, where D is the molecular diffusivity. Table 1 shows the
physical and computational parameters, such as the Kolmogorov scale η, Taylor microscale
λx, and the turbulent Reynolds number Reλ, where the Taylor microscale and turbulent
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Reynolds number are calculated from the streamwise velocity statistics. The computational
grid size, Δi, is comparable to η, and is able to capture turbulent motions in very small scales.

Figure 1. Self-similar profiles of mean streamwise velocity U  and rms streamwise velocity urms in (a and b) planar
jets and (c and d) mixing layers. U C and bU denote the mean streamwise velocity on the centerline and the jet half-
width obtained from U , respectively. The mixing layer thickness δU is defined as δU = ∫(0.5UM − U )
( U  − 0.5UM) /(UM)2dy. The present DNS results are compared with the experiments and DNS on the planar jets [22]
and mixing layers [23,24].

Figure 2. One-dimensional longitudinal spectrum Euu on the centerline of the planar jets and mixing layers compared
with the experimental plots in grid turbulence [25] and axisymmetric wake [26].
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The fundamental characteristics of the planar jets and mixing layers are compared with other
DNS and experiments for validation of the DNS. Figure 1 compares the self-similar profiles of
mean velocity and rms velocity fluctuations. The present DNS reproduces well the self-similar
profiles of these statistics in previous studies. Figure 2 shows the one-dimensional longitudinal
spectrum on the centerline with the experimental plots. We can see the overlap of the spectrum
in small scales, and the small-scale turbulent fluctuations are well resolved in the DNS.

3. Analysis on turbulent and non-turbulent interface

3.1. Detection of the T/NT interface

The turbulent regions are characterized by high vorticity [3]. Therefore, following [5], we
define the turbulent region as where the vorticity magnitude |ω| exceeds the threshold ωth.
Then, with an appropriate value of ωth, the isosurface of |ω| = ωth can be detected so that
it is located near the outer edge of the T/NT interface layer. The specific value of ωth is
obtained from a well-known dependence of turbulent volume on ωth [18]. Figure 3(a) shows
the volume fraction of turbulent regions as a function of ωth. We can see a plateau in the
turbulent volume, and the isosurface location hardly changes with ωth for the plateau. We
choose ωth = 0.04 |ω| C, which is from the plateau shown in Figure 3(a). This value is chosen
so that the isosurface is located at the outer edge of the T/NT interface layer. We call this
isosurface as the irrotational boundary hereafter. Figure 3(b) and (c) show the enstrophy
profile and the irrotational boundary. The irrotational boundary surrounds the high
enstrophy region and is located at the outer edge of the turbulent fluids. Thus, the outer
edge of the T/NT interface layer is well defined by thresholding the vorticity magnitude.

Figure 3. Detection of the T/NT interface. (a) Dependence of the turbulent volume fraction on the normalized threshold
ωth/ ω C. (b) Visualization of the irrotational boundary in ML08 (white line). The color contours show enstrophy levels
in log10(ω2/2). (c) The close-up of the T/NT interface (the region A in (b)).
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The irrotational boundary is visualized in Figure 4. The T/NT interface has a very com‐
plex shape. The Re dependence is also clear; the higher Re mixing layer has smaller-scale
structures because of the small length scales of turbulence.

Figure 4. Visualization of the irrotational boundary (the vorticity magnitude isosurface) in the mixing layers with (a)
Re = 400 and (b) Re = 800. The color shows the interface height YI from the centerline normalized by the mixing layer
thickness δU = ∫(0.5UM − U )( U  − 0.5UM)/(UM)2dy.

3.2. Statistics conditioned on the location of the T/NT interface

The vorticity dynamics is studied with the statistics conditioned on the location from the
irrotational boundary. This interface coordinate, ζI, is taken in the normal direction of the
irrotational boundary n = − ∇ω2/|∇ω2|, where ζI = 0 is the location of the irrotational boundary.

Figure 5. (a) Conditional mean enstrophy ω2/2 I. The vertical lines, from right to left, denote ζI = 0 and ζI = − 15η,
where ω2/2 I reaches the value close to the turbulent core region. Conditional mean enstrophy divided by the value at
the irrotational boundary ω2/2 I0 against the interface coordinate normalized by (b) Kolmogorov scale η and (c) Taylor
microscale λ = (λx + λy + λz).
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The non-turbulent region is indicated by ζI > 0. Because of the complicated shape of the T/NT
interface, a turbulent (non-turbulent) fluid and an associated irrotational boundary can appear
for ζI > 0 (ζI < 0). For separating the statistics into the turbulent and non-turbulent parts, the
statistics are calculated solely from turbulent and non-turbulent regions in ζI < 0 and ζI > 0,
respectively. When another irrotational boundary is found at ζI ≠ 0, the region within the
distance of λ from this boundary is excluded from the statistics for preventing the T/NT
interface layer from affecting the statistics for ζI ≫ 0 or ≪ 0. Note that previous studies have
shown that the T/NT interface layer thickness is about 0.5λ [27]. Hereafter, I denotes the
conditional mean value.

Figure 5 shows the conditional mean enstrophy profiles. The mean enstrophy is matched in
the layer with the thickness of ≈ 15η. The scaling of the thickness of the interface layer is
examined in the plots of ω2/2 I normalized by the value at ζI = 0, ω2/2 I0, in Figure 5(b) and
(c), where ζI is normalized by the Kolmogorov scale η and Taylor microscale λ, respectively.
The plots tend to better collapse onto a single curve for ζI/η than ζI/λ, and thus the thickness
of the T/NT interface layer, across which the enstrophy changes, is scaled with the Kolmogorov
scales. It should be noted that the Taylor microscale can be the characteristics length scale of
the T/NT interface when the large-scale coherent structures exist near the T/NT interface [28].

Figure 6. Conditional enstrophy budget in (a) ML08 and (b) PJ90, where Dω = ν∇2ω2/2 is the viscous diffusion term,
Pω = ωiSijωj is the production term, εω = − ν∇ωj ⋅ ∇ωj is the viscous dissipation term. The vertical lines, from right to
left, denote ζI = 0, ζI = − 4η, where Dω I = Pω I, and ζI = − 15η. The viscous superlayer (VSL) with the thickness δν and
the turbulent sublayer (TSL) with the thickness δω are highlighted.

The vorticity evolution near the interface is studied by the enstrophy transport equation:

2
2 2/ 2 ( / 2) ,w w w n w n w w= + Ñ - Ñ ×Ñi ij j i i

D S
Dt

(5)

where the first term on the right-hand side is the enstrophy production Pω (Sij: strain-tensor),
the second is the viscous diffusion Dω, and the third is the viscous dissipation εω. The condi‐
tional average of each term is plotted in Figure 6 for ML08 and PJ90. The plots are very similar
for these flows in the T/NT interface layer; the enstrophy grows by the viscous diffusion near
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where the first term on the right-hand side is the enstrophy production Pω (Sij: strain-tensor),
the second is the viscous diffusion Dω, and the third is the viscous dissipation εω. The condi‐
tional average of each term is plotted in Figure 6 for ML08 and PJ90. The plots are very similar
for these flows in the T/NT interface layer; the enstrophy grows by the viscous diffusion near
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the outer edge of the T/NT interface, whereas the inviscid vortex stretching becomes important
slightly inside the outer edge. The profile of Dω I exhibits negative and positive values in the
T/NT interface layer, indicating the vorticity transport toward the non-turbulent region. Near
the outer edge of the T/NT interface layer, Dω I is larger than Pω I in the region of − 4η ≤ ζ ≤ 0.
This thickness, δν = 4η, agrees with the direct observation of the viscous superlayer thickness
[4]. Thus, from the conditional mean profiles of enstrophy and its budget, we can identify the
viscous superlayer in − 4η ≤ ζI ≤ 0 and the adjutant layer, turbulent sublayer, with the thickness
of δω = 11η in − 15η ≤ ζI ≤ − 4η. This structure of the T/NT interfaces is observed in all DNS
dataset. In the turbulent core region, the mean enstrophy production Pω I almost balances with
the mean viscous dissipation εω I. This balance is absent in the T/NT interface layer; from
ζI = − 15η, εω I becomes small toward the irrotational boundary, whereas Pω I hardly changes
with the location for − 15η ≤ ζI ≤ − 9η.

Figure 7 gives the conditional plots of passive scalar ϕ and scalar dissipation rate
χ = D∇ϕ ⋅ ∇ϕ. In the mixing layer, the conditional statistics are calculated from the upper
interface, for which the non-turbulent fluid has ϕ = 0.5, where the upper interface is detected
as the irrotational boundary with ∇ω2 ⋅ ∇ϕ < 0. The conditional mean scalar, ϕ I, also changes
in the T/NT interface layer, and is adjusted between the turbulent and non-turbulent regions.
The jump in ϕ I is very similar in all DNS, and the thickness of this jump scales with the
Kolmogorov scale at Sc = 1 and in the Re range studied here. Because of the difference in ϕ
between the turbulent and non-turbulent regions, the scalar gradient becomes large in the
T/NT interface layer. Therefore, as shown in Figure 7(b), the scalar dissipation has a large peak
at ζI = − 4.9η in the T/NT interface layer. This location is shown in Figure 7(a) by the vertical
line, and is close to the inflection point of ϕ I and to the boundary between the viscous
superlayer and the turbulent sublayer.

Figure 7. Conditional mean scalar (ϕ) and normalized scalar dissipation rate  where  in

the mixing layers and  in the planar jets. The vertical lines, from right to left, denote ζI = 0,

ζI = − 4.9η, where  reaches a peak, and ζI = − 15η.

The strain-rate tensor Sij plays an important role in small-scale dynamics of turbulence. The
interaction between strain and vorticity leads to the vortex stretching ωiSij, and in turn to
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enstrophy production ωiSijωj. The gradient of passive scalar, Gi = ∂ϕ/∂xi, is also affected by the
strain field via the straining term − GiSij, which appears as the production term of χ. The
effective strains acting on the vorticity and the scalar gradient are written as follows [29]:
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w w
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w w
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,cg = - i ij j

k k

G S G
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where αω and γχ are the production rates of enstrophy and of scalar dissipation rate, respec‐
tively [30]. Note that the vortex stretching and the compression of the scalar gradient are
denoted by positive αω and γχ, respectively, and positive values of the effective strains
contribute to the amplification of enstrophy and of scalar dissipation rate. Figure 8 shows the
conditional average of αω and γχ normalized by the strain product on the centerline SijSij C.
The profiles are almost independent of the flows. αω I and γχ I decrease toward the interface
in the turbulent core region, but peaks can be found in the turbulent sublayer, where the
amplification of enstrophy and scalar dissipation rate becomes more efficient. This results in
a predominance of the enstrophy production over the viscous dissipation in the T/NT interface
layer ( Pω I > | εω I| in Figure 6).

Figure 8. Conditional mean profiles of (a) effective extensive strain acting on vorticity αω = ωiSijωj/(ωkωk) and (b) effec‐
tive compressive strain acting on scalar gradient γχ = − GiSijGj/(GkGk), where the mean strain product on the centerline
SijSij C is used for normalization. The viscous superlayer and turbulent sublayer are also indicated.

3.3. Lagrangian statistics of entrained fluid particles

The Lagrangian particle tracking is used for investigating the vorticity growth during the
entrainment of non-turbulent fluids. Once the flows have reached the self-similar regime,
140,000 particles are seeded in the non-turbulent regions near the irrotational boundary. The
particles are tracked with a third-order Runge-Kutta method and a trilinear interpolation
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Figure 8. Conditional mean profiles of (a) effective extensive strain acting on vorticity αω = ωiSijωj/(ωkωk) and (b) effec‐
tive compressive strain acting on scalar gradient γχ = − GiSijGj/(GkGk), where the mean strain product on the centerline
SijSij C is used for normalization. The viscous superlayer and turbulent sublayer are also indicated.

3.3. Lagrangian statistics of entrained fluid particles

The Lagrangian particle tracking is used for investigating the vorticity growth during the
entrainment of non-turbulent fluids. Once the flows have reached the self-similar regime,
140,000 particles are seeded in the non-turbulent regions near the irrotational boundary. The
particles are tracked with a third-order Runge-Kutta method and a trilinear interpolation
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scheme [31]. The flow characteristics are changed depending on the location in the T/NT
interface layer. Therefore, it is important to know the entrained fluid particle location within
the T/NT interface layer for better understanding of the Lagrangian properties of the entrain‐
ment. Because of the T/NT interface movement, the entrained particle tracking does not show
the location in the T/NT interface layer. Here, in addition to the fluid particles, the irrotational
boundary is also tracked with a marker, which moves with the velocity of the enstrophy
isosurface movement uI. As in Figure 9(a), the marker is placed on the irrotational boundary
where the fluid particle has crossed. uI is the sum of the fluid velocity at the irrotational
boundary u0 and the propagation velocity of the enstrophy isosurface uP = vEn, where vE = (Dω2/
Dt)/|∇ω2|. It was shown that only a negligible fraction of entrained fluid particles is trapped
inside a non-turbulent region completely surrounded by turbulent fluids [18]. Because the
irrotational boundary of this region disappears after it becomes turbulent, the markers of this
irrotational boundary are no longer located on the enstrophy isosurface. Therefore, |ω| on the
markers is monitored at every time step, and markers with |ω| > 2ωth are excluded from the
subsequent analysis.

The Lagrangian statistics are calculated for the fluid particles, conditioned on the time τ
elapsed after a fluid particle has crossed the irrotational boundary, and the Lagrangian
conditional average is denoted by τ. A separation vector δx is introduced as in Figure 9(a),
and is used for examining the particle location in the T/NT interface layer.

Figure 9(b) shows the Lagrangian conditional average of δx = |δx|, where δx and τ are
normalized by the Kolmogorov length scale η and time scale τη at the time when the fluid
particles are seeded. The plots are quite similar for small τ in all DNS. It takes about 7τη for
the entrained particles to reach the turbulent sublayer by moving across the viscous superlayer.
A difference in δx becomes clear in the turbulent sublayer; the time needed for the particles to
move across the turbulent sublayer changes depending on the flow configuration and
Reynolds number. The relation between δx τ and τ is used for relating the Lagrangian statistics

Figure 9. (a) The fluid particle movement is analyzed in relation to the irrotational boundary, which is tracked with a
marker moving with the velocity of the enstrophy isosurface movement. A marker is introduced at the boundary
where the fluid particle crosses. The irrotational boundary is indicated by a white line while enstrophy levels are
shown with the color contours. (b) Conditional mean distance between the entrained fluid and the irrotational boun‐
dary marker |δx| τ against τ/τη, where the Kolmogorov time scale τη = (ν/ε)1/2 and length scale η are taken on the cen‐
terline at the time when the fluid particles are seeded. The viscous superlayer (VSL) and the turbulent sublayer (TSL)
estimated from the Eulerian statistics are indicated in the figure.
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with the interface structure by plotting the Lagrangian statistics, which is a function of τ,
against δx τ.

The separation vector δx(τ), a fluid particle location relative to a marker of the irrotational
boundary, changes as

I
( ) ( ) ( ) ( ),d t d t t t
t

= º -
d

d
x u u u (8)

where δu is the fluid particle velocity in relation to the velocity of the marker of the irrotational
boundary, and is simply referred to as the relative velocity. The dot product of Eq. (8) with δx
yields the following equation [32]:
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The relative velocity can be decomposed into the two components: the irrotational boundary
propagation velocity (uP) and the fluid velocity difference (u − u0) between the fluid particle
and the location of the marker of the irrotational boundary:

P 0( ) ( ) ( ( ) ( )).d t t t t= - + -u u u u (10)

For small τ, we can assume that the fluid particles are located in the proximity of the irrotational
boundary [14], and the fluid velocity is almost the same between the locations of the fluid
particle and the marker of the irrotational boundary. Then, |uP| ≫ |u − u0| ≈ 0, and the
relative velocity can be approximated by δu(τ) ≈ − uP(0) [33]. Thus, Eq. (9) is simply,

2
2

P P E
0

2 ( (0) (0)) 2 .
td t

t
¢= × =òd x dt v

d
u u (11)

Integration of Eq. (11) yields δx 2 =vE
2τ 2, where vE is taken at τ = 0. Thus, the Lagrangian

conditional root-mean-squared distance changes with

2 1/2 2 1/2
E 0 (for small ).t td t t=á ñ = á ñx v (12)

It was shown that the propagation velocity scales with the Kolmogorov velocity [14]. By
contrast, the fluid velocity difference between two points can be much larger in turbulent flows.
Therefore, once the fluid particle has reached far away from the irrotational boundary, the
fluid velocity difference can be large compared with the propagation velocity. Then, in the
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case of δu ≈ u − u0, the fluid particle movement in relation to the irrotational boundary is
described as the two-particles dispersion problem [34]. Similar to Richardson’s law for the
relative diffusion, under the assumption that δx changes by eddies of size δx(τ) [35], we can
obtain the following relationship in the self-similar regime:

1/22 3/2/ (for large ),
t

d e t t=x C (13)

where C is a constant, and the mean kinetic energy dissipation rate ε is time dependent. Here,
we use ε obtained in the turbulent core region. This expression can be obtained with the
modified Richardson’s law for decaying turbulence [36,37] in the self-similar regime, where
ε(t) decays as ε(t) ~ t− n.

Figure 10. The scalings for the mean-squared distance between entrained fluid particle and irrotational boundary. (a)
The ballistic evolution in the initial stage of the entrainment. (b) The modified Richardson-like scaling for the mean-
squared distance. The viscous superlayer (VSL) and the turbulent sublayer (TSL) estimated from the Eulerian statistics
are indicated in (a) and (b). (c) Pdf of the cosine of the angle between δx and the irrotational boundary normal n.

Figure 10(a) shows δx 2
τ
1/2 for comparison between the DNS results and Eq. (12). For τ/τη ≲ 10,

Eq. (12) well predicts δx 2
τ
1/2. Thus, within the viscous superlayer (τ/τη ≤ 7), δx is changed by

the irrotational boundary propagation with only a negligible influence of the fluid velocity.
Since the irrotational boundary is located at the outer edge of the T/NT interface, where the
enstrophy grows by the viscous diffusion with only a negligible influence of vortex stretching,
the outward enstrophy diffusion causes the fluid particles to reach the turbulent sublayer.
Figure 10(b) shows δx 2 / ε τ

1/2 against τ. The plots of δx 2 / ε τ
1/2 are similar in all DNS presented

in this study. For τ ≈ 0, Eq. (12) yields δx 2 / ε τ
1/2 ∝τ. Both scaling laws, Eqs. (12) and (13), are

recovered in all simulations. The relationship for larger τ, Eq. (13), is satisfied from τ/τη ≈ 9,
which is the time slightly after the particles reach the turbulent sublayer (see Figure 9(b)). Eq.
(13) is valid for larger τ/τη, including the entire turbulent sublayer. The values of the constant
C, obtained with the least-squares methods, are between 0.25 and 0.30 as displayed in
Figure 10(b). The important assumption behind the relationship, Eq. (13), is that the fluid
particle movement in relation to the irrotational boundary is caused solely by eddies of size
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δx without viscous effects nor eddies with different sizes. The entrained particles within the
turbulent sublayer, δν ≲ δx ≲ δν + δω, obey Eq. (13), indicating that the particle movement is
caused by the small-scale eddy motions whose size is from δν to δν + δω. These small-scale eddies
with core radius of about 5η (≈δν) were found within the turbulent sublayer as intense vorticity
structures [38].

Figure 10(c) shows the pdf of the cosine of the angle between the separation vector δx and the
irrotational boundary normal n. Because the particle location within the viscous superlayer
changes with the irrotational boundary propagation, whose direction is given by n, the particle
in the viscous superlayer stays in the normal direction of the irrotational boundary. This is
confirmed by a large peak in the pdf associated with a parallel alignment of δx and n.

Figure 11. Lagrangian conditional mean enstrophy ω2/2 τ. The inset plots ω2/2 τ against the mean distance between
the particle and the irrotational boundary.

Figure 11 shows the Lagrangian conditional mean enstrophy ω2/2 τ, where the inset plots
ω2/2 τ against δx τ for comparison with the Eulerian statistics in Figure 5. Once the particle

moves into the T/NT interface layer, the enstrophy begins to grow. The inset shows that
even after the particle reaches deep inside the turbulent region, the mean enstrophy on the
particle path is much smaller than the Eulerian conditional mean enstrophy in Figure 5(a).
It should be noted that the Lagrangian statistics are obtained only from the fluid being
entrained, whereas the Eulerian statistics contain the contributions from the entrained fluid
and the fluid from the turbulent core region. This makes differences between the Lagran‐
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gian and Eulerian statistics, and the Eulerian statistics are not enough for studying the
entrainment process across the T/NT interface layer.

Figure 12. Lagrangian conditional mean enstrophy budget of the entrained particles plotted against the mean distance
δx τ between the particle and the irrotational boundary. (a) ML08 and (b) PJ90.

Figure 12 shows the Lagrangian conditional statistics of the enstrophy budget, where again
the Lagrangian statistics are plotted against δx τ for comparison with the Eulerian statistics in
Figure 6. Qualitative differences can be found between the Eulerian and Lagrangian condi‐
tional means of Dω. The Eulerian Dω I displays both positive and negative values indicating
an outward mean enstrophy transport, whereas the Lagrangian Dω τ is positive even for large
δx τ. Thus, although the fluid being entrained possesses an important level of enstrophy in

the T/NT interface layer, the enstrophy transport toward the non-turbulent region is hardly
associated with this entrained fluid. The Lagrangian enstrophy production and dissipation
terms are smaller than their corresponding Eulerian counterparts. Note that these terms are
proportional to the enstrophy, and this difference between Lagrangian and Eulerian statistics
seems to be due to a smaller enstrophy level on the entrained particle path.

Figure 13(a) compares the Eulerian and Lagrangian conditional averages of the second
invariant of velocity gradient tensor Q = (ωiωi − 2SijSij)/4. A large positive value of Q implies
the predominance of vorticity over the strain while its negative value is related to where
dissipation is dominant. The vortex core region of an eddy often has positive Q while negative
Q appears around the core region [35]. The Eulerian Q I has a negative peak near the irrota‐
tional boundary and a large positive peak inside the turbulent region. However, the Lagran‐
gian Q τ is negative even for large δx τ in the turbulent core region. The third invariant of the
velocity gradient tensor is defined by R = − (SijSjkSki/3 − ωiSijωj/4), and the joint pdf of Q and R
has been used for investigating the local flow topology in various turbulent flows [39–41].
Figure 13(b) and (c) compares the joint pdf of Q and R obtained as the Eulerian and Lagrangian
statistics in the turbulent sublayer. Both Eulerian and Lagrangian pdfs show a “teardrop”
shape similar to various turbulent flows, but a difference is found for large positive Q; the
probability of finding intense values of Q ≫ 0 is smaller in the Lagrangian pdf than in the
Eulerian counterpart. These statistics of Q show that although there are regions with Q ≫ 0
within the T/NT interface layer, the fluid particles being entrained tend to circumvent these
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regions. The regions with Q ≫ 0 can be related to the core of the intense eddies. Thus, a circular
motion induced by these eddies may explain this entrained particle path.

Figure 13. (a) Comparison between the Eulerian and Lagrangian conditional averages of the second invariant of the
velocity gradient tensor ( Q I and Q τ, respectively). The Lagrangian conditional average is plotted against δx τ. Joint
pdf of the second and third invariants of the velocity gradient tensors in (b) Eulerian and (c) Lagrangian statistics. In‐
variants are normalized by the mean strain product on the centerline SijSij C at the time when the particles are seeded.

4. Conclusion

The DNS of planar jets and mixing layers was performed for investigating the vorticity
dynamics near the T/NT interface. The outer edge of the T/NT interface layer, irrotational
boundary, is detected as an isosurface of the vorticity magnitude. The Eulerian and Lagrangian
statistics were investigated in this study. The former was calculated conditioned on the
distance from the irrotational boundary. For investigating the Lagrangian properties of the
entrainment, a large number of fluid particles are seeded in the non-turbulent region of the
self-similar regime. The Lagrangian statistics were calculated as a function of time elapsed
after the particle crosses the irrotational boundary. Furthermore, a marker of the irrotational
boundary is also tracked with the velocity of the enstrophy isosurface movement, and is used
for examining the fluid particle location within the T/NT interface layer.

The Eulerian conditional mean enstrophy and its budget showed that the T/NT interface is a
layer with the thickness of about 15η, and consists of the viscous superlayer and the turbulent
sublayer with the thickness of δν ≈ 4η and δω ≈ 11η, respectively. It was also found that the
amplification of the vorticity and scalar gradient is efficient in the turbulent sublayer. The
passive scalar exhibits a jump in the T/NT interface layer, where the large scalar dissipation
rate appears near the boundary between the viscous superlayer and the turbulent sublayer in
all simulations.

The Lagrangian statistics of the entrained particle and the marker of the irrotational boundary
showed that it takes about 7τη for the entrained particle to pass across the viscous superlayer.
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The mean-squared distance exhibited two different scalings depending on the location: a
ballistic evolution in the viscous superlayer and the Richardson-like scaling for the relative
dispersion in the turbulent sublayer. These scalings indicate that the different mechanisms
govern the entrained fluid movement between the two layers. A ballistic evolution was
explained reasonably based on the irrotational boundary propagation, which arises from the
viscous diffusion of vorticity. The Richardson-like scaling implies the importance of inviscid
motions of small-scale eddies in the entrainment. The Lagrangian statistics also showed that
although the fluid being entrained possesses an important level of enstrophy, it does not
contribute, in a mean sense, to the viscous diffusion of vorticity to the irrotational region. Thus,
the fluid existing in the turbulent core region plays an important role in the vorticity diffusion
near the T/NT interface. The Q − R analysis indicates that the entrained fluid path appears
around the core of the small-scale eddy structures related to very large Q.
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Abstract

In  the  present  work,  a  Lattice  Boltzmann formulation  in  vorticity-stream function
variables is proposed for axisymmetric flows with swirl. For this purpose, several source
terms are proposed and implemented. Although containing velocity gradients, these
sources are in the Lattice Boltzmann framework and fulfill the Euler and Navier-Stokes
equations in their conservative form. The main characteristics of the proposed method
are: First, the momentum equation is solved using a unified Lattice Boltzmann solver;
second, the proposed sources are consistent with the nonviscous and viscous momen-
tum equations; and third, the implemented method is second-order accurate in space.
Numerical tests on the Taylor-Couette flow with finite aspect ratio of 3.8 and the lid-
driven cylindrical cavity flow were carried out showing good agreement with numerical
and experimental results found in the literature, evidencing the ability of the imple-
mented method to solve axisymmetric flows with swirl. In the case of the lid-driven
cylindrical cavity flow, the implemented method is able to correctly reproduce some
qualitative characteristics of this flow such as the vortex breakdown close to the cavity
axis at different Reynolds numbers and cavity aspect ratio.

Keywords: Lattice Boltzmann method, vorticity-stream function, axisymmetric flow
with swirl, lid-driven cylindrical cavity, source terms

1. Introduction

The Lattice Boltzmann method (LBM) was created in the late 1980s as a derivation of the Lattice
Gas Automata (LGA). This method has shown to be an efficient solver not only for the Navier-
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Stokes (NS) equations but also for some other nonlinear partial differential equations [1]. In
several cases, LBM has been used for the solution of axisymmetric flows, modeling the problem
in two dimension (2D) [2–7] and three dimension (3D) [8–10].

Although it is well known that axisymmetric flows can be mathematically described as a 2D
problem, considering the governing equations in a cylindrical coordinate form, there is an
inherent discrepancy between the cylindrical behavior of the flow and the two dimensional
spatial discretization (i.e., the type of lattice used). In order to overcome these discrepancies,
Halliday et al. [11] included position and time-dependent sources in the Lattice Boltzmann
evolution equation to achieve the proper evolution equations through the Chapman-Enskog
methodology. Subsequent studies have successfully used this idea to improve the Lattice
Boltzmann method in order to solve different axisymmetric flows with or without swirl. Huang
et al. [12] proposed a hybrid Lattice Boltzmann finite-difference axisymmetric formulation
where the planar velocities were solved through a pressure-velocity (p − v) LBM. The azimuthal
component through a finite-difference scheme was solved by inserting source terms into the
two-dimensional Lattice Boltzmann equation. In order to avoid the use of different frameworks
and solving every momentum equation within the LBM approach, Guo et al. [13] proposed a
simple and straightforward incorporation of source terms in a LB p − v formulation. This way,
they were able to predict steady and unsteady axisymmetric flows starting from the general
Lattice Boltzmann equation. Li et al. [4] proposed an improved axisymmetric Lattice Boltzmann
scheme where a multiple relaxation time (MRT) collision model was used to insert source terms
that contained no velocity gradients. The same approach was also explained and implemented
by Zhou [5]. Regarding LBM formulations in vorticity-stream function, Chen et al. [14]
developed an axisymmetric Lattice Boltzmann formulation without swirl considering vorticity
and the stream-function as its primitive variables. Improvements were made coupling a
thermal LBM [15] and finally proposing an axisymmetric formulation [16, 17].

In the present work, different source terms are proposed for the Lattice Boltzmann implemen-
tation of axisymmetric flows with swirl. Although containing velocity gradients, these sources
are in the Lattice Boltzmann framework and fulfill the Euler and NS equations in their
conservative form. This implementation is tested with some flows such as the lid-driven
cylindrical cavity flow: a benchmark case for axisymmetric flow solvers, deeply studied both
numerically [18–20] and experimentally [21]. The main characteristic of the lid-driven cylin-
drical cavity flow is that for certain Reynolds number (Re) and cavity aspect ratio (Ar), it can
undergo structural changes such as vortex breakdowns that are triggered by azimuthal
vorticity stretching and its interaction with the azimuthal velocity [20, 22].

2. Axisymmetric Lattice Boltzmann implementation

2.1. Governing equations

Let  , ,  =  +  +  be the velocity field of an axisymmetric, viscous flow with

swirl with the corresponding vorticity ( ) defined as shown in Eq. (1)
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vorticity stretching and its interaction with the azimuthal velocity [20, 22].

2. Axisymmetric Lattice Boltzmann implementation

2.1. Governing equations

Let  , ,  =  +  +  be the velocity field of an axisymmetric, viscous flow with

swirl with the corresponding vorticity ( ) defined as shown in Eq. (1)
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For such flows, the 3D Navier-Stokes equations are equivalent to the following simplified
vorticity-stream function formulation
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y yw ¶ ¶ ¶æ ö- - ç ÷¶ ¶ ¶è ør z r r r

(4)

1 1= =y y¶ ¶
-

¶ ¶r zu u
r z r r

(5)

where  = ,  . The definition of the velocity in terms of the stream function ψ fulfills the

continuity equation ∇ ⋅  = 0. Note that the convective terms of these governing equations are
written in a conservative form in order to match the operators achieved by the numerical
discretization based on LBM.

2.2. Numerical method

The discrete Lattice Boltzmann equation (LBE) is given by

( , ) ( , ) = ( ( , ))+ D + D - Wix e x xi i i if t t t f t f t (6)

where fi is the particle distribution function along the ith direction, ei is a vector in the direction
of the microscopic velocities and Ωi(fi(x, t)) is the collision operator. Δx and Δt are space and
time increments, and Δx/Δt = |ei| = c is the magnitude of the microscopic velocity. Employing
a second-order Taylor expansion on the convective part (LHS of Eq. (6)) and using the BGK
approximation of the collision operator Ωi(fi(x, t)), Eq. (7) is achieved.

21 1( ) ( 2 : ) = [ ]
2 t

¶ + Ñ × + ¶ + ¶ Ñ × + ÑÑ - -i i i ie e e e eq
t i t t i i if f f f (7)
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where τ is the dimensionless relaxation time of the distribution function fi and 𝑒𝑒𝑒𝑒 is the

equilibrium function distribution. Using the Chapman-Enskog expansion, the distribution
function fi is expanded as

(0) (1) 2 (2)= ...e e+ + +i i i if f f f (8)

where ε is a formal parameter in the expansion that allows to keep track of different orders of
magnitude. It will be considered only as a label and will be dropped out of the final results
setting ε = 1 [23]. The time and space derivatives are also expanded in terms of ε as shown in
Eqs. (9) and (10).

(1) 2 (2)= e e¶ ¶ + ¶t t t (9)

(1)= e¶ ¶x x (10)

According to Wolf-Gladrow [23], the reasons behind the different expansions in time and space
lie in the fact that different macroscopic processes such as convection and diffusion can be
distinguished by their time scales but act on similar spatial scales. Replacing Eq. (8) through
Eq. (10) in Eq. (7), Eq. (11) is obtained

(0) (1) 2 (0) (1) (0) (1)1 1( ) ( ) = [ ]
2

e e e
t

+ + + - + - eq
i i i i i i i i iD f f D f f f f f (11)

where D ie  is the total derivative operator expanded through ε. Finally,
source terms (hi) are included in the RHS of Eq. (11) in order to fulfill the momentum equations
constraints where  and  are the expansion of hi in terms of ε.

(0) (1) 2 (0) (1) (0) (1) (1) 2 (2)1 1( ) ( ) =
2

e e e e e
t
é ù+ + + - + - + +ë û

eq
i i i i i i i i i i iD f f D f f f f f h h (12)

According to the expansion in Eq. (12), every time scale is grouped starting with the terms of
order O(1)

(0) = eq
i if f (13)

Vortex Structures in Fluid Dynamic Problems98



where τ is the dimensionless relaxation time of the distribution function fi and 𝑒𝑒𝑒𝑒 is the

equilibrium function distribution. Using the Chapman-Enskog expansion, the distribution
function fi is expanded as

(0) (1) 2 (2)= ...e e+ + +i i i if f f f (8)

where ε is a formal parameter in the expansion that allows to keep track of different orders of
magnitude. It will be considered only as a label and will be dropped out of the final results
setting ε = 1 [23]. The time and space derivatives are also expanded in terms of ε as shown in
Eqs. (9) and (10).

(1) 2 (2)= e e¶ ¶ + ¶t t t (9)

(1)= e¶ ¶x x (10)

According to Wolf-Gladrow [23], the reasons behind the different expansions in time and space
lie in the fact that different macroscopic processes such as convection and diffusion can be
distinguished by their time scales but act on similar spatial scales. Replacing Eq. (8) through
Eq. (10) in Eq. (7), Eq. (11) is obtained

(0) (1) 2 (0) (1) (0) (1)1 1( ) ( ) = [ ]
2

e e e
t

+ + + - + - eq
i i i i i i i i iD f f D f f f f f (11)

where D ie  is the total derivative operator expanded through ε. Finally,
source terms (hi) are included in the RHS of Eq. (11) in order to fulfill the momentum equations
constraints where  and  are the expansion of hi in terms of ε.

(0) (1) 2 (0) (1) (0) (1) (1) 2 (2)1 1( ) ( ) =
2

e e e e e
t
é ù+ + + - + - + +ë û

eq
i i i i i i i i i i iD f f D f f f f f h h (12)

According to the expansion in Eq. (12), every time scale is grouped starting with the terms of
order O(1)

(0) = eq
i if f (13)

Vortex Structures in Fluid Dynamic Problems98

followed by terms of order O(ε)

(1) (0) (1) (0) (1) (1)1( ) =
t

¶ + ¶ × - +iet i x i i if f f h (14)

and finally the terms of order O(ε2)

(2) (0) (1) 2 (0) (1) (1) (0) (1) (1) (0)

(1) (1) (1) (1) (2) (2)

1 1( ) ( ) ( : ( ) ( ) )
2 2

1( ) = .

a b

t

¶ + ¶ + ¶ ¶ × + ¶ ¶

+ ¶ + ¶ × +

i i i

i

e e e

e

t i t i t x i x x i

t i x i i i

f f f f

f f f h
(15)

where (ei)α is the component of the velocity vector ei on the α-coordinate direction.

2.3. Lattice

The D2Q5 lattice model (two dimensions and five directions) has shown to be adequate for
advection-diffusion problems based on its easy implementation and its inherent orthogonality =   [14–17, 24]. The D2Q5 model has discrete velocity directions given by Eq. (16)

0 0,=
[ ( 1) / 2, ( 1) / 2] 0.p p
ì =ï´ í

- - ¹ïî
ie

r
ic

cos i sin i i
(16)

Considering the evolution equations as the main purpose of our discretization, the equilibrium
functions are defined for uθ and ωθ as

2= 1
5
q é ù×

+ê ú
ë û

iereq
i

s

u uf
c (17)

2= 1
5
qw é ù×

+ê ú
ë û

iereq
i

s

ug
c (18)

where  =  2 5 is the speed of sound in the lattice. These equilibrium functions fulfill the

lattice constraints:  = 04  = ,  = 04  =   and  = 04  = 2 for uθ. The same

holds for ωθ replacing fi by gi.
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2.4. Recovery of the governing equations

In order to recover the governing equations, zeroth and first moments are taken to Eqs. (14)

and (15). Defining   =  = 04 ℎ  for l = 1, 2 and the fact that  = 04  = 0 for k ≥ 1 (see

reference [24]) the zeroth moment of Eq. (14) produces Eq. (19), while the zeroth moment of
Eq. (15) produces Eq. (20).

(1) (1) (1)( ) =q q¶ + ¶ ×
r

t xu uu H (19)

(

)

4
(1) (1) (2) (1) (1)

=0
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2
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q q

q q

¶ × + ¶ + ¶ ¶

+ ¶ ¶ × + ¶ ¶

å ie

r
x i t t t

i

t x s x x

f u u

uu c u H
(20)

The first term on the LHS of Eq. (20) is rewritten with the first moment of Eq. (14)

4 4
(1) (1) (1) 2 (1)

=0 =0
= ( )q qt æ ö

- ¶ - ¶ç ÷
è ø

å åi ie e r
i i t s x

i i
f h uu c u (21)

which is replaced into Eq. (20) and produces

(

)

4
(1) (1) (1) 2 (1) (2)

=0
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(22)

The second time derivative over uθ on the LHS of Eq. (22), i.e., , is rewritten by taking
∂t on Eq. (19) as follows:

4
(1) (1) (1) (1) (1)

=0
( ) = ( )q q¶ ¶ ¶ - ¶ ×å r

t t t i x
i

u h uu (23)

Replacing Eq. (23) into Eq. (22) leads to

)

4 4
(1) (1) (1) 2 (1) (2) (1) (1)

=0 =0

(1) (1) (1) (1) 2 (1) (1) (2)
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(24)
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Finally, the source terms are redefined in order to eliminate the time derivative of the source
within the evolution equation [25].

(1) 2 (2) (1)
1

1= ( )
2

e e+ + ¶i i i t ih h h h (25)

Equation (25) combined with Eqs. (19) and (24) produces the momentum equation for uθ
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The same procedure is applied to ωθ replacing fi by gi obtaining an equation similar to Eq. (26)
but in terms of ωθ.
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Comparing Eqs. (26) and (27) with Eqs. (2) and (3) it is observed that the terms  and
 have to be neglected in order to match both momentum equations. An order

analysis is done for these terms assuming Uc, Lc, and tc as the characteristic velocity, length,
and time scales, respectively. Considering Eq. (27) for azimuthal vorticity, the term 
is the same order of  and the term  is the same order of . Taking the ratio
of the order of the latter terms, we obtain

(1) (1) 2 2
2

2 (1) (1) 2 2 2

( ) /= = = ( )
/

q

q

w
w

æ ö æ ö æ ö¶ ¶ ×
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t x c c c c
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u U t L UO O O O M
c c L t c (28)

where M = Uc/cs is the Mach number of the lattice. Eq. (28) shows that the term  is
very small compared with  and it can be neglected if M < < 1, according to the LBM
dynamics. This procedure is also valid for the azimuthal velocity leading to neglect the term

.

After the order analysis is performed, Eqs. (26) and (27) are rewritten as
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2.5. Source definition

As it was stated in the introduction, there exists a discrepancy between the lattice dimension
and the dimensional nature of the flow. The discrepancy arises in the operators achieved
through the multiscale analysis (Cartesian) and those that are natural to the momentum
equations (cylindrical). As shown in the RHS of Eq. (31), there is an additional derivative that
contains the swirl of the flow which is not captured by the operators achieved through the
multiscale analysis.

= =q q
¶ ¶ ¶ ¶ ¶ ¶ ¶
+ + ¹ + + +

¶ ¶ ¶ ¶ ¶ ¶ ¶r z r z
car cyl

D Du u u u u
Dt t r z t r z Dt (31)

In order to overcome this problem, the inclusion of a source terms is needed and therefore
defined to match the governing equations, Eqs. (2, 3) with Eqs. (29, 30).

Consequently, the source terms for uθ are defined as

(1) (2) 2
2

1 12 and
2

q q qt ¶æ ö é ùº - º - -ç ÷ ê ú¶è ø ë û
i i r i i s

u u uh t u h t c
r r r r

(32)

and for ωθ as

(1) (2) 2
2

1 12 and
2

q q q qw wt¶ ¶æ ö é ùº º - -ç ÷ ê ú¶ ¶è ø ë û
i i i i s

u uh t h t c
r z r r r

(33)

where  = 04  = 1 and  =  2 + 1 2.

The source terms of O(ε) were defined, both for uθ and ωθ, in order to reproduce the Euler
equations in their conservative form. Then, the terms of O(ε2) were defined in order to
reproduce the cylindrical terms of the Laplacian operator that appears in Eqs. (2) and (3).
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where  = 04  = 1 and  =  2 + 1 2.

The source terms of O(ε) were defined, both for uθ and ωθ, in order to reproduce the Euler
equations in their conservative form. Then, the terms of O(ε2) were defined in order to
reproduce the cylindrical terms of the Laplacian operator that appears in Eqs. (2) and (3).
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Finally, due to the symmetries of the lattice, the term ∂1 ⋅  = 04 ℎ1  is eliminated in Eqs.

(29) and (30) since  = 04 ℎ1  = 0.

3. LBM algorithm

This section describes the algorithm used to solve every Lattice Boltzmann evolution equation
within the same framework producing a LBM solver able to solve axisymmetric flows. The
implementation of the algorithm is based on the key steps in LBM: streaming and collision
that are given by Eq (6).

3.1. Poisson equation solver

In order to solve Eq. (4), which is a Poisson equation for ψ, the model proposed by Chai et al.
[26] is employed. The evolution equation is given by

21( , ) ( , ) = ( , ) ( , ) (0.5 ) / 2y
y

y t
t

é ù+ D + D - - - + D -ë û
eq

i i i i iL t t x x L t x L t x L t x S t c (34)

where L is the distribution function associated with ψ and S accounts for the source terms. τψ
is the dimensionless relaxation time that is set with accurate results to 1 [26].  is the weight
coefficient for the source terms, and they must satisfy the constrain  = 14  = 1. In the present
study, the source term S is defined in Eq. (35)

qwº - +S r uz (35)

and the equilibrium distribution is defined as in Eq. (36)

( , ), : = 0
( , ) = 1 ( , ), : = 1,2,3,4

4
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y

-ì
ï
í
ïî

eq
i

x t i
L x t

x t i
(36)

where  ,  =  = 14  ,  . ur and uz are calculated with Eq. (5), employing a central

difference scheme in the lattice domain.
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3.2. Algorithm

With every evolution equation discretized in the LBM framework, an algorithm of the method
is finally proposed:

1. Numerical parameters definition: Re, Ω, R, Ar, N = (Grid size).

2. Initial and boundary conditions definition

3. Time loop until steady state is reached:

a.   LBM solver  + 𝀵𝀵
b.  + 𝀵𝀵  LBM solver  + 𝀵𝀵
c.  + 𝀵𝀵  LBM solver → ψt + Δt until:

2 2= tends to = 0 =Ñ + ®Ñ -
D D
Dt Dtq q
y yy w y w

  d. Computation of ur and uz.

3.2.1. LBM solver

As shown in the algorithm the time loop uses a unified Lattice-Boltzmann solver in which five
steps are performed:

1. Equilibrium function calculation through Eqs. (17, 18, and 36).

2. Source term calculations through Eqs. (32, 33, and 35) using the information obtained at
time t

3. Collision step for every particle function distribution.

1( ( , )) = [ ]
t

W - -x eq
i i i if t f f

 4. Streaming step for every particle function distribution.

( , ) = ( ( , )) ( , )+ D + D W +ix e x xi i i if t t t f t f t

 5. Variable recover through the summation of the distribution functions, i.e.,  = 04  = ,

 = 04  =  and  = 14  = .
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steps are performed:

1. Equilibrium function calculation through Eqs. (17, 18, and 36).

2. Source term calculations through Eqs. (32, 33, and 35) using the information obtained at
time t

3. Collision step for every particle function distribution.

1( ( , )) = [ ]
t

W - -x eq
i i i if t f f

 4. Streaming step for every particle function distribution.

( , ) = ( ( , )) ( , )+ D + D W +ix e x xi i i if t t t f t f t

 5. Variable recover through the summation of the distribution functions, i.e.,  = 04  = ,

 = 04  =  and  = 14  = .
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As stated in the algorithm, the time loop is performed until the steady state is reached which
numerically is considered when

7|| ( ) ( 1000 ) || < 10
|| ( ) ||

d -- -u t u t t
u t (37)

where the relative error of the velocity field is calculated between 1000 consecutive time steps.

4. Numerical results

In the present section, the proposed source terms are validated using some well-known
benchmarks flows, including the circular Couette flow, the Taylor-Couette flow, and the
swirling flow within the lid-driven cylindrical cavity. All cases were validated for a laminar
regime. For each case, the boundary and initial conditions will be discussed.

4.1. Circular Couette flow

In this case, the flow between two infinitely long concentric cylinders is simulated. The inner
cylinder rotates at constant speed Ω, while the outer is stationary (see Figure 1). The analytic
solution of this flow is used to prove that the proposed method is second order. The boundary
conditions for the fluid variables are as follows:

Figure 1. Configuration of the Circular Couette and Taylor-Couette Flow.

2

2

= : ( , , ) = (0, ,0), = , = 0,

= : = = = 0, = , = 0.
q q

q q

w y y

w y y

W Ñ

Ñ
in r z in

out r z

r R u u u R
r R u u u

(38)

where the Laplacian of ψ on the boundaries is calculated using a second-order Taylor approx-
imation employing the inner nodes values. Symmetry is imposed on the top and bottom
boundaries.
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Figure 2 compares the analytic solution with the numerical results for a laminar flow with
Re < 10, inner cylinder’s radius Rin = 0.5m and angular velocity Ωin = 0.2rad/s, and outer cylinder’s
radius Rout = 1m and angular velocity Ωout = 0. With these parameters, the analytic solution for
this flow is given by Eq. (39)

Figure 2. Azimuthal velocity comparison of the Circular Couette flow. (−): Analytical solution, (o): present LBM solu-
tion.

=q +
Bu Ar
r

(39)

where

2 2
2 2

2 2 2 2= = 0.0667 and = = 0.0667.W -W W -W
-

- -
in in out out in out

in out
in out out in

R RA R R
R R R R

Results were obtained with a lattice resolution of Δx = (Rout − Rin)/(N − 1), i.e., N = 50. It is clear
that the numerical results are in good agreement with the analytical solution. The relative
global error, defined by Eq. (40), is presented in Figure 3 for different mesh sizes.

2=|| ||-a LBME u u (40)

In Eq. (40) uLBM is the azimuthal velocity predicted by the present method. The slope of the
fitting in Figure 3 is 2.04, which shows that the proposed method is second-order accurate in
space.
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Figure 3. Convergence analysis. (−): least-square fitting with slope 2.04.

4.2. Taylor-Couette flow with finite aspect ratio

A Taylor-Couette flow consists of a viscous fluid confined between two concentric rotating
cylinders of length H = Ar(Rout − Rin) with aspect ratio Ar = 3.8. The Reynolds number is defined
as Re = RinΩinA/ν, where Ωin is the angular velocity of the inner cylinder and A is the gap of the
annulus. In this case, the boundary conditions for z, due to the finite length, have to be specified,
besides the boundary conditions for r used in the Circular Couette flow, as

2

2

= 0 : = = 0, = ,

= : = = 0, = .
q

q

y w y

y w y

Ñ

Ñ
z

z

z u
z H u

(41)

Three different Re were simulated and analyzed; Re = 85, 100 and 150. The maximum stream-
function values in the r − z plane are listed in Table 1 and compared to those presented by
Huang et al. [12]. There is a good agreement between the present formulation and the hybrid
scheme demonstrating the versatility of the proposed numerical method.

Re ψ max ψ max [12]

85 4.32 × 10− 2 4.810 × 10− 2

5.252 × 10− 2 5.501 × 10− 2

6.38 × 10− 2 6.427 × 10− 2

Table 1. Maximum stream-function comparison for the (r, z) with the proposed results in [12].

Simulation of Axisymmetric Flows with Swirl in Vorticity-Stream Function Variables...
http://dx.doi.org/10.5772/65650

107



In order to validate the qualitative characteristic of the flow in terms of axisymmetric toroidal
vortices, Figure 4 shows the contours of stream-function and vorticity for Re = 150 and Ar = 3.8.
Similar flow patterns consistent with those reported by Huang et al. [12] are observed.

Figure 4. Contours of stream-function (left) and vorticity (right).

4.3. Lid-driven cylindrical cavity flow

Cylindrical cavity steady flow have been studied both numerically [9, 18] and experimentally
[21]. One of the interesting features of this flow is that vortex breakdowns takes place within
the cavity producing recirculating zones located in the cavity axis. In 1984, Escudier [21] was
able to summarize the flow regimes in the Escudier diagram varying the Reynolds number
Re = R2Ω/ν and the aspect ratio Ar = H/R of the cavity. The flow problem consists of a cylinder
with top and bottom walls, where the top wall rotates at a constant angular velocity (see
Figure 5). Four cases were chosen from the Escudier diagram: Case 1 (Ar = 1.5, Re = 990), Case
2 (Ar = 1.5, Re = 1290), Case 3 (Ar = 2.5, Re = 1010), and Case 4 (Ar = 2.5, Re = 2200) in order to
demonstrate the quantitative and qualitative accuracy of the present formulation.
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Figure 5. Configuration of the cylindrical cavity flow.

The parameters in the simulation were set to R = 1 and Ω = 0.1, which makes the characteris-

tic velocity Uc = ΩR = 0.1 ensuring that  =  2 = 0.25 < < 1. The boundary conditions for

the primitive variables are defined as
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(42)

Figure 6. Normalized axial velocity uz of Case 1 depending on mesh size: (×): 200 × 300, (−): 150 × 225, (⋅): 100 × 150,
(⋅ − ⋅ −): 70 × 105, (− − −): 50 × 75, (⊲): 30 × 45.
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In order to establish mesh independence in the solution, different grid sizes were used on the
r − z domain. Case 1 was simulated using the following meshes: 30 × 45, 50 × 75, 70 × 105,
100 × 150, 150 × 225, 200 × 300, and the results are shown in Figure 6. It is observed that the
solution is independent if the grid size used is larger or equal to 150 × 225. Based on this fact,
it is believed that a lattice size of Δx = R/150 = 0.0067 will produce accurate solutions and will
be used to simulate the other cases.

Re = 990 Re = 1290 Re = 1010

Reference u z,max/u0 x max/H u z,max/u0 x max/H u z,max/u0 x max/H

Present 0.0901 0.2098 0.0727 0.1696 0.1109 0.498

Expt.[27] 0.097 0.21 0.068 0.14 0.103 0.46

Zhou [5] 0.0992 0.207 0.0706 0.147 0.105 0.448

DLBM [9] 0.093 0.22 0.072 0.16 0.102 0.52

DNS [9] 0.099 0.19 0.0665 0.125 0.106 0.44

Li [4] 0.0987 0.213 0.0716 0.147

Table 2. Comparisons of maximum axial velocities.

In order to verify the precision of the present method, the maximum axial velocity is compared
with experimental data [27] and to numerical results proposed previously [3–5, 9] in steady
state. Three of these numerical results were taken under consideration: Zhou [5] in which a
LBM in p-v is employed, Bhaumik et al. [9] results in which a 3DLBM using MRT is employed,
and the improved model results proposed by Li et al. [4]. Also a DNS solution is considered [9].

Figure 7. Stream function contours for Case 1: Re = 990 and Ar = 1.5 (y-coordinate corresponds to Z and x-coordinate to
R).
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Figure 8. Stream function contours for Case 2: Re = 1290 and Ar = 1.5 (y-coordinate corresponds to Z and x-coordinate
to R).

The maximum axial velocities for Cases 1, 2, and 3 are shown in Table 2, comparing the solution
of the present model with previous reported results. The relative error is calculated as
(upresent − uexp)/uexp. Case 1 presents a relative error of 7.1%, Case 2 of 6.9%, and Case 3 of 7.6%.
Finally, in order to establish the present formulation proficiency of solving complex flows we
present in Figures 7–9 stream function contours for three different cases. Figures 8 and 9 clearly
show the formation of recirculating bubbles close to the axis of symmetry, known as vortex
breakdowns.

Figure 9. Stream function contours for Case 3: Re = 2200 and Ar = 2.5 (y-coordinate corresponds to Z and x-coordinate
to R).
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The streamlines shown in previous figures are in agreements with those presented in men-
tioned references.

5. Conclusion

In the present work, a LBM in vorticity-stream function variables for axisymmetric flow with
swirl is presented and implemented. By considering the convective term of the evolution
equations in their conservative form, proper sources are carefully proposed being able to
reproduce both nonviscous and viscous momentum equations. Through a multiscale analysis,
performed in Cartesian coordinates, it was found that a discrepancy between the operators
and the governing equations was achieved. This difference is overcome by the definition and
inclusion of source terms in the proposed LB formulation. The Chapman-Enskog analysis was
used to achieve conservative operators that arise naturally in the implemented LBM. As a result
a unified LBM algorithm was built in which every evolution equations is solved with the same
algorithm. The numerical method proved to be second-order accurate in space. Finally, the
method was able to reproduce complex flows, such as the Taylor-Couette flow where toroidal
vortices were observed and good agreement was found with qualitative results proposed in
the literature. Furthermore, the proficiency of the method to solve the lid-driven cylindrical
cavity flow quantitatively showed an error below 8% when compared with experimental data.
Qualitatively, the method solved the flow through many flow regimes observing one and two
vortex breakdown located in the cavity axis.
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Abstract

The thermal boundary conditions have important effects on the hydrodynamics of a
thermo-convective fluid layer. These effects are introduced through the Biot number
under the Robin type boundary conditions. The thermal conductivity and thicknesses
of the walls are key properties to bridge two known ideal situations widely studied: the
fluid layer bounded by two insulating walls and the fluid layer bounded by two perfect
thermal conducting walls. This chapter is devoted to the physical mechanisms involved
in the thermal boundary conditions, its influence on the linear stability of the fluid layer
and its implications with the pattern formation. A review of very important investiga-
tions on the subject is also given. The role of the thermal conductivities and thicknesses
of the walls is explained with help of curves of criticality for the thermoconvection in a
horizontal Newtonian fluid layer.

Keywords: thermal convection, boundary condition, hydrodynamic stability, Biot
number, patterns

1. Introduction

The present work is devoted to the study of some important physical properties and geomet-
rical configurations that may modify the pattern formation in Newtonian fluid layers. The
theory presented here may be of interest for a number of applications such as for the control of
convective motions [1, 2], for the study of movements in the mantle of the earth [3], in the
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study of convective cell formation in the surface of the sun [3] and in biotechnological appli-
ances involving the Rayleigh convection phenomena [4].

The formation of patterns is a very interesting subject in fluid mechanics. This topic involves
complex physics and mathematics [5]. From the physical point of view, various parameters
influence the onset of convection and later the evolution of the formed patterns. Some vari-
ables affecting the patterns are,

• type of fluid: Newtonian or non-Newtonian

• the properties of the fluid (like density and viscosity) and properties of the bounding
surfaces (like thickness and thermal conductivity), among others

This chapter focuses on the points given in the above-mentioned list. The bounding surfaces
have become an interesting topic of study since the boundary conditions are mathematically
written according to their nature [6, 7]. The thickness and thermal conductivity of the walls
and the fluid layer are strongly related to the familiar eigenvalue Rayleigh number and to the
wavenumber. They are also related to two classical approximations commonly found in
hydrodynamic stability. These two classical approximations are:

• insulating walls and

• perfect thermal conducting walls.

For short, the insulating wall approximation correspond to constant heat flux boundary
conditions while the perfect thermal conducting walls approximation correspond to the constant
temperature boundary conditions. The critical Rayleigh and wavenumber are (Rc = 720,
kc = 0) and (Rc = 1707.96, kc = 3.12), respectively. Then the purpose of considering the
thickness and thermal conductivity of the walls are to bridge ideal approximations to the
problem of thermal convection and to provide critical conditions that better simulate the lab
experiments.

The boundary conditions are of paramount importance for proper understanding of the
physical phenomenon of thermal convection [1, 6, 7], for comparison between theoretical
and experimental data and for its control [1]. As new technologies and appliances develop,
more sophisticated mathematical models are needed. A good example for the previous
statement is that of the manufacturing of corrugated surfaces [8, 9] in which the formed
convective pattern is deposited on the lower boundary after evaporation of the solvent. This
may occur for convection in polymer solutions which are composed of polymeric chains and
solvents.

This chapter is organized as follows. In Section 2, a general formulation for the natural
convection in a horizontal fluid layer heated from below is given along with some data on
the basic state of the temperature. Section 3 presents a brief explanation on how the thermal
boundary conditions are related to the linear hydrodynamic stability. In Section 4, a discus-
sion on the basic state of the temperature is presented. Some points about the effect of the
thermal conductivities and thicknesses of the walls on the pattern formation are discussed in
Section 5. Section 6 is devoted to list some challenges in hydrodynamic stability that are
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connected to the thermal boundary conditions. Finally, in Section 7 a general discussion on
the subject is given.

2. The problem of convection in a fluid layer

The importance of the thermal boundary conditions can be seen from the point of view of the
familiar problem of Rayleigh thermal convection in a horizontal infinite fluid layer vertically
bounded by two solid and rigid walls [10, 11]. Consider the scheme presented in Figure 1
which shows the thermal and geometrical properties of the bounding walls. This extension to
the problem of convection has been presented in Ref. [2], and studied by Cerisier et al. [7] and
Howle [1], among others.

The two problems of thermal convection that have been widely studied are that of bounding
insulating walls (see Refs. [11, 12] for more details) and that of bounding perfect thermal
conducting walls (see Refs. [10, 13] form more details). These two cases can be mathematically
expressed as,

• dT/dz = 0 at the boundaries. For insulating walls (according to Chapman et al. [11]).

• T = 0 at the boundaries. For perfect thermal conducting walls (according to Chandrasekhar
[10]).

On the other hand, it is well known that lab experiments and technological developments are
not restricted to these ideal cases. In other words, more general boundary conditions are
needed to satisfy the requirements of intermediate cases, as represented in Figure 2. Mathe-
matically speaking, the proper thermal boundary conditions for non-ideal situations are those
of the Robin type. This is a boundary condition encompassing both cases mentioned above.

Figure 1. Scheme for the problem of Rayleigh convection including the thickness and thermal conductivities of the walls.
TL,U stand for the constant temperature at the lower and upper walls, TL0,U0,F 0 stand for the basic state temperature
profile at the lower wall, upper wall and fluid layer; while XL,U,F represent the thermal conductivities of the lower wall,
upper wall and fluid layer, respectively. Dimensional variables are used.
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When considering bounding walls of non-ideal properties the Biot number appears in the
boundary conditions. The Biot number actually is derived from the geometrical and thermal
properties of the walls and the working fluid allowing mapping the critical conditions (mainly,
critical Rayleigh number, Rc and critical wavenumber, kc) for the onset of convection from the
insulating to perfect conducting walls, as shown in Figure 2. Some of investigations have been
carried out to fill this gap in the theory of hydrodynamic stability in Newtonian [7, 14, 15] and
non-Newtonian fluids [6], as well. Another implication of the thermal conductivities and
thicknesses of the bounding walls and that of the fluid layer is the more general temperature
profile in the basic state. Even, two more temperature profiles in the basic state appear, one for
the lower wall and another one for the upper wall (see Figure 1).

The temperature profiles are then defined as:

TF0 ¼ −zþ TU þ 1þ XU dU (1)

TL0 ¼ −XLzþ TL þ 1−XL dL (2)

TU0 ¼ XU ð1þ dU−zÞ þ TU (3)

where the variables in Eqs. (1)–(3) are in non-dimensional form (the reader may see Refs. [6, 7]
for more details). Here, XU = XF /XU, XL = XF/XL, dU = dU/dF and dL = dL/dF. Notice that Eqs. (2)
and (3) are not considered in studies related to the limiting cases of insulating and perfect
conducting walls.

Eq. (1) represents the temperature profile of the fluid layer, Eq. (2) represents the temperature
profile of the lower bounding wall and Eq. (3) represents the temperature profile of the upper
wall. These temperature profiles may be easily obtained by considering the set of boundary
conditions for the temperature below. These conditions assure the continuity and smoothness
of the temperature across the whole system including the two walls and the fluid layer (as seen
in Figure 1):

TL0 ¼ TL at z ¼ −dL (4)

TU0 ¼ TU at z ¼ dþ dU (5)

TF0 ¼ TL0 at z ¼ 0 (6)

Figure 2. A heuristic explanation about the connection of the thermal and geometrical properties of the walls with the
boundary conditions from one ideal case to the other.
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XL
dTF0

dz
¼ dTL0

dz
at z ¼ 0 (7)

TF0 ¼ TU0 at z ¼ d (8)

XU
dTF0

dz
¼ dTU0

dz
at z ¼ d (9)

where Eqs. (4)–(9) are given in non-dimensional form. As the differential equations to be
solved to calculate TF0, TL0 and TU0 are homogeneous of a single second order term, the
solutions are linear polynomials. This means that the three temperature profiles in the basic
state lie over a straight line going from z = -dL to z = d +dU, if continuity and smoothness are
expected.

3. Importance in the linear stability

In the linear stability of a fluid layer, its basic state is subjected to small perturbations. This is
made to determine whether the fluid layer is stable or not. The linear stability is featured by
two parameters, for steady situations: the critical Rayleigh and wavenumbers. Figures 3 and 4
show the critical points for the two ideal cases mentioned above.

The basic state for the fluid temperature as given in Eq. (1) conveys information not only of the
fluid properties but also of the walls through the parameters XU, dU and TU. Unfortunately, the
information of the thermal and geometrical properties pass only to the boundary conditions
and leaving the governing differential unchanged. This is valid for cases in which the structure
of the equations allows only the derivative of the basic state temperature profile in the equa-
tion for the perturbation of the temperature.

An example case is that of the convection of Rayleigh. The differential equations for this
problem are:

Pr−1σ
d
dz2

−k2
� �

WðzÞ− d
dz2

−k2
� �2

WðzÞ ¼ Rk2θðzÞ (10)

σ−
d
dz2

−k2
� �

θðzÞ
� �

¼ dTF0

dz
WðzÞ (11)

whereW and θ are the perturbations for the velocity and the temperature of the fluid, and Pr is
the Prandtl number. σ ¼ σRþiσi, with σR being the growth rate of the perturbations and σi, the
frequency of oscillation. It is well known that there is no frequency of oscillation in the case of
Rayleigh convection, so that if σR ¼ 0 is set, then Rc = 720, 1707.96, for the insulating and
perfect thermal conducting walls are obtained.

At this point, no information of the basic state is given to Eqs. (4) and (5) since only dTF0/dz is
required. This may represent a limitation to the model since the linear stability of the system
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comes from the basic state. The only way to introduce the effect of the thermal conductivities
and thickness of the walls and the fluid layer is through the Biot number in the Robin type
boundary conditions. These can be expressed as:

dθ
dz

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κLσ

p
θ

XL tanh½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κLσ

p
dL �

" # !

z¼0

¼ 0 (12)

dθ
dz

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κUσ

p
θ

XU tanh½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κUσ

p
dU �

" # !

z¼1

¼ 0 (13)

where κL ¼ κL=κF and κU ¼ κU=κF are ratios of the thermal diffusivities of the walls to that of
the fluid layer. The Biot number is a key component of the Robin type thermal boundary
conditions and according to Eqs. (12) and (13), the Biot number for the lower wall is:

BL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κUσ

p

XU tanh½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κUσ

p
dU �

(14)

while for the upper bounding wall, its corresponding Biot number is

Figure 3. A curve showing the critical point (kc, Rc) for steady convection of a fluid layer bounded by two insulating
walls.
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BU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κUσ

p

XU tanh½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κUσ

p
dU �

(15)

The set of Eqs. (4)–(7) represent the complete eigenvalue problem for the Rayleigh number R.
Then, by mapping with the thermal conductivity ratios XL and XU from limiting values of zero
to infinity it is possible to bridge the two ideal case mentioned above. The importance of the
thermal and geometrical properties are shown in the following set of curves of criticality, given
in Figures 5 and 6.

The middle region of the curves in Figures 5 and 6 show two graphs that collapse in the
extremes. This middle region clearly shows the effect of the walls thicknesses which disap-
pears as the thermal conductivities ratio approaches zero or a very large magnitude. This
behaviour can be easily explained by recalling the two occurring ideal situations when the
thermal conductivity ratios XL and XU are zero or infinity, for an insulator or a perfect thermal
conductor. No matter how large the thicknesses of the perfect thermal conducting or perfect
insulating walls are, the heat shall be transferred instantaneously. This can be also mathemat-
ically seen from Eqs. (12) and (13) since in the limit of insulating walls, the boundary condi-
tions reduce to dθ

dz ¼ 0 and in the limit of perfect thermal conducting walls, these conditions
give θ ¼ 0. In this last sentence, it should be remarked that the thicknesses of the bounding
walls, and that of the fluid, vanish.

Figure 4. A curve showing the critical point (kc, Rc) for steady convection of a fluid layer bounded by two perfect thermal
conducting walls.

Thickness and Thermal Conductivities of the Walls and Fluid Layer Effects on the Onset of Thermal Convection...
http://dx.doi.org/10.5772/66325

121



As it can be seen, from Figure 5, in the extremes of the horizontal axis, Rc = 720 and 1707.96.
Correspondingly, from Figure 6, in the extremes of the horizontal axis kc = 0 and Rc = 3.12. The
data presented in the set of curves of criticality were first reported by Riahi [14, 15] and later by
Cerisier et al. [7].

Pérez-Reyes and Dávalos [6] presented a study of the influence of the thermal and geometrical
properties on the convection of viscoelastic Maxwell fluids. They found a behaviour similar to
that shown in Figures 5 and 6 and reported the appearance of a codimensional-two point. This
is due to the competition between stationary and oscillatory convection to destabilize the
system. Besides, if the linear stability is changed, then the nonlinear stability results are to be
changed too.

4. About the basic state for the temperature

At this point, some qualitative information may be given about the basic state for the temper-
ature given in Eqs. (1)–(3). The obvious question is: are the parameters XL and XU , and the
Eqs. (1)–(3) useless? It should be mentioned that these are not used in the computation of the
data shown in Figures 5 and 6. This is a direct consequence of the symmetry of the equations
and of the adimensionalization of the problem. In fact, the Rayleigh number in Figures 5 and 6
is modified by a factor 1/ð1þ XLdL þ XUdU Þ. This is a shortcut in the solution to the problem.
Furthermore, the proper basic state should be one including the three basic states, Eqs. (1)–(3)
which would have the same form as that of Eq. (3).

This last equation may become important for problems represented by differential equations
with additional terms to the base model as shown in Eqs. (10) and (11). For example, a

Figure 6. Curves of criticality for the wavenumber number showing the effect of the thermal conductivities and thickness
of the walls on the Rayleigh convection in a Newtonian fluid. For these curves of criticality XL = XU and dL ¼ dU was set.

Figure 5. Curves of criticality for the Rayleigh number showing the effect of the thermal conductivities and thickness of
the walls on the Rayleigh convection in a Newtonian fluid. For these curves of criticality XL = XU and dL ¼ dU was set.
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comparison of the basic state for the temperature in any of the ideal cases would show that at
the boundaries TF0 = TL and TF0 = TU, respectively. Eq. (3) does not match these results at the
boundaries due to the effect of the thickness of the walls. However TF0 may satisfy the same
requirements through TL0 and TU0.

The additional terms to the base, shown in Eqs. (10) and (11), model equations for the hydro-
dynamics in the fluid layer could come from variations in the viscosity of the fluid, for
example. In situations where the viscosity varies with temperature, its effect appears in the
viscous term of the momentum balance equation. This type of problems has been studied by
Palm et al. [16], by Wall and Nagata [17] and by Wall and Wilson [18], among others. The
working equations of these studies show that a temperature dependent viscosity may intro-
duce terms requiring TF0and dTF0/dz. This can be seen in the following set of equations
corresponding to the problem of thermal convection in a fluid layer with temperature depen-
dent viscosity being heated from below:

C1
d4W
dz4

þ γ
d3W
dz3

þ C2
d2W
dz2

−k2γ
dW
dz

þ C3W þ Rk2θ ¼ 0 (16)

W þ d2θ
dz2

þ C4θ ¼ 0 (17)

where the coefficients are defined as:

C1 ¼ γðTF0−TLÞ−1 (18)

C2 ¼ Pr−1σþ k4½γðTF0−TLÞ−1� (19)

C3 ¼ −Pr−1σk2−2k2½γðTF0−TLÞ−1� (20)

C4 ¼ −ðσþ k2Þ (21)

So that the second and third terms in right-hand side of Eq. (1) should appear in the final
eigenvalue problem explicitly. These additional terms may be of interest for a proper under-
standing of the convective phenomena.

5. Influence on the pattern formation

The pattern formation in convective systems is a subject widely studied. One common
approach to the study of convective patterns is the problem of pattern selection in a given
geometry [5]. The formation of convective cells is highly dependent on the boundary condi-
tions. This is true not only because of the mathematical structure of the boundary conditions
but also because of the nature of the bounding surfaces. In the limiting case of insulating
walls are very large convection cells of slow motion. A good example of this system is the
mantle convection occurring between the earth core and its surface. Figure 7 shows a simple
scheme of a convection cell driven by the difference of temperature between the core and the
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surface. It has been demonstrated that these convection cells are very large and that the
liquid rock material moves slowly [3, 12, 19]. Thus, a feature of this type configuration is
the presence of large convection cells of slow moving fluid, since the critical wave number is
zero (kc = 0).

The case of perfect conducting walls is quite different. In this configuration, more than one
convection cell appear since the critical wavenumber is finite (kc = 3.12). A representation of
this case is given in Figure 8. Another consequence of the idealized perfect thermal conducting
walls is a faster re-circulating fluid motion in comparison with the previous described situa-
tion. The study of these ideal cases includes a variation in which one of the walls is a perfect
thermal conductor while the other is considered an insulating wall.

The study of the effect of the boundaries on the pattern formation has called the attention of a
number of researchers and diverse cases have been studied. Chapman and Proctor [20] were
interested in the behaviour of the system when non-ideal walls were considered so that they
applied an analytical approximation for poorly thermal conducting boundaries. Chapman and
Proctor [20] were able to calculate critical wavenumbers different from zero which made more
sense for experimentalists. Additionally, Proctor [21] studied the selection of patterns in finite
domains for rolls, square, rectangles and hexagonal patterns. The approximation of poorly
thermal conducting walls becomes so interesting and tractable that these ideas were extended
to problems of double diffusion by Proctor [22] and by Cox [23] for example. Other areas of the
fluid mechanics have used similar ideas like in magnetohydrodynamics by Dávalos-Orozco
[24] and in convection of second order fluids by Dávalos-Orozco [25], for example.

Figure 7. A simple representation of the mantle convection.

Figure 8. A simple representation of the thermal convection in a fluid layer bounded by two perfect conducting walls.
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The pattern formation is studied as a nonlinear problem which is linked to the results of the
linear hydrodynamic stability of the system. Therefore, introducing more general thermal
boundary conditions shall convey more information to the study of the behaviour of the
moving fluid. Some efforts have been made including the thermal and geometrical properties
of the walls by Riahi [14], for example. The thermal conductivities and thicknesses of the walls
shall clearly modify the convective cells. One clear effect would be on the size of the patterns. It
is possible that the selected structure remains at least not for set domains like squares, rectan-
gles, etc.

6. Some problems to engage

Most of the problems with analytical solutions and interesting physical mechanisms in it have
already been studied. In fact, fluid mechanics is called a mature area of physical sciences. The
remaining problems are complex, mostly without analytical solutions and with many variables
involved.

Some interesting problems to study in hydrodynamic stability, linked to the thermal boundary
conditions, are mentioned here.

• There is lack of information about the role of the thermal diffusivities of the walls and the
fluid layer for intermediate values of the ratio of thermal conductivities. In the literature, it
has been assumed that the fluid layer and the bounding walls have the same thermal
diffusivities.

• The Robin type thermal boundary conditions are assumed to convey pore physical infor-
mation to the eigenvalue problem. To the best knowledge of the author, there are no reports
about experiments to corroborate this.

• Nonlinear problems about pattern selection shall become more difficult to handle. Perhaps,
more efficient numerical computations would be needed.

7. Discussion

A number of problems have been discussed here. The physical implications of the thermal
boundary conditions were highlighted in terms of the thermal conductivities and thicknesses
of the bounding walls. Although only the classical horizontal infinite two-plate configuration
was considered, the main ideas can be used to understand more complex geometries.

The ratio of thermal conductivities allow the mapping of the critical conditions for the onset of
convection from insulating walls (X!∞) to perfect thermal conducting walls ðX!0Þ. On the
other hand, small thicknesses ratio destabilize the system while large thicknesses ratio help to
stabilize the fluid layer. The physical mechanisms behind this behaviour is explained through
thermal diffusion times across the bounding walls and the fluid layer. These observations are
valid for fixed values of the thermal diffusivities.

Thickness and Thermal Conductivities of the Walls and Fluid Layer Effects on the Onset of Thermal Convection...
http://dx.doi.org/10.5772/66325

125



It is shown from the qualitative point of view, that additional terms in the base model equa-
tions of the problem of Rayleigh convection may carry more information from the temperature
basic states of the bounding walls and fluid layer to the eigenvalue problem. The temperature
basic states of the walls may help to understand the physical mechanisms involved in diverse
thermal convection problems.
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Abstract

Relativistic versions of Helmholtz’s three theorems on vorticity flux conservation are
derived by invoking an alternative approach based on Greenberg’s theory of spacelike
congruence generated by vortex lines and (1 + 1) + 2 decomposition of the gradient of
fluid’s 4-velocity. It is shown that the meridional circulation causes vorticity winding
due to  the  breakdown of  gravitational  isorotation via  differential  rotation.  A new
streamline invariant describing energy conservation associated with vorticity flux is
shown to exist.

Keywords: vorticity flux, vorticity winding, fluid helicity, vortex motion

1. Introduction

Vortices are found in classical, relativistic and quantum fluids [1–7]. It is well known from
classical theory of vortices that the dynamics of vortices is described by Kelvin-Helmholtz’s flux
conservation theorem. There are three theorems of Helmholtz on vortex tubes in the classical
theory of fluids [2]. The product of the magnitude of fluid’s vorticity vector and of vortex tube’s
cross-sectional area is called the strength of a vortex tube. Helmholtz’s first theorem states that
the strength of vortex tube remains constant along the vortex tube. This result is purely
kinematical in nature in the sense that its derivation does not require Euler’s equations which
govern the motion of a fluid. The second theorem tells us that the vortex lines are material lines
in the case of perfect fluid flows. The third theorem says that the vortex tube’s strength multiplied
by the fluid’s chemical potential remains constant along the flow lines (or streamlines) for perfect
fluid flows. Since a two-dimensional surface across which fluid’s vorticity flux passes is usually
bounded by a closed circuit, Kelvin’s circulation theorem is intimately connected with that of
Helmholtz’s flux conservation theorem for perfect fluid flows. The circulation of a fluid motion

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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around any closed curve on a vertex tube wall is equal to the flux of vorticity along a vertex tube.
Kelvin’s circulation theorem asserts that the circulation of a perfect fluid motion around a closed
material curve is conserved in time as the fluid evolves. This assertion in turn implies that the
vortex tube is a material tube and moves with the fluid (i.e., vortex lines are material lines) [1, 2].

Since relativistic fluid dynamics differs from that of Newtonian fluid dynamics in many ways,
Greenberg [8] developed a theory of a family of spacelike curves in order to study the kine-
matical behavior of vortex lines (i.e., spacelike curves) appearing in an isentropic perfect fluid
motion. Greenberg [8] formulated a relativistic analogue of Helmboltz’s first theorem on the
basis of Ehlers’ divergence identity of fluid’s vorticity vector [9] in the Newtonian limit (i.e.,
ignoring the fluid’s acceleration term). The relativistic divergence identity of fluid’s vorticity
vector involves fluid’s acceleration vector which embodies the curvature of space-time, and
thereby, it differs from classical divergence identity of vorticity vector. This is the reason that
the exact relativistic version of Helmholtz’s first theorem is not obtainable kinematically.
Greenberg [8] further extended his analysis to obtain a relativistic version of Helmholtz’s third
theorem using Euler’s equations of motion for an isentropic perfect fluid. In this derivation,
the concept of vortex lines to be material lines is automatically implemented because of his
transport law (i.e., it is presently known as Greenberg’s transport law).

The necessary and sufficient conditions for the existence of conservation of flux associated with
a vector field have been given firstly by Bekenstein and Oron [10] and then secondly by Carter
[11]. Of two conditions, the first condition is satisfied if a vorticity 2-form is expressed as a curl
of momentum covector associated with a fluid and the second condition when imposed on
vorticity 2-form gives Euler’s equations that govern fluid’s motion. Vorticity 2-form satisfying
these two conditions led to the formulation of a relativistic version of Kelvin’s circulation
conservation theorem and Helmholtz’s flux conservation theorem [10, 11].

There is a link between Greenberg’s transport law [8] and Carter’s formulation [11] of vorticity
flux conservation. Carter’s vorticity flux conservation is based on vorticity 2-form of rank 2
(i.e., simple vorticity bivector field). The matrix of vorticity 2-form admits eigen vectors with
zero eigen values. Such eigen vectors are referred to as flux vectors. The flux vectors span two-
dimensional tangent subspaces at each point of a four-dimensional space-time. These tangent
subspaces mesh together to form a family of timelike 2-surfaces because simple vorticity
bivector field satisfies Frobenius condition [12] of 2-surface forming. Such timelike 2-surfaces
are called flux surfaces. It is to be noted that Greenberg’s transport law is an alternative version
of Frobenius condition [12] due to which congruences of fluid flow lines and vortex lines form
a family of timelike two-dimensional surfaces in the case of an isentropic perfect fluid flows.
Furthermore, vortex lines are material lines. Flux surfaces are also material surfaces.

An intimate connection between Kelvin’s circulation theorem and the fluid helicity (i.e., helicity
of vorticity vector field) conservation was long ago demonstrated by Moffat [13]. The geometric
structure of streamlines and vortex lines (forming a vortex tube) inherent in the helicity
conservation was discovered by expressing the conservation of the sum of writhe and twist of
vortex tubes undergoing continuous deformation in a fluid flow [14, 15]. The fluid helicity is
conserved when vortex lines are frozen lines (i.e., material lines) in a fluid flow [14]. Such
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topological consequences have been extensively investigated by several authors [16, 17] in
classical fluid dynamics.

Although relativistic version of fluid helicity conservation has been formulated by Carter [11]
and Bekenstein [18], yet its topological consequences remained unknown. In a relativistic
frame work, frozen-in property of spacelike vortex lines is describable by Greenberg’s transport
law [8], which in turn leads to the fact that an isolated vortex is a timelike two-dimensional
connected manifold called vortex world sheet. The deformation of timelike fluid flow lines and
spacelike vortex lines caused by gravitation forbids the application of Biot-Savart-like law and
Frenet-like transport frame along a spacelike vortex line. Furthermore, the kinematic defor-
mation of a vortex tube is not independent of the kinematic deformation of fluid flow lines
forming a stream tube. The deformation of a vortex tube is determined in terms of the
expansion, shear and acceleration associated with fluid flow lines and the magnetic part of
Weyl curvature tensor representing the free gravitational field [19]. In particular, the variation
in cross-sectional area of a vortex tube along the tube is controlled by free gravitational field
even if the acceleration vector of the fluid motion and the shear are ignored [19].

An inherent connection between helicity conservation and streamline invariant has already
been pointed out by Bekenstein [18] in order to extract relevant information of astrophysical
significance from nonlinear equations of relativistic fluid (or magnetofluid) dynamics. But such
relationship between fluid helicity conservation and inherently connected streamline invariant
is still to be investigated. This is the idea which motivates to work further in order to under-
stand the role of vorticity in the rotational evolution of relativistic fluid, since most, if not all,
compact stars composed of fluids rotate. It may be conceived that the gravitational effect on
vorticity can be significant in the understanding of the internal structures of compact stars. It
is known that differential rotation of fluid elements of which stars are composed arises from
the gravitational collapse of massive stellar cores [20, 21]. Differential rotation produces
vorticity which twists streamlines in fluid’s motion. It is expected that the winding up of vortex
lines caused by differential rotation will change the angular velocity profile in a similar way
as has been found in magnetized stars due to the presence of magnetic fields [22].

In the present work, we confine our attention to the derivation of streamline invariants which
adhere to the fluid helicity conservation and a formulation of vorticity winding due to
meridional circulation via differential rotation along poloidal components of vorticity.
Furthermore, we derive new conservation law for vorticity flux.

The present paper is organized as follows. In Section 2, relativistic versions of Helmholtz’s
three theorems on vorticity flux conservation are derived using an alternative approach based
on Greenberg’s theory of spacelike congruence generated by vortex lines and (1 + 1) + 2
decomposition of gradient of fluid’s 4-velocity. Section 3 is devoted to the derivation of
streamline invariants and the formulation of vorticity winding. In Section 4, we obtain new
conservation law for the vorticity flux.

Convention: Space-time metric is of signature +2. Semi-colon (;) and comma (,) are, respectively,
used to denote covariant derivative and partial derivative. Speed of light c is assumed to be
unity.
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2. Helmholtz’s theorems

In this section, we obtain an alternative derivation of exact relativistic version of Helmholtz’s
theorems. We demonstrate that a relativistic version of Helmholtz’s first theorem describes
vorticity flux conservation inside a vortex tube when the variation of flux is measured by a
comoving observer with the fluid along a vortex tube. Such conservation of flux is independent
of proper time. We will also show that a relativistic version of Helmholtz’s third theorem
describes vorticity flux conservation in a streamline tube whose cross-sectional area lies in a
spacelike two-dimensional subspace orthogonal to both stream and vortex lines. Such flux
conservation is in proper time as the perfect fluid evolves and vortex lines are material lines.
In order to prove these two results, we begin with Euler’s equation that governs the motion of
a perfect fluid. Euler’s equation is as follows [23]:

( ) , ,
b

a a b ap u p p u ur + -¢ = - (2.1)

where ′ = ;  denotes the 4-acceleration vector field of the fluid.  is the 4-velocity of

the fluid and normalized according to.  = − 1. The proper mass density and pressure are,

respectively, represented by  and . It is assumed that the fluid is composed of baryons whose
proper number density n is conserved

( )
;

0.a
a

nu = (2.2)

The first law of thermodynamics is [23]:

1 ,d Tds pd
n n
ræ ö æ ö= -ç ÷ ç ÷

è ø è ø
(2.3)

where T and s denote, respectively, the local temperature and the entropy per baryon. The
relativistic enthalpy per baryon called chemical potential is expressed as:

p
n

rm +
= (2.4)

If we assume that the entropy per baryon  is constant, then it follows from Eqs. (2.3) and (2.4)
that
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dp ndm= (2.5)

Substituting Eqs. (2.4) and (2.5) in Eq. (2.1), we can reduce Euler’s equation in the following
form:

, , 0.b
a a b au u um m m+ + =¢ (2.6)

It is known from relativistic version of Kelvin’s circulation theorem for a perfect fluid that the
vorticity flux equals the closed contour line integral . This integral is equivalent to a
surface integral  where 𝀵𝀵𝀵𝀵 is the fluid particle vorticity 2-form [24] and  is an

element of area on a two-dimensional surface bounded by the contour C. The conservation of
vorticity flux means that the value of this integral is the same for all times when each point in

the contour C is dragged along the fluid flow (mathematically, it is Lie transported along 𝀵𝀵)
[11, 18]. The conditions required for flux conservation are as follows: (i) 𝀵𝀵𝀵𝀵 satisfies the closure

property (i.e.,  𝀵𝀵𝀵𝀵𝀵 𝀵 = 0, where the square bracket indicates skew-symmetrization), and (ii)

the matrix of 𝀵𝀵𝀵𝀵 admits eigen vectors with zero eigen values [11]. The closure property of𝀵𝀵𝀵𝀵 is automatically satisfied in the case of a perfect fluid if 𝀵𝀵𝀵𝀵 is expressed as a curl of particle

energy-momentum convector 𝀵𝀵𝀵𝀵 [24]. Its explicit expression is given by

( ) ( ); ; .ab b aa bW u um m= - (2.7)

Contraction of Eq. (2.7) with 𝀵𝀵 yields Euler’s equation in the form given as below:

0.a
abu W = (2.8)

Dualizing Eq. (2.7) and contracting the resulting equation with 𝀵𝀵, we get

*
,a

b
abuW V= - (2.9)

where an overhead star (*) is used for Hodge dualization. 𝀵𝀵 = 𝀵𝀵𝀵𝀵𝀵𝀵 and 𝀵𝀵𝀵𝀵 = 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵; 𝀵𝀵
represents the kinematic vorticity vector of the fluid. It is to be noted that the factor 12  which
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appears in the usual definition of vorticity vector [9] is ignored only for calculational purpose,

and due to this omission, there is no loss of generality. 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 denotes the Levi-Civita skew-
symmetric tensor.

Inverting Eq. (2.9), we get

ab abcd
c dW V uh= - (2.10)

which satisfies

0.b
abW V = (2.11)

It is evident from Eqs. (2.8) and (2.11) that 𝀵𝀵 and 𝀵𝀵 are eigen vectors of vorticity 2-form 𝀵𝀵𝀵𝀵
with zero eigen value. Inverting Eq. (2.10), we get

* ,ab a b b aW V u V u= - (2.12)

Since 𝀵𝀵 = 𝀵𝀵𝀵𝀵𝀵𝀵 is an eigen vector of 𝀵𝀵𝀵𝀵 with zero eigen value, it represents a flux vector of𝀵𝀵𝀵𝀵 [11]. Hereafter, 𝀵𝀵 will be referred to as a “vorticity flux” vector.

Because 𝀵𝀵𝀵𝀵 is a curl, we have

*
; 0.ab
bW = (2.13)

Substituting Eq. (2.12) in Eq. (2.13) and contracting the resulting equation with 𝀵𝀵 and 𝀵𝀵,
respectively, we get

( ), ; 0a a a
a a aV m V m u m¢+ - = (2.14)

and

( ), ; , 0,a a a b
a a a bV u V u u m m+ - = (2.15)

where 𝀵𝀵 is unit spacelike vector field along vortex lines.
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and due to this omission, there is no loss of generality. 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 denotes the Levi-Civita skew-
symmetric tensor.

Inverting Eq. (2.9), we get

ab abcd
c dW V uh= - (2.10)

which satisfies

0.b
abW V = (2.11)

It is evident from Eqs. (2.8) and (2.11) that 𝀵𝀵 and 𝀵𝀵 are eigen vectors of vorticity 2-form 𝀵𝀵𝀵𝀵
with zero eigen value. Inverting Eq. (2.10), we get

* ,ab a b b aW V u V u= - (2.12)

Since 𝀵𝀵 = 𝀵𝀵𝀵𝀵𝀵𝀵 is an eigen vector of 𝀵𝀵𝀵𝀵 with zero eigen value, it represents a flux vector of𝀵𝀵𝀵𝀵 [11]. Hereafter, 𝀵𝀵 will be referred to as a “vorticity flux” vector.

Because 𝀵𝀵𝀵𝀵 is a curl, we have

*
; 0.ab
bW = (2.13)

Substituting Eq. (2.12) in Eq. (2.13) and contracting the resulting equation with 𝀵𝀵 and 𝀵𝀵,
respectively, we get

( ), ; 0a a a
a a aV m V m u m¢+ - = (2.14)

and

( ), ; , 0,a a a b
a a a bV u V u u m m+ - = (2.15)

where 𝀵𝀵 is unit spacelike vector field along vortex lines.
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A spacelike congruence of vortex lines is generated by unit spacelike vector field  with

properties  = 1,;  = 0, and  = 0. In the derivation of Eqs. (2.14) and (2.15), we

have used  = , where V denotes the magnitude of the vorticity flux vector  and is equal
to 𝀵𝀵𝀵𝀵 𝀵
Since the vorticity flux vector  is orthogonal to the 4-velocity of the fluid at all points along
a vortex line, a comoving observer with the fluid to observe deformation of a vortex tube erects
a screen lying in a spacelike two-dimensional tangent subspace orthogonal to both stream and
vortex lines generated by ua and ma, respectively. Greenberg’s expansion parameter   of a vortex
tube is expressed as:

ˆ a
au mq = ¢ (2.16)

and

ˆ ,
ˆ1

ˆ
dA
dA

q
s

= (2.17)

where  =  +  − is the projection tensor and  is the cross-sectional area of a

vortex tube that lies in a spacelike two-dimensional tangent subspace orthogonal to both 
and . The arc-length is denoted by σ and 𝀵𝀵  is the directional derivative along a vortex line.

Substituting Eqs. (2.16) and (2.17) in Eq. (2.14), we get

( )ˆ 0,d A
d

mw
s

= (2.18)

which is an exact relativistic version of Helmholtz’s first theorem. It is evident from Eq. (2.18)
that the variation in vorticity flux of a vortex tube is measured along the tube and the flux
remains constant inside a tube. The proper time τ plays no role in such variation of flux. Since
an observer employed to measure flux is comoving along vortex line, a vortex tube is a material
tube. In relativistic framework, a vortex tube to be a material tube is automatically associated
with Helmholtz’s first theorem because its derivation originates from Euler’s equation. An
exact relativistic analogue of Helmholtz’s first theorem is not obtainable kinematically.

In order to obtain Helmholtz’s third theorem, we use (1 + 1) + 2 decomposition of the gradient
of 4-velocity  of the fluid. In this formulation [25], the expansion parameter  of a stream

tube is expressed as:
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;b
a b

au m mq =% (2.19)

and

1 ,dA
dA

q
t

=
%%

% (2.20)

where  denotes cross-sectional area of a stream tube lying in a spacelike two-dimensional

tangent subspace orthogonal to both  and . The arc-length measured along a streamline

(or wordline) is denoted by τ and 𝀵𝀵  represents the directional derivative along a streamline.

On account of Eqs. (2.19) and (2.20) , Eq. (2.15) takes the form

( ) 0,d A
d

mw
t

=% (2.21)

which is a relativistic version of Helmholtz’s third theorem. It is observed from Eq. (2.21) that
the variation in vorticity flux is measured along a streamline and the flux inside a stream tube
remains constant in proper time τ as the fluid evolves according to Euler’s equation of motion.
This result can be understood in a sense that the volume occupied by a stream tube is the
product of cross-sectional area of a stream tube and its length measured along a vortex line
(being a material line). The vorticity flux passing through such cross-sectional area remains
constant in proper time τ.

On account of Eq. (2.12), Eq. (2.13) can be put in two different forms which are given as be-
low:

; ;
a b a b a

u b bL V V u u V= - (2.22)

where  denotes the Lie derivative with respect to .

;
;

,
a b b

b a a
b b

b

V V Vu u u u
n n n

æ ö æ ö æ ö
= +ç ÷ ç ÷ ç ÷ç ÷ ç ÷ ç ÷

è ø è è ø
¢

ø
(2.23)

In the derivation of Eq. (2.23), baryon conservation law Eq. (2.2) is used.

Projecting Eq. (2.22) orthogonal to both  and , we get
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In the derivation of Eq. (2.23), baryon conservation law Eq. (2.2) is used.

Projecting Eq. (2.22) orthogonal to both  and , we get
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0,a b
b up L V = (2.24)

which is Greenberg’s transport law [8]. Eq. (2.24) tells us that the timelike congruence gener-

ated by  and the spacelike congruence generated by  span a family of timelike 2-surfaces.
Such 2-surfaces are referred to as vortex flux surfaces (or vorticity flux surfaces) [11]. Further-
more, Eq. (2.24) implies that vortex lines are material lines.

Eq. (2.23) is in a form as has been derived by Bekenstein and Oron [10] in the case of the
magnetic field vector in order to show the frozen-in property of the magnetic field in a perfectly

conducting magnetofluid dynamics. Similar conclusion holds for the vorticity flux vector .
Eq. (2.23) shows that the orthogonal connecting vector of any two fluid particles lying on a

vortex line is proportional to  . This in turn leads to the fact that the fluid particles lying

once on a vortex line will continue to remain on the same vortex line for all times as the fluid
evolves.

3. Vorticity winding in axisymmetric stationary fluid configuration

This section is devoted to the study of vorticity winding caused by meridional circulation via
differential rotation of a perfect fluid which is assumed to be axisymmetric and stationary. In

this case, a space time admits two linearly independent commuting Killing vectors:  
generating a translational symmetry with open timelike lines as orbits and the other is a

spacelike Killing vector  ∅  generating rotations with closed orbits about a symmetry axis.
There exists a family of invariant timelike 2-surfaces (which are identified with vorticity flux
surfaces) generated by these two Killing vectors that correspond to ignorable coordinates4 =  and 3 = ∅ (so that  =  ∧  ∅ = ∅). The ignorable coordinates t and ∅ are usually

called toroidal coordinates. We choose poloidal coordinates 1 =  and 2 = . All physical
quantities including the metric tensor 𝀵𝀵 are independent of t and ∅.

From Eq. (2.8), we get

r

t tr
uW W
uq q= - (3.1a)

r

r
uW W
uq qÆ Æ= - (3.1b)
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0.t
rt r rW u W u W uqq

Æ
Æ+ + = (3.1c)

Since 𝀵𝀵𝀵𝀵 is a curl, we have

[ ]; 0,ab cW = (3.2)

where the square bracket around indices indicates skew-symmetrization. From Eq. (3.2), we
get

, , 0,tr t rW Wq q+ = (3.3a)

, , 0.r rW Wq qÆ Æ+ = (3.3b)

It follows from Eqs. (3.1a) and (3.3a) that

( )
,

.
r

tr
r

d ulnW u
d u

q
qt

æ ö
= - ç ÷ç ÷

è ø
(3.4a)

Similarly, substitution of Eq. (3.1b) in Eq. (3.3b) gives

( )
,

.
r

r
r

d ulnW u
d u

q
qt Æ

æ ö
= - ç ÷ç ÷

è ø
(3.4b)

From Eqs. (3.4a) and (3.4b), we get

0tr

r

Wd ln
d Wt Æ

æ ö
=ç ÷ç ÷

è ø
(3.5)

which on integration along the streamline generated by 𝀵𝀵 gives

,tr t

r

W WA
W W

q

qÆ Æ
= = (3.6)

where A is constant along the streamline. Eq. (3.4b) can be rewritten as:

Vortex Structures in Fluid Dynamic Problems138



0.t
rt r rW u W u W uqq

Æ
Æ+ + = (3.1c)

Since 𝀵𝀵𝀵𝀵 is a curl, we have

[ ]; 0,ab cW = (3.2)

where the square bracket around indices indicates skew-symmetrization. From Eq. (3.2), we
get

, , 0,tr t rW Wq q+ = (3.3a)

, , 0.r rW Wq qÆ Æ+ = (3.3b)

It follows from Eqs. (3.1a) and (3.3a) that

( )
,

.
r

tr
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q
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æ ö
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è ø
(3.4a)
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( )
,

.
r

r
r

d ulnW u
d u

q
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æ ö
= - ç ÷ç ÷

è ø
(3.4b)

From Eqs. (3.4a) and (3.4b), we get

0tr

r

Wd ln
d Wt Æ

æ ö
=ç ÷ç ÷

è ø
(3.5)

which on integration along the streamline generated by 𝀵𝀵 gives

,tr t

r

W WA
W W

q

qÆ Æ
= = (3.6)

where A is constant along the streamline. Eq. (3.4b) can be rewritten as:
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( ) ( ) ( ), ,
r

r r
d dlnW u u lnu
d d

q q
qt tÆ = - + + (3.7)

From Eq. (2.2), we get

( ), , 0r
r

du u ln g n
d

q
q t

+ + - = (3.8)

Substitution of Eq. (3.8) in Eq. (3.7) gives

0rWd ln
d n guqt

Æ
æ ö
ç ÷ =
ç ÷-è ø

(3.9)

which on integration along the streamline gives

,rW Bn guqÆ = - (3.10)

where B is constant along the streamline.

Substituting Eq. (3.10) in Eq. (3.1b), we get

.rW Bn guqÆ = - - (3.11)

Substituting Eqs. (3.6) and (3.10) in Eq. (3.1c), we get

( ),t
rW Bn gu Aq = - + W (3.12)

where  = ∅  is the local velocity of rotation of the fluid.

It follows from Eqs. (3.6), (3.10) and (3.11) that

, .r
tr tW ABn gu W ABn guq

q= - = - - (3.13)

Eq. (2.9) gives
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1
2

.a abcd
b cdV u Wh-

= (3.14)

Substitution of Eqs. (3.10)–(3.13) in the coordinate expansion of Eq. (3.14) gives

( ) ( )a a a a
t tV Bn A u Au ud dÆ Æ

é ù= - - + -ê úë û (3.15)

which is the required expression for the vorticity flux vector. We now use Eq. (3.15) to find
conserved quantity along a streamline from the conservation of the fluid helicity. The fluid
helicity vector is given by Carter [11, 24] and Bekenstein [18] as follows

( ).a ab a
bH u Vm m= = - (3.16)

whose divergence vanishes,

( )
;

0.a
a

Vm = (3.17)

This is fluid helicity conservation. Eq. (3.17) can be cast in form

( )
,

0a
a

gVm - = (3.18)

or equivalently

( ) ( ) ( ), , ,
0.a r

a r
ln V g gV gVq

q
m - + - + - = (3.19)

Substituting Eq. (3.15) in Eq. (3.19), we get

( ) 0t
d ln B u Au
d

m
t Æé ù- =ë û (3.20)

which on integration along a streamline gives
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( ).a ab a
bH u Vm m= = - (3.16)

whose divergence vanishes,

( )
;

0.a
a

Vm = (3.17)

This is fluid helicity conservation. Eq. (3.17) can be cast in form

( )
,

0a
a

gVm - = (3.18)

or equivalently

( ) ( ) ( ), , ,
0.a r

a r
ln V g gV gVq

q
m - + - + - = (3.19)

Substituting Eq. (3.15) in Eq. (3.19), we get

( ) 0t
d ln B u Au
d

m
t Æé ù- =ë û (3.20)

which on integration along a streamline gives
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( ) ( ),tu Au C saym Æ- = - (3.21)

where the constant B is absorbed in a constant C along a streamline. The energy and angular1
momentum scalars in axisymmetric stationary fluid configuration are of the forms [11]2

, .tE u L um m Æ= - = (3.22)

From Eqs. (3.21) and (3.22), it can be seen that3

    ALC E= + (3.23)

which shows that the linear combination of energy and angular momentum is constant along4
a streamline but varies from streamline to streamline. Thus, C is a streamline invariant.5

We now consider in view of Eq. (3.15) as follows6

( ) ( ) ( ), , , .a a a a a
a a t t t aV Bn A u Au u B u Au n ud dÆ Æ Æ

é ùW = - W - + - - - Wê úë û (3.24)

Setting  = 𝀵𝀵𝀵𝀵 and multiplying Eq. (3.24) by μ7

and using Eq. (3.21) in the resulting equation, we get8

2
, .a
a

dnBC
d

m w
t
W

W = (3.25)

In order to provide a meaningful interpretation of Eq. (3.25), we proceed as follows. In the9
absence of meridional circulation (i.e.,  = 0 = ), it can be seen from Eqs. (3.1c) and (3.6)10

that 
𝀵𝀵∅ = A = − Ω . This shows that the streamline invariant A is the angular velocity of11

vorticity flux surfaces commoving with the fluid in the absence of meridional circulation. But12
in the presence of meridional circulation (i.e.,  ≠ 0,  ≠ 0, on account of Eqs. (3.1c) and (3.12),13
we observe that 𑩠𑩠 ≠ − Ω . This means that the streamline invariant A which is seen to represent14
the angular velocity of vorticity flux surfaces will no longer be equal to fluid’s angular velocity15 Ω in the presence of meridional circulation and hence we set 𑩠𑩠 = − Ω, where Ω represents16
the angular velocity of vorticity flux surfaces. Thus, meridional circulation causes mismatch17
between the angular velocities of vorticity flux surfaces and of the fluid. A short calculation18
from Eqs. (2.12) and (3.12) gives19
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2
( )

( )
t t

V t
u u

nBK u
j jm w w-

W -W = (3.26)

where

2 .( ) 0t ttK g g gj jj >= - (3.27)

It is evident from Eq. (3.26) that the toroidal components  and ∅ of the fluid’s vorticity vector

vanish in the absence of meridional circulation. Notice that  = − Ω is streamline invariant,

i.e., 
Ω𝀵𝀵 = 0. Thus, it follows from Eqs. (3.25) and (3.26) that

( )
( )

2
2, .t ta

a
t

u udnC
d nK u

j jm w w
m w

t

é ù
-ê ú

W = ê ú
ê ú
ë û

(3.28)

The left-hand side of Eq. (3.28) represents the differential rotation along the poloidal compo-
nents of the vorticity vector, whereas the right-hand side gives the proper time rate of change
of a combination of toroidal components of the vorticity vector. This implies that the differential
rotation along the poloidal vorticity cannot vanish until the vanishing of toroidal vorticity.
Since the presence of meridional circulation ensures the existence of toroidal vorticity,
meridional circulation causes the kind of effect that mimics like vorticity winding by stretching
frozen-in vortex lines via differential rotation.

Because  = 0 =  in the absence of meridional circulation, Eq. (3.28) reduces to

, 0a
awW = (3.29)

which is the law of gravitational isorotation as is pointed out by Glass [26]. Thus, it seems that
the meridional circulation causes vorticity winding due to the breakdown of the gravitational
isorotation.

Further investigation is needed on the lines of recent work by Birkl et al. [27] in order to
understand the role of meridional circulation in relation to vorticity winding via differential
rotation.
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nents of the vorticity vector, whereas the right-hand side gives the proper time rate of change
of a combination of toroidal components of the vorticity vector. This implies that the differential
rotation along the poloidal vorticity cannot vanish until the vanishing of toroidal vorticity.
Since the presence of meridional circulation ensures the existence of toroidal vorticity,
meridional circulation causes the kind of effect that mimics like vorticity winding by stretching
frozen-in vortex lines via differential rotation.

Because  = 0 =  in the absence of meridional circulation, Eq. (3.28) reduces to

, 0a
awW = (3.29)

which is the law of gravitational isorotation as is pointed out by Glass [26]. Thus, it seems that
the meridional circulation causes vorticity winding due to the breakdown of the gravitational
isorotation.

Further investigation is needed on the lines of recent work by Birkl et al. [27] in order to
understand the role of meridional circulation in relation to vorticity winding via differential
rotation.
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4. Vorticity energy conservation in axisymmetric stationary case

This section is devoted to the derivation of vorticity energy conservation assuming that the
perfect fluid configuration is axisymmetric and stationary. Substituting Eq. (2.12) in Eq. (2.13)
and contracting the resulting equation with Va, we get

2 2
; ;

1
2

.a b b
b a b

d V u V V V u
dt

æ ö = -ç ÷
è ø

(4.1)

Eliminating ;   with the aid of baryon conservation law Eq. (2.2), we obtain from Eq. (4.1) that

2
2

;
1
2

b a
b a

d V dnV V V u
d n dt t

æ ö = +ç ÷
è ø

(4.2)

which can be converted to the form

( ) ( )
2

2
; ; .b a

b a a b
d V dnV V V V u
d n dt t

= + - (4.3)

The last term on the right-hand side of Eq. (4.3) with the help of Eq. (3.15) can be simplified in
the following form

( ), , .b a t
b a a b

dV dVV V V u nB
d dt t

Ææ ö- = -ç ÷
è ø

(4.4)

Substitution of Eq. (4.4) in Eq. (4.3) gives

( )
2

0.t
d V dB V AV
d n dt t Æ

æ ö
+ - =ç ÷ç ÷

è ø
(4.5)

Since B and A are streamline invariant, we obtain from Eq. (4.5) that

( )
2

0t
d V B V AV
d nt Æ

é ù
+ - =ê ú

ê úë û
(4.6)
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which on integration along a streamline gives that

( )
2

( ).t
V B V AV D say
n Æ+ - = (4.7)

Since Va = μωa, V2 = μ2ω2, Vt= μωt, and V∅= μω∅. Thus, Eq. (4.7) takes the form

( )
2 2

.tB A D
n

m w m w wÆ+ - = (4.8)

The first term of Eq. (4.8) represents the energy of the vorticity flux vector per baryon. The
second term indicates the presence of covariant toroidal components of the vorticity vector
ωa. The quantity D is streamline invariant of the motion of frozen-in vortex lines and can be
thought of as a vorticity energy conservation arising from fluid helicity conservation.
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( )
2 2

.tB A D
n

m w m w wÆ+ - = (4.8)

The first term of Eq. (4.8) represents the energy of the vorticity flux vector per baryon. The
second term indicates the presence of covariant toroidal components of the vorticity vector
ωa. The quantity D is streamline invariant of the motion of frozen-in vortex lines and can be
thought of as a vorticity energy conservation arising from fluid helicity conservation.
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Abstract

Topological  vortex  excitations  in  thin  magnetic  nanodisks  have  attracted  a  lot  of
attention because of their dynamic stability and various charge-like properties, which
make them suitable objects for data storage. They also have a natural gyrotropic orbital
motion that can be described rather well by an approximate Thiele gyrotropic equation
for the magnetization dynamics. The gyrotropic oscillation makes them available as a
basis for natural oscillators at close to gigahertz frequencies. This gyrotropic motion is
excited naturally even by thermal fluctuations. In addition, the gyrotropic oscillation
frequency can be affected by external perturbations, which allows possibilities for the
design of nanoscale detectors.  The vortex moves in an effective potential,  strongly
determined by the shape anisotropy of the magnetic disk, which then determines the
force appearing in the Thiele equation of motion. The motion of an individual vortex
within  a  disk  of  circular  or  elliptical  shape  is  considered  theoretically,  including
stochastic  thermal  effects  together  with  the  deterministic  gyrotropic  effects.  From
simulations of the motion at different parameter values, a picture of the typical vortex
position and velocity distribution within the disk is developed and compared with what
is expected from the Thiele equation.

Keywords: magnetic vortex, topological charge, vortex potential, magnetic resonance,
magnetic dots

1. Introduction: vortices in thin submicron magnetic disks

A cylindrically shaped thin disk of soft ferromagnetic material with a radius  on the order of
100 nm to a few microns and a thickness L ≪    on the order of 10–50 nm provides an
interesting system for the study of vortices [1, 2]. A magnetic configuration is described by its
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and reproduction in any medium, provided the original work is properly cited.
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local magnetization (), which is the magnetic dipole moment per unit volume, at position. A material is considered with saturation magnetization , which is the magnitude when
the medium is completely magnetized along some axis. Due to the demagnetization effect,
which  is  responsible  for  shape  anisotropy,  any  such  magnetic  system tends  to  avoid  the
formation of magnetic poles on the surfaces, if possible, which would raise the total energy.
For a thin circular disk, the local magnetization () as a function of position  may tend to
do two things: (1) () will have a strong tendency to point within the plane of the disk [3],
if possible; (2) () may then follow the curved circular boundary at the disk edge, thereby
completely  avoiding the generation of  any poles  on the edge.  This  prevents  any strong
magnetic field lines from passing through the space surrounding the disk edge.

Within the disk, the forces of ferromagnetic exchange cause () also to have a circular
structure and remain close to the disk plane. At the disk center, which is a singular point,

remaining in the disk plane is impossible, and () then points perpendicular to the plane of
the disk, forming tiny north/south poles on opposite faces at the disk center. The resulting

circular form of (), together with its central poles in a core region, is a magnetic vortex. It
is a type of magnetic excitation that is topologically stable and acts in many ways like a particle,
when exposed to forces.

Figure 1. The magnetization field () = () of a vortex centered in a nanodisk with principal axes  = 60 nm, = 30 nm, thickness  = 10 nm, from the spin alignment relaxation scheme for the micromagnetics model, Section

2.4. The cell size is cell = 2 nm. Arrows show only the in-plane projection, (,). Blue line (red open) arrows indi-

cate positive (negative) values of out-of-plane component . The core, where  is larger, appears as a hole in this

projection. Even though the system is elliptical, note that the core region remains close to circular.

One can also consider deviations from circular symmetry, such as in elliptic nanodisks, where
magnetic vortex dynamics has been studied by measuring their radio frequency oscillations
[4] and even by direct electrical contact [5] to a nanodisk. An example of a magnetic vortex
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centered in a thin elliptical nanodisk is shown in Figure 1. It has been obtained from a numerical

relaxation algorithm [6], see Section 2.4 below. Although there is a tendency for () to follow
the boundary, one sees that the exchange forces are more dominating, and especially the core
structure of the vortex retains a circular shape. The locus where the perpendicular component changes sign is obvious as a circle in Figure 1.

1.1. Vortex charges

The magnetization profile () of a vortex may point either in a counterclockwise (CCW) or
clockwise (CW) direction around the disk. This twofold degeneracy is associated with its
circulation charge  = ± 1, which is also referred to as chirality. It provides one topologically
stable geometric property that could be used for data storage in a vortex, if it can be reliably
controlled and detected.

In principle, a vortex profile () also has a vorticity charge  = ± 1, which corresponds to the

direction of rotation of () as one moves along a closed path encircling the core. The value = + 1 holds for the vortices described here, which are controlled by demagnetization effects

(  being forced to follow the boundary). The value  = − 1, known as an antivortex, would
only be energetically stable if demagnetization effects were not present. The limit of zero
thickness would eliminate the relevant demagnetization and make antivortices energetically
possible.

The magnetization at the vortex core can take one of two values, (0) = ± = 𝀵𝀵 , where𝀵𝀵 = ± 1 is the polarization charge. Because there is an energy barrier to flip the core polarization
from 𝀵𝀵 = + 1 to 𝀵𝀵 = − 1, it offers yet another charge that could be useful for data storage and
manipulation.

1.2. Vortex potential and forces

The above-described magnetic vortex will have its minimum energy when it is centered in the

disk. The location of the poles (where   points perpendicular to the disk) defines the loca-
tion of the vortex core, which we denote by position vector  = (,), measured along the ,
Cartesian axes within the disk plane. Because the system is assumed to be thin, only two
coordinates ,  are needed to locate the core. Further, the magnetization itself has little
dependence on the coordinate () perpendicular to the disk. We take  = (0, 0) for the vortex
at the center of the disk. It is possible to imagine that the vortex core becomes slightly displaced

from the disk center. In that case, a slight deformation of the vortex structure () takes place,

while the demagnetization effects at the disk edge still try to maintain () parallel to the edge.
The net result of the displacement is a slight increase in total energy. The vortex, as a quasi-
particle, lives in some effective potential (), which has something approximating a parabolic
form [6], with the minimum at the disk center,
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where  is a force constant. This further implies an effective force  back towards the disk center,

according to the gradient of the potential,

= ( ) .-Ñ » -
r

FU kF R R (2)

For a circular disk, the potential is circularly symmetric, and then small displacements lead to
a circularly symmetric Hooke’s law type of force. It is also possible to consider magnetic
vortices in a cylindrical disk of elliptical shape [7], defined by principal axes  and  < :

+
22

2 2 = 1.yx
a b

(3)

This situation leads correspondingly to a modification of the potential also to an approximately
elliptic form [8],

( )2 21( ) .
2

» +x yU k X k YR (4)

The parabolic functional form now has separate force constants ,  along the two principal

axes. It gives a force,

= ( , ).- -x yk X k YF (5)

While a vortex in a nanodisk experiences a force directed roughly towards the disk center, its
motion tends to be in an orbital sense, which is the gyrotropic oscillation mode [9, 10]. This is
discussed further in Section 3 on dynamics. Before coming to that, we begin by a quantitative
description of the calculation of vortex structures.

2. Analysis of quasi-stationary vortices in a nanodisk

The theoretical analysis is based on the statics and dynamics of the magnetization field, which
is now assumed to keep a uniform magnitude , but a spatially varying direction, by writing() = (), where () is a unit vector. From the energetics expressed in terms of (),
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equations for the vortex structure and motion can be developed. See Ref. [11] for a general
discussion of the calculation of magnetic vortex structures and properties.

2.1. Energetics of a continuum nanomagnet

The system is governed by ferromagnetic exchange energy and interactions of   generally

with the demagnetization field  (self-generated by ) and any possible externally applied

field e𝀵𝀵𝀵𝀵. A continuum Hamiltonian for the system is

H = dV A∇m · ∇m − µ0 Hext + 1
2HM · M , (6)

where 0 is the permeability of free space, and  is the exchange stiffness. One commonly used

material is Permalloy-79 (Py, 79% nickel, 21% iron), with exchange stiffness about 13 pJ/m and
saturation magnetization  = 860 kA/m [12]. The magnetization changes its direction over a

length scale e𝀵𝀵 called the exchange length. Exchange energy of the order /e𝀵𝀵2  competes with

demagnetization energy of the order 1202. Equating these terms gives the definition of the

length scale,

e 2
0

2= .λ
μx

s

A
M (7)

For Py, e𝀵𝀵 ≈ 5.3 nm. Exchange forces dominate over lengths less than e𝀵𝀵, but demagnetization

dominates over larger lengths, allowing the () field to change its direction. At a boundary,

the exchange effects are much less present, and demagnetization helps () to point parallel
to the boundary, if possible.

2.2. The demagnetization field  in a thin magnetic film

The demagnetization field is determined by the global configuration of the magnetization of
the system; it is derived from considerations of magnetostatics (see Ref. [13] for the details of
the approach used here). In the absence of an external applied magnetic field, one has magnetic

induction  = 0( +). Gauss’ law, ∇ .  = 0, then becomes

∇ ⋅ −∇ ⋅
  

= .MH M (8)
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By assuming the demagnetization field comes from a scalar potential via  = − ∇ Φ, a

Poisson equation for the magnetostatics is obtained:

2 = , .ρ ρ-Ñ F º -Ñ ×
r r

M M M M (9)

Therefore, the magnetization () produces an effective magnetic charge density , which

is the source in this Poisson equation. The solution for scalar potential Φ can be obtained by

various numerical methods. Generally, we have used a scheme based on discretization of the
system (introduction of a spatial grid), together with appropriate Green’s functions for the
Poisson equation. In addition, it is extremely helpful to use the approximation that the disk is
very thin, 𑩪𑩪 𑩪𑩪 , where  is the radius (or the semi-major axis for an elliptical disk). In this case,

both   and  do not depend on the vertical coordinate  along the disk axis. Then, the
problem can be solved by effective two-dimensional (2D) Green’s functions [14]. The compo-
nents α = ,, of the demagnetization field can be expressed as 2D convolution integrals,

2

= , ,
( ) = ( ) ( )M

x y z
H d G M¢ ¢ ¢-åòa ab b

b

r r r r r (10)

where 𝀵𝀵𝀵𝀵( − ′) represents a tensor Green’s function, and the integration is over 2D positions,

for example now  = (,). The evaluation of these integrals can be accelerated through the use
of fast Fourier transforms [15].

2.3. Discretization and micromagnetics for simulations

For numerical solutions of the magnetization field () = (), it is necessary to partition

the system into cells labeled by index  for positions . We use a square grid of cells of

individual size cell × cell × L, with cell= 2.0 nm, and disk thickness L = 5 nm and L = 10 nm. At
the center of each cell is a unit direction vector , whose motion is to be followed. Each cell

contains a magnetic dipole moment   of magnitude μ = Lcell2Ms and direction . This

micromagnetics approach [16, 17] then represents the original continuum system, but with a
discretized 2D micromagnetics Hamiltonian,

( )
2

ec 1
22

( , ) e

ˆ ˆ ˆ= ,
é ù

- × + + ×ê ú
ë û
å å % %xt Mell

i j i i i
i j ix

aJ m m H H mH
λ (11)

where the effective exchange constant and energy scale between nearest-neighbor cells is = 2𝀵𝀵𑩪𑩪, and magnetic fields have been brought to dimensionless forms,

Vortex Structures in Fluid Dynamic Problems152



By assuming the demagnetization field comes from a scalar potential via  = − ∇ Φ, a

Poisson equation for the magnetostatics is obtained:

2 = , .ρ ρ-Ñ F º -Ñ ×
r r

M M M M (9)

Therefore, the magnetization () produces an effective magnetic charge density , which

is the source in this Poisson equation. The solution for scalar potential Φ can be obtained by

various numerical methods. Generally, we have used a scheme based on discretization of the
system (introduction of a spatial grid), together with appropriate Green’s functions for the
Poisson equation. In addition, it is extremely helpful to use the approximation that the disk is
very thin, 𑩪𑩪 𑩪𑩪 , where  is the radius (or the semi-major axis for an elliptical disk). In this case,

both   and  do not depend on the vertical coordinate  along the disk axis. Then, the
problem can be solved by effective two-dimensional (2D) Green’s functions [14]. The compo-
nents α = ,, of the demagnetization field can be expressed as 2D convolution integrals,

2

= , ,
( ) = ( ) ( )M

x y z
H d G M¢ ¢ ¢-åòa ab b

b

r r r r r (10)

where 𝀵𝀵𝀵𝀵( − ′) represents a tensor Green’s function, and the integration is over 2D positions,

for example now  = (,). The evaluation of these integrals can be accelerated through the use
of fast Fourier transforms [15].

2.3. Discretization and micromagnetics for simulations

For numerical solutions of the magnetization field () = (), it is necessary to partition

the system into cells labeled by index  for positions . We use a square grid of cells of

individual size cell × cell × L, with cell= 2.0 nm, and disk thickness L = 5 nm and L = 10 nm. At
the center of each cell is a unit direction vector , whose motion is to be followed. Each cell

contains a magnetic dipole moment   of magnitude μ = Lcell2Ms and direction . This

micromagnetics approach [16, 17] then represents the original continuum system, but with a
discretized 2D micromagnetics Hamiltonian,

( )
2

ec 1
22

( , ) e

ˆ ˆ ˆ= ,
é ù

- × + + ×ê ú
ë û
å å % %xt Mell

i j i i i
i j ix

aJ m m H H mH
λ (11)

where the effective exchange constant and energy scale between nearest-neighbor cells is = 2𝀵𝀵𑩪𑩪, and magnetic fields have been brought to dimensionless forms,

Vortex Structures in Fluid Dynamic Problems152

  e e= / , = / .xt xt M M
i i s i i sH H M H H M (12)

The presence of the factor cell2/e2  gives the relative strength of demagnetization effects

compared with exchange effects. For the micromagnetics approach to be valid, this factor
should be much less than 1. The transverse cell size cell should then be less than the exchange

length. The micromagnetics approach, with the assumption that only the direction of   is
changing, makes the implicit assumption that demagnetization effects are a perturbation on
exchange effects. Obviously, the Green’s functions 𝀵𝀵𝀵𝀵(𑨒𑨒 𑨒𑨒 𑨒𑨒′) must also be brought to a discrete

form to carry out the calculation of .

The Hamiltonian can be used to define the net magnetic inductions that act on each cell’s
magnetic dipole  , according to

= = ,δ
δμ μ

-


i i
i

JB bH
(13)

where the dimensionless magnetic inductions are

( )
2

ec
2

( ) e

ˆ= .
λÎ

+ +å
  xt Mell

i j i i
j z i x

ab m H H (14)

The first term involves a sum over the nearest neighbors () of cell ; it is the exchange field.
The second term represents the combination of external and demagnetization fields. The
effective strength of magnetic inductions is indicated by the unit we use for simulations,

B0 ≡ J/µ = µ0Msλ
2
ex/a2

cell. (15)

In the results presented here with cell= 2.0 nm, and Py parameters, one has 02 ≈ 1.08 T and0 ≈ 7.59 T. 0 gives the order of magnitude of the exchange fields; the demagnetization fields

are considerably weaker.

2.4. Static vortex configurations from a relaxation scheme

Static vortex configurations are derived as the stationary solutions of the dynamic equations
of motion. At zero temperature, the undamped dynamic equation of motion is a simple torque
equation for each magnetic dipole, which interacts with its local net field:
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= .μ μγ ´
r rri

i i
d B
dt

(16)

Note that this holds because  / =   is the spin angular momentum of the cell, whose time

derivative is the torque,   ×  . The equation can be written in terms of the dimensionless

quantities, also defining a dimensionless time ,
0

ˆ ˆ= , .t
t

´ º
r

i
i i

dm m b B t
d

γ (17)

The unit of time used for simulations is 0 ≡ (0)−1. For Py parameters, it takes the value0 ≈ 0.75 ps. Its reciprocal also defines a simulation frequency unit, 0 ≡ 0 ≈ 1.336 THz.

For static configurations, however, the time derivatives in Eq. (17) are zero. This implies that

each dipole   or its unit vector  must align with the local field in that cell,  .
Thus, an algorithm that iteratively points each  along its current value of   will tend to
move the system towards a static configuration. We call this approach a spin alignment
relaxation scheme [18]. To carry it out, some initial state must be chosen from which to begin
the iteration. Assume that the direction vectors are defined in terms of spherical planar angles(,), according to

θ φ θ φ θˆ = (cos cos , cos sin , sin ).i i i i i im (18)

In this notation,  is referred to as the in-plane angle and  is the out-of-plane angle, which can
be positive or negative. The approximate in-plane structure of a vortex located at position = (,) in a disk can be expressed using the vorticity  = + 1 as

1
0tan i

i
i

y Yq
x X

φ φ- æ ö-
= +ç ÷

-è ø
(19)

where (xi, yi) is the 2D location of micromagnetics cell , and 0 = 2  depends on the vortex

circulation charge. There is not a corresponding analytic form for the out-of-plane component.
Instead, one can start with all  = 0, that is, a planar vortex. However, the iteration will be

such that all  will remain zero, unless some small nonzero deviation is included. Therefore,

small random values of  can be used for the initial state. A nonzero out-of-plane component
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will then grow naturally as the system relaxes into a vortex state. The process is repeated until

the changes in the  become insignificant (less than about one part in 108).

For a circular or elliptic disk, if the vortex is initiated away from the center, as the spin alignment
relaxation proceeds, the vortex will be found to both develop an out-of-plane component and
also move to the disk center. Spin relaxation is an energy minimization algorithm; the system
moves to its nearest minimum energy state, which is that configuration centered in the disk.
A profile of a vortex obtained this way in an elliptic disk is shown in Figure 2. The projection
of the dipoles onto the disk plane is shown. Note that there is a core region with a radius of

the order of e (region where   has significant out-of-plane components, appearing as a hole

in the diagram). Interestingly, the core tends to keep a reasonably circular form, as seen by the

locus of points where the sign of  reverses.

Figure 2. Vortex structures for an elliptical nanodisk with = 60 nm,  = 30 nm,  = 10 nm, using cell size cell= 2.0 nm in the spin alignment relaxation scheme, including a Lagrange constraint on position. (a) Vortex is held at = 16 nm,  = 0, resulting in total energy  = 15.244 after 2000 iterations. (b) Vortex is held at  = 0,  = 16
nm, resulting in total energy  = 16.001 after 3500 iterations. Compare Figure 1, where  =  = 0 and the energy
is lower.
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2.5. Effective potentials of a vortex in a nanodisk

Spin alignment relaxation can also be used to estimate the effective potential () for the
vortex, by including a constraint on the vortex position  = (, ). The effective potential is the
system energy ℋ less any constraint energy, for a chosen vortex position. A constraint on vortex
position can be enforced with the use of Lagrange’s undetermined multipliers [6]. Physically,
a vortex can be shifted away from the disk center, by the application of a magnetic field within

the disk plane. A uniform field e𝀵𝀵𝀵𝀵 along ±𝀵𝀵 will displace the vortex along ±, and vice versa,
with the sign determined by the vortex chirality. Buchanan et al. [8] were able to map out the
vortex potential energy numerically using the field to move the vortex to different equilibrium
positions. This gives one way to obtain the effective force constants 𝀵𝀵 and .

Rather than using a uniform applied field, it is possible to imagine the application of a spatially
varying field, which primarily acts on the core region of the vortex. These fictitious extra fields
are the undetermined Lagrange multipliers; they are determined through course of the
calculation. Simultaneously, another constraint is applied that ensures unit length for the
direction vectors . The fictitious fields exert torques on the cells in the core region, which

hold the vortex in the desired location, without significantly changing the overall vortex
structure. Thus, a quasi-static vortex structure can be obtained numerically, for whatever
position is desired, within reason. The approach works best for a vortex near the disk center.
For the same elliptical disk of Figure 1, the vortex has been relaxed by this scheme to positions
16 nm from the center, in Figure 2. Note that the energy is higher for a displacement along the
shorter axis of the ellipse [8].

The work here considers stable vortex states. It should be kept in mind that for some parameters
or disk sizes, the vortex could become unstable towards the formation of a lower energy quasi-

single-domain state (nearly uniform ()), or some other multi-domain state without a vortex.
This is especially likely in the case of elliptic disks with a high aspect ratio (𑩪𑩪 𑩪𑩪 ), where

demagnetization will strongly favor   aligning with the longer axis [7]. The vortex state will
also become unstable in a circular disk if it is too thin, which minimizes the demagnetization
forces from the circular edge, which usually stabilize a vortex. Also, if the disk is too thick

(𑩫𑩫 𑩫𑩫 ), again, demagnetization will cause   to approximately align with the long axis and
a vortex will not be stable.

Typical vortex potentials obtained from Lagrange-constrained spin alignment for circular
nanodisks are shown in Figure 3, for various radii with fixed thickness 𑩫𑩫 = 4.0 nm. The
minimum energy region is close to parabolic form; however, as the vortex is placed closer to
the edge, a lack of stability (downward curvature) appears. Using the interior region of the
potential, the effective force constants  for circular disks or even 𝀵𝀵 and  for elliptical disks

can be estimated quite accurately. In the example of Figure 3, one can observe that  becomes

smaller for the larger radii disks. See Refs. [6, 7] for further details.

In elliptical disks [4, 7, 8], the force constant for displacement along the longer disk axis is
found to be weaker than that along the shorter disk axis; see Figures 1 and 2. Thus, the potential
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acquires an elliptical shape that is determined by the original geometrical shape of the disk.
For a disk with semi-major axes  and  with  < , we have found that for adequately large
nanodisks and  of sufficient size to stabilize the vortex, the ratio of force constants asymptot-
ically approaches the relation,

≈/ / .x yk k b a (20)

This has the correct limit for a circular disk,  = . The relation is summarized by saying

that the geometric ellipticity, b/, directly determines an energetic ellipticity, /. The energetic

ellipticity can be seen to determine the shape of the elliptical vortex orbits at constant energy
in the phase space.

Figure 3. Numerically determined vortex potentials, in units of the effective cell exchange constant  = 2𝀵𝀵𝀵𝀵, for circu-
lar Py nanodisks of thickness 𝀵𝀵 = 4.0 nm and indicated radii, as found from the Lagrange-constrained spin alignment
relaxation. The vortex becomes unstable towards escaping from the disk in the regions of downward curvature.

3. Magnetic dynamics and the Landau-Lifshitz-Gilbert-Langevin
equations

The dynamics described by Eq. (16) or its dimensionless form in Eq. (17) is not completely
realistic, because it does not include the effects of damping nor of temperature and its statistical
fluctuations. Both the damping and thermal effects could be quite large on a vortex. When only
damping with a dimensionless parameter  is included, the well-known Landau-Lifshitz-

Gilbert (LLG) dynamic equation [19, 20] is obtained [Eq. (21) but with all  , = 0]. Here, we
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take that one step further and also include stochastic magnetic fields  ,() that represent the
effects of temperature. This leads to a Langevin equation derived from the LLG equation [21],
for an individual micromagnetics cell,

( ) ( )α
τ

 × + − × × + 
   

, ,

ˆ
ˆ ˆ ˆ= .i

i i s i i i i s i

dm
m b b m m b b

d
(21)

The changes in  are a superposition of deterministic effects (from  ) and stochastic effects

(from  ,). The stochastic fields act to bring the system to thermal equilibrium. That takes
place provided their correlations follow the fluctuation–dissipation (FD) theorem, which can
be written for this problem in the dimensionless quantities as (site index  is suppressed)

( ) ( ) = 2 ( ).b bτ τ α d d τ τ¢
¢¢ ¢á ñ −l l

llTs s (22)

Here, δλλ′ is a Kronecker delta and the indices λ,λ′ refer to any of the Cartesian coordinates;(𑨒𑨒 𑨒𑨒 𑨒𑨒′) is a Dirac delta function. The dimensionless temperature  is thermal energy scaled
by ,

,
2

kT kT
J AL

º =T (23)

where  is Boltzmann’s constant and  is the absolute temperature. The FD relation indicates
how the stochastic magnetic fields move energy into and out of the system, in random
processes that nevertheless can be quantitatively measured. The stochastic fields are included
only when a study of temperature effects in real time is desired. They can be set to zero if the
zero-temperature dynamics is of interest, producing the LLG equation. Below we use solutions
of Eq. (21) obtained appropriately for the type of system under study, be it  = 0 or  > 0.

3.1. The Thiele equation for vortex core motion

Magnetic excitations such as domain walls and vortices do not obey Newtonian dynamics.
Instead, it can be shown from magnetic torque considerations (i.e., analysis of the  = 0 LLG
equations) that the steady-state dynamics of the core velocity  = ̇ is described by a Thiele
equation [22],

= 0.+ ´F G V (24)

The motion is governed by the gyrovector , which for vortices is a vector that points perpen-
dicular to the disk plane, in a direction determined by the magnetization at the vortex core.
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Consider a material with saturation magnetization . In terms of the magnetization per unit

area, 0 ≡ , and the gyromagnetic ratio  = − 1.76 × 1011 T−1 s−1 of an electron (its magnetic

moment divided by its angular momentum), the gyrovector of a vortex is

0ˆ ˆ= = 2 / .π γGz pqm zG (25)

For the vortices in a disk,  = + 1, while there are two core polarizations  = ± 1 possible. The
gyrovector points perpendicular to the disk in two possible directions. A solution of the Thiele
equation then gives a description of the motion of a vortex, provided it remains as a particle-
like stable object under the dynamic environment it is found in. A general review of vortex
motion obeying a Thiele equation, even including an intrinsic mass, is given in [11].

Here, we suppose that a vortex is moving within a nanodisk of elliptical shape, at position = (,), with the force in Eq. (5) acting on it. One finds that it makes an elliptical orbital
motion, whose gyrotropic frequency can be estimated from the Thiele equation [7]. A solution
for the vortex velocity is obtained quickly by taking the cross product of  = 𝀵𝀵𝀵𝀵  with the Thiele
equation,

( ) = 0.´ + ´ ´G F G G V (26)

A vector identity is useful,

( ) = ( ) ( ) .´ ´ × - ×G G V G V G G G V (27)

The vortex velocity points in the plane of the disk, but  is perpendicular to that plane, so 𑫅𑫅 𑫅𑫅 = 0. This gives the velocity as

( )2

1= = , .´
-y xk Y k X

G G
G FV (28)

With 𑫅𑫅 = (̇,̇), this is a pair of first-order differential equations, which can be directly
integrated, starting from some initial vortex position (0) = (0,0). An elementary calculation

gives elliptical motion, with instantaneous coordinates

0 0
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where the gyrotropic frequency is determined by the geometric mean of the force constants, ≡ :

= = .ω - -x y
G

k k k
G G

(30)

The negative square root is used, because a vortex with  along +  and a centrally directed
force will move in the clockwise (or negative) direction in the  plane. This result applies even
when the vortex equilibrium position is displaced from the disk center by an applied magnetic
field, using the effective force constants at that displaced location [8]. Buchanan et al. [8] found
that the experimentally measured vortex oscillation frequency can be controlled by the

application of an in-plane field, e𝀵𝀵; especially, e𝀵𝀵 along the short (or hard) axis of the ellipse
displaces the vortex on the long axis, where its frequency increases substantially due to
position-dependent increases in both force constants with .

With e𝀵𝀵 = 0, one can find the shape of the elliptical orbit and compare with the shape of the
nanodisk. The vortex in undamped motion must move along an equipotential centered in the
disk. The orbital energy  is found to be

( ) ( )+ +
2

2 21 1
0 02 2= = .x y x yU k X k Y k X k Y (31)

Dividing through by the constant, , this is the standard equation of an ellipse, with the semi-
major and minor axes max, max, given by

max max
2 2, .

x y

U UX Y
k k

= = (32)

Their ratio is then

max

max

.x

y

Y k b
X k a

= » (33)

The last approximate result in terms of the disk axes , was obtained by using relation (20),
valid only in the limit of larger ellipses. Thus, the shape of the vortex orbit is nearly the same
as the shape of the nanodisk. The energetic ellipticity (not to be confused with the eccentricity),
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determines the ratio of the orbital axes. Indeed, the potential can be brought to a circular form,
with a new coordinate  :

21
2

1( ) = , , .ρ ρ ρ æ ö≡ ç ÷
è ø

r r rU k eX Y
e

(35)

Then, it is possible to show that the velocity follows a typical expression for circular motion,

( )= , = .ρ ρ ρ ω ρ´
r r r& & &x y G (36)

where  =  . This equivalent circular coordinate   is useful for the analysis of vortex

position statistics in elliptical disks.

3.2. Numerical methods for magnetization dynamics

The analysis of vortex motion via the Thiele equation is expected to be approximate. Numerical
simulations can be used to give a more complete and reliable description of the dynamics. We
require the time evolution from Eq. (21) solved either for zero temperature or finite tempera-
ture. These results are generated for Py parameters, based on the exchange length of e = 5.3
nm, together with a micromagnetics cell size of cell= 2.0 nm.

3.2.1. Zero temperature: fourth-order Runge-Kutta

At zero temperature, a stable integration scheme is the well-known fourth-order Runge-Kutta
(RK4) scheme, which we have used. A time step in dimensionless simulation units of Δτ = 0.04
is sufficient to insure good energy conserving dynamics (at zero damping), resulting in energy

conservation to one part in 1012 over as many as 5.0 × 105 time steps, in systems with up to
4000 cells. To insure this high precision control of the energy, it is essential to evaluate the
demagnetization field continuously during every substep of the RK4 algorithm. In the zero
temperature simulations used to estimate gyrotropic frequencies, the initial state of the
dynamics is a vortex obtained by spin alignment relaxation to a desired position. It is also
helpful to run the time evolution initially with some weak damping (𑩈𑩈 𑩈𑩈 0.02) for a limited
time, followed by energy conserving dynamics (𑩈𑩈 = 0). The inclusion of damping for a short
interval helps to remove any spin wave oscillations that may be generated by a less than perfect
initial vortex state. The subsequent energy conserving dynamics then gives precise estimates
of the frequencies .
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3.2.2. Finite temperature: Langevin dynamics via second-order Heun method

For finite temperatures, the Eq. (21) has been solved effectively by a second-order Heun method
(H2) [21, 23]. This scheme is equivalent to a two-stage predictor-corrector algorithm, where
the predictor stage is an Euler step and the corrector stage is the trapezoid rule. Both stages

use the same random fields  ,, which are produced by a random number generator. Any of

the Cartesian components of these fields are to be random deviates with a zero mean value
and a variance that must depend on both the dimensionless time step and temperature
according to

= 2 .s DTσ α τ (37)

This is a result of the FD theorem Eq. (22), and it is used to replace the stochastic fields
integrated over a time step, by the relation
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The vectors  are triplets of random deviates with zero mean and unit variance, for each site. In usual programming, there are standard random number generators, which return a
uniform deviate from 0 to 1, with a variance found to be 1/ 12. These can be shifted into the
range from −0.5 to +0.5 and then rescaled by 12 to get stochastic field components of the

correct mean and variance (it does not need to be a Gaussian distribution) [13, 7].

4. Vortex gyrotropic motion at zero temperature

In a circular nanodisk at zero temperature, with a radial force  as in Eq. (2), the analysis from
the Thiele equation (24) shows that the vortex velocity always points along the azimuthal
direction:

2

ˆ ˆ= = .
2π
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- F

s

Gz k R
G pqLM

fFV (39)

The minus sign indicates that a vortex with positive gyrovector (along  ) will move in the
clockwise or negative sense, in uniform circular motion, and oppositely for those with negative
gyrovector. More generally, for elliptic nanodisks, the predicted gyrotropic frequency obtained
from the Thiele equation is
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where  is the geometric mean of the force constants along the principal axes. For a circular
system,  . These results depend strongly on the force constants, which can be estimated

from the static vortex configurations. It has been found [9, 24, 13] that for sufficiently large
circular disks far from any stability limits of the vortex, the force constants are very roughly

proportional to 2/, that is,
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The frequency unit 0 = 0−1 = 𝀵𝀵𝀵𝀵0 used in the simulations depends on the cell size, which is

inconvenient for comparison with experiment. Thus, it is important to convert the results to a
commonly used frequency unit,

0
0 .

4
m
p

º sMω γ (42)

This is 0 = 𝀵𝀵𝀵𝀵 in the centimeter-gram-second (CGS) system of units. With the help of

definition (7) for the exchange length, expression (40) for gyrotropic frequency can be written,
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With vorticity  = + 1 assumed, the sign of  is determined by the core polarization . This

expression suggests using 0 ≡ /e as the unit of force constant and e as the unit of length.

Simulations can verify the frequency predictions from the Thiele equation. As shown below
in some examples, the dimensionless periods  of gyrotropic motion can be estimated

precisely, in simulation time units ( = /0). Dimensionless angular frequencies are then2/, which are given physical values by multiplying by 0 = 𝀵𝀵𝀵𝀵0. Using Eq. (15), these can

then be converted into units of 0 as follows:
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We use this below to convert the raw numerical data () into frequencies in 0 units.

Of course, to get precise estimates of the frequency, the vortex must be instantaneously located
to high precision. That is a two step process. The first step is to use the singularity in the in-
plane magnetization angle , to locate the four cells nearest to the vorticity center, , defined

implicitly according to the relation

ˆ( ) = 2 ( ).π δÑ´Ñ -
r r

vr zf r R (45)

For the micromagnetics square grid, the vorticity center falls between the four cells that have
a net 2 circulation in . This gives the location  𑩈𑩈  only to a precision equal to the cell size.

It can be greatly improved by making a weighted average of the cell locations , using their

squared out-of-plane components, which are largest in the vortex core, as the weighting
function:
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For better efficiency, the sum is restricted to cells within four exchange lengths of the vorticity
center. This avoids using useless data from the core of interest (e.g., spin wave oscillations near
the edge of the disk should be ignored). As the vortex moves, the resulting estimate for 
changes smoothly. This algorithm even works very well for vortices moving in response to
thermal fluctuations.

4.1. Circular nanodisks simulations

Some typical vortex motions in circular nanodisks of radius = 120 nm are presented in Figure
4, as obtained from integration of the LLG equations by the RK4 scheme. The initial states came
from Lagrange-constrained spin alignment to the initial position  = (4.0,0) nm. A weak
damping with parameter  = 0.02 was included but turned off at dimensionless time = 1000. The remaining evolution was used to estimate the periods, , which are then

converted using Eq. (44).

For the motions displayed in Figure 4, the dimensionless periods for L = 5 nm, 10 nm, and 20
nm are  𑩈𑩈 5800, 3270, and 1872, respectively. From statics calculations of the effective

potentials as described earlier, the corresponding raw force constants are kf cell/𑩈𑩈 𑩈𑩈 0.033863, 0.120192 and 0.419143, respectively, using cell = 2.0 nm. Rescaling by a factor
λex/cell = 5.3/2.0 converts them into e/𑩈𑩈, which appears in the Thiele theory expression (43).

For these and other similar vortex motion simulations with  ranging from 2.0 to 20 nm, one
can compare to the Thiele prediction by plotting the frequency  versus / with units as
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suggested from Eq. (43) (see Figure 5). Note that for a given radius , the disk with the smallest has the largest frequency. The result is that , obtained from dynamics simulations, is very

close to linearly related to /, obtained from static simulations, with a unit slope for these

units. This gives a strong verification of the Thiele equation being applicable to vortex motion
in nanodisks where the vortex is stable. Note that all simulations here used a reasonably small
vortex orbital radius of about 4.0 nm, avoiding having the vortex core approach the disk edge,
which would tend to destabilize the vortex.

Figure 4. Motions for one component of vortex position in circular nanodisks from RK4 integration of the LLG equa-
tions (shifted for clarity). The damping  = 0.02 was turned off after dimensionless time  = 1000. The periods can
be calculated accurately from the undamped motion. Graphs of () are of the same amplitudes and frequencies but
shifted a quarter of a period.

Figure 5. Vortex gyrotropic frequency magnitudes from RK4 (dynamics) simulations for circular nanodisks, with thick-
nesses ranging from L = 2.0–20 nm, and indicated disk radii, versus force constants scaled by disk thickness, obtained
from Lagrange-constrained spin alignment (static) simulations. The dashed line is the theoretical result (43) from the
Thiele equation.
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Figure 6. Effective potential force constants versus geometric ellipticity /, for elliptic nanodisks of semi-major axis = 120 nm, and thickness  = 10 nm. Results were found by Lagrange-constrained spin alignment relaxation.

Figure 7. Gyrotropic frequency magnitudes versus geometric ellipticity /, for elliptic nanodisks of semi-major axis= 120 nm, and thicknesses L = 5.0 and 10 nm. Results were found by simulations of the LLG equations using RK4
integration. For L = 10 nm, compare the similar shape of the curve of  in Figure 6, as expected from  ∝  in

Eq. (43).

4.2. Elliptical nanodisk simulations

Simulations for elliptic nanodisks [7] offer an even wider range of possibilities, because the
variations with geometric ellipticity / can be studied. For instance, the variation of the
effective potential force constants has a behavior like that in Figure 6, for the particular case = 120 nm and  = 10 nm. Both  and  were determined from the potentials derived by spin

alignment with a position constraint. Their geometric mean , which determines gyrotropic

Vortex Structures in Fluid Dynamic Problems166



Figure 6. Effective potential force constants versus geometric ellipticity /, for elliptic nanodisks of semi-major axis = 120 nm, and thickness  = 10 nm. Results were found by Lagrange-constrained spin alignment relaxation.

Figure 7. Gyrotropic frequency magnitudes versus geometric ellipticity /, for elliptic nanodisks of semi-major axis= 120 nm, and thicknesses L = 5.0 and 10 nm. Results were found by simulations of the LLG equations using RK4
integration. For L = 10 nm, compare the similar shape of the curve of  in Figure 6, as expected from  ∝  in

Eq. (43).

4.2. Elliptical nanodisk simulations

Simulations for elliptic nanodisks [7] offer an even wider range of possibilities, because the
variations with geometric ellipticity / can be studied. For instance, the variation of the
effective potential force constants has a behavior like that in Figure 6, for the particular case = 120 nm and  = 10 nm. Both  and  were determined from the potentials derived by spin

alignment with a position constraint. Their geometric mean , which determines gyrotropic

Vortex Structures in Fluid Dynamic Problems166

frequencies, is also shown. The curves for these force constants do not go below a minimum
value of /, where the vortex becomes unstable.

The corresponding gyrotropic frequencies  for  = 10 nm and also for  = 5.0 nm are shown
in Figure 7, versus /. These were obtained from simulations the same as those described for
circular nanodisks. Note that the shapes of these curves are very similar to the curves of  in
Figure 6, which is to be expected if the Thiele theory (43) is valid. The additional results for = 5.0 nm are included to demonstrate the dependence on disk thickness. With thicker disks

having a greater restoring force and  ∝ 2, due to the extra area on the disk edges, the
dependence of  ∝  results is gyrotropic frequencies increasing roughly linearly in . The
results can be presented in another view in Figure 8, showing / versus ellipticity for
different . One again gets a clear and quantitative verification of the Thiele theory result (43),
seeing that / ∝ e/ with the correct constant of proportionality.

Figure 8. Gyrotropic frequency magnitudes (from dynamics) scaled by mean force constants (from statics), versus geo-
metric ellipticity /, for elliptic nanodisks with = 120 nm and two different thicknesses. The results confirm the
predictions from the Thiele theory, dashed lines from Eq. (43), using exchange length e = 5.3 nm, with no adjusta-

ble parameters.

5. Spontaneous gyrotropic motion from thermal fluctuations

Now we consider the effects of temperature on a vortex. Specifically, the temperature effec-
tively acts as a bath of random magnetic fields that exchange torques and energy with the
vortex. Even though that exchange is somewhat random, one sees that it is able to spontane-
ously initiate the organized gyrotropic motion of the vortex. That motion proceeds over a noisy
background of spin waves. Even so, it is readily apparent and persistent. Here, we show typical
time evolutions, and then later discuss statistical properties.
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5.1. Simulation of a vortex initially at disk center

A vortex that has been relaxed to its minimum energy configuration (e.g., by the spin alignment
scheme) is situated in the disk center, whether it be circular or elliptical. This assumes that a
quasi-single-domain state is not lower in energy. Then, in the absence of any external forces or
forces due to a thermal environment, it would statically remain centered in the disk and exhibit
no dynamics. However, Machado et al. [25] noticed that finite temperature micromagnetics
simulations demonstrate the spontaneous motion of the vortex, even if it starts in it minimum
energy location. This is rather surprising, although it is really not much different than any spin
wave mode from being excited thermally in an equilibrium system with temperature. From
the point of view of statistical mechanics, any excitable modes (i.e., independent degrees of
freedom) should share equally in available thermal energy, and because the energy present in
the vortex gyrotropic motion is quite small, rather large orbital motions can develop solely due
to the effects of temperature.

In the numerical solution [13] of the magnetic Langevin equation (21), the dimensionless
temperature is required. For the simulation units being used,  = 2𝀵𝀵𝀵𝀵 determines the energy
scale and depends on the disk thickness. As an example, we consider a disk with = 60 nm, = 30 nm, and thickness 𝀵𝀵 = 5.0 nm, at temperature  = 300 K. For Py parameters (𝀵𝀵 = 13 pJ/
m), the energy unit is  = 130 zJ, while the thermal energy scale is 𝀵𝀵 = 4.14 zJ, which gives
the dimensionless temperature,

= = 0.032, for = 300 , = 5.0 nm.
2
kT T K L
AL

T (47)

This was used to determine the variance of the random magnetic fields, Eq. (37), together with
a damping parameter  = 0.02. A dimensionless time step 𝀵𝀵𝀵𝀵 = 0.01 for the second-order Heun
method was used. The resulting vortex core coordinates ((𝀵𝀵), (𝀵𝀵)) are displayed in Figure
9, out to a time of 𝀵𝀵 = 50,000. From Figure 9, a clockwise orbital motion takes place, together
with a noisy background, and there are about 15 complete orbits for 𝀵𝀵 < 50,000 (period𝀵𝀵 ≈ 3300). The period is somewhat longer than that found at zero temperature, 𝀵𝀵 ≈ 2970.

This softening of the mode with temperature is to be expected. In addition, the amplitudes of and  motions are not equal, as expected from the elliptical disk shape. The gyrotropic orbital

motion continues indefinitely; it was followed out to 𝀵𝀵 = 2.5 × 105 to get vortex statistics.

For comparison, an identical simulation but with the disk thickness increased by a factor of 2
to 𝀵𝀵 = 10 nm in shown in Figure 10, again starting the vortex from the disk center. The greater
thickness approximately quadruples 𝀵𝀵, but also doubles the gyrovector, thereby resulting in
the frequency being double that for 𝀵𝀵 = 5.0 nm. It is also clearly apparent that the amplitude
of the thermally induced motion is reduced in the thicker nanodisk (the graphs have different
vertical scales). These differences then are primarily driven by the modifications to the force
constants and to .
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Figure 9. Spontaneous vortex core motion caused by thermal fluctuations, as found by H2 integration of the LLG-Lan-
gevin equations (21) for a nanodisk with thickness  = 5.0 nm. The vortex was initiated at the disk center, =  = 0. This graph shows only 1/5 of the total data generated and used subsequently for analysis of vortex statis-
tics, corresponding to hundreds of gyrotropic periods.

Figure 10. Spontaneous vortex core motion caused by thermal fluctuations, for a nanodisk simulation identical to that
in Figure 9, but with double the thickness,  = 10 nm. Note the considerably smaller amplitude of gyrotropic oscilla-
tions, and the much higher frequency.

5.2. Thermal vortex motion as described by the Thiele equation

Next, we consider the statistical mechanics of the vortex core position  = (,), based on an
effective Lagrangian and Hamiltonian that give back the Thiele equation. The analysis [7]
makes use of the general elliptic potential () in Eq. (4). It is straightforward to check that a
Lagrangian whose Euler-Lagrange variations gives back the Thiele equation is [13]

( )− − − +  2 21 1= ( )
2 2 x yL G XY YX k X k Y (48)

This is a particular choice of gauge and this Lagrangian is not unique (see Ref. [26] for a different
choice). To transform to the associated Hamiltonian, one finds the canonical momentum for
this symmetric gauge,
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This shows that the Lagrangian can be expressed as  = 𑫅𑫅 𑫅𑫅 𑫅𑫅 𑫅𑫅 𑫅𑫅. As P is determined by  and, without any time derivatives, one can interpret this as a pair of constraint relations between
components of 𑫅𑫅 and . It means that of four original coordinates plus momenta, only two are
independent.

The Hamiltonian is obtained in the usual way,

( )2 2 21
2

1= = = = .
2

× - +x yH L U k X k Y kP V r (50)

Curiously, this has no momenta present. This strange situation seems to imply that there is no
dynamics, because the Hamilton equations of motion are

= , = .H H¶ ¶
-
¶ ¶

P R
R P

& & (51)

That would give 𑫅𑫅 = ̇ = 0, which is clearly wrong. This singular situation comes about
because of the constraint (49) between momentum and position components. In order to get a
true dynamics, one needs to rewrite the Hamiltonian half as a potential part and half as a kinetic
part, that is,

( ) ( ) 
+ + + 

 

2
2 2 2 21 1 2= .

4 4x y x y y xH k X k Y k P k P
G

(52)

This is exactly equal to  in Eq. (50), but now it does give back the Thiele equation when its
time dynamics is found from Eq. (51). Because of the constraint, the vortex motion depends
on only two independent coordinates, or degrees of freedom, rather than four. For the purposes
of statistical mechanics, then, the thermalized vortex motion contains an average energy, = 2 × 12𝀵𝀵𝀵𝀵.

5.3. Thermalized vortex probability distributions from the Thiele equation

One can assume that any of the coordinates, ,,,, as well as effective circular coordinate = (,), obey a Boltzmann distribution, whose parameters are determined by the average

energy,
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Curiously, this has no momenta present. This strange situation seems to imply that there is no
dynamics, because the Hamilton equations of motion are

= , = .H H¶ ¶
-
¶ ¶

P R
R P

& & (51)

That would give 𑫅𑫅 = ̇ = 0, which is clearly wrong. This singular situation comes about
because of the constraint (49) between momentum and position components. In order to get a
true dynamics, one needs to rewrite the Hamiltonian half as a potential part and half as a kinetic
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(52)

This is exactly equal to  in Eq. (50), but now it does give back the Thiele equation when its
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energy,
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〈 〉 = .H kT (53)

This directly gives the mean squared effective circular radius for an elliptic disk,

2 = 2 / = 2 / .ρ〈 〉 〈 〉H k kT k (54)

This becomes the usual mean squared radius, 2 2 , in the limit of a circular disk. Using
expression (50) for , with the energy shared equally between  and  motions (equipartition
theorem for quadratic degrees of freedom) implies that each coordinate has a mean square
value,

〈 〉 〈 〉2 2= / , = / .x yX kT k Y kT k (55)

For the systems we study, with b < a and  < , this implies a wider range of motion for the coordinate, as could obviously be expected. These relations for the mean square values
indicate the importance of the force constants for describing the statistical distribution of vortex
position.

Now consider determining the probability distributions for the vortex core location. The
Hamiltonian is circularly symmetric when expressed in terms of the square of the effective
circular coordinate  . We can suppose that each possible location has a probability determined

from a Boltzmann factor, e−𝀵𝀵, where 𝀵𝀵 = (𝀵𝀵)−1. Employing the circular symmetry for this
coordinate, the probability ()𝀵𝀵 of finding the vortex core within some range 𝀵𝀵 centered at
radius  is proportional to the area 2𝀵𝀵 𝀵𝀵 in a ring of radius , and the Boltzmann factore−𝀵𝀵:

1 2
2( ) 2 e = 2 e .
β ρ

ρ ρ πρ ρ πρ ρ
--µ

kHp d d db (56)

By including a normalization constant, the unit normalized probability distribution function
is easily found to be

1 2
2( ) = e .

k
p k

- β ρ
ρ β ρ (57)

The root-mean-square radius  implied from relation (54) can be verified with
this probability function. One can also get the mean radius and the most probable radius:
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m2= / , = / .ρ π ρá ñ axkT k kT k (58)

For the simulations shown in Figures 9 and 10, with = 60 nm,  = 30 nm,  = 300 K, position

data out to  = 2.5 × 105 was used to find histograms of vortex core position, and thereby get
the radial probability distribution to compare with Eq. (57). The results are shown in Figure
11. To compare with theory, the force constants from spin alignment relaxations were used (see
the Figure 11 caption). Note also that as the gyrotropic frequency is considerably larger for = 10. nm, those data correspond to many more orbits of the vortex, equivalent to a more
complete averaging. Even so, the distributions for both thicknesses follow very closely to the
expected form that depends on the validity of the Thiele equation, with no adjustable param-
eters (see Figure 12).

Figure 11. The radial distribution of vortex core positions for the simulations in Figures 9 and 10, with = 60 nm, = 30, and thicknesses  = 5.0,10 nm. Data out to final time  = 2.5 × 105 was used. The solid curves are the

theory expression (57), using force constants  = 0.17530 for  = 5.0 nm and  = 0.68320 for  = 10 nm, as

obtained from spin alignment calculations, with force constant unit 0 = /e.

Using  expressed in terms of both  and , the probability to find the vortex core within some

range 𝀵𝀵 and 𝀵𝀵 of the location (,) is (,)𝀵𝀵𝀵𝀵 𝀵𝀵 e−𝀵𝀵 𝀵𝀵𝀵𝀵, where the normalized
probability function is found to be

1 12 2
2 2( , ) = e e .

2 2
β βββ

π π
- -k X k Yyx yx kkp X Y (59)

This is a product of Gaussian distributions in each coordinate, (,) = ()(), with zero
mean values, but variances given by
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= / , = / .σ σx x y ykT k kT k (60)

The distributions p(X) and p(Y) found from the simulation data of Fig. 9 are shown in Fig.
12, and compare closely to the theoretical expression (59).

Figure 12. Distributions of vortex core coordinates for the LLG-Langevin simulation in Figure 9 with = 60 nm, = 30, and thickness  = 5.0 nm. The solid curves are the theory expressions from Eq. (59) based on the Thiele
theory for vortex motion, using force constants  = 0.11560 and  = 0.26570 from spin alignment relaxa-

tion, where 0 = /e.

Clearly one could also find the corresponding distributions of the momentum components by
similar reasoning.

Instead of looking at the momentum components, we can equivalently calculate a theoretical
speed distribution for the vortex core [13]. This is simplest if we use the effective circular
coordinate  , and consider that fact that its velocity in Eq. (36) implies a speed 𑩡𑩡 𑩡𑩡 ̇  given
by

=| | .ω ρGu (61)

As 𑩡𑩡 is proportional to , so are their probability distributions. If (𑩡𑩡) is the desired speed
probability distribution, then conservation of probability states that

( ) = ( ) = ( / | |) / | | .ρ ρ ω ωG Gg u du p d p u du (62)

Thus, the speed distribution is derived from the effective circular coordinate distribution by
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1( ) =| | ( / | |).ω ω-
G Gg u p u (63)

With  = /, one obtains

12 2 2 2 2/ / r2
2
r

2( ) = e = e .
ββ ug

- -G u k u u ms

ms

Gu u
k u

(64)

This depends on the root-mean-square speed, determined from r𝀵𝀵𝀵𝀵,
r r=| | = 2 / .ω ρms G msu kTk G (65)

The function () is a Maxwellian speed distribution similar to that for an ideal gas. One could

consider the factor in the exponent as depending on a kinetic energy term 12𝀵𝀵2 for a particle,

where 𝀵𝀵 is some mass associated with that particle in gyrotropic motion. From Eq. (64), one

can read off the value needed for this mass,

2= / .Gm G k (66)

This curious result gives a kind of effective mass that depends on the potential experienced by
the vortex. Thus, it should not be consider an intrinsic vortex mass. Generally,  is linearly
proportional to thickness  [see expression (25)], whereas  tends to increase approximately

with 2 [see expression (41) and also Section 4.2], making this mass nearly independent of L.
Probably, 𝀵𝀵 is more strongly determined by the disk area, 𝀵𝀵𝀵𝀵𝀵𝀵. In the case of circular disks,

using the approximate expression (41) for  =  and the definition (25) of  gives a quantitative

result,

2

2
0

(2 ) .
0.878

π
μ γ

»G
am (67)

Thus, the mass is determined primarily by the disk radius 𝀵𝀵, and it does not depend on the
material parameters such as the exchange stiffness or saturation magnetization. For a radius

Vortex Structures in Fluid Dynamic Problems174



1( ) =| | ( / | |).ω ω-
G Gg u p u (63)

With  = /, one obtains

12 2 2 2 2/ / r2
2
r

2( ) = e = e .
ββ ug

- -G u k u u ms

ms

Gu u
k u

(64)

This depends on the root-mean-square speed, determined from r𝀵𝀵𝀵𝀵,
r r=| | = 2 / .ω ρms G msu kTk G (65)

The function () is a Maxwellian speed distribution similar to that for an ideal gas. One could

consider the factor in the exponent as depending on a kinetic energy term 12𝀵𝀵2 for a particle,

where 𝀵𝀵 is some mass associated with that particle in gyrotropic motion. From Eq. (64), one

can read off the value needed for this mass,

2= / .Gm G k (66)

This curious result gives a kind of effective mass that depends on the potential experienced by
the vortex. Thus, it should not be consider an intrinsic vortex mass. Generally,  is linearly
proportional to thickness  [see expression (25)], whereas  tends to increase approximately

with 2 [see expression (41) and also Section 4.2], making this mass nearly independent of L.
Probably, 𝀵𝀵 is more strongly determined by the disk area, 𝀵𝀵𝀵𝀵𝀵𝀵. In the case of circular disks,

using the approximate expression (41) for  =  and the definition (25) of  gives a quantitative

result,

2

2
0

(2 ) .
0.878

π
μ γ

»G
am (67)

Thus, the mass is determined primarily by the disk radius 𝀵𝀵, and it does not depend on the
material parameters such as the exchange stiffness or saturation magnetization. For a radius
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= 100 nm, the mass is 1.2 × 10−22 kg, an extremely small value. Even so, the mass can be
taken to represent how a vortex responds dynamically to the potential. With the gyrotropic
frequency given by  = /, the mass is written equivalently as

= / | | / | | .ω ωµG G Gm G L (68)

With  depending only on disk radius or possibly area in the 𝀵𝀵𝀵𝀵 plane, and the gyrovector

proportional to , this re-expresses that   is also proportional to , as shown implicitly in
Figures 5 and 7.

6. Summary and interpretation of results

This chapter has provided an overview of some methods for finding the static, dynamic, and
statistical properties of vortex excitations in thin nanodisks of soft magnetic material. By
assuming the thickness is much less than the principal radius,  𑩪𑩪 , the magnetization points
primarily within the plane of the disk, except within the vortex core, and it has only weak
dependence on the coordinate  perpendicular to the plane. This allowed for the transforma-
tion to an equivalent 2D problem, which has been studied here using a form of micromagnetics,
converting the continuum problem to one on a square grid.

The Lagrange-constrained spin alignment scheme was used to find static vortex energies while
securing the vortex in a desired location , thereby allowing for the calculation of vortex
potential () within the disk. For a vortex near the center of an elliptic disk, the force constants𝀵𝀵 and 𝀵𝀵 for displacements along the principal axes a, b are found, with 𝀵𝀵 ≤ 𝀵𝀵 when 𑩤𑩤 ≤ .
However, the disk ellipticity 𑩤𑩤/ must be above a lower limiting value for a vortex to stable; a
very narrow disk will prefer the formation of a quasi-single-domain state, or even a multi-
domain state, but not a vortex. A vortex energetically prefers a displacement along the longer
axis of the disk; that is consistent with the shape of its elliptic orbits, which have the same
ellipticity as the disk itself [see Eq. (33)].

The vortex gyrotropic orbits can be described very well through the use of the Thiele equation
(24), which replaces the dynamics of the many degrees of freedom in the magnetization field(,) by the dynamics of only two Cartesian components in the vortex core location, = ((), ()). This works best for a vortex near the disk center, where it is unlikely to be
destabilized by deformations caused by the boundaries. For zero temperature, the dynamics
from RK4 integration of the LLG equations is completely consistent with that from the Thiele
equation. The Thiele equation predicts the vortex gyrotropic frequencies to be  = − /,
which is confirmed in the dynamics simulations while using force constants from the Lagrange-
constrained static vortex structures. Generally, the zero-temperature gyrotropic frequencies
are roughly proportional to / with only a weak dependence on disk ellipticity, as can be
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concluded from the results in Figure 7. The frequencies are determined by the geometric mean
force constant,  = , which shows why knowledge of the vortex potential is important

for this problem.

Thermal effects for nonzero temperature have been included by introducing a Langevin
equation (21) that results from including stochastic magnetic fields into the LLG equation. This
Langevin equation gives the time evolution in the presence of thermal fluctuations. Solved
numerically using a second-order Heun algorithm, a vortex initially at the disk center (the
minimum energy point) will spontaneously undergo gyrotropic orbital motion, on top of a noisy
spin wave background. The orbital motion takes place at a slightly lower frequency compared
with its motion for  = 0, because the presence of spin waves weakens the exchange stiffness
of the system. The resulting distribution of vortex position can be predicted using an effective
Lagrangian and Hamiltonian that result from the Thiele equation. That Hamiltonian can be
expressed in a form in Eq. (50) containing only a potential energy. This then shows that the
distributions (and variances) of effective radial coordinate  and Cartesian coordinates  and depend on /, where  is either  or  or , respectively [see Eqs. (57) and (60)].

Surprisingly, large vortex rms displacements on the order of 1–10 nm can result, with the larger
values taking place in the weaker potentials of thinner disks (Figure 11) and in disks with larger
radii . However, these noisy elliptical motions simply reflect the equipartition of energy into
the two collective degrees of freedom available to the vortex (, ), with each receiving an

average thermal energy of 12. The radial coordinate, in contrast, receives a full  of energy

on average. The theoretical probability distributions are confirmed in simulations provided
the time evolution averages over a large number of gyrotropic orbits.

A vortex speed distribution can also be derived from the position distribution, essentially
because the momentum and position coordinates of a vortex are not independent. The
speed distribution () can be characterized by a mass  proportional to the disk radius ,

but independent of material properties. The mass has the sense that as the vortex position

fluctuates, it has some Maxwellian speed distribution, with a kinetic energy 122 that en-

ters in the Boltzmann factor. This is in contrast to the Thiele equation, which has been used
here with no intrinsic mass term. Indeed, the vortex gyrotropic frequency is the same as that
for a corresponding 2D harmonic oscillator of mass  and spring constant , that is, = /
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Abstract

Periodic potentials, such as photonic crystals and optical lattices, have shown great abil-
ity to manipulate the dynamics of photonic and atomic waves. The interplay of the peri-
odic potentials and material nonlinearity (self-focusing or defocusing) can create and 
stabilize several types of solitons, including ordinary and gap solitons, which populate, 
respectively, in the semi-infinite gap and finite bandgaps of the corresponding linear 
spectrum. Besides, lattice defects have also been used to construct solitons. This review 
reports the generation of two-dimensional (2D) solitons in lattice potentials with local 
defects, under the self-focusing nonlinearity. The numerical analysis demonstrates a 
novel kind of embedded solitons (or intraband solitons), which are continuous families 
of 2D localized modes (different from isolated solutions reported before in usual embed-
ded-soliton models) embedded into the first and second Bloch bands of the underlying 
linear spectrum, and pinned to the defect, which determines the spatial position of the 
modes. We call these modes embedded defect solitons. Further, double, triple, and quadru-
ple lattice defects can also support stable dipole-mode solitons and vortices. In addition 
to that, combined linear and nonlinear lattice potentials are also used to construct stable 
fundamental solitons, gap ones, and solitary vortices.

Keywords: Bose-Einstein condensates, periodic potentials, solitons, vortices, optical 
lattices, photonic crystals, nonlinear guided waves

1. Introduction

In their many realizations in various areas of mathematics and physics, solitons are localized 
“waves of translation” resulting from the balance between linear (dispersive) and nonlinear 
effects in the medium. For the first time, what is nowadays called as soliton was reported 
by John Scott Russell as a solitary water wave as early as in 1834. In his experiments, Russel 
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observed that when propagating along a narrow channel, a rounded, smooth, and well-
defined heap of water kept its shape over a long distance. This remarkable phenomenon is 
now called as Russell’s solitary wave in fluid dynamics. The soliton phenomenology had 
started to develop after the advent of modern computers in 1960s. Solitons are, by definition, 
solitary waves that behave like a “particles,” keeping their amplitude, shape, and velocity 
in the course of propagation and even after colliding with other solitons. Nowadays, soli-
ton phenomena have been identified in various physical systems. For instance, in astrophys-
ics, a robust long soliton behavior appears as a vortex in the rotating atmosphere, which 
can effectively explain the Great Red Spot in the Jupiter’s atmosphere. Rigorously speaking, 
solitons refer to integrable partial differential equations [1]. In reality, most governing equa-
tions concerning soliton phenomena are not integrable [2]. In the latter case, stable pulses are 
named “solitary waves,” rather than “solitons,” in mathematical literature, while in physics, 
the name of solitons is applied to robust pulses in nonintegrable models equally well. In fact, 
they can readily demonstrate dynamics similar to that in integrable systems over experimen-
tally relevant timescales [3]. In this brief review, we adopt the term soliton to refer to localized 
waves supported by the balance of linear dispersion and nonlinearity.

Theoretical and experimental studies of the solitons dynamics have drawn a great deal of 
interest in the course of several past decades. It is now known that solitons are universal col-
lective excitations in very diverse areas, ranging from mathematics to physics and chemistry, 
and even to biology. In physics, the studies of solitons chiefly refer to self-trapped light pulses 
and beams in nonlinear optics, strain waves in elastic media, matter waves in superfluids 
(especially, solitons in Bose-Einstein condensates—BECs), various species of magnetic soli-
tons, and other nonlinear waves in magnetic media, etc. The studies in these areas are focused 
on the existence, stability, mobility, and interactions of solitons. They are most often found 
in one-dimensional (1D) physical systems, although they exist in multidimensional settings 
too. In the two-dimensional (2D) case, the ubiquitous cubic self-focusing readily gives rise to 
formal solutions for solitons. However, the same setting brings about the critical collapse [4]; 
therefore, fundamental solitons in the free 2D space (Townes solitons [5]) are unstable, as a sep-
aratrix between collapsing and decaying modes. Vortex solitons exist too in the 2D free space 
[6], while being vulnerable to a stronger splitting instability against azimuthal perturbations 
[7, 8]. Vortex solitons are a special type of solitons containing screw phase dislocations. To 
stabilize solitons in such physical systems, researchers have turned to adding different types 
of periodic potentials, alias linear lattices (LLs) to the systems under the consideration [9].

Suggested by the ability of crystals to mold the flow of electrons in solids, different peri-
odic potentials, such as ones induced by photonic crystals and lattices in optics [10], grat-
ings built into plasmonic waveguides [11], optical lattices in BECs [12–14] or degenerate 
Fermi gases [15], etc., were used to gain control of the dynamics of photonic, plasmonic, 
and atomic waves, respectively. Periodic potentials, when combined with the self-focusing 
or defocusing material nonlinearity, have been shown as excellent candidates for stabilizing 
various types of solitons [8, 9, 13, 14, 16], including ordinary ones, lying in the semi-infinite 
gap (SIG) of the corresponding linear spectrum, and gap solitons (GSs) populating finite 
bandgaps.
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Periodic potentials have recently been extended to make them nonlinear (sometimes called 
pseudopotentials in that context), in the form of nonlinear lattices (NLs). The NLs, as the 
names suggest, induced pseudopotentials with periodically modulated local strength and/
or sign of the nonlinearity. In optics, NLs may be built as material structures with spatially 
periodic modulations of the local Kerr nonlinearity or other nonlinear coefficients. In terms 
of BEC, NLs may be engineered via the Feshbach resonance mechanism by using spatially 
periodic external fields to induce the local nonlinearity [17]. The studies of the soliton dynam-
ics in NLs, and in NL-LL combinations, have been comprehensively summarized in recent 
review [18].

This review aims to provide a brief survey of our results reported in the context of theoretical 
studies of 2D solitons and vortices in linear and nonlinear lattice potentials [19, 20]. In Section 
2, we introduce a dynamical model of lattice potentials with defects and self-focusing non-
linearity and report the existence and stability of a new type of 2D embedded (alias intraband) 
solitons, which we call as embedded defect solitons (EDSs), as they are embedded, as local-
ized modes, into the first and second Bloch bands of the underlying linear spectrum, being 
pinned to local lattice defects. Stable dipole-mode solitons and vortices supported by multiple 
defects are also reported in this section. The variational approximation (VA) based on the 
Gaussian ansatz, along with numerical methods, is presented to study 2D ordinary solitons in 
the setting combining the LL and NL with incommensurate periodicities of the two lattices in 
Section 3. GSs and vortex solitons in the same setting are studied too by means of numerical 
simulations. Finally, we formulate conclusion in Section 4.

2. 2D intraband solitons and vortices in lattice potentials with  
local defects

2.1. Introduction

As mentioned above, the model with the integration of periodic potentials and material non-
linearity (self-focusing or defocusing) can give rise to various types of solitons, such as ordi-
nary solitons and GSs, existing, respectively, inside the SIG and the finite bandgaps of the 
corresponding linear spectrum.

Furthermore, it was also demonstrated that, counter-intuitively, specific species of solitary 
waves, known as embedded solitons, may exist inside spectral Bloch bands populated by 
radiation modes [21–35]. Generally, embedded solitons cannot exist in continuous families 
because of the resonance with radiation waves. However, isolated embedded modes are pos-
sible, as the rate of the decay into radiation may vanish at particular spectral points. Under 
some specific conditions, continuous families of embedded solitons were constructed too 
[30–33]. Recently, the formation of such solitons was demonstrated in a model combining the 
quadratic (χ(2)) nonlinearity and a complex lattice potential, whose real and imaginary parts 
are subject to the condition of parity-time (PT) symmetry, representing symmetrically placed 
and mutually balanced local gain and loss [34]. While embedded solitons have been widely 
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investigated in general 1D models, it remains an open issue to discover them inside 2D Bloch 
bands. Previously, stable intraband solitons have been found in a 2D potential which consists 
of a periodic lattice in one direction and a harmonic-oscillator trap applied in the orthogonal 
direction [35].

Besides the perfect lattices, lattice defects have also been introduced to help constructing soli-
tons. In particular, solitons supported by local defects in the form of the localized χ(2) nonlin-
earity have been studied in [36–38]. Recently, solitons pinned to local PT-symmetric defects, 
inserted into the 1D medium with the uniform χ(2) nonlinearity, were considered too [39]. 
Along these lines, the current section aims to report the numerical analysis of 2D solitons in 
lattice potentials with local defects, under the action of self-focusing nonlinearity. Numerical 
results demonstrate a novel kind of embedded solitons (or intraband solitons), which form 
continuous families of 2D localized modes (different from isolated solutions reported before 
in general embedded-soliton models), existing inside the first and second Bloch bands of the 
underlying linear spectrum, in terms of the propagation constant, and pinned to the defect. 
We call them as embedded defect solitons (EDSs) accordingly. It is necessary to point out that, 
for localized modes pinned to local lattice defects, one can define the location of their propa-
gation constant relative to the underlying bandgap spectrum of the infinite uniform LL, as the 
latter is defined as the spectrum of radiation waves into which the localized mode may decay.

Since the EDSs exist with the norm exceeding a finite minimum value (and the propagation 
constant of linear defect modes cannot be located inside a Bloch band), they do not emerge 
from a continuation of linear localized defect modes. Systematic direct simulations verify that 
the EDSs are totally stable in the first Bloch band, and partially stable in the second. Along 
with the regular defect solitons indwelling the SIG, and gap defect solitons (GDSs) local-
ized inside the first finite bandgap (the spectral interval between the first and second bands) 
and pinned to the same defect, the intraband EDSs constitute a continuous “superfamily” 
throughout the overall bandgap structure. It is important to identify the stability of the GDSs 
under the self-attractive nonlinearity, since previous results for stable gap solitons supported 
by perfect 2D lattices were limited to the case of self-repulsion, while the case of self-attraction 
was assumed to be always unstable [8, 40, 41]. Although GSs bifurcating under the self-attrac-
tive nonlinearity from edges of adjacent Bloch bands into the first finite bandgap have been 
constructed in [42], their stability has not been considered there. In addition, 2D fundamental 
GSs under the self-attractive nonlinearity were found to be completely unstable in the first 
finite bandgap, while a family of dipole-mode gap solitons is stable in a part of the first band-
gap as long as the depth of the lattice potential takes values above a certain threshold [43].

2.2. Model

The model is the 2D mean-field Gross-Pitaevskii (GP) equation for the BEC wave function (or 
the nonlinear Schrödinger equation for the amplitude of the electromagnetic wave), ψ(x, y, z),

    
ψ  ∨   2  ψ

   
i  ψ  

z
   =   − 1 __ 2    ∇   2  ψ −   [  1 − δ  (  x, y )    ]    V  
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(in BEC, propagation distance z is replaced by time t), with the self-focusing cubic nonlinear-
ity, and   ∇   2  ≡  ∂  

x
  2  +  ∂  

y
  2  . The perfect lattice potential with depth 2ε and period π is taken in the 

general form,   V  
OL

   = ε  [  cos  (  2x )    + cos  (  2y )    ]    . The defect is defined by  δ  (  x, y )    = 1  at   x   2  +  y   2  <  r  
0
  2   and  δ  (  x, y )    = 0  

at   x   2  +  y   2  ≥  r  
0
  2   in Eq. (1), with a “hole” of radius r0 = 1.2 in the potential. Numerous simulations 

demonstrate that, for this shape of the defect with fixed ε = 2, fully stable solitons can only be 
found in the interval of  1.1 ≤  r  

0
   ≤ 1.3 , for different shapes of the “hole.” The contour plots of the 

LL potential with the single or compound defects are shown in Figure 1.

Stationary solutions to Eq. (1) with propagation constant  –μ  (or chemical potential  μ, ∈ terms of BEC ) 
are sought for as ψ = ϕ  (  x, y )   exp  (  − iμz )    , with amplitude  ϕ  (  x, y )     obeying the stationary equation,

   μϕ =   − 1 _ 2    ∇   2  ϕ −   [  1 − δ  (  x, y )    ]    V  
OL

   ϕ −  |  ϕ   |     2  ϕ.   (2)

It should be noted that the fundamental and dipole-like solitons are represented by real solu-
tions for ϕ  (  x, y )    , while the vortical counterparts (vortices that can be supported by quadruple 
defects, as shown below) correspond to complex solution.

The linear spectrum of Eq. (1), obtained by a numerical solution of the linearized version 
of Eq. (2), is displayed in Figure 2. It can be seen that, for the given parameters, a growing 
number of defect-induced isolated eigenvalues emerge in the second finite bandgap with the 
increase in the number of the defects (single → double → triple), although the first bandgap 
remains unchanged. In the following Sections 2.3 and 2.4, rather than discussing apparent 

Figure 1. Contour plots of the lattice potential with (a) single, (b) double, (c) triple, and (d) quadruple defects, at ε = 2.
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quasi-linear defect modes generated from these isolated eigenvalues, we will analyze local-
ized states that have no linear limit but are supported by the defects, in the first finite band-
gap and in the two Bloch bands adjacent to it. Numerically, such states were constructed as 
solutions of Eq. (2), using the Newton’s method in the domain of size 30 × 30, with a spatial 
grid of 192 × 192 points. The initial wave was the usual Gaussian,  ϕ  (  x, y )    = Aexp  [  −   (   x   2  +  y   2  )    /   (  2  W   2  )    ]    ,  
with amplitude A, width W, and total power (or number of atoms, in the BEC)  
 N = ∬  ϕ   2   (  x, y )   dxdy = π   (  AW )     2  . Stability of the solutions was then checked in direct simulations of 
the perturbed evolution in the framework of Eq. (1).

2.3. Numerical results for the single defect

The existence of continuous families of localized modes (fundamental EDSs), pinned to the 
single defect (the one shown in Figure 1a), is illustrated in Figure 3. The numerical solution 
proves that the stability region of EDSs lies inside the first and second Bloch bands and is 
connected to the family of GDSs that are pinned to the same defect, but with the propagation 

Figure 2. (a) Linear spectra of the perfect lattice potential and in the cases of (b) single, (c) double, and (d) triple defects 
showed in Figure 1. Isolated points rising in the second finite bandgap represent the corresponding linear defect modes 
that are irrelevant to solitons described in this review.
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constant belonging to the first finite bandgap. The EDS solutions in the first Bloch band begin 
at its boundary with the SIG, which makes them linked to the stable regular solitons pinned 
to the defect. Solitons of the latter type are not displayed here, as their existence and proper-
ties are evident.

It can be seen from Figure 3 that the combined family of the pinned solitons exists above a 
finite minimum value of the total power, Nmin = 1.56, which exactly corresponds to the junction 
point between the first Bloch band and the first finite bandgap. This implies, as mentioned 
above, that the family of localized modes (the regular solitons, EDSs and GDSs) supported by 
the single defect does not appear as a nonlinear evolution of any linear defect mode because 
the latter would lead to N→0.

Numerical calculations prove that the EDS is totally stable within the first Bloch band, while 
being only partially stable in the second band. A noteworthy feature is that, in the first 
Bloch band, the stability of the intraband solitons pinned to the defect satisfies the Vakhitov-
Kolokolov (VK) criterion, which is relevant for all kinds of localized modes supported by a 
self-focusing nonlinearity [44],  ∂ μ / ∂ N < 0 . On the other hand, the EDS branch features  ∂ μ / ∂ N > 0  
in the second Bloch band, where the stability region is very narrow (actually, it may be a region 
of weak instability, which is, however, equivalent to stability in a possible experiment). Of 
course, there is no rigorous proof of the applicability of the VK criterion to the current model.

Figure 3. Propagation constant (−μ) versus the total power (norm) for various solitons pinned to the single defect (as 
shown in Figure 1a)]. The solid and dashed curves indicate, respectively, stable and unstable solutions. The stability 
region of solitons is located inside the first and second Bloch bands, as well as in the first finite bandgap between them. 
Typical examples of the pinned solitons, marked by the points A, B, C, and D, are shown below in Figures 4 and 5. The 
curves have some irregularity since they were plotted with interval  Δμ = 0.1 .
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Shapes of stable EDSs inside the first and second Bloch bands (at points marked A and B in 
Figure 3), and an unstable EDS at point C, are depicted in Figure 4. In the whole first band, 
the form of the EDSs is similar to that shown in Figure 4a. Furthermore, in the second band 
(as shown in Figure 4b and), the localized modes feature a more complex structure, with pro-
nounced side peaks, in line with the principle that the shape of the Bloch modes is more com-
plex too in the same band. As a matter of fact, the expanding tail of the soliton displayed in 
Figure 4c initiates the onset of the instability of this soliton. Direct simulations demonstrated 
that the unstable modes decay into radiation (not shown here in detail).

The current model can support a new type of nonlinear localized states found inside Bloch 
bands of the spectrum induced by the 2D lattice (2D solitons of the embedded type were 
found in Ref. [35], but the lattice was one-dimensional in that case). Actually, the EDS fam-
ily traversing the first Bloch band serves as a missing link between the two famous kinds of 
solitons created by the lattice potential, which are regular solitons nested in the SIG, and gap 
solitons populating the first finite bandgap (in the current case, both of them are pinned to 
the single defect).

Figure 4. Examples of the intraband (embedded) defect solitons, EDSs, found in the first (a, b) and second (c) Bloch 
bands, which correspond to points A, B, and C, respectively, in Figure 3. The 3D images and contour plots of the modes 
are shown in the left and right plots, respectively. The modes in panels (a) and (b) are stable, while the one in (c) is 
unstable.
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The GDS family was also found in the first finite bandgap, being linked to the intraband EDS 
solutions between the two nearby Bloch bands (as in Figure 3). Our simulations have confirmed 
that these gap solitons, also pinned to the defect, are stable under the self-focusing nonlinearity 
[defined as in Eq. (1)], in contrast to their counterparts in ideal lattices, where gap solitons are 
generally considered to be stable only under the self-defocusing nonlinearity [8, 40].

Furthermore, the GDSs were also explored under the self-defocusing nonlinearity, and it was 
concluded that they are always unstable (not displayed here in detail). The reason is that the 
effective mass is negative for the gap soliton under the self-defocusing nonlinearity, therefore 
inverting the feature of the soliton-defect interaction, and rendering unstable the localized 
state of the gap soliton in the case of the attractive defect. Additional analysis strengthens this 
argument: if the local defect was replaced by one with the opposite sign, the pinned states 
of gap solitons were demonstrated to be stable under the self-defocusing nonlinearity and 
unstable in the case of self-focusing. The negative mass of gap solitons explains a number of 
other counterintuitive dynamical effects featured by these modes [45–48].

Figure 5 presents a typical example of the stable pinned GDS, corresponding to the point D 
in Figure 3, found in the first finite bandgap and supported by the self-focusing nonlinearity. 
Our simulations further suggest that stable GDSs pinned to the defect cannot be created in the 
relatively narrow second finite bandgap (see Figure 2), in agreement with the general trend of 
gap solitons to be unstable in the second bandgap [13, 14, 49].

2.4. Numerical results for multiple defects: stable dipoles and vortices

The above analysis was also extended to the cases of double, triple, and quadruple lattice 
defects, such as those displayed in Figure 1b–d. As shown above, the solitary defect can only 
support the family of the fundamental solitons of both the EDS and GDS types, while the 
double defects can support the stable dipole-mode bound states of two solitons with opposite 
signs. Two examples of such modes of the EDS and GDS types, found in the first Bloch band 
and in the first finite bandgap, respectively, are shown in Figure 6.

Figure 5. Example of a stable gap defect soliton, GDS, pinned to the single defect, found in the first finite bandgap (at 
point D marked in Figure 3) under the self-focusing nonlinearity. Left and right panels show 3D image and contour plot 
of the stationary solution.
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The triangular defects (see Figure 1c) are able to support stable triangularly shaped dipole 
modes too, see examples displayed in Figure 7. Typical vortices supported by lattice poten-
tials can be constructed as orthogonal forms of four intensity peaks [8, 9] and an almost hollow 
site at the pivot (vortices of this kind are usually called onsite-centered ones), featuring the 
phase differences of π/2 between adjacent peaks, which amounts to the total phase circulation 
of 2π (i.e., topological charge 1). The quadruple defects (see Figure 1d) can create such stable 
solitary vortices, characteristic examples of which are shown in Figure 8, while the entire 
“superfamily” is presented in Figure 9. As indicated in Figure 9, direct simulations demon-
strate that the pinned vortices are unstable in the second Bloch band, being stable elsewhere.

Figure 6. Examples of stable dipole-mode solitons of both the EDS and GDS types supported by the double defect 
(shown in Figure 1b), in the first Bloch band (left, with  μ = − 1.4, N = 3.9 ) and in the first finite bandgap (right, with  
 μ = − 0.3, N = 5.4 ).

Figure 7. Examples of stable dipole-mode solitons of the EDS and GDS types supported by the triple triangular defect 
(shown in Figure 1c), in the first Bloch band (left, with  μ = − 1.45, N = 6.3 ) and in the first finite bandgap (right, with  
 μ = − 0.5, N = 6.9 ).
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Figure 8. Examples of stable vortices with topological charge 1 supported by the quadruple defect inside the 
first Bloch band (top,  μ = − 1.5, N = 8.8 ), and in the first bandgap (bottom,  μ = −0.8, N = 7.2 ). Phase distributions of the 
vortices are shown in the right panels.

Figure 9. Curve  μ  (  N )     for the vortices with topological charge 1, pinned to the quadrupole lattice defect. The solid and 
dashed curves show stable and unstable solutions, respectively.
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3. 2D solitons and vortices in incommensurate linear and nonlinear 
lattice potentials

3.1. Introduction

Besides the LL potentials, NLs have also been proposed to support localized modes in recent 
years. In optics, the photonic-crystal structures can induce an effective combined LL-NL 
potential, formed by congruent periodic spatial modulations of the linear refractive index 
and local nonlinear Kerr coefficient. In terms of BEC, the NLs can be introduced using exter-
nal magnetic fields that affect the nonlinearity coefficient via the Feshbach resonance. Results 
produced by studies of localized modes (solitons and vortical ones) in NLs and LL-NL combi-
nations have been reviewed in [18]. Experimentally, NL-supported optical solitons have been 
created at an interface of two lattices [50].

A natural consideration of the combined LL-NL system is the one with different or incommen-
surate periodicities between the two lattices. In the 1D model, both numerical simulations and 
analytical approximations have demonstrated that such a combination of competing linear and 
nonlinear potentials can support various localized modes, both ordinary solitons and GSs [51]. 
In particular, intriguing results were obtained for existence borders of the solitons as functions 
of the LL-NL incommensurability and for the empirical “anti-Vakhitov-Kolokolov”  (anti-VK) 
stability criterion for GSs, which is expressed as the dependence of the chemical potential, μ, 
on the norm, N, of the soliton: dμ/dN > 0 (ordinary solitons supported by the self-focusing 
nonlinearity in the SIG obey the VK criterion, dμ/dN < 0 [44]). Here, we focus on the case of 2D 
solitons supported by the incommensurate LL-NL combinations. A VA approach and numeri-
cal methods are applied to ordinary solitons, while GSs in the first finite bandgap are studied 
only numerically, as the analytical consideration would be too cumbersome. Vortex solitons, 
in the semi-infinite and finite gaps alike, are constructed in a numerical form too.

We study the physical settings including both full 2D and quasi-1D (Q1D) lattice potentials, 
the latter depending on the single coordinate (the Q1D LL potential is sufficient to stabilize 
2D ordinary solitons in diverse 2D self-focusing media [52–54]). Actually, the combination 
of the incommensurate LL and NLs (with different periods) makes the medium an effective 
quasi-crystal for nonlinear excitations. Theoretical work on fundamental solitons and solitary 
vortices has been done for linear quasi-periodic potentials [55], and experiments with 2D 
photonic quasi-crystals counterpart have been reported recently [56, 57]. Another relevant 
work [58] dealt with 2D solitons supported by combined crossed Q1D linear and nonlinear 
periodic potentials.

3.2. The model

The 2D theoretical model combing the periodic LL potential and NL pseudopotential is based 
on the scaled Gross-Pitaevskii (or nonlinear Schrödinger) equation for the BEC wave func-
tion, or the local amplitude of the electromagnetic wave in optics, ψ(x, y, z):

   i  ψ  
z
   =   − 1 _ 2    ∇   2  ψ − ε  [  cos  (  2πx )    + cos  (  2πy )    ]   ψ − g  [  cos  (  qπx )    + cos  (  qπy )    ]    |  ψ   |     2  ψ,   (3)
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where z is propagation distance (or time t in BEC),   ∇   2  =  ∂  
x
  2  +  ∂  

y
  2  , the LL period is set to be 1, the 

period of the NL is 2/q (q is the incommensurability index), and the NL strength is normalized to  
g = ±1 . The center of the soliton will be fixed at point  x = y = 0 , thus  g = +1  and −1 pertain, sever-
ally, to the self-attraction and self-repulsion nonlinearity, which support ordinary solitons in 
the SIG or GSs in finite bandgap(s), respectively.

The remaining parameter in Eq. (3) is the LL strength, ε. The relevant band structure, for a 
fixed strength, ε = 7.4, in the reduced Brillouin zone [1], produced by linearizing Eq. (3), is 
shown in Figure 10.

Eq. (3) corresponds to the general model with the LL potential and spatially constant non-
linearity at q = 0. The model is commensurate, with respect to the LL and NL, at q = 2, and 
subharmonically commensurate once the ratio between the LL and NL periods is 1:2 at q = 1. 
The model features the full incommensurability (the system is totally quasi-periodic) when q 
becomes an irrational number, while, actually, the incommensurability is emulated by setting 
q = 1.5, which yields the period ratio 3:4. The Q1D model corresponds to discarding the linear 
potentials cos(2πy) and/or nonlinear terms cos(qπy).

Stationary solutions of Eq. (3) with chemical potential μ (or, in terms of optics, propagation 
constant −μ) can be looked for as  ψ = ϕ  (  x, y )   exp  (  − iμz )    , with wave function  ϕ  (  x, y )     obeying the 
stationary equation,

   μϕ =   − 1 _ 2    ∇   2  ϕ − ε  [  cos  (  2πx )    + cos  (  2πy )    ]   ϕ − g  [  cos  (  qπx )    + cos  (  qπy )    ]    |  ϕ   |     2  ϕ.   (4)

The VA is based on the Lagrangian of Eq. (4), which is

 L =  ∬ 
 
      
{

   
 μ |  ϕ   |     2  −   1 _ 2   |   ∇ ϕ   |     2  + ε  [  cos  (  2πx )    + cos  (  2πy )    ]    |  ϕ   |     2  

     
 +   

g

 
_ 2    [  cos  (  qπx )    + cos  (  qπy )    ]    |  ϕ   |     4  

   
}

   dxdy. 

Figure 10. The band structure (b) of the linearized Eq. (3) in the first Brillouin zone ( ΓXM ,shown in (c)) for depth ε = 7.4  
of the LL; μ is the chemical potential of the Bloch waves. The 3D image in (a) shows the profile of LL.
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3.3. Localized modes in the semi-infinite gap

3.3.1. Fundamental solitons

The ordinary solitons, which are expected to form in the SIG under the action of the self-
focusing nonlinearity    (  g = +1 )     in Eq. (3), are first sought by means of the VA based on 
the Gaussian ansatz,  ϕ  (  x, y )    = Aexp  [  −   (   x   2  +  y   2  )    /   (  2  W   2  )    ]    , with the corresponding norm  
 N = ∬   |  ϕ  (  x, y )     |     2  dxdy   π  A   2   W   2 .  Substituting this ansatz into the Lagrangian produces the fol-
lowing result, expressed in terms of N and width W:

   L  
eff 

  =   N __ 2    [  μ −   1 _ 2  W   2    + 2ε  e   −  (  πW )     2   +   
gN

 
_ 2π  W   2     e   −  (  πqW )     2 /8  ]   ,  (5)

and the respective variational equations,  ∂  L  
eff 

  / ∂ W = ∂  L  
eff 

  / ∂ N = 0 :

   
  (  2π  W   2  )     2  ε  e   −  (  πW )     2   +  π   −1  gN  e     

−  (  πqW )     2 
 _______ 8     [  1 +   (  πqW )     

2
  ]    = 1,

      
  (  2  W   2  )     −1  − 2ε  e   −  (  πW )     2   − gN   (  π  W   2  )     −1   e   −  (  πqW )     2 /8  = μ.

    (6)

Figure 11 shows the μ(N) relation for the soliton families at various values of incommensu-
rability parameter q, as produced by solving Eqs. (6) and by their numerical counterparts for 
solutions of stationary Eq. (4). The stationary solutions were checked by using them as initial 
conditions in direct simulations of the dynamical Eq. (3).

Figure 11. Curve  μ  (  N )     for soliton families in the semi-infinite gap of the model with the full 2D linear and nonlinear 
potentials produced by the VA (dashed curves) and the numerical solutions of Eq. (4) (chain of symbols).
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Typical shapes of stable solitons created inside the SIG by the full 2D model, as well as by 
its version with the Q1D linear potential, are shown in Figures 12 and 13. Obviously, these 
shapes correspond, respectively, to quasi-isotropic and strongly elongated localized modes, 
resembling those found previously in other 2D models stabilized by LL potentials [8, 9, 18, 58].

It can be seen from Figure 11 that the VA predicts the ordinary solitons with a reasonable 
accuracy, except near the edge of the SIG, where the Gaussian ansatz is irrelevant, due the 
complex shape of the soliton. Furthermore, direct simulations of the dynamics of disturbed 
solitons prove that the solitons’ stability correctly follows the VK criterion, dμ/dN < 0 (the 
dependence μ(N) is obtained numerically). These properties for the family of ordinary soli-
tons resemble those reported previously in the 1D combined LL-NL model [51].

Figure 14 summarizes the stability of the 2D ordinary solitons in the SIG for all four real-
izations of the model (2D or Q1D linear and/or nonlinear potentials). The unstable solitons 
suffer decay into radiation waves (rather than transforming into stable solitons). A notable 
feature is that replacing full 2D NL by its Q1D version results in expansion of the stability 
areas, which can be explained by the fact that, in the Q1D NL, ordinary solitons attempt to 
“elude” the destabilizing locally self-repulsive nonlinearity only in one direction, rather 
than in two.

In addition, we tried to test the mobility of the solitons by studying their evolution initiated 
by a sudden “kick,” that is, multiplication of the wave function of a stable quiescent soliton 
by the phase-tilt factor,  exp  [  i  (   k  

x
   x +  k  

y
   y )    ]    , with the vectorial kick parameter k. The solitons were 

found to be immobile under the action of the Q1D LL or NL potential, except for an obvious 
case when both the LL and NL have a collinear Q1D structure, while the kick is applied in the 
unconfined direction. A sufficiently strong kick would destroy the soliton, instead of setting 
it in motion.

Figure 12. The shape of a stable fundamental soliton in the semi-infinite gap supported by the full 2D linear and 
nonlinear potentials, for g = +1, q = 1.5, μ = −5.24, and N = 1.22. The contour plot of the stationary real wave function ϕ(x, 
y) for the soliton is shown in the right panel.
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3.3.2. Solitary vortices

Figure 15 displays a typical example of stable solitary vortices with topological charge 1, 
which can be built as four-peak patterns, with the distance between peaks amounting to 
double period of the LL potential    (  Δx = Δy = 2 )    , and an almost hollow cell at the pivot. 
This type of solitary vortices is generally stable, owning to the weak interaction between the 
peaks. More densely packed vortex patterns can be constructed too, but they were found to 

Figure 13. The same as in Figure 12, but in the case of the Q1D linear potential (combined with the 2D nonlinear 
potential), for g = +1, q = 1, μ = −2.91, and N = 1.68. The shape of the solitons in the model with the quasi-1D nonlinear 
potential is similar to the present one.

Figure 14. (a) Stability borders of the ordinary soliton family (inside the semi-infinite gap) supported by the 2D linear 
potential and 2D or Q1D nonlinear potential (shown, respectively, by solid and dashed lines). (b) The same as (a) but for 
the Q1D linear potential. Areas of stable solitons are located under the corresponding borders.

Vortex Structures in Fluid Dynamic Problems194



3.3.2. Solitary vortices

Figure 15 displays a typical example of stable solitary vortices with topological charge 1, 
which can be built as four-peak patterns, with the distance between peaks amounting to 
double period of the LL potential    (  Δx = Δy = 2 )    , and an almost hollow cell at the pivot. 
This type of solitary vortices is generally stable, owning to the weak interaction between the 
peaks. More densely packed vortex patterns can be constructed too, but they were found to 

Figure 13. The same as in Figure 12, but in the case of the Q1D linear potential (combined with the 2D nonlinear 
potential), for g = +1, q = 1, μ = −2.91, and N = 1.68. The shape of the solitons in the model with the quasi-1D nonlinear 
potential is similar to the present one.

Figure 14. (a) Stability borders of the ordinary soliton family (inside the semi-infinite gap) supported by the 2D linear 
potential and 2D or Q1D nonlinear potential (shown, respectively, by solid and dashed lines). (b) The same as (a) but for 
the Q1D linear potential. Areas of stable solitons are located under the corresponding borders.

Vortex Structures in Fluid Dynamic Problems194

be unstable. Studies of other models have also proved that the vortices with inner “voids” are 
more likely to be stable [8, 18].

Numerical simulations have verified that stable vortices may only be created for values of 
incommensurability index close to q = 0, 1, and 2, namely, within intervals of the half-width  
Δq ≈ 0.1  around these values. The latter observation makes sense, as both the linear and non-
linear potentials have minima at or close to sites where the power (density) peaks are located, 
at such values of q. The stable vortices of the type shown in Figure 15 can only be observed 
(in the SIG) under the fully 2D LL potential, and the NL, however, can be taken in 2D or Q1D 
form. Figure 16 shows μ(N) curves for the families of the vortex modes. The analysis proves 
that the stability of such solutions totally obeys the VK criterion, that is, the families with  
dμ/dN < 0 are stable.

Figure 15. Shape of a stable vortex with topological charge 1 inside the semi-infinite gap supported by the full 2D linear 
and nonlinear potentials, for q = 1 and g = +1. The left, middle to right panels show, respectively, the absolute value of the 
field, |ϕ(x, y)|, in cylindrical coordinates and its contour plot, as well as the phase distribution that carries the vorticity. 
Parameters of the vortex are μ = −5.1 and N = 4.4.

Figure 16. The same as in Figure 11, but for solitary vortices in the semi-infinite gap, and in the case of the full 2D linear 
potential combined with the 2D (a) or Q1D (b) NL potential.
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3.4. Localized modes in finite bandgaps

3.4.1. Fundamental solitons

Figure 17 shows an example of stable GS generated sufficiently far from edges of the finite 
bandgap (the shapes of the GSs are quite similar in the model combining the 2D LL and Q1D 
NL). It is seen that the numerically found fundamental GSs feature, as usual, is in more com-
plex shapes than that in the ordinary solitons. The μ(N) curves for the GS families are shown 
in Figure 18a. Unlike the ordinary solitons (cf. Figure 12), GSs always feature dμ/dN > 0, thus 
complying with the anti-VK criterion [51].

Direct simulations demonstrate that the GSs become stable sufficiently deep inside the finite 
bandgap and unstable near its edges (unstable GSs suffer decay into radiation). The numeri-
cally found stability borders for the GSs in the full 2D NL and Q1D versions of the current 
model are displayed in Figure 18(b). It is observed that, ion the contrary to the ordinary 
solitons in the SIG, the stability region for GSs becomes extremely narrow for the Q1D NL, 
compared to the case of the full 2D NL. The latter feature seems obvious, since, in contrast to 
the ordinary solitons, and the NL may provide necessary support to the GSs.

The GS stability areas gradually shrink to zero with an increase in q, as can be seen in Figure 
18b for the variant of the Q1D NL model (we envisage similar situation for the full 2D NL 
model, while numerical troubles stem from expanding the stability diagram at larger values 
of q). This tendency can be understood due to the fact that the fast oscillating NL field aver-
ages itself to zero at large q; thus, the broad (see Figure 17) GS cannot feel the action of the 
nonlinearity. The ordinary solitons within the SIG do not follow this trend (cf. Figure 14) 
because, as q increases, these solitons can shrink in a single cell of the structure, remaining 
confined to a self-attractive nonlinearity region. Lastly, numerical simulations demonstrate 
that, similar to what was found above for the ordinary solitons, GSs are immobile objects too 
(not shown here in detail).

Figure 17. An example of a stable gap soliton in the model with the full 2D NL, for g = −1, q = 1.5, μ = 3.4, and N = 1.4. 
Left and right panels show 3D image and contour plot of the stationary solution.
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3.4.2. Solitary vortices

Figure 19 displays an example of stable vortex solitons created in the first finite bandgap. 
Such vortex soliton features the form similar to its counterparts in the SIG, cf. Figure 15, 
namely, it is composed of four peaks which is separated by twice the LL period, while the 
phase distribution carries the vorticity. Opposite to the case in the SIG, the solitary vortices 
inside the finite bandgap may be stable only when both LL and NL are taken in the full 2D 
form (i.e., the vortices are unstable if the Q1D NL is used).

Like their counterparts in the SIG, stable solitary vortices in the finite bandgap are found as 
long as the incommensurability index is close to q = 0, 1, and 2. Families of these vortices are 
displayed in Figure 20 by means of the μ(N) curves. As in the case of the fundamental GSs, the 
stable vortices in the finite bandgap obey the anti-VK criterion, dμ/dN > 0.

Figure 18. (a) Curves μ(N) for gap-soliton families in the model with the full 2D nonlinear potential. Unstable solitons 
near the bottom edge of the bandgap are denoted by black squares. (b) Stability borders for GS solutions supported 
by the 2D and Q1D nonlinear potentials (shown, respectively, by solid and dashed lines). Areas of stable solitons are 
delimited by the corresponding stability borders. The top border and the bottom one are situated close to the respective 
edges of the first finite bandgap.

Figure 19. An example of a stable vortex soliton found in the finite bandgap, for q = 1, g = −1, μ = 3.5, and N = 5.36. The 
meaning of the three panels is the same as in Figure 15.
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4. Conclusion

We have studied localized states in the framework of the nonlinear Schrödinger equation 
by introducing single, double, triple, and quadruple defects into the 2D lattice potentials 
in the self-focusing medium. The model can be realized as lattices in nonlinear photonic 
media, and BECs trapped in the OL. A new type of 2D embedded (alias intraband) solitons, 
which we call embedded defect solitons (EDSs), has been constructed. These modes are 
stable in the first Bloch band and partially stable in the second band. Contrary to the fact 
that 2D fundamental gap solitons may be stable only under the self-repulsion in uniform 
lattices, stable gap solitons pinned to the defect are found under the self-attractive nonlin-
earity. Stable dipole-mode solitons and vortices maintained by multiple defects have been 
identified too.

Localized states supported by the model of 2D nonlinear photonic crystals or BEC under the 
effect of linear and nonlinear lattices with different (generally incommensurate) periods have 
also been investigated. The combined incommensurate linear and nonlinear lattices may be 
considered as a “nonlinear quasi-crystal.” Both fully 2D periodic potentials and their Q1D 
reductions were considered, and the VA (variational approximation) was developed for ordi-
nary (fundamental) solitons in the semi-infinite gap. The stability regions for the entire sets 
of ordinary solitons and gap ones as well as the vortex solitons (built as “hollow” four-peak 
complexes) of both types have been produced.

Figure 20. Curve  μ  (  N )     for families of solitary vortices in the finite bandgap. Stable portions of the vortex families are 
located in the marked stripe.
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New directions can be naturally explored in the future. Introducing defects in complex lat-
tices, whose real and imaginary parts obey the PT symmetry, one may consider the stabiliza-
tion of localized modes and, in particular, of 2D gap solitons that were found to be unstable in 
uniform PT-symmetric lattices [59]. Search for stable vortex solitons with higher topological 
charges and, possibly, “supervortices” (vortex rings built of compact localized vortices) [60, 
61] may be relevant too. On the other hand, it may be interesting to extend the analysis to 
higher-order bandgaps, aiming to construct solitons and solitary vortices in those gaps.
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Abstract

We study relaxation dynamics of the mean field of many point vortices from quasi-
equilibrium to equilibrium. Maximum entropy production principle implies four con-
sistent equations concerning relaxation-equilibrium states and patch-point vortex
models. Point vortex relaxation equation coincides with Brownian point vortex equation
in micro-canonical setting. Mathematical analysis to point vortex relaxation equation is
done in accordance with the Smoluchowski-Poisson equation.

Keywords: point vortex, quasi-equilibrium, relaxation dynamics, maximum entropy
production, global-in-time solution

1. Introduction

The physical object studied in this chapter is non-viscous, noncompressible fluid with high
Reynolds number occupied in bounded, simply-connected domain. Ω∈R2. Motion of this
fluid is described by the Euler-Poisson equation

ωt þ ∇ � uω ¼ 0, Δψ ¼ −ω, u ¼ ∇⊥ψ, ψj∂Ω ¼ 0 (1)

where

∇⊥ ¼
∂
∂x2

−
∂
∂x1

0
BB@

1
CCA, x ¼ ðx1, x2Þ,

and u, ω and ψ stand for the velocity, vorticity and stream function, respectively.

In the point vortex model
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ωðx, tÞ ¼
XN

i¼1
αiδxiðtÞðdxÞ (2)

system of Eq. (1) is reduced to

αi
dxi
dt

¼ ∇⊥
xiHN , i ¼ 1, 2,⋯,N (3)

associated with the Hamiltonian

HNðx1,⋯xNÞ ¼ 1
2

X
i
α2
i RðxiÞ þ

X
i<j

αiαjGðxi, xjÞ, (4)

where G ¼ Gðx, x′Þ is the Green’s function of –Δ provided with the Dirichlet boundary condi-
tion and

RðxÞ ¼ Gðx,x′Þ þ 1
2π

logjx−x′j
� �

x′¼x
:

Onsager [1] proposed to use statistical mechanics of Gibbs to Eq. (3). In the limit N ! ∞ with
αN = 1, local mean of vortex distribution is given by

ωðxÞ ¼
Z

I
~α ρ~αðxÞPðd~αÞ, x∈Ω (5)

where αi ¼ ~α i α, ~αi ∈ I ¼ ½−1; 1� is the intensity of the i-th vortex, ρ~αðxÞ is the existence prob-
ability of the vortex at x with relative intensity ~α, which satisfies

Z

Ω
ρ~αðxÞdx ¼ 1, ∀~α ∈ I,

and Pðd~αÞ is the numerical density of the vortices with the relative intensity ~α. Under
HN ¼ E ¼ constant, α2NβN ¼ β ¼ constant and N ! ∞, mean field equation is derived by
several arguments [2–7], that is,

−Δψ ¼
Z

I
~α

e−β~αψ
R
Ωe

−β~αψ
Pðd~αÞ, ψj∂Ω ¼ 0 (6)

with

ω ¼ −Δψ, ρ~α ¼ e−β~αψ
R
Ωe

−β~αψ

where
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ρ~αðxÞ ¼ lim
N!∞

Z

ΩN−1
μβN
N ðdx, dx2,⋯dxNÞ

μβN
N ðdx1,⋯dxNÞ ¼ 1

ZðN, βNÞ
e−βNHNdx1⋯dxN

ZðN, βNÞ ¼
Z

ΩN
e−βNHNdx1⋯dxN:

Since Ref. [8], structure of the set of solutions to Eq. (6) has been clarified in accordance with
the Hamiltonian given by Eq. (4) (see [9] and the references therein).

Quasi-equilibria, on the other hand, are observed for several isolated systems with many com-
ponents [10]. Thus, we have a relatively stationary state, different from the equilibrium, which
eventually approaches the latter. Relaxation indicates this time interval, from quasi-equilibrium
to equilibrium. To approach relaxation dynamics of many point vortices, patch model

ωðx, tÞ ¼
XNp

i¼1
σi1ΩiðtÞðxÞ (7)

is used. It describes detailed vortex distribution, where Np, σi and Ωi(t) denote the number of
patches, the vorticity of the i-th patch and the domain of the i-th patch, respectively. Mean field
equations for equilibrium and for relaxation time are derived by the principles of maximum
entropy [11, 12] and maximum entropy production [13, 14], respectively. For the latter case,
one obtains a system on p ¼ pðx, σ, tÞ,

∂p
∂t

þ ∇ � pu ¼ ∇ �D
�
∇pþ βpðσ−ωÞp∇ψ

�
, βp ¼ −

R
ΩD∇ω � ∇ψR

ΩD
R
Iσ

2pdσ−ω2
� �j∇ψj2

ω ¼
Z

I
σpdσ ¼ −Δψ, ψj∂Ω ¼ 0, u ¼ ∇⊥ψ

(8)

with the diffusion coefficient D ¼ Dðx, tÞ > 0:

In this chapter, we regard Eq. (2) as a limit of Eq. (7). First, point vortex model valid to the

relaxation time is derived from Eq. (8), that is, a system on ρ~α ¼ ρ~αðx, tÞ, ~α ∈ I, in the form of

∂ρ~α

∂t
þ ∇ � ρ~α u ¼ ∇ �Dð∇ρ~α þ β~αρ~α∇ψÞ,

ω ¼
Z

I
~αρ~αPðd~αÞ ¼ −Δψ, ψj∂Ω ¼ 0, u ¼ ∇⊥ψ

β ¼ −

R
ΩD∇ω � ∇ψR

ΩD
R
I~α

2ρ~αPðd~αÞj∇ψj2:
(9)

Second, the stationary state of Eq. (9) is given by Eq. (6). Third, Eq. (9) coincides with the
Brownian point vortex model of Chavanis [15]. Finally, system of Eq. (9) provided with the
boundary condition
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∂ρ~α

∂ν
þ β~αρ~α

∂ψ
∂ν

���
∂Ω

¼ 0 (10)

satisfies the requirements of isolated system in thermodynamics.

In fact, averaging Eq. (9) implies

∂ω
∂t

þ ∇ � ω u ¼ ∇ �Dð∇ωþ βω2∇ψÞ, ∂ω
∂ν

þ βω2
∂ψ
∂ν

�����
∂Ω

¼ 0

ω ¼ −Δψ, ψj∂Ω ¼ 0, u ¼ ∇⊥ψ, β ¼ −

R
ΩD∇ω � ∇ψR
ΩDω2j∇ψj2

(11)

for

ω ¼
Z

I
~α ρ~αPðd~αÞ, ω2 ¼

Z

I
~α2ρ~αPðd~αÞ: (12)

Then, we obtain mass and energy conservations

d
dt

Z

Ω
ω ¼ 0, ðωt,ψÞ ¼ 1

2
d
dt

�
ω, ð−ΔÞ−1ω

�
¼ 0 (13)

where (,) stands for the L2 inner product. Assuming ρ~α > 0, we write the first equation
of (9) as

∂ρ~α

∂t
þ ∇ � ρ~αu ¼ ∇ �Dρ~α∇ðlog ρ~α þ β~αψÞ: (14)

Then, it follows that

d
dt

Z

Ω
Φðρ~αÞdxþ β~αðρ~αt ,ψÞ ¼ −

Z

Ω
Dρ~α j∇ðlog ρ~α þ β~αψÞj2 (15)

from Eq. (10), where

ΦðsÞ ¼ sðlogs−1Þ þ 1 ≥ 0, s > 0:

Hence, it follows that

d
dt

Z

Ω

 Z

I
Φðρ~αÞPðd~αÞ

!
¼ −
Z

Ω

 Z

I
Dρ~α j∇ðlogρ~α þ β~αψÞj2Pðd~αÞ

!
≤ 0 (16)

from Eq. (13), that is, entropy increasing.
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2. Vorticity patch model

In Eq. (7), the vorticity σi is uniform in a region with constant area ΩiðtÞ, called vorticity patch.
A patch takes a variety of forms as the time t varies. We collect all the vorticity patches in a
small region, called cell. Cell area Δ thus takes the relation jΩij≪Δ≪ jΩj. The probability that
the average vorticity at x is σ is denoted by pðx, σ, tÞdx which satisfies

Z
pðx,σ, tÞdσ ¼ 1: (17)

Let
Z

Ω
pðx, σ, tÞdx ¼ MðσÞ (18)

be independent of t. Since

jΩj ¼
ZZ

pðx, σ, tÞdxdσ ¼
Z

MðσÞdσ (19)

equality (18) means conservation of total area of patches of the vorticity σ. Then, the macro-
scopic vorticity is defined by

ωðx, tÞ ¼
Z

σpðx, σ, tÞdσ, (20)

which is associated with the stream function ψ ¼ ψðx, tÞ and the velocity u ¼ uðx, tÞ through

ω ¼ −Δψ, ψj∂Ω ¼ 0, u ¼ ∇⊥ψ: (21)

To formulate equilibrium, we apply the principle of maximum entropy [11, 12], seeking the
maximal state of

SðpÞ ¼ −
ZZ

pðx, σÞlog pðx, σÞdxdσ (22)

under the constraint Eqs. (17), (18) and

E ¼ 1
2

Z

Ω
ωψ: (23)

With the Lagrange multipliers
�
βp, cðσÞ, ζðxÞ

�
, it follows that

δS − βpδE −
Z

cðσÞδMðσÞdσ −
Z

Ω
ζðxÞ δ

Z
pdσ

� �
dx ¼ 0, (24)

which is reduced to
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pðx, σÞ ¼ e
−cðσÞ−

�
ζðxÞþ1

�
−βpσψ

: (25)

Here, βp and c(σ) may be called inverse temperature and chemical potential, respectively. We
put c(0) = 0 because of the degree of freedom of c(σ) admitted by Eq. (19). Then, it follows that

pðx, σÞ ¼ pðx, 0Þe−cðσÞ−βpσψ (26)

and hence, Eq. (17) implies

pðx, σÞ ¼ e−cðσÞ−βpσψ

R
e−cðσ

0 Þ−βpσ0ψdσ′
: (27)

From Eqs. (18) and (26), similarly, it follows that

cðσÞ ¼ log

R
Ωpðx, 0Þe−βpσψdxR

Ωpðx, σÞdx

0
@

1
A: (28)

The equilibrium mean field equation of vorticity patch model is thus given by Eqs. (20), (21),
(27) and (28), which is reduced to

−Δψ ¼
Z

σMðσÞ pðx, 0Þe−βpσψ
R
Ωpðx, 0Þe−βpσψ

dσ, ψj∂Ω ¼ 0

ω ¼
Z

I
σpdσ ¼ −Δψ,

Z

Ω
pðx, σ, tÞdx ¼ MðσÞ:

(29)

One may use the principle of maximum entropy production to describe near from equilibrium
dynamics [13, 14]. We apply the transport equation

∂p
∂t

þ ∇ � ðpuÞ ¼ −∇ � J, J � νj∂Ω ¼ 0 (30)

with the diffusion flux J ¼ Jðx, σ, tÞ of p ¼ pðx, σ, tÞ, where ν denotes the outer unit normal
vector. We obtain the total patch area conservation for each σ,

∂M
∂t

¼ ∂
∂t

Z

Ω
pðx, σ, tÞ ¼ 0 (31)

because u � νj∂Ω ¼ 0 follows from Eq. (21). Eq. (30) implies

∂ω
∂t

þ ∇ � ðω uþ JωÞ ¼ 0, (32)

where Jω ¼
Z

σJðx, σ, tÞdσ stands for the local mean vorticity flux. Since Jω � ν ¼ 0 on ∂Ω,
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Eq. (32) implies conservation of circulation Γ ¼
Z

Ω
ω. Furthermore, Jω is associated with the

detailed fluctuation of (ω, u) from ðω,uÞ by Eq. (1).

Here, we ignore the diffusion energy Ed ¼ 1
2

ZZ
J2

p
dσdx to take

E ¼ 1
2

Z

Ω
ωψ (33)

as the total energy of this system. Using maximum entropy production principle, we chose the

flux J to maximize entropy production rate S_ under the constraint

_E ¼ 0,
Z

Jdσ ¼ 0,
Z

J2

2p
dσ ≤Cðx, tÞ (34)

where

SðpÞ ¼ −
ZZ

pðx, σ, tÞlog pðx, σ, tÞdσdx:

Using Lagrange multipliers ðβp,D, ζÞ ¼
�
βpðtÞ,Dðx, tÞ, ζðx, tÞ

�
, we obtain

δ _S−βpδ _E−
Z

Ω
D−1 δ

Z
J2

2p
dσ

� �
dx −

Z

Ω
ζ δ

Z
Jdσ

� �
dx ¼ 0: (35)

Since

_E ¼ d
dt
E ¼

Z

Ω
ψ
∂ω
∂t

¼
Z

Ω
Jω � ∇ψ ¼

ZZ
σJ � ∇ψdσdx

_S ¼ d
dt
S ¼ −

ZZ
∂p
∂t

ðlogpþ 1Þdσdx ¼ −
ZZ

J � ∇p
p

dσdx,
(36)

Eq. (35) is reduced to
J ¼ −Dð∇pþ βpσp∇ψþ pζÞ: (37)

From the constraint of Eq. (34), it follows that

0 ¼
Z

Jdσ ¼ −
Z

Dð∇pþ βpσp∇ψþ pζÞdσ ¼ −Dðβpω∇ψþ ζÞ (38)

and

0 ¼
ZZ

σJ � ∇ψ dσdx ¼
ZZ

−σDð∇pþ βpσp∇ψþ pζÞ � ∇ψdσdx

¼
ZZ

−σD
�
∇pþ βpðσp−pωÞ∇ψ

�
� ∇ψdσdx

¼ −
Z

Ω
D∇ω � ∇ψdx−βp

Z

Ω
Dð
Z

σ2pdσ−ω2Þj∇ψj2dx

(39)

which implies
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ζ ¼ −βpω∇ψ (40)

and

βp ¼ −

R
ΩD∇ω � ∇ψ

R
ΩD

R
σ2pdσ−ω2

� �
j∇ψj2

(41)

Thus, we end up with

∂p
∂t

þ ∇ � ðpuÞ ¼ ∇ �D
�
∇pþ βpðσ−ωÞp∇ψ

�
, βp ¼ −

R
ΩD∇ω � ∇ψR

ΩDðR σ2pdσ−ω2Þj∇ψj2

D
�
∇pþ βpðσ−ωÞp∇ψ

�
� νj∂Ω ¼ 0, ω ¼

Z

I

σpdσ ¼ −Δψ, ψj∂Ω ¼ 0, u ¼ ∇⊥ψ
(42)

by Eqs. (30), (37), (40) and (41), where D ¼ Dðx, tÞ > 0.

3. Point vortex model

Point vortex model is regarded as a special case of vorticity patch model, where the patch size
shrinks to zero [16]. Here, we give a quantitative description of this limit process, using
localization. First, we derive the equilibrium mean field equation of point vortices from that
of vorticity patches. Then, we derive relaxation equation for the point vortex model. Funda-

mental quantities of point vortex model are circulation α~α, probability ρ~αðx, tÞ and number
density Pðd~αÞ. Circulation of each vortex is set to be small to preserve total energy and total
circulation in the mean field limit. In the vorticity patch model, on the other hand, vorticity σ
and probability pðx, σ, tÞ are the fundamental quantities (Figure 1).

Here, we use the following localization in order to transform vorticity patch to point vortex
(Figure 2):

Figure 1. Vorticity distribution: vorticity patch model (left). point vortex model (right).
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1. Divide each patch into two patches with half area and the same vorticity.

2. Again, divide each patch into two patches with half area: one has doubled vorticity and
the other has 0 vorticity.

Under this procedure, the number of nonzero patches is doubled and their vorticities are also
doubled. At the same time, the area of each patch becomes 1/4 and the number of total patches
is quadrupled, while the total circulation is preserved. First, we describe the detailed process
for the stationary state of Eq. (7).

Let Ω be divided into many cells with uniform size Δ and let each cell be composed of many

patches. Let NðkÞðx, σÞdxdσ be the number of patches in the cell after k-times of the above
procedure centered at x of which vorticity was originally σ and let σ(k) be the vorticity of these
patches after k-times localization. We assume that the number of total vorticity patches in the cell,

NðkÞ
c ðΔÞ ¼

Z
NðkÞðx, σÞdσ, (43)

is independent of x. Then, the number of total patches in Ω, the total area of the patches and
the total circulation of the patches after k-times localization procedures, with original vorticity
σ, are given by

NðkÞðσÞdσ ¼
Z

Ω
NðkÞðx, σÞ, MðkÞðσÞdσ ¼ jΩj NðkÞðσÞdσR

NðkÞðσÞdσ
, (44)

and
γðkÞðσÞdσ ¼ σðkÞMðkÞðσÞdσ, (45)

respectively.

We obtain

Np ¼
ZZ

Nð0Þðx, σÞdσdx, (46)

recalling Eq. (7). Since
σðkÞ ¼ 2kσ, (47)

it holds that

Figure 2. Sketch of localization procedure.

Relaxation Theory for Point Vortices
http://dx.doi.org/10.5772/67075

213



NðkÞðx, σÞdxdσ ¼ ð4k−2kÞNð0Þ
c ðΔÞδ0ðdσÞ þ 2kNð0Þðx,σÞdxdσ: (48)

From Eq. (48), the related probability

pðkÞðx,σÞdxdσ ¼ NðkÞðx, σÞdxdσ
NðkÞ

c ðΔÞ (49)

satisfies

pðkÞðx, σÞdxdσ ¼ ð4k−2kÞNð0Þ
c ðΔÞδ0ðdσÞ þ 2kNð0Þðx, σÞdxdσ

ð4k−2kÞNð0Þ
c ðΔÞ þ 2k

R
Nð0Þðx, σÞdσ

¼ ð4k−2kÞNð0Þ
c ðΔÞδ0ðdσÞ þ 2kNð0Þðx, σÞdxdσ

4kNð0Þ
c ðΔÞ

(50)

and hence,

lim
k!∞

pðkÞðx, σÞdxdσ ¼ δ0ðdσÞ: (51)

We also have

MðkÞðσÞdσ ¼
Z

Ω
pðkÞðx, σÞdx ¼ lim

Δ!0

XjΩj=Δ

i¼1

NðkÞðxi, σÞdxdσ
NðkÞ

c ðΔÞ � Δ (52)

which implies

MðkÞðσÞdσ ¼ jΩj
4kNp

lim
Δ!0

XjΩ=Δj

i¼1

NðkÞðxi, σÞdσ ¼ jΩj
4kNp

NðkÞðσÞdσ

¼ jΩj ð1−2−kÞδ0ðdσÞ þ 2−k
Nð0ÞðσÞdσ

Np

 ! (53)

by Δ
NðkÞ

c ðΔÞ ¼
jΩj
4kNp

and Eq. (48). We have, therefore,

lim
k!∞

MðkÞðσÞdσ ¼ jΩjδ0ðdσÞ: (54)

It holds also that

γðkÞðσÞ ¼
Z

Ω
σðkÞpðkÞðx, σÞdx ¼

Z

Ω
σpð0Þðx, σÞdx

¼ σðkÞMðkÞðσÞdσ ¼ σjΩj
Np

Nð0ÞðσÞdσ
(55)

and

ωðkÞðxÞ ¼
Z

σðkÞpðkÞðx, σÞdσ ¼
Z

σpð0Þðx, σÞdσ: (56)

Fundamental quantities constituting of the mean field limit of point vortex model thus arise as k! ∞.
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To explore the relationship between the quantities in two models, we take regards to circulation of
one patch, total circulation of patches with original vorticity σ and local mean vorticity. Based on

σðkÞ � jΩj
4kNp

¼ ~α � α, k ≫ 1, (57)

and Eq. (47), we reach the ansatz σjΩj ¼ ~α, 1
2kNp

¼ α, 2kNp ¼ N. Similarly, we use

σjΩj
Np

Nð0ÞðσÞdσ ¼ ~αPðd~αÞ (58)

to put

Nð0ÞðσÞdσ
Np

¼ Mð0ÞðσÞdσ
jΩj ¼ Pðd~αÞ (59)

by

σjΩj
Np

Nð0ÞðσÞdσ ¼ σjΩj � 1
2kNp

� 2kNp �N
ð0ÞðσÞdσ
Np

¼ ~ααNPðd~αÞ ¼ ~αPðd~αÞ: (60)

Finally, we use the identity on local mean vorticity
Z

σpð0Þðx, σÞdσ ¼
Z

~αρ~αðxÞPðd~αÞ (61)

to assign

1
jΩj p

ð0Þðx, σÞdσ ¼ ρ~αðxÞPðd~αÞ, (62)

regarding
Z

σpð0Þðx, σÞdσ ¼
Z

σjΩj � p
ð0Þðx, σÞ
jΩj dσ ¼

Z
~αρ~αðxÞPðd~αÞ: (63)

These relations are summarized in the following Table 1:

Vorticity patch model Point vortex model

σjΩj ~α

1
2kNp

α

2kNp N

Nð0Þ ðσÞdσ
Np

Pðd~αÞ

1
jΩj p

ð0Þðx,σÞdσ ρ~α ðxÞPðd~αÞ

Table 1. Relation between vorticity patch model and point vortex model for ~α.
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After k-times localization, the first equation in Eq. (29) takes the form

−Δψ ¼
Z

σðkÞMðkÞðσÞ pðkÞðx, 0Þe−βpσðkÞψ
R
Ωp

ðkÞðx, 0Þe−βpσðkÞψ
dσ

¼
Z

σjΩj
Np

Nð0ÞðσÞ pðkÞðx, 0Þe−βp2kσψ
R
Ωp

ðkÞðx, 0Þe−βp2kσψ
dσ

¼
Z

σjΩj pðkÞðx, 0Þe−βp 2k
jΩj�σjΩj�ψ

R
Ωp

ðkÞðx, 0Þe−βp 2k
jΩj�σjΩj�ψ

Nð0ÞðσÞ
Np

dσ:

(64)

From Table 1, the right-hand side on Eq. (64) is replaced by

Z
~α

pðkÞðx, 0Þe−βNN ~αψ
R
Ωp

ðkÞðx, 0Þe−βNN ~αψ
Pðd~αÞ (65)

for βN ¼ 4k Np

jΩj βp ¼ N � 2
kβp
jΩj . Sending k ! ∞, we obtain the first equation of (6) with β ¼ βN

N by

Eq. (51). This means that the vorticity patch model is transformed to the point vortex model
applied to the mean field limit by taking the localization procedure.

We can derive also relaxation equation of point vortex model from that of vorticity patch
model. By Eq. (37), the value of the diffusion flux J for σ = 0 is

Jðx, 0, tÞ ¼ −Dðx, tÞ
�
∇pðx, 0, tÞ þ pðx, 0, tÞζðx, tÞ

�
(66)

and hence

ζðx, tÞ ¼ −Dðx, tÞ−1Jðx, 0, tÞ þ ∇pðx, 0, tÞ
pðx, 0, tÞ : (67)

Flux is thus given by

Jðx, σ, tÞ ¼
−Dðx, tÞ ∇pðx, σ, tÞ þ βpðtÞσpðx, σ, tÞ∇ψðx, tÞ − pðx, σ, tÞ

Dðx, tÞ−1Jðx, 0, tÞ þ ∇pðx, 0, tÞ
pðx, 0, tÞ

 !
:

(68)

We reach

∂p
∂t

þ ∇ � ðpuÞ ¼ ∇ �D ∇pþ βpσp∇ψ−p
D−1J þ ∇p

p

� �

σ¼0

� �
(69)

with

βp ¼ βpðtÞ ¼ −

R
ΩD∇ω � ∇ψ−RΩDω D−1Jþ∇p

p

h i
σ¼0

� ∇ψ
RR

Dσ2pj∇ψj2dσdx
(70)
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Therefore, after k-times localization procedure, it holds that

∂σðkÞpðkÞ

∂t
þ ∇ �

�
σðkÞpðkÞu

�

¼ ∇ �D ∇σðkÞpðkÞ þ βpðσðkÞÞ2pðkÞ∇ψ − σðkÞpðkÞ D−1JðkÞþ∇pðkÞ

pðkÞ

h i
σ¼0

� �
:

(71)

Putting βN ¼ 4k Np

jΩj βp, similarly, we obtain

∂
∂t

�
~αρ~αPðd~αÞ

�
þ ∇ �

�
~αρ~αPðd~αÞu

�
¼ ∇ �

�
D
�
∇
�
~αρ~αPðd~αÞ

�
þ β~α2ρ~αPðd~αÞ∇ψ

��
, (72)

from

lim
k!∞

pðkÞðx, σ, tÞ ¼ δ0ðdσÞ, lim
k!∞

JðkÞðx, 0, tÞ ¼ 0

σðkÞpðkÞðx, σ, tÞ ¼ σpð0Þðx, σ, tÞ ¼ σjΩj � p
ð0Þðx, σ, tÞ

jΩj ≈ ~αρ~αðx, tÞPðd~αÞ

ðσðkÞÞ2pðkÞðx,σ, tÞ ¼ 2kσ � σpð0Þðx, σ, tÞ ¼ 2k

jΩj � ðσjΩjÞ2 � p
ð0Þðx, σ, tÞ

jΩj ≈
2k

jΩj ~α
2ρ~αðx, tÞPðd~αÞ (73)

Here, we assume lim
k!∞

JðkÞðx, 0;tÞ ¼ 0, because
Z

JðkÞðx, σ, tÞdσ ¼ 0 and the 0-vorticity patch

becomes dominant in the system. Then, we obtain Eq. (9) by Eq. (72).

4. Relaxation dynamics

If Pðd~αÞ ¼ δ1ðd~αÞ, it holds that ω ¼ ω2 in Eq. (11). Then, we obtain

ωt þ ∇ � ω∇⊥ψ ¼ ∇ � ð∇ωþ βω∇ψÞ, ∂ω
∂ν þ βω ∂ψ

∂ν j∂Ω ¼ 0, ωjt¼0 ¼ ω0ðxÞ ≥ 0 (74)

−Δψ ¼ ω, ψj∂Ω ¼ 0, β ¼ −

R
Ω∇ω � ∇ψR
Ωωj∇ψj2

(75)

assuming D = 1. Conservations of total mass and energy

‖ωð�, tÞ‖1 ¼ λ,
�
ψð�, tÞ,ωð�, tÞ

�
¼ e, (76)

are derived from Eq. (13), while increase in entropy of Eq. (16) is reduced to

d
dt

Z

Ω

ΦðωÞ ¼ −
Z

Ω

ωj∇ðlogω − βψÞj2 ≤ 0, (77)

where ΦðsÞ ¼ sðlogs−1Þ þ 1.
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In the stationary state, we obtain logωþ βψ ¼ constant by Eq. (77). Hence, it follows that

−Δψ ¼ ω, ψj∂Ω ¼ 0, ω ¼ λe−βψR
Ωe

−βψ , −β ¼
R
Ω∇ω � ∇ψR
Ωωj∇ψj2

, e ¼
Z

Ω
ωψ (78)

from Eq. (76). Here, the third equation implies the fourth equation as

ð∇ω,∇ψÞ ¼ −β
Z

Ω
ωj∇ψj2: (79)

Using

v ¼ βψ, μ ¼ βλR
Ωe

−βψ , (80)

therefore, Eq. (78) is reduced to

−Δv ¼ μe−v, vj∂Ω ¼ 0,
e
λ2 ¼

R
Ωj∇vj2R
∂Ω−

∂v
∂ν

� �2 : (81)

In fact, to see the third equality of (81), we note

e ¼ ðω,ψÞ ¼ β−1
λ
R
Ωe

−vvR
Ωe

−v (82)

which implies

μ ¼ λR
Ωe

−v �
λ
e

R
Ωe

−vvR
Ωe

−v ¼ λ2

e
�
R
Ωe

−vvR
Ωe

−v
� �2 (83)

and hence

e
λ2 ¼

1
μ
�
R
Ωe

−vv

ðRΩe−vÞ2
¼ ‖∇v‖2

2R
∂Ω−

∂v
∂ν

� �2 : (84)

If μ < 0, system of Eq. (81) except for the third equation is equivalent to the Gel’fand problem

−Δw ¼ σew, wj∂Ω ¼ 0 (85)

with σ = –μ. IfΩ is simply connected, there is a non-compact family of solutions as μ ↑ 0, which
are uniformly bounded near the boundary [8, 9]. Hence, there arises

lim
μ↑0

e
λ2 ¼ þ∞ (86)
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If μ < 0, system of Eq. (81) except for the third equation is equivalent to the Gel’fand problem

−Δw ¼ σew, wj∂Ω ¼ 0 (85)

with σ = –μ. IfΩ is simply connected, there is a non-compact family of solutions as μ ↑ 0, which
are uniformly bounded near the boundary [8, 9]. Hence, there arises

lim
μ↑0

e
λ2 ¼ þ∞ (86)
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for this family. For μ ≥ 0, on the contrary, system of Eq. (81) except for the third equation admits
a unique solution v ¼ vμðxÞ. Regarding Eq. (76), therefore, it is necessary that

lim
μ↑þ∞

‖∇vμ‖2
2R

∂Ω−
∂vμ
∂ν

� �2 ¼ 0 (87)

for any orbit to Eqs. (74), (75) to be global-in-time and compact, for any λ, e > 0 in Eq. (76).

If Ω ¼ B ≡ fx∈R2j jxj < 1g, it actually holds that Eq. (87). In this case, we have v ¼ vðrÞ,
r ¼ jxj, and the result follows from an elementary calculation. More precisely, putting
u ¼ v−log μ, s ¼ log r, we obtain

uss þ e−uþ2s ¼ 0, s < 0, uð0Þ ¼ −logμ, lim
s↓−∞

use−s ¼ 0,
‖∇v‖2

2R
∂Ω−

∂v
∂ν

� �2 ¼
I
2π

, (88)

where I ¼
R0
−∞

u2s ds

usð0Þ2 . Using w ¼ u−2s, p ¼ 1ffiffi
2

p ðe−w þ 2Þ1=2, we have

p ¼ −1þ 2ð1−ce2sÞ−1 (89)

with c ↑ 1 as μ ↑ +∞. It follows that

I ¼ ð1−cÞ2
Z0

−∞

e4s

ð1−ce2sÞ2 ds (90)

with

Z 0

−∞

e4s

ð1−ce2sÞ2 ds ¼
1

2cð1−cÞ þ
1
2c2

logð1−cÞ (91)

and hence

lim
c↑1

I ¼ 0: (92)

If β is constant in Eq. (9), it is the mean field limit of Brownian vortices [15]. It is nothing but the
Smoluchowski-Poisson equation [9, 17] and obeys the feature of canonical ensemble, provided
with total mass conservation and decrease of free energy:

dF
dt

¼ −
Z

Ω
ωj∇ðlog ωþ βψÞj2, F ðωÞ ¼

Z

Ω
ΦðωÞ− 1

2

�
ð−ΔÞ−1ω,ω

�
: (93)
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Then, there arises the blowup threshold β ¼ −8π=λ [18]. Here, we show the following theorem,
where G ¼ Gðx, x0Þ denotes the Green’s function for the Poisson part,

−ΔGð�, x′Þ ¼ δx′ , Gð�,x′Þj∂Ω ¼ 0, x′ ∈Ω (94)

and

ρϕðx, x′Þ ¼ ∇ϕðxÞ � ∇xGðx, x′Þ þ ∇ϕðx′Þ � ∇x0Gðx, x′Þ, ϕ∈X, (95)

where X ¼ ϕ∈C2ðΩÞj ∂ϕ∂ν
���
∂Ω

¼ 0
n o

. It holds that ρϕ ∈ L∞ðΩ ·ΩÞ. The proof is similar as in

Lemma 5.2 of [17] for the case of Neumann boundary condition.

Theorem 1: Let Ω = B and ω0 be a smooth function in the form of ω0 ¼ ω0ðrÞ > 0 with ω0r < 0,
0 < r ≤ 1. Let T ∈ (0, + ∞] be the maximal existence time of the classical solution to Eqs. (74), (75)
and λ be the total mass defined by Eq. (76). Then, it follows that

lim supt↑TβðtÞ < −
8π
λ

) T < þ∞ (96)

and

T < þ∞ ) lim inft↑TβðtÞ ¼ −∞: (97)

In particular, we have

lim inft↑TβðtÞ > −∞ ) T ¼ þ∞, lim supt↑TβðtÞ ≥ −
8π
λ

: (98)

Proof: From the assumption, it follows that ðω,ψÞ ¼
�
ωðr, tÞ,ψðr, tÞ

�
and

ωr, ψr < 0, 0 < r ≤ 1:

Then, we obtain

M≡
λ
2π

≥
Z r

0
rωdr≥ωðr, tÞ

Z r

0
rdr ¼ r2

2
ω (99)

and hence

ωðr, tÞ ≤ 2M
r2

, 0 < r ≤ 1: (100)

It holds also that
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−β ¼
R 1
0 ωrψrrdrR 1
0 ωψ2

r rdr
> 0 (101)

which implies

ωt ¼ Δωþ β∇ψ � ∇ωþ βωΔψ ¼ Δωþ β∇ψ � ∇ω−βω2 ≥Δωþ β∇ψ � ∇ω (102)

with

−
∂ω
∂ν

¼ βω
∂ψ
∂ν

> 0 on ∂Ω· ð0,TÞ: (103)

The comparison theorem now guarantees ω ≥ δ ≡ min
Ω

ω0 > 0 and hence

Z

Ω
ωj∇ψj2 ≥ δ

Z

Ω
j∇ψj2 ¼ δe: (104)

For Eq. (96) to prove, we use the second moment. First, the Poisson part of Eq. (75) is reduced to

−rψr ¼
Z r

0
rωdr ≡ AðrÞ: (105)

Second, it follows that

d
dt

Z 1

0
ωr3dr ¼ −

Z 1

0
ðωr þ βωψrÞ2r � rdr

¼ −2r2ωjr¼1
r¼0 þ

Z 1

0
4rω−2βωψrr

2dr

¼ −2ωjr¼1 þ 4Mþ 2β
Z 1

0
AArdr

¼ −2ωjr¼1 þ 4Mþ βM2 ≤ 4Mþ βM2

(106)

from A(1) = M. Under the hypothesis of Eq. (96), we have δ > 0 such that

4Mþ βM2 ≤ −δ, t↑T: (107)

Then, T = +∞ gives a contradiction.

Now, we assume T < +∞. First, equality in (106) implies

Z T

0
−βðtÞdt ≤C (108)

by Eq. (100). Second, we have
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d
dt

Z

Ω

ωϕ ¼
Z

Ω

ωΔϕþ β
2

ZZ

Ω·Ω

ρϕω⊗ω (109)

and hence

Z T

0

d
dt

Z

Ω
ωϕ dt ≤Cϕ,ϕ∈X:

�����

����� (110)

Inequality (110) takes place of the monotonicity formula used for the Smoluchowski-Poisson
equation, which guarantees the continuation of ωðx, tÞdx up to t = T as a measure on Ω [9, 17].

Thus, there is μ ¼ μðdx, tÞ∈C�
�
½0;T�,MðΩÞ

�
such that μðdx, tÞ ¼ ωðx, tÞdx for 0 ≤ t < T. By

Eq. (100), therefore, it holds that

ωðx, tÞdx⇀cδ0ðdxÞ þ f ðxÞdx in MðΩÞ, t↑T, (111)

with c ≥ 0 and 0 ≤ f ¼ f ðxÞ∈ L1ðΩÞ. From the elliptic regularity, we obtain

lim inft↑T ψðx, tÞ ≥ c
2π

log
1
jxj loc: unif: in Ω∖f0g: (112)

Then, e ¼
�
ωð�, tÞ,ψð�, tÞ

�
≥
�
ωð�, tÞ,minfk,ψð�, tÞg

�
implies e ≥ c

2πmin k, log 1
jxj

n o
for k = 1,2,.

Hence, it holds that c = 0 in Eq. (111).

If the conclusion in Eq. (97) is false, we have the ε regularity in Eqs. (74), (75) [9, 17]. Thus, there
is ε0 ¼ εk0 > 0, such that

lim sup
t↑T

‖ωð�, tÞ‖L1ðΩ∩ Bðx0,RÞÞ < ε0 ) lim sup
t↑T

‖ωð�, tÞ‖L∞ðΩ∩ Bðx0,R=2ÞÞ < þ∞ (113)

for 0 < R≪ 1. The hypothesis in Eq. (113) is valid for x0 ¼ 0 by Eq. (111), c = 0, which
contradicts to T < + ∞.

5. Conclusion

We study the relaxation dynamics of the point vortices in the incompressible Euler fluid, using
the vorticity patch which varies with uniform vorticity and constant area. The mean field limit
equation is derived, which has the same form as the one derived for the Brownian point vortex
model. This equation governs the last stage of self-organization, not only in the point vortices
but also in the two-dimensional center guiding plasma and the rotating superfluid helium,
from quasi-equilibrium to equilibrium. Mathematical analysis assures this property for radi-
ally symmetric case, provided that the inverse temperature is bounded below.

Vortex Structures in Fluid Dynamic Problems222



d
dt

Z

Ω

ωϕ ¼
Z

Ω

ωΔϕþ β
2

ZZ

Ω·Ω

ρϕω⊗ω (109)

and hence

Z T

0

d
dt

Z

Ω
ωϕ dt ≤Cϕ,ϕ∈X:

�����

����� (110)

Inequality (110) takes place of the monotonicity formula used for the Smoluchowski-Poisson
equation, which guarantees the continuation of ωðx, tÞdx up to t = T as a measure on Ω [9, 17].

Thus, there is μ ¼ μðdx, tÞ∈C�
�
½0;T�,MðΩÞ

�
such that μðdx, tÞ ¼ ωðx, tÞdx for 0 ≤ t < T. By

Eq. (100), therefore, it holds that

ωðx, tÞdx⇀cδ0ðdxÞ þ f ðxÞdx in MðΩÞ, t↑T, (111)

with c ≥ 0 and 0 ≤ f ¼ f ðxÞ∈ L1ðΩÞ. From the elliptic regularity, we obtain

lim inft↑T ψðx, tÞ ≥ c
2π

log
1
jxj loc: unif: in Ω∖f0g: (112)

Then, e ¼
�
ωð�, tÞ,ψð�, tÞ

�
≥
�
ωð�, tÞ,minfk,ψð�, tÞg

�
implies e ≥ c

2πmin k, log 1
jxj

n o
for k = 1,2,.

Hence, it holds that c = 0 in Eq. (111).

If the conclusion in Eq. (97) is false, we have the ε regularity in Eqs. (74), (75) [9, 17]. Thus, there
is ε0 ¼ εk0 > 0, such that

lim sup
t↑T

‖ωð�, tÞ‖L1ðΩ∩ Bðx0,RÞÞ < ε0 ) lim sup
t↑T

‖ωð�, tÞ‖L∞ðΩ∩ Bðx0,R=2ÞÞ < þ∞ (113)

for 0 < R≪ 1. The hypothesis in Eq. (113) is valid for x0 ¼ 0 by Eq. (111), c = 0, which
contradicts to T < + ∞.

5. Conclusion

We study the relaxation dynamics of the point vortices in the incompressible Euler fluid, using
the vorticity patch which varies with uniform vorticity and constant area. The mean field limit
equation is derived, which has the same form as the one derived for the Brownian point vortex
model. This equation governs the last stage of self-organization, not only in the point vortices
but also in the two-dimensional center guiding plasma and the rotating superfluid helium,
from quasi-equilibrium to equilibrium. Mathematical analysis assures this property for radi-
ally symmetric case, provided that the inverse temperature is bounded below.

Vortex Structures in Fluid Dynamic Problems222

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research (A) 26247013 and Grant-in-
Aid for Challenging Exploratory Research 15K13448.

Author details

Ken Sawada1 and Takashi Suzuki2*

*Address all correspondence to: suzuki@sigmath.es.osaka-u.ac.jp

1 Meteorological College, Kashiwa, Japan

2 Graduate School of Engineering Science Osaka University, Toyonaka, Japan

References

[1] Onsager L. Statistical hydrodynamics. Il Nuovo Cimento. 1949;6(2):279–287. doi:10.1007/
BF02780991

[2] Caglioti E, Lions PL, Marchioro C, Pulvirenti M. A special class of stationary flows for
two-dimensional Euler equations: A statistical mechanics description. Communications
in Mathematical Physics. 1992;143(3):501–525. doi:10.1007/BF02099262

[3] Eyink GL, Spohn H. Negative-temperature states and large-scale, long-lived vortices in
two-dimensional turbulence. Journal of Statistical Physics. 1993;70(3):833–886. doi:10.1007/
BF01053597

[4] Joyce G, Montgomery D. Negative temperature states for the two-dimensional guiding-centre
plasma. Journal of Plasma Physics. 1973;10(01):107–121. doi:10.1017/S0022377800007686

[5] Kiessling MKH. Statistical mechanics of classical particles with logarithmic interactions. Com-
munications on Pure and Applied Mathematics. 1993;46(1):27–56. doi:10.1002/cpa.3160460103

[6] Pointin YB, Lundgren TS. Statistical mechanics of two-dimensional vortices in a bounded
container. Physics of Fluids. 1976;19(10):1459–1470. doi:10.1063/1.861347

[7] Sawada K, Suzuki T. Derivation of the equilibrium mean field equations of point vortex
system and vortex filament system. Theoretical and Applied Mechanics Japan. 2008;56:
285–290. doi:10.11345/nctam.56.285

[8] Nagasaki K, Suzuki T. Asymptotic analysis for two-dimensional elliptic eigenvalue prob-
lems with exponentially dominated nonlinearities. Asymptotic Analysis. 1990;3(2):173–
188. doi:10.3233/ASY-1990-3205

Relaxation Theory for Point Vortices
http://dx.doi.org/10.5772/67075

223



[9] Suzuki T. Mean Field Theories and Dual Variation—Mathematical Structures of the
Mesoscopic Model. 2nd ed. Paris: Atlantis Press; 2015. 444 p. doi:10.2991/978-94-6239-
154-3

[10] Lynden-Bell D. Statistical mechanics of violent relaxation in stellar systems. Monthly
Notices of the Royal Astronomical Society. 1967;136(1):101–121. doi:10.1093/mnras/
136.1.101

[11] Robert R. A maximum-entropy principle for two-dimensional perfect fluid dynamics.
Journal of Statistical Physics. 1991;65(3):531–553. doi:10.1007/BF01053743

[12] Robert R, Sommeria J. Statistical equilibrium states for two-dimensional flows. Journal of
Fluid Mechanics. 1991;229:291–310. doi:10.1017/S0022112091003038

[13] Robert R, Sommeria J. Relaxation towards a statistical equilibrium state in two-dimen-
sional perfect fluid dynamics. Physical Review Letters. 1992;69(19):2776–2779.
doi:10.1103/PhysRevLett.69.2776

[14] Robert R, Rosier C. The modeling of small scales in two-dimensional turbulent flows: A
statistical mechanics approach. Journal of Statistical Physics. 1997;86(3):481–515. doi:10.1007/
BF02199111

[15] Chavanis PH. Two-dimensional Brownian vortices. Physica A. 2008;387(28):6917–6942.
doi:10.1016/j.physa.2008.09.019

[16] Chavanis PH, Sommeria J, Robert R. Statistical mechanics of two-dimensional vortices and
collisionless stellar systems. The Astrophysical Journal. 1996;1(471):385–399. doi:10.1086/
177977

[17] Suzuki T. Free Energy and Self-Interacting Particles. 1st ed. Boston: Birkhäuser; 2005. 370 p.
doi:10.1007/0-8176-4436-9

[18] Suzuki T. Brownian point vortices and DD-model. Discrete and Continuous Dynamical
Systems—Series S. 2014;7(1):161–176. doi:10.3934/dcdss.2014.7.161

Vortex Structures in Fluid Dynamic Problems224



[9] Suzuki T. Mean Field Theories and Dual Variation—Mathematical Structures of the
Mesoscopic Model. 2nd ed. Paris: Atlantis Press; 2015. 444 p. doi:10.2991/978-94-6239-
154-3

[10] Lynden-Bell D. Statistical mechanics of violent relaxation in stellar systems. Monthly
Notices of the Royal Astronomical Society. 1967;136(1):101–121. doi:10.1093/mnras/
136.1.101

[11] Robert R. A maximum-entropy principle for two-dimensional perfect fluid dynamics.
Journal of Statistical Physics. 1991;65(3):531–553. doi:10.1007/BF01053743

[12] Robert R, Sommeria J. Statistical equilibrium states for two-dimensional flows. Journal of
Fluid Mechanics. 1991;229:291–310. doi:10.1017/S0022112091003038

[13] Robert R, Sommeria J. Relaxation towards a statistical equilibrium state in two-dimen-
sional perfect fluid dynamics. Physical Review Letters. 1992;69(19):2776–2779.
doi:10.1103/PhysRevLett.69.2776

[14] Robert R, Rosier C. The modeling of small scales in two-dimensional turbulent flows: A
statistical mechanics approach. Journal of Statistical Physics. 1997;86(3):481–515. doi:10.1007/
BF02199111

[15] Chavanis PH. Two-dimensional Brownian vortices. Physica A. 2008;387(28):6917–6942.
doi:10.1016/j.physa.2008.09.019

[16] Chavanis PH, Sommeria J, Robert R. Statistical mechanics of two-dimensional vortices and
collisionless stellar systems. The Astrophysical Journal. 1996;1(471):385–399. doi:10.1086/
177977

[17] Suzuki T. Free Energy and Self-Interacting Particles. 1st ed. Boston: Birkhäuser; 2005. 370 p.
doi:10.1007/0-8176-4436-9

[18] Suzuki T. Brownian point vortices and DD-model. Discrete and Continuous Dynamical
Systems—Series S. 2014;7(1):161–176. doi:10.3934/dcdss.2014.7.161

Vortex Structures in Fluid Dynamic Problems224

Section 3

Vortices in General Physical Problems





Chapter 12

Development of Vortex Bioreactor Technology for
Decentralised Water Treatment

Andrew Landels, Neil Cagney, Lisa Bauer,
Tracey A. Beacham, Stavroula Balabani and
Michael J. Allen

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66632

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Development of Vortex Bioreactor Technology for 
Decentralised Water Treatment

Andrew Landels, Neil Cagney, Lisa Bauer, 
Tracey A. Beacham, Stavroula Balabani and 
Michael J. Allen

Additional information is available at the end of the chapter

Abstract

The vortex bioreactor (VBR) is a simple decentralised water treatment system (DeWaTS) 
that sits at the interface between swirl flow, biotechnology and chemical engineering. 
The device utilises swirl flow and suspended activated beads to achieve downstream 
water processing and has been tested for applications including centrifugal-driven sepa-
ration, pathogen neutralisation and metal absorption. The VBR was optimised for the 
treatment of faecally contaminated effluents in the developing world, and the design 
features related to the key challenges faced by the wastewater industry are highlighted 
here. The VBR has two aspects that can be modified to generate different reactor condi-
tions: the impeller, where the swirl flow is modified through alterations of rotation speed, 
and impeller geometry and the suspended activated beads, which facilitate mixing and 
alter the reactor surface area. Data from testing for some of the different applications 
mentioned above are presented here, and future planned developments for the technol-
ogy are discussed.

Keywords: DeWaTS, swirl flow, wastewater treatment, bioreactor, remediation

1. Introduction

1.1. Water and wastewater

Water covers 70% of the surface of the planet, and yet the world currently faces a water crisis. 
Of this hugely abundant resource, less than 1% is available for human consumption. Two-
thirds of all fresh water is locked up in glaciers and ice caps where it is typically physically 
separated from humans and is, therefore, not widely available for use. The remaining 97% of 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



the global water is saline, present within the seas and oceans. This is inappropriate for agri-
cultural uses, industrial cleansing or human consumption without significant energy inputs 
and desalination efforts, although it can be employed for some limited applications, such 
as certain types of cooling in industrial processes. These water sources have not changed 
in the last 100 years, but in that time the population has undergone rapid expansion. The 
majority of water used by humans is either as an energy carrier in thermo-electrical power 
generation; where it is used for both cooling and steam production to generate the driving 
force for the turbines or in agricultural irrigation and cleaning [1]. The United Nations Food 
and Agriculture Organisation (UNFAO) estimate that 11.8% of the 3918 km3 yr−1 fresh water 
withdrawn annually is used for municipal purposes, where it makes its way to households for 
drinking, washing and recreational purposes [2].

Global water volumes remain constant in a system referred to as the water cycle, and so with 
the exception of deserts or very densely populated areas, physical limitations of water are not 
usually an issue. A more significant problem, however, is the limited supply of water that is 
either potable (suitable for human consumption) or at a sufficient quality for other munici-
pal and industrial applications. After water has been used in an anthropogenic process, it is 
referred to as wastewater. Wastewater is classified as containing output of some combina-
tion of the sources given in Table 1. According to the UNFAO, in 2012, the world had access 
to 52,600 km3 yr−1 fresh water resources, which is just over thirteen times higher than the 
amount drawn annually; however, this resource is not evenly distributed. Asia, for example, 
has access to around a quarter of available world water resources, but has almost 60% of 
the world population [2]. The majority of people are based in global urban centres, 80% of 
which are located on the coast or major waterways. Many cities around the world—even in 
Countries which have both high annual rainfall, and are members of the Organisation for 
Economic Cooperation and Development (OECD countries), such as London—are considered 
‘water stressed’. Being ‘water stressed’ occurs when an area requires access to more clean 
water than is available, or produces more wastewater than can be treated effectively. This 
results in a direct release of wastewater into waterways causing a reduction in water quality. 
This in turn has economic costs, through both work lost due to human illness and damage to 
the surrounding environmental resources—such as fishing stocks [3].

Name Example contents Risk factors

Blackwater Excreta, urine and faecal sludge Pathogens

Greywater Bathing and washing water Volume increase

Bluewater Urban run-off and storm water Grit, debris

Greenwater Agricultural effluent* Eutrophication, pesticides

Redwater Industrial effluent Chemical and thermal hazards

Each category has been assigned a colour to simplify reference within the text. For each, a brief summary of the category 
is given, and some associated risks with the wastewater are highlighted. Risks of untreated release to human health or 
the environment are in boldface, whilst risks that affect downstream processing are italicised.
*Agricultural effluent includes effluent from aquaculture and horticulture.

Table 1. Wastewater can be broken down into five key categories, which pose individual risks to both human health and 
downstream processing methods.
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the world population [2]. The majority of people are based in global urban centres, 80% of 
which are located on the coast or major waterways. Many cities around the world—even in 
Countries which have both high annual rainfall, and are members of the Organisation for 
Economic Cooperation and Development (OECD countries), such as London—are considered 
‘water stressed’. Being ‘water stressed’ occurs when an area requires access to more clean 
water than is available, or produces more wastewater than can be treated effectively. This 
results in a direct release of wastewater into waterways causing a reduction in water quality. 
This in turn has economic costs, through both work lost due to human illness and damage to 
the surrounding environmental resources—such as fishing stocks [3].

Name Example contents Risk factors

Blackwater Excreta, urine and faecal sludge Pathogens

Greywater Bathing and washing water Volume increase

Bluewater Urban run-off and storm water Grit, debris

Greenwater Agricultural effluent* Eutrophication, pesticides

Redwater Industrial effluent Chemical and thermal hazards

Each category has been assigned a colour to simplify reference within the text. For each, a brief summary of the category 
is given, and some associated risks with the wastewater are highlighted. Risks of untreated release to human health or 
the environment are in boldface, whilst risks that affect downstream processing are italicised.
*Agricultural effluent includes effluent from aquaculture and horticulture.

Table 1. Wastewater can be broken down into five key categories, which pose individual risks to both human health and 
downstream processing methods.
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1.2. Water treatment

The core role of wastewater treatment is to remove waste additives from a water stream until 
it is at a level suitable for environmental release. These levels are set by governments in each 
country, for example, the Environmental Protection Agency sets recommendations for the 
USA that are considered safe for aquatic life [4]. Depending on the source of the wastewater, 
different treatment methods are required—for example, bluewater (urban run-off and storm 
water) can contain grit and large debris and so needs to be put through Stage 1 processing 
or ‘screening’; as unless removed, this debris can cause blockages and serious wear/dam-
age to downstream machinery. This is the stage where most centrifugal type separators are 
employed in wastewater treatment, as swirl flow is generally not employed for transport, 
separation or waste processing beyond the initial latrine and grit removal stages. A general 
outline of the stages of centralised wastewater treatment is presented in Figure 1, and a brief 
explanation of the workflow is given below (Figure 1). As mentioned in the example above, 
Stage 1 processing is the removal of grit and debris. This is usually done using a combination 
of grids and baffles, however, hydrocyclones have been employed for grit removal in some 
cases. Stage 2 processing is an important precursor to Stage 3 water treatment, as it removes 
the majority of the activated sludge from suspension, typically through natural settling or 
through the addition of a flocculating agent such as iron chloride. This sludge can then be 
collected and dried, or run through anaerobic digestion to generate useful products such 
as methane, which can be used to power other parts of the wastewater treatment or sold to 
mitigate operational costs. Stage 3 processing is used to reduce phosphate and nitrate levels 
in the final effluent, preventing harmful downstream effects like eutrophication. The residual 
bacteria remaining in solution after flocculation are aerated and encouraged to grow, and in 
the process, the nutrients in the liquid are depleted and more sludge is produced. This sludge 
is then flocculated and processed as in Stage 2. Finally, the nutrient and sludge-depleted liq-
uid will still contain some organisms that did not flocculate, so needs to be sterilised before 
leaving the treatment plant. This is typically done with UV sterilisation, but can also be done 

Figure 1. The different streams of wastewater described in Table 1 as run through a classical wastewater treatment 
process. The stages of wastewater treatment have been grouped together into general stages to demonstrate the key 
aims of wastewater treatment, and shaded sections on the flow line indicate that the waste stream requires this stage 
of processing. These stages are (1) grit and large debris removal; (2) clarification/flocculation of suspended solids; (3) 
reduction of biological oxygen demand; and (4) sterilisation/pathogen removal. *Industrial effluent can vary significantly 
depending on the source as a result it is typically treated on-site to remove hazardous contaminants.
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with chlorine or ozone dosing where the clarity of the effluent is an issue. The vortex biore-
actor has applications for Stages 2–4 (clarification/flocculation of suspended solids through 
centrifugal-type separation, removal of nutrients by acting as a bioreactor and sterilisation/
pathogen removal) of the water treatment processes. For further reading on the stages of 
wastewater treatment process, see Ref. [1], and for a comprehensive compendium of sanita-
tion systems, see Ref. [5].

Large urban treatment plants are economic and highly effective at treatment of municipal 
wastewater, however, they are not always suitable [1]. This is particularly true in areas that 
lack established sewerage systems—sewerage systems have relatively high initial capital 
expenditure requirements and in rural environments the population density is simply too low 
to justify the cost. Centralised water treatment is also not a good solution for an area that suf-
fers from intermittent power loss, as power is required for pumping the water to and from the 
central station and certain treatment processes. The power requirements for running waste-
water treatment in the US in 1996 came to approximately 75 billion kilowatt hours (kWh), 
around 3% of the US annual electricity consumption that year [6]. Aside from the power costs, 
interruption of the electricity supply, such as from brownouts or blackouts, pose a significant 
risk to the fidelity of the wastewater treatment process. The large capital expenditure and 
operating costs involved in centralised water treatment results in public ownership or sub-
sidies, which can be a major issue in countries experiencing political instability [3]. Finally, 
the water treatment industry in the developed world is incredibly resistant to innovation [7]. 
New large-scale technologies that could produce a step-change in processing techniques are 
slow to be implemented, a stance that is reinforced by effluent regulation requirements and 
possible fines resulting from a failure to meet water treatment standards.

Urban populations are rising faster than the average population growth rate, as more people 
move away from rural areas to cities [3]. Due to space limitations, growth of urban centres 
tends to occur in the outskirts of urban areas. These peri-urban areas, between the urban and 
rural zones, have a higher population density than the rural areas but, due to rapid growth, 
lack the key infrastructure of developed urban areas. As a result, wastewater management is 
a major issue for peri-urban areas; particularly municipal wastewater, which consists of grey 
(washing water), black (faecal contaminated) and blue (urban run-off) wastewaters. Due to 
the dynamic nature of these spaces, designing a suitable water treatment plan that is future-
proofed, suitable and cost-effective is challenging. In these cases, decentralised treatment 
options are an ideal solution.

1.3. DeWaTS

Decentralised water treatment systems (DeWaTS) are small-scale water treatment systems 
ideally suited to operating in the urban, peri-urban and rural environments in developing 
countries—particularly in cases where pre-existing water infrastructure is either insufficient 
for requirements or unavailable [8]. A DeWaTS can be an individual unit, or a complete water 
treatment system, and can be utilised in either domestic or industrial water treatment. The 
amount of wastewater produced by an individual varies depending on environment, but 
typically an average person produces around 60 L of wastewater per day, with blackwater 
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 making up around 2 L on average and the remaining coming from greywater [5]. This implies 
that the average person requires access to 60 L clean water each day, and so any household 
level water purification system should be able to accommodate this requirement for all mem-
bers of an individual home.

Typically, a DeWaTS will operate in the range of 1 m3 day−1 (1000 L day⁻¹) for a household 
unit, to 1000 m3 day−1 for a community treatment system. There are a number of defining 
characteristics that differentiate a DeWaTS from a model or an experimental water treatment 
system. The system should be reliable, built to last, tolerant to fluctuating inputs, cost-effec-
tive and above all have low control and maintenance requirements [9]. A DeWaTS designed 
to produce a profit should aim to return the initial cost of investment through sales of cleaned 
water or products produced from waste within the first 1–2 years of operation, to ensure 
uptake of the technology [3]. The vortex bioreactor was, therefore, designed with these vital 
features in mind.

1.4. Summary of the VBR

The vortex bioreactor system (VBR) is a highly versatile, modular DeWaTS, which utilises sus-
pended activated beads within a recirculating swirling flow system to facilitate downstream 
liquid processing and multiphase reactions. The swirl flow and accompanying vortex, for 
which the device is named, are induced by an impeller, which can be driven by a variety of 
devices such as an electric drill motor or a 3D printable hand crank. Under certain operating 
conditions, the device can perform liquid-liquid separation and acts as a type of centrifugal 
separator, where a lighter liquid phase is entrained by the precessing vortex and is siphoned 
into a separate flow channel. Increasing the impeller speed increases turbulence in the system, 
resulting in better mixing, more interaction between the contents and as a result acceleration 
of chemical reaction rates. Notably, this effect is also modulated by the activated beads, which 
can enhance, but in some cases dampen, the turbulence effect. Altering the impeller design 
has been shown to change the vortex characteristics, although investigations into this with the 
VBR system are still ongoing. To date a hydrofoil type design, a rounded blade design and a 
lily design have been utilised for the impeller, but so far the effects of impeller geometry have 
not been systematically investigated. Finally, by altering the properties of the suspended acti-
vated beads, it is possible to run a variety of different reactions or separations. For example, 
reducing the density of the beads by introducing sealed air microbubbles during their cre-
ation causes them to move to the core region of the VBR for easy separation and recycling, 
whilst sponge-like porous beads with a high surface area can be used as both a heterogeneous 
catalyst for multi-phase reactions and an adsorbant surface for sequestration of toxic materi-
als, such as heavy metals.

Due to the swirl generated by the impeller, the flow within the VBR is not uniform but rather 
characterised by low velocities in the core region due to the formed vortex and higher veloci-
ties outside. Fluid in the core moves far more slowly than outer part, and under some regimes, 
the suspended beads can be held almost completely stationary within the slow-moving core 
region [10]. A CAD image of a prototype variant of the VBR can be seen below (Figure 2). 
This prototype consists of a closed loop, built from widely available standard plumbing 
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parts  forming a rounded quadrilateral of recirculated flow. The design was constructed from 
60.4 mm outside diameter and 57.4 mm inner diameter clear polycarbonate, joined with 
2-acrylonitrile butadiene styrene (ABS) fittings. There is an inlet for filling the reactor at the 
top, and in the working prototype, a ball-valve controlled outlet was introduced at one corner 
for draining the VBR. Swirl flow is induced with an impeller on a shaft, which is driven by a 
450 W variable speed drill motor (0–2400 RPM Bosch). This design is capable of generating a 
stable horizontal vortex, which entrains less dense materials, such as air or oil in water, and 
separates them from the carrier fluid [10].

2. Development of the VBR and case studies

2.1. Development of the VBR

The first prototype was designed and built by the Allen research group at Plymouth Marine 
Laboratory in 2010. It was intended for the separation of high-value oils produced by micro-
algae from an oil-water suspension, using centrifugal flow technology. A low-cost variant of 
this technique is widely employed by the oil industry in the form of hydrocyclones, but swirl 

Figure 2. This CAD image shows one possible setup of the VBR system. The flow runs through a rounded quadrilateral 
pipe system, driven by an impeller. There is an inflow located at the top of the reactor. The prototype design also has a 
ball-valve controlled outflow (not shown) for emptying the system.
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flow is not generally utilised in biological applications. Successful oil-water separation tests 
were performed on the device (see below), and during testing, the question of completing the 
whole process ‘in one box’ arose, and so investigation into upstream processing was carried 
out to see if the VBR could also be used for cell growth, oil production, cell rupturing for 
extraction of the biochemical products and ultimately separation of the functional product 
from the liquid media.

Microalgae are microscopic, photosynthetic organisms that are found in both marine and 
fresh water environments. They can be an environmental and health hazard when they 
bloom in waterways and are responsible for causing discolouration of standing water, but 
are a promising set of organisms for photosynthetic biotechnological production [11]. One of 
these high-value products is speciality oils, such as the omega 3 oils Eicosapentaenoic acid 
(EPA) and docosahexeanoic acid (DHA), which are valuable ‘nutraceuticals’ [12]. To extract 
these oils from microalgae, first the cells must be broken open, a process also referred to as 
cellular lysis. It has been documented previously that shear forces, when applied at high 
enough levels, can literally tear cells apart through an unevenly distributed pressure gradi-
ent against the cell membrane, or if cells are at a high enough density trigger cellular damage 
and death through violent collisions [13]. It is important to note that this threshold varies 
with different organisms and is dependent on the presence of air bubbles; when air is absent 
from the system, cells are much more tolerant to mechanical shear forces [13]. The large shear 
forces introduced into the flow system during turbulent flow were found to trigger cell death 
in Escherichia coli (a laboratory ‘model organism’) at high power inputs; however, at lower 
power, the shear forces actually contributed to cellular growth due to enhanced mixing and 
mass transfer characteristics [14]. This was when the ‘activated beads’ aspect was first intro-
duced to the design, to encourage cell lysis at lower impeller speeds, and also where the 
design was first altered to be a DeWaTS, rather than just a downstream processing and sepa-
ration system.

The activated beads were found to modify the VBR operation significantly. Not only did they 
improve the shear and mixing effects within the system, but they also opened it up to a vari-
ety of other modifications and applications far beyond the humble swirl-flow system origins. 
They appear to hold three key functions: they increase the reactor surface area, they appear to 
decrease the impeller speed needed to attain turbulent flow within the VBR in the conditions 
tested so far and they transform the device into a different class of reactor—from a chemical 
engineering point of view, it acts as a fluidised bed reactor and from a bioengineering point 
of view, it acts as a immobilised microcapsule perfusion bioreactor, where organisms can 
adhere to or be embedded within the activated beads. To estimate the increased surface area 
and determine how to control for it, a simple model was prepared, considering the beads as 
solid spheres in suspension.
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where x is the volume of beads added to the VBR, and r is the radius of each beads. The for-
mula indicates a linear increase in external surface area with respect to both bead radius and 
the volume of beads added, so if double the surface area is required, then either the volume 
of the beads should be doubled, or the radii of the beads halved. Here, the surface area is 
approximated based on the volume of beads added, an assumption of dense sphere pack-
ing – such as face centred cubic packing or hexagonal close packing, and the radius of each 
individual bead, as it is impractical to physically count the beads and an estimation based on 
volume is much more convenient.

The internal surface area of the VBR can be calculated by taking the pipe circumference 
and multiplying it by the length of the reactor. In the case of the 9 L VBR prototype system 
described above, the internal pipe circumference is 18 cm and the length is 318 cm, resulting 
in an internal surface area of 5.7 × 103 cm2. Using the model above, adding 1 L beads results in 
an addition of 2.22 × 104 cm2, raising the overall surface area to 2.79 × 104 cm2.

  1000  cm   3    π ___________ 
0.1 cm  √ 

__
 2  
   = 2.22 ×  10   4   cm   2   (4)

Whilst this model only accounts for the outer surface of the beads, which is a conservative esti-
mate for increased surface area in the 9 L system, it shows that adding 1 L of 1 mm radius beads 
to the prototype reactor design increases the internal surface area by approximately five-fold.

2.2. Case study: oil-water separation

To characterise the ability of the system to separate oil and water effectively, a series of 
experiments were conducted on a model system. It was not practical to directly test algal oils 
throughout the experiment due to the expense and the volumes needed, so a model oil con-
sisting of vegetable oil dyed with Nile Red so it could be observed in water was used instead. 
Dyed vegetable oil is a good model for algal oil, as it is cheap, available in large quantities, and 
has a similar density and viscosity. Algal oil has a density of 0.864 kg L−1, whilst the model oil 
had a density of 0.93 kg L−1. The dynamic viscosities are shown in Table 2.

Test liquid Dynamic Viscosity at 25 °C

Test oil and dye μ = 0.0562 Ns m−2

Test oil μ = 0.0625 Ns m−2

Algal oil μ = 0.0233 Ns m−2

Table 2. The dynamic viscosities for the dyed vegetable oil was used as an affordable substitute for algal oil, the vegetable 
oil without the addition of the dye, and the algal oil that was being modelled.
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An experimental series was run, beginning at an oil:water ratio of 1.58%. This ratio was mod-
elled on a true extraction of algal oil from the growth media solution, based on the growth 
density of the algae and the relative quantities of oil they produce. The concentration of oil 
was gradually increased in the series, based on the assumption that the concentrated oil–
water mix could be re-run through the system until a desired concentration had been attained 
or the volume limit was reached. This system was run at a number of impeller-tip speeds in 
order to optimise the vortex characteristics for maximum oil separation levels (Figure 3).

A series of experiments were run, in which the ability of the VBR to extract oil from a mixture 
of oil and water was tested for a range of impeller speeds and oil:water volume ratios; begin-
ning with the expected initial value of 1.58%. The concentration of oil was gradually increased 
in the series, based on the assumption that the concentrated oil-water mix could be re-run 
through the system until a desired concentration had been attained, or the volume limit was 
reached. This system was run at a number of impeller-tip speeds in order to optimise the 
vortex characteristics for maximum oil separation levels (Figure 3). Figure 3(a) shows the 
concentration of oil in the mixture extracted from the syphon (cex) for a range of impeller 
speeds (600–1800 RPM) and a number of different initial concentrations of oil in the system 
(c0 = 1.58–18.4%). The same data is presented in Figure 3(b), normalised with respect to the 
initial concentration to show the relative increase in the oil concentration at each step, i.e. the 
‘efficiency’ of the system.

For most initial concentrations, the maximum concentration of oil extracted tends to occur 
in the range of 800–1200 RPM. At low speeds (<800 RPM), the swirling motion was too weak 
to entrain the oil droplets into the vortex core, and the oil remained at the top of the pipe. In 
contrast, when the impeller speed was high (>1200 RPM), the flow became strongly turbulent 

Figure 3. Variation in the oil concentration extracted from the VBR for a range of speeds and for a range of initial oil 
concentrations (a). The data in (b) is presented with respect to the initial oil concentration to show the efficiency of the 
extraction process.
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and the oil broke into small droplets (a process known as ‘emulsification’) that tended to 
disperse throughout the fluid. This meant that fewer droplets remained in the vortex core, 
and the efficiency of the VBR was reduced. The data also suggest that the same efficiency may 
be achieved from a low initial concentration by sequential processing. For example, from an 
initial concentration of 1.5%, it is possible to increase the oil concentration to 4%; from 4% it 
is possible to increase to 12%, and so on. The maximum concentration extracted was close to 
60%, although it is possible that the VBR could produce higher concentrations if the initial 
concentration of oil was greater.

A series of power consumption measurements were also made on the system, to determine 
the energy requirements and financial costs associated with operating the device at a range 
of rotational speeds. The measurements were initially performed when the device was filled 
with water, and subsequently, when it was filled with an oil-water mixture (Figure 4).

The measured power consumption is shown in Figure 3. When the motor was not moving, the 
controller drew approximately 4 W from the mains. As the motor speed increased, the power 
consumption also increased in a linear fashion. The power consumption is approximately 
given by

  P =  (0.064 N + 4.1)    V ___ 9.5    (5)

Figure 4. The variation in power consumption with increasing motor speed, measured when the SP-2 contained pure 
water (black circles) and a mixture of 14.7% oil (grey triangles).
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water (black circles) and a mixture of 14.7% oil (grey triangles).
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where N is the motor speed, (in RPM) and V is the volume of water in the VBR (V = 9.5 L in 
the current experiments).

The presence of the oil did not affect the total power consumption of the system. This indi-
cates that to process 1000 L of oil-water mixture at optimal motor speeds (approximately 
900 RPM), using a motor with a comparable efficiency, would require 6.5 kW. Over the course 
of an hour, this would cost £0.65, assuming an electricity cost of approximately £0.10 per 
kilowatt hour based on typical rates for domestic use in the UK [15]. This indicates that (i) 
the VBR represents a cost-efficient method of refining the concentration of oil in an oil-water 
mixture, and (ii) the use of multiple steps to achieve a given concentration is not associated 
with a significant increase in operating costs; however, these values may change, depending 
on the volume being processed and the efficiency of the motor being used.

2.3. Case study: application of VBR as a pathogen-removal system

Biological disease-causing agents, or pathogens, are a major concern in wastewater treatment. 
Human faecal effluent is a major health risk, as the organisms living within it are already 
attuned to living within humans. A number of diseases have been linked to human-derived 
pathogens, including dysentery, typhoid and gastroenteritis [16]. In wastewater treatment, 
the biological quality of the water is determined by quantifying ‘coliforms’. Coliforms are a 
subset of bacteria that are easy to culture and are present in large numbers in warm-blooded 
animal faeces—making them a good test for faecal contamination in wastewater [17]. The 
organisms are quantified by colony forming units (CFUs), referring to the number of living 
cells within a fixed volume. Guidelines state that to minimise risks to human health, waste-
water containing blackwater should contain no measurable CFUs per 100 ml, and waste water 
from a known non-faecal source, such as redwater (industrial effluent), should contain no 
more than 10 CFUs per 100 [18].

Copper has long been known as an antimicrobial substance, given its employment in hos-
pital door handles and work surfaces [19]. To trigger this effect within the reactor, dendritic 
copper micro particles were added to the system as a powder. A copper pipe was also consid-
ered; however, due to the comparably limited surface area and relatively high cost of copper 
within the otherwise cheap final design and the risk of corrosion over time under continuous 
exposure to water, it was deemed to be unsuitable [14]. The copper powder was found to be 
effective at triggering cell lysis; however, separating the copper from the system afterwards 
was considered too complicated for the design, a vital step in this case, as copper is toxic 
to aquatic ecosystems—and humans [20]. To aid in terminal removal from the system after 
processing, the copper powder was embedded within spherical, alginate matrix, hydrogel 
particles—referred to as the activated beads herein. A test was carried out to see if embed-
ding copper within alginate would still trigger cell lysis; intriguingly, not only did the cells 
still lyse, but they did so at a more rapid rate than a comparable study with the powdered 
copper [20].

When the activated beads were run in the VBR system, they were found to be more effective 
at triggering cell lysis than the equivalent amount of free copper microparticles. Death of 
all the cells in the sample (initially at a concentration of 1 × 108 CFU ml−1) occurred within 
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15 min, a rate approximately 6× faster than had previously been reported in flask experi-
ments. In addition, this effect was observed repeatedly when additional organisms were 
added into the system after all the previous cells were dead. Whilst the structural integrity 
had been affected by the turbulent flow at particularly high speeds, the activated bead frag-
ments could still be extracted from the system safely with minimal copper leached into the 
system [10]. Development of the device subsequently received financial support from the 
Bill and Melinda Gates Foundation, for development as a low powered, affordable alter-
native to UV light sterilisation of water. This resulted in testing the device on wastewater 
streams in a number of facilities located around the world [21]. The device demonstrated 
clear bactericidal effects on coliforms within seconds of exposure to the VBR—activated 
bead combination, and even destroyed the radiation hardy Deinococcus radiodurans in a 
direct comparison with UV treatment. To finalise the device for widespread distribution, 
the main feedback received from the world-wide test was that the activated beads would 
need to be further developed; both to increase their longevity, and to include some addi-
tional method that could sterilise the copper-resistant and shear-resistant helminth eggs—
as parasitic worm infections stemming from wastewater are a major health concern in the 
developing world [21].

2.4. Case study: VBR as a metal-sequestering device

Embedding the copper within an alginate matrix proved extremely effective as an immobili-
sation technique. The low levels of measurable copper in solution—despite fragmentation of 
the beads during operation of the reactor—and the greater than expected rate of bactericidal 
action within the VBR doped with copper-alginate beads, instigated an investigation on the 
metal adsorption qualities of alginate in the VBR. The theory behind this application is based 
on alginate being a polyionic polymer that forms a hydrogel stabilised by calcium ions; it 
was thought that copper—or some other metal ion—could displace these calcium ions and 
become sequestered in the material [22]. The advantage of using alginate beads for this appli-
cation is that because the bulk of the beads are composed of liquid, and as a result can be dried 
after use to concentrate any extracted materials for recycling and reduce volume. This is a par-
ticularly useful application when considering the VBR as a device for redwater treatment, as 
many industrial processes involve the use of metals and metal salts that need to be extracted 
from the final product due to their value, toxicity and environmental impact.

To generate hand drawn alginate beads, sodium alginate solution was added in a drop-wise 
fashion by hand from a syringe to cold calcium carbonate solution. The beads created by this 
process were approximately 2 mm diameter on average, although beads created in this fash-
ion did show some size variation. An automated variant of this process was conducted with a 
syringe pump to generate a more repeatable size distribution. Features of alginate beads can be 
altered by changing the reagents used in their generation—for example, increasing sodium algi-
nate concentration will create more rigid beads; whilst mixing copper-powder into the solution 
will create beads embedded with copper and air entrainment can create lighter beads for simpler 
separation from liquids such as water, as such beads are relatively more buoyant than the liquid.

The metal-absorbing properties of alginate beads were tested with metal salt solutions con-
taining copper sulphate, nickel sulphate and chromium chloride at a high (100 mM) and low 
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(30 μM) concentration. The alginate beads were added to make up 50% by volume of the 
total volume and were tested in shaking flasks containing each of the metal salt solutions. 
The beads were found to have metal-absorbing properties in shake flasks, with 30–40% of the 
metal by concentration being extracted from solution over a period of 30 min. The samples 
were left for a further 60 min, although a negligible amount of additional absorption was 
observed. The volumes of metal being extracted were consistent with partial volume removal 
of a fully diffused solution. This suggests that the liquid initially sequestered in the hydrogel 
gradually dilutes the sample as the metals permeate the beads. The experiment was repeated 
with stationary flasks, producing largely similar results, suggesting that fluid motion had a 
limited effect on diffusion within the beads. To verify this observation, beads that had already 
absorbed metals were extracted and recycled into fresh metal salt solution at the initial con-
centration. Each additional round of extraction resulted in a diminishing rate of return, as the 
beads became saturated with metal approaching the initial concentration.

When the beads were tested in the VBR, the same final rate of absorption was observed, how-
ever, an interesting phenomenon was observed repeatedly through all experiments. Within 
the first minute of extraction, the rate at which metal salt was extracted was far more rapid 
in the VBR than in either shaken flasks or static flasks. The rate of absorption equalised with 
other experimental set ups after around 8 min; however, these data suggested that the swirl 
flow within the VBR has a beneficial effect on the rate of metal absorbance, at least with 
the outer part of the beads. This observation needs experimental verification by running the 
system for 1 min with a coloured metal salt and then extracting and dissecting the beads to 
see if the effect is limited to the outer shell or actually uniform through the bead; however, 
the data suggests that this is the case as all three systems eventually reach the same point. 
Understanding this effect has broader-reaching consequences, as alginate is a major constitu-
ent of certain medically relevant biofilms. Biofilms are a biologically derived fouling effect 
that utilise polymeric substances and act as a protective layer to organisms within them, con-
ferring resistance to antibiotics [23]. If this effect could be isolated, replicated and controlled, it 
could provide beneficial techniques for the removal of biofilms in industrial settings—where 
a cleaning agent, or a medical antibiotic, could be delivered directly into the biofilm, rather 
than just relying on diffusion. Whilst the metal capturing hypothesis was not found to be valid 
with alginate, making the beads from a polymeric substance that has specific metal-binding 
ability—such as polyacrylamide—could provide a more effective metal absorption process, 
although this has not yet been tested. The alginate was tested in this case as it followed on 
from previous work being conducted at the time and had demonstrated a good ability to hold 
metallic copper in situ. It is likely that the initially observed effects are a result of the metal 
particles being unable to escape from the bead due to steric hindrance, rather than through a 
specific affinity to the alginate.

3. Future developments

As a relatively new and highly versatile piece of technology, there are a number of features of 
the VBR that remain to be optimised and tailored to the application to more fully understand 
the range of future applications it could be implemented with. The two main aspects that 
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affect operation are the swirl-flow regime—which is controlled by speed and impeller design, 
and the active beads. These are discussed in the context of remaining issues for the device as a 
DeWaTS and the potential applications the device has as a bioreactor. There are several other 
potential avenues for investigation with this technology; however, they are beyond the scope 
of this chapter.

3.1. Remaining challenges for the VBR as a water treatment system

There are three main potential issues with the VBR as a widespread functional DeWaTS 
device for water purification. The first, as mentioned earlier in this chapter, is the stability of 
the beads. During the process, shearing from the impeller results in the beads becoming frag-
mented. This is an issue, as whilst the dendritic copper powder used in the beads is relatively 
cheap, and can be recycled in the system, it is still the most expensive part of the fully opera-
tional system. One possible avenue for solving this is through modification of the beads. They 
could be modified in a number of ways, such as using the minimal amount of copper that still 
produces a lytic effect on pathogens to reduce the cost or by increasing the resistance of the 
beads to impeller shear by modifying the type or concentration of polymer. It is also possible 
that a different flow regime and less dense beads could be used in tandem, holding the beads 
static within the reactor whilst the wastewater passed around them. This would protect the 
beads from the impeller shear; however, it may reduce pathogen destruction efficacy, as the 
beads would no longer be present at the interface between the core and the turbulent outer 
part of the flow, and as a result may not encounter denser material or particulates within the 
reactor [10]. In addition, the location within the reactor where the beads have the strongest 
pathogen neutralising effect is not known and is also difficult to measure—if the strongest 
effect occurs at the site of the impeller, then this solution of keeping the beads separated from 
the impeller would likely be infeasible due to diminished antimicrobial activity.

The second major issue is power consumption; as highlighted earlier in this chapter, inter-
ruption of power poses a major risk to wastewater processing. The prototype VBR operating 
at 956 RPM has been shown to take 15 min to sterilise 10 L volume, and so needs to run for 
90 min to clean 60 L pathogen-laden waste water—the average amount of waste water from 
all sources produced per person per day. With the energy consumption figures shown above 
(Figure 4), this equates to approximately 65 W. It can, therefore, be considered to have an 
annual power footprint of around 36 kW·h−1 yr−1 per person, which at standard UK prices [15] 
comes to an average cost of £3.60 ($4.70) per person annually. An alternative impeller design 
could reduce power requirements here by as much as 30% [24], and the device could be made 
even more efficient by selecting a motor of the minimum power required to remove patho-
gens. Both of these are efficiency measures, however, and do not preclude the requirement of 
electricity to keep the device operational.

A hand-crank was designed and 3D printed for the prototype, as a fail-safe option for this 
when access to electricity was limited or cut off. Whilst this option could be useful in an 
emergency it has a few issues. First, the obvious sociological issue—the 90 min per person 
per day time requirement for sterilisation is not an issue for a motor; however, an individual 
operating the hand-crank may have serious reservations about the technology, particularly if 
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they are providing water for more than one individual. In addition, whilst a motor can be run 
at a fixed speed for a fixed amount of time, this same regularity is not ensured with a human 
operator. The effects of modulating the rate of impeller rotation on the pathogen removal will 
need to be thoroughly investigated if this avenue is to be considered in more depth. Designs 
that control the rate of rotation could be implemented, but they also increase the complexity 
of the device, which may cause problems for operation and repair. An advantage of the mech-
anism of pathogen destruction using the copper-laden beads within the swirl-flow system is 
that due to the mechanism of action, it practically only has a minimum threshold for pathogen 
removal—although high speeds will cause premature degradation of the beads. The antimi-
crobial effect occurs as a result of extensive cell membrane damage, where the shear forces, 
presence of oxygen and copper all contribute towards this effect. The device will still remove 
pathogens passively, however, the rate at which this happens is around six-fold slower.

There is a strong argument that having a powered device, even a hand-powered device, is a 
less suitable solution than designing a passive swirl-flow system, such as a hydrocyclone. A 
gravity-driven device may be able to achieve similar effects without the need for an external 
power source. Whilst such a design would be favourable, it is important to keep in mind the 
key principals of a DeWaTS during its design. It is also important to ensure that not only is 
the operation of the device simple, which a passive device should be, but also that any repairs 
should be possible with locally available parts. If the device is too complicated for the end user 
to repair themselves, or if the repairs are infeasible due to the expense or scarcity of the materi-
als used, then when an issue occurs and the device fails, it will simply no longer be used. This 
sociological angle needs to be considered when designing global challenge-type technologies, 
particularly those that will be maintained by individuals rather than by a dedicated authority.

The final key issue that needs to be considered for the VBR as a DeWaTS is a simple efficacy or 
a failure test. As this device is intended for use by individuals, it should also come with some 
form of simple, reliable and cheap test to verify that the device has performed its function. 
Growth assays commonly used to determine the presence of CFUs are accurate and the materi-
als needed are cheap, but the test requires sterile conditions, as well as specific training in asep-
tic technique. Without these, the test will produce false positive results. Some form of this test 
is essential for an operator, especially in cases where the design has been modified or repaired 
by an individual. An attempted but failed repair could result in a seemingly operational device, 
which is outputting harmful pathogen-laden water that is presumed to be clean. The test would 
need to follow the same principals as the rest of the DeWaTS design, and be free of expensive 
or difficult to obtain reagents. The field of synthetic biology may be particularly useful for this. 
Synthetic biology is a branch of genetic engineering that differentiates itself from the rest of the 
field by being founded in core engineering principals, namely, those of characterised standard 
parts and rational design. Initiatives such as the international genetically engineered machines 
(iGEM) foundation have created a repository of standard parts, most of which are freely avail-
able [25]. The repository is boosted by an annual iGEM competition, where numerous teams 
have created parts based around wastewater treatment. The advantage of a genetically engi-
neered ‘biomarker’ for this task is that once designed it can be propagated indefinitely for very 
low costs. Furthermore, a design like this could be utilised in ensuring functional operation in 
a variety of different water treatment devices beyond the VBR.
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3.2. Opportunities for the VBR as a bioreactor system

The VBR was named for the cell growth aspects that were observed during operation 
[14]. When microalgae grow photo-autotrophically—with light as their sole source of 
energy—the ensuing photosynthesis results in toxic levels of oxygen being produced. One 
of the main advantages with the swirl flow in the VBR design is the high levels of gas 
exchange which occurs between the liquid and any gas present in the system. This high 
level of exchange results in the dissolved oxygen levels being kept at a level closer to that 
of ambient air, providing a free air exchange that is enabled with the outside environment. 
Oxygen toxicity resulting from limited gas exchange is a significant issue for impeller-
driven photo-bioreactor systems, hence the widespread use of energy intensive gas-mixed 
systems, such as air lift reactors or bubble columns. Typically, if a gas is not used for mix-
ing the liquid, then a dedicated degasser compartment will need to be added to the design 
of any photobioreactor. A vortex degasser could have wide-ranging functionality in this 
field, as vortex flow is both an effective gas exchange method and a scalable technology, 
however, tuning the shear forces to avoid killing organisms from each individual species 
whilst maintaining maximum oxygen exchange, likely precludes a ‘one size fits all’ pas-
sive design.

Modulating the shear forces on the VBR can provide a user controlled growth-lysis 
switch; however, it is also possible to grow the microalgae embedded within the beads, 
which provides protection during recirculation. This is already done with alginate beads 
in industrial bioreactors with Chinese Hamster Ovary (CHO) cells for high-value phar-
maceutical production, as these mammalian cells are highly susceptible to shear-derived 
lysis and grow much more readily when affixed to a surface; however, it is important to 
note that recent research suggests that alginate is not the most suitable encapsulation 
polymer [26].

Within the VBR, there are three key benefits to using this growth regime. First, the mixing rate 
could be increased to a level that encourages maximum gas exchange but does not damage 
the cells, reduce growth rates or negatively impact the final product. Second, introducing a 
hostile, high-shear environment within the reactor reduces the movement of biological organ-
isms between the environment and the bioreactor system. This is true in both the inward 
(contaminant) and outward (containment) directions. It is accepted that during microbial 
scale-up a certain amount of external contamination will occur, however, under a high-shear 
regime in the VBR, contaminating organisms will either be destroyed outright, or will have 
their growth diminished so that the chances of them outcompeting the encapsulated species 
in the reactor is lower. When working with genetically modified (GM) organisms, there is 
extensive concern about a GM release. The same principles mentioned above that keep the 
culture axenic (free from contamination) will also limit GM release. Finally, the process could 
be run completely continuously rather than in batch like the majority of other systems. This 
removes the need for expensive turnaround between cultures. With the culture confined to 
the beads, it also becomes trivial to separate them from the media and to recycle the media by 
replenishing only the nutrients that have become depleted rather than needing to replace the 
entire liquid volume.
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Abstract

Studying the yarn formation with the swirling air concept arouse of interest of the 
researchers for a long time because it appears to be easy to understand as a spinning 
principle. These kinds of systems are known as the vortex yarn spinning systems. The air-
jet spinning methods have been developed since it is possible to eliminate the movable 
elements as the spindle and the traveler in ring spinning or the centrifuge in rotor spin-
ning. The success of Murata vortex spinning (MVS) system which is the newest system 
after all studies of air-jet systems has been much acceptable especially for the spinning 
ability of 100% cotton in high speeds (500 m/min) and the yarn structure resembling ring 
yarn structure rather than rotor yarns. This study summarizes the historical background 
of vortex spinning, the spinning principle and the structure of the yarn spun on this sys-
tem, as well as the factors influencing the yarn quality and finally the developments in 
vortex spinning technology.

Keywords: vortex spinning system, vortex yarn, air-jet spinning

1. Introduction

There are many different spinning systems in textile technology. Some of them are in com-
mercial use, many are still experimental and some of them have been withdrawn from the 
market. Certainly, the conventional ring spinning technique is currently the most widely 
used, accounting for an estimated 90% of the world market spinning machines [1]. Because of 
ring spinning, providing all fibers to be spun into a wide range of yarn count with the lowest 
rate of yarn faults with the best quality, this spinning technology is still the most widely used 
one in the market.

Compact spinning is one of the modifications of ring spinning process by the help of better 
integration of fibers into the yarn structure. The fiber bundle is condensed by air suction, and 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



hence, this results better tensile properties for the same twist level, lower hairiness and better 
yarn evenness. Open-End rotor spinning is another most commonly accepted unconventional 
short-staple yarn spinning technology. It is a process in which the input material to the spin-
ning system is highly drafted, ideally to the individual fiber state. The individual fibers are 
subsequently collected onto the tail end of a seed yarn that is rotated to twist the fibers into the 
yarn structure and thereby form a new length of yarn. The spinning is continuous as the input 
material is continuously collected onto the open end of a previously spun yarn [1].

In the early 1980s, air-jet spinning system was launched. Initially only the man-made fibers 
could be used as the raw material; later, it was improved for cotton yarn spinning as well. 
Although the developments aimed to produce 100% cotton yarns, the acceptable quality was 
provided with polyester/cotton blended yarns in terms of yarn strength. Today the latest 
development in air-jet spinning technology is the Murata vortex spinning (MVS) technol-
ogy, which was firstly introduced at Osaka International Textile Machinery Show in 1997 
(OTEMAS ’97) by Murata Machinery Ltd [2].

2. Air-jet spinning systems

Airflows have been increasingly used in transporting, drawing, separating and deforming 
solid structures for the advantages with respect to high efficiency and economic benefits. 
Particularly in the polymer and textile processing industry, airflows have also been playing 
important roles in various processing methods such as melt-blowing, air-jet weft insertion, 
air-jet spinning and vortex spinning.

Many methods may be encountered with during the development of air-jet spinning process. 
But Goetzfried method is the first method where the air-jet flow is used as a twisting device. It 
is based on the Open-End spinning principle. The airflow is a main parameter for the control 
of spinning and twisting [1–3].

As a way of fascinated yarn production, there were many attempts for the air-jet spinning inno-
vations such as “Dupont” in 1956, “Rotofil” in 1971, “Toyada” in 1983, “Toray” in 1985, etc. 
But these methods had little commercial success. A renaissance in the historical development 
of air-jet spinning started with the MJS machine of the Japanese company Murata Machinery 
Ltd (Murata Jet Spinner). The company introduced its first air-jet spinning machine, Murata 
Jet Spinner, MJS 801, at the American Textile Machinery Exhibition in 1982 (ATME ’82). The 
machine contains a three-roll drafting system and is equipped with two air-jet nozzles that 
create air vortices rotating in opposite directions. In this system, the second nozzle creates 
false twist on the fiber bundle coming out of front roller. There is an air vortex between the 
front roller and the first nozzle which removes the twist and causes the edge fibers to be sepa-
rated from the fiber bundle. So the edge fibers move to second nozzle in an untwisted form. 
However, the core fibers are directed to second nozzle in a twisted form. At the time of the 
second nozzle leaving, the core fibers are unwrapped and the edge fibers are twisted in the 
opposite direction. The system is stated to be suitable for processing man-made fibers and their 
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blends with cotton; however, it was not capable of spinning 100% cotton or rich blends of cot-
ton yarn [3]. Figure 1 displays the MJS yarn formation and the yarn structure in a detailed form.

2.1. Murata vortex spinning system

The latest concept in air-jet spinning developed by Murata Machinery Ltd. is known as the 
vortex spinning system which uses a modified single air nozzle. This system is claimed to be 
capable of producing 100% carded cotton yarns which have a ring spun-like appearance and 
higher tenacity due to higher number of wrapping fibers when compared with the previous 
air-jet spinning systems [3].

Murata has developed MVS 810, MVS 81T, MVS 851, MVS 861 and lastly the MVS 870 model 
spinning machines. Murata MVS 810 was the first vortex spinning machine exhibited at Osaka 
International Textile Machinery Show in 1997 (OTEMAS ’97). The machine had a delivery 
speed of up to 400 m/min. The modified version of this machine, MVS 81T, was developed to 
produce twin vortex spun yarns. The yarns spun on two spinning units pass through the same 
yarn cleaning and waxing unit and are wound on the same package. These are twisted on a 
two-for-one twister to obtain a plied vortex yarn. Subsequently, Murata introduced the MVS 
851 spinning machine. Apart from the previous machine, MVS 851 is not capable of spinning 
core yarns. Murata exhibited a new version of vortex spinning machine, the MVS 861, in 2003. 
This version allows the core yarns production with higher delivery speed of up to 450 m/min. 
The spinning system ensures uniform winding tension with a tension ruler with minimum 
energy consumption [3, 4]. Figure 2 displays the general view of the MVS 861 machine and 
the yarn spinning unit.

Figure 1. MJS yarn formation and the yarn structure [4].
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2.1.1. Principle of yarn formation in vortex spinning system

Murata vortex spinning (MVS) is based on the already existing air-jet spinning technology by 
Murata but essentially differs in principle from the MJS method because of the geometry of 
the air-jet twisting device used (US Patent 5,528, 895, 25 June 1996). This air-jet device includes 
a nozzle block with injectors for the generation of swirl flow, a needle holder, a hollow spindle 
and a guide member. Figure 3 displays a detail view about the schematic diagram of the 
nozzle block of vortex spinning machine.

In MVS, a drawn sliver is fed to a four-line drafting system. After coming out of the front roll-
ers, the fibers move to the air-jet nozzle. Although the fibers are oriented to be twisted with 
the pressured air effect, the twisting motion tends to flow upward toward the front rollers of 
the drafting unit; here, the guide member protruding from the fiber bundle passage prevents 
this upward during the yarn formation. The high-speed whirled air current arises in the vor-
tex chamber into where the pressured air is injected. The preceding parts which will be core 
fibers later are drawn into the vortex spun yarn trail. However, the upper portions of some 
fibers separated from the nip point of the front rollers are kept open. After the departure of 

Figure 2. MVS 861 spinning machine: (a) the general view of the machine, (b) the yarn spinning unit.

Figure 3. Schematic diagram of the nozzle block of vortex spinning machine [1].
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trailing ends from the nip point, they pass through the spiral fiber passage, and they twine 
over the hollow stationary spindle due to the whirling force of air-jet stream and become the 
wrapping fibers [5]. Figure 4 displays the yarn formation in Murata vortex spinning system.

2.1.2. Structure of vortex yarn

Vortex yarn has different yarn structure comparing the conventional yarn structures. Vortex 
spun yarn consists in two-segmented structure which includes core and wrapper fibers 
which covers the core part of the fiber grouping the yarn body. Since fiber separation occurs 
everywhere in the outer periphery of the fiber bundle, a higher number of wrapper fibers are 
obtained with jet-spun yarns. This leads to the production of a spun yarn with more of a ring-
spun-type appearance and also with higher tenacity [2].

Basal (2003) studied yarn structure by using tracer fiber technique combined with the Image 
Analysis Application [5, 6]. The researcher captured the images of the tracer fibers which 
were transferred to a computer later. After evaluating the images, the researcher concluded 
that there were some variations along the vortex yarn length. The tracer fibers were grouped 
according to their configuration. It is emphasized that the percentage of straight, hooked 
(trailing) and hooked (both ends) is very close to each other and higher than the leading 

Figure 4. Yarn formation in Murata vortex spinning system [4].
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hooked, entangled and looped fibers in vortex spun yarns (Table 1). It is concluded that the 
images revealed most of the tracer fibers tend to show first core fiber characteristics then 
wrapper fiber characteristic twining over the yarn core as described in the ideal case [5].

Soe also studied the structure of MVS Yarns and made a comparison with ring and Open-End 
yarns. By the help of the A Nikon SMZ 1500 microscope with a DXM 1200 digital camera, they 
investigated the side visual assessment of the yarn structures [7]. The fiber arrangements of 
the RS, OERS and MVS yarns, including the MVS yarn with the tracer fibers were observed 
carefully. They adopted the classification by Chasmawala et al. [8] and modified it for ring, 
Open-End and vortex yarns. Description of each classification depending fiber arrangement 
is explained below [7]:

1. Core fibers: These fibers may be straight or inclined. Core fibers constitute a major pro-
portion of the yarn. Core fibers’ orientation has a big impact on the stress-strain behavior 
of the yarn.

2. Wild fibers: These fiber groups randomly protrude from the main yarn body in any 
direction. Loops may also be observed along the yarn axis and these groups are also clas-
sified as wild fiber groups. The wild fibers increment leads to a more hairy yarn.

3. Wrapper fibers: The helix angle of wrapper fibers around the core fibers are considered 
similar. There might be some degree of inclination with respect to the yarn central axis.

4. Wrapper-wild fibers: These fibers wrap around the core fibers in a different direction from 
the regular wrapping fibers. The wrapper-wild fibers have a scattered appearance. There 
is no common angle for wrapper-wild fibers because of their disordered appearance.

5. Belly-band fibers: These fiber groups are the main body wrapping fibers composed of 
either core or wrapper fibers. Belly band fibers are observed in the upright position with 
respect to the yarn central axis.

Figure 5 also displays the schematic diagram of yarn fiber types in the yarn structure.

According to the microscopic examinations, Soe et al. concluded that the highest proportion of 
core fibers were observed in ring spun yarn while MVS (Murata vortex spinning) yarn had the 
minimum ratio of oriented core fibers. The core fibers were helically embedded into the yarn. No 

 Tracer fiber configuration Class Percentage of fibers 

Straight 21.00 

Hooked (trailing) 20.50 

Hooked (leading) 6.4 

Hooked (both ends) 23.00 

Looped 11.50 

Entangled 10.25 

Table 1. Tracer fiber configuration in MVS yarns [5].
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wrapper fibers were observed in the ring spun yarn structure. Belly-band fibers were mostly seen 
in Open-End rotor spun yarns followed by ring spun yarn. The highest wrapper fiber ratio of the 
three yarn types was obtained from MVS yarns. It can be emphasized that there was no twist 
in the core fibers of the vortex yarns which was a significant feature. The highest ratio of wild 
fibers in MVS yarns was observed in the wrapping fibers instead of the core fibers. This result 
is attributed to encirclement of the core fibers by the wrapper fibers. All forementioned fiber 
groups were observed in vortex spun yarn; however, belly-band fibers were hardly seen. Ideal 
yarn structures of ring spun, Open-End rotor and MVS yarn were illustrated in Figure 6 [22].

There are also some studies related to comparison of air-jet spun yarns and vortex yarns. 
Since vortex yarn is the modified version of air-jet yarns, there are some features of vortex 
yarn expected to be much better. MVS spinning system uses only one air jet instead of two as 
in the air-jet spinning system. This directly affects the number of wrapping fibers between the 
vortex spinning system and air-jet spinning system. The fiber separation occurs everywhere 
in the outer periphery of the fiber bundle. Hence, the increasing number of wrapping fiber 
results with more ring-like appearance and higher tenacity [3]. Figure 7 displays the yarn 
formation in MVS and MJS yarn spinning system.

Basal and Oxenham [9] produced vortex and air-jet yarns with different polyester/cotton 
blends as a raw material and compared the physical properties of vortex and air-jet yarns. 
They used variance analysis for determining the differences between the properties of the vor-
tex yarn and the air-jet spun yarn. The results revealed that MVS yarns had fewer thick places, 
lower hairiness and better evenness values compared to MJS yarns. The higher tenacity values 
were obtained from the MVS vortex yarns for every blend ratio. But in 100% polyester yarn 
production, the MVS and the MJS yarn groups had the same strength. This was attributed to 
the higher proportion of wrap fibers because of the fiber separation from the bundle occurring 
everywhere in the entire outer periphery of the bundle. They also emphasized that higher pro-
portion of wrap fibers leads to MVS yarns lower elongations because of the wrapping fibers 
restricting the yarn movement [9]. Figure 8 displays the vortex and air-jet spun yarn together.

Figure 5. Schematic diagram of yarn fiber types in the yarn structure [7].
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Figure 6. Ideal yarn structures of ring spun, Open-End and MVS yarn, respectively [7].

Figure 7. Comparison of yarn formation in MVS and MJS yarn spinning system [9].
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2.1.3. Effects of some parameters on structure and properties of vortex spun yarns

Previous studies proved that the structure and performance of vortex spun yarns were influ-
enced by the effects of nozzle angle, nozzle pressure, spindle diameter, yarn delivery speed, yarn 
linear density, fiber composition and the distance between the front roller and the spindle [10, 11].

2.1.3.1. Nozzle pressure

There are many studies concerning the effect of nozzle pressure to the vortex spun yarn. 
These studies reveal that the nozzle air pressure directly influences the fiber configuration 
and the yarn structure. Basal and Oxenham investigated some process parameters including 
the nozzle pressure. It was observed that increasing the nozzle pressure led to the increment 
of the axial and tangential velocity The fiber bundling receiving higher twist with the pres-
sured air caused the yarn becoming much stronger but stiffer [10]. Tyagi et al. reported that 
the changes in nozzle pressure influenced the tightness of wrapping fibers along the yarn 
strand as well as the amount of wrapping and the proportion of unwrapped sections. In their 
study, they observed that the increment of the nozzle pressure resulted in high level of tight 
wrapping ratio. However, they were inclined to turn into irregular wrappings at very high 
level of nozzle air pressure [12]. In the other study of Tyagi et al., they stated that lower hairi-
ness was provided with the high nozzle air pressure up to a certain limit. But when the nozzle 
pressure reached the level of 6 kgf/cm2, hairiness got worse due to the formation of the wild 
fibers. This was attributed to the rate of change in radial position of a fiber (mean migration 
intensity) becoming higher at the high nozzle pressure values [13].

Figure 8. Vortex spun yarn versus air-jet spun yarn (28’s Ne, 30/60 PES/Co) [9].
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Another study was conducted by Zou et al. which is related to theoretical analysis of vortex 
yarn formation. They revealed that the high nozzle pressure values caused an increase in 
the mean angular velocity of the free (open) end of the fiber. This provided the wrapping 
fibers whirling around the yarn core with the greater force. Hence, the proportion of tight 
wrappings increased. They added that when the nozzle pressure was too high, the separated 
fibers were easily taken out of the fiber bundle by the high-speed airflow which caused more 
fiber loss [14].

2.1.3.2. Yarn delivery speed

In vortex spinning system, yarn delivery speed may be up to 500 m/min in the latest version 
of MVS 870. The yarn delivery speed is important for the time of the fibers being exposed to 
the whirling force. It should be noted that at high delivery speeds, the fiber loss and the yarn 
quality problems may probably appear.

Basal and Oxenham investigated some process parameters, and they concluded that yarn 
delivery speed affects the yarn diameter since lower delivery speeds lead to regular tight 
wrapping fiber ratio increment [10]. Ortlek and Ulku investigated some process parame-
ters in their study, and they observed that increasing the delivery speed causes more hairi-
ness and leads to deterioration for the tensile properties of vortex yarns. They explained 
this with the result of less time for the wrapper fibers wrapping the parallel core fibers 
properly. Especially for the finer yarns, this may be an important problem which means 
vortex spinning is more appropriate for the coarser yarns [11]. Kuppers et al. investigated 
the spinning limits for the vortex spinning. They determined the ratio between the fiber 
guidance element and the yarn delivery speed depending on the yarn count. It is sug-
gested that finer yarns require high ratio. At constant air speed, the delivery speed should 
be reduced [15].

2.1.3.3. Effect of draft ratio

Erdumlu and Ozipek investigated the effects of draft ratios on the properties of vortex spun 
in their study. Hundred percent viscose drawing slivers of three different counts (3.94, 3.19 
and 2.68 ktex) were spun into yarns with a count of 14.76 tex while keeping all other spinning 
conditions constant. The yarn samples were evaluated on the basis of yarn irregularity and 
imperfections, as well as hairiness and tensile properties. In addition, a 3rd passage draw 
frame sliver with a yarn count of 3.19 ktex was spun into yarns of 14.76 tex using two different 
delivery speeds: 350 and 400 m/min. They concluded that while working with high levels of 
the total draft using a heavy sliver, the better yarn evenness and thin place values are obtained 
as the intermediate draft gets lower. Higher breaking elongation and work to break values 
were observed at the intermediate level of 2.5 with the highest total draft of 267. The results 
revealed that a high delivery speed deteriorated the physical properties of the yarns in terms 
of yarn evenness, thin places and tenacity. The lower the delivery speed, the better the yarn 
properties. Additionally, as the yarn delivery speed increased, hairiness also increased for 
both levels of intermediate draft [16].
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2.1.3.4. The distance (L) between front roller nip point and the spindle

In many studies, the effect of distance between front roller nip point and the spindle was 
significantly important for the fiber loss and the number of wrapping fibers; Basal and 
Oxenham concluded that the short front roller to the spindle distance produced more even 
yarns with fewer imperfections and less hairiness. They also added that if the distance was 
short, the most of the fiber ends were tightly assembled, and there were fewer open-ended 
fibers. Hence, a yarn similar to MJS yarn with parallel core fibers mostly but fewer open-
ended fibers was observed. In that case, yarn evenness and the imperfection results were 
more pleasing because of the minimum risk of losing control of fibers. Added to that in short 
distance between the front roller nip point and the spindle ensures less hairiness and leaner 
appearance [10]. Yarn formation zone in vortex spinning is shown in Figure 9. In that figure, 
L denotes the distance between front roller and the spindle.

Zou et al. [17] investigated the twisted strength acting on the vortex spun yarn by the whirled 
airflow by an analytical model based on simulating the flow field inside the nozzle block. The 
results showed that the twisted strength acting on the yarn by the vortex is also affected by 
the distance from the inlet of the nozzle block to the inlet of the hollow spindle. The strength 
twisted by the whirled airflow was weaker when the distance from the inlet of the nozzle 
block to the inlet of the hollow spindle was bigger. When the distance “L” increased, the 
number of the open-trail end fibers also increased which caused a decrease in the tangential 
velocity inside the nozzle block [17].

Zou et al. [18] studied the fiber spatial configuration in another research. The spatial con-
figuration and the influenced factors were analyzed. They declared that the fiber spatial 

Figure 9. Yarn formation zone in vortex spinning [10].
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 configuration in vortex spun yarn was affected by the distance between the front roller nip 
point and the hollow spindle. As the distance between the front roller nip point and the 
inlet of the hollow spindle increased, it was observed that the open trailing ends’ critical 
angular velocity decreased which mean the length decreasement of fiber embodies into 
the vortex. This was explained as a risk for the leading end of the fibers to be more easily 
pulled out from the vortex spun yarn and for the fiber loss and more thin places in the 
yarn [18].

Tyagi and Sharma studied the influence of processing variables delivery speed, nozzle dis-
tance, yarn linear density and yarn composition on the structural parameters of polyester/
cotton yarns spun on Murata Vortex Spinner (MVS). It is observed that MVS yarns have about 
50–60% core fibers and remaining as wrapper or wild fibers. The structure of MVS yarns has 
been classified into four main categories: tight wrappings, long wrappings, irregular wrap-
pings and unwrapped. They concluded that increase in nozzle distance causes an increase in 
long regular wrappings and number of wrapper fibers due to increase in the amount of fibers 
with Open-End configuration, while decrease in tight regular wrappings. And the resultant 
yarn was more hairy with longer hairs [12]. The tensile characteristics increased as the nozzle 
distance increased. But a reduction in yarn tenacity was observed at very high nozzle dis-
tances [13].

Murata Machinery Ltd. also suggests that the short front roller to the spindle is favorable for 
less fiber waste. The even yarns with fewer imperfections and lower hairiness are obtained. 
But it is also added that when the distance is too short, both ends of fibers are tightly held, 
and there occurs fewer fibers with open trailing ends. So the yarn is mostly composed of the 
parallel fibers as in the air-jet yarns [4].

2.1.3.5. Nozzle angle

There are also some investigations verifying the nozzle angle’s effect on the swirling air 
during vortex yarn formation. Zou et al. [14] made a study concerning numerical compu-
tation of a flow field affected by the process parameters of Murata vortex spinning. They 
observed that the tangential, axial and radial velocities inside the nozzle block are signifi-
cantly affected by the jet orifice angle and velocity at the exit of the jet orifice as well as by the 
diameter at the inlet of the nozzle block. They explain the effect of the jet orifice angle “θ” 
on the flow field inside the nozzle block is quite complex, and different “θ” values result in 
variations in the tangential, axial and radial velocities. Along with an increasing “θ” value, 
the axial velocity increases, and the tangential velocity decreases. The radial velocity influ-
enced by the “θ” value has an expanding effect on the fiber bundle. This produces a large 
number of open-trail end fibers. A higher tangential velocity twists open-trail end fibers 
expanded by the radial velocity which enhances the strength of the MVS yarn. Static pres-
sure distributions inside the nozzle block are significantly affected by the jet orifice angle, 
the velocity at the exit of the jet orifice, the outer diameter of the hollow spindle and the 
distance from the inlet of the nozzle block to the inlet of the hollow spindle [14]. Schematic 
model of nozzle block and projection of the nozzle with jet orifices at section respectively is 
shown in Figure 10.
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Basal and Oxenham also suggested that the nozzle angle had significant impact on yarn hairi-
ness and evenness. They claimed that a high nozzle angle leads to higher tangential velocity, 
and in turn to higher twist which means more even and less hairy yarns. The interaction of a 
high nozzle angle and short front roller to the spindle provided better evenness.

According to the same study, low hairiness values were obtained from the high nozzle angles. 
It was explained with the belief that the increment of the nozzle angle and pressure caused the 
fibers being integrated more tightly into the yarn structure [10].

2.1.3.6. Spindle diameter and spindle working period

The studies on vortex spun yarn related to spindle diameters claim that the tightness of wrap-
ping on vortex spun yarn is significantly affected by the spindle diameter. A smaller spindle does 
not give so much freedom for the fibers expanding. Hence, there occurs the tight wrapping with 
higher twist which means less hairy yarns. When the spindle has large diameter, the fiber bundle 
movement is not restricted, and wrappings become looser which means more hairy yarns.

Ortlek et al. [19] investigated the effects of various spindle diameters and the spindle work-
ing period on the properties of 100% viscose MVS yarns. MVS yarn samples produced with 
four levels of spindle diameter: 1.1, 1.2, 1.3, 1.4 mm and five levels of the spindle working 
period: 0, 1, 2, 3, 4 months were evaluated on the basis of unevenness, hairiness, elongation 
at break, tenacity and work-of-break (B-work) values. They concluded that a large spindle 
diameter resulted in high hairiness, as well as low unevenness and tenacity values. Especially, 
a decrease in spindle diameter from 1.3 to 1.2 mm resulted in a significant increase in the yarn 
unevenness value. The explanation for that was the possibility of the fibers having much more 
place to arrange themselves in larger spindle diameters. When it comes to spindle working 
period, Ortlek et al. [19] also concluded that spindle wear was a major problem as it negatively 
affects MVS yarn properties. The wear of the spindle increased with an increasing working 
period. Spindle wear mainly occurred in the tip zone and the whole surface of the spindle. 
The tenacity, elongation at break and B-work values of MVS yarns produced with a spindle 
that had 4 months working period were significantly lower than those of yarns produced with 
spindles which had other working periods [19]. SEM images of spindle wear versus spindle 
working period for different spindle diameters were shown in Figure 11.

Figure 10. Schematic model of nozzle block and projection of the nozzle with jet orifices at section, respectively.
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2.1.3.7. Yarn count

As it is observed in the other yarn spinning systems, the yarn evenness and the imperfec-
tion results get worse also in Murata vortex spinning system. Although Murata Machinery 
claims, the yarn tenacity results improve as the yarn gets finer. The most studies reveal that 
coarser vortex spun yarns have better tenacity as well as the yarn evenness and the number of 
imperfections.

Ortlek and Ulku studied the some process parameters’ effects on the properties of vortex 
yarns. The delivery speed, nozzle pressure and yarn count were the main variables on the 
Murata vortex spinning system. According to the experimental results, yarn evenness, imper-
fections, tensile properties and hairiness were all affected significantly from the parameters. 
They concluded yarn count was also highly correlated with the vortex yarn properties. 
Generally, coarser yarns yielded better yarn properties in terms of yarn evenness, imperfec-
tion values, hairiness and tensile properties [20]. Tyagi et al. also claimed that the finer MVS 
yarns have less proportion of core fibers than the coarser ones. So it is more difficult for the 
core fibers to bear the loads which results as the low tenacity [13]. In another investigation, 

Figure 11. SEM images of spindle wear versus spindle working period for different spindle diameters [19].
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Leitner et al. also concluded that coarser yarns have higher tenacity and breaking elongation. 
In addition, they stated that there aren’t major changes in tenacity and breaking elongation 
values of fine count vortex spun yarns [21].

2.1.3.8. Fiber Composition

Several fiber properties govern the successful application of the air-jet process in vortex spin-
ning system. In order of importance, these properties are as follows:

• Fineness (fiber micronaire or denier).

• Cleanliness.

• Strength.

• Length and length irregularity.

• Friction coefficients: “fiber-to-fiber” and “fiber-to-nozzle”.

The fiber fineness has a vital effect for the yarn quality in vortex spinning. As the number 
of fibers in the cross section increases, the yarn break ratio during spinning also the yarn 
faults will be in a decreasing tendency. On the other hand, the use of finer fibers increases the 
number of core fibers at the expense of the wrap fibers, which decreases the yarn strength. 
Generally, fibers with higher strength should be used for spinning air-jet and vortex yarns. 
However, the elongation of the fibers also has to be considered since the high strength fibers 
have very low elongation for tight wrapping of the yarn core. The fiber length and length 
distribution influence the fascinated structure. There will be more wrapping fibers when the 
fiber is longer which results as a stronger yarn [22].

There are some studies examining the vortex and air-jet yarns made from different fibers. 
Basal and Oxenham investigated the difference between the properties and structure of the 
MVS and MJS produced with different blends of cotton and black polyester. The trial of MJS 
yarn production of pure cotton and the polyester/cotton blend with 83% of cotton ratio was 
not successful. Moreover, they declared that when the blend ratio of polyester was less than 
50%, many difficulties appeared during the MJS production. They succeeded to produce 
yarns from 100% polyester and polyester/cotton blends with the MVS system; however, MVS 
yarn production with the 100% cotton was not possible. They explained this with the high 
short fiber content of cotton slivers. They also added that there is not an apparent tendency of 
cotton or polyester fibers to become either wrapper or core fibers in blended yarns [9].

Kılıç and Okur investigated the properties of cotton Tencel® and cotton ProModal® blended 
yarns in count of 30 Ne spun in different spinning systems (conventional ring, compact and 
vortex spinning system). They examined the effects of different blend ratios on a yarn’s 
structural, physical and mechanical properties by using 100% cotton, 100% regenerated cel-
lulosic fiber and 67–33, 50–50, 33–67% cotton-regenerated cellulosic fiber blended yarns. It 
was observed that the increasing ratio of regenerated cellulosic fiber content increases the 
hairiness values of vortex spun yarn. It is obvious that as the ratio of regenerated cellulosic 
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fiber increases, the length of wrapping fibers will increase depending on the increased mean 
fiber length. So there is a dilemma here with the explanation of increasing wrapping length 
prevents fiber ends protruding from the yarn body. The increasement ratio of regenerated 
cellulosic fiber also provides better results for yarn unevenness, reduction in the number of 
thin-thick places and neps. They added that increasing ratio of the regenerated cellulosic 
fiber content has also contributes positively for the tenacity, breaking elongation values, 
roundness [23].

Tyagi et al. concluded that percentage of each fiber type in polyester/cotton blended vortex 
spun yarns has impacts on various yarn and fabric properties. Yarns with higher proportion 
of cotton fiber are less even and have high number of imperfections. Moreover, the yarns with 
higher proportion of cotton content are more hairy on account of the higher bending and 
torsional rigidity of cotton fiber, and flexural rigidity and abrasion resistance are considerably 
higher in yarns with higher polyester content [24].

Tyagi and Sharma [25] evaluated the thermal comfort characteristics air permeability, water 
vapor diffusion, absorbency and thermal insulation of scoured and finished fabrics made 
from polyester/cotton MVS yarns. Related to the fiber composition, they concluded that 
higher cotton content is very effective improving absorbency and thermal insulation proper-
ties but decreases the air permeability. They explained this with relation to the change in yarn 
bulk and hairiness, since higher cotton content results in a larger yarn diameter and more 
hairiness [25].

Gordon made a survey related to the short fiber content and neps on Murata vortex spinning. 
Darling Downs cotton was used as the raw material for the bales. But the cotton of each bale 
had different fiber length distributions and neps levels since different conditions with respect 
to moisture conditions in storage and heat conditions were applied for the each treatment. 
He summarized the results as dry seed cotton and hot air in the ginning increased the short 
fiber ratio and neps and reduced the fiber tensile. Deterioration of fiber values led to higher 
fiber loss in spinning, lower yarn tenacity, high hairiness, high number of imperfections and 
bad spinning efficiency. On the other hand, less fiber loss with high yarn quality and better 
spinning efficiency was obtained from the cotton fibers stored in higher moisture and treated 
with less heat in ginning [26].

2.2.  The latest developments in vortex spinning technology

Rieter has developed Rieter J10, J20 and J26 model spinning machines working with the 
same principle with Murata vortex spinning system. These are double sided machines with 
100 spinning units with delivery speed up to 500 m/min. The machine application range 
covers 100% polyester, combed cotton, cellulosic fibers, microfibers and different blends 
including man-made fibers in the yarn count range from Ne 20 to 70. In this spinning, sys-
tem fibers that leave the drafting zone are guided through the fiber feeding element (FFE) 
by means of negative pressure into a spinning nozzle. The front part of the fibers enters the 
tube of the spinning tip and creates the core of the yarn. The four air jets in the twist ele-
ment create a whirlwind air-jet stream. The air stream drifts the loose fiber ends around the 
yarn core. In this system, there is also a regulator connected for adjusting the compressed 
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by means of negative pressure into a spinning nozzle. The front part of the fibers enters the 
tube of the spinning tip and creates the core of the yarn. The four air jets in the twist ele-
ment create a whirlwind air-jet stream. The air stream drifts the loose fiber ends around the 
yarn core. In this system, there is also a regulator connected for adjusting the compressed 
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air pressure to the set value. One of the distinctive features of the system from the Murata 
vortex spinning system is the connection of sliver condensers, nozzle and the yarn quality 
sensor with the traversing device. Hence, this becomes an advantage for the stable yarn 
quality, less wear on rollers. By this way, sliver/yarn is moved slowly over the defined 
range. The yarn produced by this system is called Comforjet®. Lower spinning air pressure 
and higher delivery speed result in soft yarns which maintain low hairiness, good pilling 
and high abrasion resistance. One of the decisive features from the other air-spun systems 
is the profiting from the minimal fiber fly. But unlike the Murata vortex spinning system, it 
is not possible to produce core-spun yarns in Rieter air-jet spinning [27]. Yarn formation in 
Rieter air-jet spinning machine and Rieter automated air-jet spinning machine is shown in 
Figures 12 and 13, respectively.

Murata Machine has also developed a new vortex spinning model MVS 870 at ITMA 2011 
Barcelona. There are some little innovations compared to the previous models. The spinning 
speed has increased to 500 m/min, faster than before. A friction roller is adopted instead of 
the nip roller in the mechanism which draws the yarn from the spinning nozzle. Frictional 
force is generated between yarn and roller by winding a preset amount of yarn onto the fric-
tion roller. This frictional force contributes to draw the yarn from the spinning chamber with 
the roller rotating [28]. Eldessouki et al. made a study about the structure and comparison 
between Murata vortex, Reiter and Open-End rotor yarns and their mechanical behavior 
under dynamic stresses [29]. Figure 14 displays scanning electron microscope pictures for the 
longitudinal view of Rieter, Murata vortex and Open-End rotor spinning.

Figure 12. Yarn formation in Rieter air-jet spinning machine [27].
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Figure 13. Rieter automated air-jet spinning machine [27].

Vortex Structures in Fluid Dynamic Problems264



Figure 13. Rieter automated air-jet spinning machine [27].
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2.3. Numerical simulation studies concerning vortex spinning theory

Some researchers have pointed out that the dynamic behavior of the fiber in the airflow field 
inside the nozzle plays an important role in the twist insertion process of vortex spinning. 
Since the internal airflow field inside the nozzle is very complex, there aren’t many studies 
on investigating the dynamic behavior of the fiber experimentally. With the development of 
computer-aided technology, computational fluid dynamics (CFD) have provided an impor-
tant means of predicting the flow field under different design and operating conditions. In 
recent years, computational fluid dynamic approaches have been used to investigate the air-
flow characteristics in the vortex spinning nozzle [30–32].

Zeng and Yu [30] made a research about developing a computational fluid dynamic (CFD) 
to simulate the airflow patterns inside the nozzle of an air-jet spinning machine. The nozzle 
design parameters’ effect to the flow characteristics and its reflection to the yarn was mostly 
discussed. The nozzle pressure increment led to the higher axial and tangential velocity in the 
nozzle which resulted better tensile properties of the yarn. But they emphasized that after a cer-
tain nozzle pressure, there might be some deteriorations for the yarn. The researches added that 
the selection of jet orifice angle which should be comprised of several factors also affected the 
flow characteristics. At the end of the study, they concluded that the nozzle design was a very 
significant factor for the vortex formation hence the yarn quality. And for further researches in 
order to improve vortex yarn quality, CFD can be used for optimizing the nozzle design [30].

Liu and Xu [31] studied a simple analytical formulation for the forces that determine the 
strength of the air vortex twist acting on the yarns during air-vortex spinning as a function 
of nozzle pressure, flow rate, the radius of the main nozzle in the horizontal plane, nozzle 
pressure, jet orifice angle, the number of the orifices, jet orifice angle, diameter of the jet ori-
fice, and from the top of the twisting chamber to the spindle. They used FLUENT to simulate 
the flow fields of air vortex  spinning machine. They obtained the relationship between the 
velocity and the radius of the main nozzle. In the study because of the high velocity and high 

Figure 14. Scanning electron microscope pictures for the longitudinal view of Rieter, Murata vortex and Open-End 
spinning [29].
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Reynolds number in the nozzle, airflow is accepted as a turbulent flow. The standard k-Ɛ 
turbulence model was used to study the air stream field of the main nozzle, and the stan-
dard wall-function approach was introduced to deal with flow near the walls. The research-
ers focus on the yarn formation area. Considering the distance from the top of the twisting 
chamber to the spindle (h) and ignoring the energy loss, the momentum formulation in the 
horizontal direction was calculated [31].

Pei and Yu [32] discussed the principle of yarn formation mechanism in vortex spinning sys-
tem by developing a three-dimensional CFD model to simulate the airflow characteristics 
inside the air nozzle. A three-dimensional grid and the realizable k-ε turbulence model are 
used in the simulation. A streamline starting from the nozzle inlet is also acquired. Based 
on the simulation, the principle of yarn formation of MVS is discussed. They stated that a 
negative pressure zone appears in the center of the twisting chamber causing two air cur-
rents flowing into the twisting chamber through the nozzle inlet and the yarn passage of the 
hollow spindle, respectively. The investigators approve the simulation results with the yarn 
formation theory [32].

Pei and Yu made a research about the airflow characteristics and the fiber dynamic behavior 
by using a two-dimensional numerical model consisting of the airflow-fiber interaction and 
the fiber-wall contact. The effects of nozzle structure parameters such as jet orifice angle, jet 
orifice diameter, the distance between the nozzle inlet and the hollow spindle were investi-
gated to analyze the dynamic behavior of the fiber in order for a whole understand of yarn 
structure and tensile properties detailed. The researchers declared that the best yarn tenacity 
was obtained when the jet orifice angle was 70°, the jet orifice diameter was 0.4 mm, and the 
distance between the nozzle inlet and the hollow spindle was 14 mm [33].

In another study of Pei et al.’s [34], the fiber motion simulation under the aerodynamic effects 
inside the vortex spinning was investigated. The researchers made a solution of coupling 
between the fiber and airflow together with the fiber-wall contact. The numerical model was 
based on the motional characteristics of some fibers (cotton, viscose rayon, Lyocell and poly-
ester fibers) inside the vortex spinning nozzle. The wrapping effects of different types of fibers 
were obtained by the numerical simulation and compared with the view of vortex yarn struc-
ture under the scanning electron microscope [34].

3. Conclusions

The swirling air has been used frequently for twisting the fibers instead of using mechanical 
parts in the recent years. Vortex spinning has become a modern alternative method to ring 
and rotor spinning. Compared to commonly used ring yarns, the vortex yarn is less hairy, 
which leads to less fabric pilling and high abrasion resistance, high moisture absorption, color 
fastness, fast drying characteristics. However, there are many parameters influencing this 
twisting system consequently the vortex yarn. Hence for the whole understanding of the sys-
tem, each factor has to be investigated in detail.
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The design of the nozzle as well as the airflow characteristics has a significant influence on the 
yarn character. The number of jet orifices and the diameters of orifice directly affect the vortex 
magnitude. The airflow characteristics depending on the nozzle pressure reflect to the ratio of 
the wrapping fibers to the core fibers which cause many changes in yarn properties. The ratio 
of wrapping fibers to core fibers is a very decisive factor for the yarn fineness. The decrease of 
the core fibers in the yarn structure may lead deterioration in the yarn properties as the yarn 
gets finer. It is thought that the possibilities of fine count vortex yarn production with newly 
developed fibers such as microfibers at higher speeds are good to be investigated further for 
softer fabric handle. Also airflow-fiber-nozzle interactions at the yarn formation area have to 
be analyzed carefully for the quality improvement of vortex yarn spinning.
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