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Preface

This book represents a synergic effort of an international team of specialists in immunology to
expand the scientific achievements in the field of lymphocytes. It offers important and specific
updated information to researchers, students, teachers, and medical professionals. Moreover,
considering the remarkable dynamics of immunology and immunotherapy, this book “Lym‐
phocyte Updates - Cancer, Autoimmunity, and Infection” aims to represent a significant source of
concise scientific data and advancement of knowledge in this field. The chapters offer new
insights into the latest scientific progress on lymphocyte roles in protective immunity, as well as
their involvement in pathogenesis of various disorders. Last, but not least, I would like to ex‐
tend all my gratitude to InTech for the special opportunity offered to me to be the editor of this
book and also for the valuable collaboration in realizing this achievement.

Gheorghita Isvoranu,
“Victor Babeș” National Institute of Pathology,

Bucharest, Romania





Chapter 1

Lymphoid Hematopoiesis and Lymphocytes

Differentiation and Maturation

Luciana Cavalheiro Marti, Nydia Strachman Bacal,

Laiz Camerão Bento, Rodolfo Patussi Correia and

Fernanda Agostini Rocha

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69058

Abstract

Lymphocytes  belong to the lymphoid lineage and are considered as divergent from other 
blood cells lineages as those from the myeloid or erythroid lineage. Lymphoid hematopoi-
esis is not trivial, because although lymphocytes are found in the bloodstream and their 
precursor originates in the bone marrow, they mainly belong to the separate lymphatic 
system, which interacts with the blood circulation. We will discuss B cell differentiation 
in the bone marrow and the later stages of maturation in secondary lymphoid tissues, 
besides the B cell profiles in interfollicular, perifollicular, and follicular areas. In addition, 
we will also discuss T-cell precursor and natural killer cells derivation in the marrow. 
Furthermore, we will also discuss T-cell precursor migration to thymus, differentiation, 
rearrangement, thymic selection, involved transcription factors, and, finally, T-cell pro-
files and subsets in secondary lymphoid organs. We will provide flow cytometry plots 
showing strategies to identify and characterize NK, T and B lymphocytes and their subsets 
in circulation. Furthermore, we will provide illustrations to help the reader to understand 
and visualize the information provide over the chapter. Furthermore, the comprehension 
about lymphocytes and their contribution to the immune response will favor their appli-
cation in developmental hematology and immunology. These topics are very important 
for the continuous development of knowledge.

Keywords: hematopoiesis, B cells, T cells, differentiation
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

Lymphocytes belong to the lymphoid lineage and are considered as divergent from other 
blood cells lineages as those from the myeloid or erythroid lineage. Lymphoid hematopoiesis 
is not trivial, because although lymphocytes are found in the bloodstream and their precursor 
 originates in the bone marrow, they mostly belong to the separate lymphatic system, which 
interacts with the blood circulation. Lymphoid and myeloid lineages  are separated at the 
progenitor level; the common lymphoid progenitors (CLPs) can differentiate into all types of 
lymphocytes but lack the myeloid potential under physiological conditions, although some 
myeloid-related genes can be detected in CLPs depending on experimental conditions [1, 2].

After transplanting a single hematopoietic stem cell (HSC) into an irradiated mouse, long-
term reconstitution of both lymphoid and myeloid compartments was achieved demonstrat-
ing that the HSC is the common predecessor of all blood cells [3–5].

Hematopoiesis studies, mainly in the fetal liver indicated that the difference between the lym-
phoid and myeloid lineages may not be as simple as imagined. Nevertheless, a corresponding 
adult common myeloid progenitor (CMP) has been recognized in a fetal liver, but the pres-
ence of a lymphoid-committed progenitor (CLPs) has not yet been demonstrated [6, 7].

The bi-directional T and B cell derivation from a single cell was not found in the fetal liver 
progenitors at clonal levels, but T cell and granulocytes and macrophages (GM) or B cell and 
GM progenitor ability of differentiation were present [8]. Regarding these findings, it has 
been wondered whether these differences observed in fetal and adult hematopoiesis are due 
to different intrinsic mechanisms in fetal and adult progenitors or due to the liver and bone 
marrow environmental differences.

Several hematopoietic and lymphoid progenitors, such as multipotent progenitors (MPPs) 
and CLPs, are mobilized from bone marrow and initiate T-cell development in the thymus 
[9]. MPPs CCR9+ are the major bone marrow population that transit to the thymus. Once the 
hematopoietic progenitor cell home to the thymus, B cell development potential is immedi-
ately turned off by stimulation through Notch, while B cell differentiation will be regulated 
by several transcription factors in the bone marrow.

Next, we will discuss B lymphocyte differentiation in the bone marrow and later their stages 
of maturation in secondary lymphoid tissues and profiles in interfollicular, perifollicular and 
follicular areas. In addition, we will also discuss T-cell precursor and natural killer cell deriva-
tion in the marrow. Furthermore, we will also discuss T-cell precursor migration to thymus, 
differentiation, rearrangement, thymic selection, involved transcription factors, and, finally, 
T-cell profiles and subsets in secondary lymphoid organs.

1.1. B Lymphocytes

1.1.1. B Lymphocytes ontogeny

Lymphocytes are cells from the adaptive immune system and are derived from hemato-
poietic progenitor cells. These cells are first produced in the yolk sac, next, they are formed 
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in the liver during the fetal phase and lastly in the bone marrow [10]. B cell development 
is dependent of several specific cytokines and contact with a favorable microenvironment 
[11, 12].

The hematopoietic progenitor cell differentiates into a CLP and depending on stimuli they 
will give rise to a T or a B lymphocyte [13]. B cell differentiation from a CLP is regulated by 
several factors such as E-box binding protein 2A (E2A), early B cell factor-1 (EBF1), purine box 
factor 1 (PU.1), Ikaros, paired box protein-5 (Pax5) and CXCL12. These factors are resulting 
from the interaction of interleukin 7 (IL-7) and their receptor CD127 (IL-7Rα) existent in the B 
lymphocyte. Together, these factors are crucial for the hematopoietic progenitor cell commit-
ment to B lymphocyte differentiation and gene rearrangement to the immunoglobulin heavy 
chain [14–21].

The first cell committed to B-lymphoid differentiation is the pro-B cell. The presence of stro-
mal cells and IL-7 also favors the B lymphocyte differentiation. These cells begin to express 
CD45dim, CD22, CD34, terminal deoxynucleotidyl transferase (TdT) and CD38high [19]. The 
Pax5 factor activates the CD19 expression, one of the most premature B lymphocyte anti-
gens [18, 22]. In the next step of differentiation, these cells express CD10high, CD38high, CD34, 
CD79a, TdT and start being called pre-B I [19, 20]. Immunoglobulin (Ig) gene recombination 
in the heavy chain locus starts in this phase. The heavy chain gene is present in segments that 
code for the variable (V), diversity (D), joining (J), and constant (C) regions [23, 24]. Gene 
recombination is initiated by recombinase activating gene proteins RAG1 and RAG2; these 
proteins have the ability to bind and cleave DNA at specific recombination signal sequences 
called RSSs.

These RSSs surround each genic segment V, D and J. During recombination, D and J gene seg-
ments are drawn closer, excluding the intermediary DNA, and this DJ segment is joined to a V 
segment originating VDJ rearranged exon. Pre-B I cells also express TdT, which is responsible 
for catalyzing the random addition of junctional (N) nucleotides [24, 25]. The VDJ rearrange-
ment is now adjacent to the constant Cµ region and creates an active gene which codes for 
the heavy chain, whose synthesis originates the µ intracytoplasmic chain (IgM) and from now 
these cells become termed pre-B II [19].

During pre-B II cells, they gain heterogeneous CD20 expression and lack the expression of 
CD34 and TdT [19, 20, 26]. Besides, B lymphocyte expresses a complex known as a pre-B 
cell receptor (pre-BCR) that is formed by the heavy chain µ (Igµ) associated to a light chain 
(λ5 and pre-B V) joined to a heterodimer Igα (CD79a) and Igβ (CD79b) [27]. If the pre-BCR 
is able to bind to the bone marrow microenvironment, the immune‐receptor tyrosine-based 
 activation motif (ITAMs) domains of Igα and Igβ are phosphorylated and their signaling res-
cues these cells from apoptosis. This positive selection confirms that the Igµ chain generated 
is functional, and the pre-B II cells detected with Igµ not functional are deleted [19]. The 
signals generated by the pre-BCR also stimulated the pre-B II differentiation and are respon-
sible for their proliferation in the bone marrow, inhibiting the heavy chain recombination and 
stimulating the light chain recombination [28, 29]. The light chain rearrangement comprises 
the junction of a V with a J segment forming a VJ exon associated with an Igµ chain. This 
association activates the translation of kappa and lambda proteins leading to a formation of 
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a complete IgM molecule [30, 31]. The B cell that expresses an IgM molecule on the cell mem-
brane is denominated immature B cell [19].

Immature B lymphocytes begin to express some immunophenotypic markers of still naïve 
but mature B lymphocytes; among these characteristics we can quote the CD20 expression, 
enhanced expression of CD45, CD10dim and CD38high, low expression of CD21, CD5 (homoge-
neous), and high levels of CD81 [19, 26].

These cells undergo a positive and negative selection process before completing their matura-
tion status. During this process, the B lymphocytes that complete, successfully, the gene rear-
rangement program are positively selected, there are the shut-down of RAG genes and these 
cells will receive survival signals to proceed in the maturation process [32]. Though, when the B 
lymphocyte recognizes self-antigens, their receptor is modified, the genes RAG are reactivated 
and another rearrangement in the light chain V-J is initiated allowing the B cell to develop a 
non-self-reactive BCR [32–34]. However, if this rearrangement did not succeed this cell undergo 
through apoptosis in a process known as negative selection. The positively selected cells leave 
the bone marrow and complete their maturation status in the secondary lymphoid organs.

Mature B lymphocytes lack CD10 and CD38 and express IgD and IgM on their membrane 
(Figure 1) [19]. IgD expression happens when the VDJ segment is trasncribed with Cδ exon 
instead of Cµ [35]. B lymphocyte differentiation in the bone marrow is heterogeneous and 
goes through several maturation stages that can be observed by analysis of immunopheno-
typic characteristics (Figure 2).

1.1.2. Mature B lymphocytes

Mature B cells are usually divided into three subgroups known as follicular B cells, marginal 
zone (MZ) B-cell and B1 cells. The follicular B lymphocytes are the majority of mature B cells 
and are located in the lymphoid follicle of the lymph node and spleen. These cells will stimu-
late the T lymphocyte response and this can occur in two different locations, extra-follicular 
and in the germinal center [36]. B cells in the extra-follicular can be activated by the T-helper 

Figure 1. Schematic B cell regular development.
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lymphocytes and differentiate into short-lived plasmablasts which secrete antibodies. On the 
other hand, some activated B cells migrate back to the follicles and under follicular helper T 
cell (TFH) influence proliferate vigorously to form the germinal centers (GC) [37, 38]. Inside a 
GC, in the dark zone region, the B cells, now called centroblasts, goes through a rapid cellular 
division, somatic hypermutation, and isotypes class switching. Centroblasts express CD10 
and Bcl-6. Next, these cells migrate to the light zone region and become centrocytes. These 
centrocytes in the light zone will be in contact with follicular dendritic cells (FDC) and TFH 
through the interactions between CD23 and CD40L (Figure 3). B cells with high affinity for 
the antigens in this microenvironment will differentiate into plasmablasts (plasma cells) or 
memory B cells and will express CD27. Plasma cells return to the bone marrow and display 
well-defined characteristics expressing CD19, CD27, CD38, CD45, CD138 and intracytoplas-
mic Ig [10, 19, 37–39].

MZ B cells are located in the spleen MZ and are responsible by the T independent-responses 
(polysaccharides, glycolipids, and nucleic acid). These cells express pan-B markers, lack CD10 
and show weak IgD expression [39]. B-1 cells represent another B cell lineage located mainly 
in the peritonea and mucosa [40]. These cells are also responsive to T cell-independent anti-
gens and can be recognized by the expression of CD27 and CD43, even though this phenotype 
remains controversial [40, 41].

Figure 2. Bone marrow expression profile of B cells in different stages of maturation. The B cells maturation states are 
represented by the colors displayed in the flow cytometry plots figures: light blue represents immature B cells, purple 
represents intermediate stage and brown the mature B cells. Analysis performed with the Infinicyt software (Cytognos).
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1.2. T Lymphocytes

1.2.1. T Lymphocytes ontogeny

Currently, we will discuss the origin and differentiation of T and natural killer (NK) cells, as 
well the migration of T cell precursors from the bone marrow to the thymus. In addition, we 
will discuss stages of T cells maturation and immunological development such as differentia-
tion and proliferation, T cell receptor (TCR) genic rearrangement, thymic positive and nega-
tive selection and T cells with different phenotypes. These steps summarize the requisites for 
T cells to become immunologically competent and populate the peripheral lymphoid tissues.

It is well known and scientifically accepted that all blood cells are derived from a hemato-
poietic stem cell (HSC), defined as pluripotent and capable of self-renewal. HSCs express 
the CD34 antigen and account only for 0.1% of the all bone marrow nucleated cells. The first 
phase of HSC differentiation is the cell commitment to specific lineages. The lymphoid  lineage 

Figure 3. Schematic representation of B cell maturation in bone marrow and their differentiation in the lymph node 
[19, 35].
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commitment is dependent on several environmental factors such as stromal cells signaling, 
growth factors, cytokines, and kinases (Janus-JAK), tyrosine kinases (Kit-L) and surface mol-
ecules such as Notch-1. Notch-1 is very important since their collaboration with GATA-3 will 
contribute to the T lymphocytes lineage commitment, mainly to the αβ receptor T cells [21]. 
Radtke et al. have shown that the deletion of Notch-1 in murine models resulted in the T lym-
phocytes impaired development in the thymus [42].

The interleukins (IL) are also fundamental for HSC differentiation into lymphoid precursors 
and the key ILs involved in this process are IL-1, IL-2, IL-3, IL6, and IL-7. IL-7 is produced 
by the bone marrow stromal cells and by the thymic epithelial cells, and IL-7 plays a role in 
T cell development, proliferation and survival of lymphoid precursors. The IL-7 receptor is 
composed of two chains, IL-7Rα, and the gamma common (γc), the last is shared by several 
cytokines receptors such as IL-2, IL-4, IL-9, IL15 and IL-21. Alterations in the genes that codify 
IL-7Rα or the γc result in an immunodeficiency X-linked named severe combined immuno-
deficiency (SCID), which is characterized by the significant reduction or absence of T lympho-
cytes and NK cells, revealing the roles of IL-7 in humans [43–46].

Lymphoid progenitors can be characterized phenotypically by the expression of CD7 and 
CD34. Some studies define the lymphoid progenitors by the CD7 expression since this antigen 
has a lower expression in myeloid cells and is not expressed in other cell lineages [47].

A key event on T lymphocyte development is the gene rearrangement that is responsible for 
the generation of a diverse antigen receptor repertoire. The genes involved in the T cell recep-
tor (TCR) rearrangement are present in the germ cell lineage and are located in the chromo-
somes 7 and 14. As seen in B lymphocytes, the heavy chain genes are present in the segments 
that code for the variable (V), diversity (D), joining (J) and constant (C) regions, and this 
recombination is known as V(D)J. In humans and mice, the γδ T cells have a limited repertoire 
of V and J segments that are involved in the TCR genic rearrangement [48, 49]. In humans, 
the δ-locus is clustered inside the α-locus, and there are only three true Vδ, they are Vδ1, Vδ2, 
and Vδ3. The human Vγ repertoire is situated in the γ-locus with 12 Vγ genes, of which only 
seven are identified as functional, since Vγ1, Vγ5P, Vγ6, Vγ7, and Vγ10 are considered pseu-
dogenes. The difference between the low diversity in γ-δ loci and the high diversity of the 
α-β loci suggest that the γδ TCRs low diversity accompanies their recognition of preserved 
self-proteins with low variability.

The TCR V(D)J recombination is very similar to the B lymphocytes BCR recombination, involv-
ing also the enzymes Rag-1 and Rag-2, endonuclease Artemis and terminal deoxynucleotidyl 
transferase (TdT), Ku70, Ku80, DNA-dependent protein kinase (DNA-PK) and XRCC4-DNA 
ligase IV. Functional defects on these enzymes can result in immune deficiency such as SCID 
that can be derived of Rag-1 or Rag-2 mutations [50–52]. The higher TCR diversity generated 
during V(D)J recombination is a result of two combined mechanisms of diversity that involve 
random combination of gene segments and junctional diversity that results from the nucleo-
tides addition or removal, complementary or not, within the junctions between V(D)J segments. 
These mechanisms of diversity can generate around of 107 different T lymphocyte clones. Each 
clone represents a unique TCR, the number of T cells clones is not higher as expected, but can 
be explained by the large number of T cells depleted during the thymic selection [51, 53].
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1.2.2. Thymocytes and thymic selection

Different from B lymphocytes, the precursors of T lymphocytes migrate from the bone marrow 
to the thymus to complete their maturation status and undergo the positive and negative selec-
tions. The thymus colonization by immature lymphocytes, also known as thymocytes, enrolls 
chemokines, mainly CC-chemokine ligand 21 (CCL21) and CCL25, and their respective recep-
tors CCR7 and CCR9 [54]. The thymic maturation is very important and only 1–3% of thymo-
cytes that enter in the thymus survive the selection steps and gain the circulation [55–57].

Initially, the T cell precursor migrates to the corticomedullary region of the thymus, then inside 
the cortex and the double negative cells (DN) CD4-CD8- (Figures 4 and 5) [58]. The DN cells 
in development receive Notch-1 and IL-7 mediates signals, usually derived from the cortical 
thymic epithelial cells (cTECs) [59, 60]. Most thymocytes rearrange the V(D)J genes efficiently 
to express TCR αβ from DN3, at this stage, the TCR was not tested for their specificity and is 
termed pre-TCRαβ, which is associated with the protein complex CD3/ζ for the signal trans-
duction [61]. Following maturation, thymocytes begin to express CD4 and CD8 co-receptors, 
initially expressing CD8, and then expressing CD4 to form the thymocyte double positives (DP) 
CD4+CD8+ (Figures 4 and 5). This DP population is present in the thymic cortex, expresses 
TCRαβ and consists of most lymphocytes inside the thymus of young individuals [62].

Figure 4. Thymus expression profile of T cells in different stages of maturation. The maturation states are represented by 
the colors displayed in the flow cytometry plots figures: dark blue represents immature double negative T cells, orange 
represents double positive cells in intermediate stage and purple represents the single positive mature T cells. Analysis 
performed with Infinicyt software (Cytognos).

Lymphocyte Updates - Cancer, Autoimmunity and Infection8



1.2.2. Thymocytes and thymic selection

Different from B lymphocytes, the precursors of T lymphocytes migrate from the bone marrow 
to the thymus to complete their maturation status and undergo the positive and negative selec-
tions. The thymus colonization by immature lymphocytes, also known as thymocytes, enrolls 
chemokines, mainly CC-chemokine ligand 21 (CCL21) and CCL25, and their respective recep-
tors CCR7 and CCR9 [54]. The thymic maturation is very important and only 1–3% of thymo-
cytes that enter in the thymus survive the selection steps and gain the circulation [55–57].

Initially, the T cell precursor migrates to the corticomedullary region of the thymus, then inside 
the cortex and the double negative cells (DN) CD4-CD8- (Figures 4 and 5) [58]. The DN cells 
in development receive Notch-1 and IL-7 mediates signals, usually derived from the cortical 
thymic epithelial cells (cTECs) [59, 60]. Most thymocytes rearrange the V(D)J genes efficiently 
to express TCR αβ from DN3, at this stage, the TCR was not tested for their specificity and is 
termed pre-TCRαβ, which is associated with the protein complex CD3/ζ for the signal trans-
duction [61]. Following maturation, thymocytes begin to express CD4 and CD8 co-receptors, 
initially expressing CD8, and then expressing CD4 to form the thymocyte double positives (DP) 
CD4+CD8+ (Figures 4 and 5). This DP population is present in the thymic cortex, expresses 
TCRαβ and consists of most lymphocytes inside the thymus of young individuals [62].

Figure 4. Thymus expression profile of T cells in different stages of maturation. The maturation states are represented by 
the colors displayed in the flow cytometry plots figures: dark blue represents immature double negative T cells, orange 
represents double positive cells in intermediate stage and purple represents the single positive mature T cells. Analysis 
performed with Infinicyt software (Cytognos).

Lymphocyte Updates - Cancer, Autoimmunity and Infection8

In the cortex, the TCRs from DP thymocytes interact with peptides via major histocompat-
ibility complex (MHC) molecules expressed by the cTECs and dendritic cells and go through 
steps of positive and negative selections, thymocytes that interacting properly (low avidity 
interaction) are positively selected and receive survival signals (Figure 5). Thymocytes that 
fail in this interaction or interact with high avidity are selected negatively by the mechanism of 
apoptosis (death by neglect). This process is important so that thymocytes that continue their 
development are able to recognize foreign antigens but not self-antigens, thus avoiding auto-
immunity. Interestingly, approximately 90% of DP thymocytes express ineffective TCRs and 
do not pass through cortex checkpoints and end dying due to the absence of positive selection 
(Figure 5) [54, 61, 63]. The positively selected DP thymocytes migrate to the thymus medulla, 
guided primarily by the expression of CCR7 and the chemoattraction of CCL19 and CCL21 
produced by the medullar thymic epithelial cells (mTECs) and are induced initiate differen-
tiation for CD4+CD8- or CD8+CD4-positive single (SP) thymocytes (Figure 4) per the MHC 
molecule involved (MHC class II for SP CD4+and MHC class I for SP CD8+) (Figure 5) [64].

The thymocytes that have escaped negative selection by cTECs and are self-reactive to tissue-
specific antigens expressed by mTECs are also depleted [65, 66]. TThe expression of tissue-
specific antigens by mTECs is controlled by the transcriptional factor autoimmune regulator 
(AIRE) and AIRE deficiency results in the disease, in humans, called autoimmune polyen-
docrinopathy – candidiasis - ectodermal dystrophy (APECED) [67, 68]. Interestingly, some 
thymocytes CD4+ that recognize self-antigens with high avidity into the thymus may develop 

Figure 5. Schematic representation of T lymphocytes thymic selection [54, 59–63].
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in a CD4+  population of  peripheral regulatory lymphocytes, which have the function of con-
trolling and preventing autoimmune reactions.

Phenotypically, SP thymocytes express CD62 L and CD69 and also acquire the functional 
capacity of mature T lymphocytes, but are still naïve, not having yet experienced antigens 
during an adaptive immune response [69, 70]. Expression of sphingosine-1-phosphate recep-
tor 1 (S1P1), one of the S1P receptors, is required for the outflow of the mature T lymphocytes 
from the thymus and in addition to S1P1, CCR7, CCL19 and CXCL12 also participate in this 
process [71]. This stage of differentiation and maturation in the thymus lasts approximately 
12 days and is critical for the establishment of central tolerance [56]. Finally, immunologically 
competent lymphocytes leave the thymus and become part of the pool of mature and naive 
peripheral T lymphocytes, which remain in the cell cycle interphase for extended periods 
until they encounter with specific antigens presented by antigen-presenting cells (APCs) via 
MHC in secondary lymphoid organs (Figure 5).

1.2.3. Mature T lymphocytes

Once lymphocytes have left the thymus, they are carried in the blood to the peripheral lym-
phoid tissues such as lymph nodes, where the cells organize themselves to facilitate the 
encounter with antigenic particles and consequent lymphocytic activation. Immune cell-cell 
interactions are usually rolling interfaces that undergo continuous architectural change. 
The contact between T and B lymphocytes and the antigen-presenting cells (APCs) favors 
the information exchange among the cells, contributing to the assembly, type, and scope of 
immune responses [72].

Now, we will describe different classes of lymphocytes based on transcription factors expres-
sion and their cytokine secretion profile, associated to their differentiation status, functional 
profile and plasticity. It is important to highlight that each lymphocyte has a unique anti-
gen receptor that is generated by somatic recombination and recognizes a different foreign 
component, and thus collectively, lymphocytes provide an almost limitless defense against a 
wide range of antigens. Recent evidences have demonstrated that a lymphocyte can produce 
daughter cells with different fates that carry out different functions. Based on these indica-
tions, it seems as if a single lymphocyte typically produces a diversity of functional daughter 
cells and manages to renew itself [73–76]. Successful immune responses often require more 
than one type of differentiated cell fate. Kelso and collaborators had already demonstrated in 
1995 that biased T helper (Th) Th2 responses contained traces of Th1-type cytokines expres-
sion [77].

Activated CD4+ T cells differentiate into immune suppressive regulatory T (Treg) cells or 
inflammatory T effector cells, such as T helper Th1, Th2, Th9, Th17, Th22 and follicular helper 
T (Tfh), each one with distinct characteristic metabolic programs (Figure 5). These different 
CD4+ subsets play a critical role in the immune and effector response functions of T cells [78]. 
In response to distinct antigen challenge and extracellular cytokines signals, each CD4+ T cell 
subset has distinct abilities in producing cytokine and chemokine receptors and expressing 
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polarizing transcription factors, along with their association with specific forms of immune 
defense. New tools and techniques have revealed the capacity of polarized cells change their 
phenotype and repolarize towards mixed or alternative fates. The same cytokines that drive 
the polarization of each T helper cell subset during initial priming also drive the plasticity of 
established T helper cell subsets [79, 80].

1.2.3.1. CD4 Cell subsets

Since the establishment of the Th1-Th2 dogma in the 1980s [81, 82], different lineages 
of effector T cells have been identified that not only promote but also suppress immune 
responses.

Th1 cells are defined based on the production of pro-inflammatory cytokines such as inter-
feron (IFN)-γ, and tumor necrosis factor (TNF)-α or TNF-β to stimulate innate and T cell 
immune responses. These cells are induced by natural killer (NK) and/or dendritic cells, 
through IFN-γ producing, which activate signal transducer and activator of transcription 
(STAT) STAT1, resulting in activation of lineage-specific transcription factor encoded by T-
box transcription factor—TBX21 (T-bet) [83]. IL-27, a cytokine from IL-12 family, contributes 
to STAT1 phosphorylation and T-bet activation. T-bet enhances the synthesis of the IL-12 
receptor, which activates STAT4 and consequent transcription and production of IFN-γ. Th1-
type cytokines are responsible for the death of intracellular antigens and for the autoimmune 
response maintenance (Figure 6) [84, 85].

Figure 6. CD4 subsets differentiation, cytokines and transcription factors [78, 84–90, 121].
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On the one hand, Th2 cells are defined as producers of IL-4, IL-5, and IL-13, which are associ-
ated with the production of IgE and eosinophilic responses in atopy. Differentiation of the 
Th2 subset requires IL-4 produced by Notch ligand activation of dendritic cells, inducing 
STAT6, which activates GATA-3. This transcription factor activates the production of the Th2 
the lineage-specifying cytokines. Th2 cells control immunity to extracellular parasites and all 
forms of allergic inflammatory responses (Figure 6) [85, 86].

In recent years, it became evident that more functional subsets of T helper cells can be 
induced by various stimuli in vivo and in vitro. Induction of the Th17 lineage occurs when 
IL-6, IL-23, and TGF-β are present in the inflammatory milieu without Th1 or Th2 cytokines 
(Figure 6) [87]. Toll-like receptor signaling, leading to MyD88 signaling, is another innate 
immune signal fostering Th17 differentiation [88]. The cytokine IL-6 promotes STAT3, which 
induces retinoic orphan receptor (ROR) transcription factors, RORα and RORγT, leading 
to production of Th17 cytokines IL-17, IL-17F, and IL-22 [89, 90]. Functionally, Th17 cells 
play a role in host defense against extracellular pathogens by mediating the recruitment 
of neutrophils and macrophages to infected tissues. Moreover, it has become evident that 
abnormal regulation of Th17 cells may play a significant role in the pathogenesis of a variety 
of autoimmune and inflammatory diseases, because these cells can cause tissue injury when 
aber¬rantly regulated [85].

Another recently reported T helper population includes Th9 cells. This subset of cell under-
goes a maturation program similar to Th2 cells, with IL-4 inducing STAT6 activation, and 
produces the Th2 cytokines IL-9 and IL-10, but unlike Th2 cells, they require TGF-β for 
 maturation (Figure 6) [91, 92]. The IL-2-STAT5 signaling including interferon regulatory 
factor (IRF)4 expression is critical for Th9 cell differentiation. Additionally, the lineage-spe-
cific transcription factor for Th9 development may be the activator protein 1 family tran-
scription factor, BATF, leading to a transcriptional program, which results in increased IL-9 
and IL-10 production [85, 91, 93]. There is a requirement as well for TGF-β-induced SMAD 
proteins and the SMAD-independent induction the transcription factor PU.1 in the genera-
tion of IL-9-secreting T cells. Although the GATA3 expression is lower in Th9 cells than 
Th2 cells, STAT6 is an important target gene involved in Th9 differentiation. These cells 
can exacerbate the immune response by enhancing antibody production and increasing 
immune cell infiltration and activity within the respiratory tract, contributing to asthmatic 
disease. In addition, IL-9 mediates anti-parasitic activity by altering epithelial cell func-
tion, increasing immune cell infiltration into infected locations, and augmenting leukocyte 
immune function. Besides that, the production of IL-9 by Th9 cells impairs tissue repair 
process during colitis, in contrast, can limit tumor growth by stimulating lymphocyte anti-
tumor activity (Figure 6).

Th22 cells are promoted by IL-6 and TNF-α, which induces STAT3, and expression of the aryl 
hydrocarbon receptor [94]. Th22 cells have a specific profile of Th1 and Th17-associated genes, 
such as IFN-γ, IL17a, T-bet and RORγt [95]. In addition the counterpart maturation between 
Th17 and Th22 subsets, numerous phenotypic markers are expressed in both cell populations, 
including CCR6, CCR4, dipeptidyl peptidase IV, CD26, and CD90. But, differently from Th17, 
the Th22 cells expresses CCR10 and represents a distinct subtype of T cells that is involved in 
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the epidermis immunity. IL-22, a cytokine from the IL-10 family, is not exclusively produced 
by the Th22 cells, then also by Th1 and Th17 cells (Figure 6) [85, 96].

A subset of human CD4+ T cells that specifically express IL-22 has been identified in the skin 
where the synthesis of active vitamin D enhances IL-22 expression, contributing to skin 
homeostasis, but also to the pathogenesis of skin disease, observed in psoriasis patients 
[97, 98].

Follicular helper CD4+T (Tfh) cells were first found in human tonsils, but now it is clear 
that are localized in the B-cell follicle and germinal center (GC) and is specialized in facili-
tating B-cell responses, enhancing immunoglobulin production [98, 99]. Tfh cells require 
a strong TCR signal for induction, which is also required for Treg responses [85, 100]. 
Tfh specification requires activation of the inducible co-stimulator (ICOS), a CD28-related 
co- stimulatory signal provided by activated dendritic cells or B cells, which initiates tran-
scription of MAF, one transcription factor that induces IL-21 activation. The OX-40/CD134 
co-stimulatory signal ligation is necessary to down-regulates CTLA-4, a dominant suppres-
sor molecule of T cell activation (Figure 6) [101]. IL-6 and STAT3 are required for Tfh devel-
opment like Th17 cells, yet Tfh cells can be generated in the absence of Th17 cytokines, 
IL-17, IL-17F, or TGF-β [102].

In order to understand how Tfh cells are identified, first is necessary to comprehend T and B 
cells migration for their interaction sites, which usually takes place in secondary lymphoid 
organs such as lymph nodes (LNs). Naive T cells migrate to the T cell zone in LNs responding 
to CCL19 and CCL21 gradients. After dendritic cells antigen stimulation, Tfh cells up-regulate 
CXCR5, down-regulate CCR7 and migrate to the interfollicular regions within LNs, where 
they interact with activated B cells. These interactions result in antibody production by the 
short-lived plasmablasts, which take place in extrafollicular regions or in the germinal center. 
In both regions, Tfh cells support B-cell maturation, class switch and affinity selection, via 
cytokines secretion or by expressing surface molecules. The germinal center responses drive 
memory B cell and plasma cell development. Then, Tfh cells are characterized according to 
patterns of receptor expression that enables their movements, as well as the expression of 
other surface proteins associated with migratory processes [103–107].

Regulatory T-cells (Treg) represent a heterogeneous population of CD4+T-cells characterized 
by suppressive capacity, which can be generated in the thymus, termed natural Tregs (nTregs) 
or adaptive regulatory T cells, induced in the periphery, involved in maintaining oral toler-
ance (Th3 cells), and T regulatory type 1 cells (Tr1 cells), stimulated by IFN-α secreted by 
neighboring plasmacytoid dendritic cells (pDCs). According to the literature, the nTregs need 
a strong TCR signal for their development. They are formed by low co-stimulation, so the T 
cell antigen recognition without a robust second signal provide by the CD28 family members 
leads to tolerance [85, 108]. Differentiation of induced Tregs, Th3 cells, and Tr1 cells hap-
pens in the periphery and needs high TGF-β concentrations and absence of pro-inflammatory 
cytokines [109]. Cell-cell interaction and IL-10 secretion are essential for the Treg suppressor 
function, mediated by the transcription factor Foxp3 through STAT5 activation (Figure 6), and 
simultaneous RORγt down regulation, which is the Th17 transcription factor [85, 110, 111].
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Human T cells can be divided into functionally distinct subsets. Two primary categories are 
naïve T cells (TN) that have not been exposed to antigen and those that are antigen- experienced 
(memory). Naive T cells are usually characterized by the expression of CD45RA+, CD62L+ 
and CCR7+. CD45RA and CD45RO are high and low molecular weight protein derived from 
the CD45 gene splice variant, distinctly, with CD45RO being mainly expressed by memory 
cells. CD45RO+ cells are rarely found in neonates and gradually increased with age. The 
analysis of homing receptors revealed that T cells are heterogeneous and in particular naïve 
T cells express high levels of the lymph-node homing receptor CD62 L (L-selectin). Long-
lived memory CD4+ lymphocytes are a hallmark feature of the adaptive immune system in 
response to pathogens and tumors [112]. The memory T cell compartment is heterogeneous 
and has been conventionally divided into two subsets on the basis of the lymph node hom-
ing molecules CD62 L and CCR7 expression [113]. Central memory T cells (TCM cells) highly 
express CD45RO+, CD45RA−, CD62L+ and CCR7+, whereas CD45RO+, CD45RA−, CD62L− 
CCR7− effector memory T cells (TEM cells) are considered to be committed progenitor cells 
that undergo terminal differentiation after a limited number of divisions (Figure 7) [114]. 
CCR7 and CD62 L are mostly co-expressed on the surface of CD4+ and CD8+T cells, and cells 
expressing these markers nearly uniformly express CD27 and CD28—but the inverse is not 
true. CD27 and CD28 are the main co-stimulatory molecules required to induce T cell activa-
tion, although memory T cells seem to be less dependent on CD27 and CD28 for their reacti-
vation than naïve T cells [115, 116]. CCR7−/CD62L−, CD28+ cells are found in the peripheral 
blood of healthy individuals and known as a subset of transitional memory (TM) cells. TM 
cells seem to be more mature than TCM cells, but not as totally mature as TEM cells [117]. 
IL-15 administration increases a cell subset that re-expresses CD45RA (named terminal effec-
tor cells–TEMRA). The TEMRA cells express senescence markers, such as KLRG-1, CD57, 
and H2AX phosphorylation, have low functional and proliferative ability, indicating their 
terminal differentiation [118].

1.2.3.2. CD8+ cytotoxic T lymphocytes (CTLs) subsets

Similar to T CD4+ cells, naïve CD8+ T cells differentiate into effector T cells (CD62L- CD127-) 
upon TCR engagement with antigen and costimulation by an APC, but the antigen recogni-
tion occurs by MHC class I in peripheral lymphatic organs. Additionally, CD8+ T cells also 
acquire different profiles according to co-stimulatory molecules and cytokines presents in the 
environmental, contributing to transcription factors induction and specific differentiation into 
Tc1, Tc2, Tc9, Tc17 or CD8+ T regulatory fate, as we observe in CD4+ T cells [119].

Cytotoxic T lymphocytes (CTLs) also named Tc1 are the best-characterized subset of CD8+ 
T cells that are responsible for the direct killing of infected, damaged, and dysfunctional 
cells, including tumor cells. Once differentiated, these cells are IL-2 and IL-12 dependent and 
highly cytotoxic, rapidly expressing high levels of IFN-γ, TNF-α, perforin, and granzymes, 
into immunological synapse, following activation [120]. IL-12 promotes expression of T-bet 
and Id2, and IL-2 down-regulates BCL-6 [121]. The initial activation of CD8+ T cells is related 
with the up-regulation of CD44 and CD69, killer cell lectin-like receptor G1 (KLRG1) and 
IL-2 receptor subunit-α (CD25), though the L-selectin (CD62 L), the IL-7 receptor subunit-α 
(CD127) and CD27 are diminished in comparison with naïve cells [119, 121].
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cells, including tumor cells. Once differentiated, these cells are IL-2 and IL-12 dependent and 
highly cytotoxic, rapidly expressing high levels of IFN-γ, TNF-α, perforin, and granzymes, 
into immunological synapse, following activation [120]. IL-12 promotes expression of T-bet 
and Id2, and IL-2 down-regulates BCL-6 [121]. The initial activation of CD8+ T cells is related 
with the up-regulation of CD44 and CD69, killer cell lectin-like receptor G1 (KLRG1) and 
IL-2 receptor subunit-α (CD25), though the L-selectin (CD62 L), the IL-7 receptor subunit-α 
(CD127) and CD27 are diminished in comparison with naïve cells [119, 121].

Lymphocyte Updates - Cancer, Autoimmunity and Infection14

While most CD8+ T cells die by apoptosis after antigen clearance, there are rare cells that 
survive as long-lived memory T cells. Memory CD8+ T cells were subdivided into two broad 
subsets [113, 122], central memory (CD62L+ CD127+ CCR7+) and effector memory (CD162L- 
CD127+CCR7-), distinguished by the relative expression of two homing molecules, CD62 L 
and CCR7. T effector memory cells have a phenotype more similar to that of effector cells, 
characterized by a loss of CCR7 expression and intermediate to no CD62 L expression 
(Figure 7). These cells exhibit rapid effector function, readily differentiating into T effector 
cells that secrete high amounts of IFN-γ and are highly cytotoxic upon re-exposure to cog-
nate antigen. In contrast, T central memory cells are less differentiated, have increased prolif-
erative potential and greater self-renewal capability, can produce high amounts of IL-2, and 
acquire effector functions less rapidly [120, 123, 124].

Tc2 cells, similarly to Th2 cells, produce IL-5, IL-13, but the limited extent of IL-4, besides 
granzymes and perforin, and express the lineage-specific transcription factor GATA3. This 
profile is associated with propagation of Th2-mediated allergy and probably contributes to 
rheumatoid arthritis [119, 125].

The differentiation of CD8+ T cells into IL-9 producers (Tc9 cells), in agreement with low 
expression of granzyme B, occurs mostly in the intestinal epithelium by IL-4 and TGF-β 
induction, favoring their greater anti-tumor activity. The transcription factors STAT6 and 
IRF4 are important for IL-9 production while Foxp3 for inhibition [119, 126].

The IL-17-producing CD8+ T (Tc17) cells are differentiated by IL-6 or IL-21 along with TGF-β 
while IL-23 stabilizes their phenotype. Similar to Th17 cells, they produce IL-17 and IL-21, 

Figure 7. CD4 and CD8 subsets of memory [113, 114, 155].
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express the receptor for IL-23 and the lineage-specific transcription factors IRF-4, RORγt and 
RORα [127]. Tc17 presents impaired cytotoxic activity because of a low IFN-𝛾𝛾𝛾𝛾, perforin, and 
granzyme B production. In contrast, they are able to enhance anti-tumor immunity due to 
their pro-inflammatory properties, which, on the other hand, may contribute to autoimmune 
processes [119, 128].

The suppressor CD8+ Treg cells restricted by the non-classical MHC class Ib molecules Qa-1 
(mouse) or HLA-E (human) represent a well-defined subpopulation. These cells present 
CD44hi CD122+ Ly49+ Foxp3+ phenotype and IL-15 is important to their activity [129]. For 
suppression, these CD8+ Treg cells rely on diverse mechanisms including TGF-β, IL-10, gran-
zymes, perforin and indoleamine 2, 3-dioxygenase (IDO) [129].

1.3. Natural killer cells (NK)

Natural killer (NK) cells are an important piece of the innate immunity and provide a first-
line defense against tumors and viral infections. NK cells were identified in the 1970s by the 
ability of kill tumor cells without previous activation [130]. The precursor cell able to dif-
ferentiate towards NK cells was originally identified in the bone marrow, the main organ of 
hematopoiesis in adult life. However, subsequent experiments revealed that hematopoietic 
progenitor cell and/or NK cell committed precursors (NKPs) can traffic from bone marrow to 
peripheral sites, and it is now clear that the NK cell development occurs not only in the bone 
marrow but also in peripheral lymphoid and non-lymphoid organs [131]. In addition, Yu et 
al. demonstrated that precursor cells isolated from different sites of tissues can differentiate 
in vitro into mature NK cells [132]. The HSC commitment to NK cells differentiation includes 
transcription factors such as ID2, PU.1, Ets-1, TOX and NFIL3, and their maturation involves 
Eomes and Tbet [133–136].

Later studies demonstrated the cytotoxic ability of these cells against virus-infected cells and 
their participation into early inflammatory response secreting cytokines and chemokines [51, 
137]. Particularly, upon activation, NK cells may also sense various bacterial products via toll-
like receptors, an event resulting in a significant and rapid increase in their cytolytic activity 
and cytokine production [138]. Human NK cell function is regulated by several inhibitory 
and activating receptors. Among the various inhibitory NK cell receptors, an important role 
is played by Killer Ig-like Receptors (KIRs) that recognize allotypic determinants of HLA-A, 
-B, -C molecules and by the heterodimer NKG2A specific for the non-classical HLA-E mol-
ecule [139]. Regarding the activating NK cell receptors, the examples are NKp46, NKp44, and 
NKp30 that have been together named Natural Cytotoxicity Receptors (NCRs). The NCRs 
ligands are only partially known and possibly include pathogen-derived molecules and cel-
lular ligands. In addition to NCR, other activating receptors and co-receptors are involved 
in NK cell function. These include NKG2D (recognizing MICA/B and ULBPs molecules), 
DNAM-1 (specific for CD155 and CD112), CD16 (FcRIII), NKp80 (specific for AICL), CD244 
(that binds CD48), and NTBA (mediating hemophilic interaction) (Figure 8) [140].

Peripheral blood NK cells are not a uniform population. Consequently, two main subsets are 
identified regarding levels of CD56 expression, CD56dim and CD56bright NK cells [141]. CD56dim 
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NK cells are mainly in peripheral blood and show potent cytolytic activity and fast release of 
IFN-γ and other cytokines or chemokines upon cell activation through NK receptors. A large 
fraction of CD56dim co-expresses CD16. CD56bright NK cells represent a smaller population in 
peripheral blood while they are predominant in tissues and secondary lymphoid organs and are 
supposed to be responsible for the long-lasting production of chemokines and cytokines [137]. 
Several soluble factors participate on the NK cells development, and they are listed in Table 1.

1.4. Innate lymphoid cells (ILCs)

While NK cells have been known for almost four decades and have been extensively studied, 
other innate lymphoid cells (ILCs) have been better characterized in recent years. ILCs play a 
significant role in innate defenses against pathogens in different sites and in lymphoid tissue 
organization, primarily during fetal life. ILCs are emerging as a family of effectors and regula-
tors of innate immunity and tissue remodeling and express neither somatically  recombined 

Figure 8. Developmental relationship between NK cells and other ILCs [137, 144, 156].

Cytokine Role Reference

IL-15 Central role in the development, maturation, survival, 
proliferation and differentiation

[142]

IL-7, SCF and Flt3-L NK cells differentiation [142]

IL-21 killer immunoglobulin‐like receptors (KIR) expression on final 
stage of NK cell differentiation

[143]

IL-8 and MIP-1α Favor the precursor to differentiate into NK cell, inhibiting the 
development of myeloid precursors

[144]

Table 1. Soluble factors involved in the NK cell development.
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antigen receptors nor phenotypical markers of myeloid cells [145]. These subsets of cells require 
the transcriptional repressor Id2 and the interleukin 7 (IL-7) for their development, and they 
generate cytokine secretion patterns that mirror those of helper T cells of the adaptive immune 
system [146, 147]. ILCs have been classified in three main groups ILC1, ILC2, and ILC3 accord-
ing to their cytokine profile and to the transcription factors required for their differentiation.

Similar to pro-inflammatory T helper type 1 cells, ILCs of group 1 (ILC1) release IFN-γ and 
require the transcription factor T-bet for their development, as do NK cells of the innate 
immune system. ILC1 cells were distinct from natural killer (NK) cells as they lacked perforin, 
granzyme B and the NK cell markers CD56, CD16 and CD94 (Figure 8) [148].

ILCs of group 2, which include natural helper cells and nuocytes, secrete IL-5 and IL-13 and 
require the transcription factor GATA-3 and thus resemble pro-inflammatory T helper type 
2 cells. ILC2s mediate parasite expulsion but also contribute to airway inflammation, empha-
sizing the functional similarity between these cells and Th2 cells (Figure 8) [149–151]. Finally, 
ILCs of group 3 (ILC3 cells) require the transcription factors RORγt and AhR and include not 
only mucosal ‘NK-22’ cells, which secrete IL-22 and thus mimic non-inflammatory cells of 
the Th22 subset of helper T cells. ILC22 cells include NKp46 (+) and lymphoid tissue inducer 
(LTi)-like subsets that express the aryl hydrocarbon receptor (AHR). These cells were hetero-
geneous in their requirement for Notch and their effect on the generation of fetal and mucosal 
intestinal lymphoid tissues (LTi cells) (Figure 8) [152, 153], which produce IL-22 and IL-17 
and thus resemble pro-inflammatory cells of the Th17 subset of helper T cells. Interleukin 22 
(IL-22)- and IL-17-producing ILCs, which depend on the transcription factor RORγt, express 
CD127 (IL-7 receptor α-chain) and the natural killer cell marker CD161 [147, 154].

2. Concluding remarks

Herein, we have discussed B lymphocyte differentiation in the bone marrow and their stages 
of maturation in secondary lymphoid tissues and profiles in interfollicular, perifollicular, and 
follicular areas. In addition, we also have discussed derivation of T-cell precursors, natural 
killer cells, and other innate lymphoid cells. Moreover, T-cell precursor migration to thymus, 
differentiation, rearrangement, thymic selection, transcription factors, their profile and sub-
sets in secondary lymphoid organs are also included. These topics are very important for 
the comprehension of the complex processes involved in forming a functional, consistently 
efficient immune response.
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Abstract

Stat5, c-myc, Hipk2, Fiz1, and ZFP521 to lymphomagenesis precursor B-cell lymphoblastic 
lymphoma/leukemia have been previously identified as a putative gene involved in the 
induction of B-cell lymphomagenesis. In this review, we summarize the role of ZFP521 in 
B-cell lymphomagenesis. Zinc finger protein 521 (Zfp521) is a novel identified gene that 
is responsible for pre–B-lymphoblastic lymphomagenesis through activation of pre–B-cell 
receptor (pre-BCR)-signaling by upregulation of adaptor genes and related kinases in the 
signaling downstream. The pre-BCR-signaling molecules, FLT3, CD43, and IL-7 receptor 
(IL-7R) were positively regulated by these genes. Stimulation of pre-BCR and/or IL-7R 
signaling caused aberrant upregulation of other oncogene sets such as cyclin genes, thereby 
inducing the growth of pre–B cells. IL-7R/Janus kinase (JAK)/STAT signaling cascade is one 
of the key signaling pathways that are activated in precursor B-cell lymphoblastic lymphoma/
leukemia. FLT3, CD43, and pre-BCR cascades crosstalk with JAK/STAT cascade. FLT3 and 
CD43 cascades have the potential to enhance JAK/STAT cascade effect on pre-B cell growth. 
On the other hand, pre-BCR and interleukin (IL)-7 receptor exerted competitive effects on 
pre–B-cell growth; thus, precursor B-cell lymphoblastic lymphomagenesis is a consequence 
through interaction with these cascades.

Keywords: pre–B-cell receptor, Stat/Jak pathway, Zfp521

1. Introduction

1.1. Summary

B-cell lymphoblastic leukemia/lymphoma (B-LBL) is a neoplasm that exhibits immature phe-
notype of the B-cell lineage with on-going immunoglobulin rearrangement. Understanding the 
activation of signal pathways in tumor cells provides significant knowledge on tumorigenesis. 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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Surface markers interleukin-7 receptor (IL-7R), FLT3, CD43, and phenotypic marker pre–B-cell 
receptor are aberrantly activated in tumor cells. IL-7R is one of the developmental stage mark-
ers and is closely associated with immunoglobulin gene rearrangement in mice. In addition, 
these IL-7R, FLT3, and CD43 signal pathways interact with each other. The signaling molecules, 
JAK3, Stat5a, Fiz1, and Hipk2, play pivotal roles in these signaling pathways. In this review, we 
summarize the activation networks of these pathways from the perspective of the activation of 
adaptor molecules and immunoglobulin rearrangement.

1.2. Introduction

B-LBL is a neoplasm of B-lymphoid precursors and it is essentially identical to acute lympho-
cytic leukemia as it involves the bone marrow and peripheral blood [1, 2]. These lymphomas 
and leukemias are composed of medium-sized blast cells with scant cytoplasm, an oval nucleus, 
transparent nucleus, condensed chromatin, and often multiple nucleoli. The lymphoma tissues 
exhibit mitotic figures and are phagocytosed by macrophages after apoptosis—this histology is 
called “Starry sky” and is well known in Burkitt lymphoma. Distinguishing B-precursor types 
from T-precursor types is impossible because they share similar cytological features. Immuno-
phenotypes of pre–B LBL resemble the normal immature B-cell lineages, primarily including 
pre–B cells, because pre–B LBL consists of ongoing immunoglobulin gene (Ig) rearrangements of 
heavy chains (Igh) or light chains (Igl). This rearrangement depends on the activity of recombina-
tion-activating gene 1 (RAG1) and RAG2 under the high expression of the interleukin 7 receptor 
(IL-7R) [3]. In addition, pre–B receptors consist of lambda5 and Vpreb component, which are 
surrogate light-chain components at the time of completion of Igh rearrangement (Figure 1) [4, 5].

2. The characterization of spontaneous pre–B-cell lymphoma in SL/Kh 
mice

2.1. Experimental mouse model of spontaneous lymphoma

We established an inbred strain of mouse called the spontaneous lymphoma mouse strain (SL/Kh) 
as a model of murine leukemia virus (MLV) integration-induced B-LBL lymphomagenesis. In the 
experimental model, transgenic mice carrying chimera genes, such as Emu-myc mice, MT-BCR-ABL 

Figure 1. Scheme of B-cell development stage and IL-7R/pre–B-cell receptor (BCR) expression. CLP, common lymphocyte 
precursor.
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mice, [6, 7], and TEL/AML1 mice rapidly develop pre-B LBL [8–10]. Unlike these models, the SL/Kh 
mouse develops spontaneously in the absence of artificially introduced gene mutation; however, 
Zfp521 is the gene that is spontaneously and constitutively mutated by MLV insertion after the birth 
[11, 12].

These mice share MLV with AKR-strain mice that are susceptible to T lymphoma [13, 14]. 
SL/Kh mice were found to have multiple copies of the pathogenic endogenous proviral 
genome that are genetically transmitted through the germ line on chr 7 [12, 15]. A type 
of MLV expressed from this provirus infects the hematopoietic cells and MLV genome is 
somatically re-integrated into the host cell genome. Subsequently, B-LBL spontaneously 
develops with a high frequency of 95% after 6 months of birth. These lymphoma cells 
are positive for lambda5 and Vpreb, which are a part of the pre-BCR. Myeloid leukemia, 
mature B-cell lymphoma, and T-cell lymphoma are known to occur in the inbred strain 
of mouse [16]. Such high occurrence of identical B-lymphoblastic lymphoma/leukemia 
phenotypes has not been reported in other mice. The initial growth of pre–B cells in SL/
Kh was proven to be independent of the provirus integration, but dependent on the bone 
marrow pre-B1 (Bomb1) locus that includes BANK1 and the enpep gene that involves a 
glutamyl aminopeptidase (BP-1) (Mm.1193, UniGeneID) [17]. Clinically, the mice present 
with hepatosplenomegaly in which pre–B LBL invades via the portal tract and replace 
the splenocytes. In addition, the spinal bone becomes deformed, because of bone struc-
ture remodeling. As described later, the identified signal cascade promoting the MLV 
proviral element gives the clue for understanding of the development of lymphomagen-
esis through upregulation of signaling pathways and can serve as a model of clinical 
intervention by administration of anti-tumor drugs because of stable susceptibility for 
lymphomagenesis.

2.2. Flow cytometry analysis of B-LBL experimental lymphomas

Flow cytometric analysis is the one of the most important methods for analyzing pre–B cells.  
BP1, B220, IL-7R, CD24, and CD43 are the classical phenotypic markers of pre–B cells as well as 
λ5 and Vpreb. These markers were available for Hardy’s classification for murine B cell lineage 
(Figures 2 and 3) [18, 19]. These markers are a little different from those that are used for the clas-
sification of human B-cell lineages, because B220 , BP-1, CD43, and CD24 are included.

2.3. Genetic background of pre–B lymphomagenesis

Bomb1, a quantitative trait locus (QTL), on Mus musculus (MMU) chromosome 3 is respon-
sible for pre–B-cell expansion [20, 21] (Figure 4). In analysis of the congenic mice carrying 
SL/Kh alleles of Bomb1, polyclonal expansion of pre–B cells is observed. BANK1, an adaptor 
molecule of pre-BCR, is located near the Bomb1 locus. We generated a congenic strain, NFS.
SL/Kh-Bomb1 mice, with the replacement of this locus with SL/Kh Bomb1, without pre–B-
induced provirus. The congenic mice showed pre–B-cell expansion, but pre–B lymphoma-
genesis were not observed. Therefore, the pre–B-cell lymphomagenesis is probably induced 
by multiple genes, including MLV integration into the proto-oncogenes. Notably, this locus is 
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also  susceptible to high-frequency microsatellite instability (MSI) in the pre–B LBL in mouse 
chromosome 3 including the Bomb1 [17] (Figure 5). MSI is confirmed at ≥2 markers in DNA 
derived from tumor tissues in 93.7% of SL/Kh mice. To date, there have been only few sys-
tematic analyses of MSI and our data are significant in the hematopoietic tumors. Irregular 
deletion and insertion are observed within Bomb1 in the course of lymphoma tissue with a 
high frequency.

Figure 3. Ig recombination and B-cell development stage. VpreB and λ5 are components of surrogate light change in the 
pre-BCR. Igα and β are adaptor molecules that are identical to CD79a and CD79b. Pre-BCR is tentatively formed in the 
stage of large pre-B.

Figure 2. Surface phenotypic markers and Hardy’s classification. BP-1 and IgM are notable markers. Fr., fraction.
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3. Upregulation of proto-oncogenes in pre–B lymphomas

Retroviral tagging, such as MLV insertion, is considered as a useful method for the identifica-
tion of proto-oncogenes. RTCGD (Retrovirus and Transposon-tagged Cancer Gene Database, 
http://variation.osu.edu/rtcgd/) is one of the established registration systems of MLV integra-
tion, and many genes were identified as the common integration site (CIS) [16].

Figure 4. Bomb1 locus and microsatellite markers on chromosome 3.

Figure 5. Microsatellite instability in the genome of lymphoma cells in the lane of healthy lymph node tissue [17]. 
Dinucleotide CT is deleted in the lymphoma genomes.
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There many identified genes that are involved in the development of hematopoietic tumors. 
We summarize the signaling pathways that are associated with the target genes as described in 
the subsequent text.

3.1. IL-7R-signaling pathway and Stat5a

In both humans and mice, the IL-7R (also known as CD127) is expressed by early B-cell pro-
genitors, and signaling via IL-7Rα activates signal transducer and activator of transcription 5 
(STAT5) and drives pro-B-cell proliferation, while inhibiting Igκ recombination [22, 23].

Stat5a gene is one of the target genes of MLV integration in B-cell tumors (Table 1). The 
encoded STAT5 protein is a member of the signal inducer and activator of transcription (STAT) 
family and includes STAT5A and STAT5B subtypes. They are encoded by separate genes—the 
proteins are 90% identical at the amino acid level. These encoding genes are both targets of 
MLV. STAT5 proteins are activated by Janus kinases (JAKs) associated with transmembrane 
receptors such as interleukin receptor. Because, deletion of Stat5a and Stat5b arrests B-cell 
development at the pre–pro-B cell stage [24].

Binding of the cytokine ligands to these receptors on the outside of the cell activates the JAK3 
[25]. Subsequently, the activated kinases add a phosphate group to tyrosine residues (Y449) on 
the IL-7Rα chain of the receptor. STAT5 then binds to these phosphorylated tyrosines. STAT5 is 
subsequently phosphorylated by the JAK3. The phosphorylated STAT5 forms either homodi-
mer. Phosphorylated STAT proteins have the potential to form a dimer that can translocate 
into the nucleus and upregulate transcriptional activity by binding to the gamma interferon 
activation site palindromic (GAS) element in the promoters of the target genes. The targets 
encode c-Myc, Pim-1 [26], Bcl-xL, and Cyclin D1 [27], which promote proliferation and apoptosis 
in hematopoietic cells [28]. STAT5A, in particular, contributes to IL-7–induced B-cell precursor 
expansion. IL-7R is highly expressed in pre–B cells during Igh recombination, and therefore 
Stat5a has been one of the responsible molecules for Igh recombination [29]. Attenuation of 
IL-7R signaling in both human and mouse pre–B cells is associated with the expression of RAG1 
and RAG2.

Gene Mean interval (bp) Number of integration sites

Stat5a 26.2 92

c-myc 55.5 16

N-myc 6 8

Fiz1 89.1 8

Hipk2 101.1 7

Stat5b 121.7 3

MHC class heavy chain 100 2

Table 1.  Common integration site.
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A comparison of the phenotype of SL/Kh lymphomas showed that when the Stat5a was highly 
expressed, clones completed Igh DHJH recombination but not Igh variable segment—DH recom-
bination; on the other hand, when the Stat5a was relatively less expressed in clones, both DHJH 
and Igh variable segment, DH recombination, are completed. On the other hand, Stat5a-high 
clones highly express λ5 but low for Vpreb; by contrast, Stat5a-low clones were constitutively 
high for both λ5 and Vpreb. In summary, the Stat5a-high lymphoma clones are more immature 
than other lymphomas. Stat5a may contribute to the lymphomagenesis at the immature stage 
of B cells [29].

3.2. Zfp521 and pre-BCR pathway

The Zfp521 gene was identified at the MLV integration site in the genomes of B-cell lympho-
mas in the AKXD mouse strain [30, 31]. This gene is also the most frequent integration site as 
well in the genome of pre–B-cell lymphoma in SL/Kh mice (Figure 6) and is related to imma-
ture B lymphomagenesis [11, 32]. Zfp521 expression contributes to neural crest formation and 
the development of adipose cells, chondrocytes [33, 34], bone [34–36], and neural crest [35]. 
Recently, we reported that ZFP521 regulates and activates pre–B-cell receptor signal path-
ways, and it modulates the IL-7-signaling pathway [11].

The pre-BCR is expressed on large pre–B cells in which Igh recombination is completed. In the 
initiation of Igκ or Igλ gene rearrangement, signals of the IL-7 receptor gradually attenuate 
in pre–B cells, and B-cell maturation proceeds. Although both the IL-7R and the pre-BCR are 
required for murine B-cell lymphopoiesis, the orchestration of signal pathways has remained 
controversial. The responsiveness to IL-7 and stimulation through pre-BCR controls the 
development of pre–B cells into mature B cells [22, 23]. During the development of pro-B cells 
into pre–B cells, IL-7 signaling is the major mediator. The mature BCR replaces the pre-BCR. 
Zfp521 is expressed from professional pre–B cell of Fraction A (Fr. A) to Fr. B-C according 
to Hardy’s classification. In this pre–B stage, Zfp521 may interact with adaptor molecules of 
Cd79a/b such as BANK1, Blnk, and Btk. Zfp521 may play as a transcriptional factor, because 
of a stimulation of this gene expression in a cell line, and the signal was located in the nucleus 
[30]. However, the binding motif on DNA is not clearly identified. The IL-7 receptor pathway 
interfered with Vpreb stimulation through the upregulation of BANK1 near or on Bomb1 by 
ZFP521. BANK1 is disrupted by IL-7R signaling and interacts with phospholipase gamma 
2 [37]. In fact, BANK1-PLCg2 binding is enhanced by B-lymphocyte kinase (BLK) [37]. 
Therefore, complicated per-BCR adaptors are hypothesized (Figure 7).

Cyclin D3 and Cyclin D2 are upregulated by overexpression of the ZFP521 gene. Pre-BCR 
was shown to mediate Ras-MEK-extracellular signal-regulated kinase (ERK)-signaling 
pathway activation and light-chain recombination by silencing Cyclin D3 [38].

In humans, the fusion of the Pax5, which is essential for pre–B-cell development gene, exon 
7 to ZFP521 exon 4, has been observed in pre–B-cell acute lymphocytic leukemia by genome-
wide analysis of genetic alterations [39]. Dysregulation of ZFP521 gene leads to pre–B-cell 
lymphomagenesis through the activation of pre–B-cell-specific molecular-signaling pathways 
[11]. Therefore, ZFP521 could be considered as a target for molecular-targeted therapy.
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3.3. FLT3 signaling and LBL development via Fiz1

(a) Fms like tyrosine kinase 3 (FLT3) belongs to the immunoglobulin superfamily CD135 
also known as fetal liver kinase-2 (Flk2). This protein is the receptor for the cytokine Flt3 
ligand (FLT3L). FLT3 is a type III receptor tyrosine kinase with five immunoglobulin-like 
motifs in the extracellular region. In the intracellular region, a tyrosine kinase region (TK) 
and a C-terminal region composed of a juxtamembrane region (JM) and a kinase insert are 
contained. This protein is constitutively expressed in the hematopoietic stem and progenitor 
cells. On the other hand, the ligands that bind to the FLT3 receptor (FL) are produced in bone 
marrow stromal cells. FL directly stimulates hematopoietic stem cells or together with other 
cytokines and plays an important role in its survival, proliferation, and differentiation. FLT3 
is also one of the critical developmental factors for B- and T-lymphocyte development [40].

(a)

(b)

Figure 6. (a) Schematic representation of MLV integration in Zfp521 in SL/Kh mice. By the age of 2–3 months, the MLV 
host cell has grown in BM, and the endogenous MLV integrates into the genome of the host lymphocytes. The host cells 
clonally grow with higher expression of the Zfp521 gene. The tandem box in the upper scheme represents long terminal 
repeat (LTR) of the provirus.
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In the absence of FL, FLT3 remains in the inactivated monomeric form. When FLT3 binds to 
FL, a ternary complex is formed in which two FLT3 molecules are bridged by one (homodi-
meric) FLT3L. Ligand binding promotes conformational changes in FLT3 for dimerization, phos-
phorylation, and association with adaptor proteins such as Fiz1. The complex formation brings 
the intracellular domains close to each other, promoting initial phosphorylation of the kinase 
domain. Activated dimeric FLT3 transduces signals to the downstream effectors. In the patho-
genesis analysis, FLT3 is expressed on the cell surface of most AML and ALL cells through prolif-
eration activation and apoptosis suppression, which are caused by the stimulation of FL [41–43].

Internal tandem duplications (ITDs) occur in exon 14 or 15 of the JM, which are located directly 
between the transmembrane domain (TM) and tyrosine kinase region TK1 [44]. Insertions, 
deletions, and point mutations are frequently found in exon 20 of another tyrosine kinase 
region TK2.The functional kinase region is kept, and only the JM region is elongated. ITDs 
probably promote ligand-independent dimerization and activation of FLT3 by changing the 
conformation of the expressed receptor [44, 45]. In addition, another mutation was identified 
within the kinase activation loop, a part of the functional core. The conformational changes 
associated with ITDs might change the structure of the receptor such that unique adaptor 
proteins such as Fiz1 can now dock.

(b) Fiz 1: This gene encodes the zinc finger protein, which interacts with a receptor tyrosine 
kinase involved in the regulation of hematopoietic and lymphoid cells. This gene product 
also interacts with a transcription factor that regulates the expression of rod-specific genes in 
the retina. Fiz1 binds to the catalytic domain of Flt3 but not to c-Kit, Fms, or platelet-derived 

Figure 7. Pre-BCR pathway and Zfp521.
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growth factor receptor [46, 47]. In a part of B-LBL in SL/Kh, Fiz1 is upregulated by MLV 
genome insertion and interaction with IL-7R pathway is observed. FLT3 stimulation enhances 
IL-7R signaling cascade by promotion of Stat5a phosphorylation [48]. Therefore, FLT3 and 
IL-7R signal pathways interact with each other in the development of B-LBL/ALL.

3.4. CD43 and Hipk2 in the development of B-LBL/ALL

HIPK2 is a conserved serine/threonine nuclear kinase that interacts with homeodomain 
transcription factors. This protein interacts with the cytoplasmic domain of CD43, which 
is expressed on immature pro- to pre–B cells, Fr. A-C in Hardy classification. In this imma-
ture stage, IL-7R is highly expressed and the CD43 pathway may interact with IL-7R path-
way recruiting STAT5A. Hipk2 promotes Wnt signaling by stabilizing beta-catenin [49]. Hipk2 
interacts with lymphoid-enhancing factor 1, which acts as a transcriptional factor, promoting 
c-Myc and cyclin D1 expression [50]. CD43 is an E-selectin counter-receptor highly expressed in 
human pre–B-cell leukemia NALL-1 cell line [51]. In our study, CD43 cross-linking resulted in 
an increase in STAT5A phosphorylation, when IL-7 was supplied. CD43 signaling may enhance 
the IL-7R signal pathway [48, 52].

4. Signaling pathway network responsible for pre–B lymphomagenesis

Probably, multiple genes are related to the activation of IL-7R-signaling pathway. Hipk2 and 
Fiz 1 are candidates of interaction with IL-7R pathway as well as Stat5. Considering the acti-
vation of FLT3 pathway in AML, B-LBL may share the activation pathway with AML [10]. 
We propose a scheme of interactions among the IL-7-, CD43-, and FLT3-signaling pathways 
(Figure 8) [48]. Thus, we hypothesize that these three pathways form an interacting network 

Figure 8. Signaling pathway network in association with IL-7R.
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interacts with lymphoid-enhancing factor 1, which acts as a transcriptional factor, promoting 
c-Myc and cyclin D1 expression [50]. CD43 is an E-selectin counter-receptor highly expressed in 
human pre–B-cell leukemia NALL-1 cell line [51]. In our study, CD43 cross-linking resulted in 
an increase in STAT5A phosphorylation, when IL-7 was supplied. CD43 signaling may enhance 
the IL-7R signal pathway [48, 52].

4. Signaling pathway network responsible for pre–B lymphomagenesis

Probably, multiple genes are related to the activation of IL-7R-signaling pathway. Hipk2 and 
Fiz 1 are candidates of interaction with IL-7R pathway as well as Stat5. Considering the acti-
vation of FLT3 pathway in AML, B-LBL may share the activation pathway with AML [10]. 
We propose a scheme of interactions among the IL-7-, CD43-, and FLT3-signaling pathways 
(Figure 8) [48]. Thus, we hypothesize that these three pathways form an interacting network 

Figure 8. Signaling pathway network in association with IL-7R.
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and affect B-LBL development. By contrast, pre-BCR pathway is activated by Zfp521 through 
the upregulation of BLNK [53, 54], BANK1 [37], Btk, and other pre–BCR-related molecules. 
Pre-BCR pathway has been considered to contribute to pre–B-cell development rather than to 
proliferation. Therefore, although stimulation of pre-BCR promotes pre-B cell proliferation, 
Zfp521 may not directly contribute to lymphomagenesis, but contribute to the stabilization of 
phenotype of B-LBL. Or interaction with IL-7R and pre-BCR may promote aberrant prolifera-
tion or development. Further research is required for precise understanding of the interaction 
between these two pathways in B-cell development.
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Abstract

Immunoglobulin molecule is the key component of B cell receptor (BCR), which 
governsthesurvival,differentiationandfunctionofnormalBlymphocytes,butaccu‐
mulating data suggest that, in the case of chronic lymphocytic leukaemia (CLL), it is 
also involved in the pathogenesis and clinical course of the disease. CLL is a malig‐
nancy of mature CD5+ CD19+ CD23+ sIgMlow B lymphocytes and is characterized by 
extremely heterogeneous clinical course, which varies from indolent to rapidly pro‐
gressive. Somatic hypermutational status of immunoglobulin heavy chain variable 
genes(IGHV)definestwoCLLsubtypes,mutated(M‐CLL)andunmutated(U‐CLL).
U‐CLLpatients suffer frommore aggressivedisease, characterized by shorter time
to treatment, progression‐free survival and overall survival in comparison to M‐CLL 
patients. Since these correlations are not dependent on the clinical stage and since 
there is no interconversion between subtypes, IGHV mutational status is currently the 
most reliable prognostic marker in CLL. Several lines of evidence indicate that both 
M‐CLLandU‐CLLarisefromanantigen‐experiencedcelloforigin.Immunogenetic
studies have revealed CLL‐biased usage of immunoglobulin variable region genes, 
as well as the existence of highly homologous, ‘stereotyped’ BCRs in CLL clones, 
strongly implying the role of antigenic drive in the development and evolution of the 
disease.

Keywords: chronic lymphocytic leukaemia, B cell receptor, immunoglobulin 
rearrangements, gene repertoire, BCR stereotypy
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1. Introduction

The central role that B lymphocytes play in immunity relies upon their capacity to produce 
avastarrayofdifferentimmunoglobulinmoleculeswhichcanrecognizevirtuallylimitless
number of foreign and autoantigens. Immunoglobulins (IG) are expressed on the surface of 
B cells as antigen‐binding component of B cell receptor (BCR), in complex with CD79A/79B 
heterodimer responsible for signal transduction. During the immune response, IG molecules 
aresecretedasantibodieswhichexertdifferenteffectorfunctions.BCRsignallingiscrucial
for survival, proliferation anddifferentiation of normal B lymphocytes, but has also been
implicated in the pathogenesis of several mature B cell malignancies, including chronic lym‐
phocytic leukaemia.

Chronic lymphocytic leukaemia (CLL) manifests as clonal expansion of mature CD5+ CD19+ 
CD23+ sIgMlow B lymphocytes which gradually accumulate in blood, bone marrow and sec‐
ondary lymphoid organs [1]. It is the most frequent type of leukaemia in Western countries, 
accounting for 30–40% of all adult leukaemia cases, while it is very rare in Asian and African 
countries [2].CLLaffectspredominantlyelderlyindividuals,agedapproximately67–72years
at diagnosis, men more frequently than women [1].

CLL is characterized by extremely heterogeneous clinical presentation, with diverse therapy 
requirements and overall survival. In some patients, rapid progression and need of treatment 
occur soon after diagnosis, while others may live for decades without developing any symp‐
toms. The majority of cases, however, lie in between these extremes; the disease can follow an 
indolent course for years, but eventually turn into aggressive form.

Aetiology of CLL is still elusive. Familial clustering of CLL has been documented, implying a 
strong genetic basis of the disease. The relative risk of CLL has been estimated to be around 
eight‐foldhigherinfirst‐degreerelatives[3]. Genome‐wide association studies have identi‐
fiedmultipleCLLsusceptibilitylocimappingtogenesinvolvedinapoptosis,BCRsignalling,
immune response and maintenance of chromosome integrity [4, 5].

A growing body of evidence indicates that CLL development and evolution result from con‐
certed action of intrinsic genetic abnormalities and extrinsic factors from the tissue microen‐
vironment, including antigens [6]. The most common chromosomal aberrations in CLL are 
deletion 13q14, trisomy 12q, deletion 11q22‐q23 and deletion 17p13, observed in approxi‐
mately 80% of patients [7]. The genes localized within minimally deleted/gained regions in 
theseaberrationsincludemiR‐15aandmiR16‐1(del13q),CDK4,GLIandMDM2(trisomy12),
ATM (del11q) and TP53 (del17p), which are involved in regulation of apoptosis and DNA 
repair [8–10].Therecentnext‐generationsequencing‐basedstudieshaveidentifiedanumber
ofrecurrentlymutatedgenesinCLL(e.g.NOTCH1,SF3B1,MYD88,BIRC3,NFKBIE,TP53
andATM),predominantlybelongingtoBCR,toll‐likereceptor,Notch1andNF‐κBsignalling
pathways [6, 11]. In addition, genetic alterations and aberrant expression of many apoptotic 
regulators involved in both mitochondrial and death receptor apoptotic pathways have been 
described in CLL, most notably overexpression of BCL2, detected in the majority of patients 
[12–14]. However, immunogenetic studies over the past few decades have pointed to the 
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1. Introduction
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pathways [6, 11]. In addition, genetic alterations and aberrant expression of many apoptotic 
regulators involved in both mitochondrial and death receptor apoptotic pathways have been 
described in CLL, most notably overexpression of BCL2, detected in the majority of patients 
[12–14]. However, immunogenetic studies over the past few decades have pointed to the 
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 antigenic drive on the BCR of the cell of origin as the key player, and possibly an initiating 
event, in CLL pathogenesis [15, 16].

The diversity of mechanisms involved in pathobiology of CLL cells is likely the basis of the 
clinical heterogeneity, making the prognostication for individual patients very difficult.
Currently, the most important prognostic markers, widely used in routine clinical practice, 
are clinical stage (Rai and Binet) and cytogenetic aberrations [17].Inanattempttoovercome
the clinical variability and improve the prognosis assessment, particularly in early‐stage dis‐
ease,anumberofcellularandmolecularprognosticmarkershavebeenidentifiedandvali‐
dated. Among the novel markers that have entered clinical practice (e.g. CD38 and ZAP‐70 
expression,TP53mutations),themostpowerfulone,intermsofprognosisdefinition,turned
out to be the somatic hypermutational status of rearranged immunoglobulin heavy variable 
genes [17].

In this chapter, we will discuss the current concepts of immunoglobulin gene expression in 
chronic lymphocytic leukaemia, and its relevance for both the pathogenesis and clinical pro‐
gression of the disease.

2. Immunoglobulin gene rearrangements and the development of 
B lymphocytes

2.1. Generation of immunoglobulin diversity

Immunoglobulin (IG) molecules are heterodimers composed of two identical heavy (H) 
chainsand two identical light (L)chains (κorλ), linkedbydisulphidebonds.Bothheavy
and light chains contain N‐terminal variable (V) region and C‐terminal constant (C) region 
(Figure 1a). Juxtaposed variable regions of H and L chains (VH and VL) form antigen‐binding 
site,whosestructuredeterminesthespecificityandtheaffinityofimmunoglobulinmolecules
for antigens. Constant regions are not involved in antigen recognition. Heavy chain constant 
region(CH)definesIGisotypes(IgA,IgD,IgE,IgGandIgM)andmediateseffectorfunctions
of antibodies. In addition, CH region is responsible for anchoring of membrane‐bound IG in 
the plasma membrane of B cells. Variable region of each IG chain consists of four relatively 
conserved framework regions (FR1, FR2, FR3 and FR4) and three hypervariable complemen‐
tarity‐determining regions (CDR1, CDR2 and CDR3). The CDR regions of H and L chains 
form six loops which create a surface that directly interacts with antigens. Heavy chain CDR3 
region (VH CDR3) exerts the highest variability and is the key determinant of antibody speci‐
ficity[18].

IG molecules are encoded by a multitude of tandemly arranged gene segments that consti‐
tuteIGH(heavychain)locus,IGKandIGLlocus(κandλlightchains).HumanIGHlocus,
located on chromosome 14q32.33, consists of four types of gene segments: V (variable), D 
(diversity),J(joining)andC(constant),in5′–3′orientation.Thereare38–46functionalIGHV
genesegments,whichcanbedividedinto6–7subgroupsbasedonsequencehomology,23
functional IGHDgenesegments,6 functional IGHJgenesegmentsand9 functional IGHC
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gene segments (Figure 2).Lightchainloci,ontheotherhand,lackDsegments.HumanIGK
locus(chromosome2p11.2)containsaclusterof34–38functionalIGKVgenesegmentswhich
belong to 5 subgroups, followed by 5 IGKJ gene segments and a single C gene segment. 
Human IGL locus (chromosome 22q11.2) is composed of 29–33 functional IGLV gene seg‐
ments, divided into 10 subgroups, and 4–5 functional IGLJ‐IGLC tandems [20]. Allelic vari‐
ants of many gene segments exist, particularly in the IGH locus. It should be noted that the 
actual number of gene segments in all three loci is much higher, due to the presence of pseu‐
dogenes and ORFs (open reading frames). In addition, the number of functional gene seg‐
ments in a locus depends on the haplotype, since some genes can be inserted or deleted, or 
can be functional or pseudogene, depending on the allele.

Figure 1. Schematic representation of an immunoglobulin molecule. (a) IG molecules consist of two identical heavy (H) 
chains and two identical light (L) chains. Both H and L chains contain variable region (VH and VL, respectively) and 
constant region (CH and CL, respectively). VH region is encoded by rearranged V, D and J gene segments, while VL 
is encoded by rearranged V and J gene segments. (b) VH region consists of four framework regions (VH FR1, VH FR2, 
VH FR3 and VH FR4) and three hypervariable complementarity‐determining regions (VH CDR1, VH CDR2 and VH 
CDR3). VH FR1‐3, VH CDR1 and VH CDR2 are encoded entirely by IGHV gene segment; VH FR4 is encoded by IGHJ 
gene segment. VH CDR3 is positioned at the IGHV‐IGHD‐IGHJ junction, and comprises amino acids between conserved 
cysteine (codon 104) in FR3 and conserved tryptophan (codon 118) in FR4 [19]. N1 and N2 regions are being created via 
random addition and deletion of nucleotides during IGHV‐IGHD and IGHD‐IGHJ joining.

Lymphocyte Updates - Cancer, Autoimmunity and Infection52



gene segments (Figure 2).Lightchainloci,ontheotherhand,lackDsegments.HumanIGK
locus(chromosome2p11.2)containsaclusterof34–38functionalIGKVgenesegmentswhich
belong to 5 subgroups, followed by 5 IGKJ gene segmentsand a single C gene segment. 
Human IGL locus (chromosome 22q11.2) is composed of 29–33 functional IGLV gene seg‐
ments, divided into 10 subgroups, and 4–5 functional IGLJ‐IGLC tandems [20]. Allelic vari‐
ants of many gene segments exist, particularly in the IGH locus. It should be noted that the 
actual number of gene segments in all three loci is much higher, due to the presence of pseu‐
dogenes and ORFs (open reading frames). In addition, the number of functional gene seg‐
ments in a locus depends on the haplotype, since some genes can be inserted or deleted, or 
can be functional or pseudogene, depending on the allele.

Figure 1. Schematic representation of an immunoglobulin molecule. (a) IG molecules consist of two identical heavy (H) 
chains and two identical light (L) chains. Both H and L chains contain variable region (VH and VL, respectively) and 
constant region (CH and CL, respectively). VH region is encoded by rearranged V, D and J gene segments, while VL 
is encoded by rearranged V and J gene segments. (b) VH region consists of four framework regions (VH FR1, VH FR2, 
VH FR3 and VH FR4) and three hypervariable complementarity‐determining regions (VH CDR1, VH CDR2 and VH 
CDR3). VH FR1‐3, VH CDR1 and VH CDR2 are encoded entirely by IGHV gene segment; VH FR4 is encoded by IGHJ 
gene segment. VH CDR3 is positioned at the IGHV‐IGHD‐IGHJ junction, and comprises amino acids between conserved 
cysteine (codon 104) in FR3 and conserved tryptophan (codon 118) in FR4 [19]. N1 and N2 regions are being created via 
random addition and deletion of nucleotides during IGHV‐IGHD and IGHD‐IGHJ joining.

Lymphocyte Updates - Cancer, Autoimmunity and Infection52

Immunoglobulin variable region is being generated by somatic recombination between V, 
D and J gene segments (H chains) and V and J gene segments (L chains), which occur dur‐
ingdifferentiation of B lymphocytes.At the IGH locus,which rearranges before IGL loci,
thefirstrecombinationeventjoinsoneoftheIGHDgenesegmentstooneoftheIGHJgene
segments, and the sequence between the rearranged genes is being deleted. The obtained 
IGHD‐IGHJ rearrangement then recombines with one of the IGHV gene segments, leading to 
the formation of complete IGHV‐IGHD‐IGHJ rearrangement which will be fused to an IGHC 
gene(CμorCδ)duringRNAsplicingand,ultimately,expressedatthecellsurfaceasIgMor
IgD. Productive rearrangement of one IGH locus inhibits the rearrangement of IGH locus on 
theotherchromosome(allelicexclusion),thusensuringthemonospecificityofBlymphocyte
[22]. However, if the rearrangement of one allele is unproductive, the other one will undergo 
recombination and, if the second rearrangement fails, the cell will die by apoptosis. Similar 
recombinationprocessoccursbetweenVandJgenesegmentsatthelightchainloci.IGKlocus
rearrangesbeforeIGL;successfulrecombinationatoneIGKalleleinhibitstherearrangement
of the other one (allelic exclusion), as well as the rearrangement of IGL loci (isotypic exclu‐
sion).Alternatively,unproductive rearrangementofone IGK locus leads to recombination
of the other allele and, if unsuccessful, the IGL locus will rearrange. Once again, if neither of 
theattemptsresultsinproductivelightchainrearrangement,thecellwillundergoapoptosis.

Figure 2. SchematicrepresentationofthehumanIGHlocus(nottoscale).HumanIGHlocuscontains38–46functional
IGHVgenesegments,23functionalIGHDgenesegments,6functionalIGHJgenesegmentsand9functionalIGHCgene
segments. IGHV gene segments are designated by a number for the subgroup, followed by an hyphen and a number for 
thelocalizationinthelocus,inthe3′–5′direction;IGHDandIGHJgenesegmentsarenumberedintheoppositedirection
(5′–3′)[21]. Only functional genes are depicted.
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Given the number of germline gene segments that can recombine at IG loci, as well as random 
pairing of heavy and light chains, it is clear that B lymphocytes can produce a vast number of 
differentantibodies(‘combinatorialdiversity’).However,theactualnumberofcombinationsis
lower than the theoretical estimate of ∼1.6×106, since not all gene segment recombinations occur 
with the same frequencies and not all IGH‐IGL pairs are functional. In addition, it has been 
shown that V(D)J recombinations are not a stochastic process, but are determined by genetic 
factors and are regulated during ontogeny [23].

The diversity of the primary antibody repertoire (the repertoire of naïve B cells) is further 
increased by ‘junctional diversity’. The process of somatic recombination is catalysed by several 
enzymes jointly called V(D)J recombinase and, although very precise, their action introduces 
variability at the junctions of V, (D) and J gene segments. Recombination is enabled by the pres‐
enceofconservedrecombinationsignal(RS)sequenceswhichflank3′endofVgenes,5′endof
J genes and both ends of D genes. RS sequences, recognized by recombination activating gene 
1 and 2 (RAG1 and RAG2) enzymes, ensure that light chain V genes can rearrange only with 
J genes, while IGHV genes can rearrange only with IGHD, and IGHD only with IGHJ genes. 
During this process, trimming of the ends of recombining gene segments by exonucleases 
occurs, as well as the addition of short palindromic sequences and non‐templated nucleotides 
(thelattercatalysedbyterminaldeoxynucleotidyltransferase,TdT)[24]. The random addition 
and deletion of nucleotides during IGHV‐IGHD and IGHD‐IGHJ ligation creates two N regions 
(N1 and N2), and is the source of the extreme variability of VH CDR3, which is positioned at the 
VDJ junction (Figure 1b). Diversity of VH CDR3 in both length and amino acid sequence results 
in the production of much larger IG repertoire than it would be generated solely by combining 
germline gene segments (up to 1011differentIGs).

Diversificationof immunoglobulinscontinuesafterantigenencounter(secondaryantibody
repertoire) via somatic hypermutations and class‐switch recombination, generating B lym‐
phocyteswithenormouslywiderangeofspecificities(seenextsection).

2.2. B cell differentiation

Bcelldifferentiationisamulti‐stepprocesswhichcanbedividedintotwophases:antigen‐
independent phase, taking place in bone marrow (and fetal liver), followed by antigen‐ 
dependent phase in secondary lymphoid organs.

ThefirststageofBcelldevelopmentinbonemarrowisearlypro‐Bcell,definedbythebegin‐
ning of IGHD‐IGHJ recombinations. Joining of IGHV gene to IGHD‐IGHJ rearrangement 
occurs in late pro‐B cells and leads to transcription and synthesis of μ heavy chain, which 
containsIGHV‐IGHD‐IGHJcomplexattachedtoCμ.Theexpressionofμheavychaindefines
the large pre‐B cell stage. The μ chain is predominantly cytoplasmic, but it can associate with 
surrogate light chains and, in complex with CD79A/CD79B, is transiently expressed at the 
cell surface as the pre‐BCR. Subsequently, the cell enters the small pre‐B stage in which rear‐
rangements of light chain loci occur, enabling pairing of previously synthesized μ chain with 
IGKorIGLand,thus,assemblyofIgM.ExpressionofsurfaceIgM,asapartofBCR,marksthe
immatureBcell.Atthisstage,self‐reactingclonesarebeingeliminated,ortheirspecificities
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may be changed via receptor editing and IGHV replacement [25]. Immature B cells migrate 
to the spleen where they become mature naïve B cells. As a result of alternative splicing of 
IGHtranscripts,whichjoinsIGHV‐IGHD‐IGHJgenetoeitherCμorCδ,thesecellscoexpress
membrane‐boundIgMandIgDwiththesameantigenspecificity.

Naïve B lymphocytes reside in secondary lymphoid organs (spleen, lymph nodes and 
mucosal lymphoid tissues)where they encountervarious antigens.EngagementofBCR
with a specific antigen gives rise to a cascade of signalling events that activate B cell,
leadingtoproliferationofantigen‐specificcloneand,ultimately,differentiationintoanti‐
body‐secreting plasma cells and memory cells. Based on the requirement for T cell help in 
activation of B lymphocytes, two types of response to antigen stimulation exist. Bacterial 
polysaccharides and lipopolysaccharides can directly activate B cells (T cell‐independent 
response), resulting in rapid IgM production. In contrast, the response to protein antigens 
is T cell‐dependent and requires the interaction of B cells with CD4+ T cells and antigen‐
presentingcells.UponTcell‐mediatedactivation,proliferatingBcellsmigratedeepinto
lymphoid follicle, forming the structure called germinal centre. In a highly specialized 
microenvironment of germinal centres, B cells start to proliferate at high rate and undergo 
somatic hypermutations and class‐switch recombination [26].

The process of somatic hypermutation (SHM), mediated by activation‐induced cytidine 
deaminase (AID), introduces point mutations into the rearranged immunoglobulin loci at 
a rate 106 times higher than the spontaneous mutation rate of other genes. The single base 
substitutions are localized in the variable region of heavy and light chains, while the constant 
regionremainsunaffected.Theyarepreferentiallytargetedtospecifichotspotmotifs(RGYW
and its inverse repeat WRCY), with transitions predominating over transversions, and accu‐
mulate in both FRs and CDRs [27]. Replacement mutations tend to be clustered in CDRs, since 
theyaltertheaffinityofIGstoantigens.InFRs,ontheotherhand,replacementmutations,
which could disrupt the basic IG architecture, are counter‐selected, and silent mutations are 
more frequent. The somatic hypermutation process can also introduce small insertions or 
deletions,althoughthisisarareeventcreatedbyamechanismdifferentthanAID‐mediated
SHM.

Accumulation of somatic hypermutations generates clonal progeny of activated B cell with 
diversifiedIGrearrangementsand,hence,differentaffinityforantigen.Thesecellsaresubse‐
quentlysubjectedtoselectionbyantigen:Bcellsthatefficientlyrecognizeantigenpresented
by follicular dendritic cells receive survival signals, provided by BCR engagement and T cell 
co‐stimulation, and continue to proliferate, while B cells that do not bind antigen or bind it 
withlowaffinitydiebyapoptosis.Multipleroundsofproliferation,somatichypermutation
andselectionresultinaffinitymaturation,i.e.productionofBlymphocyteswithincreasing
specificityandaffinityforantigen.Alongwithaffinitymaturation,thecellsundergoclass‐
switch recombination (also mediated by AID), which leads to fusion of IGHV‐IGHD‐IGHJ 
rearrangement to a downstream constant gene segment. This enables production of isotypes 
otherthanIgMandIgD,butwiththesameantigenspecificity[28]. Antigen‐selected B cells 
ultimatelyexitthegerminalcentreandfinalizetheirdifferentiationintohigh‐affinityantigen‐
specificplasmacellsandmemorycells,withspecificeffectorfunctions.
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Somatic hypermutations and class‐switch recombination further enhance immunoglobulin 
variability and, in combination with other sources of diversity (combinatorial and junctional 
diversity), enable formation of up to 1012possibleantibodyspecificities [20]. The potential 
of B cells to create such a huge IG repertoire, however, comes at a high cost since it causes 
aconsiderablewastageofcellsalongthepathwayoftheirdifferentiation.Themechanisms
responsible for variability of immunoglobulin rearrangements can also render them unpro‐
ductive due to recombination of non‐functional pseudogenes, out‐of‐frame junctions, genera‐
tion of stop codons at the junctions, as well as introduction of frameshifts and stop codons by 
SHM. In addition, replacement mutations induced by SHM process can impair the structure 
ofimmunoglobulinmoleculeorloweritsaffinityforantigen.Asmentionedabove,Bcellsthat
fail to generate productive heavy‐ and light chain rearrangements and produce functional 
antibodies undergo apoptotic cell death.

3. Immunoglobulin gene rearrangements in CLL

3.1. IGHV mutational status

The extreme clinical heterogeneity of chronic lymphocytic leukaemia has inspired an exten‐
sive search for molecular and cellular markers with the prognostic and predictive value. 
Immunoglobulin rearrangements of CLL clones were brought into the spotlight upon the 
findings that, in around 50% of CLL patients, heavy chain rearrangements carry somatic
hypermutations,andthatSHMstatusofrearrangedIGHVgenessignificantlycorrelateswith
the clinical course of the disease. Patients with unmutated IGHV‐IGHD‐IGHJ rearrange‐
ments are usually in advanced clinical stages, have progressive disease, atypical morphology 
and require chemotherapy soon after diagnosis. In contrast, patients with mutated IGHV‐
IGHD‐IGHJ rearrangements predominantly present with non‐progressive disease, typical 
morphology,requirenoorminimalchemotherapyandhavesignificantlylongertimetofirst
treatment, progression‐free survival and overall survival [29–33]. These correlations have 
beenconfirmedinmultiplestudies,andtoday,itiswidelyacceptedthatCLLcanbedivided
intotwosubtypes,mutated(M‐CLL)andunmutated(U‐CLL),withdifferentclinicaloutcome.
The IGHV mutational status turned out to be the strongest independent prognostic marker 
whose value, inter alia, lies in the fact that it does not change over time and that it can predict 
the clinical behaviour of CLL at the time of diagnosis as well as at any stage of the disease 
(i.e. regardless of the tumour burden).

Thecut‐offlevelthatisbeinginusefordistinguishingM‐CLLfromU‐CLLis98%ofidentity
between the rearranged IGHV gene and its germline counterpart (calculated from codon 1 to 
codon104);caseswith≥98%identityareconsideredunmutated,whilethosewith<98% iden‐
tity are considered mutated [34, 35].Thiscut‐offhasoriginallybeenchoseninordertoelimi‐
nate the possibility of interpreting allelic polymorphisms as somatic mutations. Although in 
somestudiesothercut‐offvalues(97%and95%)allowedbetterseparationofthetwoprognos‐
tic groups, 2% of somatic mutations are generally accepted as the best discriminator between 
mutated and unmutated cases [36–38]. However, since this level of mutations is an arbitrary 
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cut‐off,thecautionisrecommendedwheninterpretingtheprognosticimplicationsincases
with the borderline mutational status [34]. Indeed, it has been demonstrated that the group 
of patients with the borderline mutated rearrangements (97–97.9% identity) comprised cases 
with both poor and good prognosis [38, 39]. In addition, sequencing of the unrearranged IGH 
genes in patients with high percentage of identity (98–99.6%) revealed that the divergence 
of rearranged IGHV gene from the closest germline gene, even in this group, is actually due 
to somatic hypermutation, further underscoring the statistical, rather than biological ratio‐
naleforthe98%cut‐off[40].However,thefactthatmediansurvivaldoesnotdifferbetween
patients with 100% and those with 99% or 98%,butissignificantlyshorterincomparisonto
survival of patients with <98% identity, justifiestheapplicationof98%cut‐offinclinicalprac‐
tice [39]. Finally, it should be noted that the absence of correlation between IGHV mutational 
statusandtheprognosisinaproportionofpatientscanbeattributed,atleastinsomecases,
tootherfactorsthatinfluencetheclinicaloutcome(seebelow).

Besides the borderline cases, clinical prognostication can be challenging in cases carrying 
double IGHV‐IGHD‐IGHJ rearrangements. In the majority of these cases only one rearrange‐
ment is productive, but in rare instances (up to 5% of cases), double productive rearrange‐
ments can be detected [41, 42].Expressionofdoubleproductiverearrangementsmaybethe
result of the lack of allelic exclusion, which has been described in CLL B cells or, alterna‐
tively,double(ormultiple)productiverearrangementsoriginatefromdifferentCLLclones
[41, 43]. If both rearrangements are of the same mutational status, prognostic interpretation is 
straightforward regardless of whether both or just one rearrangement is productive. The cases 
with productive mutated and unproductive unmutated IGHV‐IGHD‐IGHJ rearrangements 
are considered mutated, since the productive rearrangement is relevant for the biology of CLL 
cells. However, if double productive rearrangements are of discordant mutational status or 
if unmutated rearrangement is productive while the mutated rearrangement is unproductive 
(implying that the cell has undergone the SHM process), the clinical implications currently 
cannot be predicted [44].

The association of IGHV mutational status with other prognostic markers in CLL has been 
extensivelystudied.Besidesthecontributiontobetterunderstandingofthediseasebiology,
the research also aimed at finding a potential surrogatemarker that could substitute the
effortfulIGHVmutationalanalysisinclinicalpractice.Thefourmostfrequentclonalchro‐
mosomal aberrations (del13q, del11q, trisomy 12q and del17p) represent strong independent 
prognosticmarkersandaredifferentiallydistributedbetweenM‐CLLandU‐CLL[7, 45, 46]. 
The aberrations with adverse prognostic impact (del11q, trisomy 12q and del17p) are asso‐
ciated predominantly with unmutated IGHV‐IGHD‐IGHJ rearrangements, while favour‐
able del13q is more frequent in mutated cases [36, 37, 47–49]. Furthermore, unmutated CLL 
subtype is characterized by high risk of acquiring adverse chromosomal aberrations during 
the disease course [50]. In contrast to cytogenetic abnormalities, the association of CD38 and 
ZAP‐70 with IGHV mutational status is less consistent. The expression of CD38 on the sur‐
face of >30% of leukemic cells is an independent negative prognostic factor associated with 
theprogressivedisease,shortertimetofirsttreatmentandshorteroverallsurvival,although
the level of expression may vary over time [29, 51–53]. In some studies, CD38 positivity was 
strongly correlated to unmutated IGHV status, while others failed to detect any association, 
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regardlessofthecut‐offlevelusedfordefiningCD38status[29, 36, 49, 54]. Similarly to CD38, 
the expression of zeta‐chain‐associated protein kinase 70 (ZAP‐70) is also independent nega‐
tive prognostic marker associated with adverse clinical characteristics and poor prognosis 
[55–59]. Initially, in many studies, ZAP‐70 was found to be expressed predominantly in 
unmutated CLL and was suggested as a surrogate marker for IGHV mutational status; how‐
ever, subsequent research revealed a substantial discordance between these two markers [49, 
55, 57, 60–63].

The expression of several other genes has been reported to exert a strong prognostic value, 
qualifying them as potential biomarkers. Among those RNA‐based markers, lipoprotein 
lipase (LPL) emerged as the most powerful one, whose high expression level correlates with 
advancedclinicalstage,shortertimetofirsttreatmentandoverallsurvival,aswellaswith
other adverse prognostic parameters (short lymphocyte doubling time, ZAP‐70 and CD38 
positivity, poor‐risk cytogenetics) [64–70]. Moreover, LPL expression turned out to be a 
potent predictor of IGHV mutational status, as high levels of LPL were found to be strongly 
associated with unmutated IGHV‐IGHD‐IGHJ rearrangements [55, 60, 64–67, 71].

To conclude, despite certain limitations, IGHV mutational status analysis is currently the 
golden standard for CLL prognostication, which has been introduced into clinical practice in 
many centres. It is integrated into the most advanced prognostic scoring systems suggested 
forriskstratificationofCLLpatients[72–75].

3.2. Immunoglobulin variable region gene repertoire in CLL

The analyses of immunoglobulin heavy chain rearrangements in CLL revealed that not only 
IGHV, IGHD and IGHJ gene usage in CLL B lymphocytes is distinct from that of normal 
peripheralbloodBcells,butalsothegenerepertoiresofU‐CLLandM‐CLLclonessignifi‐
cantlydiffer.

The most commonly used IGHV subgroup in CLL rearrangements is IGHV3 (as is the case 
with normal B cells), followed by IGHV1 and IGHV4. However, the comparison of IGHV 
subgroupusagebetweenCLLandnormalBcellsshowedthatthereisasignificantover‐rep‐
resentation of IGHV1 subgroup, as well as underrepresentation of IGHV3 subgroup in CLL 
[33, 76–80]. In addition, the frequencies of IGHV subgroups are different in the twoCLL
subtypes:IGHV1genesarepresentpredominantlyintherearrangementsofU‐CLLclones,
in contrast to IGHV3 and IGHV4 genes that predominate in M‐CLL clones. Moreover, a hier‐
archy in the SHM level among IGHV subgroups has been documented: IGHV3 and IGHV4 
genes show a high mutational load while IGHV1 genes carry very few mutations (IGHV3 > 
IGHV4 > IGHV1) [30, 33, 80].

A strong bias in usage of individual IGHV genes has also been detected. In most studies, only 
6–7IGHVgeneswereutilizedinmorethan50%ofCLLIGHV‐IGHD‐IGHJrearrangements.
ThemostfrequentlyusedIGHVgeneswereIGHV1‐69,IGHV3‐23,IGHV3‐7andIGHV4‐34,
followed by several others (IGHV3‐30, IGHV3‐30.3, IGHV3‐48, IGHV1‐2, IGHV1‐3, 
IGHV1‐18, IGHV4‐39 and IGHV4‐59), depending on the cohort [30, 33, 79–82]. It should be 
noted, though, that normal B cell repertoire is not random, and that certain genes (such as 
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IGHV3‐23, IGHV3‐7 and IGHV3‐30.3) are overused [76]. Hence, some of the most common 
IGHV genes in CLL are represented with frequencies similar to those of normal B cells [33, 76, 
79].However,CLL‐relatedover‐representationofIGHV1‐69has been consistently reported, 
as well as its predominance in unmutated rearrangements. On the other hand, IGHV3‐23, 
IGHV3‐7, IGHV4‐34 and IGHV3‐48 are the most frequently used genes in mutated rearrange‐
ments.Thedifferencesinthemutationalload,observedforIGHVsubgroups,areevenmore
evidentwhen individualgenes are considered.For example, IGHV1‐69geneusuallyhar‐
bours no or just a few somatic mutations, whereas IGHV3‐7, IGHV3‐23 and IGHV4‐34 genes 
are highly mutated [30, 33, 78–80, 82].

Themajority of CLL IGHV‐IGHD‐IGHJ rearrangements contain IGHJ4 and IGHJ6 genes;
IGHJ6geneispredominantlyusedinunmutatedrearrangements,incontrasttoIGHJ4,which
isover‐representedinmutatedrearrangements.SinceIGHJ6 is the longest IGHJgene, this
resultsinsignificantlylongermedianVHCDR3lengthsofunmutatedvs.mutatedrearrange‐
ments [30, 33, 80].

Besides the biased usage of IGH subgroups and individual genes in CLL, early studies of 
CLL immunoglobulin repertoire have also revealed the over‐representation of certain IGHV‐
IGHD‐IGHJcombinations.Forexample,IGHV1‐69wasfrequentlyfoundincombinationwith
IGHJ6andIGHD3‐3orIGHD2‐2,creatingVHCDR3longerthantheaverage,whichisnot
common in rearrangements of normal B cells [33, 83, 84]. In contrast, the majority of IGHV3‐7 
genes were found to be combined with IGHJ4 and IGHD3 yielding shorter VH CDR3, while 
IGHV4‐34wasassociatedwithbothIGHJ4andIGHJ6genes[33].Thesefindingspointedto
the CLL‐biased VH CDR3 features and laid the foundations of the stereotyped B cell receptor 
concept (see below).

GeographicalandethnicaldifferencesinIGHVgeneusageinCLLrearrangementshavealso
been reported [79, 82, 85–89]. For example, IGHV3‐21 gene has been detected in IGHV‐IGHD‐
IGHJ rearrangements of more than 11% of Scandinavian patients, while it was less frequent 
intheUK(7.9%)andveryrareinMediterraneancohorts(lessthan3%ofcases)[79, 90–93]. In 
addition, IGHV1 genes have been shown to be represented with lower and IGHV4 genes with 
higher frequencies in CLL clones of patients from Asian countries in comparison to patients 
from Western populations [94–96].

The light chain variable region gene repertoire in CLL has been substantially less studied 
but, nevertheless, some similarities with the repertoire of heavy chains have been observed. 
TheratioofexpressedκandλlightchainsinCLLBlymphocytesmirrorsthatofnormalB
cells (2:1) [97].AsisthecasewithIGHrearrangements,roughly50%ofIGK/IGLrearrange‐
ments belongtothemutatedsubtypeand,inmostcases,IGHandIGK/IGLrearrangements 
are of the same mutational status [98].AskewedusageofIGKV/IGLVandIGKJ/IGLJsub‐
groups and individual genes has been reported, but the interpretations of whether their rela‐
tivefrequenciesdifferfromthoseofnormalBcellsarediscrepant,probablyduetodifferent
normal control datasets used for comparison. Similar to IGHV, the distribution of individual 
IGKVand IGLVgenesbetweenmutatedandunmutated rearrangements is asymmetrical
and,forsomegenes,CLL‐biased.Inaddition,certainIGKV‐IGKJandIGLV‐IGLJcombina‐
tions are over‐represented and CLL‐related [97–99]. Importantly, non‐stochastic pairing of 
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heavy and light chains has been detected and shown to depend on VH CDR3 motifs [100]. 
SincepreferentialpairingofspecificIGHVandIGKVorIGLVgeneshasnotbeenobserved
in normal B cell repertoire, biased usage of certain VH CDR3/VL CDR3 associations strongly 
impliesthattheexpressionofBCRswithspecificantigen‐bindingcharacteristicsisfavoured
in CLL [101, 102].

The usage of particular IGHV genes has been found to correlate with clinical course of CLL. 
The most striking example is IGHV3‐21 gene, which emerged as an adverse prognostic factor 
regardless of the IGHV mutational status. IGHV3‐21 is expressed in both CLL subtypes, but 
predominantly in M‐CLL. However, median overall survival of patients expressing mutated 
IGHV3‐21 rearrangements was found to be significantly shorter thanmedian survival of
non‐IGHV3‐21 mutated patients, and comparable to the survival of unmutated cases [90, 91, 
103, 104]. Other IGHV genes also exhibited association with certain clinical characteristics; 
for example, IGHV3‐23 has been indicated as a marker of worse prognosis within M‐CLL 
subtype, IGHV3‐72 is over‐represented in highly stable CLL, and IGHV3‐30 has been linked 
to spontaneous regression [105–107]. The associations of IG repertoire with clinicobiological 
features of CLL will be further discussed in the next section, in the context of BCR stereotypy.

3.3. BCR stereotypy

The discovery that CLL includes patients with both mutated and unmutated IGHV‐IGHD‐
IGHJrearrangementswasthefirstevidencepointingtowardstheroleofantigensinthepatho‐
genesis of the disease. The presence of somatic hypermutations and higher replacement/silent 
mutations (R/S) ratio in VH CDRs than in FRs indicate that M‐CLL cells have undergone 
germinal centre reactions and been selected by T cell‐dependent antigen [33]. Consequently, 
duetothelackofSHMinIGHrearrangements,U‐CLLcellshaveinitiallybeenthoughtto
originatefromnaïveBlymphocytes.However,furtherstudiesrevealedthatbothU‐CLLand
M‐CLL cells express highly restricted, non‐random immunoglobulin repertoire. CLL‐biased 
representation of certain IGHV genes and IGHV‐IGHD‐IGHJ combinations, as well as VH 
CDR3 characteristics, implies the recognition of limited set of antigens, suggesting that CLL 
clones,bothmutatedandunmutated,derivefromactivatedBcells.InthecaseofU‐CLL,the
cell of origin could have been activated either by T cell‐independent antigens and autoanti‐
gens outside germinal centres or by antigens that select against SHM [108]. High R/S ratio in 
VHCDR3ofminimallymutatedU‐CLLrearrangements(<2%mutations)furtherarguesin
favourofanantigen‐drivenprocess,sinceevenasinglemutationcansignificantlyenhance
antigen‐bindingaffinityofBCRand,hence,beselectedfor.Inkeepingwiththeseobserva‐
tions,studiesofgeneexpressionprofilesandsurfacephenotypesshowedthatbothM‐CLL
andU‐CLLcellsexhibitcharacteristicsofantigen‐experiencedBlymphocytes[60, 109, 110]. 
Finally, the most compelling evidence for the involvement of antigen in the development of 
CLL comes from the discovery of ‘stereotyped’ B cell receptors.

FollowingtheinitialfindingsonIGgenerepertoireandVHCDR3restrictions, ithasbeen
observed in multiple studies that a proportion of unrelated CLL patients expresses highly 
homologous, almost identical BCRs (stereotyped BCRs) [42, 79, 82, 85, 111–115]. Stereotyped 
BCRshavebeendetectedinbothCLLsubtypes,althoughwithhigherfrequencyinU‐CLL.
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Closely related BCRs have been clustered into stereotyped subsets. With the increase in the 
numberofcasesinvestigatedinthesestudies,thenumberofidentifiedstereotypedsubsets
grew larger, reaching several hundreds. However, the proportion of cases which could be 
assigned to stereotyped subsets did not exceed ∼30%, regardless of the cohort size [116]. In 
the largest study conducted by now, which included >7000 CLL patients, 19 subsets accounted 
for 41% of the stereotyped cases (major subsets) and 12% of the total cohort; other stereotyped 
subsets accounted for 18% of cases, while the remaining 70% of cases were heterogeneous, 
i.e. did not belong to any of the stereotypes [115].

Therequiredcriteriainitiallyadoptedforstereotypedsubsetdefinitionincludedtheusage
of the same IGHV, IGHD and IGHJ gene and IGHD reading frame, as well as identity of 
VHCDR3aminoacid sequence≥60% [111, 113]. However, it soon became apparent that 
differentIGHVgenes(althoughwithsubstantialsequencesimilarity)couldgeneratehighly
homologous VH CDR3s if recombined with the same IGHD and IGHJ genes. In addition, 
introduction of somatic hypermutations could lead to convergence of VH CDR3 sequences 
encodedbydifferentIGHVgenes[115, 117]. Therefore, a revised set of criteria for cluster‐
ing of IGH rearrangements into stereotyped subsets has been developed, which included 
additional parameters: (1) the presence of IGHV genes of the same phylogenetic clan, (2) 
identical VH CDR3 length and a unique amino acid motif at the exact position within VH 
CDR3, (3) VH CDR3 amino acid identity >50% and similarity > 70% [115]. Conserved amino 
acidmotifswhich define a subset can encompass almost the entire VHCDR3 sequence
(e.g. subset #6and#10)or, alternatively, can involve just a few,or even justone, critical
amino acid residue (e.g. subset #2). Furthermore, in some subsets, the conserved motifs are 
encodedsolelybyspecificIGHD‐IGHJcombinations(e.g.subsets#3,#5and#8),while in
others, conserved amino acids are located in junctional N1 and N2 regions (e.g. subsets #4, 
#16,#77and#201)[115]. The strong bias in usage of individual IGHV genes in stereotyped 
BCRshasbeendetected,sinceonlyafewgenes(IGHV1‐69,IGHV1‐2,IGHV1‐3,IGHV3‐21,
IGHV4‐34 and IGHV4‐39) are expressed in around 80% of clustered cases, while IGHV3‐7, 
IGHV3‐23, IGHV3‐30 and IGHV3‐33, though frequent in CLL, are virtually absent from 
stereotyped subsets [117]. In addition, the majority of subsets exhibit restricted light chain 
usagewithsubset‐biasedκandλCDR3motifs,thusevidencingthesignificantroleoflight
chainsinantigen‐bindingspecificitiesofstereotypedBCRs[118]. Most of the major subsets 
are characterized by exclusively mutated or unmutated rearrangements, while several of 
them(e.g.subset#1,#2and#99)canbedetectedamongbothM‐CLLandU‐CLLclones[115, 
117]. Characteristics of the most frequent among major stereotyped subsets are depicted in 
Table 1.

ExtensiveresearchonBCRstereotypyrevealedtheconsistentassociationofcertainstereo‐
typed subsets with clinicobiological features of patients. It is well known that proliferation 
and survival of CLL cells rely on BCR signalling, along with signalling via other surface 
receptors which transduce signals from the microenvironment, since they rapidly undergo 
apoptosis when cultivated in vitro [16, 119].ThedifferencesinaggressivenessofM‐CLLand
U‐CLLcloneshavebeenattributed,atleastinpart,totheirdifferentBCRsignallingcapacity;
CLL cells with unmutated BCRs have been shown to respond more avidly to sIgM cross‐
linking and express higher levels of BCR target genes than M‐CLL cells, which are more 
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anergic [120–123].However,ithasbeenobservedthatpatientsbelongingtospecificstereo‐
typedsubsetsfollowdifferentclinicalcoursefrompatientsassignedtoothersubsets,even
if expressing the same IGHV gene and having the same IGHV mutational status [82, 93, 124, 
125]. The culprit for these subset‐related clinical distinctions could be the stereotyped BCR 
itself, sincedifferences in antigen reactivity and signalling capacity ofBCRsbelonging to
certain subsets have been detected. For example, it has been demonstrated that subset #1 
and#2primaryBcellsweresignificantlylessresponsivetoantigenicstimulationsin vitro in 
comparison to subset #8 cells [126].Additionally,subset‐specificdistributionofprognosti‐
callysignificantchromosomalaberrations(del13q,del11q,trisomy12qanddel17p),aswell
as recurrent mutations in frequently mutated genes in CLL (TP53, BIRC3, MYD88, NOTCH1 
andSF3B1)hasbeenreported,furtherunderscoringthedifferencesbetweenstereotypedsub‐
sets [127, 128].

Asmentionedintheprevioussection,theusageofIGHV3‐21genehasbeenidentifiedasa
factor of poor prognosis independent of IGHV mutational status in several studies. However, 
subsequent research revealed that this was only true for a proportion of cases, which turned 
out to belong to subset #2. Subset #2 (IGHV3‐21/IGLV3‐21) is the largest among stereotyped 
subsets, detected in both U‐CLL and M‐CLL, and associated with del11q, del13q, CD38
expression and SF3B1 mutations [124, 127, 128]. It has been found that IGHV3‐21‐utilizing 
cases assigned to subset #2, whether mutated or not, follow an aggressive clinical course, 
while cases carrying IGHV3‐21 in heterogeneous BCRs have variable clinical course which 
correlates to IGHV mutational status [79, 85, 129].

Subset#1(IGHV1/5/7/IGKV1(D)‐39)isthesecondlargeststereotypedsubset,mostlyunmu‐
tated, and also associated with aggressive disease and adverse prognosis. Recent studies 
revealedasignificantenrichmentforTP53defects(del17pand/orTP53mutations),trisomy
12q and NOTCH1 mutations [128, 130]. In addition, subset #1 B cells exhibited higher pro‐
liferation rate following in vitro BCR ligation with anti‐IgM antibodies than non‐subset #1 
unmutated B cells [130]. Similarly to subset #2, cases assigned to subset #1 have worse prog‐
nosis when compared to unclustered cases using the same IGHV genes [82, 85, 130].

Theaforementionedsubset#8(IGHV4‐39/IGKV1(D)‐39)isassociatedwiththehighestriskof
Richter’s transformation among all CLL [131]. In addition to broad polyreactivity and higher 
capacity for BCR signalling compared to subsets #1 and #2, the observed association with 
trisomy 12q and enrichment for NOTCH1 mutations likely contribute to the aggressiveness 
of subset #8 clones [124, 128].

Incontrasttoclinicallyaggressivesubsets#1,#2and#8,subset#4(IGHV4‐34/IGKV2‐30),the
largest within M‐CLL subtype, is associated with younger age at diagnosis and remarkably 
indolent clinical course in comparison to non‐subset #4 IGHV4‐34 cases, as well as to all other 
M‐CLL cases [42, 82]. Subset #4 is characterized by CD38 negativity, the lack of recurrent 
gene mutations and the presence of favourable deletion 13q14 as the only recurrent chromo‐
somal abnormality [127, 128].Geneexpressionprofilingandin vitro antigenic stimulation of 
subset #4 leukemic cells revealed diminished response to BCR‐mediated signalling and the 
resemblance with anergic B cells, which probably underlie the indolent phenotype of subset 
#4 patients [132, 133].
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Given that mathematical probability of two independent B cells creating identical IG rear‐
rangements is virtually negligible, the existence of stereotyped BCRs is considered to be 
the strongest evidence for recognition of common antigens leading to selection of the CLL 
clones. This implies that BCR reactivity and intensity of response to antigenic stimulation, as 
well as the frequency of exposure to antigens, could determine the behaviour of CLL clones 
and, hence, the course of the disease. Similar clinical characteristics of cases belonging to the 
same stereotyped subset corroborate this notion. Therefore, BCR stereotypy could potentially 
become a reliable prognostic marker for at least a proportion of patients. However, most 
of theclinicalvariability inCLL is confined tocaseswithheterogeneousBCRs, forwhom
theprognosisdefinitionremainsdependentonIGHVmutationalstatusandothermolecular
markers.

4. Concluding remarks

Although the cellular origin of CLL is still a controversial issue, immunogenetic studies of 
BCR gene repertoire have provided unequivocal evidence that CLL precursor, in both M‐CLL 
andU‐CLLsubtype,isanantigen‐experiencedBlymphocyte[134]. Studies of antigen reac‐
tivityhaverevealedthatU‐CLLcellsgenerallyexpresslow‐affinitypolyreactiveBCRsthat
recognize microbial antigens and autoantigens present on the surface of apoptotic cells (sin‐
gle‐ and double‐stranded DNA, cytoskeletal proteins, oxidized LDL and lipopolysaccharides) 
[135–139]. B cell receptors of M‐CLL cells, on the other hand, exhibit more restricted antigen 
specificitiesandaremainlyoligoandmonoreactive.Auto‐reactivityhasbeendemonstrated
forseveralstereotypedsubsets.Forexample,ithasbeenobservedthatsubset#6(IGHV1‐69/
IGHD3‐16/IGHJ3)antibodiesbindnon‐musclemyosinheavychainIIA,exposedonapoptotic
cells,whilesubset#1(IGHV1/5/7/IGKV1(D)‐39)recognizesoxidizedLDL,aswellasvimentin
and calreticulin on stromal cells [137, 140, 141]. Furthermore, analysis of IGHV‐IGHD‐IGHJ 
sequenceofsubset#4(IGHV4‐34/IGKV2‐30)hasindicatedsimilaritieswithanti‐DNAanti‐
bodies, as well as the binding of N‐acetyllactosamine, which is a common epitope present 
on various autoantigens (I/i blood group antigen, B cell isoform of CD45) and microorgan‐
isms [142]. The recognition of bacterial and viral antigens by CLL BCRs is further supported 
bytheassociationofpersistentinfectionswithEpstein‐Barrvirusandcytomegaloviruswith
subset#4,andhepatitisCviruswithsubset#13(IGHV4‐59/IGKV3‐20),thelatterexhibiting
rheumatoid factor activity [143, 144]. The unmutated IGHV1‐69‐utilizingBCRs have been
shown to react with hepatitis C, HIV‐1 and intestinal commensal bacteria antigens [145]. In 
addition, reactivity against the capsular polysaccharides of Streptococcus pneumoniae has been 
detected, which is in agreement with the observed association of respiratory tract infections 
with elevated risk of CLL [137, 146]. Fungal antigens have also been implicated in CLL, after 
thenotionthatmutatedIGHV3‐7/IGKV2‐24BCRsrecognizeβ‐(1,6)‐glucan,antigenicdeter‐
minantofyeastandfilamentousfungi[147].

Whatever the antigens might be, they clearly play a key role in the natural history of CLL. 
However, the major unanswered questions concern the moment in the disease development 
at which BCR‐antigen interaction occurs, and to what extent the nature of this  interaction 
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influences thediseaseprogression.Stimulationbyauto‐and/orexo‐antigenmaybe lim‐
ited to phases prior to or during malignant transformation, leading to the selection and 
clonal expansion of precursor cell with the distinctive BCR, during which it acquires the 
oncogenic hit and becomes CLL cell [148]. Yet, it is still unclear whether antigenic stimula‐
tion continues after transformation. Several studies have investigated if CLL cells accumu‐
late somatic hypermutations post‐transformation, and have detected extensive intraclonal 
diversificationincasesassignedtostereotypedsubset#4(butnotinsubsets#2,#8and#16
and heterogeneous BCRs), implying an on‐going antigenic triggering in this subset [149, 
150]. Inaddition,geneexpressionprofilingofCLLcells fromlymphnodeshasrevealed
up‐regulation of BCR target genes, thus indicating continual antigenic stimulation [122]. 
The fundamental role of BCRs in CLL is underscored by the success of newly developed 
therapeuticstrategiestargetingBCRsignallingpathways(BTK,PI3KandSYKinhibitors)
[151–154].

TheconfigurationofBCRexpressedonthesurfaceof theCLLclonerepresents itsspecific
molecular signature which does not change during the disease course. Hence, it is reasonable 
to believe that, in addition to IGHV mutational status, the informations about the clonotypic 
BCR will in future become important for individual patient prognostication and, ultimately, 
willcontributetotailoringofpatient‐specifictreatmentmodalities.

Acknowledgements

ThisworkwassupportedbyMinistryofEducation,ScienceandTechnologicalDevelopment,
Republic of Serbia (Grant No. III41004).

Author details

TeodoraKaran‐Djurasevic*andSonjaPavlovic

*Address all correspondence to: dora_karan@yahoo.com

InstituteofMolecularGeneticsandGeneticEngineering,UniversityofBelgrade,Belgrade,
Serbia

References

[1] HallekM.Chroniclymphocyticleukemia:2015Updateondiagnosis,riskstratification,
and treatment. American Journal of Hematology. 2015;90(5):446‐460

[2] Dores GM,AndersonWF, Curtis RE, LandgrenO, Ostroumova E, Bluhm EC, et al.
Chronic lymphocytic leukaemia and small lymphocytic lymphoma: Overview of the 
descriptive epidemiology. British Journal of Haematology. 2007;139(5):809‐819

Somatic Hypermutational Status and Gene Repertoire of Immunoglobulin Rearrangements in ...
http://dx.doi.org/10.5772/intechopen.69110

65



[3] GoldinLR,BjorkholmM,KristinssonSY,TuressonI,LandgrenO.Elevatedriskofchronic
lymphocytic leukemia and other indolent non‐Hodgkin’s lymphomas among relatives 
of patients with chronic lymphocytic leukemia. Haematologica. 2009;94(5):647‐653

[4] Berndt SI, Camp NJ, Skibola CF, Vijai J, Wang Z, Gu J, et al. Meta‐analysis of genome‐
wide association studies discovers multiple loci for chronic lymphocytic leukemia. 
NatureCommunications.2016;7:10933

[5] LawPJ,BerndtSI,SpeedyHE,CampNJ,SavaGP,SkibolaCF,etal.Genome‐wideasso‐
ciation analysis implicates dysregulation of immunity genes in chronic lymphocytic leu‐
kaemia. Nature Communications. 2017;8:14175

[6] SuttonLA,RosenquistR.Thecomplexinterplaybetweencell‐intrinsicandcell‐extrin‐
sic factors driving the evolution of chronic lymphocytic leukemia. Seminars in Cancer 
Biology. 2015;34:22‐35

[7] DohnerH,StilgenbauerS,BennerA,LeupoltE,KroberA,BullingerL,etal.Genomic
aberrationsandsurvivalinchroniclymphocyticleukemia.TheNewEnglandJournalof
Medicine. 2000;343(26):1910‐1916

[8] AustenB,SkowronskaA,BakerC,PowellJE,GardinerA,OscierD,etal.Mutationstatus
of the residual ATM allele is an important determinant of the cellular response to chemo‐
therapy and survival in patients with chronic lymphocytic leukemia containing an 11q 
deletion. Journal of Clinical Oncology. 2007;25(34):5448‐5457

[9] CalinGA,DumitruCD,ShimizuM,BichiR,ZupoS,NochE,etal.Frequentdeletions
anddown‐regulationofmicro‐RNAgenesmiR15andmiR16at13q14inchroniclym‐
phocytic leukemia. Proceedings of the NationalAcademy of Sciences of the United
States of America. 2002;99(24):15524‐15529

[10] Zenz T, Habe S, Denzel T, Mohr J, Winkler D, Buhler A, et al. Detailed analysis of 
p53 pathway defects in fludarabine‐refractory chronic lymphocytic leukemia (CLL):
Dissecting the contribution of 17p deletion, TP53 mutation, p53‐p21 dysfunction, and 
miR34a in a prospective clinical trial. Blood. 2009;114(13):2589‐2597

[11] Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C, et al. Integrated mutational 
andcytogeneticanalysis identifiesnewprognosticsubgroups inchronic lymphocytic
leukemia. Blood. 2013;121(8):1403‐1412

[12] PackhamG,StevensonFK.Bodyguardsandassassins:Bcl‐2familyproteinsandapopto‐
sis control in chronic lymphocytic leukaemia. Immunology. 2005;114(4):441‐449

[13] Karan‐Djurasevic T, Palibrk V, Zukic B, Spasovski V, Glumac I, Colovic M, et al.
ExpressionofBcl2L12inchroniclymphocyticleukemiapatients:Associationwithclini‐
cal and molecular prognostic markers. Medical Oncology. 2013;30(1):405

[14] VucicevicK,JakovljevicV,ColovicN,TosicN,KosticT,GlumacI,etal.Associationof
bax expression and BCL2/BAX ratio with clinical and molecular prognostic markers in 
chroniclymphocyticleukemia.TheJournalofBiochemistry.2016;35(2):150‐157

Lymphocyte Updates - Cancer, Autoimmunity and Infection66



[3] GoldinLR,BjorkholmM,KristinssonSY,TuressonI,LandgrenO.Elevatedriskofchronic
lymphocytic leukemia and other indolent non‐Hodgkin’s lymphomas among relatives 
of patients with chronic lymphocytic leukemia. Haematologica. 2009;94(5):647‐653

[4] Berndt SI, Camp NJ, Skibola CF, Vijai J, Wang Z, Gu J, et al. Meta‐analysis of genome‐
wide association studies discovers multiple loci for chronic lymphocytic leukemia. 
NatureCommunications.2016;7:10933

[5] LawPJ,BerndtSI,SpeedyHE,CampNJ,SavaGP,SkibolaCF,etal.Genome‐wideasso‐
ciation analysis implicates dysregulation of immunity genes in chronic lymphocytic leu‐
kaemia. Nature Communications. 2017;8:14175

[6] SuttonLA,RosenquistR.Thecomplexinterplaybetweencell‐intrinsicandcell‐extrin‐
sic factors driving the evolution of chronic lymphocytic leukemia. Seminars in Cancer 
Biology. 2015;34:22‐35

[7] DohnerH,StilgenbauerS,BennerA,LeupoltE,KroberA,BullingerL,etal.Genomic
aberrationsandsurvivalinchroniclymphocyticleukemia.TheNewEnglandJournalof
Medicine. 2000;343(26):1910‐1916

[8] AustenB,SkowronskaA,BakerC,PowellJE,GardinerA,OscierD,etal.Mutationstatus
of the residual ATM allele is an important determinant of the cellular response to chemo‐
therapy and survival in patients with chronic lymphocytic leukemia containing an 11q 
deletion. Journal of Clinical Oncology. 2007;25(34):5448‐5457

[9] CalinGA,DumitruCD,ShimizuM,BichiR,ZupoS,NochE,etal.Frequentdeletions
anddown‐regulationofmicro‐RNAgenesmiR15andmiR16at13q14inchroniclym‐
phocytic leukemia. Proceedings of the NationalAcademy of Sciences of the United
States of America. 2002;99(24):15524‐15529

[10] Zenz T, Habe S, Denzel T, Mohr J, Winkler D, Buhler A, et al. Detailed analysis of 
p53 pathway defects in fludarabine‐refractory chronic lymphocytic leukemia (CLL):
Dissecting the contribution of 17p deletion, TP53 mutation, p53‐p21 dysfunction, and 
miR34a in a prospective clinical trial. Blood. 2009;114(13):2589‐2597

[11] Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C, et al. Integrated mutational 
andcytogeneticanalysis identifiesnewprognosticsubgroups inchronic lymphocytic
leukemia. Blood. 2013;121(8):1403‐1412

[12] PackhamG,StevensonFK.Bodyguardsandassassins:Bcl‐2familyproteinsandapopto‐
sis control in chronic lymphocytic leukaemia. Immunology. 2005;114(4):441‐449

[13] Karan‐Djurasevic T, Palibrk V, Zukic B, Spasovski V, Glumac I, Colovic M, et al.
ExpressionofBcl2L12inchroniclymphocyticleukemiapatients:Associationwithclini‐
cal and molecular prognostic markers. Medical Oncology. 2013;30(1):405

[14] VucicevicK,JakovljevicV,ColovicN,TosicN,KosticT,GlumacI,etal.Associationof
bax expression and BCL2/BAX ratio with clinical and molecular prognostic markers in 
chroniclymphocyticleukemia.TheJournalofBiochemistry.2016;35(2):150‐157

Lymphocyte Updates - Cancer, Autoimmunity and Infection66

[15] NiemannCU,WiestnerA.B‐cellreceptorsignalingasadriveroflymphomadevelop‐
ment and evolution. Seminars in Cancer Biology. 2013;23(6):410‐421

[16] Stevenson FK, Forconi F, PackhamG. Themeaning and relevance of B‐cell receptor
structure and function in chronic lymphocytic leukemia. Seminars in Hematology. 
2014;51(3):158‐167

[17] Hallek M, Cheson BD, Catovsky D, Caligaris‐Cappio F, Dighiero G, Dohner H, et al. 
Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: A report 
from the International Workshop on Chronic Lymphocytic Leukemia updating the 
NationalCancerInstitute‐WorkingGroup1996guidelines.Blood.2008;111(12):5446‐5456

[18] XuJL,DavisMM.DiversityintheCDR3regionofV(H)issufficientformostantibody
specificities.Immunity.2000;13(1):37‐45

[19] LefrancMP,PommieC,RuizM,GiudicelliV,FoulquierE,TruongL,etal.IMGTunique
numbering for immunoglobulin and T cell receptor variable domains and Ig superfam‐
ily V‐like domains. Developmental & Comparative Immunology. 2003;27(1):55‐77

[20] LefrancM‐P,LefrancG.TheimmunoglobulinFactsBook.London,UK:AcademicPress;
2001

[21] Lefranc MP. Nomenclature of the human immunoglobulin heavy (IGH) genes. 
ExperimentalandClinicalImmunogenetics.2001;18(2):100‐116

[22] Brady BL, Steinel NC, Bassing CH. Antigen receptor allelic exclusion: An update and 
reappraisal. Journal of Immunology. 2010;185(7):3801‐3808

[23] GlanvilleJ,KuoTC,vonBudingenHC,GueyL,BerkaJ,SundarPD,etal.Naiveanti‐
body gene‐segment frequencies are heritable and unaltered by chronic lymphocyte abla‐
tion.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.
2011;108(50):20066‐20071

[24] SchatzDG, Spanopoulou E. Biochemistry ofV(D)J recombination. Current Topics in
Microbiology and Immunology. 2005;290:49‐85

[25] LuningPrakET,MonestierM,EisenbergRA.Bcell receptorediting in toleranceand
autoimmunity. Annals of the New York Academy of Sciences. 2011;1217:96‐121

[26] De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nature Reviews
Immunology. 2015;15(3):137‐148

[27] PeledJU,KuangFL,Iglesias‐UsselMD,RoaS,KalisSL,GoodmanMF,etal.Thebio‐
chemistry of somatic hypermutation. Annual Review of Immunology. 2008;26:481‐511

[28] StavnezerJ,GuikemaJE,SchraderCE.Mechanismandregulationofclassswitchrecom‐
bination. Annual Review of Immunology. 2008;26:261‐292

[29] DamleRN,WasilT,FaisF,GhiottoF,ValettoA,AllenSL,etal.IgVgenemutationstatus
and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. 
Blood. 1999;94(6):1840‐1847

Somatic Hypermutational Status and Gene Repertoire of Immunoglobulin Rearrangements in ...
http://dx.doi.org/10.5772/intechopen.69110

67



[30] HamblinTJ,DavisZ,GardinerA,OscierDG,StevensonFK.UnmutatedIgV(H)genes
are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 
1999;94(6):1848‐1854

[31] MaloumK,DaviF,Merle‐BeralH,PritschO,MagnacC,VuillierF,etal.Expressionof
unmutated VH genes is a detrimental prognostic factor in chronic lymphocytic  leukemia. 
Blood. 2000;96(1):377‐379

[32] ThompsonPA,TamCS,O’BrienSM,WierdaWG,StingoF,PlunkettW,etal.Fludarabine,
cyclophosphamide, and rituximab treatment achieves long‐term disease‐free survival in 
IGHV‐mutatedchroniclymphocyticleukemia.Blood.2016;127(3):303‐309

[33] FaisF,GhiottoF,HashimotoS,SellarsB,ValettoA,AllenSL,etal.Chroniclymphocytic
leukemia B cells express restricted sets of mutated and unmutated antigen receptors. 
The Journal of Clinical Investigation. 1998;102(8):1515‐1525

[34] GhiaP,StamatopoulosK,BelessiC,MorenoC,StilgenbauerS,StevensonF,etal.ERIC
recommendations on IGHV gene mutational status analysis in chronic lymphocytic 
 leukemia. Leukemia. 2007;21(1):1‐3

[35] GiudicelliV,BrochetX,LefrancMP.IMGT/V‐QUEST:IMGTstandardizedanalysisof
the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences. Cold Spring 
Harbor Protocols. 2011;2011(6):695‐715

[36] KroberA,SeilerT,BennerA,BullingerL,BruckleE,LichterP,etal.V(H)mutationsta‐
tus, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic 
leukemia. Blood. 2002;100(4):1410‐1416

[37] LinK,SherringtonPD,DennisM,MatraiZ,CawleyJC,PettittAR.Relationshipbetween
p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leuke‐
mia. Blood. 2002;100(4):1404‐1409

[38] TobinG,ThunbergU,LaurellA,KarlssonK,AleskogA,WillanderK,etal.Patientswith
chronic lymphocytic leukemia with mutated VH genes presenting with Binet stage B or 
C form a subgroup with a poor outcome. Haematologica. 2005;90(4):465‐469

[39] Hamblin TJ, Davis ZA, Oscier DG. Determination of how many immunoglobulin vari‐
able region heavy chain mutations are allowable in unmutated chronic lymphocytic 
leukaemia—Long‐termfollowupofpatientswithdifferentpercentagesofmutations.
British Journal of Haematology. 2008;140(3):320‐323

[40] Davis ZA, Orchard JA, Corcoran MM, Oscier DG. Divergence from the germ‐line 
sequence in unmutated chronic lymphocytic leukemia is due to somatic mutation rather 
than polymorphisms. Blood. 2003;102(8):3075

[41] RassentiLZ,KippsTJ.LackofallelicexclusioninBcellchroniclymphocyticleukemia.
TheJournalofExperimentalMedicine.1997;185(8):1435‐1445

[42] Murray F, Darzentas N, Hadzidimitriou A, Tobin G, Boudjogra M, Scielzo C, et al. 
Stereotyped patterns of somatic hypermutation in subsets of patients with chronic

Lymphocyte Updates - Cancer, Autoimmunity and Infection68



[30] HamblinTJ,DavisZ,GardinerA,OscierDG,StevensonFK.UnmutatedIgV(H)genes
are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 
1999;94(6):1848‐1854

[31] MaloumK,DaviF,Merle‐BeralH,PritschO,MagnacC,VuillierF,etal.Expressionof
unmutated VH genes is a detrimental prognostic factor in chronic lymphocytic  leukemia. 
Blood. 2000;96(1):377‐379

[32] ThompsonPA,TamCS,O’BrienSM,WierdaWG,StingoF,PlunkettW,etal.Fludarabine,
cyclophosphamide, and rituximab treatment achieves long‐term disease‐free survival in 
IGHV‐mutatedchroniclymphocyticleukemia.Blood.2016;127(3):303‐309

[33] FaisF,GhiottoF,HashimotoS,SellarsB,ValettoA,AllenSL,etal.Chroniclymphocytic
leukemia B cells express restricted sets of mutated and unmutated antigen receptors. 
The Journal of Clinical Investigation. 1998;102(8):1515‐1525

[34] GhiaP,StamatopoulosK,BelessiC,MorenoC,StilgenbauerS,StevensonF,etal.ERIC
recommendations on IGHV gene mutational status analysis in chronic lymphocytic 
 leukemia. Leukemia. 2007;21(1):1‐3

[35] GiudicelliV,BrochetX,LefrancMP.IMGT/V‐QUEST:IMGTstandardizedanalysisof
the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences. Cold Spring 
Harbor Protocols. 2011;2011(6):695‐715

[36] KroberA,SeilerT,BennerA,BullingerL,BruckleE,LichterP,etal.V(H)mutationsta‐
tus, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic 
leukemia. Blood. 2002;100(4):1410‐1416

[37] LinK,SherringtonPD,DennisM,MatraiZ,CawleyJC,PettittAR.Relationshipbetween
p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leuke‐
mia. Blood. 2002;100(4):1404‐1409

[38] TobinG,ThunbergU,LaurellA,KarlssonK,AleskogA,WillanderK,etal.Patientswith
chronic lymphocytic leukemia with mutated VH genes presenting with Binet stage B or 
C form a subgroup with a poor outcome. Haematologica. 2005;90(4):465‐469

[39] Hamblin TJ, Davis ZA, Oscier DG. Determination of how many immunoglobulin vari‐
able region heavy chain mutations are allowable in unmutated chronic lymphocytic 
leukaemia—Long‐termfollowupofpatientswithdifferentpercentagesofmutations.
British Journal of Haematology. 2008;140(3):320‐323

[40] Davis ZA, Orchard JA, Corcoran MM, Oscier DG. Divergence from the germ‐line 
sequence in unmutated chronic lymphocytic leukemia is due to somatic mutation rather 
than polymorphisms. Blood. 2003;102(8):3075

[41] RassentiLZ,KippsTJ.LackofallelicexclusioninBcellchroniclymphocyticleukemia.
TheJournalofExperimentalMedicine.1997;185(8):1435‐1445

[42] Murray F, Darzentas N, Hadzidimitriou A, Tobin G, Boudjogra M, Scielzo C, et al. 
Stereotyped patterns of somatic hypermutation in subsets of patients with chronic

Lymphocyte Updates - Cancer, Autoimmunity and Infection68

 lymphocytic leukemia: Implications for the role of antigen selection in leukemogenesis. 
Blood. 2008;111(3):1524‐1533

[43] Plevova K, Francova HS, Burckova K, Brychtova Y, Doubek M, Pavlova S, et al.
Multiple productive immunoglobulin heavy chain gene rearrangements in chronic 
lymphocytic leukemia are mostly derived from independent clones. Haematologica. 
2014;99(2):329‐338

[44] Langerak AW, Davi F, Ghia P, Hadzidimitriou A, Murray F, Potter KN, et al.
Immunoglobulin sequence analysis and prognostication in CLL: Guidelines from 
the ERIC review board for reliable interpretation of problematic cases. Leukemia.
2011;25(6):979‐984

[45] GreverMR,LucasDM,DewaldGW,NeubergDS,ReedJC,KitadaS,etal.Comprehensive
assessment of genetic and molecular features predicting outcome in patients with 
chronic lymphocytic leukemia:Results fromtheUS IntergroupPhase IIITrialE2997.
Journal of Clinical Oncology. 2007;25(7):799‐804

[46] Parikh SA, Strati P, Tsang M, West CP, Shanafelt TD. Should IGHV status and FISH 
testing be performed in all CLL patients at diagnosis? A systematic review and meta‐ 
analysis.Blood.2016;127(14):1752‐1760

[47] OscierDG,GardinerAC,MouldSJ,GlideS,DavisZA,IbbotsonRE,etal.Multivariate
analysis of prognostic factors in CLL: Clinical stage, IGVH gene mutational sta‐
tus, and loss or mutation of the p53 gene are independent prognostic factors. Blood. 
2002;100(4):1177‐1184

[48] Stilgenbauer S, Bullinger L, Lichter P, Dohner H. Genetics of chronic lymphocytic leu‐
kemia: Genomic aberrations and V(H) gene mutation status in pathogenesis and clinical 
course. Leukemia. 2002;16(6):993‐1007

[49] Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic
characterization of CLL: A study on 506 cases analysed with chromosome band‐
ing analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 
2007;21(12):2442‐2451

[50] StilgenbauerS,SanderS,BullingerL,BennerA,LeupoltE,WinklerD,etal.Clonalevo‐
lution in chronic lymphocytic leukemia: Acquisition of high‐risk genomic aberrations 
associated with unmutated VH, resistance to therapy, and short survival. Haematologica. 
2007;92(9):1242‐1245

[51] GhiaP,GuidaG,StellaS,GottardiD,GeunaM,StrolaG,etal.ThepatternofCD38
expressiondefinesadistinctsubsetofchroniclymphocyticleukemia(CLL)patientsat
risk of disease progression. Blood. 2003;101(4):1262‐1269

[52] HamblinTJ,OrchardJA,IbbotsonRE,DavisZ,ThomasPW,StevensonFK,etal.CD38
expression and immunoglobulin variable region mutations are independent prognostic 
variables in chronic lymphocytic leukemia, but CD38 expression may vary during the 
course of the disease. Blood. 2002;99(3):1023‐1029

Somatic Hypermutational Status and Gene Repertoire of Immunoglobulin Rearrangements in ...
http://dx.doi.org/10.5772/intechopen.69110

69



[53] Dürig J, NascharM, Schmücker U, Renzing‐Köhler K,Hölter T, HüttmannA, et al.
CD38 expression is an important prognostic marker in chronic lymphocytic leukaemia. 
Leukemia. 2002;16(1):30‐35

[54] Jelinek DF, Tschumper RC, Geyer SM, Bone ND, Dewald GW, Hanson CA, et al. Analysis 
of clonal B‐cell CD38 and immunoglobulin variable region sequence status in relation to 
clinical outcome for B‐chronic lymphocytic leukaemia. British Journal of Haematology. 
2001;115(4):854‐861

[55] Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, et al. ZAP‐70 
expression as a surrogate for immunoglobulin‐variable‐region mutations in chronic 
lymphocyticleukemia.TheNewEnglandJournalofMedicine.2003;348(18):1764‐1775

[56] RassentiLZ,JainS,KeatingMJ,WierdaWG,GreverMR,ByrdJC,etal.Relativevalueof
ZAP‐70, CD38, and immunoglobulin mutation status in predicting aggressive disease in 
chronic lymphocytic leukemia. Blood. 2008;112(5):1923‐1930

[57] RassentiLZ,HuynhL,ToyTL,ChenL,KeatingMJ,GribbenJG,etal.ZAP‐70comparedwith
immunoglobulin heavy‐chain gene mutation status as a predictor of disease progression in 
chroniclymphocyticleukemia.TheNewEnglandJournalofMedicine.2004;351(9):893‐901

[58] OrchardJA,IbbotsonRE,DavisZ,WiestnerA,RosenwaldA,ThomasPW,etal.ZAP‐70
expression and prognosis in chronic lymphocytic leukaemia. Lancet. 2004;363(9403):105‐111

[59] StamatopoulosB,MeulemanN,Haibe‐KainsB,DuvillierH,MassyM,MartiatP,etal.
QuantificationofZAP70mRNAinBcellsbyreal‐timePCRisapowerfulprognosticfac‐
tor in chronic lymphocytic leukemia. Clinical Chemistry. 2007;53(10):1757‐1766

[60] RosenwaldA,AlizadehAA,WidhopfG,SimonR,DavisRE,YuX,etal.Relationofgene
expression phenotype to immunoglobulin mutation genotype in B cell chronic lympho‐
cyticleukemia.TheJournalofExperimentalMedicine.2001;194(11):1639‐1647

[61] CatherwoodMA,MatthewsC,NiblockR,DobbinE,MorrisTC,AlexanderHD.ZAP‐70
mRNA quantification in B‐cell chronic lymphocytic leukaemia. European Journal of
Haematology.2006;76(4):294‐298

[62] KroberA,BloehdornJ,HafnerS,BuhlerA,SeilerT,KienleD,etal.Additionalgenetic
high‐risk features such as 11q deletion, 17p deletion, and V3‐21 usage characterize dis‐
cordance of ZAP‐70 and VH mutation status in chronic lymphocytic leukemia. Journal 
ofClinicalOncology.2006;24(6):969‐975

[63] WiestnerA,RosenwaldA,BarryTS,WrightG,DavisRE,HenricksonSE,etal.ZAP‐70
expressionidentifiesachroniclymphocyticleukemiasubtypewithunmutatedimmu‐
noglobulingenes,inferiorclinicaloutcome,anddistinctgeneexpressionprofile.Blood.
2003;101(12):4944‐4951

[64] HeintelD,KienleD,ShehataM,KroberA,KroemerE,SchwarzingerI,etal.Highexpres‐
sion of lipoprotein lipase in poor risk B‐cell chronic lymphocytic leukemia. Leukemia. 
2005;19(7):1216‐1223

Lymphocyte Updates - Cancer, Autoimmunity and Infection70



[53] Dürig J, NascharM, Schmücker U, Renzing‐Köhler K,Hölter T, HüttmannA, et al.
CD38 expression is an important prognostic marker in chronic lymphocytic leukaemia. 
Leukemia. 2002;16(1):30‐35

[54] Jelinek DF, Tschumper RC, Geyer SM, Bone ND, Dewald GW, Hanson CA, et al. Analysis 
of clonal B‐cell CD38 and immunoglobulin variable region sequence status in relation to 
clinical outcome for B‐chronic lymphocytic leukaemia. British Journal of Haematology. 
2001;115(4):854‐861

[55] Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, et al. ZAP‐70 
expression as a surrogate for immunoglobulin‐variable‐region mutations in chronic 
lymphocyticleukemia.TheNewEnglandJournalofMedicine.2003;348(18):1764‐1775

[56] RassentiLZ,JainS,KeatingMJ,WierdaWG,GreverMR,ByrdJC,etal.Relativevalueof
ZAP‐70, CD38, and immunoglobulin mutation status in predicting aggressive disease in 
chronic lymphocytic leukemia. Blood. 2008;112(5):1923‐1930

[57] RassentiLZ,HuynhL,ToyTL,ChenL,KeatingMJ,GribbenJG,etal.ZAP‐70comparedwith
immunoglobulin heavy‐chain gene mutation status as a predictor of disease progression in 
chroniclymphocyticleukemia.TheNewEnglandJournalofMedicine.2004;351(9):893‐901

[58] OrchardJA,IbbotsonRE,DavisZ,WiestnerA,RosenwaldA,ThomasPW,etal.ZAP‐70
expression and prognosis in chronic lymphocytic leukaemia. Lancet. 2004;363(9403):105‐111

[59] StamatopoulosB,MeulemanN,Haibe‐KainsB,DuvillierH,MassyM,MartiatP,etal.
QuantificationofZAP70mRNAinBcellsbyreal‐timePCRisapowerfulprognosticfac‐
tor in chronic lymphocytic leukemia. Clinical Chemistry. 2007;53(10):1757‐1766

[60] RosenwaldA,AlizadehAA,WidhopfG,SimonR,DavisRE,YuX,etal.Relationofgene
expression phenotype to immunoglobulin mutation genotype in B cell chronic lympho‐
cyticleukemia.TheJournalofExperimentalMedicine.2001;194(11):1639‐1647

[61] CatherwoodMA,MatthewsC,NiblockR,DobbinE,MorrisTC,AlexanderHD.ZAP‐70
mRNA quantification in B‐cell chronic lymphocytic leukaemia. European Journal of
Haematology.2006;76(4):294‐298

[62] KroberA,BloehdornJ,HafnerS,BuhlerA,SeilerT,KienleD,etal.Additionalgenetic
high‐risk features such as 11q deletion, 17p deletion, and V3‐21 usage characterize dis‐
cordance of ZAP‐70 and VH mutation status in chronic lymphocytic leukemia. Journal 
ofClinicalOncology.2006;24(6):969‐975

[63] WiestnerA,RosenwaldA,BarryTS,WrightG,DavisRE,HenricksonSE,etal.ZAP‐70
expressionidentifiesachroniclymphocyticleukemiasubtypewithunmutatedimmu‐
noglobulingenes,inferiorclinicaloutcome,anddistinctgeneexpressionprofile.Blood.
2003;101(12):4944‐4951

[64] HeintelD,KienleD,ShehataM,KroberA,KroemerE,SchwarzingerI,etal.Highexpres‐
sion of lipoprotein lipase in poor risk B‐cell chronic lymphocytic leukemia. Leukemia. 
2005;19(7):1216‐1223

Lymphocyte Updates - Cancer, Autoimmunity and Infection70

[65] Nikitin EA,Malakho SG, Biderman BV, BaranovaAV, Lorie YY, ShevelevAY, et al.
Expression levelof lipoprotein lipaseanddystrophingenespredict survival inB‐cell
chronic lymphocytic leukemia. Leukemia & Lymphoma. 2007;48(5):912‐922

[66] Van Bockstaele F, Pede V, Janssens A, Callewaert F, Offner F, Verhasselt B, et al.
Lipoprotein lipase mRNA expression in whole blood is a prognostic marker in B cell 
chronic lymphocytic leukemia. Clinical Chemistry. 2007;53(2):204‐212

[67] MansouriM,SevovM,FahlgrenE,TobinG,JondalM,OsorioL,etal.Lipoproteinlipase
isdifferentiallyexpressed inprognostic subsetsof chronic lymphocytic leukemiabut
displays invariably low catalytical activity. Leukemia Research. 2010;34(3):301‐306

[68] Nuckel H, Huttmann A, Klein‐Hitpass L, Schroers R, Fuhrer A, Sellmann L, et al.
Lipoprotein lipase expression is a novel prognostic factor in B‐cell chronic lymphocytic 
leukemia.LeukLymphoma.2006;47(6):1053‐1061

[69] KaderiMA,KanduriM,BuhlAM,SevovM,CahillN,GunnarssonR,etal.LPListhe
strongest prognostic factor in a comparative analysis of RNA‐based markers in early 
chronic lymphocytic leukemia. Haematologica. 2011;96(8):1153‐1160

[70] AnticD,MihaljevicB,CokicV,FeketeMD,DjurasevicTK,PavlovicS,etal.Patientswith
earlystagechronic lymphocytic leukemia:Newriskstratificationbasedonmolecular
profiling.LeukLymphoma.2011;52(7):1394‐1397

[71] van’t Veer MB, Brooijmans AM, Langerak AW, Verhaaf B, Goudswaard CS, Graveland 
WJ, et al. The predictive value of lipoprotein lipase for survival in chronic lymphocytic 
leukemia.Haematologica.2006;91(1):56‐63

[72] International CLL‐IPI working group. An international prognostic index for patients 
with chronic lymphocytic leukaemia (CLL‐IPI): a meta‐analysis of individual patient 
data. The Lancet Oncology.2016;17(6):779‐790

[73] DelgadoJ,DoubekM,BaumannT,KotaskovaJ,MolicaS,MozasP,etal.Chroniclym‐
phocytic leukemia: A prognostic model comprising only two biomarkers (IGHV muta‐
tional status and FISH cytogenetics) separates patients with different outcome and
simplifiestheCLL‐IPI.AmericanJournalofHematology.2017;92(4):375‐380.

[74] PflugN,BahloJ,ShanafeltTD,EichhorstBF,BergmannMA,ElterT,etal.Development
of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. 
Blood. 2014;124(1):49‐62

[75] VisentinA,FrezzatoF,ImbergamoS,TrimarcoV,MartiniV,SeverinF,etal.Evaluation
of Integrated CLL Scoring System (ICSS) in 420 Patients with Chronic Lymphocytic 
Leukemia. Blood. 2016;128(22):5563‐5563

[76] Brezinschek HP, Foster SJ, Brezinschek RI, Dorner T, Domiati‐Saad R, Lipsky PE.
AnalysisofthehumanVHgenerepertoire.Differentialeffectsofselectionandsomatic
hypermutation on human peripheral CD5(+)/IgM+ and CD5(‐)/IgM+ B cells. The Journal 
of Clinical Investigation. 1997;99(10):2488‐2501

Somatic Hypermutational Status and Gene Repertoire of Immunoglobulin Rearrangements in ...
http://dx.doi.org/10.5772/intechopen.69110

71



[77] Schroeder Jr. HW, Dighiero G. The pathogenesis of chronic lymphocytic leukemia: 
Analysis of the antibody repertoire. Immunology Today. 1994;15(6):288‐294

[78] DukeVM,GandiniD,SherringtonPD,LinK,HeelanB,AmlotP,etal.V(H)geneusage
differsingermlineandmutatedB‐cellchroniclymphocyticleukemia.Haematologica.
2003;88(11):1259‐1271

[79] Ghia P, StamatopoulosK, Belessi C,MorenoC, Stella S,GuidaG, et al.Geographic
patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic
 leukemia: The lesson of the IGHV3‐21 gene. Blood. 2005;105(4):1678‐1685

[80] MauererK,ZahriehD,GorgunG,LiA,ZhouJ,AnsenS,etal.Immunoglobulingene
segment usage, location and immunogenicity in mutated and unmutated chronic lym‐
phocytic leukaemia. British journal of Haematology. 2005;129(4):499‐510

[81] MessmerBT,AlbesianoE,MessmerD,ChiorazziN. The pattern anddistribution of
immunoglobulin VH gene mutations in chronic lymphocytic leukemia B cells are con‐
sistent with the canonical somatic hypermutation process. Blood. 2004;103(9):3490‐3495

[82] StamatopoulosK, Belessi C,MorenoC, BoudjograhM,GuidaG, Smilevska T, et al.
Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: 
Pathogenetic implications and clinical correlations. Blood. 2007;109(1):259‐270

[83] Widhopf2ndGF,KippsTJ.NormalBcellsexpress51p1‐encodedIgheavychainsthat
are distinct from those expressed by chronic lymphocytic leukemia B cells. Journal of 
Immunology. 2001;166(1):95‐102

[84] PotterKN,OrchardJ,CritchleyE,MockridgeCI,JoseA,StevensonFK.Featuresofthe
overexpressedV1‐69genesintheunmutatedsubsetofchroniclymphocyticleukemia
are distinct from those in the healthy elderly repertoire. Blood. 2003;101(8):3082‐3084

[85] Bomben R, Dal BoM, Capello D, Forconi F,Maffei R, Laurenti L, et al.Molecular
and clinical features of chronic lymphocytic leukaemia with stereotyped B cell recep‐
tors: Results from an Italian multicentre study. British Journal of Haematology. 
2009;144(4):492‐506

[86] Bilous N, Bomben R, Dal Bo M, Capello D, Forconi F, Laurenti L, et al. Molecular and 
clinical features of chronic lymphocytic leukemia with stereotyped B‐cell receptors in a 
Ukrainiancohort.LeukLymphoma.2010;51(5):822‐838

[87] Karan‐Djurasevic T, Palibrk V, Kostic T, Spasovski V, Nikcevic G, Srzentic S, et al.
Mutational status and gene repertoire of IGHV‐IGHD‐IGHJ rearrangements in Serbian 
patients with chronic lymphocytic leukemia. Clinical Lymphoma, Myeloma & Leukemia. 
2012;12(4):252‐260

[88] Bianchi S, Moreno P, Landoni AI, Naya H, Oppezzo P, Dighiero G, et al. Immunoglobulin 
heavy chainV‐D‐Jgene rearrangement andmutational status inUruguayanpatients
with chronic lymphocytic leukemia. Leuk Lymphoma. 2010;51(11):2070‐2078

Lymphocyte Updates - Cancer, Autoimmunity and Infection72



[77] Schroeder Jr. HW, Dighiero G. The pathogenesis of chronic lymphocytic leukemia: 
Analysis of the antibody repertoire. Immunology Today. 1994;15(6):288‐294

[78] DukeVM,GandiniD,SherringtonPD,LinK,HeelanB,AmlotP,etal.V(H)geneusage
differsingermlineandmutatedB‐cellchroniclymphocyticleukemia.Haematologica.
2003;88(11):1259‐1271

[79] Ghia P, StamatopoulosK, Belessi C,MorenoC, Stella S,GuidaG, et al.Geographic
patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic
 leukemia: The lesson of the IGHV3‐21 gene. Blood. 2005;105(4):1678‐1685

[80] MauererK,ZahriehD,GorgunG,LiA,ZhouJ,AnsenS,etal.Immunoglobulingene
segment usage, location and immunogenicity in mutated and unmutated chronic lym‐
phocytic leukaemia. British journal of Haematology. 2005;129(4):499‐510

[81] MessmerBT,AlbesianoE,MessmerD,ChiorazziN. The pattern anddistribution of
immunoglobulin VH gene mutations in chronic lymphocytic leukemia B cells are con‐
sistent with the canonical somatic hypermutation process. Blood. 2004;103(9):3490‐3495

[82] StamatopoulosK, Belessi C,MorenoC, BoudjograhM,GuidaG, Smilevska T, et al.
Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: 
Pathogenetic implications and clinical correlations. Blood. 2007;109(1):259‐270

[83] Widhopf2ndGF,KippsTJ.NormalBcellsexpress51p1‐encodedIgheavychainsthat
are distinct from those expressed by chronic lymphocytic leukemia B cells. Journal of 
Immunology. 2001;166(1):95‐102

[84] PotterKN,OrchardJ,CritchleyE,MockridgeCI,JoseA,StevensonFK.Featuresofthe
overexpressedV1‐69genesintheunmutatedsubsetofchroniclymphocyticleukemia
are distinct from those in the healthy elderly repertoire. Blood. 2003;101(8):3082‐3084

[85] Bomben R, Dal BoM, Capello D, Forconi F,Maffei R, Laurenti L, et al.Molecular
and clinical features of chronic lymphocytic leukaemia with stereotyped B cell recep‐
tors: Results from an Italian multicentre study. British Journal of Haematology. 
2009;144(4):492‐506

[86] Bilous N, Bomben R, Dal Bo M, Capello D, Forconi F, Laurenti L, et al. Molecular and 
clinical features of chronic lymphocytic leukemia with stereotyped B‐cell receptors in a 
Ukrainiancohort.LeukLymphoma.2010;51(5):822‐838

[87] Karan‐Djurasevic T, Palibrk V, Kostic T, Spasovski V, Nikcevic G, Srzentic S, et al.
Mutational status and gene repertoire of IGHV‐IGHD‐IGHJ rearrangements in Serbian 
patients with chronic lymphocytic leukemia. Clinical Lymphoma, Myeloma & Leukemia. 
2012;12(4):252‐260

[88] Bianchi S, Moreno P, Landoni AI, Naya H, Oppezzo P, Dighiero G, et al. Immunoglobulin 
heavy chainV‐D‐Jgene rearrangement andmutational status inUruguayanpatients
with chronic lymphocytic leukemia. Leuk Lymphoma. 2010;51(11):2070‐2078

Lymphocyte Updates - Cancer, Autoimmunity and Infection72

[89] Gonzalez‐GasconYMI,HernandezJA,MartinA,AlcocebaM,SarasqueteME,Rodriguez‐
Vicente A, et al. Mutation status and immunoglobulin gene rearrangements in patients 
from northwest and central region of Spain with chronic lymphocytic leukemia. BioMed 
Research International. 2014;2014:257517

[90] TobinG,ThunbergU,JohnsonA,ThornI,SoderbergO,HultdinM,etal.Somatically
mutated Ig V(H)3‐21 genes characterize a new subset of chronic lymphocytic leukemia. 
Blood. 2002;99(6):2262‐2264

[91] TobinG,ThunbergU,JohnsonA,ErikssonI,SoderbergO,KarlssonK,etal.Chronic
lymphocytic leukemias utilizing the VH3‐21 gene display highly restricted Vlambda2‐14 
gene use and homologous CDR3s: Implicating recognition of a common antigen  epitope. 
Blood. 2003;101(12):4952‐4957

[92] MatthewsC,CatherwoodMA,MorrisTC,AlexanderHD.V(H)3‐48andV(H)3‐53,as
wellasV(H)3‐21,generearrangementsdefineuniquesubgroupsinCLLandareassoci‐
ated with biased lambda light chain restriction, homologous LCDR3 sequences and poor 
prognosis. Leukemia Research. 2007;31(2):231‐234

[93] Bomben R, Dal Bo M, Capello D, Benedetti D, Marconi D, Zucchetto A, et al.
Comprehensive characterization of IGHV3‐21‐expressing B‐cell chronic lymphocytic 
leukemia: An Italian multicenter study. Blood. 2007;109(7):2989‐2998

[94] Hojjat‐FarsangiM, Jeddi‐TehraniM,RazaviSM,SharifianRA,MellstedtH,ShokriF,
et al. Immunoglobulin heavy chain variable region gene usage and mutational status 
of the leukemic B cells in Iranian patients with chronic lymphocytic leukemia. Cancer 
Science. 2009;100(12):2346‐2353

[95] Chen L, Zhang Y, Zheng W, Wu Y, Qiao C, Fan L, et al. Distinctive IgVH gene segments 
usage and mutation status in Chinese patients with chronic lymphocytic leukemia. 
Leukemia Research. 2008;32(10):1491‐1498

[96] Koiso H, Yamane A, Mitsui T, Matsushima T, Tsukamoto N, Murakami H, et al.
Distinctive immunoglobulin VH gene usage in Japanese patients with chronic lympho‐
cyticleukemia.LeukemiaResearch.2006;30(3):272‐276

[97] GhiottoF,FaisF,AlbesianoE,SisonC,ValettoA,GaidanoG,etal.Similaritiesanddif‐
ferences between the light and heavy chain Ig variable region gene repertoires in chronic 
lymphocyticleukemia.MolecularMedicine.2006;12(11‐12):300‐308

[98] StamatopoulosK, Belessi C,HadzidimitriouA, Smilevska T, Kalagiakou E,HatziK,
et al. Immunoglobulin light chain repertoire in chronic lymphocytic leukemia. Blood. 
2005;106(10):3575‐3583

[99] BelessiC,StamatopoulosK,HadzidimitriouA,HatziK,SmilevskaT,StavroyianniN,
et al.Analysis of expressed andnon‐expressed IGK locus rearrangements in chronic
lymphocytic leukemia. Molecular Medicine. 2005;11(1‐12):52‐58

Somatic Hypermutational Status and Gene Repertoire of Immunoglobulin Rearrangements in ...
http://dx.doi.org/10.5772/intechopen.69110

73



[100] Widhopf GF, 2nd, Goldberg CJ, Toy TL, Rassenti LZ, Wierda WG, Byrd JC, et al. 
Nonstochastic pairing of immunoglobulin heavy and light chains expressed by 
chronic lymphocytic leukemia B cells is predicated on the heavy chain CDR3. Blood. 
2008;111(6):3137‐3144

[101] BrezinschekHP,Foster SJ,DornerT,BrezinschekRI,LipskyPE.Pairingofvariable
heavy and variable kappa chains in individual naive and memory B cells. Journal of 
Immunology. 1998;160(10):4762‐4767

[102] de Wildt RM, Hoet RM, van Venrooij WJ, Tomlinson IM, Winter G. Analysis of heavy 
and light chain pairings indicates that receptor editing shapes the human antibody 
repertoire. Journal of Molecular Biology. 1999;285(3):895‐901

[103] LinK,Manocha S,HarrisRJ,MatraiZ, SherringtonPD,PettittAR.High frequency
of p53 dysfunction and low level of VH mutation in chronic lymphocytic leukemia 
patients using the VH3‐21 gene segment. Blood. 2003;102(3):1145‐1146

[104] ThorseliusM,KroberA,MurrayF,ThunbergU,TobinG,BuhlerA,etal.Strikingly
homologous immunoglobulin gene rearrangements and poor outcome in VH3‐21‐
using chronic lymphocytic leukemia patients independent of geographic origin and 
mutationalstatus.Blood.2006;107(7):2889‐2894

[105] BombenR,Dal‐BoM,BenedettiD,CapelloD,ForconiF,MarconiD,etal.Expression
ofmutatedIGHV3‐23genesinchroniclymphocyticleukemiaidentifiesadiseasesubset
with peculiar clinical and biological features. Clinical Cancer Research. 2010;16(2):620‐628

[106] CapelloD,GuariniA,BerraE,MauroFR,RossiD,GhiaE,etal.Evidenceofbiased
immunoglobulin variable gene usage in highly stable B‐cell chronic lymphocytic leuke‐
mia. Leukemia. 2004;18(12):1941‐1947

[107] Del Giudice I, Chiaretti S, Tavolaro S, De ProprisMS,Maggio R,Mancini F, et al.
Spontaneous regression of chronic lymphocytic leukemia: Clinical and biologic fea‐
tures of 9 cases. Blood. 2009;114(3):638‐646

[108] Weill JC, Weller S, Reynaud CA. Human marginal zone B cells. Annual Review of 
Immunology. 2009;27:267‐285

[109] DamleRN,GhiottoF,ValettoA,AlbesianoE,FaisF,YanXJ,etal.B‐cellchroniclym‐
phocytic leukemia cells express a surface membrane phenotype of activated, antigen‐
experienced B lymphocytes. Blood. 2002;99(11):4087‐4093

[110] Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, et al. Gene
expressionprofilingofBcellchroniclymphocyticleukemiarevealsahomogeneous
phenotype related tomemoryBcells.The JournalofExperimentalMedicine.2001; 
194(11):1625‐1638

[111] MessmerBT,AlbesianoE,EfremovDG,GhiottoF,AllenSL,KolitzJ,etal.Multipledis‐
tinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic 
lymphocyticleukemia.TheJournalofExperimentalMedicine.2004;200(4):519‐525

Lymphocyte Updates - Cancer, Autoimmunity and Infection74



[100] Widhopf GF, 2nd, Goldberg CJ, Toy TL, Rassenti LZ, Wierda WG, Byrd JC, et al. 
Nonstochastic pairing of immunoglobulin heavy and light chains expressed by 
chronic lymphocytic leukemia B cells is predicated on the heavy chain CDR3. Blood. 
2008;111(6):3137‐3144

[101] BrezinschekHP,Foster SJ,DornerT,BrezinschekRI,LipskyPE.Pairingofvariable
heavy and variable kappa chains in individual naive and memory B cells. Journal of 
Immunology. 1998;160(10):4762‐4767

[102] de Wildt RM, Hoet RM, van Venrooij WJ, Tomlinson IM, Winter G. Analysis of heavy 
and light chain pairings indicates that receptor editing shapes the human antibody 
repertoire. Journal of Molecular Biology. 1999;285(3):895‐901

[103] LinK,Manocha S,HarrisRJ,MatraiZ, SherringtonPD,PettittAR.High frequency
of p53 dysfunction and low level of VH mutation in chronic lymphocytic leukemia 
patients using the VH3‐21 gene segment. Blood. 2003;102(3):1145‐1146

[104] ThorseliusM,KroberA,MurrayF,ThunbergU,TobinG,BuhlerA,etal.Strikingly
homologous immunoglobulin gene rearrangements and poor outcome in VH3‐21‐
using chronic lymphocytic leukemia patients independent of geographic origin and 
mutationalstatus.Blood.2006;107(7):2889‐2894

[105] BombenR,Dal‐BoM,BenedettiD,CapelloD,ForconiF,MarconiD,etal.Expression
ofmutatedIGHV3‐23genesinchroniclymphocyticleukemiaidentifiesadiseasesubset
with peculiar clinical and biological features. Clinical Cancer Research. 2010;16(2):620‐628

[106] CapelloD,GuariniA,BerraE,MauroFR,RossiD,GhiaE,etal.Evidenceofbiased
immunoglobulin variable gene usage in highly stable B‐cell chronic lymphocytic leuke‐
mia. Leukemia. 2004;18(12):1941‐1947

[107] Del Giudice I, Chiaretti S, Tavolaro S, De ProprisMS,Maggio R,Mancini F, et al.
Spontaneous regression of chronic lymphocytic leukemia: Clinical and biologic fea‐
tures of 9 cases. Blood. 2009;114(3):638‐646

[108] Weill JC, Weller S, Reynaud CA. Human marginal zone B cells. Annual Review of 
Immunology. 2009;27:267‐285

[109] DamleRN,GhiottoF,ValettoA,AlbesianoE,FaisF,YanXJ,etal.B‐cellchroniclym‐
phocytic leukemia cells express a surface membrane phenotype of activated, antigen‐
experienced B lymphocytes. Blood. 2002;99(11):4087‐4093

[110] Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, et al. Gene
expressionprofilingofBcellchroniclymphocyticleukemiarevealsahomogeneous
phenotype related tomemoryBcells.The JournalofExperimentalMedicine.2001; 
194(11):1625‐1638

[111] MessmerBT,AlbesianoE,EfremovDG,GhiottoF,AllenSL,KolitzJ,etal.Multipledis‐
tinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic 
lymphocyticleukemia.TheJournalofExperimentalMedicine.2004;200(4):519‐525

Lymphocyte Updates - Cancer, Autoimmunity and Infection74

[112] GhiottoF,FaisF,ValettoA,AlbesianoE,HashimotoS,DonoM,etal.Remarkablysimi‐
lar antigen receptors among a subset of patients with chronic lymphocytic leukemia. 
The Journal of Clinical Investigation. 2004;113(7):1008‐1016

[113] TobinG,ThunbergU,KarlssonK,MurrayF,LaurellA,WillanderK,etal.Subsetswith
restricted immunoglobulin gene rearrangement features indicate a role for antigen selec‐
tion in the development of chronic lymphocytic leukemia. Blood. 2004;104(9):2879‐2885

[114] WidhopfGF,2nd,RassentiLZ,ToyTL,Gribben JG,WierdaWG,KippsTJ.Chronic
lymphocytic leukemia B cells of more than 1% of patients express virtually identical 
immunoglobulins. Blood. 2004;104(8):2499‐2504

[115] Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F, Yan XJ, et al. 
Stereotyped B‐cell receptors in one‐third of chronic lymphocytic leukemia: A molecular 
classificationwithimplicationsfortargetedtherapies.Blood.2012;119(19):4467‐4475

[116] StamatopoulosK,AgathangelidisA,RosenquistR,GhiaP.Antigenreceptorstereotypy
in chronic lymphocytic leukemia. Leukemia. 2017;31(2):282‐291

[117] DarzentasN,HadzidimitriouA,MurrayF,HatziK,JosefssonP,LaoutarisN,etal.A
differentontogenesisforchroniclymphocyticleukemiacasescarryingstereotypedanti‐
gen receptors: Molecular and computational evidence. Leukemia. 2010;24(1):125‐132

[118] HadzidimitriouA,DarzentasN,MurrayF,SmilevskaT,ArvanitiE,TresoldiC,etal.
Evidenceforthesignificantroleofimmunoglobulinlightchainsinantigenrecognition
and selection in chronic lymphocytic leukemia. Blood. 2009;113(2):403‐411

[119] Caligaris‐Cappio F, Bertilaccio MT, Scielzo C. How the microenvironment wires 
the natural history of chronic lymphocytic leukemia. Seminars in Cancer Biology. 
2014;24:43‐48

[120] ChenL,WidhopfG,HuynhL,RassentiL,RaiKR,WeissA,etal.ExpressionofZAP‐70
is associated with increased B‐cell receptor signaling in chronic lymphocytic leukemia. 
Blood. 2002;100(13):4609‐4614

[121] LanhamS,HamblinT,OscierD,IbbotsonR,StevensonF,PackhamG.Differentialsig‐
naling via surface IgM is associated with VH gene mutational status and CD38 expres‐
sion in chronic lymphocytic leukemia. Blood. 2003;101(3):1087‐1093

[122] HerishanuY,Perez‐GalanP,LiuD,BiancottoA,PittalugaS,VireB,etal.Thelymph
node microenvironment promotes B‐cell receptor signaling, NF‐kappaB activation, and 
tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563‐574

[123] GuariniA,ChiarettiS,TavolaroS,MaggioR,PeragineN,CitarellaF,etal.BCRligation
induced by IgM stimulation results in gene expression and functional changes only in 
IgV H unmutated chronic lymphocytic leukemia (CLL) cells. Blood. 2008;112(3):782‐792

[124] BaliakasP,HadzidimitriouA, SuttonLA,MingaE,AgathangelidisA,NichelattiM,
et al.Clinical effectof stereotypedB‐cell receptor immunoglobulins in chronic lym‐
phocytic leukaemia: A retrospective multicentre study. The Lancet Haematology. 
2014;1(2):e74‐e84

Somatic Hypermutational Status and Gene Repertoire of Immunoglobulin Rearrangements in ...
http://dx.doi.org/10.5772/intechopen.69110

75



[125] Maura F, Cutrona G, Fabris S, Colombo M, Tuana G, Agnelli L, et al. Relevance of 
stereotyped B‐cell receptors in the context of the molecular, cytogenetic and clinical 
features of chronic lymphocytic leukemia. PLoS One. 2011;6(8):e24313

[126] Gounari M, Ntoufa S, Apollonio B, Papakonstantinou N, Ponzoni M, Chu CC, et al. 
Excessiveantigenreactivitymayunderlietheclinicalaggressivenessofchronic lym‐
phocytic leukemia stereotyped subset #8. Blood. 2015;125(23):3580‐3587

[127] Marincevic M, Cahill N, Gunnarsson R, Isaksson A, Mansouri M, Goransson H, et al. 
High‐densityscreeningrevealsadifferentspectrumofgenomicaberrationsinchronic
lymphocytic leukemia patients with ‘stereotyped’ IGHV3‐21 and IGHV4‐34 B‐cell 
receptors. Haematologica. 2010;95(9):1519‐1525

[128] Sutton LA, Young E, Baliakas P, HadzidimitriouA,Moysiadis T, Plevova K, et al.
Differentspectraofrecurrentgenemutationsinsubsetsofchroniclymphocyticleuke‐
miaharboringstereotypedB‐cellreceptors.Haematologica.2016;101(8):959‐967

[129] BaliakasP,AgathangelidisA,HadzidimitriouA,SuttonLA,MingaE,TsanousaA,etal.
Not all IGHV3‐21 chronic lymphocytic leukemias are equal: Prognostic considerations. 
Blood. 2015;125(5):856‐859

[130] DelGiudice I,Chiaretti S, Santangelo S, Tavolaro S, PeragineN,MarinelliM, et al.
Stereotyped subset #1 chronic lymphocytic leukemia: A direct link between B‐cell 
receptor structure, function, and patients’ prognosis. American Journal of Hematology. 
2014;89(1):74‐82

[131] Rossi D, Spina V, Cerri M, Rasi S, Deambrogi C, De Paoli L, et al. Stereotyped B‐cell 
receptor is an independent risk factor of chronic lymphocytic leukemia transformation 
to Richter syndrome. Clinical Cancer Research. 2009;15(13):4415‐4422

[132] MarincevicM,MansouriM,KanduriM,IsakssonA,GoranssonH,SmedbyKE,etal.
Distinctgeneexpressionprofilesinsubsetsofchroniclymphocyticleukemiaexpress‐
ing stereotyped IGHV4‐34 B‐cell receptors. Haematologica. 2010;95(12):2072‐2079

[133] NtoufaS,PapakonstantinouN,ApollonioB,GounariM,GaligalidouC,FonteE,etal.
B cell anergy modulated by TLR1/2 and the miR‐17 approximately 92 cluster under‐
lies the indolent clinical course of chronic lymphocytic leukemia stereotyped subset #4. 
JournalofImmunology.2016;196(10):4410‐4417

[134] Chiorazzi N, Ferrarini M. Cellular origin(s) of chronic lymphocytic leukemia: Cautionary 
notes and additional considerations and possibilities. Blood. 2011;117(6):1781‐1791

[135] HerveM,XuK,NgYS,WardemannH,AlbesianoE,MessmerBT,etal.Unmutated
and mutated chronic lymphocytic leukemias derive from self‐reactive B cell precursors 
despiteexpressingdifferentantibodyreactivity.TheJournalofClinicalInvestigation.
2005;115(6):1636‐1643

[136] CateraR,SilvermanGJ,HatziK,SeilerT,DidierS,ZhangL,etal.Chroniclymphocytic
leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. 
Molecular Medicine. 2008;14(11‐12):665‐674

Lymphocyte Updates - Cancer, Autoimmunity and Infection76



[125] Maura F, Cutrona G, Fabris S, Colombo M, Tuana G, Agnelli L, et al. Relevance of 
stereotyped B‐cell receptors in the context of the molecular, cytogenetic and clinical 
features of chronic lymphocytic leukemia. PLoS One. 2011;6(8):e24313

[126] Gounari M, Ntoufa S, Apollonio B, Papakonstantinou N, Ponzoni M, Chu CC, et al. 
Excessiveantigenreactivitymayunderlietheclinicalaggressivenessofchronic lym‐
phocytic leukemia stereotyped subset #8. Blood. 2015;125(23):3580‐3587

[127] Marincevic M, Cahill N, Gunnarsson R, Isaksson A, Mansouri M, Goransson H, et al. 
High‐densityscreeningrevealsadifferentspectrumofgenomicaberrationsinchronic
lymphocytic leukemia patients with ‘stereotyped’ IGHV3‐21 and IGHV4‐34 B‐cell 
receptors. Haematologica. 2010;95(9):1519‐1525

[128] Sutton LA, Young E, Baliakas P, HadzidimitriouA,Moysiadis T, Plevova K, et al.
Differentspectraofrecurrentgenemutationsinsubsetsofchroniclymphocyticleuke‐
miaharboringstereotypedB‐cellreceptors.Haematologica.2016;101(8):959‐967

[129] BaliakasP,AgathangelidisA,HadzidimitriouA,SuttonLA,MingaE,TsanousaA,etal.
Not all IGHV3‐21 chronic lymphocytic leukemias are equal: Prognostic considerations. 
Blood. 2015;125(5):856‐859

[130] DelGiudice I,Chiaretti S, Santangelo S, Tavolaro S, PeragineN,MarinelliM, et al.
Stereotyped subset #1 chronic lymphocytic leukemia: A direct link between B‐cell 
receptor structure, function, and patients’ prognosis. American Journal of Hematology. 
2014;89(1):74‐82

[131] Rossi D, Spina V, Cerri M, Rasi S, Deambrogi C, De Paoli L, et al. Stereotyped B‐cell 
receptor is an independent risk factor of chronic lymphocytic leukemia transformation 
to Richter syndrome. Clinical Cancer Research. 2009;15(13):4415‐4422

[132] MarincevicM,MansouriM,KanduriM,IsakssonA,GoranssonH,SmedbyKE,etal.
Distinctgeneexpressionprofilesinsubsetsofchroniclymphocyticleukemiaexpress‐
ing stereotyped IGHV4‐34 B‐cell receptors. Haematologica. 2010;95(12):2072‐2079

[133] NtoufaS,PapakonstantinouN,ApollonioB,GounariM,GaligalidouC,FonteE,etal.
B cell anergy modulated by TLR1/2 and the miR‐17 approximately 92 cluster under‐
lies the indolent clinical course of chronic lymphocytic leukemia stereotyped subset #4. 
JournalofImmunology.2016;196(10):4410‐4417

[134] Chiorazzi N, Ferrarini M. Cellular origin(s) of chronic lymphocytic leukemia: Cautionary 
notes and additional considerations and possibilities. Blood. 2011;117(6):1781‐1791

[135] HerveM,XuK,NgYS,WardemannH,AlbesianoE,MessmerBT,etal.Unmutated
and mutated chronic lymphocytic leukemias derive from self‐reactive B cell precursors 
despiteexpressingdifferentantibodyreactivity.TheJournalofClinicalInvestigation.
2005;115(6):1636‐1643

[136] CateraR,SilvermanGJ,HatziK,SeilerT,DidierS,ZhangL,etal.Chroniclymphocytic
leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. 
Molecular Medicine. 2008;14(11‐12):665‐674

Lymphocyte Updates - Cancer, Autoimmunity and Infection76

[137] LanemoMyhrinderA,HellqvistE,SidorovaE,SoderbergA,BaxendaleH,DahleC,et
al. A new perspective: Molecular motifs on oxidized LDL, apoptotic cells, and bacteria 
are targets for chronic lymphocytic leukemia antibodies. Blood. 2008;111(7):3838‐3848

[138] ZwickC,FadleN,RegitzE,KemeleM,StilgenbauerS,BuhlerA,etal.Autoantigenic
targets of B‐cell receptors derived from chronic lymphocytic leukemias bind to and 
induce proliferation of leukemic cells. Blood. 2013;121(23):4708‐4717

[139] SeilerT,WoelfleM,YancopoulosS,CateraR,LiW,HatziK, et al.Characterization
of structurally defined epitopes recognized bymonoclonal antibodies produced by
chronic lymphocytic leukemia B cells. Blood. 2009;114(17):3615‐3624

[140] BinderM,LechenneB,UmmanniR,ScharfC,BalabanovS,TruschM,etal.Stereotypical
chronic lymphocytic leukemia B‐cell receptors recognize survival promoting antigens 
on stromal cells. PLoS One. 2010;5(12):e15992

[141] ChuCC,CateraR,HatziK,YanXJ,ZhangL,WangXB, et al.Chronic lymphocytic
leukemia antibodies with a common stereotypic rearrangement recognize nonmuscle 
myosin heavy chain IIA. Blood. 2008;112(13):5122‐5129

[142] PotterKN,HobbyP,KlijnS,StevensonFK,SuttonBJ.Evidenceforinvolvementofa
hydrophobic patch in framework region 1 of human V4‐34‐encoded Igs in recognition 
of the red blood cell I antigen. Journal of Immunology. 2002;169(7):3777‐3782

[143] KostareliE,HadzidimitriouA,StavroyianniN,DarzentasN,AthanasiadouA,Gounari
M,etal.MolecularevidenceforEBVandCMVpersistenceinasubsetofpatientswith
chronic lymphocytic leukemia expressing stereotyped IGHV4‐34 B‐cell receptors. 
Leukemia. 2009;23(5):919‐924

[144] KostareliE,GounariM,JanusA,MurrayF,BrochetX,GiudicelliV,etal.Antigenrecep‐
tor stereotypy across B‐cell lymphoproliferations: The case of IGHV4‐59/IGKV3‐20
receptors with rheumatoid factor activity. Leukemia. 2012;26(5):1127‐1131

[145] HwangKK,TramaAM,KozinkDM,ChenX,WieheK,CooperAJ, et al. IGHV1‐69
B cell chronic lymphocytic leukemia antibodies cross‐react with HIV‐1 and hepatitis 
C virus antigens as well as intestinal commensal bacteria. PLoS One. 2014;9(3):e90725

[146] LandgrenO, Rapkin JS, CaporasoNE,Mellemkjaer L, GridleyG,Goldin LR, et al.
Respiratory tract infections and subsequent risk of chronic lymphocytic leukemia. 
Blood. 2007;109(5):2198‐2201

[147] HoogeboomR,vanKesselKP,HochstenbachF,WormhoudtTA,ReintenRJ,WagnerK,
et al. A mutated B cell chronic lymphocytic leukemia subset that recognizes and 
respondstofungi.TheJournalofExperimentalMedicine.2013;210(1):59‐70

[148] Rosen A, Murray F, Evaldsson C, Rosenquist R. Antigens in chronic lymphocytic
 leukemia—Implications for cell origin and leukemogenesis. Seminars in Cancer Biology. 
2010;20(6):400‐409

[149] SuttonLA,KostareliE,HadzidimitriouA,DarzentasN,TsaftarisA,Anagnostopoulos
A, et al. Extensive intraclonal diversification in a subgroup of chronic lymphocytic

Somatic Hypermutational Status and Gene Repertoire of Immunoglobulin Rearrangements in ...
http://dx.doi.org/10.5772/intechopen.69110

77



 leukemia patients with stereotyped IGHV4‐34 receptors: Implications for ongoing 
interactions with antigen. Blood. 2009;114(20):4460‐4468

[150] KostareliE,SuttonLA,HadzidimitriouA,DarzentasN,KouvatsiA,TsaftarisA,etal.
Intraclonal diversification of immunoglobulin light chains in a subset of chronic
lymphocytic leukemia alludes to antigen‐driven clonal evolution. Leukemia. 
2010;24(7):1317‐1324

[151] Woyach JA, Smucker K, Smith LL, Lozanski A, Zhong Y, Ruppert AS, et al.
Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molec‐
ular characteristics and does not indicate a suboptimal response to therapy. Blood. 
2014;123(12):1810‐1817

[152] ByrdJC,FurmanRR,CoutreSE,FlinnIW,BurgerJA,BlumKA,etal.TargetingBTK
withibrutinibinrelapsedchroniclymphocyticleukemia.TheNewEnglandJournalof
Medicine. 2013;369(1):32‐42

[153] FurmanRR,SharmanJP,CoutreSE,ChesonBD,PagelJM,HillmenP,etal.Idelalisib
andrituximabinrelapsedchroniclymphocyticleukemia.TheNewEnglandJournalof
Medicine. 2014;370(11):997‐1007

[154] HermanSE,BarrPM,McAuleyEM,LiuD,WiestnerA,FriedbergJW.Fostamatinibinhib‐
its B‐cell receptor signaling, cellular activation and tumor proliferation in patients with 
relapsed and refractory chronic lymphocytic leukemia. Leukemia. 2013;27(8):1769‐1773

Lymphocyte Updates - Cancer, Autoimmunity and Infection78



 leukemia patients with stereotyped IGHV4‐34 receptors: Implications for ongoing 
interactions with antigen. Blood. 2009;114(20):4460‐4468

[150] KostareliE,SuttonLA,HadzidimitriouA,DarzentasN,KouvatsiA,TsaftarisA,etal.
Intraclonal diversification of immunoglobulin light chains in a subset of chronic
lymphocytic leukemia alludes to antigen‐driven clonal evolution. Leukemia. 
2010;24(7):1317‐1324

[151] Woyach JA, Smucker K, Smith LL, Lozanski A, Zhong Y, Ruppert AS, et al.
Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molec‐
ular characteristics and does not indicate a suboptimal response to therapy. Blood. 
2014;123(12):1810‐1817

[152] ByrdJC,FurmanRR,CoutreSE,FlinnIW,BurgerJA,BlumKA,etal.TargetingBTK
withibrutinibinrelapsedchroniclymphocyticleukemia.TheNewEnglandJournalof
Medicine. 2013;369(1):32‐42

[153] FurmanRR,SharmanJP,CoutreSE,ChesonBD,PagelJM,HillmenP,etal.Idelalisib
andrituximabinrelapsedchroniclymphocyticleukemia.TheNewEnglandJournalof
Medicine. 2014;370(11):997‐1007

[154] HermanSE,BarrPM,McAuleyEM,LiuD,WiestnerA,FriedbergJW.Fostamatinibinhib‐
its B‐cell receptor signaling, cellular activation and tumor proliferation in patients with 
relapsed and refractory chronic lymphocytic leukemia. Leukemia. 2013;27(8):1769‐1773

Lymphocyte Updates - Cancer, Autoimmunity and Infection78

Chapter 4

Malignant Interaction between B Cells and T Helper
Cells

Simone Bürgler

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68731

Abstract

Collaboration of T helper (Th) cells with B cells is central for the generation of high-affin-
ity antibodies with distinct effector function and thus for the establishment of effective 
immune responses. Physiological T cell help for B cells takes place in germinal centers (GC) 
in peripheral lymphoid organs, where follicular T helper (Tfh) cells interact with mature, 
antigen-stimulated B cells. Occasionally, B cells undergo malignant transformation, which 
may lead to the development of leukemia or lymphoma. Over the past decades, it has 
become increasingly clear that cancer cells depend on interactions with the tumor micro-
environment for growth and survival. Since many B cell malignancies develop in GC—the 
place of physiological Th cell-B cell interaction—Th cells are a central part of the tumor 
microenvironment of B cell leukemia and lymphoma. Thus, while the interaction between 
Th cells and normal B cells is crucial for the development of an effective immune response, 
this interaction also contributes to the development and pathogenesis of malignancies. The 
present chapter discusses the mechanisms underlying Th cell-mediated support of malig-
nant B cells contributing to the pathogenesis of leukemia and lymphoma. Research efforts 
aiming to elucidate such mechanisms are of high importance as therapeutic targeting of 
these malignant interactions may increase treatment efficiency and reduce disease relapse.

Keywords: T helper cells, B cells, leukemia, lymphoma, B cell malignancies, Th cell-B cell 
interaction, tumor microenvironment

1. Introduction

The human immune system is made up of two branches: the innate immune system consisting 
of dendritic cells, macrophages, granulocytes and natural killer (NK) cells mounts a fast but 
nonspecific response against invading pathogens. The adaptive immune system, in contrast, 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



raises a delayed but highly specific response. In this response, T cells and B cells use their 
greatly diverse receptors—T cell receptors (TCRs) and B cell receptors (BCRs), respectively—to 
recognize antigenic epitopes of invading pathogens [1]. Antigenic stimulation of the recep-
tors on the B cell’s and T cell’s surface induces intracellular signaling cascades that lead to 
the activation, proliferation and differentiation of the cell. The BCR is also synthesized in a 
soluble form and can be secreted by B cells as antibody, also known as immunoglobulin (Ig). 
Antibodies recognize pathogens and neutralize them by various mechanisms. In order to gen-
erate high-affinity antibodies with distinct effector functions, B cells need the help of T cells. 
Thus, the establishment of a specific and efficient immune response requires a close collabora-
tion of T cells and B cells.

1.1. Physiological Th cell-B cell interaction

T cells arise in the bone marrow (BM) and mature in the thymus. Two T cell populations can 
be distinguished: the CD8+ T cytotoxic (Tc) cells and the CD4+ Th cells. Tc cells can kill infected 
cells through release of molecules like granzymes or perforin, while Th cells have the task to 
activate other immune cells and to instruct them to raise an appropriate immune response.

Naïve Th cells leave the thymus and migrate to the periphery, where they encounter antigenic 
peptides presented by antigen-presenting cells (APCs) such as macrophages, B cells and den-
dritic cells (DCs). APC secrete a distinct set of cytokines, the composition of which depends 
on the pathogen encountered. Upon stimulation, the activated Th cells rapidly divide and 
differentiate into one of several different effector subsets that are characterized by the expres-
sion of distinct transcription factors, surface markers and cytokines. This differentiation is 
governed by the cytokines that are secreted by the APC and the surrounding cells at the time 
point of naïve Th cell activation. Thereby, APC not only activates naïve Th cells but also tailors 
their properties according to the pathogens to be defeated.

The first Th cell subsets that have been described were Th1 cells, characterized by expression 
interferon (IFN)-γ, and Th2 cells, producing interleukin (IL)-4, IL-5 and IL-13 [2]. Later, further 
effector lineages such as Th17, Th9 or Th22 have been described. In addition, several Th cell 
subsets with regulatory or suppressive functions, so-called regulatory T (Treg) cells, exist [3].

Follicular helper T (Tfh) cells are a unique population of Th cells distinct from extrafollicular 
and peripheral Th cells. Tfh cells are characterized by the expression of the inducible T cell 
costimulator (ICOS) receptor, the chemokine receptor CXCR5, the programmed cell death-1 
(PD-1) inhibitory receptor and the transcription factor BCL6 that controls their development 
and function [4–6].

B cells develop and mature in the BM and then migrate to the secondary lymphoid organs, 
where the antigen-dependent phase of their development takes place. While this process can 
be independent of T cell help, conventional B cells predominantly undergo T cell-dependent 
(TD) responses. Upon BCR stimulation by an antigen presented by follicular dendritic cells 
(FDCs), B cells migrate to the boundary between the follicle and the outer T cell zone, where 
they interact with Tfh cells [7]. Cognate interaction of B cells and Tfh cells involves internaliza-
tion and presentation of an antigen via the BCR, ligation of CD40 on the B cell by its ligand 
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CD40L on the Tfh cell, as well as the cytokines IL-4 and IL-21. B cells then develop either into 
short-lived plasma cells that secrete low-affinity antibodies or they differentiate into GC B 
cells that further give rise to long-lived memory B cells and plasma cells producing high-
affinity antibodies. While memory B cells enter the circulation, plasma cells migrate and home 
to the BM.

The activating signals from Tfh cells induce upregulation of activation-induced cytidine deami-
nase (AID), a DNA-editing enzyme that initiates somatic hypermutation (SHM) and class-
switch recombination (CSR) [8]. Introduction of point mutation by AID into the variable region 
of the IG genes during SHM leads to highly variable Ig proteins that build the base for high-
affinity antibodies [9]. During CSR, the constant parts of IgM and IgD (Cμ and Cδ, respectively) 
are replaced by Cγ, Cα or Cε, giving rise to IgG, IgA or IgE. Thereby, CSR creates antibodies 
with diverse effector functions while retaining the antigen specificity [10]. B cells then differen-
tiate into highly proliferating GC B cells called centroblasts before developing into centrocytes. 
As centrocytes, they screen antigens on the surface of FDC using their newly mutated BCR. 
High-affinity interaction with antigen results in survival and thus selection of centrocytes with 
high-affinity BCR, leading to recycling of centrocytes into centroblasts and to the differentia-
tion of centrocytes into memory B cells and plasma cells.

During B cell development, however, B cells or their precursors occasionally undergo malignant 
transformation, which may result in the development of leukemia or lymphoma (Figure 1). 
Such transformations are frequently initiated by genetic events leading to aberrantly expressed 
proteins. Nevertheless, these chromosomal abnormalities alone are usually not sufficient for 

Figure 1. Schematic overview over the B cell development in the BM and GC with the most important developmental 
stages (black) and the B cell malignancies covered in this chapter (red). Red arrows indicate the presumed cell of origin 
of the malignant cells.
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cancer development, and the transformed cells are not able to survive and outgrow when 
isolated and cultured in vitro. Thus, while mutations may trigger malignant transformation, 
interactions with the tumor microenvironment seem to be essential for the development and 
pathogenesis of most B cell malignancies.

2. Main body

2.1. Malignant Th cell-B cell interaction

The tumor microenvironment plays a key role in supporting survival and expansion of cancer 
cells in virtually all known malignancies [11–13]. Malignancies of B cell origin often arise from GC 
B cells. Consequently, the cells of the GC microenvironment represent key collaboration partners 
of cancer cells during pathogenesis, progression and relapse of leukemia and lymphoma. The 
supportive tumor microenvironment in GC is made up by nonhematopoetic as well as lymphoid 
cells such as mesenchymal stromal cells, fibroblasts, macrophages, FDC and Tfh cells, which build 
a complex network and mutually regulate their activation differentiation, migration and expan-
sion. Thus, while cells of the microenvironment support the tumor cells, the tumor cells in turn 
support and shape the cells that surround them in a way that maximizes their own benefit.

Generally, malignantly transformed B cells seem to retain their ability to interact with Th cells, 
and thus remain capable of profiting from Th cell help. Hence, while the support of normal 
mature B cells by Th cells plays a central role in the generation of an adaptive immune response, 
the support of malignant B cells by Th cells may promote lymphoma or leukemia.

2.2. Malignant Th cell-B cell interaction: follicular lymphoma

Follicular lymphoma (FL) is the most frequent indolent lymphoma. The initial response rates 
to therapy are relatively high but relapses are frequent. The malignant cells express the GC 
B cell markers BCL6 and CD10 and display a gene expression profile of centrocytes [14]. 
FL cells are characterized by an overexpression of the antiapoptotic protein BCL2 caused by 
a t(14;18) translocation. Nevertheless, this genetic aberration is not sufficient for lymphoma 
development, and isolated primary FL cells fail to survive and proliferate in vitro, suggesting 
that the tumor microenvironment plays a major role in FL development and progression. 
Both nonhematopoietic cells as well as Th cells are crucially involved in FL cell growth and 
survival [15]. Tfh cells from FL-affected lymph nodes display a distinct gene expression pro-
file that differs from normal tonsillar Tfh cells by an increased expression of IL2, IL4 and the 
proinflammatory cytokines IFN and TNF [16]. Consistently, high levels of IL-4 are associated 
with FL cell activation [17]. Similarly, support of FL cells by Th cells seems to be mediated by 
Tfh cell-derived CD40L and IL-4 [18]. The proinflammatory cytokines expressed by Tfh of FL 
patients, in contrast, seem to modulate the FL supportive environment rather than having a 
direct effect on FL cells. TNF, e.g., has been suggested to sustain differentiation and survival 
of the lymphoid stroma network in FL [19].
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Besides cytokines, the membrane-bound molecule CD40L is important for Th cell-mediated 
FL cell support, since FL cells showed an increased survival when stimulated by CD40 cross-
linking in vitro [20] as well as upon cognate interaction with Th cells [21], and it has been 
suggested that CD40L stimulation protects FL cells from TRAIL-mediated apoptosis in an 
NF-κB-dependent manner [22].

About 70% of FL patients display BM infiltration at diagnosis. Interestingly, the affected BM 
is characterized by an overrepresentation of Th cells [23]. This further supports the importance 
of Tfh cells in FL disease pathogenesis.

2.3. Malignant Th cell-B cell interaction: Burkitt’s lymphoma

Burkitt’s lymphoma (BL) is an aggressive B cell cancer, probably arising from GC B cells 
[24]. Three main subtypes of BL are currently identified epidemiologically, though histo-
logically the tumors are indistinguishable. Endemic BL (eBL), the classical BL, is found in 
malaria-endemic regions, while sporadic BL (sBL) is relatively rare and most commonly 
found outside malaria-affected areas. HIV-associated BL is often described as separate 
subtype as well [25]. eBL is strongly associated with the Epstein-Barr Virus (EBV), even 
though the pathogenic mechanism is not clear [26, 27]. The role of Th cells in BL develop-
ment and progression is highly controversial. Several studies showed that EBV-specific Th 
cells can kill BL cell lines or EBV-transformed B cells [28–35] or limit their proliferation [36]. 
Most of these studies, however, used a nonphysiologically high effector to target ratio and 
thus require careful interpretation. Other researchers, in contrast, have reported that EBV-
specific Th cells induced B cell proliferation [37], and in several mouse models EBV-specific 
Th cells were even required for lymphomagenesis [38–40]. Finally, two studies found that 
virus and autoantigen-specific Th cells can both kill and support EBV-transformed B cells 
[41, 42], suggesting that the role of Th cells in BL and other EBV-associated malignan-
cies is likely to be context dependent. Interestingly, the chance of BL development in HIV 
patients is associated with CD4+ T cell count, as the incident of BL development decreases 
with reduced CD4+ T cell numbers [43], supporting a BL-promoting role for Th cells.

2.4. Malignant Th cell-B cell interaction: Hodgkin lymphoma

In Hodgkin lymphoma (HL), the malignant B cells—called Reed-Sternberg (RS) cells—con-
stitute only a minor fraction of the tumor. The remainder consists of eosinophils, fibroblasts, 
macrophages, plasma cells and Tc as well as Th cells. Infiltration of certain Th cell subsets has 
been correlated with reduced overall patient survival, even though the exact function of these 
infiltrating Th cells is not fully clear [44, 45]. Several cytokines seem to have a stimulatory effect 
on RS cells, one of which is the Th2 cytokine IL-13 [46]. Nevertheless, IL-13 can also be produced 
by RS cells themselves and act in an autocrine manner. Thus, a direct role of Th cells remains to 
be demonstrated. The complexity of the tumor microenvironment in HL, where a wide range 
of cells mutually influence each other, makes it intricate to discern the roles of the individual 
components.
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2.5. Malignant Th cell-B cell interaction: chronic lymphocytic leukemia

Chronic lymphocytic leukemia (CLL) is a malignancy of mature clonal CD5+ B cells, although 
the precise cell of origin is still debated [47]. CLL cells proliferate in pseudofollicles in second-
ary lymphoid organs and in the BM, where they receive support from cells of the stromal 
microenvironment [48]. CLL cells were found to interact with endothelial cells, stroma cells 
and monocyte-derived nurse-like cells, and to receive antiapoptotic signals via cytokines and 
chemokines. In addition, Th cells infiltrate such CLL pseudofollicles [49]. The infiltrating Th 
cells were shown to have an activated phenotype and to be actively recruited to these niches by 
CLL cells via chemokines [50]. Furthermore, they were able to activate CLL cells and to induce 
an upregulation of the surface molecule CD38, which is associated with poor prognosis [51].

We hypothesized that proliferation of CLL cells in patients was driven by a cognate interac-
tion of Th cells with CLL cells, comparable to the physiological interaction between Th cells 
and GC B cells [52]. According to this hypothesis, CLL cells would present antigen to antigen-
specific Th cells and in turn receive stimuli for their survival. Such an antigen could either be 
endogenous or it could be derived from an external pathogen. A key premise for this mecha-
nism of CLL expansion in patients is the ability of resting CLL cells to efficiently activate Th 
cells. Thus, to study the antigen-presentation capacity of CLL cells, we used a human Th cell 
clone that is specific for a peptide derived from the mouse Ig kappa (Igκ) light chain [53], and 
human leukocyte antigen (HLA)-matched CLL cells from CLL patients, which allowed us to 
study antigen-dependent cognate interaction of CLL cells and Th cells (Figure 2). Using this 
model, we found that CLL cells were able to endocytose antigen through endocytic receptors 
such as the Fc receptors CD32 and CD23 and through their BCR. Furthermore, CLL cells were 
surprisingly potent stimulators of Th cell proliferation. With the exception of one patient, the 

Figure 2. Model system to assess the antigen-presentation capacity of CLL cells: HLA-DRB1*0401+ CLL cells are 
cocultured with a human Th cell clone (T18) that is specific for an epitope in mouse Igκ chain, when presented on HLA-
DRB1*0401. Mouse Igκ+ antibodies against various surface molecules on the CLL cells such as CD23, CD32 or BCR are 
added. T18 cell proliferation is assessed as a read out for the capacity of CLL cells to endocytose and process these 
antibodies and to present Igκ peptides to the T18 cells together with provision of costimulatory signals.
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function of CLL cells was comparable to that of normal B cells. Reciprocally, CLL cells were 
activated by antigen-activated Th cells. They upregulated the activation markers CD38 and 
CD69, and molecules involved in the interaction with Th cells such as HLA-DR, the costimu-
latory molecule CD86, the adhesion molecule CD54 and receptors for Th cell help such as 
CD40 and CD25. Surface expression of CD27 and CD275 (ICOS-ligand) was reduced, in line 
with activation-induced shedding. In addition, CLL cells proliferated upon interaction with 
Th cells, which was dependent on antigen and cell-cell contacts, as well as on CD40-CD40L 
interaction. Furthermore, the Th cell-stimulated CLL cells had a gene expression profile simi-
lar to CLL cells within CLL proliferation centers, suggesting that in vitro interactions with Th 
cells reflected interactions with the lymph node microenvironment in patients.

While the results obtained using this model system demonstrated that CLL cells had the abil-
ity to activate Th cells and receive help for their survival and proliferation, it remained to be 
elucidated whether such interaction actually occurred in CLL patients. Indeed, we found that 
CLL patients harbored Th cells that proliferated in response to both autologous CLL cells as 
well as autologous CLL cell lysate presented by peripheral blood mononuclear cells (PBMCs) 
from HLA-matched donors. Similar to the results obtained using the model system, CLL-
specific Th cells stimulated CLL cell activation and proliferation in an antigen- and CD40L-
dependent manner. In in vivo xenograft experiments, the Th cell-induced CLL proliferation 
was even more pronounced, suggesting that stromal factors may act synergistically during 
the Th cell-CLL cell collaboration.

The remaining unresolved point was the identification of the antigenic source of the cognate 
interaction between Th cells and CLL cells. The hypervariable regions of the CLL cells’ BCR 
represent good candidate for endogenous antigens, since peptides derived from these regions 
are presented on major histocompatibility complex class II (MHCII), and are likely to be rec-
ognized as foreign by autologous Th cells.

To test this hypothesis, we used monoclonal antibodies derived from CLL cell hybridoma as 
source of antigen and HLA-matched donor PBMC as antigen-presenting cells, and assessed 
proliferation of autologous Th cells. Indeed, a significant fraction of Th cells proliferated upon 
stimulation with CLL-BCR-derived antigen, demonstrating that effector Th cells specific for 
endogenous CLL antigens are present in CLL patients and that they can support CLL cell 
activation and expansion.

Interestingly, the patient-derived CLL-specific Th cells had a Th1-like phenotype, characterized 
by IFN-γ secretion as well as expression of the IFN-γ-associated transcription factor T-bet and 
the surface markers CXCR3 and CCR5. In contrast, they lacked typical Tfh markers such as 
CXCR5, ICOS, PD-1, or IL-21 and BCL-6. These findings are in agreement with the observation 
that IFN-γ levels in CLL patients as well as IFN-γR expression on CLL cells correlated with 
disease severity [54–56]. Even though the exact mechanisms remain to be elucidated, IFN-γ 
seems to confer resistance to apoptosis and to increase CLL migration. We further demon-
strated that IFN-γ secretion was a major mechanism by which CLL-specific Th cells increased 
CD38 expression on CLL cells [57]. CD38 levels on CLL cells are an indicator of poor progno-
sis, even though a mechanistic involvement of CD38 in CLL pathogenesis is still debated [58].  
Within a patient, proliferating CLL cells are more frequently found in the population that 
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has a higher CD38 expression, and CD38 has been linked to CLL cell migration and survival. 
In our studies, we found that expression of the IFN-γ-inducible transcription factor T-bet in 
peripheral blood CLL cells is significantly correlated with CD38 expression [57]. Furthermore, 
Th cell-derived IFN-γ upregulated CD38 in a mechanism that involved binding of the tran-
scription factor T-bet to two consensus sites in 5′-regulatory regions of intron 1 of the CD38 
gene. Thus, it seems that Th cell promote the development of a more aggressive CLL subset 
through secretion of IFN-γ.

CLL cells seem to express polyreactive and/or autoreactive BCR that provide a certain level of 
constant signaling [59, 60]. However, sustained BCR signaling can induce anergy and apop-
tosis. Our studies are in agreement with the view that CLL cells are autoreactive B cells that 
are rescued from anergy by combined BCR and CD40L activation [50–52, 57, 61, 62]. BCR 
signaling components such as the kinase Syk are promising drug targets in CLL [63–65]. 
Thus, we studied how BCR pathway inhibitors may impact the Th cell help of CLL cells [66]. 
Interestingly, we found that stimulation by CD40L activated the BCR pathway in CLL cells, 
including Syk and the downstream components Akt, BLNK, Btk/Itk and pErk1/2. This acti-
vation—indicated by blastogenesis and proliferation—was significantly higher in CLL cells 
compared to normal B cells and could be blocked by Syk inhibition in CLL cells but not in 
normal B cells.

2.6. Malignant Th cell-B cell interaction: multiple myeloma

Multiple myeloma (MM) is a malignancy characterized by the expansion of plasma cell-
derived myeloma cells in the BM. The BM of MM patients and patients with monoclonal 
gammopathy of undetermined significance (MGUS) display increased numbers of T cells [67], 
but their role in MM disease development is not fully understood. Primary human MM cells 
express MHCII molecules as well as the costimulatory molecules CD80 and CD86 and have 
been shown to be good antigen-presenting cells for Th cells [68, 69]. In addition to the fact that 
they express high levels of CD40, this suggests that they can participate in cognate interac-
tions with Th cells and benefit from their support. Indeed, CD40 stimulation induced MM 
cell migration, which is associated with MM disease progression [70]. CD40 stimulation also 
triggered secretion of IL-6 by myeloma cells, which may mediate MM cell proliferation in 
an autocrine and/or paracrine mechanism [71]. In addition to CD40L-mediated stimulation, 
myeloma-specific Th cells can also support MM cells by secreting cytokines [72]. Th17 cyto-
kines such as IL-17 enhanced proliferation of MM cell lines in vitro and in vivo, and supported 
colony formation of primary human MM cells.

Very recently, we demonstrated that polyclonally activated allogeneic as well as autologous 
Th cells stimulated blastogenesis and proliferation of MM cells in a CD40L-dependent manner 
[73]. MM cells increased their cell size, became more granular, reduced their cell surface Ig 
expression and upregulated the expression of HLA-DR. Proliferation of MM cells was even 
more pronounced when the Th cell growth factors IL-2 and IL-15 were added. The Th cells from 
MM patients expressed the chemokine receptors CXCR3 and CCR6 and the transcription fac-
tor T-bet as well as low levels of ROR-γt, thus displayed a Th1/17 phenotype. Compared to Th 
cells from healthy controls, the MM patient-derived Th cells produced lower amounts of IL-4, 
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colony formation of primary human MM cells.

Very recently, we demonstrated that polyclonally activated allogeneic as well as autologous 
Th cells stimulated blastogenesis and proliferation of MM cells in a CD40L-dependent manner 
[73]. MM cells increased their cell size, became more granular, reduced their cell surface Ig 
expression and upregulated the expression of HLA-DR. Proliferation of MM cells was even 
more pronounced when the Th cell growth factors IL-2 and IL-15 were added. The Th cells from 
MM patients expressed the chemokine receptors CXCR3 and CCR6 and the transcription fac-
tor T-bet as well as low levels of ROR-γt, thus displayed a Th1/17 phenotype. Compared to Th 
cells from healthy controls, the MM patient-derived Th cells produced lower amounts of IL-4, 
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IL-10, IL-13, and IFN-γ and TNF-α, but higher levels of IL-1β, IL-2, IL-6 and IL-17. Together, 
our recent study and the previous reports by others suggest that CD40L stimulations is a key 
mechanism in Th cell-mediated MM cell support, but cytokines such as IL-6 and IL-17 are 
important components as well.

2.7. Malignant Th cell-B cell interaction: precursor B cell acute lymphoblastic leukemia

The B cell malignancies described in this chapter so far all originate from mature B cells. In 
contrast, precursor B acute lymphoblastic leukemia (BCP-ALL) derives from B cells of precur-
sor stages during B cell development in the BM. As in most malignancies, the tumor micro-
environment plays a key role in BCP-ALL development and progression [12]. Mesenchymal 
stromal cells, BM endothelial cells, osteoblasts as well as adipocytes have been described to 
support survival and proliferation of BCP-ALL cells and to confer drug resistance in mecha-
nisms involving both soluble factors and cell membrane-bound molecules.

Memory Th cells generated in the periphery during an immune response migrate to the BM in 
order to provide long-term memory [74–77]. These BM Th cells seem to play a crucial role in 
normal hematopoiesis [78], but the knowledge about the physiological interactions between 
BM Th cells and normal precursor B cells is very limited. Both normal precursor B cells and 
BCP-ALL cells express CD40 [79], MHCII, molecules for adhesion and costimulation [80], 
receptors for cytokines such as IL-2 and IL-6 [81–85] and receptors for BAFF [86, 87]. Thus, 
they possess all molecules required for cognate interaction with Th cells and therefore seem 
to be capable of receiving support through the conventional Th cell-B cells interaction path-
ways. BCP-ALL cells are indeed able to respond to CD40L stimulation with proliferation [88] 
and with upregulation of the surface molecule CD70 [89]. Furthermore, they upregulate the 
receptor for IL-3 [90], a cytokine that induces BCP-ALL cell proliferation. Stimulation with 
CD40L also induces the secretion of chemoattractants [91] and upregulates components of the 
antigen-processing machinery [92], suggesting that BCP-ALL cells are able to attract Th cells 
and activate them, thereby inducing a positive feedback loop. Th cell-derived cytokines can 
act on BCP-ALL cells as well, albeit with diverse effects. IL-2, IL-17 and IL-21, e.g., have been 
found to stimulate proliferation [83, 93], while IL-4 and IL-13 inhibited BCP-ALL cell growth 
[88, 94–96], and IL-4 as well as TGF-β-induced apoptosis [97, 98]. Cell-cell contact of BCP-ALL 
cells and activated allogenic Th cells induced activation and maturation of BCP-ALL cells [99]. 
Further support of an involvement of Th cell in BCP-ALL development comes from the obser-
vation that BCP-ALL is associated with certain MHCII haplotypes, suggesting that antigen-
presentation to Th cells is involved in the pathogenic mechanisms contributing to BCP-ALL 
development [100, 101]. In summary, there is evidence that BCP-ALL possess the capacity to 
exploit microenvironmental Th cells, but whether such leukemia supportive Th cell-BCP-ALL 
cell interactions actually taking place in patients remains to be determined.

2.8. Concluding remarks

The tumor microenvironment plays a key role in supporting malignant cells. In B cell leukemia 
and lymphoma, the malignant B cells seem to have retained their ability to receive help from 
their physiological interaction partners, the Th cells. Consistently, current research supports a 
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 contribution of Th cells to the development and progression of various types of B cell malignancies.  
Effective anticancer therapies should include targeting the cells of the tumor microenviron-
ment. Thus, research efforts leading to the identification and characterization of malignant 
collaboration between Th cells and malignant B cells may provide novel strategies for therapies 
aiming to target the tumor microenvironment.
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Abstract

Naive T cells are kept in a quiescence state, characterized by small cell size, with low pro‐
liferative and metabolic activities, until antigen engagement. T lymphocyte quiescence is 
a tightly controlled mechanism regulated by multiple quiescence‐associated factors. Loss 
or impaired functions of these factors regularly result in spontaneous activation of T cells 
that is ensured by fatal autoimmune diseases. Elucidating the mechanism to facilitate 
the switch on or off of T cells could be beneficial to ameliorate pathology triggered by 
T cell hyperactivation or dysfunction. In this chapter, we discuss multiple quiescence‐ 
associated factors along with the mechanisms utilized to promote  lymphocyte  quiescence 
and longevity.

Keywords: T cell quiescence, Foxo, KLF2

1. Introduction

T lymphocytes are important players in adaptive immune responses to invading pathogens. In 
an individual, T lymphocyte repertoires are principally generated through a somatic recombi‐
nant process named as VDJ rearrangement in the thymus. Upon maturation, these T cells exit 
thymus to reside in the secondary lymph organs and patrol in the circulation. It is crucial to 
maintain T cell repertoires as standby for future assault by diverse types of antigens that might 
come from the massive array of microbes. Eventually, most of the lymphocyte reservoirs do 
not encounter their cognate (or specific) antigens throughout their lifetime. These virgin or 
naïve T cells must be kept in a state known as quiescence to prevent immune activation that 
is often ensued by activation‐induced cell exhaustion or death. At quiescence state, cells are 
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sustained through homeostatic cell renewal without activation or expansion to maintain the 
size of the peripheral lymphocyte pool. Loss control of T cell quiescence has been associated 
with autoimmune diseases; hence, this stage is imperative to render an immune tolerance. In 
this chapter, we discuss the intricate transcriptional mechanism of T lymphocytes at quiescence 
stage to attain a long‐term standby status until they encounter the cognate antigens.

Lymphocyte quiescence refers to a state of inaction of cells characterized by small cell size 
with limited cytoplasmic region, low rates of cell metabolism, proliferation, transcription, 
and translation activities. Quiescence suppresses cell activation and prevents the unnecessary 
use of energy resources that will be consumed by the huge T lymphocyte repertoires in an 
individual. In addition, cells at quiescence state can reduce genetic damage due to repetitive 
replication therefore preventing development of malignancy [1] because constant replication 
of lymphocytes may increase the risk of leukemia and lymphoma [2]. Upon identification of a 
specific antigen, activation of a T cell beyond the cell signaling threshold triggers cells to exit 
quiescence state in a non‐reversible manner, thus, the T cell undergoes robust clonal expan‐
sion followed by cell cytotoxicity and cytokine‐secreting activities.

A quiescence state of lymphocytes was previously regarded as a default stage of cells in the 
absence of antigen recognition activation [3]. However, recent evidences accumulated suggest 
that quiescence is a steadily regulated stage by functionally diverse mechanisms [4], which 
include intrinsic control by gene expression programs as well as extrinsic suppression by 
regulatory T cells (Treg). Evidence derived from the microarray study demonstrates strik‐
ingly distinct expression patterns of diverse molecules in the quiescence versus stimulated T 
lymphocytes [5, 6]. Following T cell activation, the major change in gene expression profile 
is not limited to only increased expression of genes that promote growth and differentia‐
tion but also suppression of a group of genes that is linked to the quiescence program [6, 7]. 
Transcription factors and components in cell cycle control play a central role in the quiescence 
regulation. Recently, ubiquitination degradation pathway has also been added into the growing 
list of the quiescence‐associated factors [8].

A common characteristic shared by most of these quiescence‐associated molecules is their 
high abundance in the naïve T cell but the expression has rapidly vanished upon cell acti‐
vation. Quiescence molecules are different from other negative regulators of T cells such 
as cytotoxic T lymphocyte antigen 4 (CTLA4) and program cell death protein 1 (PD‐1). 
Although both impose inhibitory signals on T cell proliferation and effector activity, it is 
important to note that the expression of quiescence molecules is usually high in naïve T cells 
but reduce upon cell activation. In contrast, CTLA4 and PD1‐1 are expressed only after T cell 
activation.

Deficiency or dysfunction of the quiescence molecules often results in loss of the quiescence 
control marked by the cell's semi‐activation to hyperactivation with robust proliferation, 
accompanied by exert activities such as cytokines secretion and predisposition to apoptotic 
cell death. The direct physical consequence to loss of T cells quiescence is impaired immune 
tolerance and development of autoimmune diseases in an individual. In this chapter, we will 
discuss several quiescence factors along with the mechanisms utilized to promote lymphocyte 
quiescence and longevity.
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2. KLF2

The Sp/Kruppel‐like factor (KLF) family of zinc‐finger transcription factors contains at least 
20 identified members, which include numerous Kruppel‐like factors that have different 
roles across the mammalian system [9]. Kruppel‐like family 2 (KLF2, also known as lung 
Kruppel‐like factor or LKLF) has been implicated in programming T cell quiescence [10]. 
KLF2 is highly expressed in mature CD4+ and CD8+ T cells. Similar to many other key players 
in quiescence control, its expression is rapidly switched off after T cell activation [11]. KLF2 
can also be detected in thymocytes at single‐positive (SP) stage but not during earlier double‐
negative (DN) or double‐positive (DP) stages [11]. KLF2 controls mature T cell egress from 
thymus [12] and recirculation through secondary lymphoid tissues [13] by regulating tran‐
scription of sphingosine‐1‐phosphate receptor 1 (S1Pr1). KLF2‐deficient thymocytes show 
impaired thymocyte emigration, whereas KLF2‐transduced T cells are prone to homing in 
lymphoid organs following adoptive transfer [14].

The conventional KLF2‐deficient mice died between embryonic days, from 12.5 to 14.5, due to 
severe intra‐embryonic and intra‐amniotic hemorrhage resulting from defects in the smooth 
muscle cells migration during blood vessel maturation [15, 16]. To study KLF2‐deficient 
T cells, a Rag‐2−/−KLF2−/− chimeric mouse system was applied, in which KLF2−/− embryonic 
stem cells were injected into RAG2−/− blastocyst to populate the T cell pool [11]. This model 
provides strong evidence supporting the role of KLF2 in the quiescence control. First, a mas‐
sive loss (up to 90%) of the peripheral T cell is observed. Intriguingly, these KLF2‐deficient 
T cells displayed stigmata of activated phenotype, that is, an increased cell size and surface 
expression of activation markers (CD69hi CD44hi CD62Llo); however, these cells are non‐pro‐
liferative. A large number of KLF2‐deficient T cells are apoptotic, attributable to high surface 
expression of Fas ligand (FasL) [11].

In a different experiment using an overexpression model, in vitro forced expression of KLF2 
in Jurkat T cells using doxycycline inducible system programs the cells into a quiescent phe‐
notype [17]. KLF2 overexpression dramatically inhibits proliferation of Jurkat T cells and 
prevents synthesis of surface molecules such as CD30 and CD71, by which this effect can 
be reversible when the KLF2 expression is removed. KLF2‐mediated regulation of quiescent 
T cells is partially achieved through its suppression of c‐Myc. Conversely, transient expres‐
sion of MadMyc, a dominant negative form of c‐Myc, recapitulates the phenotype produced 
by KLF2 overexpression [17]. On the other hand, expression of neurotransmitter dopamine D4 
receptor on resting T cells promotes T cell quiescence by upregulating KLF2 expression and 
an administration of U101958; a D4 antagonist could diminish the effect [18]. KLF2‐deficient 
B cells showed increased apoptosis and impaired proliferation after B‐cell receptor cross‐link‐
ing [19]. B cell distribution and  trafficking are disturbed due to low surface expression of 
CD62L and β7‐integrin expression. Percentages of B cell subsets is also disturbed as B1 cells 
are almost disminished accompanied by increased in the number of MZ and transitional B 
cells. [19, 20]. These suggest a potential role of KLF2 in control of B‐cell quiescence.

Another KLF family member, KLF4, also known as gut‐enriched Kruppel‐like factor or GKLF, 
is also important in T cell biology by regulating thymocyte development and IL‐17 expression 
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during Th17 differentiation [21]. Both thymocytes and mature T cells express high level of 
KLF4. In KLF4 knock‐out mice, the proliferation of thymocytes at double‐negative stage was 
significantly reduced, attributed to loss of KLF4 control on Cdkn1b, a cell cycle molecule. KLF4 
is also involved in Th17 differentiation and IL‐17 expression by which its deficiency contrib‐
utes to reduced IL‐17 production and thus ameliorates the severity of in vivo experimental 
autoimmune encephalomyelitis [21]. KLF4 is able to exert a global inhibitory effect on macro‐
molecular biosynthesis, including protein biosynthesis, transcription, and cholesterol biosyn‐
thesis [22]. The expression pattern of KLF4 in B cells highly resembles those in T cells, whereby 
the expression is abundant in mature resting cells but rapidly decreased upon cell activation. 
In KLF4‐deficient mice, a modest decrease in the numbers of pre‐B cells in the bone marrow 
and mature B cells in the spleen can be observed [23]. Fewer B cells enter S phase of the cell 
cycle and complete cell division in response to BCR and/or CD40L engagement, in vitro, in 
the absence of KLF4, suggesting its role in maintaining quiescence in B cells. This could be a 
result of decreased expression of cyclin D2 in B cells because KLF4 regulates cyclin B2 through 
a direct binding to its promoter [23]. Thus, we can also postulate a potential role of KLF4 in 
controlling T or B lymphocytes quiescence.

3. Foxo

Forkhead box (Foxo) family genes are the orthologs of DAF‐16 gene identified in nematode 
worm Caenorhabditis elegans, which programs cells for resistance to oxidative stress and cell 
cycle control to maintain cells at a dauer (non‐action) state [24]. In mammals, there are three 
members in Foxo family, Foxo1, Foxo3, and Foxo4. The Foxo family of transcription factors 
triggers the induction or suppression of multiple target genes dependent on context molecules 
[25] and hence plays multiple functions in cell quiescence control [3, 26–29], including mainte‐
nance of stem cells pluripotency [30], oxidative stress control [31], cell cycle, cancer progress 
[32], and others. In T cells, Foxo molecules have multiple roles by controlling cell‐surface 
molecules, signaling proteins, and nuclear factors that control gene expression [33]. Foxo1 is 
also detected in thymocyte subsets, dominant negative inhibition of Foxo1 causes increased 
proliferation capacity of thymocytes, thus interferes with central tolerance control [34].

In the animal model, Foxo1 deletion causes spontaneous T cell activation that leads to devel‐
opment of colitis [35]. Higher percentages of activated/memory T phenotypes have been 
reported in T cell‐specific Foxo1 knock‐out mice model [35, 36]. Besides, inflammatory bowel 
disease is also observed in the wildtype mice after receiving Foxo1‐deficient T cells. In a 
mouse model with CD4 promoter‐driven T cell‐specific deletion of Foxo1, mice develop exo‐
crine pancreatitis, hind limb paralysis, and multiorgan lymphocyte infiltration. Anti‐nuclear 
antibodies and formation of germinal centers are detected in mice, suggesting Foxo1 sup‐
presses cells from differentiating into follicular helper (TFH) subtypes [37]. Foxo1‐deficient 
T cells demonstrate a highly defective ability for cell homing to lymph nodes, due to impaired 
L‐selectin [38] and CCR7 expression [36]. Although some argue that Foxo is not a true quies‐
cence factor stating the activated phenotype may be due to its functions like cell trafficking, 
these distinct roles of Foxo may directly or indirectly impose lymphocyte quiescence.
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In contrast to Foxo1's specific expression in lymphocytes, Foxo3 is ubiquitously expressed 
in many tissues in the body. It mediates cell death in many cells including T and B lympho‐
cytes. The role of Foxo3 in the regulation of cell quiescence remains controversial. An earlier 
report using Fox3TRAP mice (created by retroviral gene‐trap technique) demonstrates typical  
autoimmune characteristics including spontaneous lymphoproliferation, hyperactivation, 
and lymphocyte infiltration into multiple organs [39]. However, another two mice generated, 
using gene‐trap, show no such symptoms except for abnormal ovary development [40, 41]. 
Different mice generated with targeted recombinant techniques demonstrated only some 
decrease in the number of pre‐B and circulating B cells [42, 43]. Foxo3 protects quiescent cells 
from oxidative stress through regulation of antioxidant manganese superoxide dismutase 
(MnSOD) [44] and growth arrest, and damage response gene (Gadd45a) is a direct target of 
Foxo3a [45].

In the last decade, increasing numbers of target genes regulated by Foxo transcription fac‐
tor have been identified. These include KLF2 [36], GTPase of immunity‐associated protein 5 
(Gimap5) [46], IL‐7Ra, homing molecules (L‐selectin, CCR7, and Fam65b), CTLA4 [37], and 
shingosine‐1 phosphate receptor [38], among others. A major target of Foxo is KLF2, an essential 
transcription factor for quiescence control. Introduction of Foxo1 into T cells causes induction 
of KLF2 transcription factor while T cell's specific deletion of Foxo1 showed lower expression 
of KLF2 [36]. Foxo1 binds directly to promoter of KLF2 gene to induce its expression [47].

4. Foxp1

A member in the subfamily P of the large Fox family, Forkhead box protein P1 (Foxp1), has 
an essential role in B lymphopoiesis to control the expression of recombination‐activating 
genes 1 and 2 and transition from pro B to pre B cells [48]. Foxp1 has been implicated in the 
quiescence control of naïve T cells by inhibiting IL‐7Ra expression and diminishing signaling 
by the kinase Erk [49, 50]. Acute deletion of Foxp1 induces naïve T cells to gain effector phe‐
notype. Homeostatic proliferation of quiescence cells is regulated by IL7 signaling pathway, 
which can be negatively regulated by autocrine feedback control of IL7Ra expression [51]. 
Transcription factor Foxp1 helps maintain the quiescence of naïve T cells by binding to 3.5 kb 
upstream of IL7R transcription start site and inhibiting IL‐7Ra expression [36]. Foxp1 is a 
negative regulator of Foxo1 as they compete with each other for the forkhead binding site at 
IL7R enhancer region [49].

5. Tob

A member of the Tob family shares a highly conserved NH2 terminal sequence. Tob is 
expressed in resting T cells as well as in anergic T cells [52]. Its expression is diminished 
upon T cell activation by anti‐CD3/anti‐CD28 or mitogen PMA stimulation. Forced expres‐
sion of exogenous Tob molecule inhibits T cell proliferation. Tob interacts with Smad2 and 
Smad4 molecules and enhances Smad4, signaling to suppress the transcription of multiple 
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cytokines including IL‐2. Overexpression of Tob also blocks cell cycle progression by promot‐
ing p27kip1, a negative regulator of cell cycle. In contrast, the positive regulator of cell cycle 
molecules including cyclin E, cyclin A, and Cdk2 was suppressed. Elimination of Tob protein 
synthesis using antisense oligonucleotide reduces the threshold of T cell activation.

6. Tsc1

Tuberous sclerosis 1 (Tsc1) functions as a GTPase‐activating protein (GAP) that binds small 
GTPase RHEB and negatively regulates mTOR1 signaling. Tsc1 is important in T cell biol‐
ogy in memory cell differentiation, effector, and regulatory functions [53, 54]. Tsc1 is also 
implicated in anergy T cells, and its expression is higher in anergy as compared to activated T 
cells [55]. Tsc1−/− T cells in mice model loss quiescence as demonstrated by increased cell sur‐
face marker (CD44hiCD122−) and prominent upregulation of activation markers such as CD69, 
CD25 and CD71 [56]. Besides, Tsc1−/− T cells demonstrated increased cell size, proliferation, 
reactive oxygen species (ROS) generation, and susceptibility to apoptosis. Tsc1 deficiency also 
dampens anti‐bacterial immune response in animal model as reduced OVA‐reactive tetramer‐
positive T cells and interferon‐producing CD8+ T cells. The effect of Tsc1 deficiency is attrib‐
uted to its ability to inhibit mTORC1 as this effect can be reverted by rapamycin treatment.

7. Slfn2

The word “schlafen” means sleeping in German. Schlafen (Slfn) family of genes, so‐called 
owing to their ability to promote cells into an inactive state, consists of six genes with RNA 
helicase‐like motif in human. Schlafen proteins promote growth inhibitory responses and 
play roles in thymocytes development [57], effector, and regulatory T cells [58]. Slfn2 was 
added to the gaining list of quiescence factors coincidentally when scientists investigate the 
phenotype in elektra mouse, a G3 mice homozygous for chemically induced random germ‐
line mutation [59]. The eureka mice carry a single mutation in Slfn2, which results in isoleu‐
cine‐to‐asparagine substitution of amino acid residue 135, which is induced after exposure 
to N‐ethyl‐N‐nitrosourea. Eureka mice are defenseless and succumb to lymphocytic chorio‐
meningitis virus and Listeria monocytogenes infection due to immunodeficient phenotype. This 
increased susceptibility to bacterial and viral infections can be reversed with bacteria artificial 
chromosome (BAC) transgenesis of Sfln2 gene, thus confirming the role of Sfln2. Interestingly, 
T cells from eureka mice exist in a semi‐activated state [59]. The T cells are generally lesser in 
amount but express higher surface activation marker (CD44hi) and proliferate strongly and 
are more prone to apoptosis in response to anti‐CD3/anti‐CD28 activation signal. A chronic 
ER stress under steady‐state conditions observed in Eureka T cells could explain the loss 
of immune cell quiescence [60]. Slfn2 has been suggested as a promising target for treating 
human T‐ALL malignancy [61]. In T‐ALL mice model, impaired Slfn2 functions rescue the 
mice from disease progress as the proliferation potential and survival of leukemic T cells are 
affected. In addition, the symptoms of severe lymphoproliferative disease in Fas deficient 
mice can also be rescued by Sfln2 loss‐of‐function mutation.
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8. Runx1

Runx family comprise three members: Runx1 and Runx3 play crucial roles in T cell devel‐
opment and differentiation [62], whereas Runx2 is a key player in osteoblast differentiation 
during bone formation [63]. Runx1 knock‐out mice die of impaired fetal hematopoiesis at 
embryonic day E12.5 [64]. Conditional knock‐out mice driven by CD4‐Cre promoter lead 
to low number of CD4+ T cell population attributed to apoptotic cell death. When an anti‐ 
apoptotic Bcl‐2 transgene is introduced to rescue the T cells, Runx1−/− T cells demonstrate 
spontaneous hyperactivation (CD44hiCD62Llo) phenotype. This mouse model displays a 
breakdown of immune tolerance as the signs and complications of systemic inflammatory 
response syndrome (SIRS) such as cytokine storm, monocytosis, blood coagulation, and 
muscle wasting syndrome can be observed. Infiltration of Runx1−/− cells into the lung causes 
autoimmune lung disease similar to human pulmonary alveolar proteinosis (PAP) [65]. In 
addition, increased surface activation markers, CD40L and CD69, were observed along with 
increased cytokine, chemokines, and other signaling molecules [66]. It is noteworthy that 
similar to other quiescence factors such as KLF2, Runx1 is abundantly expressed in naïve T 
cells, and TCR signaling results in rapid reduction of Runx1 expression [67]. One possible 
mechanism of Runx1 to exert quiescence is through silencing the expression of cytokines IL‐2. 
Besides, Runx1 may control quiescence indirectly through transcriptional control of Foxp1, 
Foxo1, and KLF2 by binding to their promoter region [66].

9. Peli

Ubiquitination is a post‐translational mechanism for protein degradation. During ubiquiti‐
nation, small ubiquitin proteins attach to the lysine residues of substrate protein catalyzed 
by sequential action of E1, E2, and E3 ubiquitin‐activating enzymes. Ubiquitination process 
has been shown to involve in immune regulation [8, 68, 69]. Peli family is composed of three 
members, Peli1, Peli2, and Peli3 [70], among which E3 ligase Peli1 has been implicated in T cell 
quiescence control. CD4+ and CD8+ T cells from Peli‐deficient mice demonstrate hyperactiva‐
tion and increased proliferation response upon TCR‐CD28 signaling [8]. Most of the Peli1−/− 
T cells turn into memory cells. Peli−/− mice develop autoimmune diseases, as demonstrated 
by multiorgan inflammation, detection of antinuclear autoantibody, and prominent immune 
complex deposition in kidney, and more pathogenic potentials are induced in experimental 
autoimmune encephalitis model [8].

10. Gimap5

Gimap5 stands for GTPase of immunity‐associated protein 5. A missense mutation in the 
Gimap5 results in abrogation of quiescence and reduced number and survival of lympho‐
cytes [46]. Gimap5‐deficient CD4+ T cells from the mice are Th1/Th17 polarized and thus pro‐
motes colitis and early mortality. Gimap5 also plays a role in regulatory T cells because in its 
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absence, regulatory T cells become reduced in frequency in the peripheral tissues and their 
immunosuppressive capacity becomes impaired.

11. Summary

Mature T lymphocytes in our body can remain in a quiescence state for a prolonged duration 
in the absence of infectious or stimulatory factors. Loss of T cell quiescence control leads to 
breakdown of immune tolerance and is the main causative factor for various types of autoim‐
mune diseases, lymphoma, and leukemia. The understanding of the interaction among the 
multiple factors that are involved in intrinsic control of quiescence status is hence crucial to 
control the balance between immune tolerance and activation.
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Abstract

Treg cells CD4+CD25+FOXP3+ have a specific function in the tolerance of autoantigens 
and regulation of the immune response. Modulation of differentiation pathways and 
the use of Treg cells in cell therapy have been reported in autoimmune diseases, sys-
temic lupus erythromatosis, autoimmune hepatitis, type 1 diabetes mellitus, multiple 
sclerosis, rheumatoid arthritis, graft-versus-host disease, bone marrow transplantation 
and solid organs. The expansion of Treg cells in vivo occurs through low-dose IL-2 treat-
ment. However, because of the heterogeneity and variability of Treg cells, the isolation of 
peripheral blood cells, through the technique of leucopheresis by GMP (good manuring 
practice), for in vitro expansion is difficult, necessitating a large combination of specific 
and reliable cellular markers. Currently, two specific markers, Helios and neuropilin-1, 
are being studied to facilitate the differentiation of thymus Treg cells and peripheral Treg 
cells. However, Treg cells induced in vitro are unstable. Modulation of the FOXP3 gene 
in the CNS1 and CNS2 region is an alternative to maintaining the stability of expanded 
Treg cells in vitro.

Keywords: autoimmune tolerance, cell therapy, heterogeneity treg, FOXP3+, regulatory T

1. Introduction

Regular T lymphocytes (Treg) were first described in the year 1970 in murine models [1]. They 
are subpopulations of T lymphocytes defined by the expression of CD4+ and CD25+ molecules, 
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as well as by the transcription factor FOXP3 (forkhead box P3). Treg cells maintain self-toler-
ance and immune homeostasis through immune responses against self and non-self antigens 
and in fetal-maternal self-tolerance. Regulation of the immune response occurs through sup-
pression of effector T cells, minimizing the production of cells of adaptive immunity and 
innate immunity [2, 3]. The suppressor function of Treg cells is directed by the transcription 
factor FOXP3, occurring in a non-random manner. However, a deregulation in the Treg cells 
can make them autoreactive with the recognition of autoantigens, developing autoimmune 
diseases [4]. The organism acts naturally against self-reactive T cells through the process of 
negative selection by inactivation or clonal deletion in the thymic tissue, and genetic muta-
tions contribute to self-tolerance in the thymus [5].

FOXP3 expression is initiated through a combination of antigen recognition, microenviron-
mental influences, and epigenetic factors. FOXP3 is present in about 10–20% of the T cells. 
Peripheral induction of FOXP3 expression may occur in the colon and placenta [6, 7]. Treg 
cells exhibit high expression of the IL-2α receptor (CD25) and low expression of CD127 [8]. 
Changes or loss of FOXP3 is associated with the development of collagenases and vasculitis, 
rheumatoid arthritis, mixed connective tissue disease, Kawasaki disease, Wegener's granulo-
matosis, systemic lupus erythematosus and Sjögren's syndrome, enteropathies, type 1 diabe-
tes, thyroiditis and eczema [9]. The various clinical alterations of which Treg cells are present, 
the use of Treg as cell therapy with in vitro and ex vivo expansion has been a research alterna-
tive for certain treatments with the development of tolerance and autoimmunity [10].

2. Treg cell heterogeneity

Treg cells account for 5–10% of peripheral CD4+ T cells in humans and rats. Treg cells that 
grow in the thymus are called natural (nTreg) or thymic (tTreg) Tregs, and Treg cells that 
develop at the periphery by specific stimuli of conventional CD4+ T cells are termed pTreg 
cells. When Treg cells are induced in vitro are called iTreg [11]. Treg cell generation in the thy-
mus and peripheral tissues occurs in response to T cell receptor (TCR) and cytokine receptor 
signaling. Natural Treg cells are generated during the period of positive selection of CD4+ T 
cells by expression of the transcription factor of the FOXP3 gene in the thymus. FOXP3 expres-
sion is controlled by conserved noncoding sequences (CNS) in the promoter region of the 
gene and by intronic regulatory sequences [12]. TGF-β, IL-2, and TCR are required for FOXP3 
gene expression during cell differentiation [13]. The promoter region of the FOXP3 gene is 
activated by the NF-kB pathway, NFAT (nuclear factor of activated T), the transcription fac-
tor SMAD-3, the retinoic acid produced by dendritic cells and epithelial cells, rapamycin and 
NR4As proteins [14–16].

However, there is a small portion of Treg that does not express FOXP3 is known as regu-
latory T type 1 (Tr1) with phenotype CD41+CD49b1+LAG-31+CD2261+FOXP3−. These cells 
are induced by the chronic activation of CD4+ by antigens in the presence of IL-10 and are 
responsible for peripheral immunotolerance. It is possible to distinguish the Tr1 from other 
CD4+ populations from the expression of the cytokines: IL-10++TGF-b+IFN-γ+IL-5+IL-4 
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IL-2−low/neg [10]. T cells expressing FOXP3 circulate through the secondary lymphoid tis-
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Treg. Through stimuli by TGF-β tTreg can differentiate into pTreg [20–22]. The deficiency 
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immune  system [23].

2.1. Treg cell subtypes
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cells are FOXP3hiCD45RA−CD45RO+ and express both the Fas receptor (CD95) and cyto-
toxic T-lymphocyte antigen (CTLA-4). A small part of Treg has a phenotype ICOS+IL-10+. 
Treg cells expressing FOXP3 exhibit their immunoregulatory activity by a variety of effector 
mechanisms such as CTLA-4 uptake, IL-2 uptake, IL-10, TGF-β, IL-35 and galactin-1 pro-
duction. The environment in which Treg cells are found alters the mechanisms by which 
they exert suppressive activity. Identification of CD45RA or CD45RO molecules, when 
combined with CD25 and/or FOXP3, is useful for identifying naive reg T cells. Human 
CD45RO+CD25hiCD4+Treg cells are similar to rat Treg cells in CD25 expression. The Treg 
CD45RA+FOXP3+ and CD45RO+FOXP3+ cells are functionally different but are related to the 
development of immunosuppression. Expression of the transcription factor of the B lympho-
cyte-induced maturation protein (Blimp-1) is common to all Treg cells [15, 24–26].

Differentiation of naive Treg gives rise to subtypes of Treg CD4+CD25FOXP3+: tTreg, pTreg, 
and iTreg. With the use of Treg cells in the therapy of human diseases, it is important to 
distinguish between cell subtypes. Expression in the Helios molecule can be effective in dif-
ferentiating between the subtypes of tTreg and iTreg/pTreg [21]. Helios is expressed in the 
thymus, so it may be a marker to identify tTreg from the other populations of Treg, and it 
acts as upregulation in FOXP3 protein [27–29]. However, the Helios molecule can be found 
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in iTregs and pTregs depending on the type of antigen presenting cells and signals found. 
Cells that super-expression Helios have a superior effect of peripheral immunosuppression. 
This feature can be used in treatments for autoimmune diseases such as systemic lupus ery-
thematosus (SLE) and rheumatoid arthritis (RA) [30]. Through in vitro induction of Helios in 
Treg cells, it was found that CD103 and GITR are expressed at high levels in a subset of cells 
Treg Helios+. These markers together can be used to differentiate Treg subtypes from each 
other [21, 31]. Another alternative, the Nrp1 protein (neuropilin-1) is expressed in tTreg cells 
as opposed to iTreg and pTreg cells [31].

The pTreg cells are present in the intestine and mucosa. Dendritic cells present in the mucosa, 
especially CD103+ induce FOXP3+ Tregs through the production of TGF-β and retinoic acid 
[32]. Retinoic acid binds to its receptor, RAR, generating induction signals in the CNS1 region 
of the FOXP3 gene. This signal induction leads to increased histone acetylation in the region 
of the CNS1, the SMAD3 binding sites, and increased phosphorylated SMAD3 binding, 
inducing expression of FOXP3, and originating pTreg cells in the gut. The microbiota also 
promotes cell differentiation of TCD4+ in Treg CD4+FOXP3+. Most of the Tregs in the intes-
tine coexpress FOXP3 and RORgt, a Th17 regulator, as well as T-bet, GATA3 or IRF4, proteins 
that present suppression role in the Th1/Th2 response, maintaining the immunological toler-
ance and acting in the resistance to pathological infections originated microorganisms present 
in the mucosae [33].

2.2. FOXP3 and autoimmunity

FOXP3 is the main labeled Treg cell. The key role of FOXP3 in the immune response of Treg 
has been described in patients with immune dysregulation, polyendocrinopathy, enteropa-
thy, X-linked (IPEX) and in rats scurfy [34, 35]. Patients and scurfy mice present monogenic 
mutations in the FOXP3 gene, which confers a phenotype with dysregulation of the immune 
system with the development of autoimmunity due to lack of Treg cells [36, 37]. Patients with 
IPEX present mutations in a Phe367 residue of the F367V protein, F367L, and F367C, which 
make up the FOXP3 protein [38]. Polymorphic changes in the promoter region of the FOXP3 
gene contribute to loss of function and dysregulation of FOXP3, as well as the development 
of polygenic autoimmune diseases [39]. However, there is no dominant mechanism for the 
development of autoimmunity. Factors affecting FOXP3 function, effects of genetic altera-
tions, altered signaling, and expression of FOXP3 messenger RNA (mRNA) or mature protein 
are related to the development of autoimmunity with an imbalance between conventional 
Treg cells and pathogenic Tregs [40].

IPEX is a rare genetic disease resulting from the lack of functional Treg cells due to the loss 
of functional mutations in FOXP3. It affects men exclusively because of its recessive pattern 
of heredity linked to the X chromosome and is often fatal in the first year of life unless it is 
rescued with bone marrow transplantation. Clinically, IPEX presents a triad of autoimmune 
enteropathy, autoimmune endocrinopathy, and eczematous dermatitis. The most common 
manifestation is enteropathy followed by endocrinopathy, especially type 1 insulin- dependent 
diabetes mellitus. Additional manifestations described include immune- mediated cytopenia, 
which may present as neutropenia, anemia and/or thrombocytopenia, and  autoimmune 
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 nephropathy, hepatitis, and pulmonary disease. Food allergy with high serum IgE and eosin-
ophilia. Patients with IPEX generally have a wide range of autoantibodies due to adaptive 
immune dysregulation. The only curative treatment available for this disease is the alloge-
neic hematopoietic stem cell transplantation with chemotherapy of reduced intensity. Prior to 
transplantation, patients require nutritional support and immunosuppressive therapy, which 
may include glucocorticoids and/or steroid-sparing agents, such as calcineurin inhibitors, 
rapamycin inhibitor (mTOR) [11].

Single nucleotide polymorphism (SNP) 7340C>T is related to the development of autoim-
mune diseases and allergies in children. This polymorphism alters the stability of FOXP3 
mRNA by preventing translation. In addition to SNPs in FOXP3 itself, SNPs in three other 
loci indirectly affect FOXP3 expression and are associated with autoimmunity: CD25, PTPN2, 
and PTPN22. All three genes are involved in the response to IL-2. Tregs do not produce IL-2, 
but this interleukin is essential for its survival and function. The low expression of CD25 is 
associated as STAT5 after exposure to IL-2, with decreased Tregs throughout life in patients 
with type 1 diabetes and multiple sclerosis. The polymorphism rs3761549 G/A is related to 
the development of Graves' disease in children. These changes related to FoxP3 protein are 
commonly known as IPEX-type changes [40–43].

3. Treg-cell therapy

The use of Treg cells in clinical practice was made possible after isolation and enhancement 
of GMP (good manuring practice) CD4+CD25+ Treg cells with a yield of approximately 90% 
Treg, allowing the cryopreservation and expansion of these cells. Cell therapy with Treg has 
a purpose in the treatment of diseases, which result in a decompensated or undesired sup-
pressed Treg activity in cancer, immunoglobulin deficiency, autoimmune or inflammatory 
diseases, and deleterious consequences of immunosuppression after organ transplantation. 
Therefore, the manipulation of Treg cells can control the progression of cancer through cell 
configurations, solid organ transplantation and hematopoietic cells, transplant rejection, and 
autoimmune diseases. The concept of cellular immunotherapy with Treg is to give the patient 
Treg cells to decrease the exaggerated immune response to autoimmune diseases, organ 
transplants and bone marrow [44–47]. The nTreg cells, in vitro, can be expanded by antigenic 
stimulation in the presence of a high concentration of IL-2. In vivo, low-dose IL-2 treatment 
increases Treg expansion and is used in the treatment of graft versus host disease (GVHD) 
and hepatitis C virus-induced cryoglobulinemic vasculitis and, together with rapamycin. Low 
dose IL-2 was chosen to preferentially expand Treg cells without also expanding activated 
effector T cells. Modulation of IL-2 homeostasis is an important mechanism by which Treg 
modulates effector differentiation of CD8+ under strongly immunogenic conditions [48, 49]. 
Some authors suggest the use of rapamycin for Treg expansion in vivo with an approximately 
75–80% yield of pure cells and total depletion of CD8 and CD19 [50–52].

Three categories of GMP-grade clinical Treg can define: first generation (CD4+CD25+); sec-
ond generation, bone fide Treg (CD4+CD25+CD127low/−) and third generation naive Treg 
(CD4+CD25+CD127low/−CD45Ra+). These three types of Treg can be isolated and expanded 
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by Il-2 [46]. The main obstacle to Tregs expansion in the laboratory is iTregs instability. The 
use of the Nrp1 protein reduces the phosphorylation of the Akt protein, promoting cell sta-
bility. Demethylation of the CpG islands in the CNS2 region at the FOXP3 locus recruits 
transcription factors, including STAT5, NFAT, Runx1/Cbfb, CREB and FOXP3 itself, making 
the tTregs stable. However, demethylation in the CNS2 region of FOXP3 is known to render 
iTregs unstable. The control of the methylation/demethylation processes of the CNS1 and 
CNS2 regions of the FOXP3 gene of the iTregs is still not possible with 100% efficacy in the 
laboratory. In this way, it compromises clonal expansion in vitro, and several transcription 
factors are involved [47, 53].

3.1. Graft-versus-host disease (GVHD)

Allogeneic stem cell transplantation presents a series of problems, among which we can 
highlight GVHD, with high mortality rates of 15–30% in transplanted patients and 50% of 
morbidity. Treg cells are a novel approach based on cellular immunotherapy to reduce the 
risk of severe acute lesions of graft versus host disease (aGVHD). These lesions may occur 
within 100 days after transplantation. Chronic GVHD takes about 2–5 years for the signs and 
symptoms of the diseases to appear in the transplanted patient due to the presence of effector 
T cells in the marrow receptor tissue. To combat this reaction, aggressive immunosuppressive 
therapies are started, often unsuccessful. Despite the advances in GVHD treatment, the high 
rates of death are still high [54–56]. The development of acute and chronic forms of GVHD 
is different with signs and symptoms because it involves cells cytotoxic TCD8+ and helper 
TCD4+, and these cells activate different pathways in the autoimmune response. The pathway 
involving donor TCD8+ cells is activated when binding of TCR to major class I histocompat-
ibility complex (MHC-I) peptides occurs, and interaction the patient antigen-presenting cells 
(APCs), with the release of granzins, perforins, and production of inflammatory cytokines. 
Although activation of donor TCD4+ cells results in the activation of a Th1 inflammatory 
response with high production of INF-Y, IL-12, and IL-2, or a Th2-mediated inflammatory 
response with extensive production of IL-4, IL-5, IL-6 and IL-10 [54, 57].

After the haematopoietic stem cell transplantation (HSCT), reconstituted Treg cells express 
markers of recent thymic emigrants. These markers increase the number of native Treg cells in 
the population of graft-derived Treg cells after HSCT. Second, Treg Helios+ cells from patients 
receiving HSCT express higher levels of naive markers (such as CD45RA and CD31) than 
those from patients with active systemic lupus erythromatosus. This increase in Treg controls 
the immune responses of Th1 and Th2. Infusion of Treg cells into HSCT has been explored in 
murine and human models. Infusion of Treg cells during allogenic HSCT reduces acute and 
chronic graft-versus-host disease [58]. Patients with HSCT demonstrated that the use of IL-2 
at the dose of 1 × 106 IU per square meter decreases the chances of developing GVHD, in which 
the number of Treg increased due to activation of the FOXP3+ gene by IL-2, and the amount 
of Tcon decreased [51]. The immunological reaction of cGVHD exhibits phosphorylation of 
the transcription factor STAT5, increase of IL-17, IL-15 and deficiency or decrease of IL-2, The 
IL-2 therapy increased cell proliferation in the thymic and decrease apoptosis by activates 
phosphorylation of STAT5 [59]. Another alternative for Treg  expansion is CD28 stimulation 
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of pTregs, which results in a polyclonal expansion and preservation of a Treg phenotype 
and function as indicated by the high level FOXP3/Helios expression, reduced prokaryotic 
cytokine expression, inflammatory and powerful suppressive function [60]. Tr1 cells express 
CD49b and Lag3, producing IL-10. Tr1 cells play a role in tolerance but are distinct from 
FOXP3+ Tregs. Studies to examine these cells in organ transplantation are being initiated. The 
association between immunosuppressive drugs that increase the serum concentration of IL-2 
to induce Treg has also been gaining strength in the treatment of GVHD [61–65].

3.2. Type 1 diabetes

Type 1 diabetes mellitus (T1DM) is a chronic disease that results from the autoimmune 
destruction of insulin-producing pancreatic beta cells. May be associated with the develop-
ment of IPEX [66]. The death of β cells occurs due to exposure of their antigens to MHC 
class II complex APC cells and presentation to TCD4+ lymphocytes in the lymphatic mod-
ules of the pancreas. After presentation, TCD4+ cells differentiate into self-reactive effector 
TCD4+ (Teffs). The fractions of the complement system C3a and C5a facilitate the expansion 
and the function of Teff. In pancreatic islets, activated Teffs release cytokines including IFN-γ 
and IL-2, resulting in the recruitment of cytotoxic T lymphocytes and TCD8+ lymphocytes. 
Cytotoxic inflammatory cells eventually infiltrate and destroy the islet cells in a process called 
“insulite”, with the release of perforins and granzins AND release of IFN-γ, TNF α, IL-1β by 
macrophages. Chemokines released by the injured β-cells promote recruitment of additional 
mononuclear cells and the release of additional autoantigens allows the expansion and propa-
gation of the self-reactive Teff response [67–71]. In the pathogenesis of T1DM, the immune 
response is exaggerated against its own antigens. There is an imbalance between Tregs and 
effector T cells. Isolation and expansion ex vivo of Tregs CD25+CD127low/−CD25+ showed 
improved function and retained their diversity of T cell receptors, then these cells were used 
in T1DM patients. The infusions were well tolerated and with good safety. The use of pharma-
cotherapy including anti-CD3 therapy, glutamic acid decarboxylase (GAD) injection, hema-
topoietic stem cell transplantation (HSCT), autologous umbilical cord blood transfusion and 
stem cell educator therapy has demonstrated efficacy with increased levels of C-peptides and 
decrease in the daily dose of insulin [72, 73].

The subpopulations of Tregs in T1DM are different when compared to healthy individu-
als. The proportion of cells CD25low/− between cells Treg CD4+FOXP3+In T1DM patients was 
higher than in healthy patients. Low or no CD25 expression implies a decrease in Treg cell 
differentiation with decreased peripheral suppressor activity and increased Teff cell growth 
[74, 75]. The difficulty in using expanded Tregs ex vivo in patients with T1DM is found in 
the cells themselves since these cells express CD45RO+ memory phenotype. Another issue 
is the expression of Helios by lymphocytes in peripheral blood. Expanded lymphocytes in 
vitro have a lower expression of the molecule on their surface when compared to their own 
lymphocytes. However, the activity of suppressing autologous or allogeneic TCD8+ effector 
cells is maintained. Thus, it becomes a good alternative in the treatment of T1DM in the long 
term. Some studies have conflicting results on the use of Treg cells in the treatment of T1DM 
since several mechanisms are involved in the T1DM pathology; however, they are in line with 
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lack, dysregulation or deficiency of local and peripheral Treg [76]. Studies with the use of IL-2 
in the treatment of T1DM have demonstrated effective results in the expansion of Treg [77].

3.3. Autoimmune hepatitis and systemic lupus erythematosus

The inflammatory response of autoimmune hepatitis (AIH) involves the B-lymphocytes, 
T cells, Th1, Th17 and cytotoxic T cells. Studies have shown that the function of the mature 
FOXP3 protein shows inactivity in T CD4+ cells. Cell therapy, such as the infusion of 
autologous, antigen-specific and hepatic regulatory T cells to restore hepatic immune tol-
erance, may soon be a potential future treatment for patients with AIH [78, 79]. Hepatic 
tolerance is involved in the pathogenesis of autoimmune hepatitis, with an imbalance of 
immune responses. There are controversies in scientific research regarding the number 
of Treg present in AHI. Though the modulating function of the cell appears to be com-
promised [80, 81]. However, in treated patients with IL-2, the Treg number is higher than 
untreated patients. This fact supports the hypothesis of treating patients with autologous 
Tregs expanded ex vivo and may lead to tolerance to hepatic antigens during the develop-
ment of chronic disease, with remission of the clinical signs and symptoms of AIH. The 
use of IL-2 for Treg expansion in vivo is an option for treatment in patients with reduced 
Treg numbers [82–84].

SLE is a chronic autoimmune disease characterized by the production of antinuclear auto-
antibodies of the IgG type. Symptoms of the disease include light hypersensitivity, impaired 
joints, thyroid dysfunction, changes in the central nervous system and renal filtration [85]. 
There is growing evidence that Th1, Th2, Th9, and Th17 cells are associated with the patho-
genesis of SLE. Disorders related to the amount, function of Treg show a worse evolution 
in the disease and decrease the production of IL-2. But studies that demonstrate this com-
mitment are not homogeneous [86]. The use of IL-2 in the treatment of SLE demonstrated 
decreased exaggerated inflammatory response and increased proliferation of Tregs in vivo 
[87–90]. Treg cells expressing Helios are used with functional suppressive capacity and 
migratory potential in inflamed tissues is expanded in active SLE, presumably by γ-chain 
signaling cytokines and TCR stimulation, to compensate for autoreactive effector responses 
[91]. Treatment with melatonin increases the frequency of CD3+CD4+FOXP3+ cells and the 
mean fluorescence intensity of FOXP3 in patients with SLE [92].

3.4. Rheumatoid arthritis and multiple sclerosis

Rheumatoid arthritis is characterized by chronic inflammation of the joints, with severe 
pain and in the long term, loss of movement of the affected joint. In the development of 
rheumatoid arthritis, Treg cells are unable to suppress inflammatory responses, with an 
imbalance between Treg effector cells and TCD4+ cells. Low doses of IL-2 increase Treg 
stimulation in rheumatoid arthritis [93, 94]. In rats, depletion of Treg cells results in the 
onset of a variety of autoimmune diseases, including arthritis. Treg's cellular replacement 
relieves the symptoms of the disease. The importance of Treg cells in rheumatoid arthritis 
is supported by the efficacy of CTLA4-Ig therapy, an increased ratio of Treg cells/effector 
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signaling cytokines and TCR stimulation, to compensate for autoreactive effector responses 
[91]. Treatment with melatonin increases the frequency of CD3+CD4+FOXP3+ cells and the 
mean fluorescence intensity of FOXP3 in patients with SLE [92].

3.4. Rheumatoid arthritis and multiple sclerosis

Rheumatoid arthritis is characterized by chronic inflammation of the joints, with severe 
pain and in the long term, loss of movement of the affected joint. In the development of 
rheumatoid arthritis, Treg cells are unable to suppress inflammatory responses, with an 
imbalance between Treg effector cells and TCD4+ cells. Low doses of IL-2 increase Treg 
stimulation in rheumatoid arthritis [93, 94]. In rats, depletion of Treg cells results in the 
onset of a variety of autoimmune diseases, including arthritis. Treg's cellular replacement 
relieves the symptoms of the disease. The importance of Treg cells in rheumatoid arthritis 
is supported by the efficacy of CTLA4-Ig therapy, an increased ratio of Treg cells/effector 
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T cells after treatment with  anti-IL-6R or anti-TNF-α and the identification of CTLA-4 asso-
ciated with rheumatoid  arthritis. FOXP3+ T cells are able to convert into pathogenic Th17 
cells. Th17 cells are increased in rheumatoid arthritis, being responsive for the production of 
inflammatory cytokines and the activation of inflammation in severe cases. The modulation 
between Treg/Th17 is an alternative for the immunocellular treatment of rheumatoid arthri-
tis [95–97]. Tregs play a key role in protecting individuals against autoimmunity. Many 
studies suggest that the amount of Treg may be a protective factor against the development 
of multiple sclerosis. The use of TGF-β may be an alternative aid in the treatment of multiple 
sclerosis, since Treg and effector T cells are defective. The causes of multiple sclerosis are 
still unknown, but the immune system plays a central role in the development of the disease 
[98, 99].

4. Conclusion

The success of Treg cell therapy depends initially on the isolation and characterization of 
cells. New studies are emerging, with the discovery of new cell markers for the identification 
of Treg. However, current research does not use a universally applicable standard for Treg 
identification. This gap in identification leads to conflicting and doubtful research results. The 
cellular variability of Treg is wide. It is important to characterize the phenotype and suppres-
sor function of each subtype of Treg present in the periphery or in the thymus. The deregula-
tion of these cells leads to the development of autoimmune diseases or the worsening of the 
clinical picture of these diseases. The FOXP3 protein is responsive to Treg cell suppressor 
activity, together with other molecules. Understanding the modulation pathway to activate 
the FOXP3 gene is important for the expansion of stable Tregs in vitro and that in the future 
we will have effective cellular therapy without damage to the organism.
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Abstract

Until a decade ago, natural killer (NK) cells constituted the major—if not the sole—
player of innate lymphoid cell populations. The discovery of the presence and execution 
of curial functions by lymphoid tissue inducer‐like cells (LTi) in adults is followed by 
the discovery of Th2‐like innate cells and later Th1‐like helper group 1 ILCs. With these 
findings, the innate lymphocyte family has expanded and a new paradigm has emerged. 
Apparently, innate versions of helper subsets of CD4+ T cells existed in humans and mice. 
These cells, unlike their adaptive counterparts, lack CD3, T and B cell receptors, do not 
rearrange their antigen receptors and get activated by microbial products or cytokines. 
Furthermore, these cells rely on similar transcription factors that helper CD4+ T cells 
use for their development and functions (such as T‐bet, Gata3 and Rorγt); they produce 
similar effector cytokines (such as IFN‐γ; IL‐5, IL‐13, IL‐4; IL‐17A, IL‐22, GMCSF, respec‐
tively). Moreover, these cells assume crucial functions as an immediate, first line source 
of cytokines/chemokines against pathogens during protective immune responses. Lastly, 
very much like their adaptive counterparts, they are present and contribute to patho‐
genesis in various chronic inflammatory diseases of mice and humans in several tissues.

Keywords: ILC1, ILC2, ILC3, innate lymphoid cell, LTi cell

1. Introduction

In this review, recently described ILC subsets (group 1, 2 and 3 innate lymphoid cells,) which 
are phenotypically and functionally distinct from NK cells, are introduced (Figure 1). The ori‐
gin of these cells, their development, the genes that are necessary for their generations as well 
as functions are described. The signature cytokines produced by ILC subsets and the parallels 
between their adaptive counterparts, namely T helper lineages (Th1, Th2, Th17) are discussed. 
For each ILC type, their phenotypic diversity and subsets, unique and discriminating surface 
markers are explained. For each cell type, their role in protective immunity, as well as their 
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involvement in the pathogenesis of various inflammatory diseases, is discussed based on the 
various data from animal models and human patients. Finally, the plasticity of these cells and 
the experimental evidence indicating a transition between each lineage are laid out.

2. Group 1 innate lymphoid cells (ILC1)

Group 1 ILCs include Natural killer cells and non‐NK ILC1s [1]. We will not be describing 
NK cells, but concentrate non‐NK ILC1s in this review. The distinction between NK cells and 
non‐NK ILC1s is a difficult one to make due to shared use of many markers across tissues [2, 3]. 
Furthermore, a criterion valid for discrimination of NK cells from non‐NK ILC1s in one tissue 
does not appear to hold for other tissues. Having said that, conventional NK (cNK) cells differ 
from ILC1 in some regards. ILC1s are found in liver, intestines, uterine tissue, lung, tonsils, 
peritoneum, spleen and blood [2, 3]. Unlike circulating NK cells, non‐NK ILC1s are considered 
to be mostly tissue resident [4, 5]. ILC1s, like other ILC subsets, express CD127 (IL‐7R) whereas 
mature NK cells do not. T‐bet deficiency does not impact cNK cells ontogeny (although it is 
important in mature NK cells). In contrast, ILC1s are missing in T‐bet‐deficient mice. Moreover, 
cNK cells need eomesodermin (Eomes) in addition to T‐bet for their function; ILC1s, however, 
do not express Eomes, though this may change with the tissue of interest. Eomes could also 
be expressed in low quantity by some NK cells, thus it may not always be a unique NK cell 
definer.

In humans and mice, both CD127+ and CD127‐ ILC1s have been described; however, the dif‐
ference of the latter subset from the cNK cells have been still debated [2, 3, 6]. CD127+ ILC1s 

Figure 1. Human innate lymphoid cell classification, signature cytokines and immune processes they are involved in.
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were described as Lineage‐ckit‐CD161+ NKp44+ cells which lacked NK cell markers CD56, 
CD94, granzyme B and perforin and responsive to IL‐12 to produce IFN‐γ [7]. CD127+ ILC1s 
described in the intestinal lamina propria, tonsils and blood as well. These cells are Eomes‐ 
and T‐bet+, which enforced the idea that they are different than cNK cells. In mice, similar 
T‐bet+ NKp46+ ILC1 were identified by Vonarbourg et al. [8].

CD127‐ ILC1s, however, are phenotypically closer to cNK cell. They were described in the 
human intestinal intraepithelial region (named as ieILC1) and tonsils; they express CD56, 
also CD103 allowing them to interact with epithelial cell [9]. ieILC1s express CD160 in 
mice. ieILC1s express Eomes and T‐bet‐like cNK cells but develop from distinct progeni‐
tors [10, 11]. In the liver of humans and mice, ILC1s have been reported. CD3ε−NK1.1+ DX5− 
CD49a+ cells are considered to be liver non‐NK ILC1s and lack Eomes; in humans, a small 
fraction of CD49+ Eomes‐ ILC1 is presently likely to be the human equivalent of mouse 
liver ILC1s [3].

In salivary glands, ILC1s are described; however, they express DX5 and Eomes like cNK cells 
and produce low levels of IFN‐γ, and thus, it is unclear if they are truly different than NK 
cells or ILC1s [3, 12, 13].

2.1. ILC1 development and activation

Hematopoietic common lymphoid progenitors (CLP) differentiate into, first, early innate 
lymphoid progenitor (EILP) that later give rise to more specialized progenitor positive for 
TCF‐1 [14]. EILP can make both NK cells and ILCs [15]. EILP further differentiates into an 
ID2+ common helper innate lymphoid progenitor (CHILP) which has lost potential to make 
NK cells and can generate all helper ILC subsets. CHILP further differentiates into transcrip‐
tion factor promyelocytic leukemia zinc finger (PLZF)+ precursors, which can make, again 
all ILC subsets with the exception of true LTi cells [16, 17]. PLZF is not expressed in ILC1s; 
however, ILC1s come from progenitors who expressed PLZF for a period of time during their 
development [16]. Similar to other ILC subsets, ID2 and Tox are needed for ILC1 development 
[18, 19]. Nfil3 requirement for ILC1 is controversial [20–23]. Nfil3‐independent ILC1s have 
been reported in breast and prostate tumor tissues, salivary glands, skin, uterus and kidney 
[3, 12, 13, 24]. Runx3 was also shown to regulate ILC1 as well as ILC3 development [25, 26]. 
Lastly, at least some of the ILC1s arise as a result of the conversion of ILC3s or ILC2s to ILC1. 
Ex‐ILC3 ILC1s develop from CCR6‐ ILC3s through upregulation of NKp46 and gradual loss 
of Rorγt upon IL‐12 and IL‐15 stimulation [6, 8]. ILC2s can also give rise to ILC1 upon IL‐12 
and Il‐1β exposure, thus a fraction of ILC1 would be ex‐ILC2s [27–29].

IFN‐γ is the signature cytokine of ILC1s. And ILC1s are activated by IL‐12, IL‐18 or IL‐15 to 
produce those cytokines.

2.2. ILC1s in protective immunity

ILC1s are thought to be important in immunity against viruses, intracellular bacteria or pro‐
tozoans owing to their production of IFN‐γ [30]. Several infectious agents have been used to 
assess the role of ILC1s in protective immunity.
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A study from Diefenbach’s laboratory showed that during Toxoplasma gondii infection ILC1s 
contribute to IFN‐γ and TNF‐α production and thus, to protective immunity; in T‐bet‐defi‐
cient mice, in which ILC1s are missing, the infection progresses more severely [31]. Though 
T‐bet also functions in NK cells, this study suggests that ILC1s might be important in immu‐
nity to Toxoplasma gondii. Another study by the same group showed that ILC1s substantially 
contribute to IFN‐γ production during Salmonella enterica infection, and the bacteria‐induced 
colitis is alleviated if these cells were depleted [6].

ILC1‐based protective immunity to another pathogen was tested by Eric Pamer’s group. They 
showed that due to the absence of ILC1 (but not ILC3), Rag2‐/‐Il2Rγc‐/‐ mice are more sus‐
ceptible to Clostridium difficile infection. Accordingly, those mice are protected after adoptive 
transfer of ILC1s, suggesting that ILC1s may play a crucial role in protective immunity to C. 
difficile infections [32].

2.3. ILC1s during inflammatory diseases

Synovial fluids of psoriatic arthritis have been reported to be enriched in ILC1 content [33]. 
Although a similar increase in NCR+ ILCs in rheumatoid arthritis patients’ synovial fluid has 
been reported, it is unclear whether these cells were conventional NK cells or not.

ILC1 enrichment, particularly in the intestines, has been reported in inflammatory bowel dis‐
eases (IBD) patients as well as in various murine models of IBD than found in any other dis‐
ease [7, 8, 34, 35]. These ILC1s appear to be ex‐ILC3s who lost Rorγt expression over time and 
became a major source of IFN‐γ.

3. Group 2 innate lymphoid cells (ILC2)

ILC2s are found in mucosal surfaces, such as lungs and intestines, and the mesentery, fat‐
associated lymphoid clusters (FALC) as well as blood. They are identified by various groups 
at about the same time under different names as nuocytes, natural helper cells, innate type 
2 helper (Ih2) cells, or multipotent progenitor type 2 (MPPtype2) cells [36–38]. Although these 
innate cells have been previously reported by McKenzie’s group and others as a source of 
Th2 cytokines, naming and a through characterization of them came after these initial reports 
[39, 40].

Currently, ILC2 s in mice can be categorized into two subsets. Natural ILC2s (nILC2) and 
inflammatory ILC2s (iLC2). nILC2 was shown to be regulated by IL‐33 and rely more on 
IL‐33R (IL‐1βLR), whereas iILC2 reportedly express IL‐25R and is regulated by IL‐25 [41]. 
nILC2s produce Th2 cytokines IL‐5 and IL‐13. iILC2, however, can produce IL‐13 and IL‐17 
together.

Human ILC2s that can produce both IL‐13 and IL‐22 with low Rorγt expression has been 
defined [42].

Although T‐bet is a Th1‐specific transcription factor important in driving IFN‐γ expression 
(in NK cells and ILC1), its deletion in ILC2s revealed that it also assumes important functions 

Lymphocyte Updates - Cancer, Autoimmunity and Infection132
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particularly suppressing IL‐9 production by ILC2s. In IL‐33‐induced airway inflammation 
mouse models, Tbx21 deficiency lead to exacerbated eosinophilic inflammation mediated by 
unleashed IL‐9 production [43].

3.1. ILC2 development and activation

All the ILC subsets differentiate from a common lymphoid progenitor (CLP) that can also 
give rise to adaptive lymphoid cells. Further specialization of this progenitor proceeds to a 
branching point after which inhibitory DNA binding protein 2 (Id2) is derepressed in newly 
formed progenitors. This branching by upregulating Id2 is believed to commit the precursor 
to a helper ILC lineage. This Id2+ precursor is named as common helper innate lymphoid pro‐
genitor (CHILP), and so far, lacks potential to make cNK cells. Although Id2 is also reported 
to be required for cNK cells development, its upregulation occurs after Id2−NK cell precur‐
sor branches off to an NK cell fate before the CHILP stage. In other words, current literature 
suggest that NK lineage branches off from CLP before CHILP does. Phenotypically, CHILP 
is defined to be Lin−Id2+Flt3−IL‐7Rα+ CD25‐ or more recently Lin−Flt3−IL‐7Rα+α4β7

+ PD‐1high 
and have Tox2, Tcf‐1, Gata3 expression and differentiate into all ILC subsets after adoptive 
transfer [44].

Deletion of Gata3 in hematopoietic cells blocks development of all helper ILC subsets, but 
spares cNK cells [45]. However, spatiotemporal deletion driven by stage‐specific promoters 
revealed that Gata3 deletion after Id2 is turned on, only blocks ILC2 generation, whereas its 
deletion after the initiation of Ncr‐1 expression impacts ILC1 [46].

Notch signaling has also been shown to be required for the development of all three ILC sub‐
sets to varying degrees both in vitro and in vivo [47].

Bcl11b is particularly required for specialization into ILC2, its absence blocks ILC2 generation 
[48].

Rorα is also crucial in ILC2 development. As such Rorα‐/‐ mice lacks ILC2, whereas Th2 
cells appear to develop normally. Furthermore, Rorα‐/‐ mice fail to mount protease‐induced 
asthma consistent with the role of ILC2s in this process [49, 50].

T‐cell factor 1 (TCF1) is another transcription factor required for ILC2 development. TCF‐1 
is produced by its gene Tcf7. TCF‐1 is crucial in early thymic T cell development and is also 
expressed by ILC2s [51, 52]. Studies show that its deletion impairs ILC2 development and 
that TCF‐1 works downstream of Notch signaling during ILC2 development. Thus, papain‐
induced inflammation or protective immunity is diminished in Tcf7‐/‐ mice [15].

Nuclear factor IL‐3 (Nfil3), also known as E4BP4, is a transcription factor previously 
reported to be required for generation of some of the hematopoietic cells, including 
CD8+ DCs and, although controversial, NK cells. Nfil3‐/‐ mice have been shown to lack 
Peyer’s patches, both ILC3 and ILC2 cells have been shown to be greatly reduced in the 
Nfil3‐/‐ mice. Consistent with these results, Nfil3‐/‐ mice mounts a weak immune response 
to Citrobacter rodentium infection and a reduced airway inflammation to papain‐induced 
allergy [53].
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Gfi1 (growth factor independent 1) is also another gene reported to regulate ILC2 develop‐
ment ad function. Its genetic deletion results in reduced number and function of ILCs, and 
render mice more susceptible to worm infection and more resistant to papain‐induced lung 
inflammation [54].

ILC2 cells interact with Th2 cells, via costimulatory molecules OX40/OX40L, MHCII as well as 
cytokines such as IL‐4; by doing so, they allow generation of a robust immunity [55].

IL‐25, IL‐33, TSLP, leukotriene D4 and IL‐4 are the most notable activators of ILC2s.

Activation of Th2 cells through TCR leads to activation and translocation of NFAT to the 
nucleus, in addition to mobilization of AP1 and NF‐κB, all of which lead to the expression 
of Th2 cytokines. The latter two were described for ILC2s, how NFAT gets activated was not 
known. More recently, leukotriene receptors have been shown to activate NFAT in ILC2s [56].

Another protein important for Th2 activation is PKC‐θ. PKC‐θ was also expressed by ILC2 
and its absence results in reduced ILC2 numbers, in addition to Th2 cell reduction. Moreover, 
IL‐5, IL‐13 as well as IRF4 production by ILC2s are regulated by PKC‐θ, thus its deletion or 
inhibition blocks their production in HDM allergen‐induced airway hypersensitivity model 
[57].

IL‐33 in the lung is produced by epithelial cells (mostly pneumocytes) and antigen presenting 
cells (DCs and macrophages) [58].

ILC2s also express IL‐4R and expand in response to IL‐4 (produced by basophils) during 
atopic dermatitis [59].

3.2. ILC2s in protective immunity

ILC2s are important in defense against helminths/worms and rhinoviruses. Nippostrongylus 
brasiliensis or Strongyloides venezuelensis infection models are widely used in ILC2 studies, the 
infection of mice with these pathogens results in accumulation and activation of ILC2 s in the 
lungs [60, 61]. Using IL‐33KO mice, it was shown that ILC2 expansion and IL‐13 production 
by ILC2s are important in immunity against hookworm N. brasiliensis in mice [62].

ILC2s has also been shown to expand during rhinovirus infection in mice in an IL‐25‐depen‐
dent fashion [63].

ILC2s also support the generation of a robust Th2 response. ILC2s function as a IL‐4 source 
and by providing IL‐4 they support Th2 differentiation or maintenance. Thus, during H. poly‐
gyrus infection in mice ILC2 specific deletion of the IL‐4 result in diminished Th2 response [64].

3.3. ILC2s during inflammatory diseases

ILC2s are implicated in various chronic inflammatory conditions, including asthma, atopic 
dermatitis (AD) and chronic rhinosinusitis.

AD patient skins have increased ILC2 (as well as other ILC subsets) [65]. Studies with mouse 
models of AD also showed that ILC2 cells can induce AD symptoms in the absence of T cells 
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in Rag‐/‐ mice. IL‐5, IL‐13 and/or IL‐2 may be important in driving pathology in these contexts 
[66–68].

Chemoattractant receptor‐homologous molecule expressed on Th2 cells (CRTH2) is expressed 
by Th2, ILC2, eosinophils and basophils. A humanized antibody targeting CRTH2 can deplete 
these cells along with ILC2 and have been shown to effectively ameliorate airway inflamma‐
tion developed by various means in a humanized mouse model [69].

The contribution of ILC2 to the development of asthma in various mice models have been 
shown. Even in the presence of Th2 cells, ILC2s make a substantial contribution to patho‐
genesis through the production of IL‐4, IL‐5 and IL‐13 during IL‐25/IL‐33 induced as well as 
house dust mite‐induced asthma models [70]. The contribution of ILC2s to allergic inflamma‐
tion was assessed most notably in Rag‐/‐ mice which lack adaptive immune cells. House dust 
mite (HDM), as well as papain protease‐induced models of asthma/airway inflammation, was 
ameliorated in Rag1‐/‐ animals when ILC2s were deleted, and disease was restored when 
ILC2s were adoptively transferred in to Rag2‐/‐IL2rgc‐/‐ animals which lack ILC2s [49].

Furthermore, virally induced airway inflammation via H3N1 (within 5 days of infection) has also 
been shown to be dependent on ILC2 [71] and manifested itself in either the WT or Rag1‐/‐ mice. 
As expected, the inflammation was dependent on IL‐33 and the downstream IL‐13.

Tuft cells in the intestine constitutively produce IL‐25 and regulate ILC2 homeostasis. After 
helminth infection, ILC2 activation relies on tuft cell‐derived IL‐25 which also further stimu‐
lates ILC2 for IL‐13 production leading eventually to epithelial regeneration [72].

In a mouse model of cutaneous injury, ILC2 was suggested to promote wound healing through 
their activation by IL‐33 [73]. ILC2s were found enriched in the nasal polyps of chronic rhino‐
sinusitis patients as well [74].

For the eosinophilia associated with asthma or other allergen induced asthma models, ILC2‐
derived IL‐13 was shown to be necessary. Additionally, ILC2s were proposed to cause the 
eosinophilia observed in some patients with autoimmune disease who are receiving experi‐
mental IL‐2 therapy. This is shown to be mediated via IL‐5 rather than IL‐13 [75].

ILC2s were reported to be involved in obesity in various reports. ILC2s are present in the 
adipose tissue both in humans and mice and were shown to regulate adipocyte differentiation 
directly via ILC2‐derived methionine‐enkephalin peptides that act on adipocytes or indirectly 
by mobilizing eosinophils which eventually leads to adipocyte beiging. Thus, modulating 
ILCs or activatory cytokines IL‐25 or IL‐33 presents themselves as potential therapeutic 
approaches [76–79].

4. Group 3 innate lymphoid cells (ILC3)

Various subsets of RORgt+ group 3 ILCs have been reported both in humans and mice [80–82]. 
ILC3s are characterized as lineage—(CD3‐Tcrab‐Tcrγδ‐CD11b‐Cd19‐) CD45+ CD127+ Ckit+ 
Rorγt+ IL‐23R+ in both mice and humans. Currently, the ILC3 community categorizes them 
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into two major groups (LTi cells/NCR‐ILC3s/CCR6+ ILC3s and NCR+ ILC3s); however, these 
two major groups do not represent final states, likely vary in their expression of various cell 
surface markers upon exposure to different microenvironment‐specific stimuli.

LTi cells (CCR6+ ILC3s or NCR‐ILC3s): Lymphoid tissue inducer (LTi) cells are the proto‐
type of group 3 ILCs. They were found initially in the fetal liver of mice and were reported 
to be required for the generation of peripheral secondary lymphoid organs such as lymph 
nodes and Peyer’s patches via their interactions with stromal cells. In the absence or dysfunc‐
tion of LTi cells (shown through genetic deletion of the genes including Rorγt, IL‐2Rγc, IL‐7R 
(CD127) and LTα, or LTβR), these organs fail to develop. LTi cells are also important for the 
development of cryptopatches and isolated lymphoid follicles in the intestine whose forma‐
tion take place early after birth [83, 82]. Fetal LTi cells are characterized by the expression of 
CD127 (IL‐7Ra), CCR6, Rorγt, IL‐23R and lymphotoxin α1β2 [84]. LTi cells do not express 
natural cytotoxicity receptor (NKp46 or NKp44). Adult human and mice also harbor such LTi‐
like cells (adult LTi cells) with potential to induce lymphoid organogenesis and with similar 
surface markers [44, 85].

LTi cells also have subsets. Neuropilin+ subset is identified which mainly reside in tissues 
and nearby high endothelial venules [86]. LTi cell can also be categorized based on a CD4 
expression.

NCR+ ILC3s (CCR6‐ILC3s): The second major ILC3 subset express natural cytotoxicity recep‐
tors NKp44 or NKp46 in humans and mice, respectively [81, 87, 44]. It was debated whether 
these cells develop through a separate lineage than that of LTi cells. The most current evi‐
dence indicates that a branching occurs in the developmental pathway allowing progress 
of two different lineage pathways one leading to the precursors of NKp46+ ILC3, which do 
not give rise to true LTi cells. The other branch, on the other hand, leads to LTi development. 
NKp46+ ILC3, unlike LTi cells, express low levels of CCR6 and interestingly co‐express the 
Th1 master regulator T‐bet and Rorγt. NCR+ ILC3s, in mice, have been shown to derive from 
CCR6‐NCR‐ ILC3s, which expand shortly after birth in the intestines upon exposure to vari‐
ous dietary ligands. CCR6‐NCR‐ ILC3s then can give rise to NCR+T‐bet+ILC3s; further con‐
ditioning of these cells with IL‐12 pushes them to ILC1 phenotype. Upregulation of NKp46 in 
CCR6‐NCR‐ ILC3 requires T‐bet and Notch signaling, thus in Tbx21‐/‐ mice, although CCR6+ 
and CCR6‐ ILC3 are present, upregulation of NKp46+ and transition from NCR‐CCR6‐ state 
to NKp46+ ILC3 does not occur due to a block [6, 8, 88].

4.1. ILC3 development and activation

RORγt transcription factor is a common requirement for all ILC3 subset’s development. As 
such, its genetic deletion results in complete absence of all ILC3 subsets and lack of lymph 
nodes and Peyer’s patches as well as crypto patches and isolated lymphoid follicles in mice 
[89–91]. Like all other ILCs, Id2, tox2 and IL‐7 are crucial for the development of ILC3s. Indeed, 
genetic deletion of any of these genes in mice results in a reduction in the ILC3 population 
[92]. Tox 2 is transcription factor is necessary for upregulation of Id2. Also, TCF‐1, NFIL3, 
Gata3 were also shown to regulate ILC3 development [44]. AhR is another transcription factor 
required for the generation of CCR6‐ ILC3 subset. Genetic deletion of AhR in mice or removal 
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of AhR ligands from the diet result in a reduction in CCR6‐ILC3 subsets [6, 44]. These stud‐
ies also showed that CCR6‐ ILC3 subsets are involved in crypto patches and isolated lym‐
phoid follicle formation in the small intestine. Our studies revealed that cytoskeleton protein 
dedicator of cytokinesis 8 (Dock8) is required for the generation/maintenance and function 
of adult ILC3s [93]. In the Dock8‐/‐ mice ILC3 cells are missing in the adult mice despite the 
fact that Dock8‐/‐ mice have normal lymph nodes and Peyer’s patches suggesting that fetal 
LTi cells are spared. Lastly, as alluded above, T‐bet is necessary for the development of NCR+ 
ILC3s; thus, in Tbx21‐/‐ mice these cells are missing [6].

All ILC3 subsets express the IL‐23 receptor (IL‐23R) and are activated by IL‐23 produced by 
antigen presenting cells upon activation with various PAMPs [94]. IL‐23 also regulates the 
expansion of ILC3s [95–97]. IL‐23R signaling activates STAT3, which subsequently translo‐
cates to the nucleus, and turns on several ILC3 signature cytokine genes (IL‐22, IL‐17A/F etc.). 
In addition, IL‐1β was also shown to activate and expand ILC3s [97].

4.2. ILC3s in protective immunity

In the steady state, ILC3s assume critical functions in the mucosal surfaces for the contain‐
ment of the commensals at an arms distance of epithelial cells [98, 99]. This is mainly achieved 
via ILC3‐derived IL‐22, which act on epithelial cells, in turn resulting in the production of var‐
ious anti‐microbial molecules, including Reg3γ, Reg3β, S100A8, S100A9 and mucins. Indeed, 
in the absence of ILC3s, microbial translocation across intestinal epithelium and detection of 
microbes in the distant organs/tissues has been reported [100].

Viral, bacterial, as well as fungal infection models have been used to dissect the role ILC3s 
during these infections. Rotavirus infection is cleared much more efficiently with the help 
of IL‐22 coming from the innate sources (mainly ILC3). IL‐22 was shown to synergize with 
IFN‐γ to boost the production IFN‐γ‐mediated expression of antiviral genes [101, 102].

ILC3s also fight some enteric bacteria. The most notable example is attaching‐effacing 
Citrobacter rodentium, which is widely used by the ILC3 community in murine models. 
ILC3s and innate IL‐22 are necessary for protection from infection in mice lacking adap‐
tive cells [93, 103, 104]. In the lymphoreplete mice, it was controversial whether ILC3s are 
absolutely required owing to the presence of Th17 cells, and data indicate in the immuno‐
competent mice that the redundant mechanisms may eventually save the mice [104].

To dissect the role of ILC3s in fungal immunity Candida albicans has been used in murine 
models. Rag1‐/‐ mice became susceptible when ILC3s are depleted, or when Rorc is deleted 
[105, 106]. Given that absence of Th17 axis leads to susceptibility to Candida infections, ILC3s 
are likely important, however, how essential they are, whether Th17 and ILC3 redundantly 
control the immunity is unknown.

4.3. ILC3s during inflammatory diseases

ILC3 are implicated in several chronic inflammatory diseases based on data obtained from 
murine models and human patients. Accumulation of ILC3‐like cells (defined as NK‐22 in the 
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paper with ability to produce IL‐22 and TNF‐a) or LTi cells in the synovial fluid of rheumatoid 
arthritis patients have reported [107, 108].

IL‐23 pathway and IL‐17 has been shown to drive the pathogenesis of spondylarthritis. 
Antibodies against IL‐17 are being tested in trials. In the synovial fluid of psoriatic arthritis 
patients, increased IL‐17+ NKp44+ ILC3s were reported; augmented amounts of CCL20 in 
the synovial fluid imply that CCR6+ ILC3s may be attracted through this ligand [30, 33, 109].

NKp44+ ILC3s enrichment in the tissues (ileum, synovial fluid, blood bone marrow) of anky‐
losing spondylitis have been reported. Some of the studies found IL‐17 production by these 
ILC3s, others reported them as an IL‐22 source [30].

NKp44+ ILC3 are also implicated in systemic sclerosis and systemic lupus erythematosus [30, 
110].

In various mouse models of IBD, ILC3s were shown to play critical roles [111]. In infection‐
induced colitis (by Citrobacter rodentium or Helicobacter pylori), these cells mediate pathology 
via IL‐17 and IFN‐γ [95]. ILC3s, via IL‐22, have also been shown to drive pathology in some 
IBD models [96, 104], whereas in other murine models ILC3‐derived IL‐22 was shown to be 
protective [112]. In human Crohn’s disease patients’ intestines, ILC3s were enriched. CD56+ 
ILC3s were shown to produce IL‐22, whereas CD56‐ ILC3s produced IL‐17 and F [113]. Others, 
however, reported enrichment of IFN‐γ+ ILC1s, rather a reduction in NCR+ IL‐22 ILC3s [7, 
114]. IFN‐γ+ ILC1s presence in the intestine appear to be a common theme in both human IBD 
and murine IBD models, in fact, by fate map experiments, IFN‐γ+ ILC1s have been shown to 
derive from ILC3s via gradual loss of Rorγt [6, 8, 35].

ILC3s have also been shown to be crucial for the induction of peripheral tolerance to com‐
mensal antigens via MHCII molecules they express along with low levels of costimulatory 
molecules. Deletion of MHCII in ILC3s break this tolerance and results in IBD‐like disease in 
mice models [115, 116].

Increased ILC3 number and/or activity have been reported in other autoimmune diseases 
[30]. In psoriasis patients, both in the skin and blood, elevated frequency of ILC3s either pro‐
ducing IL‐22 or IL‐17A has been described [117, 118]. Similarly, in the mouse model of mul‐
tiple sclerosis, EAE, ILC3 presence in the brain was reported. More importantly, ILC3 number 
or activity is also described in MS patients blood and CSF [119–122]. In both of these autoim‐
mune conditions, how actually ILC3s impact the disease progression is yet to be defined.

5. Plasticity of ILCs

Most recent research indicates that ILCs could modify their transcriptional program and con‐
vert to another type in the presence of environmental cues that favor the effector functions 
of one over the other. This was proposed to occur between ILC3 and ILC1, via modulating 
the availability of IL‐23 or IL‐12. Similar plasticity has been reported between ILC2 and ILC1. 
A summary and discussion of the current information regarding the plasticity between ILC 
subsets are presented below.
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[30]. In psoriasis patients, both in the skin and blood, elevated frequency of ILC3s either pro‐
ducing IL‐22 or IL‐17A has been described [117, 118]. Similarly, in the mouse model of mul‐
tiple sclerosis, EAE, ILC3 presence in the brain was reported. More importantly, ILC3 number 
or activity is also described in MS patients blood and CSF [119–122]. In both of these autoim‐
mune conditions, how actually ILC3s impact the disease progression is yet to be defined.

5. Plasticity of ILCs

Most recent research indicates that ILCs could modify their transcriptional program and con‐
vert to another type in the presence of environmental cues that favor the effector functions 
of one over the other. This was proposed to occur between ILC3 and ILC1, via modulating 
the availability of IL‐23 or IL‐12. Similar plasticity has been reported between ILC2 and ILC1. 
A summary and discussion of the current information regarding the plasticity between ILC 
subsets are presented below.
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5.1. ILC2 to ILC1 or ILC2 to ILC3 plasticity

A few intracellular molecules that maintain ILC2 identity have been defined. Bcl11b and Gfi1 
maintain the expression of ILC2 genes associated with ILC2 identity, the deletion of either 
gene in mice blocks ILC2 master regulator Gata3 expression and, subsequently, IL‐5 and IL‐13 
production [54, 123]. Bcl11b or Gif1 KO ILC2 can also produce IL‐17. Lysine methyltransferase 
G9a gene was shown to also suppress ILC3‐related genes’ expression in ILC2. Additionally, 
Zhang et al. showed that Notch signaling can promote Rorc and IL‐17 production by iILC2 
cells that are primarily responsive to IL‐25 [124].

External stimuli that drive phenotypic switch from ILC2 to other innate lineages have been 
demonstrated recently in murine models [27, 29, 125]. IL‐12 and/or IL‐18 have been shown to 
push ILC2 to an ILC1‐like phenotype (with increased production of IFN‐γ and reduced Gata‐3 
expression). This conversion appears to be driven by viruses (influenza, RSV) and bacteria 
(S. aureus). Observations in human patients of chronic obstructive pulmonary disease (COPD) 
or chronic rhinosinusitis with nasal polyps (CRSwNP) have been shown to harbor elevated 
levels of ILC1 and ILC2 cells, and their signature cytokines imply that this phenotypic conver‐
sion may occur in humans as well. A detailed examination of ILC2 fate in human hematopoi‐
etic cells‐engrafted IL2rγ‐/‐Nod/scid mice suggested that these cells indeed can assume an 
ILC1 phenotype with IL‐12 exposure [27]. IL‐1β was shown to prime ILC2s at high concentra‐
tions and potentiate the IL‐12 driven phenotypic switch to Gata3+ T‐bet+ ILC1 fate [125].

5.2. ILC3 to ILC1 plasticity

The plasticity of ILC3 lineage was first described by Vonarbourg et al. in a study which 
employed Rorγt fate map mice [8]. In this work the authors demonstrated that Rorγt+ ILC3s 
downregulated this transcription factor, gradually upregulated T‐bet and NKp46, this even‐
tually led to a cell population termed as “ex‐ ILC3”. This transition requires T‐bet, notch sig‐
naling. IL‐12 and IL‐15 were shown to promote this transition. Conversion of ILC3s to ILC1s 
has been observed by many other investigators in mice. More importantly, ILC3‐to ILC1 con‐
version has been shown to operate for human ILC3s in a reversible fashion, dictated by the 
presence of IL‐12 in ILC3 to ILC1 direction and by IL‐23 in the other direction [7, 35, 114].

6. Conclusions

The discovery of ILCs brought a paradigm shift in our understanding of both innate and 
adaptive immunology. From a developmental standpoint, understating the lineage specifica‐
tion in ILCs, their similarities to and differences from helper T cells need to be worked out 
in better detail moving forward. Ambiguities regarding ILC1‐NK cell classifications require 
more studies. Various gene expression studies have been done to identify such unique and 
distinctive molecules, and hopefully, more functional studies will remove the confusion. 
More importantly, the extent and nature of the involvement of these cells in the inflamma‐
tory diseases and tissue homeostasis will be further evaluated beyond diseases described for 
the past 7 years. Also, the discovery of more specific surface markers and inhibitors that will 
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target exclusively ILCs are needed for both understanding the possible redundancy between 
ILCs and helper T cells and for potential use as therapeutics.
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Abstract

B lymphocytes are central players in the immune response; canonically, they have been 
recognized as precursors of antibody-producing cells: plasma cells. Recent findings have 
shown that the role of B lymphocytes goes far beyond the production of antibodies. There 
are different subtypes of B lymphocytes with different participations in innate and adap-
tive responses that include the recognition of the antigen, its processing, and its presenta-
tion to T lymphocytes, as well as the production of cytokines that impact and modulate 
the response toward the pathogen. Traditionally, it has been considered that B lympho-
cytes do not have phagocytic abilities that allow them to internalize, to process, or even 
to be infected by bacterial pathogens. The new information has shown that B lympho-
cytes can be readily infected by bacterial pathogens like Salmonella, Francisella, Moraxella, 
and Mycobacterium, among others, and respond to those infections. Some of the recent 
advances on these topics will be presented in this chapter.

Keywords: B lymphocyte, B1 lymphocytes, bacterial infection, Brucella, Salmonella, 
Mycobacterium, Francisella, endocytosis, macropinocytosis, innate response

1. Introduction

1.1. A brief history on the B-cell discovery

The immune response comprises cellular and humoral elements; among the cellular elements, 
macrophages were the first cells to be described by Metchnikoff in the year 1889 [1]. Almost 
simultaneously with Metchnikoff findings, began the recognition of one of the primordial 
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elements of the specific humoral response: the antibodies. Von Bering and Kitasato in 1880 
present their first work on serotherapy, showing that in the serum of animals immunized with 
diphtheria or tetanus toxins, there were specific elements of recognition for these toxins and 
that their use in patients conferred protection [2]. Later, Phlizalix and Calmette groups inde-
pendently produce antisera against snake venoms [3], confirming the relevance of specific 
serum elements for the protective response. In those days, histological studies on organs of 
experimental animals subjected to immunization processes suggested that lymphoid organs 
were sites likely responsible for the synthesis of the serum elements responsible for protec-
tion against toxins and poisons [4]. Tisselius and Kabat in the 1930s demonstrated by electro-
phoretic techniques that humoral elements responsible for the serological protective response 
against toxins and poisons belong to the serum gamma globulin fraction [5]. Some years later, 
in the 1940s, ex vivo culture of plasma cells from the spleen of hyperimmune animals was 
achieved, and it was observed that, even in culture, the plasma cells were still producing 
the specific antibodies [6]. Later, the development and application of fluorescence techniques 
allowed the identification of antibodies in situ, locating them closely with the plasma cells 
present in secondary lymphoid organs [4]. Nossal´s experiments demonstrated that antibod-
ies produced by plasma cells isolated from immunized animals retained biological activity in 
vitro against the bacteria used in the immunization [7]. Human immunodeficiency studies, 
like Bruton’s immunodeficiency, which is characterized by the absence of gamma globulin 
production and the absence of plasma cells in lymphoid organs [8, 9], demonstrated now in 
humans that antibodies were produced by plasma cells. The Landstainer and Chase experi-
ments excluded antibodies as mediators of cell-mediated hypersensitivity responses [10], and 
it is in the 1960s when observations on the development of the immune response in thymec-
tomized and reconstituted animals allowed to recognize the thymus as a fundamental organ 
of the immune response responsible for grafts rejection but also contributed to antibody pro-
duction [11, 12]. The bird model for study of elements of the immune response initiated the 
identification of the organ responsible for B-lymphocyte production [13], and in 1965, in birds, 
it was demonstrated that in the thymus and in the bursa, the two cellular lineages fundamen-
tal for the immune response are generated [14]. Almost simultaneously, and thanks to the 
use of radioactive labels, it was demonstrated that circulating lymphocytes stimulated with 
antigen were the precursors of antibody-producing cells [15, 16], and by the year 1969, the 
two populations of lymphocytes were identified as T lymphocytes for those thymic-depen-
dent, and those thymic-independent (bursa-equivalent) were referred as B lymphocytes [17]. 
Afterward, it was established in non-avian experimental models that a cooperative response 
of both lymphocyte species (T and B) was necessary for specific antibody production [18]; 
these observations prompted a large number of studies that recognized the complexity of T-B 
cooperation, resulting in specific responses to the antigen, including the production of specific 
high-affinity antibodies [19].

1.2. B lymphocytes: a bridge between innate and adaptive immune responses

It is now known that there are several types of B lymphocytes [20] and that B2 lymphocytes 
produce specific antibodies during the adaptive response [21]. On the other side, there are 
also natural antibodies of IgM class mainly [22]; unlike the adaptive antibodies, the natural 
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also natural antibodies of IgM class mainly [22]; unlike the adaptive antibodies, the natural 
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antibodies are produced by B1 lymphocytes [23]. B1 lymphocytes are subdivided into B1-a and 
B1-b—subtype B1-a is responsible for natural antibody production—respond to T-independent 
antigenic challenges, are located mainly in the peritoneal and pleural cavity, and represent 
the first line of defense against microbial challenges [24]. In addition, B1-a lymphocytes may 
internalize and eliminate bacterial pathogens and have CD11b marker [25], resembling a mac-
rophage phenotype. Some authors have suggested that the B1-a subset of lymphocytes and 
macrophages share lineage relationships, so these B/macrophage bi-phenotypic cells may rep-
resent an ancient B-lymphocyte lineage capable of adapting to bacterial challenges and innate 
responses [26]. The mammalian B1-a subset of lymphocytes could be evolutionary related to B 
cells from fishes, particularly teleost fishes like rainbow trout, catfish, etc.; circulating B cells in 
teleost fishes are morphologically similar to mammalian B lymphocytes; they also secrete and 
express immunoglobulin molecules at the membrane level with IgM, IgD, or IgT/Z isotypes 
and also possess phagocytic abilities [26]; this evolutionary theory of B cell supports the idea 
of an innate role of B1-a lymphocytes. In this context, B1-a lymphocytes and natural antibodies 
represent a bridge between innate and adaptive immunity [27].

2. B-cell subtypes

An important role of B lymphocytes in defense against pathogens is that B cells are part of 
a long-lived lymphocyte group that participates in the immune response by capturing and 
concentrating antigens for the presentation and production of antibodies. From the time that 
a B lineage cell becomes a mature B cell expressing the B-cell receptor (BCR) on its membrane, 
several transition steps have to occur [20]. During these steps, B cells are directed for negative 
and probably positive selection involved in generating a mature B-cell repertoire [28]. B lym-
phocytes have been divided into two subtypes, according to the origin of their development 
into B1 and B2 cells. B1 lymphocytes are the first cells produced in the ontogeny; in mice, B1 
cells are produced in the fetus and are derived from distinct precursors. B1 cells are different 
from B2 lymphocytes by their capacity of spontaneous antibody production, self-renewal, 
impossibility for clonal expansion, and low somatic hypermutation [29].

B2 cell precursors in the bone marrow give origin to B-cell populations of the marginal zone 
and the follicular zone; these B cells are the main populations that respond to antigen contact 
then forming the germinal centers and therefore are long-term responders. These cell popula-
tions are the majority B lymphocytes in the host and are predominant in all lymphoid tissues. 
Marginal zone (MZ) B lymphocytes in the mouse are restricted to the splenic marginal zone, 
while their human counterparts appear to be also in blood circulation. In the mouse B1 cells 
are divided in two subsets, B1-a and B1-b, based on their expression of CD5; B1a cells (CD5+) 
and B1-b cells (CD5−) appear to share developmental precursors. Apart from the differential 
expression of CD5, they are phenotypically similar, with few functional differences like the 
ability for internalizing bacterial pathogens [24, 30].

The main function of B1 lymphocytes is the production of large amounts of natural antibodies 
of the IgM isotype that responds to encapsulated bacterial infections (among others bacterial 
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challenges) and the production of IgA associated with mucosal defense against parasites. 
However, these cells are also able to produce IgG2 and IgG3 isotypes spontaneously, and 
under certain conditions, they may produce IgE. The production of antibodies by B1 lympho-
cytes is characterized by being spontaneous although it can be induced by T-cell-independent 
antigens and certain cytokines [31]. B1 lymphocytes predominate in fetal life but decrease 
with increasing age and have been reported to increase again in advanced age in mice as in 
humans. However, in the elderly, despite the increase, these cells are not fully functional, 
making older guests susceptible to acquire frequent lung infections associated with pneumo-
nia. The natural antibodies have low specificity, so they are able to recognize self-antigens; for 
this, B1 cells have been identified as potential participants in the development of autoimmune 
diseases. A high number of B1-a cells have been associated with autoimmunity in human and 
mouse models. In addition, a greater number of B1 cells have been reported in patients with 
systemic lupus erythematosus, Sjögren’s syndrome, and rheumatoid arthritis [32, 33].

B1 cells are the main population of B lymphocytes that are located in cavities such as the 
pleura and peritoneum (35–70%); these cells are mobilized between both cavities through 
the omentum, a process that requires the expression of the chemokine ligand CXCL13. In 
response to the pathogens, B1 cells are mobilized from their primary location within the peri-
toneum or pleura to secondary lymphoid organs such as the spleen and lymph nodes and 
at these sites begin to secrete IgM antibodies, so B1 lymphocytes represent a quick innate 
response toward bacterial challenges. B1 cells have been reported to be found in the spleen 
(1–2%), lymphoid nodes (0.1–0.3%), bone marrow (0.1–0.2%), lung parenchyma (0.4–0.6%), 
intestinal lamina propria (up to 50% are IgA + B cells), and blood (0.3–0.5%). In the peritoneal 
cavity, a subtype of B1 lymphocytes tend to lose expression of the CD43 molecule, but most 
of these cells in other tissues retain this marker; however, when B1 cells are activated, they 
overexpress CD43. In the peritoneal and pleura cavity, most of the B1-a and B1-b lymphocytes 
express the integrin CD11b but when these cells migrate to other organs such as the spleen 
downregulate its expression. In terms of functionality, B1 lymphocytes and marginal zone B 
cells are very similar; for this reason, the subgroup of marginal zone B cells (MZ) has been 
included in the group of “innate” type B cells, conformed then by B1-a cells, B1-b cells, and B 
cells of the marginal zone. B-cell MZ is also considered as B regulatory cell since after activa-
tion, it produces high levels of IL-10 (Figure 1) [34].

B1 lymphocytes in addition to producing the natural antibodies also actively contribute to the 
bacteria-induced immune response; several groups have explored B1 cell responses to patho-
gens like Streptococcus pneumoniae, Salmonella spp., Francisella spp., Borrelia hermsii, and influ-
enza virus, among others. The antibody response analyzed for each case showed an increase 
of IgM produced by B1 cells in the spleen, regional lymph nodes, or serum. Some studies 
support the idea of a heterogeneity of B1 cells, but the causes of this heterogeneity are largely 
unknown and poorly explored. However, Baumgarth has considered three factors that can 
modulate the functions of B1 cells: (1) the multiple origin of B1 cells, (2) tissue-specific signals, 
and (3) differences in exposure and responsiveness of B1 cells toward self and foreign anti-
gens. It has been suggested that it is important to determine the impact of these signals on the 
functionality of B1 cells, which could clarify much of the biology of this cell population and 
one of its most important products, the natural IgM [35].
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3. B-cell receptors involved in bacterial recognition and uptake

As referred earlier B lymphocytes are not only plasma cell precursors but a heterogenic sub-
set of cells with the capability to act as antigen-presenting cells (PCA) and produce pro- and 
anti-inflammatory cytokines. Some B-lymphocyte subsets are able, at different rates, to engulf 
several pathogens predominantly virus and bacteria; this event is mainly mediated by BCR, 
Toll-like receptors (TLR), and complement receptors (Figure 2). In some cases, after bacterial 
uptake, B lymphocytes are activated and settle a protective or suppressive immune response; 
also, they may act as pathogen niches or reservoirs that allow bacteria dissemination in the 
organism. The endocytic pathways developed by B lymphocytes that allow bacterial uptake 
depend on the receptors engaged during bacterial recognition. In other cases, bacterial com-
ponents itself trigger in the host cell, mechanisms that allow their entrance into the B cells 
(Figure 3).We will describe some of these elements.

3.1. B-cell receptors

The B-cell receptor (BCR) for antigen is a complex of membrane immunoglobulin (mIg) of 
isotype IgMhi and IGDlow in B1 and B2 lymphocytes and IgMhi and IgDlow/mid in B regulatory 
cells; this complex is responsible for extracellular antigen attachment and is linked to at least 
two other proteins, Ig α and Ig β forming a heterodimer. The mIg itself does not contain any 

Figure 1. Immunophenotype of mature B-cell subpopulations. The B2-cell population constitutes the majority of spleen 
B cells formed by follicular cells (FZ) and marginal zone B cells (MZ). B1-a and B1-b cells are smaller populations in 
terms of frequency in the spleen; they can be distinguished based on CD5 expression: B1-a (CD5+) cells and B1-b (CD5−) 
cells. It appears that regulatory B cells have phenotypic markers of B1 and B2 cells.
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signaling motifs, but instead the Igα/β heterodimer contains immunoreceptor tyrosine-based 
activation motifs (ITAMs) responsible for initiating the signaling after antigen binding [36]. 
Membrane Ig (mIg) differs from circulatory antibody in the C-terminus of the heavy chain 
[37]. B-cell activation is triggered by BCR-antigen interaction and leads to multiple cellular 
events as BCR-antigen complex internalization, the signalosome assembly, regulation of gene 

Figure 2. B-lymphocyte receptors involved in pathogens uptake. B lymphocytes displayed a wide number of receptors 
capable to recognize and engulf pathogens; they include intra- and extracellular innate receptors like TLRs, Dec-1, 
complement receptors, and the adaptive BCR receptor.

Figure 3. Endocytic pathways in B lymphocytes responsible for bacterial uptake. B lymphocytes are not only precursors 
of plasma cells but also a multitask cells. Several endocytic pathways may take place on the B cells to internalize bacterial 
pathogens; the cartoon depicts some of the pathways already described: clathrin-mediated endocytosis, Fc-mediated 
phagocytosis, CR (complement receptor)-mediated endocytosis, BCR-mediated endocytosis, TLR-mediated endocytosis, 
and macropinocytosis.
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expression, cytoskeleton reorganization, and plasma and long-live B memory cell generation. 
Antigens internalized through BCR are processed and presented on the major histocompat-
ibility complex II (MHC II). The idea that dimeric BCR complex binding the antigen was 
enough to activate B cells was accepted for years; nevertheless, it is known that B cells can 
form microclusters required for B-cell activation [38, 39], which involved around 10–100 BCR 
molecules; even in this microcluster, BCR complexes can interact in an oligomeric pattern [40]. 
Most of the studies related to antigen recognition by BCR have been related to soluble anti-
gens [41]; however, more evidences have demonstrated that BCR also recognizes complete 
pathogens, like Moraxella catarrhalis [42] and more recently Salmonella typhimurium [43].

3.2. Toll-like receptors (TLRs)

Toll-like receptors (TLRs) are a family of transmembrane and cytoplasmic receptors that are phy-
logenetically ancient that share homology with the IL-1 receptor; TLRs are part of the group 
of molecules responsible of pathogen´s recognition that collectively receive the name of patho-
gen recognition receptors (PRRs) and are expressed in dendritic cells, macrophages, and NK 
cells (innate immune cells); B and T lymphocytes (cells of the adaptive immunity); and epithelial 
cells, endothelial cells, and fibroblasts (nonimmune cells). TLRs are responsible for activating the 
innate immune response [44]. The ligands of the TLRs, known as pathogen-associated molecu-
lar patterns (PAMPs), are highly conserved microbial molecules or harmful endogenous factors 
[damage-associated molecular patterns (DAMPs)]. When B cells-TLRs bound to their ligands, 
several activation pathways are engaged; two of the most studied are TLR4 and TLR9 activation 
pathways; TLR4 is expressed on the B-cell membrane along with MD-2 molecule, and this het-
erodimer participates in lipopolysaccharide (LPS) recognition to initiate several intracellular sig-
naling pathways; one of the most important is the TIRAP-MyD88 pathway that regulates NF-κB 
activation and inflammatory cytokine production like IL-8, transforming growth factor alpha 
(TNF-α), etc. TLR9 is another important B cell-TLR, which is expressed in the endoplasmic reticu-
lum and is recruited to endosomal/lysosomal compartments after stimulation with CpG DNAs, 
activating the MyD88 pathway without TIRAP, culminating in NF-κB activation, and resulting in 
the production of proinflammatory cytokines [45]. TLRs are classified based on their localization 
as cell surface TLRs (TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10) or intracellular TLRs (TLR3, 
TLR7, TLR8, TLR9, TLR11, TLR12, and TLR13); on humans 10 members of the TLR family have 
been described, while murine cells express 13 TLRs [44]. B lymphocytes express ten types of TLR 
(TLR1-10) [46–48]; their expression depends on B-cell tissue localization and the stage of B-cell 
activation. TLRs 3, 4, and 5 and 8 are absent in naive and memory B cells but are present in plasma 
cells; TLRs 6–9 are highly expressed in naïve B cells, but when they are activated, the intracellular 
TLR9 is the most highly expressed [45, 49]. Recently, some authors have demonstrated that TLR 
ligands have a modulatory effect on the B-lymphocyte response, for instance, lipopolysaccharide 
(LPS) and CpG-containing DNAs promote proliferation, class switching, and plasma differentia-
tion and are directly related with Th1 responses and autoimmune diseases [50–53]. Deficiencies 
in the downstream signaling pathways in B lymphocytes after TLRs activation favored pathogen 
infections specially the ones caused by S. pneumoniae, S. aureus, and P. aeruginosa [54]. TLR activa-
tion could be also detrimental for the B cells; for instance, B-lymphocyte TLR-2 interacting with 
Shigella flexneri promotes apoptosis of the host cell [55].
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3.3. Dectin-1

Dectin-1 (Dec-1) is a transmembrane C-type lectin-like receptor (CTLR) that binds β-glucans; it 
is expressed mainly in myeloid cells; when Dec-1 recognizes its ligand, the interaction induces 
B-cell activation with the participation of SYK, the MAPK ERK and JNK, and the transcription 
factors AP-1 and NF-κB, leading to the production of proinflammatory cytokine production (like 
IL-8) and arachidonic metabolites synthesis [56, 57]. Dec-1 binds to numerous pathogens through 
their specific ligands β-1,3 glucans, most frequent in fungi pathogens like Aspergillus, Candida, 
Coccidioides, and Pneumocystis and in nonpathogenic Penicillium and Saccharomyces; beside Dec-1 
can recognize mycobacteria [58]. Dec-1 was first described in dendritic cells; however, now it is 
known that Dec-1 is expressed in monocytes and lymphocytes. In B lymphocytes, Dec-1 activa-
tion leads to IL-8 production and neutrophil chemotaxis which shows that B lymphocytes can 
directly recognized pathogens via PRRs and have an important role in antifungal response [59].

3.4. Complement receptors

The complement system involves numerous plasma proteins that react with one another, in 
a cascade-like process that results in molecules that opsonize pathogens and promote inflam-
matory responses that help to fight infection. Complement proteins execute their biological 
functions by binding their corresponding receptors (CR1, CR3, and CR4) present in several 
cell types like macrophages, neutrophils, etc. B lymphocytes also express complement recep-
tors, like CD35 (CR1) and CD21 (CR2) [60]. CR1 binds C3b and C4b, while CR2 binds C3d. It 
is known that CR2 interacts with CD19; this complex acts as a co-receptor for BCR [61].

Complement receptors CR1 and CR2 are expressed differentially during B-human-lymphocyte 
development. CR1 is more expressed in memory cells than in naïve cells, while CR2 is low 
expressed in memory cells. Changes in CR expression on B lymphocytes are related with 
breaking of B-cell tolerance and increased susceptibility to bacterial infections [62]. CR partici-
pates in bacteria internalization; Francisella tularensis is engulfed by B lymphocytes through 
complement receptors [63].

3.5. Fc receptors

Fc receptors (FcRs) belong to the immunoglobulin superfamily; they are expressed in many 
immune cells as monocytes, mastocytes, NK cells, and B lymphocytes and recognize the cris-
talizable fragment of the immunoglobulins (Fc) [64]. FcR activation results in many relevant 
responses like cytotoxicity, phagocytosis, mast cell activation, and pathogen clearance. FcRs 
are classified according to the antibody isotype; they recognized FcRγ (IgG), FcRε (IgE), and 
FcRα (IgA) [65].

FcR activation regulates many B lymphocyte activities, like activation and proliferation, class 
switching, and maturation of naive cells into plasma cells [65, 66]. Alterations in FcR func-
tionality have been related to autoimmune diseases [67]. Some pathogens require immu-
noglobulin opsonization to be uptaken by B lymphocytes, coxsackievirus—opsonized with 
non-neutralizing antibodies infects and then replicates into B cells [68]. Bacterial pathogens 
like Brucella abortus require IgM opsonization to be internalized into B lymphocytes [69].
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3.6. Mechanisms of bacterial uptake exerted by B lymphocytes

3.6.1. Phagocytosis

Phagocytosis was first described by Mechnikoff in 1884 and as a whole is one of the most 
important defense mechanisms against pathogens [1]. B lymphocytes have been considered 
as non-phagocytic cells or with much less internalization capabilities than macrophages [70, 
71]. Still, it is a controversy upon the endocytic mechanism that the B lymphocyte exerts to 
internalize bacteria; it is not yet defined if internalization is by phagocytosis or by macropino-
cytosis (which is also known also as phagocytosis-like) or other mechanisms [72–74]. Recent 
evidence has shown that the B1-a lymphocyte subset can internalize pathogens [69, 75]; even 
some authors readily consider that B1-a lymphocytes are phagocytic [76]. However, still, it is 
not clear if bacterial recognition by B-lymphocyte receptors like BCR, FcR, CR, dectin-1, etc. 
activates the B cell to internalize the bacteria or if bacterial uptake is an active process trig-
gered by bacterial components, as is the case of products from the pathogenicity islands of 
Salmonella [77].

In phagocytic cells (macrophages, neutrophils, monocytes), phagocytosis can be divided into 
type I and type II phagocytosis [78]. Type I phagocytosis is mediated by Fc receptors which 
recognize targets opsonized by immunoglobulins, being the most important the receptors 
FcRγ that recognizes different subclasses of IgG bound to the pathogen. Interaction between 
FcγR and IgG triggers phosphorylation of specific tyrosine residues in the ITAM-type motifs 
present in the intracellular domain of FcγR [79]. Later, the recruitment and activation of sig-
naling proteins belonging to the Rho GTPases family, like Cdc42, resulting in actin polymer-
ization, membrane protrusion formation, and bacterial internalization occur [80].

In the phagocytosis type II, particles opsonized by several complement fractions (like C3b 
and iC3b) are recognized by cells that have complement receptors CR1 and CR3 (CD11b), 
like macrophages or neutrophils. Complement-opsonized particles “sink” into the phagocyte; 
membrane disturbance is minimal without long membrane protrusion formation; particle 
internalization does not usually lead to an inflammatory response or oxidative burst. In this 
case, the small GTPase molecule activated is the GTPase RhoA, and they do not necessarily 
involve Cdc42 and Rac; after GTPase activation, the remodeling of the membrane driven by 
filamentous actin, phagosome closure, and pathogen internalization occurs [78, 79, 81].

Up today there are few studies on B-cell capabilities for bacterial internalization; there are 
descriptions of B-cell internalization of opsonized bacteria with immunoglobulin and with 
complement [63, 69, 74], but also there are descriptions that B cells can uptake non-opsonized 
bacteria [72]; so far there are no studies that clarified the role of small GTPases involved in 
bacterial internalization by B cells that could help to clarify if bacterial uptake by B cells is a 
phagocytic type I or type II process or if it is a unique endocytic mechanism for B cells.

3.6.2. Clathrin-mediated endocytosis (CME)

Clathrin-mediated endocytosis is a well-known endocytic mechanism performed by many 
cells, is involved in the intake of extracellular molecules recognized by cell membrane receptors, 
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and is a major route of traffic from plasma membrane to endosomes [81, 82]. B cells recognize 
antigens by adaptive and innate mechanisms; the adaptive recognition is the most studied, also 
in the case for recognition of soluble antigens [83, 84]. Antigen adaptive recognition of B cells 
involves the antigen-specific B-cell receptor (BCR) expressed by B lymphocytes; BCR has two 
distinct tasks: the first one is to trigger cell activation after interaction with the specific antigen, 
and the second one is to internalize the antigen for subsequent processing and presentation on 
MHC class II molecules [85]. Clathrin is the scaffold of conserved cellular structures (pits) that 
are formed to capture membranal fractions where various cellular receptors are concentrated; 
once the ligand is bound to the membrane receptor, clathrin polymerization occurs resulting in 
a covered pit that detaches from the membrane as a coated vesicle that initiates an endosomal 
trafficking process [81, 82]. In B lymphocytes, clathrin-mediated endocytosis is a fundamen-
tal mechanism to translocate BCR-antigen complex to endosomal compartments; lipid rafts, 
microfilaments, and dynamin are required for this process [86, 87].

B lymphocytes can recognize bacterial antigens by their BCR, that is the case for Salmonella 
and Francisella pathogens. BCR-mediated internalization of Salmonella Typhimurium allowed 
bacterial internalization, antigen presentation into MHC class II molecules, and antibody 
production against Salmonella [88]. For the case of Francisella, evidence has demonstrated 
that Francisella is recognized by the B1-a cell by their BCRs alone; meanwhile, in the B1-b- 
and B2-cell subsets, bacterial recognition required simultaneous participation of BCR and 
complement receptors CR1 and CR2. F. tularensis was internalized by B cells at low rate, 
and internalized bacteria survive intracellularly [63]. In both studies the internalization pro-
cess resembled more a cell membrane protrusion formation mechanism (like phagocytosis 
or macropinocytosis) rather than a clathrin-coated endocytosis mechanism. The size of the 
clathrin-coated pits is around 120 nm, being too small for a bacteria to fit in; however, recent 
studies have demonstrated that other larger structures coated with clathrin (clathrin plates) 
[82] are also formed into the cells; it will be interesting to find if bacteria could be uptaken 
by this mechanism.

3.6.3. Macropinocytosis

Macropinocytosis is a type of pinocytosis described for Warren Lewis in 1931 [89]. Eukaryotic 
cells have the capacity to internalize fluid (pinocytosis) and particles (phagocytosis) from the 
extracellular environment, using a variety of different processes [81]. Micropinocytosis is a 
common process in all cells; this mechanism results in the formation of small vesicles coated 
with clathrin, caveolin, or other proteins; also clathrin- and caveolin-independent mechanisms 
exist [81, 90]. Internalization of larger volume of fluids is mediated by a process called macropi-
nocytosis; many signals trigger macropinocytosis, such as macrophage colony-stimulating fac-
tor-1 (CSF-1), epidermal growth factor (EGF), and phorbol myristate acetate [91]. Depending 
on the cell type, macropinocytosis can be a constitutive or an induced process. Macrophages 
and dendritic cells often utilize macropinocytosis to screen the extracellular environment for 
pathogenic or harmful materials [92]. Macropinocytosis is the main route for extracellular 
fluid uptake by the cells; it depends on energy and actin cytoskeleton rearrangements lead-
ing to the formation of filamentous and branched actin, supporting membrane modifications 
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and lamellipodia formation; actin polymerization is initiated by the activation of the small 
Rho GTPase family (Rho, Cdc42, and Rac) working in parallel with phosphoinositides, to acti-
vate the WASp/Scar proteins, and the Arp2/3 complex, allowing actin branching, that force 
out plasma membrane and form membrane ruffles [93]. Macropinosomes are formed when 
these ruffles collapse with the plasma membrane enclosing a large volume of extracellular 
fluid phase; macropinosomes are spacious vesicles within the cytoplasm that can reach a size 
>0.2 μm [81]. Some pathogens take advantage of the macropinocytosis mechanism to enter 
into the non-phagocytic cells; Shigella, Salmonella, and Mycobacterium are bacteria known to 
use this mechanism [94–97]. The internalization process is characterized by the formation of 
actin-rich membrane protrusions known also as ruffles; for that, Salmonella produces the type 
III secretion system (T3SS) that translocate effectors from the Salmonella pathogenicity island I 
(SPI) into the host cytosol; these virulence factors target host mediators involved in cytoskel-
eton rearrangements like Rac, Cdc42, phosphoinositides, Arp2/3 complex, etc., resulting in 
actin cytoskeleton rearrangements and membrane ruffling [94, 98]. In the process of ruffling 
formation, the pathogen is captured among the ruffles that finally enclose the bacteria into 
a spacious macropinosome [93]. B lymphocytes can also be infected by bacterial pathogens 
that enter the B cell through a mechanism of macropinocytosis; Salmonella, Francisella, and 
Mycobacterium are some of these pathogens [28, 72, 99]; so far there is not a detailed description 
of the characteristics of this process in B lymphocytes.

4. Bacterial infections of B lymphocytes

B lymphocytes are central cells of the immune response being responsible of antibody pro-
duction, but they are also cells that may modulate the immune response by the production of 
proinflammatory as well as anti-inflammatory cytokines [100, 101]. B lymphocytes can be the 
target of infection by various pathogens; the most recognized B infections are viral infections, 
especially infection caused by the Epstein-Barr virus (EBV). The susceptibility of B lympho-
cytes to this virus is primarily due to the expression of the CD21 molecule that is related to 
the gp350 viral protein [102]. In B lymphocytes EBV presents the lytic phase [103], while the 
latent phase of the virus is expressed in memory B lymphocytes [104]. B lymphocytes are also 
susceptible to viral infections caused by cytomegalovirus [105, 106] and smallpox virus [107, 
108], among others. Viral infections in B lymphocytes modify the lymphocyte response to 
allow viral multiplication or persistence, alter apoptosis processes, interfere with antigenic 
presentation, etc., all to promote viral survival [55].

Although virus was among the earliest recognized pathogens with infective capabilities 
toward lymphocytes, perhaps the classic concept that B lymphocytes lacked phagocytic capa-
bilities did not allow the recognition of bacterial infections in these cells [88, 109]. However, at 
present it is known that lymphocytes can internalize bacterial pathogens (mainly intracellular) 
and that these infections trigger different B-cell responses. Among the bacterial pathogens rec-
ognized with capacity to infect B lymphocytes are the genera: Salmonella, Brucella, Francisella, 
Moraxella, Mycobacterium, etc. Some characteristics of such infections will be described.
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4.1. Moraxella B-cell infection

Moraxella catarrhalis is a Gram-negative bacterium that causes respiratory infections in chil-
dren and causes chronic lung disease in adults; in children, it is highly associated with ear 
infections [110, 111]. M. catarrhalis produces the superantigen Moraxella IgD (MID)-binding 
protein, which binds to B-lymphocyte IgD, inducing lymphocyte proliferation, but cell pro-
liferation requires also engagement of the innate TLR receptors [112]. In the particular case 
of M. catarrhalis, TLR-9 is required for B-lymphocyte proliferation; TLR-9 recognizes CpG 
motifs, distinctive of DNA of bacterial or viral origin [113]. The tonsil B lymphocytes are able 
to internalize M. catarrhalis by receptor-mediated endocytosis and after some time eliminate 
the internalized bacteria [112]. However, it has been described that M. catarrhalis is able to 
persist in pharyngeal lymphoid tissue including the adenoids and the tonsils, residing in 
macrophages and B lymphocytes [114].

4.2. Brucella B-cell infection

Among facultative intracellular microorganisms, Brucella spp. is one of the most representa-
tives; this bacterium causes infections that become persistent in both humans and animals, 
representing a global zoonosis [115]. Brucella persists and replicates primarily in tissues 
and cells of the mononuclear phagocytic system, such as the spleen, bone marrow, lymph 
nodes, spleen, macrophages, and dendritic cells, and may also reside in cells of male and 
female reproductive systems including the uterus, placenta, and ovaries [116]; however, it has 
recently been recognized that B lymphocytes are not only infected but function as a reservoir 
of these bacteria [69]. Brucella also invades non-phagocytic cells such as epithelial cells, and 
the mechanism of internalization has been reported as zipper-like, promoting cytoskeleton 
rearrangement through the activation of Cdc42 by the pathogenic strains of B. abortus [117]. 
Brucella internalization into B cells depends on microfilaments and once internalized is allo-
cated into late endosomal/lysosomal compartment allowing bacterial persistence and resi-
dency, infected B lymphocyte, thus producing anti-inflammatory cytokines such as TGF-β; 
interestingly mice lacking of B cell are more resistant to Brucella infection, pointing an impor-
tant role of B cells as immunomodulators toward brucellosis [69].

4.3. Francisella B-cell infection

Francisella (especially F. tularensis) is another bacterium able to internalize and invade B 
lymphocytes; this bacterium is a facultative intracellular pathogen and has been reported 
that it infects phagocytic cells like macrophages, neutrophils [118, 119], and pulmonary 
and hepatic non-phagocytic cells [120, 121], among others. The main host cells of F. tular-
ensis are the macrophages, where once the bacterium is internalized, it inhibits phagolyso-
somal fusion and leaves the cytoplasm, where it resides and actively replicates [122–124]. 
Francisella-infected macrophages promote a systemic anti-inflammatory reaction with high 
levels of TGF-β [125], with fatal consequences for the infected individual [126]. The first 
studies that highlighted the involvement of B lymphocytes in F. tularensis infection date 
back to the late 1990s, where it was found that B cells rather than antibodies were critical for 
protection against this bacterium [127].
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The infective abilities of F. tularensis toward B lymphocytes were described in 2008, and it 
was found that the bacterium could be readily internalized by primary B lymphocytes and 
by B lymphocyte cell lines like Ramos or A20; lymphocytes allowed a moderate intracellular 
multiplication by 24 h after infection; however, from this time infected lymphocytes began to 
undergo apoptosis, which was accentuated at 48 h postinfection [128].

Among the B-lymphocyte (CD19+) subtypes, B1-a lymphocytes, classified as innate lympho-
cytes, are the best infected by F. tularensis, requiring only the BCR engagement for bacterial 
internalization, whereas B1-b and B2 lymphocytes are also susceptible to infection, although 
to a lesser extent; they require the joint participation of BCR and CR1/CR2 receptors for bac-
terial internalization [63]. B lymphocytes from mice infected with the live vaccine strain of 
F. tularensis (LVS), especially the B1-a lymphocytes uptake the bacteria; produce numerous 
proinflammatory cytokines such as IFN-γ, IL-1β, IL-12, IL-17, and TNF-α; decrease amounts 
of IL-10; and express costimulatory molecules like CD80 and CD86; mice were able to clear 
bacterial burden 10 days postinfection [129]. Recent studies confirm that the involvement of B 
lymphocytes is critical for the control of F. novicida infections [130] and that Francisella inter-
nalization into B cells requires cell membrane integrity [63].

4.4. Salmonella B-cell infection

The role of B lymphocytes among the bacterial infections has been studied the most for the 
case of Salmonella infection, and the evidences demonstrate the importance of these cells in 
the pathogenesis of diseases caused by this bacterial genus. Infections caused by Salmonella 
genus can be differentiated into two types: typhoid and non-typhoid. Gastroenteritis are 
caused by non-typhoidal serovars such as Salmonella enterica serovar Typhimurium, S. enterica 
serovar Enteritidis, and S. enterica serovar Newport, while the enteric fever is caused by 
typhoidal Salmonella serovars like Salmonella enteritidis serovar Typhi and S. enteritidis 
serovar Paratyphi [131]. The infection caused by S. Typhimurium in mouse is very simi-
lar to that caused by Salmonella Typhi in the human, and much of the knowledge of this 
infection is due to studies in the murine model with S. Typhimurium [132]. Salmonella are 
facultative intracellular pathogens; both serovars share many virulence factors (flagella, 
lipopolysaccharide, and pathogenicity islands) but differ in clinical manifestations: typhoid 
fever occurs within 2 weeks and has systemic manifestations, and gastroenteritis occurs in 
a shorter period (12–72 h), with a rapid accumulation of neutrophils at the intestinal level 
[133]. After S. enterica enters the organism orally, it is rapidly captured by the epithelial 
cells of the intestine and M cells and after a few hours is found in the lamina propria of 
the intestine and in the Peyer’s plaques [134]. Already in the intestinal tissue, Salmonella 
is internalized by various phagocytic cell types such as macrophages, dendritic cells, and 
neutrophils [135], and it has been suggested that Salmonella is internalized also by B lym-
phocytes, which are abundant in Peyer’s plaques adjacent to intestinal M cells [43, 136]. 
Salmonella epithelial cell invasion is an active process triggered by the bacterium, in which 
cell cytoskeleton rearrangements OCCUR,  resulting in the formation of membranal protru-
sions that allow bacterial internalization, a phenomenon known as macropinocytosis [137]; 
Salmonella has developed very specialized systems to promote this event, within these is the 
type III secretion system (TTSS), through which the bacteria injects to the host cell  products 
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derived from the pathogenicity islands I and 2 (SPI1, SPI2) [138], which promote the acti-
vation of Rho, Rac, and Cdc42 small GTPases, thus favoring cytoskeletal remodeling and 
stimulating the production of caspase-1 which catalytically activates proinflammatory cyto-
kines such as IL-1β and IL -18 [133]. Once internalized, Salmonella resides intracellularly 
in membranes called Salmonella-containing vacuole (SCV), which protects the bacteria by 
avoiding fusion with lysosomes and avoiding the reactivity of reactive oxygen metabolites 
[139, 140]. Salmonella can infect several cell types, from macrophage and dendritic cells to 
non-phagocytic like epithelial cells and hepatocytes [141]. Salmonella can be internalized 
in and infect B lymphocytes [43]. Evidence has shown that Salmonella is internalized into 
B lymphocytes through a macropinocytosis process [72, 73]. Bacterial recognition by B 
cells is also required for internalization; Salmonella may be recognized by BCR [88], by TLR 
[142], or by products derived from SPI-1 [143]. Depending on the internalization mecha-
nism, Salmonella survival will occur, for instance, bacteria opsonized with complement or 
internalized by a mechanism triggered by products of the SPI-1 survive a replicate few 
hours after internalization, whereas bacteria opsonized with IgG or not opsonized will be 
eliminated soon after internalization [139]. Once internalized, the bacterium resides in SCV 
vacuoles, which in the case of B lymphocytes allow the cross-presentation of the Salmonella 
antigens to major histocompatibility complex molecules class one (MHC-I), by the vacuolar 
or cytosolic pathways [144]. This cross-presentation would promote infected-B-cell recogni-
tion and elimination by CD8 + T lymphocytes; however, this elimination does not occur, 
and it has been described that in both B1 and B2 lymphocytes infected with Salmonella, 
the PD1-PD1L pathway (programmed death-1; programmed death-1 ligand) is expressed, 
resulting in a reduction in the signaling required for activation of the T-cell receptor (TCR) 
and consequently avoiding B-cell death [145–147]. One of the characteristics of Salmonella is 
its ability to persist, and the use of the PD1 system in B lymphocytes makes them an ideal 
niche for prolonged stay in the body.

Thus, B lymphocytes play a key role in Salmonella infections, functioning as bacteria reser-
voir, acting as immunoregulatory cell through IL-10 production [148], facilitating bacterial 
systemic dissemination [43], and promoting a proinflammatory intestinal state characteristic 
of non-typhoidal infections through the production of proinflammatory cytokines such as 
IL-1β [135].

4.5. Mycobacterium B-cell infection

The genus Mycobacterium comprises a large number of species, some of which are highly patho-
genic as Mycobacterium tuberculosis (MTB), being also the most studied species of all mycobac-
teria. MTB is a facultative intracellular pathogen; macrophages are the main cells where the 
mycobacteria reside and multiply [149], being able to infect other cells such as pulmonary epi-
thelial cells [93, 150], fibroblasts [151], adipocytes [152], or endothelial cells [153]; bacterial rep-
lication into the non-phagocytic cells is discrete, so they have been suggested as niches where 
the bacteria may persist. In mycobacterial infections, the protective response is cellular, medi-
ated by T helper (Th) lymphocytes and activated macrophages [154]. The involvement of anti-
bodies and B lymphocytes has recently begun to be recognized. For example, B lymphocytes 
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are required to control pulmonary inflammation and bacterial load [155] and antibodies and 
cytokine production by B lymphocytes mainly IL-10 and contribute to these activities [156]. 
Lymphocytes have been considered as non-phagocytic cells or with less interiorization capacity 
than macrophages [70, 71]. Mycobacteria promote their internalization in non-phagocytic cells, 
including B lymphocytes [72]. One way to establish the low phagocytic activity of B lympho-
cytes is to incubate them in the presence of inert particles like zymosan (Figure 4).

Macropinocytosis is an internalization process triggered by several inductors [157]; experi-
mentally, phorbol esters trigger macropinocytosis even in phagocytic cells [158]. Pathogens 
use this internalization mechanism to achieve their entry into cells, by producing factors that 
trigger cytoskeleton reorganization [93]; for the case of mycobacteria, our group has sug-
gested that pathogenic mycobacteria such as M. tuberculosis or nonpathogenic Mycobacterium 
smegmatis produce soluble factors present in the culture medium that trigger this phenom-
enon in B lymphocytes (Figure 5). Some of the reported mycobacterial products that facilitate 
adhesion and internalization into non-phagocytic cells are fibronectin-binding protein (FBP) 
and heparin-binding hemagglutinin adhesin (HBHA) [159, 160], among others [161, 162]. The 
internalization of mycobacteria in immortalized B lymphocytes (cell lines) has been described 
by some authors [72, 74, 163]; these studies show that M. tuberculosis survives and multiplies 
intracellularly in B lymphocytes, and as a consequence of infection, there is lymphocyte acti-
vation, resulting in antibody production of IgM class mainly and expression of co-stimulatory 
molecules like CD80 and CD86 [74]. There are scarce studies on human in vivo B-lymphocyte 
infection [164], so establishing the precise involvement of B lymphocytes in mycobacterial 
infections is an area of great interest.

Figure 4. Is the B cell a “phagocytic cell”? B cells from the Raji cell line were incubated with zymosan without any further 
treatment, during 3 h; then cells were fixed with paraformaldehyde and stained with Giemsa dye. Control cells: cells did 
not receive any treatment. Zymosan only: cells were incubated with zymosan without any treatment. Zymosan and MTB 
SN: cells were incubated with zymosan and Mycobacterium tuberculosis filtrated growth bacterial culture medium (0.22 mm) 
for complete removal of the bacteria. Zymosan only: zymosan particles were observed bound to B-cell membrane; 3 h after, 
zymosan was not observed into the B cells. Zymosan + MTB SN: culture medium collected after 2 weeks of incubation at 
37°C was placed with B lymphocyte; more zymosan particles were observed bound to B cell; after one h it was possible to 
observe intracellular zymosan.
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Figure 5. B-cell membrane changes after 1 h of incubation with PMA or mycobacteria derivatives. Scanning electron 
microscopy (SEM) and fluorescence microscopy images of Raji B cells. (Panel a) Control cells. (Panel b) Cells treated 
with phorbol-myristate-acetate (PMA), a classical macropinocytosis inductor. (Panel c) Cells treated with filtrated 
supernatant from growth culture medium of Mycobacterium smegmatis. (Panel d) Cells infected with Mycobacterium 
tuberculosis. Fluorescence images correspond to actin cytoskeleton labeled with phalloidin rhodamine. SEM images were 
17,000× (panels a and d) or 15,000× (panels b and c); all fluorescence images were observed at 1200×.

5. Implications of B-cell response in bacterial infections

B lymphocytes are involved in various stages of the immune response against pathogens; the 
traditional role of these cells has been associated with adaptive immune response, characterized 
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by the production of antibodies and the generation of immune memory. In bacterial infection, 
the role of these cells in the innate response has recently been recognized; in this sense, it has 
been demonstrated that B cells express receptors capable to recognize bacterial structures (TLRs, 
CR, dectin-1, etc.) [55, 165–167] and produce the effectors of the immune response—cytokines 
and antimicrobial peptides [168–171]—also activating mechanisms that prompt pathogen con-
trol like nitric oxide (NO) and antimicrobial peptides, among other [168]. The immune response 
induced in B lymphocytes often depends on the type of pathogen and the way in which B cell is 
activated, so B-cell response may be regulated by the bacteria to favor its intracellular survival. 
The B lymphocytes possess an endocytic capability that allows them to internalize pathogens; 
the mechanisms that these cells use to internalize bacteria can be endocytosis dependent or 
independent of clathrin, macropinocytosis, phagocytosis, etc. [72, 73, 88, 88, 168, 172]. As a result 
of this internalization, B lymphocytes produce a series of mediators of the innate response that 
will be described.

5.1. Cytokines

B cells recognize pathogens in an infectious process through the BCR or PRR receptors; this 
recognition may induce the cell activation and the production of inflammatory cytokines such 
as IL-1, IL-6, IL-8, TNFα, and IFNγ and suppressor cytokines as IL-10 and transforming growth 
factor beta (TGF-β), in addition to participating in Th2 profile events characterized by the pro-
duction of IL-4, IL-5, IL-13, granulocyte-colony stimulating factor (GCSF), and granulocyte-
macrophage colony-stimulating factor (GMCSF). B-cell plasticity is so extensive that any of 
these profiles can be induced by B cells depending on how they are activated [173–176].

Although B cells can show an inflammatory profile in response to bacterial infections, they 
cannot control infection at all times; some pathogens, especially intracellular ones, are able to 
occupy B cells as reservoirs of infection and can modulate the immune response of these cells 
to survive or even multiply within B lymphocytes. In the case of B-lymphocyte interaction 
with some Gram-negative bacteria such as Brucella abortus [69], M. catarrhalis [112, 166], and 
Salmonella spp [148, 177, 178], induce a high production of IL-10 which activates an immuno-
suppressive response characterized in addition by the simultaneous production of TGF-β, 
under this stage the bacteria rapidly spread. Listeria monocytogenes infection shows an IL-10-
producing B-cell profile at very early stages of infection, which promotes bacteria persistence 
and dissemination [179–181]. Another example of B lymphocyte-bacteria interaction is the 
infection caused by F. tularensis which in B cell (particularly B1-a subtype) induces a clearly 
inflammatory profile characterized by the production of IL1-b, IFNγ, IL-6, IL-12, IL-17, and 
TNF-α [128, 129]. Regarding the activation of the inflammasome complex in B cells infected 
with Salmonella, it has been described that although this system is functional in B cells, the 
IL1-β is not secreted because this bacterium inhibits its production by a mechanism of nega-
tive regulation of the NLRC4 protein, which favors bacterial intracellular persistence [182].

5.2. Nitric oxide (NO)

Nitric oxide is one of the important mediators of the immune response that plays a funda-
mental role in the elimination of pathogens. This molecule is produced by classical phagocytic 
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cells; however, its production has also been described by cells classified as non-phagocytic 
including B lymphocytes. During respiratory burst, NO in conjunction with the reactive oxy-
gen species (ROS) participates in the formation of peroxynitrites, which are highly oxidizing 
agents of many components of the bacteria. NO increases its expression and activity in B 
lymphocytes infected with intracellular pathogens such as M. tuberculosis, S. Typhimurium, 
and Citrobacter rodentium [183–185]. The subclass of B1 lymphocytes constitutively produces 
nitric oxide inducible synthase (iNOS); however, in infectious events this enzyme increases its 
expression levels and therefore its activity, such as the LBs infected with Cryptococcus neofor-
mans; in this infection, NO has a fundamental role in the elimination of the pathogen [186]. NO 
production in B1 lymphocytes appears to be linked to the stimulation of various TLRs, since 
some studies have shown that the stimulation of these receptors and their ligands resulted in 
production of higher NO levels by B lymphocytes. Of the Toll receptor ligands that have been 
studied, the major enhancer of NO expression was bacterial LPS; other agonists such as Poly 
I: C (TLR3), Imiquimod (TLR4), and CpG DNA (TLR9) also induce their expression [168, 187].

5.3. Antimicrobial peptides

Antimicrobial peptides are innate response effectors present in most human cells; these mole-
cules are classified into alpha-defensins (HNP1-6) beta-defensins (hBD 1-4), and cathelicidins 
such as LL37. Its mechanisms of action include the direct lysis of the microorganisms, the gen-
eration of a proinflammatory environment, or the modulation of the immune response. There 
are very few studies on B-lymphocyte expression of antimicrobial peptides; however, there 
are some evidences demonstrating that B cells express antimicrobial peptides in constitutive 
and inducible fashion; under stimulation with some PAMPS, B lymphocytes express alpha 
defensins (HNPs 1–3), hBD2, and the cathelicidin LL-37 [170, 188].

5.4. Reactive oxygen species

B cells participate actively in the control of microorganisms, and although many authors 
have considered them as non-phagocytic cells, it seems that these cells possess microbicidal 
capacities, since they are able to produce antibacterial mediators like ROS. The Nox fam-
ily of enzymes is responsible for regulating the production of ROS in several cell types like 
neutrophils and macrophages; the Nox2 isoform is particularly essential in the elimination 
of bacteria in these cells. Recently Nox2 production was described by splenic and peritoneal 
B lymphocytes; the absence in Nox2 production decreases the production of ROS resulting 
in a deficient elimination of Staphylococcus aureus by B lymphocytes; contrarily normal B cell 
controlled intracellular bacteria growth [171].

5.5. Regulation of B-cell survival during bacterial infection

The ability of several pathogens to regulate the death pathways of the host cell has been 
described for most of the pathogens that infect different cells, and actually this situation is 
recognized for B lymphocytes. For example, L. monocytogenes is known to induce apoptosis in B 
cells through various mechanisms such as activation of caspases 3, 8, and 9 [179, 189]. Apoptosis 

Lymphocyte Updates - Cancer, Autoimmunity and Infection166



cells; however, its production has also been described by cells classified as non-phagocytic 
including B lymphocytes. During respiratory burst, NO in conjunction with the reactive oxy-
gen species (ROS) participates in the formation of peroxynitrites, which are highly oxidizing 
agents of many components of the bacteria. NO increases its expression and activity in B 
lymphocytes infected with intracellular pathogens such as M. tuberculosis, S. Typhimurium, 
and Citrobacter rodentium [183–185]. The subclass of B1 lymphocytes constitutively produces 
nitric oxide inducible synthase (iNOS); however, in infectious events this enzyme increases its 
expression levels and therefore its activity, such as the LBs infected with Cryptococcus neofor-
mans; in this infection, NO has a fundamental role in the elimination of the pathogen [186]. NO 
production in B1 lymphocytes appears to be linked to the stimulation of various TLRs, since 
some studies have shown that the stimulation of these receptors and their ligands resulted in 
production of higher NO levels by B lymphocytes. Of the Toll receptor ligands that have been 
studied, the major enhancer of NO expression was bacterial LPS; other agonists such as Poly 
I: C (TLR3), Imiquimod (TLR4), and CpG DNA (TLR9) also induce their expression [168, 187].

5.3. Antimicrobial peptides

Antimicrobial peptides are innate response effectors present in most human cells; these mole-
cules are classified into alpha-defensins (HNP1-6) beta-defensins (hBD 1-4), and cathelicidins 
such as LL37. Its mechanisms of action include the direct lysis of the microorganisms, the gen-
eration of a proinflammatory environment, or the modulation of the immune response. There 
are very few studies on B-lymphocyte expression of antimicrobial peptides; however, there 
are some evidences demonstrating that B cells express antimicrobial peptides in constitutive 
and inducible fashion; under stimulation with some PAMPS, B lymphocytes express alpha 
defensins (HNPs 1–3), hBD2, and the cathelicidin LL-37 [170, 188].

5.4. Reactive oxygen species

B cells participate actively in the control of microorganisms, and although many authors 
have considered them as non-phagocytic cells, it seems that these cells possess microbicidal 
capacities, since they are able to produce antibacterial mediators like ROS. The Nox fam-
ily of enzymes is responsible for regulating the production of ROS in several cell types like 
neutrophils and macrophages; the Nox2 isoform is particularly essential in the elimination 
of bacteria in these cells. Recently Nox2 production was described by splenic and peritoneal 
B lymphocytes; the absence in Nox2 production decreases the production of ROS resulting 
in a deficient elimination of Staphylococcus aureus by B lymphocytes; contrarily normal B cell 
controlled intracellular bacteria growth [171].

5.5. Regulation of B-cell survival during bacterial infection

The ability of several pathogens to regulate the death pathways of the host cell has been 
described for most of the pathogens that infect different cells, and actually this situation is 
recognized for B lymphocytes. For example, L. monocytogenes is known to induce apoptosis in B 
cells through various mechanisms such as activation of caspases 3, 8, and 9 [179, 189]. Apoptosis 

Lymphocyte Updates - Cancer, Autoimmunity and Infection166

induction during bacterial infection of B cells has been reported for F. tularensis, S. flexneri, 
and Helicobacter pylori [55, 128, 190]; in all three cases, apoptosis of B cells is a mechanism that 
can facilitate the survival and dissemination of pathogens in their host due to the death of B 
lymphocytes that could have a protective effect. In comparison, during B-cell infection with 
Salmonella, the bacteria promote B-cell survival by engaging different mediators like PD-1 [145] 
or through the negative regulation of the protein NLRC4 [182], avoiding in both cases cell 
death. In this way, B cell becomes an intracellular niche for bacterial survival, persistence, and 
dissemination; the bacteria have a major role in promoting this situation [43, 182].

6. Concluding remarks

B lymphocytes are fascinating cells, far beyond being precursors of plasma cells; they repre-
sent a heterogenic cell population with an ample range of activities; beside antibody synthe-
sis, they act as antigen-presenting cells; they produce pro- and anti-inflammatory cytokines 
acting as modulators of the immune response; and also they can uptake bacterial pathogens 
for latter processing and presenting them to T cells. Recent findings have left behind the old 
idea that B lymphocytes were not able to internalize bacterial or particulate antigens, but not 
all the B lymphocyte subsets have this ability. The B1-a subset is the major B-cell subset that 
is able to internalize bacterial pathogens; in the beginning, the antigen is recognized by PRRs 
like BCRs, TLRs, CRs, etc. After recognition, B cell will be activated, internalizing the bacteria, 
and depending on antigen´s nature (pathogenic or no pathogenic), the B lymphocyte will be 
activated to contribute in the establishment of a protective immune response. In some cases 
(specially for pathogenic bacteria), the B cell will not be able to control the pathogen; then the 
B cell becomes a pathogen niche or reservoir, acting as a “Trojan horse” that allows bacteria 
dissemination in the organism; in other cases, the pathogen modulates B-cell death, allowing 
cell and pathogen survival and making the B cell as an excellent host for bacterial persistence. 
The endocytic pathways performed by B lymphocytes to uptake bacteria, so far reported, are 
macropinocytosis and phagocytosis; still, there exists controversy regarding the ability of B 
lymphocyte to perform one, the other, or both mechanisms. It has been proposed that the B1-a 
cell subset has the double lineage lymphocyte/macrophage, making the B1-a cell prompt to 
respond to bacterial challenges and to respond to them in conjunction with the T cells; then 
these cells represent a bridge between the innate and the adaptive responses. Still, the B cells 
have many “secrets” that have to be revealed.
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