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Preface

The growth in internet of things, devices and systems has resulted in the need to develop
energy-efficient near-sensor processing devices and circuits. This requires the development
of alternative computing implementations such as neuromorphic computing, quantum com‐
puting and approximate computing. Memristor devices and their natural properties to
change states can be used to mimic neural circuits and neural networks. It is estimated that
these networks can be scaled in the future to create large-scale neurocomputing solution.

This book covers a range of models, circuits and systems built with memristor devices and
networks in applications to neural networks. It is divided into three parts: (1) Devices, (2)
Models and (3) Applications. The resistive switching property is an important aspect of the
memristors, and there are several designs of this discussed in this book, such as in metal
oxide/organic semiconductor nonvolatile memories, nanoscale switching and degradation of
resistive random access memory and graphene oxide-based memristor. The modelling of
the memristors is required to ensure that the devices can be put to use and improve emerg‐
ing application. In this book, various memristor models are discussed, from a mathematical
framework to implementations in SPICE and verilog, that will be useful for the practitioners
and researchers to get a grounding on the topic. The applications of the memristor models in
various neuromorphic networks are discussed covering various neural network models, im‐
plementations in A/D converter and hierarchical temporal memories.

This book is a response to the growing field of memristor networks and applications, pro‐
viding insights into a collection of topics in memristor devices, circuits and systems. It is
suitable for the introductory studies and equally useful for the researchers to discuss the
emerging topics in the memristor networks.

Alex Pappachen James
Nazarbayev University

Kazakhstan
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Abstract

We present a classification and description of the principal resistive switching and trans-
port mechanisms in chalcogonides materials. We classify the model according to how
many material dimensions are involved in the resistive switching mechanism. In this
way, we describe the phase change model (3D), the interface modulation model (2D) and
models where the switching mechanism depends on the formation of a conduction fila-
ment (1D). Among the conduction filament models, we include the thermochemical oxy-
gen diffusion mechanism, the oxidation/reduction mechanism and the quantum point
effect.

Keywords: chalcogonides, resistive switching, physical models

1. Introduction

Typically, a resistive switching material changes its resistance between two states: High Resis-
tive State (HRS or OFF-state) and Low Resistive State (LRS or ON-state). The most common
structure for a resistive switching devices is an insulator between two metals or metal/insula-
tor/metal (MIM) structure. One of the most important applications of these kind of devices is
for non-volatile memories or Resistive RAMs (ReRAMs).

The metal elements of the MIM structure are called top and bottom electrodes. An electrical
stimulus is necessary to apply between these electrodes to change the resistive state of the
insulator material. In order to determine the resistive state (HRS or LRS), a low voltage is
applied on the electrodes, and the current, which flows through the insulator, is measured
(IHRS or ILRS). There are several orders of magnitudes of difference between IHRS and ILRS
currents. The change from the HRS to the LRS is called SET process and the change from the
LRS to the HRS is called RESET process.

Depending on the voltage polarity applied on the electrodes, there are two schemes to change
the resistive state: unipolar and bipolar. On the one hand, in the unipolar scheme, the resistive
state change does not depend on the voltage polarity and there are two threshold voltages: one

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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for the RESET process (VRESET) and one for the SET process (VSET) with the same polarity as we
can see in Figure 1. On the other hand, in the bipolar scheme, VRESET and VSET have different
polarities (Figure 2).

There is no universal theory or model which explains the electron conduction in the two
resistive states and the SET and RESET processes because there are many factors that affect
the switching behaviour, such as the type of the insulator material, fabrication process, nature
of the dielectric breakdown, among others. However, Waser and Wutting proposed a classifi-
cation based on the type of the resistive switching mechanisms, such as nanochemical mate-
rials, ferroelectric tunnelling, electrostatics effects, phase change mechanism, thermochemical
mechanism, redox-based effect, electrochemical effect, molecular switching effect and magne-
toresistive effect [1].

Chalcogonides are one of the most used materials in the fabrication of resistive memory
devices. The switching mechanisms related to these materials are: phase change memory
effect, thermochemical memory effect, redox-based memory effect and interface defect modu-
lation. The phase change mechanism affects the complete volume of the insulator material and
it is considered as a 3D mechanism. A 2D resistive switching mechanism is the modulation of
the defect density at the metal/insulator interface. Finally, when the resistivity material
depends on the formation of a conduction filament (CF), 1D mechanisms are involved in the
resistive switching process. Thermochemical diffusion of oxygen, reduction/oxidation of the
CF and quantum point contact effects are typical 1D mechanisms.

Figure 1. SET and RESET process for unipolar behaviour.

Memristor and Memristive Neural Networks4

2. Phase change model

Heavier chalcogonides, such as tellurides and selenides, show different electrical and optical
properties in their amorphous and crystalline phases (Figure 3). The resistive switching of
these materials is unipolar. On the one hand, the amorphous phase of these materials has high
resistivity and low reflectivity and, on the other hand, crystalline phase has low resistivity and
high reflectivity [2]. These properties are being exploited in the development of optical storage

Figure 2. SET and RESET process for bipolar behaviour.

Figure 3. Phase change mechanism: the phase material changes from (a) amorphous phase to (b) crystalline phase (and
vice versa) to have different resistivity and reflectivity.

Physical Models for Resistive Switching Devices
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products, such as compact disks (CD), digital versatile disks (DVD), high-definition digital
versatile disks (HD-DVD) and Blu-ray disks (BR). The first kind of materials used for optical
storage were good glasses, such as Te-based alloys like Te85Ge13 doped with Sb, S and P. These
materials show good electrical switching properties in the amorphous and crystalline phases
but the crystallization time was in the order of microseconds, too high to be considered for
optical storage. The second generation of these materials shows shorter crystallization time
and good optical properties. Among these materials, we have GeTe, Ge11Te80Sn4Au23, GeTe-
Sb2Te3, GeBiTe and GeInSbTe. After, a third family of materials was later discovered which
includes alloys of Sb2Te doped with Ag, In and Ge [2].

There are two important temperature thresholds in these materials: the melting temperature
(Tm) and the glass-transition temperature (Tg) with Tm > Tg. The process to change the material
phase from crystalline to amorphous and vice versa is as follows [2]:

• To write a bit, a short high-pulse laser or current is applied on the crystalline material to
reach Tm temperature.

• The material is cooling down rapidly with a rate higher than 109 K/s. In a very short time,
the material reaches the amorphous phase without passing through the crystalline one.

• To erase the bit, a long short-pulse laser or current is applied on the amorphous material.
The material temperature increases over Tg. There is an increment of the electron mobility
and the material changes to the crystalline phase.

For electrical storage devices, the resistive switching property is fundamental and all these
materials have it. However, not all these materials have the reflectivity switching property. To
have this property, a very short time (few tens of nanoseconds) is needed for cooling down the
material from the liquid phase to amorphous phase (step 2) [2].

When a low voltage is applied to the material in the amorphous phase, a very low current is
measured due to the high resistance. When the voltage reaches a value around 0.7 V, the
resistivity decreases and the material reach the so-called ON-amorphous phase [1, 2]. In these
phases, the current increases significantly and enables enough heat to recrystallize the mate-
rial. During the phase change, material defects play an important role. In the amorphous
phase, the current is controlled by the Pool-Frenkel conduction, where carriers are trapped in
defect sites according to the following equation (electron hopping mechanism) [1]:

I ¼ 2qANT
Δz
τ0

e�ðEC�EFÞ=kTsinh
qVΔz
2kTth

� �
ð1Þ

where A is the contact area, V the applied voltage, NT the integral of the trap distribution, Δz the
intertrap distance, τ0 the scape time for a trapping electron, EF the Fermi energy, EC the conduc-
tion band energy, q the elementary electron charge and th the thickness of the material. Because of
the total conduction is presented in the complete material volume, this mechanism is called 3D.
Experimental results show that the defect density in the material is very high and most of the
defects are negative U-centres [1]. On the other hand, computational simulations show that in the
crystalline phase, vacancy defects predominate with a concentration of 25% [1].

Memristor and Memristive Neural Networks6

3. Metal/insulator interface modulation model

In this model, the resistive switching is presented at the metal/insulator interface. In other
words, there is a contact resistance switching behaviour. This interface depending mechanism
is presented in Peroskite oxides in which the material resistivity strongly depends on the
interface area and the switching mechanism is always bipolar. A typical material that shows
this behaviour is the Nb-doped SrTiO3 [3].

The origin of this resistivity change can be understood by examining the metal/insulator
interface band diagram as shown in Figure 4. The insulator oxide is usually doped with
different metals. Depending of doped metal and its density, the insulator behaves as semicon-
ductor at the interface. This provokes a Schottky barrier contact instead of a pure ohmic
contact [3].

An electric field applied on the metal electrodes can electrochemically modify the oxygen
vacancy density at the interface. For an n-type semiconductor, an increment of the oxygen
vacancies density reduces the depletion layer, Wd, in the energy band diagram provoking an
increment of the tunnel electron conduction and, therefore, a decrement of the contact

Figure 4. Band diagrams at the Metal/Insulator interfaces. For a p-type semiconductor, the presence of oxygen vacancies
increases Wd. For an n-type semiconductor, the presence of oxygen vacancies decreases Wd.
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and the material changes to the crystalline phase.

For electrical storage devices, the resistive switching property is fundamental and all these
materials have it. However, not all these materials have the reflectivity switching property. To
have this property, a very short time (few tens of nanoseconds) is needed for cooling down the
material from the liquid phase to amorphous phase (step 2) [2].

When a low voltage is applied to the material in the amorphous phase, a very low current is
measured due to the high resistance. When the voltage reaches a value around 0.7 V, the
resistivity decreases and the material reach the so-called ON-amorphous phase [1, 2]. In these
phases, the current increases significantly and enables enough heat to recrystallize the mate-
rial. During the phase change, material defects play an important role. In the amorphous
phase, the current is controlled by the Pool-Frenkel conduction, where carriers are trapped in
defect sites according to the following equation (electron hopping mechanism) [1]:

I ¼ 2qANT
Δz
τ0

e�ðEC�EFÞ=kTsinh
qVΔz
2kTth

� �
ð1Þ

where A is the contact area, V the applied voltage, NT the integral of the trap distribution, Δz the
intertrap distance, τ0 the scape time for a trapping electron, EF the Fermi energy, EC the conduc-
tion band energy, q the elementary electron charge and th the thickness of the material. Because of
the total conduction is presented in the complete material volume, this mechanism is called 3D.
Experimental results show that the defect density in the material is very high and most of the
defects are negative U-centres [1]. On the other hand, computational simulations show that in the
crystalline phase, vacancy defects predominate with a concentration of 25% [1].
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3. Metal/insulator interface modulation model

In this model, the resistive switching is presented at the metal/insulator interface. In other
words, there is a contact resistance switching behaviour. This interface depending mechanism
is presented in Peroskite oxides in which the material resistivity strongly depends on the
interface area and the switching mechanism is always bipolar. A typical material that shows
this behaviour is the Nb-doped SrTiO3 [3].

The origin of this resistivity change can be understood by examining the metal/insulator
interface band diagram as shown in Figure 4. The insulator oxide is usually doped with
different metals. Depending of doped metal and its density, the insulator behaves as semicon-
ductor at the interface. This provokes a Schottky barrier contact instead of a pure ohmic
contact [3].

An electric field applied on the metal electrodes can electrochemically modify the oxygen
vacancy density at the interface. For an n-type semiconductor, an increment of the oxygen
vacancies density reduces the depletion layer, Wd, in the energy band diagram provoking an
increment of the tunnel electron conduction and, therefore, a decrement of the contact

Figure 4. Band diagrams at the Metal/Insulator interfaces. For a p-type semiconductor, the presence of oxygen vacancies
increases Wd. For an n-type semiconductor, the presence of oxygen vacancies decreases Wd.
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resistance (LRS). If an electric field is applied on the opposite direction, the number of oxygen
vacancies in the n-type semiconductor decreases and provokes an increment of Wd and,
therefore, the contact resistance increases (HRS). On the other hand, for a p-type semiconduc-
tor, the increment of oxygen vacancies increases Wd and the contact resistance (HRS), and a
diminution of the oxygen vacancies decreases Wd and the contact resistance (LRS). In this
model, the metal work function plays a very important role because the band bending strongly
depends on this parameter.

Sawa showed very good resistive switching results for Ti/Pr07Ca0.3MnO3/SrRuO3 (Ti/PCMO/
SRO) cells, where SRO has metal properties and PCMO acts as p-type semiconductor. As well,
the SRO/SrTi0.99Nb0.01O3/Ag (SRO/Nb:STO/Ag) cell showed a good resistive switching behav-
iour where Nb:STO acts as an n-type semiconductor [3].

Another way to change the contact resistance is by adding a thin semiconductor layer of an
oxide material between the metal and the insulator materials [3]. The semiconductor layer
transforms the contact resistance from ohmic to a Schottky barrier. Without this layer, there is
no switching resistance for some insulators. Sawa shows experimental results for Ti/
Sm0.7Ca0.3MnO3(n unit cells)/La0.7Sr0.3MnO3/SRO (Ti/SCMO(n)/LSMO/SRO) where SCMO is
a p-type semiconductor [3]. It was demonstrated that for n¼ 5 unit cells, there was a very good
hysteresis in the I-V curve. As well, the SRO/SrTiO3/SrTi0.99Nb0.01O3/Ag (SRO/STO/Nb:STO)
cell showed a resistivity changes but not a good hysteresis in the I-V curve [3].

4. One dimensional models for resistive switching materials

In several transition metal oxides, when a voltage is applied on the electrodes of a pristine
MIM cell, the current measured is very low. When the voltage increases up to a threshold
value, the electric field applied provokes a dielectric breakdown. When this occurs, a conduc-
tion filament (CF) is formed in the insulator as shown in Figure 5. The necessary potential to
form this filament is called forming voltage (VF). The CF is formed due to the Joule-heating
effect, which leads a temperature increment in the insulator. The dielectric breakdown is
driven by a thermal runway. When a voltage is applied on a transition metal oxide, the resistance

Figure 5. Left: virgin cell. Right: Cell with conduction filament formed.
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starts to decrease but not in a permanent way. In this process, the material temperature increases
up to certain value (related to a threshold voltage) when a local redox reaction begins and causes
structural defects (grain boundaries or dislocations) [4].

The voltage polarity to change states in cells with CF can be unipolar or bipolar. For unipolar
behaviour, the electron conduction mechanism is related to thermochemical changes in the
filament due to the Joule-heating effect. On the other hand, for bipolar behaviour, the electron
conduction through the CF depends on redox effects or quantum point contact effects. In both
cases, the switching mechanisms (SET and RESET processes) are related to the thermochemical
oxygen diffusion in the CF. We can consider the CF as a 1D parameter because the material
resistivity is area independent. It is very important to note that in CF programmable devices,
there exist a variability problem because not all filaments are equal or similar [5].

4.1. Thermochemical oxygen diffusion model

Ielmeni, Nardi and Cagli have been developed a physical model for NiO cells with very good
concordance with experimental results [4]. In this material, the RESET process happens in
small steps, whereas the change of states occurs suddenly during the SET process. The
VRESETand IRESET parameters depend on the resistance material in the HRS. IRESET always
decreases when the resistance increases. On the other hand, the VRESET in function of R curve
has an U behaviour. That is, for low values of R, VRESET decreases when R increases, and for
high values of R, VRESET increases when R increases. For the RESET process, the CF tempera-
ture depends on the square of the applied voltage as follows [4]:

T ¼ T0 þ Rth

R
V2 ð2Þ

where T0 is the room temperature and Rth is the effective thermal resistance. By using Eq. (2),
we can obtain the VRESET voltage:

VRESET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RΔTRESET

Rth

s
ð3Þ

where ΔTRESET is the critical temperature increment for the onset oxidation. The ratio R/Rth is
almost constant according to the Wiedemann-Franz law for metals [4]. This means that VRESET is
almost constant and IRESET decreases with respect to R. This is not true in experimental results.
For explaining the increment ofVRESETwith respect to high values of R, we have to study the size-
dependent Joule-heating effect. The parameter Rth is the parallel of two resistances: Rth

0 and Rth
0 0,

where Rth
0 only depends on the CF and Rth

00 depends on the rest of the material (bulk oxide). Rth
0

can be computed by considering the thermal nanofilament conductivity, kth, as follows [4]:

Rth
0 ¼ th

8kthACF
ð4Þ

where th is the oxide thickness and ACF is CF area. As Rth is inverse proportional to ACF, for
high values of ACF (low resistance) Rth is approximately Rth

0. On the other hand, for low values
of ACF, we have that Rth ≈ Rth

0 0. As well, when kth increases, Rth
0 predominates over Rth

00.
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resistance (LRS). If an electric field is applied on the opposite direction, the number of oxygen
vacancies in the n-type semiconductor decreases and provokes an increment of Wd and,
therefore, the contact resistance increases (HRS). On the other hand, for a p-type semiconduc-
tor, the increment of oxygen vacancies increases Wd and the contact resistance (HRS), and a
diminution of the oxygen vacancies decreases Wd and the contact resistance (LRS). In this
model, the metal work function plays a very important role because the band bending strongly
depends on this parameter.

Sawa showed very good resistive switching results for Ti/Pr07Ca0.3MnO3/SrRuO3 (Ti/PCMO/
SRO) cells, where SRO has metal properties and PCMO acts as p-type semiconductor. As well,
the SRO/SrTi0.99Nb0.01O3/Ag (SRO/Nb:STO/Ag) cell showed a good resistive switching behav-
iour where Nb:STO acts as an n-type semiconductor [3].

Another way to change the contact resistance is by adding a thin semiconductor layer of an
oxide material between the metal and the insulator materials [3]. The semiconductor layer
transforms the contact resistance from ohmic to a Schottky barrier. Without this layer, there is
no switching resistance for some insulators. Sawa shows experimental results for Ti/
Sm0.7Ca0.3MnO3(n unit cells)/La0.7Sr0.3MnO3/SRO (Ti/SCMO(n)/LSMO/SRO) where SCMO is
a p-type semiconductor [3]. It was demonstrated that for n¼ 5 unit cells, there was a very good
hysteresis in the I-V curve. As well, the SRO/SrTiO3/SrTi0.99Nb0.01O3/Ag (SRO/STO/Nb:STO)
cell showed a resistivity changes but not a good hysteresis in the I-V curve [3].

4. One dimensional models for resistive switching materials

In several transition metal oxides, when a voltage is applied on the electrodes of a pristine
MIM cell, the current measured is very low. When the voltage increases up to a threshold
value, the electric field applied provokes a dielectric breakdown. When this occurs, a conduc-
tion filament (CF) is formed in the insulator as shown in Figure 5. The necessary potential to
form this filament is called forming voltage (VF). The CF is formed due to the Joule-heating
effect, which leads a temperature increment in the insulator. The dielectric breakdown is
driven by a thermal runway. When a voltage is applied on a transition metal oxide, the resistance

Figure 5. Left: virgin cell. Right: Cell with conduction filament formed.
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starts to decrease but not in a permanent way. In this process, the material temperature increases
up to certain value (related to a threshold voltage) when a local redox reaction begins and causes
structural defects (grain boundaries or dislocations) [4].

The voltage polarity to change states in cells with CF can be unipolar or bipolar. For unipolar
behaviour, the electron conduction mechanism is related to thermochemical changes in the
filament due to the Joule-heating effect. On the other hand, for bipolar behaviour, the electron
conduction through the CF depends on redox effects or quantum point contact effects. In both
cases, the switching mechanisms (SET and RESET processes) are related to the thermochemical
oxygen diffusion in the CF. We can consider the CF as a 1D parameter because the material
resistivity is area independent. It is very important to note that in CF programmable devices,
there exist a variability problem because not all filaments are equal or similar [5].

4.1. Thermochemical oxygen diffusion model

Ielmeni, Nardi and Cagli have been developed a physical model for NiO cells with very good
concordance with experimental results [4]. In this material, the RESET process happens in
small steps, whereas the change of states occurs suddenly during the SET process. The
VRESETand IRESET parameters depend on the resistance material in the HRS. IRESET always
decreases when the resistance increases. On the other hand, the VRESET in function of R curve
has an U behaviour. That is, for low values of R, VRESET decreases when R increases, and for
high values of R, VRESET increases when R increases. For the RESET process, the CF tempera-
ture depends on the square of the applied voltage as follows [4]:

T ¼ T0 þ Rth

R
V2 ð2Þ

where T0 is the room temperature and Rth is the effective thermal resistance. By using Eq. (2),
we can obtain the VRESET voltage:

VRESET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RΔTRESET

Rth

s
ð3Þ

where ΔTRESET is the critical temperature increment for the onset oxidation. The ratio R/Rth is
almost constant according to the Wiedemann-Franz law for metals [4]. This means that VRESET is
almost constant and IRESET decreases with respect to R. This is not true in experimental results.
For explaining the increment ofVRESETwith respect to high values of R, we have to study the size-
dependent Joule-heating effect. The parameter Rth is the parallel of two resistances: Rth

0 and Rth
0 0,

where Rth
0 only depends on the CF and Rth

00 depends on the rest of the material (bulk oxide). Rth
0

can be computed by considering the thermal nanofilament conductivity, kth, as follows [4]:

Rth
0 ¼ th

8kthACF
ð4Þ

where th is the oxide thickness and ACF is CF area. As Rth is inverse proportional to ACF, for
high values of ACF (low resistance) Rth is approximately Rth

0. On the other hand, for low values
of ACF, we have that Rth ≈ Rth

0 0. As well, when kth increases, Rth
0 predominates over Rth

00.
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For explaining the behaviour of the VRESET-R curve for low values of R, we have to consider
that the ratio R/Rth is almost constant in Eq. (3) and ΔTRESET must increase in order to obtain a
metal diffusion in the filament, which is a filament area dependent process. Hence, VRESET

increases for low values of R. This size-dependent diffusion is considering in following Arrhe-
nius expression developed in Ref. [4]:

TRESET ¼ EA

klog
tRESET
t0

φ0

φ

� �2
 ! ð5Þ

where EA is the activation energy, k the Boltzmann constant, t0 and ϕ0 are constants, ϕ is the CF
diameter and tRESET¼ 1s is the reset time. Ielmini et al. showed very good results between their
model and experimental data of NiO devices [4].

The electron conduction mechanism in the LRS strongly depends on the activation energy. For
low values of EA, the filament has a metallic behaviour and the resistance is given by:

R ¼ R0m 1þ α T � T0ð Þð Þ ð6Þ

where T0 is the room temperature, R0m is the metallic resistant at T0 and α is the temperature
coefficient. On the other hand, for high values of EA, electron conduction is driven by the Pool-
Frenkel model in semiconductors and the resistance follows the following equation:

R ¼ R0s exp
EAC

kT

� �
ð7Þ

where R0s is the extrapolated resistance at infinite T, k is the Boltzmann constant and EAC is the
activation energy for conduction. Both conduction behaviours are related to position of Fermi
level (EF). Inside the CF filament, there are oxygen vacancies, whereas the bulk oxide is doped
by oxygen. An insulator doped by oxygen behaves as a p-type semiconductor and, on the
other hand, oxygen vacancies provoke an n-type behaviour. Therefore, the conduction fila-
ment in LRS behaves as an n-type semiconductor and the electron conduction is modulated by
the concentration of oxygen vacancies, which is directly related to the EF position. When the
oxygen vacancies concentration is too high, the CF behaves as a degenerately doped semicon-
ductor and EF is very close or above the conduction band [4].

As was mentioned before, the SET process happens suddenly and it strongly depends on the
resistance of the HRS (before the SET process). The HRS resistance can be described by the
Pool-Frenkel model and is given by Ielmini et al. [4]:

R ¼ kTτ0th
q2ACFNTΔz2

exp
EAC

kT

� �
ð8Þ

where τ0 is the attempt-to-escape characteristic time for a carrier from a specific state, th is the
material thickness (or filament length), NT is the dopant density, ACF is the filament area and
Δz is the distance between positive charged defects. Ielmini et al. showed, from experimental
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data, that necessary power for the setting process (PSET) is directly proportional to R�0.5, which
means that [4]:

VSET ¼ PSET

ISET
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PSETR

p
∝R0:25 ð9Þ

ISET ¼ PSET

VSET
¼

ffiffiffiffiffiffiffiffiffi
PSET

R

r
∝R�0:75 ð10Þ

The tendencies for VSET and ISET parameters in function of R were experimentally confirmed
the Ielmini group in Ref. [4].

4.2. Trap-assisted-tunnelling model

In bipolar cells, the transition between the LRS and the HRS is commonly related to the
formation and rupture of the CF. A typical material which presents a CF with bipolar behav-
iour is the HfO2. As well as in unipolar cells, oxygen vacancies play an important role. The
most accepted theory for forming the CF in a virgin cell is that the oxygen atoms migrate from
the CF to the insulator/metal interface due to the Joule-heating effect. When the CF is already
formed, to change from the LRS to the HRS, the CF is oxidized (oxygen atoms migrate from the
electrode to the CF), whereas to change from the HRS to the LRS, the CF is reduced leaving
oxygen vacancies and forming percolation paths (oxygen atoms migrate from the CF to the
electrode).

Guan, Yu and Wong have developed a model for explaining the carrier conduction through
the CF in bipolar cells where the principal transport mechanism is the trap-assisted-tunnelling
(TAT). The continuity transport equation in the oxide region is given by Guan et al. [6]:

df n
dt

¼ ð1� f nÞ
XN

m¼1,m6¼n

Rmnf m � f n
XN

m¼1,m6¼n

Rmnð1� f nÞ þ ðRiL
n þ RiR

n Þð1� f nÞ�ðRoL
n þ RoR

n Þf n

ð11Þ

where fn is the electron occupation probability of the nth trap, Rmn is the electron hopping rate
from trapm to trap n,Rn

oL/Rn
oR are the electron hopping rate from trap n to the right/left electrode

andRn
iL/Rn

iR the electron hopping rate from the right/left electrode to trap n. It is well known that
oxygen vacancies contribute to the TAT. In quasi-steady state, Eq. (11) transform to [6]:

ð1� f nÞ
XN

m¼1,m 6¼n

Rmnf m � f n
XN

m¼1,m 6¼n

Rmnð1� f nÞ þ ðRiL
n þ RiR

n Þð1� f nÞ�ðRoL
n þ RoR

n Þf n ¼ 0 ð12Þ

The current can be computed by evaluating the electron flow near the electrode:

I ¼ IL ¼ IR ¼ �q
XN
n¼1

ð1� f nÞRiL
n � f nR

oL
n

� � ¼ �q
XN
n¼1

�
ð1� f nÞRiR

n � f nR
oR
n

�
ð13Þ
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For explaining the behaviour of the VRESET-R curve for low values of R, we have to consider
that the ratio R/Rth is almost constant in Eq. (3) and ΔTRESET must increase in order to obtain a
metal diffusion in the filament, which is a filament area dependent process. Hence, VRESET

increases for low values of R. This size-dependent diffusion is considering in following Arrhe-
nius expression developed in Ref. [4]:

TRESET ¼ EA

klog
tRESET
t0

φ0

φ

� �2
 ! ð5Þ

where EA is the activation energy, k the Boltzmann constant, t0 and ϕ0 are constants, ϕ is the CF
diameter and tRESET¼ 1s is the reset time. Ielmini et al. showed very good results between their
model and experimental data of NiO devices [4].

The electron conduction mechanism in the LRS strongly depends on the activation energy. For
low values of EA, the filament has a metallic behaviour and the resistance is given by:

R ¼ R0m 1þ α T � T0ð Þð Þ ð6Þ

where T0 is the room temperature, R0m is the metallic resistant at T0 and α is the temperature
coefficient. On the other hand, for high values of EA, electron conduction is driven by the Pool-
Frenkel model in semiconductors and the resistance follows the following equation:

R ¼ R0s exp
EAC

kT

� �
ð7Þ

where R0s is the extrapolated resistance at infinite T, k is the Boltzmann constant and EAC is the
activation energy for conduction. Both conduction behaviours are related to position of Fermi
level (EF). Inside the CF filament, there are oxygen vacancies, whereas the bulk oxide is doped
by oxygen. An insulator doped by oxygen behaves as a p-type semiconductor and, on the
other hand, oxygen vacancies provoke an n-type behaviour. Therefore, the conduction fila-
ment in LRS behaves as an n-type semiconductor and the electron conduction is modulated by
the concentration of oxygen vacancies, which is directly related to the EF position. When the
oxygen vacancies concentration is too high, the CF behaves as a degenerately doped semicon-
ductor and EF is very close or above the conduction band [4].

As was mentioned before, the SET process happens suddenly and it strongly depends on the
resistance of the HRS (before the SET process). The HRS resistance can be described by the
Pool-Frenkel model and is given by Ielmini et al. [4]:

R ¼ kTτ0th
q2ACFNTΔz2

exp
EAC

kT

� �
ð8Þ

where τ0 is the attempt-to-escape characteristic time for a carrier from a specific state, th is the
material thickness (or filament length), NT is the dopant density, ACF is the filament area and
Δz is the distance between positive charged defects. Ielmini et al. showed, from experimental
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data, that necessary power for the setting process (PSET) is directly proportional to R�0.5, which
means that [4]:

VSET ¼ PSET

ISET
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PSETR

p
∝R0:25 ð9Þ

ISET ¼ PSET

VSET
¼

ffiffiffiffiffiffiffiffiffi
PSET

R

r
∝R�0:75 ð10Þ

The tendencies for VSET and ISET parameters in function of R were experimentally confirmed
the Ielmini group in Ref. [4].

4.2. Trap-assisted-tunnelling model

In bipolar cells, the transition between the LRS and the HRS is commonly related to the
formation and rupture of the CF. A typical material which presents a CF with bipolar behav-
iour is the HfO2. As well as in unipolar cells, oxygen vacancies play an important role. The
most accepted theory for forming the CF in a virgin cell is that the oxygen atoms migrate from
the CF to the insulator/metal interface due to the Joule-heating effect. When the CF is already
formed, to change from the LRS to the HRS, the CF is oxidized (oxygen atoms migrate from the
electrode to the CF), whereas to change from the HRS to the LRS, the CF is reduced leaving
oxygen vacancies and forming percolation paths (oxygen atoms migrate from the CF to the
electrode).

Guan, Yu and Wong have developed a model for explaining the carrier conduction through
the CF in bipolar cells where the principal transport mechanism is the trap-assisted-tunnelling
(TAT). The continuity transport equation in the oxide region is given by Guan et al. [6]:

df n
dt

¼ ð1� f nÞ
XN

m¼1,m6¼n

Rmnf m � f n
XN

m¼1,m6¼n

Rmnð1� f nÞ þ ðRiL
n þ RiR

n Þð1� f nÞ�ðRoL
n þ RoR

n Þf n

ð11Þ

where fn is the electron occupation probability of the nth trap, Rmn is the electron hopping rate
from trapm to trap n,Rn

oL/Rn
oR are the electron hopping rate from trap n to the right/left electrode

andRn
iL/Rn

iR the electron hopping rate from the right/left electrode to trap n. It is well known that
oxygen vacancies contribute to the TAT. In quasi-steady state, Eq. (11) transform to [6]:

ð1� f nÞ
XN

m¼1,m 6¼n

Rmnf m � f n
XN

m¼1,m 6¼n

Rmnð1� f nÞ þ ðRiL
n þ RiR

n Þð1� f nÞ�ðRoL
n þ RoR

n Þf n ¼ 0 ð12Þ

The current can be computed by evaluating the electron flow near the electrode:

I ¼ IL ¼ IR ¼ �q
XN
n¼1

ð1� f nÞRiL
n � f nR

oL
n

� � ¼ �q
XN
n¼1

�
ð1� f nÞRiR

n � f nR
oR
n

�
ð13Þ
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The hopping rate can be computed by the Mott hopping model as [7]:

Rmn ¼ R0 exp � rmn

a0
þ qVH

mn

kT

� �
ð14Þ

where R0 ≈ 1012Hz is the vibration electron frequency, rmn ¼ |rm�rn| is the distance between
vacancies n and m, a0 is the attenuation length wave function, Vmn

H≈ �FH(rm�rn) ≈ VH(rm)�
VH(rn) is the barrier change due to an external electric field and VH(rn) is the homogeneous
component of the potential solution of the Poisson equation. The hopping rates from a trap to
an electrode are [6]:

RiL,R
n ¼ R0

tunnelN
L,RðEþ

v ÞFL,Rin ðEþ
v ÞTL,R,þ

n

RoL,R
n ¼ R0

tunnelN
L,RðE•

v ÞFL,Rout ðE•
v ÞTL,R,•

n

ð15Þ

where e R0
tunnel is the tunnel coupling strength between a trap and an electrode, NL,R is the

number of states at a given energy in an electrode and Ev
þ/Ev

• are the energy of an empty/
filled trap given by Guan et al. [6]:

Eþ,•
v ðrnÞ ¼ Eþ,•

v � qVHðrnÞ ð16Þ

Tn
L,R,þ• is the tunnel probability from the left/right electrode into a trap given by the Wentzel-

Kramers-Brilloin approximation [6]:

TLþ,•
n ¼ exp

ðxn
0

1
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� EC � Eþ,•

v0 � qVHðxnÞ
� �q

dx
� �

, E�
v < EC � qVHðxÞ

TRþ,•
n ¼ exp

ðL
xn

1
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� EC � Eþ,•

v0 � qVHðxnÞ
� �q

dx
� �

; E�
v < EC � qVHðxÞ

ð17Þ

where xn is the xth component of rn, L is the oxide thickness and m* is the tunnelling effective
mass in the oxide. Fin

L,R is the Fermi integral which represents the filled states in an electrode
above Ev

þ and takes into account the inject electrons from the electrode into the trap n:

FL,Rin ðEþ
v Þ ¼

ðþ∞

Eþ
v0�qVðxnÞ

f E� ðEL,R
F � qVL,R� �

dE ¼
ðþ∞

Eþ
v0�qVðxnÞ

1
1þ exp ðE� ðEL,R

F � qVL,RÞ=kT� � dE

ð18Þ

where EF
L,R is the Fermi level of the right/left electrode and VL,R is the applied voltage on the

left/right electrode. On the other hand, Fout
L,R is the Fermi integral which takes into account the

number of empty states in an electrode bellow Ev
� which can accept electrons from the trap n:

FL,Rout ðE�
v Þ ¼

ðE�
v0�qVðxnÞ

�∞

1� f E� ðEL,R
F � qVL,R� �� �

dE ¼
ðE�

v0�qVðxnÞ

�∞

1
1þ exp ðEL,R

F � qVL,RÞ � E=kT
� � dE

ð19Þ
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According to Guan et al. model, the generation oxygen vacancies are given by [7]:

PGðFeq, T, tÞ ¼ t
t0

exp �ðEa � γjFeqjÞ=kTð Þ ð20Þ

where the time, t, is within the interval [τ, τ þ t], Feq is the local electric field of an ion, 1/t0≈
1013Hz is the oxygen vibration frequency, Ea ≈ 1eV is a parameter related to the height of the
potential barrier and γ is a coefficient which represents the local enhancement due to the
electric field. This rate dominates the SET process.

On the other hand, during the equilibrium state (absence of Feq), the oxygen vacancy recombi-
nation rate is given by Guan et al. [6]:

P0
R ¼ PGðFeq ¼ 0, T, tÞ ¼ t

t0
exp �Ea=kTð Þ ð21Þ

Therefore, the recombination rate for a non-equilibrium state is [7]:

PR ¼ βP0
R

where β is a parameter related to concentration of oxygen ions which can be computed by the
following approximation [6]:

βðx, tÞ ¼ β0 exp � vt
Lp

� �
uðx, tÞ ð22Þ

where Lp is decaying length of ion concentration, u(x,t) is a function related to the oxygen
diffusion and can be approximated by the complementary error function. v is velocity of the
oxygen ions waveform given by Yu et al. [7]:

v ¼ a
t0

exp �Em=kTð Þsinh qγdrif tF=kT
� � ð23Þ

where a is the lattice constant, Em is the migration barrier, γdrift is the enhancement coefficient
related to the dielectric material and F is the electric field left by an oxygen ion. Eq. (13)
is coupled with the solution of the Poisson equation to obtain the potential distribution in
the cell:

�∇2V ¼ ρ
ε

ð24Þ

where ρ is the volumetric charge density and ε is the material permittivity. The border condi-
tions for Eq. (24) are: V(x¼0)¼VL and V(x¼L)¼VR. Guan et al. showed very god results of their
model for experimental data of HfOx devices [7].
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The hopping rate can be computed by the Mott hopping model as [7]:

Rmn ¼ R0 exp � rmn

a0
þ qVH

mn

kT

� �
ð14Þ

where R0 ≈ 1012Hz is the vibration electron frequency, rmn ¼ |rm�rn| is the distance between
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H≈ �FH(rm�rn) ≈ VH(rm)�
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RiL,R
n ¼ R0

tunnelN
L,RðEþ

v ÞFL,Rin ðEþ
v ÞTL,R,þ

n

RoL,R
n ¼ R0

tunnelN
L,RðE•

v ÞFL,Rout ðE•
v ÞTL,R,•

n

ð15Þ

where e R0
tunnel is the tunnel coupling strength between a trap and an electrode, NL,R is the
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þ/Ev

• are the energy of an empty/
filled trap given by Guan et al. [6]:

Eþ,•
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ðxn
0

1
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� �q

dx
� �
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v < EC � qVHðxÞ

TRþ,•
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ðL
xn

1
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� EC � Eþ,•

v0 � qVHðxnÞ
� �q

dx
� �

; E�
v < EC � qVHðxÞ

ð17Þ

where xn is the xth component of rn, L is the oxide thickness and m* is the tunnelling effective
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4.3. Quantum point contact model

The complete quantum point contact (QPC) model was developed by Miranda and Suñe [8].
Originally, the model was developed for explaining the soft and hard-dielectric-breakdown in
SiO2. If the dimension of the narrowest point of the CF is in the order of the Fermi wavelength,
λF, quantum point contact effects are presented. There are some experimental works, where
the QPC model could explain well the transport conduction in the HRS and LRS for HfO2

devices [9–11].

According to the QPC model, the first quantized sub-band behaves as a potential barrier for
the incoming electrons as shown in Figure 6. We used a parabolic potential as potential barrier
with the following physical parameters: Φ being the potential barrier height measured at the
Fermi level, tB is the potential thickness at the Fermi level, R is a series resistance external to the
constriction, V is the applied voltage on the electrodes, q is the elementary electron charge and I
is the filament current that flows in the x direction.

The potential barrier height is defined by the cross-sectional area of the constriction and
determines two conduction states. For the HRS, the top of the potential barrier is above or
inside the energy window and the dominant conduction mechanism is tunnelling (this
description is valid only for low-voltages). On the other hand, if the top of the potential barrier
is below the energy window, the cell is in the LRS and the conduction mechanism is essentially
ballistic (transmission probability close to 1). The conduction in the LRS is independent of the

Figure 6. Energy band diagram of the narrow constriction, where V is the applied voltage on the electrodes, R is an
external series resistance that takes into account the non-idealities of the model, I is the filament current, e(V-IR) is the
energy window associated to the electron conduction (shaded region), EF is the Fermi level,Φ is the potential height with
respect to EF, tB is the potential thickness at EF and e is the elementary electron charge. The conduction is in the x
direction. The top of the potential barrier is above or inside the energy window for the HRS and below for the LRS.
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potential barrier. By assuming a parabolic potential barrier in the narrow constriction and by
using the Landauer formalism for 1D quantum conductors and the zero-temperature limit for
the parabolic potential barrier, the current through the filament is [9, 10]:

I ¼ 2e
h
N
ðeðV�IRÞ=2

�eðV�IRÞ=2
TðEÞdE ð25Þ

where T(E) is the electron transmission probability, N is the number of active channels in the
filament and h is the Planck’s constant. For a parabolic potential barrier, there is an analytical
expression for T(E):

TðEÞ ¼ 1þ exp ð�α E� Φð Þ� ��1 ð26Þ

where α is a shape parameter related to tB. By integrating over the total energy window, we
have that the filament current is [9, 10]:

I ¼ 2eN
h

eðV � IRÞ þ 1
α
ln

1þ exp α Φ� eðV � IRÞ=2½ �f g
1þ exp α Φþ eðV � IRÞ=2½ �f g
� �� �

ð27Þ

If we consider V ≫ IR and only one active filament for the HRS (not multiple filaments), we
obtain [9, 10]:

I ≈
2e
h

eV þ 1
α
ln

1þ exp α Φ� eV=2½ �f g
1þ exp α Φþ eV=2½ �f g
� �� �

ð28Þ

For the LRS, we suppose an ideally ballistic transport that (T(E) ≈ 1) and the current is [9, 10]:

I ≈
NGo

1þNGoR
V ð29Þ

where G0¼ 2q2/h is the quantum conductance unit.

We show in Figure 7 experimental results of I-V curves for the HRS and LRS and its fitting
with the QPC model for HfO2 cells. We have found in Ref. [10] that α∝Φn with n ¼ �0.35.
There is a QPC expression which relates Φ and α by considering tB constant [9, 10]:

tB ¼ hα
2π2

ffiffiffiffiffiffiffi
2Φ
m�

r
ð30Þ

wherem* is the electron effective mass in the constriction. Moreover, the constriction radius, rB,
can be extracted by using another QPC equation [9, 10]:

rB ¼ hzo
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m � Φp ð31Þ

where z0¼ 2.404 is the first zero of the Bessel function J0. In Ref. [10], we have experimentally
found that rB¼ 1.14 nm with a standard deviation of 0.06 nm for bipolar HfO2 cells, which
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potential barrier. By assuming a parabolic potential barrier in the narrow constriction and by
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the parabolic potential barrier, the current through the filament is [9, 10]:
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where T(E) is the electron transmission probability, N is the number of active channels in the
filament and h is the Planck’s constant. For a parabolic potential barrier, there is an analytical
expression for T(E):
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where α is a shape parameter related to tB. By integrating over the total energy window, we
have that the filament current is [9, 10]:
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For the LRS, we suppose an ideally ballistic transport that (T(E) ≈ 1) and the current is [9, 10]:

I ≈
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V ð29Þ

where G0¼ 2q2/h is the quantum conductance unit.
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agrees with the quantum approach of this model. Miranda et al. showed that Φ has a linear
dependence with respect to the temperature given by Avellán et al. [12]:

ΦðTÞ ¼ Φ0 � γT ð32Þ

whereΦ0 is a potential height at a T0 temperature (a given temperature) and γ is a temperature
coefficient. For extracting γ, we can use the following expression [12]:

dðlog½I=1A�Þ
dT

lnð10Þ ¼ αγ ð33Þ

This dependence has been probed in experimental results of HfO2 cells in Ref. [10].

5. Conclusions

We have presented a classification of physical models for explaining the resistive switching
mechanisms in chalcogonides materials. In the literature, there are many physical models
proposed for explaining the electron conduction and switching mechanism in specific mate-
rials and fabrication process conditions. In the present work, we divide the models according
to the number of material dimensions involved on the resistive switching mechanism. The
phase change mechanism (PCM) is presented in some Te-alloys used an optical storage
devices. In this switching mechanism, the material changes from the amorphous phase to the
crystalline phase. Because of the resistivity affects the complete cell volume, the phase change
mechanism is considered a 3D model. On the other hand, the modulation of the resistive
contact is a 2D model because the defect concentration only affects the metal/insulator inter-
face. This mechanism is presented in some perovskite materials.

Figure 7. Experimental and theoretical I-V characteristics for the (a) HRS and (b) LRS. The QPC model (Eqs. (28) and (29))
was used for theoretical curves.
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The principal component of 1D models is the presence of a conduction filament. The filament
is formed in a virgin cell by applying a certain threshold voltage. Depending on the cell
polarity, the transport mechanisms can be: thermochemical diffusion of oxygen, filament
oxidation-reduction or quantum point contact. For unipolar cells (like NiO cells), the resistive
switching and the carrier conduction are controlled by the thermochemical diffusion of oxygen
in the CF due to the Joule-heating effect. For bipolar cells (like HfO2), the switching mechanism
is related to the oxidation/reduction of CF. If the CF radius at the narrowest part of the CF is in
the order of the Fermi wavelength, the transport is driven by the quantum point contact effect,
otherwise the transport depends on the oxidation/reduction of CF.
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Abstract

A memristor is the memory extension to the concept of resistor. With unique superior 
properties, memristors have prospective promising applications in non‐volatile memory 
(NVM). Resistive random access memory (RRAM) is a non‐volatile memory using a mate‐
rial whose resistance changes under electrical stimulus can be seen as the most promising 
candidate for next generation memory both as embedded memory and a stand‐alone 
memory due to its high speed, long retention time, low power consumption, scalability 
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TiO2‐based crossbar memory array was developed by the HP Labs, and the cross‐point storage 
element was recognized as the memristor [2]. Recently, a rather deep analysis has been pro‐
vided concerning memristors [3], which shows conclusively that the memristor is not the long‐
sought fourth circuit element but the memory extension to the concept of resistor. With unique 
superior properties, memristors have promising applications in non‐volatile memory (NVM), 
artificial neural networks, programmable logic devices, signal processing and pattern recog‐
nition circuits. Random access memory (RAM) is an important form of computer data stor‐
age. However, due to the technological and physical limitations imposed by dynamic random 
access memory (DRAM), static random access memory (SRAM) and flash memory towards 
low power, small size, fast speed, high density and non‐volatility, there is an urgent need of 
upcoming NVM technologies with low power, high density, high read/write endurance and 
scalability. In a memristor, a new memory device to solve these problems, a resistive random 
access memory (RRAM) is a good direction for the development of future memory technology. 
RRAM is a memory using a material whose resistance changes under electrical stimulus and 
can be seen as the most promising candidate for next generation memory both as embedded 
memory and a stand‐alone memory due to its high speed, long retention time, low power con‐
sumption, scalability and simple structure [4]. Typically, RRAM is a two‐terminal device that 
the switching medium is sandwiched between top and bottom electrodes (Figure 1) and the 
resistance of the switching medium can be modulated by applying electrical signal (current or 
voltage) to the electrodes. Appropriate value of programming voltage pulse can set the device 
from high‐resistance state (HRS) to low‐resistance state (LRS) known as SET or writing pro‐
cess. Similarly, switching back of the device from LRS to HRS using a voltage pulse known as 
RESET or erase process. Based on the voltage polarity used, RRAM can be categorized into two 
types: unipolar and bipolar resistive switching [5]. The switching operation is called unipolar, 
if the SET and RESET processes occur at the same voltage polarity. In the SET process, the 
current is usually constrained by current compliance. Whereas, the switching is bipolar if the 
SET and RESET processes occur at reversed polarity of voltages. In both switching modes, two 
resistance states are distinguished from each other at a small read‐out voltage, therefore read 
operation has no influence on the resistance state. However, the attractive properties of RRAM 
are low fabrication costs, scalability into the nanometre regime, fast write and read access, low 
power consumption and low threshold voltages.

Figure 1. Schematic and electrical configuration of a two‐terminal RRAM cell.
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The resistive switching effect has been explored until now in several materials including tran‐
sition metal oxides, perovskite oxides, organic materials and carbon‐based materials. Carbon‐
based materials have been researched extensively as an important class of materials for many 
years to defeat the technological barriers of conventional semiconductor electronics [6–8]. 
Previously, the efforts have been made to fabricate the field effect transistor (FET) devices [9, 
10] based on carbon materials. Therefore, it is highly demandable to fabricate carbon‐based 
memory devices to integrate logic and memory devices based on same material. This chapter 
introduces RRAM properties of the carbon compound known as graphene oxide (GO). It is 
basically a wrinkled two‐dimensional carbon sheet with various oxygenated functional groups 
attached to its basal plane and peripheries, with the thickness of around 1 nm and lateral 
dimensions varying between a few nanometres and several microns. Graphene oxide has been 
synthesized by various chemical methods, such as Hummers’ method and its modification, 
Brodie method and Staudenmaier method. In contrast to the metallic nature of  graphene, the 
graphene oxide is good insulating/semiconducting material, which can be  readily obtained by 
oxidizing graphite with strong oxidants.GO sheets are heavily oxygenated, bearing hydroxyl 
and epoxide functional groups on their basal planes, in addition to carbonyl and carboxyl 
groups located at the sheet edges. Furthermore, the ability of these sheets to form covalent as 
well as non‐covalent (based on interactions) bonds encourages the fabrication of a wide vari‐
ety of hybrid structures such as transistors, sensors, optoelectronic and memory devices etc. 
[11, 12]. The two dimensionality of GO permits scaling beyond the current limits of semicon‐
ductor technology, which is a key aspect for high‐density fabrication. Out of tremendous appli‐
cations of graphene oxide, this chapter focuses on the memory device application. Graphene 
oxide (GO) with an ultrathin thickness is attractive due to its unique physical‐chemical prop‐
erties. GO can be readily obtained through oxidizing graphite in mixtures of strong oxidants, 
followed by an exfoliation process. The presence of these functional groups makes GO sheets 
electrically insulating, with characteristics comparable to other thin‐layered oxide materials, 
with the advantage of being atomically thin, which makes GO the perfect candidate for the 
fabrication of memristive devices [13, 14]. As GO is water soluble which makes it facile to 
transfer onto any substrate in thin film form by simple methods of spin coating, drop‐casting, 
Langmuir‐Blodgett (LB) and vacuum filtration. The as‐deposited GO thin films can be further 
processed into functional devices using standard lithography processes without degrading 
the film properties [15, 16]. Furthermore, the band structure and electronic properties of GO 
can be modulated by changing the quantity of chemical functionalities attached to the surface. 
Therefore, GO is potentially useful for microelectronics production.

2. Status of graphene oxide‐based RRAM devices

Graphene oxide‐based resistive memory devices have several advantages, such as easy syn‐
thesis and cost‐effective device fabrication, scaling down to few nanometres and compatibility 
for flexible device applications. Reliable and reproducible resistive switching behaviour was 
first reported in graphene oxide thin films prepared by the vacuum filtration method by He et 
al. in 2009 [17]. They observed very low switching voltages and low on/off ratio of about 20 in 
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Cu/GO/Pt structure. Soon after that there were many reports published showing high on/off 
ratios in GO‐based RRAM devices [18, 19]. Mechanism for the resistive switching characteris‐
tics in GO‐based RRAM was found to be due to the oxygen migration, oxygen vacancies and 
the electrode diffusion [20, 21]. Furthermore, Jeong et al. presented a GO‐based memory that 
can be easily fabricated using a room temperature spin‐casting method on flexible substrates 
and has reliable memory performance in terms of retention and endurance [22]. Resistive 
switching effect was shown in Ni‐doped graphene oxide by Pinto et al. [23]. Transparent non‐
volatile memory device based on SiOx and graphene was also reported which features high 
transparency, long retention time and low programming currents [24]. Zhuge et al. reported 
the forming voltage dependence on GO film thickness and on different top electrodes [20]. 
Forming process is the application of initial high voltages to the devices to initiate the switch‐
ing process, which is detrimental to the device structure and operation. Forming‐free GO 
RRAM devices having high on/off ratio with good retention and endurance properties are 
potential candidates for non‐volatile RRAM. Therefore, in this chapter, we will be discussing 
RRAM properties of the GO‐based devices, which are forming free, thermally stable, multi‐bit 
storage, flexible, having high on/off ratio at low operating voltages that boost up the research 
and development to accelerate the GO‐based RRAM devices for future memory applications.

2.1. Graphene oxide‐based RRAM devices

Synthesis of graphene oxide presented in this chapter has been carried out by modified 
Hummers method [25, 26]. In brief, highly oriented pyrolytic graphite (HOPG, 2 g) was oxi‐
dized using potassium permanganate (KMnO4, 7 g) in the presence of concentrated H2SO4 
(50 ml) in ice bath. After the reaction, excess distilled water was added to the solution. With 
continuous stirring a 30 wt.% of hydrogen peroxide (H2O2) was added slowly until the gas 
evolution had stopped. Further 15 more‐minute stirring was done to the resultant mixture, 
and then it was filtered through nylon membrane. Repeated washing was done by distilled 
water and 5% HCl solution until the filtrate was neutral. Finally, the obtained dark brown 
slurry was dried for 24 hour in a vacuum oven at 60°C. A colloidal suspension of GO was 
prepared in distilled water by sonicating graphite oxide in water for 2 hour. Such a solution 
of GO was used to fabricate the thin films by spin coating process on ITO/Glass substrate. To 
construct metal‐insulator‐metal (MIM) devices, platinum top electrodes with an area of 40 × 
40 μm2 were deposited by DC sputtering utilizing a shadow mask. The schematic representa‐
tion of fabricated Pt/graphene oxide/imdium‐tin oxide (GO/ITO) is shown in Figure 2.

Figure 2. Schematic representation of GO‐based MIM devices [26].
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To observe the switching characteristics of the device, I‐V measurements for the Pt/GO/ITO 
device at 300 and 500 K were performed as shown in Figure 3a and b). The Pt/GO/ITO device 
was found initially in low‐resistance state having resistance value of ∼40 ohm. Figure 3 shows 
that as the positive voltage was increased, a sudden fall in current was observed at a voltage 
of ∼3.2 V indicating abrupt increase in the resistance of the device. This is known as RESET 
process and device transformed from its initial low‐resistance state (LRS) to high‐resistance 
state (HRS) also known as OFF state.

The low‐resistance state of GO‐based MIM devices once obtained persisted even when the 
applied voltage was reduced to zero indicating non‐volatility. In high‐resistance state, when 
the voltage was swept a sudden increase in current was observed at a voltage of approxi‐
mately −1.2 V indicating abrupt decrease in the resistance of device and switching from high‐
resistance state to low‐resistance state as shown in Figure 3a. This is known as the SET process 
which switched the MIM device in LRS or ON state. The LRS of device remained preserved 
even when the applied bias voltage was removed. During this set process, current compliance 
was kept fixed at 100 mA to avoid the breakdown of GO film due to high current flow in low‐
resistance state. By repeating the set and reset processes over 100 cycles, it was observed that 
the reset voltage was larger than the set voltage and spread over a small window of voltage 
between ∼3 and 3.4 V, whereas the set voltage had a spread between approximately −1.2 and 
−1.8 V. Thus, the device showed a typical bipolar resistive switching (BRS) behaviour with an 
on/off current ratio of 104 over 100 test cycles. Switching characteristics of the device were also 
studied at elevated temperature of 500 K (as shown in Figure 3b). Reduction in the value of 
reset voltage at 500 K was observed which could be attributed to enhanced diffusivity of oxy‐
gen ions at elevated temperature compared to that of room temperature. However, contrary 
to that we found increment in the set voltage at elevated temperature. Further at high tem‐
perature of 500 K, the on/off ratio of the device was found to decrease up to ∼102 compared 
to its value at 300 K which was ∼104; however, this ratio of high‐ and low‐resistance states is 
sufficient for operation of memory devices. Low‐ and high‐resistance states were stable up to 
104 seconds and up to 100 cycles indicating good retention and endurance characteristics of 
the device at elevated temperature of 500 K.

Figure 3. Current‐voltage characteristics of the Pt/GO/ITO device at (a) 300 K and (b) 500 K [26].
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Based on the conduction mechanism, it was observed that GO device contains conducting 
paths between top and bottom electrode perhaps due to the presence of oxygen vacancies and 
electron traps in graphene oxide layer forming electron hopping path [27]. Presence of oxygen 
vacancies in graphene oxide indicates partial reduction of GO and dominance of sp2 character 
over sp3 character providing high conducting channel in GO film and initial low‐resistance 
state without any forming process. In Pt/GO/ITO devices, the bottom electrode ITO acts as 
a source/reservoir of oxygen ions [28]. To ascertain the presence of sp2 and sp3 characters 
of carbon, Raman spectroscopy measurements were carried out on the Pt/GO/ITO devices 
both in LRS and HRS and are shown in Figure 4. As can be seen in Figure 4 that in case of 
as‐grown device and the device in LRS, the presence of G peak signifying the sp2 character 
is larger in intensity compared to the same peak when the device was switched into HRS by 
the application of suitable bias voltage. This indicates that the sp2 character dominates in LRS. 
While in case of HRS, the sp2 character is suppressed. These RRAM devices based on GO layer 
fabricated by a simple process of spin coating show a forming free bipolar resistive switch‐
ing (BRS) in Pt/GO/ITO structure with high on/off ratio of 104 exhibiting good retention and 
endurance properties at room and elevated temperatures.

2.2. Graphene oxide‐based multi‐layer structures for high‐density data storage

Organic memory devices have gained much attention as future information and storage compo‐
nents owing to their low weight, flexibility, inexpensive and facile fabrication methods [29, 30]. 
Recent reports have shown that organic memory devices have been developed through layer 
stacking [31] and using advanced memory architectures [32–35]. However, the most organic 
memory devices are suffering with slow switching [36] and low storage capacity [37, 38]. RRAM 

Figure 4. Raman spectra for Pt/GO/ITO device in LRS (upper curve) and HRS (lower curve) [26].
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performance of the organic memories can be greatly enhanced by forming hybrid organic struc‐
tures [39], organic/inorganic composites [40] or by dispersing nanomaterials [41, 42]. Among 
all other organic polymers, polyvinylidene fluoride (PVDF) was used due to its non‐reactive 
nature, better heat resistance, flexibility and low weight. As mentioned above, hybrid struc‐
tures of organic memory devices provide enhanced memory characteristics; therefore, hetero‐
structure of PVDF was fabricated using a charge trapping element in it. In this study, reduced 
graphene oxide nanoflakes (GR) were used as a charge trapping layer owing to their unique 
chemical structure and exceptional properties [6, 43–47] that make it ideal for charge trapping 
[48] and storage [49] for memory applications. Also, the defects (vacancy, interstitial sites, etc.) 
present in GR also work as the charge trapping nodes [50]. Tri‐layer structure was fabricated by 
assembling graphene nanoflakes (GR) between PVDF polymer layers [51] through spin coating 
process on ITO/glass substrate as shown in Figure 5. DC sputtering was used to deposit plati‐
num top electrode having area (100 μm × 100 μm) through shadow mask to obtain devices from 
the stacked structure.

As the voltage was increased, multi‐stage SET and RESET were observed in positive and nega‐
tive polarities, respectively, as shown in Figure 6a. This process was repeatable for a number 
of cycles, which established the device as a non‐volatile memory with multilevel conductance 
states. The multilevel SET process occurring in the device can be due to multi‐channels forma‐
tion as trapping sites in graphene bear different threshold potentials. Electrons occupied these 
trapping sites even if the applied voltage is removed, thus preserving the non‐volatile nature of 
the device in ON state. When negative voltage is applied to the device, current firstly increases 
with voltage due to the presence of trapped charges in the nodes. At a particular negative bias, 
current jumps to low value due to the de‐trapping of electrons from the trapping nodes which 
initiates the breaking of conducting channels. Further at a particular negative bias, when most 
of the electrons de‐trapped and ejected back to ITO, the conducting path completely disrupts 
and the device transits to OFF state bearing high resistance. The multi‐channel RESET process 
occurring in the device is also due to the same mechanism as discussed in the SET process. 
In brief, it may be due to the breaking of multi‐channels at different potentials. Reports have 
shown that the intermediate stage present in the device revealing multi‐level switching is due 
to the formation of multi‐filaments [52] having different threshold potentials [53]. The device 

Figure 5. Schematic diagram of the layer‐by‐layer fabricated Pt/PVDF/rGO/PVDF/ITO memory devices. Top electrode 
of platinum (Pt) having area 100 × 100 μm2 was deposited using DC sputtering [51].
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Figure 4. Raman spectra for Pt/GO/ITO device in LRS (upper curve) and HRS (lower curve) [26].

Memristor and Memristive Neural Networks24

performance of the organic memories can be greatly enhanced by forming hybrid organic struc‐
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was further subjected to different compliance currents of 1, 10 and 100 μA during the SET 
process and correspondingly obtained different low‐resistance states as shown in Figure 6b.

When the highest value of ICC was imposed, the device was observed in lowest resistance 
state. However, the HRS value for different ICC was almost the same. All four different states 
including one HRS and three LRS were observed in the device. It was proposed that with 
the highest compliance current applied during SET process, maximum number of trapping 
nodes are filled and hence maximum number of conductive channels are formed resulting in 
the lowest resistance state, while with the application of the lowest compliance current, small 
number of trapping nodes are filled having less number of conducting channels, leading to 
higher resistance state. To observe the performance and stability of the memory device, its 
endurance and retention properties were studied. Figure 7a represents the endurance char‐
acteristics of the device for all the four resistance states tested against number of cycles. As 
can be seen from Figure 7a, the four different states including one HRS and three LRS (LRS1, 
LRS2 and LRS3) were stable with no overlapping of resistances tested over the 150 number of 
cycles. Figure 7b shows the retention properties observed in the device where the resistance 
of all four states were measured using a read voltage of 0.1 V over a period of 104 seconds. The 
graph shows well‐differentiated resistance states of HRS and three LRS with no degradation 
in resistance values over the long time. These measurements for retention and endurance for 
the device showed that it has well performance and good stability. This tri‐layer structure fab‐
ricated by simple spin coating method can be seen as a potential candidate for future memory 
devices qualifying the need for high‐density storage media.

2.3. Graphene oxide composite with ZnO nanorods for flexible memory devices

Flexible RRAM devices have shown good potential for bendable memory systems [54–58].
These memories are in much demand due to the qualities of inexpensive, low weight,  portability 
and user‐friendly interfaces over conventional rigid silicon technology [59]. The substrates for 
flexible memories could not bear high temperatures used in growth techniques, this limitation 

Figure 6. Typical I‐V characteristic curves plotted in semi‐logarithmic scale of Pt/PVDF/rGO/PVDF/ITO device (a) 
showing the presence of intermediate state. (b) Under different compliance currents of 1, 10 and 100 μA showing 
different low‐resistance states corresponding to the compliance current applied [51].
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demands for the need for materials which can be grown on these substrates at room tempera‐
ture. Obeying this condition, GO is readily oxidizable and water soluble, which qualifies to be 
fabricated in thin films on flexible substrates at room/moderate temperatures. There are reports 
which have shown that integration of nanomaterials into oxides is helpful in enhancing the 
resistive switching properties of the devices [60–62]. In this work [63], ZnO nanorods (ZNs) 
were grown in horizontal direction on GO sheets to maximize the contact area between the 
nanorods and GO sheets [64, 65]. The consequence of this was observed in significant reduc‐
tion in switching voltages in comparison to GO alone. The solution of GOZNs was spin coated 
to ITO‐coated polyethylene terephthalate (indium‐tin oxide on polyester film (ITOPET)) sub‐
strates to fabricate the films. Initially, the Al/GOZNs/ITOPET devices were in high‐resistance 
state (HRS). In the very first cycle, a forming voltage around 5 V with current compliance of 2 
mA was applied to activate these devices. Device showed SET and RESET processes on posi‐
tive and negative voltages having non‐volatile nature. To investigate the effect of ZNs addition 
into the GO matrix, another device Al/GO/ITOPET was fabricated following the same process 
except the incorporation of ZNs in it, and this device showed comparatively higher values of 
SET and RESET voltages.

I‐V measurements performed on both devices, shown in Figure 8, have clearly shown that SET 
and RESET voltages in the device containing ZNs were severely reduced to approximately half 
in comparison to the device containing no ZNs. To further understand the effect of changing 
ZNs ratio in GO matrix on resistive switching, the I‐V characteristics of different compositions 
(10:1, 5:1, 3:1 and 2:1) were studied and found that 3:1 was the best among all. In Al/GOZNs/
ITOPET devices, we propose that the conducting filament formation during the SET process is 
due to the oxygen vacancies. Oxygen concentration gradient exists at the interface of GO, and 
Al has high oxidation tendency. Therefore, oxygen ions from GO move towards and react with 
Al forming a new interfacial Al oxide layer [66]; also this process induces the oxygen vacancies 
into the GO region. With the positive bias is applied to the top electrode, these induced oxygen 
vacancies are deeply inserted into the GO matrix and providing the conductive paths during 
the SET process. With the negative polarity these oxygen vacancies are pushed back resulting 

Figure 7. Resistances of the device in all LRS and HRS under different compliance currents of 1, 10 and 100 μA with 
read voltage of 0.1 V. (a) Endurance properties over 150 cycles with enough margin between the states. (b) Retention 
characteristics over 104 seconds for all four states [51].
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demands for the need for materials which can be grown on these substrates at room tempera‐
ture. Obeying this condition, GO is readily oxidizable and water soluble, which qualifies to be 
fabricated in thin films on flexible substrates at room/moderate temperatures. There are reports 
which have shown that integration of nanomaterials into oxides is helpful in enhancing the 
resistive switching properties of the devices [60–62]. In this work [63], ZnO nanorods (ZNs) 
were grown in horizontal direction on GO sheets to maximize the contact area between the 
nanorods and GO sheets [64, 65]. The consequence of this was observed in significant reduc‐
tion in switching voltages in comparison to GO alone. The solution of GOZNs was spin coated 
to ITO‐coated polyethylene terephthalate (indium‐tin oxide on polyester film (ITOPET)) sub‐
strates to fabricate the films. Initially, the Al/GOZNs/ITOPET devices were in high‐resistance 
state (HRS). In the very first cycle, a forming voltage around 5 V with current compliance of 2 
mA was applied to activate these devices. Device showed SET and RESET processes on posi‐
tive and negative voltages having non‐volatile nature. To investigate the effect of ZNs addition 
into the GO matrix, another device Al/GO/ITOPET was fabricated following the same process 
except the incorporation of ZNs in it, and this device showed comparatively higher values of 
SET and RESET voltages.

I‐V measurements performed on both devices, shown in Figure 8, have clearly shown that SET 
and RESET voltages in the device containing ZNs were severely reduced to approximately half 
in comparison to the device containing no ZNs. To further understand the effect of changing 
ZNs ratio in GO matrix on resistive switching, the I‐V characteristics of different compositions 
(10:1, 5:1, 3:1 and 2:1) were studied and found that 3:1 was the best among all. In Al/GOZNs/
ITOPET devices, we propose that the conducting filament formation during the SET process is 
due to the oxygen vacancies. Oxygen concentration gradient exists at the interface of GO, and 
Al has high oxidation tendency. Therefore, oxygen ions from GO move towards and react with 
Al forming a new interfacial Al oxide layer [66]; also this process induces the oxygen vacancies 
into the GO region. With the positive bias is applied to the top electrode, these induced oxygen 
vacancies are deeply inserted into the GO matrix and providing the conductive paths during 
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in rupture of the conducting channel during the RESET process. But with the incorporation 
of ZNs into the GO matrix, significant reduction in the switching voltages was observed and 
this is due to the desorption/adsorption of oxygen at the interface of GO and ZNs, which 
stimulates the formation/rupture of conducting paths on the application of suitable polarity 
voltages. This mechanism based on oxygen vacancies is well supported by the X‐ray photo‐
emission spectroscopy (XPS) measurements of these samples shown in Figure 9.

Figure 9a is the XPS graph for C1s peak in GO and GOZNs samples. The C1s graph of GO 
contains sp2 and C─O─C peaks, whereas for the GOZNs sample, the C─O─C peak has disap‐
peared having only sp2 peak in the spectra. The XPS study showed the reduction in oxygen 
content with the disappeared C─O─C peak for the GO matrix having ZNs, which dem‐
onstrates that GO has become comparatively less resistive having sp2 character dominant. 
However, ZNs are well known for chemisorption of oxygen at its periphery and it can be evi‐
denced by the fitted O2 peak for O1s spectra in Figure 9b. Also, the peak positions for these O1 
and O2 in GOZNs sample were found to be little shifted towards lower energy. Furthermore, 
a noticeable increment in the intensity of O2 peak was also observed in GOZNs in comparison 
to ZNs. The O1s peak was also found to be shifted to lower binding energy due to the addi‐
tional oxygen absorbed by ZNs as shown in Figure 9b [67]. Further, the presence of excess 
oxygen can also be clearly observed in Figure 9c which shows the shift in the Zn 2p peak 
towards lower energy in GOZNs sample in comparison to ZNs sample [67]. The performance 
of flexible electronic devices can be tested through flexibility and mechanical endurance mea‐
surements. The flexibility measurements were done on the Al/GOZNs/ITOPET devices and 
the value of resistance was plotted as a function of bending radii as shown in Figure 10a. The 
resistance was measured up to the maximum bending radius of 4 mm and amazingly found 
that the LRS and HRS were widely separated and can be well distinguished. The mechanical 

Figure 8. Typical I‐V switching characteristics in Al/GOZNs/ITOPET devices. Inset shows the I‐V characteristics for Al/
GO/ITOPET device [63].
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reliability test was also performed by constantly flexing the device many times to the bending 
radius of 6 mm and the resistance was plotted against number of bending cycles as shown in 
Figure 10b. The HRS and LRS resistances show no noticeable degradation even up to 1000 
times of repeated bending. The measurements performed on the Al/GOZNs/ITOPET device 
show excellent flexibility and mechanical endurance results and provide the data which 
show that the devices are capable for flexible memory applications. This study shows that the 
devices based on ZNs embedded in GO are potential candidate for future flexible non‐volatile 
memory applications.

Figure 9. (a) Comparative XPS spectra of GO and GOZNs for C1S peak. (b) XPS spectra of ZNs and GOZns showing O1S 
peak resolved into two components O1 and O2. (c) Zn2p spectra of ZNs and GOZNs samples [63].

Figure 10. (a) Flexibility test for various bending radius on Al/GOZNs/ITOPET RRAM device. (b) Mechanical bending 
endurance of device at bending radius of 6 mm on Al/GOZNs/ITOPET RRAM device [63].
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2.4. Nanoparticles embedded graphene oxide RRAM devices for low operating voltages 
and high on/off ratio

RRAM devices based on oxide have good switching characteristics, but still there are two major 
downsides with these memories: first one is the need of an initial forming voltage [68–70] to ini‐
tiate the switching mechanism, which is detrimental to device performance, however, this issue 
can be resolved by manipulating the deposition and growth process and the other problem is 
the uncontrolled position of conductive channels formation during repetitive applied bias. To 
address the problem of initial forming in graphene oxide (GO)‐based devices, we adopted the 
method of electrophoresis to deposit the device structure [71]. Reports have shown that the 
graphene oxide films grown by electrophoresis are conducted or reduced in nature [72, 73].As 
the oxygen functional groups attached to its basal plane get removed, the graphene oxide films 
become semiconducting having localized π‐π electrons network. These functional groups can 
be eliminated by passing the current during electrophoresis deposition process, resulting GO to 
be reduced or semiconducting in nature. In this study, the films were deposited by electropho‐
resis and as deposited films were found to be in low‐resistance state; therefore, no high forming 
voltages were required to initiate the switching process. To resolve the problem of confined 
conducting channels, we have to understand that there is random formation of conductive fila‐
ments at nanoscale with applied bias in un‐doped films, and it is hard to confine their position 
precisely. The reports for RRAM devices based on transition metal oxides infused with metal‐
lic nanoparticles have shown enhancement in switching properties with the addition of metal 
nanoparticles [61, 74]. The present study is focused on improved switching characteristics of 
graphene oxide films embedded with gold nanoparticles (Au Nps), which helps to confine the 
conducting filaments during numerous sweep cycles. A colloidal suspension of GO with Au 
Nps was obtained by sonication. The films were deposited by electrophoresis process using the 
sonicated GO with Au Nps (GOAu) solution [71]. Electrophoresis was performed using a home‐
built assembly with a pair of ITO/glass as electrodes and a Keithley current source. GOAu films 
were deposited at room temperature by varying the current value ranging from 0.1 to 1.0 mA 
for 1–10 minutes having 1.5 cm distance between the electrodes as shown in Figure 11.

The thickness of deposited GOAu film was measured to be ∼85 nm. The GO layers were 
in the size range of 3–5 μm and Au Nps were found in the range of 10–15 nm. The switch‐
ing matrix constitutes the stack of GO layers with Au Nps. Aluminium (Al) top electrodes 

Figure 11. GO films grown by electrophoresis process.
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were deposited by thermal evaporation method through a shadow mask having diameter 
of 200 μm. Thus, the device structure formed was Al/GOAu/ITO/glass. Another sample was 
also fabricated using GOAu solution by spin coating on ITO/glass substrate for XPS study. 
To know the chemical composition of as‐grown GOAu films by electrophoresis, XPS study 
was performed as shown in Figure 12. These XPS measurements were done to illustrate the 
amount of oxygen functional groups present in electrodeposited GOAu films (Figure 12a) and 
spin coated GOAu films (Figure 12b) (XPS for spin coating films was performed to compare 
the amount of oxy groups). The peaks corresponding to C1s spectra as depicted in Figure 12 
are C─C, C─O and C═O which are at respective binding energies of 284.6, 286.5 and 288.4 
eV. In electrodeposited film, the C─O peak has low intensity in comparison to the C─C peak 
which shows that the oxygen content is less in the film. The lower oxygen content or presence 
of oxygen vacancies is favourable for as‐deposited films to be in low‐resistance and hence 
eliminating the need of forming voltages. Inset of Figure 12a shows the presence of Au 4f7/2and 
Au 4f5/2 peaks at their respective binding energies of 84 and 87.5 eV.

To demonstrate the effect of Au Nps in GO devices, another film of GO having no Au Nps on 
ITO/glass by electrophoresis keeping same deposition parameters having Al top electrodes 
(Al/GO/ITO) was fabricated and measured its switching characteristics. Figure 13a shows 
typical I‐V switching characteristics of Al/GO/ITO (inset) and Al/GOAu/ITO devices, respec‐
tively. The initial resistance of the devices was found 3.5 × 104 Ω with Au Nps and 1.3 × 106 
Ω without Au Nps. Therefore, the initial resistance of the device incorporated with Au Nps 
was found to be 100 times lower than that of the pristine GO device. The on/off ratio between 
LRS and HRS in pristine GO devices is very low and that too at high voltages. GOAu devices 
have enhanced on/off ratio at very low switching voltages as compared to pristine GO devices 
which is due to the presence of Au Nps, which are working as charge trapping centres.

Figure 12. (a) XPS spectra for C1s peak of GOAu film grown by electrophoresis. Inset shows Au peaks for the GOAu film. 
(b) C1s peak of spin‐coated GOAu film [71].
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built assembly with a pair of ITO/glass as electrodes and a Keithley current source. GOAu films 
were deposited at room temperature by varying the current value ranging from 0.1 to 1.0 mA 
for 1–10 minutes having 1.5 cm distance between the electrodes as shown in Figure 11.

The thickness of deposited GOAu film was measured to be ∼85 nm. The GO layers were 
in the size range of 3–5 μm and Au Nps were found in the range of 10–15 nm. The switch‐
ing matrix constitutes the stack of GO layers with Au Nps. Aluminium (Al) top electrodes 

Figure 11. GO films grown by electrophoresis process.
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were deposited by thermal evaporation method through a shadow mask having diameter 
of 200 μm. Thus, the device structure formed was Al/GOAu/ITO/glass. Another sample was 
also fabricated using GOAu solution by spin coating on ITO/glass substrate for XPS study. 
To know the chemical composition of as‐grown GOAu films by electrophoresis, XPS study 
was performed as shown in Figure 12. These XPS measurements were done to illustrate the 
amount of oxygen functional groups present in electrodeposited GOAu films (Figure 12a) and 
spin coated GOAu films (Figure 12b) (XPS for spin coating films was performed to compare 
the amount of oxy groups). The peaks corresponding to C1s spectra as depicted in Figure 12 
are C─C, C─O and C═O which are at respective binding energies of 284.6, 286.5 and 288.4 
eV. In electrodeposited film, the C─O peak has low intensity in comparison to the C─C peak 
which shows that the oxygen content is less in the film. The lower oxygen content or presence 
of oxygen vacancies is favourable for as‐deposited films to be in low‐resistance and hence 
eliminating the need of forming voltages. Inset of Figure 12a shows the presence of Au 4f7/2and 
Au 4f5/2 peaks at their respective binding energies of 84 and 87.5 eV.

To demonstrate the effect of Au Nps in GO devices, another film of GO having no Au Nps on 
ITO/glass by electrophoresis keeping same deposition parameters having Al top electrodes 
(Al/GO/ITO) was fabricated and measured its switching characteristics. Figure 13a shows 
typical I‐V switching characteristics of Al/GO/ITO (inset) and Al/GOAu/ITO devices, respec‐
tively. The initial resistance of the devices was found 3.5 × 104 Ω with Au Nps and 1.3 × 106 
Ω without Au Nps. Therefore, the initial resistance of the device incorporated with Au Nps 
was found to be 100 times lower than that of the pristine GO device. The on/off ratio between 
LRS and HRS in pristine GO devices is very low and that too at high voltages. GOAu devices 
have enhanced on/off ratio at very low switching voltages as compared to pristine GO devices 
which is due to the presence of Au Nps, which are working as charge trapping centres.

Figure 12. (a) XPS spectra for C1s peak of GOAu film grown by electrophoresis. Inset shows Au peaks for the GOAu film. 
(b) C1s peak of spin‐coated GOAu film [71].
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The slope of the I‐V curve in LRS was found to be ∼1 as shown in Figure 13b; however, this 
linear current‐voltage relationship need not be ohmic: It can be Schottky‐limited conduction 
in the Simmons’ limit of short electron mean free paths [75],while in the high voltage regime 
of HRS, the slope was found to be ∼4.4, which reveals that a strong space charge limited cur‐
rent (SCLC) mechanism also known as trapped charge limited current (TCLC) mechanism is 
prevailing in the device [76]. The TCLC behaviour of the films is in agreement with the pres‐
ence of Au Nps in the films, which are working as charge trapping centres. Hence the charges 
get trapped in one voltage polarity transiting the device to HRS and detrapped in the opposite 
polarity rendering back the device to LRS again. Therefore, the device shows bipolar switch‐
ing behaviour exhibiting trapping/detrapping mechanism. GO sheets have different types of 
defects, such as oxygen vacancies, dislocations etc. [77, 78]. The defects and trapping nodes 
present in GO sheets play a significant role in switching behaviour. Initially, the device was 
in LRS due to the presence of large number of oxygen vacancies and the Au Nps. The device 
performed well in both states showing retention, endurance and statistical distribution over 
different cells as shown in Figure 14a–c.

As discussed above, Au Nps dispersed in GO layers trap the charge, resulting in capacitive 
behaviour of the devices. In order to test this scenario, capacitance‐voltage (C‐V) measure‐
ments were carried out. Figure 15a and b shows the C‐V curves of the Al/GO/ITO and Al/
GOAu/ITO devices. The measured capacitance was found to be ∼3.4 pF in LRS and ∼11.2 pF 
in HRS in GO device, whereas it was ∼9 pF in LRS and ∼350 pF in HRS in the GOAu device. It 
was observed that in both the resistance states, capacitance values were increased by a factor 
of ∼10 in HRS/LRS in GOAu devices in comparison to GO devices, which is mainly due to the 
charge trapping process by Au Nps. In GO matrix having Au Nps, this can be explained as 
follows: the array of Au Nps induces the coupling capacitance and the trapping energy levels 
are set by the work function of Au Nps.

Figure 13. (a) Typical I‐V characteristics of the Al/GOAu/ITO device in semi‐log scale; inset shows I‐V characteristics for 
the Al/GO/ITO device. (b) log‐log I‐V plot for the GOAu device [71].
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Followed by an initial random charging, the charge carriers around a single Au Np may 
increase due to trapping process, which results in increasing the capacitive coupling and 
finally increases the coulomb repulsion. Au Nps embedded in GO matrix act as small capaci‐
tors having large capacitance due to their big surface/volume area and the associated interfa‐
cial polarization. An additional barrier will be created by these metal‐island capacitors which 
prevent the movement of electrons in the matrix and the charge transfer through these small 
metal‐islands, below a particular threshold voltage gets blocked (charges get trapped) leading 
to an increase in resistance as well. Therefore, in GOAu devices, achieving such a huge resis‐
tance in HRS can be attributed to the coulomb blockade effect imparted by the Au Nps which 
is associated to the quantum effect of metal nanoparticles [79, 80].

Figure 14. (a) Retention, (b) endurance properties and (c) statistical distribution over different cells of GOAu device in 
LRS and HRS [71].

Figure 15. C‐V curves of (a) GO and (b) GOAu devices in LRS and HRS [71].

Graphene Oxide-Based Memristor
http://dx.doi.org/10.5772/intechopen.69752

33



The slope of the I‐V curve in LRS was found to be ∼1 as shown in Figure 13b; however, this 
linear current‐voltage relationship need not be ohmic: It can be Schottky‐limited conduction 
in the Simmons’ limit of short electron mean free paths [75],while in the high voltage regime 
of HRS, the slope was found to be ∼4.4, which reveals that a strong space charge limited cur‐
rent (SCLC) mechanism also known as trapped charge limited current (TCLC) mechanism is 
prevailing in the device [76]. The TCLC behaviour of the films is in agreement with the pres‐
ence of Au Nps in the films, which are working as charge trapping centres. Hence the charges 
get trapped in one voltage polarity transiting the device to HRS and detrapped in the opposite 
polarity rendering back the device to LRS again. Therefore, the device shows bipolar switch‐
ing behaviour exhibiting trapping/detrapping mechanism. GO sheets have different types of 
defects, such as oxygen vacancies, dislocations etc. [77, 78]. The defects and trapping nodes 
present in GO sheets play a significant role in switching behaviour. Initially, the device was 
in LRS due to the presence of large number of oxygen vacancies and the Au Nps. The device 
performed well in both states showing retention, endurance and statistical distribution over 
different cells as shown in Figure 14a–c.

As discussed above, Au Nps dispersed in GO layers trap the charge, resulting in capacitive 
behaviour of the devices. In order to test this scenario, capacitance‐voltage (C‐V) measure‐
ments were carried out. Figure 15a and b shows the C‐V curves of the Al/GO/ITO and Al/
GOAu/ITO devices. The measured capacitance was found to be ∼3.4 pF in LRS and ∼11.2 pF 
in HRS in GO device, whereas it was ∼9 pF in LRS and ∼350 pF in HRS in the GOAu device. It 
was observed that in both the resistance states, capacitance values were increased by a factor 
of ∼10 in HRS/LRS in GOAu devices in comparison to GO devices, which is mainly due to the 
charge trapping process by Au Nps. In GO matrix having Au Nps, this can be explained as 
follows: the array of Au Nps induces the coupling capacitance and the trapping energy levels 
are set by the work function of Au Nps.

Figure 13. (a) Typical I‐V characteristics of the Al/GOAu/ITO device in semi‐log scale; inset shows I‐V characteristics for 
the Al/GO/ITO device. (b) log‐log I‐V plot for the GOAu device [71].

Memristor and Memristive Neural Networks32

Followed by an initial random charging, the charge carriers around a single Au Np may 
increase due to trapping process, which results in increasing the capacitive coupling and 
finally increases the coulomb repulsion. Au Nps embedded in GO matrix act as small capaci‐
tors having large capacitance due to their big surface/volume area and the associated interfa‐
cial polarization. An additional barrier will be created by these metal‐island capacitors which 
prevent the movement of electrons in the matrix and the charge transfer through these small 
metal‐islands, below a particular threshold voltage gets blocked (charges get trapped) leading 
to an increase in resistance as well. Therefore, in GOAu devices, achieving such a huge resis‐
tance in HRS can be attributed to the coulomb blockade effect imparted by the Au Nps which 
is associated to the quantum effect of metal nanoparticles [79, 80].

Figure 14. (a) Retention, (b) endurance properties and (c) statistical distribution over different cells of GOAu device in 
LRS and HRS [71].

Figure 15. C‐V curves of (a) GO and (b) GOAu devices in LRS and HRS [71].

Graphene Oxide-Based Memristor
http://dx.doi.org/10.5772/intechopen.69752

33



3. Conclusions

In summary, graphene oxide is a promising material for RRAM devices due to its high scalability 
and unique physical‐chemical properties. Fabrication of GO and its films, composites and het‐
erostructures are very cost effective and opens up the direction for commercialization. Showing 
forming‐free behaviour is an excellent property of GO devices over other oxide‐based devices 
that require initial high voltages to start the switching process. Multi‐level switching in GO‐
based heterostructures has the potential of high‐density data storage, which is the need of future 
non‐volatile memories. Flexibility and mechanical endurance observed in GO‐based composite 
RRAM devices have prospects in portable and flexible devices which is advantageous over the 
rigid silicon technology. Gold nanoparticles embedded in GO have shown enhanced switching 
properties with very high on/off resistance ratio and very low switching voltages, which are suit‐
able for low power resistive memory devices. The mechanism underlying the graphene oxide‐
based memories is the formation of conductive filaments due to the roles played by oxygen ions 
and vacancies. Therefore, GO‐based RRAM devices have enough potential to become one of the 
important non‐volatile memories due to their encouraging properties of forming free, multi‐bit 
data storage and low power flexible devices. However, further research is still needed towards 
scaling of these devices below 10 nm node and that too having fast switching speeds to establish 
graphene oxide‐based non‐volatile resistive devices achieve a niche in memory industry.

Acknowledgements

The authors acknowledge the financial support from DOD Grant (AFOSR‐FA9550‐16‐1‐0295) 
and IFN‐NSF Grant (EPS‐01002410) for travel support.

Author details

Geetika Khurana1*, Nitu Kumar1, James F. Scott2,3 and Ram S. Katiyar1

*Address all correspondence to: geetkhurana84@gmail.com

1 University of Puerto Rico, San Juan, Puerto Rico

2 Department of Chemistry, University of St Andrews, St Andrews, UK

3 Department of Physics, University of St Andrews, St Andrews, UK

References

[1] Chua LO. Memristor – The missing circuit element. IEEE Transactions Circuit Theory 
CT‐18. 1971;18:507‐519

Memristor and Memristive Neural Networks34

[2] Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature. 
2008;453:80‐83

[3] Shan SD, Sheng CY, Xian CZ, Jun L, Young S. Toward the complete relational graph of 
fundamental circuit elements. Chinese Physics B. 2015;24:068402‐6

[4] Chang TC, Chang KC, Tsai TM, Chu TJ, Sze SM. Resistance random access memory. 
Materials Today. 2016;19:254‐264

[5] Waser R, Aono M. Nanoionics‐based resistive switching memories. Nature Mater. 2007; 
6:833‐840

[6] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, 
Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666‐669

[7] Rueckes T, Kim K, Joselevich E, Tseng G, Cheung C, Lieber C. Carbon nanotube‐based 
nonvolatile random access memory for molecular computing. Science. 2000;289:94‐97

[8] Avouris P, Chen ZH, Perebeinos V, Carbon‐based electronics. Nature Nanotechnology. 
2007;2:1748‐3387

[9] Wang XR, Ouyang YJ, L X. Li, Wang HL, Guo J, Dai HJ. Room temperature all‐semi‐
conducting sub‐10‐nm graphene nanoribbon field‐effect transistors. Physical Review 
Letters. 2008;100:0031‐9007

[10] Burghard M, Klauk H, Kern K. Carbon‐based field‐effect transistors for nanoelectronics. 
Advanced Materials. 2009;21:0935‐9648

[11] Mao S, Cui S, Lu G, Yu K, Wen Z, Chen J. Tuning gas‐sensing properties of reduced 
graphene oxide using tin oxide nanocrystals. Journal of Materials Chemistry. 2012;22: 
11009‐11013

[12] Zhang XQ, Feng YY, Tang SD, Feng W. Preparation of a graphene oxide phthalocyanine 
hybrid through strong pi‐pi interactions. Carbon. 2010;48:211‐216

[13] Liu J, Wang R, Cui L, Tang J, Liu Z, Kong Q, Yang W, Gooding J. Using molecular level 
modification to tune the conductivity of graphene papers. Journal of Physical Chemistry 
C. 2012;116:17939‐17946

[14] Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS. Hydrazine‐reduction of 
graphite‐ and graphene oxide. Carbon. 2011;49:3019‐3023

[15] Eda G, Fanchini G, Chhowalla M. Large‐area ultrathin films of reduced graphene oxide 
as a transparent and flexible electronic material. Nature Nanotechnology. 2008;3:270‐274

[16] Cote LJ, Kim F, Huang JX. Langmuir‐Blodgett assembly of graphite oxide single layers. 
Journal of the American Chemical Society. 2009;131:1043‐1049

[17] He CL, Zhuge F, Zhou XF, Li M, Zhou GC, Liu YW, Wang JZ, Chen B, Su WJ, Liu ZP, Wu 
YH, Cui P, Li R‐W. Nonvolatile resistive switching in graphene oxide thin films. Applied 
Physics Letters. 2009;95:232101‐232103

Graphene Oxide-Based Memristor
http://dx.doi.org/10.5772/intechopen.69752

35



3. Conclusions

In summary, graphene oxide is a promising material for RRAM devices due to its high scalability 
and unique physical‐chemical properties. Fabrication of GO and its films, composites and het‐
erostructures are very cost effective and opens up the direction for commercialization. Showing 
forming‐free behaviour is an excellent property of GO devices over other oxide‐based devices 
that require initial high voltages to start the switching process. Multi‐level switching in GO‐
based heterostructures has the potential of high‐density data storage, which is the need of future 
non‐volatile memories. Flexibility and mechanical endurance observed in GO‐based composite 
RRAM devices have prospects in portable and flexible devices which is advantageous over the 
rigid silicon technology. Gold nanoparticles embedded in GO have shown enhanced switching 
properties with very high on/off resistance ratio and very low switching voltages, which are suit‐
able for low power resistive memory devices. The mechanism underlying the graphene oxide‐
based memories is the formation of conductive filaments due to the roles played by oxygen ions 
and vacancies. Therefore, GO‐based RRAM devices have enough potential to become one of the 
important non‐volatile memories due to their encouraging properties of forming free, multi‐bit 
data storage and low power flexible devices. However, further research is still needed towards 
scaling of these devices below 10 nm node and that too having fast switching speeds to establish 
graphene oxide‐based non‐volatile resistive devices achieve a niche in memory industry.

Acknowledgements

The authors acknowledge the financial support from DOD Grant (AFOSR‐FA9550‐16‐1‐0295) 
and IFN‐NSF Grant (EPS‐01002410) for travel support.

Author details

Geetika Khurana1*, Nitu Kumar1, James F. Scott2,3 and Ram S. Katiyar1

*Address all correspondence to: geetkhurana84@gmail.com

1 University of Puerto Rico, San Juan, Puerto Rico

2 Department of Chemistry, University of St Andrews, St Andrews, UK

3 Department of Physics, University of St Andrews, St Andrews, UK

References

[1] Chua LO. Memristor – The missing circuit element. IEEE Transactions Circuit Theory 
CT‐18. 1971;18:507‐519

Memristor and Memristive Neural Networks34

[2] Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature. 
2008;453:80‐83

[3] Shan SD, Sheng CY, Xian CZ, Jun L, Young S. Toward the complete relational graph of 
fundamental circuit elements. Chinese Physics B. 2015;24:068402‐6

[4] Chang TC, Chang KC, Tsai TM, Chu TJ, Sze SM. Resistance random access memory. 
Materials Today. 2016;19:254‐264

[5] Waser R, Aono M. Nanoionics‐based resistive switching memories. Nature Mater. 2007; 
6:833‐840

[6] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, 
Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666‐669

[7] Rueckes T, Kim K, Joselevich E, Tseng G, Cheung C, Lieber C. Carbon nanotube‐based 
nonvolatile random access memory for molecular computing. Science. 2000;289:94‐97

[8] Avouris P, Chen ZH, Perebeinos V, Carbon‐based electronics. Nature Nanotechnology. 
2007;2:1748‐3387

[9] Wang XR, Ouyang YJ, L X. Li, Wang HL, Guo J, Dai HJ. Room temperature all‐semi‐
conducting sub‐10‐nm graphene nanoribbon field‐effect transistors. Physical Review 
Letters. 2008;100:0031‐9007

[10] Burghard M, Klauk H, Kern K. Carbon‐based field‐effect transistors for nanoelectronics. 
Advanced Materials. 2009;21:0935‐9648

[11] Mao S, Cui S, Lu G, Yu K, Wen Z, Chen J. Tuning gas‐sensing properties of reduced 
graphene oxide using tin oxide nanocrystals. Journal of Materials Chemistry. 2012;22: 
11009‐11013

[12] Zhang XQ, Feng YY, Tang SD, Feng W. Preparation of a graphene oxide phthalocyanine 
hybrid through strong pi‐pi interactions. Carbon. 2010;48:211‐216

[13] Liu J, Wang R, Cui L, Tang J, Liu Z, Kong Q, Yang W, Gooding J. Using molecular level 
modification to tune the conductivity of graphene papers. Journal of Physical Chemistry 
C. 2012;116:17939‐17946

[14] Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS. Hydrazine‐reduction of 
graphite‐ and graphene oxide. Carbon. 2011;49:3019‐3023

[15] Eda G, Fanchini G, Chhowalla M. Large‐area ultrathin films of reduced graphene oxide 
as a transparent and flexible electronic material. Nature Nanotechnology. 2008;3:270‐274

[16] Cote LJ, Kim F, Huang JX. Langmuir‐Blodgett assembly of graphite oxide single layers. 
Journal of the American Chemical Society. 2009;131:1043‐1049

[17] He CL, Zhuge F, Zhou XF, Li M, Zhou GC, Liu YW, Wang JZ, Chen B, Su WJ, Liu ZP, Wu 
YH, Cui P, Li R‐W. Nonvolatile resistive switching in graphene oxide thin films. Applied 
Physics Letters. 2009;95:232101‐232103

Graphene Oxide-Based Memristor
http://dx.doi.org/10.5772/intechopen.69752

35



[18] Kim I, Siddik M, Shin J, Biju KP, Jung S, Hwang H. Low temperature solution‐processed 
graphene oxide/Pr0.7Ca0.3MnO3 based resistive‐memory device. Applied Physics Letters. 
2011;99:042101

[19] Yi M, Cao Y, Ling H, Du Z, Wang L, Yang T, Fan Q, Xie L, Huang W. Temperature 
dependence of resistive switching behaviors in resistive random access memory based 
on graphene oxide film. Nanotechnology. 2014;25:185202‐185207

[20] Zhuge F, Hu B, He C, Zhou X, Liu Z, Li RW. Mechanism of nonvolatile resistive switch‐
ing in graphene oxide thin films. Carbon. 2011;4(9):3796‐3802

[21] Wang Z, Tjoa V, Wu L, Liu WJ, Fang Z, Tran XA, Wei J, Zhu WG, Yud HY. Mechanism 
of different switching directions in graphene oxide based RRAM. Journal of the 
Electrochemical Society. 2012;159(6):K177‐K182

[22] Jeong HY, Kim JY, Kim JW, Hwang JO, Kim JE, Lee JY, Yoon TH, Cho BJ, Kim SO, Ruoff 
RS, Choi SY. Graphene oxide thin films for flexible nonvolatile memory applications. 
Nano Letters. 2010;10:4381‐4386

[23] Pinto S, Krishna R, Dias C, Pimentel G, Oliveira GNP, Teixeira JM, Aguiar P, Titus E, 
Gracio J, Ventura J, Araujo JP. Resistive switching and activity‐dependent modifications 
in Ni‐doped graphene oxide thin films. Applied Physics Letters. 2012;101:063104

[24] Yao J, Lin J, Dai Y, Ruan G, Yan Z, Li L, Zhong L, Natelson D, Tour JM. Highly trans‐
parent nonvolatile resistive memory devices from silicon oxide and graphene. Nature 
Communications. 2012;3:1101‐5. DOI: 10.1038/ncomms2110

[25] Hummers WS, Offeman RE. Preparation of graphite oxide. Journal of the American 
Chemical Society. 1958;80:1339‐1339

[26] Khurana G, Misra P, Katiyar RS. Forming free RS in graphene oxide thin film for 
thermally stable nonvolatile memory applications. Journal of Applied Physics. 
2013;114:124508‐124504

[27] Joung D, Chunder A, Zhai L, Khondaker SI. Space charge limited conduction with expo‐
nential trap distribution in reduced graphene oxide sheets. Applied Physics Letters. 
2010;97:093105‐093103

[28] Younis A, Chu D, Li S. Oxygen level: the dominant of resistive switching characteristics 
in cerium oxide thin films. Journal of Physics D: Applied Physics. 2012;45:355101‐355106

[29] Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, 
Sakurai T, Someya T. Organic nonvolatile memory transistors for flexible sensor arrays. 
Science. 2009;326:1516‐1519

[30] Ling QD, Liaw DJ, Zhu C, Chan DS, Kang E, Neoh K. Polymer electronic memories: 
Materials, devices and mechanisms. Progress in Polymer Science. 2008;33:917‐1012

[31] Kwan WL, Tseng RJ, Wu W, Pei Q, Yang Y. Stackable resistive memory device using 
photo cross‐linkable copolymer. IEEE International Electron Devices. Meeting. (IEDM 
Tech. Digest 10‐12 Dec 2007); pp. 237‐240

Memristor and Memristive Neural Networks36

[32] Cho B, Kim T, Song S, Ji Y, Jo M, Hwang H, Jung GY, Lee T. Rewritable switching of 
one diode‐one resistor nonvolatile organic memory devices. Advanced Materials. 
2010;22:1228‐1232

[33] Song S, Cho B, Kim T, Ji Y, Jo M, Wang G, Choe M, Kahng YH, Hwang H, Lee T. Three‐
dimensional integration of organic resistive memory devices. Advanced Materials. 
2010;22:5048‐5052

[34] Asadi K, Leeuw DM, Boer B, Blom PW. Organic non‐volatile memories from ferroelec‐
tric phase‐separated blends. Nature Materials. 2008;7:547‐550

[35] Cho B, Song S, Ji Y, Kim T, Lee T. Organic resistive memory devices: Performance 
enhancement, integration, and advanced architectures. Advanced Functional Materials. 
2011;21:2806‐2829

[36] Kim T, Oh S, Lee J, Choi H, Wang G, Park J, Kim D, Hwang H, Lee T. Effect of metal 
ions on the switching performance of polyfluorene‐based organic non‐volatile memory 
devices. Organic Electronics. 2010;11:109‐114

[37] Ma LP, Liu J, Yang Y. Organic electrical bistable devices and rewritable memory cells. 
Applied Physics Letters. 2002;80:2297‐2299

[38] Ramana CV, Moodley MK, Kannan V, Maity A. Solution‐based spin cast processed 
organic bistable memory device. Solid State Electronics. 2013;81:45‐50

[39] Braun S, Salaneck W, Fahlman M. Energy‐level alignment at organic/metal and organic/
organic interfaces. Advanced Materials. 2009;21:1450‐1472

[40] Kim TW, Yang Y, Li F, Kwan WL. Electrical memory devices based on inorganic/organic 
nanocomposites. NPG Asia Materials. 2012;4:e18, 1‐12

[41] Kim SS, Cho W, Ahn C, Im K, Yang J, Baek I, Lee S, Lim KS. Fabrication of fin field‐effect 
transistor silicon nanocrystal floating gate memory using photochemical vapor deposi‐
tion. Applied Physics Letters. 2006;88:223502‐223503

[42] Ko SH, Yoo CH, Kim TW. Electrical bistabilities and memory stabilities of organic 
bistable devices utilizing C60 molecules embedded in a polymethyl methacrylate matrix 
with an Al2O3 blocking layer. Journal of the Electrochemical Society. 2012;159:G93‐G96

[43] Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007;6:183‐191

[44] Zhang Y, Tan Y, Stormer HL, Kim P. Experimental observation of the quantum Hall 
effect and Berry’s phase in graphene. Nature (London). 2005;438:201‐204

[45] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F. Superior thermal con‐
ductivity of single‐layer graphene. Nano Letters. 2008;8:902‐907

[46] Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform 
for optical applications. Nature Chemical. 2010;2:1015‐1024

[47] Muller M, Brauninger M, Trauzettel B. Temperature dependence of the conductivity of 
ballistic graphene. Physical Review Letters. 2009;103:196801‐196804

Graphene Oxide-Based Memristor
http://dx.doi.org/10.5772/intechopen.69752

37



[18] Kim I, Siddik M, Shin J, Biju KP, Jung S, Hwang H. Low temperature solution‐processed 
graphene oxide/Pr0.7Ca0.3MnO3 based resistive‐memory device. Applied Physics Letters. 
2011;99:042101

[19] Yi M, Cao Y, Ling H, Du Z, Wang L, Yang T, Fan Q, Xie L, Huang W. Temperature 
dependence of resistive switching behaviors in resistive random access memory based 
on graphene oxide film. Nanotechnology. 2014;25:185202‐185207

[20] Zhuge F, Hu B, He C, Zhou X, Liu Z, Li RW. Mechanism of nonvolatile resistive switch‐
ing in graphene oxide thin films. Carbon. 2011;4(9):3796‐3802

[21] Wang Z, Tjoa V, Wu L, Liu WJ, Fang Z, Tran XA, Wei J, Zhu WG, Yud HY. Mechanism 
of different switching directions in graphene oxide based RRAM. Journal of the 
Electrochemical Society. 2012;159(6):K177‐K182

[22] Jeong HY, Kim JY, Kim JW, Hwang JO, Kim JE, Lee JY, Yoon TH, Cho BJ, Kim SO, Ruoff 
RS, Choi SY. Graphene oxide thin films for flexible nonvolatile memory applications. 
Nano Letters. 2010;10:4381‐4386

[23] Pinto S, Krishna R, Dias C, Pimentel G, Oliveira GNP, Teixeira JM, Aguiar P, Titus E, 
Gracio J, Ventura J, Araujo JP. Resistive switching and activity‐dependent modifications 
in Ni‐doped graphene oxide thin films. Applied Physics Letters. 2012;101:063104

[24] Yao J, Lin J, Dai Y, Ruan G, Yan Z, Li L, Zhong L, Natelson D, Tour JM. Highly trans‐
parent nonvolatile resistive memory devices from silicon oxide and graphene. Nature 
Communications. 2012;3:1101‐5. DOI: 10.1038/ncomms2110

[25] Hummers WS, Offeman RE. Preparation of graphite oxide. Journal of the American 
Chemical Society. 1958;80:1339‐1339

[26] Khurana G, Misra P, Katiyar RS. Forming free RS in graphene oxide thin film for 
thermally stable nonvolatile memory applications. Journal of Applied Physics. 
2013;114:124508‐124504

[27] Joung D, Chunder A, Zhai L, Khondaker SI. Space charge limited conduction with expo‐
nential trap distribution in reduced graphene oxide sheets. Applied Physics Letters. 
2010;97:093105‐093103

[28] Younis A, Chu D, Li S. Oxygen level: the dominant of resistive switching characteristics 
in cerium oxide thin films. Journal of Physics D: Applied Physics. 2012;45:355101‐355106

[29] Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, 
Sakurai T, Someya T. Organic nonvolatile memory transistors for flexible sensor arrays. 
Science. 2009;326:1516‐1519

[30] Ling QD, Liaw DJ, Zhu C, Chan DS, Kang E, Neoh K. Polymer electronic memories: 
Materials, devices and mechanisms. Progress in Polymer Science. 2008;33:917‐1012

[31] Kwan WL, Tseng RJ, Wu W, Pei Q, Yang Y. Stackable resistive memory device using 
photo cross‐linkable copolymer. IEEE International Electron Devices. Meeting. (IEDM 
Tech. Digest 10‐12 Dec 2007); pp. 237‐240

Memristor and Memristive Neural Networks36

[32] Cho B, Kim T, Song S, Ji Y, Jo M, Hwang H, Jung GY, Lee T. Rewritable switching of 
one diode‐one resistor nonvolatile organic memory devices. Advanced Materials. 
2010;22:1228‐1232

[33] Song S, Cho B, Kim T, Ji Y, Jo M, Wang G, Choe M, Kahng YH, Hwang H, Lee T. Three‐
dimensional integration of organic resistive memory devices. Advanced Materials. 
2010;22:5048‐5052

[34] Asadi K, Leeuw DM, Boer B, Blom PW. Organic non‐volatile memories from ferroelec‐
tric phase‐separated blends. Nature Materials. 2008;7:547‐550

[35] Cho B, Song S, Ji Y, Kim T, Lee T. Organic resistive memory devices: Performance 
enhancement, integration, and advanced architectures. Advanced Functional Materials. 
2011;21:2806‐2829

[36] Kim T, Oh S, Lee J, Choi H, Wang G, Park J, Kim D, Hwang H, Lee T. Effect of metal 
ions on the switching performance of polyfluorene‐based organic non‐volatile memory 
devices. Organic Electronics. 2010;11:109‐114

[37] Ma LP, Liu J, Yang Y. Organic electrical bistable devices and rewritable memory cells. 
Applied Physics Letters. 2002;80:2297‐2299

[38] Ramana CV, Moodley MK, Kannan V, Maity A. Solution‐based spin cast processed 
organic bistable memory device. Solid State Electronics. 2013;81:45‐50

[39] Braun S, Salaneck W, Fahlman M. Energy‐level alignment at organic/metal and organic/
organic interfaces. Advanced Materials. 2009;21:1450‐1472

[40] Kim TW, Yang Y, Li F, Kwan WL. Electrical memory devices based on inorganic/organic 
nanocomposites. NPG Asia Materials. 2012;4:e18, 1‐12

[41] Kim SS, Cho W, Ahn C, Im K, Yang J, Baek I, Lee S, Lim KS. Fabrication of fin field‐effect 
transistor silicon nanocrystal floating gate memory using photochemical vapor deposi‐
tion. Applied Physics Letters. 2006;88:223502‐223503

[42] Ko SH, Yoo CH, Kim TW. Electrical bistabilities and memory stabilities of organic 
bistable devices utilizing C60 molecules embedded in a polymethyl methacrylate matrix 
with an Al2O3 blocking layer. Journal of the Electrochemical Society. 2012;159:G93‐G96

[43] Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007;6:183‐191

[44] Zhang Y, Tan Y, Stormer HL, Kim P. Experimental observation of the quantum Hall 
effect and Berry’s phase in graphene. Nature (London). 2005;438:201‐204

[45] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F. Superior thermal con‐
ductivity of single‐layer graphene. Nano Letters. 2008;8:902‐907

[46] Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform 
for optical applications. Nature Chemical. 2010;2:1015‐1024

[47] Muller M, Brauninger M, Trauzettel B. Temperature dependence of the conductivity of 
ballistic graphene. Physical Review Letters. 2009;103:196801‐196804

Graphene Oxide-Based Memristor
http://dx.doi.org/10.5772/intechopen.69752

37



[48] Rani A, Song JM, Lee MJ, Lee JS. Reduced graphene oxide based flexible organic charge 
trap memory devices. Applied Physics Letters. 2012;101:233308‐233305

[49] Yang R, Zhu C, Meng J, Huo Z, Cheng M, Liu D, Yang W, Shi D, Liu M, Zhang G. 
Isolated nanographene crystals for nano‐floating gate in charge trapping memory. 
Science Reports. 2013;3:1‐7

[50] Cho C, Lee YG, Jung U, Kang CG, Lim S, Hwang HJ, Choi H, Lee BH. Correlation 
between the hysteresis and the initial defect density of graphene. Applied Physics 
Letters. 2013;103:083110‐083113

[51] Khurana G, Misra P, Katiyar RS. Multilevel resistive memory switching in graphene 
sandwiched organic polymer heterostructure. Carbon. 2014;76:341‐347

[52] Li C, Jiang H, Xia Q. Low voltage resistive switching devices based on chemically pro‐
duced silicon oxide. Applied Physics Letters. 2013;103:062104‐062103

[53] Younis A, Chu D, Li S. Bi‐stable resistive switching characteristics in Ti‐doped ZnO thin 
films. Nanoscale Research Letters. 2013;8:154‐156

[54] Lee S, Kim H, Yun DJ, Rhee SW, Yong K. Resistive switching characteristics of ZnO thin 
film grown on stainless steel for flexible nonvolatile memory devices. Applied Physics 
Letters. 2009;95:262113‐262115

[55] Kim S, Choi Y. Resistive switching of aluminum oxide for flexible memory. Applied 
Physics Letters. 2008;92:223508‐223503

[56] Kinoshita K, Okutani T, Tanaka H, Hinoki T, Agura H, Yazawa K, Ohmi K, Kishida S. 
Flexible and transparent ReRAM with GZO memory layer and GZO‐electrodes on large 
PEN sheet. Solid‐State Electronics. 2011;58:48‐53

[57] Seo JW, Park JW, Lim KS, Kang SJ, Hong YH, Yang JH, Fang L, Sung GY, Kim HK. 
Transparent flexible resistive random access memory fabricated at room temperature. 
Applied Physics Letters. 2009;95:133508‐133503

[58] Kim S, Yarimaga O, Choi S, Choi Y. Highly durable and flexible memory based on resis‐
tance switching. Solid‐State Electronics. 2010;54:392‐396

[59] Kim S, Jeong HY, Kim SK, Choi SY, Lee KJ. Flexible memristive memory array on plastic 
substrates. Nano Letters. 2011;11:5438‐5442

[60] Shi L, Shang DS, Chen YS, Wang J, Sun JR, Shen BG. Improved resistance switching 
in ZnO‐based devices decorated with Ag nanoparticles. Journal of Physics D: Applied 
Physics. 2011;44:455305‐455305

[61] Chang WY, Cheng KJ, Tsai JM, Chen HJ, Chen F, Tsai MJ, Wu TB. Improvement of resis‐
tive switching characteristics in TiO2 thin films with embedded Pt nanocrystals. Applied 
Physics Letters. 2009;95:042104‐042103

[62] Zhang R, Chang KC, Chang TC, Tsai TM, Chen KH, Lou JC, Chen JH, Young TF, Shih 
CC, Yang YL, Pan YC, Chu TJ, Huang SY, Pan CH, Su YT, Syu YE, Sze SM. High perfor‐
mance of graphene oxide‐doped silicon oxide‐based resistance random access memory. 
Nanoscale Research Letters. 2013;8:497‐496

Memristor and Memristive Neural Networks38

[63] Khurana G, Misra P, Kumar N, Katiyar RS. Tunable power switching in nonvolatile flex‐
ible memory devices based on graphene oxide embedded with ZnO nanorods. Journal 
of Physical Chemistry C. 2014;118:21357‐21364

[64] Yang Y, Liu T. Fabrication and characterization of graphene oxide/zinc oxide nanorods 
hybrid. Applied Surface Science. 2011;257:8950‐8954

[65] Kawasaki S, Fan HJ, Catalan G, Morrison FD, Tatsuta T, Tsuji O, Scott JF. Solution‐
process coating of vertical ZnO nanowires with ferroelectrics. Nanotechnology. 
2008;19:375302‐375305

[66] Panin GN, Kapitanova OO, Lee SW, Baranov AN, Kang TW. Resistive switching in Al/
graphene oxide/Al structure. Japanese Journal of Applied Physics. 2011;50:70110‐70116

[67] Khallaf H, Chai G, Lupan O, Heinrich H, Park S, Schulte A, Chow L. Investigation 
of chemical bath deposition of ZnO thin films using six different complexing agents. 
Journal of Physics D: Applied Physics. 2009;42:135304‐135308

[68] Russo U, Ielmini D, Cagli C, Lacaita AL. Filament conduction and reset mechanism in 
NiO‐based resistive‐switching memory (RRAM) devices. IEEE Transactions on Electron 
Devices. 2009;56:186‐192

[69] Chang WY, Ho YT, Hsu TC, Chen F, Tsai MJ, Wu TB. Influence of crystalline constituent 
on resistive switching properties of TiO2 memory films. Electrochemical and Solid‐State 
Letters. 2009;12:135‐137

[70] Yang JJ, Miao F, Pickett MD, Ohlberg DAA, Stewart DR, Lau CN, Williams RS. The 
mechanism of electroforming of metal oxide memristive switches Nanotechnology. 
2009;20:215201‐215209

[71] Khurana G, Misra P, Kumar N, Kooriyattil S, Scott JF, Katiyar RS. Enhanced resistive 
switching in forming free graphene oxide films embedded with gold nanoparticles 
deposited by electrophoresis. Nanotechnology. 2016;27:015702‐015707

[72] An SJ, Zhu Y, Lee SH, Stoller MD, Emilsson T, Park S, Velamakanni A, An J, Ruoff 
RS. Thin film fabrication and simultaneous anodic reduction of deposited graphene 
oxide platelets by electrophoretic deposition. Journal of Physical Chemistry Letters. 
2010;1:1259‐1263

[73] Chen Y, Zhang X, Yu P, Ma Y. Stable dispersions of graphene and highly conducting 
graphene films: A new approach to creating colloids of graphene monolayers. Chemical 
Communications. 2009:4527‐4531

[74] Cui P, Seo S, Lee J, Wang L, Lee E, Min M, Lee H. Nonvolatile memory device using gold 
nanoparticles covalently bound to reduced graphene oxide. ACS Nano. 2011;5:6826‐6833

[75] Scott JF. There’s no place like Ohm: Conduction in oxide thin films. Journal of Physics: 
Condensed Matter. 2014;26:142202‐142204

[76] Son DI, Park DH, Kim JB, Choi JW, Kim TW, Angadi B, Yi Y, Choi WK. Bistable organic 
memory device with gold nanoparticles embedded in a conducting poly(N‐vinylcarba‐
zole) colloids hybrid. Journal of Physical Chemistry C. 2011;115:2341‐2348

Graphene Oxide-Based Memristor
http://dx.doi.org/10.5772/intechopen.69752

39



[48] Rani A, Song JM, Lee MJ, Lee JS. Reduced graphene oxide based flexible organic charge 
trap memory devices. Applied Physics Letters. 2012;101:233308‐233305

[49] Yang R, Zhu C, Meng J, Huo Z, Cheng M, Liu D, Yang W, Shi D, Liu M, Zhang G. 
Isolated nanographene crystals for nano‐floating gate in charge trapping memory. 
Science Reports. 2013;3:1‐7

[50] Cho C, Lee YG, Jung U, Kang CG, Lim S, Hwang HJ, Choi H, Lee BH. Correlation 
between the hysteresis and the initial defect density of graphene. Applied Physics 
Letters. 2013;103:083110‐083113

[51] Khurana G, Misra P, Katiyar RS. Multilevel resistive memory switching in graphene 
sandwiched organic polymer heterostructure. Carbon. 2014;76:341‐347

[52] Li C, Jiang H, Xia Q. Low voltage resistive switching devices based on chemically pro‐
duced silicon oxide. Applied Physics Letters. 2013;103:062104‐062103

[53] Younis A, Chu D, Li S. Bi‐stable resistive switching characteristics in Ti‐doped ZnO thin 
films. Nanoscale Research Letters. 2013;8:154‐156

[54] Lee S, Kim H, Yun DJ, Rhee SW, Yong K. Resistive switching characteristics of ZnO thin 
film grown on stainless steel for flexible nonvolatile memory devices. Applied Physics 
Letters. 2009;95:262113‐262115

[55] Kim S, Choi Y. Resistive switching of aluminum oxide for flexible memory. Applied 
Physics Letters. 2008;92:223508‐223503

[56] Kinoshita K, Okutani T, Tanaka H, Hinoki T, Agura H, Yazawa K, Ohmi K, Kishida S. 
Flexible and transparent ReRAM with GZO memory layer and GZO‐electrodes on large 
PEN sheet. Solid‐State Electronics. 2011;58:48‐53

[57] Seo JW, Park JW, Lim KS, Kang SJ, Hong YH, Yang JH, Fang L, Sung GY, Kim HK. 
Transparent flexible resistive random access memory fabricated at room temperature. 
Applied Physics Letters. 2009;95:133508‐133503

[58] Kim S, Yarimaga O, Choi S, Choi Y. Highly durable and flexible memory based on resis‐
tance switching. Solid‐State Electronics. 2010;54:392‐396

[59] Kim S, Jeong HY, Kim SK, Choi SY, Lee KJ. Flexible memristive memory array on plastic 
substrates. Nano Letters. 2011;11:5438‐5442

[60] Shi L, Shang DS, Chen YS, Wang J, Sun JR, Shen BG. Improved resistance switching 
in ZnO‐based devices decorated with Ag nanoparticles. Journal of Physics D: Applied 
Physics. 2011;44:455305‐455305

[61] Chang WY, Cheng KJ, Tsai JM, Chen HJ, Chen F, Tsai MJ, Wu TB. Improvement of resis‐
tive switching characteristics in TiO2 thin films with embedded Pt nanocrystals. Applied 
Physics Letters. 2009;95:042104‐042103

[62] Zhang R, Chang KC, Chang TC, Tsai TM, Chen KH, Lou JC, Chen JH, Young TF, Shih 
CC, Yang YL, Pan YC, Chu TJ, Huang SY, Pan CH, Su YT, Syu YE, Sze SM. High perfor‐
mance of graphene oxide‐doped silicon oxide‐based resistance random access memory. 
Nanoscale Research Letters. 2013;8:497‐496

Memristor and Memristive Neural Networks38

[63] Khurana G, Misra P, Kumar N, Katiyar RS. Tunable power switching in nonvolatile flex‐
ible memory devices based on graphene oxide embedded with ZnO nanorods. Journal 
of Physical Chemistry C. 2014;118:21357‐21364

[64] Yang Y, Liu T. Fabrication and characterization of graphene oxide/zinc oxide nanorods 
hybrid. Applied Surface Science. 2011;257:8950‐8954

[65] Kawasaki S, Fan HJ, Catalan G, Morrison FD, Tatsuta T, Tsuji O, Scott JF. Solution‐
process coating of vertical ZnO nanowires with ferroelectrics. Nanotechnology. 
2008;19:375302‐375305

[66] Panin GN, Kapitanova OO, Lee SW, Baranov AN, Kang TW. Resistive switching in Al/
graphene oxide/Al structure. Japanese Journal of Applied Physics. 2011;50:70110‐70116

[67] Khallaf H, Chai G, Lupan O, Heinrich H, Park S, Schulte A, Chow L. Investigation 
of chemical bath deposition of ZnO thin films using six different complexing agents. 
Journal of Physics D: Applied Physics. 2009;42:135304‐135308

[68] Russo U, Ielmini D, Cagli C, Lacaita AL. Filament conduction and reset mechanism in 
NiO‐based resistive‐switching memory (RRAM) devices. IEEE Transactions on Electron 
Devices. 2009;56:186‐192

[69] Chang WY, Ho YT, Hsu TC, Chen F, Tsai MJ, Wu TB. Influence of crystalline constituent 
on resistive switching properties of TiO2 memory films. Electrochemical and Solid‐State 
Letters. 2009;12:135‐137

[70] Yang JJ, Miao F, Pickett MD, Ohlberg DAA, Stewart DR, Lau CN, Williams RS. The 
mechanism of electroforming of metal oxide memristive switches Nanotechnology. 
2009;20:215201‐215209

[71] Khurana G, Misra P, Kumar N, Kooriyattil S, Scott JF, Katiyar RS. Enhanced resistive 
switching in forming free graphene oxide films embedded with gold nanoparticles 
deposited by electrophoresis. Nanotechnology. 2016;27:015702‐015707

[72] An SJ, Zhu Y, Lee SH, Stoller MD, Emilsson T, Park S, Velamakanni A, An J, Ruoff 
RS. Thin film fabrication and simultaneous anodic reduction of deposited graphene 
oxide platelets by electrophoretic deposition. Journal of Physical Chemistry Letters. 
2010;1:1259‐1263

[73] Chen Y, Zhang X, Yu P, Ma Y. Stable dispersions of graphene and highly conducting 
graphene films: A new approach to creating colloids of graphene monolayers. Chemical 
Communications. 2009:4527‐4531

[74] Cui P, Seo S, Lee J, Wang L, Lee E, Min M, Lee H. Nonvolatile memory device using gold 
nanoparticles covalently bound to reduced graphene oxide. ACS Nano. 2011;5:6826‐6833

[75] Scott JF. There’s no place like Ohm: Conduction in oxide thin films. Journal of Physics: 
Condensed Matter. 2014;26:142202‐142204

[76] Son DI, Park DH, Kim JB, Choi JW, Kim TW, Angadi B, Yi Y, Choi WK. Bistable organic 
memory device with gold nanoparticles embedded in a conducting poly(N‐vinylcarba‐
zole) colloids hybrid. Journal of Physical Chemistry C. 2011;115:2341‐2348

Graphene Oxide-Based Memristor
http://dx.doi.org/10.5772/intechopen.69752

39



[77] Khurana G, Kumar N, Kotnala RK, Nautiyal T, Katiyar RS. Temperature tuned defect 
induced magnetism in reduced graphene oxide. Nanoscale. 2013;5:3346‐3351

[78] Rozada R, Paredes JI, Villar‐Rodil S, Martínez‐Alonso A, Tascón JMD. Towards full 
repair of defects in reduced graphene oxide films by two‐step graphitization. Nano 
Research. 2013;6:216‐233

[79] Lu J, Moon KS, Xu J, Wong CP. Synthesis and dielectric properties of novel high‐K poly‐
mer composites containing in‐situ formed silver nanoparticles for embedded capacitor 
applications. Journal of Materials Chemistry. 2006;16:1543‐1548

[80] Feng Q, Dang Z, Li N, Cao X. Preparation and dielectric property of Ag‐PVA nano‐com‐
posite. Materials Science and Engineering: B. 2003;99:325‐328

Memristor and Memristive Neural Networks40

Chapter 3

Emulator Circuits and Resistive Switching Parameters
of Memristor

Abdullah Yesil, Fatih Gül and Yunus Babacan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71903

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

DOI: 10.5772/intechopen.71903

Emulator Circuits and Resistive Switching Parameters 
of Memristor

Abdullah Yesil, Fatih Gül and Yunus Babacan

Additional information is available at the end of the chapter

Abstract

Chua predicted the existence of the fundamental circuit element, which provides the 
linkage of flux (ϕ) and charge (q). The new circuit element that is called memristor 
(memory + resistor) was demonstrated by Hewlett Packard (HP) researchers in 2008. 
Researchers focused on memristor fabrication, modeling, and its application with other 
circuit elements. Researchers could not find the commercially memristor devices in the 
market because of some fabrication difficulties. For this reason, researchers focused on 
the memristor modeling to analyze its characteristics with other circuit elements. This 
chapter presents a review of the general information of memristor and its device param-
eters. The chapter is continued with the details of memristor mathematical and SPICE 
models and memristor emulators based on the other circuit elements.

Keywords: memristor, memristor models, SPICE, memristor emulator, active circuit 
element-based memristors

1. Introduction

Both active circuit elements and passive circuit elements are used in circuit design, and the first 
circuit elements that come to mind are passive circuit elements: resistor, capacitor, and induc-
tor. Resistor, capacitor, and inductor define the relationship between the voltage and current, 
voltage and charge, and current and flux, respectively. Leon Chua from the University of 
California (Berkeley) showed the missing relationship as shown in Figure 1 between flux and 
current in 1971 and 1976 [1, 2].

At the same time, Chua called the missing circuit element as a memristor (memory + resistor) 
and presented the mathematical equations of the new circuit element. But the seminal paper 
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of Chua could not find attentions among the researchers because of the technical fabrication 
difficulties of the memristor. Therefore, researchers did not focus on the memristor and its 
application until its first fabrication of memristor by HP researchers in 2008 [3]. The first 
memristor is made from TiO2 thin film and has crossbar structure as shown in Figure 2.

The HP research team also presented the mathematical model of TiO2 memristor, and current-
voltage relationship is defined by

  V =  [M ( x  1  ,  x  2  , …  x  n  ) ] I  (1)

where V is the voltage and I is the current. Here, M is the resistance of memristor and mem-
ristance and depends on xi state variables. Memristance which performs nonlinear charac-
teristics depends on frequency and applied input signal. The TiO2 memristor consists of two 

Figure 1. The fundamental two-terminal passive circuit elements.

Figure 2. The scanning tunneling microscope image of the memristor [4].
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main structures which are named doped and undoped region as shown in Figure 3, and the 
memristance changes the ratios of the doped region and device thickness.

Memristor acts as a conductor if the thickness of the doped region becomes wide as shown in 
Figure 3b. Undoped region becomes wide as shown in Figure 3c, and memristor behaves as a 
high-resistance element when the input signal applied in an opposite direction.

Memristance is as below:

  M (x)  =  [ R  ON   x +  R  OFF   (1 − x) ] ,  (x =   w __ D  )   (2)

The change of the x value is depicted:

    dx ___ dt   =   
 μ  v    R  ON  

 _____  D   2    i (t)   (3)

The μv is the electron mobility, and w and D denote the doped area of memristor and thickness 
of the memristor, respectively. The resistances of the high and low dopant concentrations are 
symbolized with RON and ROFF, respectively. Researchers added a function to the memristor 
mathematical model to take into account the nonlinear dopant effect [3, 5–7]. Equation (3) is 
rearranged as follows:

    dx ___ dt   =   
 μ  v    R  ON  

 _____  D   2    i (t) f (x)   (4)

The first function which is called window function is presented by HP research team [3] as 
shown below:

  f (x)  =   x (1 − x)  _____ D    (5)

Doped 
Region

Undoped
Region

w

D

Doped Region

Undoped
Region

w

D

  (a)      (b) 

Doped Region,w

D

Undoped Region

(c) 

Figure 3. Memristor (a) initial state, (b) low-resistance state, and (c) high-resistance state.
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The μv is the electron mobility, and w and D denote the doped area of memristor and thickness 
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Figure 3. Memristor (a) initial state, (b) low-resistance state, and (c) high-resistance state.
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The HP model is linear and very simple; so Wolf and Joglekar [5] depicted the new window 
function as shown below:

  f (x)  = 1 −   (2x − 1)    2p   (6)

The function is starting to similar the rectangular shape when p-value becomes higher, 
namely, dopant drift is decreasing as shown in Figure 4.

Biolek et al. [6] modified the model of Wolf and Joglekar:

  f (x)  = 1 −   (x − stp (− i) )    2p   (7a)

  stp (i)  =  { 
1, i ≥ 0

  0, i < 0     (7b)

The window function which is presented by Biolek is shown in Figure 5.

Prodromakis et al. [7] depict the versatile model as the following:

  f (x)  = j (1 −   [  (x − 0.5)    2  + 0.75]    p )   (8)

Figure 5. Window function presented by Biolek et al. [6].

Figure 4. Window function presented by Wolf and Joglekar [5].
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Model function of Prodromakis et al. becomes higher than the value of 1 unlike previous win-
dow functions. The function depends on the various p-values shown in Figure 6.

Researchers suggested various mathematical memristor models such as nonlinear ion-drift 
model [8], Simmons’ tunnel barrier model [9], and ThrEshold Adaptive Memristor (TEAM) 
model [10] different from the linear HP model. The chapter is continued with memristor 
device.

2. Memristor switching device parameters

The pinched hysteresis loops serve as a fingerprint in the characterization of memristors [11] 
as shown in Figure 7. It is to say that, if any two-terminal device is showing pinched hys-
teresis loop, a memristor regardless of the device material is accepted. Resistive switching 
(or memristive behavior) in metal-oxide semiconductor was first observed by Hickmott in 
1962, but it was interpreted as the current anomaly [12]. As in resistive switching devices, a 
typical pinched hysteresis loop is seen at the first and third quadrants of the current-voltage 
(I-V) curves [13]. Put differently, all memristors can be accepted as resistive switching devices 
regardless of the operating mechanisms and the device material [14].

Figure 6. Window function presented by Prodromakis et al. [7].
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Figure 7. (a) Schematic representation of a memristor device and (b) typical pinched hysteresis current-voltage loop of 
memristor devices.
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2.1. Active layer material and top/bottom electrode

The semiconductor-based memristor devices usually consist of an active layer sandwiched 
between a top and a bottom electrode (TE/BE) depicted in Figure 7. The first physical imple-
mentation of the memristor was achieved by HP labs using TiO2 metal-oxide active layer [3]. 
After that, several physical memristor devices suggested the use of different materials and 
production methods. Most metal-oxide semiconductors exhibit memristor characteristics, 
including TiO2, ZnO, HfO2, VO2, TaOx, and so on [13, 15, 16]. There are two types of contact 
in semiconductor: one is of Schottky (rectifying), and the other one is ohmic. Several electrode 
materials can be used as TE or BE including Pt, Au, Ag, Al, etc. In one diode-one resistor (1D1R)-
type memory cell memristor device, one of the electrodes must be a Schottky contact [17].

2.2. Unipolar or bipolar operation

The unipolar and bipolar operation of memristor devices which are shown in Figure 8 can be 
categorized in according with current-voltage characteristics. In unipolar operation charac-
teristics depend only on the amplitude of the applied voltage, whereas bipolar operations are 
resolved by polarity and amplitude of the applied voltage [13]. Unipolar operation is more 
striking than bipolar operation in memristor switching devices, since it needs simple circuits. 
But then, bipolar operation has generally high uniformity and more endurance compared to 
unipolar operation [18].

2.3. Physical mechanism

There are two types of physical working mechanisms in the explanation of the time-depen-
dent current-voltage characteristics, based on molecular or ionic models: the homogeneous 
interface type and the filamentary (conduction path) type [13, 16]. In the homogeneous type, 
the migration of oxygen vacancies as the majority carriers causes change of resistance. The fil-
ament-type mechanism is associated with the formation and rupture of conductive  filaments 

Figure 8. Typical current-voltage curves of memristor devices (a) unipolar and (b) bipolar.
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in the active layer. Both types of mechanisms can be observed in the memristor devices as 
shown in Figure 9 and depend on the material and fabrication methods [18].

2.4. Operation current-voltage

It is well known that reversible switching between a low-resistance state (LRS) or ON (SET) 
and a high-resistance state (HRS) or OFF (RESET) can be achieved by applying a certain volt-
age [18]. Operation voltage is also an important value for CMOS or other device integrations 
for memristor devices. Another criterion for the memristor devices is the power consumption 
related to the operation current. With the aim of escape permanent damage from over cur-
rent, the compliance or limit current (CC) must be set in both unipolar and bipolar operations 
[13]. The compliance current is also related to power consumption of a memristor device [19].

2.5. ON/OFF ratio

The memristor has two states when used as a switching device: the high-resistance state 
(HRS) or OFF (RESET) state and the low-resistance state (LRS) or ON (SET) state [13]. The 
ON/OFF ratio defined as the proportion between resistances in HRS and LRS is some of the 
most important parameters when memristors are used as switching device [18].

2.6. Retention time and endurance

The time to hold ON/OFF state is an important criterion when memristor device used a resis-
tive switching memory or ReRAM element [20]. It is expected that the memristor device’s dis-
tribution of the HRS or LRS state which is shown in Figure 10 has acceptable values besides its 
ON/OFF ratio [19]. Since the memory unit needs to be repeatedly read or written by the other 
control units, cycling endurance is one of the main importance of memristor-based memory 
devices [18].

Some of recent memristor devices which are composed of various materials are compared 
according to the some important parameters as shown in Table 1 [19, 22–24]. The chapter is 
continued with memristor emulators based on the active circuit elements.

Figure 9. Typical current-voltage curves of memristor devices: (a) filamentary and (b) homogenous transitions on 
bipolar operation [19].
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in the active layer. Both types of mechanisms can be observed in the memristor devices as 
shown in Figure 9 and depend on the material and fabrication methods [18].

2.4. Operation current-voltage

It is well known that reversible switching between a low-resistance state (LRS) or ON (SET) 
and a high-resistance state (HRS) or OFF (RESET) can be achieved by applying a certain volt-
age [18]. Operation voltage is also an important value for CMOS or other device integrations 
for memristor devices. Another criterion for the memristor devices is the power consumption 
related to the operation current. With the aim of escape permanent damage from over cur-
rent, the compliance or limit current (CC) must be set in both unipolar and bipolar operations 
[13]. The compliance current is also related to power consumption of a memristor device [19].

2.5. ON/OFF ratio

The memristor has two states when used as a switching device: the high-resistance state 
(HRS) or OFF (RESET) state and the low-resistance state (LRS) or ON (SET) state [13]. The 
ON/OFF ratio defined as the proportion between resistances in HRS and LRS is some of the 
most important parameters when memristors are used as switching device [18].

2.6. Retention time and endurance

The time to hold ON/OFF state is an important criterion when memristor device used a resis-
tive switching memory or ReRAM element [20]. It is expected that the memristor device’s dis-
tribution of the HRS or LRS state which is shown in Figure 10 has acceptable values besides its 
ON/OFF ratio [19]. Since the memory unit needs to be repeatedly read or written by the other 
control units, cycling endurance is one of the main importance of memristor-based memory 
devices [18].

Some of recent memristor devices which are composed of various materials are compared 
according to the some important parameters as shown in Table 1 [19, 22–24]. The chapter is 
continued with memristor emulators based on the active circuit elements.
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3. Memristor models and emulators

Many SPICE models and emulators are presented by researchers [6, 25–47]. The first and 
applicable memristor model has been presented by Biolek and co-workers [6]. This model 
takes into account the boundary conditions using window function, and the feedback-con-
trolled integrator is used to implement memory effect of the memristor. The block diagram of 
memristor and its SPICE model is shown in Figure 11. All simulation results which are shown 
in Figure 12 are completed using SPICE codes as shown below. Each curve is compatible with 
TiO2 memristor, and boundary effects are taken into account (Table 2).

Researchers are not able to reach the memristor devices in the market because of some pro-
duction problems of the memristor. For this reason, researchers focused on the designing of 
memristor emulators to use with other circuit elements. Yener and Kuntman reported full 
active device-based memristor emulator which is consisting of differential difference current 
conveyor (DDCC) [35]. The proposed grounded memristor emulator consists of four circuit 
blocks based on DDCC as shown in Figure 13. Furthermore, there are no experimental results; 
however, its SPICE simulation results are given.

Figure 10. Typical endurance test of a memristor device @0.1 V for 100 cycles [21].

Active layer 
material

TE/BE Operation 
mode

Operation 
mechanism

Operation 
voltage

ON/OFF 
ratio

Retention 
time

Endurance Ref.

ZnO Al/Al Bipolar Homogenous −1.5 V/+1.5 V 5 × 101 N/A 100 [19]

TiO2 Al/Al Bipolar Filamentary −3 V/+1.5 V 8 × 102 N/A 1012 [22]

HfO2 Pt/Ti Bipolar Filamentary −3.5 V/+2 V 103 104 1000 [23]

TaOx Pt/Pt Unipolar Filamentary −1.5 V/+1 V 101 N/A 1000 [24]

Table 1. Comparison table of some recent memristor devices.
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Another active circuit element-based grounded memristor emulator [36] has been imple-
mented by using current backward transconductance amplifier (CBTA). This emulator con-
sists of two different circuits such as decremental and incremental type given in Figure 14. 
Each memristor emulator is composed of a single CBTA, two resistors, one grounded capaci-
tor, and single analog multiplier. In order to validate the feasibility of the presented memris-
tor, only SPICE simulation results have been given.

The generalized mutator structure based on adder and subtractor has been proposed by 
Minaei et al. [37]. As far as connection ports are concerned, the generalized structure employs 
memristor, meminductor, and memcapacitor without using analog multiplier. By selecting an 
inductor to port 3, a capacitor to port 4, and a nonlinear resistor such as a diode to port 1, the 
generalized structure given in Figure 15 is utilized as memristor. Nonetheless, so as to verify 
the workableness of the presented structure, the SPICE simulation results are given.

Figure 11. (a) Block diagram and (b) SPICE model of the memristor [6].

Figure 12. Charge-flux, current-voltage, current-voltage-time, and x-time curves for memristor model [6].
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Kim and co-workers presented the active circuit element-based memristor emulator [38]. 
This circuit is also implemented on the bread board using discrete circuit elements that are 
ADL1116PAL for NMOS transistors, ADL1117PAL for PMOS transistors, TL082 for OPAMP, 
and AD633 for analog multiplier and passive elements. There are three important tasks to 
implement memristor emulator: memory effect, frequency-/voltage-dependent characteris-
tics, and nonlinearity. Memory effect and frequency/voltage dependency characteristics are 
implemented by using a capacitor like many other previous emulator circuits. Nonlinear 
characteristic of the memristor is obtained using multiplier circuit block. But each used block 
gives rise to extra power dissipation and more complex circuit (Figure 16).
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Figure 13. DDCC-based memristor emulator which is presented by Yener and Kuntman [35].

* HP Memristor SPICE Model
* For Transient Analysis only
* created by Zdenek and Dalibor Biolek
**************************
* Ron, Roff - Resistance in ON/OFF States
* Rinit - Resistance at T = 0
* D - Width of the thin film
* uv - Migration coefficient
* p - Parameter of the WINDOW-function
* for modeling nonlinear boundary conditions
* x - W/D Ratio, W is the actual width
* of the doped area (from 0 to D)
*
.SUBCKT memristor Plus Minus PARAMS:
+ Ron = 1 K Roff = 100 K Rinit = 80 K D = 10 N uv = 10F p = 1
***********************************************
* DIFFERENTIAL EQUATION MODELING *
***********************************************
Gx 0 x value = {I(Emem)*uv*Ron/D^2*f(V(x),p)}
Cx x 0 1 IC = {(Roff-Rinit)/(Roff-Ron)}
Raux x 0 1T

* RESISTIVE PORT OF THE MEMRISTOR *
*******************************
Emem plus aux value = {−I(Emem)*V(x)*(Roff-Ron)}
Roff aux minus {Roff}
***********************************************
*Flux computation*
***********************************************
Eflux flux 0 value = {SDT(V(plus,minus))}
***********************************************
*Charge computation*
***********************************************
Echarge charge 0 value = {SDT(I(Emem))}
***********************************************
* WINDOW FUNCTIONS
* FOR NONLINEAR DRIFT MODELING *
***********************************************
*window function, according to Joglekar
.func f(x,p) = {1-(2*x-1)^(2*p)}
*proposed window function
;.func f(x,i,p) = {1-(x-stp(−i))^(2*p)}
.ENDS memristor

Table 2. SPICE codes of modeled memristor [6].
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Another active circuit-based memristor emulators which are shown in Figure 17 have been 
presented by Abuelma’atti and Khalifa [39]. Each emulator which is based on current-feed-
back operational amplifier (CFOA) enjoys operating two different types like decremental and 
incremental memristor emulators. This situation is a disadvantage of the emulator besides its 
grounded structure. Each circuit comprises three CFOAs, four resistors, two capacitors, and 
germanium diode without using an analog multiplier. Nonlinear characteristic is provided 
by germanium diode. CFOA which is an active element is modeled by AD844 commercially 
available active devices, and experimental results have been investigated.

Figure 14. CBTA-based memristor emulator (a) decremental structure and (b) incremental structure [36].
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Figure 15. Generalized mutator structure based on adder and subtractor [37].
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Sánchez-López and Aguila-Cuapio proposed the charge-controlled memristor emulator cir-
cuit [40]. This circuit which is shown in Figure 18 is grounded; hence, application areas of 
the presented memristor emulator are limited in circuit designs. Moreover, it is implemented 
with discrete circuit element such as AD844 and AD633 besides its disadvantages.

Babacan and co-workers presented new memristor emulator based on multi-output opera-
tional transconductance amplifier (OTA) [41]. This emulator shown in Figure 19 is a deriva-
tive of the DDCC-based memristor emulator [42], but memristance value of this emulator 
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Figure 16. Voltage-controlled memristor emulator which is presented by Kim and co-workers [38].
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can be adjusted by biasing current of the OTA. The change of the memristance value can be 
controlled by changing resistor (R) value. Average memristance value can be controlled using 
OTA-gm value because of the fact that OTA is used as controllable resistor by connecting the 
negative output terminal to the positive input terminal. In order to demonstrate the perfor-
mance of OTA-based memristor emulator, both SPICE simulation results and experimental 
results have been performed. For experimental results, the memristor emulator is built using 
passive elements and commercially available active devices such as OPA860 for MO-OTA and 
AD633 for the analog multiplier.

Yesil and co-workers suggested only one DDCC-based memristor emulator which can be 
operated in high-frequency regions [42]. It is observed from Figure 20 that the capacitor 
provides the memory effect and the multiplication of both capacitor and resistor voltages 
is connected to the Y terminal of the active device. The resistance of memristor emulator 
circuit decreases when the Z terminal of the DDCC device is chosen as positive terminal (ZP). 
Consequently, the circuit shows decremental memristor characteristics. For another state, an 
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incremental memristor can be obtained when the Z terminal of DDCC is chosen as negative 
terminal (ZN). This emulator consists of the third terminal (Vsum) to provide the floating char-
acteristic. Serial connected memristors split applied voltage such as resistor if these memris-
tors carry out a voltage; accordingly, the third terminal is connected to the output terminal. 
Just as DDCC-based [35], CBTA-based [36], and adder-and-subtractor [37]-based memristor, 
the performance of [42] is confirmed by SPICE simulations results.

Sozen and Cam proposed new floating memristor emulator based on OTA and CCII as shown 
in Figure 21 [43]. This emulator is made up of three OTAs, four CCIIs, and seven passive ele-
ments. Both SPICE simulation results and experimental results of the presented memristor 
emulator have been given to confirm its workableness and feasibility. Commercially available 
active devices CA3080 and AD844 have been utilized instead of OTA and CCII, respectively.

Sánchez-López et al. proposed second-generation current conveyor (CCII)-based flux-con-
trolled memristor emulator which is shown in Figure 22 [44]. The presented emulator com-
prises of four CCIIs, a multiplier circuit, five resistors, and single grounded capacitor. AD844 
and AD633 are used instead of CCII and analog multiplier in the flux-controlled memristor 
emulator, respectively. So as to indicate the performance of flux-controlled memristor emula-
tor, both SPICE simulation results and experimental results have been exhibited.
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Babacan and Kacar suggested new memristor emulator which does not need any multiplica-
tion block as shown in Figure 23 [45]. This emulator is also fully floating, namely, has two 
terminals, and input signal can be applied in both terminals. The nonlinearity is provided by 
transistors which are operated in the subthreshold region. The presented memristor emula-
tor includes single-ended OTA, one grounded capacitor, and two PMOS transistors. Note 
that the bulk terminals of PMOS transistors are connected to drain terminals of relevant 
transistors.

The first memristor model which accounts for spike-timing-dependent plasticity (STDP) 
mechanism is proposed by Li and co-workers [46]. The model which is shown in Figure 24 
consists of five circuit models, and each model depends on the previous model so this model 
is complex and does not have any circuit implementation.

Babacan and Kacar suggested real-time fully floating memristor emulator which is accounted 
for synaptic activity [47]. Both memristive and STDP characteristics are obtained from the 

Figure 22. Floating flux-controlled memristor emulator based on CCII [44].

Figure 23. Fully floating memristor emulator based on OTA [45].
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circuit which is shown in Figure 25. It is observed from Figure 25 that fully floating mem-
ristor emulator consists of a few numbers of MOS transistors and capacitors without using 
analog multiplier. Furthermore, STDP is experimentally demonstrated in memristive 
devices [48–50].

In summary, the comparison of the memristor emulator circuits is according to some impor-
tant design parameters such as used circuit elements, electronically controllability, power sup-
ply value, etc. Each emulator has superior properties among the other emulators. Researchers 
can prefer appropriate emulator circuit for their memristor-based circuit designs (Table 3).

Figure 24. Memristor model which is accounted for STDP mechanism [46].
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4. Conclusion

In this chapter, memristor devices, models, and emulators have been referred. Memristors 
have nonlinear characteristics; therefore, high-order mathematical equations should be used 
to create a mathematical model of the memristor. Active circuit elements are essential to build 
memristor emulators because of the fact that active elements are versatile and suitable for 
nonlinear circuit element designs. Nowadays, memristors can exhibit different characteristics 
when they are fabricated using various materials. Important characteristics such as switching 
mechanism, synaptic behavior, and operating frequency region are directly depending on the 
memristor structure. Hence, there is an essential to implement various models and circuits to 
emulate real memristors. Some emulator circuits exhibit hard-switching characteristics, other 
emulators exhibit smooth-switching characteristics, or some emulators account for spike-tim-
ing-dependent plasticity mechanism.

As a result, researchers are not able to reach real memristor easily so all emulator models 
and circuits are important to exhibit real memristors. Memristors are ultradense devices 

Reference No. of 
floating 
passive 
elements

No. of active comp No. of 
grounded 
passive 
elements

Sim./exp Electronically 
controllable

Floating/
grounded 
memristor 
emulator

Power supply

[35] — 10 DDCCs, 8 
transistors

4 R, 1 C Sim. No Grounded ±1.25 V

[36] 1 R 1 CBTA, 1 multiplier 1 R, 1 C Sim. No Grounded ±0.9 V

[37] 1 L, 1 C 1 adder and 1 
subtractor

1 D Sim. No Grounded ±1.25 V

[38] 1 R 2 OPAMPs, 1 
multiplier, 10 
transistors

1 R, 1 C Both No Grounded/
floating

±5 V

[39] 2 R, 1 D 3 CFOAs (AD844) 2 R, 2 C Exp. No Grounded NA

[40] 1 R 1 CCII(AD844), 1 
multiplier (AD633)

1 C Both No Grounded ±10 V

[41] — 1 MO-OTA, 1 
multiplier

1 R, 1 C Both Yes Grounded ±1.25 V/±5 V

[42] 1 R 1 DDCC, 1 multiplier 1 R, 1 C Sim. No Floating ±1.5

[43] 3 R 3 OTAs, 4 CCIIs 3 R, 1 C Both Yes Floating ±15

[44] 2 R 4 CCIIs (AD844), 1 
multiplier (AD633)

3 R, 1 C Both No Floating ±10 V

[45] — 1 OTA, 2 transistors 1 C Sim. No Floating ±1 V

[47] — 10 transistors 3 C Sim. No Floating —

Table 3. Comparison of memristor emulator circuits.
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and consume very low energy; that is why it is not only important to emulate real  emulator. 
Researchers need also emulator circuits which have minimum energy consumption and sim-
ple structure.
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Abstract

The metal-filament-type resistive random access memories (ReRAMs) with copper were 
investigated from the point of view of dynamical microstructure evolution in the repeti-
tive switching operations using in situ transmission electron microscopy (in situ TEM). 
Through a series of experiments for uncovered solid electrolyte films, stacked devices, 
and nanofabricated cells, formation and erasure of the copper filaments and deposits 
were confirmed. The behavior of the filament and deposit depended on the switching 
condition and history. Based on these in situ TEM results, the switching schematics and 
the degradation process were discussed.

Keywords: in situ transmission electron microscopy, resistive random access memory, 
ReRAM, conductive bridge random access memory, CBRAM, memristor, conductive 
filament

1. Introduction

The resistive random access memory (ReRAM) has great potential as a candidate of the next-
generation nonvolatile memory because of the high-speed operation, the wide memory win-
dow, and the high-density storage per cost [1]. In addition, its capability of the multilevel or 
analogue memory control and its hysteretic nonlinear current-to-voltage (I–V) characteristics are 
suitable for the operation of the artificial neural network hardware using memristors, and this 
research field is very active especially in these years [2–5]. Because of these advantageous prop-
erties, vast numbers of works on ReRAMs have been reported as described in numerous review 
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articles [6–14]. In these years, highly integrated memory chips have been reported [15–17], and a 
16 Gbits chip with 180 MB/s write and 900 MB/s read performance fabricated at the 27 nm node 
has already been demonstrated using the Cu-based ReRAM [18]. Commercialized or nearly 
commercialized ReRAM chips have also been reported [19–21]. However, there are still ambigu-
ous issues of the switching and device degradation mechanisms, while basic principles of the 
ReRAM operations have been discussed using the electrochemistry of solid materials.

The ReRAM operation is performed by simply applying voltage to the device having a capaci-
tor structure with a switching layer between the top and bottom electrodes (TE and BE) as 
shown in Figure 1(a). The initial state of the device is typically the high-resistance state (HRS). 
It converts into the low-resistance state (LRS) by applying voltage (SET or “Forming” for the 
first SET). Subsequent voltage returns the resistance to HRS (RESET) as shown in Figure 1(b). 
The I–V curves are hysteretic with the resistance ratio HRS/LRS typically 102 or larger 
(Figure 1(c)). The operation is called “bipolar” when the voltage polarity for SET and RESET 
should be reversed, while it is “unipolar” without polarity change. The ReRAM families ener-
getically investigated have been the valence change memory (VCM) composed of a thin oxide 
layer between two noble electrodes, and the conductive bridging RAM (CBRAM; there are 
also other naming) composed of a solid electrolyte with an electrochemically active electrode 
(Cu or Ag) and an inactive electrode (Pt or TiN). In this report, we study some CBRAMs show-
ing the bipolar switching as shown in Figure 1(b).

The CBRAM operation has been explained based on electrical measurements and electronic 
and electrochemical discussions [8, 10, 14, 22]. Assuming that the TE is Cu, positive voltage 
to the TE generates Cu cations through oxidation of the electrode at the interface with the 
solid electrolyte. These cations move along the electric field and are metallized after receiving 
electrons at the BE interface. A Cu filament is formed there and grows toward the TE. When 
this filament connects two electrodes, SET switching is completed. Voltage reversal induces 
the opposite reaction, and the filament is ruptured (RESET). This simple model based on the 
results of the electrical measurements is plausible, which is an analogical model of electroplat-
ing. However, the switching details like filament evolution at SET/RESET and the behavior 
of the filament during device degradation are hard to be accomplished only with electrical 
measurements, which are important for usage of ReRAM with guaranteed reliability as the 
actual electronic device in the circuit.

Figure 1. (a) Schematic structure of ReRAM, and typical experimental data of (b) an I–V switching curve and (c) a cyclic 
endurance graph of Cu/WOx/TiN CBRAM cells.
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To overcome this problem, in situ transmission electron microscopy (in situ TEM) has been 
applied on a variety of ReRAMs [12, 14, 23, 24] including CBRAMs [25–29] and other families 
[30–37], which enable real space observations during ReRAM switching. In some examples, 
formation and erasure of a Cu or Ag filament were confirmed at quick switching of CBRAM 
[25, 27]. In another report, the filament growth scheme was categorized in terms of its depen-
dence on the cation mobility and the reduction rate [38]. Comprehension of the filament for-
mation has been much advanced with the sake of in situ TEM. On the other hand, in situ TEM 
works on RESET and the multiple operations are still rare, although they are quite important 
for development of reliable ReRAM devices.

For filling the lack of this knowledge, we have performed in situ TEM of SET/RESET and/or 
multiple switching cycles for an uncovered solid electrolyte, stacked CBRAMs, and nano-
fabricated CBRAM cells. In this contribution, we will review our work in these years [25, 29, 
39–44] and discuss the role of the filament at SET/RESET, the filament growth/erasure mode 
influenced by the switching history, the CBRAM degradation, and the localization of the fila-
ment to achieve stable switching.

2. Experimental procedure of in situ TEM

A schematic diagram of the in situ TEM system is shown in Figure 2(a). The TEM (10−5 Pa) 
was equipped with a home-made TEM piezoholder, a piezocontrol system, a current mea-
surement unit, and a CCD camera system (30 frames/s) [45]. The Pt-Ir electrode set in the 
TEM holder is movable to select the location of the fixed ReRAM sample to be measured 
(Figure 2(b)). The TEM experiments were performed with the beam current density much 
less than the 170 fA/nm2 (typical current density for our high-resolution TEM observations).

The I–V measurements were carried out using a source measure unit (SMU). The sweeping 
rate was typically between 0.3 and 1.6 V/s. The pulse switching operation (pulse width of 

Figure 2. Schematics of (a) the in situ TEM system and (b) the geometry of the sample and the probe.
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100–500 μs) was occasionally performed. The measurements were done with current compli-
ance of SMU to prevent sample destruction. However, this current compliance was occasion-
ally insufficient because of the parasitic capacitance of the system. In some cases, a MOSFET 
was installed in the piezoholder to control the compliance current (Icomp) strictly. To investigate 
the microstructural change, the TEM images were recorded simultaneously with the current 
measurements by using a charge coupled device (CCD) video camera. The video contrast was 
occasionally enhanced nonlinearly to enable a clear identification of the faint contrast. Frame 
averaging was also used to reduce the noise.

3. Filament formation and erasure in chalcogenide containing Cu

Filament formation and erasure will be demonstrated using GeS containing copper (Cu:GeS) 
[25, 39]. Though the switching speed and the retention property were not good enough for 
actual devices, this material is good for easy investigation of the filament evolution. The 
Cu:GeS thin film was sputter deposited at room temperature (RT) on a wedge-shaped Pt-Ir 
substrate that acted as the electrode. The film was 8–60 nm thick and was amorphous includ-
ing Ge nanocrystals. A sharp Pt-Ir probe (the counterelectrode) contacted the Cu:GeS layer, 
and the I–V measurements were performed. The probe was grounded, and the substrate was 
biased. In this sample, the Cu ion source was Cu:GeS itself. The atomic composition estimated 
using EDX was Cu:Ge:S = 4:4:2. Though the PtIr/Cu:GeS/PtIr structure was electrochemically 
symmetric, it showed the asymmetric ReRAM switching (i.e., bipolar switching) because of 
the shape difference between the substrate and the probe.

3.1. In situ SET and RESET operation

The I–V curve is plotted in the left panel of Figure 3, where the current compliance was 
Icomp = 500 nA. Clear hysteretic curve was seen as investigated in other studies of solid 
electrolytes [6, 10, 46, 47]. TEM video images are presented in the right panel of Figure 3 
where each image corresponds to the states (a)–(i) marked in the I–V graph. There was no 
special contrast just before the voltage sweep started (Figure 3(a)). The current gradually 
increased until about 2.5 V, and a deposit-like dark contrast grew from the probe (cathode 
with this voltage polarity) (Figure 3(b)–(c)). Afterward, the current quickly reached Icomp. 
This is SET giving LRS. Correspondingly, the deposit was enlarged (Figure 3(d)–(e)) and 
contacted the substrate. In RESET with negative biasing of the substrate, there were sud-
den jumps at −0.5 and −2 V, which are abnormal with the usual bipolar switching. This is 
special for the sample without the Cu electrode (thus, amount of Cu is limited) and was 
neither conventional SET nor RESET [8, 10, 14, 22]. In Figure 3(f)–(g), the deposit was 
contracted with negative voltage from the substrate (cathode) to the probe (anode). The 
deposit detached from the substrate in Figure 3(h), and the resistance returned to HRS. 
This was the RESET switching. At the end of this cycle, the image reverted almost to that 
of the original (Figure 3(i)).

The deposit size and the current corresponded; therefore, this deposit is expected to act as the 
conductive filament. The polarity dependence may be attributed not to the electrochemical 
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properties of the electrodes but to the asymmetry of the electric field caused by the shape dif-
ference of the electrodes. Because of the concentrated electric field, Cu ions accumulate at the 
probe when the substrate is positive. On the other hand, electric flux disperses toward the sub-
strate when the polarity is reversed. Even though Cu is thought to accumulate at the substrate-
film interface, its density is low for filament formation.

3.2. SAD and EDX of the conductive filament

Selected area diffractometry (SAD) and energy dispersive X-ray spectroscopy (EDX) were 
performed in real time during the operation (but other area than Figure 3). In this sub-
section, the results are briefly summarized. Detailed experimental data are seen in Refs. 
[25, 39].

The crystal structure of the filament was studied using in situ SAD. When a deposit was 
formed, sharp spots appeared in the patterns. They twinkled like stars. This indicates that 
nanocrystals were formed, and their orientation frequently changed during the voltage scan. 
The 1152 frames of the SAD video (35 s) were summed, and Debye rings were identified. The 
estimated d-values were those of Cu reflections. For the elemental analysis, the EDX of the 
filament was performed with voltage application (+1 V). The Cu peak was greatly enhanced 
relative to the initial state. The composition estimated using the thin foil approximation was 
Cu:Ge:S = 7:2:1, while the region containing no filaments showed 4:4:2. The filament was an 
agglomeration of nanocrystals with a relatively large amount of Cu; probably metallic Cu or 
its alloy with either Ge and/or S.

Figure 3. The switching curve (left panel) and TEM images extracted from a video (right panel) of a Cu:GeS film. The 
images (a)–(i) correspond to the states marked in the switching curve.
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properties of the electrodes but to the asymmetry of the electric field caused by the shape dif-
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strate when the polarity is reversed. Even though Cu is thought to accumulate at the substrate-
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3.3. Decrease of the SET voltage and the residue of the filament

The SET voltage usually goes down after forming. This was considered to be caused by the 
wreckage of the filament [8, 10, 14, 22]. To understand this phenomenon, we performed three 
continuous SET cycles from the initial state. Because of a short retention of this sample, the 
deposit disappeared automatically without negative voltage. Thus, only the positive cycles 
were investigated. The SET voltage in the 1st, 2nd, and 3rd cycles decreased from 2.25 to 
1.83 V (2nd) and 1.50 V (3rd). In this experiment, the probe position was changed as seen in 
Figure 4, where the arrows indicate the point where the probe hit in the 1st cycle. A filament 
appeared and disappeared at the probe in the 1st cycle (Figure 4(a1, a2)). Afterward, the probe 
was shifted as seen in Figure 4(b1). When positive voltage was applied, a filament appeared 
elongating into the region where the 1st filament was formed. In the 3rd cycle, measure-
ment was conducted without changing the probe position from the 2nd cycle (Figure 4(c1)). 
A filament was formed at the same place (Figure 4 (c2)). The region where the filament has 
been formed has priority in subsequent switching. Residuals of the filament should remain 
as extremely small metallic nanocrystals, which cannot easily be detected by SAD or conven-
tional TEM. They are thought to act as nuclei of the filaments and to reduce the SET voltage.

3.4. Summary

The fundamental behavior of the conductive filament in Cu:GeS was demonstrated by using 
in situ TEM, in situ SAD, and in situ EDX. The switching scheme is understood as follows.

When the substrate is positively biased, Cu ions in GeS move to the cathode (probe) and a 
metallic deposit appears there. It consists of Cu-based nanocrystals. The deposit expanded 
and finally touched the anode (substrate), and the resistance state is LRS. Even in this stage, 
the microstructure changes with voltage application. The deposit dissolves by polarity rever-
sal, and it shrinks from the cathode (substrate) to the anode (probe). This process gives HRS. 
The formation/erasure of the deposit clearly corresponded to SET/RESET. Therefore, the con-
ductive filament must be formed in the deposit. This behavior of the filament follows the 
electrochemical model [8, 10, 14, 22]. With the continuation of the switching cycle, the SET 
voltage decreased. This is caused by the residuals (probably Cu nanocrystals) that remain 
even in HRS. These residues are thought to act as nuclei of the filaments.

Figure 4. In situ TEM images of the (a) 1st, (b) 2nd, and (c) 3rd switching cycle of a Cu:GeS film. Images (a1), (b1), and (c1) 
are before the SET cycle, and those of (a2), (b2), and (c2) are after SET. The probe position was shifted between (a) and (b), 
while it was unchanged between (b) and (c). The arrow marks the potion where the probe was contacted in the 1st cycle.
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4. CBRAM having the stacked structure with the Cu electrode

The special constitution of CBRAM was used in Section 3 for easy performance of experi-
ments, such as a tip-shaped electrode and nonuse of Cu electrode. Operation was slow, and 
the current was much less than μA. This is satisfactory for a characterization of conductive fil-
aments. However, to understand realistic operation, the multiple switching cycles should be 
achieved for multilayered CBRAMs. In Sections 5 and 6, MoOx and WOx sandwiched between 
electrochemically active Cu and inactive TiN electrodes are demonstrated. The dynamics 
of filament growth/shrinkage (Section 5) and device degradation (Section 6) are discussed 
through repetitive ReRAM operations with increase of the switching current.

The CBRAMs studied are Pt(100)/Cu(30)/MoOx(50) and Pt(100)/Cu(30)/WOx(20) on TiN/Si substrates, 
where the numbers denote the thicknesses in nm. Here, the TiN surface was oxidized due to 
the O2 plasma treatment for cleaning. The oxide switching layers were prepared using reac-
tive RF sputtering (Ar-20% O2) of metal targets, while the others were by Ar RF sputtering. All 
depositions were done at RT without any heat treatment, and both oxides were amorphous. 
Typical TEM image and EDX map are shown in Figure 5(a) and (b). The layer structure is 
clearly identified, and the overall switching area is observable. Samples for in situ TEM were 
processed using the ion-shadow method [48], where many cone-shaped small devices were 
formed. The device diameter was less than 500 nm as shown in Figure 5(a). The current for 
switching was measured between the biased Pt/Cu and grounded TiN/Si. The current in the 
LRS was limited by the serially connected resistance of TiN/Si.

Figure 5. (a) TEM image and (b) EDX mapping of a Pt/Cu/WOx/TiN sample where clear layer stacking was seen. The 
I–V switching curve of (c) a TEM sample (size: 350 nm) and (d) a microdevice (size: 16 μm) of Pt/Cu/MoOx/TiN. They 
corresponded well to each other. (e) EDX spectra from the MoOx layer without the filament (Reg-1 and Reg-2) and the 
filament (Reg-3). Enhancement of the Cu signal was clearly seen in Reg-3. Inset is the TEM image showing the analyzed 
areas.
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Multiple switching was realized during the TEM observation. An example of the I–V curve 
measured in TEM is Figure 5(c). The current gradually increased with positive voltage, and 
then the resistance was quickly converted to LRS. In the negative voltage region, the current 
exhibited jumps giving HRS. This is the typical bipolar switching as seen in Figure 5(d) of a 
conventional CBRAM device fabricated on a Si wafer using the lithography technique. The 
similarity of fundamental features of these graphs indicates that the vacuum environment in 
the TEM and electron beam irradiation had no negative effects.

Checking in situ TEM videos, filament-like dark contrast grew in the SET cycle and shrank/
vanished in the RESET cycle. Here, this darker contrast in the oxide layer is assumed to be 
the Cu-based conductive filament. This assumption was confirmed by EDX for regions with/
without the filament (Figure 5(e)). The filament was made up largely of Cu.

5. Switching operation of stacked CBRAM

In this section, the filament dynamics and its mechanism are demonstrated. The CBRAM 
discussed here is mainly the device having the MoOx [29, 41, 43, 44].

5.1. Filament formation in the SET process

An example of the SET cycle is shown in Figure 6, where the I–V graph (Figure 6(a)) and the 
TEM video images (Figure 6(b)–(g)) are compared. The initial resistance was 40 MΩ, and 
thus the Cu inclusion level in MoOx was small. For initialization, 15 positive/negative cycles 
were done, and the resistance decreased to 500 kΩ. Clear SET/RESET switching started after 
this treatment. Here, the gray contrast on the right of the image is unrelated to the switch-
ing because it showed no change of note. Increasing the voltage from state-(b), the current 
increased gradually. In Figure 6(c), a slight change was seen near the central area. The current 
increased greatly at 3 V (state-(d)), and a dark contrast appeared abruptly in a wide area from 
the Cu electrode (Figure 6(d)). This gathered to be a clear contrast and connected two elec-
trodes in Figure 6(e)–(f). Its growth direction was from the anode (Cu) to the cathode (TiN), 
and this is opposite to the direction expected in the conventional electrochemical CBRAM 

Figure 6. (a) The SET curve and (b)-(g) corresponding in situ TEM images of a Cu/MoOx/TiN device with little Cu 
inclusion. The filament quickly grew from TE to BE.
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model [8, 10, 14, 22]. This behavior has been observed in other switching materials like SiO2 
[28], ZrO2 [27], and WOx [42] that are thought not to dilute much Cu (or Ag). During the 
additional voltage application (over-SET named in this report), the filament grew further and 
changed its contact position with the Cu electrode toward the left (Figure 6(g)). Even after 
bridging, the filament shape continued to change. Finally, the resistance changed from 500 to 
8 kΩ. The LRS retention time was longer than 5 min.

The growth direction reversed in the subsequent SET cycle (Figure 7). The switching started 
at states-(c) and (d). At this moment, there was no dramatic change in the TEM image 
(Figure 7(b)–(d)). When the current increased rapidly at state-(e), a small dark contrast 
appeared near the cathode (TiN). This is thought to be the nucleus of the filament. It grew, and 
a 35 nm thick filament bound two electrodes (Figure 7(f)–(g)). After the nucleus appeared, the 
bridging was completed within 200 ms. The resistance decreased from 750 to 8 kΩ.

To discuss the filament growing direction, five images sequentially extracted from the video 
(30 ms intervals) are shown in Figure 8. The nucleus of the filament appeared near the BE 
(TiN, cathode) and grew toward the TE (Cu, anode). This fits well with the electrochemical 
switching model [8, 10, 14, 22]. Based on the discussion in a previous report [38], the Cu ion 
mobility must be high in this case. This was the SET cycle after Figure 6 (and RESET). Thus, 
tiny Cu residuals were expected in MoOx at the starting of this SET. It may influence the Cu 
ion mobility. In addition, the Joule heat also can increase the ion mobility since large compli-
ance current of > 102 A was used here.

The growth scheme from the cathode to the anode was seen also in another sample having 
Cu deposits near the MoOx/TiN interface in the initial state. In this case, the initial resistance 
was small (700 kΩ), and Cu dissolution had happened already in the initial state. This may be 
caused by a temperature increase during ion milling for TEM sample preparation as seen in 
heat-treated Cu/SiO2/BE [49].

Three I–V curves from the initial state are shown in Figure 9(a). The nonhysteretic curve of the 1st 
cycle started to be hysteretic in the 2nd cycle. Though the resistance decreased to 400 kΩ, there 
was no change in the video image. In the 3rd cycle, a clear hysteresis was identified, the resistance 
decreased to be 30 kΩ after SET, and RESET occurred. Corresponding images (Figure 9(b)–(d)) 

Figure 7. (a) The SET curve and (b)-(g) corresponding in situ TEM images of a Cu/MoOx/TiN device when the switching 
layer was expected to contain a certain amount of Cu dissolution after the cycle in Figure 6.
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model [8, 10, 14, 22]. This behavior has been observed in other switching materials like SiO2 
[28], ZrO2 [27], and WOx [42] that are thought not to dilute much Cu (or Ag). During the 
additional voltage application (over-SET named in this report), the filament grew further and 
changed its contact position with the Cu electrode toward the left (Figure 6(g)). Even after 
bridging, the filament shape continued to change. Finally, the resistance changed from 500 to 
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(Figure 7(b)–(d)). When the current increased rapidly at state-(e), a small dark contrast 
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mobility must be high in this case. This was the SET cycle after Figure 6 (and RESET). Thus, 
tiny Cu residuals were expected in MoOx at the starting of this SET. It may influence the Cu 
ion mobility. In addition, the Joule heat also can increase the ion mobility since large compli-
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decreased to be 30 kΩ after SET, and RESET occurred. Corresponding images (Figure 9(b)–(d)) 

Figure 7. (a) The SET curve and (b)-(g) corresponding in situ TEM images of a Cu/MoOx/TiN device when the switching 
layer was expected to contain a certain amount of Cu dissolution after the cycle in Figure 6.
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showed a slight contrast change. The Cu deposit near ox-TiN/TiN (arrows) grew during SET 
(Figure 9(c)), and it disappeared during RESET (Figure 9(d)). This Cu deposit must play an 
important role in ReRAM.

Clear and abrupt current jumps began after the 4th and 5th cycles. The SET operation in the 
6th cycle is shown in Figure 10(a) compared with the in situ TEM images (Figure 10(b)–(g)). A 
Cu deposit that grew in the 5th cycle (round contrast) was identified when the voltage sweep 
started (Figure 10(b)). There is an abrupt current jump at states-(c) and (d). However, the 
deposit did not show a clear change (Figure 10(c)–(d)). It then grew from the cathode (TiN) 
to the anode (Cu) with the current flow after the SET switching (over-SET) (Figure 10(e)–(g)). 
The deposit did not bridge two electrodes, although the resistance was reduced much.

Summarizing shortly, there were two SET modes with filament growths from the cathode or 
from the anode depending on the amount of Cu in the MoOx layer.

5.2. Filament shrinkage and erasure in the RESET process

The RESET process after Figure 10 is shown in Figure 11, where the filament had not bridged. 
At the states-(b) to (d) in Figure 11(a), the TEM images (Figure 11(b)–(d)) maintained the con-
trast just after SET. A clear RESET switching occurred between states-(d) and (e), but the deposit 
shrank only slightly (Figure 11(e)). Continuing current flow (over-RESET named in this report), 

Figure 8. Details of the SET process in Figure 7, where the subsequent TEM video frames (images-1 to 5) were shown 
with the interval of 30 ms. The image-2 corresponds to Figure 7(e). The Cu filament grew apparently from BE to TE.

Figure 9. (a) Three I–V switching cycles and (b)–(d) TEM images in the 3rd cycle of a MoOx CBRAM. The images showed 
appearance/disappearance of a deposit as indicated using arrows in (b) before SET, (c) after SET, and (d) after RESET.
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it continued to shrink (but still not large change), toward the anode (TiN), giving roundish 
contrast (Figure 11(f) and (g)). The shrinkage direction fits the filament model [8, 10, 14, 22].

Figure 12 is another example of RESET with nonbridging (or weakly bridging) filament. In 
this example, the filament vanished due to large negative current (−600 μA, Figure 12(a)). The 
image at starting of the voltage sweep (Figure 12(b)) was not changed by RESET switching at 
state-(c) (Figure 12(c)). At state-(d) during over-RESET, an unexpected negative SET with large 
current occurred, and the filament began to shrink (Figure 12(d)–(e)). The filament vanished 
from the cathode (Cu) to the anode (TiN) (Figure 12(f)–(g)). Dissolution of the Cu filament 
was seen not only at the apex. A small precipitate near the Cu electrode (left of the images) 
also vanished in Figure 12(g). The current spread widely and contributed to the erasure of 
the filament and the precipitate nearby. Although the negative SET was abnormal, we can 
conclude that the large negative current was required for a complete erasure of the filament.

Figure 10. The 6th SET cycle performed after Figure 9 (Cu/MoOx/TiN). (a) I–V switching curve and (b)–(g) corresponding 
video images. Growth of the filament from BE to TE was identified.

Figure 11. The 6th RESET cycle performed just after Figure 10 (Cu/MoOx/TiN), where the filament did not connect to the Cu 
TE. (a) I–V switching curve and (b)–(g) corresponding video images. Shrinkage of the filament from TE to BE was identified.
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it continued to shrink (but still not large change), toward the anode (TiN), giving roundish 
contrast (Figure 11(f) and (g)). The shrinkage direction fits the filament model [8, 10, 14, 22].

Figure 12 is another example of RESET with nonbridging (or weakly bridging) filament. In 
this example, the filament vanished due to large negative current (−600 μA, Figure 12(a)). The 
image at starting of the voltage sweep (Figure 12(b)) was not changed by RESET switching at 
state-(c) (Figure 12(c)). At state-(d) during over-RESET, an unexpected negative SET with large 
current occurred, and the filament began to shrink (Figure 12(d)–(e)). The filament vanished 
from the cathode (Cu) to the anode (TiN) (Figure 12(f)–(g)). Dissolution of the Cu filament 
was seen not only at the apex. A small precipitate near the Cu electrode (left of the images) 
also vanished in Figure 12(g). The current spread widely and contributed to the erasure of 
the filament and the precipitate nearby. Although the negative SET was abnormal, we can 
conclude that the large negative current was required for a complete erasure of the filament.

Figure 10. The 6th SET cycle performed after Figure 9 (Cu/MoOx/TiN). (a) I–V switching curve and (b)–(g) corresponding 
video images. Growth of the filament from BE to TE was identified.

Figure 11. The 6th RESET cycle performed just after Figure 10 (Cu/MoOx/TiN), where the filament did not connect to the Cu 
TE. (a) I–V switching curve and (b)–(g) corresponding video images. Shrinkage of the filament from TE to BE was identified.

Nanoscale Switching and Degradation of Resistive Random Access Memory Studied by In Situ...
http://dx.doi.org/10.5772/intechopen.69024

73



Figure 13 is an example to show what happens for the bridging filament, which is the RESET 
process of Figure 7. With negative voltage sweep, the LRS was weakly changed by RESET 
before (c). The resistance further increased after another weak RESET between state-(c) and 
(d). However, the image of Figure 13(d) did not change from Figure 13(b)–(c). This suggests 
that the RESET switching occurred locally in the filament, probably at the ends of filaments 
touching the electrodes [50, 51]. Through over-RESET with large negative current, the fila-
ment started to shrink (Figure 13(e)) and was diminished in Figure 13(f). It was erased in 
Figure 13(g) although some residuals remained. A clear hysteresis was seen, and the resis-
tance changed from 9 to 200 kΩ. The details are shown in Figure 14 with 30 ms intervals. 
The filament shrank from the anode (TiN) to the cathode (Cu). This behavior did not fit with 
the reported filament model [8, 10, 14, 22]. The TiN surface was oxidized in this experiment, 
which must have higher resistance than the filament. The Joule heat concentrated in this 
region may assist the Cu dissolution there, and the Cu ions moved along the electric field and 
are adsorbed by the Cu TE.

5.3. Switching power and filament size

The current flow during RESET is an important factor to control the filament. This is true also 
for SET to form the conductive filament. The filament size is a key factor to affect the resistance 

Figure 12. The RESET operation of a Cu/MoOx/TiN where the filament did not show clear connection to the Cu TE. (a) 
I–V switching curve and (b)–(g) corresponding video images. The filament was overall erased from TE to BE during 
over-RESET while it did now show any change to note at the moment of RESET switching (state c).

Figure 13. The RESET operation of a Cu/MoOx/TiN when the filament bridged two electrodes. (a) I–V switching curve 
and (b)–(g) corresponding video images.
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as well as the data retention of LRS. In this subsection, the relation between the switching 
power at SET and the filament size will be discussed using in situ TEM results.

To investigate the filament growth, five successive SET/RESET cycles were measured (Figure 15), 
where the over-SET process was gradually strengthened with increasing Icomp. Here, almost no 
over-RESET was used to prevent shrinkage of the filament. As identified in Figure 15(a), the 
resistance gradually decreased. Corresponding TEM images acquired after SET operations are 
shown in Figure 15(b)–(f). The filament grew step-by-step from the cathode (TiN) to the anode 
(Cu) with the increase of the injection power at SET. Though the resistance did not show drastic 
change even when the filament reached the Cu TE, it was because the resistance of TiN/Si seri-
ally connected to the switching layer limited the current.

There is a set of data with large SET current in Figure 16, where enough over-RESET was done 
to erase the filament in each cycle. During SET/RESET cycles, Icomp was stepwise increased to 
1 mA, at which the device was destructed. Figure 16(a)–(d) shows the TEM images taken just 
after each SET. The filament in the 1st SET with Icomp = 200 μA was thin, and it became thick 
with Icomp (Figure 16(e)) as expected earlier [51, 52].

Figure 14. Details of the RESET process in Figure 13, where the subsequent TEM video frames (images-1 to 24) were 
shown with the interval of 30 ms. The Cu filament shrank apparently from BE to TE.

Figure 15. The 9th to 13th SET operations with increasing the compliance current (Cu/MoOx/TiN). (a) The switching 
curves and the video images after SET in the (b) 9th, (c) 10th, (d) 11th, (e) 12th and (f) 13th cycles. The filament grew step 
by step, and the resistance decreased.
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as well as the data retention of LRS. In this subsection, the relation between the switching 
power at SET and the filament size will be discussed using in situ TEM results.

To investigate the filament growth, five successive SET/RESET cycles were measured (Figure 15), 
where the over-SET process was gradually strengthened with increasing Icomp. Here, almost no 
over-RESET was used to prevent shrinkage of the filament. As identified in Figure 15(a), the 
resistance gradually decreased. Corresponding TEM images acquired after SET operations are 
shown in Figure 15(b)–(f). The filament grew step-by-step from the cathode (TiN) to the anode 
(Cu) with the increase of the injection power at SET. Though the resistance did not show drastic 
change even when the filament reached the Cu TE, it was because the resistance of TiN/Si seri-
ally connected to the switching layer limited the current.

There is a set of data with large SET current in Figure 16, where enough over-RESET was done 
to erase the filament in each cycle. During SET/RESET cycles, Icomp was stepwise increased to 
1 mA, at which the device was destructed. Figure 16(a)–(d) shows the TEM images taken just 
after each SET. The filament in the 1st SET with Icomp = 200 μA was thin, and it became thick 
with Icomp (Figure 16(e)) as expected earlier [51, 52].

Figure 14. Details of the RESET process in Figure 13, where the subsequent TEM video frames (images-1 to 24) were 
shown with the interval of 30 ms. The Cu filament shrank apparently from BE to TE.

Figure 15. The 9th to 13th SET operations with increasing the compliance current (Cu/MoOx/TiN). (a) The switching 
curves and the video images after SET in the (b) 9th, (c) 10th, (d) 11th, (e) 12th and (f) 13th cycles. The filament grew step 
by step, and the resistance decreased.
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5.4. Summary of the switching schematics

Based on the results described above, SET/RESET operations are classified in Figure 17. There 
are two SET modes and two RESET modes.

When the MoOx layer contains little Cu inclusions, a high SET voltage is required. The Cu of 
the anode moves quickly into MoOx and generates deposits in a wide area, and they gather to 
form the filament (SET-1). When enough Cu has been dissolved in the initial state or during I–V 
cycles, the deposit appears on the TiN cathode and grows toward the Cu anode (SET-2). For 
enough resistance decrease, the filament connecting two electrodes is not necessarily required. 
The Cuz+ ions, oxygen vacancies and/or electrons are thought to contribute the total current. 
Connection of electrodes is achieved with sufficient over-SET.

There is a report on oxide CBRAMs with Ag [38]. When the Ag mobility in the oxide is low 
compared with the reduction rate, Ag ions are reduced to be metal before drifting for long dis-
tances, and the filament grows from the anode (Ag) to the cathode. SET-1 is categorized as this 
type as reported in ZrO2 [27], SiO2 [28] and WOx [42]. On the other hand, when MoOx contains 
sufficient Cu ions, the filament formation at the MoOx–cathode interface can be discussed 
using the conventional electrochemical model [8, 10, 14, 22]. The Cu ions near the cathode can 
quickly reach the cathode and easily initiate the filament formation. At the same time, Cu ions 
are continuously generated by oxidation of the Cu electrode and supplied into MoOx. As the 
result, the filament grows toward the anode (Cu). This is a plausible explanation for SET-2. A 
similar discussion was conducted in a previous report [53].

There are two RESET modes. The nonbridging filament tends to shrink toward the cathode (TiN). 
This is RESET-1. In this case, the filament acts as the anode. This transition is explained using 
the conventional model [8, 10, 14, 22]. The Cu filament is electrochemically dissolved in MoOx 

Figure 16. (a)-(d) In situ TEM images after SET with increasing the compliance current (a: 200, b: 400, c: 400 and d: 
600 μA). After each SET, strong over-RESET was done to erase the filament. (e) Filament diameter increased with the 
compliance current. In addition, the filament position changed very much.
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and becomes thin overall due to widely spread current leakage. This tendency is thought to be 
enhanced with temperature increase during over-RESET with high current. In contrast, the fila-
ment bridging two electrodes ruptures in a region contacting with the anode (TiN); RESET-2. 
This is caused by the thin ox-TiN layer. The Joule heat is preferably generated near this area 
because of its high resistance, and Cu of the lower part of the filament is preferably dissolved 
in MoOx. The dissolved ions move along the widely spread electric field. In both RESET modes, 
the heat generated in the filament must play an important role to the electrochemical processes.

Strictly speaking, the discussion here addresses filament formation/shrinkage during over-
SET/over-RESET. Sharp resistance switching in stable I–V cycles can occur without such large 
changes. Even when the filament showed a remarkable change, this change did not occur at 
the moment of sharp SET/RESET switching. Stable switching occurs very locally.

5.5. Role of the interface region

As described above, large geometrical change of the filament (or deposit) was not identified at 
the switching moment. To check this phenomenon, the lower part of MoOx layer was observed 
(Figure 18), where nonbridging deposit (area marked with “p” in Figure 18(b-7)) had been 
segregated at the MoOx–ox-TiN/TiN interface. In the I–V measurement of Figure 18(a), the 
switching current was less than 50 μA to prevent over-SET and over-RESET. While there was 
no change until Figure 18(b2), the bottom edge of the Cu deposit swelled out downward 
into ox-TiN in state-3 after the SET switching (arrow in Figure 18(b3)). This faint contrast of 
the filament appeared to bridge the deposit and TiN as seen in Figure 18(b4)–(b5). After the 

Figure 17. Switching schematics. There were two SET modes and two RESET modes.
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and becomes thin overall due to widely spread current leakage. This tendency is thought to be 
enhanced with temperature increase during over-RESET with high current. In contrast, the fila-
ment bridging two electrodes ruptures in a region contacting with the anode (TiN); RESET-2. 
This is caused by the thin ox-TiN layer. The Joule heat is preferably generated near this area 
because of its high resistance, and Cu of the lower part of the filament is preferably dissolved 
in MoOx. The dissolved ions move along the widely spread electric field. In both RESET modes, 
the heat generated in the filament must play an important role to the electrochemical processes.

Strictly speaking, the discussion here addresses filament formation/shrinkage during over-
SET/over-RESET. Sharp resistance switching in stable I–V cycles can occur without such large 
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Figure 17. Switching schematics. There were two SET modes and two RESET modes.
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RESET switching around −1.5 V, this faint contrast disappeared (Figure 18(b6) and (b7)). This 
filament appearance/disappearance was observed at the same position also in another switch-
ing cycle. Its width was roughly 3–5 nm. Such a small filament contributes to ReRAM switch-
ing without over-SET and over-RESET. The filament in ox-TiN appeared from Cu to TiN and 
disappeared from TiN to Cu. The inconsistency of this phenomenon with the conventional 
model [8, 10, 14, 22] can be discussed with the reduction/oxidation of the Cu ions within the 
oxide layer [27, 28, 54] or the doping/dedoping effect [55].

This device structure is classified as a CBRAM with double switching layers like CuTe or 
Cu:MoOx with GdOx [56, 57] showing stable operation. The thick filament in the solid electro-
lyte may act as a narrow electrode limiting the switching region. Power control not to erase 
the thick filament in the solid electrolyte layer is important for stable switching repetition.

6. Device degradation

Majority of in situ TEM works has been done to study the switching mechanism (especially 
SET). They were low power switching because the slow operation makes easy observations. 
Considering realistic devices, studies of device reliability like data retention, endurance [58–60], 
and switching stability are required. For this purpose, multiple switching cycles with various 
currents should be performed. In this section, two device degradation tests will be demonstrated 
using Cu/MoOx/TiN and Cu/WOx/TiN. In both the examples, the operation was gradually 
strengthened in repetitive cycles to execute the accelerated aging tests [29, 42, 44].

6.1. Position instability of the filament after over-RESET

For an actual operation, a large resistance ratio HRS/LRS is needed. The high HRS resistance 
satisfies this demand. This can be achieved using over-RESET. However, the switching cycle 
was fatally damaged, while the stable cycle continued without it.

Figure 18. The SET/RESET operation showing formation/erasure of a nanofilament in thin ox-TiN at the MoOx/TiN 
interface. The states 1–7 in (a) the I–V switching curve and (b) TEM images correspond to each other.
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The reason can be discussed using Figure 16 in Section 5.3. Five SET/RESET cycles were 
repeated using a Cu/MoOx/TiN CBRAM until device destruction for Icomp = 1 mA. The filament 
formed in each SET was well erased using over-RESET. A filament appeared in the 1st SET of 
Figure 16(a), and it was erased. In the 2nd cycle with larger Icomp, a thicker filament appeared 
at the position shifted along the left (Figure 16(b)). Its position changed again to the right in 
the 3rd SET (Figure 16(c)). In the 4th SET, it moved to the left (Figure 16(d)). In the example of 
Section 3.3 (without over-RESET), the filament kept the position, and the tiny filament nuclei 
were expected as residues. On the other hand, the nuclei must be removed after the strong 
over-RESET in Figure 16. Complete erasure of the filament can give a higher resistance value 
in HRS, and a large memory window can be achieved. However, at the same time, it possibly 
induces a position change of the filament and switching instability. Power control of RESET 
to maintain filament residuals is thought to be important for the stable switching operation.

6.2. HRS endurance failure

Strong over-RESET induces switching instability. Therefore, the SET/RESET switching cycles 
were investigated on Cu/WOx/TiN without performing over-RESET for 10 times, where the 
voltage was back to 0 V after the RESET switching occurred. The Icomp was increased stepwise 
from 20 to 300 μA. A large current may increase temperature and induce widely spread leak-
age current. Therefore, these experiments are “accelerated aging tests” under severe condi-
tions, which is usually done before practical use of electronic devices.

Typical I–V curves measured in TEM are shown in Figure 19(a)–(d). The characteristics of 
these curves are quite similar to that of a conventional device (Figure 1(b), 4 μm in diameter), 
both of which showed the sharp bipolar switching. The difference of the switching voltage 
from the conventional device is caused by the small device size of the TEM sample (~210 nm). 
The maximum SET current (Icomp) and the RESET currents (|−Imax|) are summarized in 
Figure 19(e). The current |−Imax| tended to increase with Icomp as pointed out in earlier reports 

Figure 19. The SET/RESET operations of Cu/WOx/TiN during in situ TEM observations. (a)–(d) Examples of I–V 
switching, (e) the relation between the compliance current Icomp and the maximum RESET current |−Imax|, and (f) the 
cyclic endurance graph where the resistances were evaluated using the I–V graphs both in the SET and RESET processes.
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satisfies this demand. This can be achieved using over-RESET. However, the switching cycle 
was fatally damaged, while the stable cycle continued without it.

Figure 18. The SET/RESET operation showing formation/erasure of a nanofilament in thin ox-TiN at the MoOx/TiN 
interface. The states 1–7 in (a) the I–V switching curve and (b) TEM images correspond to each other.
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The reason can be discussed using Figure 16 in Section 5.3. Five SET/RESET cycles were 
repeated using a Cu/MoOx/TiN CBRAM until device destruction for Icomp = 1 mA. The filament 
formed in each SET was well erased using over-RESET. A filament appeared in the 1st SET of 
Figure 16(a), and it was erased. In the 2nd cycle with larger Icomp, a thicker filament appeared 
at the position shifted along the left (Figure 16(b)). Its position changed again to the right in 
the 3rd SET (Figure 16(c)). In the 4th SET, it moved to the left (Figure 16(d)). In the example of 
Section 3.3 (without over-RESET), the filament kept the position, and the tiny filament nuclei 
were expected as residues. On the other hand, the nuclei must be removed after the strong 
over-RESET in Figure 16. Complete erasure of the filament can give a higher resistance value 
in HRS, and a large memory window can be achieved. However, at the same time, it possibly 
induces a position change of the filament and switching instability. Power control of RESET 
to maintain filament residuals is thought to be important for the stable switching operation.

6.2. HRS endurance failure

Strong over-RESET induces switching instability. Therefore, the SET/RESET switching cycles 
were investigated on Cu/WOx/TiN without performing over-RESET for 10 times, where the 
voltage was back to 0 V after the RESET switching occurred. The Icomp was increased stepwise 
from 20 to 300 μA. A large current may increase temperature and induce widely spread leak-
age current. Therefore, these experiments are “accelerated aging tests” under severe condi-
tions, which is usually done before practical use of electronic devices.

Typical I–V curves measured in TEM are shown in Figure 19(a)–(d). The characteristics of 
these curves are quite similar to that of a conventional device (Figure 1(b), 4 μm in diameter), 
both of which showed the sharp bipolar switching. The difference of the switching voltage 
from the conventional device is caused by the small device size of the TEM sample (~210 nm). 
The maximum SET current (Icomp) and the RESET currents (|−Imax|) are summarized in 
Figure 19(e). The current |−Imax| tended to increase with Icomp as pointed out in earlier reports 

Figure 19. The SET/RESET operations of Cu/WOx/TiN during in situ TEM observations. (a)–(d) Examples of I–V 
switching, (e) the relation between the compliance current Icomp and the maximum RESET current |−Imax|, and (f) the 
cyclic endurance graph where the resistances were evaluated using the I–V graphs both in the SET and RESET processes.
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[61, 62]. The cyclic endurance is summarized in Figure 19(f). The HRS/LRS resistance ratio 
was around 102. All of these properties satisfy switching fundamentals of the CBRAM devices. 
Thus, the in situ TEM results below can reflect the general ReRAM degradation property.

The resistance in the HRS gradually decreased in this graph, although the resistance ratio was 
still large. Here, the behavior of LRS could not be discussed because it was limited by the resis-
tance of the serially connected substrate. Continuing the switching cycles, the device would 
reach HRS endurance failure as in conventional devices [58–60]. Corresponding TEM images 
in the initial state and after SET/RESET operations are listed in Figure 20(a) and (b)–(h), respec-
tively. After switching from the initial state, a filament was formed at the position marked with 
a triangle in Figure 20(b). In the subsequent operations in Figure 20(c)–(d), clear change of the 
filament was not identified. Afterward, small deposits grew on TiN as seen in Figure 20(e)–(g) 
with the increase of the SET current. When Icomp was 300 μA, a thick filament appeared at 
another position (Figure 20(h)). With the advancement of the cycles with increasing Icomp, the 
WOx layer became thin. This indicates that current widely spread in WOx when Icomp was high. 
The Cu moved along this current leakage and was deposited widely at the interface. Even 
after the filament formation, the switching layer other than the filament changes. This must be 
the origin of the HRS endurance failure. This failure that occurred in the operation with weak 
RESET was proposed to be caused by the ruptured filament tip [58, 60]. However, based on the 
result here, Cu tends to accumulate at the interface not only around the conductive filament.

6.3. Summary

The switching characteristics are influenced by the electric power injected into the device. 
High SET current enhances the filament growth and lowering of the LRS resistance as 
seen in Figure 15. Although the resistance decrease in this figure was hindered behind 
the substrate resistance, it will be clearly seen in Figure 24(a) in the next section. High 
HRS/LRS resistance ratio is expected in this condition. However, strong SET (or over-SET) 
induces unexpected Cu deposition around the filament due to Cu dissolution and move-
ment along the widely spread current leakage. This makes the switching layer thin and 
the HRS endurance failure may occur. The strong RESET (or over-RESET) can recover this 
failure [58], which erases the filament (and deposits) and moves Cu inclusion back to the 
Cu electrode. However, the filament position tends to change in the next switching cycle. 

Figure 20. TEM images during device degradation of Cu/WOx/TiN. The I–V switching cycles were performed with no 
over-RESET. (a) Initial, after SET/RESET of the (b) 1st (Icomp = 20 μA), (c) 2nd (50 μA), (d) 4th (100 μA), (e) 6th (150 μA), (f) 
8th (200 μA), (g) 9th (250 μA), and (h) 10th (300 μA) cycles. The first filament was formed at the triangle in (b). The bright 
region corresponding to the WOx became thin.
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This may induce switching instability. The power balance of SET and RESET is important 
to avoid this degradation.

7. In situ TEM of nanofabricated CBRAM devices

Localization of the switching area may be effective to satisfy this requirement because the low 
power switching can be achieved without large change and easy power control of SET and 
RESET is expected. The nanofabricated multistacked device has a possibility to satisfy this 
requirement as used in the VCM [14, 63]. In this section, there is an example of in situ TEM of 
such devices [40, 41]. The evolution of the filament and Cu condensation are discussed in the 
nanometer range. Data retention and pulse endurance are also discussed.

Figure 21(a) is a schematic of the TEM sample. Nine devices were fabricated on a Si chip. Each 
CBRAM cell is composed of a Cu–Te-based solid electrolyte layer between the TE and the bot-
tom insulator in the contact hole (30 or 70 nm). For in situ TEM, the device was processed by 
the focused ion beam technique (FIB). The current was measured between the biased TE and 
the grounded Si. Repetitive I–V cycles during in situ TEM are shown in Figure 21(b), where 
60 cycles were confirmed without degradation. The most important point is that the TEM 
sample reproduced the same characteristics as actual devices on memory chips.

7.1. I–V switching current and filament size

The I–V switching curves and TEM images of the 30-nm cell are tabulated in Figure 22 where 
the data before and after SET and after RESET are compared for different Icomp. In all cases, the 
clear and sharp ReRAM switching was realized. In the main part of this table, the contact hole 
area was magnified with contrast enhancement. When Icomp was larger than 125 μA, contrast 
change due to filament formation/rupture is seen inside the insulator layer (triangle) while 
it could not be identified without the contrast enhancement. Other dark contrasts visible in 
the insulator, which did not show any change, are not related to the resistive switching and 

Figure 21. (a) Schematics of the nanofabricated device for in situ TEM, and (b) repetitive I–V switching (60 SET/RESET 
cycles) achieved in TEM.
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Thus, the in situ TEM results below can reflect the general ReRAM degradation property.
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the origin of the HRS endurance failure. This failure that occurred in the operation with weak 
RESET was proposed to be caused by the ruptured filament tip [58, 60]. However, based on the 
result here, Cu tends to accumulate at the interface not only around the conductive filament.

6.3. Summary
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seen in Figure 15. Although the resistance decrease in this figure was hindered behind 
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HRS/LRS resistance ratio is expected in this condition. However, strong SET (or over-SET) 
induces unexpected Cu deposition around the filament due to Cu dissolution and move-
ment along the widely spread current leakage. This makes the switching layer thin and 
the HRS endurance failure may occur. The strong RESET (or over-RESET) can recover this 
failure [58], which erases the filament (and deposits) and moves Cu inclusion back to the 
Cu electrode. However, the filament position tends to change in the next switching cycle. 
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over-RESET. (a) Initial, after SET/RESET of the (b) 1st (Icomp = 20 μA), (c) 2nd (50 μA), (d) 4th (100 μA), (e) 6th (150 μA), (f) 
8th (200 μA), (g) 9th (250 μA), and (h) 10th (300 μA) cycles. The first filament was formed at the triangle in (b). The bright 
region corresponding to the WOx became thin.
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This may induce switching instability. The power balance of SET and RESET is important 
to avoid this degradation.

7. In situ TEM of nanofabricated CBRAM devices

Localization of the switching area may be effective to satisfy this requirement because the low 
power switching can be achieved without large change and easy power control of SET and 
RESET is expected. The nanofabricated multistacked device has a possibility to satisfy this 
requirement as used in the VCM [14, 63]. In this section, there is an example of in situ TEM of 
such devices [40, 41]. The evolution of the filament and Cu condensation are discussed in the 
nanometer range. Data retention and pulse endurance are also discussed.

Figure 21(a) is a schematic of the TEM sample. Nine devices were fabricated on a Si chip. Each 
CBRAM cell is composed of a Cu–Te-based solid electrolyte layer between the TE and the bot-
tom insulator in the contact hole (30 or 70 nm). For in situ TEM, the device was processed by 
the focused ion beam technique (FIB). The current was measured between the biased TE and 
the grounded Si. Repetitive I–V cycles during in situ TEM are shown in Figure 21(b), where 
60 cycles were confirmed without degradation. The most important point is that the TEM 
sample reproduced the same characteristics as actual devices on memory chips.

7.1. I–V switching current and filament size

The I–V switching curves and TEM images of the 30-nm cell are tabulated in Figure 22 where 
the data before and after SET and after RESET are compared for different Icomp. In all cases, the 
clear and sharp ReRAM switching was realized. In the main part of this table, the contact hole 
area was magnified with contrast enhancement. When Icomp was larger than 125 μA, contrast 
change due to filament formation/rupture is seen inside the insulator layer (triangle) while 
it could not be identified without the contrast enhancement. Other dark contrasts visible in 
the insulator, which did not show any change, are not related to the resistive switching and 

Figure 21. (a) Schematics of the nanofabricated device for in situ TEM, and (b) repetitive I–V switching (60 SET/RESET 
cycles) achieved in TEM.

Nanoscale Switching and Degradation of Resistive Random Access Memory Studied by In Situ...
http://dx.doi.org/10.5772/intechopen.69024

81



thought to be wreckages of the solid electrolyte and/or electrodes appeared during the FIB 
process. The filament appeared and vanished at the same position near the edge of the contact 
hole. Electric field enhancement at the edge played an important role. On the other hand, no 
remarkable change was seen with low Icomp, while the SET/RESET switching was clearly seen. 
Very fine filaments must be formed in these cases.

7.2. Accumulation of Cu

To perform the elementary analyses, the EDX mapping was done. The results are shown in 
Figure 23, where the data in the initial state and after the SET with Icomp = 60 μA of the 70-nm 
cell, and after SET with Icomp = 450 μA of the 30-nm cell are compared.

In the initial state, both Cu and Te maps showed uniform distribution in the solid electrolyte 
layer. Little change in the distribution was observed for either Cu or Te after SET (60 μA) 
where a clear filament could not be seen in the TEM image. However, gathering of Cu was 
observed at the left end of the contact hole at SET with Icomp = 450 μA. In addition, the Cu 
moved and accumulated in the insulator layer. This was not seen in the Te map, where the 
insulator layer with a white contrast is still visible. This suggests that only Cu ions moved into 

Figure 22. The I–V switching curve and TEM images of the 30-nm cell for various compliance current Icomp. The images 
in HRS before SET, LRS after SET, and HRS after RESET are compared. With large Icomp, the filament appeared and 
disappeared in the insulator layer (triangle).
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the insulator by the electric field at SET. This is consistent with the filament formation shown 
in Figure 22 and the model predicted in a previous report of the similar double-layer CBRAM 
device [56]. These results prove that resistive switching here was a result of a formation pro-
cess of the Cu filament as discussed in the previous section.

7.3. Data retention and pulse endurance

Resistance variation after SET for various Icomp is shown in Figure 24(a). The LRS formed with 
Icomp ≥ 40 μA showed a good retention (more than 3 × 106 s = 3 months). Even with a small SET 
current generating very thin filament that was hard to be observed, a good retention could be 
achieved when the filament was localized in the thin insulator. The HRS retention capability 
was also confirmed to be more than 3 months because it is more stable than LRS. An addi-
tional issue can be discussed using Figure 24(a). The resistance just after SET decreased with 
Icomp. This was caused by the thickened filament with large Icomp as shown in Figure 22.

Repeatable pulse-voltage operation is another issue to be investigated. A pulse endurance 
graph during in situ TEM is shown in Figure 24(b). About 105 pulse switching cycles were 
achieved inside the TEM without any damage. These results clearly show that CBRAMs 
worked normally even during TEM experiments.

7.4. Summary

Considering the practical application, the switching operations of nanofabricated Cu-Te cells 
were explained in this section. Adopting the structure with double switching layers, the Cu 

Figure 23. TEM images and EDX maps (Cu and Te) of three devices. Initial state and two SET processes with different 
Icomp are compared. In the right column, the square region in the TEM image was analyzed by EDX. When current was 
large, Cu movement into the insulator layer was identified. Note the magnification of the EDX maps are not constant..
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the insulator by the electric field at SET. This is consistent with the filament formation shown 
in Figure 22 and the model predicted in a previous report of the similar double-layer CBRAM 
device [56]. These results prove that resistive switching here was a result of a formation pro-
cess of the Cu filament as discussed in the previous section.
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Resistance variation after SET for various Icomp is shown in Figure 24(a). The LRS formed with 
Icomp ≥ 40 μA showed a good retention (more than 3 × 106 s = 3 months). Even with a small SET 
current generating very thin filament that was hard to be observed, a good retention could be 
achieved when the filament was localized in the thin insulator. The HRS retention capability 
was also confirmed to be more than 3 months because it is more stable than LRS. An addi-
tional issue can be discussed using Figure 24(a). The resistance just after SET decreased with 
Icomp. This was caused by the thickened filament with large Icomp as shown in Figure 22.

Repeatable pulse-voltage operation is another issue to be investigated. A pulse endurance 
graph during in situ TEM is shown in Figure 24(b). About 105 pulse switching cycles were 
achieved inside the TEM without any damage. These results clearly show that CBRAMs 
worked normally even during TEM experiments.

7.4. Summary

Considering the practical application, the switching operations of nanofabricated Cu-Te cells 
were explained in this section. Adopting the structure with double switching layers, the Cu 
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nanofilament can be localized in the thin insulator, and a sharp switching can be achieved 
with a low current. The accumulation of Cu in the Cu-Te layer forms a thicker filament than 
the one in the insulator, and it acts as a miniaturized Cu electrode that limits the switching 
area. Increasing the switching current, the filament becomes thick for easy TEM observations, 
and the retention property improves. Selecting optimum operation condition, the 105 pulse 
switching and long retention over 3 months are possible during in situ TEM. The double-layer 
CBRAM can limit the switching area with short amount of Cu movement. This must be the 
key factor to realize stable and sharp switching properties.

8. Concluding remarks

In this contribution, we reviewed our recent in situ TEM works of various CBRAMs; uncov-
ered Cu:GeS contacted with a needle-shaped electrode, stacked Cu/MoOx/TiN or Cu/WOx/
TiN, and the nanofabricated Cu–Te-based ReRAM cell.

In all cases, the Cu conductive filament appeared in the SET process and shrank/vanished 
in the RESET process. There were two SET modes and two RESET modes. The growth/era-
sure direction of the filament depended on the switching history especially the amount of Cu 
dissolved in the switching layer. However, in the I–V switching cycles, the filament did not 
necessarily show remarkable change in geometry at the SET/RESET switching moment. The 
local area near the electrode is thought to contribute this switching. In situ TEM in nanometer 
or subnanometer scale is necessary for a detailed understanding of the filament evolution.

The Cu filament grew/shrank much during over-SET/over-RESET. For such a large change, the 
operation current (and accompanied temperature increase) seems to play an important role. 
With a current increase at SET, the filament became thick and the LRS resistance decreased. 
However, when strong RESET was not operated, influence of widely spread leakage current 

Figure 24. Reliability test performed during in situ TEM. (a) The LRS retention graph after SET with various compliance 
currents, where the read voltage was +0.2 V. (b) The pulse endurance graph. The pulse voltage and width were +3.0 V 
and 500 μs (for SET) or −1.5 V and 100 μs (for RESET).
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became conspicuous, and unexpected Cu deposits were formed widely at the interface. This 
reduced the effective thickness of the switching layer and lead to the HRS endurance fail-
ure. While strong RESET may prevent this degradation, the filament position changed under 
this condition, and the switching became unstable. The switching powers at SET and RESET 
should be balanced for clear and stable ReRAM switching.

This was realized by adopting miniaturized CBRAM cells with double switching layers. The 
thin filament in nm range was localized in a thin insulator layer, while thicker Cu condensa-
tion occurred in the solid electrolyte, which could act as a protrusion of the electrode. Sharp 
and stable switching was performed with low current, and less degree of Cu movement was 
expected. This sharp switching property is applicable for conventional binary memories. On 
the other hand, the sharp switching is not ideal for application of the artificial neural net-
works that require multilevel or analogue control of the resistance. Further device designing 
is needed to perform stable operation for this type of devices.

The operation failure is the critical issue to ensure the practical application of ReRAMs. It 
is indispensable to clarify main origins of the malfunction and to guarantee device reliabil-
ity. We demonstrated many in situ TEM functions that are available for reliability tests: I–V 
characteristics, pulse switching, endurance, and data retention. While the time resolution is 
limited by the video frame rate (30 ms/frame in usual cases), other functions like TEM or 
scanning TEM (STEM) imaging as well as the elementary or chemical analyses using EDX or 
electron energy loss spectroscopy (EELS) are possible. In situ TEM is applicable to character-
ize nanometer-scale ReRAM cells expected for gigabit scale integration.
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Abstract

Diodes incorporating a bilayer of a metal oxide and an organic semiconductor can show 
unipolar, nonvolatile memory behavior after electroforming. Electroforming involves 
dielectric breakdown induced by prolonged bias voltage stress. When the power dissi-
pated during breakdown is limited, electroforming is reversible and involves formation 
of defects at the organic-oxide interface that can heal spontaneously. When the power 
dissipation during breakdown exceeds a certain threshold, electroforming becomes 
irreversible. The fully electroformed diodes show electrical bistability, featuring (meta)
stable states with low and high conduction that can be programmed by voltage pulses. 
The high conduction results from current flowing via filamentary paths. The bistability 
is explained by the coexistence of two thermodynamically stable phases at the interface 
between semiconductor and oxide. One phase contains mainly ionized defects and has 
a low work function, while the other phase has mainly neutral defects and a high work 
function. In the diodes, domains of the phase with low work function give rise to cur-
rent filaments. In the filaments, Joule heating will raise temperature locally. When the 
temperature exceeds the critical temperature, the filament will switch off. The switching 
involves a collective recombination of charge carriers trapped at the defects as evidenced 
by bursts of electroluminescence.

Keywords: nonvolatile electronic memory, electroforming, unipolar resistive switching, 
phase transition, critical point

1. Introduction

Metal-insulator-metal (MIM) systems often show electrically induced resistive switching. 
Diodes of this type have therefore been proposed as replacement of standard NAND-flash 
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nonvolatile electronic memory [1]. In their pristine state, the materials in the MIM diodes are 
usually high-resistivity insulators. Before the diodes show memory properties, they have to 
be electroformed by applying a high electric field in a current-voltage sweep with an appro-
priate current compliance. This induces a so-called soft breakdown. The electroformed device 
can be switched between a high conductance on-state and a low conductance off-state as 
shown in Figure 1. The resulting bistable current-voltage (I-V) characteristics can be applied 
as a nonvolatile memory. A surprisingly large variety of materials and material combinations 
can give rise to resistive switching [2–9], which indicates that the mechanism of the resistive 
switching may be very general.

The electric fields needed to induce the electroforming are usually close to the critical field 
for dielectric breakdown. In practice, the electroforming needs to be tightly controlled by, 
for example, programming a current compliance limit in the external circuit, in order to 
avoid permanent shorting and breakdown of the MIM diodes. The yield of active mem-
ory cells in the electroforming step is crucial for the success of memristors as a device 
 technology. A detailed understanding of processes happening during electroforming is 
therefore of paramount importance.

Figure 1. Diode layout. (a) Photograph of device containing several diodes. The devices with an active area of 9 mm2 
were encapsulated to exclude O2 and H2O. (b) Typical nominal e-only diode layout where the Al2O3 thickness is varied. 
(c) Flat band diagram where numbers are in eV. (d) J-V characteristics after forming showing a pronounced negative 
differential resistance.
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Resistive switching was first reported in 1962 when Hickmott described a hysteretic I-V char-
acteristic in thin anodic films [10]. A large negative resistance was observed for thin films 
of SiOx, Al2O3, Ta2O5, ZrO2, and TiO2. Early research up to the 1980s has been thoroughly 
reviewed by Dearnaley et al. [11], by Oxley [12], and by Pagnia and Sotnik [13]. In the 1990s 
attention shifted from binary oxides to complex metal oxides and has been reviewed by Sawa 
[14] and by Waser and Aono [15].

The switching mechanism of electroformed diodes can be unipolar or bipolar depending on 
the type of oxide and the electroforming procedure applied [3]. In unipolar switching, the 
switching direction depends on the magnitude of applied bias but not on the polarity. The I-V 
curves of both the on-state and the off-state are symmetric, and the type of electrode is rela-
tively unimportant. In contrast, the switching is called bipolar or antisymmetric when the set 
of voltage for the on-state occurs at one voltage polarity, while the reset to the off-state occurs 
at the reversed polarity. The I-V curves are asymmetric and depend on the type of electrode.

Here, we focus on unipolar switching in diodes containing a layer of Al2O3. In order to fabri-
cate reproducible memories, a bilayer comprised of a thin insulating Al2O3 layer in series with 
a semiconducting layer is needed. The yield of active memories made with only an Al2O3 layer 
is extremely low. Electroforming then almost inevitably leads to hard shorts, irrespective of 
the set of current compliance or of the type of forming, for example, pulsed or voltage sweep. 
The electrodes melt or even evaporate. Already for the memories made in the 1960s and 1970s, 
it turned out that an unidentified layer of carbon enhances the reproducibility. Diodes made 
in high vacuum did not show switching. Oil vapor contamination from a rotary pump was 
needed to make reliable memories [13].

Reproducible memories with a yield of about unity could be fabricated by adding a well-
defined, thin layer of a semiconducting polymer [16]. The devices therefore are often called 
polymer RRAMs. The type of electrodes turned out to be irrelevant. After electroforming, 
the I-V characteristics are symmetric. A narrow voltage region with a negative differen-
tial resistance (NDR) is observed in both polarities. The device can be switched between a 
high conductance on-state and a low conductance off-state at biases corresponding to the 
top and bottom of the NDR. The switching is unipolar and due to the Al2O3. The distrib-
uted series resistance of the polymer prevents thermal runaway when a local filament is 
turned on. Polymer/oxide diodes are then expected not only to exhibit a better control of the 
switching properties but also to have superior endurance as compared to oxide-only based 
memristors. In this feature we will show that the semiconducting polymer not only acts as 
a current-limiting series resistance but that the polymer also plays a crucial role by provid-
ing a charged layer of trapped electrons at the polymer/oxide interface. This charge layer 
enhances the tunneling across the oxide and tunes the formation of electrically bistable 
defects.

This contribution is an explanatory account of electroforming and unipolar switching in MIM 
diodes with an internal bilayer structure consisting of Al2O3 and a semiconducting  polymer 
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and is organized as follows. In Section 2 we describe investigations into the trapping of 
charges in pristine diodes and the dielectric breakdown and electroforming that occurs at 
high bias. In Section 3 we discuss the filamentary nature of the conduction in the diodes 
and the experimental evidence for this heterogeneous conduction from noise measurements. 
Finally, Section 4 is devoted to the switching process in the electroformed diodes.

2. Charge trapping and electroforming

Pristine diodes consisting of an Al/Al2O3/polyspirofluorene/Ba/Al stack have a large density 
of empty trap sites for electrons which are located at the interface between the semiconducting 
polymers. The trap sites can be studied by quasi-static capacitance-voltage (QSCV) measure-
ments [17] and optical detrapping investigations. These measurements provide information 
on the position and number density of the trap sites.

The QSCV method is ideally suited to study traps that fill quickly but empty slowly. During 
the measurement, the bias voltage is swept over a certain voltage range and by integrating the 
current; one keeps track of the number of charges that enter the diode. From the voltage and 
charge, the capacitance is calculated. Figure 2 shows the cyclic QSCV scans. First, the voltage 
is swept over the reverse bias range (V < 0). In this range a practically constant capacitance 
of 30 nF/cm2 is recorded which we interpret as the geometrical capacitance, C0. The minor 
hysteresis in the reverse bias range is due to a small leakage current. When subsequently 

Figure 2. Sequential QSCV characteristics for a Al/Al2O3 (40 nm)/polymer(80 nm)/Ba/Al diode measured using an 
integration time of 4 s and a voltage step of 100 mV. For negative bias voltage V, no charge is injected into the polymer. 
Both oxide and polymer act as insulators. For positive bias, electrons are injected into the polymer and trapped near the 
polymer/oxide interface.
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sweeping the bias voltage over the forward bias range, a much large hysteresis is observed. 
When the voltage is swept over a certain range for the first time, a very large capacitance is 
obtained, which we denote Coxide. Scanning the voltage over the same range but now either in 
the reverse direction or for a second time in the same direction, the capacitance measured is 
low and practically equal to C0. To account for the anomalously high capacitance values in the 
first scans, we note that under forward bias electrons can be injected into the semiconducting 
polymer. These electrons can migrate through the polymer layer under the influence of the 
applied bias and subsequently get trapped at the polymer/oxide interface. The trap sites are 
relatively deep, and spontaneous detrapping of the electrons is found to occur on the time 
scale of days. Detrapping of electrons can be accelerated by illumination with light of photon 
energy above the bandgap of the semiconducting polymer (3.1 eV).

By varying the thickness of the oxide layer, it can be shown that the anomalous capacitance is 
inversely proportional to the thickness of the oxide [18, 19]. From the QSCV and optical detrap-
ping experiments [20], it follows that the density of trap sites at the interface exceeds 1017 m−2.

Due to the accumulation of electrons at the polymer/oxide interface, the potential difference 
applied to the diodes as a whole mainly drops over the oxide layer. When increasing the bias 
voltage over the diode, one will eventually come to a point where the electric field in the oxide 
exceeds the critical field strength for electrical breakdown, which is estimated at 109 V/m for 
Al2O3 [21]. This could lead to catastrophic failure of the diode. In the case of the polymer/
oxide diodes, however, the layer of semiconducting polymer acts as current-limiting element, 
preventing complete or “hard” breakdown of the diodes.

A subtle way of inducing “soft” electrical breakdown in the polymer/oxide diodes is to sub-
ject the structure to so-called constant current stress [22]. This is illustrated in Figure 3. In the 
particular example shown, the diode is subjected to a constant current of 1 μA/cm2, and the 
voltage needed to maintain this current is monitored over time. As can be seen, the voltage 
that needs to be applied builds up rather quickly over the course of less than a second. This 
time scale corresponds to complete filling of the trap sites in the diode. When the voltage 
over the 10-nm-thick oxide reaches 10 V, the critical dielectric strength of the aluminum oxide 
exceeds, and a sudden, “soft” breakdown occurs. The dielectric breakdown allows the current 
through the diode to be maintained at much lower applied bias (V < 1 V).

An intriguing aspect of the “soft” dielectric breakdown shown in Figure 3 is that the damaged 
insulator shows spontaneous repair. This “self-healing” is illustrated in Figure 4. When moni-
toring the leakage current through the damaged diode at a relative low applied bias voltage, 
one finds that the current decreases over time, following a power-law decay. Curiously, the 
self-healing can be temporarily inhibited, by first emptying the trap sites optically and then 
keeping the diode at short circuit. After 25 h, the self-healing process can be reactivated by 
refilling the traps and proceeds with the same kinetics as in the case without inhibition.

The dielectric breakdown under constant current stress has been investigated in more detail. 
We find that when the electrical power that is dissipated during the breakdown is limited to 
0.1 mW/cm2, the breakdown is fully reversible. In a tentative explanation, we attribute the 
breakdown and the subsequent self-healing to quasi-reversible formation of oxygen vacancy 
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and is organized as follows. In Section 2 we describe investigations into the trapping of 
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Figure 2. Sequential QSCV characteristics for a Al/Al2O3 (40 nm)/polymer(80 nm)/Ba/Al diode measured using an 
integration time of 4 s and a voltage step of 100 mV. For negative bias voltage V, no charge is injected into the polymer. 
Both oxide and polymer act as insulators. For positive bias, electrons are injected into the polymer and trapped near the 
polymer/oxide interface.
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sites in the oxide near the polymer/oxide interface. This mechanism is described in Figure 5. 
Upon injection of positive charge carriers into the oxide, two oxygen ions dimerize into an O2 
molecule, whereby the electrons are annihilated by the trapped holes. The oxygen vacancies, 
also referred to as F-centers, can exist in a charge neutral state where an electron occupies the 

Figure 3. Breakdown under constant current stress. The voltage across the Al/Al2O3(20 nm)/polyspirofluorene(80 nm)Ba/
Al capacitor as a function of time under a constant current stress of 1 μA/cm2. An abrupt voltage drop is observed at 10 V. 
The inset shows the corresponding change in capacitance estimated from the change in slope of the voltage.

Figure 4. Inhibition of self-healing. Current-time plots for a capacitor electroformed with constant low current stress 
of 1 μA. (a) The post-breakdown current probed at 0.5 V bias. The current decays with a power-law dependence on 
time. (b) The current decay in the same electroformed but now after emptying electron traps with 1000 s illumination 
with a blue LED (350 ≤ λ ≤ 650 nm, λmax = 440 nm). After t = 25 h triggers, the self-healing process can be reactivated by 
application of a brief 0–5V voltage ramp to refill the traps.
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empty space left by the oxygen anion. When the electron leaves the vacancy, the F-center is 
ionized (F+). The ionized F+ center can be regarded as a trapped hole. The O2 molecules may 
diffuse into the polymer layer, escape from the electroformed device, or even form oxygen 
interstitials, depending on the dissipated power used in the electroforming. As long as the 
O2 molecules formed in the breakdown process remain close to the interface, we expect the 
breakdown to be reversible [23]. Due to their large electronegativity, the O2 molecules trap 
 electrons. The formed superoxide ions, O2−, react with a neutral and charged oxygen vacancy 
to a defect-free Al2O3 lattice, indicated by the open square, as

   F   +  +  F   + +   O   2    −  → □  (1)

We note that binding of neutral molecular oxygen to n-type metal oxides is a process that 
occurs in mainly oxides [16, 24, 25], allowing one to monitor oxygen partial pressure through 
measurement of the electrical resistance. Reversible, electrically induced formation of anion 
vacancy sites (F-center) in ionic-wide bandgap semiconductors has also been demonstrated 
for alkali halide-polymer diodes [26–29].

As mentioned above, when the power dissipated during the electrical breakdown is high, the 
process becomes irreversible, and the diodes are electroformed. We find that the electrical 
resistance of the electroformed diodes can be switched reversibly by applying voltage pulses.

3. Filamentary conduction and noise measurements

The electrical current in memristor devices is not homogeneous but transported through 
localized paths or filaments. Evidences have been provided by scanning probe measurement 

Figure 5. Self-healing mechanism. The hatched and filled spheres represent Al3+ and O2− ions of the Al2O3 lattice. Neutral 
oxygen, O2, and the superoxide ion, O2− are presented by the lemniscates. The first electrons are trapped at the polymer/
oxide interface. When the bias is larger than the flat band voltage, holes are injected into the oxide, and a highly polarized 
electric double layer is formed at the polymer/oxide interface. In dielectric breakdown oxygen vacancies, F-centers are 
formed. In self-healing, superoxide ions, O2−, react with a neutral and charged oxygen vacancy to reform a defect-free 
Al2O3 lattice.
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which confirm the existence of conducting filaments in Al2O3 [30, 31] and by an IR-enhanced 
CCD camera [32]. The spatially resolved thermal images show, in the on-state, hot spots due to 
highly conductive paths. In the off-state, the spots disappear. However, the spots are not cre-
ated and destroyed upon switching. Upon repeated switching between the on- and off-states, 
the same original hot spots were detected in the thermal image. From these observations it has 
been concluded that upon switching, filaments are neither generated nor destroyed but that 
individual filaments are turned on and off, like switches.

Relevant information about filament properties is obtained from a detailed electrical charac-
terization. In oxide-/polymer-based memristors, three different behaviors are directly caused 
by filamentary conduction:

a. Electrical noise: Filaments cause discrete current fluctuations that generate random tel-
egraph like noise and affect the memory reproducibility and scalability.

b. Slow response upon repeating switching: Filaments interact with nearby filaments, and 
this interaction may slow down the switching speed of a memory device.

c. Anomalous temperature dependence of the current: The mechanism to turn on filaments 
may lead to a counter-intuitive temperature dependence of the current.

In the next paragraphs, we discuss in detail all the electrical characteristics caused by filamentary 
conduction.

Electrical noise. Polymer/oxide memristor devices when operating in the on-state show dif-
ferent types of electrical noise depending on the bias point of the I-V curve where it is recorded 
[33]. For a bias of 0.5 V (ohmic region), the noise follows the 1/f dependence (see Figure 6). 
When the diode is biased at higher voltages, in a space-charge-limited (SCL) region, the noise 
 follows a 1/f3/2 dependence. Hence, a new physical mechanism becomes active at high bias. 

Figure 6. Current noise spectrum in the transition from ohmic to SCL region, indicating a diffusion mechanism at higher bias.
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This mechanism is a switching-on and switching-off of conducting channels, at the Al2O3 con-
tact. That process dominates the 1/f spectrum and the observed slope of the spectrum (1/f3/2). 
Finally, very near to the onset of the NDR region, the noise shows discrete fluctuations like a 
random telegraph noise (RTN).

Typical time traces from a continuous measurement are presented in Figure 7. The time 
records show large discrete current fluctuations that can reach about 45 nA.

Discrete fluctuations in current-voltage or current-time characteristics appear when charge 
transport is controlled by the statistical capture/emission of electrons at electron trap sites. 
Especially when transport occurs through current-carrying filaments, large current fluctuations 
can occur.

The large discrete current fluctuations allow us to quantify the time that a filament is turned 
on, τon, and turned off, τoff. The first and second traces in Figure 7 exhibit a filamentary path 
that is most of the time active and only once in a while switches off, with τoff ~ 0.7 ms. The third 
trace shows the filament being turned on and turned off at similar time scales of about 1.7 ms. 
The current fluctuations change their frequency in a random way.

Slow response upon repeating switching. When a memory device is in a high conductive 
state, there is a large ensemble of filaments. We will show here that when filaments are in rela-
tively close proximity, the switching-on and switching-off of an individual filament not be a 
totally independent of a filament in the neighborhood. Filaments can interact with each other 
and contribute to turn on more filaments or even promote a cascade of switching-off events.

It is instructive at this point to investigate the changes in potential distribution and current 
flow patterns in the diode in the vicinity of a conducting filament. This was achieved using 
the COMSOL Multiphysics simulator.

In Figure 8 the device is represented by a simple two-layer structure composed of a thin, 
high-resistivity oxide layer supporting a thicker, more conductive polymer layer. The color 
(online) maps represent the potential distributions (blue = −10 V, pink = 0 V) which are further 
emphasized by superimposed contour lines. In (a) the device is in the off-state; leakage current 

Figure 7. Electrical noise of a memristor programmed in the on-state at T= 220 K. The time traces show the current RTN 
fluctuations under an applied bias near the onset of the NDR region. The time traces were recorded at different times 
after the start of the measurements (elapsed time).
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which confirm the existence of conducting filaments in Al2O3 [30, 31] and by an IR-enhanced 
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through the oxide is minimal so that virtually all the applied voltage appears across the oxide 
layer owing to the higher conductivity of the polymer. Next, we include a conducting filament 
in the oxide. This results in significant changes in the local potential (b) and in the current 
density profile (c). We note two important changes:

(i) The potential at the polymer/oxide interface decreases giving rise to lateral electric fields 
and extensive distortion of the potential in both the polymer and oxide layers.

(ii) The current tunnels through the polymer into the filament from a circular area of the 
electrode whose radius exceeds the polymer film thickness.

In the case of low on-currents, conducting filaments are isolated and well separated. The non-
uniform potential distribution (Figure 8(b) and (c)) allows electrons to be drawn through the 
polymer from a relatively large area of the electrode. The critical filament current required to 
effect efficient recombination and turn off the filaments is achieved at relatively low voltages.

For high on-currents, a large number of conducting paths are turned on, many in the neigh-
borhood of an originating filament as discussed above. As seen in Figure 8(d) and (e), the 
electrode area from which electrons are drawn does not increase in proportion to the number 
of neighboring filaments. Higher voltages will be required then to provide the critical elec-
tron current through the polymer for extinguishing these filaments. Consequently, within a 
volume extending out from the filament into the polymer, considerable Joule heating will 
occur. Significantly, it is well known that the electrical breakdown strength of most insulating  

Figure 8. COMSOL simulations showing potential distributions represented both in color (blue = −10 V, pink = 0 V) and 
by superimposed contour lines (a), (b), (d), and current streamlines (c) and (e) in our two-layer capacitor model. The 
upper layer represents the polymer and the lower a thin oxide film. (a) Potential distribution in a device in the HRS. 
The corresponding current streamlines will be vertical and of low density. The changes in potential distribution and 
current streamlines arising from a single conducting filament in the oxide are shown in (b) and (c). The corresponding 
distributions for two adjacent filaments are given in (d) and (e).

Memristor and Memristive Neural Networks102

materials decreases with increasing temperature: a relevant example is soft breakdown in SiO2 
films a few nanometers thick [34]. We postulate that as the applied bias increases, a combi-
nation of increasing oxide field and high temperature in the vicinity of the conducting fila-
ment triggers the switching of a nearby filament. Figure 8(d) and (e) shows that the region of 
disturbed potential and high current density now expands triggering further switching. This 
process is expected to continue until two local hot spots overlap or expansion becomes limited 
by the process(es) leading to the NDR. Even if further filamentary conduction is not initiated, 
additional thermally induced currents will flow in both the polymer and oxide leading to a 
similar expansion of the hot spot.

Anomalous temperature dependence of the current. The I-V characteristics for the on-
state show a large increase in the magnitude of the current upon lowering the tempera-
ture of the diodes. This behavior is illustrated in Figure 9. The increase of current is more 
pronounced at higher bias voltages, in the voltage range below the sharp onset of the 
NDR.

To further explore this unusual temperature dependence, a diode was programmed into the on-
state at room temperature and then cooled down until 120 K. Meanwhile, the current transient 
was recorded while applying a continuous bias voltage (2 V). The magnitude of the current 
increases more than double in a temperature range of 200°C, as illustrated in Figure 10. This 
observation corresponds to a positive temperature coefficient (PTC) [35–37] of the electrical 
resistivity, α ≈ 0.01 K−1, an anomalously large value when compared with typical values for 
metals (α = 0.0039 K−1 for Cu). On the basis of the anomalously large PTC, it contradicts the 
explanations based on a metallic type of conduction.

The large and stepwise increase in current indicates that by lowering the temperature some 
filaments can be activated. In the next section, we provide a tentative explanation for this 
remarkable experimental observation.

Figure 9. Temperature dependence of the I-V curve of a diode programmed into the on-state.
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materials decreases with increasing temperature: a relevant example is soft breakdown in SiO2 
films a few nanometers thick [34]. We postulate that as the applied bias increases, a combi-
nation of increasing oxide field and high temperature in the vicinity of the conducting fila-
ment triggers the switching of a nearby filament. Figure 8(d) and (e) shows that the region of 
disturbed potential and high current density now expands triggering further switching. This 
process is expected to continue until two local hot spots overlap or expansion becomes limited 
by the process(es) leading to the NDR. Even if further filamentary conduction is not initiated, 
additional thermally induced currents will flow in both the polymer and oxide leading to a 
similar expansion of the hot spot.
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Figure 9. Temperature dependence of the I-V curve of a diode programmed into the on-state.
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4. Electroluminescence and filament model

A key experimental observation in unraveling the mechanism of the nonvolatile electronic 
memory effects in aluminum oxide has been the occurrence of electroluminescence in the vis-
ible range of the spectrum during the switching [10, 38]. This observation provides direct 
experimental evidence that recombination of positive and negative charge carriers takes 
place at defects in the oxide. Furthermore, it has also been reported that electroformed oxide 
layers can emit electrons into the vacuum [11]. The latter observations show that an electro-
formed oxide layer on a metal can dramatically alter the work function of the underlying 
metal [39, 40].

In Figure 11 we illustrate the occurrence of electroluminescence in electroformed Al2O3/poly-
fluorene diodes during switching. Starting at zero bias in the high conduction state, the current 
density rises rapidly with increasing bias. For voltages above 4 V, the diode shows negative 
differential resistance (NDR), and the current density actually decreases with increasing bias 
voltage. In the voltage range corresponding to the NDR behavior, the diode also shows irreg-
ular electroluminescence. Light is emitted during a series of short bursts. At high bias voltage 
(V > 10 V), the diodes show more steady light emission.

In order to account for the filamentary conduction and the electroluminescence, we propose 
that in the diode clusters of charged defects at the polymer/oxide interface are present. 
We propose a charged bilayer arrangement of charges with, for example, positively charged 
defects in the oxide compensated by trapped electrons on the polymer side of the inter-
face. The double-layer arrangement locally changes the work function of the electrodes and 

Figure 10. Temperature dependence of the I-V curve of a diode programmed into the on-state monitored at 2 V. The 
cooling speed is 1 K/min.
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allows current to flow at already low bias voltages. The local spots on the oxide layer where 
the effective work function has been altered give rise to current filamentary currents in the 
diode (see Figure 12). We note that formation of charged double layers near metal electrodes 
is well known in wet electrochemistry [41, 42].

To explain the electrical bistability of the nonvolatile memories, we propose the coexistence of 
two thermodynamically stable phases in the electroformed oxide layer [26]. The two phases 
occur in the quasi-two-dimensional double layer consisting of trapped electrons in the organic 
semiconductor and holes trapped at defects in the metal oxide. One phase containing mainly 
ionized defects has a low work function. The other phase comprises mainly defects in their 
neutral state and has a high work function. In the diodes, domains of the phase with low work 
function constitute current filaments.

Figure 11. Electroluminescence. (Upper panel) current density (J) and (lower panel) electroluminescence (EL) intensity 
recorded simultaneously for an electroformed ITO/Al2O3 (10 nm)/polyfluorene (80 nm)/Ba/Al diode during a voltage 
sweep from 0 V→16 V→0 V.

Figure 12. Schematic representation of current filament. In the electroformed diode, ionizable defects are present near 
the oxide/organic semiconductor interface with a number density above a critical limit. Due to cooperative interaction 
between the defects, the diode is electrically bistable. Arrays of mainly neutral defects have a high work function and 
constitute the off-state. Arrays of mainly ionized defects have a low work function and constitute the on-state.
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In order to better explain the proposed thermodynamic bistability, we draw on an anal-
ogy with saturated salt solutions. Charged ions in such a system can be present in two 
phases, one where the ions are dispersed throughout the solutions and another phase 
where ions of opposite charge have condensed into a crystal. As is well, cooperative 
interactions between the oppositely charged ions give rise to crystallization of salt, for 
example, NaCl.

In rock salt, the positive and negative ions are packed in a cubic lattice (see Figure 13). If we 
however cut the crystal under an oblique angle, for example, parallel to the (1 1 1) plane, one 
sees that the crystal actually consists of layers of oppositely charged ions.

For the electroformed oxide layers, we argue that, provided neutral defect sites which are 
available with sufficient density, electrical charges that have been injected into the diode 
may condense spontaneously at the polymer/oxide interface due to their mutual electro-
static stabilization. By detailed consideration of the Coulomb interaction potentials of the 
charge defects, it can be shown that also the image charges in the nearby metal electrode 
contribute to the stabilization. The condensation of the charges can be mapped onto the 2D 
Ising model. Based on the 2D Ising model, one predicts that in analogy to ferromagnetism, 
a critical temperature Tc should exist. For temperatures lower than Tc, the coexistence of two 
thermodynamically stable phases is predicted. One of the phases should have mainly ion-
ized defects and the other predominantly neutral defects. The magnitude of Tc depends on 
the strength of the interactions between the sites and should therefore be influenced by the 
density of defect states.

In order to explain the switching-off of current filaments, we argue that Joule heating associ-
ated with the current through the filaments in the oxide will cause the temperature in the 
oxide layer to rise locally. Once the temperature is above Tc, the mutual stabilization of charges 
is compromised, and sudden massive recombination of charges occurs. This recombination 
may account for the bursts of electroluminescence that can be observed during the switching 
process (see Figure 11). Furthermore, recombination of charges in the oxide layer will result 
in changes in the effective internal work function of the electrodes. This may account for the 
experimental observation of changes in the built-in potential of an electroluminescent diode 
during electrically induced breakdown [43].

Figure 13. Crystal structure of rock salt (NaCl). Ions of the same charge are packed in layers that lie parallel to the (1 1 1) 
plane.
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5. Conclusion

Unipolar switching in Al2O3 diodes involves defects that are created during the electroform-
ing step. The density of defects is critical to the memory operation. Reproducible electro-
forming is possible by including in the device a well-defined thin layer of a semiconducting 
polymer. In their pristine state, the polymer/oxide diodes are insulating. The purpose of the 
polymer layer is threefold. Firstly, the polymer layer acts as a current-limiting series resistance 
that prevents thermal runaway during electroforming. Secondly, the presence of the polymer 
introduces an internal polymer/oxide interface, where electrons can accumulate. The trapped 
electrons stabilize positively charged defects that are generated during electroforming by elec-
trostatic interactions. The trapped electrons promote injection of holes into the oxide, yielding 
a soft breakdown. Molecular oxygen is expelled and oxygen vacancies are formed. The third 
 purpose of the polymer in the diode is to buffer the molecular oxygen formed.

The experimental evidence indicates that the density of defects in the metal-insulator-metal diodes 
is of crucial importance to obtain a memory diode with nonvolatile memory  properties. If the defect 
density is too high, the diode will be low. If the density is too low, the critical temperature Tc for phase 
coexistence is also low. At temperatures T > Tc, phase  coexistence is not possible, and the memory 
diode does not show electrical bistability. Upon cooling down, additional filaments should switch 
on as soon as the temperature drops below the Tc associated with the locale defect density near the 
filament. This prediction is supported by the experiments in Section 2. Noise  measurements prove 
a unique tool to characterize the  dynamics of the defect ionization and neutralization. The onset 
of discrete fluctuations and random telegraph signals may serve as a  diagnostic to determine the 
difference between the actual defect density and the desired concentration for memory operation.

In summary, unipolar resistive switching poses a unique challenge to the materials that scien-
tists design, deposit, and characterize with appropriate electronic structure, defect ordering, 
and internal charge carrier dynamics. This challenge seems parallel to development of, e.g., 
materials for high-temperature superconductivity. Fortunately, in the case of memristors, we 
have already the certainty from the present state of the art involving the electroforming that 
relatively simple materials exist with the required properties. The challenge is to gain control 
over the now largely random process of defect formation.
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Abstract

This chapter introduces a design guide of memristor emulator circuits, from conceptual
idea until experimental tests. Three topologies of memristor emulator circuits in their
incremental and decremental versions are analysed and designed at low and high
frequency. The behavioural model of each topology is derived and programmed at
SIMULINK under the MATLAB environment. An offset compensation technique is also
described in order to achieve the frequency-dependent pinched hysteresis loop that is on
the origin and when the memristor emulator circuit is operating at high frequency.
Furthermore, from these topologies, a technique to transform normal non-linear resis-
tors to inverse non-linear resistors is also addressed. HSPICE numerical simulations for
each topology are also shown. Finally, three real analogue applications based on
memristors are analysed and explained at the behavioural level of abstraction.

Keywords: memristor, pinched hysteresis loop, current conveyor, non-linear
resistor, behavioural modelling

1. Introduction

Memristors have turned out to be of considerable importance in several areas of research and
application, such as analogue circuits, non-linear (chaotic) circuits, sensors, control systems,
storage systems, cellular neural networks, logic circuits, power systems, neuromorphic cir-
cuits, etc. [1]. In order to research all those applications, the first step is understanding and
modelling the behaviour of a memristor. In this scenario, there are, basically, three approaches:
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behavioural modelling, SPICE type models and emulator circuits. In the former case, smooth
continuous cubic non-linear functions [2], square non-linear functions [3], piecewise linear
models [4] and hyperbolic sine models [5, 6] have been proposed to emulate the Hewlett-
Packard (HP) memristor behaviour. Examples of this type of modelling are TEAM model [7],
VTEM model [8] and Simmons tunnelling model [9]. Although these models are approaching
the HPmemristor behaviour with a level of error relatively low, a full custom software is required
for solving the mathematical models [10]. Furthermore, this task becomes cumbersome when
applications with several memristors are addressed, since a large set of equations must first be
established according to the topology, and next, the system of equations must be numerically
solved. In the second approach, SPICE models have also been developed in order to model the
HP memristor, principally [11–16]. It is worth mentioning that the memristive effect is not limited
to TiO2, and this effect has also been glimpsed on nickel oxide [1], Ag-loaded Si films [17], TiO2

sol-gel solutions [18], and other materials. Although this type of modelling is interesting, since the
capabilities of commercially available tools are exploited, its major disadvantage is that numerical
simulations of circuits based on memristors can only be done. In the latter, several emulator
circuits have been proposed in the literature, which use different design methodologies and
different topologies. In this way, grounded and floating memristor emulator circuits working at
incremental or decremental mode and built with operational amplifiers and analogue multipliers
have been proposed in [19–24]. Other interesting topologies were reported in [25, 26], where
digital and analogue mixed circuits were used. More recently, other active devices such as current
feedback operational amplifiers, positive second-generation current conveyors (CCII+) and differ-
ential difference current conveyor, see [27–33] and the references cited therein, have also been
used to design a memristor emulator circuit. However, some of them not only become complex
and bulky, requiring rigid conditions to operate, but also some emulators do not exhibit those
fingerprints that are useful to affirm that the emulator circuit is a memristor or memristive device.
With this in mind and depending on the application, any emulator circuit must accomplish some
properties, some of them are: the frequency-dependent pinched hysteresis loop for any kind of
flux- or charge-controlled incremental or decremental memristor/memductor, in its version
grounded or floating, must pass through the origin for any periodic signal with any amplitude,
operating frequency and initial conditions; the possibility for controlling the initial state of the
emulator circuit, i.e. adjust of the initial conditions, non-volatility, memristive/memductive behav-
iour at high-frequency and without offset, etc. All in all, the design of memristor emulator circuits
is also important in order to study and research real applications as those mentioned above. As a
consequence, a lot of emulator circuits using off-the-shelf components have been developed to
imitate not only the real behaviour of a memristor but also the real behaviour of meminductors
and memcapacitors [1].

In this chapter, we discuss the design of three memristor emulator circuits. The aim is to show
the conceptual idea on the design of an emulator, passing for numerical simulations and until
experimental tests. Each behavioural model is derived and programmed at SIMULINK under
MATLAB environment. From a circuit-design perspective and of the knowledge gained, a
design guide is described in order to design a memristor emulator circuit in a systematic way.
Then, we introduce a novel technique for achieving the frequency-dependent pinched hysteresis
loop associated to a memristor emulator circuit that is operating at high frequency, and the
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crossing point does not deviate of the origin. Since a memristor is basically a charge- or flux-
controlled resistor, we describe how to transform a non-linear resistor with its normal pinched
hysteresis loop to an inverse behaviour. Therefore, the main difference of an inverse non-linear
resistor with respect to normal resistors is that the behaviour of frequency-dependent pinched
hysteresis loop becomes a straight line when the operating frequency of the signal source
decreases. Finally, some real analogue applications are described.

2. Analogue memristor emulators

Unlike behavioural models and SPICE type models, an emulator circuit is very useful, since
real applications based on memristors can be researched and built. In this section, we describe
three memristor emulator circuits.

2.1. Floating memristor emulator circuit

The topology shown in Figure 1(a) was reported in [28]. By a straightforward analysis, the
behaviour equation is given by:

vmðtÞ
imðtÞ ¼ MðφmðtÞÞ ¼ R1 � R1R4

10R2R3Cz

ðt
0
vmðτÞdτ ð1Þ

From Figure 1(a), the S switch is connected to I to obtain a memristor emulator circuit operating
at incremental mode, whereas if S is connected to D, then a decremental behaviour is obtained.
These behaviours correspond to the signs + and � at Eq. (1), respectively. Assuming that

vm(t) = Amsin(ωt), where Am is the amplitude and ω = 2 πf in rad/s, we obtain:

vmðtÞ
imðtÞ ¼ R1 � R1R4Am

10R2R3Czω
cosðωt� πÞ ð2Þ

From Eq. (2), one can observe that the memristance is composed by a linear time-invariant
resistor and a linear time-varying resistor. The relationship between both resistors is described
by the ratio of their amplitudes, given as

kn ¼ R4Am

R2R3Czω10
¼ 1

τf
¼ T

τ
ð3Þ

where τ ¼ 20πR2R3Cz
R4Am

is the time constant of the emulator circuit and T ¼ 1
f is the period of

vm(t). In order to hold the pinched hysteresis loop in several operating frequencies, one can
observe in Eq. (3) that τmust be updated according to f, since kn will decrease as the frequency
increases. Thus, the numeric value of τ can be updated by R3 or Cz. On the other hand, Eq. (3)
reveals that:

1. kn ! 0 when f ! ∞ or Am ! 0. Hence, Eq. (1) is dominated by its linear time-invariant
part.
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2. kn ! 1 when f ! 1/τ or Am is monotonically increased. Therefore, the maximum pinched
hysteresis loop is obtained.

3. kn ! ≥1 when f ≤ 1/τ or Am increases too much. Here, the hysteresis loop is lost.

In order to ensure the behaviour of the frequency-dependent pinched hysteresis loop, the
numerical value of kn must be in the interval (0, 1). Once the behavioural model of the
memristor has been deduced, numerical simulations can be realized. The numerical value of
each element of Figure 1(a) used during numerical simulations and experimental tests can be
found in [28]. Therefore, Figure 2(a) (solid line) shows only the incremental pinched hysteresis
loop behaviour obtained of Figure 1(b) when a sinusoidal waveform operating to 16 Hz is
applied. For this case and that follows, the direction of the hysteresis loop is clockwise,
whereas for a decremental mode, the direction is counterclockwise. Therefore, a similar behav-
iour is obtained for the decremental case, as illustrated in Figure 2(a).

Figure 1. (a) Flux-controlled floating memristor emulator circuit taken from [28] and (b) SIMULINK model of Eq. (1).

Figure 2. Numerical, HSPICE and experimental results of Figure 1(a) operating at: (a) 16 Hz and (b) 100 Hz.
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Figure 1(a) was also simulated at HSPICE by using the macro-models associated to each active
device and numerical results are shown in Figure 2(a) (dash-dot line). In order to validate the
previous results, Figure 1(a) was experimentally tested, and the results are shown in Figure 2(a)
(dot-dash line). On the other hand, when the operating frequency increases, the pinched hyster-
esis loop is gradually lost and the memristor behaviour becomes a straight line for all cases, as
depicted in Figure 2(b). Furthermore, the frequency-dependent pinched hysteresis loop is a
necessary condition but not sufficient for claiming that the emulator circuit is emulating the real
memristor behaviour. In this case, tests of non-volatility are necessary. Since capacitors and
inductors are the solely elements that are storing energy, the non-volatility property is indirectly
measured across Cz of Figure 1(a). Thus, Figure 3 shows experimental tests of non-volatility of
Figure 1(a) when a narrow pulse train of 1.2 V of amplitude and 2.4 μs of pulse width (yellow
line) is applied. According to Figure 3, one can observe that once programmed the incremental
and decremental memristance, its value is keeping when the input signal is not applied. Note
that during non-pulse period, the memristance is non-volatile, and its variation is negligible. For
incremental topology, the memristance increases according to the amplitude and pulse width, as
depicted in Figure 3 (pink line), whereas for the decremental topology, the memristance
decreases (blue line). It is important to point out that memristive behaviour in each operation
mode can be reverted to its last value, when a negative pulse of the same size is applied.

2.2. Grounded memristor emulator circuit I

Recently in [28, 31, 32], floating and grounded memristor emulator circuits based on CCII+ were
proposed. In this way, the behavioural model of the charge-controlled grounded memductor
emulator circuit described in [32] and shown in Figure 4(a) is given by

imðtÞ
vmðtÞ ¼ WðqmðtÞÞ ¼

1
R1 þ Rx

� AvAi

10ðRm þ RxÞðCm þ CaÞ
ðt
0
imðτÞdτ ð4Þ

where Rx and Ca are the parasitic resistance and capacitance connected in x- and z-terminal,

Figure 3. Experimental results of non-volatility property for incremental (pink line) and (blue line) decremental
memristor. Pulse signal at yellow line.
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2. kn ! 1 when f ! 1/τ or Am is monotonically increased. Therefore, the maximum pinched
hysteresis loop is obtained.

3. kn ! ≥1 when f ≤ 1/τ or Am increases too much. Here, the hysteresis loop is lost.

In order to ensure the behaviour of the frequency-dependent pinched hysteresis loop, the
numerical value of kn must be in the interval (0, 1). Once the behavioural model of the
memristor has been deduced, numerical simulations can be realized. The numerical value of
each element of Figure 1(a) used during numerical simulations and experimental tests can be
found in [28]. Therefore, Figure 2(a) (solid line) shows only the incremental pinched hysteresis
loop behaviour obtained of Figure 1(b) when a sinusoidal waveform operating to 16 Hz is
applied. For this case and that follows, the direction of the hysteresis loop is clockwise,
whereas for a decremental mode, the direction is counterclockwise. Therefore, a similar behav-
iour is obtained for the decremental case, as illustrated in Figure 2(a).

Figure 1. (a) Flux-controlled floating memristor emulator circuit taken from [28] and (b) SIMULINK model of Eq. (1).

Figure 2. Numerical, HSPICE and experimental results of Figure 1(a) operating at: (a) 16 Hz and (b) 100 Hz.
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Figure 1(a) was also simulated at HSPICE by using the macro-models associated to each active
device and numerical results are shown in Figure 2(a) (dash-dot line). In order to validate the
previous results, Figure 1(a) was experimentally tested, and the results are shown in Figure 2(a)
(dot-dash line). On the other hand, when the operating frequency increases, the pinched hyster-
esis loop is gradually lost and the memristor behaviour becomes a straight line for all cases, as
depicted in Figure 2(b). Furthermore, the frequency-dependent pinched hysteresis loop is a
necessary condition but not sufficient for claiming that the emulator circuit is emulating the real
memristor behaviour. In this case, tests of non-volatility are necessary. Since capacitors and
inductors are the solely elements that are storing energy, the non-volatility property is indirectly
measured across Cz of Figure 1(a). Thus, Figure 3 shows experimental tests of non-volatility of
Figure 1(a) when a narrow pulse train of 1.2 V of amplitude and 2.4 μs of pulse width (yellow
line) is applied. According to Figure 3, one can observe that once programmed the incremental
and decremental memristance, its value is keeping when the input signal is not applied. Note
that during non-pulse period, the memristance is non-volatile, and its variation is negligible. For
incremental topology, the memristance increases according to the amplitude and pulse width, as
depicted in Figure 3 (pink line), whereas for the decremental topology, the memristance
decreases (blue line). It is important to point out that memristive behaviour in each operation
mode can be reverted to its last value, when a negative pulse of the same size is applied.

2.2. Grounded memristor emulator circuit I

Recently in [28, 31, 32], floating and grounded memristor emulator circuits based on CCII+ were
proposed. In this way, the behavioural model of the charge-controlled grounded memductor
emulator circuit described in [32] and shown in Figure 4(a) is given by

imðtÞ
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1
R1 þ Rx

� AvAi

10ðRm þ RxÞðCm þ CaÞ
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0
imðτÞdτ ð4Þ

where Rx and Ca are the parasitic resistance and capacitance connected in x- and z-terminal,

Figure 3. Experimental results of non-volatility property for incremental (pink line) and (blue line) decremental
memristor. Pulse signal at yellow line.
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respectively; Av and Ai are the voltage and current gains between y- and x-terminal and x- and
z-terminal of CCII+. Similarly as in Subsection 2.1, an incremental behaviour is obtained when
the S switch is connected to I and a decremental behaviour is obtained if S is connected to D.
Each behaviour corresponds to the sign + and � at Eq. (4), respectively. According to the
behaviour of the frequency-dependent pinched hysteresis loop, this is composed by two lobes
with symmetric areas. Since the hysteresis loop is represented on the v-i plane, the average
current occurs when the area of both lobes is zero, and hence, the hysteresis loop tends to be a
straight line as f ! ∞. This last effect is achieved when the linear time-varying part of the
memductor is zero, and hence, from Eq. (4), we get

imðtÞ ¼ vmðtÞ
Rm þ Rx

ð5Þ

From Eqs. (4) and (5), a SIMULINKmodel can be easily built, as shown in Figure 4(b). Note that
to obtain a decrementalmemductor, the input-terminal second of the block, shown in Figure 4(b),
must be negative. Considering vm(t) = Amsin(ωt) and substituting Eq. (5) in Eq. (4), we get

imðtÞ
vmðtÞ ¼

1
Rm þ Rx

� AvAiAm

10ωðRm þ RxÞ2ðCm þ CaÞ
cosðωt� πÞ ð6Þ

and the kn parameter is given by

kn ¼ AvAiAm

10ωðRm þ RxÞðCm þ CaÞ ¼
1
τf

¼ T
τ

ð7Þ

where τ ¼ 20πðRmþRxÞðCmþCaÞ
AvAiAm

. From Eq. (7), one can intuit that kn will decrease as the frequency

increases, but Eq. (7) also reveals that

1. kn ! 0 when f ! ∞ or Am ! 0. Therefore, Eq. (6) becomes dominated by its linear time-
invariant admittance.

2. kn ! 1 when f ! 1/τ or Am is monotonically increased. Hence, the maximum frequency-
dependent pinched hysteresis loop is obtained.

3. kn ! ≥1 when f ≤ 1/τ or Am increases too much. For this case, the hysteresis loop is lost.

Figure 4. (a) Charge-controlled grounded memductor emulator circuit taken from [32] and (b) SIMULINK model of
Eqs. (4) and (5).
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In this manner, the behaviour of the frequency-dependent pinched hysteresis loop can be kept
over a broad range of frequencies and amplitude Am, when the numerical value of kn is in the
interval (0, 1) [32]. This means that τ must be updated according to f and Am, respectively. The
numerical value of each element of Figure 4(a) for different operating frequencies and ampli-
tudes can be found in [32].

According to [32], Figure 4(a) was configured for working at 16 Hz in both operation modes.
Henceforth, numerical results of the incremental topology will be shown below in the left side,
whereas the decremental topology will be shown in the right side. From Figure 4(b), numerical
results for each topology are depicted in Figure 5(a) and (b) (solid lines). Let us now increase
monotonically the operating frequency of vm(t) until f = 500Hz. As depicted in Figure 5(c) and (d)
(solid lines), the frequency-dependent pinched hysteresis loop for both topologies becomes dom-
inated by the linear time-invariant admittance. In this stage, for widening the hysteresis loop of
each topology and keeping f = 500 Hz, Cm or R1 must be adjusted. Afterwards, each topology
shown in Figure 4(a)was simulated atHSPICE and numerical results are illustrated in Figure 5(a)
and (b) (dash-dot lines) operating at 16 Hz, respectively. Similarly as above, the operating

Figure 5. Numerical, HSPICE and experimental results of Figure 4(a) operating at: (a) 16 Hz and (c) 500 Hz, for
incremental mode; (b) 16 Hz and (d) 500 Hz, for decremental mode.
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respectively; Av and Ai are the voltage and current gains between y- and x-terminal and x- and
z-terminal of CCII+. Similarly as in Subsection 2.1, an incremental behaviour is obtained when
the S switch is connected to I and a decremental behaviour is obtained if S is connected to D.
Each behaviour corresponds to the sign + and � at Eq. (4), respectively. According to the
behaviour of the frequency-dependent pinched hysteresis loop, this is composed by two lobes
with symmetric areas. Since the hysteresis loop is represented on the v-i plane, the average
current occurs when the area of both lobes is zero, and hence, the hysteresis loop tends to be a
straight line as f ! ∞. This last effect is achieved when the linear time-varying part of the
memductor is zero, and hence, from Eq. (4), we get

imðtÞ ¼ vmðtÞ
Rm þ Rx

ð5Þ

From Eqs. (4) and (5), a SIMULINKmodel can be easily built, as shown in Figure 4(b). Note that
to obtain a decrementalmemductor, the input-terminal second of the block, shown in Figure 4(b),
must be negative. Considering vm(t) = Amsin(ωt) and substituting Eq. (5) in Eq. (4), we get

imðtÞ
vmðtÞ ¼

1
Rm þ Rx

� AvAiAm

10ωðRm þ RxÞ2ðCm þ CaÞ
cosðωt� πÞ ð6Þ

and the kn parameter is given by

kn ¼ AvAiAm

10ωðRm þ RxÞðCm þ CaÞ ¼
1
τf

¼ T
τ

ð7Þ

where τ ¼ 20πðRmþRxÞðCmþCaÞ
AvAiAm

. From Eq. (7), one can intuit that kn will decrease as the frequency

increases, but Eq. (7) also reveals that

1. kn ! 0 when f ! ∞ or Am ! 0. Therefore, Eq. (6) becomes dominated by its linear time-
invariant admittance.

2. kn ! 1 when f ! 1/τ or Am is monotonically increased. Hence, the maximum frequency-
dependent pinched hysteresis loop is obtained.

3. kn ! ≥1 when f ≤ 1/τ or Am increases too much. For this case, the hysteresis loop is lost.

Figure 4. (a) Charge-controlled grounded memductor emulator circuit taken from [32] and (b) SIMULINK model of
Eqs. (4) and (5).
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In this manner, the behaviour of the frequency-dependent pinched hysteresis loop can be kept
over a broad range of frequencies and amplitude Am, when the numerical value of kn is in the
interval (0, 1) [32]. This means that τ must be updated according to f and Am, respectively. The
numerical value of each element of Figure 4(a) for different operating frequencies and ampli-
tudes can be found in [32].

According to [32], Figure 4(a) was configured for working at 16 Hz in both operation modes.
Henceforth, numerical results of the incremental topology will be shown below in the left side,
whereas the decremental topology will be shown in the right side. From Figure 4(b), numerical
results for each topology are depicted in Figure 5(a) and (b) (solid lines). Let us now increase
monotonically the operating frequency of vm(t) until f = 500Hz. As depicted in Figure 5(c) and (d)
(solid lines), the frequency-dependent pinched hysteresis loop for both topologies becomes dom-
inated by the linear time-invariant admittance. In this stage, for widening the hysteresis loop of
each topology and keeping f = 500 Hz, Cm or R1 must be adjusted. Afterwards, each topology
shown in Figure 4(a)was simulated atHSPICE and numerical results are illustrated in Figure 5(a)
and (b) (dash-dot lines) operating at 16 Hz, respectively. Similarly as above, the operating

Figure 5. Numerical, HSPICE and experimental results of Figure 4(a) operating at: (a) 16 Hz and (c) 500 Hz, for
incremental mode; (b) 16 Hz and (d) 500 Hz, for decremental mode.
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frequency was increased until 500 Hz and, as a consequence, both pinched hysteresis loops
become a straight line, as depicted in Figure 5(c) and (d) (dash-dot lines). In order to demonstrate
the real behaviour of the memductor emulator circuit, Figure 4(a) was built with off-the-shelf
devices.

In this way, Figure 5(a) and (b) (dashed lines) illustrate the pinched hysteresis loops for both
operation modes and the upper and lower lobe area of both hysteresis loops becomes zero
when the operating frequency increases and hence the hysteresis loop tends to be a straight
line, as illustrated in Figure 5(c) and (d) (dashed lines), confirming the theory described before.
To experimentally test the non-volatility of the memductor emulator circuit, the voltage across
Cm of Figure 4(a) was measured for each incremental and decremental configuration. In both
cases, a rectangular pulse train of 5 V of amplitude with 82 μs was applied in the input of
Figure 4(a). Therefore, Figure 6(a) shows the behaviour of vCm(t) for the incremental case,
whereas Figure 6(b) shows the decremental case. From Figure 6, one can observe that the
variation of vCm(t) is more pronounced for the decremental case. Observe, also, that the voltage
is kept during non-pulse period. Again, the memductive behaviour in each operation mode
can be reverted to its last value, whether a negative pulse of the same size is applied [32].

2.3. Grounded memristor emulator circuit II

As last example, we discuss the charge-controlled groundedmemristor emulator circuit reported
in [31] and illustrated in Figure 7(a). Simple analysis of Figure 7(a) allows us to obtain the
memristive behaviour given by

vmðtÞ
imðtÞ ¼ MðqmðtÞÞ ¼ R1 � R2

40C1

ðt
0
imðτÞdτ ð8Þ

It is notable to point out that the positive sign in Eq. (8) correspond to the S switch connected to
I in Figure 7(a) and hence, an incremental behaviour is obtained; whereas the negative sign is
obtained when S is connected to D and hence a decremental behaviour. Again, following the
idea described in previous subsections and reported in [28, 31], a frequency analysis can be

Figure 6. Experimental results of non-volatility property for: (a) incremental mode and (b) decremental mode.
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done. According to Eq. (8), the average current will occur when the linear time-varying resistor
is zero and hence from Eq. (8) we get:

imðtÞ ¼ vmðtÞ
R1

ð9Þ

By merging Eqs. (8) and (9), a SIMULINK model can be built, as depicted in Figure 7(b). In this
figure, the input-terminal second of the adder block must be negative to obtain a decremental
behaviour. Assuming vm(t) = Amsin(ωt) and substituting Eq. (9) in Eq. (8), we obtain

vmðtÞ
imðtÞ ¼ R1 � R2Am

40R1C1ω
cos ðωt� πÞ ð10Þ

It follows from Eq. (10) that

kn ¼ R2Am

40R2
1C1ω

¼ 1
τf

¼ T
τ

ð11Þ

where τ ¼ 40πR2
1C1

R2Am
is the time constant of the emulator circuit and T ¼ 1

f is the period of vm(t).

In the same way as in previous subsections, kn will decrease as the operating frequency
increases, and for holding the hysteresis loop at a particular frequency, the numeric value of τ
must be updated by C1. Analysing Eq. (11) for both configurations, we have

1. kn ! 0 when f ! ∞ or Am ! 0. Therefore, Eq. (10) becomes dominated by R1.

2. kn ! 1 when f ! 1/τ or Am is monotonically increased. Thus, we see that the maximum
pinched hysteresis loop is achieved.

3. kn ! ≥1 when f ≤ 1/τ or Am increases too much. For this case, the hysteresis loop is lost.

According to [31], the memristor emulator circuit was configured to operate at 16 Hz in both
operationmodes. By using Figure 7(b), the hysteresis loop for each topology shown in Figure 7(a)
is obtained, as depicted in Figure 8(a) and (b) (solid lines), respectively. Bymonotonically increas-
ing the operating frequency of vm(t) until 100 Hz, both hysteresis loops become dominated byR1,

Figure 7. (a) Charge-controlled grounded memristor emulator circuit taken from [31] and (b) SIMULINK model of
Eqs. (8) and (9).
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frequency was increased until 500 Hz and, as a consequence, both pinched hysteresis loops
become a straight line, as depicted in Figure 5(c) and (d) (dash-dot lines). In order to demonstrate
the real behaviour of the memductor emulator circuit, Figure 4(a) was built with off-the-shelf
devices.

In this way, Figure 5(a) and (b) (dashed lines) illustrate the pinched hysteresis loops for both
operation modes and the upper and lower lobe area of both hysteresis loops becomes zero
when the operating frequency increases and hence the hysteresis loop tends to be a straight
line, as illustrated in Figure 5(c) and (d) (dashed lines), confirming the theory described before.
To experimentally test the non-volatility of the memductor emulator circuit, the voltage across
Cm of Figure 4(a) was measured for each incremental and decremental configuration. In both
cases, a rectangular pulse train of 5 V of amplitude with 82 μs was applied in the input of
Figure 4(a). Therefore, Figure 6(a) shows the behaviour of vCm(t) for the incremental case,
whereas Figure 6(b) shows the decremental case. From Figure 6, one can observe that the
variation of vCm(t) is more pronounced for the decremental case. Observe, also, that the voltage
is kept during non-pulse period. Again, the memductive behaviour in each operation mode
can be reverted to its last value, whether a negative pulse of the same size is applied [32].

2.3. Grounded memristor emulator circuit II

As last example, we discuss the charge-controlled groundedmemristor emulator circuit reported
in [31] and illustrated in Figure 7(a). Simple analysis of Figure 7(a) allows us to obtain the
memristive behaviour given by

vmðtÞ
imðtÞ ¼ MðqmðtÞÞ ¼ R1 � R2

40C1
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0
imðτÞdτ ð8Þ

It is notable to point out that the positive sign in Eq. (8) correspond to the S switch connected to
I in Figure 7(a) and hence, an incremental behaviour is obtained; whereas the negative sign is
obtained when S is connected to D and hence a decremental behaviour. Again, following the
idea described in previous subsections and reported in [28, 31], a frequency analysis can be

Figure 6. Experimental results of non-volatility property for: (a) incremental mode and (b) decremental mode.
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done. According to Eq. (8), the average current will occur when the linear time-varying resistor
is zero and hence from Eq. (8) we get:

imðtÞ ¼ vmðtÞ
R1

ð9Þ

By merging Eqs. (8) and (9), a SIMULINK model can be built, as depicted in Figure 7(b). In this
figure, the input-terminal second of the adder block must be negative to obtain a decremental
behaviour. Assuming vm(t) = Amsin(ωt) and substituting Eq. (9) in Eq. (8), we obtain

vmðtÞ
imðtÞ ¼ R1 � R2Am

40R1C1ω
cos ðωt� πÞ ð10Þ

It follows from Eq. (10) that

kn ¼ R2Am

40R2
1C1ω

¼ 1
τf
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τ

ð11Þ

where τ ¼ 40πR2
1C1

R2Am
is the time constant of the emulator circuit and T ¼ 1

f is the period of vm(t).

In the same way as in previous subsections, kn will decrease as the operating frequency
increases, and for holding the hysteresis loop at a particular frequency, the numeric value of τ
must be updated by C1. Analysing Eq. (11) for both configurations, we have

1. kn ! 0 when f ! ∞ or Am ! 0. Therefore, Eq. (10) becomes dominated by R1.

2. kn ! 1 when f ! 1/τ or Am is monotonically increased. Thus, we see that the maximum
pinched hysteresis loop is achieved.

3. kn ! ≥1 when f ≤ 1/τ or Am increases too much. For this case, the hysteresis loop is lost.

According to [31], the memristor emulator circuit was configured to operate at 16 Hz in both
operationmodes. By using Figure 7(b), the hysteresis loop for each topology shown in Figure 7(a)
is obtained, as depicted in Figure 8(a) and (b) (solid lines), respectively. Bymonotonically increas-
ing the operating frequency of vm(t) until 100 Hz, both hysteresis loops become dominated byR1,

Figure 7. (a) Charge-controlled grounded memristor emulator circuit taken from [31] and (b) SIMULINK model of
Eqs. (8) and (9).
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as illustrated in Figure 8(c) and (d) (solid lines). It is worth stressing that to obtain the pinched
hysteresis loops shown in Figure 8(a) and (b) (solid lines) but at f = 100 Hz, the numeric value of
C1 must be adjusted. Therefore, one can insight that by scaling down C1, the hysteresis loop
behaviour, for both topologies, can be pushed for operating at higher frequencies. On the other
hand, Figure 7(a) was also simulated at HSPICE by using the numerical value of each element
described in [31] and for both topologies. Simulation results are illustrated in Figure 8(a) and (b)
(dash-dot lines), respectively; whereas the linear behaviours are depicted in Figure 8(c) and (d)
(dash-dot lines).

To validate the results derived and demonstrate the real behaviour of the emulator circuit,
Figure 7(a) was built and experimentally tested by using commercially available active

Figure 8. Numerical, HSPICE and experimental results of Figure 7(a) operating at: (a) 16 Hz and (c) 100 Hz, for
incremental mode; (b) 16 Hz and (d) 100 Hz, for decremental mode.
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devices. Therefore, Figure 8(a) and (b) (dot-square lines) show the experimental results for
each topology and at each fundamental operating frequency; whereas Figure 8(c) and (d) (dot-
square lines) show that the hysteresis loops become dominated by R1, confirming the theory
described above. A notable fingerprint of any memristor emulator circuit is the non-volatility of
its memristance. This means that the memristance once programmed, its last value must be kept
for a long time. In order to verify this property, the voltage across C1 was first experimentally
measured and next, by using Eq. (8), a post-processing was done for getting the memristance
variation for each topology, as depicted in Figure 9 (top figure). The memristance variations were
obtained when a pulse train of 5 V of amplitude and 0.5 ms of pulse width was applied to
Figure 7(a), as illustrated in Figure 9 (lower figure).

As one can observe in Figure 9, the memristance range for both emulator circuits is 7 kΩ, and
although the pulse train is applied indefinitely, the maximum memristance achieved is 19 kΩ;
whereas the minimum memristance for the decremental case is 5 kΩ. On the other hand, if the
pulse train with �5 V of amplitude and same pulse width is applied, then the memristive
behaviour is inverted for each topology shown in the top of Figure 9 [31].

3. Design guide

According to Section 2, one can observe that Eqs. (1), (4) and (8) have the form

ynðtÞ ¼ xðtÞ
�
an � bn

ðt
0
zðτÞdτ

�
ð12Þ

where yn(t) is the current or voltage output signal, x(t) is the voltage or current input signal and z
(t) is the voltage or current control signal; an represents the linear time-invariant gain and bn
represents the linear time-varying gain, which is associated with the time constant of the emula-
tor circuit [28, 31, 32]. Assuming that z(t) = Amsin(ωt + θ), where θ is the phase in degrees, we
obtain

Figure 9. Experimental results of non-volatile memristance for incremental mode (black line) and decremental mode (red
line). In the figure below, vm(t) as pulse train.
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as illustrated in Figure 8(c) and (d) (solid lines). It is worth stressing that to obtain the pinched
hysteresis loops shown in Figure 8(a) and (b) (solid lines) but at f = 100 Hz, the numeric value of
C1 must be adjusted. Therefore, one can insight that by scaling down C1, the hysteresis loop
behaviour, for both topologies, can be pushed for operating at higher frequencies. On the other
hand, Figure 7(a) was also simulated at HSPICE by using the numerical value of each element
described in [31] and for both topologies. Simulation results are illustrated in Figure 8(a) and (b)
(dash-dot lines), respectively; whereas the linear behaviours are depicted in Figure 8(c) and (d)
(dash-dot lines).

To validate the results derived and demonstrate the real behaviour of the emulator circuit,
Figure 7(a) was built and experimentally tested by using commercially available active
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devices. Therefore, Figure 8(a) and (b) (dot-square lines) show the experimental results for
each topology and at each fundamental operating frequency; whereas Figure 8(c) and (d) (dot-
square lines) show that the hysteresis loops become dominated by R1, confirming the theory
described above. A notable fingerprint of any memristor emulator circuit is the non-volatility of
its memristance. This means that the memristance once programmed, its last value must be kept
for a long time. In order to verify this property, the voltage across C1 was first experimentally
measured and next, by using Eq. (8), a post-processing was done for getting the memristance
variation for each topology, as depicted in Figure 9 (top figure). The memristance variations were
obtained when a pulse train of 5 V of amplitude and 0.5 ms of pulse width was applied to
Figure 7(a), as illustrated in Figure 9 (lower figure).

As one can observe in Figure 9, the memristance range for both emulator circuits is 7 kΩ, and
although the pulse train is applied indefinitely, the maximum memristance achieved is 19 kΩ;
whereas the minimum memristance for the decremental case is 5 kΩ. On the other hand, if the
pulse train with �5 V of amplitude and same pulse width is applied, then the memristive
behaviour is inverted for each topology shown in the top of Figure 9 [31].

3. Design guide

According to Section 2, one can observe that Eqs. (1), (4) and (8) have the form

ynðtÞ ¼ xðtÞ
�
an � bn

ðt
0
zðτÞdτ

�
ð12Þ

where yn(t) is the current or voltage output signal, x(t) is the voltage or current input signal and z
(t) is the voltage or current control signal; an represents the linear time-invariant gain and bn
represents the linear time-varying gain, which is associated with the time constant of the emula-
tor circuit [28, 31, 32]. Assuming that z(t) = Amsin(ωt + θ), where θ is the phase in degrees, we
obtain

Figure 9. Experimental results of non-volatile memristance for incremental mode (black line) and decremental mode (red
line). In the figure below, vm(t) as pulse train.
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ðt
0
zðτÞdτ ¼ �Am

ω
cos ðωtþ θÞ ¼ ∓

1
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

m � z2ðtÞ
q

ð13Þ

therefore, Eq. (12) becomes

ynðtÞ ¼ xðtÞ an ∓
bn
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

m � z2ðtÞ
q� �

ð14Þ

According to [28, 31, 32], the linear time-varying gain can be computed in function of ω and
Am given by

bn ¼ anωkn
Am

ð15Þ

where kn ∈ (0, 1) is a parameter that is used to ensure the behaviour of the pinched hysteresis
loop.

In order to design a memristor emulator circuit, the following four-step design procedure is
proposed

Step 1. For all memristor emulator circuit that has the form given by Eq. (12) and to ensure the
pinched hysteresis loop, we choose kn = 0.5.

Step 2.Given an operating frequency andAm, use Eq. (15) to find the relation between bn and an.

Step 3. Select the numeric value of an, which is associated to the linear time-invariant resistor/
conductor. As a consequence, the numeric value of bn is derived from Eq. (15).

Step 4. For each topology, bn is related with those parameters of the emulator circuit and τ.
Therefore, the numeric value of each resistor and capacitor can be deduced.

If the above procedure is followed, it is most likely that a memristor emulator circuit with good
features will result and with a frequency-dependent hysteresis loop with relatively symmetri-
cal lobes.

4. Offset compensation

Some properties that any emulator circuit must satisfy to be considered as memristor were
described in Section 1. One of them is the frequency-dependent pinched hysteresis loop
observed on the voltage-current plane, which must pass through the origin for any periodic
signal with any amplitude, operating frequency and initial conditions [1]. Thus, whether a
periodic signal is applied to the memristor emulator circuit, both the voltage and current are
zero when any of them is zero. Therefore, any device is a memristor or a memristive device
when it has a current-voltage hysteresis curve with identical zero crossing. However, until
today, all the memristor emulator circuits reported in the literature [19–32] are operating in
low-frequency and some of them present a deviation of the crossing point on the origin. This
behaviour is more evident when the operating frequency of the stimulus signal increases, and
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hence, the emulator circuit does not only stop mimicking the behaviour of the memristor, but
also reduces its application range. Note that below a certain critical frequency, the emulator
circuit mimics well the behaviour of a memristor and beyond that of critical frequency, the
circuit becomes a memristive device with an additional battery in series.

In order to overcome this shortcoming and achieve a pinched hysteresis loop operating at high
frequency, an offset compensation technique must be applied. Such techniques have been
reported in [33]. Basically, the technique involves adding two DC voltage sources in the analogue
multiplier to vertically and horizontally control the offset of the hysteresis loop. However, as
described in [33], this offset reduction technique is only applicable to floating and grounded
memristor emulator circuits whose design is based on analogue multipliers. In this manner, let
us consider the topologies shown in Figure 1(a) and 7(a), including the voltage sources, as
depicted in Figure 10(a) and (b), respectively. According to Eq. (1), Figure 10(a) and [28, 33], the
controlled incremental and decremental memristance is modified as

M
�
φmðtÞ, VH, VV

�
¼ R1 � R4ðR1 � VVÞ

10R2R3Cz

ðt
0
vmðτÞdτ� VH ð16Þ

Similarly for Eq. (8), Figure 10(b) and [31, 33], the memristance becomes:

MðqmðtÞ, VH, VVÞ ¼ R1 ∓
R2

20
VV � R2

40C1

ðt
0
imðτÞdτ� VH ð17Þ

where VH is a DC voltage source to control the horizontally offset and VV is other DC voltage
source to control the vertical offset of the frequency-dependent pinched hysteresis loop on the
voltage-current plane. Note that if VH = VV = 0, then Eqs. (16) and (17) are reduced to Eqs. (1)
and (8), respectively. For both topologies shown in Figure 10, two switches, S1 and S2, are used
to interchange the kind of memristor and to connect the VV voltage source in each case. To
validate the offset reduction method, Figure 10(a) was configured at decremental mode and
operating to 14 kHz. In a first step, VH = VV = 0 were considered and simulation results
are depicted in Figure 11(a) (solid line). Note that the pinched hysteresis loop deviates of
the origin. In a second step, the DC voltage sources were monotonically decreased until
VH = �60.59 mV and VV = �160.3 mV, and as a consequence, the offset was reduced, as shown

Figure 10. Offset compensated memristor emulator circuits: (a) Figure 1(a) and (b) Figure 7(a).
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described in Section 1. One of them is the frequency-dependent pinched hysteresis loop
observed on the voltage-current plane, which must pass through the origin for any periodic
signal with any amplitude, operating frequency and initial conditions [1]. Thus, whether a
periodic signal is applied to the memristor emulator circuit, both the voltage and current are
zero when any of them is zero. Therefore, any device is a memristor or a memristive device
when it has a current-voltage hysteresis curve with identical zero crossing. However, until
today, all the memristor emulator circuits reported in the literature [19–32] are operating in
low-frequency and some of them present a deviation of the crossing point on the origin. This
behaviour is more evident when the operating frequency of the stimulus signal increases, and
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where VH is a DC voltage source to control the horizontally offset and VV is other DC voltage
source to control the vertical offset of the frequency-dependent pinched hysteresis loop on the
voltage-current plane. Note that if VH = VV = 0, then Eqs. (16) and (17) are reduced to Eqs. (1)
and (8), respectively. For both topologies shown in Figure 10, two switches, S1 and S2, are used
to interchange the kind of memristor and to connect the VV voltage source in each case. To
validate the offset reduction method, Figure 10(a) was configured at decremental mode and
operating to 14 kHz. In a first step, VH = VV = 0 were considered and simulation results
are depicted in Figure 11(a) (solid line). Note that the pinched hysteresis loop deviates of
the origin. In a second step, the DC voltage sources were monotonically decreased until
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in Figure 11(a) (dashed line). A similar analysis procedure was realized to the topology
depicted in Figure 10(b) but operating to 160 kHz. In this manner, the grounded memristor
emulator circuit was connected as incremental mode and considering VH = VV = 0. HSPICE
simulations were obtained and shown in Figure 11(b) (solid line). In order to reduce the offset in
Figure 11(b) (solid line), the DC voltage sources were updated to VH =�195.5 mVand VV = 1.568
V, and hence, the crossing point was pulled towards the origin, as shown in Figure 11(b) (dashed
line). It is worth to stress that the value of each DC voltage source associated to each topology
was derived to trial and error, and it should slightly be updated for each operating frequency.
Hence, an open question is how to automatically compute the numeric value of each DC voltage
source associated to each topology and operation mode. Moreover, in Figure 11(b) (solid lines),
one can observe that each frequency-dependent pinched hysteresis loop becomes slightly
deformed, resulting at an asymmetrical behaviour with regards to the origin, and hence, the
hysteresis lobe area is not equal. Nonetheless, after of the offset compensation, the hysteresis
lobe area for all frequency-dependent pinched hysteresis loops become relatively equal as
depicted in Figure 11(b) (dashed lines). As a result, it is predicted that the frequency behaviour
of the pinched hysteresis loops for both memristor emulator circuits can be pushed for operating
in higher frequencies and holding a symmetrical behaviour, since the offset voltage glimpsed can
again be reduced by updating the DC voltage sources.

5. Transformation of normal non-linear resistors to inverse

A memristor/memductor is basically a resistor/conductor whose resistance/conductance can
be changed by applying a voltage across its terminals or by applying a flow of current. The
type of control signal depends on the type of memristor/memductor, i.e. flux- or charge-
controlled. In any case, the frequency-dependent pinched hysteresis loop of a normal non-
linear resistor/conductor will become a straight line if the operating frequency increases. This

Figure 11. HSPICE results for: (a) decremental topology of Figure 10(a) and (b) incremental topology of Figure 10(b). For
both figures: offset uncompensated (solid lines) and compensated (dashed lines).
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effect is because a normal non-linear resistor/conductor uses an integrator block and, in
general, its behaviour can be modelled by Eq. (12). Since the inverse operation of an integral
is the derivate, the hysteresis loop behaviour of a normal non-linear resistor can be inverted
whether a differentiator block is used instead of an integrator block. Under this assumption
and following the idea presented in Section 3, we have modified Eq. (12) as

yiðtÞ ¼ xðtÞ ai � bi
dzðtÞ
dt

� �
ð18Þ

where yi(t) is the inverse current or voltage output signal, x(t) is the voltage or current input
signal and z(t) is the voltage or current control signal; ai represents the linear time-invariant
gain and bi is the linear time-varying gain. Assuming z(t) = Am sin (ωt + θ), we obtain

dzðτÞ
dt

¼ Amω cos ðωtþ θÞ ¼ �ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

m � z2ðtÞ
q

ð19Þ

and Eq. (18) becomes

yiðtÞ ¼ xðtÞ
�
ai � biω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

m � z2ðtÞ
q �

ð20Þ

Comparing Eqs. (14) and (20), one can observe that the sole difference is the position of ω.
According to Section 3 [28, 31, 32], the linear time-varying gain can be computed in function of
ω and Am given by

bi ¼ aiωki
Am

ð21Þ

where ki ∈ (0, 1). In Section 2, the behavioural model of normal flux- or charge-controlled
resistors was derived and one can observe that each model has an integrative part. As first
approximation and for obtaining an inverse flux- or charge-controlled resistor from a normal
resistor, the integrator circuit of the latter must be replaced by a differentiator circuit in the
former. This task can be done by simply interchanging C1 by R2 in Figure 1(a), as depicted in
Figure 12(a), and analysing this figure we obtain

vmðtÞ
imðtÞ ¼ R1 � R1R3R4Cz

10R2

dvmðtÞ
dt

ð22Þ

Considering vm(t) = Amsin(ωt + ϕ), where ϕ is the phase in degrees and by using Eqs. (14) and
(20), Eqs. (1) and (22) are rewritten as

vmðtÞ
imðtÞ ¼ R1 � R1R4

10R2R3Czω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

m � v2mðtÞ
q

ð23Þ

vmðtÞ
imðtÞ ¼ R1 � R1R3R4Czω

10R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

m � v2mðtÞ
q

ð24Þ

Comparing Eqs. (23) and (24) with Eqs. (14) and (20), respectively, one obtains
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Hence, an open question is how to automatically compute the numeric value of each DC voltage
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depicted in Figure 11(b) (dashed lines). As a result, it is predicted that the frequency behaviour
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in higher frequencies and holding a symmetrical behaviour, since the offset voltage glimpsed can
again be reduced by updating the DC voltage sources.

5. Transformation of normal non-linear resistors to inverse

A memristor/memductor is basically a resistor/conductor whose resistance/conductance can
be changed by applying a voltage across its terminals or by applying a flow of current. The
type of control signal depends on the type of memristor/memductor, i.e. flux- or charge-
controlled. In any case, the frequency-dependent pinched hysteresis loop of a normal non-
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Figure 11. HSPICE results for: (a) decremental topology of Figure 10(a) and (b) incremental topology of Figure 10(b). For
both figures: offset uncompensated (solid lines) and compensated (dashed lines).
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effect is because a normal non-linear resistor/conductor uses an integrator block and, in
general, its behaviour can be modelled by Eq. (12). Since the inverse operation of an integral
is the derivate, the hysteresis loop behaviour of a normal non-linear resistor can be inverted
whether a differentiator block is used instead of an integrator block. Under this assumption
and following the idea presented in Section 3, we have modified Eq. (12) as

yiðtÞ ¼ xðtÞ ai � bi
dzðtÞ
dt

� �
ð18Þ

where yi(t) is the inverse current or voltage output signal, x(t) is the voltage or current input
signal and z(t) is the voltage or current control signal; ai represents the linear time-invariant
gain and bi is the linear time-varying gain. Assuming z(t) = Am sin (ωt + θ), we obtain

dzðτÞ
dt

¼ Amω cos ðωtþ θÞ ¼ �ω
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q

ð19Þ

and Eq. (18) becomes

yiðtÞ ¼ xðtÞ
�
ai � biω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð20Þ

Comparing Eqs. (14) and (20), one can observe that the sole difference is the position of ω.
According to Section 3 [28, 31, 32], the linear time-varying gain can be computed in function of
ω and Am given by

bi ¼ aiωki
Am

ð21Þ

where ki ∈ (0, 1). In Section 2, the behavioural model of normal flux- or charge-controlled
resistors was derived and one can observe that each model has an integrative part. As first
approximation and for obtaining an inverse flux- or charge-controlled resistor from a normal
resistor, the integrator circuit of the latter must be replaced by a differentiator circuit in the
former. This task can be done by simply interchanging C1 by R2 in Figure 1(a), as depicted in
Figure 12(a), and analysing this figure we obtain

vmðtÞ
imðtÞ ¼ R1 � R1R3R4Cz

10R2

dvmðtÞ
dt

ð22Þ

Considering vm(t) = Amsin(ωt + ϕ), where ϕ is the phase in degrees and by using Eqs. (14) and
(20), Eqs. (1) and (22) are rewritten as

vmðtÞ
imðtÞ ¼ R1 � R1R4

10R2R3Czω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð23Þ
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Comparing Eqs. (23) and (24) with Eqs. (14) and (20), respectively, one obtains
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an ¼ ai ¼ R1, bn ¼ R1R4

10R2R3Cz
, bi ¼ R1R3R4Cz

10R2
ð25Þ

At this point, our results indicate that by selecting adequately the numerical values of each
element of Eq. (25) for a particular operating frequency, the emulator circuits of Figures 1(a)
and 12(a) are able to generate normal and inverse pinched hysteresis loops, respectively. It is
worth to stress that the transformation methodology is only applicable for those topologies
where the integrator circuit is clearly defined, and when it is replaced by a differentiator
circuit, the behaviour of the resulting emulator circuit, in general, is not modified. However,
floating and grounded non-linear resistor emulator circuits without this requirement have also
been reported in the literature [27–33]. One example of them was shown in Figure 7(a).
However, whether C1 is replaced by an inductor L1 as shown in Figure 12(b), we get

vmðtÞ
imðtÞ ¼ R1 � R2L1

40
dimðtÞ
dt

ð26Þ

Afterwards assuming that im(t) = Amsin(ωt + ϕ) and by considering Eqs. (14) and (20), Eqs. (8)
and (26) take the form

vmðtÞ
imðtÞ ¼ R1 � R2

40C1ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

m � i2mðtÞ
q

ð27Þ

vmðtÞ
imðtÞ ¼ R1 � R2L1ω

40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

m � i2mðtÞ
q

ð28Þ

Comparing Eqs. (27) and (28) again with Eqs. (14) and (20), respectively, one obtains

an ¼ ai ¼ R1, bn ¼ R2

40C1
, bi ¼ R2L1

40
ð29Þ

Note that although the behaviour of the inductor can be emulated by using gyrators, the
resulting circuit becomes bulky and complex. Hence, this transformation technique does not

Figure 12. Inverse versions of: (a) Figure 1(a) and (b) Figure 7(a).
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Figure 13. Frequency-dependent hysteresis loop of Figure 1(a) (blue line) and Figure 12(a) (red line) operating to: 1 kHz
for (a) incremental and (b) decremental mode; 2 kHz for (c) incremental and (d) decremental mode; 4 kHz for (e)
incremental and (f) decremental mode.
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Note that although the behaviour of the inductor can be emulated by using gyrators, the
resulting circuit becomes bulky and complex. Hence, this transformation technique does not
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Figure 13. Frequency-dependent hysteresis loop of Figure 1(a) (blue line) and Figure 12(a) (red line) operating to: 1 kHz
for (a) incremental and (b) decremental mode; 2 kHz for (c) incremental and (d) decremental mode; 4 kHz for (e)
incremental and (f) decremental mode.
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show any advantage with respect to the methodology mentioned above. Without loss of
generality, only HSPICE results of Figures 1(a) and 12(a) configured at incremental mode will
be shown on the left side of Figure 13, whereas that for the decremental configuration will be
shown on the right side. In a first step, both emulator circuits were configured to f = 2 kHz.
HSPICE results are illustrated in Figure 13(c) and (d) and it is evident that these hysteresis
loops are almost similar. Later, the operating frequency was decreased to f = 1 kHz, and as one
can observe in Figure 13(a) and (b), the hysteresis loops present the behaviour forecasted.
Finally, the operating frequency of vm(t) was increased to f = 4 kHz, and hence, the behaviour of
the hysteresis loops was inverted, as depicted in Figure 13(e) and (f). From all these figures, we
can observe that for inverse non-linear resistors, the hysteresis loop becomes a straight line
when the operating frequency decreases, whereas for normal non-linear resistors, this behav-
iour is achieved when the operating frequency increases. Note that although the topology of an
inverse non-linear resistor shows a frequency-dependent pinched hysteresis loop, this cannot
be considered as memristor emulator circuit, since the property of non-volatility is not satis-
fied. Table 1 gives the numerical value for each passive element.

6. Analogue applications based on memristor emulator circuits

This section discusses three examples at the behavioural level of abstraction on the use of
memristor emulator circuits in real analogue applications.

6.1. Frequency-shift keying (FSK) modulator

Modulator circuits are important blocks in digital communications since they are used to
convert a unipolar bit sequence in an appropriate form for modulation and transmission [34].
Among the modulator circuits, frequency-shift keying (FSK) modulation is a frequency mod-
ulation scheme in which digital information is transmitted through discrete frequency changes
of a carrier wave. Thus, the higher frequency of the modulator is assigned to signal 1 and the
lower frequency is assigned to signal 0 [35]. This behaviour can be achieved by using a single-
memductor controlled sinusoidal oscillator (SMCO), as shown in Figure 14(a). Through rou-
tine analysis, we get

Variable Am an = ai bn bi kn ki

F = 1 kHz 2 10e3 3.14e7 0.19 0.99 025

F = 2 kHz 0.5 0.5

F = 4 kHz 0.25 0.99

Element R1 R3 R2 R4 R5 Cz

Figure 1(a) 10 kΩ 3.18 kΩ 100 kΩ 10 nF

Figure 12(a) 20 kΩ

Table 1. Numerical variables of Eq. (25) and component list of Figures 1(a) and 12(a).
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s2 þ 1
C1

1
R1

� 1
R3

� �
sþ W2

R3C1C2
ð30Þ

From Eq. (30), the condition of oscillation (CO) is: R3 = R1 and the frequency of oscillation (FO)

is: f 0 ¼ 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
W2

R3C1C2

q
. It is seen that CO and FO can independently be controlled by R1 and W2,

respectively. By merging Figure 4(b) with Eq. (30), a SIMULINK model can be built. Such
model is depicted in Figure 14(b)where the voltage and current gains are unitary (i.e.Av =Ai = 1).
Note that the SMCO along with an incremental memductor is depicted in the upper part of
Figure 14(b), whereas the SMCO along with a decremental memductor is illustrated in the
bottom. More detailed analysis of Eq. (30) is found in [36]. For this application, the SMCO was
designed with an oscillation centre frequency of f0 = 577 kHz and hence, R1 = 1 kΩ, R3 = 942Ω,
C1 = C2 = 140 pF andW2 = 0.33 mS. In order to vary the incremental memductance, a pulse train
with 2 V of amplitude and pulse width of 3 μs is used to increase W2; whereas for the
decremental memductance, a pulse of 0.3 V of amplitude and with the same pulse width
mentioned before is used to decrease W2. For both cases, when negative pulses with the same
amplitudes mentioned before are applied, both memductances return to their last state [32]. By
applying these control signals in Figure 14(b), one obtains an FSK signal, as shown in Figure 15
(a) and (b). On these last figures and into the interval [0, 2 ms], the operating frequency of the
FSK modulator is the same as SMCO. Next, when a positive digital signal is applied to the
incremental and decremental memductor, the memductance increases or decreases, respec-
tively. As a consequence, the FO of the SMCO also increases or decreases, as shown in
Figure 15(a) and (b) into the interval [2 ms, 4 ms], approximately. Afterwards, by applying a
negative digital signal to the memductors, the FSK modulator returns to its original FO.

Figure 14. (a) FSK modulator based on SMCO by using Figure 4(a); and (b) SIMULINK model of Eq. (30).
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show any advantage with respect to the methodology mentioned above. Without loss of
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Variable Am an = ai bn bi kn ki

F = 1 kHz 2 10e3 3.14e7 0.19 0.99 025

F = 2 kHz 0.5 0.5

F = 4 kHz 0.25 0.99

Element R1 R3 R2 R4 R5 Cz

Figure 1(a) 10 kΩ 3.18 kΩ 100 kΩ 10 nF

Figure 12(a) 20 kΩ

Table 1. Numerical variables of Eq. (25) and component list of Figures 1(a) and 12(a).
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Therefore, we can observe that a memductor (or memristor) device is useful for controlling the
FO of a SMCO and they can be used to design an FSK modulator.

6.2. Proportional-integral-derivative (PID) controller

Proportional-integral-derivative (PID) control has been used successfully for regulating pro-
cesses in industry for more than 60 years, due to its simple and easy design, low cost and wide
range of applications. A PID controller involves three parts: proportional part, integral part and
derivative part, and its target is to minimize the error between the set point and the measured
output. It is worth mentioning that for a complex or non-linear process, sometimes it is very
difficult to find the optimal parameters of the PID controller.

In this sense, the oldest and simplest methodwas proposed by Ziegler andNichols [37]. However,
this tuning method provides a large overshoot and settling time, and hence, the PID parameters
must subsequently be refined. Other methods that can also be used for choosing the parameters of
PID controller were reported in [38]. However, this method presents drawbacks when applied to
certain types of plants. Furthermore, the PID parameters are always constant and almost without
knowledge of the process to control. Therefore, an efficient and effective online tuning mechanism
is widely demanded. This last task can be achieved by using a memristor/memductor, since its
memristance/memductance can be kept even when the current flow in the memristor/memductor
is stopped [1, 28–33, 35]. This property asserts that it is possible to update the parameters of a
continuous PID controller online, i.e. the proportional gain (kp), integral gain

1 (ki) and derivative
gain (kd). In order to illustrate this idea, the transient response of a second-order low-pass filter is
controlled by a PID controller [39]. The transfer function of the filter is given by

HðsÞ ¼
1
LC

s2 þ s
RC þ 1

LC

ð31Þ

The numeric value of each element of Eq. (31) is R = 100 Ω, L = 0.475 mH, and C = 1 μF. At this
point, the PID controller parameters, kp = 80, ki = 1e5 and kd = 2e-3, were obtained according to [37].

Figure 15. Time response of the FSK modulator using: (a) incremental memductor and (b) decremental memductor.

1This parameter should not be confused with ki parameter associated to the inverse nonlinear resistor.
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Since the integral and derivative parts of the continuous PID controller are, in practice,
designed with R-C elements and active devices [27], one can obtain Ri = Rd = 2 kΩ, Ci = 5 nF
and Cd = 1 μF. Under this assumption, Figure 4(b), the PID controller and Eq. (31) are merged
to build a SIMULINK model. It is worth mentioning that the memductor shown in Figure 4(b)
was configured to operate at 300 Hz. Thus, Figure 16 shows all feedback systems to be
simulated [39]. In the upper part of Figure 16, the plant with feedback is illustrated. In the
second block, the PID controller with fixed parameters along with the plant is depicted. The
third block is the PID controller based on incremental memductor along with the plant; and
finally, the fourth block depicts the PID controller based on decremental memductor along
with the plant. For the last two cases, the memductance is varied by applying a pulse train, and
a square signal with 5 V of amplitude and f = 200 Hz is applied to all feedback systems.
Figure 17 shows all the transient responses of Figure 16. As a first step, the square signal
(magenta line) is applied to the feedback plant, and its transient response is underdamped
(green line), as shown in Figure 17(a). Hence, the plant needs to be controlled. In a second step,
the transient response of the second block is obtained and shown in Figure 17(a) (black line).
Here, the rise- and fall-time are symmetric and cannot be modified online. In order to get that
effect, the incremental and decremental memductor is used [39]. For both memductances, the
pulse train was adjusted to get the following cases:

Figure 16. PID controller based on memductors.
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was configured to operate at 300 Hz. Thus, Figure 16 shows all feedback systems to be
simulated [39]. In the upper part of Figure 16, the plant with feedback is illustrated. In the
second block, the PID controller with fixed parameters along with the plant is depicted. The
third block is the PID controller based on incremental memductor along with the plant; and
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with the plant. For the last two cases, the memductance is varied by applying a pulse train, and
a square signal with 5 V of amplitude and f = 200 Hz is applied to all feedback systems.
Figure 17 shows all the transient responses of Figure 16. As a first step, the square signal
(magenta line) is applied to the feedback plant, and its transient response is underdamped
(green line), as shown in Figure 17(a). Hence, the plant needs to be controlled. In a second step,
the transient response of the second block is obtained and shown in Figure 17(a) (black line).
Here, the rise- and fall-time are symmetric and cannot be modified online. In order to get that
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pulse train was adjusted to get the following cases:
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1. By using an incremental memductor, the rise-time (red line) of the system is largest than
the rise-time gotten with fixed parameters (black line) and those obtained with the decre-
mental memductor (blue line). In fact, the rise-time of the latter is the shortest, as depicted
in Figure 17(a).

2. By using a decremental memductor, the fall-time (blue line) of the system is largest than
the fall-time gotten with fixed parameters (black line) and those obtained with the incre-
mental memductor (red line). In fact, the fall-time of the latter is the shortest, as shown in
Figure 17(a).

3. In order to get the same rise-time in all cases, both memductances were adjusted by using
the pulse train shown in Figure 17(b), and the result can be observed in Figure 17(a) at
5.5 ms, approximately.

Therefore, we can observe that memristors/memductors are useful for controlling the rise- and
fall-time of the transient response of a feedback system.

6.3. Memristive synapses

As a last example, but not the least important, we describe the analysis and design of a synaptic
circuit based on memristors. Basically, synapses are specialized sites where several neurons are
connected, which receive and send information from other cells; this junction is the foundation of

Figure 17. (a) Transient response of the plant and PID controllers. (b) Pulse train for controlling the incremental and
decremental memductance.
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complex brain tasks and functions related to learning and memory. Emulation of biological
synapses is the basis to build large-scale brain-inspired systems [40]. A key property of the brain
is its ability to learn, this process lies in the plasticity of the synapses that allows the nervous
system to adapt. Memristor is a candidate suitable to emulate a synapse, due to its non-volatility
property and programmable device. But a single memristor cannot accomplish this task; in fact,
there are several topologies that enable this behaviour, depending on the approach used for
artificial neural network, i.e. cellular neural networks (CNN) [41], spiking neural networks
(SNN) [42, 43], feed-forward neural networks (FFNN) [44] and recurrent neural networks
(RNN) [45]. Few architectures based on memristors are focused on feed-forward artificial neural
networks, which completely satisfies the requirements of an artificial synapse. On the other
hand, there are several requirements that must be met for a synaptic learning [46]:

1. The weight must be stored always in the absence of learning.

2. The synapse must be computed as an output, i.e. the product of the input signal with the
synaptic weight also called synaptic weighting.

3. Each synapse must occupy a reduced area.

4. Each synapse must operate with low power dissipation.

5. Each synapse must be capable of implementing a learning rule such as Hebbian or Back
propagation [1, 40, 46].

Table 2 shows a comparison among the most recent memristive neural networks. Thus, the third
column of the table shows whether design meets the five rules mentioned before, such that the
synapse can be considered as learning synapse. Design of [41] does not meet rule 5, since to change
a negative weight to positive not only additional circuitries is required, but on line training is not
also possible; [43] meets some of the properties of [46], because it is implemented through an ideal
memristor model whose applications are limited to simulations; [44] uses a high number of active
components (i.e. 64) for building a synapse, considering the memristor emulator reported in [49].
The fourth column is the frequency of the spikes for SNN approach and for the case of MCNN
and ANN the time for weight setting from its lowest to the highest value is described. If weight
setting time is too long, then weight processing will take longer which affects its performance.
Thus, only [44] simulates and fully implements a synapse based on a memristor emulator.
Unlike [41, 42, 47], its hardware applications are not limited to HP memristor fabrication, but the
number of elements and the operating frequency are parameters that restrict its performance.
However, frequency is limited and the number of active components is high. On the other hand,
the proposed synaptic memristive bridge circuit begins with the analysis of memristance of the
flux-controlled memristor of Figure 1(a). First, memristance variation of Figure 1(a) is analysed,
where Eq. (1) can be rewritten as

MðφmðtÞÞ ¼ R1 � R1αφmðtÞ ð32Þ

The maximum value of memristance for an incremental memristor is: Minc ¼ R1 þ R1kn and
the minimum is Minc ¼ R1 � R1kn, as shown in Figure 18(a).
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complex brain tasks and functions related to learning and memory. Emulation of biological
synapses is the basis to build large-scale brain-inspired systems [40]. A key property of the brain
is its ability to learn, this process lies in the plasticity of the synapses that allows the nervous
system to adapt. Memristor is a candidate suitable to emulate a synapse, due to its non-volatility
property and programmable device. But a single memristor cannot accomplish this task; in fact,
there are several topologies that enable this behaviour, depending on the approach used for
artificial neural network, i.e. cellular neural networks (CNN) [41], spiking neural networks
(SNN) [42, 43], feed-forward neural networks (FFNN) [44] and recurrent neural networks
(RNN) [45]. Few architectures based on memristors are focused on feed-forward artificial neural
networks, which completely satisfies the requirements of an artificial synapse. On the other
hand, there are several requirements that must be met for a synaptic learning [46]:

1. The weight must be stored always in the absence of learning.

2. The synapse must be computed as an output, i.e. the product of the input signal with the
synaptic weight also called synaptic weighting.

3. Each synapse must occupy a reduced area.

4. Each synapse must operate with low power dissipation.

5. Each synapse must be capable of implementing a learning rule such as Hebbian or Back
propagation [1, 40, 46].

Table 2 shows a comparison among the most recent memristive neural networks. Thus, the third
column of the table shows whether design meets the five rules mentioned before, such that the
synapse can be considered as learning synapse. Design of [41] does not meet rule 5, since to change
a negative weight to positive not only additional circuitries is required, but on line training is not
also possible; [43] meets some of the properties of [46], because it is implemented through an ideal
memristor model whose applications are limited to simulations; [44] uses a high number of active
components (i.e. 64) for building a synapse, considering the memristor emulator reported in [49].
The fourth column is the frequency of the spikes for SNN approach and for the case of MCNN
and ANN the time for weight setting from its lowest to the highest value is described. If weight
setting time is too long, then weight processing will take longer which affects its performance.
Thus, only [44] simulates and fully implements a synapse based on a memristor emulator.
Unlike [41, 42, 47], its hardware applications are not limited to HP memristor fabrication, but the
number of elements and the operating frequency are parameters that restrict its performance.
However, frequency is limited and the number of active components is high. On the other hand,
the proposed synaptic memristive bridge circuit begins with the analysis of memristance of the
flux-controlled memristor of Figure 1(a). First, memristance variation of Figure 1(a) is analysed,
where Eq. (1) can be rewritten as

MðφmðtÞÞ ¼ R1 � R1αφmðtÞ ð32Þ

The maximum value of memristance for an incremental memristor is: Minc ¼ R1 þ R1kn and
the minimum is Minc ¼ R1 � R1kn, as shown in Figure 18(a).
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Considering that kn ∈ (0, 1), it is preferable to use kn ! 1 to assure more range of variation;
however, it is necessary to recall that memristance value is limited. In this frame of reference,
several tests varying kn were performed in HSPICE with incremental and decremental
memristors tested separately and in different operating frequencies, as shown in Figure 18(b).
Nevertheless, secondary effects are observed when varying kn ! 0.8, and therefore, the
memristors have a different behaviour compared with Figure 18(a), since in this case, the
incremental and decremental memristance vary within the same range of memristance. In order
to obtain the same behaviour of memristance from Figure 1(a) and for several operating frequen-
cies, each discrete element must be updated according to Table 3. Note that the proposed
topology takes advantage of memristance behaviour and uses only two flux-controlled floating
memristor emulators, M1(ϕm(t)), configured as decremental and M2(ϕm(t)) as an incremental
memristor, along with two passive resistors Ra = Rb = 10 kΩ, as shown in Figure 19(a) [50]. The
analysis of Figure 19(a) is as follows: when a positive pulse is applied, M1(φm(t)) decreases and
M2(φm(t)) increases. As a consequence, vB decreases and vA increases. Moreover, when a

Figure 18. (a) Incremental and decremental memristance when vm = Amsin(ωt, ). (b) Simulation results of memristance for
Am = 2 V, f = 8 kHz and kn = 0.8.

Reference Approach Learning synapse Frequency (Hz) Memristor Active devices

Synapse Neuron

[44] FFNN Yes 142 Emulator 69 5

[47] SNN 5 2 3

[43] 30 HP model 2 13

[42] 300 2 8

[48] 100 – –

[41] MCNN No 0.71 1 1

[45] RNN Yes 1 – 1

Table 2. Comparison among memristive neural networks.
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negative pulse is applied, an inverted behaviour is glimpsed. Whether the pulse width is wide
enough, the output voltage vAB = vA � vB varies gradually from negative to positive voltages and
vice versa. Therefore, the memristances M1(ϕm(t)) and M2(ϕm(t)) are varied within vm � vA and
vm � vB voltages, respectively. For synapse design, first the voltage v2 was considered and it is
described by

v2 ¼ �v1α
ðt
0
vmðτÞdτ ð33Þ

Hence, considering Eq. (33), vA and vB are redefined as

vA ¼ �vmðtÞαφM2
ðtÞ, νA ¼ νmðtÞαφM1

ðtÞ ð34Þ

where the magnetic flux of each memristor is

ϕM1
¼
ðt
0
vmðτÞ � vðτÞAdτ, ϕM2

¼
ðt
0
vmðτÞvðτÞBdτ ð35Þ

Hence, vAB and ξ, the weight, are obtained as

Element R1 R2 = R4 R3 Cz

F = 8 kHz 10 kΩ 100 kΩ 1.97 kΩ 2.5 nF

f = 10kHz 2 nF

f = 5kHz 3 kΩ 2.652 nF

Table 3. Component list of Figure 1(a) configured in several operating frequencies.

Figure 19. (a) Synaptic memristive bridge and (b) SIMULINK model of Eqs. (34)–(38).
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vAB ¼ αvm
�
ϕM1

ðtÞ þ ϕM2
ðtÞ
�
, ξ ¼ vAB
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Memristance variation for M2(ϕm(t)) is

M2
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�
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Similarly, memristance variation for M1(ϕm(t)) is:
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�
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ðtÞ
�
¼ R1 þ R1αϕM1

ðtÞ ð38Þ

As observed in Eqs. (37) and (38), the memristances depend on Eq. (35) and each memristor in
the synapse is designed with the same parameters, so their memristances vary at same rate.
From Eqs. (34)–(38), a SIMULINK model is built and depicted in Figure 19(b). The synaptic
memristive bridge was simulated in HSPICE and numerical simulations of Figure 19(b) were
obtained at MATLAB. Thus, the memristance variation M1ðϕM1

ðtÞÞ and M2ðϕM2
ðtÞ are shown

in Figure 20, respectively. The vAB voltage for kn = 0.8 behave as sawtooth wave, as seen in
Figure 21, and ξ is approximated by

ξ ¼ 49077t� 1:5338 0 ≥ t ≥ T=2

�48567þ 4:5373 T=2 ≥ t ≥T

(
ð39Þ

whose confidence level is Q2 = 0.996. This value represents the linearity of ξ, if Q2 ! 1 means
that there is a linear relation between input pulses and ξ. To verify the behaviour of the
synaptic memristive bridge, three basic steps are performed [44, 46].

1. Sign setting. This stage refers to configure a positive sing or negative weight, and assures
that ξ is within the desired range. Therefore, a bi-pulse signal with vm = �2 V of amplitude
configured at several frequencies is applied, as depicted in Figure 22. To configure a positive
sign, it is necessary to apply a falling edge pulse, when a rising edge pulse is applied, a
negative ξ is configured.

2. Weight setting. Once the sign is established, it is necessary to apply a pulse width to set
weight of the synapse. For the case 8 kHz, the allowedmaximum pulse width is 62.5 μs, in
the general case it is T/2. Therefore, pulse signal vm with pulse width of range (0, T/2) is
applied to set the weight to a desired ξ. In Figure 22 a pulse vm is shown whose pulse
width is 2.5 μs which sets ξ = �0.8495.

3. Synaptic weight processing. This operation refers to perform vs = ξvp, which is the
multiplication of a narrow input pulse vp and the pre-established ξ weight. The pulse
width of vp is narrow due to an effect called memristance drifting which is drifting of flux
accumulation φM1

and φM1
caused by vp [1, 40]. However, the response to that narrow

pulse is governed by the settling time (st) and slew rate (SR) of multiplier AD633 used
in the memristor emulator circuit, whose st = 2 μs at output voltage V0 = 20 V and SR of
20 V/μs. The AD633 can be replaced by AD734 multiplier whose SR = 450 V/μs at V0 = 20 V
and st = 200 ns.
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Figure 20. Memristance variations of Figure 19(a) when the bi-pulse signal vm = �2 V at 8 kHz is applied: (a) MATLAB®

and (b) HSPICE®.

Figure 21. ξ variations of Figure 19(a) when the bi-pulse signal vm = �2 V at 8 kHz in (a) MATLAB® and (b) HSPICE®.

Figure 22. Synaptic multiplication when ξ = 0.8495 and a pulse signal vp = 1.5 Vof amplitude with pulse width of 200 ns is
applied: (a) MATLAB results and (b) HSPICE simulations.
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whose confidence level is Q2 = 0.996. This value represents the linearity of ξ, if Q2 ! 1 means
that there is a linear relation between input pulses and ξ. To verify the behaviour of the
synaptic memristive bridge, three basic steps are performed [44, 46].

1. Sign setting. This stage refers to configure a positive sing or negative weight, and assures
that ξ is within the desired range. Therefore, a bi-pulse signal with vm = �2 V of amplitude
configured at several frequencies is applied, as depicted in Figure 22. To configure a positive
sign, it is necessary to apply a falling edge pulse, when a rising edge pulse is applied, a
negative ξ is configured.

2. Weight setting. Once the sign is established, it is necessary to apply a pulse width to set
weight of the synapse. For the case 8 kHz, the allowedmaximum pulse width is 62.5 μs, in
the general case it is T/2. Therefore, pulse signal vm with pulse width of range (0, T/2) is
applied to set the weight to a desired ξ. In Figure 22 a pulse vm is shown whose pulse
width is 2.5 μs which sets ξ = �0.8495.

3. Synaptic weight processing. This operation refers to perform vs = ξvp, which is the
multiplication of a narrow input pulse vp and the pre-established ξ weight. The pulse
width of vp is narrow due to an effect called memristance drifting which is drifting of flux
accumulation φM1

and φM1
caused by vp [1, 40]. However, the response to that narrow

pulse is governed by the settling time (st) and slew rate (SR) of multiplier AD633 used
in the memristor emulator circuit, whose st = 2 μs at output voltage V0 = 20 V and SR of
20 V/μs. The AD633 can be replaced by AD734 multiplier whose SR = 450 V/μs at V0 = 20 V
and st = 200 ns.
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Figure 20. Memristance variations of Figure 19(a) when the bi-pulse signal vm = �2 V at 8 kHz is applied: (a) MATLAB®

and (b) HSPICE®.

Figure 21. ξ variations of Figure 19(a) when the bi-pulse signal vm = �2 V at 8 kHz in (a) MATLAB® and (b) HSPICE®.

Figure 22. Synaptic multiplication when ξ = 0.8495 and a pulse signal vp = 1.5 Vof amplitude with pulse width of 200 ns is
applied: (a) MATLAB results and (b) HSPICE simulations.

Memristor Emulator Circuit Design and Applications
http://dx.doi.org/10.5772/intechopen.69291

141



Finally, Figure 22(a) presents a MATLAB simulation of a pulse vp = 2 V whose pulse width is
200 ns. This pulse ismultiplied by ξ, obtaining vs =�1.699. On the other hand, the synapticweight
processing at HSPICE shown in Figure 22(b) is done following the samemethodology [50].

7. Conclusion

Memristor emulator circuits are useful for developing real memristor-based application circuits
as well as for educational purposes. In this chapter, we have studied three memristor/
memductor emulator circuits whose behaviour can be configured as incremental or decremental.
Two of them are grounded versions whereas the latter is floated. The behavioural model for each
topology was derived and its SIMULINK model was also programmed. The design guide
suggested in this chapter provides a systematic way for designing memristor/memductor emu-
lator circuits with good features. Further, an offset compensation technique was also described in
order to achieve the frequency-dependent pinched hysteresis loop that does not deviate of the
origin when the operating frequency of the input signal increases. As a result, it is predicted that
the frequency behaviour of the pinched hysteresis loops of memristor/memductor emulator
circuits can be pushed for operating in higher frequencies and holding a symmetrical behaviour,
since the offset voltage glimpsed can again be reduced by updating the DC voltage sources.
Moreover, a transformation methodology for obtaining the behaviour of inverse non-linear
resistors from normal non-linear resistors has also been described, and as it was observed in
Section 5, the methodology consists in replacing the integrator circuit, clearly defined in the
normal topologies by a differentiator circuit, so that not only an inverse behaviour is obtained,
but also the resulting topology is not drastically modified with respect to the original topology.
Finally, three real analogue applications based on memristors/memductors were addressed.
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This chapter presents a solution for the simulation of large memristive networks with 
SystemC-AMS. SystemC-AMS allows simulating memristors both on analogue level and 
on digital level to link analogue memristive devices to digital circuits and system level 
specifications. We investigate the benefits and drawbacks of a SystemC-AMS simulation 
compared to a simulation in SPICE. We show for the example of a two-layer memristive 
network emulating an optical flow algorithm by the detection of moving edges that large 
memristive networks can be simulated with a free available SystemC-AMS simulation 
environment, whereas free available SPICE simulation environment fails. However, it 
is also shown that commercial SPICE simulators are superior against current SystemC-
AMS implementations concerning the size of simulated memristive networks. However, 
SystemC-AMS simulations of memristive networks offer both still more flexibility and 
similar run times compared to commercial SPICE simulators for small-sized memris-
tive networks. The flexibility and the powerfulness of a SystemC-AMS solution is dem-
onstrated for a complex network that solves edge detection, filtering and detecting of 
moving objects. The possible run times of the memristive network are determined in the 
SystemC-AMS simulation environment and are compared with an optical flow algorithm 
on classical hardware like a CPU and a GPU.
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One of the missing things in the research on modelling and simulation of large memristor 
networks is the availability of an adequate simulation system, which is both fast and flexible. 
Available SPICE models offer for commercial products, for example, Spectre Circuit Simulator, 
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fast simulation times but don’t offer flexibility. To establish links to higher abstraction levels, 
for example, to the system level, in order to combine memristive circuits with extensive digi-
tal circuits, or even the integration in processor architecture descriptions to execute software 
in virtual environments is very cumbersome.

Therefore, we established a model for memristors in SystemC-AMS. A SystemC simulation 
can be carried as fast as SPICE simulations but allows a better linking to higher system levels 
as it is possible, for example, with Verilog-A, for which already memristor models exist [1]. 
SystemC-AMS allows also a detailed investigation of the analogue behaviour in the same way 
as one it is used it in SPICE.

For the modelling of single memristor behaviour in SystemC-AMS, we used the possibility to 
model variable resistors in SystemC-AMS with electrical linear networks (ELNs) as starting 
point. The resistance values of such elements can be controlled and modified by a discrete 
event input signal. We start to demonstrate this possibility with the well-known SPICE mem-
ristor model from Biolek et al. [2], which is based on an electronic equivalent circuit of the 
simple memristor behaviour description from Hewlett-Packard.

However, we do not mimic the electronic equivalent circuit in SystemC-AMS. The memristor 
model is realized in SystemC-AMS as an own object-orientated class. Using object-orientated 
programming principles allows simply exchanging the model for the memristive behaviour 
by another one. In principle, it is possible to use any other model as long as it is specified by a 
C/C++ code snippet. We have implemented in SystemC-AMS two memristor models, the HP 
model that is also used in Biolek’s SPICE model [2] and a statistic description for a commercial 
memristor coming from Knowm Inc. [3].

We demonstrate the usefulness and the strength of a SystemC-AMS-based simulation system 
for a three-dimensional (3D) memristive circuit that implements a detection based on an opti-
cal flow. For this application, a memristive network was proposed in Ref. [4]. We adapt this 
solution and modelled the complete network in SystemC-AMS. We compare the achieved 
results with an implementation on a GPU to evaluate possibilities and limits of the compute 
capability of memristive circuits. The chapter is organized as follows. In Section 2, we present 
our solution for the modelling of memristors in SystemC-AMS. Section 3 gives a brief insight 
in the optical flow algorithm we used for an implementation on a GPU and a multi-core CPU 
serving as reference architecture for the simulated memristive network. The correspond-
ing memristor network calculates optical flow gradients as moving edges with a memris-
tive network. We selected exactly this network as a representative complex example for a 
SystemC-AMS specification of memristive networks. Section 4 specifies the achieved results 
for the simulation and compares it with a GPU/CPU implementation concerning the run time. 
Furthermore, the simulation time of a SystemC-AMS specification and a SPICE simulation of 
the specific memristive network are compared. Finally, the chapter ends with a conclusion.

2. Modelling memristors in systemC-AMS

SystemC-AMS is an extension of the modelling language SystemC about analogue-
mixed signals. It allows not only the modelling of digital hardware and corresponding 
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 software in one homogeneous environment but also the combination of discrete and con-
tinuous analogue systems. SystemC-AMS contains a solver for the Kirchhoff equations 
which are used for the computation of the behaviour of electrical networks. SystemC as 
well SystemC-AMS is not a new language but an extension of C++ about a correspond-
ing library. Therefore, it allows the modelling of analogue and digital systems using a 
class-orientated structure. This feature is very beneficial for designing complex mem-
ristor networks using different models. Just by instantiating another memristor model 
in the SystemC-AMS program, a whole network can be simulated with another mem-
ristor model in a very convenient way. A modification of the electronic network is not 
necessary.

SystemC-AMS offers three main options for the modelling of discrete and continuous sys-
tems on different abstraction levels. Furthermore, these models can also be coupled via 
matched interfaces. An example scenario for such a coupling of components modelled in 
different domains consists of, for example, a binary module that is connected to a linear 
electronic circuit. In this case, the binary module could differ between two states which are 
used to control a voltage source. According to a state transfer of the binary output, the polar-
ization of the continuous output voltage signal is reversed. For the work presented in this 
chapter, we used a proof-of-concept implementation of SystemC-AMS from Accellera and 
Coseda Technologies [5], which is freely available under an Apache 2.0 licence. Since this 
implementation was developed primarily with respect to its correct implementation of the 
IEEE standard 1666.1, the main focus was not laid on the simulation speed. Therefore, it is to 
investigate how other possible SystemC-AMS simulators could offer an alternative in future, 
resp. a re-evaluation has to be done when the current version of Coseda leaves its current 
proof-of-concept state.

2.1. SystemC-AMS modelling options

In the following, we briefly present the above-mentioned three modelling options offered 
by SystemC-AMS and evaluate them for their appropriateness to model memristors.

The timed data flow (TDF) model allows the modelling of discrete time steps. Each TDF mod-
ule has a couple of inputs and outputs, which consume an event at discrete time steps. As 
result of this occurred event, the module can change its internal state. However, processing 
at discrete time steps does not help us to model the analogue behaviour of memristors. The 
linear signal flow (LSF) allows solving continuous equations. For that purpose, different basic 
blocks like adders, multipliers and integrators are offered, which can be connected and are 
processed by a built-in solver for differential equations. Also, this option does not meet our 
intention of memristor modelling since LSF is more orientated to model signal-processing 
algorithms based on pre-built blocks. The third main modelling method is thought to model 
analogue systems as electrical linear networks (ELNs). It allows the set-up and solving of elec-
trical networks by applying the Kirchhoff circuit laws for electronic meshes and nodes. An 
electrical network consists of modules which are connected via nodes. Using these laws, 
increasing and decreasing currents and voltages can be determined for the devices. Since 
memristors are part of electronic circuits, we use this modelling technique primarily for the 
memristor modelling.
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In the following, we describe in detail the SystemC-AMS specification we selected for the 
memristor modelling. Figure 1 shows a block diagram of the corresponding model. The basic 
idea is to model the memristor with a SystemC-AMS built-in data type variable resistor which 
allows changing dynamically its resistance by a discrete value. For each memristor in the 
simulated network, the voltage, which drops down at its ports p and n, is read out via get_volt-
age() in each simulation step. Depending on the used memristor model, the new memristor’s 
memristance is calculated. Subsequently, the new value is assigned to the variable resistance 
via assigning a discrete signal by the method set_resistance().

The code fragment shown below is the corresponding SystemC-AMS specification:

1. The memristor is modelled as an object-orientated class Memristor in SystemC-AMS. The 
memristance is calculated and stored as discrete variable in R.

2. The memristor has two ports p and n.

3. The memristor device, denoted as memristor_resistor, is modelled as variable resistor. It 
inherits its characteristics from the SystemC-AMS built-in type sca_eln::sca_de::sca_r. This 
variable is used in the circuit to which an instanced memristor element of the class Memristor 
is connected to via the ports p and n.

4. The voltage drop at the memristor can be measured by a kind of display variable out, this 
is the readable voltage value, that is given out via the virtual voltage metre vout. The cor-
responding voltage value is stored at memristor_voltage.

5. SystemC uses a discrete-event simulation, for that it is necessary to define a so-called con-
trol port parameter that checks if a signal change occurs at its input. This is the variable 
memristor_control. To this port, a signal has to be attached which is memristor_port.

Figure 1. Block diagram for the selected SystemC-AMS model for a memristor.
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6. The functional behaviour of a memristor, defined by its specific model, is specified by a 
later instanced virtual function solve(), which can be implemented in C/C++ code for each 
specific memristor model:

//Base class

class Memristor {

public:

double R;

//ports of the memristor

sca_eln::sca_terminal p,n;

//resistor controlled by discrete-event input signal, needs input

sca_eln::sca_de::sca_r memristor_resistor;

//converter and voltage meter

sca_tdf::sca_out<double> out;

sca_eln::sca_tdf::sca_vsink vout;

//systemc ams interface to read voltage over the resistor

sca_tdf::sca_signal<double> memristor_voltage;

//control port of controlled resistor

sc_core::sc_in<double> memristor_control;

//systemc ams interface to set the new resistance

sc_core::sc_signal<double> memristor_port;

//solve must be implemented by the specific model

virtual void solve(const double dt) = 0;

};

A specific memristor is modelled by an inheritance from the class Memristor. This is shown 
in the following for the specification of a class MemristorBiolek, which is inherited by the 
generic public class Memristor. The functional behaviour of the inherited memristor is orien-
tated to the SPICE equivalent model from Biolek given in Ref. [2]. Some physical features 
for the memristor are defined as constants at the beginning like the DRIFT_MOBILITY of 
the ions and the LENGTH of the channel of the modelled memristor. Furthermore, variables 
for the maximum and the minimum resistance, R_ON and R_OFF, and the width of the 
doped region, w, are declared. Furthermore, the class constructor and some parameters 
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(R_ON, R_OFF, R_INIT) are defined, which can be passed to the class element when it is 
instanced to initialize these memristor parameters. The functionality of the memristor type 
is defined by the method solve. A discrete solution of a differential equation for the mem-
ristance change is used; the step width for the integration is defined by dt. The method solve 
is the central key of the flexibility in the simulation. It can be changed by another function 
to implement another model.

The following SystemC-AMS code sequence shows the specification of a class that models a 
memristor’s behaviour specification according to the Biolek model

class MemristorBiolek: public Memristor {

private:

 const double DRIFT_MOBILITY = 440000.0 * pow(10.0, −18.0);

 const double LENGTH = 41.0 * pow(10.0, −9.0);

 double R_ON, R_OFF, w;

public:

MemristorBiolek(const double R_ON, const double R_OFF,

const double R_INIT);

void solve(const double dt, std::function<double(double)>

voltage_function = [](const double val) -> double

{

return val;

}

);

std::string name() const { return "Biolek"; }

};

The following code snippet specifies the constructor for the inherited class MemristorBiolek:

Memristor::Memristor(const double R_INIT): R(R_INIT) {} ;

MemristorBiolek::MemristorBiolek(const double R_ON, const double R_
OFF, const double R_INIT): R_ON(R_ON), R_OFF(R_OFF), Memristor(R_INIT)

{

double x = (R_INIT − R_OFF)/(R_ON − R_OFF);

if (x > 1.0) x = 1.0;
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if (x < 0.0) x = 0.0;

w = x * LENGTH;

}

The next code sections show the implementation of the method solve() to calculate the mem-
ristance of the memristor. The nonlinear behaviour of the memristor is modelled by the 
window function windowBiolek() that was set up by Biolek in Ref. [2] in order to modify the 
changing of the width of the memristor’s doped region w at the edges of the device

inline long double windowBiolek(double x, double I,

double const P_WINDOW) const

{

if (−I >= 0)

return 1 - pow(x − 1, 2 * P_WINDOW);

return 1 - pow(x, 2 * P_WINDOW);

}

void MemristorBiolek::solve(const double dt, std::function<double(dou
ble)> voltage_ function) {

double U = memristor_voltage.read(0);

double I = U/R;

R = R_ON * (w/LENGTH) + R_OFF * (1 − w/LENGTH);

double vD = ((DRIFT_MOBILITY * R_ON)/LENGTH) *

I * windowBiolek(w/LENGTH, I, 7.0);

w += vD * dt;

write_resistance();

}

} ;//end of definition of class Memristor

Figure 2 shows multiple overlaid hysteresis curves for the I-U relation at the memristor’s 
poles. Throughout, the memristor was simulated with a minimum resistance ROFF = 200 Ω, 
a maximum resistance RON = 28 Ω and an initial resistance RINIT = 100 Ω. A sinusoidal volt-
age source is attached serially to the memristor. The voltage source is oscillating with 1 kHz 
between −1 and 1 V. The simulated time was set to 1 s with a time resolution of 1 µs. It is to 
observe that with each oscillation, the hysteresis curve becomes more flat until it ends in a 
more or less straight line, that is, the non-linear behaviour disappears.
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class MemristorBiolek: public Memristor {

private:

 const double DRIFT_MOBILITY = 440000.0 * pow(10.0, −18.0);

 const double LENGTH = 41.0 * pow(10.0, −9.0);

 double R_ON, R_OFF, w;

public:

MemristorBiolek(const double R_ON, const double R_OFF,

const double R_INIT);

void solve(const double dt, std::function<double(double)>

voltage_function = [](const double val) -> double

{

return val;

}

);

std::string name() const { return "Biolek"; }

};

The following code snippet specifies the constructor for the inherited class MemristorBiolek:

Memristor::Memristor(const double R_INIT): R(R_INIT) {} ;

MemristorBiolek::MemristorBiolek(const double R_ON, const double R_
OFF, const double R_INIT): R_ON(R_ON), R_OFF(R_OFF), Memristor(R_INIT)

{

double x = (R_INIT − R_OFF)/(R_ON − R_OFF);

if (x > 1.0) x = 1.0;
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if (x < 0.0) x = 0.0;

w = x * LENGTH;

}

The next code sections show the implementation of the method solve() to calculate the mem-
ristance of the memristor. The nonlinear behaviour of the memristor is modelled by the 
window function windowBiolek() that was set up by Biolek in Ref. [2] in order to modify the 
changing of the width of the memristor’s doped region w at the edges of the device

inline long double windowBiolek(double x, double I,

double const P_WINDOW) const

{

if (−I >= 0)

return 1 - pow(x − 1, 2 * P_WINDOW);

return 1 - pow(x, 2 * P_WINDOW);

}

void MemristorBiolek::solve(const double dt, std::function<double(dou
ble)> voltage_ function) {

double U = memristor_voltage.read(0);

double I = U/R;

R = R_ON * (w/LENGTH) + R_OFF * (1 − w/LENGTH);

double vD = ((DRIFT_MOBILITY * R_ON)/LENGTH) *

I * windowBiolek(w/LENGTH, I, 7.0);

w += vD * dt;

write_resistance();

}

} ;//end of definition of class Memristor

Figure 2 shows multiple overlaid hysteresis curves for the I-U relation at the memristor’s 
poles. Throughout, the memristor was simulated with a minimum resistance ROFF = 200 Ω, 
a maximum resistance RON = 28 Ω and an initial resistance RINIT = 100 Ω. A sinusoidal volt-
age source is attached serially to the memristor. The voltage source is oscillating with 1 kHz 
between −1 and 1 V. The simulated time was set to 1 s with a time resolution of 1 µs. It is to 
observe that with each oscillation, the hysteresis curve becomes more flat until it ends in a 
more or less straight line, that is, the non-linear behaviour disappears.
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3. Simulation of an optical flow algorithm with a memristor 
network in SystemC-AMS

In the last chapter, we have shown how to simulate the analogue behaviour of a single mem-
ristor element. The next step is to demonstrate the possibility to simulate a much more com-
plex example, namely the simulation of optical flow as detection of moving edges in a grid 
of memristors. The network mimics the functional behaviour of an artificial retina with a 
network consisting of resistors and memristors. The network was presented in Ref. [4]. In 
the following, we describe the set-up of the memristive network and the necessary functions 
to realize the detection of moving edges. We compare in the following the solution with an 
optical flow implementation on classical hardware. The optical flow follows the procedure 
according to Horn and Schunk [6]. For reasons of completeness, we briefly describe this algo-
rithm first and the corresponding memristive network later as well as its SystemC-AMS speci-
fication developed by us.

Figure 2. Result of SystemC-AMS simulation of a memristor excited by a sinusoidal voltage signal.
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3.1. Procedure of the optical flow

The procedure of Horn and Schunk was one of the first optical flow methods. It provides a dense 
and smooth global result. Global in this sense means that the whole image is considered and not 
only a local region around a pixel in order to solve the equation motion for pixels in two sub-
sequent images. In an optical flow procedure, a vector field h is computed according to Eq. (1) 
that describes the translation of pixel (x,y) in a two-dimensional (2D) image over time    dx ___ dt    and    dy ___ dt   .

  h =   (  u, v )    =   (    dx _ dt  ,   
dy

 _ dt   )     (1)

For the calculation of translating pixels, it is assumed that their intensities remain constant 
after the translation. That means, a pixel, which is moved between two images I(x,y,t) and 
I(x,y,t+dt), has to maintain its brightness

  I  (  x, y, t )    = I(x + u ⋅ dt, y + v ⋅ dt, t + dt )  (2)

As a consequence, each algorithm, which is based on this equation, has to calculate with 
scalar, that is, grey values, and not with colour values. This has to occur also later in the 
memristive network. Finally, after applying the chain rule, Eq. (2) can be transformed to the 
central Eq. (3) that is solved in a similar way by detecting moving edges by the corresponding 
memristive network presented in Ref. [3]. This network is simulated here with SystemC-AMS 
to demonstrate that complex memristive networks can be simulated with our approach of 
modelling the dynamic of memristors with variable resistors

  I  (  x, y, t )    = I  (  x, y, t )    + u ⋅ dt   ∂ I ___ ∂ x   + v ⋅   ∂ I ___ ∂ y   + dt   I __ ∂ t    (3)

   I  x    (  x, y )    ⋅ u +  I  y    (  x, y )    ⋅ v +  I  t    (  x, y )    = 0  (4)

3.2. Memristive network and SystemC-AMS specification

In the following, we exemplarily consider the details only for the derivatives in the space 
to x and y dimension for a corresponding 2D memristor network. The extension to the time 
domain would be an additional layer in the third direction between corresponding pixels in 
neighboured images. As mentioned, the algorithm works on grey-scaled images; therefore, 
the scales have to be inverted in corresponding voltages. For the simulation, it is enough to 
restrict to an 8-bit resolution. Since the voltage of a photo-sensitive cell is in the range of 0–40 
mV, we get the following scaling of the input voltage for each pixel Eq. (4)

   V  p  (x ) = x ⋅   (    40 _ 255   )   mV  (5)

This scaling has to be carried out for each pixel in the image. In our SystemC-AMS spec-
ification, this is done per instruction code, which calculates Eq. (4) and uses the result to 
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For the calculation of translating pixels, it is assumed that their intensities remain constant 
after the translation. That means, a pixel, which is moved between two images I(x,y,t) and 
I(x,y,t+dt), has to maintain its brightness
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As a consequence, each algorithm, which is based on this equation, has to calculate with 
scalar, that is, grey values, and not with colour values. This has to occur also later in the 
memristive network. Finally, after applying the chain rule, Eq. (2) can be transformed to the 
central Eq. (3) that is solved in a similar way by detecting moving edges by the corresponding 
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to demonstrate that complex memristive networks can be simulated with our approach of 
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3.2. Memristive network and SystemC-AMS specification

In the following, we exemplarily consider the details only for the derivatives in the space 
to x and y dimension for a corresponding 2D memristor network. The extension to the time 
domain would be an additional layer in the third direction between corresponding pixels in 
neighboured images. As mentioned, the algorithm works on grey-scaled images; therefore, 
the scales have to be inverted in corresponding voltages. For the simulation, it is enough to 
restrict to an 8-bit resolution. Since the voltage of a photo-sensitive cell is in the range of 0–40 
mV, we get the following scaling of the input voltage for each pixel Eq. (4)
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This scaling has to be carried out for each pixel in the image. In our SystemC-AMS spec-
ification, this is done per instruction code, which calculates Eq. (4) and uses the result to 
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 instantiate a DC voltage source. Figure 3 shows a scheme for a memristive circuit that handles 
each pixel in the image.

The voltage V, representing a changed grey value, is attached to the network via a resistance RC, 
which influences the time behaviour of the network for solving the optical flow. Since the opti-
cal flow changes dynamically in the network, the flow is modelled by current flowing through 
dynamically adapting resistances for which memristors are required. A memristor RM, which 
stores the result of the optical flow, again as an encoded grey value, and two further memris-
tors, denoted as outer plexiform layer (OPL) in Figure 3, complete the circuit handling a pixel.

A corresponding description of the header file for the pixel (without the OPL) in SystemC-
AMS is shown below. Firstly, the parameters are specified for the constructor of a pixel class 
called PixelNode. Since an instance of PixelNode is one pixel within a 2D array, it receives two 
identifiers. The first one is image_id. It identifies in which image the pixel is, remember the 
optical flow requires two subsequent layers connected with each other. The second identifier, 
idx, addresses uniquely the pixel within the image. Then, four resistance values are as follows: 
R_CONST, the starting value for the top resistor RC, R_ON, R_OFF and R_INIT for the initial 
setting of the memristor denoted as A in the class, which corresponds to the bottom memristor 
RM in Figure 3. The parameters initial_pixel and vsource correspond to the input grey value of 
the pixel and the input voltage V, which has to be calculated elsewhere in the code according 
to Eq. (4). The further specifications eln_pixel and neighbours refer to the virtual electronic net-
work to make a connection to a virtual potentiometer to measure current running through the 
pixel and the voltage applied at that pixel, respectively, to the connection to the neighboured 
pixels via the OPL. Both specifications and the ground connection, gnd, also require unique 
identifiers which are passed as strings, eln_pixel and gnd, in the parentheses to the instances of 
A. Finally, the instructions given within the brackets provide the connections to the memris-
tor as variable resistor analogue to the example given in the previous chapter for a memristor 
of the class MemristorBiolek. The result voltage will adjust at RC. It is calculated in the method 
PixelNode::pixel_value. This voltage can be used in order to calculate the resulting grey value

Figure 3. Electrical network for one pixel. The memristive fuse OPL realizes the connection to the neighbour pixel. All 
pixels correspond to the mid-layer. The resistance RC controls the speed of the adaption of the memristive network, 
the voltage over resistance RM corresponds to the result, that is, if a moving pixel was detected according to a detected 
optical flow.
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PixelNode::PixelNode(const size_t image_id, const size_t idx,

const double R_CONST, const double R_ON,

const double R_OFF, const double R_INIT,

const unsigned char initial_pixel_value,

const double vsource):

R_CONST(R_CONST),

initial_pixel_value(initial_pixel_value),

vsource(vsource),

A(R_ON,R_OFF,R_INIT),

eln_pixel(("eln_pixel_"+std::to_string(image_id)+"_"

+std::to_string(idx)).c_str(,vsource,R_CONST),

neighbours(("eln_pixel_neighbour_node_"+std::to_string(image_id)+"_"

+std::to_string(idx).c_str()),

gnd(new sca_eln::sca_node_ref(std::string("gnd"+std::to_
string(image_id)+"_"

+std::to_string(idx).c_str())) {

eln_pixel.memristor_controll(A.get_control_port());

eln_pixel.out(A.get_voltage_port());

eln_pixel.neighbours(neighbours);

A.write_resistance();

}

double PixelNode::pixel_value() const {

double mapped_voltage = A.read_voltage() *

((R_CONST+A.resistance())/A.resistance());

return mapped_voltage;

}

If a low-resistance value is assigned to RC, the voltage drop at the resistance will occur slowly, 
and due to the higher voltage that is applied to the subsequently attached memristors, in this 
case, their memristances are changing faster. In opposite, a higher resistance produces a more 
time-lag reaction in the network since now the memristors need more time to adapt their 
internal states. This new generated voltage via RC is now the input for the main layer of the 
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PixelNode::PixelNode(const size_t image_id, const size_t idx,

const double R_CONST, const double R_ON,

const double R_OFF, const double R_INIT,

const unsigned char initial_pixel_value,

const double vsource):

R_CONST(R_CONST),

initial_pixel_value(initial_pixel_value),

vsource(vsource),

A(R_ON,R_OFF,R_INIT),

eln_pixel(("eln_pixel_"+std::to_string(image_id)+"_"

+std::to_string(idx)).c_str(,vsource,R_CONST),

neighbours(("eln_pixel_neighbour_node_"+std::to_string(image_id)+"_"

+std::to_string(idx).c_str()),

gnd(new sca_eln::sca_node_ref(std::string("gnd"+std::to_
string(image_id)+"_"

+std::to_string(idx).c_str())) {

eln_pixel.memristor_controll(A.get_control_port());

eln_pixel.out(A.get_voltage_port());

eln_pixel.neighbours(neighbours);

A.write_resistance();

}

double PixelNode::pixel_value() const {

double mapped_voltage = A.read_voltage() *

((R_CONST+A.resistance())/A.resistance());

return mapped_voltage;

}

If a low-resistance value is assigned to RC, the voltage drop at the resistance will occur slowly, 
and due to the higher voltage that is applied to the subsequently attached memristors, in this 
case, their memristances are changing faster. In opposite, a higher resistance produces a more 
time-lag reaction in the network since now the memristors need more time to adapt their 
internal states. This new generated voltage via RC is now the input for the main layer of the 
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network. The function of this main layer is adapted to the outer plexiform layer of the retina. 
This main layer mimics horizontal cells in the retina. Therefore, a connection to the neighbour 
pixels has to be realized via the so-called memristive fuses. These fuses provide an automatic 
averaging of the voltages connected to neighboured pixels. If there is a high potential differ-
ence between two neighboured pixels, then the memristive fuse adjusts faster a higher mem-
ristance. This leads to an edge-preserving property of the filter since the influence of the pixel 
decreases by the time. However, this idea would not work with a single memristor because 
the potential difference on that memristor could be either positive or negative. In the case of 
a negative potential, the memristance would decrease. This is the reason why two memris-
tors, which are connected with reversed poles, are seen as depicted in Figure 3. Doing this, it 
does not play a role if the applied voltages are either negative or positive. In case an edge is 
detected, one of the memristors behaves always different to the other one and we receive as 
output the voltage that can be detected at resistor RC.

The following specification in SystemC-AMS shows the code for a memristive fuse. Such a fuse 
has also a positive and a negative port like a single memristor. Therefore, it can be attached to an 
electrical network. Furthermore, as already shown in the example for a memristor, we need con-
trol signals, memristor_control_one and memristor_control_two, as discrete input signals to change 
the resistances of the variable resistors, memristor_resistor_one and memristor_resistor_two. These 
memristors are connected via an electrical node called node, which is defined in the constructor 
as well as the binding of their control signals memristor_control_one/two to their ports memristor_
resistor_one/two.inp. Furthermore, the virtual circuit points memristor_resistor_vout_one/two.n/p 
are defined to measure the voltage at these memristors via the signals memristor_resistor_vout_
one/two.outp. These signals allow displaying the voltages at both memristors

SC_MODULE(memristive_fuse)

{

 //negative and positive terminal

 sca_eln::sca_terminal n, p;

 sc_core::sc_in<double> memristor_control_one, memristor_control_two;

 sca_tdf::sca_out<double> memristor_resistor_voltage_one;

 sca_tdf::sca_out<double> memristor_resistor_voltage_two;

private:

 sca_eln::sca_node node;

 sca_eln::sca_tdf::sca_vsink memristor_resistor_vout_one;

 sca_eln::sca_tdf::sca_vsink memristor_resistor_vout_two;

 //two memristors

 sca_eln::sca_de::sca_r memristor_resistor_one;
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 sca_eln::sca_de::sca_r memristor_resistor_two;

 SC_CTOR(memristive_fuse) :

 memristor_resistor_one("memristor_resistor_one",1.0),

 memristor_resistor_two("memristor_resistor_two",1.0),

 node("node"),

 memristor_resistor_voltage_one("memristor_resistor_voltage_one"),

 memristor_resistor_voltage_two("memristor_resistor_voltage_two"),

 memristor_resistor_vout_one("memristor_resistor_vout_one")

 memristor_resistor_vout_two("memristor_resistor_vout_two")

 {

 //setup memristors

 memristor_resistor_one.n(node);

 memristor_resistor_one.p(p);

 memristor_resistor_one.inp(memristor_control_one);

 memristor_resistor_two.n(node);

 memristor_resistor_two.p(p);

 memristor_resistor_two.inp(memristor_control_two);

 //setup voltage measurements for memristor one and two

 memristor_resistor_vout_one.p(n);

 memristor_resistor_vout_one.n(p);

 memristor_resistor_vout_one.outp(memristor_resistor_voltage_one);

 memristor_resistor_vout_two.n(node);

 memristor_resistor_vout_two.p(p);

 memristor_resistor_vout_two.outp(memristor_resistor_voltage_two);

 }

 };

After the definition for a pixel and a memristive_fuse, both these devices can be connected to 
construct the circuit shown in Figure 3 by attaching one of the ports p or n of the memristive fuse 
to the port neighbor of a pixel node. The connection scheme for one pixel detecting the deriva-
tives Ix and Iy in a 2D grid for a direct hexagonal neighbour connection is shown in Figure 4.

Simulating Memristive Networks in SystemC-AMS
http://dx.doi.org/10.5772/intechopen.69662

159



network. The function of this main layer is adapted to the outer plexiform layer of the retina. 
This main layer mimics horizontal cells in the retina. Therefore, a connection to the neighbour 
pixels has to be realized via the so-called memristive fuses. These fuses provide an automatic 
averaging of the voltages connected to neighboured pixels. If there is a high potential differ-
ence between two neighboured pixels, then the memristive fuse adjusts faster a higher mem-
ristance. This leads to an edge-preserving property of the filter since the influence of the pixel 
decreases by the time. However, this idea would not work with a single memristor because 
the potential difference on that memristor could be either positive or negative. In the case of 
a negative potential, the memristance would decrease. This is the reason why two memris-
tors, which are connected with reversed poles, are seen as depicted in Figure 3. Doing this, it 
does not play a role if the applied voltages are either negative or positive. In case an edge is 
detected, one of the memristors behaves always different to the other one and we receive as 
output the voltage that can be detected at resistor RC.

The following specification in SystemC-AMS shows the code for a memristive fuse. Such a fuse 
has also a positive and a negative port like a single memristor. Therefore, it can be attached to an 
electrical network. Furthermore, as already shown in the example for a memristor, we need con-
trol signals, memristor_control_one and memristor_control_two, as discrete input signals to change 
the resistances of the variable resistors, memristor_resistor_one and memristor_resistor_two. These 
memristors are connected via an electrical node called node, which is defined in the constructor 
as well as the binding of their control signals memristor_control_one/two to their ports memristor_
resistor_one/two.inp. Furthermore, the virtual circuit points memristor_resistor_vout_one/two.n/p 
are defined to measure the voltage at these memristors via the signals memristor_resistor_vout_
one/two.outp. These signals allow displaying the voltages at both memristors

SC_MODULE(memristive_fuse)

{

 //negative and positive terminal

 sca_eln::sca_terminal n, p;

 sc_core::sc_in<double> memristor_control_one, memristor_control_two;

 sca_tdf::sca_out<double> memristor_resistor_voltage_one;

 sca_tdf::sca_out<double> memristor_resistor_voltage_two;

private:

 sca_eln::sca_node node;

 sca_eln::sca_tdf::sca_vsink memristor_resistor_vout_one;

 sca_eln::sca_tdf::sca_vsink memristor_resistor_vout_two;

 //two memristors

 sca_eln::sca_de::sca_r memristor_resistor_one;
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 sca_eln::sca_de::sca_r memristor_resistor_two;

 SC_CTOR(memristive_fuse) :

 memristor_resistor_one("memristor_resistor_one",1.0),

 memristor_resistor_two("memristor_resistor_two",1.0),

 node("node"),

 memristor_resistor_voltage_one("memristor_resistor_voltage_one"),

 memristor_resistor_voltage_two("memristor_resistor_voltage_two"),

 memristor_resistor_vout_one("memristor_resistor_vout_one")

 memristor_resistor_vout_two("memristor_resistor_vout_two")

 {

 //setup memristors

 memristor_resistor_one.n(node);

 memristor_resistor_one.p(p);

 memristor_resistor_one.inp(memristor_control_one);

 memristor_resistor_two.n(node);

 memristor_resistor_two.p(p);

 memristor_resistor_two.inp(memristor_control_two);

 //setup voltage measurements for memristor one and two

 memristor_resistor_vout_one.p(n);

 memristor_resistor_vout_one.n(p);

 memristor_resistor_vout_one.outp(memristor_resistor_voltage_one);

 memristor_resistor_vout_two.n(node);

 memristor_resistor_vout_two.p(p);

 memristor_resistor_vout_two.outp(memristor_resistor_voltage_two);

 }

 };

After the definition for a pixel and a memristive_fuse, both these devices can be connected to 
construct the circuit shown in Figure 3 by attaching one of the ports p or n of the memristive fuse 
to the port neighbor of a pixel node. The connection scheme for one pixel detecting the deriva-
tives Ix and Iy in a 2D grid for a direct hexagonal neighbour connection is shown in Figure 4.
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This can also be specified in SystemC-AMS which we are unable to present in this paper 
due to reasons of clarity since the corresponding code is larger. Before we can move to the 
achieved simulation results, some things concerning the functionality of the network have to 
be explained before.

The electrical network constructed in this way fulfils several tasks. For example, before the 
optical flow processing takes place, a Gaussian filtering is carried out on the pixels, which is 
done by the OPL imitating memristive fuses, too.

An important thing that has to be avoided is that both memristors of a fuse have the same 
initial mid  resistance =    R  ON   +  R  OFF   ________ 2   . In this case, the changes of memristances in both memristors 
countermand themselves. If the memristance of one memristors increases, the memristance of 
the other one decreases. A possible solution for this problem is that both memristors are ini-
tialized with a low resistance. In case of a given potential difference between two neighboured 
pixels, independent of its direction, only one memristor increases, whereas the other one’s 

Figure 4. Scheme for the 2D memristive grid with X connection, that is, each pixel has eight connections to four 
neighbours in rectangular direction (left, right, top, bottom) and to the four diagonals.
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memristance stays low and we can detect a corresponding voltage change at RC correspond-
ing to a given edge pixel.

The result voltage UG is given to, it can be converted to a grey value x according to Eq. (5):

   U  G   =  I  M   ⋅   (   R  C   +  R  M   )    x =  U  G   ⋅   (    255 _ 40 mV   )     (6)

Both things, initializing the memristors as described earlier and the grey scale conversion, 
are performed in our SystemC-AMS specification by appropriate instruction codes, for exam-
ple, the calculation of the result voltage is carried out with the method PixelNode::pixel_value 
shown above in the class description of PixelNode. Besides the automatic filtering of neigh-
boured input voltages, the network as described above allows the detection of edges, too, 
because edges are nothing else than potential differences. Figure 5 shows the scheme for a 
potential propagation if the input voltage is applied left and the ground is applied right. Since 
this happens also for small differences very fast due to the memristive fuses, a threshold has 
to be introduced in order to detect real edges. The detection assigns a pixel only then as edge 
pixel if at least three of the neighbour pixels are above the threshold. This is directly pro-
grammed in the SystemC-AMS code which is not shown here. We have not seen a possibility 
to carry out such thresholding directly in the original analogue network published in Ref. [4].

So far, we have described a solution for determining the derivatives Ix and Iy within the 2D 
network and its SystemC-AMS equivalent. However, the optical flow requires the input and 
analysis of input data from two subsequent images in order to detect also the derivative It. 
Therefore, the network has to be extended in the third dimension and we have done that also 
in our SystemC-AMS specification. This is shown in Figure 6 in a lateral view for two neigh-
boured pixels located at the same coordinate in two subsequent layers which are connected in 
the same way as the lateral connections by an additional memristive fuse.

That means we connected together in SystemC-AMS two grids of the size 16 × 12 as shown 
for one pixel in Figure 4. The first gird hosted an image I(x,y,t) and the second one the timely 

Figure 5. SystemC-AMS network for a detection of a moving edge pixel. The edge pixel disappears on the left (two short 
arrows) side and moves to the right (long arrow).
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memristance stays low and we can detect a corresponding voltage change at RC correspond-
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because edges are nothing else than potential differences. Figure 5 shows the scheme for a 
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this happens also for small differences very fast due to the memristive fuses, a threshold has 
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Therefore, the network has to be extended in the third dimension and we have done that also 
in our SystemC-AMS specification. This is shown in Figure 6 in a lateral view for two neigh-
boured pixels located at the same coordinate in two subsequent layers which are connected in 
the same way as the lateral connections by an additional memristive fuse.

That means we connected together in SystemC-AMS two grids of the size 16 × 12 as shown 
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displaced image I(x,y,t+dt). A larger size could not be selected because the free SystemC-AMS 
version of Coseda did not allow generating more active elements. The SystemC-AMS code 
we tested extends more than 3000 memristors in all fuses and pixels for two images of size 
16 × 12.

4. Results

Figure 7 shows the achieved functional results of the SystemC-AMS simulation for a traffic 
scene with the memristive network that works on the detection of moving edges with the 
memristive 2D network compared to a classical solution calculated according to Horn and 
Schunk on an Inteli5-6600 CPU. It is to recognize that the Horn and Schunk procedure algo-
rithm works much better on a higher resolution, (a) versus (b), whereas the lower resolution 
is sufficient for the SystemC-AMS detection of moving edges (c). The low resolution was 
selected since this was the limit for the SystemC-AMS simulation with the proof-of-concept 
software solution. These moving edges are combined in one object. The grey edges are the dis-
appearing edges, whereas the dark square corresponds to an appearing edge. The  assignment 

Figure 6. 3D connection of a pixel between two pixels neighboured in subsequent images.
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between the two edges (see arrows in Figure 7(d)) can be identified and by this also the mov-
ing of the cars shown in front and of the smaller one shown behind in the image.

The results of Figure 7 demonstrate that it is possible to detect moving objects with the mem-
ristive network and its SystemC-AMS model. We are now interested on how fast the network 
and the SystemC-AMS simulation work. The simulation of the detected moving edges in 
Figure 7(c) shows simulation results for a simulated memristive network for a time interval 
of 3000 ms. In this case, Biolek model was not used for the memristors but the model from 
Knowm which produced a significantly higher contrast. At the beginning, only a wave can be 
observed. After a simulated real time of 3000 ms, a higher contrast is given with that model 
compared to the input image and the moving objects can be detected. As comparison with 
existing hardware, we have determined the run times of the detection with the optical flow 
based on Horn and Schunk on a CPU (corei5-6600 corresponds to Intel’s Skylake microar-
chitecture) and a Jetson TX1-embedded GPU board from Nvidia. The CPU could compute 
in 3000-ms image sizes of 160×120. It is to expect that the memristive network works also on 
higher resolution since it is a highly local parallel-processing scheme.

Therefore, the memristive network lies in the same range as the CPU concerning the compute 
performance. The situation is different compared to the GPU. We measured a time of about 
100 ms for an image size of 640 × 480. Hence, the GPU has clear advantages versus the mem-
ristive network concerning the run time.

However, the actual interesting point in this paper is the simulation time of the SystemC-
AMS specification. In order to get significant values we have carried out a series of pos-
sible optimization measures concerning the network topology and the monitoring, resp., 
the virtual voltage measuring during the simulation. Figure 8 shows the simulation time 

(a) (b) (c) (d)

Figure 7. Used test input images (top), the two scenes are slightly displaced. On the bottom left side, (a) solution based 
on Horn and Schunck procedure calculated on CPU with 32 × 24 image size; (b) solution for 16 × 24 image size. On the 
bottom right side, the solution for the same scenes determined with the simulated memristive network in SystemC-AMS. 
Firstly, the detected edges (c), afterwards the detected directions of the moving edges (d).
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observed. After a simulated real time of 3000 ms, a higher contrast is given with that model 
compared to the input image and the moving objects can be detected. As comparison with 
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chitecture) and a Jetson TX1-embedded GPU board from Nvidia. The CPU could compute 
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Therefore, the memristive network lies in the same range as the CPU concerning the compute 
performance. The situation is different compared to the GPU. We measured a time of about 
100 ms for an image size of 640 × 480. Hence, the GPU has clear advantages versus the mem-
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for  filtering and edge detection in one image for the following different sizes 16 × 12, 32 × 24 
and 35 × 26 for a not optimized version (most-left bars—non-optimized), a version, which 
uses only one memristor in the fuses which is sufficient for edge detection as we found out 
(second left bar—optimized memristive fuses), using a hexagonal grid instead a 3 × 3 grid as 
local neighbourhood for a pixel (second right bar—hexagonal grid), and removing the volt-
age potentiometers for each memristor in the SystemC-AMS code (most right bar—removed 
not required potentiometers). It is to detect that simulation time can be drastically reduced, 
for example, for a 35 × 26 image from 4500 ms down to about 750 ms for the largest resolu-
tion of 35 × 26 if all optimization steps are applied subsequently.

Our efforts to carry out an equivalent SPICE simulation with LT Spice have been in vain. The 
LT Spice simulator ended in an endless loop by the trial to simulate this large memristive 
network. With the PSpice A/D Lite version, the simulation aborted orderly with the message 
that the symbol table entry is out of bounds. May be the commercial version of Pspice allows 
to simulate such a large amount of devices. In all, in the 32 × 24-sized grid 768 voltage sources, 
1536 resistors and 5461 memristor subcircuits have to be simulated. Further work has been 

Figure 8. Measuring the simulation time in SystemC-AMS for different options.
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done using Cadence Virtuoso. While Virtuoso was able to read the network and create a sche-
matic view, it was not possible to start the Spectre simulation due to incompatibilities using 
the memristor Spice description.

In an older work [7], a similar 32 × 32 array of memristors was simulated in SPICE. Recently, 
Biolek et al. published a work [8] in which they used a parallel version of a commercial 
HSPICE simulator which allowed them to simulate extremely large memristor networks. 
They managed it to simulate a 100 × 100 memristive grid network containing 20,200 memris-
tors in 5.5 s and a 1500 × 1500-sized memristive network containing 4.5 million memristors in 
76 min by applying a modified version of the so-called S-model for memristors on a current 
Intel core i7 architecture.

5. Conclusion

Exploiting the flexibility of a high-level language like SystemC-AMS, the presented simula-
tion environment enables designers to carry out extensive investigations on large memristive 
circuits to estimate latency and energy consumption just by simple C++ code modifications. 
Furthermore, such a system allows the simulation of thousands of connected memristors at 
acceptable simulation times, which is shown by a direct comparison to an equivalent SPICE 
simulation. A SystemC-AMS description allows faster simulation, but currently the inves-
tigated SystemC-AMS implementations do not allow the simulation for networks concern-
ing more than 10 k memristors. Therefore, there seems to be a need for action concerning 
an extension of SystemC-AMS environments in the future. On the other side, free available 
SPICE versions failed to simulate memristor networks in the size of 1000 s, whereas the pre-
sented SPICE-AMS implementation could handle it in acceptable simulation time of 4–5 s 
and around 1 s for an optimized version. However, compared to commercial HSPICE simu-
lators only smaller-sized networks of memristors can be investigated. On the other side, a 
SystemC-AMS solution simplifies a coupling to digital system layers to realize mixed-signal 
simulations. We demonstrated this flexibility in principle in this paper for the optical flow 
algorithm.

For the optical flow example, a comparison of a memristive network with real processor 
architecture like a GPU was carried out. It could be shown by simulations that using a 
GPU architecture is more efficient for the optical flow problem than a 2D grid memristive 
network solving the problem by detecting moving edges. The performance of a current 
CPU solution on the other side offers not more compute power than the memristive net-
work which probably requires less energy consumption than the CPU. At all, we think 
that mixed-signal solutions are to favour, which combine analogue memristive circuits 
with digital processors, to unite computational flexibility and the benefits of energy-sav-
ing neuromorphic analogue memristor networks. A SystemC-AMS-based simulation envi-
ronment is generally well suited for the design of such architectures and to estimate the 
required power and processing time. Our solution laid the foundation for such work in 
the future.
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Furthermore, such a system allows the simulation of thousands of connected memristors at 
acceptable simulation times, which is shown by a direct comparison to an equivalent SPICE 
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sented SPICE-AMS implementation could handle it in acceptable simulation time of 4–5 s 
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lators only smaller-sized networks of memristors can be investigated. On the other side, a 
SystemC-AMS solution simplifies a coupling to digital system layers to realize mixed-signal 
simulations. We demonstrated this flexibility in principle in this paper for the optical flow 
algorithm.

For the optical flow example, a comparison of a memristive network with real processor 
architecture like a GPU was carried out. It could be shown by simulations that using a 
GPU architecture is more efficient for the optical flow problem than a 2D grid memristive 
network solving the problem by detecting moving edges. The performance of a current 
CPU solution on the other side offers not more compute power than the memristive net-
work which probably requires less energy consumption than the CPU. At all, we think 
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Abstract

This chapter explores the dynamic behavior of dual flux coupled memristor circuits in
order to explore the uncharted territory of the fundamental theory of memristor circuits.
Neuromorphic computing anticipates highly dense systems of memristive networks,
and with nanoscale devices within such close proximity to one another, it is anticipated
that flux and charge coupling between adjacent memristors will have a bearing upon
their operation. Using the constitutive relations of memristors, various cases of flux
coupling are mathematically modeled. This involves analyzing two memristors connected
in composite, both serially and in parallel in various polarity configurations. The new
behavior of two coupled memristors is characterized based on memristive state equa-
tions, and memductance variation represented in terms of voltage, current, charge and
flux. The rigorous mathematical analysis based on the fundamental circuit equations of
ideal memristors affirms the memristor closure theorem, where coupled memristor
circuits behave as different types of memristors with higher complexity.
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1. Introduction

In 1969, Leon Chua became the first person to publish non-linear circuit theory against a
mathematical foundation [1]. In doing so, it became apparent that there was a hole in the circuit
equations at the time. Shortly after, in 1971 he postulated that symmetry implies the existence of
a fourth fundamental circuit element to link the missing relationship between charge and flux
—that circuit element being the memristor [2]. This research resurfaced and was popularized in
2008, when Hewlett-Packard fabricated the first functional nanoscale memristor [3]. This par-
ticular brand of memristor was based on a bi-level titanium dioxide thin film containing
dopants which migrate across the width of the memristor when a current is applied to it.
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Each fundamental circuit element holds a relationship between any two of either voltage,
current, charge, or flux. The memristor thus becomes a fundamental circuit element as it fills
the missing gap of the charge-flux relationship. It is important to note that even though q and ϕ
are referred to as charge and flux, they do not have to be associated with a physical charge or
real flux as is the case with classical conductors and inductors [4]. The integrating relationship
between voltage and flux results in memristors being able to retain history, and exhibiting
potentially different current values when the same voltage is applied to it. By definition, this
enables the memristor to have different resistance values regardless of identical voltage excita-
tion, stemming from memristance being a function of historical voltage. This gives rise to the
nomenclature surrounding the memristor, a portmanteau of ‘memory resistor’.

The inherent characteristics of this revolutionary device have enabled its application in a
diverse field of areas, including neuromorphic circuits [5] and non-volatile memory applica-
tions [6]. These applications often see arrays of memristors behaving compositely with one
another. In addition to the functionality of single discrete memristors, the behaviors of multiple
memristors in structures of connectivity have also been analyzed.

Memristors are polarity dependant—while this complicates circuit analysis, it allows for many
more configuration permutations than the other fundamental circuits: the resistor, capacitor
and inductor. The behavior of two memristor emulators in both serial and parallel connections
are experimentally evaluated in Ref. [7], however, only identical polarity directions are consid-
ered. Two charge controlled memristors are connected in series and in parallel in Ref. [8], with
their responses evaluated when polarity is varied. The composite behavior is analyzed by
probing the relationships between flux, charge and memristance. The results show novel I-V
characteristics which will prove to be useful applications in neural networks and logic circuits.
The magnetic coupling of memristors are also considered in terms of mutual induction and
capacitive connections in Ref. [9].

Many researchers have sought to use memristors to represent the synapses between neurons in
artificial networks, and more recently, a memristive crossbar array has been successfully
fabricated which implements a neural network, and is successfully capable of performing
limited classifications and simple pattern recognition [10]. By training such networks on sets
of known example patterns and tuning the weights of the ‘synaptic’ connections, unknown
patterns and images can be recognized. Ultimately, researchers anticipate that networks with a
density of 100 billion synapses per square centimeter in each layer should soon be possible by
shrinking memristors down to 30 nm across. This indicates highly dense 3D structures with a
very large number of memristors within very close proximity of one another will be the norm,
and coupling memristor theory is of fundamental significance to this field. The use of
memristive crossbar architectures has been gaining much traction in computing large sets of
data [11–14], and the theory behind memristive coupling is absolutely essential in ensuring
information is not lost due to undesirable coupling, or by manufacturing more efficient modes
of information storage by utilizing coupling theory.

The coupling effects of capacitors and inductors via electric and magnetic fields are well known.
The mutual capacitances and inductances of circuits comprised of multiple TiO2 memristors are
dependent upon the physical features of each memristor cell [14], such as size and position.
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Therefore, coupling is to be expected between adjacent memristors, and must be taken into
account when analyzing highly concentrated circuits. In addition to series and parallel connec-
tions, coupling has thus been established as a third unique relation in memristive systems [15].

The behavior of coupled memristors was rigorously analyzed in a systematic manner for the first
time in Ref. [16] with consideration given to all polarity combinations. The theoretical analysis is
confirmed in the same paper by use of a separately presented memristor emulator circuit from
Ref. [17]. However, the results in the analysis is based on a memristor which exhibits a linear
relationship between memductance and flux. This is obviously not the case for manymemristors,
such as the simplest case of a flux-controlled switching memristor presented in Ref. [18] where
flux is controlled independent of memductance. As such, there is only a very narrow scope of
memristorswhich the research in Ref. [16] applies to. The results in Ref. [18] served to broaden this
assumption to ideal switching memristors which operate in two states, and obtain new results
based on the same constitutive relation equations. This chapter dissects the results in Ref. [18] and
presents them in a more comprehensive format, with the use of fundamental memristor theory to
form the basis of the analysis to produce valid results. As such, the findings in this chapter can be
applied more broadly and yet maintain the complex behavior which makes the memristor so
attractive. The theoretical analysis and analytical solutions provide for novel memductance
behavior in terms of flux, charge, voltage and current of ideal memristors. In the process, it is
proven that the memristor closure theorem continues to stand for coupled memristors [19].

2. Coupled memristors

The two types of ideal memristors considered are charge controlled or flux controlled [2]. The
relationship between current and voltage of a charge controlled memristor is expressed by

VðtÞ ¼ MðqÞiðtÞ, (1)

where t is time, v(t) is voltage, q(t) is charge and M(q) is memristance. In its derivative form,
memristance can be defined as

MðqÞ ¼ dφðqÞ
.
dq, (2)

where ϕ(q) is flux (the time integral of voltage v(t)). Contrastingly, the current of a flux controlled
memristor is

iðtÞ ¼ WðφÞvðtÞ, (3)

where W(ϕ) denotes the memductance and

WðφÞ ¼ dqðφÞ
.
dφ: (4)

The memductance W is the slope of the q-ϕ curve, which is a characteristic embedded into the
memristor at the time of fabrication.
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Flux ϕ and charge q are two intrinsic state variables which affect memductance. Two
memristors can be coupled by either flux or charge as shown in Figures 1 and 2.

If two flux controlled memristors are considered, the ideal coupled memristive systems can be
defined by the following set of equations,

i1ðtÞ ¼ W1ðφ1,φ2Þv1ðtÞ, (5a)

i2ðtÞ ¼ W2ðφ1,φ2Þv2ðtÞ, (5b)

dφ1

.
dt ¼ v1ðtÞ, dφ2

.
dt ¼ v2ðtÞ: (5c)

While a general rule cannot be ascertained which would be applicable for all ideal memristors,
the most appropriate manner in approaching the task of modeling a pair of coupled
memristors is to provide a procedural methodology instead. This is done by way of example
with use of a particular type of switching memristor, complete with a known q-ϕ relationship.

Instead of assuming a linear relationship between memductance and flux as in Ref. [15], it is
more appropriate to consider the ideal memristor proposed in Ref. [4], and derive the associ-
ated relationship between flux and memductance from a given q-ϕ relationship. An example of
an ideal switching memristor is shown below in Figure 3, and the response of the memristor
can be completely described by the q-ϕ curve displayed.

For the purposes of this paper, this example of an ideal switching memristor is completely
characterized by the following equations:

Figure 1. Dual charge coupled memristors.

Figure 2. Dual flux coupled memristors.
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φðtÞ ¼ 0:8ð1� cos tÞ � 0:4, (6a)

qðtÞ ¼ 0:01φðtÞ þ 0:04 jφðtÞ þ 0:25j � 0:04 jφðtÞ � 0:25j: (6b)

Given Eqs. (6a) and (6b), the memductance value can be derived from Eq. (4) and is graphed
below in Figure 4.

Figure 3. The q-ϕ relationship for an ideal switching memristor proposed in Ref. [4].

Figure 4. The memductance curve as a function of time derived from Eqs. (4), (6a), and (6b) displays how a memristor
with a three part piecewise linear relationship between flux can switch between high and low current states.
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The memductance can be approximated by

W ¼ α, jφj < jφtj
β, jφtj < jφj < jφmaxj

�
(7)

where α is a constant representing the high memductance state, β is the low memductance
state, ϕmax is the maximum value of flux for a given sinusoidal voltage input (which in this
particular case can be calculated by substituting t = π rads into Eq. (6a) where ϕmax = 1.2), and
ϕt is a certain threshold of flux where both current and memductance become discontinuous
(in this case ϕt = 0.4). Once again, it is reiterated that even though q and ϕ are referred to as
charge and flux, they are not necessarily associated with real physical charge and flux in the
way they are in classical conductors and inductors.

If this specific type of memristor is purely flux coupled with an identical memristor (without
any other composite connections), and assuming the simple case of a first order mathematical
model of coupling, the individual memductance of each device can be ascertained from Eqs. (5)
and (7) as

W1ðφ1,φ2Þ ¼
α1 þ κ2φ2, jφ1j < jφtj
β1 þ κ2φ2, jφtj < jφ1j < jφmaxj

(
(8a)

W2ðφ2,φ1Þ ¼
α2 þ κ1φ1, jφ1j < jφtj
β2 þ κ1φ1, jφtj < jφ1j < jφmaxj

(
(8b)

The coupling strength between these two memristors is reflected by the coupling coefficients
κ1 and κ2 which can be tuned based on physical factors in fabrication. Therefore, the two
memristors can be tightly or loosely coupled depending on the values of κ1 and κ2.

A solvable equation with physical meaning requires assumptions about the physical behavior
of the memristors. By considering the special case of identical excitations and voltage history
(alternatively, the same initial conditions), and allowing for α1 = α2 = α, β1 = β2 = β, and κ1 = κ2 = 0.1
(which can be precisely achieved by fabrication) the constitutive relations are used to identify
behavior unachievable by the lone memristor. Memductance after coupling effects in Eq. (8)
can be attained by summing flux from Eq. (6a) with memductance from Eq. (7). Current is
recalculated to take into account the effect from coupling due to the composite memristor. This
can be done by taking the time derivative of Eq. (6a) which is the driving voltage source, and
substituting it into Eq. (3).

The I-V characteristic plane can be mapped by considering the two purely coupled memristors
(without any other connections) as a single device. This procedure is carried out with two
identical ideal flux-coupled memristors represented by Figure 3 and configured as in Figure 2,
to provide the I-V characteristics below.

When compared to the original hysteresis loop of just one of the two memristors, there are two
notable differences: (i) the current spans a larger range of values due to the additive effect of ϕ2

on i1 (conversely, ϕ1 has an identical effect on i2), and (ii) the single memristor has two different
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slope values which correlate to two different states, whereas in the coupled case, there are
infinite states.

Despite this being the result of a specific type of switching memristor, it is reasonable to
conclude these two changes will occur in all cases of purely coupled switching memristors.

This result can be exploited in neural circuits where synaptic spikes have more complexity than
mere ‘ON-OFF states’. On the other hand, it may have an undesirable effect on memristive logic
gates where having two states is essential for functionality. Necessary physical precautions must
be taken in order to minimize the values of κ1 and κ2 for such processes, and to additionally
account for excessive current passage through the memristor due to coupling. But if logic gates
were to be extended beyond high and low states, then the multiple states of the memristor could
be harnessed into a multi-level logic gate on a nanometer scale.

3. Coupled memristors in serial connections

Two different configurations of serially connected memristors exist according to polarity
combinations. The same approximation of the ideal memristors will apply to this section in
the same form as in Eq. (7).

3.1. Serial connection with identical polarities

Connecting terminal B1 to A2 allows for a serial circuit structure for twomemristors in identical
polarities as shown in Figure 5.

Applying Kirchhoff’s voltage Law (KVL) and equating the current through both memristors,
the voltage across and current through A1 and B2 can be written as

v12ðtÞ ¼ v1 þ v2, (9a)

iðtÞ ¼ W1ðφ1,φ2Þv1ðtÞ ¼ W2ðφ2,φ1Þv2ðtÞ: (9b)

Figure 5. Memristors serially coupled with identical polarity configuration.
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can be attained by summing flux from Eq. (6a) with memductance from Eq. (7). Current is
recalculated to take into account the effect from coupling due to the composite memristor. This
can be done by taking the time derivative of Eq. (6a) which is the driving voltage source, and
substituting it into Eq. (3).

The I-V characteristic plane can be mapped by considering the two purely coupled memristors
(without any other connections) as a single device. This procedure is carried out with two
identical ideal flux-coupled memristors represented by Figure 3 and configured as in Figure 2,
to provide the I-V characteristics below.

When compared to the original hysteresis loop of just one of the two memristors, there are two
notable differences: (i) the current spans a larger range of values due to the additive effect of ϕ2

on i1 (conversely, ϕ1 has an identical effect on i2), and (ii) the single memristor has two different
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slope values which correlate to two different states, whereas in the coupled case, there are
infinite states.

Despite this being the result of a specific type of switching memristor, it is reasonable to
conclude these two changes will occur in all cases of purely coupled switching memristors.

This result can be exploited in neural circuits where synaptic spikes have more complexity than
mere ‘ON-OFF states’. On the other hand, it may have an undesirable effect on memristive logic
gates where having two states is essential for functionality. Necessary physical precautions must
be taken in order to minimize the values of κ1 and κ2 for such processes, and to additionally
account for excessive current passage through the memristor due to coupling. But if logic gates
were to be extended beyond high and low states, then the multiple states of the memristor could
be harnessed into a multi-level logic gate on a nanometer scale.

3. Coupled memristors in serial connections

Two different configurations of serially connected memristors exist according to polarity
combinations. The same approximation of the ideal memristors will apply to this section in
the same form as in Eq. (7).

3.1. Serial connection with identical polarities

Connecting terminal B1 to A2 allows for a serial circuit structure for twomemristors in identical
polarities as shown in Figure 5.

Applying Kirchhoff’s voltage Law (KVL) and equating the current through both memristors,
the voltage across and current through A1 and B2 can be written as

v12ðtÞ ¼ v1 þ v2, (9a)

iðtÞ ¼ W1ðφ1,φ2Þv1ðtÞ ¼ W2ðφ2,φ1Þv2ðtÞ: (9b)

Figure 5. Memristors serially coupled with identical polarity configuration.
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Integrating both sides of Eq. (9a) leads to Eq. (10a), and substituting Eq. (8) into Eq. (9b) leads
to Eq. (10b),

φ12ðtÞ ¼ φ1 þ φ2 (10a)

i ¼ v1
α1 þ κ2φ2, jφ1j < jφtj
β1 þ κ2φ2, jφtj < jφ1j < jφmaxj

( ! 

¼ v2
�α2 þ κ1φ1, jφ1j < jφtj
�β2 þ κ1φ1, jφtj < jφ1j < jφmaxj

( ! (10b)

From Eqs. (5), (9a) and (10), and by considering the special case of α1 = α2 = α, β1 = β2 = β,
κ1 = κ2 = α, the following set of differential equations are obtained:

dφ1

.
dt ¼ v12ð1þ φ1Þ

.
ð2þ φ12Þ (11a)

dφ2

.
dt ¼ v12ð1þ φ2Þ

.
ð2þ φ12Þ (11b)

Eq. (11) reflects the complexity of memristive coupling: the derivatives of ϕ1 and ϕ2 are both
functions of themselves and one another. If ϕ1 changes due to an excitation voltage, a change in
ϕ2 is observed based on Eq. (11b). The change in ϕ2 will affect ϕ1 (independently of the initial
excitation change), which goes back around to affect ϕ2 and so on. The complex behaviors of
memristive coupling are reflected in the way the flux variables are entangled in the solution of
one another. Time dependence can therefore be eliminated in order to produce a solvable
equation by substituting Eqs. (9a) and (10a) into Eq. (11), and dividing Eq. (11a) by Eq. (11b)
(resp. Eq. (11b) by Eq. (11a)), which results in

dφ1

.
dφ2

¼ ð1þ φ2Þ
.
ð1þ φ1Þ: (12)

This can be analytically solved to give

φ1ðφ2Þ ¼ c1φ2 þ c1 � 1 (13a)

φ2ðφ1Þ ¼ c2φ1 þ c2 � 1, (13b)

where c1 and c2 are both constants calculable based on pre-determined initial conditions of
ϕ1 and ϕ2. A number of cases are considered in order to ascertain a general rule for the values
of c1 and c2 in terms of initial conditions. All of these cases can easily be created by simply biasing
the relevant memristor with a rectangular voltage pulse over a given time in order to adjust the
initial flux conditions. It is also worth noting that constants c1 and c2 can be changed at any time
by switching off the driving voltage and re-biasing the memristor values. If it is assumed the flux
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state of MR1 from Figure 5 is initially at ϕ1 = 0 while the flux in MR2 ϕ2 is varied, a general rule
regarding the relationship between c1 and c2 with initial condition of MR2 ϕ2(ϕ1 = 0) = u is
developed and graphed in Figure 6:

c1 ¼ 1 ð1þ uÞ= (14a)

c2 ¼ uþ 1 (14b)

3.1.1. Serial Case 1: parity at u = 0, u = �2

Substituting u = 0 into Eq. (13b) results in the simple solution of c1 = c2 = 1, or ϕ1(ϕ2) = ϕ2 and
ϕ2(ϕ1) = ϕ1. Substituting this into Eq. (10a) results in parity between the flux value of each
memristor: ϕ1 = ϕ2 = ½ϕ12. Where u = �2, c1 = c2 = �1, ϕ1(ϕ2) = ϕ2 � 2 and ϕ2(ϕ1) = ϕ1 � 2.

3.1.2. Serial Case 2: u = 0 ! ∞, u = �1 ! �∞

As u increases from 0, c2 linearly approaches ∞, and c1 ! 1/∞. As an example, if u = 1, then the
constants c1 = ½, c2 = 2, and ϕ1(ϕ2) = ½ϕ2 � ½, ϕ2(ϕ1) = 2ϕ1 + 1. By assuming the excitation
voltage is a sinusoidal input, the peak-to-peak amplitude of flux across ϕ1 is half of that in
Serial Case 1, whereas ϕ2 has quadrupled. A tug-of-war of sorts occurs between ϕ1 and ϕ2: as
ϕ2 increases, ϕ1 decreases. Conversely, as u decreases from �2, c2 ! �∞, and c1 ! �1/∞.

3.1.3. Serial Case 3: u = 0 ! �1, u = �2 ! �1

This case behaves similarly to Case 2, but reversed. As u decreases from 0 towards �1, c1 ! ∞.
As u increases from �2 towards �1, c1 ! �∞. It is asymptotical at u = �1, while c2 behaves

Figure 6. As initial condition u changes, c1 produces a reciprocal curve and c2 displays linear behavior.
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Integrating both sides of Eq. (9a) leads to Eq. (10a), and substituting Eq. (8) into Eq. (9b) leads
to Eq. (10b),

φ12ðtÞ ¼ φ1 þ φ2 (10a)

i ¼ v1
α1 þ κ2φ2, jφ1j < jφtj
β1 þ κ2φ2, jφtj < jφ1j < jφmaxj

( ! 

¼ v2
�α2 þ κ1φ1, jφ1j < jφtj
�β2 þ κ1φ1, jφtj < jφ1j < jφmaxj

( ! (10b)

From Eqs. (5), (9a) and (10), and by considering the special case of α1 = α2 = α, β1 = β2 = β,
κ1 = κ2 = α, the following set of differential equations are obtained:

dφ1

.
dt ¼ v12ð1þ φ1Þ

.
ð2þ φ12Þ (11a)

dφ2

.
dt ¼ v12ð1þ φ2Þ

.
ð2þ φ12Þ (11b)

Eq. (11) reflects the complexity of memristive coupling: the derivatives of ϕ1 and ϕ2 are both
functions of themselves and one another. If ϕ1 changes due to an excitation voltage, a change in
ϕ2 is observed based on Eq. (11b). The change in ϕ2 will affect ϕ1 (independently of the initial
excitation change), which goes back around to affect ϕ2 and so on. The complex behaviors of
memristive coupling are reflected in the way the flux variables are entangled in the solution of
one another. Time dependence can therefore be eliminated in order to produce a solvable
equation by substituting Eqs. (9a) and (10a) into Eq. (11), and dividing Eq. (11a) by Eq. (11b)
(resp. Eq. (11b) by Eq. (11a)), which results in

dφ1

.
dφ2

¼ ð1þ φ2Þ
.
ð1þ φ1Þ: (12)

This can be analytically solved to give

φ1ðφ2Þ ¼ c1φ2 þ c1 � 1 (13a)

φ2ðφ1Þ ¼ c2φ1 þ c2 � 1, (13b)

where c1 and c2 are both constants calculable based on pre-determined initial conditions of
ϕ1 and ϕ2. A number of cases are considered in order to ascertain a general rule for the values
of c1 and c2 in terms of initial conditions. All of these cases can easily be created by simply biasing
the relevant memristor with a rectangular voltage pulse over a given time in order to adjust the
initial flux conditions. It is also worth noting that constants c1 and c2 can be changed at any time
by switching off the driving voltage and re-biasing the memristor values. If it is assumed the flux
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state of MR1 from Figure 5 is initially at ϕ1 = 0 while the flux in MR2 ϕ2 is varied, a general rule
regarding the relationship between c1 and c2 with initial condition of MR2 ϕ2(ϕ1 = 0) = u is
developed and graphed in Figure 6:

c1 ¼ 1 ð1þ uÞ= (14a)

c2 ¼ uþ 1 (14b)

3.1.1. Serial Case 1: parity at u = 0, u = �2

Substituting u = 0 into Eq. (13b) results in the simple solution of c1 = c2 = 1, or ϕ1(ϕ2) = ϕ2 and
ϕ2(ϕ1) = ϕ1. Substituting this into Eq. (10a) results in parity between the flux value of each
memristor: ϕ1 = ϕ2 = ½ϕ12. Where u = �2, c1 = c2 = �1, ϕ1(ϕ2) = ϕ2 � 2 and ϕ2(ϕ1) = ϕ1 � 2.

3.1.2. Serial Case 2: u = 0 ! ∞, u = �1 ! �∞

As u increases from 0, c2 linearly approaches ∞, and c1 ! 1/∞. As an example, if u = 1, then the
constants c1 = ½, c2 = 2, and ϕ1(ϕ2) = ½ϕ2 � ½, ϕ2(ϕ1) = 2ϕ1 + 1. By assuming the excitation
voltage is a sinusoidal input, the peak-to-peak amplitude of flux across ϕ1 is half of that in
Serial Case 1, whereas ϕ2 has quadrupled. A tug-of-war of sorts occurs between ϕ1 and ϕ2: as
ϕ2 increases, ϕ1 decreases. Conversely, as u decreases from �2, c2 ! �∞, and c1 ! �1/∞.

3.1.3. Serial Case 3: u = 0 ! �1, u = �2 ! �1

This case behaves similarly to Case 2, but reversed. As u decreases from 0 towards �1, c1 ! ∞.
As u increases from �2 towards �1, c1 ! �∞. It is asymptotical at u = �1, while c2 behaves

Figure 6. As initial condition u changes, c1 produces a reciprocal curve and c2 displays linear behavior.
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linearly and passes through 0 at u = �1. The advantage of this case over Case 2 is that much
less power is required to bias a memristor between these values in order to attain a flux value
that approaches infinity. In other words, given a memristor without state boundary conditions,
one can control it to behave like a regular resistor instead if so desired.

3.1.4. Serial Case 4: u = �1

Mathematically, there is no solution for c1 as it approaches �∞ (depending on which side it
approaches in accordance with Figure 6). Hence, in theory, MR1 is never in equilibrium when
the two memristors are serially flux coupled with identical polarities, where the initial flux
value of MR2 is �1 and MR1 is 0. Eq. (13a) shows that as c1 ! ∞, ϕ1 ! ∞. If this behavior is
mapped against the given charge-flux relationship of the memristor characterized by Figure 3,
the top segment of the memristor is a straight line. Therefore, after a sufficiently long time
interval, ϕ1 tends to the breakpoint and the memristor becomes equivalent to a resistor with a
resistance of the inverse slope of the final segment (resp. where c1 ! �∞, ϕ1 ! �∞ and the
memristor becomes equivalent to a resister with the value of the inverse slope of the first
segment of the q–ϕ curve).

The effect seen here with flux approaching an infinite value is identical to an ideal memristor
being connected to a DC source. A constant non-periodic voltage source will also result in flux
tending indefinitely towards �∞, due to the integral relationship implied by Eq. (5c).

This result will not hold true for all ideal memristors [4]. If the memristor was defined by a

polynomial q – ϕ curve, while ϕ ! �∞, dq
dt ¼ iðtÞ ! �∞. This implies that the memristor in

question does not have a dc V-I curve, and in practice, the memristor would burn out long
before the current became too large. This must also be considered in both Case 2 and Case 3,
where current values can potentially go beyond the memristors capacity.

Given a sinusoidal voltage for v12 from Eq. (9a) in the general form of

v12 ¼ A sin ð2πf tÞ, (15)

where A is the amplitude of v12, both ϕ1 and ϕ2 will take on a sinusoidal form as well, and
functions for memductance, voltage and flux can be found in terms of time, initial conditions
and amplitude A—all of which can easily be predetermined.

For the sake of both attaining a meaningful solution and demonstration, flux is first deter-
mined as a function of time where the term from Eq. (15) (2πf) is assumed to be 1 rad. This
simplification yields

φ2ðtÞ ¼ �γ cos ðtÞ þ u, (16a)

where γ is the amplitude of ϕ2, and if Eq. (16a) is substituted into Eq. (13a) results in

φ1ðtÞ ¼ �c1γ cos ðtÞ þ ðc1uþ c1 � 1Þ: (16b)

Substituting Eq. (16) into Eqs. (9a) and (5c) results in
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v12 ¼ v1 þ v2 ¼ ðγþ c1γÞ sin ðtÞ (17)

Alternatively,

γþ c1γ ¼ A (18)

And substituting Eqs. (14) and (18) into Eq. (16) gives

φ1ðtÞ ¼ �A ð2þ uÞ
.

cos ðtÞ (19a)

φ2ðtÞ ¼ �Að1þ uÞ
.
ð2þ uÞ cos ðtÞ þ u (19b)

The assumption used in deriving Eq. (14) was that the initial condition of MR1 was ϕ1 = 0, at
which time ϕ2 = u. Consider when t = π/2 s: ϕ1 is indeed 0, and ϕ2 is reduced to the initial
condition u.

To find memductances W1 and W2 after serial coupling Eq. (19) is substituted into Eq. (8) to
give

W1 ¼
α1 � κ1 ðAð1þ uÞÞ

.
ð2þ uÞ cos ðtÞ þ u

� �
, jφ1j < jφtj

β1 � κ1 ðAð1þ uÞÞ
.
ð2þ uÞ cos ðtÞ þ u

� �
, jφtj < jφ1j < jφmaxj

8><
>:

(20a)

W2 ¼
α2 � κ2 A ð2þ uÞ

.
cos ðtÞ

� �
, jφ1j < jφtj

β2 � κ2 A ð2þ uÞ
.

cos ðtÞ
� �

, jφtj < jφ1j < jφmaxj

8><
>:

(20b)

The memductance (and by extension, current) can therefore be adjusted based on u. Biasing
the initial state of MR2’s flux for a desired value allows the two memristors to behave harmo-
niously like a pair of complementary variable switching resistors (while still maintaining the
high-low voltage states of the single memristor represented in Figure 4).

When u = 0, and in the special case of α1 = α2, β1 = β2, and κ1 = κ2, Eq. (20) shows that W1 = W2

and v1 = v2 =½v12. As u increases from 0,W1 increases andW2 decreases. This is agreeable with
Serial Case 2 of Figure 6: ϕ2 increases and is the cause for coupling with MR1 which results in
the increase of W1 (resp. the decrease of ϕ1 as u increases is the cause of the decrease in W2).
The same methodology applies for the other cases too.

While a memristor has a variable resistance by its very definition, this variation is limited by
the value of dϕ/dq according to the charge-flux curve. However, when two memristors have an
additional parameter u which contributes to this variation, the two serially flux coupled
memristors behave as variable memristors which can be adjusted based on Eq. (20).

Figure 7 represents memductances derived from Eq. (18) at κ1 = κ2 = 0.02, α1 = α2 = 0.1,
β1 = β2 = 0.01, and as shown in Serial Case 1, when u = 0 the two memristors operate with
identical flux values which leads to identical memductance values W1 = W2 = W. When the
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linearly and passes through 0 at u = �1. The advantage of this case over Case 2 is that much
less power is required to bias a memristor between these values in order to attain a flux value
that approaches infinity. In other words, given a memristor without state boundary conditions,
one can control it to behave like a regular resistor instead if so desired.

3.1.4. Serial Case 4: u = �1

Mathematically, there is no solution for c1 as it approaches �∞ (depending on which side it
approaches in accordance with Figure 6). Hence, in theory, MR1 is never in equilibrium when
the two memristors are serially flux coupled with identical polarities, where the initial flux
value of MR2 is �1 and MR1 is 0. Eq. (13a) shows that as c1 ! ∞, ϕ1 ! ∞. If this behavior is
mapped against the given charge-flux relationship of the memristor characterized by Figure 3,
the top segment of the memristor is a straight line. Therefore, after a sufficiently long time
interval, ϕ1 tends to the breakpoint and the memristor becomes equivalent to a resistor with a
resistance of the inverse slope of the final segment (resp. where c1 ! �∞, ϕ1 ! �∞ and the
memristor becomes equivalent to a resister with the value of the inverse slope of the first
segment of the q–ϕ curve).

The effect seen here with flux approaching an infinite value is identical to an ideal memristor
being connected to a DC source. A constant non-periodic voltage source will also result in flux
tending indefinitely towards �∞, due to the integral relationship implied by Eq. (5c).

This result will not hold true for all ideal memristors [4]. If the memristor was defined by a

polynomial q – ϕ curve, while ϕ ! �∞, dq
dt ¼ iðtÞ ! �∞. This implies that the memristor in

question does not have a dc V-I curve, and in practice, the memristor would burn out long
before the current became too large. This must also be considered in both Case 2 and Case 3,
where current values can potentially go beyond the memristors capacity.

Given a sinusoidal voltage for v12 from Eq. (9a) in the general form of

v12 ¼ A sin ð2πf tÞ, (15)

where A is the amplitude of v12, both ϕ1 and ϕ2 will take on a sinusoidal form as well, and
functions for memductance, voltage and flux can be found in terms of time, initial conditions
and amplitude A—all of which can easily be predetermined.

For the sake of both attaining a meaningful solution and demonstration, flux is first deter-
mined as a function of time where the term from Eq. (15) (2πf) is assumed to be 1 rad. This
simplification yields

φ2ðtÞ ¼ �γ cos ðtÞ þ u, (16a)

where γ is the amplitude of ϕ2, and if Eq. (16a) is substituted into Eq. (13a) results in

φ1ðtÞ ¼ �c1γ cos ðtÞ þ ðc1uþ c1 � 1Þ: (16b)

Substituting Eq. (16) into Eqs. (9a) and (5c) results in
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v12 ¼ v1 þ v2 ¼ ðγþ c1γÞ sin ðtÞ (17)

Alternatively,

γþ c1γ ¼ A (18)

And substituting Eqs. (14) and (18) into Eq. (16) gives

φ1ðtÞ ¼ �A ð2þ uÞ
.

cos ðtÞ (19a)

φ2ðtÞ ¼ �Að1þ uÞ
.
ð2þ uÞ cos ðtÞ þ u (19b)

The assumption used in deriving Eq. (14) was that the initial condition of MR1 was ϕ1 = 0, at
which time ϕ2 = u. Consider when t = π/2 s: ϕ1 is indeed 0, and ϕ2 is reduced to the initial
condition u.

To find memductances W1 and W2 after serial coupling Eq. (19) is substituted into Eq. (8) to
give

W1 ¼
α1 � κ1 ðAð1þ uÞÞ

.
ð2þ uÞ cos ðtÞ þ u

� �
, jφ1j < jφtj

β1 � κ1 ðAð1þ uÞÞ
.
ð2þ uÞ cos ðtÞ þ u

� �
, jφtj < jφ1j < jφmaxj

8><
>:

(20a)

W2 ¼
α2 � κ2 A ð2þ uÞ

.
cos ðtÞ

� �
, jφ1j < jφtj

β2 � κ2 A ð2þ uÞ
.

cos ðtÞ
� �

, jφtj < jφ1j < jφmaxj

8><
>:

(20b)

The memductance (and by extension, current) can therefore be adjusted based on u. Biasing
the initial state of MR2’s flux for a desired value allows the two memristors to behave harmo-
niously like a pair of complementary variable switching resistors (while still maintaining the
high-low voltage states of the single memristor represented in Figure 4).

When u = 0, and in the special case of α1 = α2, β1 = β2, and κ1 = κ2, Eq. (20) shows that W1 = W2

and v1 = v2 =½v12. As u increases from 0,W1 increases andW2 decreases. This is agreeable with
Serial Case 2 of Figure 6: ϕ2 increases and is the cause for coupling with MR1 which results in
the increase of W1 (resp. the decrease of ϕ1 as u increases is the cause of the decrease in W2).
The same methodology applies for the other cases too.

While a memristor has a variable resistance by its very definition, this variation is limited by
the value of dϕ/dq according to the charge-flux curve. However, when two memristors have an
additional parameter u which contributes to this variation, the two serially flux coupled
memristors behave as variable memristors which can be adjusted based on Eq. (20).

Figure 7 represents memductances derived from Eq. (18) at κ1 = κ2 = 0.02, α1 = α2 = 0.1,
β1 = β2 = 0.01, and as shown in Serial Case 1, when u = 0 the two memristors operate with
identical flux values which leads to identical memductance values W1 = W2 = W. When the
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initial condition of MR2 is changed to u = 0.02, the memductance of MR1 shifts upwards while
the memductance of MR2 is approximately the same as W.

3.2. Serial connection with opposite polarities

Following a similar procedure to above where one of two memristors in Figure 8 are flipped
such that either terminals A1 and A2, or B1 and B2 are connected, as shown in Figure 9,
applying KVL to Eqs. (5) and (8) yields

i ¼ v1
α1 � κ2φ2, jφ1j < jφtj
β1 � κ2φ2, jφtj < jφ1j < jφmaxj

(

¼ v2
�α2 þ κ1φ1, jφ1j < jφtj
�β2 þ κ1φ1, jφtj < jφ1j < jφmaxj

( (21)

and substituting Eq. (5c) along with the same assumptions β1 = β2 = β, α1 = α2 = κ1 = κ2 = α into
Eq. (21) results in the following differential equations

dφ1

.
dt ¼ �ð1þ φ1Þ

.
ð1� φ2Þ (22a)

dφ2

.
dt ¼ �ð1� φ2Þ

.
ð1þ φ1Þ, (22b)

which solving simultaneously assuming initial conditions ϕ1(t) = ϕ2(t) = ϕ(0) results Eqs. (23a)
and (23b), pictorially represented in Figure 10.

Figure 7. The memductance curve of serially coupled memristors, u = 0 for W, and u = 0.02 for W1 and W2.
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φ1 ¼
1
2
ð�1þ e2tÞ, (23a)

φ2 ¼ 1=2 � ðe�2tÞ=2 (23b)

Therefore, memductance of the individual memristor can be obtained by substituting Eq. (23)
into Eq. (8), and assuming β1 = β2 = β, α1 = α2 = α, κ1 = κ2 = κ.

Figure 8. The I-V characteristic of two identical flux-coupled memristors shown in Figure 2 denoted I-V2 compared to the
I-V characteristic of just one memristor I-V1.

Figure 9. Memristors serially coupled with opposite polarity configuration.
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initial condition of MR2 is changed to u = 0.02, the memductance of MR1 shifts upwards while
the memductance of MR2 is approximately the same as W.

3.2. Serial connection with opposite polarities

Following a similar procedure to above where one of two memristors in Figure 8 are flipped
such that either terminals A1 and A2, or B1 and B2 are connected, as shown in Figure 9,
applying KVL to Eqs. (5) and (8) yields

i ¼ v1
α1 � κ2φ2, jφ1j < jφtj
β1 � κ2φ2, jφtj < jφ1j < jφmaxj

(

¼ v2
�α2 þ κ1φ1, jφ1j < jφtj
�β2 þ κ1φ1, jφtj < jφ1j < jφmaxj

( (21)

and substituting Eq. (5c) along with the same assumptions β1 = β2 = β, α1 = α2 = κ1 = κ2 = α into
Eq. (21) results in the following differential equations

dφ1

.
dt ¼ �ð1þ φ1Þ

.
ð1� φ2Þ (22a)

dφ2

.
dt ¼ �ð1� φ2Þ

.
ð1þ φ1Þ, (22b)

which solving simultaneously assuming initial conditions ϕ1(t) = ϕ2(t) = ϕ(0) results Eqs. (23a)
and (23b), pictorially represented in Figure 10.

Figure 7. The memductance curve of serially coupled memristors, u = 0 for W, and u = 0.02 for W1 and W2.
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φ1 ¼
1
2
ð�1þ e2tÞ, (23a)

φ2 ¼ 1=2 � ðe�2tÞ=2 (23b)

Therefore, memductance of the individual memristor can be obtained by substituting Eq. (23)
into Eq. (8), and assuming β1 = β2 = β, α1 = α2 = α, κ1 = κ2 = κ.

Figure 8. The I-V characteristic of two identical flux-coupled memristors shown in Figure 2 denoted I-V2 compared to the
I-V characteristic of just one memristor I-V1.

Figure 9. Memristors serially coupled with opposite polarity configuration.
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W1ðφ1, tÞ ¼
αþ κ

1
2
� e�2t

2

� �
, jφ1j < jφtj

βþ κ
1
2
� e�2t

2

� �
, jφtj < jφ1j < jφmaxj

8>>><
>>>:

(24a)

W2ðφ2, tÞ ¼
αþ κ

2
ð�1þ e2tÞ, jφ2j < jφtj

βþ κ
2
ð�1þ e2tÞ, jφtj < jφ2j < jφmaxj:

8><
>:

(24b)

In Figure 10, ϕ1(t) never stops, but increases to +∞. Hence, just as calculated in Serial Case 4 of
‘Serial Connection with Identical Polarities’, one of two ideal memristors can never be in
equilibrium when coupled in anti-serial connection.

Once again, this behavior is mapped against the given charge-flux relationship of the
switching memristor characterized by the shape of the curve in Figure 3. The first and final
segments of the curve are theoretically non-ending straight lines, and thus, after a voltage
pulse is applied for a sufficiently long time interval to increase flux far beyond the upper
breakpoint ϕ1 = 0.25 (resp. a negative voltage pulse to decrease flux beyond the lower
breakpoint ϕ1 = �0.25), the memristor becomes the equivalent of a resistor with the resistance
value of the inverse slope of the final segment.

This behavior is considered comparatively against a single ideal memristor excited by a DC
voltage. Suppose a battery with voltage E volts is connected across this memristor at t = 0.
Where E > 0, ϕ(t) tends towards +∞. Just as in the case of MR1 of the two anti-serially flux-
coupled memristors, the DC-excited memristor is equivalent to a resistor with value of the
inverse of the charge-flux slope.

Ignoring threshold switching effects, the memductance of MR1 reaches a steady state value
while MR2 never achieves stability and instead tends towards a perfect conductor. However,

Figure 10. Flux variation with time in anti-serial connection: figure on left displaying ϕ1(t) from Eq. (23a); figure on right
figure showing ϕ2(t) from Eq. (23b).
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these memristors will not display this behavior independently and so it is more practical to
consider the two memristors as a single black box device. Equivalent memductance across A1

and A2 can be numerically obtained as W1W2/(W1+W2) based on values of α, β and κ.

4. Coupled memristors in parallel connections

Two different configurations of parallel connected memristors exist according to polarity
combinations, just as is the case with serially connected memristors. The same approximation
of the ideal memristors will apply to this section in the same form as in Eq. (7). The first case to
consider where memristors are configured with identical polarities is depicted in Figure 11.

4.1. Parallel connection with identical polarities

The current passing through A1 and B2 as well as flux ϕ12 can be derived from Kirchhoff’s
Current Law (KCL) and Eq. (8),

i ¼ i1 þ i2, φ12 ¼ φ1 þ φ2, (25)

i ¼ v1ðα1 þ κ2φ2Þ þ v2ðα2 þ κ1φ1Þ, jφ12j < j2φtj
v1ðβ1 þ κ2φ2Þ þ v2ðβ2 þ κ1φ1Þ, j2φtj < jφ12j < j2φmaxj

(
(26)

Integration both sides of Eq. (24) yields

q ¼
ðα1 þ α2Þφ12 þ

1
2
ðκ1 þ κ2Þφ2

12, jφ12j < j2φtj

ðβ1 þ β2Þφ12 þ
1
2
ðκ1 þ κ2Þφ2

12, j2φtj < jφ12j < j2φmaxj

8>><
>>:

(27)

Memductance can accordingly be calculated,

Figure 11. Coupled memristors connected in parallel with identical polarity configuration.
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2
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2

� �
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8>>><
>>>:

(24a)

W2ðφ2, tÞ ¼
αþ κ

2
ð�1þ e2tÞ, jφ2j < jφtj

βþ κ
2
ð�1þ e2tÞ, jφtj < jφ2j < jφmaxj:

8><
>:

(24b)

In Figure 10, ϕ1(t) never stops, but increases to +∞. Hence, just as calculated in Serial Case 4 of
‘Serial Connection with Identical Polarities’, one of two ideal memristors can never be in
equilibrium when coupled in anti-serial connection.

Once again, this behavior is mapped against the given charge-flux relationship of the
switching memristor characterized by the shape of the curve in Figure 3. The first and final
segments of the curve are theoretically non-ending straight lines, and thus, after a voltage
pulse is applied for a sufficiently long time interval to increase flux far beyond the upper
breakpoint ϕ1 = 0.25 (resp. a negative voltage pulse to decrease flux beyond the lower
breakpoint ϕ1 = �0.25), the memristor becomes the equivalent of a resistor with the resistance
value of the inverse slope of the final segment.

This behavior is considered comparatively against a single ideal memristor excited by a DC
voltage. Suppose a battery with voltage E volts is connected across this memristor at t = 0.
Where E > 0, ϕ(t) tends towards +∞. Just as in the case of MR1 of the two anti-serially flux-
coupled memristors, the DC-excited memristor is equivalent to a resistor with value of the
inverse of the charge-flux slope.

Ignoring threshold switching effects, the memductance of MR1 reaches a steady state value
while MR2 never achieves stability and instead tends towards a perfect conductor. However,

Figure 10. Flux variation with time in anti-serial connection: figure on left displaying ϕ1(t) from Eq. (23a); figure on right
figure showing ϕ2(t) from Eq. (23b).
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these memristors will not display this behavior independently and so it is more practical to
consider the two memristors as a single black box device. Equivalent memductance across A1

and A2 can be numerically obtained as W1W2/(W1+W2) based on values of α, β and κ.

4. Coupled memristors in parallel connections

Two different configurations of parallel connected memristors exist according to polarity
combinations, just as is the case with serially connected memristors. The same approximation
of the ideal memristors will apply to this section in the same form as in Eq. (7). The first case to
consider where memristors are configured with identical polarities is depicted in Figure 11.

4.1. Parallel connection with identical polarities

The current passing through A1 and B2 as well as flux ϕ12 can be derived from Kirchhoff’s
Current Law (KCL) and Eq. (8),

i ¼ i1 þ i2, φ12 ¼ φ1 þ φ2, (25)

i ¼ v1ðα1 þ κ2φ2Þ þ v2ðα2 þ κ1φ1Þ, jφ12j < j2φtj
v1ðβ1 þ κ2φ2Þ þ v2ðβ2 þ κ1φ1Þ, j2φtj < jφ12j < j2φmaxj

(
(26)

Integration both sides of Eq. (24) yields

q ¼
ðα1 þ α2Þφ12 þ

1
2
ðκ1 þ κ2Þφ2

12, jφ12j < j2φtj

ðβ1 þ β2Þφ12 þ
1
2
ðκ1 þ κ2Þφ2

12, j2φtj < jφ12j < j2φmaxj

8>><
>>:

(27)

Memductance can accordingly be calculated,

Figure 11. Coupled memristors connected in parallel with identical polarity configuration.
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W12ðφ12Þ ¼
dqðφ12Þ
dφ12

¼ ðκ1 þ κ2Þφ12 þ α1 þ α2, jφ12j < j2φtj
ðκ1 þ κ2Þφ12 þ β1 þ β2, j2φtj < jφ12j < j2φmaxj

(
(28)

In this case the variation between the memductance and flux ϕ12 is dependent on the total of
the coupling coefficient values, κ1 + κ2. While the total coupling coefficient is positive,
memductance is in positive proportion to the excitation flux: a higher flux will result in higher
memductance. Conversely, when the total coupling coefficient is negative, the memductance
will linearly decrease with the increase of flux. It can be clearly observed from Eq. (28) that flux
coupled memristors in parallel connection behave as a new flux controlled memristor, with the
equivalent memductance equivalent to the sum of the individual memductances.

4.2. Parallel connection with opposite polarities

A similar procedure can be used in order to ascertain the behavior of anti-parallel connected
flux coupled memristors.

In the case shown in Figure 12, the current and flux across terminals A1 and A2 are also derived
from KCL with the same relationship as in Eq. (25). When considered with respect to Eqs. (3)
and (8), and using similar mathematical derivations to the previous sections the following
result is obtained:

iðtÞ ¼ v1ðα1 � κ2φ2Þ þ v2ðα2 þ κ1φ1Þ, jφ12j < j2φtj
v1ðβ1 � κ2φ2Þ þ v2ðβ2 þ κ1φ1Þ, j2φtj < jφ12j < j2φmaxj

(
(29)

Integrating both sides of Eq. (29) results in a coupled charge-flux relationship as shown below,

q ¼
ðα1 þ α2Þφ12 þ

1
2
ðκ1 � κ2Þφ2

12, jφ12j < j2φtj
ðβ1 þ β2Þφ12 þ

1
2
ðκ1 � κ2Þφ2

12, j2φtj < jφ12j < j2φmaxj

8><
>:

(30)

Figure 12. Coupled memristors connected in parallel with opposite polarity configuration.
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Finally, substituting Eq. (30) into Eq. (4) gives the total memductance of the coupled memristors
in parallel connection:

W12ðφ12Þ ¼
dqðφ12Þ
dφ12

¼ ðκ1 � κ2Þφ12 þ α1 þ α2, jφ12j < j2φtj
ðκ1 � κ2Þφ12 þ β1 þ β2, j2φtj < jφ12j < j2φmaxj

�
(31)

For the uncoupled case of κ1 = κ2 = 0, the parallel memristors operate as a new memristor
where the memductance states (α1, α2, β1, β2) are additive, and all contribute towards the total
coupled memductance. This particular aspect of the relationship is common to both parallel
connection combinations when polarity is changed. The difference between the two cases is in
the effect of the coupling coefficient.

5. Conclusion

A comprehensive theoretical analysis of flux coupled memristors displays various kinds of
new behaviour which are otherwise unattainable from a single memristor. The simplest case
of coupling between two switching memristors is shown to have a diverse range of proper-
ties when memristors are acting in composite with each other. The results presented only
consider bi-state memristors, and as such, we can expect different types of memristors with
different charge-flux relationships to expand the types of dynamic behaviors exhibited, with
the ability to modify the states attainable by tuning the variables associated with the
coupling coefficient (such as physical proximity and device material just to name a couple
of examples).

In summary, two serially connected memristors with identical polarities are shown to produce
a pair of variable memristors determinable from initial conditions; two serially connected
memristors with opposite polarities display behavior often displayed by memristors connected
to DC sources, or otherwise resistive behavior. Parallel memristive systems are shown to
produce a variation rate in terms of the coupling coefficients. This is a feature that can be
determined at the time of fabrication.

Further, what has been considered in this paper is the simplest case of identical memristors
with identical initial conditions. The potential application of coupled memristors, in addition
to the undoubtedly interesting characteristics of arrays of coupled memristors will serve to
open up new avenues of applications, and also provide for guidelines on avoiding undesir-
able behaviors by having fabrication plants devise methods to reduce the coupling coefficient
as low as practicable where design specifications see it fit. In particular, where neural net-
works will see densely populated circuits which depend on memristors behaving function-
ally, the effects of coupling must either be mitigated to avoid unexpected and fallible
outcomes. The alternative view is that memristive coupling makes it possible to have more
than two states between a pair of memristors which would otherwise only be capable of
being switched either on or off, and as such, if these intermediary states are quantized, then a
large system of many varying states can be produced out of a mere two memristors
connected compositely.
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ðκ1 þ κ2Þφ12 þ β1 þ β2, j2φtj < jφ12j < j2φmaxj
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In this case the variation between the memductance and flux ϕ12 is dependent on the total of
the coupling coefficient values, κ1 + κ2. While the total coupling coefficient is positive,
memductance is in positive proportion to the excitation flux: a higher flux will result in higher
memductance. Conversely, when the total coupling coefficient is negative, the memductance
will linearly decrease with the increase of flux. It can be clearly observed from Eq. (28) that flux
coupled memristors in parallel connection behave as a new flux controlled memristor, with the
equivalent memductance equivalent to the sum of the individual memductances.

4.2. Parallel connection with opposite polarities

A similar procedure can be used in order to ascertain the behavior of anti-parallel connected
flux coupled memristors.

In the case shown in Figure 12, the current and flux across terminals A1 and A2 are also derived
from KCL with the same relationship as in Eq. (25). When considered with respect to Eqs. (3)
and (8), and using similar mathematical derivations to the previous sections the following
result is obtained:

iðtÞ ¼ v1ðα1 � κ2φ2Þ þ v2ðα2 þ κ1φ1Þ, jφ12j < j2φtj
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Integrating both sides of Eq. (29) results in a coupled charge-flux relationship as shown below,
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Figure 12. Coupled memristors connected in parallel with opposite polarity configuration.
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Finally, substituting Eq. (30) into Eq. (4) gives the total memductance of the coupled memristors
in parallel connection:

W12ðφ12Þ ¼
dqðφ12Þ
dφ12

¼ ðκ1 � κ2Þφ12 þ α1 þ α2, jφ12j < j2φtj
ðκ1 � κ2Þφ12 þ β1 þ β2, j2φtj < jφ12j < j2φmaxj

�
(31)

For the uncoupled case of κ1 = κ2 = 0, the parallel memristors operate as a new memristor
where the memductance states (α1, α2, β1, β2) are additive, and all contribute towards the total
coupled memductance. This particular aspect of the relationship is common to both parallel
connection combinations when polarity is changed. The difference between the two cases is in
the effect of the coupling coefficient.

5. Conclusion

A comprehensive theoretical analysis of flux coupled memristors displays various kinds of
new behaviour which are otherwise unattainable from a single memristor. The simplest case
of coupling between two switching memristors is shown to have a diverse range of proper-
ties when memristors are acting in composite with each other. The results presented only
consider bi-state memristors, and as such, we can expect different types of memristors with
different charge-flux relationships to expand the types of dynamic behaviors exhibited, with
the ability to modify the states attainable by tuning the variables associated with the
coupling coefficient (such as physical proximity and device material just to name a couple
of examples).

In summary, two serially connected memristors with identical polarities are shown to produce
a pair of variable memristors determinable from initial conditions; two serially connected
memristors with opposite polarities display behavior often displayed by memristors connected
to DC sources, or otherwise resistive behavior. Parallel memristive systems are shown to
produce a variation rate in terms of the coupling coefficients. This is a feature that can be
determined at the time of fabrication.

Further, what has been considered in this paper is the simplest case of identical memristors
with identical initial conditions. The potential application of coupled memristors, in addition
to the undoubtedly interesting characteristics of arrays of coupled memristors will serve to
open up new avenues of applications, and also provide for guidelines on avoiding undesir-
able behaviors by having fabrication plants devise methods to reduce the coupling coefficient
as low as practicable where design specifications see it fit. In particular, where neural net-
works will see densely populated circuits which depend on memristors behaving function-
ally, the effects of coupling must either be mitigated to avoid unexpected and fallible
outcomes. The alternative view is that memristive coupling makes it possible to have more
than two states between a pair of memristors which would otherwise only be capable of
being switched either on or off, and as such, if these intermediary states are quantized, then a
large system of many varying states can be produced out of a mere two memristors
connected compositely.
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Abstract

The memristor has quite a reputation as a missing circuit element. It is a powerful
candidate for next-generation applications after being first implemented in HP’s laborato-
ries. At this point, mathematical models were needed for the analysis of the memristor,
and a lot of studies were done on this subject. In this chapter, mathematical modeling and
simulations of the memristor device have been emphasized. Firstly, linear drift and
nonlinear drift models have been described on the basic HP model. The window functions
used in the nonlinear drift model have been widely examined. Different from HP model,
the Simmons tunnel barrier and the threshold adaptive memristor model (TEAM) have
been also mentioned. As a result, the most widely used modeling techniques have been
described in detail.

Keywords: memristor modeling, HP model, linear drift model, nonlinear drift model,
window functions, exponential model, Simmons tunnel barrier model, TEAM

1. Introduction

In the circuit theory, it refers to the existence of three basic circuit elements that define connec-
tions between basic circuit parameters such as current (i), voltage (v), charge (q), and magnetic
flux (φ). These are resistor, inductor, and capacitor. However, a circuit element that determines
the relationship between the charge and the magnetic flux is not defined. The fourth funda-
mental circuit element representing this relation was firstly presented by Chua in mathemati-
cal terms in 1971 with the name of the memristor (memory + resistor) [1]. In 2008, a group of
researcher from HP laboratories announced that they were physically producing memristor
[2]. In Figure 1, the relationship between fundamental circuit elements and basic circuit
parameters is shown.
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The relationship between current, voltage, charge, and flux for the memristor is given by:

v tð Þ ¼ M q tð Þ� �
i tð Þ (1)

M q
� � ¼ dφ q

� �
=dq (2)

i tð Þ ¼ W φ tð Þð Þv tð Þ (3)

W φð Þ ¼ dq φð Þ=dφ (4)

where M(q) has the unity of resistance and W(φ) has the unity of conductance [1].

Memristor has properties that are different from other fundamental circuit elements and can only
be seen in a memristor such as nonvolatile memory effect, passivity, and pinched hysteresis loop.

When Eqs. (1) and (2) are opened, Eqs. (5) and (6) can be written as follows:

v tð Þ ¼ M
ðt

�∞

i tð Þdt
0
@

1
A i tð Þ (5)

i tð Þ ¼ W
ðt

�∞

v tð Þdt
0
@

1
Av tð Þ (6)

Eqs. (5) and (6) show that the memristance value is related to the history of the current passing
through the memristor. That is, when the current passing through the memristor is cut off, it
remains at the value of the memristance value. The memristance value starts to change from
the last value when it provides the current again to memristor. In other words, the memristor

Figure 1. Linkage between four fundamental circuit elements and basic circuit parameters such as current (i), voltage (v),
charge (q), and magnetic flux (φ).
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has a nonvolatile memory effect. On the other hand, memristor is not an element that stores
energy [3, 4].

Memristor is similar to resistor with memory. It shows a nonlinear resistance characteristic that
the charge parameter is state variable [5].

Another distinguishing feature of the memristor is that the I-V change shows the pinched
hysteresis loop characteristic. A memristor fed by a bipolar periodic signal always exhibits a
pinched hysteresis I-V characteristic that passes through the origin. As the frequency of the
excitation signal increases, the hysteresis lobe area decreases monotonically. When the frequency
tends to infinity, the pinched hysteresis loop shrinks toward a single-valued function [6, 7].

The memristor, with being a passive circuit element, has a unique ability to remember the state
of resistance that it possesses by maintaining the relationship between voltage and current
time integrals. Due to these features, they are being nominated for many different applications
such as resistive memories, soft computing, neurocomputing, etc.

Different materials and techniques are used at the point of producing the memristor. The
memristor structures produced from different materials can be given as example, such as
titanium dioxide (TiO2) memristor [2], zinc oxide memristor [8, 9], silicon oxide memristor
[10], and GST (Ge2Sb2Te5) memristor [11].

2. Modeling of memristor

2.1. HP memristor model

Memristor-based applications require a suitable model for analysis and simulation of the system.
When looking at the literature, the HP memristor model where the memristor mechanism based
on the drift of oxygen vacancies is widely used. The memristor model developed by HP Lab is
composed of Pt/TiO2/Pt structure as shown in Figure 2. Here, the TiO2 layer in which the one side
doped with positive charged-rich oxygen vacancies (TiO2�x) is placed between two platinum
layers [2].

The doped part of the TiO2 layer exhibits a low resistance behavior, while the undoped part
exhibits a high resistance behavior. As a result of the appropriate excitation on this structure,

Figure 2. Structure of memristor reported by HP Lab [2].
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the ionic drift between the doped part and the undoped part results in a dynamic change in the
width of the doped region. That is, the width of the doped region is taken as a state variable.
As the width of the doped region approaches zero (w!0), the memristor goes to a high
resistance state (HRS), and as the width of the doped region approaches D (w!D), the
memristor goes to a low resistance state (LRS) as shown in Figure 3 [3].

Since the memristor’s dimensions are very small (in few nm), it causes a change in the doped
region even with a small stimulation applied. Thus the resistance of the memristor varies
between HRS and LRS [3].

2.2. Linear drift model

In the model known as the linear drift model, the relation between the current and the voltage
of the memristor is defined by the following equation:

v tð Þ ¼ Ronx tð Þ þ Roff 1� x tð Þð Þ½ � i tð Þ (7)

x tð Þ ¼ w tð Þ
D

∈ 0; 1ð Þ (8)

where Ron and Roff are the values of the resistance for w(t) = D and w(t) = 0, respectively [2, 8, 9].

From Eq. (7), the value of memristance can be expressed by

M q tð Þ� � ¼ v tð Þ
i tð Þ ¼ Ronx tð Þ þ Roff 1� x tð Þð Þ (9)

As shown in Figure 3, the state of change of the memristor resistance is represented by x(t)
value in Eq. (8). The speed of movement of the boundary between the doped layer and
undoped layer is expressed as dx/dt with Eq. (10) [12, 13]:

dx tð Þ
dt

¼ μv
Ron

D2 i tð Þ (10)

where μv is the average drift mobility of the charges. If Eq. (10) is taken integral for time, the
following expression is derived:

Figure 3. Representation of the HRS and LRS states of the memristor. (a) LRS and (b) HRS.
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x tð Þ ¼ μv
Ron

D2 q tð Þ (11)

If Eq. (11) is put in its place in Eq. (9), the following memristance expression is achieved:

M q tð Þ� � ¼ Ronμv
Ron

D2 q tð Þ þ Roff 1� μv
Ron

D2 q tð Þ
� �

(12)

This expression can be written as

M q tð Þ� � ¼ Roff 1� μv
Ron

D2 q tð Þ
� �

(13)

if the left side of the total expression is neglected because Ron < < Roff [2].

Through this model, the characteristics of the memristor can be observed by the simulations as
shown in the ongoing part. The following values are used for the simulations performed in this
section. μv = 10�14 m2s�1 V�1, D = 10 nm, initial value of w is 3 nm, input signal Vinput = Vo.sin
(ωt) where Vo = 1 V and f = 1 Hz (ω = 2πf), Ron = 100 Ω, and Roff = 160 kΩ. Figure 4 shows the
change of the current and voltage of the memristor with time for the given parameter values. The
pinched hysteresis loop in the I-V plane shown in Figure 5 is one of the fingerprint characteristics
of the memristor. Figure 6 shows the relationship between state variable and memristance. This
indicates that the memristance depends on the state variable x. This figure also shows that the
state variable is limited between 0 and 1. In Figure 7, the change of memristance with applied
voltage is seen.

As shown in Figure 8, as the frequency increases, the I-V pinched hysteresis loops become
narrower. As the frequency increases toward infinity, the I-V characteristic seems to be a linear
resistance characteristic. Figure 9 shows the variation of the I-V characteristic for different
amplitude values of the excitation signal.

2.3. Nonlinear drift model and window functions

The linear drift model supposes that the state variable (x) of the memristor is proportional
to the charge flowing through the memristor. This proportion is acceptable to the interface
between the electrodes and the interface between the doped and undoped parts of the
memristor. The position of the doped part changes with the applied input signal. Furthermore,
the linear drift model assumes that the vacancies have the freedom to move along the all length
of the memristor. These assumptions made in the HP model have been greatly simplified,
neglecting some basic laws. The reported literature shows that the drift of vacancies is not
linear in the region near the boundary interfaces. The reason is that even a small excitation
signal can create a large electric field causing nonlinear drift of the vacancies near the bound-
ary interfaces in the memristor. Another problematic situation related to the linear drift model
is that the state variable (x) never reaches zero, indicating that oxygen vacancies are not
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present in the memristor. Similarly, the doped region cannot cover the entire length of the
memristor, because there will be no undoped part and the memristor will not work in this way
[3, 14, 15].

Figure 4. Change of the current and voltage of the memristor with respect to time.

Figure 5. I-V pinched hysteresis loop of the memristor.

Memristor and Memristive Neural Networks192

In order to provide nonlinearity for the boundary problems mentioned above, functions called
window function are introduced. This function is implemented by rearranging the expression
Eq. (10) as

Figure 6. Change of the state variable and memristance of the memristor with respect to time.

Figure 7. Change of the memristance of the memristor with respect to voltage.
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dx tð Þ
dt

¼ μv
Ron

D2 i tð Þ f x tð Þð Þ (14)

The function f(x) should have zero at the limits of the memristor (x = 0 and x = 1) and
maximum value at the middle of the memristor (x = 0.5) [11]. An effective window function
should satisfy the following conditions for modeling of nonlinearity [16]:

Figure 8. I-V pinched hysteresis loops of the memristor for Vo = 1 V and different frequency values.

Figure 9. I-V pinched hysteresis loops of the memristor for f = 1 Hz and different Vo values.
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• The function should take account of the boundary situation at the top and bottom elec-
trodes of the memristor.

• The function should provide nonlinear drift across the entire active area of the memristor.

• The function should ensure linkage between the linear and nonlinear drift models.

• The function should be scalable in the interval of fmax(x) can be obtained such that
0 ≤ fmax(x) ≤ 1.

• The function should include the control parameter to set the model.

Many different window functions are proposed as a result of the studies carried out in order to
provide these criteria.

2.3.1. Joglekar’s window function

Joglekar’s window function can be given as

f xð Þ ¼ 1� 2x� 1ð Þ2p (15)

where p is the control parameter which changes the flatness of the f(x) curve around its
maximum value at x = 0.5 and is a positive integer [17].

In Figure 10, the change of window function proposed by Joglekar for different p values is
shown. The characteristic of this function is similar to the rectangular window function by
increasing p value, and the nonlinear drift effect is reduced. The disadvantage of Joglekar’s
window function is the cling situation of the state variable at the boundaries, and it is difficult
to change the window function due to the zero value at both boundaries. That is, the nonlinear
drift problem is solved, but the boundary lock is not taken into account. When memristor
arrives in Ron or Roff terminal condition, this state will be maintained forever due to zero value
taken from the window function [13, 14].

2.3.2. Biolek’s window function

Biolek has introduced a window function that provides a solution for model errors (the cling
situation of the state variable at the boundaries) of Joglekar’s window function. Biolek’s window
function is expressed as follows:

f xð Þ ¼ 1� x� stp �ið Þ� �2p (16)

stp ið Þ ¼ 1, i ≥ 0
0, i < 0

�
(17)

where p is positive integer and i is the memristor current [18].

Figure 11 shows the variation of the window function proposed by Biolek for different p
values. The proposed window function by Biolek depends not only on the state variable but
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also on the current flow through the memristor. Thus, the problem of boundary lock is
resolved. However, this window function does not include the scalability factor, so the maxi-
mum value of the window function cannot be set to a lower or greater value [13].

Figure 10. Joglekar window function for different p values.

Figure 11. Biolek’s window function for different p values.
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2.3.3. Prodromakis’ window function

Prodromakis’ window function is

f xð Þ ¼ j 1� x� 0:5ð Þ2 þ 0:75
h ip� �

(18)

Figure 12. Prodromakis’ window function for j = 1 and different p values.

Figure 13. Prodromakis’ window function for p = 10 and different j values.
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where p and j are a positive real number [16]. In Figure 12, the change of Prodromakis’
window function for j = 1 and different p values is shown. Figure 13 shows the variation of
the Prodromakis’ window function for p = 10 and different j values.

Prodromakis proposes a solution for the scalability problem in the aforementioned by the
presented window function. Prodromakis’ window function provides a connection to the linear
dopant drift model for sufficiently large values of p. However, the model built by Prodromakis
still contains the problem of boundary lock [13].

2.3.4. Zha’s window function

This function has been introduced by Zha as a new window model so that boundary lock,
scalability, and nonlinear effects can be met at the same time. Zha’s window function is
expressed as follows:

f xð Þ ¼ j 1� 0:25 x� stp �ið Þ� �2 þ 0:75
h ip� �

(19)

where stp(i) is given in Eq. (17) and p and j are positive real numbers [13]. Zha’s window
function for j = 1 and different p values in Figure 14 is shown. Figure 15 shows the Zha’s
window function for p = 10 and different j values.

2.3.5. Comparison of window functions

In this section, the simulation results have been given over the nonlinear drift model of the
window functions given in the previous sections. Figure 16 shows the change of window

Figure 14. Zha’s window function for j = 1 and different p values.
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functions according to state variable x for p = 10 and j = 1 values. In Figure 17, I-V character-
istics have been plotted for the window functions in Figure 16. In Figure 18, the change of the
memristance of the memristor with the applied voltage for the window functions of Figure 16
has been presented. For simulations using these window functions, μv = 10�14 m2s�1 V�1,
D = 10 nm, initial value of w is 3.145 nm, input signal Vinput = Vo.sin(ωt) where Vo = 1.2 V and
f = 1 Hz (ω = 2πf), Ron = 100 Ω, and Roff = 160 kΩ.

Figure 15. Zha’s window function for p = 10 and different j values.

Figure 16. Different window functions for p = 10 and j = 1.
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2.4. Exponential model

Even in the models described so far, the nonlinearity of the large electric field in the memristor
is still not taken into consideration. In [19], an exponential model that accounts the effect has

Figure 17. Change of I-V pinched hysteresis loops of the memristor for different window functions.

Figure 18. Change of the memristance of the memristor with respect to voltage for different window functions.
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been presented. In this model, the relation between the current of the memristor and the
voltage is defined as follows:

i ¼ x tð Þnβsinh αv tð Þð Þ þ χ exp γv tð Þð Þ � 1
� �

(20)

where β, α, χ, and γ are experimental fitting parameters. How the state variable can influence
the current is determined by the n parameter [12, 19]. According to Eq. (20), when the model is
ON state, asymmetrical switching behavior is shown (sinh part). When the OFF state, the
exponential part of the Eq. (20) has the dominant part of the current, which is similar to an
ideal PN junction [12, 14].

In this model, the differential equation of state variable is written as

dx tð Þ
dt

¼ a � v tð Þmf xð Þ (21)

where a and m are fitting parameters. f(x) can be any window function [14].

2.5. Simmons tunnel barrier model

The models described so far were based on the HP model, which consisted of two regions,
each of which was modeled as resistance. But Pickett presented another physical model of the
memristor as an alternative to the HP model, consisting of a resistor and an electron tunnel
barrier in series [20].

Figure 19 shows the memristor structure of the Simmons tunnel barrier model where w is the
tunneling barrier and Rs is the channel resistance.

w is the state variable of the model and can be written as

dw tð Þ
dt

¼
foffsinh

i
ioff

� �
exp �exp

w� aoff
wc

� ij j
b

� �
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wc

� �
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wc
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wc
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8>>><
>>>:

(22)

Figure 19. Memristor structure of Simmons tunnel barrier model.
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Figure 19. Memristor structure of Simmons tunnel barrier model.
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where foff, fon, aoff, aon, ioff, ion, and b are fitting parameters [20]. The fon value has an amplitude
order greater than foff. It is also effective in changing w in both parameters. The ion and ioff
parameters effectively limit the current threshold. In this model, a window function is not
required, because aoff and aon values force upper and lower bounds of x, respectively.
Although this model is the most accurate model for a memristor, it is a nongeneric model that
is defined for a particular type of memristor, which has a nonobvious relationship between
current and voltage [14].

2.6. ThrEshold Adaptive Memristor (TEAM) model

TEAM model is a memristor model with several assumptions for analysis simplification and
computational efficiency. These assumptions are as follows:

1. There is no change in the status variable for values below a certain threshold value.

2. A polynomial relationship is established between the current of memristor and the internal
state drift derivative instead of the exponential dependence.

Taking these assumptions into account, the derivation of the state variable is written as

dw tð Þ
dt

¼
koff � i tð Þ

ioff
� 1

� �αoff � foff wð Þ, 0 < ioff < i

0 , ion < i < ioff

kon � i tð Þ
ion

� 1
� �αon � fon wð Þ, i < ion < 0

8>>><
>>>:

(23)

where koff (koff > 0,) kon (kon < 0),αoff, and αon are constants, ioff and ion are current thresholds,
and w is the effective electric tunnel width. Dependency on state variable w by foff(w) and
fon(w) functions is provided. These functions can be thought of as window functions to limit
the state variable between won and woff. If we assume that the memristance changes linearly
with w as in Eq. (7), the relationship between current and voltage can be written as

v tð Þ ¼ Ron þ Roff � Ron

woff �won
w�wonð Þ

� �
i tð Þ (24)

If we assume that the memristance changes exponentially with w, the relationship between
current and voltage can be written as

v tð Þ ¼ Rone
λ

woff�won
w�wonð Þ

� �
� i tð Þ (25)

where λ is fitting parameter [21]:

λ ¼ ln
Roff

Ron

� �
(26)
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3. Conclusion

This chapter describes the mathematical modeling and simulation of the memristor device.
Firstly, brief information about the historical development of the memristor has been given.
The emergence of the memristor idea and the formation of mathematical theory have been
mentioned. Then, information about the realization of the memristor as a physical element and
the HP memristor model has been given.

In the memristor applications, the memristor device must be mathematically modeled cor-
rectly for analysis and simulation studies. For this reason, mathematical modeling and model-
ing methods of the memristor have been emphasized.

We mainly focus on five different models such as linear drift model, nonlinear drift model,
exponential model, Simmons tunnel barrier model, and TEAM model. In addition, the differ-
ent window functions proposed for the nonlinear drift model have been examined. We pro-
vided simulation results for some of the models reviewed. The effects on the I-V characteristics
of the window functions have been shown graphically with simulation results.
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Abstract

Hierarchical temporal memory (HTM) is a cognitive learning algorithm intended to 
mimic the working principles of neocortex, part of the human brain said to be respon-
sible for data classification, learning, and making predictions. Based on the combination 
of various concepts of neuroscience, it has already been shown that the software realiza-
tion of HTM is effective on different recognition, detection, and prediction making tasks. 
However, its distinctive features, expressed in terms of hierarchy, modularity, and spar-
sity, suggest that hardware realization of HTM can be attractive in terms of providing 
faster processing speed as well as small memory requirements, on-chip area, and total 
power consumption. Despite there are few works done on hardware realization for HTM, 
there are promising results which illustrate effectiveness of incorporating an emerging 
memristor device technology to solve this open-research problem. Hence, this chapter 
reviews hardware designs for HTM with specific focus on memristive HTM circuits.

Keywords: hierarchical temporal memory, spatial pooler, temporal memory, memristor, 
non-volatile memory, memristive crossbars

1. Introduction

The ideas that created a basis for development of hierarchical temporal memory (HTM), a 
type of machine learning algorithm that emerged from the consideration of the Bayesian neu-
ral network (BNN) and spatial-temporal algorithm, was first introduced by Jeff Hawkins in 
2004 in his book On Intelligence [1] written in collaboration with Sandra Blakeslee. One year 
later, in 2005, Hawkins launched Numenta company that worked on the implementation of 
HTM technology. The first version of the HTM algorithm implementation was developed in 
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2006 and is now known as HTM-Zeta1 [2]. Three more years of work on the improvement 
of the HTM-Zeta1 produced a new version of HTM algorithm that is based on the cortical 
learning algorithm (CLA) and is now presented in the updated white paper of Numenta [3].

The aim of this chapter is to familiarize the reader with one of the latest versions of the 
machine learning algorithms in the face of hierarchical temporal memory (HTM). The focus of 
the chapter is utilization of the nanoscale memristive devices for hardware implementations 
of the HTM. However, due to the complex background of the novel learning algorithm the 
authors purposefully start from the general descriptions and useful explanations of the major 
concepts. A variety of concrete examples of HTM realizations in both software and hardware 
is presented in this chapter. This is done to give the reader comprehensive understanding of 
the current situation in the HTM research area.

The chapter is organized as follows. We discuss the structure and main concepts of the HTM 
algorithm in Section 2. The description of the concepts closely follows the white paper docu-
ments of Numenta company. In addition to that, a high level overview of the mathematical 
formulation of HTM phases is given based on the framework that has been demonstrated 
by Mnatzaganian et al. [4]. Section 3 summarizes the existing implementations of the HTM 
in both software and hardware. This is followed by the short Section 5 that is dedicated to 
the memristive device, which is currently widely used for different application. Most impor-
tantly, memristor demonstrated a great potential to be especially useful for neuromorphic 
applications. One of such application is realization of the synaptic behavior in the circuits. 
This is what Section 5 is about. Finally, Section 6 summarizes the works that demonstrated the 
application of memristive devices for implementation of hardware designs of HTM.

2. Structure and basic concepts of HTM

For the timely varying set of data to be analyzed the regular horizontal organization that 
is being utilized in the most of the conventional computer memories will not work. There 
should be a hierarchy notion that needs to be implemented. This is what the major idea of 
HTM is based on. As the name suggests the HTM memory utilizes the hierarchical structure 
with the cells being the primary elements [3]. Figure 1 depicts an example of hierarchical 
structure of HTM consisting of three levels. The primary element of the HTM is a cell. These 
cells perform the function of artificial neurons that resembles the functionalities of the biologi-
cal neuron. Several cells are grouped to form a node, which is also known as column. The set 
of columns are combined to form a region, and several regions are interconnected in a hierar-
chical manner, where the higher level in the hierarchy utilizes the patterns that were learned 
from the lower levels. The connectivity of the neurons in biology is established by synapses. 
Being inspired from this concept, HTM cells are interconnected using synapses. In the frame-
work of HTM, the strength of the synapse is known as permanence [3]. The permanence value 
determines which of the synapses are strong enough to establish the connection for further 
communication that enables the learning from other cells and lower levels.
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Figure 2 demonstrates how the concept of hierarchy could be used in the image recognition 
application. Here the single level is represented by the single region that composed of several 
nodes, where the number of nodes is reduced as we go from the bottom level to the top level. 
Reduced number of the nodes in the higher levels could be explained by the fact that as we 
go up, we combine certain elements to form the features. As an example let consider an input 
image that illustrates the face of the human. By looking at the image and using the top-down 
approach, we realize that the given image represents the human face that in turn has several 
apparent features, such as nose, eyes, and lips. We then can go deeper and consider the visible 
features of the eye that incorporate the iris and pupil. Finally, we might zoom in the image 
and realize that features of the images are formed by certain pixels. Thus, it could be seen that 
at different HTM levels we have access to different levels of details of the input information.

Two mechanisms that allow the HTM to operate by searching for the common patterns in 
the spatial domain and determining the common temporal patterns are represented by the 
spatial pooler (SP) and temporal memory (TM), respectively [3]. Here the term spatial pattern 
means that there is the combination of the input bits, which is represented by the activation of 
certain cells in the column, often appearing together. Temporal patterns in turn consider how 
the sequence of the spatial patterns changes over time [3].

For the realization of HTM, first of all, the SP is required to convert the binary form of the 
input data into sparse distributed representation (SDR). This type of representation is formed 
by activating only very small number of bits to illustrate a particular input. SDR in contrast to 
the dense representation reduces the requirements for the storage capacity because the input 
data is presented by highly distributed cells. In addition to that, the sparsity of the active bits 
leads to the improved robustness of the system to the noise.

Figure 1. Detailed demonstration of the HTM structure consisting of 3 levels, each composed of certain number of 
regions with 16 columns each having 4 cells.

Introduction to Memristive HTM Circuits
http://dx.doi.org/10.5772/intechopen.70123

211



2006 and is now known as HTM-Zeta1 [2]. Three more years of work on the improvement 
of the HTM-Zeta1 produced a new version of HTM algorithm that is based on the cortical 
learning algorithm (CLA) and is now presented in the updated white paper of Numenta [3].

The aim of this chapter is to familiarize the reader with one of the latest versions of the 
machine learning algorithms in the face of hierarchical temporal memory (HTM). The focus of 
the chapter is utilization of the nanoscale memristive devices for hardware implementations 
of the HTM. However, due to the complex background of the novel learning algorithm the 
authors purposefully start from the general descriptions and useful explanations of the major 
concepts. A variety of concrete examples of HTM realizations in both software and hardware 
is presented in this chapter. This is done to give the reader comprehensive understanding of 
the current situation in the HTM research area.

The chapter is organized as follows. We discuss the structure and main concepts of the HTM 
algorithm in Section 2. The description of the concepts closely follows the white paper docu-
ments of Numenta company. In addition to that, a high level overview of the mathematical 
formulation of HTM phases is given based on the framework that has been demonstrated 
by Mnatzaganian et al. [4]. Section 3 summarizes the existing implementations of the HTM 
in both software and hardware. This is followed by the short Section 5 that is dedicated to 
the memristive device, which is currently widely used for different application. Most impor-
tantly, memristor demonstrated a great potential to be especially useful for neuromorphic 
applications. One of such application is realization of the synaptic behavior in the circuits. 
This is what Section 5 is about. Finally, Section 6 summarizes the works that demonstrated the 
application of memristive devices for implementation of hardware designs of HTM.

2. Structure and basic concepts of HTM

For the timely varying set of data to be analyzed the regular horizontal organization that 
is being utilized in the most of the conventional computer memories will not work. There 
should be a hierarchy notion that needs to be implemented. This is what the major idea of 
HTM is based on. As the name suggests the HTM memory utilizes the hierarchical structure 
with the cells being the primary elements [3]. Figure 1 depicts an example of hierarchical 
structure of HTM consisting of three levels. The primary element of the HTM is a cell. These 
cells perform the function of artificial neurons that resembles the functionalities of the biologi-
cal neuron. Several cells are grouped to form a node, which is also known as column. The set 
of columns are combined to form a region, and several regions are interconnected in a hierar-
chical manner, where the higher level in the hierarchy utilizes the patterns that were learned 
from the lower levels. The connectivity of the neurons in biology is established by synapses. 
Being inspired from this concept, HTM cells are interconnected using synapses. In the frame-
work of HTM, the strength of the synapse is known as permanence [3]. The permanence value 
determines which of the synapses are strong enough to establish the connection for further 
communication that enables the learning from other cells and lower levels.

Memristor and Memristive Neural Networks210

Figure 2 demonstrates how the concept of hierarchy could be used in the image recognition 
application. Here the single level is represented by the single region that composed of several 
nodes, where the number of nodes is reduced as we go from the bottom level to the top level. 
Reduced number of the nodes in the higher levels could be explained by the fact that as we 
go up, we combine certain elements to form the features. As an example let consider an input 
image that illustrates the face of the human. By looking at the image and using the top-down 
approach, we realize that the given image represents the human face that in turn has several 
apparent features, such as nose, eyes, and lips. We then can go deeper and consider the visible 
features of the eye that incorporate the iris and pupil. Finally, we might zoom in the image 
and realize that features of the images are formed by certain pixels. Thus, it could be seen that 
at different HTM levels we have access to different levels of details of the input information.

Two mechanisms that allow the HTM to operate by searching for the common patterns in 
the spatial domain and determining the common temporal patterns are represented by the 
spatial pooler (SP) and temporal memory (TM), respectively [3]. Here the term spatial pattern 
means that there is the combination of the input bits, which is represented by the activation of 
certain cells in the column, often appearing together. Temporal patterns in turn consider how 
the sequence of the spatial patterns changes over time [3].

For the realization of HTM, first of all, the SP is required to convert the binary form of the 
input data into sparse distributed representation (SDR). This type of representation is formed 
by activating only very small number of bits to illustrate a particular input. SDR in contrast to 
the dense representation reduces the requirements for the storage capacity because the input 
data is presented by highly distributed cells. In addition to that, the sparsity of the active bits 
leads to the improved robustness of the system to the noise.

Figure 1. Detailed demonstration of the HTM structure consisting of 3 levels, each composed of certain number of 
regions with 16 columns each having 4 cells.

Introduction to Memristive HTM Circuits
http://dx.doi.org/10.5772/intechopen.70123

211



Before talking about the advantage of SDR based systems in terms of storage capacity itself, 
let first clearly understand the difference between the dense representations and SDRs, the 
two methods that are utilized for information storage and processing by the traditional com-
puters and brain, respectively.

An example of storing the information in the traditional computer is as follows. The computer 
uses 8, 32 or 64, bit word with all different combinations of 1’s and 0’s. By taking any individ-
ual bit from the word, one will not get any useful information. The combination of bits itself 
and position of the active and inactive bits (1’s and 0’s) with respect to each other, this is what 
plays an important role. As an example 11010101 is the dense representation of the letter “j” in 
the ASCII code. The problem might occur even if only single bit of the word is corrupted, such 
as the third bit from the left swept to the 1 and as a result the dense representation 1101110 
will demonstrate a totally different letter in ASCII code, which is “n.”

Contrary to this, the functionality of the brain is based on the SDR. This means that for the 
input consisting of the thousands of bits, at every instant only small portion of these bits is 
active (represented by 1), while others being 0. In contrast to dense representation, in SDR 
every bit has its meaning that defines some attribute that describes the information (for exam-
ple in case of the letter the attribute could define upper-case or lower-case letter, whether it is 
vowel or consonant). Figure 3a demonstrates SDR of the 1000 bits with very small number of 
bits being 1. These representation can be stored by considering the positions of the 1’s in the 
stream of bits, i.e. the indexes of active bits. Thus, the SDR on Figure 3a will be stored as [1, 11, 
998] which requires very little space. The comprehensive description of the SDR in the HTM 
could be found in the technical report of Hawkins and George [2].

This idea of SDR is used in the HTM algorithm. Figure 3b shows an example how the input 
information representing the set of geometrical figures could be stored in the HTM hierarchy 
in the distributed way with very few of the cells in the region being activated. The realization 
of the SP requires consideration of the following three phases: overlap phase, inhibition phase 
and learning phase.

Figure 2. Illustration of the HTM hierarchy based on the image recognition example.
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A purely mathematical formalization of HTM SP was presented by Mnatzaganian et al. [4]. 
This mathematical framework was established to optimize the development of the HTM 
designs on hardware. Bellow we discuss the three phases of SP based on pseudocode that was 
presented in the white paper of Numenta and the work of the Mnatzaganian.

Before the first phase of SP occurs, the initialization should be performed. During the ini-
tialization, the initial synapses are established for each column and their permanence value, 
which is analogous to the synapse weight concept in the neuroscience, is randomly chosen. 
The first phase of overlap is responsible for determination of the number of active connected 
synapses. The activity of the synapse is determined by the input to which it is connected, i.e. 
the high input would make a synapse active, while low input would result in inactive syn-
apse. The connectivity of the synapse in turn is based on the weight of the synapse: only the 
weights higher than the threshold would make the synapse connected. The optimum thresh-
old depends on the distribution of the data and application of HTM. The optimized thresh-
old can be selected empirically. The example of the empirical selection of the threshold value 
for pattern recognition application, where the threshold depends on the intensity of the data 
features, is shown in Ref. [15]. The threshold is selected by testing the HTM method with 
various threshold values for different databases. The overlap of the individual synapse α is 
represented by Eq. (1). The value of α would be 1 only if two conditions are satisfied, namely 
input bit ui is 1 and weight of the weight of the synapse is higher than the threshold.

Figure 3. Example of (a) how SDR can be used to represent a bit stream and (b) how SDR is formed within HTM 
hierarchy to represent different geometrical figures.
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0
  

otherwise
           (1)

The total overlap of the column that consists of N synapses is given by Eq. (2).

  Overlap =  ∑ 1  N     α  i    (2)

Based on the calculated overlap values the second stage determines the columns that will still 
be winners after the inhibition. The number of desired winning columns could be controlled 
with help of parameter k such that the winner is considered that column whose overlap value 
is greater than the k-th highest overlap value within the inhibition region that is represented 
in Eq. (3) by γ.

  γ = kmax (α, k)   (3)

In the phase of learning the weight values that were higher than γ value are increased by 
the specified amount, while the other weight decreases its value [3]. Such an update of the 
weights allows the consideration of the previous state when treating a new input.

TM deals with the time variable of the learning process and could be used to predict what 
patterns will be followed the given pattern based on the previous observations. Ideally, the 
learning process occurs in both SP and TM. However, in the SP the learning is based on the 
connections between the input bits and columns, while in TM learning considers the estab-
lishment of the synapses (connections) between the cells of the same region. The TM learns 
the sequences by considering an active cell and the connection that it formed to the cells that 
were active in the previous time instant.

The input to the TM are the winning columns from the SP. Like SP, TM consists of three 
phases. In the first phase, the state of each cell of the columns is checked and the certain cells 
of the columns are activated. The second phase is responsible for the setting the cells of the 
columns in predictive state, while the last phase updates the permanence of the synapses [3].

3. Software and hardware realizations of HTM

Despite HTM is classified as a type of cognitive learning algorithm, its fundamental concepts 
related to neuroscience and, particularly, to the working principles of neocortex make it like 
deep neural networks, which, in turn, have already shown significant results on a variety of 
real world problems. Combined with the distinctive features of the algorithm, expressed by 
its sparsity, hierarchy, and modularity, HTM algorithm attracted interest of various research 
groups. There is now several research works, which illustrate effectiveness of the algorithm 
on various recognition tasks. For example, work in Ref. [5] verifies HTM capability on abnor-
mality detection, Refs. [6, 7] present results for pattern and object recognitions, in Ref. [8] 
HTM was used for object categorizations. Similarly, works in Refs. [9, 10] illustrate suitability 
of the algorithm for robotics and movement detection, respectively. However, these works 
were focused on the software realizations of HTM.
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Despite it was originally developed as the software algorithm, promising results reported 
in the works listed above resulted in the rise of interest in a hardware realization of HTM. 
Limited number of works proposes various designs for the hardware realization of HTM 
within digital, analog, and mixed-signal domains. The work in Ref. [11] proposed conceptual 
application-specific integrated circuit (ASIC) design for HTM. The work in Ref. [12] proposed 
reconfigurable field-programmable gate array (FPGA) implementation. The work in Ref. [13] 
proposed non-volatile HTM spatial pooler design using flash memories. The work in Ref. [14] 
proposed mixed-signal design for HTM based on the combination of spin-neuron devices 
and memristor crossbars. The work in Ref. [15] proposed analog design for HTM utilizing 
memristor crossbar circuits.

The works in Refs. [13–15] are based on the implementation of HTM using non-volatile memo-
ries. This is driven by the fact that, in order to compute large amount of data, HTM should have 
dense neuronal structures with considerations on area and power efficiency. Based on these 
parameters, the work in Ref. [16] provides data illustrating superior potential of memristor 
devices over flash memories conventionally used to implement brain-inspired architectures.

4. Memristor for HTM

Memristor (memory resistor) is a non-linear device firstly proposed by Leon Chua in 1972 
and firstly fabricated only in 2003 by HP Labs [17]. The main distinctive feature of the device 
is its ability to change its state not only according to the current input value, but also accord-
ing to the history of the inputs. Moreover, additional advantages of memristors include low 
on-chip area, resulting from fabrication methods differing from methods used for silicon 
devices, and low power consumption, resulting from absence of leakage currents associated 
with high power dissipation in CMOS technology [17]. These properties of the device resulted 
in its applications in brain-inspired architectures. Single memristor may be used to represent 
synaptic connection (or, simply synapse) with its memristance value representing strength 
of the connection between pre- and post-synaptic neurons. Possibility to combine synaptic 
processing as well as memory storage within single device made memristors invaluable in the 
design of synapses, critical building blocks in architectures based on neuroscientific concepts. 
Nanoscale devices allow compact storage of many synapses as well as enable parallel process-
ing within architecture.

5. Single synapse circuit realizations using memristor devices

Single synapse is said to be a connection between two communicating neurons. In biology, 
in simple terms communication occurs when transmitting neuron, i.e. pre-synaptic neuron, 
sends information via signals to receive neuron, i.e. post-synaptic neuron, through  synaptic 
connection. Because there are a huge number of neuronal interconnections, the receiving sig-
nal importance is said to be dependent on the strength (also called as the weight) of synaptic 
connection. It means that neuronal cell, receiving various signals from the number of pre-
synaptic neurons, selects and processes important signal according to the weight of  synapse. 

Introduction to Memristive HTM Circuits
http://dx.doi.org/10.5772/intechopen.70123

215



   α  i   =  { 
1
  

if  u  i   ×  w  i   ≥ threshold
   

0
  

otherwise
           (1)

The total overlap of the column that consists of N synapses is given by Eq. (2).

  Overlap =  ∑ 1  N     α  i    (2)

Based on the calculated overlap values the second stage determines the columns that will still 
be winners after the inhibition. The number of desired winning columns could be controlled 
with help of parameter k such that the winner is considered that column whose overlap value 
is greater than the k-th highest overlap value within the inhibition region that is represented 
in Eq. (3) by γ.

  γ = kmax (α, k)   (3)

In the phase of learning the weight values that were higher than γ value are increased by 
the specified amount, while the other weight decreases its value [3]. Such an update of the 
weights allows the consideration of the previous state when treating a new input.

TM deals with the time variable of the learning process and could be used to predict what 
patterns will be followed the given pattern based on the previous observations. Ideally, the 
learning process occurs in both SP and TM. However, in the SP the learning is based on the 
connections between the input bits and columns, while in TM learning considers the estab-
lishment of the synapses (connections) between the cells of the same region. The TM learns 
the sequences by considering an active cell and the connection that it formed to the cells that 
were active in the previous time instant.

The input to the TM are the winning columns from the SP. Like SP, TM consists of three 
phases. In the first phase, the state of each cell of the columns is checked and the certain cells 
of the columns are activated. The second phase is responsible for the setting the cells of the 
columns in predictive state, while the last phase updates the permanence of the synapses [3].

3. Software and hardware realizations of HTM

Despite HTM is classified as a type of cognitive learning algorithm, its fundamental concepts 
related to neuroscience and, particularly, to the working principles of neocortex make it like 
deep neural networks, which, in turn, have already shown significant results on a variety of 
real world problems. Combined with the distinctive features of the algorithm, expressed by 
its sparsity, hierarchy, and modularity, HTM algorithm attracted interest of various research 
groups. There is now several research works, which illustrate effectiveness of the algorithm 
on various recognition tasks. For example, work in Ref. [5] verifies HTM capability on abnor-
mality detection, Refs. [6, 7] present results for pattern and object recognitions, in Ref. [8] 
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Despite it was originally developed as the software algorithm, promising results reported 
in the works listed above resulted in the rise of interest in a hardware realization of HTM. 
Limited number of works proposes various designs for the hardware realization of HTM 
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sends information via signals to receive neuron, i.e. post-synaptic neuron, through  synaptic 
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synaptic neurons, selects and processes important signal according to the weight of  synapse. 

Introduction to Memristive HTM Circuits
http://dx.doi.org/10.5772/intechopen.70123

215



It is usually assumed that learning appears when the weight of the synapse increases or 
decreases, according to the importance of the information received through that particular 
synaptic connection. Hence, it is also crucial to consider effect of time-variance of the incom-
ing data stream on the strength of synapse.

Based on the neuroscientific concepts, synapse, hence, is required not only to be able to pro-
cess input value but also to store the weight value, determining its importance. Because the 
latter attribute is dependent on the time variance of the input data, memristor is attractive 
device, which can combine neuronal functions, such as memorization and data processing, 
within single unit. Depending on the input signal type, i.e. either current or voltage mode 
design, there are various possibilities of establishing synapse circuits using memristor devices 
and CMOS transistors. In particular, work in Ref. [16] presents basic synapse circuits.

The work in Ref. [18] proposed single synapse circuit with specific intentions to precisely 
model synapse as it is explained and used within HTM framework. Figure 4 illustrates the 
circuit design of the single synapse, which can be divided into four parts: input current mir-
ror, memristor, buffer, and voltage-to-current converting NMOS. First part is responsible for 
establishment of the pre-synaptic signal. The second part is responsible for storing the weight 
of the synapse, expressed by the memristance value of the memristor. These two parts are 
responsible for implementation of overlap phase of HTM, such that the voltage across mem-
ristor represents the product of the input signal (expressed by current value) and the weight 
of the synapse (expressed by the memristance value). The third part of the circuit is buffer and 
is responsible for activation function establishment. It means that buffer outputs voltage value 
of 1 V if the overlap value is higher than the threshold and outputs 0 V if it is not. Hence, if 
the input to that synapse is active connected, then the buffer will output high value, and if it is 

Figure 4. Single synapse circuit design proposed in Ref. [18] designed specifically for HTM architecture.
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either not active (input bit value is low) or not connected (weight value is low), then the buffer 
will output low value. Finally, NMOS transistor is required to convert voltage signal into cur-
rent signal to sum up all overlap values of individual synapses within single HTM column.

6. HTM circuit realizations using memristor devices

As HTM is a nascent area in brain inspired machine learning algorithms and architectures, 
a very small number of the HTM circuit configurations have been proposed. There are two 
major architectures proposed for the HTM hardware implementation with memristive cir-
cuits. These are memristor crossbar array-based HTM implementation integrated with CMOS 
circuits [15] and the HTM implementation using memristive arrays and spin-neuron devices 
[14]. Both hardware configurations were tested for pattern recognition application.

The memristor-CMOS circuit implementation of HTM has been proposed in Ref. [15]. In this 
work, the hardware implementation of the HTM SP, applied for face and speech recogni-
tion tasks, is presented. The main role of the HTM SP in the proposed system is to extract 
the most relevant spatial features from the images and remove irrelevant ones for further 
application for face and speech recognition using template matching method. The feature 
extraction relies on SDR of the features. The selection of the most relevant features from the 
sparse data depends on the threshold value shown in Eq. (1). The sparse features greater than 

Figure 5. HTM image processing method proposed in Ref. [15].
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the threshold are stored in the memory. The example of the input image is shown in Figure 5. 
The image is divided into blocks with a certain number of pixels, which are the inputs to the 
crossbar slice circuits.

The number of crossbar slices corresponds to the number of the image blocks. Each crossbar 
slice refers to a single column in the set of serial columns in HTM. The number of synapses 
in the column corresponds to the number of synapses or pixels in the image blocks. Several 
image blocks form a single inhibition block. The number of inhibition blocks equals to the 
number of parallel columns in the HTM. Each inhibition region consists of several serial col-
umns. The set of pixels in the serial column correspond to a single crossbar slice. The sum of 
the pixels within each crossbar slice is calculated. The outputs from the crossbar slices are 
fetched to the winner take all (WTA) circuit to produce the final set of the sparse image fea-
tures. The highest value of crossbar slice outputs is selected by the WTA. Then, the inhibition 
region is binarized. The inhibition region component corresponding to the highest value of 
the crossbar slices is represented as 1, and the other components are set to 0. This binarized 
inhibition regions represent the final set of the sparse image features.

The overall architecture of the HTM crossbar slice circuit consists of the memristor crossbar, read 
and write circuits, synapse overlap calculation circuit and column overlap calculation circuit, 
shown in Figure 6. The memristors in the memristive crossbar array are used to represent the 
synapse weight and strength of the synaptic connection. The memristors in read/write part of the 
circuit implement the expected ideal permanence and determine the final connection of the col-
umn, which is either active or inactive. The memristors in the crossbar array are preprogramed 

Figure 6. HTM circuit implementation [15].
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in the initial stage and later are updated only during the learning phase. When the synaptic 
connection is determined, the connection value (output from the read/write circuit) is fetched 
to the AND gate through the buffer, which performs thresholding operation, shown in synapse 
overlap calculation stage in Figure 6. The buffer converts the signal from read/write stage to the 
binary connectivity value, which is either 0 or 1. The single synapse overlap calculation is made 
by the AND gate, where one input is the binary synapse connectivity value and the other is the 
input signal from the processed pattern. The column overlap calculation is made by the sum-
ming amplifier that is used for the summation of all single synapses.

After the overlap phase, the inhibition phase is executed, where the overlaps of the parallel 
columns are compared using WTA circuit, illustrated in Figure 7. The overlap values obtained 
from the summing amplifier are fetched to the WTA circuit and the highest value is selected 
and set to 1 with the help of bias current source and the comparators. The other values from 
the inhibition region are set to 0. The output of the WTA circuit is index of the winning col-
umns, which are used for classification process. The circuit implementation results show the 
power consumption of 31.567 uW and on-chip area of 2.735 um2 to process 2 column block 
with 2 synapses. The area and power required to process an individual synapse overlap are 
1.37 um2 and 31.56 uW, respectively. For the column overlap calculation the area of 4.325 um2 
and the power of 160 uW are required.

After the HTM SP processing, the features are compared with the stored training patterns, 
and the classification of the input pattern is executed using a memristive pattern matcher 
shown in Figure 8. Memristive pattern matcher is based on memristive the XOR gate, which, 
in turn, consists of the memristive NOR gate and the CMOS inverter. The output of the mem-
ristive pattern matcher is either 1 for the detected match or 0 for the mismatch.

The other research work representing memristive circuits-based HTM implementation is pre-
sented in Ref. [14]. In this work, memristive crossbar arrays are combined with spin-neuron 
devices. The system is tested on object and handwritten text recognition. It is assumed that 

Figure 7. Winner take all circuit as illustrated in Ref. [15].
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and set to 1 with the help of bias current source and the comparators. The other values from 
the inhibition region are set to 0. The output of the WTA circuit is index of the winning col-
umns, which are used for classification process. The circuit implementation results show the 
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ristive pattern matcher is either 1 for the detected match or 0 for the mismatch.

The other research work representing memristive circuits-based HTM implementation is pre-
sented in Ref. [14]. In this work, memristive crossbar arrays are combined with spin-neuron 
devices. The system is tested on object and handwritten text recognition. It is assumed that 

Figure 7. Winner take all circuit as illustrated in Ref. [15].

Introduction to Memristive HTM Circuits
http://dx.doi.org/10.5772/intechopen.70123

219



the training of the system is executed by the software and the hardware part of HTM is used 
for inference (testing) stage, where pattern classification is performed.

The overall HTM hardware configuration is illustrated in Figure 9. Image processing is per-
formed in a hierarchical manner. The processed image is divided into 16 patches of the same 
size, which are fetched into separate HTM nodes in Level 1. Therefore, there are 16 HTM nodes 
in Level 1. The number of inputs to each Level 1 HTM node equals to the number of pixels in 
the patch. Level 1 nodes produce 16 outputs, which are divided into 4 groups of 4 Level 1 out-
puts. Each group of these outputs is fetched into particular Level 2 HTM node. Level 2 contains 
4 HTM nodes producing 4 separate outputs. Level 2 outputs are input to Level 3 HTM node, 
which calculates the final output value.

The overall architecture of the implemented HTM node consists of resistive crossbar network 
(RCN), successive approximation register analog to digital converter (SAR ADC) and winner 
take all (WTA) circuit. RCN is used to calculate dot products (DP) in the HTM SP part and 
the HTM TM part. RCN enables a parallel processing of all image pixels from a single image 
patch. The digital input pattern from the image patch is fetched into the HTM SP, where it is 
converted to analog form for the RCN processing. The RCN circuit performs the DP calcula-
tion producing an analog output vector. This vector is detected and converted to the digital 
form with the spin-neuron-based SAR ADC, which forms the output vector of the HTM SP. 
This output vector is sent to the HTM TM circuit, where it is converted into the analog form 
again followed by the DP calculation and SAR ADC processing, which forms the output vec-
tor of the HTM TM. The HTM TM output vector is fetched to WTA circuit, which identifies 
the index of the winner from temporal group.

The circuit example of RCN with a single digital input and three spin-neurons is shown in 
Figure 10. To convert digital RCN inputs to the analog form, a deep triode current source 

Figure 8. Memristive pattern matcher presented in Ref. [15].
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 digital to analog converter (DTCS DAC) based on the switching circuit is used. Next, the ana-
log DTCS ADC outputs are fetched to RCN circuit.

The example of 3 × 3 RCN circuit is shown in Figure 11. The RCN has a configuration of the 
memristive array. Such configuration enables calculation of the DP required for the SP as well 
as for the TM. Therefore, the pixels of the input image matrix are processed in parallel. The 
input voltage Vi in a horizontal upper row is multiplied by each preprogramed memristor 
conductance value within the raw gij. Then, the correlation between the stored patterns and 
the input signals is calculated as an output current using Eq. (4).

   I  j   =   ∑    i    V  i   *  g  ij    (4)

Next, the output current of each RCN column is detected and converted to the digital value 
using SAR ADC, which is based on spin neuron devices (shown in Figure 12). The perfor-
mance of the spin neuron device is akin to the current mode comparator functionality. The 

Figure 9. HTM hardware configuration proposed in Ref. [14].
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spin-neuron may be switched with the particular current flowing through it; therefore it is 
suitable for the SAR ADC design. In the spin neuron SAR ADC, the DTCS DAC converts the 
digital value stored in the approximation register to the form of the analog current. Then, this 
current is compared with the RCN output current produced by the spin-neuron. Finally, a 
special latch is used to detect output stage. Having a advantage of low power consumption 
and high resolution, the spin neuron-based SAR ADC enables the conversion of the analog 
currents from RCN to the digital HTM SP and HTM TM outputs denoted as the input densi-
ties over the spatial patterns (HTM SP outputs) and the input densities over the temporal 
groups (HTM TM outputs) [14]. Finally, the WTA circuit determines the winner of each HTM 
block. If the HTM block is at the highest hierarchy level (output node), the WTA identifies the 
class index of an input pattern. Otherwise, if it is located at the non-output node, the WTA 
determines the winning index of a particular temporal group.

Table 1 shows the comparison of two main implementations of HTM discussed in this 
Chapter.

Figure 10. RCN with a single digital input and three spin-neurons [14].

Figure 11. RCN array [14].
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7. Summary

HTM is a type of cortical learning algorithm that aims to resemble the functionalities of the 
neocortex. The great potential of the HTM for applications related to classification and predic-
tion making pushed for consideration of hardware realizations of the algorithm. The objective 
of this chapter was to overview the major concepts of HTM and discuss the most recent imple-
mentations of HTM in hardware. Currently, there are different hardware implementations of 
HTM, including the designs based on FPGA and ASIC, that could be found in the literature. 
However, the discussion in this chapter is focused around the memristor based realizations of 
HTM. Despite this, for comprehensiveness of the chapter, the authors summarize the general 
state of the HTM in terms of other hardware implementations [11–13] and provide an inter-
ested reader with the references for further reading.

The properties of memristors connected with the small feature size and negligible leakage 
current of the devices make them very attractive for large-scale circuit designs that reduces 
the overall on-chip area and power consumption. In addition to that, ability of the memristor 

Figure 12. Successive approximation register analog to digital converter (SAR ADC) [14].

HTM implementation presented in 
Ref. [14]

HTM implementation presented in 
Ref. [15]

Algorithm SP+TM SP

Hardware implementation Analog/digital Purely analog

Technology Memristors (RCN), 20 × 2 nm spin 
neuron device (SAR-ADC), spin-
CMOS hybrid processing elements 
based on domain wall neuron (DWN)

50 × 50 nm memristive devices, 180 
nm CMOS technology

Architecture Crossbar Neuron units

Application Hand-written digit recognition Face and speech recognition

Table 1. The comparison of the existing hardware implementations of HTM.
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to remember its state and change it based on history of applied voltages makes it suitable for 
neuromorphic designs. Thus, the nanoscale memristive devices could be used to mimic the 
synaptic connection of the neuron.

After giving an introduction to the HTM concepts and the memritive devices the chapter 
presents designs of two recent HTM hardware implementations. One of the designs is based 
on the memristive arrays and spin-neuron devices [14], while the second one integrates the 
memristor crossbar array and memristor-CMOS circuits [15].
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In this chapter, we focus on the recent process on memcomputing (memristor + computing) 
in intrinsic SiOx-based resistive switching memory (ReRAM or called memristor). In the first 
section of the chapter, we investigate neuromorphic computing by mimicking the synaptic 
behaviors in integrating one-diode and one-resistive switching element (1D-1R) architecture. 
The power consumption can be minimized further in synaptic functions because sneak-path 
current has been suppressed and the capability for spike-induced synaptic behaviors has 
been demonstrated, representing critical milestones and achievements for the application 
of conventional SiOx-based materials in future advanced neuromorphic computing. In the 
next section of chapter, we will discuss an implementation technique of implication opera-
tions for logic-in-memory computation by using a SiOx-based memristor. The implication 
function and its truth table have been implemented with the unipolar or nonpolar operation 
scheme. Furthermore, a circuit with 1D-1R architecture with a 4 × 4 crossbar array has been 
demonstrated, which realizes the functionality of a one-bit full adder as same as CMOS logic 
circuits with lower design area requirement. This chapter suggests that a simple, robust 
approach to realize memcomputing chips is quite compatible with large-scale CMOS manu-
facturing technology by using an intrinsic SiOx-based memristor.
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1. Background

In recent 20 years, emerging memory has drawn a lot of interest and attention as a promising 
candidate for next generation nonvolatile memory (NVM) [1–3]. Traditional “charge”-based 
NVM (Flash) will face the potential scaling challenge below the 10 nm node with reliability 
and power consumption issues [4, 5]. Resistive switching (RS) memory, or we call resistive 
random access memory (ReRAM), operates by controlling device “resistance” with an exter-
nal electrical bias [6–9], leading to better electrical performance, smaller design area (4F2), 
and excellent cycling endurance [10] based on the 2015 International Technology Roadmap 
for Semiconductors (ITRS) (ReRAM is one of two recommended candidate technologies (the 
other one is the STT-MRAM) for emerging memory devices) [11]. Moreover, RS-based memo-
ries represent a new class of devices compatible with applications that go beyond traditional 
electronics configurations, for example, three-dimensional (3D) stacking, nanobatteries, neu-
roelectronics, and Boolean logic operations [12–17].

In 1971, Chua presented the theoretical basis for a passive two-terminal circuit device called 
a “memristor” (a contraction of memory and resistor) [18]. If realized, the memristor would 
then join the resistor, inductor, and capacitor to provide four basic circuit elements. In 2010, 
researchers in HP lab realized the memristor in nanoscale titanium dioxide (TiO2) cross-point 
structure [17], and the field has advanced quickly growth over the past decade as a result. 
Having demonstrated the existence of memristors in the lab, additional research efforts 
focused on the potential applications that this emerging new circuit element enables [19]. 
In recent years, memristors have been extensively studied as a nonvolatile memory called 
resistive random-access-memory (named ReRAM or RRAM) to potentially replace dynamic 
random-access-memory (DRAM) and flash memory [20]. Memristors have also gained tre-
mendous interest in the field of neuroelectronics and synaptic electronics, which aims to build 
artificial synaptic devices that emulate the computations performed by biological synapses 
[21–25]. Jo et al. described possible applications in artificial intelligence using memristors as 
synapses in neuromorphic circuits [15]. Another interesting application is to use memristors 
for arithmetic/logic operations, such as an adder circuit or a multiplier circuit.

In the literature, arithmetic operations are proposed using the memristor as a: (1) switch, (2) 
programmable interconnect, and (3) computational element. In the first approach, crossbar 
arrays of memristor switches are connected to a row of weighting resistors and sensing logic 
to build an analog arithmetic processor [26]. The switches control the current flow (ON/OFF) 
through the weighting resistor, which then controls the analog voltage at the sensing ampli-
fier end. The resistance of the weighting resistor assigns the appropriate bit significance to 
the each row’s current contribution. The memristor-CMOS technology may be used to realize 
the same types of arithmetic circuits that are developed in CMOS/FPGA (field  programmable 
gate array) technology [27, 28]. Last but not the least, a more universal approach for con-
structing the logic operations from memristors is via “material implication” (or an “IMP” 
operation). In 2010, researchers showed that all fundamental Boolean logic functions can be 
realized by using memristors with the IMP operation [17]. Later work built on these findings 
to construct larger logic blocks such as adders and multipliers [29–31], linear feedback shift 
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registers [32], and counters [32]. The advantages of memcomputing (memristor + computing) 
are not only to store and process information on the same physical platform, but also to allow 
massively parallel computations in a simple crossbar array architecture.

Otherwise, neuroelectronics and synaptic electronics are interesting applications for ReRAM 
that aim to build artificial synaptic devices that emulate the computations performed by bio-
logical synapses [15, 33]. These emerging fields of research potentially have better efficiency 
in solving complex problems and outperform real-time processing of unstructured data 
than conventional von Neumann computational systems [34]. There have been many studies 
of binary metal oxide-based and perovskite oxide-based resistance switching characteristics 
for synapse-like electronic device development [35, 36], which can have operating instabil-
ity issues due to difficulty in controlling stoichiometric compositions [37, 38]. Therefore, 
a simple process that is compatible with conventional complementary metal-oxide semi-
conductor (CMOS) fabrication allows multilayer compositional engineering and provides 
good electrical stability and high yield, which are critical requirements for neuroelectronics 
realization [39]. Silicon oxide (SiOx) has long been used as gate dielectrics for metal-oxide-
semiconductor field-effect transistors. In addition to excellent insulating properties, resistive 
switching properties have been observed in SiOx materials as early as 1962 by Hickmott and 
1967 by Simmons and Verderber [40–42]. Yao et al. also have reported SiOx-based RS behav-
iors in vacuum, indicating that this traditional material can be converted to an active com-
ponent by controlling the external electrical manipulation [43–45]. Several recent reports 
describe using SiO2 as the active switching medium in resistive switching memory devices 
[46–49]. We have further  demonstrated a Si diode (1D) with low reverse-bias current inte-
grated with a SiOx-based memory element (1R) using nanosphere lithography and deep Si 
etching to pattern a P++/N+/N++ epitaxial Si wafer [50].

2. Introduction

In this chapter, first SiOx-based resistive switching memory elements (1R) are integrated with 
Si diodes (1D) using conventional CMOS processing to demonstrate a 1D-1R device with syn-
aptic behaviors. Compared with our previous work (in most cases investigating only the 1R 
device system), the Si diode provides low reverse-bias current and high power efficiency for 
future neuromorphic computing array architectures. Unlike other binary or complex metal 
oxide materials [51], SiOx has been used in CMOS manufacturing for over 50 years due to 
its excellent electrical isolation properties, low-cost, high chemical stability, compatibility 
with mainstream integrated circuit materials, high-throughput processing, and large-area 
production using chemical vapor deposition (CVD). A 1D-1R architecture fabricated at the 
wafer-scale using conventional CMOS processing can, therefore, be well controlled in thick-
ness, size, and electrical characteristics by precisely controlling the doping levels of the diode 
layers and the temperature and flow-rate of the oxide CVD process [52]. Synaptic device 
performance is characterized in a prototype 1D-1R array configuration. Robust biological 
synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD), and 
 spike- timing-dependent plasticity (STDP) are demonstrated with excellent uniformity, low 
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registers [32], and counters [32]. The advantages of memcomputing (memristor + computing) 
are not only to store and process information on the same physical platform, but also to allow 
massively parallel computations in a simple crossbar array architecture.

Otherwise, neuroelectronics and synaptic electronics are interesting applications for ReRAM 
that aim to build artificial synaptic devices that emulate the computations performed by bio-
logical synapses [15, 33]. These emerging fields of research potentially have better efficiency 
in solving complex problems and outperform real-time processing of unstructured data 
than conventional von Neumann computational systems [34]. There have been many studies 
of binary metal oxide-based and perovskite oxide-based resistance switching characteristics 
for synapse-like electronic device development [35, 36], which can have operating instabil-
ity issues due to difficulty in controlling stoichiometric compositions [37, 38]. Therefore, 
a simple process that is compatible with conventional complementary metal-oxide semi-
conductor (CMOS) fabrication allows multilayer compositional engineering and provides 
good electrical stability and high yield, which are critical requirements for neuroelectronics 
realization [39]. Silicon oxide (SiOx) has long been used as gate dielectrics for metal-oxide-
semiconductor field-effect transistors. In addition to excellent insulating properties, resistive 
switching properties have been observed in SiOx materials as early as 1962 by Hickmott and 
1967 by Simmons and Verderber [40–42]. Yao et al. also have reported SiOx-based RS behav-
iors in vacuum, indicating that this traditional material can be converted to an active com-
ponent by controlling the external electrical manipulation [43–45]. Several recent reports 
describe using SiO2 as the active switching medium in resistive switching memory devices 
[46–49]. We have further  demonstrated a Si diode (1D) with low reverse-bias current inte-
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etching to pattern a P++/N+/N++ epitaxial Si wafer [50].
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Si diodes (1D) using conventional CMOS processing to demonstrate a 1D-1R device with syn-
aptic behaviors. Compared with our previous work (in most cases investigating only the 1R 
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future neuromorphic computing array architectures. Unlike other binary or complex metal 
oxide materials [51], SiOx has been used in CMOS manufacturing for over 50 years due to 
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 operational variability, and good suppression of static power consumption [51]. A bio-
inspired proton exchange resistive switching model is used to help characterize this novel 
application for SiOx materials. The SET transition in the resistive switching memory is mod-
eled as hydrogen (proton) release from the (Si-H)2 defect to generate a conductive hydrogen 
bridge, and the RESET transition is modeled as an electrochemical reaction (proton capture) 
that reforms nonconductive (SiH)2. The synaptic behaviors exhibited by the 1D-1R device 
demonstrates good potential for using a simple and robust approach for large-scale integra-
tion of programmable neuromorphic chips using CMOS technology.

Second, the application of SiOx-based memristors for material implication operations is exam-
ined. A bidirectional implication scheme is demonstrated and tested in an actual circuit using 
SiOx-based memristors. The symmetric unipolar memristive behavior of the SiOx-based mem-
ristor enables the use of two sets of implication voltage setups, one positive and the other 
negative, hence the name “bidirectional”. Progressing one step further from the initial con-
cept demonstrated by Borghetti et al. and our previous work, a one-bit full adder is realized 
by using the material implication technique on a crossbar structure with a one-diode one-
memristor (1D-1R) array. Several potential application problems such as sneak current paths 
within an array and using a select transistor as the load resistor are discussed in detail. The 
results suggest that a memristor-enabled logic circuit is most suitable for applications requir-
ing low-speed, low-power, and high-density.

3. Method and experiment

Secondary electron microscopy (SEM) images show a top-down view of a 1D-1R test structure 
(Figure 1a), a tilted (45°) view of the 1R device (Figure 1b) and a cross-section image of the 1R 
device showing layer information (Figure 1c). The devices were fabricated at XFAB in Lubbock 
TX using the XC06 CMOS process technology. The 1R device was fabricated by first implant-
ing the Si substrate to form an n-type lower electrode. The active SiOx memory layer was then 
deposited to a thickness of 40 nm using plasma-enhanced chemical vapor deposition (PECVD). 
This thickness is known to provide high electroforming yield and good memory endurance 
[53]. An n-type polysilicon layer was deposited onto the SiOx layer to form the top electrode. 
An opening in the polysilicon layer was made after all thermal oxidation and implant anneal 
steps are complete (Figure 1b). A first dielectric layer was then deposited over the polysilicon 
top electrode. Tungsten plugs were used to make electrical contact to the n-type Si lower elec-
trode and the polysilicon top electrode. After all the back-end dielectrics and a passivation 
layer were deposited, the back-end dielectric layers were removed using reactive ion etch (RIE) 
to the Si substrate. This RIE step cleared-out the SiOx layer inside the hole, and created a SiOx 
sidewall where the memory device is formed (Figure 1c). Polymer residue that remained after 
the post-RIE cleaning steps was removed by a 30-s buffered oxide etch (BOE). The pn diode 
used in the 1D-1R test structures was formed by an implanted p-well inside a deep n-well with 
40 V reverse-bias breakdown voltage, 1 nA reverse-bias leakage current and 0.5 V forward volt-
age. The active memory area of the 1R device is 2 × 2 μm2 and the overall size including metal 
interconnects is 21.9 × 21.9 μm2. The overall size of the 1D device is 41 × 19 μm2. A lake shore 
cryotronics vacuum probe chamber (<1 mTorr) and Agilent B1500A device analyzer were used 
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to electroform devices and measure the DC/AC I-V response. The SET process programs the 
device to a conductive, low-resistance state (LRS). The RESET process programs each device to 
a low-conductance, high-resistance state (HRS). A Kratos Axis Ultra HSA X-ray photoelectron 
spectrometer (XPS) equipped with a monochromatized aluminum X-ray source was used to 
analyze several SiOx materials deposited in our laboratory using different methods. Calibration 
of the binding energy scale was set by fixing the C-(C,H) peak at 284.4 eV. Figure 1d shows 
XPS analysis results for the O-1s and Si-2p binding energies in thermal oxide grown by low-
pressure chemical vapor deposition (LPCVD) and PECVD oxide. The existence of stoichio-
metric SiO2 can be observed in thermal oxide (binding energy Si: 103.2 eV; O: 532.5 eV) with 
essentially no suboxide bonding being detected. In contrast, the PECVD oxide has nonstoichio-
metric SiOx (x is about 1.6 based on the peak position and orbital valence) composition in the 
switching layer, as indicated by the peak-binding energies in the XPS spectra (O: 530.5 eV; Si: 
101.9 eV, and 100.9 eV) [54, 55], which may promote low-energy defect generation during the 
electroforming process.

4. Results and discussions

Figure 2a–d show I-V characteristics for DC voltage sweeps applied to the SiOx-based 1D-1R 
devices fabricated by the conventional CMOS process. Voltage was applied to the 1D top 
electrode (p-type Si) with bottom 1R electrode (n-type Si) at ground. All testing was done in 

Figure 1. (a) Top-down SEM image of 1D-1R architecture. The 1R is adjacent to the 1D structure. The ground pad (0) 
is used to bias the substrate, the positive (+) and negative (−) terminals are for applying voltage to the 1D-1R device. 
(b) Tilted top-down SEM image of resistive memory device. (c) SEM cross-section image showing metal contact to 
polysilicon top electrode, metal 1 (M1) and metal 2 (M2) layers, and polysilicon/SiO2/Si 1R device. (d) Si-2p2/3 and O-1s 
XPS spectra for PECVD oxide and thermal oxide. Figure reprinted by [19].
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This thickness is known to provide high electroforming yield and good memory endurance 
[53]. An n-type polysilicon layer was deposited onto the SiOx layer to form the top electrode. 
An opening in the polysilicon layer was made after all thermal oxidation and implant anneal 
steps are complete (Figure 1b). A first dielectric layer was then deposited over the polysilicon 
top electrode. Tungsten plugs were used to make electrical contact to the n-type Si lower elec-
trode and the polysilicon top electrode. After all the back-end dielectrics and a passivation 
layer were deposited, the back-end dielectric layers were removed using reactive ion etch (RIE) 
to the Si substrate. This RIE step cleared-out the SiOx layer inside the hole, and created a SiOx 
sidewall where the memory device is formed (Figure 1c). Polymer residue that remained after 
the post-RIE cleaning steps was removed by a 30-s buffered oxide etch (BOE). The pn diode 
used in the 1D-1R test structures was formed by an implanted p-well inside a deep n-well with 
40 V reverse-bias breakdown voltage, 1 nA reverse-bias leakage current and 0.5 V forward volt-
age. The active memory area of the 1R device is 2 × 2 μm2 and the overall size including metal 
interconnects is 21.9 × 21.9 μm2. The overall size of the 1D device is 41 × 19 μm2. A lake shore 
cryotronics vacuum probe chamber (<1 mTorr) and Agilent B1500A device analyzer were used 
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spectrometer (XPS) equipped with a monochromatized aluminum X-ray source was used to 
analyze several SiOx materials deposited in our laboratory using different methods. Calibration 
of the binding energy scale was set by fixing the C-(C,H) peak at 284.4 eV. Figure 1d shows 
XPS analysis results for the O-1s and Si-2p binding energies in thermal oxide grown by low-
pressure chemical vapor deposition (LPCVD) and PECVD oxide. The existence of stoichio-
metric SiO2 can be observed in thermal oxide (binding energy Si: 103.2 eV; O: 532.5 eV) with 
essentially no suboxide bonding being detected. In contrast, the PECVD oxide has nonstoichio-
metric SiOx (x is about 1.6 based on the peak position and orbital valence) composition in the 
switching layer, as indicated by the peak-binding energies in the XPS spectra (O: 530.5 eV; Si: 
101.9 eV, and 100.9 eV) [54, 55], which may promote low-energy defect generation during the 
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devices fabricated by the conventional CMOS process. Voltage was applied to the 1D top 
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Figure 1. (a) Top-down SEM image of 1D-1R architecture. The 1R is adjacent to the 1D structure. The ground pad (0) 
is used to bias the substrate, the positive (+) and negative (−) terminals are for applying voltage to the 1D-1R device. 
(b) Tilted top-down SEM image of resistive memory device. (c) SEM cross-section image showing metal contact to 
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vacuum. To establish reversible resistive switching in each SiOx-based 1R ReRAM device, a 
forward/backward voltage sweep (Figure 2a) was used to electroform each device, where 
current is observed to increase dramatically at 22.5 ± 2.9 V during the forward voltage sweep. 
Electroforming is completed during the backward voltage sweep from the maximum sweep-
ing voltage to 0 V, resulting in the formation of a conductive filament (CF) and setting the 
device to a LRS. After electroformation, RS performance of 1D-1R can be stabilized by 10 
times cycles (Figure 2b). For SET process, a 10 V forward/backward sweep is applied with-
out any compliance current limitation (CCL) to change the device from HRS to LRS; for 
RESET process, a 17 V, single sweep is done to change the device from LRS to HRS. The HRS/
LRS resistance ratio can be read out at 1 V bias with satisfying sensing requirements (~103) [3, 
26]. For diode characteristics, the forward current can reach 100 mA at 2 V (current density 
1.15 × 10−5 A/μm2 at 1 V), which indicates a forward current level high enough to support the 
RESET process. The reverse current is below 1 × 10−12 A at −5 V. Compared with Schottky 
diodes (potentially useful for 3D arrays), the advantages of Si-based PN diodes include low 
reverse current, high reverse-bias breakdown voltage, and fewer stability issues [45]. The 
quality of the Si-based PN diode can dramatically affect diode reverse or forward current 
characteristics, as well as power consumption (describe below). Also, the chosen Si-based PN 
diode configuration has high reverse breakdown  voltage (>40 V), which is important for 
SiOx-based ReRAM operating in an array. Figure 2c demonstrates the gradual change of 

Figure 2. DC sweep resistive switching behaviors of 1D-1R architecture: (a) Forward/backward voltage sweeps during 
electroforming process averaged for 256 devices in a 16 × 16 array (gray curves). The electroforming voltage (VDelta Current) 
is defined as the voltage where maximum current change occurs during the forward sweep. (b) 10 I-V resistive switching 
SET/RESET cycles. The inset shows the average of 100 measurement cycles of diode I-V behavior. (c) Effects of voltage 
modulation on I-V curves in SET process plotted on linear-scale, where the applied SET voltage sweep increases from 3.5 
to 9.5 V in 0.5 V steps. The inset shows effects of voltage modulation on I-V curves in RESET process plotted on log-scale, 
where the applied RESET voltage sweep increases from 11.0 to 18.0 V in 0.5 V steps. (d) The resistance states of initial 
fresh device, SET DC voltage modulation, and RESET DC voltage modulation. For SET voltage sweep, increases from 
3.5 to 10 V in 0.5 V steps; for RESET voltage sweep, increases from 11 to 20 V in 0.5 V steps. The resistance reads at 1V for 
each state. (e) Retention measurement results of multi-state programming obtained by controlling the SET voltage. (f) 
Proton exchange induced resistive switching model and defect transitions. Figure reprinted by [19].
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resistive states by modulating the voltage sweep range continuously during the SET and 
RESET (inset) process, respectively. Specifically, SET and RESET voltages were changed 
from 3.5 to 9.5 V in 0.5 V increments and from 11 to 18 V in 0.5 V decrements, respectively, 
thus potentially enabling multilevel programming in a single memory cell and demonstrate 
the status stability before/after sweeps. It may be noted that the electroforming voltages 
measured here (~ 28 V) are somewhat higher than those measured in previous work on 
metal-oxide-semiconductor device architectures or nanopillar type 1D-1R architectures [50, 
56, 57], which may be due to fewer electrically active defects being near the SiOx sidewall as 
a result of the fabrication process. For example, several high temperature steps (>650°C) 
were done after PECVD SiO2 deposition, namely: polysilicon deposition, thermal oxidation, 
and implant anneals, which might densify the SiO2 layer, reduce the as-deposited defect 
levels, increase the soft breakdown threshold, and thus increase the filament formation 
energy during the subsequent electroforming  process (resulting in forming voltage increase). 
Interestingly, the RESET voltage (the voltage at which LRS current begins to decrease) has 
been found to be greater than or equal to the SET voltage (where HRS current increases 
sharply), which is a unique characteristic of the SiOx-based ReRAM as compared to other 
materials systems [36, 58]. The difference between RESET and SET voltages can potentially 
be controlled by optimizing the series resistance in the circuit, choice of electrode materials, 
and by doping effects that modulate the interfacial contact resistance [59]. The switching 
voltage is largely independent of device size and SiOx thickness. Figure 2e shows multilevel 
retention performance of SiOx-based 1D-1R devices obtained by controlling the maximum 
SET voltage from 3 to 9 V. The readout current of LRS and HRS is measured at 1 V every 60 
s after each programming operation. Although the state’s stability still needs to be improved 
(no equal split of resistance states), the retention reliability test demonstrates ` operation by 
using different SET voltages, and no degradation is observed for more than 103 s, thus con-
firming the stable, nonvolatile nature of the SiOx-based 1D-1R devices. In recent studies, a 
possible proton exchange model consistent with the observed resistive switching I-V 
response has been proposed, as shown in Figure 2f [59, 60]. Several studies have used trans-
mission electron microscopy (TEM) to document the presence of Si nanocrystals within the 
CF [43, 61, 62], but it is not yet clear whether resistive switching (RS) is the result of an overall 
increase in nanocrystal size or whether switching occurs in “GAP” regions in between nano-
crystals. Most models of ReRAM switching involve the drift or diffusion of O2− ions (or oxy-
gen vacancy defects) [39], but these models cannot explain the unconventional I-V response. 
For example, the backward scan effect (see Figure 2a, backward scan) is very difficult to 
explain using a simple oxygen vacancy-switching model. The backward scan effect is a phe-
nomenon where the duration of the reverse sweep during electroforming or RESET deter-
mines whether a state change occurs, and has been characterized using DC and AC pulse 
response in a previous study investigating our resistive switching model [57]. In addition, 
ambient effects on resistive switching suggest that the defects responsible for switching are 
hydrogen-passivated or are in some way protected from direct reaction with ambient oxygen 
and water until a switching events occurs [56, 63]. The detailed interactions between ambient 
gases and proton (or cation) mobility is an important topic that may provide a deeper under-
standing of resistive switching  mechanisms [64–68], specifically those in  oxide-based valence 
change memory (VCM)-type ReRAMs [69–71]. The models used here to describe the possible 
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ing voltage to 0 V, resulting in the formation of a conductive filament (CF) and setting the 
device to a LRS. After electroformation, RS performance of 1D-1R can be stabilized by 10 
times cycles (Figure 2b). For SET process, a 10 V forward/backward sweep is applied with-
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resistive states by modulating the voltage sweep range continuously during the SET and 
RESET (inset) process, respectively. Specifically, SET and RESET voltages were changed 
from 3.5 to 9.5 V in 0.5 V increments and from 11 to 18 V in 0.5 V decrements, respectively, 
thus potentially enabling multilevel programming in a single memory cell and demonstrate 
the status stability before/after sweeps. It may be noted that the electroforming voltages 
measured here (~ 28 V) are somewhat higher than those measured in previous work on 
metal-oxide-semiconductor device architectures or nanopillar type 1D-1R architectures [50, 
56, 57], which may be due to fewer electrically active defects being near the SiOx sidewall as 
a result of the fabrication process. For example, several high temperature steps (>650°C) 
were done after PECVD SiO2 deposition, namely: polysilicon deposition, thermal oxidation, 
and implant anneals, which might densify the SiO2 layer, reduce the as-deposited defect 
levels, increase the soft breakdown threshold, and thus increase the filament formation 
energy during the subsequent electroforming  process (resulting in forming voltage increase). 
Interestingly, the RESET voltage (the voltage at which LRS current begins to decrease) has 
been found to be greater than or equal to the SET voltage (where HRS current increases 
sharply), which is a unique characteristic of the SiOx-based ReRAM as compared to other 
materials systems [36, 58]. The difference between RESET and SET voltages can potentially 
be controlled by optimizing the series resistance in the circuit, choice of electrode materials, 
and by doping effects that modulate the interfacial contact resistance [59]. The switching 
voltage is largely independent of device size and SiOx thickness. Figure 2e shows multilevel 
retention performance of SiOx-based 1D-1R devices obtained by controlling the maximum 
SET voltage from 3 to 9 V. The readout current of LRS and HRS is measured at 1 V every 60 
s after each programming operation. Although the state’s stability still needs to be improved 
(no equal split of resistance states), the retention reliability test demonstrates ` operation by 
using different SET voltages, and no degradation is observed for more than 103 s, thus con-
firming the stable, nonvolatile nature of the SiOx-based 1D-1R devices. In recent studies, a 
possible proton exchange model consistent with the observed resistive switching I-V 
response has been proposed, as shown in Figure 2f [59, 60]. Several studies have used trans-
mission electron microscopy (TEM) to document the presence of Si nanocrystals within the 
CF [43, 61, 62], but it is not yet clear whether resistive switching (RS) is the result of an overall 
increase in nanocrystal size or whether switching occurs in “GAP” regions in between nano-
crystals. Most models of ReRAM switching involve the drift or diffusion of O2− ions (or oxy-
gen vacancy defects) [39], but these models cannot explain the unconventional I-V response. 
For example, the backward scan effect (see Figure 2a, backward scan) is very difficult to 
explain using a simple oxygen vacancy-switching model. The backward scan effect is a phe-
nomenon where the duration of the reverse sweep during electroforming or RESET deter-
mines whether a state change occurs, and has been characterized using DC and AC pulse 
response in a previous study investigating our resistive switching model [57]. In addition, 
ambient effects on resistive switching suggest that the defects responsible for switching are 
hydrogen-passivated or are in some way protected from direct reaction with ambient oxygen 
and water until a switching events occurs [56, 63]. The detailed interactions between ambient 
gases and proton (or cation) mobility is an important topic that may provide a deeper under-
standing of resistive switching  mechanisms [64–68], specifically those in  oxide-based valence 
change memory (VCM)-type ReRAMs [69–71]. The models used here to describe the possible 
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 SiOx-based RS mechanisms differ from most conventional models by considering that the 
defects responsible for RS may remain localized within the switching region so that resistive 
switching occurs when a collection of defects are driven between conductive and 
 nonconductive forms [56]. A thorough review of the reported electrical and structural prop-
erties of known SiOx defects has identified a plausible model for the  conductive filament that 
is similar to models used to describe stress-induced leakage current and breakdown in SiOx 
materials, where defect concentration increases as a result of electrical stress to the point 
where percolation pathways capable of conducting appreciable current (>1 uA) are formed 
[59]. Incorporating known proton exchange reactions that can dramatically alter the conduc-
tivity of specific defects further leads to a model where the LRS has a large  concentration of 
conductive defects within the switching region, and, conversely, when the device is pro-
grammed to the HRS, most of the defects are converted to their nonconductive form. The 
electrically conductive hydrogen bridge (Si-H-Si) is viewed as the most likely defect respon-
sible for the LRS due to the location of its energy levels relative to the oxide conduction band 
and its small effective bandgap energy [59, 60]. Adding a proton to Si-H-Si forms the noncon-
ductive (SiH)2 defect and proton desorption from (SiH)2 reforms Si-H-Si, which are well-
understood electrochemical reactions that could enable localized switching  without 
incorporating ion diffusion or drift mechanisms into the model. The SET transition voltage 
from HRS to LRS occurs at ~2.5 V in the I-V response, and is very near the activation energy 
for proton desorption from SiH (~2.5 eV), thus making the defect  transformation from (SiH)2 
to Si-H-Si a logical assignment for the SET transition [59, 60]. In this model, the proton that 
is lost from (SiH)2 reacts electrochemically with (SiOH)2, which is simply chemisorbed H2O, 
to form the fixed positive charged H3O+ defect. The transition from LRS to HRS is modeled 
as being initiated by electron injection into H3O+ that induces proton release and electro-
chemical reaction with Si-H-Si to reform (SiH)2 [59, 60]. The  localized proton exchange 
switching model can thus be written as (SiH)2 + (SiOH)2 ↔ Si-H-Si + Si2=O-H3O+, where a 
voltage drop of ~2.5 V across the switching is required to drive the reversible reaction. The 
RS model not only provides insights into multilevel operational characteristics but also 
implies a possible biomimetic chemical reaction similar to reactive oxygen species (ROS-like) 
production for future device characterizations [72].

Figure 3a–h show contour plots of the current-change ratio achieved by modulating the AC 
pulse height and pulse width applied to 1D-1R devices for both SET and RESET switch-
ing events, leading to optimized waveform designs for a biological synaptic device. The 
current-change ratio is defined as log10 (IFINAL/IINITIAL), where IINITIAL and IFINAL are the cur-
rents measured at 1 V before and after applying the programing waveform, respectively. 
The SET/RESET sweeps from same initial resistance state (precondition programming) 
is to eliminate the accumulating SET/RESET effect after each cycle. One can observe by 
inspecting the contour lines in Figure 3 that when larger pulse heights (higher voltages) are 
applied to the device, shorter pulse widths are needed to achieve a similar current-change 
ratio. In general, we find that a single 1R device operates at higher speed and requires 
lower programming voltages as compared to a 1D-1R device. The higher operating voltages 
and lower operating speed of the integrated 1D-1R device may result from higher para-
sitic resistance in the Si electrodes, their contacts and the diode, as well as higher parasitic 
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capacitance in the diode, all of which can act to degrade the pulse mapping results shown 
in Figure 3a and b. It should be noted that current sneak-path issues in arrays and writ-
ing disturbance of 1R devices would cause misread problems and state disturbance, and 
substantially increase standby power consumption and information instability. The 1D-1R 
devices are used to suppress sneak-path currents, and perform much better than 1R devices 
in an array architecture (potential 1 Gbit array support in 10% readout-margin at 1V read). 
From Figure 3a and b, it can be calculated that the switching energies to achieve at least a 
one-order-of-magnitude change in resistance in the 1D-1R architecture are about 0.01 pJ for 
SET and 1.54 nJ for RESET operations. However, due to the suppression of sneak-path cur-
rent, the standby power during a 1 V read operation can be dramatically reduced in 1D-1R 
devices (1 pW) as compared to 1R devices (1 μW, due to 1R nonpolar switching behaviors) 
[73]. Minimizing the total power consumption due to sneak-path current is as crucial as 
reducing the synaptic dissipation.

Most importantly, the pulse mapping results not only demonstrate the potential for multilevel 
programming by properly designing the pulse waveforms for SET and RESET operations, but 
also demonstrate the potential to realize biological synaptic behaviors. Figure 3c–h  demonstrate 

Figure 3. AC pulse mapping contour plots of current-change ratio by modulating pulse height and pulse width to 
demonstrate synaptic behaviors in 1D-1R architectures: (a) SET (S) and (b) RESET (R) mapping results of 1D-1R device. 
(c) and (e) Long-term potentiation (LTP) and (d) and (f) long-term depression (LTD) using the identical pulse method 
as a function of pulse width. For the identical pulse method, pulse height and pulse width are fixed. For LTP, the pulse 
height modulation changes from 11 to 17 V in 0.3 V increments for each loop, and pulse widths are fixed at 10 μs. The 
mapping results of using the identical pulse method for LTP are show in (e). By selection of final states (after 20 pulses), 
the conductance change is highly dependent on the pulse height. For LTD, the pulse height modulation changes from 4 
to 10 V in 0.3 V increments for each loop, and pulse widths are fixed at 10 μs. The mapping results (f) are similar and the 
conductance change for LTD is also highly dependent on the pulse height rather than pulse width. (g) and (h) show the 
LTP and LTD using the non-identical pulse method as a function of pulse width, respectively. For the non-identical pulse 
method, pulse height modulation changes continuously from 4 to 10 V in 0.3 V increments (for a total of 21 steps) for LTP, 
and changes continuously from 11 to 17 V in 0.3 V increments (for a total of 21 steps) for LTD. The initial states for LTP 
and LTD mapping are determined by fixed DC conditions: a 17 V single sweep for HRS and a 10V double-sweep for LRS, 
respectively. “S” and “R” denote the increment/decrement of current state changes after applying the AC pulse (defined 
as Log10 (In/Initial), where In/IInitial is current ratio measured at 1 V after/before the pulse is applied). Figure reprinted by [19].
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 SiOx-based RS mechanisms differ from most conventional models by considering that the 
defects responsible for RS may remain localized within the switching region so that resistive 
switching occurs when a collection of defects are driven between conductive and 
 nonconductive forms [56]. A thorough review of the reported electrical and structural prop-
erties of known SiOx defects has identified a plausible model for the  conductive filament that 
is similar to models used to describe stress-induced leakage current and breakdown in SiOx 
materials, where defect concentration increases as a result of electrical stress to the point 
where percolation pathways capable of conducting appreciable current (>1 uA) are formed 
[59]. Incorporating known proton exchange reactions that can dramatically alter the conduc-
tivity of specific defects further leads to a model where the LRS has a large  concentration of 
conductive defects within the switching region, and, conversely, when the device is pro-
grammed to the HRS, most of the defects are converted to their nonconductive form. The 
electrically conductive hydrogen bridge (Si-H-Si) is viewed as the most likely defect respon-
sible for the LRS due to the location of its energy levels relative to the oxide conduction band 
and its small effective bandgap energy [59, 60]. Adding a proton to Si-H-Si forms the noncon-
ductive (SiH)2 defect and proton desorption from (SiH)2 reforms Si-H-Si, which are well-
understood electrochemical reactions that could enable localized switching  without 
incorporating ion diffusion or drift mechanisms into the model. The SET transition voltage 
from HRS to LRS occurs at ~2.5 V in the I-V response, and is very near the activation energy 
for proton desorption from SiH (~2.5 eV), thus making the defect  transformation from (SiH)2 
to Si-H-Si a logical assignment for the SET transition [59, 60]. In this model, the proton that 
is lost from (SiH)2 reacts electrochemically with (SiOH)2, which is simply chemisorbed H2O, 
to form the fixed positive charged H3O+ defect. The transition from LRS to HRS is modeled 
as being initiated by electron injection into H3O+ that induces proton release and electro-
chemical reaction with Si-H-Si to reform (SiH)2 [59, 60]. The  localized proton exchange 
switching model can thus be written as (SiH)2 + (SiOH)2 ↔ Si-H-Si + Si2=O-H3O+, where a 
voltage drop of ~2.5 V across the switching is required to drive the reversible reaction. The 
RS model not only provides insights into multilevel operational characteristics but also 
implies a possible biomimetic chemical reaction similar to reactive oxygen species (ROS-like) 
production for future device characterizations [72].

Figure 3a–h show contour plots of the current-change ratio achieved by modulating the AC 
pulse height and pulse width applied to 1D-1R devices for both SET and RESET switch-
ing events, leading to optimized waveform designs for a biological synaptic device. The 
current-change ratio is defined as log10 (IFINAL/IINITIAL), where IINITIAL and IFINAL are the cur-
rents measured at 1 V before and after applying the programing waveform, respectively. 
The SET/RESET sweeps from same initial resistance state (precondition programming) 
is to eliminate the accumulating SET/RESET effect after each cycle. One can observe by 
inspecting the contour lines in Figure 3 that when larger pulse heights (higher voltages) are 
applied to the device, shorter pulse widths are needed to achieve a similar current-change 
ratio. In general, we find that a single 1R device operates at higher speed and requires 
lower programming voltages as compared to a 1D-1R device. The higher operating voltages 
and lower operating speed of the integrated 1D-1R device may result from higher para-
sitic resistance in the Si electrodes, their contacts and the diode, as well as higher parasitic 
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capacitance in the diode, all of which can act to degrade the pulse mapping results shown 
in Figure 3a and b. It should be noted that current sneak-path issues in arrays and writ-
ing disturbance of 1R devices would cause misread problems and state disturbance, and 
substantially increase standby power consumption and information instability. The 1D-1R 
devices are used to suppress sneak-path currents, and perform much better than 1R devices 
in an array architecture (potential 1 Gbit array support in 10% readout-margin at 1V read). 
From Figure 3a and b, it can be calculated that the switching energies to achieve at least a 
one-order-of-magnitude change in resistance in the 1D-1R architecture are about 0.01 pJ for 
SET and 1.54 nJ for RESET operations. However, due to the suppression of sneak-path cur-
rent, the standby power during a 1 V read operation can be dramatically reduced in 1D-1R 
devices (1 pW) as compared to 1R devices (1 μW, due to 1R nonpolar switching behaviors) 
[73]. Minimizing the total power consumption due to sneak-path current is as crucial as 
reducing the synaptic dissipation.

Most importantly, the pulse mapping results not only demonstrate the potential for multilevel 
programming by properly designing the pulse waveforms for SET and RESET operations, but 
also demonstrate the potential to realize biological synaptic behaviors. Figure 3c–h  demonstrate 

Figure 3. AC pulse mapping contour plots of current-change ratio by modulating pulse height and pulse width to 
demonstrate synaptic behaviors in 1D-1R architectures: (a) SET (S) and (b) RESET (R) mapping results of 1D-1R device. 
(c) and (e) Long-term potentiation (LTP) and (d) and (f) long-term depression (LTD) using the identical pulse method 
as a function of pulse width. For the identical pulse method, pulse height and pulse width are fixed. For LTP, the pulse 
height modulation changes from 11 to 17 V in 0.3 V increments for each loop, and pulse widths are fixed at 10 μs. The 
mapping results of using the identical pulse method for LTP are show in (e). By selection of final states (after 20 pulses), 
the conductance change is highly dependent on the pulse height. For LTD, the pulse height modulation changes from 4 
to 10 V in 0.3 V increments for each loop, and pulse widths are fixed at 10 μs. The mapping results (f) are similar and the 
conductance change for LTD is also highly dependent on the pulse height rather than pulse width. (g) and (h) show the 
LTP and LTD using the non-identical pulse method as a function of pulse width, respectively. For the non-identical pulse 
method, pulse height modulation changes continuously from 4 to 10 V in 0.3 V increments (for a total of 21 steps) for LTP, 
and changes continuously from 11 to 17 V in 0.3 V increments (for a total of 21 steps) for LTD. The initial states for LTP 
and LTD mapping are determined by fixed DC conditions: a 17 V single sweep for HRS and a 10V double-sweep for LRS, 
respectively. “S” and “R” denote the increment/decrement of current state changes after applying the AC pulse (defined 
as Log10 (In/Initial), where In/IInitial is current ratio measured at 1 V after/before the pulse is applied). Figure reprinted by [19].
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the optimization waveform design for biological synaptic behaviors in 1D-1R SiOx-based resis-
tive switching memories. The long-term potentiation (LTP) and long-term depression (LTD) 
are a long-lasting enhancement/reduction in signal transmission between two neurons (simi-
lar with long-lasting conductance increase/decrease between HRS and LRS for resistive-type 
memory devices), which can be realized by designing the SET and RESET pulse waveform to 
use either identical (fixed pulse width and pulse height, as shown in Figure 3c–f) or nonidenti-
cal (variable pulse width or pulse height, as shown in Figure 3g and h) pulsing techniques. The 
trade-offs between high dynamic range and gradual multilevel programming performance 
(Figure 3e–h) needed to be considered, and it was found that the nonidentical pulse waveform 
method may have the advantages (larger than identical pulse waveform method). Although 
nonidentical pulsing might require a more complex neuromorphic circuit, our results show 
that this approach enables more efficient programming to target states while maintaining a 
larger dynamic range (Figure 3g–h). The use of nonidentical pulse heights ranging from 4 to 
10 V in 0.3 V increments (for LTP) and ranging from 11 to 17 V in 0.3 V decrements (for LTD) 
allow the dynamic range to be mapped for pulse widths ranging from 100 ns to 1 ms, thereby 
realizing biological synapse behaviors in the SiOx-based 1D-1R architecture (Figure 3g–h). The 
switching energy is defined as I × V × δt, where δt is the pulse width. For δt = 100 ns, the small-
est switching energies are ~6 and ~130 pJ for LTP and LTD, respectively. The larger energy for 
LTD is mainly due to the lower resistance of the LRS (~93 kΩ) compared to the HRS (~260 MΩ), 
which results in higher switching current (118.28 μA) for the RESET process than for the SET 
process (15.38 nA). In order to minimize synaptic energy consumption all three components—
programming current (~nA level switching), pulse amplitude (<1 V) and programming time 
(<10 ns)—need to be minimized. In SiOx-based ReRAM and in other material systems, an expo-
nential voltage–time relationship is commonly observed. A small increase in programming 
voltage will decrease programming time exponentially, as shown in Figure 3a. For RESET 
process (both 1R and 1D-1R structures, Figure 3b), the process integration may result in cer-
tain level of distortion (parasitic resistance/capacitance and possible parasitic depletion region 
capacitance from 1D) to affect the pulse mapping results. Hence, low programming energy is 
obtained by minimizing the programming time (traded off by increasing the pulse amplitude 
slightly) for ReRAM. Further decreases in synaptic energy consumption during the switching 
process to fJ levels will be challenging but important to build very large-scale systems (the 
designed pulse waveform optimization and generation is in process).

Such flexible artificial control built with synaptic devices could provide a suitable platform 
for a broad range of computing applications, as shown Figure 4. Some of the advantages 
that SiOx-based synaptic devices provide over other resistive switching materials include a 
higher dynamic range (~104) [57] and the potential to achieve as many as 10–60 multilevel 
states (depend on the stability) in both LTP and LTD by changing the increment/decrement 
of the voltage step, as shown in Figure 4a. These advantages may arise as the result of there 
being a large number of defects within the switching region of the memory device. Switching 
is modeled as a change in conductivity of a group of defects within the switching region. In 
this framework, defects are not created or destroyed, but are simply driven between conduc-
tive and nonconductive forms by proton exchange reactions that are known to occur in SiOx 
materials (Figure 2f) [60]. The SET and RESET switching transitions can be described in more 
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detail with the aid of the electron energy band diagrams shown in Figure 4b, which were 
constructed using the thermodynamic and switching charge-state energy levels reported by 
Blochl in 2000 [74]. The ideal energy band diagrams in Figure 4b represent only a single 
electron pathway through the memory device, whereas in reality there are likely many such 
percolation pathways in parallel. The SET transition is modeled as being the result of trap-
assisted electron tunneling through (SiH)2 defects (a voltage-triggered mechanism, due to 
less current flow in the initial stage of SET process) that stimulates H+ desorption and reaction 
of H+ with absorbed water (SiOH)2 to form conductive Si-H-Si and H3O+ (Figure 2f). Trap-
assisted tunneling can only occur when the bias across the switching region is ≥2.6 V, which is 
the effective bandgap of the (SiH)2 defect and compares well with the observed minimum SET 
voltage of ~2.5 V in the I-V response [59, 60]. The RESET transition is modeled as being the 
result of Fowler-Nordheim electron tunneling into the H3O+ defect (possibly current-induced 
Joule heating due to large current flow through the filament) that stimulates proton release 
and electrochemical reactions to reform (SiH)2 and (SiOH)2 (Figure 2f) [60]. The band dia-
grams shown in Figure 4b are found to be consistent with measured electron energy barriers 
[60] and electroluminescence results reported for similar devices [62].

Figure 4. Demonstration of a SiOx-based synaptic device. (a) Sequential LTP/LTD behaviors as a function of increment/
decrement voltage steps (0.1, 0.2, and 0.3 V) by non-identical pulse form. For the non-identical pulse method, pulse 
height modulation changes continuously from 4 V to 10 V for LTP, and changes continuously from 11 to 17 V for LTD. 
Pulse width is fixed at 10 μs in both cases. (b) Energy band diagrams: For HRS and SET process, showing theoretical 
bandgap of (SiH)2 defect within gap region of length lGAP, theoretical bandgap of Si-H-Si defects outside the gap region, 
and trap-assisted-tunneling SET transition (green arrow). Barrier height to electron transport is φ ~ 0.8 eV. For the LRS 
and RESET process, showing theoretical bandgap of Si-H-Si, H3O+ energy level, switching region of length lSW, and 
Fowler-Nordheim tunneling RESET transition (red arrow). (c–d) A pulse waveform design using the non-identical pulse 
method for demonstration of spike-timing-dependent plasticity (STDP) as a function of spike pulse width intervals. For 
the potentiation of conductance strength change, the overall pulse waveform (pulse width fixed at 10 μs in this case) 
based on the delay of spike timing between neurons is shown in (c). Similarly, for the depression of conductance strength 
change, the overall pulse waveform (pulse width fixed at 10 μs in this case) based on the delay of spike timing between 
neurons is shown in (d). (e–f) A demonstration of spike-timing-dependent plasticity (STDP) using the non-identical 
pulse method with different spike widths. Each colored bar shows the average of 3~5 measurements. (e) Emphasizes 
potentiation direction of STDP with positive delta time (45° tilted). (f) Emphasizes depression direction of STDP with 
negative delta time (225° tilted). The definition of conductance change is as Log10 (In/Initial), where In/IInitial is current ratio 
measured at 1 V after/before the pulse is applied. Figure reprinted by [19].
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the optimization waveform design for biological synaptic behaviors in 1D-1R SiOx-based resis-
tive switching memories. The long-term potentiation (LTP) and long-term depression (LTD) 
are a long-lasting enhancement/reduction in signal transmission between two neurons (simi-
lar with long-lasting conductance increase/decrease between HRS and LRS for resistive-type 
memory devices), which can be realized by designing the SET and RESET pulse waveform to 
use either identical (fixed pulse width and pulse height, as shown in Figure 3c–f) or nonidenti-
cal (variable pulse width or pulse height, as shown in Figure 3g and h) pulsing techniques. The 
trade-offs between high dynamic range and gradual multilevel programming performance 
(Figure 3e–h) needed to be considered, and it was found that the nonidentical pulse waveform 
method may have the advantages (larger than identical pulse waveform method). Although 
nonidentical pulsing might require a more complex neuromorphic circuit, our results show 
that this approach enables more efficient programming to target states while maintaining a 
larger dynamic range (Figure 3g–h). The use of nonidentical pulse heights ranging from 4 to 
10 V in 0.3 V increments (for LTP) and ranging from 11 to 17 V in 0.3 V decrements (for LTD) 
allow the dynamic range to be mapped for pulse widths ranging from 100 ns to 1 ms, thereby 
realizing biological synapse behaviors in the SiOx-based 1D-1R architecture (Figure 3g–h). The 
switching energy is defined as I × V × δt, where δt is the pulse width. For δt = 100 ns, the small-
est switching energies are ~6 and ~130 pJ for LTP and LTD, respectively. The larger energy for 
LTD is mainly due to the lower resistance of the LRS (~93 kΩ) compared to the HRS (~260 MΩ), 
which results in higher switching current (118.28 μA) for the RESET process than for the SET 
process (15.38 nA). In order to minimize synaptic energy consumption all three components—
programming current (~nA level switching), pulse amplitude (<1 V) and programming time 
(<10 ns)—need to be minimized. In SiOx-based ReRAM and in other material systems, an expo-
nential voltage–time relationship is commonly observed. A small increase in programming 
voltage will decrease programming time exponentially, as shown in Figure 3a. For RESET 
process (both 1R and 1D-1R structures, Figure 3b), the process integration may result in cer-
tain level of distortion (parasitic resistance/capacitance and possible parasitic depletion region 
capacitance from 1D) to affect the pulse mapping results. Hence, low programming energy is 
obtained by minimizing the programming time (traded off by increasing the pulse amplitude 
slightly) for ReRAM. Further decreases in synaptic energy consumption during the switching 
process to fJ levels will be challenging but important to build very large-scale systems (the 
designed pulse waveform optimization and generation is in process).

Such flexible artificial control built with synaptic devices could provide a suitable platform 
for a broad range of computing applications, as shown Figure 4. Some of the advantages 
that SiOx-based synaptic devices provide over other resistive switching materials include a 
higher dynamic range (~104) [57] and the potential to achieve as many as 10–60 multilevel 
states (depend on the stability) in both LTP and LTD by changing the increment/decrement 
of the voltage step, as shown in Figure 4a. These advantages may arise as the result of there 
being a large number of defects within the switching region of the memory device. Switching 
is modeled as a change in conductivity of a group of defects within the switching region. In 
this framework, defects are not created or destroyed, but are simply driven between conduc-
tive and nonconductive forms by proton exchange reactions that are known to occur in SiOx 
materials (Figure 2f) [60]. The SET and RESET switching transitions can be described in more 
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detail with the aid of the electron energy band diagrams shown in Figure 4b, which were 
constructed using the thermodynamic and switching charge-state energy levels reported by 
Blochl in 2000 [74]. The ideal energy band diagrams in Figure 4b represent only a single 
electron pathway through the memory device, whereas in reality there are likely many such 
percolation pathways in parallel. The SET transition is modeled as being the result of trap-
assisted electron tunneling through (SiH)2 defects (a voltage-triggered mechanism, due to 
less current flow in the initial stage of SET process) that stimulates H+ desorption and reaction 
of H+ with absorbed water (SiOH)2 to form conductive Si-H-Si and H3O+ (Figure 2f). Trap-
assisted tunneling can only occur when the bias across the switching region is ≥2.6 V, which is 
the effective bandgap of the (SiH)2 defect and compares well with the observed minimum SET 
voltage of ~2.5 V in the I-V response [59, 60]. The RESET transition is modeled as being the 
result of Fowler-Nordheim electron tunneling into the H3O+ defect (possibly current-induced 
Joule heating due to large current flow through the filament) that stimulates proton release 
and electrochemical reactions to reform (SiH)2 and (SiOH)2 (Figure 2f) [60]. The band dia-
grams shown in Figure 4b are found to be consistent with measured electron energy barriers 
[60] and electroluminescence results reported for similar devices [62].

Figure 4. Demonstration of a SiOx-based synaptic device. (a) Sequential LTP/LTD behaviors as a function of increment/
decrement voltage steps (0.1, 0.2, and 0.3 V) by non-identical pulse form. For the non-identical pulse method, pulse 
height modulation changes continuously from 4 V to 10 V for LTP, and changes continuously from 11 to 17 V for LTD. 
Pulse width is fixed at 10 μs in both cases. (b) Energy band diagrams: For HRS and SET process, showing theoretical 
bandgap of (SiH)2 defect within gap region of length lGAP, theoretical bandgap of Si-H-Si defects outside the gap region, 
and trap-assisted-tunneling SET transition (green arrow). Barrier height to electron transport is φ ~ 0.8 eV. For the LRS 
and RESET process, showing theoretical bandgap of Si-H-Si, H3O+ energy level, switching region of length lSW, and 
Fowler-Nordheim tunneling RESET transition (red arrow). (c–d) A pulse waveform design using the non-identical pulse 
method for demonstration of spike-timing-dependent plasticity (STDP) as a function of spike pulse width intervals. For 
the potentiation of conductance strength change, the overall pulse waveform (pulse width fixed at 10 μs in this case) 
based on the delay of spike timing between neurons is shown in (c). Similarly, for the depression of conductance strength 
change, the overall pulse waveform (pulse width fixed at 10 μs in this case) based on the delay of spike timing between 
neurons is shown in (d). (e–f) A demonstration of spike-timing-dependent plasticity (STDP) using the non-identical 
pulse method with different spike widths. Each colored bar shows the average of 3~5 measurements. (e) Emphasizes 
potentiation direction of STDP with positive delta time (45° tilted). (f) Emphasizes depression direction of STDP with 
negative delta time (225° tilted). The definition of conductance change is as Log10 (In/Initial), where In/IInitial is current ratio 
measured at 1 V after/before the pulse is applied. Figure reprinted by [19].
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Figure 4c–f demonstrate that the SiOx-based 1D-1R architecture can mimic spike-timing-
dependent plasticity (STDP), a biological process that adjusts the strength of connections 
between two neurons in a synapse gap junction region that is an electrically conductive link 
between the pre- and postsynaptic neurons. Two pulse generator sources are used to simulate 
the pre- and postsynaptic neurons. This provides the pulse waveforms using the nonidentical 
pulse method (also used in various types of emerging memory devices or materials systems) 
for demonstration of STDP. By design of pre-neuron and postneuron spikes in neuromorphic 
circuits, the strength of the conductance change can be modulated based on the spike-timing 
delta (∆t) between the two neurons (Figure 4c–d). Figure 4e–f demonstrates a total of 10 dif-
ferent states of STDP biological behavior for depression and potentiation with n = 2, 4, 6, 8, 10 
and as a function of spike width modulation, ranging from 100 ns to 1 ms. For example, the 
depression of conductance change strength can be achieved by using multistep spike heights 
from −4 to 0 V in the preneuron state and a single spike height fixed at 13 V in the postneuron 
state, with both neurons having a fixed pulse width of 10 μs and a firing period of 20 μs, as 
shown in Figure 4e–f. When the time delay difference is −10 × (n−1) μs, where n is an even 
number, the total spike waveform (postneuron spike minus preneuron spike) applied to the 
synapse gap junction region can adjust the conductance ratio between two neurons over the 
range from 10−3 to 0.1 in the depression direction (RESET process) as compared with the initial 
LRS conductance (Figure 4f). Similarly, the potentiation of conductance change strength can 
be achieved by using multistep spike heights from 4 to 8 V in the preneuron state and a single 
spike height also fixed at 13 V in the postneuron state, with both neurons having a fixed pulse 
width of 10 μs and a firing period of 20 μs. When the time delay difference is 10 × (n−1) μs, 
where n is an even number, the total spike waveform (postneuron spike minus preneuron 
spike) applied to the synapse gap junction region can in this case adjust the conductance ratio 
between neurons over the range from 103 to 0.01 in the potentiation direction (SET process) 
as compared with the initial HRS conductance (Figure 4e). It may be noted that the 1D-1R 
architecture not only avoids sneak-path issues and lowers standby power consumption, but 
also helps to realize STDP behaviors. Without the 1D rectification characteristics in reverse-
bias polarity, the above spiking forms cannot be implemented due to the unipolar nature of 
the 1R device, specifically in the potentiation behaviors under negative bias. In the 1R case, an 
applied voltage above the RESET threshold voltage (for example, −9 V) can trigger the RESET 
process and induce depression behaviors instead of potentiation behaviors. Also, for depres-
sion behaviors, when the time delay difference is smaller than the spiking width, the remain-
ing 4 V spike height in this case would not fire the synapse toward a LRS in the depression 
direction (see Figure 3h). Therefore, by carefully designing the firing pulses between neurons 
in the neuromorphic circuit, a biological synapse behavior can be demonstrated with 1D-1R 
SiOx-based resistive switching memories.

The 1D-1R architecture with SiOx-based resistance switching devices and the structure of arti-
ficial neural networks map naturally onto hybrid CMOS/synapse circuits that can be designed 
on a single chip (Figure 5) to provide predictable results with an ultimate scaling potential of 
CMOS technology to the sub-10-nm level, which could possibly challenge the complexity and 
connectivity of the human brain.

The other topic is material implication operations by using the same device architecture in 
SiOx-based memristor (Figures 1 and 5). Based on our recent reports, implication operation 
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(IMP) has been performed by two SiOx memristors and a 5.7 kΩ standalone resistor are config-
ured as shown in Figure 6a. Furthermore, three memristors connected in the circuit shown in 
Figure 6b and two steps of IMP are required to perform a NAND operation. It may be noted 

Figure 5. (a) Bio-inspired and mixed-signal information processing: hybrid CMOS/ReRAM circuits may also enable 
efficient analog dot-product computation, which is a key operation in artificial neural networks and many other 
information processing tasks. (b) A fabricated 8 × 8 artificial neural network array combined with CMOS transistors and 
logic control.

Figure 6. (a) Circuit for the implication scheme including two SiOx memristor and one load resistor, with bias voltages 
and conducting currents marked out, and truth table for material implication [75]. (b) Circuit to perform NAND 
operation, and Truth table for NAND operation. Two steps performing NAND operation via implication with final 
results shown in red square. Figure reprinted by [75].
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Figure 4c–f demonstrate that the SiOx-based 1D-1R architecture can mimic spike-timing-
dependent plasticity (STDP), a biological process that adjusts the strength of connections 
between two neurons in a synapse gap junction region that is an electrically conductive link 
between the pre- and postsynaptic neurons. Two pulse generator sources are used to simulate 
the pre- and postsynaptic neurons. This provides the pulse waveforms using the nonidentical 
pulse method (also used in various types of emerging memory devices or materials systems) 
for demonstration of STDP. By design of pre-neuron and postneuron spikes in neuromorphic 
circuits, the strength of the conductance change can be modulated based on the spike-timing 
delta (∆t) between the two neurons (Figure 4c–d). Figure 4e–f demonstrates a total of 10 dif-
ferent states of STDP biological behavior for depression and potentiation with n = 2, 4, 6, 8, 10 
and as a function of spike width modulation, ranging from 100 ns to 1 ms. For example, the 
depression of conductance change strength can be achieved by using multistep spike heights 
from −4 to 0 V in the preneuron state and a single spike height fixed at 13 V in the postneuron 
state, with both neurons having a fixed pulse width of 10 μs and a firing period of 20 μs, as 
shown in Figure 4e–f. When the time delay difference is −10 × (n−1) μs, where n is an even 
number, the total spike waveform (postneuron spike minus preneuron spike) applied to the 
synapse gap junction region can adjust the conductance ratio between two neurons over the 
range from 10−3 to 0.1 in the depression direction (RESET process) as compared with the initial 
LRS conductance (Figure 4f). Similarly, the potentiation of conductance change strength can 
be achieved by using multistep spike heights from 4 to 8 V in the preneuron state and a single 
spike height also fixed at 13 V in the postneuron state, with both neurons having a fixed pulse 
width of 10 μs and a firing period of 20 μs. When the time delay difference is 10 × (n−1) μs, 
where n is an even number, the total spike waveform (postneuron spike minus preneuron 
spike) applied to the synapse gap junction region can in this case adjust the conductance ratio 
between neurons over the range from 103 to 0.01 in the potentiation direction (SET process) 
as compared with the initial HRS conductance (Figure 4e). It may be noted that the 1D-1R 
architecture not only avoids sneak-path issues and lowers standby power consumption, but 
also helps to realize STDP behaviors. Without the 1D rectification characteristics in reverse-
bias polarity, the above spiking forms cannot be implemented due to the unipolar nature of 
the 1R device, specifically in the potentiation behaviors under negative bias. In the 1R case, an 
applied voltage above the RESET threshold voltage (for example, −9 V) can trigger the RESET 
process and induce depression behaviors instead of potentiation behaviors. Also, for depres-
sion behaviors, when the time delay difference is smaller than the spiking width, the remain-
ing 4 V spike height in this case would not fire the synapse toward a LRS in the depression 
direction (see Figure 3h). Therefore, by carefully designing the firing pulses between neurons 
in the neuromorphic circuit, a biological synapse behavior can be demonstrated with 1D-1R 
SiOx-based resistive switching memories.

The 1D-1R architecture with SiOx-based resistance switching devices and the structure of arti-
ficial neural networks map naturally onto hybrid CMOS/synapse circuits that can be designed 
on a single chip (Figure 5) to provide predictable results with an ultimate scaling potential of 
CMOS technology to the sub-10-nm level, which could possibly challenge the complexity and 
connectivity of the human brain.

The other topic is material implication operations by using the same device architecture in 
SiOx-based memristor (Figures 1 and 5). Based on our recent reports, implication operation 
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(IMP) has been performed by two SiOx memristors and a 5.7 kΩ standalone resistor are config-
ured as shown in Figure 6a. Furthermore, three memristors connected in the circuit shown in 
Figure 6b and two steps of IMP are required to perform a NAND operation. It may be noted 

Figure 5. (a) Bio-inspired and mixed-signal information processing: hybrid CMOS/ReRAM circuits may also enable 
efficient analog dot-product computation, which is a key operation in artificial neural networks and many other 
information processing tasks. (b) A fabricated 8 × 8 artificial neural network array combined with CMOS transistors and 
logic control.

Figure 6. (a) Circuit for the implication scheme including two SiOx memristor and one load resistor, with bias voltages 
and conducting currents marked out, and truth table for material implication [75]. (b) Circuit to perform NAND 
operation, and Truth table for NAND operation. Two steps performing NAND operation via implication with final 
results shown in red square. Figure reprinted by [75].

Review of Recently Progress on Neural Electronics and Memcomputing Applications in Intrinsic...
http://dx.doi.org/10.5772/intechopen.68530

239



that the final logic value pNANDq is stored as the last value of memristor s, or s″ in Figure 6b. 
This row of three memristors, namely P, Q, S, can be expanded to a row consisting of more 
memristors all sharing the same load resistor. Implication operations can be performed on any 
two memristors in the row, as long as the rest of the memristors are kept unbiased. Since we 
are able to perform implication on one row, similarly, implication can be done on one column.

However, when we put multiple rows and columns together to form a crossbar array, several 
problems arise. The first issue is providing multiple voltage signals as well as a common load 
resistor to an arbitrary pair of memristor on the same row or column. Based on the crossbar 
RRAM structure, the bit-line/word-line selection transistor can serve as the common resistor. 
By varying the gate voltage bias of the select transistor, it can serve as an ON state switch, OFF 
state switch or a resistor with channel resistance of RLoad. From Figure 6, it is noted that four 
voltage signals (VP, VQ, VS, and VLoad) are required during an implication operation, two dif-
ferent voltages along the same bit-line/word-line. Therefore, a total of four voltage lines, each 
connected to all NMOS select transistor, will provide voltage signals for implication operation.

The concepts are demonstrated by a 4 × 4 memristor crossbar array (Figure 7a and b) and a 
circuit with an 8 × 8 memristor crossbar array. In addition to 1D-1R device arrays (Figure 5a), 
the hybrid CMOS/1D-1R device architecture shown in Figure 5e has been successfully dem-
onstrated as shown in Figure 5f by the I-V resistive switching plots. Using the NMOS/PMOS 
transistor also fabricated on the same chip (Figure 5e), an implication circuit is realized using 
two 1D1R memory elements and a transistor. In Figure 7a and b, the design is quite different 
from the RRAM crossbar array architecture, the circuit consists of two rows of bit select tran-
sistors for the same column of memristors, one on the top, and one on the bottom. Similarly, 
there are two column word select transistors for the same row of memristors, one on the left 
and one on the right. This redundancy ensures two distinctive voltage signals can be applied 
on any pair of memristors on the same bit line/word line. The implication voltages (VP, VQ, VR) 

Figure 7. (a) and (b) demonstrate 4 × 4 crossbar structure memristor arrays with select transistors to achieve a one-bit 
full adder function. The implication circuit performs (a) M13 IMP M33 and (b) M11 IMP M12 on a 4 × 4 crossbar structure 
memristor array. Blue arrows show the current flow directions, and red solid squares cover all OFF-state transistors. 
Voltage signals and memristor numbers are labeled.
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are biased on three of the four lines depending on the configuration, and the voltage applied 
to each line is labeled as follows, Vbit_up, Vbit_down, Vword_left, and Vword_right. The gate of each select 
transistor is also independently biased, to either isolate the bit lines/word lines from the impli-
cation voltages or provide that implication voltage to one particular bit line/word line.

To perform M13 IMP M33 (negative voltage implication operation performed along bit line 3): 
Assuming all memristors are initialized to HRS, bias Vbit_up = 2 V, Vword_left = − 1.5 V, Vword_right = 0 V, 
Vword_1r, and Vword_3l = Vfull_on, Vbit_3u = VIMP, with all other transistor gate voltages at Vfull_off. The equiva-
lent circuit is shown in Figure 5a with the path of conduction current flow marked. In Figure 5a–e, 
P is M13, Q is M33, and the transistor bit_3u is used as the load resistor. The implication is a negative 
voltage scheme. All transistors that are biased at fully OFF states are covered by red squares, effec-
tively keeping the voltages of irrelevant columns/rows floating; to perform M11 IMP M12 (positive 
voltage implication operation performed along word line 1): Assuming all memristors are initial-
ized to HRS, Bias Vbit_up = 0 V, Vbit_down = 1.5 V, Vword_left = − 2 V, Vbit_1u, and Vbit_2d = Vfull_on, Vword_1l = VIMP, 
with all other transistor gate voltages at Vfull_off. This equivalent circuit is shown in Figure 5b with 
the current flow path marked. In Figure 5b, P is M11, Q is M12, and the transistor word_1l is used as 
the load resistor. In this case, the implication uses a positive voltage scheme. As before, all transis-
tors biased to fully OFF states (covered by red squares) effectively keep the voltages of irrelevant 
columns/rows floating.

In Figures 1a and 5a, each memristor is placed in series with a pn diode in order to avoid 
current sneak-path problems. Originating from the crossbar device structure itself, the sneak-
path problem has been identified and analyzed by many previous researchers [20, 76–122]. 
Because the bit line or word line select transistor raises the voltage across the whole bit or 
word, a group of memristors in the LRS may form a highly conductive path and cause mis-
reading of certain memristors. The solution to the sneak-path problem is using a selection 
element together with a memory element, as shown in Figure 5f. Such a selection element is 
used to allow current conduction in one direction while suppressing current flow in the other 
direction. The most common selection element is a low-leakage pn diode, limiting the current 
flowing through the sneak paths down to reverse the bias leakage current level and reducing 
the power consumption during implication operations.

5. Summary

In summary, we have demonstrated potentiation, depression and spike-timing-dependent 
plasticity in a synaptic device built using a SiOx-based 1D-1R architecture. Proton-induced 
resistive switching behaviors in the SiOx memory element were discussed, where the SET 
threshold is modeled as proton desorption from the (SiH)2 defect to generate the conductive 
hydrogen bridge, Si-H-Si, and the RESET transition is modeled as proton release and capture 
to reform nonconductive (SiH)2 [82–89]. The electrical results demonstrate that the technol-
ogy has good potential for providing a simple and robust approach for large-scale integra-
tion of programmable neuromorphic chips using CMOS technology, and represent a critical 
milestone regarding the potential use of SiO2-based resistive memory as a synaptic device in 
future synthetic biological computing applications. Moreover, a logic circuit consisting of a 
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that the final logic value pNANDq is stored as the last value of memristor s, or s″ in Figure 6b. 
This row of three memristors, namely P, Q, S, can be expanded to a row consisting of more 
memristors all sharing the same load resistor. Implication operations can be performed on any 
two memristors in the row, as long as the rest of the memristors are kept unbiased. Since we 
are able to perform implication on one row, similarly, implication can be done on one column.

However, when we put multiple rows and columns together to form a crossbar array, several 
problems arise. The first issue is providing multiple voltage signals as well as a common load 
resistor to an arbitrary pair of memristor on the same row or column. Based on the crossbar 
RRAM structure, the bit-line/word-line selection transistor can serve as the common resistor. 
By varying the gate voltage bias of the select transistor, it can serve as an ON state switch, OFF 
state switch or a resistor with channel resistance of RLoad. From Figure 6, it is noted that four 
voltage signals (VP, VQ, VS, and VLoad) are required during an implication operation, two dif-
ferent voltages along the same bit-line/word-line. Therefore, a total of four voltage lines, each 
connected to all NMOS select transistor, will provide voltage signals for implication operation.

The concepts are demonstrated by a 4 × 4 memristor crossbar array (Figure 7a and b) and a 
circuit with an 8 × 8 memristor crossbar array. In addition to 1D-1R device arrays (Figure 5a), 
the hybrid CMOS/1D-1R device architecture shown in Figure 5e has been successfully dem-
onstrated as shown in Figure 5f by the I-V resistive switching plots. Using the NMOS/PMOS 
transistor also fabricated on the same chip (Figure 5e), an implication circuit is realized using 
two 1D1R memory elements and a transistor. In Figure 7a and b, the design is quite different 
from the RRAM crossbar array architecture, the circuit consists of two rows of bit select tran-
sistors for the same column of memristors, one on the top, and one on the bottom. Similarly, 
there are two column word select transistors for the same row of memristors, one on the left 
and one on the right. This redundancy ensures two distinctive voltage signals can be applied 
on any pair of memristors on the same bit line/word line. The implication voltages (VP, VQ, VR) 

Figure 7. (a) and (b) demonstrate 4 × 4 crossbar structure memristor arrays with select transistors to achieve a one-bit 
full adder function. The implication circuit performs (a) M13 IMP M33 and (b) M11 IMP M12 on a 4 × 4 crossbar structure 
memristor array. Blue arrows show the current flow directions, and red solid squares cover all OFF-state transistors. 
Voltage signals and memristor numbers are labeled.
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are biased on three of the four lines depending on the configuration, and the voltage applied 
to each line is labeled as follows, Vbit_up, Vbit_down, Vword_left, and Vword_right. The gate of each select 
transistor is also independently biased, to either isolate the bit lines/word lines from the impli-
cation voltages or provide that implication voltage to one particular bit line/word line.

To perform M13 IMP M33 (negative voltage implication operation performed along bit line 3): 
Assuming all memristors are initialized to HRS, bias Vbit_up = 2 V, Vword_left = − 1.5 V, Vword_right = 0 V, 
Vword_1r, and Vword_3l = Vfull_on, Vbit_3u = VIMP, with all other transistor gate voltages at Vfull_off. The equiva-
lent circuit is shown in Figure 5a with the path of conduction current flow marked. In Figure 5a–e, 
P is M13, Q is M33, and the transistor bit_3u is used as the load resistor. The implication is a negative 
voltage scheme. All transistors that are biased at fully OFF states are covered by red squares, effec-
tively keeping the voltages of irrelevant columns/rows floating; to perform M11 IMP M12 (positive 
voltage implication operation performed along word line 1): Assuming all memristors are initial-
ized to HRS, Bias Vbit_up = 0 V, Vbit_down = 1.5 V, Vword_left = − 2 V, Vbit_1u, and Vbit_2d = Vfull_on, Vword_1l = VIMP, 
with all other transistor gate voltages at Vfull_off. This equivalent circuit is shown in Figure 5b with 
the current flow path marked. In Figure 5b, P is M11, Q is M12, and the transistor word_1l is used as 
the load resistor. In this case, the implication uses a positive voltage scheme. As before, all transis-
tors biased to fully OFF states (covered by red squares) effectively keep the voltages of irrelevant 
columns/rows floating.

In Figures 1a and 5a, each memristor is placed in series with a pn diode in order to avoid 
current sneak-path problems. Originating from the crossbar device structure itself, the sneak-
path problem has been identified and analyzed by many previous researchers [20, 76–122]. 
Because the bit line or word line select transistor raises the voltage across the whole bit or 
word, a group of memristors in the LRS may form a highly conductive path and cause mis-
reading of certain memristors. The solution to the sneak-path problem is using a selection 
element together with a memory element, as shown in Figure 5f. Such a selection element is 
used to allow current conduction in one direction while suppressing current flow in the other 
direction. The most common selection element is a low-leakage pn diode, limiting the current 
flowing through the sneak paths down to reverse the bias leakage current level and reducing 
the power consumption during implication operations.

5. Summary

In summary, we have demonstrated potentiation, depression and spike-timing-dependent 
plasticity in a synaptic device built using a SiOx-based 1D-1R architecture. Proton-induced 
resistive switching behaviors in the SiOx memory element were discussed, where the SET 
threshold is modeled as proton desorption from the (SiH)2 defect to generate the conductive 
hydrogen bridge, Si-H-Si, and the RESET transition is modeled as proton release and capture 
to reform nonconductive (SiH)2 [82–89]. The electrical results demonstrate that the technol-
ogy has good potential for providing a simple and robust approach for large-scale integra-
tion of programmable neuromorphic chips using CMOS technology, and represent a critical 
milestone regarding the potential use of SiO2-based resistive memory as a synaptic device in 
future synthetic biological computing applications. Moreover, a logic circuit consisting of a 
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4 × 4 array of crossbar structure memristor 1D1R memory elements and select transistors are 
proposed together with bidirectional implication schemes. Then a one-bit full adder is theo-
retically realized with a total of 48 operation steps performed on the circuit. A comparison 
between CMOS-enabled logic circuits and memristor-enabled circuits shows advantages in 
real estate and power consumption, as well as disadvantages in speed. This result suggests 
the memristor-enabled logic circuit is most suitable for high-speed, low-power, high-den-
sity applications. Further study is still required to make a few steps in various implication 
schemes as well as lower power consumption in synaptic computations.
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Abstract

Neural network, a powerful learning model, has archived amazing results. However,
the current Von Neumann computing system–based implementations of neural net-
works are suffering from memory wall and communication bottleneck problems ascrib-
ing to the Complementary Metal Oxide Semiconductor (CMOS) technology scaling
down and communication gap. Memristor, a two terminal nanosolid state nonvolatile
resistive switching, can provide energy-efficient neuromorphic computing with its syn-
aptic behavior. Crossbar architecture can be used to perform neural computations
because of its high density and parallel computation. Thus, neural networks based on
memristor crossbar will perform better in real world applications. In this chapter, the
design of different neural network architectures based on memristor is introduced,
including spiking neural networks, multilayer neural networks, convolution neural
networks, and recurrent neural networks. And the brief introduction, the architecture,
the computing circuits, and the training algorithm of each kind of neural networks are
presented by instances. The potential applications and the prospects of memristor-based
neural network system are discussed.
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1. Introduction

Neural networks, composing multiple processing layers, have achieved amazing results, such
as AlphaGo, DNC and WaveNet. However conventional neural networks based on Von
Neumann systems have many challenges [1]. In Von Neumann computing system, the com-
puting process and external memory are separated by a shared bus between data and program
memory as shown in Figure 1, which is so called Von Neumann bottleneck. In Von Neumann
computing system, a single processor has to simulate many neurons and the synapses between
neurons. In addition, the bottleneck leads the energy-hungry data communication when

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.69929

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



[104] Zhou F, Xue F, Chang YF, Lee JC. Device Research Conference (DRC), 2014 72nd 
Annual. 2014. 207. DOI: 10.1109/DRC.2014.6872370

[105] Chang YF, Feng LW, Chang TC. Materials Chemistry and Physics. 2011;131:262. DOI: 
10.1016/j.matchemphys.2011.09.037

[106] Cheng CC, Chien CH, Luo GL, Liu JC, Chen YC, Chang YF, Wang SY, Kei CC, Hsiao 
CN, and Chang CY, Journal of Vacuum Science & Technology B. 2009;27:130. DOI: 
10.1116/1.3058724

[107] Xue F, Chen YT, Wang Y, Zhou F, Chang YF, Fowler B, Lee JC, ECS Transactions. 2012; 
45:245. DOI: 10.1149/1.3700959

[108] Chang YF, Tsai YT, Syu YE, Chang TC. ECS Journal of Solid State Science and 
Technology. 2012;1:Q57. DOI: 10.1149/2.020203jss

[109] Chang YF, Tsai YT, Chang GW, Syu YE, Tai YH, Chang TC. ECS Journal of Solid State 
Science and Technology. 2012;1:Q91. DOI: 10.1149/2.003205jss

[110] Chang YF, Fowler B, Zhou F, Lee JC, ECS Transactions. 2016;69(5):149-164. DOI: 
10.1149/06905.0149ecst

[111] Chang YF, Fowler B, Chen YC, Lee JC, Progress in Solid State Chemistry. 2016;44(3):75-
85. DOI: 10.1016/j.progsolidstchem.2016.07.001

[112] Chen YT, Fowler B, Chang YF, Wang Y, Xue F, Zhou F, Lee JC. ECS Solid State Letters. 
2013;2:N18. DOI: 10.1149/2.009305ssl

[113] Hsieh CC, Roy A, Chang YF, Shahrjerdi D, Banerjee SK, Applied Physics Letters. 
2016;109(22):223501. DOI: 10.1063/1.4971188

[114] Chang YF, Fowler B, Zhou F, Byun K, Lee JC, VLSI-TSA, 2015. 1-2. DOI: 10.1109/
VLSI-TSA.2015.7117558

[115] Ji L, et al., IEEE International Electron Devices Meeting. 8.6. 2014. 1-8.6. 3. DOI: 10.1109/
IEDM.2014.7047013

[116] Ji L, et al. 72nd Device Research Conference; 2014. pp. 243-244 DOI: 10.1109/
DRC.2014.6872388

[117] Chang YF, Fowler B, Chen YC, Ji L, Zhou F, Lee JC, 72nd Device Research Conference, 
2014. 1. DOI: 10.1109/DRC.2014.6872349

[118] Zhou F, Xue F, Chang YF, Lee J, 72nd Device Research Conference, 2014. 207-208. DOI: 
10.1109/DRC.2014.6872370

[119] Chang YF et al., VLSI-TSA, 2014. 1-2. DOI: 10.1109/VLSI-TSA.2014.6839674

[120] Chang YF, Chen YC, Li J, Xue F, Wang Y, Zhou F, Fowler B, Lee JC, Device Research 
Conference (DRC), 71st Annual, 2013. 135-136. DOI: 10.1109/DRC.2013.6633830

[121] Wang Y, Chen YT, Xue F, Zhou F, Chang YF, Lee JC. ECS Transactions. 2013;50(4):151-156  
DOI: 10.1149/05004.0151ecst

[122] Chen YC, Chang YF, Wu X, Zhou F, Guo M, Lin CY, Hsieh CC, Fowler B, Chang TC, Lee 
JC, RSC Advances. 2017;7. DOI: 10.1039/c7ra00567a

Memristor and Memristive Neural Networks248

Chapter 12

Memristor Neural Network Design

Anping Huang, Xinjiang Zhang, Runmiao Li and
Yu Chi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69929

Provisional chapter

Memristor Neural Network Design

Anping Huang, Xinjiang Zhang, Runmiao Li

and Yu Chi

Additional information is available at the end of the chapter

Abstract

Neural network, a powerful learning model, has archived amazing results. However,
the current Von Neumann computing system–based implementations of neural net-
works are suffering from memory wall and communication bottleneck problems ascrib-
ing to the Complementary Metal Oxide Semiconductor (CMOS) technology scaling
down and communication gap. Memristor, a two terminal nanosolid state nonvolatile
resistive switching, can provide energy-efficient neuromorphic computing with its syn-
aptic behavior. Crossbar architecture can be used to perform neural computations
because of its high density and parallel computation. Thus, neural networks based on
memristor crossbar will perform better in real world applications. In this chapter, the
design of different neural network architectures based on memristor is introduced,
including spiking neural networks, multilayer neural networks, convolution neural
networks, and recurrent neural networks. And the brief introduction, the architecture,
the computing circuits, and the training algorithm of each kind of neural networks are
presented by instances. The potential applications and the prospects of memristor-based
neural network system are discussed.

Keywords: memristors, neural networks, deep learning, neuromorphic computing, analog
computing

1. Introduction

Neural networks, composing multiple processing layers, have achieved amazing results, such
as AlphaGo, DNC and WaveNet. However conventional neural networks based on Von
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updating the neurons states and retrieving the synapse states, and when simulates a large-
scale neural networks, the massages among processors will explode [2]. These defects make
the Von Neumann computing system based neural network power hungrier, low density, and
slow speed. In order to overcome these defects, a novel Nano device and computing architec-
ture need proposing. Memristor crossbar is considered to be the most promising candidate to
solve these problems [3]. Memristor crossbar is a high density, power efficiency computing-in-
memory architecture. Thus, this chapter presents different design paradigm of memristor-
based neural networks, including spiking neural networks (SNNs), multilayer neural networks
(MNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs).

2. Memristor neural networks

2.1. Memristor

Memristor was conceived by Leon Chua according to the symmetry of circuit theory in 1971
[4] and funded by HP lab in 2008 [5]. Memristor is a nano two-terminal nonvolatile device,
with a Lissajous’ IV curve. In mathematical, the model of memristor can be express as (take an
example of HP memristor) [6]

i tð Þ ¼ 1
RONw tð Þ þ ROFF 1�w tð Þð Þ v tð Þ (1)

i tð Þ ¼ G φ tð Þð Þv tð Þ (2)

Here, w(t) stands for the normalized position of the conduction front between the O2�

vacancy-rich and O2� vacancy-poor regions. The range of w(t) is from 0 to 1. G(φðtÞ) is the
conductance. The conductance of memristor can be continuous changing when applied control
pulse on the memristor. When the negative pulse is applied, the O2� vacancy moves to O2�

vacancy-rich region, which cause the conductance decrease, and vice versa. This result is
similar to the phenomenon in biological synapse, such that memristor can simulate the
dynamic of synapse.

Figure 1. Von Neumann computing system bottleneck.
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2.2. Memristor merits

Memristor as the forth device, comparing with conventional computing system such as CPU
and GPU, has many advantages. First, memristor is a two-terminal nonvolatile device,
resulting in the low power consumption [7]. Second, memristor is compatible with the CMOS,
and it can be integrated with higher density [4]. Third, the size of memristor is in nanoscale,
such that the switching speed fast [8]. These characteristics make memristor become a promis-
ing candidate for neuromorphic computing. In recent years, many researchers have performed
various experiments in neural network with memristor for synapse and neurons.

2.2.1. Memristor as synapse

Human brain can perform complex tasks such as unstructured data classification and image
recognition. In human brain, excitatory and inhibitory postsynaptic potentials are delivered
from presynaptic neuron to postsynaptic neuron through chemical and electrical signal at
synapses, driving the change of synaptic weight, as shown in Figure 2. The synaptic weight is
precisely adjusted by the ionic flow through the neurons. In neural networks, this mechanism
can be simulated by memristors. There are many samples that memristor used as synapse. In
this section, we use SNN as a sample to explain how memristor used as synapse.

As shown in Figure 3, a memristor acts as a synapse between two CMOSs neuron, which acts
as pre-/postsynaptic neurons, respectively. The input signal of presynaptic neurons reached
the postsynaptic neurons through the synapse. When a presynaptic spike is triggered before a
postsynaptic spike, equivalently there is a positive voltage applied on the memristor, and then
the synaptic weight is increased and vice versa, which is [6] explained as

Δt ¼ tpre � tpost (3)

Figure 2. Biological neuron and synapse.
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where tpreðtpostÞ is the pule weight the presynaptic neuron (postsynaptic neuron) spikes. Δt is
the difference between neurons spike time. That means, when Δt > 0, the synapse weight is
increased, and when Δt < 0, the synaptic weight is decreased.

2.2.2. Memristor as neuron

In biology, the membrane separates the inter-cell ions and enter-cell ions. Based on the electro-
chemical mechanism, the potential on the sides of membrane is balanced. When the excitatory
and inhibitory postsynaptic potentials are arrived, the signals through the dendrites of the
neurons and the balance will be destroyed. When the potential surpasses a threshold, the
neuron is fired. Emulating these neuronal mechanism, including maintaining the balance of
potential, the instantaneous mechanism, and the process of neurotransmission, is the key to
implement biological plausible neuromorphic computing system [9].

When a memristor is used to act as a neuron in neural networks, it is not essential that the
conductance of memristor implement continuous change, instead to achieve accumulative
behavior. When competent pulses applied, the neuron is fired. These pulses can change the
conductance state of memristor.

2.3. Memristor crossbar

Memristor crossbar consists of two perpendicular nanowire layers, which act as top electrode
and bottom electrode, respectively. The memristive material is laid between two nanowire
layers; as a result, memristor is formed at each crosspoint [11]. The schematic diagram of
memristor crossbar is shown in Figure 4.

Memristor crossbar is suitable for large-scale neural networks implementations. First, it is high
density, since crossbar can be vertical stack, and each crosspoint is a memristor. In addition,
memristor is nonvolatile, nanoscale and multistate. Second, it is low power consumption, since
the crossbar allow memory and computation integrating [10], and memristor is nonvolatile
device with a low operation voltage. These advantage of memristor crossbar such that this
architecture applied in a wide range of neural networks.

Figure 3. A paradigm of memristor based synapse.
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In neural networks, memristor crossbar has three operations such as read, write, and training.
In this section, we use a sample to illustrate how the memristor crossbar read, write and
training.

2.3.1. Read operation

In memristor crossbar, the conductance of a single memristor can be read individually. As
shown in Figure 5, we assume that we will read the mij memristor, which is the crosspoint of ith
top wires and jth bottomwires. The voltage V is applied on the ith top wire, and other top wires
and bottom wires are grounded. In this situation, only the mij memristor is applied the V bias,
the current i can be collected on the jth bottom wire. According to Ohm’s law, the conductance
of mij memristor M is caculated by M¼V/i [11].

2.3.2. Write operation

Similar to reading operation, the conductance of mij memristor can be written individually. We
assume that we will write the mij memristor. Different amplitude and duration of writing

Figure 4. Memristor crossbar.

Figure 5. Memristor crossbar readout.
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pulses will be directly applied on the target memristor. The ith top wire is applied voltage V,
and the jth bottom wire is grounded. Other top wires and bottom wires are applied voltage
V/2, then, only the mij memristor is applied the full voltage V, which is above the threshold and
can change the conductance of target memristor. The conductance of other memristors is not
changed because the voltage applied on them is 0 [12].

2.3.3. Training operation

Based on the read and write operation, the memristor neural networks are trained to imple-
ment practical neural networks. We use a single-layer neural network to explain the training
process of neural network. As shown in Figure 6, the relationship between input vectors U and
output vectors Y can be illustrated as [12]:

Yn ¼ Wn�m �Um (4)

Here, the weight matrix Wn�m represents the synaptic strengths between the two-neuron
groups, which are represented by the conductance of corresponding memristors. When we
train a memristor crossbar, we first assume we have a set of data. We input the training data,
the synaptic weight matrix W is updated repeatedly until the difference between the output y
and the target output y* become minimum. In each repetition, W is adjusted across the
gradient of the output error |y-y*| as [12]

Δwij ¼ μ
∂ðy� y�Þ2

∂wij

 !
(5)

Here, wij is the synaptic weight in theW connecting the neuron i and j, Δwij is the change of wij

during per update. μ is the training rate.

Figure 6. A single layer neural network [12].
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3. Design of memristor neural networks

This section discusses different memristor-based neural network design paradigm, including
spiking neural networks (SNN), multilayer neural networks (MNN), convolutional neural
networks (CNN), and recurrent neural networks (RNN). Each part of these neural networks
consists of five subsections, which are the concepts, the architecture, the algorithm, the circuits,
and the instance.

3.1. Spiking neural networks

3.1.1. SNN concept

Spiking neural network (SNN), a neural network of neurons interchange information
using spikes [13], is neural network based on individual spikes [14]. SNN is a brain-like
architecture. The signal in SNNs uses pulse coding rather than rate coding, and allows
multiplexing of information as frequency and amplitude. In some electronic SNNs, spikes
have the similar waveform shape than biological spikes, but normally in electronic systems
spikes are much simpler being represented by a square digital pulse [13]. In SNN, the
presence and timing of individual spikes are considered as the means of communication
and neural computation. The basic idea on biology is that the more intensive the input,
the earlier the spike transmission. Hence, a network of spiking neurons can be designed
with n input neurons Ni whose firing times are determined through some external
mechanism [14].

3.1.2. SNN architecture

In this section, we use a three-layer neural network to illustrate the structure of SNN. In this
structure, as shown in Figure 7, the multilayer SNNs are fully connected feedforward net-
works; all neurons between two adjacent layers are connected. All the input neurons and
output neurons are multiple spikes, i.e., spikes trains.

In this structure, neurons have a model. Spike response model describes the response of both
the sending and receiving neuron to a spike. In this model, the spikes of sending neuron
transmitted from presynaptic neurons via synapses to postsynaptic neurons. When all spikes
arrive, a postsynaptic potential is accumulated in receiving neuron. The internal state of
neuron is defined as the sum of postsynaptic potential induced by all the spikes and affected
by the weights for synapses that transmit these input spikes.

Suppose an input neuron has N input synapses. The ith synapse transmits Gi spikes. The arrival
time of each spike is denoted as ℊi ¼ t1i , t

2
i ……tgi . The time of the most recent output spike of

the neuron prior to the current time t (>0) is tðf rÞ. Then the internal state of the postsynaptic
neuron is expressed as
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2
i ……tgi . The time of the most recent output spike of

the neuron prior to the current time t (>0) is tðf rÞ. Then the internal state of the postsynaptic
neuron is expressed as
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where wi is the weight for the ith synapse. The postsynaptic potential induced by one spike is
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assume that the layers are numbered backwards starting from the output layer numbered as
layer 1 to the input layer. Every two neurons in adjacent layers connected by K synapses with

different transmit delays and weights. The delay of the kth synapse is denoted as dk.

We assume that there areNlþ1 neurons in layer lþ 1 and neuron i, belongs to the layer lþ 1, has
emitted a spike train composed of Fi spikes, the times of firing are denoted Fi ¼ ti, the time of the
ti spike which through the kth synapse arrive at postsynaptic neuron j which is in layer l is
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Figure 7. The architecture of SNNs.
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3.1.3. SNN algorithm

Spike-Timing Dependent Plasticity (STDP) is the synapse strength changing mechanism
according to the precise timing of individual pre- and/or postsynaptic spikes. As illustrate in
Section 2, the sign of the difference between the pre-/postsynaptic neurons times determines
the synaptic weight whether increased. STDP learning in biology is inherently asynchronous
and online which means that synaptic incremental update occurs while neurons and synapses
transmit spikes and perform computations. In experiment, the synaptic strength is a function
of relative timing between the arrival time of a presynaptic spike and the time of generation of
a postsynaptic spike as shown in Figure 8.

Although the data show stochasticity, we can infer an underlying interpolated function as
shown in Figure 9.

Figure 8. Experimentally measured STDP function on biological synapses [13].

Figure 9. Ideal STDP update function used in computational models of STDP synaptic learning [13].
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ξΔT ¼ aþe�ΔT=τþ if ΔT > 0

�a�eΔT=τ
�
if ΔT < 0

(
(9)

3.1.4. SNN circuits

SNN with three layers of neurons and two fully connected inter-layer meshes of memristors is
shown in Figure 10. The neuron layers are fabricated with CMOS devices, and the inter-layer
meshes of memristors are made with nanowires on the top of a CMOS substrate [16]. In
Figure 10, triangles represent the neuron soma, being the flat side its input(dendrites) and the
sharp side the output (axon). Dark rectangles are memristors, representing each one synaptic
junction. Each neuron controls the voltage at its input and output nodes.

In this SNN circuit, the CMOS-based spiking neurons work basically the same as conventional
integrate-and-fire neuron, and use proposed spike shape and specific spike back-propagation.
The total current of receiving neuron is given by Ohm’s Law by conductance, g, of connected
synapses and the voltage drop across the synapses. SNN training process needs building
external circuit. In external circuit, the input signals are prepared, and the output signal will
be measured in the external circuit.

3.1.5. SNN instances

Memristor behavior is more likely to a bidirectional exponentially grow with voltage, and
many mathematical formulations can be used to simulate it. Here, we use a voltage-controlled
device as a synapse, whose synaptic weight is represented by the conductance g of memristor.
The function of the device is “sinh-like” in the voltage Vmem. The nano device satisfied the
formulation as expressed follow

dg
dt

¼ AsinhðVmemÞ (10)

Figure 10. Memristor crossbar based SNNs paradigm [13].
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A and B are the parameters which depend upon the memristor material, thickness, size, and it
fabrication method.

In this section, we verify the STDP properties of the memristor-based synapses. Figure 11 is the
proposed spike shape, which is similar to the biological spikes. Figure 12 shows the STDP
curves produced by the proposed spike shape. In Figure 12, the vertical axis shows the average

Figure 11. Proposed spike shape used for processing and learning purposed [17].

Figure 12. Simulated curve using proposed spike shape [17].
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change of memristor conductance. The horizontal axis represents the difference between pre-
and postsynaptic spike timings Δt. Here, the default spike parameters are eV� ¼ 0:45V volt,
tþail ¼ 11 ms, t�ail ¼ 0:3 ms. The result are provided for memristors with Vth� ≈ � 0:5 V volt. The
value of parameters A and B are 2 and 4, respectively [18, 19].

3.2. Multilayer neural networks

3.2.1. MNN concepts

Multilayer neural networks, also known as multilayer perception, are the quintessential deep
networks. The advantage of MNN better than the single-layer perceptron overcomes the weak-
nesses that the perceptron cannot classify linearly indivisible data. To realize large scale learning
tasks, MNNs can perform impressively well and produce state-of-the-art results when massive
computational power is available [20, 21]. Learning in multilayer neural networks (MNNs) relies
on continuous updating of large matrices of synaptic weights by local rules [22, 23]. The BP
algorithm is a common algorithm in local learning, which is widely used in the training ofMNNs.

3.2.2. MNN architecture

In MNN architecture, neurons of upper and lower layers are fully connected, no neuron
connection exists between the same layer, and no cross layer connects to the neural network.
As a quintessential deep network, multilayer neural network consists of an input layer,
an output layer, and a hidden layer. MNN is the evolution of the single-layer perceptron.
Figure 13 is a double layer neural network.

The X1, X2 may represent the inputs single, W is the value of the weight between layers, Y is the
output value. For the two-layer neural network shown above, the input signal is represented as
x1,… xj, xn (N represents the number of input neurons), bi is represented for bias, so the result
of the signal from the input layer to the hidden layer is N11¼f(x1w11 þ x2w21 þ bÞ, and Y1¼f
(N11w11 þN12w21þb), in which f is an activation function.

3.2.3. MNN algorithm

In this section, we give a short sketch of the back-propagation technique [25, 23]. The actual
output value of the neural network is denoted by yj and the ideal tag value is denoted by tj,
and we can use the mean square error as an error function

Figure 13. Logic scheme of the implemented neural network with two inputs, two hidden and one output neurons [24].
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εMSE ¼
X

j
yj � tj
� �2

(11)

wij represents the weight between two layers of neurons, the neurons of the previous layer are
indexed with i, and the next layer of neurons is indexed with j. The derivation of the error can
be obtained by the following equation:

∂ε
∂wij

¼ ∂ε
∂yj

∂yj
∂zj

∂zj
∂wij

¼ _∈ yj
� �

_f zj
� �

xi ¼ δjxi (12)

where zj ¼
X

i
wijxi, yj ¼ f zj

� �
, δj ¼ _E yj

� �
_f zj

Moreover, it is assumed that the multilayer neural network uses sigmoid as a nonlinear
activation function. For Eq. (3) we get

∂∈
∂wðkÞ

ij

¼ xðk�1Þ
i δðKÞ

j (13)

where δðLÞj � δj ¼ yj � tj
� �

, x0i are input signals, and δLj �
X

i
w kð Þ

ji δ kð Þ
i

_f z k�1ð Þ
j

� �
.

3.2.4. MNN circuits

In this section, we enumerate an example of a memristor implementation of a two-layer neural
network. As shown in Figure 14.

In hybrid-circuit based neural networks [26–28], memristors are integrated into crossbar cir-
cuits to implement density-critical analog weights (i.e., synapses). In this scheme, each artificial
synapse is represented by memristors, so the weight of the synapse is equal to the conductance
of the memristor. For the multilayer neural network mentioned above, each weight is
represented by two memristors, so that the memristor crossbar can easily account for both
“excitatory” and “inhibitory” states of the synapses. The number of memristor in the hidden
layer is arranged in an 8 � 1 grid array as shown in Figure 14. The value of each weight
W ¼ Gþ � G�, where Gþ and G� is the effective conductance of each memristor. In the
simplest case, neuron output x is encoded by voltages V and synaptic weight w by memristor
conductance G. With virtually grounded neuron’s input, the current was given by Ohm’s law
using the potential of postsynaptic V and the corresponding conductance G.

The memristor crossbar combined with CMOS circuitry, which implements neuron function-
ality and other peripheral functions. The artificial neuron body (soma) was implemented in the
circuit by an op-amp based differential adder and a voltage divider with a MOSFET controlled
by the output of the summator [24]. This element executed the basic neuron functions in terms
of information processing—summation and threshold. The differential summator performing

y ¼
X

wixi function is required to separate different classes of input combinations, where y is

the output voltage of the summator, wi, xi – the ith input voltage and the corresponding weight
respectively.
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3.2.5. MNN instance

Conclusion all the experiments, we selected the image data of the MNIST data set to train and
test the two-layer neural network, with the batch size 100 to speed up calculations [28]. The
initial weights were selected randomly from the uniform distribution; in the experiment, the
learning rate is changed depending on the training set error, and the learning rate is only
constant at a level close to 0.0035.

3.3. Convolutional neural networks

3.3.1. CNN concepts

Convolutional neural network is taking inspiration from the study of biology neural science. A
classical architecture of convolutional neural network was first proposed by Lecun et al.
[29, 30]. As a kind of deep learning neural network, several powerful applications of CNNs
were reported including pattern recognition and classification, such as human face recogni-
tion [31], traffic sign recognition [32], and object recognition [33]. Recently, in the field of image
classification accuracy, convolution neural network (CNN) achieved a state-of-the art result,
which can classify more than a million images into 1000 different classes [29, 34, 35].

Figure 14. Circuit diagram of the ANN memristor-based hardware.
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Compared with traditional neural networks, such as fully connected NN, where each neuron
is connected to all neurons of the prelayer via a large number of synapses,convolutional neural
networks take advantages in weight sharing, which reduces the number of parameters need to
be trained [29]. CNNs are inspired from visual cortex structure, where neurons are sensitive to
small subregions of the input space, called receptive fields, exploiting the strong spatially local
correlation present in images [35]. CNNs, exploiting the spatial structure of input images, has
significantly fewer parameters than a fully connected network of a similar size are better suited
for visual document tasks than other NN topologies such as fully connected NNs [36].

Software implementations of artificial convolutional neural networks, which require power-
hungry CPU/GPU to perform convolution operations, are at the state of the art for pattern
recognition applications. While achieving high performance, CNN-based methods is based on
computationally expensive sums of multiplications, which is demand much more computation
and memory resources than traditional classification methods. This hinders their integration in
portable devices. As a result, most CNN-based algorithms and methods have to be processed
on servers with plenty of resources [37].

3.3.2. CNN architectures

The overall architecture of a typical CNN consists of two main parts, the feature extractor and
classifier [38, 39]. The feature extractor layers composed of two types of layers convolutional
layers and pooling layers. A series of convolution and pooling are stacked, followed by fully
connected layers (Figure 15).

In the feature extraction layers, each layer of the network receives an input from the immediate
previous layer [39, 40]. Convolution neural networks are often used to handle image
processing and recognition tasks. The image signal was processed by the input layer of the
convolutional neural network and then enters the convolution layer for the convolution oper-
ation. Convolution operation can be expressed as [37]

Figure 15. CNN block diagram.
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g x, y, z
� � ¼

Xc�1

i¼0

Xc�1

j¼0

Xl

k¼1

f xþ i, yþ j, kð Þ � cz i, j, kð Þ ¼ f
! � cz! (14)

where the vector f
!
and g! respectively represent the input and output feature map in the form

of 3D matrix; Cz
!

is one convolution kernel with the size of C � C; and i is the channel number
of the convolution kernel and the input feature map.

This operation could extract different features of input images when using different
convolutional kernels [29]. The input image signal will have dot product operation with
kernel, and through the nonlinear transformation, the final output feature map. Then will
be the subsampling process. Nonlinear neuron will be operated attached after the convolu-
tion kernel. And then, pooling computation is operated after the nonlinear neurons in order
to reduce the data amount and keep the local invariance. A typical pooling unit computes the
maximum of a local patch of units in one feature map (or in a few feature maps) [41]. Fully
connected layers are the final layers of the CNN that all layers are fully connected by
weights [37]. A feed forward neural network is usually used as a classifier in this work
because it has been shown to provide the best performance compared to neural net-
works [42, 43].

3.3.3. CNN algorithm

In this section, the backpropagation learning algorithm for CNNs will be introduced [36]. The
input of a convolution layer is the previous layer’s feature maps, and the output feature map is
generated by a learnable kernels and the activation function, which may combine the kernel
convolutions with multiple input maps. In general, we have that

xlj ¼ f
X
i∈Mj

xl�1
i � klij þ blj

0
@

1
A (15)

We can repeat the same computation for each map j in the convolutional layer, pairing it with
the corresponding map in the subsampling layer:

δlj ¼ βlþ1
j f , ulj

� �
∘ up δlþ1

j

� �� �
(16)

where up(�) denotes an up sampling operation that simply tiles each pixel in the input hori-
zontally and vertically n times in the output if the subsampling layer subsamples by a factor
of n. One possible way to implement this function efficiently is to use the Kronecker product,
upðxÞ � X⨂1n�n. Since the sensitivities of a given map are known, the bias gradient can be

immediately computed by simply summing over all the entries in δlj,
∂E
∂bj

¼
X

u, v ðδ
l
jÞuv.

Finally, the gradients of the kernel weights are computed using backpropagation. Then, the
gradient of a given weight is summed over all the connections that mention this weight
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� �
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� �
Þ (18)

A subsampling layer produces down sampled versions of the input maps. If there are N
input maps, then there will be exactly N output maps, although the output maps will be

smaller. More formally, xlj ¼ f ðβljdown xl�1
j

� �
þ bljÞ, where down(�) represents a subsampling

function, which sum over each distinct n-by-n block in the input image so that the
output image is n-times smaller along both spatial dimensions. Each output map has multi-
plicative bias β and an additive bias b. Since every other sample in the image

δlj ¼ f , ðuljÞ ∘ conv2ðδlþ1
j , rot180 klþ1

j

� �
,
0
f ull

0 Þ can be thrown away, the gradients of b and β can be

computed. The additive bias is again just the sum over the elements of the sensitivity map
∂E
∂bj

¼
X

u, v δlj
� �

uv
. The multiplicative bias β will involve the original down-sampled map

generated by the current layer during the forward propagation. Therefore, the maps generated
during the forward propagation should be saved, to aviod recomputing them during

backpropagation. Defining dlj ¼ downðxl�1
j Þ, then the gradient of β can be represented as

∂E
∂βj

¼
X
u;v

ðδlj ∘ dljÞuv (19)

Meanwhile, it is better to provide an output map that involves a sum over several convolutions
of different input maps. Generally, the input maps combined to form a given output map are
typically chosen by hand. However, such combinations can be learned during training. Let αij

represents the weight given to input map i when forming output map j. Then output map j is
calculated by

xlj ¼ f
XNin

i¼1

αijðxl�1
i � Kl

iÞ þ blj

 !
(20)

where
X
i

αij ¼ 1, and 0 ≤αij ≤ 1 (21)

By setting the αij variables equal to the softmax over a set of unconstrained weights cij, these
constraints can be enforced

αij ¼
expðcijÞX
k
expðckjÞ

(22)
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!
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!
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of the convolution kernel and the input feature map.

This operation could extract different features of input images when using different
convolutional kernels [29]. The input image signal will have dot product operation with
kernel, and through the nonlinear transformation, the final output feature map. Then will
be the subsampling process. Nonlinear neuron will be operated attached after the convolu-
tion kernel. And then, pooling computation is operated after the nonlinear neurons in order
to reduce the data amount and keep the local invariance. A typical pooling unit computes the
maximum of a local patch of units in one feature map (or in a few feature maps) [41]. Fully
connected layers are the final layers of the CNN that all layers are fully connected by
weights [37]. A feed forward neural network is usually used as a classifier in this work
because it has been shown to provide the best performance compared to neural net-
works [42, 43].

3.3.3. CNN algorithm

In this section, the backpropagation learning algorithm for CNNs will be introduced [36]. The
input of a convolution layer is the previous layer’s feature maps, and the output feature map is
generated by a learnable kernels and the activation function, which may combine the kernel
convolutions with multiple input maps. In general, we have that

xlj ¼ f
X
i∈Mj

xl�1
i � klij þ blj

0
@

1
A (15)

We can repeat the same computation for each map j in the convolutional layer, pairing it with
the corresponding map in the subsampling layer:

δlj ¼ βlþ1
j f , ulj

� �
∘ up δlþ1

j

� �� �
(16)

where up(�) denotes an up sampling operation that simply tiles each pixel in the input hori-
zontally and vertically n times in the output if the subsampling layer subsamples by a factor
of n. One possible way to implement this function efficiently is to use the Kronecker product,
upðxÞ � X⨂1n�n. Since the sensitivities of a given map are known, the bias gradient can be

immediately computed by simply summing over all the entries in δlj,
∂E
∂bj

¼
X

u, v ðδ
l
jÞuv.

Finally, the gradients of the kernel weights are computed using backpropagation. Then, the
gradient of a given weight is summed over all the connections that mention this weight

Memristor and Memristive Neural Networks264

∂E
∂klij

¼
X
u, v

δlj
� �

uv
ðPl�1

i Þuv (17)

∂E
∂klij

¼ rot180ðconv2 xl�1
i , rot180 δlj

� �
, ‘valid’

� �
Þ (18)

A subsampling layer produces down sampled versions of the input maps. If there are N
input maps, then there will be exactly N output maps, although the output maps will be

smaller. More formally, xlj ¼ f ðβljdown xl�1
j

� �
þ bljÞ, where down(�) represents a subsampling

function, which sum over each distinct n-by-n block in the input image so that the
output image is n-times smaller along both spatial dimensions. Each output map has multi-
plicative bias β and an additive bias b. Since every other sample in the image

δlj ¼ f , ðuljÞ ∘ conv2ðδlþ1
j , rot180 klþ1

j

� �
,
0
f ull

0 Þ can be thrown away, the gradients of b and β can be

computed. The additive bias is again just the sum over the elements of the sensitivity map
∂E
∂bj

¼
X

u, v δlj
� �

uv
. The multiplicative bias β will involve the original down-sampled map

generated by the current layer during the forward propagation. Therefore, the maps generated
during the forward propagation should be saved, to aviod recomputing them during

backpropagation. Defining dlj ¼ downðxl�1
j Þ, then the gradient of β can be represented as

∂E
∂βj

¼
X
u;v

ðδlj ∘ dljÞuv (19)

Meanwhile, it is better to provide an output map that involves a sum over several convolutions
of different input maps. Generally, the input maps combined to form a given output map are
typically chosen by hand. However, such combinations can be learned during training. Let αij

represents the weight given to input map i when forming output map j. Then output map j is
calculated by

xlj ¼ f
XNin

i¼1

αijðxl�1
i � Kl

iÞ þ blj

 !
(20)

where
X
i

αij ¼ 1, and 0 ≤αij ≤ 1 (21)

By setting the αij variables equal to the softmax over a set of unconstrained weights cij, these
constraints can be enforced

αij ¼
expðcijÞX
k
expðckjÞ

(22)

Memristor Neural Network Design
http://dx.doi.org/10.5772/intechopen.69929

265



Since each set of weights cij for fixed j are independent of all other such sets for any other j, only
the updates of a single map need considering and the subscript j can be dropped. Each map is
updated in the same way, except with different j indices. The derivative of αk with respect to
the αi variables at layer is the derivative of the softmax function is given by

∂αk

∂ci
¼ δkiαi � αiαk (23)

where δ is used as the Kronecker delta.

Use δl represents the sensitivity map corresponding to an output map with inputs u. Again,
the convolution is the “valid” type so that the result will match the size of the sensitivity map.
Now, the gradients of the error function with respect to the underlying weights ci can be
computed by the chain rule

∂E
∂αi

¼ ∂E
∂ul

∂ul

∂αi
¼
X
u;v

ðδl ∘ xl�1
i � Kl

i

� �Þuv (24)

In addition, the sparseness constraints on the distribution of weights αi for a given map can also
been imposed by adding a regularization penalty Ω(α) to the final error function. Therefore,
some weights will be zero. That means, only a few input maps would contribute significantly to
a given output map, as opposed to all of them. The error for a single pattern can be written as

∂E
∂ci

¼
X
k

∂E
∂αk

∂αk

∂ci
¼ αið∂E∂αi

�
X
k

∂E
∂αk

αkÞ (25)

eEn ¼ En þ λ
X
i, j

jαijj (26)

This will find the contribution of the regularization term to the gradient for the weights ci. The
user defined parameter λ controls the trade-off between minimizing the fit of the network to
the training data, and ensures that the weights mentioned in the regularization term are small
according to the 1-norm. Again, only the weights αi for a given output map need considering
and the subscript j can be dropped. First, there is

∂Ω
∂αi

¼ λsignðαiÞ (27)

Combining this result with Eq. (24), the derivation of the contribution is

∂Ω
∂ci

¼
X
k

∂Ω
∂αk

∂αk

∂ci
¼ λðjαij � αi

X
k

jαkjÞ (28)

The final gradients for the weights ci when using the penalized error function Eq. (11) can be
computed using Eqs. (13) and (9)
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∂
fEn

∂ci
¼ ∂En

∂ci
þ ∂Ω

∂ci
(29)

3.3.4. CNN circuits

This part introduces the construction and operation of the memristor neural networks circuit.
First of all, we introduce how a single column within a memristor crossbar can be used to
perform a convolution operation. Pooling operation can be seen as a simpler conversation
operation [39]. The circuit diagram of each column for the convolution operation of the
memristor crossbar structure is shown in Figure 16.

Each crosspoint of the circuit was composed of memristors, which is represented for synapses.
The kernel (k) was represented by the conductivity value (G) in the crossbar circuit. Some extra
manipulation include converting kernel matrix into two parallel column to express the positive
and negative value of the kernel and converting kernel matrix to conductivity values (δ�) [39]
that fall within the bounded range of a memristor crossbar. The op-amp circuit is used to scale
the output voltage and implements the sigmoid activation function.

The convolution computation operation in memristor crossbar is the same as the matrix
convolution operation. That mainly is a result of the dot-production about the matrixes of
kernels and inputs. The first step is the multiplication of voltage (V) and conductance
(G ¼ x�1) [29], which is following ohm’s law (I ¼ V�G). Second, it will follow Kirchhoff’s
current law (KCL), which describes that the circuit flowing out the node will be equal to the
sum of current flowing into that node. Based on KCL, novel computation architecture for
implementing pot-product is implemented [29]. And then, the lower end of the op amp circuit
performs activation function. As a result, each neuron of hidden and output layers implements
f
P

iðGþ � G�ÞVi
� �

, where f is a kind of activation function. Figure 17 shows the flow chart of
the CNN image identification system.

where L is the number of layers of the CNN recognition system, the input layer (L ¼ 1) holds a
testing set of 500 MNIST images, whose size of data set is 28 � 28. L ¼ 2 is the first convolution
layer [39].

step 1. First convolution layer(l ¼ 2)

The signal size from the front input layer is 28 � 28. In this layer, an input image will be
convolved with six different 5 � 5 size kernels on the memristor crossbar. According with
the front description, each column is the kernel value of 5 � 5. And the 2D kernel was
broken into two arrays in the memristor crossbar to easily account for negative values in
the kernel arrays. The total number of a column in the crossbar structure is 2 � 25 þ 1, in
which “1” is the value of bias. Since we are using a memristor crossbar to perform the
convolution operations, we can generate all six of these output maps in parallel. So, the
crossbar circuit exist six parallel columns in a row. Therefore, this layer requires a 51 � 6
memristor crossbars.
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and negative value of the kernel and converting kernel matrix to conductivity values (δ�) [39]
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, where f is a kind of activation function. Figure 17 shows the flow chart of
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where L is the number of layers of the CNN recognition system, the input layer (L ¼ 1) holds a
testing set of 500 MNIST images, whose size of data set is 28 � 28. L ¼ 2 is the first convolution
layer [39].

step 1. First convolution layer(l ¼ 2)

The signal size from the front input layer is 28 � 28. In this layer, an input image will be
convolved with six different 5 � 5 size kernels on the memristor crossbar. According with
the front description, each column is the kernel value of 5 � 5. And the 2D kernel was
broken into two arrays in the memristor crossbar to easily account for negative values in
the kernel arrays. The total number of a column in the crossbar structure is 2 � 25 þ 1, in
which “1” is the value of bias. Since we are using a memristor crossbar to perform the
convolution operations, we can generate all six of these output maps in parallel. So, the
crossbar circuit exist six parallel columns in a row. Therefore, this layer requires a 51 � 6
memristor crossbars.
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So far, we have got the memristor crossbar structure, which simulates the synapses and stores
the value of kernels in it. The circuit perform the first convolution operation is shown in
Figure 18.

Each image contains 784 pixel, but the image is applied 25 pixels at a time where each 25 pixel
section generates a single output value. After these convolution kernels applied, a data array
that has a size of 24 � 24 � 6 will be generated in the memristor crossbar and then will be
operated in the next layer. For each column in the memristor crossbar structure,memristor is
used to simulate synapses of neural networks. And, the circuit simulates neurons to produce

Figure 16. (a) A column circuit of MCNN circuit diagram that is capable of performing convolutional operation and (b) a
shorthand depiction for this circuit.
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the summation of all the product of inputs and kernels and operate activation function.
According to Ohm’s law and Kirchhoff’s law, every single output value in this time is the
input value and the kernel value of the inner product results. After the signal is input, the
memristor and op-amp circuits are output later. When all 6 24 � 24 sizes of feature map are
obtained, the first convolution operation was finished,the output is the input value of the next
neuron that will be applied in pooling operation process.

Step 2. First smoothing layer (l ¼ 3)

Following the first convolution layer, a smoothing operation is performed on the six generated
feature maps. Pooling operation can be seen as a simpler conversation operation, with all
kernel applied to each feature map is

Figure 17. Flowchart describing the CNN recognition system [39].
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K ¼ 0:25 0:25
0:25 0:25

� �

Be similar with the convolution process, each column of the crossbar represents a kernel. So the
memristor numbers of a single column of the crossbar is 4 � 2 þ 1, and six column for with all
six feature maps be operated in parallel, Therefore this layer requires a 6 � (2 � 4 þ 1)
memristor crossbars. But different with the convolution layers, the conductivities
corresponding to negative elements in the kernel matrix in this layer are meaningless because
all components of the pooling kernel are positive. The following circuit is shown that has
pooling operation on the 6� 24� 24 size of feature map which the convolution layer is derived
(Figure 19).

In the pooling operation, six different feature maps obtained from the convolution layers
applied to every corresponding column respectively and obtain another sets of feature maps.

A subsampling operation is performed following each of the smoothing crossbars that reduce
the size of each feature map by a square factor of 2. This could be design in to place a single-bit
counter on the memory array where the data output from the smoothing operation is stored.
The memory address would only update for every other sample so all unwanted data would
be overwritten during the smoothing step.

Step 3. Second convolutional layer (l¼4)

Following the polling and subsample, operation is the second convolution operation. Different
with the first one, inputs of the second convolution layers are six feature maps with 12 � 12
size, and it exists 12 outputs instead of six in the front one. Because the different number and
size of input and output single, the structure of the second layer is distinctly different from the

Figure 18. Circuit used to perform the convolution operations for the second (l ¼ 2) in the CNN recognition system.
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one. The circuit design of the second convolution layer is shown in Figure 20. Each column
represents six different feature map convolution processes, and will be operated with 12
different kernels in parallel methods.

Step 4. Second smoothing layer(l ¼ 5)

Following the second convolution layer, another smoothing layer is following the second
convolution layer to further reduce the size of the data array. The circuit in this layer will be
identical to that displayed in Figure 7. With 12 feature maps will be operated, so required 12
parallel single column crossbars. After second layers of pool will produce 4� 4 of the size of 12
feature map, the input to the next layer, classification layer (l ¼ 6).

Step 5. Classification layer

Following the front feature extraction operations, a fully connected layer is used to classify the
feature maps. The classification layer is generally a single layer perceptron or multilayer neural
network.

The circuit used to complete this operation can be seen in Figure 21. The memristor crossbar used
in classification layer is to store a weight matrix, which is different with storing a set of convolu-
tion kernels arrays in convolution circuits. The crossbar consists of 192*2+1 rows which represent
192 inputs (one input for each of the 16 value in each of the 12 outputs maps), and 10 columns
which represent 10 outputs (one for each MNISTdigit). So the total numbers of memristors in this
layers is (192 þ 1) � 10.

Step 6. Digital storage layers

Following every convolution layer, a digital layer was placed at the output of each convolu-
tion. The digital storage layer reduces the amount of analog circuit error that is transmitted

Figure 19. The group of convolution circuits that is used to implement the smoothing operation.
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between layers. We chose to store an entire image between layers because any benefit gained
by a systematically reduced memory size would likely be outweighed by the complexity of a
data controller of this nature [44].

3.3.4.1. CNN instance

The CNN algorithm purely in simulation under these training conditions results in 92%
classification accuracy as shown in Figure 22. And, the simulation process is to test the
accuracy of the memristor based CNN recognition system described in the previous section.
When testing the simulated memristor crossbars, an accuracy of 91.8% was achieved.

3.4. Recurrent neural networks

3.4.1. RNN concept

Recurrent neural networks, or RNNs, are the main tool for handling sequential data, which
involve variable length inputs or outputs [40]. Compared with multilayer network, the weights
in an RNN are shared across different instances of the artificial neurons, each associated with

Figure 20. The circuit that is used to implement the second convolution layer.
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different time steps [40, 42]. And, others, in recurrent neural networks, lengths history
represented by neurons with recurrent connections, and history length is unlimited. Also
recurrent networks can learn to compress whole history in low dimensional space, while
feedforward networks compress (project) just single word recurrent networks have possibility
to form short term memory, so they can better deal with position invariance [45] RNN archi-
tecture.

The simplest architecture of RNNs is illustrated in Figure 23 [40]. The left of Figure 24
shows the ordinary recurrent network circuit with weight matrices U, V, W denoting three
different kind of connection (input-to-hidden, hidden-to-output, and hidden-to-hidden,

Figure 21. Circuit that is used to implement the classification layer of the CNN recognition system.

Figure 22. Error present when training the CNN algorithm is software [39].
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Figure 23. The architecture of recurrent neural networks.

Figure 24. General class of recurrent neural network circuit.
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respectively). Each circle indicates a whole vector of activations. The right of Figure 24 is a
time-unfolded flow graph, where each node is now associated with one particular time
instance.

3.4.2. A Hopfield neural network design

Memristor-based Hopfield networks (MHN), which is an ideal model for the case where the
memristor-based circuit network exhibits complex switching phenomena, and is frequently
encountered in the applications [46]. A Hopfield network consists of a set of interconnected
artificial neurons and synapses. In this case, a nine synapses Hopfield network is realized with
six memristors and three neurons. As shown in Figure 25, the artificial neuron has three inputs
and each input, Ni ¼ (i ¼ 1, 2, and 3), is connected to a synapse with synaptic weight of wi. The
output of the three-input binary artificial neuron is expressed as

y ¼ sign
X3

i¼1

wiNi � θ

 !
(30)

where y is the neuron’s threshold; and the sign function is defined as

sign Nð Þ ¼ 1 ifN ≥ 0
0 ifN < 0

�

An artificial neuron was constructed, as shown in Figure 26. An operational amplifier is used
to sum the inputs. The switches, S1, S2, and S3, are controlled by external signals to obtain
positive or negative synaptic weights. The synaptic weights corresponding to input N1, N2,
and N3 are w1 ¼ � M1

M1þR, W2 ¼ � M2
M2þR and W3 ¼ � M3

M3þR, respectively (M1, M2, and M3 are the

resistance of the memristors, respectively, and the resistance of R is fixed at 3 MΩ). In the
circuit shown in Figure 26, transmission gates B1, B2, and B3 reform signals without modifying
its polarity, inverters I1, I2 and I3 generate negative synaptic weights.

The architecture of a 3-bit MHN implemented with nine synapses is shown in Figure 27. The
synaptic weight from neuron i to neuron j is denoted as wi, j, which is mapped to resistance of
the corresponding memristor Mi, j,. Mi, j, and wi, j are represented by the resistance matrix,
respectively

Figure 25. Mathematical abstraction of the neuron model.
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Due to the symmetry of Hopfield network, M12 ¼ M21, M23 ¼ M32, and M13 ¼ M31, the
implementation of the network only needs six memristors. The schematic of this circuit is
shown in Figure 28, and all the demonstration below is based on this circuit. The threshold
vector T ¼ (θ1,θ2,θ3) represents the threshold of the artificial neurons (neurons 1, 2, and 3),
and the state vector X ¼ (X1, X2, X3) represents the states of the three neurons, respectively. In
each updating cycle, new states of the neurons are updated by the following function

Figure 26. Circuit schematic of the designed 3-bit neuron.

Figure 27. Architecture of the 3-bit MHN consisting of nine memristors.
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X tþ 1ð Þ ¼ signðX tð Þ �W� TÞ (31)

where t represents the number of updating cycles and when t ¼ 0, X(0) represents initial states
vector. In one updating cycle, new states of the neurons are asynchronously updated from X1,
X2 to X3 in three stages, which are defined as stages a, b, and c, respectively [46].

4. Potential applications and prospects

Hardware implementation of deep neural networks is accomplished by using neuron-synapse
circuits and future devices can make deep neural networks (NNs) design and fabrication more
efficient. The full power of NNs has not yet been realized, but the release of commercial chips
implementing arbitrary neural networks, more efficient algorithms will no doubt be realized in
these domains where neural networks can improve the performance dramatically. Memristor-
based NNs promote and solve many A.I. problems such as machine translation, intelligent
question-and-answer, and game play, and in the future, memristor-based NNs can be used in
neuromorphic computation, brain-computer interface or computer-brain interface, cell phone
A.I. application, autopilot and environment monitor.

5. Conclusions

Different memristor-based neural network design paradigms are described. With regard to
neural network systems, the current neural network implementations are not sufficient but

Figure 28. Architecture of the MHN with symmetrical configuration consisting of six memristors.
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fortunately, memristor-based systems provide the potential solution. The basic concepts of
memristor-based implementation, such as memristor-based synapse, memristor-based neuron,
and memristor crossbar based neuromorphic computing engine, are discussed. The
memristor-based neural networks, including SNNs, MNNs, CNNs, and RNNs, are possible
and efficient and are expected to spur future development of A.I. It is expected that memristor-
based neural networks will take the lead.
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Abstract

The spike‐timing‐dependent plasticity (STDP) characteristic of the memristor plays an 
important role in the development of neuromorphic network computing in the future. 
The STDP characteristics were observed in different memristors based on different kinds 
of materials. The investigation regarding the influences of device hysteresis character‐
istic, the initial conductance of the memristors, and the waveform of the voltage pulses 
applied to the memristor as preneuron voltage spike and postneuron voltage spike on the 
STDP behavior of memristors are reviewed.

Keywords: Memristor, Spike‐timing‐dependent plasticity

1. Introduction

The state‐of‐the‐art artificial intelligence based on traditional von Neumann computation 
paradigm has shown remarkable learning and thinking abilities, for instance, AlphaGo 
created by the Google‐owned company Deep Mind beat the top Go player Lee Sedol by 
4:1 recently [1]. However, the information processing through the digital von Neumann 
computation paradigm is much less efficient as compared to human brains, which is the 
major bottleneck of von Neumann computation paradigm. Synapse plays the key role in 
learning, thinking, and memorizing for a human being, and there are approximately 1014 
synapses in a human’s brain [2]. A synapse is formed between two neuron cells [3], and 
the synapse weight can be precisely tuned by the ionic flowing through them. It is well 
known that the adaptation of the synapse weight between two neurons it connects with 
makes the biological systems functional [4]. In order to build up a system that behaves in 
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a much more efficient way like a human brain, people have never stopped searching for 
an electrical element that mimics the basic function of a synapse until “the miss memris‐
tor found [5].”

Similar to a biological synapse, memristor is a two‐terminal device whose conductance can be 
changed by the input pulses or by controlling the charge through it [4, 6] and in such a way, a 
memristor works as an artificial electronic synapse. Electronic synapses based on memristor 
devices are around three orders of magnitude smaller than a prominent CMOS design [2]; 
thus, the memristor has a great potential for scalability as compared to the electronic synapse 
made by traditional complex circuits [7].

Synapses have different kinds of plasticity, which have been realized and investigated 
in different memristors [8]. And the research on the application of memristors with the 
common synaptic plasticity in some kind of neural networks has also been conducted. For 
instance, HfO2‐based memristors were used in a Hopfield neural network to implement 
associative memory [9]. The relationship between the resistance of the memristor and 
the synaptic weight was defined. And the resistances of the memristors were tuned to the 
target resistances through the application of the voltage pulses on the memristors as the  
training process [9]. Prezioso et al. realized pattern classification by using the neural net‐
work based on memristors with synaptic plasticity [10]. The 12 × 12 crossbar with Pt/
Al2O3/TiO2−x/Ti/Pt memristors at each cross point was fabricated, which is illustrated in 
Figure 1(a). Sixty memristors among them were used to realize the function. The relation‐
ship between synaptic weight and conductance of the memristors is shown in Eq. (1). The 
synaptic weight was changed by applying fixed voltage pulses with the amplitude of ±1.3 
V on the memristors, and the change of conductance under different voltage pulses is 
shown in Figure 1(c).

   W  ij   =  G  ij  +  −  G  ij  −   (1)

Figure 1. Memristor crossbar. (a) Integrated 12 × 12 crossbar with an Al2O3/TiO2‐x memristor at each cross point. (b) I–V 
curve of the memristor. Inset (b): the cross‐sectional structure of the memristor device. (c) Absolute values of the change 
of memristor’s conductance under voltage pulses (with the width of 500 μs) of two polarities, as a function of the initial 
conductance, for various pulse amplitudes [10].
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2. STDP in memristors

In the common synaptic plasticity mentioned above, the change of the conductance (weight) is 
only related to one voltage pulse applied on the memristors. Another kind of plasticity of the 
synapses is spike‐timing‐dependent plasticity (STDP). STDP is one of the most important syn‐
aptic characteristics. STDP modulates synapse weight based on the activities of the so‐called 
pre‐ and postsynaptic neurons [11]. The spikes from both preneuron and postneuron arrive 
at the synapse occasionally in the opposite direction [7]. In STDP, the change of the synaptic 
weight is the function of relative neuron spike timing ∆t (∆t = tpre − tpost), where tpre is the time 
when the presynaptic neuron spike arrives and tpost is the time when the postsynaptic neuron 
spike arrives [4]. In a typical STDP behavior, if postsynaptic neuron spike arrives after presyn‐
aptic neuron spike (∆t < 0), the synaptic weight increases. If postsynaptic neuron spike arrives 
before presynaptic neuron spike (∆t > 0), the synaptic weight decreases. In electronic synapse 
based on memristor, voltage spikes or pulses are applied on the memristor through the two 
electrodes, which modulates the conductance of the memristor, and the change of conductance 
is related to the relative timing of voltage spikes or pulses. Memristors can realize STDP func‐
tion which is similar with that of biological synaptic systems, which is shown in Figure 2 [4].

Figure 2. (a) The relationship between change of the memristor synaptic weight and the relative timing ∆t of the neuron spikes. 
The synaptic change was normalized to the maximum synaptic weight. Inset (a): SEM image of the crossbar structure of 
memristors. (b) The relationship between the change in excitatory postsynaptic current (EPSC) of rat hippocampal neurons after 
repetitive correlated spiking (60 pulses at 1 Hz) and relative spike timing. The figure was reconstructed with permission from Ref. 
[8, 12]. Inset (b) is the phase contrast image of a hippocampal neuron, which was adapted with permission from Ref. [4, 13, 26].
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STDP have been intensively investigated in the different memristors with different materi‐
als. The memristors are usually composed of two electrodes and memristive materials sand‐
wiched between two electrodes. Metals such as Au, Pt, Ag, Cu, conductive nitrides such as 
TiN, and conductive oxides such as ITO are usually used as the materials of electrodes. The 
memristive materials can be grouped into binary oxides, ternary and more complex oxides, 
polymer, and other kind of materials.

The STDP of binary memristive materials such as TiOx [6], WOx [3], Al2O3/TiO2 [14], CeOx [15], 
TaOx/Ta2O5 [16], and HfO2 [17, 18] have been investigated very intensively; Seo et al. tested 
the STDP function of the memristor based on TiOx, and they demonstrated the potential of 
such memristor as electronic synapses in neuromorphic network. The results are shown in 
Figure 3. Matveyev et al. demonstrated the STDP functionality of HfO2‐based memristor with 
the structure of TiN/HfO2/Pt [17]. The function relationship between the relative change of 
the conductance ∆G and the spikes’ delay time Δt was obtained from the 4‐nm‐thick HfO2 
40 × 40 nm2 device, which is shown in Figure 4. Tan et al. conducted investigation on the 
memristor with the structure of Pt/WO3/Pt. The STDP behavior was demonstrated in such 
WO3‐based memristor, which is illustrated in Figure 5(b) [3]. Wang et al. carried out investi‐
gation on memristor device of Pt/HfOx/ZnOx/TiN. The STDP characteristics of the memristors 
were measured with voltage pulses with the amplitude of the V−/V+ = −1.0 V/1.0 V. Those 
voltage pulses were applied on the top electrode and bottom electrode as presynaptic and 
postsynaptic spikes. The relationship between the relative change of the synaptic weight and 
relative spike timing is illustrated in Figure 6(b), which is basically consistent with the STDP 
behavior of biological synapse.

Memristors based on ternary and more complex oxides such as BiFeO3 [19], InGaZnO [20], 
and so on, were also investigated.

Wang et al. reported that STDP was observed in the memristors based on amorphous 
InGaZnO. As shown in Figure 7(c, d), a pair of voltage spikes with amplitude of V+/V− = 5 

Figure 3. STDP synaptic characteristic of the memristor. Inset shows the anti‐STDP synaptic characteristic of the 
memristor [6].
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Figure 4. Asymmetric STDP characteristic emulated in crossbar 4‐nm‐thick, 40 × 40 nm2 HfO2‐based memristors [17].

Figure 5. Experimental results of the STDP characteristic of Pt/WO3/Pt memristor. (a) Current decay after the application 
of a sequence of positive and negative pulses was measured with reading voltage with the amplitude of 0.05 V. The 
transition from volatile to nonvolatile is indicated in the dotted square. (b) The relationship between the change of the 
synaptic weight and the relative timing of the prespike and postspike. Inset (b): waveform of prespike and postspike [3].
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Figure 6. Nonlinear transmission characteristics and STDP of the memristor device. (a) Response of a memristor to 
different pulses; (b) emulation of STDP characteristics of memristor with the structure of Pt/HfOx/ZnOx/TiN—the 
relationship between the relative change of the memristor synaptic weight (ΔW) and the relative spike timing (Δt). And 
the solid line is the exponential fitting curve to the experimental data. The insets (b): schematics of various spikes.

Figure 7. Demonstration of STDP characteristics of memristor. (a) The variation of the current with the interval of voltage 
pulses. (b) The formation and decay of spike‐induced EPSC. (c and d) The preneuron spike and postneuron spike applied 
on the memristor for STDP. (e) The relationship between the relative change of the memristor synaptic weight (ΔW) and the 
relative spike timing (Δt). The exponential fitting results for the experimental data are illustrated by the solid lines in the graph.
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V/−5 V was applied on the two terminals of the memristors with relative timing Δt to test the 
STDP characteristics. As shown in Figure 7(e), the ΔW changed with Δt, which is a typical 
STDP characteristic of biological synapses.

The STDP behavior was also observed in polymer such as poly(3,4‐ethylenedioxythiophene):
poly(styrenesulfonate) (PEDOT:PSS) [21], EV(ClO4)2/BTPA‐F [22], and so on. Li et al. imitated 
the STDP of Ag/PEDOT:PSS/Ta structure [23]. A pair of temporally correlated voltage pulses 
with amplitudes V+/V− = 2 V/−2 V was used as presynaptic spikes and postsynaptic spikes, 
which was applied to the memristors, respectively. The change of the synaptic weights related 
to the precise timing between pre‐ and postsynaptic spikes is shown in Figure 8(c).

In addition, the investigations on the STDP of the memristors based on other kind of materials 
such as Si/Ag mixture [4], polycrystal CH3NH3PbI3 [24], have also been conducted.

Some factors in the STDP measurements can change some characteristics of the STDP, for 
example, the waveform of voltage spikes used to imitate the presynaptic neuron spike and 
postsynaptic neuron spike influences the STDP behavior significantly. It has been reported 
that the STDP function can be strongly influenced by the shape of the input voltage spikes 
[25]. The shape of voltage spike generated from presynaptic neuron is the same with that gen‐
erated from postsynaptic neuron. Zamarreño‐Ramos et al. investigated the influence of the 
shape of the voltage spikes (spk(t)) on STDP learning function ξ (∆T). The results are shown 
in Figure 9. The results reveals that the voltage spikes with a narrow short positive pulse of 
large amplitude and a longer relaxing slowly decreasing negative tail are needed in order to 
obtain the STDP function similar with the behavior of the biological synapses [25].

Figure 8. Simulation of STDP. (a) EPSC. The preneuron spike was V+/V− = 2 V/−2 V. The current value gradually decayed 
back to zero within 50 ms after the spike. A pair of temporally correlated pulses with amplitudes V+/V− = 2 V/−2 V was 
applied to the TE and BE as preneuron spikes and postneuron spikes, respectively. (b) Δt is the interval between the 
beginning of the preneuron spikes and the beginning of the postneuron spikes. (c) STDP characteristics. The relationship 
between the change of synaptic weight and Δt defined in (b).
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applied to the TE and BE as preneuron spikes and postneuron spikes, respectively. (b) Δt is the interval between the 
beginning of the preneuron spikes and the beginning of the postneuron spikes. (c) STDP characteristics. The relationship 
between the change of synaptic weight and Δt defined in (b).
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Cederström et al. investigated the role of device hysteresis characteristic of the memris‐
tors played in the operation of its STDP function. Hysteresis characteristics of memristors 
based on BiFeO3, Ag/Si, TiO2, and chalcogenide (PCM) were compared. STDP character‐
istics were simulated with different models of different memristors, and the results are 
shown in Figure 10. The influence of switching characteristics on the operating region 
used for STDP was discussed. A smooth switching characteristics leads to a much wider 
operation region, and a steep switching characteristics leads to a much narrower operation 
region [26].

Du et al. reported that the learning time constant can be adjusted through changing the 
duration of the voltage spikes. The scheme of the voltage spikes is shown in Figure 11, and 
pulse width (tp) is one of the parameters of the voltage spikes. The range of the delay time 
∆t where the normalized current is larger than 50% is called learning window. As shown 
in Figure 12, learning window decreases from 25 ms to 125 μs with the decrease of pulse 
width (tp) from 10 ms to 50 μs. In addition, energy consumption of the memristors was 
also discussed in this work, the authors showed that energy consumption of the Au/BFO/
Pt/Ti memristor is 4.7 pJ. A method to reduce the energy consumption was proposed and 
tested, and the results indicate by decreasing the pulse width (tp) energy consumption can 
be reduced to 4.5 pJ.

Xiao et al. reported the STDP characteristics of the memristor with the structure of Au/poly‐
crystal CH3NH3PbI3/ITO/PEDOT:PSS. Different waveforms were used as presynaptic neuron 
voltage spike and postsynaptic neuron voltage spike, which are shown in Figure 13(b–e). Four 
different kinds of STDP characteristics, including asymmetric Hebbian rule, asymmetric anti‐
Hebbian rule, symmetric Hebbian rule, and symmetric anti‐Hebbian rule, were obtained cor‐
responding to four different waveforms applied to the memristor as shown in Figure 13(f–i).  
And the four kinds of STDP behaviors were fit by different equations [24].

Figure 9. Illustration of influence of shape of waveform of the voltage spikes on the STDP learning function ξ(∆T). X1 is 
spike waveform applied on the memristor, and X2 is resulting STDP learning function, where X goes from A to H [25].
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Figure 10. STDP simulations by the implementation of SPICE models, and for each ∆t, a sequence of 60 pulses has been used to 
change the conductance. The waveforms used were adapted (a) for the TiO2 device model and (b) for our BFO device model [26].

Figure 11. Schematic of the waveforms for memristor initialization, single pairing STDP, and memory consolidation. 
(A) A pre‐post spike order is used for long‐term potentiation (LTP). (B) A post‐pre spike order is used for long‐term 
depression (LTD) [19].
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Figure 12. STDP characteristics of a BFO‐based memristor with single pairing pulse width (A) tp = 10 ms, (B) tp = 1 ms, 
(C) tp = 500 μs, and (D) tp = 50 μs, measurement waiting time tw = 10,000 ms, pulse amplitude Vp = 3.0 V, reading pulse 
amplitude Vr = +2.0 V, and reading pulse width tr = 100 ms. The memristor was preset in HRS and LRS with a writing 
pulse amplitude of Vw = −8.0 V and Vw = +8.0 V, respectively [19].

Figure 13. STDP characteristics of memristor: (a) schematics of a biological synapse. The voltage spikes for (b) asymmetric 
Hebbian rule, (c) asymmetric anti‐Hebbian rule, (d) symmetric Hebbian rule, and (e) symmetric anti‐Hebbian rule. (f‐i) 
The current change with the applying of corresponding voltage spikes. The conductance of the synaptic device was read 
with a reading pulse amplitude of −0.75V before and after the applying of the voltage spikes with the interval of 3 s [24].
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Prezioso et al. investigated the STDP characteristics of the memristor with the structure of 
Pt/Al2O3/TiO2−x/Ti/Pt. Three pairs of preneuron spike and postneuron spike with different 
waveforms, which are shown in Figure 14(a–c), were applied on the memristor. Three dif‐
ferent STDP behaviors were observed, which are illustrated in Figure 14(g–i). The results 
demonstrated the dependence of STDP window on the waveform of preneuron spike and 
postneuron spike. The investigation regarding the influence of the initial conductance 
(G0) on the STDP behavior was also conducted. In this set of tests, the waveform shown 
in Figure 14(a) was used. The STDP functions for different initial conductance G0 = 25, 50, 
75, and 100 μS were measured and compared. The results shown in Figure 15 indicate the 
influence of the switching dynamics’ saturation of the memristors on the STDP property. 
All the memristors have their own dynamic range of the conductance. When G0 is close to 
its maximum value, the increase of the conductance is very low. And when G0 is close to its 
minimum value, the decrease of the conductance is very low [14].

Figure 14. Experimental results for STDP characteristics. (a–c) The shapes of presynaptic and postsynaptic voltage 
pulses, marked by black lines and red lines, respectively (d–f) The time maxima and minima of the net voltage applied 
to the memristor, as functions of the time interval Δt between the pre‐ and postsynaptic pulses. (g–i) STDP characteristic 
of the memristors: the relationship between the changes of memristor’s conductance and Δt. The initial memristor 
conductance G0 was always set to about 33 μS in all the experiments mentioned above [14].

Spike‐Timing‐Dependent Plasticity in Memristors
http://dx.doi.org/10.5772/intechopen.69535

293



Figure 12. STDP characteristics of a BFO‐based memristor with single pairing pulse width (A) tp = 10 ms, (B) tp = 1 ms, 
(C) tp = 500 μs, and (D) tp = 50 μs, measurement waiting time tw = 10,000 ms, pulse amplitude Vp = 3.0 V, reading pulse 
amplitude Vr = +2.0 V, and reading pulse width tr = 100 ms. The memristor was preset in HRS and LRS with a writing 
pulse amplitude of Vw = −8.0 V and Vw = +8.0 V, respectively [19].

Figure 13. STDP characteristics of memristor: (a) schematics of a biological synapse. The voltage spikes for (b) asymmetric 
Hebbian rule, (c) asymmetric anti‐Hebbian rule, (d) symmetric Hebbian rule, and (e) symmetric anti‐Hebbian rule. (f‐i) 
The current change with the applying of corresponding voltage spikes. The conductance of the synaptic device was read 
with a reading pulse amplitude of −0.75V before and after the applying of the voltage spikes with the interval of 3 s [24].

Memristor and Memristive Neural Networks292

  ΔW = A exp (−   Δ __ τ   ) + W  0    (2)

  ΔW = A exp (−   Δ  t   2  ___ 2  τ   2    ) + W  0    (3)

Prezioso et al. investigated the STDP characteristics of the memristor with the structure of 
Pt/Al2O3/TiO2−x/Ti/Pt. Three pairs of preneuron spike and postneuron spike with different 
waveforms, which are shown in Figure 14(a–c), were applied on the memristor. Three dif‐
ferent STDP behaviors were observed, which are illustrated in Figure 14(g–i). The results 
demonstrated the dependence of STDP window on the waveform of preneuron spike and 
postneuron spike. The investigation regarding the influence of the initial conductance 
(G0) on the STDP behavior was also conducted. In this set of tests, the waveform shown 
in Figure 14(a) was used. The STDP functions for different initial conductance G0 = 25, 50, 
75, and 100 μS were measured and compared. The results shown in Figure 15 indicate the 
influence of the switching dynamics’ saturation of the memristors on the STDP property. 
All the memristors have their own dynamic range of the conductance. When G0 is close to 
its maximum value, the increase of the conductance is very low. And when G0 is close to its 
minimum value, the decrease of the conductance is very low [14].

Figure 14. Experimental results for STDP characteristics. (a–c) The shapes of presynaptic and postsynaptic voltage 
pulses, marked by black lines and red lines, respectively (d–f) The time maxima and minima of the net voltage applied 
to the memristor, as functions of the time interval Δt between the pre‐ and postsynaptic pulses. (g–i) STDP characteristic 
of the memristors: the relationship between the changes of memristor’s conductance and Δt. The initial memristor 
conductance G0 was always set to about 33 μS in all the experiments mentioned above [14].

Spike‐Timing‐Dependent Plasticity in Memristors
http://dx.doi.org/10.5772/intechopen.69535

293



3. Conclusions

In summary, the STDP characteristics have been observed in different memristors based on 
different kinds of materials, which make memristors become promising in the bio‐inspired 
neuromorphic application. Great efforts have also been made in the investigation on the 
influence factors of the STDP characteristics such as device hysteresis characteristic and the 
waveform of the voltage pulses applied to the memristor as preneuron voltage spike and 
postneuron voltage spike. Different kinds of waveform were used, and different kinds of 
STDP characteristics were observed.
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Abstract

In this chapter, we present an overview of the recent advances in analog-to-digital con-
verter (ADC) neural networks. Biological neural networks consist of natural binarization
reflected by the neurosynaptic processes. This natural analog-to-binary conversion ability
of neurons can be modeled to emulate analog-to-digital conversion using a set of
nonlinear circuit elements and existing artificial neural network models. Since one neuron
during processing consumes on average only about half nanowatts of power, neurons can
perform highly energy-efficient operations, including pattern recognition. Analog-to-dig-
ital conversion itself is an example of simple pattern recognition where input analog
signal can be presented in one of the 2N different patterns for N bits. The classical
configuration of neural network-based ADC is Hopfield neural network ADC. Improved
designs, such as modified Hopfield network ADC, T-model neural ADC, and multilevel
neurons-based neural ADC, will be discussed. In addition, the latest architecture designs
of neural ADC such as hybrid complementary metal-oxide semiconductor (CMOS)-
memristor Hopfield ADC are covered at the end of this chapter.

Keywords: neural networks, analog-to-digital converters, Hopfield network

1. Introduction

This chapter presents a review of the advancements in the application of neural network (NN)
systems in analog-to-digital converter (ADC) design. Analog-to-digital (A/D) conversion is an
essential part of all microelectronic systems design that serves as a link between analog sensors
and digital-processing circuitry [1]. The dominant period of the ADC design development came
with the maturity of complementary metal-oxide semiconductor (CMOS) technologies [1]. At
present, there is a huge variety of high-speed and high-resolution ADCs based on the most
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Abstract

In this chapter, we present an overview of the recent advances in analog-to-digital con-
verter (ADC) neural networks. Biological neural networks consist of natural binarization
reflected by the neurosynaptic processes. This natural analog-to-binary conversion ability
of neurons can be modeled to emulate analog-to-digital conversion using a set of
nonlinear circuit elements and existing artificial neural network models. Since one neuron
during processing consumes on average only about half nanowatts of power, neurons can
perform highly energy-efficient operations, including pattern recognition. Analog-to-dig-
ital conversion itself is an example of simple pattern recognition where input analog
signal can be presented in one of the 2N different patterns for N bits. The classical
configuration of neural network-based ADC is Hopfield neural network ADC. Improved
designs, such as modified Hopfield network ADC, T-model neural ADC, and multilevel
neurons-based neural ADC, will be discussed. In addition, the latest architecture designs
of neural ADC such as hybrid complementary metal-oxide semiconductor (CMOS)-
memristor Hopfield ADC are covered at the end of this chapter.

Keywords: neural networks, analog-to-digital converters, Hopfield network

1. Introduction

This chapter presents a review of the advancements in the application of neural network (NN)
systems in analog-to-digital converter (ADC) design. Analog-to-digital (A/D) conversion is an
essential part of all microelectronic systems design that serves as a link between analog sensors
and digital-processing circuitry [1]. The dominant period of the ADC design development came
with the maturity of complementary metal-oxide semiconductor (CMOS) technologies [1]. At
present, there is a huge variety of high-speed and high-resolution ADCs based on the most
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advanced CMOS processes that are applicable for different applications [1]. In fact, even though
the ADC design field is mature, the complexity of the construction of properly operating ADC
system that fits certain applications is still high. In conventional CMOS ADCs, a number of
appropriately designed analog circuitries, such as switches, operational amplifiers, voltage
converters, and so on, are required [2]. However, with modern advancements in computational
systems and processing applications, the demand for faster processing and more flexible archi-
tectures that can perform a variety of tasks in the most efficient manner has increased. Artificial
neural network (ANN) technology is a well-known candidate that can resolve such demands in
high-performance A/D conversion as it divides the task between a number of simple processing
elements (neurons) [3]. Further, neurons can perform highly energy-efficient operations of
pattern recognition, in particular, one neuron during processing consumes on average only
about half nanowatts of power [4].

Since the early twentieth century, scientists and engineers have been trying to explain how
human brain functions, and a number of models that are aimed to mimic some features of the
biological neural networks were proposed. The work presented by McCulloch and Pitts [5] is
one of the first examples of mathematical modeling of ANN that is based on a two-state
neuron model. The information processing that is performed in biological neural networks
incorporates memorization, learning, classification, and so on and is performed by natural
binarization mechanism reflected by the neurosynaptic processes. Brain associative property
that is used in processing information is being discussed widely since the 1960s and later.
Based on the works presented by [5–8], Hopfield proposed a neural network model that
incorporates associative memory property. The idea that he presented is actually a model of
content addressable memory (CAM) that can be implemented in hardware [9–11]. He discov-
ered that such a type of network has collective computational properties so that it can be used
in solving different optimization problems [9–11].

One of the applications of such CAM-based neural network (NN) that was introduced by
Hopfield and Tank includes solving simple optimization problem such as analog-to-digital
(A/D) conversion, where the dynamics of the system is described by an energy function (or cost
function) [9]. The main concept behind the proper operation of the Hopfield NN is based on
minimization of the energy function, so that when the minimum value is achieved, the network
reaches its stable state [9–12]. In general, A/D conversion can be classified as an example of
simple pattern recognition where input analog signal can be presented in one of the 2N different
patterns for N bits. In Hopfield NN-based ADC, these digital patterns are stored as a memory
and are retrieved when the network reaches stable state after conversion period [11].

The NN model proposed by Hopfield represents a network of interconnected processing units
(neurons) connected through a symmetric connection matrix with zero diagonal elements [9–11,
13]. The interconnection nodes between neurons can be viewed as synaptic strength values. The
strength of each synapse is represented by the conductance value at each node. The network
dynamics is governed by the behaviour of energy function, E, so that when the energy function
is of the minimum value, the network reaches stable state and gives digital output [9–11, 13].

Therefore, in Section 2, a comprehensive discussion on Hopfield NN in general and the ADC
based on the Hopfield NN design is presented. The section addresses such topics as the theory

Memristor and Memristive Neural Networks298

of the Hopfield NN, the description of how to construct an ADC structure and the problems
that appear in the Hopfield NN ADC. In Section 3, a review of different designs based on
original Hopfield ADC such as modified Hopfield neural ADC, NN-based ADCs with non-
symmetrical weight matrix, NN-based ADC with multilevel neurons and level-shifted neural
ADC is presented. In Section 4, recent CMOS-memristor-based ADC architectures are
reviewed. The last section summarizes and gives a conclusion for this chapter.

2. Hopfield neural network ADC

2.1. The Hopfield ADC theory

In his early works, Hopfield introduced the ideas behind the emergent collective computa-
tional properties of highly interconnected associative networks [9, 10]. The neural network
models that were presented earlier were of Perceptron type and were implemented by
feedforward architecture [13]. By contrast, Hopfield presented a different type of architecture
with fully interconnected neurons, where each neuron translates its output to the inputs of the
remaining neurons through feedback connections [9, 10]. The strength of each feedback con-
nection is represented by its weight (or synapse). In a later work, Hopfield and Tank [11]
presented methods of how the network can be applied in solving optimization problems, such
as A/D conversion, signal decomposition and linear programming.

One of the earliest works on artificial neural networks (ANNs) by McCulloch and Pitts [5]
described a two-state (on-state and off-state) stochastic neuron model that simplifies biolog-
ical neural function to simple logical operation. However, this model was not applicable for
analog processing as it did not have the continuous behaviour as of biological neurons
[10, 11, 13]. Hopfield proposed the NN model with continuous neuron response [10, 11, 13],
which has computation properties of the stochastic model [9] that can be implemented in
hardware. Continuous neuron response in Hopfield NN can be interpreted as an analogy of
graded dependence of firing rate produced by the soma of biological neuron as the input
signal to the neuron membrane [10, 11, 13] without considering action potential signal
details. Two states in neuron model are considered as ‘0’ for not firing state and ‘1’ for firing
at a maximum rate [10, 11, 13]. The graded response function that describes such depen-
dence is neuron’s activation function gi uið Þ that is represented by monotonically increasing
sigmoid function (Eq. (1))

gi uið Þ ¼ 1
1þ exp uið Þ (1)

where ui is the input voltage to neuron, so the neuron’s output signal will be equal to Vi ¼ gi uið Þ.
The neuron output Vi can be either logic high or logic low depending on whether the effective
input voltage to neuron ui is higher or lower than the neuron threshold, as it can be observed
from Figure 1.
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function) [9]. The main concept behind the proper operation of the Hopfield NN is based on
minimization of the energy function, so that when the minimum value is achieved, the network
reaches its stable state [9–12]. In general, A/D conversion can be classified as an example of
simple pattern recognition where input analog signal can be presented in one of the 2N different
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and are retrieved when the network reaches stable state after conversion period [11].

The NN model proposed by Hopfield represents a network of interconnected processing units
(neurons) connected through a symmetric connection matrix with zero diagonal elements [9–11,
13]. The interconnection nodes between neurons can be viewed as synaptic strength values. The
strength of each synapse is represented by the conductance value at each node. The network
dynamics is governed by the behaviour of energy function, E, so that when the energy function
is of the minimum value, the network reaches stable state and gives digital output [9–11, 13].

Therefore, in Section 2, a comprehensive discussion on Hopfield NN in general and the ADC
based on the Hopfield NN design is presented. The section addresses such topics as the theory
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that appear in the Hopfield NN ADC. In Section 3, a review of different designs based on
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ADC is presented. In Section 4, recent CMOS-memristor-based ADC architectures are
reviewed. The last section summarizes and gives a conclusion for this chapter.
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In his early works, Hopfield introduced the ideas behind the emergent collective computa-
tional properties of highly interconnected associative networks [9, 10]. The neural network
models that were presented earlier were of Perceptron type and were implemented by
feedforward architecture [13]. By contrast, Hopfield presented a different type of architecture
with fully interconnected neurons, where each neuron translates its output to the inputs of the
remaining neurons through feedback connections [9, 10]. The strength of each feedback con-
nection is represented by its weight (or synapse). In a later work, Hopfield and Tank [11]
presented methods of how the network can be applied in solving optimization problems, such
as A/D conversion, signal decomposition and linear programming.

One of the earliest works on artificial neural networks (ANNs) by McCulloch and Pitts [5]
described a two-state (on-state and off-state) stochastic neuron model that simplifies biolog-
ical neural function to simple logical operation. However, this model was not applicable for
analog processing as it did not have the continuous behaviour as of biological neurons
[10, 11, 13]. Hopfield proposed the NN model with continuous neuron response [10, 11, 13],
which has computation properties of the stochastic model [9] that can be implemented in
hardware. Continuous neuron response in Hopfield NN can be interpreted as an analogy of
graded dependence of firing rate produced by the soma of biological neuron as the input
signal to the neuron membrane [10, 11, 13] without considering action potential signal
details. Two states in neuron model are considered as ‘0’ for not firing state and ‘1’ for firing
at a maximum rate [10, 11, 13]. The graded response function that describes such depen-
dence is neuron’s activation function gi uið Þ that is represented by monotonically increasing
sigmoid function (Eq. (1))

gi uið Þ ¼ 1
1þ exp uið Þ (1)

where ui is the input voltage to neuron, so the neuron’s output signal will be equal to Vi ¼ gi uið Þ.
The neuron output Vi can be either logic high or logic low depending on whether the effective
input voltage to neuron ui is higher or lower than the neuron threshold, as it can be observed
from Figure 1.

Neural Network-Based Analog-to-Digital Converters
http://dx.doi.org/10.5772/intechopen.73038

299



The hardware implementation of 4-bit Hopfield NN ADC proposed in [11] is shown in
Figure 2. As it is described in [11], at each analog input level, the network creates an energy
function surface that consists of local minima states with one global minimum for this partic-
ular analog input. The global minimum for each input level represents the correct digital
representation for the input signal [11]. The dynamics of the system can be viewed as a flow
in energy state space that tends to minimize E, so that when the network reaches minimum it
stops searching process [10, 13]. When the ADC network arrives at an energy minimum state,
it should produce an output code that best represents the corresponding analog input. Thus,
the E function is a Lyapunov stability function of the system [10]. The proper operation of the
Hopfield ADC is achieved when the voltage level of the output code is equal to the value of the
analog input, Eq. (2).

Figure 1. Neuron sigmoidal transfer function.

Figure 2. 4-bit Hopfield neural network ADC.

Memristor and Memristive Neural Networks300

VIn ¼
XN�1

i¼0

2iVi (2)

The ADC network consists of four neurons that are interconnected by a synaptic weight matrix.
The network dynamics is highly dependent on the values of synaptic matrix elements. This
dependency was analysed by Hopfield in his work [9, 10], where it is deduced that for the
system to reach a stable state two conditions should be maintained: (1) the symmetrical synaptic
weight matrix Tij ¼ Tji and (2) the diagonal synaptic weights that correspond to feedbacks from
neurons to their own inputs should be equal to zero Tii ¼ 0. Following this condition, as it is
shown in [9–11, 13], the Hopfield neural network should converge to a stable state. The energy
function for the Hopfield network with symmetric weight matrix is shown by Eq. (3)
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where the term gi
�1 Vð Þ is equal to the neuron input potential ui and Ri is the neuron input

resistance [10, 13].

The NN proposed by Hopfield has the features that correlate with biological NNs and so it
represents a simplified analogy of biological NNs. The system dynamic change can be
described by the first-order differential equation of the rate of change of ith neuron input
potential, Eq. (4). The capacitance C that is present at the neuron input is a circuit representa-
tion of neuron cell membrane capacitance, while the term TIni þ TRi þ

P
i Tij ¼ 1 Ri= in which Ri

can be viewed as neuron cell transmembrane resistance [6]
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From Eq. (4), it is seen that ith neuron is charged by integrating the current flowing into the
neuron with charging RC time constant [10, 13]. The current that flows into the neuron consists
of three components formed prior to the neuron input, which are postsynaptic current TijVj from
neuron j, analog input current TIniVIn and constant reference current TRiVref [10, 13].

The ADC operation also can be described by the energy function shown by Eq. (5) [11]. The
first term of Eq. (5) shows the squared difference between analog input voltage and the
corresponding digital output voltage. As it was previously assumed, the value of analog input
voltage should be close to the voltage level of the corresponding output code, see Eq. (2). If for
particular VIn the output code V3V2V1V0 is the most correct digital representation, the first
term of Eq. (5) should be equal to zero [11]. The second term in Eq. (5) is added to ensure that
the digital output voltages Vi will be of logic ‘0’ and ‘1’ [11]
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it should produce an output code that best represents the corresponding analog input. Thus,
the E function is a Lyapunov stability function of the system [10]. The proper operation of the
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Figure 2. 4-bit Hopfield neural network ADC.
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first term of Eq. (5) shows the squared difference between analog input voltage and the
corresponding digital output voltage. As it was previously assumed, the value of analog input
voltage should be close to the voltage level of the corresponding output code, see Eq. (2). If for
particular VIn the output code V3V2V1V0 is the most correct digital representation, the first
term of Eq. (5) should be equal to zero [11]. The second term in Eq. (5) is added to ensure that
the digital output voltages Vi will be of logic ‘0’ and ‘1’ [11]
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After expanding and rearrangement of the above equation, we get the expression shown in
Eq. (6). By using Eq. (6), the expressions for synaptic weights calculation can be obtained, Eq. (7)
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Therefore, four-bit Hopfield NN ADC can be designed by using Eqs. (2)–(7).

2.2. The local minima problem

As it is already discussed, the stability of the Hopfield NN is achieved when the energy
function is at its minimum in the state space. The dynamics of the system is moving towards
decreasing the energy function. Thus, for the Hopfield NN the energy state space will have
multiple local minima, where each of these local minima states is able to stabilize the system
dynamics. In theory, the ADC structure proposed by Tank and Hopfield [11], which is based
on the Hopfield NN with symmetric weight matrix, has to retrieve correct digital response of
the analog input voltage by means of the energy local minima states that are assigned for each
correct digital output. However, in practice, this concept does not work as is expected. It
appears that the local minima states corrupt the correct operation of the network [14–19].

In the original Hopfield’s work [11], it was proposed to implement neurons with the CMOS
operational amplifiers. The results that were obtained exhibit not ideal ADC behaviour with
incorrect output states (Figure 3).

Figure 3. Hopfield NN ADC transfer characteristics with digital errors.
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It is found that after each A/D conversion cycle, the threshold voltage of each neuron circuitry
differs from the pre-set value of uth ¼ 0 V [11], such that the response of comparators exhibits
offset. The authors in [11] proposed that the behaviour caused by the hysteresis of CMOS
neurons in addition to the local minima states is a dominant contributor to the wrong network
response. This hysteresis change in thresholds makes the system to stabilize at the local
minima state, which is located closer to the network’s present energy state at the moment of
conversion [14–19]. In order to solve this problem, one of the solutions is to reset the neuron
state to the initial threshold value after each conversion [11]. However, the main disadvantage
of this method is that it requires more power.

Alternatively, in the works [11–16], the authors proposed to change the Hopfield ADC net-
work architecture itself in order to eliminate the local minima states, which cause errors in the
ADC outputs. Thus, different methods on eliminating local minima problem are proposed in
[14–19], which are discussed in more detail in Section 3.

3. Hopfield neural network-based ADCs

The design presented by Hopfield and Tank is a first example of ADC task implementation
with neural networks. This idea became very popular later, as it appeared very simple com-
pared to the conventional designs and, moreover, it opens up the possibilities to explore its
phenomenological computational abilities which is a good contribution for science and engi-
neering by itself.

As it was previously described, the existence of local minima in the dynamics of the original
Hopfield network ADC design corrupts its digital output by generating spurious states. This
problem was addressed by several works that presented the ways of eliminating the local
minima states by changing the structure of the ADC network [14–19]. In the following subsec-
tion, the two methods that are claimed to eliminate the problem of local minima of the energy
function are presented.

3.1. Eliminating the local minima problem of Hopfield ADC

3.1.1. Modified Hopfield architecture with correction currents

In the study by [14], the authors analyzed the stability of the output codes of Hopfield network
ADC in terms of overlap of input currents between two adjacent output codes which is defined
as GAP. According to Lee and Sheu [14], in order to avoid the local minima state, this
parameter should be higher or equal to zero. Thus, it was deduced that in order to eliminate
this current overlap condition, the correction currents can be applied back to the inputs of
Hopfield network through the additional set of conductance weights [14].

The modified Hopfield network ADC schematic diagram is shown in Figure 2. The correction
currents are generated by inverting amplifiers in order to compensate the overlap and to
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pared to the conventional designs and, moreover, it opens up the possibilities to explore its
phenomenological computational abilities which is a good contribution for science and engi-
neering by itself.

As it was previously described, the existence of local minima in the dynamics of the original
Hopfield network ADC design corrupts its digital output by generating spurious states. This
problem was addressed by several works that presented the ways of eliminating the local
minima states by changing the structure of the ADC network [14–19]. In the following subsec-
tion, the two methods that are claimed to eliminate the problem of local minima of the energy
function are presented.
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3.1.1. Modified Hopfield architecture with correction currents

In the study by [14], the authors analyzed the stability of the output codes of Hopfield network
ADC in terms of overlap of input currents between two adjacent output codes which is defined
as GAP. According to Lee and Sheu [14], in order to avoid the local minima state, this
parameter should be higher or equal to zero. Thus, it was deduced that in order to eliminate
this current overlap condition, the correction currents can be applied back to the inputs of
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The modified Hopfield network ADC schematic diagram is shown in Figure 2. The correction
currents are generated by inverting amplifiers in order to compensate the overlap and to
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maintain system dynamics converging to a stable state. In Eq. (8), the dynamics of network in a
stable state with applied correction current, IiC, is described.

Tiui ¼
XN�1

i ¼ 0 j ¼ 0
j 6¼ i

TijVj þ Ii þ IiC (8)

The energy function of the modified Hopfield network can be described by adding an addi-
tional term that represents the correction currents, Eq. (8). The correcting energy eliminates the
local minima states and gives the network one global minimum energy state [14].

EC ¼ � 1
2

XN�1

i ¼ 0 j ¼ 0
i 6¼ j

TijViVj �
XN�1

i¼0

IiVi �
XN�1

i¼1

IiCVi (9)

There are certain conditions, according to [14], that should be followed while selecting the
correction currents and conductance values. The first condition is to avoid the state when the
GAPC parameter is less than zero so that to avoid the two adjacent codes be stable simulta-
neously. The second condition states that the network dynamics must be sustained in the
operation that minimizes energy function of the system. The last condition is to maintain the
input current range in appropriate for the global minimum value. For the detailed description
of the method, please refer to [14].

3.1.2. Non-symmetric Hopfield architecture

The type of architecture based on Hopfield network is built with non-symmetric connection
weight matrix, which is another example that is aimed to solve the local minima states
problem. In the designs by [15–19], the properties of the triangular connections are analyzed.
In [19], the authors prove that by triangular interconnection matrix the network operates
without spurious states and that this type of architecture can be a good alternative for the
original Hopfield design. Similar network type was analyzed by Sun et al. [18], and it is proven
that the local minima problem can be mitigated by using this architecture. Taking into account
the structure of the model [18], the learning component can be applied to the network making
this type of architecture advantageous over the original one.

In Figure 3, the non-symmetric T-model ADC is shown. The input current at each raw repre-
sents the current flowing from the external analog input source and from the reference.

This section presents an overview of the designs of neural network ADC of Hopfield network
type that solves the problem of the local minima of energy function that creates the digital
error at the output of the ADC. We introduced a brief explanation of the two methods of
elimination of the local minima.

3.2. Hopfield ADC with multilevel neurons

An interesting alternative design is proposed by [20, 21] in which the authors focus on
implementing analog neurons to be of multiple states. The design named as Multilevel Neural
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Network is applied to the original Hopfield neural network ADC by replacing the conventional
two-state sigmoidal neurons by multiple-state (or multiple threshold) neurons [21]. The moti-
vation under this idea is to create a type of neural ADC with better resolution but with the
same number (or even less number) of synaptic weights as in the original Hopfield ADC
design [18]. This method reduces the complexity of weight matrix and makes it easier to
implement the ADC with improved resolution in hardware [21].

The schematic diagram of the ADC proposed in [21] is shown in Figure 4. Being a distinguish-
able alternative neural networks-based ADC design, it still does not solve the problems of the
local minima states of the Hopfield associative network. In [21], the authors considered this
case and proposed to solve the local minima by additional correction current method [14].

The multilevel neuron dynamics is described by the block diagram shown in Figure 5 [21]. In
the original Hopfield ADC, continuous neuron model dynamics is described by the first-order
differential equation (Eq. (4)). The two-state neuron activation function is expressed by Eq. (1).
The neuron output is then equal to Vi ¼ gi uið Þ, and it can take two states logic high and logic
low (refer to Section 2). In multilevel neuron model, a two-state activation function neuron is
replaced with the multiple-state nonlinearity block (Eq. (10)) (Figures 6 and 7)

Vi ¼ Mi uið Þ (10)

The nonlinearity function M uð Þ shown in Eq. (10) is described as a sum of monotonically
nondecreasing step functions f j :ð Þ with different threshold values θj, where the state of the

Figure 4. Schematic representation of modified Hopfield network ADC.

Figure 5. Non-symmetric T-model ADC.
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maintain system dynamics converging to a stable state. In Eq. (8), the dynamics of network in a
stable state with applied correction current, IiC, is described.
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The energy function of the modified Hopfield network can be described by adding an addi-
tional term that represents the correction currents, Eq. (8). The correcting energy eliminates the
local minima states and gives the network one global minimum energy state [14].
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weight matrix, which is another example that is aimed to solve the local minima states
problem. In the designs by [15–19], the properties of the triangular connections are analyzed.
In [19], the authors prove that by triangular interconnection matrix the network operates
without spurious states and that this type of architecture can be a good alternative for the
original Hopfield design. Similar network type was analyzed by Sun et al. [18], and it is proven
that the local minima problem can be mitigated by using this architecture. Taking into account
the structure of the model [18], the learning component can be applied to the network making
this type of architecture advantageous over the original one.

In Figure 3, the non-symmetric T-model ADC is shown. The input current at each raw repre-
sents the current flowing from the external analog input source and from the reference.

This section presents an overview of the designs of neural network ADC of Hopfield network
type that solves the problem of the local minima of energy function that creates the digital
error at the output of the ADC. We introduced a brief explanation of the two methods of
elimination of the local minima.

3.2. Hopfield ADC with multilevel neurons

An interesting alternative design is proposed by [20, 21] in which the authors focus on
implementing analog neurons to be of multiple states. The design named as Multilevel Neural
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Network is applied to the original Hopfield neural network ADC by replacing the conventional
two-state sigmoidal neurons by multiple-state (or multiple threshold) neurons [21]. The moti-
vation under this idea is to create a type of neural ADC with better resolution but with the
same number (or even less number) of synaptic weights as in the original Hopfield ADC
design [18]. This method reduces the complexity of weight matrix and makes it easier to
implement the ADC with improved resolution in hardware [21].

The schematic diagram of the ADC proposed in [21] is shown in Figure 4. Being a distinguish-
able alternative neural networks-based ADC design, it still does not solve the problems of the
local minima states of the Hopfield associative network. In [21], the authors considered this
case and proposed to solve the local minima by additional correction current method [14].

The multilevel neuron dynamics is described by the block diagram shown in Figure 5 [21]. In
the original Hopfield ADC, continuous neuron model dynamics is described by the first-order
differential equation (Eq. (4)). The two-state neuron activation function is expressed by Eq. (1).
The neuron output is then equal to Vi ¼ gi uið Þ, and it can take two states logic high and logic
low (refer to Section 2). In multilevel neuron model, a two-state activation function neuron is
replaced with the multiple-state nonlinearity block (Eq. (10)) (Figures 6 and 7)

Vi ¼ Mi uið Þ (10)

The nonlinearity function M uð Þ shown in Eq. (10) is described as a sum of monotonically
nondecreasing step functions f j :ð Þ with different threshold values θj, where the state of the
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Figure 6. Multilevel neural ADC.

Figure 7. Multilevel neuron block diagram.
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neuron changes. Each step function is multiplied by the positive coefficient parameter that can be
seen as an offset parameter bj. The sigmoidal multilevel nonlinearity can be observed in Figure 8

M uð Þ ¼
Xl�1

j¼0

bjf j u� θj
� �

(11)

The neuron dynamics can be expressed by the block diagram shown in Figure 7. The term
Xi uið Þ ¼ Giui translates information about the current state to its own input so that when the
input current value Ii is higher than the Xi uið Þ, the state of the neuron is increased. In this
design, the additional Gi value is present as a diagonal element in the weight matrix [18].
Therefore, the system is described by Eq. (12)

Ci
dui
dt

¼
Xn�1

j¼0

TijVj � Giui þ Ii (12)

ui ¼ M�1 Við Þ (13)

The energy function for the multilevel ADC architecture can also be found by the square of
difference expression, Eq. (14). The number of levels in the multilevel nonlinearity block of the
neuron is m ¼ 0, 1, 2,…, l� 1 and l represents the base of conversion [21]. The system tends to
find the correct digital representation with base l of analog input signal with the minimum
energy function value [21]. After expanding Eq. (14), Eq. (15) is obtained, which gives the
synaptic weight values of the network, Eq. (16)

E ¼ 1
2

VIn �
XN�1

i¼0

liVi

 !2

(14)

E ¼ � 1
2

XN�1

i ¼ 0 j ¼ 0
i 6¼ j
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i¼0

liVIn Vi þ 1
2

XN�1

i¼0

l2iVi
2 (15)

Figure 8. Sigmoidal multilevel nonlinearity.
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design, the additional Gi value is present as a diagonal element in the weight matrix [18].
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Tij ¼ �liþj (16)

In the ADC with multilevel neurons, the design system suffers from the local minima problem,
which they solve by applying a similar technique that was proposed by [14] described in the
previous subsection [21]. Another method of eliminating incorrect output response for
multilevel neuron-based ADC was presented in [19], where the parallel hardware-annealing
technique was introduced.

3.3. Hopfield neural network-based level-shifted ADC

In the previous subsections, we discussed various types of architectures that are the modified
versions of Hopfield ADC, such as the ADC with correction current, the ADC with non-
symmetric weight matrix and the ADC with multilevel neurons. All these designs are based on
the original Hopfield ADC structure. However, in this subsection we discuss a type of Hopfield-
based ADC that is different from the earlier architectures discussed. The level-shifted neural
ADC [23] is a new type of architecture that is constructed with multiple 2-bit Hopfield ADCs and
voltage level shifters (Figure 9). The ADC design proposed by Hopfield and Tank [11] produces
a 4-bit digital output, which is not very much practical in modern technologies. In order to
increase the number of neurons in Hopfield NN ADC [11], the corresponding scaling of input
and output voltages should be made according to Eq. (2). Therefore, if the goal is to increase the
resolution by increasing the number of neurons of Hopfield ADC, the binary output voltage
values from neurons will be reduced. Furthermore, the resolution change will require appropri-
ate scaling of the weight matrix. These two problems were addressed in [20–22] and methods
that solve these problems were presented. The level-shifted neural ADC is another method that
can solve the resolution improvement issue of Hopfield NN ADC.

The operation principle of the proposed level-shifted neural ADC [23] is not very complicated
compared to the designs in [14–22]. As it was mentioned, the design consists of multiple 2-bit

Figure 9. Level-shifted neural ADC.
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Hopfield ADC blocks that operate in parallel. Each successive 2-bit ADC block receives input
signal that is DC-shifted to some small positive voltage level. The design parameters can be
adjusted depending on the application of the ADC.

The preliminary results of the level-shifted neural ADC for 16-quantization level ADC are
presented in [23]. As the design consists of multiple operation in parallel 2-bit Hopfield ADCs,
the number of output bits in the digital code is larger compared to the conventional Hopfield
ADC. Therefore, it is proposed to use a feedforward neural network encoder so that the digital
output will be of a 4-bit format and also to reduce the error in computation due to the local
minima and circuit nonidealities.

4. CMOS/memristor hybrid network-based ADC

Since memristor, the fourth fundamental circuit element [24], was discovered by HP Labs in
2008 [25], the device is receiving very high attention as it has a potential to emulate the
functionality of biological synapses. During the past decade, many scientists have shown a
variety of methods of memristor application in hardware design of ANN systems. For
instance, in [26] the hybrid CMOS-memristor Hopfield network-based associative memory is
demonstrated. While in the work conducted by Guo et al. [27], the CMOS-memristor hybrid
architecture is applied in the design of 4-bit Hopfield neural ADC. Figure 10 reflects the
schematic of the system proposed in [27].

The CMOS-memristor hybrid Hopfield ADC [27] consists of memristor-based weight matrix
and sigmoidal CMOS neurons. The advantage of implementing constant synapses (in
Hopfield NN for ADC design synaptic weights a preset and kept unchanged [11]) with
memristors is that being a nanoscale device, memristors consume much less power [27].
Moreover, they significantly reduce the on-chip area compared to CMOS-based synaptic
weights [27]. In their work, Guo et al. [27] demonstrated the simulation of the proposed system
and also successfully implemented their circuit in hardware.

The tuning of memristors is performed by applying either voltage or current pulses with
gradually changing amplitude (and/or width) continuously until the device reaches a desired
resistance state [27]. In order to sustain the pre-programmed resistances in memristive weight
matrix, the network-operating region (analog input and neuron maximum output voltage)
was scaled down so as to prevent any resistance state fluctuations in memristors [27]. The
CMOS-memristor hybrid ADC applied resetting the neuron states technique similar to that
demonstrated in [11] for reduction of the effects of the local minima states.

Another type of CMOS-memristor hybrid neural ADC is a T-model neural ADC architecture
proposed by [2]. In the design by Wang et al. [2], the additional least mean square (LMS)
training algorithm is applied in order to optimize the system operation to certain conditions.
The LMS algorithm that was used in [2] allows flexibility to ADC in terms of voltage operation
region. The training algorithm is implemented by means of digital training block connected to
the T-model weight matrix. The works presented in [2, 27] introduce architectures of neural
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Hopfield ADC blocks that operate in parallel. Each successive 2-bit ADC block receives input
signal that is DC-shifted to some small positive voltage level. The design parameters can be
adjusted depending on the application of the ADC.

The preliminary results of the level-shifted neural ADC for 16-quantization level ADC are
presented in [23]. As the design consists of multiple operation in parallel 2-bit Hopfield ADCs,
the number of output bits in the digital code is larger compared to the conventional Hopfield
ADC. Therefore, it is proposed to use a feedforward neural network encoder so that the digital
output will be of a 4-bit format and also to reduce the error in computation due to the local
minima and circuit nonidealities.

4. CMOS/memristor hybrid network-based ADC

Since memristor, the fourth fundamental circuit element [24], was discovered by HP Labs in
2008 [25], the device is receiving very high attention as it has a potential to emulate the
functionality of biological synapses. During the past decade, many scientists have shown a
variety of methods of memristor application in hardware design of ANN systems. For
instance, in [26] the hybrid CMOS-memristor Hopfield network-based associative memory is
demonstrated. While in the work conducted by Guo et al. [27], the CMOS-memristor hybrid
architecture is applied in the design of 4-bit Hopfield neural ADC. Figure 10 reflects the
schematic of the system proposed in [27].

The CMOS-memristor hybrid Hopfield ADC [27] consists of memristor-based weight matrix
and sigmoidal CMOS neurons. The advantage of implementing constant synapses (in
Hopfield NN for ADC design synaptic weights a preset and kept unchanged [11]) with
memristors is that being a nanoscale device, memristors consume much less power [27].
Moreover, they significantly reduce the on-chip area compared to CMOS-based synaptic
weights [27]. In their work, Guo et al. [27] demonstrated the simulation of the proposed system
and also successfully implemented their circuit in hardware.

The tuning of memristors is performed by applying either voltage or current pulses with
gradually changing amplitude (and/or width) continuously until the device reaches a desired
resistance state [27]. In order to sustain the pre-programmed resistances in memristive weight
matrix, the network-operating region (analog input and neuron maximum output voltage)
was scaled down so as to prevent any resistance state fluctuations in memristors [27]. The
CMOS-memristor hybrid ADC applied resetting the neuron states technique similar to that
demonstrated in [11] for reduction of the effects of the local minima states.

Another type of CMOS-memristor hybrid neural ADC is a T-model neural ADC architecture
proposed by [2]. In the design by Wang et al. [2], the additional least mean square (LMS)
training algorithm is applied in order to optimize the system operation to certain conditions.
The LMS algorithm that was used in [2] allows flexibility to ADC in terms of voltage operation
region. The training algorithm is implemented by means of digital training block connected to
the T-model weight matrix. The works presented in [2, 27] introduce architectures of neural
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ADC that utilize memristors as a synaptic weight elements. They demonstrate that the lower
power consumption of the memristive devices can be applied in the Hopfield NN ADC design.
By contrast, the Hopfield network still requires additional circuitry to eliminate the local
minima-related errors.

5. Discussion

The Hopfield network-based ADCs represent a compact approach for the implementation of
analog-to-digital conversion task. However, if trying to implement the model in hardware, the
multiple circuit nonidealities create errors in the digital output that somehow must be
corrected. For instance, as it was discussed previously, the offset response (hysteresis) of
comparators after each conversion creates condition for the network to develop incorrect
patterns. The possible solution for eliminating offset is to reset the comparators periodically
after each conversion to the initial 0-V threshold state, as it was already mentioned [11].
However, this method is not preferable in terms of circuit implementation, as such circuit
requires more power. Another problem, as it was previously discussed, was the local minima
behaviour of Hopfield network that creates spurious states so that the output does not corre-
spond to the desired response. The existence of local minima of the network is deduced by

Figure 10. CMOS-memristor hybrid neural ADC.
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circuit analysis techniques in [14], and it was proposed to add a feedback current that will
balance the network and create a single energy minimum for the whole system dynamics.
Thus, the Hopfield NN-based ADC examples discussed in this chapter are still not adapted
into practical use. Even though the local minima problem was mitigated, there is not much
analysis on resolution improvement. In [20–22] by means of multilevel neuron structure, the 8-
bit of resolution was achieved. However, ADC structure becomes much more complex since it
incorporates multilevel nonlinearity blocks in each neuron and also uses correction current
technique as in [14]. Therefore, in order to achieve performance as better as possible from such
type of designs as Hopfield network-based ADCs, the complexity of system components must
be increased and many parameters must be taken into account, such as circuit mismatches and
offsets since they can affect the output significantly. In addition, the analog structure of
Hopfield network-based ADCs creates limitations to resolution improvement and thus makes
these designs difficult to be implemented and to be compatible with conventional ADCs.

The alternative ADC structure based on Neural Engineering Framework (NEF) was demon-
strated in [28], where it is proposed to shift system parts as much as possible into the digital
domain, and only the front end of the ADC incorporates feedforward-type neural network
encoder that passes signal to analog neurons, and the rest of the processing is done in digital
form. Since the design uses a huge population of neurons in the input, even some amount of
neurons will fail and the system is robust to such failures. Moreover, the stability issue is no
longer valid in this type of architecture, as the neural network used in the design is purely
feedforward. The NEF ADC is generally flexible and scalable, as it mostly consists of digital
circuitry, and therefore, it can be adapted to any system requirements and technologies. How-
ever, the unresolved issue of the design is a very high power consumption of the network [28].

6. Conclusion

This chapter presents a review of existing technologies of neural network-based ADC designs.
A/D conversion is an essential process in microelectronic systems that create a connection
between analog systems (e.g., sensors) and digital-processing circuitry [1]. With the modern
advancements in submicron CMOS technologies, a variety of high-speed and high-resolution
ADCs that are used in different applications have increased [1]. In fact, considering the
maturity of the field, the complexity of building an ADC has not been reduced. Moreover,
due to the applications that require higher performance and flexibility, the resources of con-
ventional ADC architectures may not be enough. Artificial intelligence is considered to tackle
such high requirements on speed and performance. The A/D conversion is not excluded from
the list of operations that can be done by means of ANN.

In classical works presented by Hopfield [9, 10], he proposed a mathematical CAM model that
consists of a group of two-state neurons interconnected between each other that exhibit collective
computational behaviour. He further presented the design that can solve optimization problems
[11]. The A/D conversion in his work [11] was considered as a simple optimization problem in
which it was desired to minimize the value of energy function that describes the dynamics of the
ADC system. He presented a 4-bit NN ADC architecture that can be implemented in hardware
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circuit analysis techniques in [14], and it was proposed to add a feedback current that will
balance the network and create a single energy minimum for the whole system dynamics.
Thus, the Hopfield NN-based ADC examples discussed in this chapter are still not adapted
into practical use. Even though the local minima problem was mitigated, there is not much
analysis on resolution improvement. In [20–22] by means of multilevel neuron structure, the 8-
bit of resolution was achieved. However, ADC structure becomes much more complex since it
incorporates multilevel nonlinearity blocks in each neuron and also uses correction current
technique as in [14]. Therefore, in order to achieve performance as better as possible from such
type of designs as Hopfield network-based ADCs, the complexity of system components must
be increased and many parameters must be taken into account, such as circuit mismatches and
offsets since they can affect the output significantly. In addition, the analog structure of
Hopfield network-based ADCs creates limitations to resolution improvement and thus makes
these designs difficult to be implemented and to be compatible with conventional ADCs.

The alternative ADC structure based on Neural Engineering Framework (NEF) was demon-
strated in [28], where it is proposed to shift system parts as much as possible into the digital
domain, and only the front end of the ADC incorporates feedforward-type neural network
encoder that passes signal to analog neurons, and the rest of the processing is done in digital
form. Since the design uses a huge population of neurons in the input, even some amount of
neurons will fail and the system is robust to such failures. Moreover, the stability issue is no
longer valid in this type of architecture, as the neural network used in the design is purely
feedforward. The NEF ADC is generally flexible and scalable, as it mostly consists of digital
circuitry, and therefore, it can be adapted to any system requirements and technologies. How-
ever, the unresolved issue of the design is a very high power consumption of the network [28].

6. Conclusion

This chapter presents a review of existing technologies of neural network-based ADC designs.
A/D conversion is an essential process in microelectronic systems that create a connection
between analog systems (e.g., sensors) and digital-processing circuitry [1]. With the modern
advancements in submicron CMOS technologies, a variety of high-speed and high-resolution
ADCs that are used in different applications have increased [1]. In fact, considering the
maturity of the field, the complexity of building an ADC has not been reduced. Moreover,
due to the applications that require higher performance and flexibility, the resources of con-
ventional ADC architectures may not be enough. Artificial intelligence is considered to tackle
such high requirements on speed and performance. The A/D conversion is not excluded from
the list of operations that can be done by means of ANN.

In classical works presented by Hopfield [9, 10], he proposed a mathematical CAM model that
consists of a group of two-state neurons interconnected between each other that exhibit collective
computational behaviour. He further presented the design that can solve optimization problems
[11]. The A/D conversion in his work [11] was considered as a simple optimization problem in
which it was desired to minimize the value of energy function that describes the dynamics of the
ADC system. He presented a 4-bit NN ADC architecture that can be implemented in hardware
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[11]. However, the ADC architecture has intrinsic imperfection due to multiple local minima of
energy function that creates digital error in the output of the ADC [14–19].

To solve the local minima problem, several methods are proposed in [14–19]. As it is discussed
in Section 3, there are two main methods of eliminating the local minima states and obtaining
one global minimum. In the modified Hopfield ADC design, it is proposed to apply correction
currents back to the input of each neuron in order to reduce the overlapping current occurring
between adjacent output codes [14]. This method eliminates local minima and creates one
global minimum towards which the network flow is attracted [14]. Another interesting
method that also reduces the effects of local minima is the neural ADC with non-symmetrical
weight matrix connection [15–19]. According to this method, ADC architectures with non-
symmetrical weight matrix do not create multiple energy minima states; as a result, such
networks are also attracted to a global minimum energy state [15–19].

Multilevel neural ADC architecture [21] is based on the original Hopfield ADC structure but
with modified neuron model. The authors in [21] proposed a multiple-state neuron implemen-
tation that is aimed to improve the resolution of the ADC. A similar goal, to improve resolu-
tion, was pursued by the level-shifted neural ADC architecture [23] that is built with multiple
Hopfield ADC blocks and voltage level shifters.

In addition to the presented CMOS-based neural ADC structures in Section 3, examples of
CMOS-memristor-based neural ADC architecture [2, 27] are discussed in Section 4. The
memristor device is a promising technology that is aimed to expand the capabilities of tradi-
tional CMOS-based systems. The application of memristors in neuromorphic circuits and the
development of new memristor-based architectures are currently being widely discussed.
However, in [2, 27], traditional implementation of neural ADC architecture was modified by
the addition of memristors. Thus, the demonstrated results in [2, 27] have shown that there is a
potential in the application of memristors in CMOS-based systems, as memristors consume
less power and save on-chip area, which makes memristor-based neural ADC an attractive
alternative to traditional NN-based ADC designs that are discussed previously. To sum up, a
general overview on the NN-based ADC design area is presented in this chapter.
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[11]. However, the ADC architecture has intrinsic imperfection due to multiple local minima of
energy function that creates digital error in the output of the ADC [14–19].

To solve the local minima problem, several methods are proposed in [14–19]. As it is discussed
in Section 3, there are two main methods of eliminating the local minima states and obtaining
one global minimum. In the modified Hopfield ADC design, it is proposed to apply correction
currents back to the input of each neuron in order to reduce the overlapping current occurring
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tation that is aimed to improve the resolution of the ADC. A similar goal, to improve resolu-
tion, was pursued by the level-shifted neural ADC architecture [23] that is built with multiple
Hopfield ADC blocks and voltage level shifters.

In addition to the presented CMOS-based neural ADC structures in Section 3, examples of
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memristor device is a promising technology that is aimed to expand the capabilities of tradi-
tional CMOS-based systems. The application of memristors in neuromorphic circuits and the
development of new memristor-based architectures are currently being widely discussed.
However, in [2, 27], traditional implementation of neural ADC architecture was modified by
the addition of memristors. Thus, the demonstrated results in [2, 27] have shown that there is a
potential in the application of memristors in CMOS-based systems, as memristors consume
less power and save on-chip area, which makes memristor-based neural ADC an attractive
alternative to traditional NN-based ADC designs that are discussed previously. To sum up, a
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