
Heuristics  
and Hyper-Heuristics 

Principles and Applications

Edited by Javier Del Ser Lorente

Edited by Javier Del Ser Lorente

Photo by Radachynskyi / iStock

In the last few years, the society is witnessing ever-growing levels of complexity in the 
optimization paradigms lying at the core of different applications and processes. This 
augmented complexity has motivated the adoption of heuristic methods as a means 
to balance the Pareto trade-off between computational efficiency and the quality of 
the produced solutions to the problem at hand. The momentum gained by heuristics 

in practical applications spans further towards hyper-heuristics, which allow 
constructing ensembles of simple heuristics to handle efficiently several problems of a 
single class. In this context, this short book compiles selected applications of heuristics 

and hyper-heuristics for combinatorial optimization problems, including scheduling 
and other assorted application scenarios.

ISBN 978-953-51-3383-4

H
euristics and H

yper-H
euristics - Principles and A

pplications





HEURISTICS AND HYPER-
HEURISTICS -

PRINCIPLES AND
APPLICATIONS

Edited by Javier Del Ser Lorente



Heuristics and Hyper-Heuristics - Principles and Applications
http://dx.doi.org/10.5772/66267
Edited by Javier Del Ser Lorente

Contributors

Satyasundara Mahapatra, Rati Ranjan Dash, Sateesh Kumar Pradhan, Mashael Maashi, Marcos Seruffo, Adamo Lima 
De Santana, Nadamundi Vijaykumar, Carlos Renato Francês, Nodari Vakhania, Aleksandra Swiercz, Boaz Benmoshe, 
Roi Yozevitch

© The Editor(s) and the Author(s) 2017
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced, 
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.  
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided 
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not 
be included under the Creative Commons license. In such cases users will need to obtain permission from the license 
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be 
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those 
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published 
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the 
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2017 by INTECH d.o.o.
eBook (PDF) Published by  IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Heuristics and Hyper-Heuristics - Principles and Applications
Edited by Javier Del Ser Lorente

p. cm.

Print ISBN 978-953-51-3383-4

Online ISBN 978-953-51-3384-1

eBook (PDF) ISBN 978-953-51-4677-3



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

3,650+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

114,000+
International  authors and editors

118M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editor

Javier Del Ser received his first PhD degree in Telecom-
munication Engineering (cum laude) from the Universi-
ty of Navarra, Spain, in 2006, and a second PhD degree 
in Computational Intelligence (summa cum laude) from 
the University of Alcala, Spain, in 2013. He is currently 
a principal researcher in data analytics and optimization 
at TECNALIA (Spain), a visiting fellow at the Basque 

Center for Applied Mathematics and an adjunct professor at the University 
of the Basque Country (UPV/EHU). His research activity gravitates on the 
use of descriptive, prescriptive and predictive algorithms for data mining 
and optimization in a diverse range of application fields such as energy, 
transport, telecommunications, health and security, among many others. 
In these fields, he has published more than 160 publications, co-supervised 
6 PhD degree theses, edited 3 books, co-authored 6 patents and led more 
than 35 research projects. Dr. Del Ser is a recipient of the Talent of Bizkaia 
award for his research career.





Contents

Preface XI

Section 1 Heuristics and Hyper-Heuristics    1

Chapter 1 Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired
Combinatorial Optimization Problems   3
Aleksandra Swiercz

Chapter 2 Multi‐Objective Hyper‐Heuristics   21
Mashael Suliaman Maashi

Section 2 Scheduling Heuristics    41

Chapter 3 Heuristics Techniques for Scheduling Problems with Reducing
Waiting Time Variance   43
Satyasundara Mahapatra, Rati Ranjan Dash and Sateesh K. Pradhan

Chapter 4 Efficient Heuristics for Scheduling with Release and
Delivery Times   65
Nodari Vakhania

Section 3 Heuristic Techniques and Applications    83

Chapter 5 Advanced Particle Filter Methods   85
Roi Yozevitch and Boaz Ben-Moshe

Chapter 6 On the Use of Hybrid Heuristics for Providing Service to Select
the Return Channel in an Interactive Digital TV
Environment   107
Marcos César da Rocha Seruffo, Ádamo Lima de Santana, Carlos
Renato Lisboa Francês and Nandamudi Lankalapalli Vijaykumar





Preface

In the last few years, the society is witnessing ever-growing levels of complexity in the opti‐
mization paradigms lying at the core of different applications and processes. Most applica‐
tions stemming from medicine, industry, transport, energy and many other domains can be
formulated as an optimization problem with stringent requirements in terms of timing, con‐
straints and manageability. Unfortunately, in many of such problems, the use of off-the-
shelf solvers from convex and linear optimization does not suffice for exploring efficiently
the space of possible solutions. This shortcoming motivates the adoption of heuristic meth‐
ods as a means to balance the Pareto trade-off between computational efficiency and the
quality of the produced solutions to the problem at hand. The momentum gained by heuris‐
tics in practical applications spans further towards hyper-heuristics, which allow construct‐
ing ensembles of simple heuristics to handle efficiently several problems of a single class. In
this context, this short book compiles selected applications of heuristics and hyper-heuristics
for combinatorial optimization problems, including scheduling and other assorted applica‐
tion scenarios. Readers interested in these topics will grasp in this volume an insight on the
utility of this family of algorithms through a set of motivating examples.

Javier Del Ser, PhD
TECNALIA Research & Innovation, Spain

University of the Basque Country (UPV/EHU), Spain
Basque Center for Applied Mathematics (BCAM), Spain





Section 1

Heuristics and Hyper-Heuristics





Chapter 1

Hyper‐Heuristics and Metaheuristics for Selected Bio‐
Inspired Combinatorial Optimization Problems

Aleksandra Swiercz

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69225

Abstract

Many decision and optimization problems arising in bioinformatics field are time demand‐
ing, and several algorithms are designed to solve these problems or to improve their cur‐
rent best solution approach. Modeling and implementing a new heuristic algorithm may 
be time‐consuming but has strong motivations: on the one hand, even a small improvement 
of the new solution may be worth the long time spent on the construction of a new method; 
on the other hand, there are problems for which good‐enough solutions are acceptable 
which could be achieved at a much lower computational cost. In the first case, specially 
designed heuristics or metaheuristics are needed, while the latter hyper‐heuristics can be 
proposed. The paper will describe both approaches in different domain problems.

Keywords: hyper‐heuristics, bioinformatics

1. Introduction

Many heuristics and metaheuristics (problem‐independent algorithmic framework) have been 
successfully applied for decision and optimization problems. However, there are difficulties in 
using the already‐existing algorithms for new problems or even for new instances of a similar 
problem. Typically, one needs a time‐consuming phase for parameters tuning. The param‐
eters, are often not well‐described and do not allow for solving the problem at a satisfactory 
level (producing satisfactory solutions). Thus, in many cases, one needs to construct new algo‐
rithms to solve particular instances. Recently, there have been attempts to automate the pro‐
cess of designing methods to learn the tuning of the parameters. The basic idea is to develop 
a method which is general and operates on small moves and learns which moves should be 
applied at each stage of the solving process.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The term hyper‐heuristics was first used by Cowling et al. in 2001 [1] for the sales summit 
problem and refers to a method which does not use the problem‐specific information other 
than a set of simple knowledge poor heuristics which are easy to implement. Between the set 
of simple low‐level heuristics and high‐level heuristics, there exists a domain barrier, which 
does not allow to pass the information about the problem domain. A high‐level hyper‐heuris‐
tic uses performance indicators when a low‐level heuristics is called (indicators are not specific 
to the problem) in order to decide which heuristics should be chosen at a particular time point 
in the search space. However, the ideas behind hyper‐heuristic are not new to the scientific 
community, and their roots trace back to 1963 and spanned several areas: computer science, 
artificial intelligence, and operational research. In 1963, Fisher and Thompson [2] showed 
that combining scheduling rules, known as dispatching or priority rules, is better when they 
are combined rather than used separately. In 1990s, the ideas were further explored. Storer et 
al. [3] designed a few fast problem‐specific heuristics and defined neighborhoods within the 
search space. The approach could be applied with any scheduling objective and was tested 
for the job shop scheduling problems with the minimum makespan objective. In Fang et al. 
[4], a genetic algorithm (GA) was developed which tried to avoid difficulties in representing 
a solution as a chromosome, which is needed by the GA. The proposed method searches 
abstract regions of the solution space and then uses another method which converts the points 
generated by the GA into candidate solutions. Drechsler and Becker [5] presented a GA which 
first, based on benchmark examples, learns a good sequence of basic optimization modules 
(simple methods) and then applies it to instances of a given problem (computer‐aided design 
of integrated circuits).

Some examples of automated parameter tuning can also be considered as a basis for hyper‐
heuristics. In Ref. [6], one evolutionary algorithm was used to tune the second one, which 
solved a particular problem. Also, some approaches of self‐adaptation in the parameter tun‐
ing of the evolutionary algorithms were summarized in the survey [7].

In the area of machine learning, the idea of choosing the best algorithm for a given problem 
was first posed by Rice [8]. Following this idea, several projects created specialized systems 
to help to select/recommend the best method, as for example, Consultant‐2 [9] and Teacher 
(Techniques for the Automated Creation of Heuristics) [10]. Consultant‐2 was developed to sup‐
port the machine learning toolbox. It integrates the knowledge of choosing the proper machine 
learning algorithms based on the nature of domain data and the domain experts’ knowledge of 
preprocessing and manipulating the data, in order to use the system without directly involv‐
ing the specialists. On the other hand, Teacher was designed as a system for learning and gen‐
eralizing heuristics used in problem‐solving. Despite the lack of or little domain knowledge, 
the system was able to improve the existing heuristic methods. The Teacher was successfully 
applied in the area of process mapping, load balancing, routing, and testing.

The above examples show that the term hyper‐heuristics, although did not appear before the 
year 2000, had circulated in the literature for quite a long time. Since then, the term was used, 
and the idea further developed in many different problem domains [11, 12].

The methods often used in the context of hyper‐heuristics have strong connections with biol‐
ogy. However, the flow of ideas between biology and operational research works in both 

Heuristics and Hyper-Heuristics - Principles and Applications4



The term hyper‐heuristics was first used by Cowling et al. in 2001 [1] for the sales summit 
problem and refers to a method which does not use the problem‐specific information other 
than a set of simple knowledge poor heuristics which are easy to implement. Between the set 
of simple low‐level heuristics and high‐level heuristics, there exists a domain barrier, which 
does not allow to pass the information about the problem domain. A high‐level hyper‐heuris‐
tic uses performance indicators when a low‐level heuristics is called (indicators are not specific 
to the problem) in order to decide which heuristics should be chosen at a particular time point 
in the search space. However, the ideas behind hyper‐heuristic are not new to the scientific 
community, and their roots trace back to 1963 and spanned several areas: computer science, 
artificial intelligence, and operational research. In 1963, Fisher and Thompson [2] showed 
that combining scheduling rules, known as dispatching or priority rules, is better when they 
are combined rather than used separately. In 1990s, the ideas were further explored. Storer et 
al. [3] designed a few fast problem‐specific heuristics and defined neighborhoods within the 
search space. The approach could be applied with any scheduling objective and was tested 
for the job shop scheduling problems with the minimum makespan objective. In Fang et al. 
[4], a genetic algorithm (GA) was developed which tried to avoid difficulties in representing 
a solution as a chromosome, which is needed by the GA. The proposed method searches 
abstract regions of the solution space and then uses another method which converts the points 
generated by the GA into candidate solutions. Drechsler and Becker [5] presented a GA which 
first, based on benchmark examples, learns a good sequence of basic optimization modules 
(simple methods) and then applies it to instances of a given problem (computer‐aided design 
of integrated circuits).

Some examples of automated parameter tuning can also be considered as a basis for hyper‐
heuristics. In Ref. [6], one evolutionary algorithm was used to tune the second one, which 
solved a particular problem. Also, some approaches of self‐adaptation in the parameter tun‐
ing of the evolutionary algorithms were summarized in the survey [7].

In the area of machine learning, the idea of choosing the best algorithm for a given problem 
was first posed by Rice [8]. Following this idea, several projects created specialized systems 
to help to select/recommend the best method, as for example, Consultant‐2 [9] and Teacher 
(Techniques for the Automated Creation of Heuristics) [10]. Consultant‐2 was developed to sup‐
port the machine learning toolbox. It integrates the knowledge of choosing the proper machine 
learning algorithms based on the nature of domain data and the domain experts’ knowledge of 
preprocessing and manipulating the data, in order to use the system without directly involv‐
ing the specialists. On the other hand, Teacher was designed as a system for learning and gen‐
eralizing heuristics used in problem‐solving. Despite the lack of or little domain knowledge, 
the system was able to improve the existing heuristic methods. The Teacher was successfully 
applied in the area of process mapping, load balancing, routing, and testing.

The above examples show that the term hyper‐heuristics, although did not appear before the 
year 2000, had circulated in the literature for quite a long time. Since then, the term was used, 
and the idea further developed in many different problem domains [11, 12].

The methods often used in the context of hyper‐heuristics have strong connections with biol‐
ogy. However, the flow of ideas between biology and operational research works in both 

Heuristics and Hyper-Heuristics - Principles and Applications4

 directions. Observations of nature provide the basis for designing algorithms: many evo‐
lutionary and genetic algorithms were used as (hyper‐)heuristics to solve combinatorial 
optimization problems. On the other hand, operational research methods can help solving 
problems arising in the field of biology and resulted in creating a new area of Bioinformatics. 
Some examples of problems solved with the use of bioinformatics tools are DNA sequencing, 
DNA mapping, RNA structure prediction and protein folding. Moreover, mutual infiltration 
of the ideas of the two scientific domains can work in both directions just for a single prob‐
lem. The DNA sequencing by hybridization (SBH) problem (further described in Section 4) 
in the ideal case was first defined as searching for a Hamiltonian path in a special graph [13], 
which is an NP‐hard problem. SBH was later modeled as the search for a Eulerian path that 
could be solved in polynomial time [14], which is the opposite of searching for a Hamiltonian 
path problem. Analysis of this phenomenon resulted in defining a new type of DNA graphs 
and showed why searching for a Hamiltonian and Eulerian path in these two types of graphs 
is equivalent [15]. For that particular problem, the operational research methods were used 
to solve the problem, while the analysis of SBH problem introduced a new type of graphs 
and gave an insight into the connections between easy and NP‐hard problems.

The goal of this chapter is to show the connections between the areas of biology, computer 
science and operational research in the context of (hyper‐)heuristics search. Although some 
surveys on the meta and hyper‐heuristic search have been published [11, 12], here we focus 
mainly on the selected bio‐inspired problems solved with hyper‐heuristic methods. In the 
next section, the classification of hyper‐heuristic algorithms is presented. Section 3 describes 
different methods used in the hyper‐heuristic framework. The following section focuses on 
few biological problems successfully solved with hyper‐heuristics. In Section 5, we show that 
not all the problems could be solved with hyper‐heuristics and specially tailored‐to‐measure 
heuristics are needed. We also propose a small hint how hyper‐heuristic search could be 
incorporated in solving the DNA assembly problem. Section 6 summarizes and highlights a 
potentially interesting future research direction.

2. Hyper‐heuristics and their classification

A hyper‐heuristic framework consists of a set of low‐level heuristics and a high‐level hyper‐
heuristic algorithm. The latter evaluates the performance of low‐level heuristics and selects 
one of them to change the current solution. The performance can be measured as an increase 
in the objective function value, defined for the problem, but can also check the time of com‐
putations or the time a heuristic was last used. The hyper‐heuristic can process one (single 
point search) or multiple solutions at a time (multi‐point search). In the former, an initial 
candidate solution goes through a set of successive steps until it gets to the final solution. In 
the latter, utilized for the perturbative methods, a few solutions are processed in parallel, like 
for example in the AMALGAM approach, which operates on the population of solutions [16]. 
Apart from the selection of the low‐level heuristics, the acceptance mechanism seems to be 
crucial in the hyper‐heuristics research. The decision whether to accept or reject the new solu‐
tion can be always the same for the same (deterministic) or different (non‐deterministic) input, 

Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization...
http://dx.doi.org/10.5772/intechopen.69225

5



for example, dependent on the time passed. The process is repeated iteratively, a low‐level 
heuristic is selected from the available ones in the set, the decision is made about the accep‐
tance of the heuristic and in the case of acceptance, it is applied to the solution until a stopping 
criterion is met. The high‐level heuristic has no information about the solved problem and is 
operating only on the heuristic search space, opposite to metaheuristics which operate on the 
solution space. The general scheme of the hyper‐heuristic framework is presented in Figure 1.

In Burke et al. [17], the definition of a hyper‐heuristic was further extended to a search method or 
selection mechanism for selecting or generating heuristics to solve computational search problems. The 
classification of hyper‐heuristics presented in surveys [11, 12, 17] takes into account the nature 
of the heuristic search space and the feedback used for learning mechanism (see Figure 2).

According to the nature of the search space, we might have methodologies that select existing 
heuristics to use and methodologies that generate new heuristics on the basis of existing smaller 
components. The second level in this dimension corresponds to the constructive and perturba‐
tive methods. Perturbative methods are using complete candidate solutions and change them 
by modifying solution components, while constructive methods start from partial candidate 
solutions and extend them iteratively. This type of approach has been applied to several hard 
combinatorial problems such as educational timetabling [18–20], production scheduling [21], 
packing [22] or vehicle routing [23]. In the case of generation methods, hyper‐heuristics search 
the space of heuristics constructed from components rather than well‐defined heuristics. The 
examples where generation hyper‐heuristics were used include several domains: timetabling 
and scheduling [24], the traveling salesman problem [25, 26] or cutting and packing [27–29]. 
Both classes of hyper‐heuristics, selection, and generation, output a solution at the end of a 
run, but a heuristic generator outputs also new heuristics that produced the solution, and 
these heuristics could be potentially used for the next problem.

The second dimension corresponds to a learning mechanism which is used by a hyper‐heu‐
ristic algorithm. If the learning takes place while the algorithm is solving an instance of the 
problem than we say that there is an online feedback. The idea is to learn a good sequence of 
heuristics for the problems at hand [1, 22, 30].

Figure 1. General scheme of how hyper‐heuristics work.

Heuristics and Hyper-Heuristics - Principles and Applications6



for example, dependent on the time passed. The process is repeated iteratively, a low‐level 
heuristic is selected from the available ones in the set, the decision is made about the accep‐
tance of the heuristic and in the case of acceptance, it is applied to the solution until a stopping 
criterion is met. The high‐level heuristic has no information about the solved problem and is 
operating only on the heuristic search space, opposite to metaheuristics which operate on the 
solution space. The general scheme of the hyper‐heuristic framework is presented in Figure 1.

In Burke et al. [17], the definition of a hyper‐heuristic was further extended to a search method or 
selection mechanism for selecting or generating heuristics to solve computational search problems. The 
classification of hyper‐heuristics presented in surveys [11, 12, 17] takes into account the nature 
of the heuristic search space and the feedback used for learning mechanism (see Figure 2).

According to the nature of the search space, we might have methodologies that select existing 
heuristics to use and methodologies that generate new heuristics on the basis of existing smaller 
components. The second level in this dimension corresponds to the constructive and perturba‐
tive methods. Perturbative methods are using complete candidate solutions and change them 
by modifying solution components, while constructive methods start from partial candidate 
solutions and extend them iteratively. This type of approach has been applied to several hard 
combinatorial problems such as educational timetabling [18–20], production scheduling [21], 
packing [22] or vehicle routing [23]. In the case of generation methods, hyper‐heuristics search 
the space of heuristics constructed from components rather than well‐defined heuristics. The 
examples where generation hyper‐heuristics were used include several domains: timetabling 
and scheduling [24], the traveling salesman problem [25, 26] or cutting and packing [27–29]. 
Both classes of hyper‐heuristics, selection, and generation, output a solution at the end of a 
run, but a heuristic generator outputs also new heuristics that produced the solution, and 
these heuristics could be potentially used for the next problem.

The second dimension corresponds to a learning mechanism which is used by a hyper‐heu‐
ristic algorithm. If the learning takes place while the algorithm is solving an instance of the 
problem than we say that there is an online feedback. The idea is to learn a good sequence of 
heuristics for the problems at hand [1, 22, 30].

Figure 1. General scheme of how hyper‐heuristics work.

Heuristics and Hyper-Heuristics - Principles and Applications6

In offline learning, the idea is to gather knowledge in the form of rules or programs while solv‐
ing some benchmark instances and hope that these rules are general enough to solve unseen 
instances [31–33].

There are some methods which do not fit strictly to the frames presented above but rather 
span across two or more categories. They use either selecting and generating methods [34] or 
perturbative and constructive heuristics [35].

3. Learning techniques in hyper‐heuristics

Learning techniques are key/essential indicators of the quality of hyper‐heuristics. Good 
learning mechanisms impinge on obtaining better solutions and the possibility to reuse the 
hyper‐heuristic and this decrease software production costs. Low‐level heuristics are usually 
simple heuristics designed for a problem, but if used in a wrong order may not allow to get 
better solutions than when a single such heuristic is applied. Depending on the nature of 
the search space, different learning mechanisms were used. Below a few of the approaches 
are mentioned, some of them derived from the observations on biological evolution made 
by naturalist Charles Darwin. In his concept, the individuals in the population of one spe‐
cies are subject to the natural selection rules to fit the environment better. Among the fitting 
mechanisms, we can distinguish (i) crossover, reproducing of individuals in order to create a 
new one(s), (ii) mutation, random change of an individual in order to introduce diversity to 
the population, and (iii) selection of the best features in the population or in one individual. 
Biological evolution was an inspiration for developing bio‐inspired algorithms like evolu‐
tionary algorithms, genetic algorithms or genetic programming. All of them were utilized as 
hyper‐heuristics in different contexts of the nature of the search space. A few examples are 
mentioned in the following paragraphs.

In the selection mechanism with the combination of constructive heuristics, commonly used 
local search–based hyper‐heuristics explore the solution space with the selected heuristics as 

Figure 2. Classification of hyper‐heuristics (following Ref. [11]).

Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization...
http://dx.doi.org/10.5772/intechopen.69225

7



widely as possible. A variable neighborhood search was used in the context of examination 
timetabling [18]. Tabu search‐based hyper‐heuristic was applied for the workforce scheduling 
problem [36] and course and exam timetabling [19]. Evolutionary or genetic algorithms were 
used for solving the vehicle routing problem [35] and bin packing of 2D elements [37].

In case of perturbative low‐level heuristics, more commonly used are score‐based hyper‐heu‐
ristics. A choice function was introduced in Ref. [1] which evaluates each heuristic according 
to a score composed of three components: how well a heuristic performs, how well it per‐
forms when combined with another one, and the time elapsed since it was last used. A low‐
level heuristic can be selected in four different ways (i) randomly, (ii) taking the one giving the 
best value of the choice function (greedy), (iii) basing the choice on a ranking of best heuristics, 
or (iv) selecting a heuristic with the probability equal to the proportion of choice function 
value (roulette wheel). Choice function hyper‐heuristics solved the sales summit problem [1], 
timetabling and scheduling [38] and sequencing by hybridization [39]. Reinforcement learn‐
ing, another score‐based approach, awards or punishes heuristics depending on the improve‐
ment or deterioration of the solution. It has been applied for the logistic domain problem [40]. 
In the combination with tabu search, a tabu list of forbidden heuristics was implemented for 
nurse rostering and course timetabling [41].

The solution obtained by applying a low‐level heuristic might not always be improved. There 
are different strategies in accepting the solution in case of deterioration. ‘All accept’ always 
accepts the solution. Some other strategies accept a new solution with the probability that 
decreases with time: simulated annealing or Monte Carlo.

In generating new heuristics, one usually involves genetic programming (GP). GP, similarly 
to evolutionary algorithms, borrows ideas from the theory of natural evolution to automat‐
ically produce programs [42]. It starts from a population of generated computer programs 
which are evaluated by the fitness function. Next, evolutionary components (selection, 
mutation, crossover) are applied to the individuals in the population and the strongest, 
i.e. the fittest ones, survive in the next generation. The difference between standard GP 
and the hyper‐heuristic GP is in the generality of the programs used. In the standard 
approach, the programs could be standard arithmetic operations, standard mathematical 
functions or logical functions, while in the hyper‐heuristic approach, the programs are 
rather abstract heuristics, independent of the problem domain. As the output from the GP, 
one gets new programs, which in standard approach could be direct solutions (i.e. modi‐
fied mathematical formulas or arithmetic operations), but in the hyper‐heuristic approach, 
they need to be translated into solutions. Automatically generated heuristics can be dispos‐
able, used only once, or reusable–can be applied for different instances or problems. In the 
latter case, generating heuristics are usually trained offline on some benchmark instances.

GP hyper‐heuristics were utilized to modify dispatching rules for the job shop scheduling 
problem ([43], as an example). Grammar‐based GP with graph coloring and slot allocation 
heuristics were applied to exam timetabling [24]. Many applications used GP to evolve heu‐
ristics also for the bin packing problem [27, 44] and traveling salesmen problem [25, 45].

There is an interesting connection between the idea of reusable heuristics and transfer learn‐
ing [46]. In both cases, one may observe the transfer of knowledge between different but 

Heuristics and Hyper-Heuristics - Principles and Applications8



widely as possible. A variable neighborhood search was used in the context of examination 
timetabling [18]. Tabu search‐based hyper‐heuristic was applied for the workforce scheduling 
problem [36] and course and exam timetabling [19]. Evolutionary or genetic algorithms were 
used for solving the vehicle routing problem [35] and bin packing of 2D elements [37].

In case of perturbative low‐level heuristics, more commonly used are score‐based hyper‐heu‐
ristics. A choice function was introduced in Ref. [1] which evaluates each heuristic according 
to a score composed of three components: how well a heuristic performs, how well it per‐
forms when combined with another one, and the time elapsed since it was last used. A low‐
level heuristic can be selected in four different ways (i) randomly, (ii) taking the one giving the 
best value of the choice function (greedy), (iii) basing the choice on a ranking of best heuristics, 
or (iv) selecting a heuristic with the probability equal to the proportion of choice function 
value (roulette wheel). Choice function hyper‐heuristics solved the sales summit problem [1], 
timetabling and scheduling [38] and sequencing by hybridization [39]. Reinforcement learn‐
ing, another score‐based approach, awards or punishes heuristics depending on the improve‐
ment or deterioration of the solution. It has been applied for the logistic domain problem [40]. 
In the combination with tabu search, a tabu list of forbidden heuristics was implemented for 
nurse rostering and course timetabling [41].

The solution obtained by applying a low‐level heuristic might not always be improved. There 
are different strategies in accepting the solution in case of deterioration. ‘All accept’ always 
accepts the solution. Some other strategies accept a new solution with the probability that 
decreases with time: simulated annealing or Monte Carlo.

In generating new heuristics, one usually involves genetic programming (GP). GP, similarly 
to evolutionary algorithms, borrows ideas from the theory of natural evolution to automat‐
ically produce programs [42]. It starts from a population of generated computer programs 
which are evaluated by the fitness function. Next, evolutionary components (selection, 
mutation, crossover) are applied to the individuals in the population and the strongest, 
i.e. the fittest ones, survive in the next generation. The difference between standard GP 
and the hyper‐heuristic GP is in the generality of the programs used. In the standard 
approach, the programs could be standard arithmetic operations, standard mathematical 
functions or logical functions, while in the hyper‐heuristic approach, the programs are 
rather abstract heuristics, independent of the problem domain. As the output from the GP, 
one gets new programs, which in standard approach could be direct solutions (i.e. modi‐
fied mathematical formulas or arithmetic operations), but in the hyper‐heuristic approach, 
they need to be translated into solutions. Automatically generated heuristics can be dispos‐
able, used only once, or reusable–can be applied for different instances or problems. In the 
latter case, generating heuristics are usually trained offline on some benchmark instances.

GP hyper‐heuristics were utilized to modify dispatching rules for the job shop scheduling 
problem ([43], as an example). Grammar‐based GP with graph coloring and slot allocation 
heuristics were applied to exam timetabling [24]. Many applications used GP to evolve heu‐
ristics also for the bin packing problem [27, 44] and traveling salesmen problem [25, 45].

There is an interesting connection between the idea of reusable heuristics and transfer learn‐
ing [46]. In both cases, one may observe the transfer of knowledge between different but 

Heuristics and Hyper-Heuristics - Principles and Applications8

related problem domains. However, in the first case, hyper‐heuristic is used to tune heuristics 
from one instance to another or to generate new heuristics, and in transfer learning training 
data of one problem may be used to potentially improve the results of a target learner on a 
data set from a different domain. Transfer learning is used mostly in cases when there is a lack 
of training data or they are too expensive to collect.

4. Hyper‐heuristics for bio‐inspired combinatorial problems

In this section, a few examples are described in more details for which hyper‐heuristic meth‐
ods were used to solve bio‐inspired problems. This field has not been explored deeply, and 
only a few attempts have been made so far. The difficulty here lies in the quality of the solu‐
tion. For bio‐experts, it is often important that the solution is the optimum or very close to the 
optimum, not just ‘good enough’. Moreover, sometimes mathematical models cannot express 
biological problems well. The optimization function in the model may lead to a few solutions 
which are mathematically optimal but only one is biologically correct. Three main contribu‐
tions from the literature are summarized below, one dealing with the longest common subse‐
quence problem and two with the sequencing by hybridization problem.

4.1. Longest common subsequence

The longest Common Subsequence (LCS) problem amounts to find the longest string that is a 
subsequence of every string in a given set of strings. The subsequence here is not composed of 
consecutive letters in the string, but it can be achieved by deleting some of the characters from 
the string. The problem can be solved polynomially in the case of two strings, but in general, 
the problem is NP‐hard. The example of what the LCS problem is explained in Figure 3.

The LCS problem is used in bioinformatics to compare sequences of molecules: DNA, RNA 
or proteins, in order to find homologies between sequences of organisms of different species. 
The homology helps to predict the function of unknown genes if their sequences are similar 
to those of known genes one may expect that the function is similar. The other applications of 
LCS can be found in text editing [47] or data compression [48], among others.

Tabataba and Mousavi [49] proposed a hyper‐heuristic for the LCS problem. A beam search 
algorithm in its standard form is a tree‐based procedure. It starts from the initially empty 
solution and extends it by one letter in every iteration. All possible characters Σ are evalu‐
ated by a function f(.) as possible extensions, but only β best ones are further explored in the 

Figure 3. The example of the LCS problem. For a given set of strings S = {ccatagacc, atttgatac, gatggaatc, agtgagct}, the 
longest common subsequence of each string is ‘atgac’. The LCS is underlined in every string.

Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization...
http://dx.doi.org/10.5772/intechopen.69225

9



next iteration, β being the size of the beam. A hyper‐heuristic approach is introduced here to 
choose the best function f(.) among the two available: power and prob. Power takes into account 
the length of possible suffixes, with the high impact of the minimum suffix, after deciding 
on the possible extension character. Prob, on the other hand, calculates the probability of a 
random string being a subsequence of the suffix. The hyper‐heuristic runs the beam search 
algorithm twice in every iteration with power and prob as f(.) function and chooses the one 
which gives the possibility of a longer subsequence extension.

The method was tested on random biologically inspired and real sequences of DNA and pro‐
teins of rats and viruses (Σ equal to 4 in the case of DNA sequences and 20 in the case of 
proteins). Hyper‐heuristic appeared to superior to the beam search method used with just 
one heuristic, either power or prob. The proposed hyper‐heuristic in comparison with the state‐
of‐art algorithms MLCS‐APP and DEA, depending on the tested dataset, provides 1–2% and 
19–25% improvements in the solution quality, respectively.

4.2. DNA sequencing by hybridization

Sequencing by hybridization (SBH) is a method used for reading DNA sequences, nowadays 
not used any more due to high costs, but its concepts can be of value for other real‐world 
applications. It is composed of two phases, biological and computational experiments. The 
former utilizes a microarray chip to determine all the subsequences of an unknown DNA 
sequence, i.e. subsequences of a given length k (k‐mers). The set of k‐mers contained in the 
DNA sequence is called spectrum. The latter, combines the elements from the spectrum, by 
checking their overlapping, into a longer sequence, that do not exceed the original DNA 
sequence length, n. The example of an SBH experiment is shown in Figure 4.

In the ideal case, the problem is easy, while in the real experiments, two types of errors may 
occur which make the real problem NP hard. A negative error occurs when a k‐mer, being a 
subsequence of the examined sequence, is missing in the spectrum, while a positive error is 
an extra element in the spectrum not being a subsequence of the DNA sequence. Note that 
repeated subsequences in the DNA sequence cause negative errors because they appear only 
once in the spectrum.

A hyper‐heuristic approach was first used to solve the SBH problem in Ref. [39]. The solution 
is represented as an ordered list of elements from the spectrum that contributes to the DNA 
sequence, and trash, an unordered set of ‘leftovers’ from the spectrum. The sequence is recon‐
structed with a greedy algorithm that traverses the list and tries to append every k‐mer with 
the smallest shift to the preceding one.

The low‐level heuristics operate on the list and trash by moving elements from one set to 
another. In the basic approach, we can distinguish operations on single elements: insertion 
from trash to list, deletion from list to trash or shift–moves of the elements within the list; 
or operations on a cluster–a group of closely connected elements. A cluster can be shifted or 
deleted. An extended approach changed the encoding of the solution, by allowing elements 
from the spectrum to appear on the list twice, thus solving the problem of repetitions. Also, 
several new heuristics were proposed, with swap as an example.

Heuristics and Hyper-Heuristics - Principles and Applications10



next iteration, β being the size of the beam. A hyper‐heuristic approach is introduced here to 
choose the best function f(.) among the two available: power and prob. Power takes into account 
the length of possible suffixes, with the high impact of the minimum suffix, after deciding 
on the possible extension character. Prob, on the other hand, calculates the probability of a 
random string being a subsequence of the suffix. The hyper‐heuristic runs the beam search 
algorithm twice in every iteration with power and prob as f(.) function and chooses the one 
which gives the possibility of a longer subsequence extension.

The method was tested on random biologically inspired and real sequences of DNA and pro‐
teins of rats and viruses (Σ equal to 4 in the case of DNA sequences and 20 in the case of 
proteins). Hyper‐heuristic appeared to superior to the beam search method used with just 
one heuristic, either power or prob. The proposed hyper‐heuristic in comparison with the state‐
of‐art algorithms MLCS‐APP and DEA, depending on the tested dataset, provides 1–2% and 
19–25% improvements in the solution quality, respectively.

4.2. DNA sequencing by hybridization

Sequencing by hybridization (SBH) is a method used for reading DNA sequences, nowadays 
not used any more due to high costs, but its concepts can be of value for other real‐world 
applications. It is composed of two phases, biological and computational experiments. The 
former utilizes a microarray chip to determine all the subsequences of an unknown DNA 
sequence, i.e. subsequences of a given length k (k‐mers). The set of k‐mers contained in the 
DNA sequence is called spectrum. The latter, combines the elements from the spectrum, by 
checking their overlapping, into a longer sequence, that do not exceed the original DNA 
sequence length, n. The example of an SBH experiment is shown in Figure 4.

In the ideal case, the problem is easy, while in the real experiments, two types of errors may 
occur which make the real problem NP hard. A negative error occurs when a k‐mer, being a 
subsequence of the examined sequence, is missing in the spectrum, while a positive error is 
an extra element in the spectrum not being a subsequence of the DNA sequence. Note that 
repeated subsequences in the DNA sequence cause negative errors because they appear only 
once in the spectrum.

A hyper‐heuristic approach was first used to solve the SBH problem in Ref. [39]. The solution 
is represented as an ordered list of elements from the spectrum that contributes to the DNA 
sequence, and trash, an unordered set of ‘leftovers’ from the spectrum. The sequence is recon‐
structed with a greedy algorithm that traverses the list and tries to append every k‐mer with 
the smallest shift to the preceding one.

The low‐level heuristics operate on the list and trash by moving elements from one set to 
another. In the basic approach, we can distinguish operations on single elements: insertion 
from trash to list, deletion from list to trash or shift–moves of the elements within the list; 
or operations on a cluster–a group of closely connected elements. A cluster can be shifted or 
deleted. An extended approach changed the encoding of the solution, by allowing elements 
from the spectrum to appear on the list twice, thus solving the problem of repetitions. Also, 
several new heuristics were proposed, with swap as an example.

Heuristics and Hyper-Heuristics - Principles and Applications10

A few hyper‐heuristics were proposed, namely a tabu search algorithm, choice function 
approaches (roulette, ranked, best and decomp), and a simulated annealing algorithm. In the 
first method, all moves were accepted, while the last method used the Monte Carlo approach 
which could reject a deteriorated solution with the probability that increased with the passed 
time. The results of the computational experiment showed that designing a good set of low‐
level heuristics is very important, a good set could give good results for any tested hyper‐
heuristics, even for a random roulette choice function, while an incorrectly composed set of 
primitive heuristics did not allow almost any algorithm to learn which heuristic to choose. 
The experiments on real DNA sequence instances pointed out two algorithms to be better 
than others: simulated annealing and the roulette choice function. In the comparison with 
other algorithms designed for that problem, the usage of elements from the spectrum in the 
solution was comparable with those obtained by hyper‐heuristics, while the similarity of the 
solution and the examined DNA sequence was superior for tailored‐to‐measure algorithms.

4.3. DNA sequencing by hybridization, second approach

In Ref. [50], again the DNA sequencing by hybridization problem was considered, but this 
time accompanied by other combinatorial problems: the knapsack problem, traveling sales‐
man problem (TSP) and its two variants, namely, bottleneck TSP and prize collecting TSP. 
For these problems, a few hyper‐heuristics were implemented, similar to those presented in 

Figure 4. SBH is composed of biological and computational experiments. In the first one (a), a microarray, containing all 
k‐mers (k = 3), is used to obtain a spectrum. In the latter, elements from the spectrum are modelled as the nodes in the 
graph in which a Hamiltonian path is looked for (b). Solid arrows represent the overlap of the two nodes equal to 2, and 
the dashed arrows overlap equal to 1 (most of them are omitted to simplify the picture) meaning that there is a negative 
error between the two k‐mers. A path starting from ACA results in obtaining the examined DNA sequence, see the layout 
in (c). However, notice that starting from node CAG one may obtain a different, shorter solution composed of the same 
number of elements from the spectrum.

Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization...
http://dx.doi.org/10.5772/intechopen.69225

11



Section 4.2 and [39]. It is not new that the same hyper‐heuristic is used to solve problems in 
different domains. The novelty of the proposed approach was in modeling unified encoding 
of all the above problems, and implementing just one set of low‐level heuristics. The heuris‐
tics were independent from the problems; thus, a domain barrier was moved down toward 
problems (compare Figures 1 and 5).

The solution for all the problems is represented as sequence S of integers from range 1 to n. 
For SBH, S denotes the elements of the spectrum, for TSPs, these are the cities to visit, and 
for the knapsack problem, S denotes the elements to be put to the bin of a given size. A few 
other data structures or variables were also used: distance matrix, prizes, and penalties, some 
of them redundant for a given problem, thus not used. The problems could be solved with 
the hyper‐heuristic methods only due to using these specific representations and defining the 
evaluation function.

The proposed low‐level heuristics were simple moves, however, taking into account the spec‐
ificity of the tested problems. Besides the low‐level heuristics previously proposed, insert, 
delete, swap, and shift, and four more were implemented: (i) replace an element from S with 
an element not being in S, (ii) move a few subsequent elements in the solution, (iii) revert the 
subsequence of elements in S, and (iv) remove the element from S which gives the highest cost 
to the preceding element in the solution, and replace it with the best one.

Some hyper‐heuristics could distinguish, useless low‐level heuristics or ones leading to unfeasible 
solutions, and discard them from further computations. The overall results were ‘good enough’, 
but with the increase of algorithm’s generality, the quality of the obtained solution decreased a 
little in comparison to hyper‐heuristics from Ref. [39] and other tailored metaheuristics.

Figure 5. In the unified encoding of the hyper‐heuristic scheme there is just one set of low‐level heuristics for several 
problems, while in the standard scheme (Figure 1), for each problem, one must implement a separate set of heuristics.

Heuristics and Hyper-Heuristics - Principles and Applications12



Section 4.2 and [39]. It is not new that the same hyper‐heuristic is used to solve problems in 
different domains. The novelty of the proposed approach was in modeling unified encoding 
of all the above problems, and implementing just one set of low‐level heuristics. The heuris‐
tics were independent from the problems; thus, a domain barrier was moved down toward 
problems (compare Figures 1 and 5).

The solution for all the problems is represented as sequence S of integers from range 1 to n. 
For SBH, S denotes the elements of the spectrum, for TSPs, these are the cities to visit, and 
for the knapsack problem, S denotes the elements to be put to the bin of a given size. A few 
other data structures or variables were also used: distance matrix, prizes, and penalties, some 
of them redundant for a given problem, thus not used. The problems could be solved with 
the hyper‐heuristic methods only due to using these specific representations and defining the 
evaluation function.

The proposed low‐level heuristics were simple moves, however, taking into account the spec‐
ificity of the tested problems. Besides the low‐level heuristics previously proposed, insert, 
delete, swap, and shift, and four more were implemented: (i) replace an element from S with 
an element not being in S, (ii) move a few subsequent elements in the solution, (iii) revert the 
subsequence of elements in S, and (iv) remove the element from S which gives the highest cost 
to the preceding element in the solution, and replace it with the best one.

Some hyper‐heuristics could distinguish, useless low‐level heuristics or ones leading to unfeasible 
solutions, and discard them from further computations. The overall results were ‘good enough’, 
but with the increase of algorithm’s generality, the quality of the obtained solution decreased a 
little in comparison to hyper‐heuristics from Ref. [39] and other tailored metaheuristics.

Figure 5. In the unified encoding of the hyper‐heuristic scheme there is just one set of low‐level heuristics for several 
problems, while in the standard scheme (Figure 1), for each problem, one must implement a separate set of heuristics.

Heuristics and Hyper-Heuristics - Principles and Applications12

5. Assembling a genome as a continuation of SBH ideas

The previous section presented a few bioinformatics problems solved with hyper‐heuristics. 
Not many attempts have been made so far, due to the specificity of biological problems.

Sequencing by hybridization is a method that did not stand the test of time, but ideas devel‐
oped in this approach can be translated into the next level of reading DNA sequences, namely 
assembling. The explosion of new technology allows to directly read short DNA fragments, 
up to a few hundreds of molecules, and thus making the old‐fashioned and costly approaches, 
Sanger sequencing [51] and SBH, not useful anymore. The inputs to the assembly problem are 
these longer sequences merged in order to get a longer one of the size of a bacterial genome. 
In the ‘toy problem’ ‐SBH, the fragments are of a length of a dozen or so, and the solution 
sequence is a few hundred long, while for the assembly problem, DNA fragments are in the 
range 100–1000 molecules and are assembled into a million‐molecule sequence. Both prob‐
lems can be modeled as searching for a path in the graph, where nodes represent short DNA 
fragments, and arcs connect overlapping nodes with the cost equal to the shift between the 
two neighboring fragments. However, in DNA assembly, one must allow mismatches in frag‐
ment overlapping, differences in fragment lengths, and the fact that fragments may come 
from two strands of DNA helix; thus, they are reverse and complementary (the example of 
the reverse complementary sequence is presented in Figure 6). Also, the number of input 
fragments differs, a few hundred for SBH and millions for assembly. Moreover, during the 
process of reading DNA fragments, some parts of the genome could be poorly covered by 
the fragments or even in some cases not covered at all. There might be a few reasons for that, 
one of them, for example, depends on the content of G and C letters in the fragment of the 
genome. Thus, the assembly problem becomes much more difficult than SBH, and we cannot 
say any more about the ‘ideal case’ and ‘easily solvable’ problem.

The assembly problem is usually divided into three steps:

Step 1. Finding overlaps of input sequences; constructing a graph.

Step 2.  Searching for a path in the graph.

Step 3.  Building a consensus sequence.

In the first step, it is usually impossible to calculate the overlaps between each pair of frag‐
ments, due to a huge number of fragments and time limitations. In Step 2, instead of one 
path, the methods output few or more paths, because of sequencing errors, the lack of cov‐
erage, and the repetitions in the genome. The last step is the multiple sequence alignment 
problem, which again is not easily solvable. There are two main approaches to solve the 
DNA assembly problem. The first one, Overlap‐Layout‐Consensus (OLC), represents DNA 
fragments as nodes in the overlap graph (Step 1) and calculates in a smart way the overlaps 
of the fragments. The latter builds a decomposition‐based graph, not quite precisely called de 
Bruijn graph, by putting k‐mers on the nodes and decomposing each DNA fragment into a 
series of k‐mers shifted by one. Hence, a DNA fragment, in this case, is represented as a path 
in the graph connecting a series of respective nodes. In the second case, there is no need to 

Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization...
http://dx.doi.org/10.5772/intechopen.69225

13



calculate overlaps between fragments, because they simply span the same nodes. On the 
other hand, a lot of information may be lost after decomposing a fragment into k‐mers. The 
other two steps are similar for both approaches but take into account the specificity of each 
approach. There are many methods developed for both of the approaches: OLC [52, 53] and 
decomposition‐based graphs [54, 55] as examples. None of them can be seen as a general pro‐
cess of a local search, where one could use a meta or hyper‐heuristic method. Each step of the 
method is processed independently by a heuristic and/or a greedy approach. However, there 
is one place where an ‘intelligent method’, likely a hyper‐heuristic, could be of value while 
searching for a path in the graph. The most difficult in the search process are junctions in the 
graph, which occur in the case of sequencing errors or repetitions. An example of a junction 
is presented in Figure 7. A hyper‐heuristic which could distinguish in the search process 
that the path is coming to a junction and cut the current process would highly improve the 
solution. The method shall take into account the increase or decrease of the coverage and bas‐
ing on this change and decide whether to stop or continue the search process. This must be 
preceded by offline training of many benchmark data sets, where a method could learn the 
specific cases in the graph and make predictions in the future search. The two basic steps that 

Figure 7. Junctions in the graph complicate the assembly process. In order to simplify the figure, only the arcs with 
the smallest shift between the two nodes are given. Without additional information, it is difficult to state if the correct 
sequence should be composed of fragments ACD, ACE, BCD, or BCE. Thus, the methods usually cut the current path 
and output shorter fragments like AC or CE.

Figure 6. An example of the reverse and complementary sequence. A DNA sequence is always read from 5′ end to 3′ 
end. Due to the complementarity rule, A on one strand is connected with T on the other, and G is connected with C. The 
following fragment of the DNA helix can be read as ‘accgacttgcga’ or ‘tcgcaagtcggt’.

Heuristics and Hyper-Heuristics - Principles and Applications14



calculate overlaps between fragments, because they simply span the same nodes. On the 
other hand, a lot of information may be lost after decomposing a fragment into k‐mers. The 
other two steps are similar for both approaches but take into account the specificity of each 
approach. There are many methods developed for both of the approaches: OLC [52, 53] and 
decomposition‐based graphs [54, 55] as examples. None of them can be seen as a general pro‐
cess of a local search, where one could use a meta or hyper‐heuristic method. Each step of the 
method is processed independently by a heuristic and/or a greedy approach. However, there 
is one place where an ‘intelligent method’, likely a hyper‐heuristic, could be of value while 
searching for a path in the graph. The most difficult in the search process are junctions in the 
graph, which occur in the case of sequencing errors or repetitions. An example of a junction 
is presented in Figure 7. A hyper‐heuristic which could distinguish in the search process 
that the path is coming to a junction and cut the current process would highly improve the 
solution. The method shall take into account the increase or decrease of the coverage and bas‐
ing on this change and decide whether to stop or continue the search process. This must be 
preceded by offline training of many benchmark data sets, where a method could learn the 
specific cases in the graph and make predictions in the future search. The two basic steps that 

Figure 7. Junctions in the graph complicate the assembly process. In order to simplify the figure, only the arcs with 
the smallest shift between the two nodes are given. Without additional information, it is difficult to state if the correct 
sequence should be composed of fragments ACD, ACE, BCD, or BCE. Thus, the methods usually cut the current path 
and output shorter fragments like AC or CE.

Figure 6. An example of the reverse and complementary sequence. A DNA sequence is always read from 5′ end to 3′ 
end. Due to the complementarity rule, A on one strand is connected with T on the other, and G is connected with C. The 
following fragment of the DNA helix can be read as ‘accgacttgcga’ or ‘tcgcaagtcggt’.

Heuristics and Hyper-Heuristics - Principles and Applications14

a hyper‐heuristic would choose could be a simple ‘stop searching’ and ‘continue extending 
the path’, but of course, many other heuristics like extending search path in both directions 
could also be added.

One may notice that the field of bioinformatics combinatorial optimization problems is not 
well explored in terms of hyper‐heuristic search. The assembly problem is just one exam‐
ple of many problems, where a hyper‐heuristic could be introduced. The question is if we 
are ready to allow a possible deterioration of the final solution by generalizing the search 
process. The other question is what is the most time‐consuming activity: understanding a 
bio problem, designing a model, or implementing a method? In the case of some problems, 
it is crucial to clearly understand the problem because omitting some of the details makes 
the solution unacceptable for bio‐experts. Hyper‐heuristics and especially low‐level heuris‐
tics should be developed to comply with all the restrictions and produce a feasible solution, 
which, unfortunately, in many cases may take as much time as implementing a ‘tailored‐to‐
measure’ algorithm.

6. Summary and future

The flow of ideas between biology, operational research, and computer science works in both 
directions. The ideas from the biological evolution serve as the basis of genetic algorithms 
and genetic programming. The operational research models and methods help to solve many 
problems arising in computational biology. Recently, an interesting cooperation between 
these two scientific areas has been observed in the behavior of the slime mold Physarum, for 
which a mathematical model for the dynamics always converges in finding the shortest path 
for any input graph [56, 57]. There were also some attempts to involve DNA and use it as the 
computing power [58].

We can observe a constant synergy between specialists from different areas. This synergy can 
also be found in the context of hyper‐heuristic methodology. It has been shown that hyper‐
heuristics have been successfully involved in solving several combinatorial optimization 
problems. Also, a few attempts have been made to solve bio‐inspired problems: the longest 
common subsequence problem and sequencing by hybridization problem.

In Section 5, a proposition how to employ hyper‐heuristic search also in solving the DNA 
assembly problem has been made. By allowing offline learning on some benchmark dataset, 
the method could distinguish the junctions of the path in the graph and react faster whether 
to extend or cut the current path.

A good learning mechanism incorporated into hyper‐heuristics is a key to increase the 
usage of hyper‐heuristics and to solve the problems in a competitive way to tailored‐to‐
measure (meta)heuristics. In this context, the development of the tools for assessing hyper‐
heuristics such as HyFlex [59] or Hyperion [60] may increase the usage of these types of 
methods.

Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization...
http://dx.doi.org/10.5772/intechopen.69225

15



Acknowledgements

The author would like to thank J. Blazewicz, G. Felici and the anonymous referee for valuable 
remarks and the discussions which significantly improved the presentation of the paper.

The research was partially supported by a Poznan University of Technology grant [09/91/
DSPB/0600].

Author details

Aleksandra Swiercz

Address all correspondence to: aswiercz@cs.put.poznan.pl

1 Institute of Computing Science, Poznan University of Technology, Poland

2 Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland

References

[1] Cowling P, Kendall G, Soubeiga E. A hyperheuristic approach for scheduling a sales 
summit. In: Selected Papers of the 3rd International Conference on the Practice and 
Theory of Automated Timetabling, PATAT 2000. Berlin: Springer; 2001. pp. 176‐190

[2] Fisher H, Thompson GL. Probabilistic learning combinations of local job‐shop schedul‐
ing rules. In: Muth JF and Thompson GL, editors. Industrial Scheduling. NY: Prentice‐
Hall: Englewood Cliffs; 1963. pp. 225‐251

[3] Storer RH, Wu SD, Vaccari R. New search spaces for sequencing problems with applica‐
tion to job shop scheduling. Management Science. 1992;38(10):1495‐1509

[4] Fang H, Ross P, Corne D. A promising hybrid ga/heuristic approach for openshop sched‐
uling problems. In: Cohn AG, editor. European Conference on Artificial Intelligence. 
New York: John Wiley & Sons; 1994

[5] Drechsler R, Becker B. Learning heuristics by genetic algorithms. In: Shirakawa I, editor. 
ASP Design Automation Conference. ACM: Makuhari, Massa, Chiba, Japan; 1995. pp. 
349‐352

[6] Grefenstette J. Optimization of control parameters for genetic algorithms. IEEE Transa‐
ctions on Systems, Man, and Cybernetics SMC. 1986;16(1):122‐128

[7] Bäck T. An overview of parameter control methods by self‐adaption in evolutionary 
algorithms. Fundamental Journals. 1998;35(1‐4):51‐66

[8] Rice JR. The algorithm selection problem. Advances in Computers. 1976;15:65‐118

Heuristics and Hyper-Heuristics - Principles and Applications16



Acknowledgements

The author would like to thank J. Blazewicz, G. Felici and the anonymous referee for valuable 
remarks and the discussions which significantly improved the presentation of the paper.

The research was partially supported by a Poznan University of Technology grant [09/91/
DSPB/0600].

Author details

Aleksandra Swiercz

Address all correspondence to: aswiercz@cs.put.poznan.pl

1 Institute of Computing Science, Poznan University of Technology, Poland

2 Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland

References

[1] Cowling P, Kendall G, Soubeiga E. A hyperheuristic approach for scheduling a sales 
summit. In: Selected Papers of the 3rd International Conference on the Practice and 
Theory of Automated Timetabling, PATAT 2000. Berlin: Springer; 2001. pp. 176‐190

[2] Fisher H, Thompson GL. Probabilistic learning combinations of local job‐shop schedul‐
ing rules. In: Muth JF and Thompson GL, editors. Industrial Scheduling. NY: Prentice‐
Hall: Englewood Cliffs; 1963. pp. 225‐251

[3] Storer RH, Wu SD, Vaccari R. New search spaces for sequencing problems with applica‐
tion to job shop scheduling. Management Science. 1992;38(10):1495‐1509

[4] Fang H, Ross P, Corne D. A promising hybrid ga/heuristic approach for openshop sched‐
uling problems. In: Cohn AG, editor. European Conference on Artificial Intelligence. 
New York: John Wiley & Sons; 1994

[5] Drechsler R, Becker B. Learning heuristics by genetic algorithms. In: Shirakawa I, editor. 
ASP Design Automation Conference. ACM: Makuhari, Massa, Chiba, Japan; 1995. pp. 
349‐352

[6] Grefenstette J. Optimization of control parameters for genetic algorithms. IEEE Transa‐
ctions on Systems, Man, and Cybernetics SMC. 1986;16(1):122‐128

[7] Bäck T. An overview of parameter control methods by self‐adaption in evolutionary 
algorithms. Fundamental Journals. 1998;35(1‐4):51‐66

[8] Rice JR. The algorithm selection problem. Advances in Computers. 1976;15:65‐118

Heuristics and Hyper-Heuristics - Principles and Applications16

[9] Sleeman D, Rissakis M, Craw S, Graner N, Sharma S, Consultant‐2: Pre–and post‐pro‐
cessing of machine learning applications. International Journal of Human Computer 
Studies. 1995;43(1):43‐63

[10] Wah BW, Ieumwananonthachai A. Teacher: A genetics‐based system for learning and for 
generalizing heuristics. In: Yao X, editor. Evolutionary Computation. Singapore: World 
Scientific Publishing Co. Pte. Ltd.; 1999. pp. 124‐170

[11] Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Ozcan E, Qu R. Hyper‐heu‐
ristics: A survey of the state of the art. Journal of the Operational Research Society. 
2013;64:1695‐1724

[12] Pappa GL, Ochoa G, Hyde MR, Freitas AA, Woodward J, Swan J. Genetic Programming 
and Evolvable Machines. Contrasting meta‐learning and hyper‐heuristic research: The 
role of evolutionary algorithms. 2014;15(1):3‐35. DOI: 10.1007/s10710‐013‐9186‐9

[13] Lysov Y, Florent’ev V, Khorlin A, Khrapko K, Shik V, Mirzabekov A, Determination 
of the nucleotide sequence of DNA using hybridization with oligonucleotides. A new 
method. Doklady Akademii Nauk SSSR. 1988;303:1508‐1511

[14] Pevzner P, l‐tuple DNA sequencing: Computer analysis. Journal of Biomolecular 
Structure and Dynamics. 1989;7:63‐73

[15] Blazewicz J, Hertz A, Kobler D, de Werra D. On some properties of DNA graphs. Discrete 
Applied Mathematics. 1999;98:1‐19

[16] Vrugt J, Robinson B. Improved evolutionary optimization from genetically adaptive mul‐
timethod search. Proceedings of the National Academy of Sciences. 2007;104(3):708‐711

[17] Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E, Woodward J. Handbook of meta‐
heuristics, international series in operations research & management science. Vol. 146. 
Chap. A Classification of Hyper‐heuristic Approaches, New York: Springer; 2010. pp. 
449‐468. Chapter 15

[18] Ahmadi S, Barrone P, Cheng P, Burke EK, Cowling P, McCollum B. Perturbation 
based variable neighbourhood search in heuristic space for examination timetabling 
problem. In: Kendall G, Burke EK, Petrovic S, Gendreau M, editors. Multidisciplinary 
International Scheduling: Theory and Applications. New York: MISTA, Springer; 2003. 
pp. 155‐171

[19] Burke EK, McCollum B, Meisels A, Petrovic S, Qu R. A graph‐based hyperheuristic for 
educational timetabling problems. European Journal of Operational Research. 2007; 
176:177‐192

[20] Sabar NR, Ayob M, Qu R, Kendall G. A graph coloring constructive hyper‐heuristic for 
examination timetabling problems. Applied Intelligence. 2012;37:1‐11

[21] Cano‐Belmán J, Ríos‐Mercado R, Bautista J. A scatter search based hyperheuristic for 
sequencing a mixed‐model assembly line. Journal of Heuristics. 2010;16:749‐770

Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization...
http://dx.doi.org/10.5772/intechopen.69225

17



[22] Dowsland KA, Soubeiga E, Burke EK. A simulated annealing hyperheuristic for deter‐
mining shipper sizes for storage and transportation. European Journal of Operational 
Research. 2007;179(3):759‐774

[23] Pisinger D, Ropke S. A general heuristic for vehicle routing problems. Computers and 
Operations Research. 2007;34(8):2403‐2435

[24] Pillay N. Evolving hyper‐heuristics for the uncapacitated examination timetabling prob‐
lem. In: Blazewicz J, Drozdowski M, Kendall G, McCollum B (eds). Multidisciplinary 
International Conference on Scheduling: Theory and Applications (MISTA’09). Dublin, 
Ireland; 2009. pp. 447‐457

[25] Keller RE, Poli R. Cost‐benefit investigation of a genetic‐programming hyperheuristic. 
In: Monmarche’ N, Talbi E‐G, Collet P, Schoenauer M, Lutton E, editors. International 
Conference on Artificial Evolution. Berlin, Heidelberg: Springer‐Verlag; 2007. pp. 13‐24

[26] Runka A. Evolving an edge selection formula for ant colony optimization. In: Genetic 
and evolutionary computation conference (GECCO’09). New York: ACM; 2009. pp. 
1075‐1081

[27] Burke EK, Hyde MR, Kendall G. Evolving bin packing heuristics with genetic program‐
ming. In: Parallel Problem Solving from Nature PPSN IX, Lecture Notes in Computer 
Science. Runarsson T.P., Beyer HG, Burke E, Merelo‐Guervós JJ, Whitley LD, Yao X 
(eds). Springer, Berlin, Heidelberg. Vol. 4193. 2006. pp. 860‐869

[28] Burke EK, Hyde MR, Kendall G. Grammatical evolution of local search heuristics. IEEE 
Transactions on Evolutionary Computation. 2012;16:406‐417

[29] Sim K, Hart E, Paechter B. A hyper‐heuristic classifier for one dimensional bin packing 
problems: Improving classification accuracy by attribute evolution. In: Parallel Problem 
Solving from Nature: PPSN XII, Vol. 7492. Coello CAC, Cutello V, Deb K, Forrest S, 
Nicosia G, Pavone M. (eds). Lecture Notes in Computer Science. Springer, Berlin, 
Heidelberg. 2012. pp. 348‐357

[30] Ross P, Marín‐Blázquez JG. Constructive hyper‐heuristics in class timetabling. In: IEEE 
Congress on Evolutionary Computation (CEC’05), Edinburgh, UK. 2005. pp. 1493‐1500

[31] Burke EK, Petrovic S, Qu R. Case based heuristic selection for timetabling problems. 
Journal of Scheduling. 2006;9(2):115‐132

[32] Fukunaga AS. Automated discovery of local search heuristics for satisfiability testing. 
Evolutionary Computation. 2008;16(1):31‐61

[33] Burke EK, Hyde MR, Kendall G, Woodward J. Automating the packing heuristic design 
process with genetic programming. Evolutionary Computation. 2012;20(1):63‐89

[34] Krasnogor N, Gustafson S. A study on the use of “self‐generation” in memetic algo‐
rithms. Natural Computing. 2004;3(1):53‐76

Heuristics and Hyper-Heuristics - Principles and Applications18



[22] Dowsland KA, Soubeiga E, Burke EK. A simulated annealing hyperheuristic for deter‐
mining shipper sizes for storage and transportation. European Journal of Operational 
Research. 2007;179(3):759‐774

[23] Pisinger D, Ropke S. A general heuristic for vehicle routing problems. Computers and 
Operations Research. 2007;34(8):2403‐2435

[24] Pillay N. Evolving hyper‐heuristics for the uncapacitated examination timetabling prob‐
lem. In: Blazewicz J, Drozdowski M, Kendall G, McCollum B (eds). Multidisciplinary 
International Conference on Scheduling: Theory and Applications (MISTA’09). Dublin, 
Ireland; 2009. pp. 447‐457

[25] Keller RE, Poli R. Cost‐benefit investigation of a genetic‐programming hyperheuristic. 
In: Monmarche’ N, Talbi E‐G, Collet P, Schoenauer M, Lutton E, editors. International 
Conference on Artificial Evolution. Berlin, Heidelberg: Springer‐Verlag; 2007. pp. 13‐24

[26] Runka A. Evolving an edge selection formula for ant colony optimization. In: Genetic 
and evolutionary computation conference (GECCO’09). New York: ACM; 2009. pp. 
1075‐1081

[27] Burke EK, Hyde MR, Kendall G. Evolving bin packing heuristics with genetic program‐
ming. In: Parallel Problem Solving from Nature PPSN IX, Lecture Notes in Computer 
Science. Runarsson T.P., Beyer HG, Burke E, Merelo‐Guervós JJ, Whitley LD, Yao X 
(eds). Springer, Berlin, Heidelberg. Vol. 4193. 2006. pp. 860‐869

[28] Burke EK, Hyde MR, Kendall G. Grammatical evolution of local search heuristics. IEEE 
Transactions on Evolutionary Computation. 2012;16:406‐417

[29] Sim K, Hart E, Paechter B. A hyper‐heuristic classifier for one dimensional bin packing 
problems: Improving classification accuracy by attribute evolution. In: Parallel Problem 
Solving from Nature: PPSN XII, Vol. 7492. Coello CAC, Cutello V, Deb K, Forrest S, 
Nicosia G, Pavone M. (eds). Lecture Notes in Computer Science. Springer, Berlin, 
Heidelberg. 2012. pp. 348‐357

[30] Ross P, Marín‐Blázquez JG. Constructive hyper‐heuristics in class timetabling. In: IEEE 
Congress on Evolutionary Computation (CEC’05), Edinburgh, UK. 2005. pp. 1493‐1500

[31] Burke EK, Petrovic S, Qu R. Case based heuristic selection for timetabling problems. 
Journal of Scheduling. 2006;9(2):115‐132

[32] Fukunaga AS. Automated discovery of local search heuristics for satisfiability testing. 
Evolutionary Computation. 2008;16(1):31‐61

[33] Burke EK, Hyde MR, Kendall G, Woodward J. Automating the packing heuristic design 
process with genetic programming. Evolutionary Computation. 2012;20(1):63‐89

[34] Krasnogor N, Gustafson S. A study on the use of “self‐generation” in memetic algo‐
rithms. Natural Computing. 2004;3(1):53‐76

Heuristics and Hyper-Heuristics - Principles and Applications18

[35] Garrido P, Riff M. Dvrp: A hard dynamic combinatorial optimisation problem tackled 
by an evolutionary hyper‐heuristic. Journal of Heuristics 2010;16:795‐834

[36] Remde S, Cowling P, Dahal K, Colledge N. Binary exponential back‐off for tabu ten‐
ure in hyperheuristics. In: Cotta C, Cowling P, editors. Evolutionary Computation in 
Combinatorial Optimization. Vol. 5482. Berlin: Springer; 2009. pp. 109‐112

[37] Terashima‐Marín H, Ross P, Farías‐Zárate CJ, López‐Camacho E, Valenzuela‐Rendón 
M. Generalized hyper‐heuristics for solving 2D regular and irregular packing problems. 
Annals of Operations Research 2010;179(1):369‐392

[38] Rattadilok P, Gaw A, Kwan RSK. Distributed choice function hyper‐heuristics for time‐
tabling and scheduling. In: Burke EK, Trick M, editors. The Practice and Theory of 
Automated Timetabling V: Selected Papers from the 5th International Conference on the 
Practice and Theory of Automated Timetabling. Vol. 3616. Lecture Notes in Computer 
Science Series. Berlin: Springer; 2005. pp. 51‐70

[39] Blazewicz J, Burke EK, Kendall G, Mruczkiewicz W, Oguz C, Swiercz A. A hyper‐heu‐
ristic approach to sequencing by hybridization of DNA sequences. Annals of Operations 
Research. 2013;207(1):27‐41. DOI: 10.1007/s10479‐011‐0927‐y

[40] Nareyek A. An empirical analysis of weight‐adaptation strategies for neighborhoods of 
heuristics. In: Sousa J, editor. Metaheuristic International Conference MIC’2001. Porto, 
Portugal. 2001. pp. 211‐215

[41] Burke EK, Kendall G, Soubeiga E. A tabu‐search hyperheuristic for timetabling and ros‐
tering. Journal of Heuristics. 2003;9(6):451‐470

[42] Koza JR. Genetic Programming: On the Programming of Computers by Means of 
Natural Selection. Boston, MA: The MIT Press; 1992

[43] Ho NB and Tay JC. Evolving dispatching rules for solving the flexible job‐shop problem. 
In: IEEE Congress on Evolutionary Computation (CEC’05). Edinburgh, UK: IEEE; 2005. 
pp. 2848‐2855

[44] Poli R, Woodward JR and Burke EK. A histogram matching approach to the evolution 
of bin‐packing strategies. In: IEEE Congress on Evolutionary Computation (CEC’07). 
Singapore: IEEE; 2007. pp. 3500‐3507

[45] Oltean M, Dumitrescu D. Evolving TSP heuristics using multi expression programming. 
In: International Conference on Computational Science (ICCS’04). Vol. 3037. Lecture 
Notes in Computer Science. Berlin: Springer; 2004. pp. 670‐673

[46] Weiss K, Khoshgoftaar TM, Wang DD. A survey of transfer learning. Journal of Big Data. 
2016;3:9

[47] Sankoff D, Kruskal J. Time Warps, String Edits and Macromolecules: The Theory and 
Practice of Sequence Comparisons. Addison‐Wesley. 1983

Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization...
http://dx.doi.org/10.5772/intechopen.69225

19



[48] Storer JA. Data Compression: Methods and theory. Computer Science Press Inc.; New 
York, NY, USA. 1988

[49] Tabataba FS, Mousavi SR. A hyper‐heuristic for the longest common subsequence prob‐
lem. Computational Biology and Chemistry. 2012;36:42‐54

[50] Swiercz A, Burke EK, Cicheński M, Pawlak G, Petrovic S, Zurkowski T, Blazewicz J. 
Unified encoding for hyper‐heuristics with application to bioinformatics. Central 
European Journal of Operations Research. 2014;22:567‐589

[51] Sanger F, Nicklen S, Coulson A. DNA sequencing with chain‐terminating inhibitors, 
Proceedings of the National Academy of Sciences, USA. 1977;74:5463‐5467

[52] Myers E, Sutton G, Delcher A. A whole‐genome assembly of Drosophila, Science. 2000; 
287(5461):2196‐2204

[53] Simpson J, Durbin R. Efficient de novo assembly of large genomes using compressed 
data structures, Genome Research. 2012;22:549‐556

[54] Zerbino D, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn 
graphs, Genome Research. 2008;18:821‐829

[55] Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada 
M, Nagayasu E, Maruyama H, Kohara Y, Fujiyama A, Hayashi T, Itoh T. Efficient de 
novo assembly of highly heterozygous genomes from whole‐genome shotgun short 
reads, Genome Research. 2014;24:1384‐1395

[56] Bonifaci V, Mehlhorn K, Varma G. Physarum can compute shortest paths. Journal of 
Theoretical Biology. 2012;309:121‐133

[57] Bonifaci V. Physarum can compute shortest paths: A short proof. Information Processing 
Letters. 2013;113(1‐2):4‐7

[58] Adleman LM. Molecular computation of solutions to combinatorial problems. Science. 
1994;266:1021‐1024

[59] Ochoa G, Walker J, Hyde M, Curtois T. Adaptive evolutionary algorithms and extensions 
to the HyFlex hyper‐heuristic framework. In: Parallel Problem Solving from Nature—
PPSN XII. Lecture Notes in Computer Science. Berlin: Springer. 2012;7492:418‐427

[60] Swan J, Özcan E, Kendall G. Hyperion—A recursive hyper‐heuristic framework. 
In: Coello CAC, editor. LION. Lecture Notes in Computer Science. Berlin: Springer. 
2011;6683:616‐630

Heuristics and Hyper-Heuristics - Principles and Applications20



[48] Storer JA. Data Compression: Methods and theory. Computer Science Press Inc.; New 
York, NY, USA. 1988

[49] Tabataba FS, Mousavi SR. A hyper‐heuristic for the longest common subsequence prob‐
lem. Computational Biology and Chemistry. 2012;36:42‐54

[50] Swiercz A, Burke EK, Cicheński M, Pawlak G, Petrovic S, Zurkowski T, Blazewicz J. 
Unified encoding for hyper‐heuristics with application to bioinformatics. Central 
European Journal of Operations Research. 2014;22:567‐589

[51] Sanger F, Nicklen S, Coulson A. DNA sequencing with chain‐terminating inhibitors, 
Proceedings of the National Academy of Sciences, USA. 1977;74:5463‐5467

[52] Myers E, Sutton G, Delcher A. A whole‐genome assembly of Drosophila, Science. 2000; 
287(5461):2196‐2204

[53] Simpson J, Durbin R. Efficient de novo assembly of large genomes using compressed 
data structures, Genome Research. 2012;22:549‐556

[54] Zerbino D, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn 
graphs, Genome Research. 2008;18:821‐829

[55] Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada 
M, Nagayasu E, Maruyama H, Kohara Y, Fujiyama A, Hayashi T, Itoh T. Efficient de 
novo assembly of highly heterozygous genomes from whole‐genome shotgun short 
reads, Genome Research. 2014;24:1384‐1395

[56] Bonifaci V, Mehlhorn K, Varma G. Physarum can compute shortest paths. Journal of 
Theoretical Biology. 2012;309:121‐133

[57] Bonifaci V. Physarum can compute shortest paths: A short proof. Information Processing 
Letters. 2013;113(1‐2):4‐7

[58] Adleman LM. Molecular computation of solutions to combinatorial problems. Science. 
1994;266:1021‐1024

[59] Ochoa G, Walker J, Hyde M, Curtois T. Adaptive evolutionary algorithms and extensions 
to the HyFlex hyper‐heuristic framework. In: Parallel Problem Solving from Nature—
PPSN XII. Lecture Notes in Computer Science. Berlin: Springer. 2012;7492:418‐427

[60] Swan J, Özcan E, Kendall G. Hyperion—A recursive hyper‐heuristic framework. 
In: Coello CAC, editor. LION. Lecture Notes in Computer Science. Berlin: Springer. 
2011;6683:616‐630

Heuristics and Hyper-Heuristics - Principles and Applications20

Chapter 2

Multi‐Objective Hyper‐Heuristics

Mashael Suliaman Maashi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69222

Abstract

Multi‐objective hyper‐heuristics is a search method or learning mechanism that oper‐
ates over a fixed set of low‐level heuristics to solve multi‐objective optimization prob‐
lems by controlling and combining the strengths of those heuristics. Although numerous 
papers on hyper‐heuristics have been published and several studies are still underway, 
most research has focused on single‐objective optimization. Work on hyper‐heuristics for 
multi‐objective optimization remains limited. This chapter draws attention to this area 
of research to help researchers and PhD students understand and reuse these methods. 
It also provides the basic concepts of multi‐objective optimization and hyper‐heuristics 
to facilitate a better understanding of the related research areas, in addition to exploring 
hyper‐heuristic methodologies that address multi‐objective optimization. Some design 
issues related to the development of hyper‐heuristic framework for multi‐objective opti‐
mization are discussed. The chapter concludes with a case study of multi‐objective selec‐
tion hyper‐heuristics and its application on a real‐world problem.

Keywords: hyper‐heuristics, multi‐objective optimization, meta‐heuristics, evolutionary 
algorithms, computational search problems

1. Introduction

Many real‐world problems are complex. Owing to the (often) NP‐hard nature of such 
problems, researchers and practitioners frequently resort to problem‐tailored heuristics 
in order to obtain a reasonable solution within a reasonable amount of time. Hyper‐heu‐
ristics are methodologies that operate on a search space of heuristics rather than directly 
searching the solution space for solving hard computational problems. One of the main 
aims of hyper‐heuristics is to raise the level of generality of search methodologies and to 
automatically adapt the algorithm by combining the strength of each heuristic and making 
up for the weaknesses of others. References to multi‐objective hyper‐heuristics are scarce 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



as most research in this area has been limited to single‐objective optimization. The pur‐
pose of this chapter is to provide an introduction to hyper‐heuristic methodologies that are 
designed for multi‐objective optimization (HHMOs). The chapter might help researchers 
and PhD students interested in this research area to understand and use these methods. 
Hyper‐ heuristics for multi‐objective optimization is a relatively new area of research in 
operational research (OR) and evolutionary computation [1, 2]. Few studies have dealt with 
hyper‐heuristics for multi‐objective problems. In order to offer a better understanding of 
the subject, the basic concepts of multi‐objective optimization and hyper‐heuristics are pro‐
vided in Section 2. This chapter also provides a brief survey of hyper‐heuristic methodolo‐
gies that address multi‐objective optimization in Section 3. Some design issues related to the 
development of a hyper‐heuristic framework for multi‐objective optimization are discussed 
in Section 4. Additionally, a case study of multi‐objective selection hyper‐heuristics and its 
application on a real‐world problem is presented in Section 5. Finally, promising research 
areas for future application are provided in Section 6.

2. The basic concepts and underlying issues

2.1. Multi‐objective optimization

Multi‐objective problems (MOPs): MOPs comprise several objectives (two or more), which 
need to be minimized or maximized depending on the problem. A general definition of an 
MOP [3] is

An MOP minimizes  F  (  x )    =   (   f  
1
    (  x )   , …,  f  

k
    (  x )    )     subject to   g  

i
    (  x )    ≤ 0; i = 1, … , m, x ∈ 𝜴𝜴𝜴𝜴 . The solution of 

the MOP minimizes the components of a vector  F  (  x )   , where  x  is an n‐dimensional decision 
 variable vector    (  X =  x  

1
  , … ,  x  

n
   )     from some universe Ω. An MOP includes  n  decision variables,  m  

constraints,and  k   objectives. The MOP’s evaluation function  F : 𝜴𝜴𝜴𝜴 → ∧  maps decision variable 
vectors    (  X =  x  

1
  , … ,  x  

n
   )     to vectors    (  Y =  a  

1
  , … ,  a  

k
   )    .

Multi‐objective optimization techniques are divided into three classes [3, 4]:

• A priori approach (decision making and then a search):
In this class, the objective preferences or weights are set by the decision maker prior 
to the search process. An example of this is aggregation‐based approaches such as the 
weighted sum approach.

• A posteriori approach (a search and then decision making):
The search is conducted to find solutions for the objective functions. Following this, a 
 decision process selects the most appropriate solutions (often involving a trade‐off). Multi‐
objective evolutionary optimization (MOEA) techniques, whether non‐Pareto‐based  
or Pareto‐based, are examples of this class.

• Interactive or progressive approach (search and decision making simultaneously):
In this class, the preferences of the decision maker(s) are made and adjusted during 
the search process.

Heuristics and Hyper-Heuristics - Principles and Applications22



as most research in this area has been limited to single‐objective optimization. The pur‐
pose of this chapter is to provide an introduction to hyper‐heuristic methodologies that are 
designed for multi‐objective optimization (HHMOs). The chapter might help researchers 
and PhD students interested in this research area to understand and use these methods. 
Hyper‐ heuristics for multi‐objective optimization is a relatively new area of research in 
operational research (OR) and evolutionary computation [1, 2]. Few studies have dealt with 
hyper‐heuristics for multi‐objective problems. In order to offer a better understanding of 
the subject, the basic concepts of multi‐objective optimization and hyper‐heuristics are pro‐
vided in Section 2. This chapter also provides a brief survey of hyper‐heuristic methodolo‐
gies that address multi‐objective optimization in Section 3. Some design issues related to the 
development of a hyper‐heuristic framework for multi‐objective optimization are discussed 
in Section 4. Additionally, a case study of multi‐objective selection hyper‐heuristics and its 
application on a real‐world problem is presented in Section 5. Finally, promising research 
areas for future application are provided in Section 6.

2. The basic concepts and underlying issues

2.1. Multi‐objective optimization

Multi‐objective problems (MOPs): MOPs comprise several objectives (two or more), which 
need to be minimized or maximized depending on the problem. A general definition of an 
MOP [3] is

An MOP minimizes  F  (  x )    =   (   f  
1
    (  x )   , …,  f  

k
    (  x )    )     subject to   g  

i
    (  x )    ≤ 0; i = 1, … , m, x ∈ 𝜴𝜴𝜴𝜴 . The solution of 

the MOP minimizes the components of a vector  F  (  x )   , where  x  is an n‐dimensional decision 
 variable vector    (  X =  x  

1
  , … ,  x  

n
   )     from some universe Ω. An MOP includes  n  decision variables,  m  

constraints,and  k   objectives. The MOP’s evaluation function  F : 𝜴𝜴𝜴𝜴 → ∧  maps decision variable 
vectors    (  X =  x  

1
  , … ,  x  

n
   )     to vectors    (  Y =  a  

1
  , … ,  a  

k
   )    .

Multi‐objective optimization techniques are divided into three classes [3, 4]:

• A priori approach (decision making and then a search):
In this class, the objective preferences or weights are set by the decision maker prior 
to the search process. An example of this is aggregation‐based approaches such as the 
weighted sum approach.

• A posteriori approach (a search and then decision making):
The search is conducted to find solutions for the objective functions. Following this, a 
 decision process selects the most appropriate solutions (often involving a trade‐off). Multi‐
objective evolutionary optimization (MOEA) techniques, whether non‐Pareto‐based  
or Pareto‐based, are examples of this class.

• Interactive or progressive approach (search and decision making simultaneously):
In this class, the preferences of the decision maker(s) are made and adjusted during 
the search process.

Heuristics and Hyper-Heuristics - Principles and Applications22

Pareto dominance: The idea behind the dominance concept is to generate a preference between 
MOP solutions since there is no information regarding objective preference provided by the 
decision maker. This preference is used to compare the dominance between any two solutions 
[5]. A more formal definition of Pareto dominance (for minimization case) is as follows [4]:

A vector  u =   (   u  
1
  , … ,  u  

k
   )     is said to dominate another vector  v =   (   v  

1
  , … ,  v  

k
   )     (denoted by  u ≾ v ) accord‐

ing to  k  objectives if and only if  u  is partially less than  v , that is,  ∀ i ∈   {  1, … , k }    ,  u  
i
   ≤  v  

i
   ∧ ∃ i ∈   {  1, … , k }     

∶  u  
i
   <  v  

i
   .

All non‐dominated solutions are also known as the Pareto optimal sets. The corresponding 
Pareto optimal set, with respect to the objective space, is known as the Pareto optimal front. 
The quality of the obtained Pareto optimal set can be determined in Refs. [6, 7]: the extent of the 
Pareto optimal set and the distance and the distribution of the Pareto optimal front.

2.2. Hyper‐heuristics

The main aim of the hyper‐heuristic methodology is raising the level of generality of search 
techniques by producing general search algorithms that are applicable for solving a wide 
range of the problems in different domains [2, 8, 9]. In a hyper‐heuristic approach, differ‐
ent heuristics (or heuristic components) can be selected, generated, or combined to solve a 
given optimization problem in an efficient way. Since each heuristic has its own strengths and 
weaknesses, one of the aims of hyper‐heuristics is to automatically inform the algorithm by 
combining the strength of each heuristic and making up for the weaknesses of others. This 
process requires the incorporation of a learning mechanism into the algorithm to adaptively 
direct the search at each decision point for a particular state of the problem or the stage 
of search. It is obvious that the concept of hyper‐heuristics has strong ties to operational 
research (OR) in terms of finding optimal or near‐optimal solutions to computational search 
problems. It is also firmly linked to artificial intelligence (AI) in terms of machine‐learning 
methodologies [8].

2.2.1. Generic hyper‐heuristic framework

In their simplest form, hyper‐heuristics is a search methodology that encompasses a high‐
level strategy (which could be a meta‐heuristic) that controls the search over a set of heuris‐
tics (low‐level heuristics) rather than controlling a search over a direct representation of the 
solutions. Usually, in a hyper‐heuristic framework, there is a clear separation between high‐
level strategy and the set of low‐level heuristics [10]. The purpose of domain barrier is to give 
the hyper‐heuristics a higher level of abstraction. This also increases the level of generality of 
hyper‐heuristics by enabling its application to a new problem without the need for a frame‐
work change. Only information relevant to the problem domain is provided from low level to 
high level, including cost/fitness measured by an evaluation function, indicating the quality 
of a solution. The high‐level strategy can be a (meta‐) heuristic or a learning mechanism. The 
task of the high‐level strategy is to guide the search intelligently and adapt according to the 
success/failure of the low‐level heuristics or combinations of heuristic components during 
the search process.

Multi‐Objective Hyper‐Heuristics
http://dx.doi.org/10.5772/intechopen.69222

23



2.2.2. Hyper‐heuristics classification

Generally, there are two recognized methodologies of hyper‐heuristics: selection and generation 
hyper‐heuristics. For both hyper‐heuristic methodologies, there are two types of heuristics: (i) 
constructive heuristics, which process a partial solution(s) and build a complete solution(s) and 
(ii) perturbative heuristics, which operate on complete solution(s).

In the context of hyper‐heuristics for multi‐objective optimization, we could classify them into 
three categories:

• Multi‐objective selection hyper‐heuristic manages a number of heuristics during an itera‐
tive process for a given time. At each iteration, one of best heuristics is chosen at a decision 
point to operate and run. This type comprises two main stages: heuristic selection and move‐
acceptance strategy.

• Multi‐objective combination/hybridization hyper‐heuristic combines a number of heu‐
ristics or (components of heuristics) that operate simultaneously and adaptively to create 
new solutions.

• Multi‐objective generation hyper‐heuristic: To the best of the authors’ knowledge, there 
are no studies addressing multi‐objective generation hyper‐heuristic in the literature.

3. Brief survey of hyper‐heuristics for multi‐objective optimization

The hyper‐heuristics for multi‐objective optimization problems is a new area of research in 
evolutionary computation and operational research [2, 8]. To date, few studies have been 
identified that deal with hyper‐heuristics for multi‐objective problems (see Table 1).

Regarding multi‐objective selection hyper‐heuristics, a multi‐objective hyper‐heuristic tabu 
search (TS) based (TSRoulette Wheel) was presented in Ref. [11]. In this approach, an appro‐
priate heuristic is selected at each iteration using tabu search as a high‐level search strategy. 
The experiments showed results with acceptable solution when applied in space allocation 
and timetabling problems. In Ref. [12], an online selection hyper‐heuristic, Markov‐chain‐
based hyper‐heuristic (MCHH), is investigated. The Markov chain guides the selection of 
heuristics and applies online reinforcement learning to adapt transition weights between 
heuristics. In MCHH, hybrid meta‐heuristics and evolution strategies were incorporated and 
applied to the DTLZ test problems [13] and compared to a (1+1) evolution strategy meta‐
heuristic, a random hyper‐heuristic, and TSRoulette Wheel [11]. The comparison shows the 
efficacy of the proposed approach in terms of Pareto convergence and learning ability to select 
good heuristic combinations. Further work is needed in terms of diversity‐preserving mecha‐
nisms. The MCHH was applied to the Walking Fish Group (WFG) test problems [14], and 
although the results from the performed tests show the ability of the approach, future work 
needs to be made to improve the search strategies [12]. MCHH has been applied to real‐
world water distribution networks and it produced competitive results [15]. A multi‐objective 
hyper‐heuristic optimization scheme for engineering system designs is presented in Ref. [16]. 

Heuristics and Hyper-Heuristics - Principles and Applications24



2.2.2. Hyper‐heuristics classification

Generally, there are two recognized methodologies of hyper‐heuristics: selection and generation 
hyper‐heuristics. For both hyper‐heuristic methodologies, there are two types of heuristics: (i) 
constructive heuristics, which process a partial solution(s) and build a complete solution(s) and 
(ii) perturbative heuristics, which operate on complete solution(s).

In the context of hyper‐heuristics for multi‐objective optimization, we could classify them into 
three categories:

• Multi‐objective selection hyper‐heuristic manages a number of heuristics during an itera‐
tive process for a given time. At each iteration, one of best heuristics is chosen at a decision 
point to operate and run. This type comprises two main stages: heuristic selection and move‐
acceptance strategy.

• Multi‐objective combination/hybridization hyper‐heuristic combines a number of heu‐
ristics or (components of heuristics) that operate simultaneously and adaptively to create 
new solutions.

• Multi‐objective generation hyper‐heuristic: To the best of the authors’ knowledge, there 
are no studies addressing multi‐objective generation hyper‐heuristic in the literature.

3. Brief survey of hyper‐heuristics for multi‐objective optimization

The hyper‐heuristics for multi‐objective optimization problems is a new area of research in 
evolutionary computation and operational research [2, 8]. To date, few studies have been 
identified that deal with hyper‐heuristics for multi‐objective problems (see Table 1).

Regarding multi‐objective selection hyper‐heuristics, a multi‐objective hyper‐heuristic tabu 
search (TS) based (TSRoulette Wheel) was presented in Ref. [11]. In this approach, an appro‐
priate heuristic is selected at each iteration using tabu search as a high‐level search strategy. 
The experiments showed results with acceptable solution when applied in space allocation 
and timetabling problems. In Ref. [12], an online selection hyper‐heuristic, Markov‐chain‐
based hyper‐heuristic (MCHH), is investigated. The Markov chain guides the selection of 
heuristics and applies online reinforcement learning to adapt transition weights between 
heuristics. In MCHH, hybrid meta‐heuristics and evolution strategies were incorporated and 
applied to the DTLZ test problems [13] and compared to a (1+1) evolution strategy meta‐
heuristic, a random hyper‐heuristic, and TSRoulette Wheel [11]. The comparison shows the 
efficacy of the proposed approach in terms of Pareto convergence and learning ability to select 
good heuristic combinations. Further work is needed in terms of diversity‐preserving mecha‐
nisms. The MCHH was applied to the Walking Fish Group (WFG) test problems [14], and 
although the results from the performed tests show the ability of the approach, future work 
needs to be made to improve the search strategies [12]. MCHH has been applied to real‐
world water distribution networks and it produced competitive results [15]. A multi‐objective 
hyper‐heuristic optimization scheme for engineering system designs is presented in Ref. [16]. 

Heuristics and Hyper-Heuristics - Principles and Applications24

Simulated annealing (SA) [17], genetic algorithm, and particle swarm optimization [18] are 
used as low‐level heuristics. A multi‐ indicator hyper‐heuristics for multi‐objective optimiza‐
tion is proposed in Ref. [19]. The approach based on multiple rank of indicators is taken from 
NSGAII [20], SPEA2 [22], and IBEA [21]. In Ref. [23], a multi‐objective hyper‐heuristic genetic 
algorithm (MHypGA) for multi‐objective software module clustering problem is presented. 
In MHypGA, different strategies of selection, crossover, and mutation operations of genetic 
algorithms are incorporated as low‐level heuristics. In Refs. [24–26], online‐learning multi‐
objective hyper‐heuristics are presented. These multi‐objective hyper‐heuristics are based on 
a choice function. The multi‐objective choice‐function‐based hyper‐heuristics are combined 
with different move‐acceptance strategies including all‐moves (AMs) and the great deluge 
algorithm (GDA) [27] and late acceptance (LA) [28]. The multi‐objective hyper‐heuristic con‐
trols and combines the strengths of three well‐known multi‐objective evolutionary algorithms 
(NSGAII [20], SPEA2 [22], and MOGA [30]). The performance of the proposed multi‐objective 

Component name Application domain/test problems Reference(s)

Tabu search Space allocation, timetabling [8]

Traveling salesman problems [35]

Markov chain, evolution strategy Real‐world water distribution networks 
design/DTLZ, WFG

[12]

NSGAII Irregular 2D cutting stock [37]

Strip packing and cutting stock [39]

NSGAII, quasi‐Newton algorithm Stacked neural network [40]

Number of operations from NSGAII, SPEA2, 
and IBEA

A number of continuous multi‐objective test 
problems

[19]

Number of selection, crossover, and mutation 
operations of evolutionary algorithms

Software module clustering [23]

Hypervolume Dynamic‐mapped island‐based model/WFG [36]

Particle swarm optimization, adaptive metropolis 
algorithm, differential evolution

Water resource problems/a number of 
continuous multi‐objective test problems

[41]

Memory strategy, genetic and differential operators Dynamic optimization problems/a number of 
continuous multi‐objective test problems

[46]

Genetic algorithm, simulated annealing, particle 
swarm optimization

Engineering system design problems/a 
number of classical multi‐objective test 
problems

[16]

Simulated annealing Shelf‐space allocation [34]

NSGAII, SPEA2,MOGA, choice function, great 
deluge algorithm, and late acceptance

WFG/the vehicle crashworthiness design 
problem

[24–26]

NSGAII, SPEA2, IBEA, choice function, great 
deluge algorithm

WFG/wind farm layout optimization [32]

Markov model DTLZ [33]

Table 1. Heuristic components and application domains of hyper‐heuristics for multi‐objective optimization.

Multi‐Objective Hyper‐Heuristics
http://dx.doi.org/10.5772/intechopen.69222

25



choice‐function‐based hyper‐heuristics is evaluated on the Walking Fish Group (WFG) test 
suite [14] and is applied to the vehicle crashworthiness design problem [31]. The results of 
both benchmark test problems demonstrate the capability and potential of the multi‐objec‐
tive hyper‐heuristic approaches in solving continuous multi‐objective optimization problems. 
More details about these approaches are provided as a study case in Section 5. In Ref. [32], 
a multi‐objective selection hyper‐heuristics for a multi‐objective wind farm layout optimiza‐
tion is proposed. The experiential results show that the proposed approach is successfully 
applied to this optimization problem. In Ref. [33], a multi‐objective selection sequence‐
based hyper‐heuristic (MOSSHH) is proposed. The MOSSHH algorithm employs a hidden 
Markov model based on a sequence of heuristics that is determined by transition probabilities 
on ɛ‐dominance. The proposed approach has been applied to DTLZ test problems [13] and 
results showed its capability to solve it through the learning process. A multiple neighbor‐
hood hyper‐heuristic for two‐dimensional (2D) shelf‐space allocation problem is proposed 
in Ref. [34]. The proposed hyper‐heuristic is based on a simulated annealing algorithm. 
A two‐stage multi‐objective hyper‐heuristic approach is presented in Ref. [35]. The first phase 
targets in producing an efficient Pareto front, and the second phase focuses on solving a given 
problem in a flexible way so as to drive a subset of the population to the desired Pareto front. 
The approach was assessed on the multi‐objective‐traveling salesman problems using 11 low‐
level heuristics. Comparison with other methods from the scientific literature revealed that 
the proposed approach produces high‐quality results. Nevertheless, upcoming efforts are 
still necessary in advancing the approach. In Ref. [36], a hypervolume‐based hyper‐heuristic 
for a dynamic‐mapped multi‐objective island‐based model is proposed. This method shows 
its superiority when compared to the contribution‐based hyper‐heuristic and other standard 
parallel models over the WFG test problems [14]. A new hyper‐heuristic based on the multi‐
objective evolutionary algorithm NSGAII [20] is proposed in Ref. [37]. The main idea of this 
method involves the production of the final Pareto‐optimal set, through a learning process 
that evolves combinations of condition‐action rules based on NSGAII. The proposed method 
was tested on many instances of irregular 2D‐cutting stock benchmark problems and pro‐
duced promising results. A hyper‐heuristic‐based codification is proposed in Refs. [38, 39], 
for solving strip packing and cutting stock problems in order to maximize the total profit and 
minimize the total number of cuts. The experimental results show that outcomes of the pro‐
posed hyper‐heuristic outperform single heuristics. In Ref. [40], a multi‐objective hyper‐heu‐
ristic for the design and optimization of a stacked neural network is proposed. The proposed 
approach is based on NSGAII [20] combined with a local search algorithm (Quasi‐Newton 
algorithm).

Regarding multi‐objective hybridization hyper‐heuristic, an adaptive multi‐method (multi‐
point) search called AMALGAM is proposed in Ref. [41]. It employs multiple search algo‐
rithms, NSGAII [20], PSO [18], AMS [42], and DE [43], simultaneously using the concepts 
of multi‐method search and adaptive offspring creation. AMALGAM has been applied to a 
number of continuous multi‐objective test problems, and it has been shown to be superior to 
other methods. It has also been applied to solve a number of water resource problems and has 
yielded very good solutions [44, 45]. A multi‐strategy ensemble, multi‐objective evolutionary 
algorithm called MS‐MOEA for dynamic optimization, is proposed in Ref. [46]. The approach 

Heuristics and Hyper-Heuristics - Principles and Applications26



choice‐function‐based hyper‐heuristics is evaluated on the Walking Fish Group (WFG) test 
suite [14] and is applied to the vehicle crashworthiness design problem [31]. The results of 
both benchmark test problems demonstrate the capability and potential of the multi‐objec‐
tive hyper‐heuristic approaches in solving continuous multi‐objective optimization problems. 
More details about these approaches are provided as a study case in Section 5. In Ref. [32], 
a multi‐objective selection hyper‐heuristics for a multi‐objective wind farm layout optimiza‐
tion is proposed. The experiential results show that the proposed approach is successfully 
applied to this optimization problem. In Ref. [33], a multi‐objective selection sequence‐
based hyper‐heuristic (MOSSHH) is proposed. The MOSSHH algorithm employs a hidden 
Markov model based on a sequence of heuristics that is determined by transition probabilities 
on ɛ‐dominance. The proposed approach has been applied to DTLZ test problems [13] and 
results showed its capability to solve it through the learning process. A multiple neighbor‐
hood hyper‐heuristic for two‐dimensional (2D) shelf‐space allocation problem is proposed 
in Ref. [34]. The proposed hyper‐heuristic is based on a simulated annealing algorithm. 
A two‐stage multi‐objective hyper‐heuristic approach is presented in Ref. [35]. The first phase 
targets in producing an efficient Pareto front, and the second phase focuses on solving a given 
problem in a flexible way so as to drive a subset of the population to the desired Pareto front. 
The approach was assessed on the multi‐objective‐traveling salesman problems using 11 low‐
level heuristics. Comparison with other methods from the scientific literature revealed that 
the proposed approach produces high‐quality results. Nevertheless, upcoming efforts are 
still necessary in advancing the approach. In Ref. [36], a hypervolume‐based hyper‐heuristic 
for a dynamic‐mapped multi‐objective island‐based model is proposed. This method shows 
its superiority when compared to the contribution‐based hyper‐heuristic and other standard 
parallel models over the WFG test problems [14]. A new hyper‐heuristic based on the multi‐
objective evolutionary algorithm NSGAII [20] is proposed in Ref. [37]. The main idea of this 
method involves the production of the final Pareto‐optimal set, through a learning process 
that evolves combinations of condition‐action rules based on NSGAII. The proposed method 
was tested on many instances of irregular 2D‐cutting stock benchmark problems and pro‐
duced promising results. A hyper‐heuristic‐based codification is proposed in Refs. [38, 39], 
for solving strip packing and cutting stock problems in order to maximize the total profit and 
minimize the total number of cuts. The experimental results show that outcomes of the pro‐
posed hyper‐heuristic outperform single heuristics. In Ref. [40], a multi‐objective hyper‐heu‐
ristic for the design and optimization of a stacked neural network is proposed. The proposed 
approach is based on NSGAII [20] combined with a local search algorithm (Quasi‐Newton 
algorithm).

Regarding multi‐objective hybridization hyper‐heuristic, an adaptive multi‐method (multi‐
point) search called AMALGAM is proposed in Ref. [41]. It employs multiple search algo‐
rithms, NSGAII [20], PSO [18], AMS [42], and DE [43], simultaneously using the concepts 
of multi‐method search and adaptive offspring creation. AMALGAM has been applied to a 
number of continuous multi‐objective test problems, and it has been shown to be superior to 
other methods. It has also been applied to solve a number of water resource problems and has 
yielded very good solutions [44, 45]. A multi‐strategy ensemble, multi‐objective evolutionary 
algorithm called MS‐MOEA for dynamic optimization, is proposed in Ref. [46]. The approach 

Heuristics and Hyper-Heuristics - Principles and Applications26

combines differential operators and different strategies, including strategy and genetic, 
to adoptively creating offspring and increase the convergence speed. The results show that 
 MS‐MOEA obtains solution with good quality.

It is worth mentioning that multi‐objective hybridization hyper‐heuristics are similar to 
multi‐objective selection hyper‐heuristics in terms of the incorporation of different algo‐
rithms. However, they are different in their concepts. Multi‐objective selection hyper‐heuris‐
tic is based on two successive stages: a selection mechanism and an acceptance move strategy. 
By contrast, multi‐objective hybridization hyper‐heuristics is based on an adaptive creation 
 offspring strategy. In multi‐objective selection hyper‐heuristics, a sequence of heuristics/
meta‐heuristics is executed during the search, that is, one heuristic/meta‐heuristic is selected 
and applied at each stage (iteration/decision point) of the search. The high‐level strategy in 
hyper‐heuristics evaluates the performance of a set of heuristics/meta‐heuristics in order to 
improve the population of solutions. By contrast, in multi‐objective hybridization hyper‐heu‐
ristics, multiple heuristic/meta‐heuristics run concurrently. Each heuristic/meta‐heuristic pro‐
duces a different population of offspring, and then, all produced offspring are evaluated to 
evolve a new population of offspring by an adaptive creation offspring strategy.

4. Multi‐objective hyper‐heuristics design issues

The idea of hybridizing a number of algorithms (heuristics) into a hyper‐heuristic framework 
is straightforward and meaningful. However, many design issues related to the development 
of hyper‐heuristics for multi‐objective optimization require more attention when designing 
such a framework to be applicable and effective.

The main components of the hyper‐heuristic framework are low‐level heuristics, selection 
method, learning mechanism, and move‐acceptance method. The choosing of these compo‐
nents is critical. Each component in the hyper‐heuristic framework plays a significant role in 
improving the quality of both the search and the eventual solution. The components of the 
hyper‐heuristic in the context of multi‐objective optimization are discussed as follows.

4.1. Low‐level heuristics

The choice of appropriate low‐level heuristics is not an easy task. Many questions arise here, 
what heuristics (algorithms) are suitable for dealing with multi‐objective optimization prob‐
lems? Are priori approaches or a posteriori approaches more suitable? Are non‐Pareto‐based 
or Pareto‐based approaches more applicable? The author agrees with many researchers [30, 
38, 47–51] that evolutionary algorithms and population‐based methods such as decomposi‐
tion‐based approaches MOEA/Ds (e.g., [52, 53]) and indicator‐based approaches (e.g., [54, 55] 
are more suitable in dealing with multi‐objective optimization problems because of their 
population‐based nature, which means that they can find Pareto optimal sets (trade‐off solu‐
tions) in a single run, thus allowing a decision maker to select a suitable compromise solution 
(with respect to the space of the solutions). In the context of multi‐objective hyper‐heuristics, 

Multi‐Objective Hyper‐Heuristics
http://dx.doi.org/10.5772/intechopen.69222

27



a  decision maker here could be a selection method that decides which is the best low‐level 
heuristic to select at each decision point (with respect to the space of the heuristics).

4.2. Selection methods

As a selection hyper‐heuristic relies on an iterative process, the main questions arising here 
are what is an effective way to choose an appropriate heuristic at each decision point, and 
how to choose this heuristic, that is, which criteria can be considered when choosing a heu‐
ristic? In single‐objective cases, this criterion is easy to determine by measuring the quality of 
the solution, such as the objective/cost value and time. However, this is more complex when 
tackling a multi‐objective problem. The quality of the solution is not easy to assess. There are 
many different criteria that should be considered, such as the number of non‐dominated indi‐
viduals and the distance between the non‐dominated front and the POF. To make a simple 
framework, a higher level of abstraction of the hyper‐heuristics should be considered when 
designing such a framework. It is not necessary to provide any problem‐specific information, 
such as the number of objectives or the nature of the solution space to the high‐level strategy. 
More attention should be given to the performance of the low‐level heuristics. This will boost 
the intensification element. Therefore, a heuristic with the best performance will be chosen 
more frequently to exploit the search area. The aim is to achieve a kind of balance between 
the intensification and diversification when choosing a heuristic. Selection methods based 
on randomization support only the diversification by exploring unvisited areas of the search 
space. Reinforcement learning (RL) [56] uses support intensification as a selection method by 
rewarding and punishing each heuristic based on its performance during the search using a 
scoring mechanism. An example of good selection method is the choice function, which could 
provide a balance between intensification and diversification.

4.3. Learning and feedback mechanism

Not all hyper‐heuristic approaches incorporate a learning mechanism. However, a learning 
mechanism is strongly linked to the selection method. An example of this is a random hyper‐
heuristic classified as an offline‐learning approach [1], because the random selection does not 
provide any kind of learning. The learning mechanism guides the selection method to which 
best heuristic should be chosen at each decision point. A best heuristic refers to the heuristic 
that produces solutions with good quality based on some criteria using performance measure‐
ments. It is good to note that the measurement of the quality of the solution for multi‐objective 
problems requires assessing different aspects of the non‐dominated set in the objective space. 
In the scientific literature, many performance metrics have been proposed to measure differ‐
ent aspects of the quality and quantity of the resulting non‐dominated set [4, 29, 57].

4.4. Move‐acceptance method

The selection hyper‐heuristic framework comprises two main stages: selection and move‐
acceptance methods. A move‐acceptance criterion can be deterministic or non‐deterministic. 
A deterministic move‐acceptance criterion produces the same result, given the configuration 

Heuristics and Hyper-Heuristics - Principles and Applications28



a  decision maker here could be a selection method that decides which is the best low‐level 
heuristic to select at each decision point (with respect to the space of the heuristics).

4.2. Selection methods

As a selection hyper‐heuristic relies on an iterative process, the main questions arising here 
are what is an effective way to choose an appropriate heuristic at each decision point, and 
how to choose this heuristic, that is, which criteria can be considered when choosing a heu‐
ristic? In single‐objective cases, this criterion is easy to determine by measuring the quality of 
the solution, such as the objective/cost value and time. However, this is more complex when 
tackling a multi‐objective problem. The quality of the solution is not easy to assess. There are 
many different criteria that should be considered, such as the number of non‐dominated indi‐
viduals and the distance between the non‐dominated front and the POF. To make a simple 
framework, a higher level of abstraction of the hyper‐heuristics should be considered when 
designing such a framework. It is not necessary to provide any problem‐specific information, 
such as the number of objectives or the nature of the solution space to the high‐level strategy. 
More attention should be given to the performance of the low‐level heuristics. This will boost 
the intensification element. Therefore, a heuristic with the best performance will be chosen 
more frequently to exploit the search area. The aim is to achieve a kind of balance between 
the intensification and diversification when choosing a heuristic. Selection methods based 
on randomization support only the diversification by exploring unvisited areas of the search 
space. Reinforcement learning (RL) [56] uses support intensification as a selection method by 
rewarding and punishing each heuristic based on its performance during the search using a 
scoring mechanism. An example of good selection method is the choice function, which could 
provide a balance between intensification and diversification.

4.3. Learning and feedback mechanism

Not all hyper‐heuristic approaches incorporate a learning mechanism. However, a learning 
mechanism is strongly linked to the selection method. An example of this is a random hyper‐
heuristic classified as an offline‐learning approach [1], because the random selection does not 
provide any kind of learning. The learning mechanism guides the selection method to which 
best heuristic should be chosen at each decision point. A best heuristic refers to the heuristic 
that produces solutions with good quality based on some criteria using performance measure‐
ments. It is good to note that the measurement of the quality of the solution for multi‐objective 
problems requires assessing different aspects of the non‐dominated set in the objective space. 
In the scientific literature, many performance metrics have been proposed to measure differ‐
ent aspects of the quality and quantity of the resulting non‐dominated set [4, 29, 57].

4.4. Move‐acceptance method

The selection hyper‐heuristic framework comprises two main stages: selection and move‐
acceptance methods. A move‐acceptance criterion can be deterministic or non‐deterministic. 
A deterministic move‐acceptance criterion produces the same result, given the configuration 

Heuristics and Hyper-Heuristics - Principles and Applications28

(e.g., proposed new solution, etc.). Non‐deterministic move‐acceptance criteria may gen‐
erate a different result even when the same solutions are used for the decision at a same 
given time. This could be because the move‐acceptance criterion depends on time or it might 
have a stochastic component while making the accept/reject decision. Examples of determin‐
istic move‐acceptance criteria are all‐moves, only‐improving, and improving & equal. For 
non‐deterministic move‐acceptance criteria, the candidate solution is always accepted if it 
improves the solution quality, while worsening solutions can be accepted based on an accep‐
tance function, including GDA [27], LA [28], Monte Carlo [58], and SA [17]. Selection of the 
move‐acceptance criteria has to be compatible with the selection methods. In the scientific 
literature, many combinations of the selection method and move‐acceptance criterion have 
been successfully applied to single‐objective optimization [59]. It could be worth employing 
them in the context of hyper‐heuristics for multi‐objective optimization.

5. Case study: multi‐objective choice‐function‐based hyper‐heuristics

5.1. The proposed multi‐objective hyper‐heuristics methodologies

This study [26] highlights the lack of scientific study that has been conducted in hyper‐heuris‐
tics and multi‐objective optimization, investigates the design of a hyper‐heuristic framework 
for multi‐objective optimization, and develops hyper‐heuristic approaches for multi‐objec‐
tive optimization (HHMOs) to solve continuous multi‐objective problems. Hyper‐heuristic 
frameworks generally impose a domain barrier that separates the hyper‐heuristic from the 
domain implementation along with low‐level heuristics to provide a higher level of abstrac‐
tion. The domain barrier does not allow any problem‐specific information to be passed to the 
hyper‐heuristic itself during the search process. The multi‐objective choice‐function‐based 
hyper‐heuristic framework is designed in this same modular manner (see Figure 1).

One of the advantages of the multi‐objective choice‐function‐based hyper‐heuristic frame‐
work is its simplicity. It is also highly flexible, and its components are reusable. Moreover, 
it is built on an interface that allows other researchers to write their own multi‐objective 
hyper‐heuristic components easily. Even the low‐level heuristics can be easily changed if 
required. If new and better‐performing components are found in the future, they can be 
incorporated. Based on the multi‐objective selection hyper‐heuristic framework, three online‐
learning‐selection, choice‐function‐based hyper‐heuristics are proposed: HHMO_CF_AM, 
HHMO_CF_GDA, and HHMO_CF_LA [24, 25]. The multi‐objective choice‐function‐based 
hyper‐heuristics control and combine the strengths of three well‐known multi‐objective 
evolutionary algorithms (NSGAII, SPEA2, and MOGA), which are ‐utilized as the low‐level 
heuristics. The choice‐function‐selection heuristic acts as a high‐level strategy that adap‐
tively ranks the performance of those low‐level heuristics according to feedback received 
during the search process, determining which one to call at each decision point. Four perfor‐
mance measurements (algorithm effort (AE), ratio of non‐dominated individuals (RNI) [5], 
size of space covered (SSC) [60], and uniform distribution of a non‐dominated population 
(UD) [61]) are integrated into a ranking scheme that acts as a feedback‐learning mechanism 

Multi‐Objective Hyper‐Heuristics
http://dx.doi.org/10.5772/intechopen.69222

29



to provide knowledge of the problem domain to the high‐level strategy. The multi‐objec‐
tive choice‐function‐based hyper‐heuristic is combined with different move‐acceptance 
strategies, including all‐moves (AM) as a deterministic move acceptance and GDA [27] and 
LA [28] as a non‐deterministic move acceptance. GDA and LA require a change in the value 
of a single objective at each step, and hence a well‐known hypervolume metric, referred to 
as D metric, is proposed for their applicability to the multi‐objective optimization problems. 
The D metric is integrated into the non‐deterministic move‐acceptance criterion in order to 
convert the multi‐objective optimization to the single‐objective optimization without having 
to define value weights for the various objectives. For more details about the HHMOs algo‐
rithm, see Refs. [24, 25].

5.2. Problem description

The multi‐objective vehicle crashworthiness design problem has only five decision variables 
and no constraints [31]. The output of the problem provides a wider choice for engineers to 
make their final design decision based on the Pareto solution space. The decision variables 
of the problem represent the thickness of five reinforced members around the front as they 
could have a significant effect on the crash safety. The mass of the vehicle is tackled as the 

Figure 1. Proposed framework of the hyper‐heuristic choice function based on multi‐objective optimization problems.

Heuristics and Hyper-Heuristics - Principles and Applications30



to provide knowledge of the problem domain to the high‐level strategy. The multi‐objec‐
tive choice‐function‐based hyper‐heuristic is combined with different move‐acceptance 
strategies, including all‐moves (AM) as a deterministic move acceptance and GDA [27] and 
LA [28] as a non‐deterministic move acceptance. GDA and LA require a change in the value 
of a single objective at each step, and hence a well‐known hypervolume metric, referred to 
as D metric, is proposed for their applicability to the multi‐objective optimization problems. 
The D metric is integrated into the non‐deterministic move‐acceptance criterion in order to 
convert the multi‐objective optimization to the single‐objective optimization without having 
to define value weights for the various objectives. For more details about the HHMOs algo‐
rithm, see Refs. [24, 25].

5.2. Problem description

The multi‐objective vehicle crashworthiness design problem has only five decision variables 
and no constraints [31]. The output of the problem provides a wider choice for engineers to 
make their final design decision based on the Pareto solution space. The decision variables 
of the problem represent the thickness of five reinforced members around the front as they 
could have a significant effect on the crash safety. The mass of the vehicle is tackled as the 

Figure 1. Proposed framework of the hyper‐heuristic choice function based on multi‐objective optimization problems.

Heuristics and Hyper-Heuristics - Principles and Applications30

first design objective, while the integration of collision acceleration between   t  1    = 0.05 s and  
  t  2    = 0.07 s in the full‐frontal crash is considered as the second objective function. The toe‐board 
intrusion in the 40% offset‐frontal crash is tackled as the third objective as it is the most severe 
mechanical injury. The three objectives are formulated as follows:

  Mass = 1640.2823 + 2.3573285  t  1   − 2.3220035  t  2   + 4.5688768  t  3   + 7.7213633  t  4   + 4.4559504  t  5    (1)

  Ain = 6.5856 + 1.15  t  1   –1.0427  t  2   + 0.9738  t  3   + 0.8364  t  4   –0.3695  t  1    t  4   + 0.0861  t  1    t  5    
        + 0.3628  t  2    t  4   –0.1106  t  1  2  –0.3437  t  3  2  + 0.1764  t  4  2   (2)

  Intrusion = –0.0551 + 0.0181  t  1   + 0.1024  t  2   + 0.0421  t  3   –0.0073  t  1    t  2   + 0.024  t  2    t  3    
	 																											–0.0118  t  2    t  4   –0.0204  t  3    t  4   –0.008  t  3    t  5   –0.0241  t  2  2  + 0.0109  t  4  2   (3)

Thus, the multi‐objective design of vehicle crashworthiness problem in  T  decision variable 
space is formulated as

   
m ∈ F  (  x )    =   [  Mass, Ain, Intrusion ]   

    s . t.1 mm ≤ x ≤ 3 mm   
where x =   (   t  1  ,  t  2  ,  t  3  ,  t  4  ,  t  5   )     

T
 
    (4)

5.3. Performance evaluation criteria and experimental settings

A set of experiments are conducted over a multi‐objective vehicle crashworthiness design 
problem as a real‐world problem to evaluate the performance of the multi‐objective choice‐
function‐based hyper‐heuristics: HHMO_CF_AM, HHMO_CF_GDA, and HHMO_CF_LA. 
The performance of three multi‐objective hyper‐heuristics is compared to the well‐known 
multi‐objective evolutionary algorithm, NSGAII [20]. Five performance metrics are used to 
measure the quality of the approximation sets from different aspects: (i) RNI [5], (ii) SSC [60], 
(iii) UD [61], (iv) generational distance (GD) [62], and (v) inverted generational distance (IGD) 
[63]. In addition, the t‐test is used as a statistical test for the average performance comparison 
of selection hyper‐heuristics and the results. Thirty independent runs are performed for each 
comparison method using the same parameter settings as those provided in Ref. [31] with 
a population size equal to 30. All multi‐objective hyper‐heuristics methodologies run for a 
total of 75 iterations (stages). In each iteration, a low‐level heuristic is selected and applied to 
execute 50 generations. Thus, all methods are terminated after 3750 generations. Other experi‐
mental settings are provided in Refs. [24, 25].

5.4. Results

The mean performance comparison of AM, GDA, LA, and NSGAII based on the performance 
metrics (RNI, SSC, UD, GD, and IGD) for solving the vehicle crashworthiness problems is 
provided in Tables 2 and 3.

Multi‐Objective Hyper‐Heuristics
http://dx.doi.org/10.5772/intechopen.69222

31



For each performance metric, the average, minimum, maximum, and standard deviation values are 
computed. For all metrics, a higher value indicates better performance, except in GD and IGD, where 
a lower value indicates better performance. The statistical t‐test results of NSGAII and the three 
multi‐objective choice‐function‐based hyper‐heuristics (AM, GDA, and LA) are given in Table 4.

The distribution of the simulation data of the 30 independent runs for the comparison 
methods with respect to these performance metrics is visualized as box plots, shown in 
Figure 2. The results indicate that all methods perform similar to each other with respect 
to the metric of RNI over. GDA exhibits the best performance in the metrics of SSC, GD, 
and IGD, and it converges better toward the POF than the other methods. GDA also 
exhibits the best performance in the metric of UD and distributes more uniformly than 
other methods.

The 50% attainment surface for each method, from the 30 fronts after 3750 generations, is 
computed and illustrated in Figure 3. GDA appears to generate a good convergence. It can 
be clearly observed that GDA converges to the best POF with a well‐spread Pareto front as 
 compared to the other approaches. By contrast, AM generates the poorest solutions. NSGAII 
and LA have similar convergence. In general, the hyper‐heuristics for real‐world multi‐objec‐
tive problems benefits from the use of a learning heuristic selection method as well as GDA. 
The results demonstrate the effectiveness of our selection hyper‐heuristics particularly when 
combined with great deluge algorithm as a move‐acceptance criterion. HHMO_CF_GDA 

Method GD IGD

AVG MIN MAX STD AVG MIN MAX STD

NSGAII 2.48E‐03 1.46E‐03 4.21E‐03 9.10E‐04 4.156E‐03 1.543E‐03 1.289E‐02 3.859E‐03

AM 2.71E‐03 1.59E‐03 4.06E‐03 7.90E‐04 4.376E‐03 1.738E‐03 1.288E‐02 4.168E‐03

GDA 2.11E‐03 1.10E‐03 4.28E‐03 7.10E‐04 3.552E‐03 1.661E‐03 1.230E‐02 3.075E‐03

LA 3.32E‐03 1.70E‐03 6.76E‐03 1.33E‐03 3.604E‐03 1.525E‐03 1.238E‐02 2.582E‐03

Table 3. The performance NSGAII and the selection choice‐function‐based hyper‐heuristics using different move‐
acceptance strategies on the vehicle crashworthiness problems with respect to the metrics: the generational distance 
(GD) and the inverted generational distance (IGD).

Method RNI SSC UD

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

NSGAII 1.00 1.00 1.00 0.00 7.936E+07 4.168E+07 9.587E+07 1.595E+07 0.592 0.532 0.670 0.045

AM 1.00 1.00 1.00 0.00 7.381E+07 5.315E+07 9.577E+07 1.463E+07 0.585 0.516 0.707 0.050

GDA 1.00 1.00 1.00 0.00 8.289E+07 6.294E+07 9.580E+07 1.954E+07 0.613 0.555 0.692 0.034

LA 1.00 1.00 1.00 0.00 7.538E+07 4.512E+07 9.550E+07 1.474E+07 0.582 0.302 0.641 0.062

Table 2. The performance NSGAII and the selection choice‐function‐based hyper‐heuristics using different move‐
acceptance strategies on the vehicle crashworthiness problems with respect to the metrics: the ratio of non‐dominated 
individuals (RNI), the hypervolume (SSC), and the uniform distribution (UD).

Heuristics and Hyper-Heuristics - Principles and Applications32



For each performance metric, the average, minimum, maximum, and standard deviation values are 
computed. For all metrics, a higher value indicates better performance, except in GD and IGD, where 
a lower value indicates better performance. The statistical t‐test results of NSGAII and the three 
multi‐objective choice‐function‐based hyper‐heuristics (AM, GDA, and LA) are given in Table 4.

The distribution of the simulation data of the 30 independent runs for the comparison 
methods with respect to these performance metrics is visualized as box plots, shown in 
Figure 2. The results indicate that all methods perform similar to each other with respect 
to the metric of RNI over. GDA exhibits the best performance in the metrics of SSC, GD, 
and IGD, and it converges better toward the POF than the other methods. GDA also 
exhibits the best performance in the metric of UD and distributes more uniformly than 
other methods.

The 50% attainment surface for each method, from the 30 fronts after 3750 generations, is 
computed and illustrated in Figure 3. GDA appears to generate a good convergence. It can 
be clearly observed that GDA converges to the best POF with a well‐spread Pareto front as 
 compared to the other approaches. By contrast, AM generates the poorest solutions. NSGAII 
and LA have similar convergence. In general, the hyper‐heuristics for real‐world multi‐objec‐
tive problems benefits from the use of a learning heuristic selection method as well as GDA. 
The results demonstrate the effectiveness of our selection hyper‐heuristics particularly when 
combined with great deluge algorithm as a move‐acceptance criterion. HHMO_CF_GDA 

Method GD IGD

AVG MIN MAX STD AVG MIN MAX STD

NSGAII 2.48E‐03 1.46E‐03 4.21E‐03 9.10E‐04 4.156E‐03 1.543E‐03 1.289E‐02 3.859E‐03

AM 2.71E‐03 1.59E‐03 4.06E‐03 7.90E‐04 4.376E‐03 1.738E‐03 1.288E‐02 4.168E‐03

GDA 2.11E‐03 1.10E‐03 4.28E‐03 7.10E‐04 3.552E‐03 1.661E‐03 1.230E‐02 3.075E‐03

LA 3.32E‐03 1.70E‐03 6.76E‐03 1.33E‐03 3.604E‐03 1.525E‐03 1.238E‐02 2.582E‐03

Table 3. The performance NSGAII and the selection choice‐function‐based hyper‐heuristics using different move‐
acceptance strategies on the vehicle crashworthiness problems with respect to the metrics: the generational distance 
(GD) and the inverted generational distance (IGD).

Method RNI SSC UD

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

NSGAII 1.00 1.00 1.00 0.00 7.936E+07 4.168E+07 9.587E+07 1.595E+07 0.592 0.532 0.670 0.045

AM 1.00 1.00 1.00 0.00 7.381E+07 5.315E+07 9.577E+07 1.463E+07 0.585 0.516 0.707 0.050

GDA 1.00 1.00 1.00 0.00 8.289E+07 6.294E+07 9.580E+07 1.954E+07 0.613 0.555 0.692 0.034

LA 1.00 1.00 1.00 0.00 7.538E+07 4.512E+07 9.550E+07 1.474E+07 0.582 0.302 0.641 0.062

Table 2. The performance NSGAII and the selection choice‐function‐based hyper‐heuristics using different move‐
acceptance strategies on the vehicle crashworthiness problems with respect to the metrics: the ratio of non‐dominated 
individuals (RNI), the hypervolume (SSC), and the uniform distribution (UD).

Heuristics and Hyper-Heuristics - Principles and Applications32

Methods Metrics

RNI SSC UD GD IGD

NSGAII:AM n/a + ± ± ±

NSGAII:GDA n/a − + ± −

NSGAII:LA n/a + + + −

AM:GDA n/a − − ± −

AM:LA n/a − ± + −

GDA:LA n/a + + + ±

Table 4. The t‐test results of NSGAII and the three multi‐objective choice‐function‐based hyper‐heuristics methodologies 
on the multi‐objective vehicle crashworthiness design problems with respect to the metrics: the ratio of non‐dominated 
individuals (RNI), the hypervolume (SSC), the uniform distribution (UD), the generational distance (GD), and the 
inverted generational distance (IGD).

Figure 2. Box plots of multi‐objective choice‐function‐based hyper‐heuristics methodologies and NSGAII on the multi‐
objective vehicle crashworthiness design problems.

Multi‐Objective Hyper‐Heuristics
http://dx.doi.org/10.5772/intechopen.69222

33



Figure 3. The 50% attainment surfaces for NSGAII and the three multi‐objective choice‐function‐based hyper‐heuristics 
(AM, GDA, and LA) after 3750 generations on the multi‐objective design of vehicle crashworthiness problem.

turns out to be the best choice for solving this problem. Although other multi‐objective hyper‐
heuristics still produce solutions with acceptable quality in some cases, they could not per‐
form as well as NSGAII. In summary, the results of the real‐world problem demonstrate the 
capability and potential of the multi‐objective hyper‐heuristic approaches in solving continu‐
ous multi‐objective optimization problems.

6. Some promising research area

Multi‐objective hyper‐heuristic offers interesting potential research directions in multi‐objec‐
tive optimization. Some of these promising research areas are recommended as follows:

• Many heuristic selection methods can be adapted from previous research in single‐objective 
optimization and can be used for multi‐objective optimization within multi‐objective selection 
hyper‐heuristic. This process is not a trivial process, requiring elaboration of  existing methods 

Heuristics and Hyper-Heuristics - Principles and Applications34



Figure 3. The 50% attainment surfaces for NSGAII and the three multi‐objective choice‐function‐based hyper‐heuristics 
(AM, GDA, and LA) after 3750 generations on the multi‐objective design of vehicle crashworthiness problem.

turns out to be the best choice for solving this problem. Although other multi‐objective hyper‐
heuristics still produce solutions with acceptable quality in some cases, they could not per‐
form as well as NSGAII. In summary, the results of the real‐world problem demonstrate the 
capability and potential of the multi‐objective hyper‐heuristic approaches in solving continu‐
ous multi‐objective optimization problems.

6. Some promising research area

Multi‐objective hyper‐heuristic offers interesting potential research directions in multi‐objec‐
tive optimization. Some of these promising research areas are recommended as follows:

• Many heuristic selection methods can be adapted from previous research in single‐objective 
optimization and can be used for multi‐objective optimization within multi‐objective selection 
hyper‐heuristic. This process is not a trivial process, requiring elaboration of  existing methods 

Heuristics and Hyper-Heuristics - Principles and Applications34

and their usefulness in a multi‐objective setting. Furthermore, other acceptance criteria such 
as simulated annealing (SA) and tabu search (TS) [58] could be employed as a move‐accep‐
tance component within the selection hyper‐heuristic framework for multi‐objective optimi‐
zation. As those criteria involve many parameters, this methodology would require initial 
experiments to tune the parameters for multi‐objective settings, such as defining a cooling 
schedule and an initial temperature for SA and aspiration  criterion and tabu tenure for TS.

• There are many low‐level heuristics choices possible and, therefore, great scope for 
 research in this area. It would be interesting to employ state‐of‐the‐art multi‐objective 
optimizers and other population‐based methods that obtain promising results to act as 
low‐level heuristics within the multi‐objective combination/selection hyper‐heuristic 
framework.

• It would be interesting to test the level of generality of existing multi‐objective hyper‐heu‐
ristic frameworks further on some other problems and domains, including the continuous 
real‐valued constrained, combinatorial, discrete, and dynamic problems.

• Since no studies are found in the scientific literature that address multi‐objective generation 
hyper‐heuristic, it would be interesting to propose a multi‐objective generation hyper‐heu‐
ristic framework. This indicates great scope for research. Many‐generation hyper‐heuristic 
methodologies have been successfully applied to single‐objective optimization; it would 
also be interesting to modify them to deal with multi‐objective optimization.

Author details

Mashael Suliaman Maashi

Address all correspondence to: m.maashi@gmail.com

Tabuk University, King Saud University, Saudi Arabia

References

[1] Burke E, Hyde M, Kendall G, Ochoa G, Özcan E, Woodward JR. A classification of 
hyper‐heuristic approaches. In: Handbook of Meta‐Hruristics. USA: Kluwer Academic 
Publisher; 2010. pp. 449‐468

[2] Özcan E, Bilgin B, Korkmaz, E. A comprehensive analysis of hyper‐heuristics. Intelligent 
Data Analysis. 2008;12(1):3‐23

[3] Van Veldhuizen DV, Lamont G. Multiobjective evolutionary algorithms: Analyzing the 
state‐of‐the‐art. Evolutionary Computation. 2000;8(2):125‐147

[4] Coello CC, Van Veldhuizen DV, Lamont G, editors. Evolutionary Algorithms for Solving 
Multi‐Objective Problems. USA: Kluwer Academic Publishers; 2007

Multi‐Objective Hyper‐Heuristics
http://dx.doi.org/10.5772/intechopen.69222

35



[5] Tan KC, Lee TH, Khor EF. Evolutionary algorithms for multi‐objective optimiza‐
tion: Performance assessments and comparisons. Artificial Intelligence Review. 
2002;17:253‐290

[6] Landa‐Silva D, Burke E, Petrovic S. An introduction to multiobjective metaheuristics for 
scheduling and timetabling. In: Lecture Notes in Economics and Mathematical Systems. 
Berlin, Heidelberg: Springer; 2004. pp. 91‐129

[7] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: 
Empirical results. Evolutionary Computation. 2000;8(2):173‐195

[8] Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R. Hyper‐
heuristics: A survey of the state of the art. Journal of the Operational Research Society. 
2013;64:1695‐1724

[9] Ross P. Hyper‐heuristics. In: Search Methodologies: Introductory Tutorials in 
Optimization and Decision Support Methodologies. Bücher: Springer; 2005. pp. 529‐556

[10] Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S. Hyper‐heuristics: An 
emerging direction in modern search technology. In: Handbook of Meta‐Heuristics. 
USA: Kluwer Academic Publishers; 2003. pp. 457‐474

[11] Burke E, Landa‐Silva D, Soubeiga E. Multi‐objective hyper‐heuristic approaches for 
space allocation and timetabling. In: MIC 2003‐Meta‐Heuristics: Progress as Real 
Problem Solvers. USA: Springer; 2003. pp. 129‐158

[12] McClymont K, Keedwell EC. Markov chain hyperheuristic (mchh): An online selective 
hyper‐heuristic for multiobjective continuous problems. In: Proceedings of Genetic and 
Evolutionary Computation Conference (GECCO11); 2011. pp. 2003‐2010

[13] Deb K, Jain S. Running performance metrics for evolutionary multiobjective optimiza‐
tion. Technical Report KanGAL Report No. 2002004. India: Kanpur Genetic Algorithms 
Laboratory, Indian Institute of Technology Kanpur; 2002

[14] Huband S, Hingston P, Barone L, While, L. A review of multiobjective test problems 
and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation. 
2006;10:477‐506

[15] McClymont K, Keedwell E, Savic, D. A general multi‐objective hyper‐heuristic for water 
distribution network design with discolouration risk. Journal of Hydroinformatics. 
2013;15(3):700‐716

[16] Rafique AF. Multiobjective hyper‐heuristic scheme for system design and optimiza‐
tion. In: Proceedings of 9th International Conference on Mathematical Problems in 
Engineering, Aerospace and Science, AIP Conference 1493; 2012

[17] Kirkpatrick S, Gelatt C, Vecchi M. Optimization by simulated annealing. Science. 
1983;22:671‐680

[18] Kennedy J, Eberhart R, Shi Y. Swarm Intelligence. USA: Morgan Kaufmann; 2001

Heuristics and Hyper-Heuristics - Principles and Applications36



[5] Tan KC, Lee TH, Khor EF. Evolutionary algorithms for multi‐objective optimiza‐
tion: Performance assessments and comparisons. Artificial Intelligence Review. 
2002;17:253‐290

[6] Landa‐Silva D, Burke E, Petrovic S. An introduction to multiobjective metaheuristics for 
scheduling and timetabling. In: Lecture Notes in Economics and Mathematical Systems. 
Berlin, Heidelberg: Springer; 2004. pp. 91‐129

[7] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: 
Empirical results. Evolutionary Computation. 2000;8(2):173‐195

[8] Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R. Hyper‐
heuristics: A survey of the state of the art. Journal of the Operational Research Society. 
2013;64:1695‐1724

[9] Ross P. Hyper‐heuristics. In: Search Methodologies: Introductory Tutorials in 
Optimization and Decision Support Methodologies. Bücher: Springer; 2005. pp. 529‐556

[10] Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S. Hyper‐heuristics: An 
emerging direction in modern search technology. In: Handbook of Meta‐Heuristics. 
USA: Kluwer Academic Publishers; 2003. pp. 457‐474

[11] Burke E, Landa‐Silva D, Soubeiga E. Multi‐objective hyper‐heuristic approaches for 
space allocation and timetabling. In: MIC 2003‐Meta‐Heuristics: Progress as Real 
Problem Solvers. USA: Springer; 2003. pp. 129‐158

[12] McClymont K, Keedwell EC. Markov chain hyperheuristic (mchh): An online selective 
hyper‐heuristic for multiobjective continuous problems. In: Proceedings of Genetic and 
Evolutionary Computation Conference (GECCO11); 2011. pp. 2003‐2010

[13] Deb K, Jain S. Running performance metrics for evolutionary multiobjective optimiza‐
tion. Technical Report KanGAL Report No. 2002004. India: Kanpur Genetic Algorithms 
Laboratory, Indian Institute of Technology Kanpur; 2002

[14] Huband S, Hingston P, Barone L, While, L. A review of multiobjective test problems 
and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation. 
2006;10:477‐506

[15] McClymont K, Keedwell E, Savic, D. A general multi‐objective hyper‐heuristic for water 
distribution network design with discolouration risk. Journal of Hydroinformatics. 
2013;15(3):700‐716

[16] Rafique AF. Multiobjective hyper‐heuristic scheme for system design and optimiza‐
tion. In: Proceedings of 9th International Conference on Mathematical Problems in 
Engineering, Aerospace and Science, AIP Conference 1493; 2012

[17] Kirkpatrick S, Gelatt C, Vecchi M. Optimization by simulated annealing. Science. 
1983;22:671‐680

[18] Kennedy J, Eberhart R, Shi Y. Swarm Intelligence. USA: Morgan Kaufmann; 2001

Heuristics and Hyper-Heuristics - Principles and Applications36

[19] Vázquez‐Rodríguez J, Petrovic S. Calibrating continuous multi‐objective heuristics 
using mixture experiments. The Journal of Heuristics. 2012;18:699‐726

[20] Deb K, Controlled elitist nondominated sorting genetic algorithms for better conver‐
gence. In: Proceedings of Evolution Multi Criterion Optimization Conference; 2001. pp. 
67‐81

[21] Zitzler E, Künzli S. Indicator‐based selection in multiobjective search. In: Lecture Notes 
in Computer Science, Parallel Problem Solving from Nature (PPSN VIII); USA: Springer; 
2004. pp. 832‐842

[22] Zitzler E, Laumanns M, Thiele L. Spea2: Improving the strength Pareto evolutionary 
algorithm for multiobjective optimization. In: EUROGEN 2001—Evolutionary Methods 
for Design, Optimization and Control with Applications to Industrial Problem. USA: 
Springer; 2001. pp. 95‐100

[23] Kumari A, Srinivas K, Gupta M. Software module clustering using a hyperheuristic 
based multi‐objective genetic algorithm. In: Advance Computing Conference (IACC), 
2013 IEEE 3rd International; 2013. pp. 813‐818

[24] Maashi, MS, Özcan E, Kendall G. A multi‐objective hyper‐heuristic based on choice 
function. Expert Systems with Applications. 2014;41(9):4475‐4493

[25] Maashi MS, Kendall G, Özcan E. Choice function based hyper‐heuristics for multi‐objec‐
tive optimization. Applied Soft Computing. 2015;28:312‐326

[26] Maashi MS. An investigation of multi‐objective hyper‐heuristics for multi‐objective opti‐
misation [thesis]. Nottingham, UK: University of Nottingham; 2014

[27] Dueck G. New optimization heuristics: The great deluge algorithm and the record to 
record travel. Journal of Computational Physics. 1993;104:86‐92

[28] Burke EK, Bykov Y. A late acceptance strategy in hill‐climbing for exam timetabling 
problems. In: International Conference on the Practice and Theory of Automated 
Timetabling; 2008

[29] Fonseca C, Fleming P. Multiobjective optimization and multiple constraint handling 
with evolutionary algorithms. IEEE Transactions on Systems, Man, and Cybernetics. 
Part A: Systems and Humans. 1998;28(1):26‐37

[30] Glover F. Future paths for integer programming and links to artificial intelligence. 
Computer Operations Research. 1986;13(5):533‐549

[31] Liao X, Li Q, Yang X, Zhang W, Li W. Multiobjective optimization for crash safety 
design of vehicles using stepwise regression model. Structural and Multidisciplinary 
Optimization. 2008;35:561‐569

[32] Li W, Özcan E, John R. Multi‐objective evolutionary algorithms and hyper‐heuristics for 
wind farm layout optimization. Renewable Energy. 2016;105:473‐482

[33] Walker D, Keedwel, editors. Multi‐objective optimisation with a sequence‐based selec‐
tion hyper‐heuristic GECCO ‘16 companion. In: Proceedings of the 2016 on Genetic and 

Multi‐Objective Hyper‐Heuristics
http://dx.doi.org/10.5772/intechopen.69222

37



Evolutionary Computation Conference Companion; July 20‐24, 2; Denver, Colorado, 
USA. New York, NY, USA: ACM; 2016. pp. 81‐82

[34] Bai R, Woensel T, Kendall G, Burke EK. A new model and a hyper‐heuristic approach 
for two‐dimensional shelf space allocation. Journal Operation Research. 2013;11:31‐55

[35] Veerapen N, Landa‐Silva D, Gandibleux X. Hyperheuristic as component of a multi‐
objective metaheuristic. In: Proceedings of the Doctoral Symposium on Engineering 
Stochastic Local Search Algorithms (SLS‐DS 2009); 2009

[36] Len C, Miranda G, Segura C. Hyperheuristics for a dynamic‐mapped multiobjective 
island‐based model. In: Distributed Computing, Artificial Intelligence, Bioinformatics, 
Soft Computing, and Ambient Assisted Living. In: Lecture Notes in Computer Science; 
Berlin Heidelberg: Springer; 2009. pp. 41‐49

[37] Gomez J, Terashima‐Marín H. Approximating multi‐objective hyper‐heuristics for solv‐
ing 2D irregular cutting stock problems. In: Lecture Notes in Computer Science. In 
Advances in Soft Computing. USA: Springer; 2010. pp. 349‐360

[38] Miranda G, Armas J, Segura C, León, C. Hyperheuristic codification for the multi‐
objective 2d guillotine strip packing problem. In: In Proceedings of IEEE Congress on 
Evolutionary Computation; 2010. pp. 1‐8

[39] Armas J, Miranda G, and Leòn, C. Hyperheuristic encoding scheme for multiobjec‐
tive guillotine cutting problems. In: In Proceedings of the 13th Annual Genetic and 
Evolutionary Computation Conference; 2011

[40] Furtuna R, Curteanu S, Leon F. Multi‐objective optimization of a stacked neural network 
using an evolutionary hyper‐heuristic. Applied Soft Computing. 2012;12(1): 133‐144

[41] Vrugt J, Robinson B. Improved evolutionary optimization from genetically adaptive mul‐
timethod search. Proceedings of the National Academy of Sciences. 2007;104(3):708‐711

[42] Haario H, Saksman E, Tamminen, J. An adaptive metropolis algorithm. Bernoulli. 
2001;7:223‐242

[43] Storn R, Price K. Differential evolution: A simple and efficient heuristic for global opti‐
mization over continuous. Journal of Global Optimization. 1997;(11):341‐359

[44] Raad D, Sinkse A, Vuuren J. Multiobjective optimization for water distribution systemde‐
sign using a hyperheuristic. Journal of Water Resources Management. 2010;136(5):592‐596

[45] Zhang X, Srinivasan R, Liew MV. On the use of multi‐algorithm, genetically adap‐
tive multi‐objective method for multi‐site calibration of the swat model. Hydrological 
Processes. 2010;24(8):955‐1094

[46] Wang Y, Li B. Multi‐strategy ensemble evolutionary optimization for dynamic multiob‐
jective optimization. Memetic Computing. 2010;2:3‐24

[47] Deb K, Goldberg D. An investigation on niche and species formation in genetic function 
optimization. In: Proceedings of 3rd International Conference on Genetic Algorithms; 
1989. pp. 42‐50

Heuristics and Hyper-Heuristics - Principles and Applications38



Evolutionary Computation Conference Companion; July 20‐24, 2; Denver, Colorado, 
USA. New York, NY, USA: ACM; 2016. pp. 81‐82

[34] Bai R, Woensel T, Kendall G, Burke EK. A new model and a hyper‐heuristic approach 
for two‐dimensional shelf space allocation. Journal Operation Research. 2013;11:31‐55

[35] Veerapen N, Landa‐Silva D, Gandibleux X. Hyperheuristic as component of a multi‐
objective metaheuristic. In: Proceedings of the Doctoral Symposium on Engineering 
Stochastic Local Search Algorithms (SLS‐DS 2009); 2009

[36] Len C, Miranda G, Segura C. Hyperheuristics for a dynamic‐mapped multiobjective 
island‐based model. In: Distributed Computing, Artificial Intelligence, Bioinformatics, 
Soft Computing, and Ambient Assisted Living. In: Lecture Notes in Computer Science; 
Berlin Heidelberg: Springer; 2009. pp. 41‐49

[37] Gomez J, Terashima‐Marín H. Approximating multi‐objective hyper‐heuristics for solv‐
ing 2D irregular cutting stock problems. In: Lecture Notes in Computer Science. In 
Advances in Soft Computing. USA: Springer; 2010. pp. 349‐360

[38] Miranda G, Armas J, Segura C, León, C. Hyperheuristic codification for the multi‐
objective 2d guillotine strip packing problem. In: In Proceedings of IEEE Congress on 
Evolutionary Computation; 2010. pp. 1‐8

[39] Armas J, Miranda G, and Leòn, C. Hyperheuristic encoding scheme for multiobjec‐
tive guillotine cutting problems. In: In Proceedings of the 13th Annual Genetic and 
Evolutionary Computation Conference; 2011

[40] Furtuna R, Curteanu S, Leon F. Multi‐objective optimization of a stacked neural network 
using an evolutionary hyper‐heuristic. Applied Soft Computing. 2012;12(1): 133‐144

[41] Vrugt J, Robinson B. Improved evolutionary optimization from genetically adaptive mul‐
timethod search. Proceedings of the National Academy of Sciences. 2007;104(3):708‐711

[42] Haario H, Saksman E, Tamminen, J. An adaptive metropolis algorithm. Bernoulli. 
2001;7:223‐242

[43] Storn R, Price K. Differential evolution: A simple and efficient heuristic for global opti‐
mization over continuous. Journal of Global Optimization. 1997;(11):341‐359

[44] Raad D, Sinkse A, Vuuren J. Multiobjective optimization for water distribution systemde‐
sign using a hyperheuristic. Journal of Water Resources Management. 2010;136(5):592‐596

[45] Zhang X, Srinivasan R, Liew MV. On the use of multi‐algorithm, genetically adap‐
tive multi‐objective method for multi‐site calibration of the swat model. Hydrological 
Processes. 2010;24(8):955‐1094

[46] Wang Y, Li B. Multi‐strategy ensemble evolutionary optimization for dynamic multiob‐
jective optimization. Memetic Computing. 2010;2:3‐24

[47] Deb K, Goldberg D. An investigation on niche and species formation in genetic function 
optimization. In: Proceedings of 3rd International Conference on Genetic Algorithms; 
1989. pp. 42‐50

Heuristics and Hyper-Heuristics - Principles and Applications38

[48] Bäck T. Evolutionary Algorithms in Theory and Practice. UK: Oxford University Press; 
1996

[49] Deb K. Multi‐Objective Optimization Using Evolutionary Algorithms. US: Wiley; 2001

[50] Anderson JM, Sayers TM, Bell MGH. Optimisation of a fuzzy logic traffic signal control‐
ler by a multiobjective genetic algorithm. IEEE Road Transport Information and Control. 
2007;454:186‐190

[51] Zhang Q, Li H. Evolutionary algorithms for multi‐objective optimization: Performance 
assessments and comparisons. IEEE Transactions on Evolutionary Computation. 
2007;11(6):712‐731

[52] Li H, Zhang Q. Multiobjective optimization problems with complicated pareto 
sets, MOEA/D and NSGA‐II. IEEE Transactions on Evolutionary Computation. 
2009;13(2):284‐302

[53] Li H, Landa‐Silva D. An adaptive evolutionary multi‐objective approach based on simu‐
lated annealing. Evolutionary Computation. 2011;19(4):561‐595

[54] Auger A, Bader J, Brockhoff D, Zitzler E. Hypervolume‐based multiobjective optimiza‐
tion: Theoretical foundations and practical implications. Theoretical Computer Science. 
2012;425:75‐103

[55] Bader J, Zitzler E. Hype: An algorithm for fast hypervolume‐based many‐objective opti‐
mization. Evolutionary Computation. 2008;19(1):45‐76

[56] Sutton R, Barto A. Reinforcement Learning: An Introduction. USA: MIT Press; 1998

[57] Van Veldhuizen D. Multiobjective evolutionary algorithms: Classifications, analy‐
ses, and new innovations [thesis]. Wright‐Patterson AFB. Ohio: Air Force Institute of 
Technology; 1999

[58] Glover F, Laguna M. Tabu search. In: Modern Heuristic Techniques for Combinatorial 
Problems. USA: John Wiley & Sons; 1995. pp. 70‐150

[59] Kendall G, Mohamad M. Channel assignment in cellular communication using a great 
deluge hyperheuristic. In: IEEE International Conference on Network; 2004. pp. 769‐773

[60] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the 
strength Pareto approach. IEEE Transactions on Evolutionary Computation. 1999;3(4):253‐290

[61] Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic 
algorithms. Evolutionary Computation. 1994;2(3):221‐248

[62] Van Veldhuizen DA, Lamont G. Evolutionary computation and convergence to a 
pareto front. In: Proceedings of Late Breaking Papers at the Genetic Programming 1998 
Conference; 1998. pp. 221‐228

[63] Coello Coello CA, Cruz Cortés N. Solving multiobjective optimization problems 
using an artificial immune system. Genetic Programming and Evolvable Machines. 
2005;6(2):163‐190

Multi‐Objective Hyper‐Heuristics
http://dx.doi.org/10.5772/intechopen.69222

39





Section 2

Scheduling Heuristics





Chapter 3

Heuristics Techniques for Scheduling Problems with
Reducing Waiting Time Variance

Satyasundara Mahapatra, Rati Ranjan Dash and
Sateesh K. Pradhan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69224

Abstract

In real computational world, scheduling is a decision making process. This is nothing
but a systematic schedule through which a large numbers of tasks are assigned to the
processors. Due to the resource limitation, creation of such schedule is a real challenge.
This creates the interest of developing a qualitative scheduler for the processors. These
processors are either single or parallel. One of the criteria for improving the efficiency of
scheduler is waiting time variance (WTV). Minimizing the WTV of a task is a NP-hard
problem. Achieving the quality of service (QoS) in a single or parallel processor by
minimizing the WTV is a problem of task scheduling. To enhance the performance of a
single or parallel processor, it is required to develop a stable and none overlap scheduler
by minimizing WTV. An automated scheduler's performance is always measured by the
attributes of QoS. One of the attributes of QoS is ‘Timeliness’. First, this chapter presents
the importance of heuristics with five heuristic-based solutions. Then applies these
heuristics on 1kWTV minimization problem and three heuristics with a unique task
distribution mechanism on Qm|prec|WTV minimization problem. The experimental
result shows the performance of heuristic in the form of graph for consonant problems.

Keywords: task scheduling, quality of services, waiting time variance, single processor,
uniform parallel processors

1. Introduction

In real world, scheduling is an approach through which a large number of tasks (jobs) are
assigned to the resources (processors) that complete the task execution process in time. Due to
the limitation of resources, a number of challenging issues are initiated on execution processes.
Hence, huge numbers of tasks are waiting in a queue for execution. An efficient and convenient

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



way of ordering between the tasks and resources is the only solution to resolve these issues.
Such ordering is otherwise spelled as scheduling through which the efficiency and accuracy of
the task execution process is enhanced. Designing and developing a stable and secured auto-
mated scheduler for real world problems is a real challenge for enhancing the quality of
services (QoS) of the scheduler. A qualitative automated scheduler's performance is always
measured by the attributes of QoS. One of the attributes of QoS is ‘Timeliness’, which mea-
sures the time taken to execute the task and produce an output.

Numerous criteria of timeliness provide good QoS to a task execution process. These criteria
are response time, waiting time, turn-around time, elapsed time etc. Delay indicates the extra
waiting time taken by the task due to the time consumed by the resources in an execution
process. To optimize the scheduling process, new methods with objectives are adapted and
integrated as per the requirements and constraints of the issues at hand. In case of discrete
alternatives, scheduling is the discipline of decision making. Available resources, imposed
constraints, and time required for executions are important factors to form a schedule. These
factors are concern for an individual or a group. In real computational world, a series of
activities to be outlined serially with the help of these factors is a challenge. This can be
described as multiobjective optimization deterministic scheduling problem. The main objec-
tives are to minimize the makespan and not to overlap two or more activities in the same time
span with same resources.

Scheduling problems typically involve for search groupings, orderings, or assignments of a
discrete set of activities, which satisfy the imposed conditions or constraints. These elements
are generally modeled by means of countable discrete structures known as combinatorial
structure. These structures are represented through a vector of decision variables which can
assume values within a finite or a countable infinite set. Within these settings, a solution for a
scheduling problem is a value assignment to the variables that meet specified criteria. Such
cases formulate the scheduling problem exploiting the concepts of constraint satisfaction
problems or optimization problems.

In Computer Science and Engineering, multiobjective optimization deterministic scheduling
problems are belonging to a broad class of combinatorial optimization problems. These com-
binatorial optimization problems area belongs to NP hard, moreover asymptotically getting an
optimal solution in linear time is impossible. In the field of Computer Science and Engineering,
mathematical optimizations determine an optimal solution which may be an extremely time
consuming procedure due to their computational complexity, whereas heuristic is a technique
for finding an approximate solution. In other words, a heuristic is a procedure which produces
a quick solution that is good enough for solving the problem at hand. This solution may not be
the best of all the actual solutions to this problem, or it may simply approximate the exact
solution. But it is still valuable because finding it does not require a prohibitively long time.
This is achieved by trading optimality, completeness, accuracy, and precision for speed.

The rest of the section is structured as follows. A brief review of related work of different
researchers in scheduling of tasks on single processor and parallel processor with motivation is
mentioned in Section 2. In Section 3, the general definition of scheduling problem is briefly
discussed. As scheduling is a NP-hard problem, different approaches for solving the scheduling

Heuristics and Hyper-Heuristics - Principles and Applications44



way of ordering between the tasks and resources is the only solution to resolve these issues.
Such ordering is otherwise spelled as scheduling through which the efficiency and accuracy of
the task execution process is enhanced. Designing and developing a stable and secured auto-
mated scheduler for real world problems is a real challenge for enhancing the quality of
services (QoS) of the scheduler. A qualitative automated scheduler's performance is always
measured by the attributes of QoS. One of the attributes of QoS is ‘Timeliness’, which mea-
sures the time taken to execute the task and produce an output.

Numerous criteria of timeliness provide good QoS to a task execution process. These criteria
are response time, waiting time, turn-around time, elapsed time etc. Delay indicates the extra
waiting time taken by the task due to the time consumed by the resources in an execution
process. To optimize the scheduling process, new methods with objectives are adapted and
integrated as per the requirements and constraints of the issues at hand. In case of discrete
alternatives, scheduling is the discipline of decision making. Available resources, imposed
constraints, and time required for executions are important factors to form a schedule. These
factors are concern for an individual or a group. In real computational world, a series of
activities to be outlined serially with the help of these factors is a challenge. This can be
described as multiobjective optimization deterministic scheduling problem. The main objec-
tives are to minimize the makespan and not to overlap two or more activities in the same time
span with same resources.

Scheduling problems typically involve for search groupings, orderings, or assignments of a
discrete set of activities, which satisfy the imposed conditions or constraints. These elements
are generally modeled by means of countable discrete structures known as combinatorial
structure. These structures are represented through a vector of decision variables which can
assume values within a finite or a countable infinite set. Within these settings, a solution for a
scheduling problem is a value assignment to the variables that meet specified criteria. Such
cases formulate the scheduling problem exploiting the concepts of constraint satisfaction
problems or optimization problems.

In Computer Science and Engineering, multiobjective optimization deterministic scheduling
problems are belonging to a broad class of combinatorial optimization problems. These com-
binatorial optimization problems area belongs to NP hard, moreover asymptotically getting an
optimal solution in linear time is impossible. In the field of Computer Science and Engineering,
mathematical optimizations determine an optimal solution which may be an extremely time
consuming procedure due to their computational complexity, whereas heuristic is a technique
for finding an approximate solution. In other words, a heuristic is a procedure which produces
a quick solution that is good enough for solving the problem at hand. This solution may not be
the best of all the actual solutions to this problem, or it may simply approximate the exact
solution. But it is still valuable because finding it does not require a prohibitively long time.
This is achieved by trading optimality, completeness, accuracy, and precision for speed.

The rest of the section is structured as follows. A brief review of related work of different
researchers in scheduling of tasks on single processor and parallel processor with motivation is
mentioned in Section 2. In Section 3, the general definition of scheduling problem is briefly
discussed. As scheduling is a NP-hard problem, different approaches for solving the scheduling

Heuristics and Hyper-Heuristics - Principles and Applications44

problem are discussed in Section 4. The classification of deterministic scheduling problem is
discussed briefly in Section 5. Different existing heuristic methods are discussed along with
pseudo code in Section 6. The single processor scheduling problem with problem formulation
and performance analysis of different heuristic methods is discussed in Section 7. In Section 8,
the parallel processor scheduling problem with problem formulation and performance analy-
sis of different heuristic methods is discussed. Section 9 contains a brief report on analysis of
work leading to conclusion, scope for utilization of this study in different similar areas and
suggestions for future research in this field.

2. Review of literature and motivation

In many manufacturing and services industries, scheduling is a decision making process that is
used in a day-to-day basis. It deals with the allocation of resources to tasks over a given time
period. In computational world, these resources are single processor, multi processors, parallel
processors, and dedicated processors. The goal is to optimize one or more objectives such as
makespan, mean flow time, mean weighted flow time, mean tardiness, mean earliness, etc.
Scheduling problem is a broader class of combinatorial problem, and the purpose is to search a
best way to organize task so that it is completed in the shortest possible time as depicted in
Refs. [1, 2]. Importance of different types of real world scheduling problems such as single
processor scheduling problem, two processor scheduling problems, parallel processor sched-
uling problems, job shop scheduling problems, flow shop scheduling problems, open shop
scheduling problems, etc. are classified and discussed in Ref. [3] and play a significant role in
research. The combinatorial problems are belonging to the real world problem. These prob-
lems are either problem of minimization or maximization. Such problems consist of a set of
instances, candidate solutions for each instance, and a function that assigns to each instance
and each candidate solution, a positive rational number called solution value is depicted in
Ref. [4]. These problems are distinguished into three subclasses and presented in Ref. [5]. They
are named as optimization problem, decision problem, and search problems. An optimization
problem is defined as the answer to its instance that specifies a solution for which a value of a
certain objective is at its optimum, whereas a decision problem takes only two values, either
‘yes’ or ‘no’, as an answer to the instance of the problem. Finally, the search problem simply
aims at finding a valid solution, regardless of any quality criterion.

As scheduling is a decision making problem, effective algorithms are developed and designed
by the researchers to solve it in due course of time. Such algorithms consist of two parts named
as ‘head’ and ‘method’. The head starts with the keyword ‘algorithm’ followed by a name (i.e.,
description for the purpose of algorithm), whereas method is used to describe the idea or logic
used in the algorithm. The semantic representations are reflected with the help of layout of
output, procedure or function name, variable, etc. These algorithms consist of a block of
instructions used in a sequential order. Changing the instruction in algorithm changes the
behavior of the algorithm is explained in Ref. [2].

Scheduling of task is an integral part of single and parallel computing. Extensive research has
been conducted in this area leading to significant theoretical and practical results. New

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

45



scheduling algorithms are in demand for addressing concerns originating from the single and
parallel processors. How heuristic methodology encourages the researcher to explore and
pursue the creative journey through internal discovery in the field of research is presented in
Ref. [6].Two heuristic task scheduling methods for single processor, called balanced spiral (BS)
and verified spiral (VS), which incorporate certain proven properties of optimal task sequences
for minimizing the waiting time variance is proposed in Ref. [7]. The success of stochastic
algorithms is often due to their ability to effectively amplify the performance of search heuris-
tics that is focused and discussed in Ref. [8]. A heuristic procedure to minimize the weighted
completion time variance in single processor is presented in Ref. [9]. Two heuristic methods
named as EC1 an EC2 are developed and proposed in Ref. [10] for solving the problem for a set
of large tasks by minimizing waiting time variance in the single machine problem. A novel
heuristic method named as RSS is developed and proposed in Ref. [11] for solving the problem
for large set of tasks by minimizing waiting time variance in the single machine problem.

Several meta-heuristics have been inspired by nature in due course of time. Two well-known
robust metaheuristic methods, including genetic algorithm (GA), simulated annealing (SA),
were improved and presented in Ref. [12] to tackle large-scale problems. A MAX-MIN Ant
System, which makes use of a separate local search routine, is proposed in Ref. [13] for tackling
a typical university course timetabling problem. An ant algorithm based on a multiagent
system inspired by the observation of some real ant colony behavior exploiting the stigmergic
communication paradigm is discussed in Ref. [14]. An agent-based parallel genetic algorithm
for job shop scheduling problem is proposed in Ref. [15]. A genetic algorithm (GA) has been
developed in Ref. [16] for minimizing the average residence time to produce a set of batches in
function of batch order in a multipurpose-multiproduct batch plant. Multi objective genetic
algorithm to find a balance point in respect of a solution of the Pareto front is presented in Ref.
[17]. A decomposition heuristics algorithm based on multibottleneck processors for large-scale
job shop scheduling problems is proposed in Ref. [18]. A new heuristic based on adaptive
memory programming and a simulated annealing algorithm is presented in Ref. [19].

To enhance the property of different heuristic methods for parallel processing in uniform
processors, a unique task allocation scheme named as PUM is developed and presented in
Ref. [20]. One exact algorithm and one approximation algorithm are proposed in Ref. [21] to
minimize the completion time variance. A heuristic algorithm to solve preemptive scheduling
problem of dependent tasks on parallel identical processors is proposed in Ref. [22]. A new
heuristic algorithm for scheduling metatasks in heterogeneous computing system is presented
in Ref. [23]. Heuristic algorithms are proposed to solve a number of independent tasks on
multiple number of identical parallel processors problem so as to minimize the waiting time
variance [24].

In computing systems, while working with large data files on a Web server, often the response
time to a user's request is strongly dependent on the time required to access or retrieve the data
files referenced by the user. Especially in online systems, it is often desirable to provide
uniform response to user's requests, i.e., minimize the variance of response time by minimizing
the variance of access time. The variance of completion time and variance of waiting time
performance measures are analyzed [25] for the single processor sequencing problem. These

Heuristics and Hyper-Heuristics - Principles and Applications46



scheduling algorithms are in demand for addressing concerns originating from the single and
parallel processors. How heuristic methodology encourages the researcher to explore and
pursue the creative journey through internal discovery in the field of research is presented in
Ref. [6].Two heuristic task scheduling methods for single processor, called balanced spiral (BS)
and verified spiral (VS), which incorporate certain proven properties of optimal task sequences
for minimizing the waiting time variance is proposed in Ref. [7]. The success of stochastic
algorithms is often due to their ability to effectively amplify the performance of search heuris-
tics that is focused and discussed in Ref. [8]. A heuristic procedure to minimize the weighted
completion time variance in single processor is presented in Ref. [9]. Two heuristic methods
named as EC1 an EC2 are developed and proposed in Ref. [10] for solving the problem for a set
of large tasks by minimizing waiting time variance in the single machine problem. A novel
heuristic method named as RSS is developed and proposed in Ref. [11] for solving the problem
for large set of tasks by minimizing waiting time variance in the single machine problem.

Several meta-heuristics have been inspired by nature in due course of time. Two well-known
robust metaheuristic methods, including genetic algorithm (GA), simulated annealing (SA),
were improved and presented in Ref. [12] to tackle large-scale problems. A MAX-MIN Ant
System, which makes use of a separate local search routine, is proposed in Ref. [13] for tackling
a typical university course timetabling problem. An ant algorithm based on a multiagent
system inspired by the observation of some real ant colony behavior exploiting the stigmergic
communication paradigm is discussed in Ref. [14]. An agent-based parallel genetic algorithm
for job shop scheduling problem is proposed in Ref. [15]. A genetic algorithm (GA) has been
developed in Ref. [16] for minimizing the average residence time to produce a set of batches in
function of batch order in a multipurpose-multiproduct batch plant. Multi objective genetic
algorithm to find a balance point in respect of a solution of the Pareto front is presented in Ref.
[17]. A decomposition heuristics algorithm based on multibottleneck processors for large-scale
job shop scheduling problems is proposed in Ref. [18]. A new heuristic based on adaptive
memory programming and a simulated annealing algorithm is presented in Ref. [19].

To enhance the property of different heuristic methods for parallel processing in uniform
processors, a unique task allocation scheme named as PUM is developed and presented in
Ref. [20]. One exact algorithm and one approximation algorithm are proposed in Ref. [21] to
minimize the completion time variance. A heuristic algorithm to solve preemptive scheduling
problem of dependent tasks on parallel identical processors is proposed in Ref. [22]. A new
heuristic algorithm for scheduling metatasks in heterogeneous computing system is presented
in Ref. [23]. Heuristic algorithms are proposed to solve a number of independent tasks on
multiple number of identical parallel processors problem so as to minimize the waiting time
variance [24].

In computing systems, while working with large data files on a Web server, often the response
time to a user's request is strongly dependent on the time required to access or retrieve the data
files referenced by the user. Especially in online systems, it is often desirable to provide
uniform response to user's requests, i.e., minimize the variance of response time by minimizing
the variance of access time. The variance of completion time and variance of waiting time
performance measures are analyzed [25] for the single processor sequencing problem. These

Heuristics and Hyper-Heuristics - Principles and Applications46

measures are compared and contrasted to the performance measures of mean completion time
and mean waiting time. It was shown that the sequence that minimizes the variance of waiting
times is antithetical to the sequence that minimizes the variance of flow times, which motivate
to take waiting time variance as the performance parameter.

Another motivation is to find out the effectiveness of the methods used for calculation of WTV
in parallel processor by efficient task allocation scheme, which will be able to generate a
schedule with less time as far as possible.

3. Scheduling problems

The deterministic scheduling problems are part of a much broader class of combinatorial
optimization problems. To analyze these problems, the peculiarities of the problem must be
studied. The time required for solving those scheduling problems is seriously limited, so that
only low-order polynomial time algorithms may be used. Thus, the examination of the com-
plexity of these problems should be the basis for analysis of scheduling problems and algo-
rithms, which is shown in Figure 1 as a problem solving cycle for deterministic scheduling
problem.

The deterministic scheduling problems can be defined as a combination of a set of tasks ‘T ’, a
set of processors ‘P’, and a set of additional resources ‘R’. Scheduling means to assign pro-
cessors from P and possibly, resources from R to tasks from T in order to complete all tasks
under the imposed constraints. There are two general constraints arise in classical scheduling
theory. They are, each task is to be processed by at most one processor at a time, and each
processor is capable of processing at most one task at a time. The processors may be either
parallel (i.e., performing the same functions) or dedicated (i.e., specialized for the execution of
certain tasks). The parallel processors are distinguished as identical, uniform, and unrelated

Figure 1. Problem solving cycle for deterministic scheduling problem.

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

47



depending on their speeds. In identical, all processors have equal task processing speeds.
Similarly, the uniform processors have different speed and unrelated processors depend on
the particular task.

The dedicated processors are distinguished as task shop, flow shop, and open shop. In task
shop, each task has its own predetermined route to follow with a set of processors. But a
distinction is made between task shops in which each task visits each processor at most once
and task shops in which a task may visit each processor more than once. On the contrary in
flow shop, a set of processor are placed in series. Each task has to be processed on every
processor exactly once. All tasks have to follow the same route, i.e., they have to be processed
first on processor 1, then on processor 2, and so on. In case of open shop, a set of tasks must be
processed for given amounts of time at each of a given set of processors, in an arbitrary order.
The idea is to determine the time at which each task is to be processed at each processor. In
such systems, it is assumed that the buffers between processors have unlimited capacity and a
task after completion on one processor may wait before its processing starts on the next one.
However, buffers of zero capacity tasks cannot wait between two consecutive processors are
termed as no-wait property.

The classical deterministic scheduling problem can be stated as follows. There are a set of n
tasks simultaneously available for being processed on a set of m processors. Let all tasks
available for processing at time zero. Each task j, j∈ T ¼ {1, 2,…, n}, passes through the pro-
cessors 1, 2,…, m in that order and requires an uninterrupted processing time ptij on processor
i, i∈P ¼ {1, 2,…, m}. The scheduling objective is to minimize makespan. Makespan or maxi-
mum completion time is the time interval between starting the first task on a processor and the
completion of the last processor and denoted by Cmax. Let T j be the set of subtasks scheduled
on processor i. Then, the completion time on processor i can be computed as Ci ¼ Σj∈P i ptij.
Hence, maximum completion time, i.e., makespan can be calculated as Cmax ¼ maxi∈PCi. To
minimize the makespan of a deterministic scheduling problem, apriori knowledge on different
procedure of scheduling schemes is required and discussed in the next section.

4. Approaches to scheduling problems

From the literature review, it was observed that there exists a large class of combinatorial
optimization problems for which most probably no polynomial optimization algorithms are
available. These are the problems whose decision counterparts are NP complete. Hence, in
such cases, the optimization problems are NP hard. A comprehensive study on NP complete-
ness, NP hardness, polynomial time transformation, etc. helps the researchers in analyzing the
multiobjective scheduling problem. It also helps the researchers to solve those problems by
using polynomial time algorithm. The usefulness of the algorithm depends on the order of its
worst-case complexity function and on the particular application. It was found that sometimes,
the worst-case complexity function is not low enough, although still polynomial, a mean
complexity function of the algorithm may be sufficient. On the other hand, if the decision

Heuristics and Hyper-Heuristics - Principles and Applications48



depending on their speeds. In identical, all processors have equal task processing speeds.
Similarly, the uniform processors have different speed and unrelated processors depend on
the particular task.

The dedicated processors are distinguished as task shop, flow shop, and open shop. In task
shop, each task has its own predetermined route to follow with a set of processors. But a
distinction is made between task shops in which each task visits each processor at most once
and task shops in which a task may visit each processor more than once. On the contrary in
flow shop, a set of processor are placed in series. Each task has to be processed on every
processor exactly once. All tasks have to follow the same route, i.e., they have to be processed
first on processor 1, then on processor 2, and so on. In case of open shop, a set of tasks must be
processed for given amounts of time at each of a given set of processors, in an arbitrary order.
The idea is to determine the time at which each task is to be processed at each processor. In
such systems, it is assumed that the buffers between processors have unlimited capacity and a
task after completion on one processor may wait before its processing starts on the next one.
However, buffers of zero capacity tasks cannot wait between two consecutive processors are
termed as no-wait property.

The classical deterministic scheduling problem can be stated as follows. There are a set of n
tasks simultaneously available for being processed on a set of m processors. Let all tasks
available for processing at time zero. Each task j, j∈ T ¼ {1, 2,…, n}, passes through the pro-
cessors 1, 2,…, m in that order and requires an uninterrupted processing time ptij on processor
i, i∈P ¼ {1, 2,…, m}. The scheduling objective is to minimize makespan. Makespan or maxi-
mum completion time is the time interval between starting the first task on a processor and the
completion of the last processor and denoted by Cmax. Let T j be the set of subtasks scheduled
on processor i. Then, the completion time on processor i can be computed as Ci ¼ Σj∈P i ptij.
Hence, maximum completion time, i.e., makespan can be calculated as Cmax ¼ maxi∈PCi. To
minimize the makespan of a deterministic scheduling problem, apriori knowledge on different
procedure of scheduling schemes is required and discussed in the next section.

4. Approaches to scheduling problems

From the literature review, it was observed that there exists a large class of combinatorial
optimization problems for which most probably no polynomial optimization algorithms are
available. These are the problems whose decision counterparts are NP complete. Hence, in
such cases, the optimization problems are NP hard. A comprehensive study on NP complete-
ness, NP hardness, polynomial time transformation, etc. helps the researchers in analyzing the
multiobjective scheduling problem. It also helps the researchers to solve those problems by
using polynomial time algorithm. The usefulness of the algorithm depends on the order of its
worst-case complexity function and on the particular application. It was found that sometimes,
the worst-case complexity function is not low enough, although still polynomial, a mean
complexity function of the algorithm may be sufficient. On the other hand, if the decision

Heuristics and Hyper-Heuristics - Principles and Applications48

version of the analyzed problem is NP complete, then there are several approaches taken into
consideration to make the problem NP hard. These approaches are discussed below.

First, constraints like allowing preemptions, assuming unit-length tasks, and assuming certain
types of precedence graphs are relaxed by imposing on the original problem and then solving
the relaxed problem. The solution of the latter may be a good approximation to the solution of
the original problem. In case of computer application, the relaxation method is justified when
parallel processors share a common primary memory. Moreover, such a relaxation is also
advantageous from the viewpoint of certain optimality criteria.

Second, in the process of solving NP hard scheduling problems, the use of approximation
algorithms tends to find an optimal schedule but does not always succeed. It is a useful
heuristic for finding near optimal solutions, when the optimal solution is not required [5]. The
necessary condition for these algorithms to be applicable in practice is that their worst-case
complexity function is bounded from above by a low-order polynomial in the input length. So
that approximation algorithm often give raise to heuristic that return solution much closer to
optimal than indicated by their performance guarantee and bring the researchers to study of
heuristics and allowed to prove how well the heuristic performs on all instances [5]. Their
sufficiency follows from an evaluation of the difference between the value of a solution they
produce and the value of an optimal solution. This evaluation may concern the worst case or a
mean behavior. However, for some combinatorial problems, it can be proved that there is no
hope of finding an approximation algorithm of certain accuracy.

Analysis of the worst-case behavior of an approximation algorithm may be complimented by
an analysis of its mean behavior. This can be done in two ways. The first consists in assuming
that the parameters of instances of the considered problem are drawn from a certain distribu-
tion, and then the mean performance of algorithm is analyzed. Distinguish between the
absolute error and the relative error asymptotic optimality results in the stronger (absolute)
sense are quite rare. On the other hand, asymptotic optimality in the relative sense is often
easier to establish. It is rather obvious that the mean performance can be much better than the
worst-case behavior, thus justifying the use of a given approximation algorithm. A main
obstacle is the difficulty of proofs of the mean performance for realistic distribution functions.
Thus, the second way of evaluating the mean behavior of approximation algorithms,
consisting of experimental studies, is still used very often in real world problems.

The third and the last way of dealing with hard scheduling problems is to use exact enumer-
ative algorithms whose worst-case complexity function is exponential in the input length. Such
problems are not NP hard in strong sense. These problems are possible to solve by pseudo-
polynomial optimization algorithm whose worst-case complexity function is bounded from
above by a polynomial in the input length and in the maximum number appearing in the
instance of the problem. For reasonably small numbers, such an algorithm may behave quite
well in practice, and it can be used even in computer applications.

The above discussion is summarized in a schematic way in Figure 2. It is observed that finding
an exact algorithm for a large-scale task scheduling problem is not easy. Hence, local optimum

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

49



algorithm as heuristic is always better to develop and to be used. Knowledge of classification
for these scheduling problems serves as a basis for developing heuristic algorithms, which is
discussed in next session.

5. Classification of deterministic scheduling problems

A scheduling problem is described by a triplet (α|β|γ) and shows the possible classification
under the each parameter of the triplet [26]. A detailed nature of triplet is explained in
appendix A. The symbol α is represented for processor environment and contains only one
entry that is classified into two types, named as single processor and multiple processors.
Single processor again is classified into three categories. They are named as single processor,
parallel processor, and dedicated processor.

Parallel processors are classified as per their behavior of the parallelisms into three types. They
are named as identical parallel processors, uniform parallel processors, and unrelated parallel
processors denoted by the symbol P, Q, and R, respectively. Similarly dedicated processors are
classified into three categories named as flow shop processors, task shop processors, and open
shop processors denoted by the symbol F, J, and O, respectively.

The symbol β is represented for different types of tasks and resource constraints. It may
contain no entry at all, a single entry, or multiple entries. The possible entries in the β field are
preemption (pmtn) used for the interruption of task and re-start in latter, resource (res) used for
identification of particular type of resource, precedence (prec) required for the completion of
one or more tasks before another task is allowed to start its processing, ready time (rj) repre-
sents the task j starting time for processing, delivery time (qj) represents the time spent for
delivery the task j after its processing, processing time (ptj) represents the processing time of

task j on a processor, deadline ð~dÞ are imposed on the performance of a task set, maximal
number of tasks (nj ≤ k) describes the maximal number of sub-tasks (nj) constituting a task (k) in

Figure 2. Approaches to scheduling problem.

Heuristics and Hyper-Heuristics - Principles and Applications50



algorithm as heuristic is always better to develop and to be used. Knowledge of classification
for these scheduling problems serves as a basis for developing heuristic algorithms, which is
discussed in next session.

5. Classification of deterministic scheduling problems

A scheduling problem is described by a triplet (α|β|γ) and shows the possible classification
under the each parameter of the triplet [26]. A detailed nature of triplet is explained in
appendix A. The symbol α is represented for processor environment and contains only one
entry that is classified into two types, named as single processor and multiple processors.
Single processor again is classified into three categories. They are named as single processor,
parallel processor, and dedicated processor.

Parallel processors are classified as per their behavior of the parallelisms into three types. They
are named as identical parallel processors, uniform parallel processors, and unrelated parallel
processors denoted by the symbol P, Q, and R, respectively. Similarly dedicated processors are
classified into three categories named as flow shop processors, task shop processors, and open
shop processors denoted by the symbol F, J, and O, respectively.

The symbol β is represented for different types of tasks and resource constraints. It may
contain no entry at all, a single entry, or multiple entries. The possible entries in the β field are
preemption (pmtn) used for the interruption of task and re-start in latter, resource (res) used for
identification of particular type of resource, precedence (prec) required for the completion of
one or more tasks before another task is allowed to start its processing, ready time (rj) repre-
sents the task j starting time for processing, delivery time (qj) represents the time spent for
delivery the task j after its processing, processing time (ptj) represents the processing time of

task j on a processor, deadline ð~dÞ are imposed on the performance of a task set, maximal
number of tasks (nj ≤ k) describes the maximal number of sub-tasks (nj) constituting a task (k) in

Figure 2. Approaches to scheduling problem.

Heuristics and Hyper-Heuristics - Principles and Applications50

case of task shop systems, and no-wait (no – wait) describes a no-wait property in the case of
scheduling on dedicated processors.

The symbol γ is represented as objective function for minimizing the different performance
measure (i.e., optimality criteria) of scheduling and contains single entry only. These measures
are depicted in Ref. [26], and the parameter required for computing these objective function of
a task j is calculated and given in Table 1.

As it has been observed from different research articles that a good number of objectives are
available for minimizing the different performance measure of scheduling, the ultimate objec-
tive is minimizing the makespan. To fulfill the aforementioned objective under different con-
straints, several methods have been developed which therefore gives raise to various classes of
schedules.

6. Heuristic methods for scheduling problems

From the literatures, it is observed that a number of task ordering methods are developed and
improved in due course of time. These methods either belong to exact or heuristic or meta-
heuristic methods. In the process of searching a best or improved method with desired objec-
tive, all possible solutions are tested one by one. This process is viable only for small size of
problems but very challenging, complicated, and time consuming as the size of problem
increases. Therefore, to reorder the tasks of large problems, heuristic methods are developed
for obtaining optimum solution. The solutions obtained by the heuristic methods are optimum
or near optimum in nature by using less number of computer resources and computational
time. Calculation of CTV and WTV are the two objectives for these types of heuristics. For
minimizing the WTV, Elion & Chowdhary, verified spiral (VS), balanced spiral (BS), and Rati-
Satya-Sateesh (RSS) heuristic methods are discussed below.

6.1. Eilon and Chowdhary (EC1 & EC2)

EC1 and EC2 are two types of heuristics, designed and presented in Ref. [10] for an n-task
WTV problem. Here, ‘n’ numbers of tasks are scheduled on the basis of V shape property of
optimal sequence. In case of EC1, the largest processing time task is removed from the job
queue and placed at last position of the schedule. The second largest processing time task is

Completion time Cj

Flow time Fj = Cj � rj

Lateness Lj = Cj � dj

Tardiness Dj = max{Cj � dj, 0}

Earliness Ej = max{dj � Cj, 0}

Tardy task unit
Uj ¼ 1 if Cj > dj

0 Othewise

�

Table 1. Objective functions.

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

51



removed from the job queue and placed at the first position of the schedule. Similarly, the third
largest processing time task is removed from the job queue and placed at the last but one
position of the schedule. The fourth largest processing time task is removed from the job queue
and placed in second position of the schedule. This process continues until the job queue is
empty. This method places the jobs in a spiral front and rear manner. EC2 heuristic, the
modified version of EC1, produces the task schedule by incorporating the Schrage's conjecture
with EC1. The Schrage's conjecture states that there exists an optimal sequence in which the
largest job is scheduled at last position, the second longest is at first position, the third and
fourth longest are last-but-one position and last-but-two position, respectively, in the
sequence [27].

6.2. Verified spiral (VS)

Verified spiral (VS) presented in Ref. [7] is an improved version of EC1. This method incorpo-
rates Schrage's conjecture and Hall & Kubiak's proof [28] about the placement of first three
largest processing time tasks. For the remaining task on the task queue, a modified spiral
placement method is implemented. This method removes the next task from the task queue
and place either after the front task or before the rear task of the sequence on the basis of which
position produces a small WTV with the existing tasks.

6.3. Balanced spiral (BS)

The balanced spiral (BS) method discussed in Ref. [7] is developed to reduce the computational
cost of VS method. This method is otherwise known as observation method, as it balance the
left (L) and right (R) optimal sequence to get optimum or near optimum sequence after placing
the processing time of each tasks in sequence one by one until the task queue is empty.

6.4. Rati-Satya-Sateesh (RSS)

In our locality, the fishmongers are those who sell a whole unit of fish. Sometimes a large fish
has to be distributed equally to two or more customers. These fishmongers are so skilled that
they can equally distribute the cut pieces of the same fish among the customers during the time
of cutting. It reduces the post measurement for equality, which generally found almost equal.
This distribution mechanism to serve the customers used in this method is named as RSS,
presented in Ref. [20]. This method allocates the tasks in the sequence with minimum compu-
tational cost and time.

The effectiveness of the above discussed methods is presented in the next two sections by
using single processor and parallel processors with an objective WTV.

7. Single processor scheduling

In the task scheduling problem, ‘n’ number of tasks has to be processed by a single processor
with some processing objectives, order, and constraints. Discovering an optimized schedule,
which minimizes the WTVof the tasks, is the aspiration of the problem. Due to nonavailability

Heuristics and Hyper-Heuristics - Principles and Applications52



removed from the job queue and placed at the first position of the schedule. Similarly, the third
largest processing time task is removed from the job queue and placed at the last but one
position of the schedule. The fourth largest processing time task is removed from the job queue
and placed in second position of the schedule. This process continues until the job queue is
empty. This method places the jobs in a spiral front and rear manner. EC2 heuristic, the
modified version of EC1, produces the task schedule by incorporating the Schrage's conjecture
with EC1. The Schrage's conjecture states that there exists an optimal sequence in which the
largest job is scheduled at last position, the second longest is at first position, the third and
fourth longest are last-but-one position and last-but-two position, respectively, in the
sequence [27].

6.2. Verified spiral (VS)

Verified spiral (VS) presented in Ref. [7] is an improved version of EC1. This method incorpo-
rates Schrage's conjecture and Hall & Kubiak's proof [28] about the placement of first three
largest processing time tasks. For the remaining task on the task queue, a modified spiral
placement method is implemented. This method removes the next task from the task queue
and place either after the front task or before the rear task of the sequence on the basis of which
position produces a small WTV with the existing tasks.

6.3. Balanced spiral (BS)

The balanced spiral (BS) method discussed in Ref. [7] is developed to reduce the computational
cost of VS method. This method is otherwise known as observation method, as it balance the
left (L) and right (R) optimal sequence to get optimum or near optimum sequence after placing
the processing time of each tasks in sequence one by one until the task queue is empty.

6.4. Rati-Satya-Sateesh (RSS)

In our locality, the fishmongers are those who sell a whole unit of fish. Sometimes a large fish
has to be distributed equally to two or more customers. These fishmongers are so skilled that
they can equally distribute the cut pieces of the same fish among the customers during the time
of cutting. It reduces the post measurement for equality, which generally found almost equal.
This distribution mechanism to serve the customers used in this method is named as RSS,
presented in Ref. [20]. This method allocates the tasks in the sequence with minimum compu-
tational cost and time.

The effectiveness of the above discussed methods is presented in the next two sections by
using single processor and parallel processors with an objective WTV.

7. Single processor scheduling

In the task scheduling problem, ‘n’ number of tasks has to be processed by a single processor
with some processing objectives, order, and constraints. Discovering an optimized schedule,
which minimizes the WTVof the tasks, is the aspiration of the problem. Due to nonavailability

Heuristics and Hyper-Heuristics - Principles and Applications52

of the processor in real time, a task has to wait for processing, as the processor is processing
another task and may also due to the precedence process constraint.

In the process of searching, an effective and optimized sequence of tasks, it needs to calculate
all possible combination of tasks (factorial n). It consumes much time and resources to give an
optimum sequence. Different heuristics and meta-heuristics methods are required to develop
by reducing the number of calculations for handling many concurrent tasks in computer and
in network systems. To achieve this service stability on an individual recourse, it is required to
minimize the WTV, which is the objective of the task scheduling problem on single processor.

7.1. Problem formulation

The above mentioned problem can typically describe as an allocation of tasks to a processor by
considering the concept that once a task get into the processor for processing, it did not leave
from the processor until the processing time of that task was over. The decision whether the
task “j” (i.e., the task number) is scheduled to the processor successfully, then “k” the allocation
variable is 1 (one) or 0 (zero) otherwise, which can be represented by an integer. These decision
variable depends upon the position of task in the task sequence, which is represented by skj for
k ∈ L = {1, 2, …, n} and j∈ T ¼ {1, 2,…, n}. The task to be scheduled first is placed at first
position, thus processed first; the task to be scheduled second is placed at second position, thus
processed second, and so on. Then, the waiting time for task j at position k is represented as
wtkj and the processing time of task j is represented by ptj. The WTV of tasks in a complete
sequence is obtained as follows in Eq. (S.1).

WTV ¼ 1
n� 1

X
j∈Lk

wtkj � 1
n

X
j∈Lk

wtkj

� �2

(S.1)

The objective is to minimize the variance of waiting time of n number of tasks can be found by
Eq. (S.2).

Minimize 1jjWTV (S.2)

subject to:
X

k∈ T j
skj ¼ 1 (S.3)

X
j∈Lk

skj ¼ 1 (S.4)

skj ¼ 0 or 1 ∀k∈L, j∈ T (S.5)

wtkj ¼ 0 ∀k ¼ 1 , j∈ T (S.6)

wtkj ≥wtk�1 j þ
X

j∈Lk
sk�1 j � ptj ∀k∈L , j∈ T (S.7)

The constraint that each position of the sequence is used exactly once by a task is described in
Eq. (S.3). Each task is assigned to a position in the sequence is exactly described once in

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

53



Eq. (S.4). The integer constraint for decision variable is described in Eq. (S.5). The waiting time
for the first task is described in Eq. (S.6), and the waiting time wtkj of the task at position k (k >= 2)
is described in recursive Eq. (S.7).

7.2. Problems for testing and performance analysis

This section presents the effectiveness of five heuristic algorithms discussed in section 6 by
generating the test cases with the help of three probability distributions namely normal distri-
bution, Poisson distribution, and exponential distribution. At first, a small set of test cases have
been selected which are same as used in Refs. [7, 10] to find the effectiveness of the algorithms.
To increase the number of testing cases, another three large sets of data are also generated
randomly of 5 through 500 numbers of tasks. These large data sets are generated with the help
of normal, Poisson, and exponential distribution, respectively.

To measure the performance of the heuristics presented in Section 6, at first for optimality, all
possible sequences are generated by placing the tasks randomly for each problem of small data
set. Each generated possible sequence is considered as one sub example of all possible optimal
sequences. For example, there are 120 numbers of task sequences (e.g., 5!) are generated for 5
numbers of tasks. Similarly, there are 720 numbers of task sequences (e.g., 6!) are generated as
there are six tasks so on. But the above discussed five heuristic methods generate only one task
sequence for each test case of small data set. The basic aim is to calculate WTV for the test
cases, which satisfy the V-shaped optimal property.

Figure 3 shows the WTV performance of five heuristic methods is as good as the performance
of optimal methods for small size test cases. It was also observed that the RSS method gives
optimum or near optimum WTV results as compared with optimum generated WTV value.

Figure 3. WTV performance of between heuristics vs optimal for small set of jobs.

Heuristics and Hyper-Heuristics - Principles and Applications54



Eq. (S.4). The integer constraint for decision variable is described in Eq. (S.5). The waiting time
for the first task is described in Eq. (S.6), and the waiting time wtkj of the task at position k (k >= 2)
is described in recursive Eq. (S.7).

7.2. Problems for testing and performance analysis

This section presents the effectiveness of five heuristic algorithms discussed in section 6 by
generating the test cases with the help of three probability distributions namely normal distri-
bution, Poisson distribution, and exponential distribution. At first, a small set of test cases have
been selected which are same as used in Refs. [7, 10] to find the effectiveness of the algorithms.
To increase the number of testing cases, another three large sets of data are also generated
randomly of 5 through 500 numbers of tasks. These large data sets are generated with the help
of normal, Poisson, and exponential distribution, respectively.

To measure the performance of the heuristics presented in Section 6, at first for optimality, all
possible sequences are generated by placing the tasks randomly for each problem of small data
set. Each generated possible sequence is considered as one sub example of all possible optimal
sequences. For example, there are 120 numbers of task sequences (e.g., 5!) are generated for 5
numbers of tasks. Similarly, there are 720 numbers of task sequences (e.g., 6!) are generated as
there are six tasks so on. But the above discussed five heuristic methods generate only one task
sequence for each test case of small data set. The basic aim is to calculate WTV for the test
cases, which satisfy the V-shaped optimal property.

Figure 3 shows the WTV performance of five heuristic methods is as good as the performance
of optimal methods for small size test cases. It was also observed that the RSS method gives
optimum or near optimum WTV results as compared with optimum generated WTV value.

Figure 3. WTV performance of between heuristics vs optimal for small set of jobs.

Heuristics and Hyper-Heuristics - Principles and Applications54

The WTV performance of EC1, EC2, VS, BS, and RSS heuristic methods for all the test cases of
large data set is shown in Figure 4. The computational result depicted that the WTV obtained
by RSS method seems to be near optimum in comparison with other four methods for different
numbers of tasks generated by three distribution methods discussed above.

For single processor scheduling problem, the computational cost is treated as computational
average time. It is observed that all heuristic methods used sorting mechanism before the
generation of tasks sequence except optimal method. Quick sort is an efficient sorting mecha-
nism that takes O (n log n) computational cost. It is also observed that the sequence generated
by VSmethod takes much larger computational cost than BS and RSSmethod as the calculation
of WTV is made multiple times. The sequence generated by BS method also takes larger
computational cost than RSS method as the calculation of total processing time is made multi-
ple times. Hence, by applying the concept of cutting a large fish into small pieces and distrib-
uted among the customers uniformly by a fishmonger generate an optimum or near optimum
sequence by minimizing WTV in very less computational cost is a major achievement.

Figure 4. Performance of WTV with respect to heuristics methods for large set of data (i.e., processing time) generated by
normal, Poisson, and exponential distribution.

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

55



8. Parallel processor scheduling

Parallel processing is one of the arising concepts that used to schedule a batch of ‘n’ numbers of
tasks to be processed by ‘m’ numbers of parallel processors [24]. This section presents a parallel
scheduling algorithm as a solution to the problem Qm|prec|WTV with an effect of minimiza-
tion of mean WVT. This approach is a heuristic based and the tasks are allocated dynamically
in the task sequence by keeping variance as a controlling parameter. The tasks are placed in the
individual sequence with the help of heuristic algorithms, so that the dynamic heuristic
methods take extremely less computational cost. These algorithms are tested on randomly
generated problems of varying numbers of tasks and processors as parameters. The effective-
ness with respect to mean WTV is done by comparing the result among the discussed heuristic
methods. The findings are shown in graphic form for corresponding problems.

8.1. Problem formulation for task scheduling problem

The uniform parallel processors i∈P ¼ {1, 2,…, m} are having different speeds s∈S ¼ {1, 2,…, m}
with the relation s1 < s2 < s3 < … < sm. This means that the first processor is the slowest
processor with low processing cost and the last processor is the fastest processor with high
processing cost. For a given task, the processing times on the uniform parallel processor is in
the ratios listed as 1=s1 : 1=s2 : 1=s3 : … : 1=sm. The processors are continuously available, and
they are never kept idle while work is waiting. The processors are assigned by the maximum
processing time capacity of a task, so that allotments of tasks are assigned on the basis of the
processing time. Thus, low processing time tasks are assigned to slowest processors and
highest processing time tasks are assigned to fastest processors. The designed uniform sched-
uling problem is based on the allocation of n, numbers of independent tasks
j∈ T ¼ f1, 2,…, ng as per the processing time at location k∈L ¼ {1, 2,…, n} on a set of m
numbers of uniform parallel processors i∈P ¼ {1, 2,…, m}.

The problem is formulated under five numbers of assumptions. At first, the starting time of
individual processors are assumed to initialize at time 0 (zero). In other words, all the tasks for
each processor are ready to begin for processing at the same time, i.e., 0 (zero). Second, each
processor is available deliberately prior to a condition that once the processor given a task to
process, it cannot be preempted until the task's processing time is completed on that processor.
Third, once a task is allocated to any one processor, it cannot be laid away to other processor
under any circumstance. Fourth, the number of tasks must be greater than the number of
processors, i.e., n > m, as the problem with n ≤m is irrelevant. Fifth, all the allocated processors
will be waiting according to the order of allocation, i.e., after the previously allocated task has
been finished the present task can be started.

From the literature, it was observed that number dominant properties on WTV problem has
been discovered and depicted by the researchers. To start, first for any scheduling sequence R,
CTV of R is equal to WTV of R0, where R0 is the antithetical schedule of R [25]. Second, the
scheduling sequence that minimizes WTV is antithetical to the scheduling sequence that min-
imizes CTV [25]. Third, CTV remains unchanged when reversing the order of the last n1
tasks [25]. Fourth, for CTV minimization problems, an optimal scheduling sequence is of the

Heuristics and Hyper-Heuristics - Principles and Applications56



8. Parallel processor scheduling

Parallel processing is one of the arising concepts that used to schedule a batch of ‘n’ numbers of
tasks to be processed by ‘m’ numbers of parallel processors [24]. This section presents a parallel
scheduling algorithm as a solution to the problem Qm|prec|WTV with an effect of minimiza-
tion of mean WVT. This approach is a heuristic based and the tasks are allocated dynamically
in the task sequence by keeping variance as a controlling parameter. The tasks are placed in the
individual sequence with the help of heuristic algorithms, so that the dynamic heuristic
methods take extremely less computational cost. These algorithms are tested on randomly
generated problems of varying numbers of tasks and processors as parameters. The effective-
ness with respect to mean WTV is done by comparing the result among the discussed heuristic
methods. The findings are shown in graphic form for corresponding problems.

8.1. Problem formulation for task scheduling problem

The uniform parallel processors i∈P ¼ {1, 2,…, m} are having different speeds s∈S ¼ {1, 2,…, m}
with the relation s1 < s2 < s3 < … < sm. This means that the first processor is the slowest
processor with low processing cost and the last processor is the fastest processor with high
processing cost. For a given task, the processing times on the uniform parallel processor is in
the ratios listed as 1=s1 : 1=s2 : 1=s3 : … : 1=sm. The processors are continuously available, and
they are never kept idle while work is waiting. The processors are assigned by the maximum
processing time capacity of a task, so that allotments of tasks are assigned on the basis of the
processing time. Thus, low processing time tasks are assigned to slowest processors and
highest processing time tasks are assigned to fastest processors. The designed uniform sched-
uling problem is based on the allocation of n, numbers of independent tasks
j∈ T ¼ f1, 2,…, ng as per the processing time at location k∈L ¼ {1, 2,…, n} on a set of m
numbers of uniform parallel processors i∈P ¼ {1, 2,…, m}.

The problem is formulated under five numbers of assumptions. At first, the starting time of
individual processors are assumed to initialize at time 0 (zero). In other words, all the tasks for
each processor are ready to begin for processing at the same time, i.e., 0 (zero). Second, each
processor is available deliberately prior to a condition that once the processor given a task to
process, it cannot be preempted until the task's processing time is completed on that processor.
Third, once a task is allocated to any one processor, it cannot be laid away to other processor
under any circumstance. Fourth, the number of tasks must be greater than the number of
processors, i.e., n > m, as the problem with n ≤m is irrelevant. Fifth, all the allocated processors
will be waiting according to the order of allocation, i.e., after the previously allocated task has
been finished the present task can be started.

From the literature, it was observed that number dominant properties on WTV problem has
been discovered and depicted by the researchers. To start, first for any scheduling sequence R,
CTV of R is equal to WTV of R0, where R0 is the antithetical schedule of R [25]. Second, the
scheduling sequence that minimizes WTV is antithetical to the scheduling sequence that min-
imizes CTV [25]. Third, CTV remains unchanged when reversing the order of the last n1
tasks [25]. Fourth, for CTV minimization problems, an optimal scheduling sequence is of the

Heuristics and Hyper-Heuristics - Principles and Applications56

form of (n, n�2, …, n�1), i.e., the largest task is arranged at the first position, the second
longest task is arranged at the last position, and the third longest task is arranged at the second
position [28]. Fifth, the optimal sequence for a WTV minimization problem is V shaped [10].
Sixth, Pm k CTV problem is NP complete in the strong sense when ‘m’ is arbitrary [24]. Seventh,
Pm k CTV Problem is NP complete in the ordinary sense when ‘m’ is fixed [24].

Minimization of WTV as a performance measure for task scheduling problem has been
discussed in Section 7 for achieving the service stability between the tasks in single processor.
The parallel processor is nothing but multiple numbers of single processors with same speed
or multiple numbers of single processors with different speed are working simultaneously for
achieving the concurrency. Hence, to come up with an optimized schedule, which minimize
the WTV is the aspiration of the task scheduling problem in parallel environment. The WTV
developed (S.1) in Section 7 will be utilized for the development of the WTV on parallel
processors. The WTV of tasks in a complete sequence for the parallel processor is obtained as
follows in Eq. (P.1).

WTV ¼ 1
m

X
i∈P

1
ni � 1

X
j∈Lki

wtkij � 1
ni

X
j∈Lk

wtkij

� �2
 !

(P.1)

The objective is to find an optimum or near optimum schedule with pseudo-polynomial time
of Qm|prec|WTV problem by minimizing the variance of waiting time for n number of tasks on
m number of uniform parallel processors by Eq. (P.2).

Minimize ðQmjprecjWTVÞ (P.2)

subject to:

Σj∈Pi skij ¼ 1 ∀ k∈L (P.3)

Σi∈ T j skij ¼ 1 ∀ k∈L (P.4)

Σj∈Piwtkij ¼ 0 ∀ k ¼ 1 (P.5)

wtkij ¼ wtk�1ij þ Σj∈P i skij � ptj ∀ k∈L, j∈ T , i∈P (P.6)

Σj∈P i qkij ¼ 1 ∀ k∈L (P.7)

qkij �N þ wtkþ1ij ≥ wtkij þ Σj∈P i skij � ptj ∀ k∈L, j∈ T , i∈P (P.8)

skij ∈ f0, 1g ∀ k∈L, j∈ T , i∈P (P.9)

qkij ∈ f0, 1g ∀ k∈L, j∈ T , i∈P (P.10)

Ckij ≥ 0 ∀ k∈L, j∈ T , i∈P (P.11)

wtkij ≥ 0 ∀ k∈L, j∈ T , i∈P (P.12)

where N is large number.

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

57



Each task is assigned to a position is exactly once in any one of the processor sequence is
described in Eq. (P.3). Each position of any one process or sequence is used exactly once by a
task is described in Eq. (P.4). The waiting time for first task of the individual processor
sequence is described in Eq. (P.5). The waiting time of all other allotted tasks for the individual
processor except first one is described in Eq. (P.6). Eqs. (P.7) and (P.8) state that if two tasks are
on the same processor, then one must be scheduled after the other; otherwise, the values of
wtkij and wtk+1ij will not be related. Eqs. (P.9) and (P.10) indicate that the introduced decision
variables are binary in nature. Eqs. (P.11) and (P.12) represent that the value of completion time
and waiting time must be greater than zero.

8.2. Task allocation methods for uniform parallel processors

The uniform parallel processors are identified by their different speeds. The processors are
arranged in chronological order, such that the first processor is the slowest processor with low
processing cost and the last processor is the fastest processor with high processing cost. The
scheduling problem (Qm|prec|WTV) discussed above is a combinatorial problem. Therefore,
usage of a heuristic is inevitable to obtain solution in polynomial time. The challenge is to
distribute the tasks in an efficient manner among the processors. A unique task allocation
method named as PUM is presented in Ref. [20] for the allocation of tasks among the processors.

Uniform parallel processors consist of a bank of single processors with different speed, and the
computational cost is depending on the speed of the processors. It is most important to allocate
the task in such a way that the computational cost must be maintained. Hence, the unique task
allocation scheme named as PUM is combined with the heuristic methods namely VS, BS, and
RSS is also discussed in Ref. [20]. The efficiency of the three heuristic methods with the unique
task allocation scheme for uniform parallel processors is tested with a large number of test
cases discussed in the next section.

8.3. Problems for testing and performance analysis

To find the effectiveness of these heuristic methods, test cases are randomly generated with the
help of four probability distributions. At first with the help of normal distribution, 901 num-
bers of test cases are generated randomly in combination of 5 and 6 numbers of uniform
parallel processors for each case of 100 through 1000 numbers of tasks. The test cases are
followed by the same number of tasks and processors with the help of Poisson distribution,
exponential distribution, and uniform distribution. The performance analysis of the heuristic
methods with unique task allocation scheme is discussed below.

For analysis, mean WTV is taken as the measure of performance. Performance of measure of
three heuristic methods named as VS, BS, and RSS is analyzed by using a unique task alloca-
tion scheme named as PUM. This enhances the performance of heuristic methods for parallel
processing in uniform processors. The allocation scheme in combination with heuristic algo-
rithms is tested with a large number of test cases starting from 100 to 1000 tasks separately. The
results analysis for normal distribution on uniform parallel processor is presented in Figure 5,

Heuristics and Hyper-Heuristics - Principles and Applications58



Each task is assigned to a position is exactly once in any one of the processor sequence is
described in Eq. (P.3). Each position of any one process or sequence is used exactly once by a
task is described in Eq. (P.4). The waiting time for first task of the individual processor
sequence is described in Eq. (P.5). The waiting time of all other allotted tasks for the individual
processor except first one is described in Eq. (P.6). Eqs. (P.7) and (P.8) state that if two tasks are
on the same processor, then one must be scheduled after the other; otherwise, the values of
wtkij and wtk+1ij will not be related. Eqs. (P.9) and (P.10) indicate that the introduced decision
variables are binary in nature. Eqs. (P.11) and (P.12) represent that the value of completion time
and waiting time must be greater than zero.

8.2. Task allocation methods for uniform parallel processors

The uniform parallel processors are identified by their different speeds. The processors are
arranged in chronological order, such that the first processor is the slowest processor with low
processing cost and the last processor is the fastest processor with high processing cost. The
scheduling problem (Qm|prec|WTV) discussed above is a combinatorial problem. Therefore,
usage of a heuristic is inevitable to obtain solution in polynomial time. The challenge is to
distribute the tasks in an efficient manner among the processors. A unique task allocation
method named as PUM is presented in Ref. [20] for the allocation of tasks among the processors.

Uniform parallel processors consist of a bank of single processors with different speed, and the
computational cost is depending on the speed of the processors. It is most important to allocate
the task in such a way that the computational cost must be maintained. Hence, the unique task
allocation scheme named as PUM is combined with the heuristic methods namely VS, BS, and
RSS is also discussed in Ref. [20]. The efficiency of the three heuristic methods with the unique
task allocation scheme for uniform parallel processors is tested with a large number of test
cases discussed in the next section.

8.3. Problems for testing and performance analysis

To find the effectiveness of these heuristic methods, test cases are randomly generated with the
help of four probability distributions. At first with the help of normal distribution, 901 num-
bers of test cases are generated randomly in combination of 5 and 6 numbers of uniform
parallel processors for each case of 100 through 1000 numbers of tasks. The test cases are
followed by the same number of tasks and processors with the help of Poisson distribution,
exponential distribution, and uniform distribution. The performance analysis of the heuristic
methods with unique task allocation scheme is discussed below.

For analysis, mean WTV is taken as the measure of performance. Performance of measure of
three heuristic methods named as VS, BS, and RSS is analyzed by using a unique task alloca-
tion scheme named as PUM. This enhances the performance of heuristic methods for parallel
processing in uniform processors. The allocation scheme in combination with heuristic algo-
rithms is tested with a large number of test cases starting from 100 to 1000 tasks separately. The
results analysis for normal distribution on uniform parallel processor is presented in Figure 5,

Heuristics and Hyper-Heuristics - Principles and Applications58

which consists of two subfigures (a) and (b). The mean WTV obtained by the three heuristic
algorithms with the help of unique task allocation scheme is shown in each subfigure. The task
allocation schemes are implemented on each test case generated by normal distributions. The
subfigures (a) and (b) represent mean WTV performance for 5 and 6 numbers of uniform
parallel processors, respectively. The three heuristic methods are represented in each subfigure
(a) and (b) by three distinct colors. Green color represents VS method, black color represents BS
method, and red color represents RSS method. An enlarged view of mean WTV performance
of heuristic methods from total task numbers 221 to 226 is presented in each subfigure. The
computational result shows that the mean WTV obtained by RSS methods in combination of
PUM is apparently same in comparison with other two heuristic methods.

Similarly, the processing time for all the test cases is generated with the help of Poisson,
exponential, and uniform distribution, respectively. It is also observed that mean WTV
obtained by RSS methods in combination of PUM are apparently same in comparison with
other two heuristic methods as presented in Ref. [20].

Developing an efficient task allocation scheme and execute it with the heuristic methods for
uniform parallel processors is NP hard. To overcome it in uniform parallel processor, an
efficient task allocation scheme is required along with the heuristic methods. The average time
required for finding sequence by computing the heuristics in uniform parallel processor is
represented as computational cost. From the above discussed heuristic methods with PUM
allocation scheme, it is found that the VS method requires at least four tasks to commence,
and all the heuristic methods discussed in Section 6 need a sorting procedure after the PUM
allocation process is over and before the starting of heuristic process. Quick sort is an efficient
sorting mechanism that takes O (n log n) computational cost. Hence, it is used to sort the tasks
before implementation of heuristics. From the performance analysis, it is observed that the
computational cost of VS method is much larger then BS and RSS method, as the calculation of
WTV is made multiple times, and the computational cost of BS method is also larger than the

Figure 5. Comparison of mean WTV with respect to heuristics methods by using PUM allocation scheme for the
processing time generated by normal distribution.

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

59



RSS method, as the calculation of total processing time is made multiple times. It is therefore
revealed that the computational cost of RSS method is the least.

9. Conclusion and future scope

This work is motivated from the various criteria of timeliness that provide services to the users
of computer and network systems including response time, waiting time, turn-around time,
elapsed time etc. To provide uniform response to the users, i.e., to minimize the variance of
response time by minimizing the variance of access time is the problem of task scheduling by
minimizing WTV as a measure in single processor and extend to parallel processors. In other
words, a step has been taken for developing a scheduling procedure that minimizes the WTV
of the individual task.

In task scheduling problems, a lot of works are done on the area of completion time rather than
waiting time. Variance as a parameter is introduced by the researcher to minimize the CTV by
distributing the task processing time in such a way that the uniformity among the task is
obtained (i.e., QoS). For obtaining the uniformity in the scheduling problems, variance of
completion time is more effective rather than the completion time. It was also found that the
sequence that minimizes the variance of completion time is antithetical to the sequence that
minimizes the variance of waiting time. But it was found from the literature that a large
number of works are done on CTV, and in case of WTV, it is few.

The aim of this work is to analyze, study the peculiarity behavior, and develop efficient
heuristic methods for solving different classes of scheduling problems. As the addressed
problems are NP hard, the alternative of using heuristic methods has been proven to be good
one, whereas the exact solution always gives optimum solution by taking maximum time for
both single processor as well as parallel processors for a large set of tasks.

In these respects at first, basic elements of classical deterministic scheduling problem, different
aspects related to scheduling problem and algorithms, and classification of scheduling prob-
lems are presented. Second, different methods for solving scheduling problems, complexity of
scheduling problem, and basic knowledge on different schedule class are discussed. At last, an
overview on different objective classification criteria for both single processor and parallel
processors was presented.

Using the aforementioned background, a mixed integer programming model with two sched-
uling problems was addressed:

• A single processor scheduling problem Minimize (1kWTV) for minimizing WTV was
stated and solved in section 7 by using five heuristic methods namely as EC1, EC2, VS,
BS, and RSS.

• The processing time of tasks are generated randomly by three probability distributions
namely normal distribution, Poisson distribution, and exponential distribution.

• Performances of five heuristic methods are analyzed. It was observed that RSS method
gives optimum or near optimum results than other heuristic methods

Heuristics and Hyper-Heuristics - Principles and Applications60



RSS method, as the calculation of total processing time is made multiple times. It is therefore
revealed that the computational cost of RSS method is the least.

9. Conclusion and future scope

This work is motivated from the various criteria of timeliness that provide services to the users
of computer and network systems including response time, waiting time, turn-around time,
elapsed time etc. To provide uniform response to the users, i.e., to minimize the variance of
response time by minimizing the variance of access time is the problem of task scheduling by
minimizing WTV as a measure in single processor and extend to parallel processors. In other
words, a step has been taken for developing a scheduling procedure that minimizes the WTV
of the individual task.

In task scheduling problems, a lot of works are done on the area of completion time rather than
waiting time. Variance as a parameter is introduced by the researcher to minimize the CTV by
distributing the task processing time in such a way that the uniformity among the task is
obtained (i.e., QoS). For obtaining the uniformity in the scheduling problems, variance of
completion time is more effective rather than the completion time. It was also found that the
sequence that minimizes the variance of completion time is antithetical to the sequence that
minimizes the variance of waiting time. But it was found from the literature that a large
number of works are done on CTV, and in case of WTV, it is few.

The aim of this work is to analyze, study the peculiarity behavior, and develop efficient
heuristic methods for solving different classes of scheduling problems. As the addressed
problems are NP hard, the alternative of using heuristic methods has been proven to be good
one, whereas the exact solution always gives optimum solution by taking maximum time for
both single processor as well as parallel processors for a large set of tasks.

In these respects at first, basic elements of classical deterministic scheduling problem, different
aspects related to scheduling problem and algorithms, and classification of scheduling prob-
lems are presented. Second, different methods for solving scheduling problems, complexity of
scheduling problem, and basic knowledge on different schedule class are discussed. At last, an
overview on different objective classification criteria for both single processor and parallel
processors was presented.

Using the aforementioned background, a mixed integer programming model with two sched-
uling problems was addressed:

• A single processor scheduling problem Minimize (1kWTV) for minimizing WTV was
stated and solved in section 7 by using five heuristic methods namely as EC1, EC2, VS,
BS, and RSS.

• The processing time of tasks are generated randomly by three probability distributions
namely normal distribution, Poisson distribution, and exponential distribution.

• Performances of five heuristic methods are analyzed. It was observed that RSS method
gives optimum or near optimum results than other heuristic methods

Heuristics and Hyper-Heuristics - Principles and Applications60

• From the comparative result, it was also observed that the obtained WTV of the sequence
generated with the help of heuristic methods are always satisfying the V-shaped optimal-
ity property.

• It was also observed that RSS method gives results with minimum computational cost
than other heuristic methods.

• A uniform parallel processor scheduling problem Minimize (Qm|prec|WTV) for minimiz-
ing WTV was proposed and solved in Section 8 by using a RSS method in combination
with a unique proposed task allocation scheme named as PUM.

• A unique task allocation scheme was developed for allocating the task to individual
processor.

• The processing time of tasks are generated randomly by four probability distributions
namely normal distribution, Poisson distribution, exponential distribution, and uniform
distribution.

• Performance of measure of three heuristic methods namely as VS, BS, and RSS are ana-
lyzed by using a unique task allocation scheme named as PUM.

• The experimental results are compared and observed that RSS method with PUM alloca-
tion scheme reveals the best solution with minimal computational cost.

Therefore, it is concluded that in case of single processor, the computational cost of RSS
heuristic method is less than the other four heuristic methods. In case of uniform parallel
processor, the RSS method with PUM allocation scheme reveals the optimum or near optimum
solution with minimal computational cost.

Often new computer systems and new performance measures used to evaluate a system lead
to new directions in scheduling. The environment of scheduling is changing time to time
depending on resource availability, interruptions, and nature of changed demand. New sched-
uling is to be prepared in between an old unprocessed schedule. This give rise to change in
constraints and resources. This has to be rescheduled with changed objectives.

In future, keeping WTVas the measure of performance the following works will be carried out
for finding the suitability and effectiveness of the heuristic methods and task allocation
schemes proposed in this work.

• To apply the proposed work for available multiobjective scheduling problems.

• To apply the proposed work in order to investigate the field of tasks and resources
allocation in project like project management scheduling, broadcast scheduling, etc.

• To find out the effect of these proposed work in dynamic scheduling.

• Exploration of more efficient scheduler with better effective scheduling methods.

• Use of stochastic scheduling problems in real life environment.

• Suitability of techniques with cloud computing which is a kind of grid with virtual
services and service oriented architecture (SOA).

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

61



Author details

Satyasundara Mahapatra1*, Rati Ranjan Dash2 and Sateesh K. Pradhan3

*Address all correspondence to: satyasundara123@gmail.com

1 Indian Institute of Science and Information Technology, Bhubaneswar, India

2 College of Engineering and Technology, Bhubaneswar, India

3 Utkal University, Bhubaneswar, India

References

[1] Graham RL. Combinatorial scheduling theory. In: Steen LA, editors. Mathematics Today.
Vol. 3. Berlin: Springer; 1978. pp. 183–211.

[2] Graham RL. The combinatorial mathematics of scheduling. Scientific American. 1978;238:
124–132.

[3] Katona GOH. Combinatorial search problems. In: Srivastava JN, editors. A Survey of
Combinatorial Theory. Vol. 28. Amsterdam: North-Holland Publ. Co; 1973.

[4] Garey MR, Johnson DS. Computers and Intractability, A Guide to the Theory of NP-
Completeness. New York, USA: W.H. Freeman and Company; 2000.

[5] Williamson DP, Shmoys DB. The Design of Approximation Algorithm. Vol. 3. Cambridge,
UK: Cambridge University Press; 2010.

[6] Djuraskovic I, Arthur N. Heuristic inquiry: A personal journey of acculturation and
identity reconstruction. The Qualitative Report. 2010;1(6): 1569–1593.

[7] Nong Ye, Li X, Farley T, Xu X. Job scheduling methods for reducing waiting time vari-
ance. Computer & Operations Research (Elsevier). 2007;18:3069–3083.

[8] Vincent AC, Stephen F Smith. Heuristic Selection for Stochastic Search Optimization:
Modeling Solution Quality by Extreme Value Theory. 10th International Conference, CP,
Toronto, Canada, Proceedings, Vol. 3. 2004. pp. 197–211.

[9] Nessah R, Chu C. A lower bound for weighted completion time variance. European
Journal of Operational Research. 2010;10(3):1221–1226.

[10] Eilon S, Chowdhury IG. Minimizing waiting time variance in the single machine prob-
lem. Management Science. 1977;34(6):567–575.

[11] Mahapatra S, Dash RR, Pradhan SK. An approach to solve single machine job scheduling
problem using heuristic algorithm. International Journal of Emerging Technologies in Com-
putational and Applied Sciences (IJETCAS), ISSN (Online): 2279-0055. 2015;11(2):157–163.

Heuristics and Hyper-Heuristics - Principles and Applications62



Author details

Satyasundara Mahapatra1*, Rati Ranjan Dash2 and Sateesh K. Pradhan3

*Address all correspondence to: satyasundara123@gmail.com

1 Indian Institute of Science and Information Technology, Bhubaneswar, India

2 College of Engineering and Technology, Bhubaneswar, India

3 Utkal University, Bhubaneswar, India

References

[1] Graham RL. Combinatorial scheduling theory. In: Steen LA, editors. Mathematics Today.
Vol. 3. Berlin: Springer; 1978. pp. 183–211.

[2] Graham RL. The combinatorial mathematics of scheduling. Scientific American. 1978;238:
124–132.

[3] Katona GOH. Combinatorial search problems. In: Srivastava JN, editors. A Survey of
Combinatorial Theory. Vol. 28. Amsterdam: North-Holland Publ. Co; 1973.

[4] Garey MR, Johnson DS. Computers and Intractability, A Guide to the Theory of NP-
Completeness. New York, USA: W.H. Freeman and Company; 2000.

[5] Williamson DP, Shmoys DB. The Design of Approximation Algorithm. Vol. 3. Cambridge,
UK: Cambridge University Press; 2010.

[6] Djuraskovic I, Arthur N. Heuristic inquiry: A personal journey of acculturation and
identity reconstruction. The Qualitative Report. 2010;1(6): 1569–1593.

[7] Nong Ye, Li X, Farley T, Xu X. Job scheduling methods for reducing waiting time vari-
ance. Computer & Operations Research (Elsevier). 2007;18:3069–3083.

[8] Vincent AC, Stephen F Smith. Heuristic Selection for Stochastic Search Optimization:
Modeling Solution Quality by Extreme Value Theory. 10th International Conference, CP,
Toronto, Canada, Proceedings, Vol. 3. 2004. pp. 197–211.

[9] Nessah R, Chu C. A lower bound for weighted completion time variance. European
Journal of Operational Research. 2010;10(3):1221–1226.

[10] Eilon S, Chowdhury IG. Minimizing waiting time variance in the single machine prob-
lem. Management Science. 1977;34(6):567–575.

[11] Mahapatra S, Dash RR, Pradhan SK. An approach to solve single machine job scheduling
problem using heuristic algorithm. International Journal of Emerging Technologies in Com-
putational and Applied Sciences (IJETCAS), ISSN (Online): 2279-0055. 2015;11(2):157–163.

Heuristics and Hyper-Heuristics - Principles and Applications62

[12] Poursalik K, Miri-Nargesi S. Meta-heuristic approaches for a new modeling of single
machine scheduling problem. Scientific Khyber. 2013;55(2):107–117.

[13] Socha K, Knowles J, Sampels M. A MAX-MIN ant system for the university timetabling
problem. In: Dorigo M, Di Caro G, Sampels M (editors). Ant Algorithms: Third Interna-
tional Workshop, ANTS 2002. Lecture Notes in Computer Science. Vol. 16; 2002. pp.1–13.

[14] Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy. Future Generation
Computer. 2000;16(8):851–871.

[15] Asadzadeh L, Zamanifar K. An agent-based parallel approach for the job shop schedul-
ing problem with genetic algorithms. Mathematical and Computer Modelling. 2010;52
(11–12): 1957–1965.

[16] Baudet P,Azzaro C, Pibouleau L, Domenech S. A genetic algorithm for batch chemical
plant scheduling. Proc. Int. Congress of Chemical and Process Engineering. 1996:pp. 25–30.

[17] Cardon A, Galinho T, Vacher JP. A multi-objective genetic algorithm in job shop schedul-
ing problem to refine an agents architecture. In Proceedings of EUROGEN'99. Jyvaskyla,
Finland. University of Jyvsaskyla; 1999.

[18] Zhai Y, Liu C, Chu W, Guo R, Liu C. A decomposition heuristics based on multi-
bottleneck machines for large-scale job shop scheduling problems. Journal of Industrial
Engineering and Management (JIEM). 2014;177(5):1397–1414.

[19] El-Bouri A, Azizi A, Zolfaghari S. A comparative study of a new heuristic based on
adaptive memory programming and simulated annealing: The case of job shop schedul-
ing. European Journal of Operational Research. 2007;155:1894–1910.

[20] Mahapatra S, Dash RR, Pradhan SK. A heuristic for scheduling of uniform parallel pro-
cessors. 2nd International Conference on Computational Intelligence and Networks
(CINE), KIIT University, Bhubaneswar, Odisha. IEEE Xplore Digital Library. 11 Jan
2016:78–83.

[21] Cai X, Cheng TCE. Multi-machine scheduling with variance minimization. Discrete
Applied Mathematics. 1998;128(1–3):55–70.

[22] Jozefowska J, Mika M, Rozycki R, Waligora G, Weglarz J. An almost optimal heuristic for
preemptive Cmax scheduling of dependent tasks on identical parallel processors. Annals
of Operation Research. 2004;129(129):205–216.

[23] Rafsanjani MK, Bardsiri AK. A new heuristic approach for scheduling independent tasks
on heterogeneous computing systems. International Journal of Machine Learning and
Computing. 2011;2(4):371–376.

[24] Xu X, Ye N. Minimization of job waiting time variance on identical parallel machines.
IEEE transactions on Systems, Man, and Cybernetics–Part C: Applications and Reviews.
2007;37(5):917–927.

[25] Merten AG, Muller ME. Variance minimization in single machine sequencing problems.
Management Science. 1972;38(9):518–528.

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

63



[26] Pinedo M. Scheduling theory, algorithms and systems. Englewood Cliffs, NJ: Prentice-
Hall; 1995.

[27] Schrage L. Minimizing the time-in-system variance for a finite jobset. Management Sci-
ence. 1975;207(5):540–543.

[28] Hall NG, Kubiak W. Proof of a conjecture of Schrage about the completion time variance
problem. Operations Research Letters. 1991;27:467–472.

Heuristics and Hyper-Heuristics - Principles and Applications64



[26] Pinedo M. Scheduling theory, algorithms and systems. Englewood Cliffs, NJ: Prentice-
Hall; 1995.

[27] Schrage L. Minimizing the time-in-system variance for a finite jobset. Management Sci-
ence. 1975;207(5):540–543.

[28] Hall NG, Kubiak W. Proof of a conjecture of Schrage about the completion time variance
problem. Operations Research Letters. 1991;27:467–472.

Heuristics and Hyper-Heuristics - Principles and Applications64

Chapter 4

Efficient Heuristics for Scheduling with Release and
Delivery Times

Nodari Vakhania

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69223

Abstract

In this chapter, we describe efficient heuristics for scheduling jobs with release and
delivery times with the objective to minimize the maximum job completion time. These
heuristics are essentially based on a commonly used scheduling theory in Jackson’s
extended heuristic. We present basic structural properties of the solutions delivered
by Jackson’s heuristic and then illustrate how one can exploit them to build efficient
heuristics.

Keywords: combinatorial optimization, heuristic algorithm, scheduling theory, time
complexity, approximation algorithm

1. Introduction

The combinatorial optimization problems have emerged in late 40s of last century due to a rapid
growth of the industry and new arisen demands in efficient solution methods. Modeled in
mathematical language, a combinatorial optimization problem has a finite set of the so-called
feasible solutions; this set is determined by a set of restrictions that naturally arise in practice.
Usually, there is an objective function in which domain is the latter set. One aims to determine
a feasible solution that gives an extremal (minimal or maximal) value to the objective function,
the so-called optimal solution. Since the number of feasible solutions is typically finite, theoret-
ically, finding an optimal solution is trivial: just enumerate all the feasible solutions calculating
for each of them the value of the objective function and select any one with the optimal
objective value. The main issue here is that a brutal enumeration of all feasible solutions might
be impossible in practice.

There are two distinct classes of combinatorial optimization problems, class P of polynomially
solvable ones and NP-hard problems. For a problem from class P, there exists an efficient

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



(polynomial in the size of the problem) algorithm. But no such algorithm exists for an NP-hard
problem. The number of feasible solutions of an NP-hard optimization problem grows expo-
nentially with the size of the input (which, informally, is the amount of the computer memory
necessary to represent the problem data/parameters). Furthermore, allNP-hard problems have
a similar computational (time) complexity, in the sense that if there will be found an efficient
polynomial-time algorithm for any of them, such an algorithm would yield another polyno-
mial-time algorithm for any other NP-hard problem. On the positive side, all NP-hard prob-
lems belong to the class NP that guarantees that any feasible schedule to an NP-hard problem
can be found in polynomial time. It is believed that it is very unlikely that an NP-hard problem
can be solved in polynomial time (whereas an exact polynomial-time algorithm with a reason-
able real-time behavior exists for a problem in class P). Hence, it is natural to think of an
approximation solution method.

Thus, approximation algorithms are most frequently used for the solution of NP-hard prob-
lems. Any NP-hard problem has a nice characteristic, that is, any feasible solution can be
created and verified in polynomial time, like for problems in class P. A greedy algorithm creates
in this way a single feasible solution by iteratively taking the next “most promising” decision,
until a complete solution is created. These decisions are normally taken in a low-degree
polynomial/constant time. Since the total number of iterations equals to the number of objects
in a given problem instance, the overall time complexity of a greedy algorithm is low. Like-
wise, heuristic algorithms reduce the search space creating one or more feasible solutions in
polynomial time. Greedy and heuristic algorithms are simplest approximation algorithms. It is
easy to construct such an algorithm for both polynomial andNP-hard problems. It may deliver
an optimal solution to a problem from calls P, but it is highly unlikely that a heuristic optimal
algorithm may exist for an NP-hard problem. A greedy algorithm reduces the potential search
space by taking a unique decision for the extension of the current partial solution in each of the
n iterations. A simplest heuristic algorithm is greedy, though there are more sophisticated
heuristic algorithms that use different search strategies. In general, an approximation algo-
rithm may guarantee some worst-case behavior measured by its performance ratio: the ratio of
the value of objective function of the worst solution that may deliver the algorithm to the
optimal objective value (a real number greater than 1).

Scheduling problems are important combinatorial optimization problems. A given set of requests
called jobs are to be performed (scheduled) on a finite set of resources calledmachines (or processors).
The objective is to determine the processing order of jobs on machines in order to minimize or
maximize a given objective function. Scheduling problems have a wide range of applications from
production process to computer systems optimization.

Simple greedy heuristics that use some priority dispatching rules for the for taking the deci-
sions can be easily constructed and adopted for scheduling problems. An obvious advantage
of such heuristics is their rapidness, and an obvious disadvantage is a poor solution quality.
The generation of a better solution needs more computational and algorithmic efforts. A Global
search in the feasible solution space guarantees an optimal solution, but it can take inadmissible
computational time. A local (neighborhood) search takes reasonable computational time, and the
solution which it gives is locally best (i.e., best among all considered neighbor solutions).

Heuristics and Hyper-Heuristics - Principles and Applications66



(polynomial in the size of the problem) algorithm. But no such algorithm exists for an NP-hard
problem. The number of feasible solutions of an NP-hard optimization problem grows expo-
nentially with the size of the input (which, informally, is the amount of the computer memory
necessary to represent the problem data/parameters). Furthermore, allNP-hard problems have
a similar computational (time) complexity, in the sense that if there will be found an efficient
polynomial-time algorithm for any of them, such an algorithm would yield another polyno-
mial-time algorithm for any other NP-hard problem. On the positive side, all NP-hard prob-
lems belong to the class NP that guarantees that any feasible schedule to an NP-hard problem
can be found in polynomial time. It is believed that it is very unlikely that an NP-hard problem
can be solved in polynomial time (whereas an exact polynomial-time algorithm with a reason-
able real-time behavior exists for a problem in class P). Hence, it is natural to think of an
approximation solution method.

Thus, approximation algorithms are most frequently used for the solution of NP-hard prob-
lems. Any NP-hard problem has a nice characteristic, that is, any feasible solution can be
created and verified in polynomial time, like for problems in class P. A greedy algorithm creates
in this way a single feasible solution by iteratively taking the next “most promising” decision,
until a complete solution is created. These decisions are normally taken in a low-degree
polynomial/constant time. Since the total number of iterations equals to the number of objects
in a given problem instance, the overall time complexity of a greedy algorithm is low. Like-
wise, heuristic algorithms reduce the search space creating one or more feasible solutions in
polynomial time. Greedy and heuristic algorithms are simplest approximation algorithms. It is
easy to construct such an algorithm for both polynomial andNP-hard problems. It may deliver
an optimal solution to a problem from calls P, but it is highly unlikely that a heuristic optimal
algorithm may exist for an NP-hard problem. A greedy algorithm reduces the potential search
space by taking a unique decision for the extension of the current partial solution in each of the
n iterations. A simplest heuristic algorithm is greedy, though there are more sophisticated
heuristic algorithms that use different search strategies. In general, an approximation algo-
rithm may guarantee some worst-case behavior measured by its performance ratio: the ratio of
the value of objective function of the worst solution that may deliver the algorithm to the
optimal objective value (a real number greater than 1).

Scheduling problems are important combinatorial optimization problems. A given set of requests
called jobs are to be performed (scheduled) on a finite set of resources calledmachines (or processors).
The objective is to determine the processing order of jobs on machines in order to minimize or
maximize a given objective function. Scheduling problems have a wide range of applications from
production process to computer systems optimization.

Simple greedy heuristics that use some priority dispatching rules for the for taking the deci-
sions can be easily constructed and adopted for scheduling problems. An obvious advantage
of such heuristics is their rapidness, and an obvious disadvantage is a poor solution quality.
The generation of a better solution needs more computational and algorithmic efforts. A Global
search in the feasible solution space guarantees an optimal solution, but it can take inadmissible
computational time. A local (neighborhood) search takes reasonable computational time, and the
solution which it gives is locally best (i.e., best among all considered neighbor solutions).

Heuristics and Hyper-Heuristics - Principles and Applications66

Simulated annealing, tabu-search, genetic algorithms, and beam search are examples of local
search algorithms (for example, [16, 22, 23, 25]). These algorithms reduce the search space, and
at the same time, their search is less restricted than that of simple heuristic (dispatching)
algorithms, giving, in general, better quality solutions than simple greedy algorithms. Global
search methods include (exact) implicit enumerative algorithms and also approximative algo-
rithm with embedded heuristic rules and strategies (for example, [1, 20, 29, 38, 4]). Normally,
global search algorithms provide the solutions with the better quality than the local search
algorithms, but they also take more computer time.

This chapter deals with one of the most widely used greedy heuristics in scheduling theory.
The generic heuristic for scheduling jobs with release and delivery times on a single machine to
minimize the maximum job completion time is named after Jackson [21] (the heuristic was
originally proposed for the version without release times, and then it was extended for the
problem with release times by Schrage [30]). Jackson’s heuristic (J-heuristic, for short), itera-
tively, at each scheduling time t (given by job release or completion time), among the jobs
released by time t schedules one with the largest delivery time. This 2-approximation heuristic
is important on its own right, and it also provides a firm basis for more complex heuristic
algorithms that solve optimally various scheduling problems that cannot be solved by a
greedy method.

In this chapter, we give a brief overview of heuristic algorithms that are essentially based on J-
heuristic. Then, we go into the analysis of the schedules created by J-heuristic (J-schedule),
showing their beneficial structural properties. They are helpful for a closer study of the related
problems, which, in turn, may lead to better solution methods. We illustrate how the deduced
structural properties can be beneficially used by building an adaptive heuristic algorithm for
our generic scheduling problem with a more flexible worst-case performance ratio than that of
J-heuristic.

The next section consists of four subsections. In Section 2, we first describe our basic schedul-
ing problem, Jackson’s heuristic, other related heuristics, and real-life applications of the
scheduling problem. In Section 3, we study the basic structural properties of the schedules
constructed by Jackson’s heuristic. In Section 4, we derive a flexible worst-case performance
estimation for the heuristic, and in Section 5, we construct a new adaptive heuristic based on
Jackson’s heuristic. Section 6 concludes the chapter with final remarks.

2. Preliminaries

2.1. Problem formulation

Our generic single-machine scheduling problem can be described as follows. We have n jobs
from set J and a single machine. Job j∈ J is characterized by its release time rj, a time moment
when it becomes available. Once a released job is assigned to the machine, it takes pj time units

of uninterrupted processing time on that machine. Here, we have a basic restriction that the
machine can process no more than one job at any time moment. Once job j completes its

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

67



processing on the machine, it still needs a (constant) delivery time qj for its full completion (the

jobs are delivered by an independent unit and this takes no machine time). We wish to
minimize the maximum job full completion time.

The problem is known to be strongly NP hard (Garey and Johnson [13]). According to the
conventional three-field notation introduced by Graham et al. [18], the above problem is
abbreviated as 1jrj;qjjCmax: in the first field, the single-machine environment is indicated, the

second field specifies job parameters, and the third field specifies objective criteria.

The problem has an equivalent formulation 1jrjjLmax in which delivery times are interchanged
by due dates and the maximum job lateness Lmax, that is, the difference between the job comple-
tion time and its due date is minimized (due date dj of job j is the desirable time for the
completion of job j).

We may note that, besides job lateness, there are other due-date-oriented objective criteria. A
common one is the number of late jobs, where job is late if it completes behind its due date. Here,
the number of late jobs is to be minimized. In the feasibility version of the problem, one looks
for a schedule with no late job. Obviously, if in an optimal solution of the minimization
version, the maximum job lateness is no more than 0, then it is a feasible solution of the
feasibility version as well; otherwise (the maximum job lateness is positive), there exists no
feasible solution to the feasibility version. Vice versa, an algorithm for the feasibility problem
can be used to solve the minimization version: we iteratively increase due dates of all jobs until
we find a feasible schedule with the modified due dates. Note that the min-max job lateness
obtained in this way depends on the maximum job processing time pmax and n so that we will
need to apply a feasibility algorithm OðnpmaxÞ times. But by using binary search, the cost can
be reduced to OðlogðnpmaxÞÞ.
Given an instance of 1jrj;qjjCmax, one can obtain an equivalent instance of 1jrjjLmax as follows.

Take a suitably large constant K (no less than the maximum job delivery time) and define due
date of every job j as dj ¼ K � qj. Vice versa, given an instance of 1jrjjLmax, we may create an

equivalent instance of 1jrj;qjjCmax by introducing job delivery times, qj ¼ D� dj, taking a

suitably large constant D (any number larger than the maximum job due date would work).
It can be easily seen by the equivalence of these instances (if the makespan for the version
1jrj;qjjCmax is minimized, the maximum job lateness in 1jrjjLmax is minimized, and vice versa,

see Bratley et al. [2] for more details). Because of the equivalence, both above formulations
might be used interchangeably.

2.2. Description of J-heuristic

Now, we describe Jackson’s greedy heuristic (J-heuristic) in detail that works on n scheduling
times (at every scheduling time, the next job is scheduled on the machine). Initially, the earliest
scheduling time is set to the minimum job release time. Iteratively, among all jobs released by a
given scheduling time, a job with the maximum delivery time is scheduled on the machine
(ties might be broken by selecting any longest available job). Once a job completes on the

Heuristics and Hyper-Heuristics - Principles and Applications68



processing on the machine, it still needs a (constant) delivery time qj for its full completion (the

jobs are delivered by an independent unit and this takes no machine time). We wish to
minimize the maximum job full completion time.

The problem is known to be strongly NP hard (Garey and Johnson [13]). According to the
conventional three-field notation introduced by Graham et al. [18], the above problem is
abbreviated as 1jrj;qjjCmax: in the first field, the single-machine environment is indicated, the

second field specifies job parameters, and the third field specifies objective criteria.

The problem has an equivalent formulation 1jrjjLmax in which delivery times are interchanged
by due dates and the maximum job lateness Lmax, that is, the difference between the job comple-
tion time and its due date is minimized (due date dj of job j is the desirable time for the
completion of job j).

We may note that, besides job lateness, there are other due-date-oriented objective criteria. A
common one is the number of late jobs, where job is late if it completes behind its due date. Here,
the number of late jobs is to be minimized. In the feasibility version of the problem, one looks
for a schedule with no late job. Obviously, if in an optimal solution of the minimization
version, the maximum job lateness is no more than 0, then it is a feasible solution of the
feasibility version as well; otherwise (the maximum job lateness is positive), there exists no
feasible solution to the feasibility version. Vice versa, an algorithm for the feasibility problem
can be used to solve the minimization version: we iteratively increase due dates of all jobs until
we find a feasible schedule with the modified due dates. Note that the min-max job lateness
obtained in this way depends on the maximum job processing time pmax and n so that we will
need to apply a feasibility algorithm OðnpmaxÞ times. But by using binary search, the cost can
be reduced to OðlogðnpmaxÞÞ.
Given an instance of 1jrj;qjjCmax, one can obtain an equivalent instance of 1jrjjLmax as follows.

Take a suitably large constant K (no less than the maximum job delivery time) and define due
date of every job j as dj ¼ K � qj. Vice versa, given an instance of 1jrjjLmax, we may create an

equivalent instance of 1jrj;qjjCmax by introducing job delivery times, qj ¼ D� dj, taking a

suitably large constant D (any number larger than the maximum job due date would work).
It can be easily seen by the equivalence of these instances (if the makespan for the version
1jrj;qjjCmax is minimized, the maximum job lateness in 1jrjjLmax is minimized, and vice versa,

see Bratley et al. [2] for more details). Because of the equivalence, both above formulations
might be used interchangeably.

2.2. Description of J-heuristic

Now, we describe Jackson’s greedy heuristic (J-heuristic) in detail that works on n scheduling
times (at every scheduling time, the next job is scheduled on the machine). Initially, the earliest
scheduling time is set to the minimum job release time. Iteratively, among all jobs released by a
given scheduling time, a job with the maximum delivery time is scheduled on the machine
(ties might be broken by selecting any longest available job). Once a job completes on the

Heuristics and Hyper-Heuristics - Principles and Applications68

machine, the next scheduling time is set to the maximum between the completion time of that
job and the minimum release time of a yet unscheduled job.

Since the heuristic always schedules an earliest released job every time, the machine becomes
idle and it creates no gap that can be avoided. The time complexity of the heuristic is
Oðn log nÞ as at every n scheduling times, the search for a maximal element in an ordered list
is carried out.

The heuristic is easily expendable for multiprocessor and preemptive scheduling problems
with release and delivery (due) times. For m identical parallel processor case, a ready job with
the largest tail (or smallest due date) is repeatedly determined and is scheduled on the
processor with the minimal completion time ties being broken by selecting the processor with
the minimal index. For the sake of conciseness, we below refer to that processor as the active
one.

Multiprocessor J-heuristic
U :¼ J; t :¼ min{rjjj∈U}

while U 6¼ ∅ do
begin

find job j� ∈ {j∈Ujrj ≤ t} with the largest delivery time qj� and schedule it at time t on the

corresponding active processor; U :¼ U\{j�};

update the current active processor and set t to the maximum between the completion time
of that processor and minimal job release time in set U

end

We illustrate a 3-processor J-schedule in Figure 1 for eight jobs with the parameters as speci-
fied in the table as follows:

As it can be seen in Figure 1, J-heuristic creates idle time intervals (the gaps) on all three
processors constructing an optimal schedule with makespan 54. Note that job 7 realizes the
maximum objective value 54 being scheduled on processor 2 (we call such job the overflow job

r1 ¼ 0 p1 ¼ 4 q1 ¼ 30

r2 ¼ 0 p2 ¼ 5 q2 ¼ 25

r3 ¼ 5 p3 ¼ 3 q3 ¼ 20

r4 ¼ 8 p4 ¼ 6 q4 ¼ 15

r5 ¼ 8 p5 ¼ 10 q5 ¼ 22

r6 ¼ 15 p6 ¼ 2 q6 ¼ 5

r7 ¼ 20 p7 ¼ 4 q7 ¼ 30

r8 ¼ 25 p8 ¼ 7 q8 ¼ 10

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

69



as we define a bit later), the completion time of processor 2 is 24 (that of job 7), whereas the full
completion time of job 7 is 54.

For preemptive version of J-heuristic, every currently executed job is interrupted at the earliest
time moment when a more urgent jobs get released. It is well-known and also easily seen that
the preemptive version of J-heuristic delivers an optimal solution for the corresponding pre-
emptive scheduling problem.

2.3. Overview of related heuristics

As mentioned earlier, J-heuristic turned out to be highly flexible in the sense that its different
modifications have been used for the solution of different scheduling problems. Potts [27] has
proposed an extension of the heuristic. His algorithm repeatedly applies J-heuristic OðnÞ times

Figure 1. A 3-processor J-schedule. Zig-zag lines represent gaps, and the numbers within the circles are job full comple-
tion times.

Heuristics and Hyper-Heuristics - Principles and Applications70



as we define a bit later), the completion time of processor 2 is 24 (that of job 7), whereas the full
completion time of job 7 is 54.

For preemptive version of J-heuristic, every currently executed job is interrupted at the earliest
time moment when a more urgent jobs get released. It is well-known and also easily seen that
the preemptive version of J-heuristic delivers an optimal solution for the corresponding pre-
emptive scheduling problem.

2.3. Overview of related heuristics

As mentioned earlier, J-heuristic turned out to be highly flexible in the sense that its different
modifications have been used for the solution of different scheduling problems. Potts [27] has
proposed an extension of the heuristic. His algorithm repeatedly applies J-heuristic OðnÞ times

Figure 1. A 3-processor J-schedule. Zig-zag lines represent gaps, and the numbers within the circles are job full comple-
tion times.

Heuristics and Hyper-Heuristics - Principles and Applications70

and obtains an improved approximation ratio of 3=2 at the cost of an increase by a factor of
OðnÞ time complexity. Hall and Shmoys [19], also based on J-heuristic, have developed another
4/3-approximation polynomial-time algorithm with the same time complexity of Oðn2 log nÞ
for the version of our problem 1jrj;qjjCmax with precedence relations. Garey et al. [14] have

modified the heuristic as another more sophisticated Oðn log nÞ heuristic for the feasibility
version of this problem with equal-length jobs (in the feasibility version, job due dates are
replaced by deadlines and a schedule in which all jobs complete by their deadlines is looked
for). This result was extended to the version of problem 1jrj;qjjCmax with two possible job

processing times in an Oðn2 log nÞ algorithm described in [34]. For another relevant criterion,
an Oðn3 log nÞ algorithm that minimizes the number of late jobs with release times on a single
machine when job preemptions are allowed was proposed in [35]. Without preemptions, an
Oðn2 log nÞ algorithm for the case when all jobs have equal length was proposed in [37].

Multiprocessor version of J-heuristic has been used as a basis for the solution of multiprocessor
scheduling problems. For example, for the feasibility version with m identical machines and
equal-length jobs, algorithms with the time complexities Oðn3 log log nÞ and Oðn2mÞ were
proposed in Simons [31] and Simons and Warmuth [32], respectively. Using the J-heuristic as
a schedule generator, an Oðqmaxmn log nþOðmνnÞÞ algorithm for the minimization version of
the latter problem was proposed in [33], where qmax is the maximum job delivery time and
ν < n is a parameter. With the objective to minimize the number of late jobs on a group of
identical processors, an Oðn3 log n log pmaxÞ non-preemptive algorithm for equal-length jobs
was proposed in [36].

J-heuristic can be efficiently used for the solution of shop scheduling problems. Using
J-heuristic as a schedule generator, McMahon and Florian [24] and Carlier [5] have proposed
efficient enumerative algorithms for 1jrj;qjjCmax. Grabowski et al. [17] use the heuristic for the

obtainment of an initial solution in another enumerative algorithm for the same problem.

The problem 1jrj;qjjCmax naturally arises in job-shop scheduling problems as an auxiliary

problem for the derivation of strong lower bounds. By ignoring the potential yet unresolved
conflicts on all the machines except a selected machineM, the corresponding disjunctive graph
defines an auxiliary instance of problem 1jrj;qjjCmax on machine M, where every task o to be

performed on that machine is characterized by an early starting time (defined by the early
completion times of its predecessor-tasks) that is set as its release time ro and the tail or the
delivery time qo (determined by the processing times of the predecessor-tasks of task o). In
multiprocessor job-shop scheduling problems, a single machine is replaced by a group of
parallel machines, and the corresponding multiprocessor version of problem 1jrj;qjjCmax is

derived. For the purpose of a lower bound, preemptive version of the above problems with
release and delivery times might be considered and preemptive J-heuristic can then be applied.
For relevant studies on a classical job-shop scheduling problem, see, for example, Carlier [5],
Carlier and Pinson [6], Brinkkotter and Brucker [3], and more recent works of Gharbi and
Labidi [15] and Della Croce and T’kindt [12] and for multiprocessor job-shop scheduling
problem with identical machines, see Carlier and Pinson [7]. This approach can also be
extended for the case when parallel machines are unrelated [38].

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

71



J-heuristic can also be useful for parallelizing the computations in scheduling job shop [26] and
also for the parallel batch scheduling problems with release times [10].

2.4. Some other applications

Besides the above-mentioned applications in multiprocessor, shop, and batch scheduling
problems, our problem has numerous immediate real-life applications in various production
chains, CPU time sharing in operating systems (jobs being the processes to be executed by the
processor), wireless sensor network transmission range distribution (where jobs are mobile
devices with their corresponding ranges that can be modeled as release and due dates), and
important transportation problems such as traveling salesman’s and vehicle routing problems
with time windows. The reader may wish to have a look at reference [28] for an extensive
overview of the variations of the vehicle routing problem, and we also refer to [11, 41] for more
recent related work.

Our scheduling problem can be used for the solution of the latter transportation problems. Let
us first describe these problems briefly. There are, say, n customers or cities and one special
location called depot. The distances between any pair of locations are known. The goods are to
be distributed from depot to the customers using one or more (identical) vehicles. There are
certain restrictions on how this distribution should be done that define set of all feasible
solutions to the problem. A general notion is a tour carried out by a vehicle that initiates at
depot, visits some of the customers, and returns to depot. All customers must be served, i.e.,
every customer is to be included in exactly one tour. There may be additional restrictions such
as vehicle capacity constraints and customer requests. And another basic constraint, which
relates these transportation problems with our scheduling problem, is that every customer can
be served only within a certain time interval, whereas there is also a valid time interval given
for the depot.

A common objective is to minimize the total service/travel time of all the vehicles. Whereas in
the basic setting, it is straightforward to find a feasible solution, with time windows, this task is
not obvious, in fact, there may exist no feasible solution. If it exists, then one aims to minimize
the number of used vehicles and then construct the corresponding number of tours with the
objective to minimize total service time.

Associating with every customer and the depot a unique job and with the corresponding time
window the release and due dates of that job, we arrive at a corresponding scheduling
problem, an instance of 1jrjjLmax. Let us consider the feasibility version of this problem (in
which a solution with no positive lateness is looked for). Note that if there is no feasible
solution to that feasibility version, then there exists no feasible solution to the corresponding
vehicle routing problem with a single vehicle. Then, we may consider the feasibility problem
with two identical machines P2jrjjLmax and so on, with k identical machines PkjrjjLmax, until a
feasible solution is found. We may use a binary search within the interval ½1, m� instead when
an upper limit m on the maximum number of vehicles is known (otherwise, we set m to a
sufficiently large magnitude). In case, there exists a feasible solution for k ¼ m, once the
minimum k is found, the corresponding k tours minimizing the total travel time might be
constructed.

Heuristics and Hyper-Heuristics - Principles and Applications72



J-heuristic can also be useful for parallelizing the computations in scheduling job shop [26] and
also for the parallel batch scheduling problems with release times [10].

2.4. Some other applications

Besides the above-mentioned applications in multiprocessor, shop, and batch scheduling
problems, our problem has numerous immediate real-life applications in various production
chains, CPU time sharing in operating systems (jobs being the processes to be executed by the
processor), wireless sensor network transmission range distribution (where jobs are mobile
devices with their corresponding ranges that can be modeled as release and due dates), and
important transportation problems such as traveling salesman’s and vehicle routing problems
with time windows. The reader may wish to have a look at reference [28] for an extensive
overview of the variations of the vehicle routing problem, and we also refer to [11, 41] for more
recent related work.

Our scheduling problem can be used for the solution of the latter transportation problems. Let
us first describe these problems briefly. There are, say, n customers or cities and one special
location called depot. The distances between any pair of locations are known. The goods are to
be distributed from depot to the customers using one or more (identical) vehicles. There are
certain restrictions on how this distribution should be done that define set of all feasible
solutions to the problem. A general notion is a tour carried out by a vehicle that initiates at
depot, visits some of the customers, and returns to depot. All customers must be served, i.e.,
every customer is to be included in exactly one tour. There may be additional restrictions such
as vehicle capacity constraints and customer requests. And another basic constraint, which
relates these transportation problems with our scheduling problem, is that every customer can
be served only within a certain time interval, whereas there is also a valid time interval given
for the depot.

A common objective is to minimize the total service/travel time of all the vehicles. Whereas in
the basic setting, it is straightforward to find a feasible solution, with time windows, this task is
not obvious, in fact, there may exist no feasible solution. If it exists, then one aims to minimize
the number of used vehicles and then construct the corresponding number of tours with the
objective to minimize total service time.

Associating with every customer and the depot a unique job and with the corresponding time
window the release and due dates of that job, we arrive at a corresponding scheduling
problem, an instance of 1jrjjLmax. Let us consider the feasibility version of this problem (in
which a solution with no positive lateness is looked for). Note that if there is no feasible
solution to that feasibility version, then there exists no feasible solution to the corresponding
vehicle routing problem with a single vehicle. Then, we may consider the feasibility problem
with two identical machines P2jrjjLmax and so on, with k identical machines PkjrjjLmax, until a
feasible solution is found. We may use a binary search within the interval ½1, m� instead when
an upper limit m on the maximum number of vehicles is known (otherwise, we set m to a
sufficiently large magnitude). In case, there exists a feasible solution for k ¼ m, once the
minimum k is found, the corresponding k tours minimizing the total travel time might be
constructed.

Heuristics and Hyper-Heuristics - Principles and Applications72

3. The structure of J-schedules

Previous section’s brief survey clearly indicates importance of our scheduling problem and the
power and flexibility of J-heuristic as well. Whenever the direct application of J-heuristic for
the solution of the problem is concerned and the solution quality is important, the worst-case
bound of two may not be acceptable. Besides, J-heuristic may not solve the feasibility version
of our problem even though there may exist a feasible solution with no positive maximum
lateness. To this end, there are two relevant points that deserve mentioning. On the one hand,
the practical behavior of the heuristic might be essentially better than this worst-case estima-
tion [40]. On the other hand, by carrying out structural analysis of J-schedules, it is possible to
obtain a better, more flexible worst-case bound, as we show in the next section. In this section,
we introduce some basic concepts that will help us in this analysis.

Let us denote by σ, the schedule obtained by the application of J-heuristic to the originally
given problem instance (as we will see later, this heuristic can also be beneficially applied to
some other derived problem instances). Schedule σ, and, in general, any J-schedule, may
contain a gap, which is its maximal consecutive time interval in which the machine is idle. We
shall assume that there occurs a 0-length gap ðcj, tiÞ, whenever job i starts at its earliest possible
starting time (that is, its release time) immediately after the completion of job j; here, tj (cj,
respectively) denotes the starting (completion, respectively) time of job j.

Let us call a block, a maximal consecutive part of a J-schedule, is consisting of the successively
scheduled jobs without any gap in between (preceded and succeeded by a gap).

Now, we give some necessary concepts from [33] that will help us to expose useful structural
properties of the J-schedules.

Given a J-schedule S, let i be a job that realizes the maximum job lateness in S, i.e.,
LiðSÞ ¼ maxj{LjðSÞ}. Let, further, B be the block in S that contains job i. Among all the jobs in B
with this property, the latest scheduled one is called an overflow job in S (we just note that not
necessarily this job ends block B).

A kernel in S is a maximal (consecutive) job sequence ending with an overflow job o such that
no job from this sequence has a due date more than do. For a kernel K, we let rðKÞ ¼ mini∈K{ri}.

It follows that every kernel is contained in some block in S, and the number of kernels in S
equals to the number of the overflow jobs in it. Furthermore, since any kernel belongs to a
single block, it may contain no gap.

If schedule σ is not optimal, there must exist a job less urgent than o, scheduled before all jobs
of kernel K that delays jobs in K (see Lemma 1 a bit later). By rescheduling such a job to a later
time moment, the jobs in kernel K can be restarted earlier. We need some extra definitions to
define this operation formally.

Suppose job i precedes job j in ED-schedule S. We will say that i pushes j in S if ED-heuristic will
reschedule job j earlier whenever i is forced to be scheduled behind j.

Since the earliest scheduled job of kernel K does not start at its release time (see Lemma 1 below),
it is immediately preceded and pushed by a job lwith dl > do. In general, wemay have more than

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

73



one such a job scheduled before kernel K in block B (one containing K). We call such a job
an emerging job for K, and we call the latest scheduled one (job l above) the live emerging job.

Now, we can give some optimality conditions for J-schedules. The proofs of Lemmas 1 and 2
can be found in references [33, 39], respectively. Lemma 4 is obtained as a consequence of
Lemmas 1 and 2, though the worst-case bound of two was also known earlier.

Lemma 1. The maximum job lateness (the makespan) of a kernel K cannot be reduced if the earliest
scheduled job in K starts at time rðKÞ. Hence, if a J-schedule S contains a kernel with this property, it is
optimal.

From Lemma 1, we obtain the following corollary:

Corollary 1. If schedule σ contains a kernel with no live emerging job EðσÞ ¼ ∅ð Þ, then σ is optimal.

Observe that the conditions of the Lemma 1 and Corollary 1 are satisfied for our first problem
instance of Figure 1. We also illustrate the above-introduced definitions on a (1-processor)
problem instance of 1jrj;qjjCmax with 11 jobs, job 1 with p1 ¼ 100, r1 ¼ 0, and q1 ¼ 0. All the

rest of the jobs are released at time moment 10, have the equal processing time 1, and the
delivery time 100. These data completely define our problem instance.

The initial J-schedule σ consists of a single block, in which jobs are included in the increasing
order of their indexes. The earliest scheduled job 1 is the live emerging job which is followed
by jobs 2–11 scheduled in this order. It is easy to see that the latter jobs form the kernel K in
schedule σ. Indeed, all the 11 jobs belong to the same block, job 1 pushes the following jobs,
and its delivery time is less than that of these pushed jobs. Hence, job 1 is the live emerging job
in schedule σ. The overflow job is job 11, since it realizes the value of the maximum full
completion time (the makespan) in schedule σ, which is 110þ 100 ¼ 210. Therefore, jobs 2–11
form the kernel in σ.

Note that the condition in Lemma 1 is not satisfied for schedule σ as its kernel K starts at time
100 which is more than rðKÞ ¼ 10. Furthermore, the condition of Corollary 1 is also not
satisfied for schedule σ, and it is not optimal. The optimal schedule S� has the makespan 120,
in which the live emerging job 1 is rescheduled behind all kernel jobs.

From here on, we use TS for the makespan (maximum full job completion time) of J-schedule S
and T� (L�max, respectively) for the optimum makespan (lateness, respectively).

Lemma 2. Tσ � T� < pl Lσmax � L�max < pl
� �

, where l is the live emerging job for kernel K∈ σ.

For our problem instance and the corresponding schedule σ, the above bound is almost
reached. Indeed, Tσ � T� ¼ 210� 120 ¼ 90, whereas pl ¼ 100 (l ¼ 1).

Note that Lemma 2 implicitly defines a lower bound of Tσ � pl derived from the solution of the
non-preemptive J-heuristic, which can further be strengthen using the following concept. Let
the delay for kernel K∈ σ, δðK;lÞ be cl � rðKÞ (l (o, respectively) stands again for the live
emerging (overflow, respectively) job for kernel K). Then, the next lemma follows from the
observation that δðK;lÞ is another (more accurate than pl) estimation for the delay of the earliest
scheduled job of kernel K.

Heuristics and Hyper-Heuristics - Principles and Applications74



one such a job scheduled before kernel K in block B (one containing K). We call such a job
an emerging job for K, and we call the latest scheduled one (job l above) the live emerging job.

Now, we can give some optimality conditions for J-schedules. The proofs of Lemmas 1 and 2
can be found in references [33, 39], respectively. Lemma 4 is obtained as a consequence of
Lemmas 1 and 2, though the worst-case bound of two was also known earlier.

Lemma 1. The maximum job lateness (the makespan) of a kernel K cannot be reduced if the earliest
scheduled job in K starts at time rðKÞ. Hence, if a J-schedule S contains a kernel with this property, it is
optimal.

From Lemma 1, we obtain the following corollary:

Corollary 1. If schedule σ contains a kernel with no live emerging job EðσÞ ¼ ∅ð Þ, then σ is optimal.

Observe that the conditions of the Lemma 1 and Corollary 1 are satisfied for our first problem
instance of Figure 1. We also illustrate the above-introduced definitions on a (1-processor)
problem instance of 1jrj;qjjCmax with 11 jobs, job 1 with p1 ¼ 100, r1 ¼ 0, and q1 ¼ 0. All the

rest of the jobs are released at time moment 10, have the equal processing time 1, and the
delivery time 100. These data completely define our problem instance.

The initial J-schedule σ consists of a single block, in which jobs are included in the increasing
order of their indexes. The earliest scheduled job 1 is the live emerging job which is followed
by jobs 2–11 scheduled in this order. It is easy to see that the latter jobs form the kernel K in
schedule σ. Indeed, all the 11 jobs belong to the same block, job 1 pushes the following jobs,
and its delivery time is less than that of these pushed jobs. Hence, job 1 is the live emerging job
in schedule σ. The overflow job is job 11, since it realizes the value of the maximum full
completion time (the makespan) in schedule σ, which is 110þ 100 ¼ 210. Therefore, jobs 2–11
form the kernel in σ.

Note that the condition in Lemma 1 is not satisfied for schedule σ as its kernel K starts at time
100 which is more than rðKÞ ¼ 10. Furthermore, the condition of Corollary 1 is also not
satisfied for schedule σ, and it is not optimal. The optimal schedule S� has the makespan 120,
in which the live emerging job 1 is rescheduled behind all kernel jobs.

From here on, we use TS for the makespan (maximum full job completion time) of J-schedule S
and T� (L�max, respectively) for the optimum makespan (lateness, respectively).

Lemma 2. Tσ � T� < pl Lσmax � L�max < pl
� �

, where l is the live emerging job for kernel K∈ σ.

For our problem instance and the corresponding schedule σ, the above bound is almost
reached. Indeed, Tσ � T� ¼ 210� 120 ¼ 90, whereas pl ¼ 100 (l ¼ 1).

Note that Lemma 2 implicitly defines a lower bound of Tσ � pl derived from the solution of the
non-preemptive J-heuristic, which can further be strengthen using the following concept. Let
the delay for kernel K∈ σ, δðK;lÞ be cl � rðKÞ (l (o, respectively) stands again for the live
emerging (overflow, respectively) job for kernel K). Then, the next lemma follows from the
observation that δðK;lÞ is another (more accurate than pl) estimation for the delay of the earliest
scheduled job of kernel K.

Heuristics and Hyper-Heuristics - Principles and Applications74

Lemma 3 L� ¼ Tσ � δðK;lÞ (LoðσÞ � δðK;lÞ, respectively) is a lower bound on the optimal job
makespan T� (lateness L�max, respectively).

Lemma 4 J-heuristic gives a 2-approximate solution for 1jrj;qjjCmax, i.e., Tσ=T� < 2.

Proof. If there exists no live emerging job l for K∈σ, then σ is optimal by Corollary 1. Suppose
job l exists; clearly, pl < T� (as l has to be scheduled in S� and there is at least one more (kernel)
job in it). Then, by Lemma 2,

Tσ=T� < ðT� þ plÞ=T� ¼ 1þ pl=T
� < 1þ 1 ¼ 2: ð1Þ

□

4. Refining J-heuristic’s worst-case estimation

From Lemma 2 of the previous section, we may see that the quality of the solution delivered by
J-heuristic is somehow related with the maximum job processing time pmax in a given problem
instance. If such a long job turns out to be the live emerging job, then the corresponding forced
delay for the successively scheduled kernel jobs clearly affects the solution quality. We may
express the magnitude pmax as a fraction the optimal objective value and derive a more
accurate approximation ratio. It might be possible to deduce this kind of relationship priory
with a good accuracy. Take, for instance, a large-scale production where the processing time of
an individual job is small enough compared to an estimated total production time T.

If this kind of prediction is not possible, we can use the bound from Lemma 3 by a single
application of J-heuristic and represent pmax as its fraction κ (instead of representing it as a
fraction of an unknown optimal objective value). Then, we can give an explicit expression of
the heuristic’s approximation ratio in terms of that fraction. As we will see, J-heuristic will
always deliver a solution within a factor of 1þ 1=κ of the optimum objective value. Alterna-
tively, we may use a lower bound on the optimal objective value L� from Lemma 3 (as T� may
not be known). Let κ > 1 be such that pl ≤T

�=κ, i.e., κ ≤T�=pl. Since L� is a lower bound on T�

(L� ≤T�), we let κ ¼ L�=pl, and thus we have that κ ≤T�=pl, i.e., κ ¼ L�=pl is a valid assignment.
Then, note that for any problem instance, κ can be obtained in time Oðn log nÞ.
Theorem 1 Tσ=T� < 1þ 1=κ, for any κ ≤T�=pl.

Proof. By Lemma 2,

Tσ=T� < ðT� þ plÞ=T� ¼ 1þ pl=T
� ≤ 1þ 1=κ: ð2Þ

□

In the previous section’s example, we had a very long live emerging job that has essentially
contributed in the makespan of schedule σ. The resultant J-schedule gave an almost worst-
possible performance ratio from Lemma 4 due to a significant intersection δðK;lÞ (close to the
magnitude pl). We now illustrate an advantage of the estimation from Theorem 1. Consider a

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

75



slightly modified instance in which the emerging job l remains moderately long (a more typical
average scenario). A long emerging job 1 has processing time p1 ¼ 10, release time r1 ¼ 0, and
the delivery time q1 ¼ 0. The processing time of the rest of the jobs is again 1. Latter jobs are
released at time 5 and also have the same delivery times as in the first instance. The J-schedule
σ has the makespan 120. The lower bound on the optimum makespan defined by Lemma 2 is
hence 120 � 10 ¼ 110.

The approximation provided by J-heuristic for this problem instance can be obtained from
Theorem 1. Based on Theorem 1, we use the lower bound 115 on T� and obtain a valid
κ ¼ T�=pl ¼ 115=10 ¼ 11:5 and the resultant approximation ratio 1 þ 1/11.5. Observe that for
our second (average) problem instance, J-heuristic gave an almost optimal solution.

5. An adaptive 3/2-approximation heuristic

In Section 2, we have mentioned two Oðn2lognÞ heuristic algorithms from references [19, 27]
solving for our generic problem with the approximation ratios 3/2 and 4/3, respectively. In the
previous section, we have described a more flexible approximation ratio that was obtained by
a single application of J-heuristic.

In this section, we propose an OðnlognÞ heuristic that gives approximation ratio 3/2 for a large
class of problem instances, which we will specify a bit later. This algorithm, unlike the above-
mentioned algorithms, carries out a constant number of calls to J-heuristic (yielding thus the
same time complexity as J-heuristic). Recall that the initial J-schedule σ is obtained by a call of
J-heuristic for the originally given problem instance. By slightly modifying this instance, we
may create alternative J-schedules with some desired property. With the intention to improve
the initial J-schedule σ, and more generally, any J-schedule S, jobs in kernel K ¼ KðSÞ can be
restarted earlier.

To this end, we activate an emerging job e for kernel K, that is, we force job e and all jobs
scheduled after kernel K to be scheduled behind K (all these jobs are said to be in the state of
activation for K). Technically, we achieve this by increasing the release times of all these jobs to
a sufficiently large magnitude, say, rðKÞ ¼ maxj∈K{rj}, so that when J-heuristic is newly
applied, neither job e nor any job scheduled after K in S will surpass any job in K, and hence
the earliest job in kernel K will start at time rðKÞ.
We call the resultant J-schedule a complementary to S schedule and denote it by Sl. Thus, to create
schedule Sl, we just increase rl to rðKÞ and apply the heuristic again to the modified instance.

Our OðnlognÞ heuristic first creates schedule σ, determines kernel K ¼ KðσÞ, and verifies if
there exists the live emerging job l; if there is no l, then σ is optimal (Corollary 1). Otherwise,
it creates one or more complementary schedules. The first of these complementary schedules is
σl. If job l remains to be an emerging job in schedule σl, then the second complementary
schedule ðσlÞl, obtained from the first one by activating job l for kernel KðσlÞ, is created. This
operation is repeatedly applied as long as the newly arisen overflow job, that is, the overflow
job in the latest created complementary schedule is released within the execution interval of

Heuristics and Hyper-Heuristics - Principles and Applications76



slightly modified instance in which the emerging job l remains moderately long (a more typical
average scenario). A long emerging job 1 has processing time p1 ¼ 10, release time r1 ¼ 0, and
the delivery time q1 ¼ 0. The processing time of the rest of the jobs is again 1. Latter jobs are
released at time 5 and also have the same delivery times as in the first instance. The J-schedule
σ has the makespan 120. The lower bound on the optimum makespan defined by Lemma 2 is
hence 120 � 10 ¼ 110.

The approximation provided by J-heuristic for this problem instance can be obtained from
Theorem 1. Based on Theorem 1, we use the lower bound 115 on T� and obtain a valid
κ ¼ T�=pl ¼ 115=10 ¼ 11:5 and the resultant approximation ratio 1 þ 1/11.5. Observe that for
our second (average) problem instance, J-heuristic gave an almost optimal solution.

5. An adaptive 3/2-approximation heuristic

In Section 2, we have mentioned two Oðn2lognÞ heuristic algorithms from references [19, 27]
solving for our generic problem with the approximation ratios 3/2 and 4/3, respectively. In the
previous section, we have described a more flexible approximation ratio that was obtained by
a single application of J-heuristic.

In this section, we propose an OðnlognÞ heuristic that gives approximation ratio 3/2 for a large
class of problem instances, which we will specify a bit later. This algorithm, unlike the above-
mentioned algorithms, carries out a constant number of calls to J-heuristic (yielding thus the
same time complexity as J-heuristic). Recall that the initial J-schedule σ is obtained by a call of
J-heuristic for the originally given problem instance. By slightly modifying this instance, we
may create alternative J-schedules with some desired property. With the intention to improve
the initial J-schedule σ, and more generally, any J-schedule S, jobs in kernel K ¼ KðSÞ can be
restarted earlier.

To this end, we activate an emerging job e for kernel K, that is, we force job e and all jobs
scheduled after kernel K to be scheduled behind K (all these jobs are said to be in the state of
activation for K). Technically, we achieve this by increasing the release times of all these jobs to
a sufficiently large magnitude, say, rðKÞ ¼ maxj∈K{rj}, so that when J-heuristic is newly
applied, neither job e nor any job scheduled after K in S will surpass any job in K, and hence
the earliest job in kernel K will start at time rðKÞ.
We call the resultant J-schedule a complementary to S schedule and denote it by Sl. Thus, to create
schedule Sl, we just increase rl to rðKÞ and apply the heuristic again to the modified instance.

Our OðnlognÞ heuristic first creates schedule σ, determines kernel K ¼ KðσÞ, and verifies if
there exists the live emerging job l; if there is no l, then σ is optimal (Corollary 1). Otherwise,
it creates one or more complementary schedules. The first of these complementary schedules is
σl. If job l remains to be an emerging job in schedule σl, then the second complementary
schedule ðσlÞl, obtained from the first one by activating job l for kernel KðσlÞ, is created. This
operation is repeatedly applied as long as the newly arisen overflow job, that is, the overflow
job in the latest created complementary schedule is released within the execution interval of

Heuristics and Hyper-Heuristics - Principles and Applications76

job l in schedule σ (job l is activated for the kernel of that complementary schedule). The
algorithm halts when either l is not an emerging job in the newly created complementary
schedule or the overflow job in that schedule is released behind the execution interval of job l
in schedule σ. Then, the heuristic determines the best objective value among the constructed
J-schedules and halts.

Theorem 2 The modified heuristic has the performance ratio less than 3=2.

Proof. In an optimal schedule S�, either (1) job l remains to be scheduled before the overflow
job o of schedule σ (and hence before all jobs of kernel K ¼ KðσÞ) or (2) l is scheduled after job o
(and hence after kernel K).

Let E be the set of emerging jobs in schedule σ not including the live emerging job l. In case (1),
either σ is already optimal or otherwise E 6¼ ∅, and some job(s) from set E are scheduled after
kernel K in an optimal schedule S� (so that job l and the jobs in K are rescheduled, respectively,
earlier). Let P ¼ PðEÞ be the total processing time of jobs in E. Since job l stays before kernel K,
Tσ � T� < P (this can be seen similarly as Lemma 2). Let (real) α be such that P ¼ αpl. Since
schedule S� contains jobs of set E and job l, T� ≥αpl þ pl ¼ ð1þ αÞpl. We have

Tσ=T� < ðT� þ αplÞ=T� ¼ 1þ αpl=T
� ≤ 1þ αpl=ðð1þ αÞplÞ ¼ 1þ α=ð1þ αÞ: ð3Þ

Hence, if α ≤ 1 (i.e., P ≤ pl), then Tσ=T� < 3=2.

Suppose now P > pl. Then, T
� > 2pl and using again Lemma 2

Tσ=T� < ðT� þ plÞ=T� < 1þ pl=ð2plÞ ¼ 3=2: ð4Þ

It remains to be considered in case (2) when job l is scheduled after (all jobs from) kernel K in
schedule S�. We claim that schedule S� is again “long enough,” i.e., T� > 2pl. Indeed, consider
the J-schedule σl. If σl is not optimal, then there exists an emerging job in Sl. Similarly as above,
in schedule S�, either (2.1) job l remains before KðσlÞ or (2.2) l is scheduled after KðσlÞ.
In case (2.2), lmust be an emerging job in σl. If the overflow job in kernel KðσlÞ is released after
time moment pl, then T� > 2pl as job l is scheduled after the jobs in KðσlÞ in schedule ðσlÞl.
Otherwise, suppose the overflow job in schedule σl is released within time interval ð0;plÞ (note
that it cannot be released at time 0 as otherwise would have originally been included ahead job
l by J-heuristic). Without loss of generality and for the purpose of this proof, assume l is an
emerging job in schedule σl, as otherwise the latter schedule already gives a desired approxi-
mation, similarly as in case (1). Because of the same reason, either schedule ðσlÞl gives a desired
approximation or otherwise job l remains to be an emerging job (now, ðσlÞl), and the heuristic
creates the next complementary schedule ððσlÞlÞl. We repeatedly apply the same reasoning to
the following created complementary schedules as long as the overflow job in the latest created
such schedule is released within time interval ð0;plÞ. Once the latter condition is not satisfied,
job l will be started at time moment, larger than pl in the corresponding complementary
schedule. Hence, its length will be at least 2pl. Moreover, an optimal schedule S� must be at
least as long as 2pl unless one of the earlier created complementary schedules is optimal.
Hence, one of the generated complementary schedules gives a desired approximation.

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

77



In case (2.1), if there is no emerging job in σl, then we are done. Otherwise, let E0 be the set of
emerging jobs in σl not including job l. Then similarly as for case (1), there are two sub-cases
PðE0Þ ≤ pl and PðE0Þ > pl, in each of which a desired approximation is reached. The theorem is
proved.

As to the time complexity of the modified heuristic, note that, in the worst-case, the overflow
job in every created complementary schedule is released no later than at time pl. Then, the
algorithm may create up to n� 1 complementary schedules, and its time complexity will be
the same as that of the earlier-mentioned algorithms. However, it is clear that very unlikely, in
an instance of 1jrj;qjjCmax, an “unlimited” amount of jobs are released before time pl (that

would be a highly restricted instance). In average, however, we normally would expect a
constant number of such jobs, which, more restrictively, must be overflow jobs in the created
complementary schedules (not belonging to kernel KðσÞ). In this case, our heuristic will obvi-
ously run in time OðnlognÞ. We have proved the following result:

Theorem 3. The modified heuristic runs in time OðnlognÞ for any problem instance of 1jrj;qjjCmax in

which the total number of the arisen overflow jobs in all the created complementary schedules released
before time pl is no more than a constant κ (more brutally, for any instance in which the total number of
jobs released before time pl is bounded by κ).

6. Conclusion

We have described efficient heuristic methods for the solution of a strongly NP-hard schedul-
ing problem that, as we have discussed, has a number of important real-life applications. We
have argued that it is beneficial as an analysis of the basic structural properties of the schedules
created by J-heuristic for the construction of efficient heuristic methods with guaranteed worst-
case performance ratios. As we have seen, not only J-heuristic constructs 2-optimal solutions in
a low-degree polynomial time, but it is also flexible enough to be served as a basis for other
more efficient heuristics. The useful properties of J-schedules were employed in our flexible
worst-case performance bound of Section 4 and in the proposed, in Section 5, heuristic algo-
rithm with an improved performance ratio. The latter heuristic is adaptive in the sense that it
takes an advantage of the structure of an average problem instance and runs faster for such
instances.

We believe that J-schedules possess further useful yet undiscovered properties that may lead to
the disclosure of yet unknown insights of the structure of the related problems with release
and delivery times. This kind of study was reported in recently published proceedings [8, 9]
for the case of a single processor and two allowable job release and delivery times. It still
remains open whether basic properties described in these works can be generalized for a
constant number of job release and delivery times and for the multiprocessor case. At the same
time, some other yet not studied properties even for a single processor and two allowable job
release and delivery times may exist. The importance of such a study is emphasized by the fact
that the basic single-machine scheduling problem is strongly NP-hard and that the version
with only two allowable job release and delivery times remains NP hard [8].

Heuristics and Hyper-Heuristics - Principles and Applications78



In case (2.1), if there is no emerging job in σl, then we are done. Otherwise, let E0 be the set of
emerging jobs in σl not including job l. Then similarly as for case (1), there are two sub-cases
PðE0Þ ≤ pl and PðE0Þ > pl, in each of which a desired approximation is reached. The theorem is
proved.

As to the time complexity of the modified heuristic, note that, in the worst-case, the overflow
job in every created complementary schedule is released no later than at time pl. Then, the
algorithm may create up to n� 1 complementary schedules, and its time complexity will be
the same as that of the earlier-mentioned algorithms. However, it is clear that very unlikely, in
an instance of 1jrj;qjjCmax, an “unlimited” amount of jobs are released before time pl (that

would be a highly restricted instance). In average, however, we normally would expect a
constant number of such jobs, which, more restrictively, must be overflow jobs in the created
complementary schedules (not belonging to kernel KðσÞ). In this case, our heuristic will obvi-
ously run in time OðnlognÞ. We have proved the following result:

Theorem 3. The modified heuristic runs in time OðnlognÞ for any problem instance of 1jrj;qjjCmax in

which the total number of the arisen overflow jobs in all the created complementary schedules released
before time pl is no more than a constant κ (more brutally, for any instance in which the total number of
jobs released before time pl is bounded by κ).

6. Conclusion

We have described efficient heuristic methods for the solution of a strongly NP-hard schedul-
ing problem that, as we have discussed, has a number of important real-life applications. We
have argued that it is beneficial as an analysis of the basic structural properties of the schedules
created by J-heuristic for the construction of efficient heuristic methods with guaranteed worst-
case performance ratios. As we have seen, not only J-heuristic constructs 2-optimal solutions in
a low-degree polynomial time, but it is also flexible enough to be served as a basis for other
more efficient heuristics. The useful properties of J-schedules were employed in our flexible
worst-case performance bound of Section 4 and in the proposed, in Section 5, heuristic algo-
rithm with an improved performance ratio. The latter heuristic is adaptive in the sense that it
takes an advantage of the structure of an average problem instance and runs faster for such
instances.

We believe that J-schedules possess further useful yet undiscovered properties that may lead to
the disclosure of yet unknown insights of the structure of the related problems with release
and delivery times. This kind of study was reported in recently published proceedings [8, 9]
for the case of a single processor and two allowable job release and delivery times. It still
remains open whether basic properties described in these works can be generalized for a
constant number of job release and delivery times and for the multiprocessor case. At the same
time, some other yet not studied properties even for a single processor and two allowable job
release and delivery times may exist. The importance of such a study is emphasized by the fact
that the basic single-machine scheduling problem is strongly NP-hard and that the version
with only two allowable job release and delivery times remains NP hard [8].

Heuristics and Hyper-Heuristics - Principles and Applications78

Author details

Nodari Vakhania

Address all correspondence to: nodari@uaem.mx

Center of Research and Science, UAEMor, Mexico

References

[1] Adams J, Balas E, Zawack D. The shifting bottleneck procedure for job shop scheduling.
Management Science. 1988;34:391–401

[2] Bratley P, Florian M, Robillard P. On sequencing with earliest start times and due-dates
with application to computing bounds for (n/m/G/Fmax) problem. Naval Research Logis-
tics Quarterly. 1973;20:57–67

[3] Brinkkotter W, Brucker P. Solving open benchmark instances for the job-shop problem by
parallel head–tail adjustments. Journal of Scheduling. 2001;4:53–64

[4] Carballo L, Vakhania N, Werner F. Reducing efficiently the search tree for multiprocessor
job-shop scheduling problems. International Journal of Production Research 2013;51(23–
24):7105–7119. DOI: 10.1080/00207543.2013.837226

[5] Carlier J. The one-machine sequencing problem. European Journal of Operations
Research. 1982;11:42–47

[6] Carlier J, Pinson E. An algorithm for solving job shop problem. Management Science.
1989;35:164–176

[7] Carlier J, Pinson E. Jackson’s pseudo preemptive schedule for the Pm=ri;qi=Cmax problem.
Annals of Operations Research 1998;83:41–58

[8] Chinos E, Vakhania N. Polynomially solvable and NP-hard special cases for scheduling
with heads and tails. In: Recent Advances in Mathematics and Computational Science.
(MCSS 16). Barcelona, Spain 2016. pp. 141–145. Available from: http://www.wseas.us/e-
library/conferences/2016/barcelona/MCSS/MCSS-17.pdf

[9] Chinos E, Vakhania N. Scheduling jobs with two release times and tails on a single machine.
International Journal of Mathematical Models andMethods in Applied Sciences 2016;10:303–
3089. Available from: http://www.naun.org/main/NAUN/ijmmas/2016/a782001-aan.pdf

[10] Condotta A, Knust S, Shakhlevich NV. Parallel batch scheduling of equal-length jobs with
release and due dates. Journal of Scheduling. 2010;13:463–477

[11] Del Ser, Javier (Ed.). A harmony search approach for the selective pick-up and delivery
problem with delayed drop-off. In Harmony Search Algorithm. Berlin Heidelberg:
Springer; 2016. pp. 121–131

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

79



[12] Della Croce F, T’kindt V. Improving the preemptive bound for the single machine
dynamic maximum lateness problem. Operations Research Letters. 2010;38:589591

[13] Garey MR, Johnson DS. Computers and intractability: A guide to the theory of NP-
completeness. San Francisco: Freeman; 1979

[14] Garey MR, Johnson DS, Simons BB, Tarjan RE. Scheduling unit–time tasks with arbitrary
release times and deadlines. SIAM Journal on Computing. 1981;10:256–269

[15] Gharbi A, Labidi M. Jackson’s semi-preemptive scheduling on a single machine. Com-
puters & Operations Research. 2010;37:2082–2088

[16] Glover F. Tabu-search: A tutorial. Interfaces. 1990;20:74–94

[17] Grabowski J, Nowicki E, Zdrzalka S. A block approach for single-machine scheduling
with release dates and due dates. European Journal of Operational Research.
1986;26:278–285

[18] Graham RL, Lawler EL, Lenstra JL, Rinnooy Kan AHG. Optimization and approximation
in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics.
1976;5:287–326

[19] Hall LA, Shmoys DB. Jacksons rule for single-machine scheduling: Making a good heu-
ristic better. Mathematics of Operations Research 1992;17:22–35

[20] Ivens P, Lambrecht M. Extending the shifting bottleneck procedure to real-life applica-
tions. European Journal on Operations Research. 1996;90:252–268

[21] Jackson JR. Scheduling a production line to minimize the maximum tardiness. Los
Angeles, CA: Management Science Research Project, University of California; 1955

[22] Kirkpatrick S, Gelant CD, Vecchi MP. Optimization by simulated annealing. Science.
1983;220:924–928

[23] Lawton G. Genetic algorithms for schedule optimization. AI Expert. 1992;23–27

[24] McMahon G, Florian M. On scheduling with ready times and due dates to minimize
maximum lateness. Operations Research. 1975;23:475–482

[25] Ow PS, Morton TE. Filtered beam search in scheduling. International Journal of Produc-
tion Research. 1988;26:35–62

[26] Perregaard M, Clausen J. Parallel branch-and-bound methods for the job-shop scheduling
problem. Annals of Operations Research. 1998;83:137–160

[27] Potts CN. Analysis of a heuristic for one machine sequencing with release dates and
delivery times. Operations Research. 1980;28:1436–1441

[28] Toth P, Vigo D, editors. Vehicle Routing Problem (SIAM Monographs On Discrete Math-
ematics and Applications, vol. 386). Philidelphia, PA: SIAM; 2002

[29] Schutten JMJ. Practical job shop scheduling. Annals of Operations Research. 1998;83:
161–177

Heuristics and Hyper-Heuristics - Principles and Applications80



[12] Della Croce F, T’kindt V. Improving the preemptive bound for the single machine
dynamic maximum lateness problem. Operations Research Letters. 2010;38:589591

[13] Garey MR, Johnson DS. Computers and intractability: A guide to the theory of NP-
completeness. San Francisco: Freeman; 1979

[14] Garey MR, Johnson DS, Simons BB, Tarjan RE. Scheduling unit–time tasks with arbitrary
release times and deadlines. SIAM Journal on Computing. 1981;10:256–269

[15] Gharbi A, Labidi M. Jackson’s semi-preemptive scheduling on a single machine. Com-
puters & Operations Research. 2010;37:2082–2088

[16] Glover F. Tabu-search: A tutorial. Interfaces. 1990;20:74–94

[17] Grabowski J, Nowicki E, Zdrzalka S. A block approach for single-machine scheduling
with release dates and due dates. European Journal of Operational Research.
1986;26:278–285

[18] Graham RL, Lawler EL, Lenstra JL, Rinnooy Kan AHG. Optimization and approximation
in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics.
1976;5:287–326

[19] Hall LA, Shmoys DB. Jacksons rule for single-machine scheduling: Making a good heu-
ristic better. Mathematics of Operations Research 1992;17:22–35

[20] Ivens P, Lambrecht M. Extending the shifting bottleneck procedure to real-life applica-
tions. European Journal on Operations Research. 1996;90:252–268

[21] Jackson JR. Scheduling a production line to minimize the maximum tardiness. Los
Angeles, CA: Management Science Research Project, University of California; 1955

[22] Kirkpatrick S, Gelant CD, Vecchi MP. Optimization by simulated annealing. Science.
1983;220:924–928

[23] Lawton G. Genetic algorithms for schedule optimization. AI Expert. 1992;23–27

[24] McMahon G, Florian M. On scheduling with ready times and due dates to minimize
maximum lateness. Operations Research. 1975;23:475–482

[25] Ow PS, Morton TE. Filtered beam search in scheduling. International Journal of Produc-
tion Research. 1988;26:35–62

[26] Perregaard M, Clausen J. Parallel branch-and-bound methods for the job-shop scheduling
problem. Annals of Operations Research. 1998;83:137–160

[27] Potts CN. Analysis of a heuristic for one machine sequencing with release dates and
delivery times. Operations Research. 1980;28:1436–1441

[28] Toth P, Vigo D, editors. Vehicle Routing Problem (SIAM Monographs On Discrete Math-
ematics and Applications, vol. 386). Philidelphia, PA: SIAM; 2002

[29] Schutten JMJ. Practical job shop scheduling. Annals of Operations Research. 1998;83:
161–177

Heuristics and Hyper-Heuristics - Principles and Applications80

[30] Schrage L. Obtaining optimal solutions to resource constrained network scheduling
problems, unpublished manuscript (March 1971)

[31] Simons B. Multiprocessor scheduling of unit-time jobs with arbitrary release times and
deadlines. SIAM Journal of Computing. 1983;12:294–299

[32] Simons B, Warmuth M. A fast algorithm for multiprocessor scheduling of unit-length
jobs. SIAM Journal of Computing. 1989;18:690–710

[33] Vakhania N. A better algorithm for sequencing with release and delivery times on
identical processors. Journal of Algorithms. 2003;48:273–293

[34] Vakhania N. Single-machine scheduling with release times and tails. Annals of Opera-
tions Research. 2004;129:253–271

[35] Vakhania N. Scheduling jobs with release times preemptively on a single machine to
minimize the number of late jobs. Operations Research Letters. 2009;37:405–410

[36] Vakhania N. Branch less, cut more and minimize the number of late equal-length jobson
identical machines. Theoretical Computer Science. 2012;465:49–60

[37] Vakhania N. A study of single-machine scheduling problem to maximize throughput.
Journal of Scheduling. 2013;16(4):395–403

[38] Vakhania N, Shchepin E. Concurrent operations can be parallelized in scheduling multi-
processor job shop. Journal of Scheduling. 2002;5:227–245

[39] Vakhania N, Werner F. Minimizing maximum lateness of jobs with naturally bounded job
data on a single machine in polynomial time. Theoretical Computer Science. 2013;501:7281

[40] Vakhania N, Perez D, Carballo L. Theoretical expectation versus practical performance of
Jackson’s Heuristic. Mathematical Problems in Engineering. 2015;2015: ID 484671. DOI:
http://dx.doi.org/10.1155/2015/484671

[41] Vakhania N, Hernandez JA, Alonso-Pecina F, Zavala C. A Simple heuristic for basic
vehicle routing problem. Journal of Computer Science Technology Updates. 2016;3
(2):38–44. DOI: http://dx.doi.org/10.15379/2410-2938.2016.03.02.04

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

81





Section 3

Heuristic Techniques and Applications





Chapter 5

Advanced Particle Filter Methods

Roi Yozevitch and Boaz Ben-Moshe

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69236

Abstract

This chapter presents a set of algorithmic methods based on particle filter heuristics. We
start with an introduction to particle filters, which covers the main motivation and related
works. Then, the generic framework for particle filter algorithm is presented, followed by
two important use cases regarding indoor positioning and multitarget tracking; for both
problems, modified particle filter algorithms are presented followed by experimental
results, implementation remarks, and a discussion. Finally, a short list of conclusion and
future work are presented.

Keywords: particle filter, localization, navigation heuristics, position accuracy estima-
tion, GNSS jamming, indoor navigation, multitarget tracking

1. Introduction

Among the heuristic techniques and filters available to the researcher, the “particle filter” technique
is one of the most flexible to use. Unlike the Kalman filter on its variations (especially the Extended
and Unscented Kalman filters, namely EKF and UKF), the particle filter is neither restricted to
Gaussian a posterior distribution nor to a unimodal solution. The number of problems that can be
described by a particle filter are numerous. Why is particle filter considered a heuristic technique?
The answer is obvious: In essence, the particle filter is a nonparametric way to sample the desired
probabilistic space. Real-world probabilistic spaces are often complex and cannot rely uponGauss-
ian/convex assumptions. Sampling such an arbitrary space utilizing finite numbers of particles is
naturally an approximation. Hence, the particle filter should be considered as a generic heuristic
technique formodeling complex probabilistic spaces.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1.1. Motivation

In the last decade, a massive amount of research has been devoted to both autonomous cars and
unmanned aerial vehicles (UAVs). Part of this research includes multiagent localization (e.g.,
swarms of robots). The contemporary autonomous car is equipped with a wide range of sensors
which requires an intelligent data fusion to construct a reliable reality map. One must remember
that autonomous cars are a mission critical system; that is, the system must work all of the time.
Such system cannot solely rely on global positioning system (GPS), since it is occasionally not
available (e.g., dense urban canons and city tunnels). Furthermore, in those systems, estimating
the error bounds is not just a convenient feature. In December 2011, an American UAV landed in
a hostile enemy environment, over 200 km from its original route. This drone was equipped with
the state-of-the-art military navigation system. This example (later known as Iran-U.S. RQ-170
incident [1]) demonstrates the crucial importance for modeling the error space based on data
from several sensors.

While fully autonomous cars are still a far vision, current new cars are required to have active-
safety systems in order to get a full safety rating (five-star safety level). Those systems are capable
to detect the car position in the lane and warn the driver about pedestrians and other cars.

Particle filters can address all of the above challenges. In this chapter, we present new algorith-
mic improvements to estimate the system’s error bounds, to localize and track multiagents and
more. Rapid advances in hardware acceleration and the intense use of parallel computing (e.g.,
graphics processing unit, GPU) across the board are perfect for implementing the particle filter
in many scenarios.

In this chapter, we focus on two abstract problems that the state-of-the-art particle filters are
dealing with. The first problem is how to reduce the number of particles without losing (a lot) of
knowledge. The second problem is how to both localize and track more than one agent simulta-
neously. Those abstract algorithmic challenges are demonstrated via two case studies.

1.2. Related works

The concept of simulating particles started in the 1960s [2] to address nonlinear parabolic partial
differential equations arising in fluidmechanics. The term “particle filter”was first defined in the
mid 1990s [3]; however, other researchers have used the terminology of “sequential Monte
Carlo” [4]. In the last two decades, a considerable amount of research work was devoted to
develop various heuristics based on particle filters [5–8]. Positioning algorithms are often based
on particle filters as it is a robust method for performing sensor fusion [9, 10]. In order to improve
the expected runtime performance, several researchers have developed a GPU-based parallel-
methodology for particle filters [11–13]. It is important to note that a particle filter is a generic
technique and is being used to solve (approximate) a wide range of nonlinear problems includ-
ing video stabilization, tracking, and multitarget tracking (MTT) [14, 15]. Finally, particle filters
are becoming a common high-level heuristic which is being used in many autonomous robotic
applications [16–18] allowing both robustness and improved error-bound estimations.

Heuristics and Hyper-Heuristics - Principles and Applications86



1.1. Motivation

In the last decade, a massive amount of research has been devoted to both autonomous cars and
unmanned aerial vehicles (UAVs). Part of this research includes multiagent localization (e.g.,
swarms of robots). The contemporary autonomous car is equipped with a wide range of sensors
which requires an intelligent data fusion to construct a reliable reality map. One must remember
that autonomous cars are a mission critical system; that is, the system must work all of the time.
Such system cannot solely rely on global positioning system (GPS), since it is occasionally not
available (e.g., dense urban canons and city tunnels). Furthermore, in those systems, estimating
the error bounds is not just a convenient feature. In December 2011, an American UAV landed in
a hostile enemy environment, over 200 km from its original route. This drone was equipped with
the state-of-the-art military navigation system. This example (later known as Iran-U.S. RQ-170
incident [1]) demonstrates the crucial importance for modeling the error space based on data
from several sensors.

While fully autonomous cars are still a far vision, current new cars are required to have active-
safety systems in order to get a full safety rating (five-star safety level). Those systems are capable
to detect the car position in the lane and warn the driver about pedestrians and other cars.

Particle filters can address all of the above challenges. In this chapter, we present new algorith-
mic improvements to estimate the system’s error bounds, to localize and track multiagents and
more. Rapid advances in hardware acceleration and the intense use of parallel computing (e.g.,
graphics processing unit, GPU) across the board are perfect for implementing the particle filter
in many scenarios.

In this chapter, we focus on two abstract problems that the state-of-the-art particle filters are
dealing with. The first problem is how to reduce the number of particles without losing (a lot) of
knowledge. The second problem is how to both localize and track more than one agent simulta-
neously. Those abstract algorithmic challenges are demonstrated via two case studies.

1.2. Related works

The concept of simulating particles started in the 1960s [2] to address nonlinear parabolic partial
differential equations arising in fluidmechanics. The term “particle filter”was first defined in the
mid 1990s [3]; however, other researchers have used the terminology of “sequential Monte
Carlo” [4]. In the last two decades, a considerable amount of research work was devoted to
develop various heuristics based on particle filters [5–8]. Positioning algorithms are often based
on particle filters as it is a robust method for performing sensor fusion [9, 10]. In order to improve
the expected runtime performance, several researchers have developed a GPU-based parallel-
methodology for particle filters [11–13]. It is important to note that a particle filter is a generic
technique and is being used to solve (approximate) a wide range of nonlinear problems includ-
ing video stabilization, tracking, and multitarget tracking (MTT) [14, 15]. Finally, particle filters
are becoming a common high-level heuristic which is being used in many autonomous robotic
applications [16–18] allowing both robustness and improved error-bound estimations.

Heuristics and Hyper-Heuristics - Principles and Applications86

2. Particle filter: general heuristic

As stated above, the particle filter is a member of the nonparametric multimodal Bayesian
filters family. In the particle filter case, the posterior is estimated by a finite number of param-

eters (particles). These particles are represented as χt :¼ x½1�t , x½2�t ,…; x½N�
t , where N is the number

of particles. A belief function, bel(xt), is evaluated for each particle. This function serves as the

particle’s weight (importance). Thus, {xðKÞt , ðwðKÞ
t , Þ : K∈ {1,::::; N}}. The importance weight is

proportional to the likelihood of a specific particle [19]:

x½K�t � pðxtjz1:t, u1:tÞ � wðKÞ
t ð1Þ

In Eq. (1), z1:t and u1:t are the sense and action functions, respectively. The action function ut
moves the particles at time t. The movement is usually derived from odometry (wheel
encoding, pedometers). A fundamental characteristic of the action function is the accuracy
reduction of each particle. Since any real-world movement contains (to a certain degree) noise,
moving a particle decreases certainty regarding its state. The sense function, zt, does exactly
the opposite. This function evaluates the particle’s likelihood based on its sensors (vision,
Inertial Measure Unit - IMU, etc.). Assuming the particle measures distance from n known
landmarks, one can evaluate the weight of each particle p as:

zðxtÞ �
Xn
1

f ðxjμ, σ2Þ ð2Þ

where f represents the Gaussian function:

f ðxjμ, σ2Þ ¼ 1
σ
ffiffiffiffiffiffi
2π

p e�ðx�μÞ2=2σ2 ð3Þ

The value x represents the measured distance to the nth landmark and μ represents the theoret-
ical distance between the known landmark and the particle position. The closer a particle to its
true position, the value abs(x� μ) diminishes and the particle’s weight increases. Thus, the sensor
function increases certainty regarding its state. This process is also called Monte Carlo localiza-
tion (MCL) [19].

The particle filter is a Bayesian, multimodal, nonparametric estimation tool. In order to fully
understand this concept, several terms must be clarified:

• The Bayesian property implies that the estimation at t1 is derived from the estimation at t0.

• The multimodal feature implies that unlike Kalman filters, there can be more than a single
plausible solution.

• The nonparametric property implies the posterior is not restricted to a Gaussian (or other
parametric) probability density function (PDF).

Advanced Particle Filter Methods
http://dx.doi.org/10.5772/intechopen.69236

87



Properties 2 and 3 mean that the PDF is constructed by the particles themselves, therefore, any
arbitrary function can be described that way—there is not a single best estimate. A particle can
be in position A or B with equal likelihood. Thus, a particle filter is well suited for scenarios
where one needs to estimate its location within a building with two (or more) identical rooms.

Each particle is a state vector (similar to the Kalman Filter) with a dimension n. Most localiza-
tion problems define each particle to a set of a position and a velocity vectors:

x½K�t ¼ position, velocity
����!n o

ð4Þ

A 2D problem demands for n = 4 and a 3D problem demands for n = 6. One can also include
the particle’s orientation (crucial in vehicle localization) and other features as well.

2.1. The generic particle filter algorithm

The algorithm presented is a generic PF localization algorithm. One seeks to find an accurate
absolute position from noisy measurements. The action function is usually derived from the
odometer (e.g., wheel’s encoder).

2.2. Reporting the best solution

As opposed to the traditional Kalman filter where the current state vector is also the filter’s best
guess, a particle filter holds N different solutions (some more plausible than others). How can
one determine the “best” particle? The following are the most common approaches:

• The “best” particle will be computed as the center-of-mass of all particles. This is achieved
by averaging all the particles.

• A more sophisticated approach is to compute a weighted average of all particles. Each
particle reports its likelihood (weight), so this is relatively straight forward to implement.
One should carefully notice that in both methods, the “best” estimate is almost never a

Data: Sensor data, Map (optional)
Result: Improved position

1. Init: Distribute a set P of M particles in the ROI;
2. Estimate the velocity vector v!t from the sensor measurements (e.g., gyroscope, encoder, pedometer…);
3. for each particle p ∈ P do

4. Approximate the action function ut(p) from v!t ;
5. Update p-position according to ut(p);
6. Evaluate the belief (weight) function: w(p) based on the known landmarks and map restrictions (Map Matching);

7. Resample P according to the likelihood (weight) of each particle;
8. Compute best position in P ∈ ROI as pos(P);
9. Report pos(P);
10. Approximate the error estimation err(P);
11. if (err(P) < ROI) go to 2 else go to 1;

Algorithm 1: Simple Particle Filter Algorithm.

Heuristics and Hyper-Heuristics - Principles and Applications88



Properties 2 and 3 mean that the PDF is constructed by the particles themselves, therefore, any
arbitrary function can be described that way—there is not a single best estimate. A particle can
be in position A or B with equal likelihood. Thus, a particle filter is well suited for scenarios
where one needs to estimate its location within a building with two (or more) identical rooms.

Each particle is a state vector (similar to the Kalman Filter) with a dimension n. Most localiza-
tion problems define each particle to a set of a position and a velocity vectors:

x½K�t ¼ position, velocity
����!n o

ð4Þ

A 2D problem demands for n = 4 and a 3D problem demands for n = 6. One can also include
the particle’s orientation (crucial in vehicle localization) and other features as well.

2.1. The generic particle filter algorithm

The algorithm presented is a generic PF localization algorithm. One seeks to find an accurate
absolute position from noisy measurements. The action function is usually derived from the
odometer (e.g., wheel’s encoder).

2.2. Reporting the best solution

As opposed to the traditional Kalman filter where the current state vector is also the filter’s best
guess, a particle filter holds N different solutions (some more plausible than others). How can
one determine the “best” particle? The following are the most common approaches:

• The “best” particle will be computed as the center-of-mass of all particles. This is achieved
by averaging all the particles.

• A more sophisticated approach is to compute a weighted average of all particles. Each
particle reports its likelihood (weight), so this is relatively straight forward to implement.
One should carefully notice that in both methods, the “best” estimate is almost never a

Data: Sensor data, Map (optional)
Result: Improved position

1. Init: Distribute a set P of M particles in the ROI;
2. Estimate the velocity vector v!t from the sensor measurements (e.g., gyroscope, encoder, pedometer…);
3. for each particle p ∈ P do

4. Approximate the action function ut(p) from v!t ;
5. Update p-position according to ut(p);
6. Evaluate the belief (weight) function: w(p) based on the known landmarks and map restrictions (Map Matching);

7. Resample P according to the likelihood (weight) of each particle;
8. Compute best position in P ∈ ROI as pos(P);
9. Report pos(P);
10. Approximate the error estimation err(P);
11. if (err(P) < ROI) go to 2 else go to 1;

Algorithm 1: Simple Particle Filter Algorithm.

Heuristics and Hyper-Heuristics - Principles and Applications88

valid particle, only an average of valid particles. When external restrictions exist on the
particle themselves, the produced “best estimate” may not obey those restrictions.

• One can simply pick the particle with the highest weight. This is the easiest approach to
adopt.

• The first approach can be fused to a single method; choose the particle with the highest
weight and compute a weighted center of mass solution around it.

The above methods have one thing in common—they all assume a single solution exists and
they seek to find it. In other words, they do not take advantage of the inherent multimodal
characteristic of the filter itself. Assuming there are two equally likely solutions, the first two
methods will produce a bad guess and the last two will produce only one good solution. Such
scenarios do exist when tracking more than one agent and we will discuss those types of
scenarios in the following sections.

2.3. Particle filter flaws

While relatively easy to understand and implement, the naive particle filter method suffers from
several flaws. As explained above, the naive algorithm is incapable of handling multiagent
scenarios. It is true that most localization algorithms seek a single best estimate but this is not
true of all of them.

The second point concerns the algorithm runtime complexity. Each particle can be computed
independently of the other, thusO(|N|), where n = |N|, is the number of particles. DoublingN
will double the expected runtime. Alas, the configuration space grows exponentially with
respect to the state vector’s size. As such, extending a 2D PF to 3D is very complicated.

Finally, as always, real-world scenarios are very different from the sterile PF examples found in
the literature. A PF sense function is usually explained utilizing distance from several known
landmarks where each distance has a Gaussian noise with μ = 0. This scenario does simplify
the math but does not describe real-world sensors.

The following section is dedicated to real-world indoor localization problem.

3. Smartphone-based indoor navigation

Contemporary navigation heavily relies on Global Navigation Satellite Systems (GNSS) such
as the American GPS and the Russian GLONSS. GNSS signals, however, cannot be used inside
buildings. Therefore, indoor navigation depends on other type of sensory data.

3.1. Problem state

Given a smartphone receiver in a well-defined region of interest (ROI), find its most plausible
location using only the phone’s inherent sensors (IMU, camera, etc.).

Advanced Particle Filter Methods
http://dx.doi.org/10.5772/intechopen.69236

89



The best candidate for this task is the smartphone WiFi module. Each WiFi router (transmitter)
sends a signal (also called a WiFi-beacon) at ≈ 10 Hz. Since the WiFi-received signal strength
indication (RSSI) decreases with the distance between the router and the phone, one can utilize
this information as the conventional landmark. The WiFi scenario differs from the classic
(known) landmark sensors in three main aspects:

1. The routers’ position is not known. Moreover, in a conventional shopping mall there
could be over 100 different WiFi routers. New routers are continuously added and old
routers are discarded.

2. The RSSI is not solely affected from the distance. The phone orientation (how the antenna
is held), obstruction (walls and the human body), and the building geometry are more
important. This means that far signals can be received with a relatively high RSSI while
near signals can be received with relatively low RSSI.

3. Although WiFi signals travel at ≈ c (speed of light), the receiver occasionally detects them
with a 1–2 second delay. This is due to the way aWiFi scan is performed over the available
channels (commonly 13 in 2.4 GHz). At pedestrian speed, 2 s of delay may not be an issue.
However, when the user crosses a critical section, this can lead to significant errors.

The above flaws make the sense function hard to intelligently construct. Not only is the RSSI a
poor distance indicator, the landmarks (WiFi routers) may be obsolete.

3.2. RF finger printing

In the last two decades, there has been massive research on indoor position, see Refs. [20, 21]
for general surveys on indoor positioning technologies. In most cases, some sort of RF finger
printing algorithm was implemented [22]. Indoor location services are offered on mobile
platforms as Google-Android, Apple-IOS, and Windows-Mobile, and they are commonly
based on 3G/4G cellular networks, combined with WLAN fingerprinting (WiFi, Bluetooth
(BLE)). The expected accuracy of such systems is commonly 5–30 m at 0.3–1 Hz. In the scope
of this chapter, we assume that some kind of location service is available for the user and we
present a set of particle filters designed to improve the accuracy and robustness of such
services.

3.3. Map constraints

Most navigation applications use an underlying map on which the user position is presented.
Such maps can be used by the particle filter algorithms for improving the evaluation of each
moving particle with respect to the map constraints (i.e., walls). Figure 3 presents an example
of a floor plan with about 10% walls—yet, using such a map combined with the user move-
ment (action function) allows the particles to converge rapidly. For simplicity, the map con-
straints are presented here in a binary mode which basically divides the region of interest to
areas in which the user can be (white) and restriction zones (black) in which the user may not
be. Naturally, one can think of a finer model with several levels or even continuance values.
Yet, in most cases the binary model is sufficient and allows for a simple implementation.

Heuristics and Hyper-Heuristics - Principles and Applications90



The best candidate for this task is the smartphone WiFi module. Each WiFi router (transmitter)
sends a signal (also called a WiFi-beacon) at ≈ 10 Hz. Since the WiFi-received signal strength
indication (RSSI) decreases with the distance between the router and the phone, one can utilize
this information as the conventional landmark. The WiFi scenario differs from the classic
(known) landmark sensors in three main aspects:

1. The routers’ position is not known. Moreover, in a conventional shopping mall there
could be over 100 different WiFi routers. New routers are continuously added and old
routers are discarded.

2. The RSSI is not solely affected from the distance. The phone orientation (how the antenna
is held), obstruction (walls and the human body), and the building geometry are more
important. This means that far signals can be received with a relatively high RSSI while
near signals can be received with relatively low RSSI.

3. Although WiFi signals travel at ≈ c (speed of light), the receiver occasionally detects them
with a 1–2 second delay. This is due to the way aWiFi scan is performed over the available
channels (commonly 13 in 2.4 GHz). At pedestrian speed, 2 s of delay may not be an issue.
However, when the user crosses a critical section, this can lead to significant errors.

The above flaws make the sense function hard to intelligently construct. Not only is the RSSI a
poor distance indicator, the landmarks (WiFi routers) may be obsolete.

3.2. RF finger printing

In the last two decades, there has been massive research on indoor position, see Refs. [20, 21]
for general surveys on indoor positioning technologies. In most cases, some sort of RF finger
printing algorithm was implemented [22]. Indoor location services are offered on mobile
platforms as Google-Android, Apple-IOS, and Windows-Mobile, and they are commonly
based on 3G/4G cellular networks, combined with WLAN fingerprinting (WiFi, Bluetooth
(BLE)). The expected accuracy of such systems is commonly 5–30 m at 0.3–1 Hz. In the scope
of this chapter, we assume that some kind of location service is available for the user and we
present a set of particle filters designed to improve the accuracy and robustness of such
services.

3.3. Map constraints

Most navigation applications use an underlying map on which the user position is presented.
Such maps can be used by the particle filter algorithms for improving the evaluation of each
moving particle with respect to the map constraints (i.e., walls). Figure 3 presents an example
of a floor plan with about 10% walls—yet, using such a map combined with the user move-
ment (action function) allows the particles to converge rapidly. For simplicity, the map con-
straints are presented here in a binary mode which basically divides the region of interest to
areas in which the user can be (white) and restriction zones (black) in which the user may not
be. Naturally, one can think of a finer model with several levels or even continuance values.
Yet, in most cases the binary model is sufficient and allows for a simple implementation.

Heuristics and Hyper-Heuristics - Principles and Applications90

3.4. Intelligent weight evaluation

Occasionally, momentary misclassifications will happen due to obstructions (e.g., walls). Hence,
one must also consider the particle’s history and incorporate it into the weight function. The
strengths of this approach are twofold: First, a positive feedback will cause more probable
particles to become better in time. Second, this method reduces to minimum the influence of
those momentary errors. We set 0<k<1 to be the ratio between the current estimation and the
history weight. Amore robust solution will be achievedwith lower k. Noisy environments should
favor the history. Note that k is the equivalent to the Kalman K gain. Each estimation problem has
a different optimal k values:

weightðx½K�t Þ ¼ k� senseðx½K�t Þ þ ð1� kÞ � weightðx½K�t�1Þ ð5Þ

where weight(t) is the average of the current sense function with all of its history.

Why is it important? Why not increase the number of particles?

Given the number of particles M ! ∞, there is a mathematical proof of the convergence of the
filter [19]. However, “infinite” number of particles is neither practical nor efficient. Moreover,
as stated above, the number of particles grows exponentially with the problem’s dimension;
one should seek for the minimum optimal number of particles and the rigorous methods for
determining that number which are rare. We have used 100, 500, 1000 and 2500 particles
throughout the experiments. Figure 1 demonstrates how the more the particles being used,
the smaller the average (steady) error is. We denote “average error” as the average weighed
distance between all the particles and the true position. Moreover, as elaborated in Section 3.4,
since each particle have no memory of its history, a momentary misclassification can cause
significant error as depicted in Figure 1. One hundred particles are usually considered as a
practical lower bound. Below this number, the solution will often diverge. On the other hand,
5000 particles (and above) produce errors very similar to 2500 particles. In essence, there is a
trade-off between the number of particles and the algorithm’s accuracy. Although the trade-off
is not linear (increasing the number of particles from 100 to 200 will yield much higher
improvement than increasing the number of particles from 1000 to 1200), the accuracy is a
monotonically increasing function of the number of particles.

One can have both a small number of particles (efficiency) and a very accurate algorithm by
implementing the intelligent weight function (Eq. (5)). When the particle’s history is taken into
account, the errors caused by the small amount of particles are overcome. Figure 2 proves this
thesis. Given a small number of particles (100), the suggested method improves the solution
considerably. However, as expected, the improvement is barely noticed for much biggerN values.

What do these graphs mean? As we see, these graphs tell a very interesting story. At first
glance, one might suspect this method is not “kosher” since the likelihood of an arbitrary
particle was already expressed in the resampling phase—the higher the weight (likelihood) a
particle has, the higher the chance for it to be resampled over again. Therefore, incorporating
its last weight value seems wrong—creating a deformed unrealistic probability space. How-
ever, as clearly demonstrated in Figure 2, utilizing this method, especially for a small number

Advanced Particle Filter Methods
http://dx.doi.org/10.5772/intechopen.69236

91



0 20 40 60 80 100 120 140 160

5

10

15

20

25

30

35

Time from initialization [s]

A
ve

ra
ge

 E
rr

or
 [m

]

Converenge error for different number of particles 

0

2500 Particles
1000 Particles
500 Particles
100 Particles

Figure 1. Average error for different numbers of particles. The more the particles being used, the smaller the average
error.

0 20 40 60 80 100 120 140 160

10

20

30

40

Time from initialization [s]

A
ve

ra
ge

 E
rr

or
 [m

]

Navie vs Bayesian weight function 

0

100 Particles with memory
100 particles without memory

0 20 40 60 80 100 120 140 160

10

20

30

Time from initialization [s]

A
ve

ra
ge

 E
rr

or
 [m

]

0

1000 Particles with memory
1000 particles without memory

Figure 2. Naive versus Bayesian weight function. For small number of particles (100), the use of each particle history
improves the solution and reduces the average error. For 1000 particles, the difference is unnoticed.

Heuristics and Hyper-Heuristics - Principles and Applications92



0 20 40 60 80 100 120 140 160

5

10

15

20

25

30

35

Time from initialization [s]

A
ve

ra
ge

 E
rr

or
 [m

]

Converenge error for different number of particles 

0

2500 Particles
1000 Particles
500 Particles
100 Particles

Figure 1. Average error for different numbers of particles. The more the particles being used, the smaller the average
error.

0 20 40 60 80 100 120 140 160

10

20

30

40

Time from initialization [s]

A
ve

ra
ge

 E
rr

or
 [m

]

Navie vs Bayesian weight function 

0

100 Particles with memory
100 particles without memory

0 20 40 60 80 100 120 140 160

10

20

30

Time from initialization [s]

A
ve

ra
ge

 E
rr

or
 [m

]

0

1000 Particles with memory
1000 particles without memory

Figure 2. Naive versus Bayesian weight function. For small number of particles (100), the use of each particle history
improves the solution and reduces the average error. For 1000 particles, the difference is unnoticed.

Heuristics and Hyper-Heuristics - Principles and Applications92

of particles (≈100 particles), significantly improves the results. This improvement, however, is
barely noticed when the number of particles is higher (1000 particles).

While particle filter algorithms are nonparametric [19], they still demand for quite configura-
tions and their efficiency heavily lies in an intelligent “sense” function. Evaluating such func-
tions is not an easy task and one should be closely familiar with the domain to do so. A better,
more accurate, “sense” function will yield more accurate results.

3.5. Simulation results of smartphone positioning

In this section, we present a set of simulations representing the presented particle filter in the
setting of smartphone indoor navigation using floor-map constraints, RF positioning, and a
pedometer. In Figures 3–5, we consider a “standard building” with a size of 10�20 m with
about 10 rooms, the overall restriction area (i.e., walls) is about 10% of that area. The path is
shown as a polygonal line, the real position is marked as a solid dark dot located on the path
and the approximated position is marked as a lighter dot. The simulation uses the following

Figure 3. Particle filter in action: 800 particles were randomly located in the building (a) with no RF positioning service.
Using pedometer combined with compass and a building floor map, the particles rapidly form few small clusters (b and
c). (d and e) The correct solution (cluster) is computed yet the expected error is still relatively large—as there is a second
(wrong) cluster of particles. (f) The algorithm converges and the expected accuracy is high.

Advanced Particle Filter Methods
http://dx.doi.org/10.5772/intechopen.69236

93



Figure 5. Particle filter in action: 100 particles were randomly located in the building (a). No RF positioning service is
leading to a wrong converges (b–d), due to undersampling—the number of particles is too low. Using RF positioning (e
and f), the correct position was found.

Figure 4. Particle filter in action: 100 particles were randomly located in the building (a), a WiFi positioning service was
used for fast converges (b and c). All the particles converged to the correct position (d).

Heuristics and Hyper-Heuristics - Principles and Applications94



Figure 5. Particle filter in action: 100 particles were randomly located in the building (a). No RF positioning service is
leading to a wrong converges (b–d), due to undersampling—the number of particles is too low. Using RF positioning (e
and f), the correct position was found.

Figure 4. Particle filter in action: 100 particles were randomly located in the building (a), a WiFi positioning service was
used for fast converges (b and c). All the particles converged to the correct position (d).

Heuristics and Hyper-Heuristics - Principles and Applications94

parameters: theWiFi expected position error is 5 m, the pedometer expected error is 20% in
length, and 10 in angle.

In order to demonstrate the particle filter algorithm in the setting of indoor positioning, we
first present the case (Figure 3) in which there is no RF (i.e., WiFi) positioning service. This case
can also be seen in situations where the accuracy of the positioning service is larger than the
region of interest. We then present (Figures 4 and 5) the more general case in which RF
positioning service is available. Using this service, the particle filter converges rapidly even
with significantly smaller set of particles.

3.6. 3D particle filter algorithm

Prior to this point, we have mainly considered the 2D case of the mobile phone indoor position
algorithm. In this section, we will generalize the particle filter algorithm to a 3D case of
multifloor buildings. In general, a building navigation is often referred to as 2.5D—in which the
floor is assumed to be of a discrete value. Two modifications are needed in order to generalize
the algorithm for 3D:

1. The floor(s) map should have an additional color (probability) representing the probability
of floor change in each location: e.g., near by the elevator or the stairs, this probability
(color) will be relatively high.

2. The action function should have an elevation (Δz) approximation. This functionality is
commonly computed via a barometric pressure sensor. One should remember that these
sensor are extremely sensitive to height differentiation (i.e., one cannot deduce the correct
floor based on their value but one can confidently deduce floor change by inspecting the
sensor’s data derivative).

3.7. Overcoming the kidnapped robot problem

Since particle filters are not restricted to a single peak PDF, they can handle an ambiguous
location scenario: e.g., two (almost) identical rooms in a hall. The filter maintains two clusters of
particles in the candidate locations. Convergence is assumed when the receiver exits one of the
rooms. Alas, a robust convergence to the true location is not guaranteed in a noisy environment,
in particular, with a wrong map or biased sensors. Many indoor navigation algorithms suffer
from this very problem (see Figures 3 and 4 for such examples). City mall maps are occasionally
changed and WiFi routers are moved from their previous location. These phenomena can throw
a filter to converge to a wrong location (e.g., different floor). This is a major problem since
standard particle filters hardly recover from a wrong position after they converge, in particular,
since floor change is always accompanied with a major shift in the barometer sensor. Even if the
receiver “wants” to converge to the true location, it cannot do so unless it is nearby an elevator or
escalator. It is important to mention that this is a real problem in the realm of Inertial Navigation
System (INS) and many algorithms will occasionally reset their value and start over. If one
wishes to avoid such system resets, this issue must be addressed properly.

Wrong location convergence is very similar to another known problem, the kidnapped robot
problem [19]. In the latter, we assume all the particles correctly converged to the true robot’s
position. However, a foe (intentional or not) kidnapped the robot and placed it outside the

Advanced Particle Filter Methods
http://dx.doi.org/10.5772/intechopen.69236

95



convergence area. If no particle exists in the robot’s new location, a true convergence is not
possible. Therefore, a small portion of the particles (≈10% or less) is allocated in each phase to
evenly respread in the ROI. Thus, the algorithm has a viable probability to reconverge to the
true location. In our example, we evenly spread the particles in different floors.

4. Multiagents localization and tracking

Multitarget tracking (MTT) is a well-known problem in the field of image processing and
estimation [23]. In particular, addressing the MTT problem utilizing particle filter techniques
has been done previously [24, 25]. The scope of the problems MTT addresses is usually visual
tracking. In this section, however, we would like to present a very easy-to-implement particle
filter-based algorithm to tackle a nonvisual multiobject localization problem.

Section 2.2 presents several ways to report the estimated location based on the particles’
distribution. As explained, all the methods assumed a single true solution, i.e., a single-agent
localization. When two (or more) clusters of particles present, the algorithm either chooses the
“best” solution from one of the clusters or attempts to average them all to produce a false
answer somewhere in between them. When two (or more) clusters represent true position of
several agents, we seek an algorithm which can both localize and track all of those agents.

4.1. Problem of interest

Our problem of interest consists of several radiant sources and several sensors which can
detect this radiation. The aim is to localize, track, and estimate the numbers of radiant sources
in the region. The radiation can be noise (sound waves), fire (heat or smoke), light, electromag-
netic fields, etc. We chose to describe an interesting electromagnetic source—GNSS jammers.

4.1.1. GNSS jammers localization and tracking

The importance of GNSS is unquestionable. We rely on it more and more for both civilian and
military uses. Attacking this system can cause a great deal of harm to any modern society.
GNSS jammers jam the carrier frequency of the GNSS receiver (hence their name) by adding
(transmitting) white noise to it. This process degrades the receiver signal-to-noise ratio (SNR)
to a point where the receiver is unable to report its position, a phenomenon usually referred to
as “losing fix.” A 10 W jammer can paralyze GNSS receivers over a radius of a few hundred
meters. Jamming interference can be detected by a degradation of the received satellites’ SNR
values. Figure 6 demonstrates a typical jamming interference.

As Figure 6 demonstrates, there exists a positive correlation between the receiver’s SNR and its
distance from the jammer. The black vertical line represents the jamming range; beyond that
distance, the receiver is not affected by the jamming interference.

The reason why the jammer’s location is interesting is twofold:

• First, the “losing fix” phenomena are similar to the uncertainty principle: when the
receiver is far away from the jammer, it is not affected by it and produces a reliable GNSS

Heuristics and Hyper-Heuristics - Principles and Applications96



convergence area. If no particle exists in the robot’s new location, a true convergence is not
possible. Therefore, a small portion of the particles (≈10% or less) is allocated in each phase to
evenly respread in the ROI. Thus, the algorithm has a viable probability to reconverge to the
true location. In our example, we evenly spread the particles in different floors.

4. Multiagents localization and tracking

Multitarget tracking (MTT) is a well-known problem in the field of image processing and
estimation [23]. In particular, addressing the MTT problem utilizing particle filter techniques
has been done previously [24, 25]. The scope of the problems MTT addresses is usually visual
tracking. In this section, however, we would like to present a very easy-to-implement particle
filter-based algorithm to tackle a nonvisual multiobject localization problem.

Section 2.2 presents several ways to report the estimated location based on the particles’
distribution. As explained, all the methods assumed a single true solution, i.e., a single-agent
localization. When two (or more) clusters of particles present, the algorithm either chooses the
“best” solution from one of the clusters or attempts to average them all to produce a false
answer somewhere in between them. When two (or more) clusters represent true position of
several agents, we seek an algorithm which can both localize and track all of those agents.

4.1. Problem of interest

Our problem of interest consists of several radiant sources and several sensors which can
detect this radiation. The aim is to localize, track, and estimate the numbers of radiant sources
in the region. The radiation can be noise (sound waves), fire (heat or smoke), light, electromag-
netic fields, etc. We chose to describe an interesting electromagnetic source—GNSS jammers.

4.1.1. GNSS jammers localization and tracking

The importance of GNSS is unquestionable. We rely on it more and more for both civilian and
military uses. Attacking this system can cause a great deal of harm to any modern society.
GNSS jammers jam the carrier frequency of the GNSS receiver (hence their name) by adding
(transmitting) white noise to it. This process degrades the receiver signal-to-noise ratio (SNR)
to a point where the receiver is unable to report its position, a phenomenon usually referred to
as “losing fix.” A 10 W jammer can paralyze GNSS receivers over a radius of a few hundred
meters. Jamming interference can be detected by a degradation of the received satellites’ SNR
values. Figure 6 demonstrates a typical jamming interference.

As Figure 6 demonstrates, there exists a positive correlation between the receiver’s SNR and its
distance from the jammer. The black vertical line represents the jamming range; beyond that
distance, the receiver is not affected by the jamming interference.

The reason why the jammer’s location is interesting is twofold:

• First, the “losing fix” phenomena are similar to the uncertainty principle: when the
receiver is far away from the jammer, it is not affected by it and produces a reliable GNSS

Heuristics and Hyper-Heuristics - Principles and Applications96

location. When the receiver is very close to the jammer, it cannot report its location since it
has no fix.

• While it is easy to model a GNSS jammer as an omnidirectional antenna which degrades the
received signals evenly in all directions, in reality,most jammers emit only in a certain direction.

As explained above, the problem of interest consists of both the radiant sources and the sensors.
In our context, the emitting sources are the GNSS jammers, whereas the sensors are the GNSS
receivers (e.g., smartphones) which can detect and report the satellites’ received SNR. A strong
SNR indicates no jamming interference. As the detected SNR decreases, the distance between the
sensor and the jammer also decreases. This observation leads to the conclusion that if one can
sample the SNR in the entire ROI, one can create a “heat map” of the most interfered points.
Those points will serve as good candidates as the jammers’ location. However, sampling the
entire ROI is not viable in many cases, mainly due to map constraints. One needs to deduce the
heat map form only a partial sampling.

4.1.2. Heat map

A plausible approach to tackle the emitting sources’ problem is to define for each sensory
record (sensor in time) a simplified probabilistic map (of the ROI) which represents the
likelihood for the jammer to be at any point of the ROI. All the likelihood maps are combined
one on top of the other to develop the heat map. Figure 7 demonstrates such a heat map.

The experiment scenario is depicted in the left side of Figure 7. The red star represents the
jammer’s position. The yellow line represents the sensor’s track. At each point, the sensor’s
SNR was recorded. As the sensor moves away from the jammer, its SNR increases and vice
versa. Each such point creates a likelihood map. One can see that maximum intensity occurs in
the vicinity of the real jammer.

When no jammer is presented, the maximum heat region will be outside the ROI, as expected.
Figure 8 demonstrates this phenomenon.

Figure 6. GNSS jamming SNR degradation. As the receiver approaches the jammer, its SNR decreases. As the receiver
becomes farther away, its SNR increases. The yellow line represents the theoretical behavior, whereas the other colors
represent real-world recoding figures.

Advanced Particle Filter Methods
http://dx.doi.org/10.5772/intechopen.69236

97



This algorithm suffers from several inherent flaws:

• It assumes an omnidirectional pattern of the jammer. In other words, the algorithm cannot
cope with more complex transmitting patterns.

• Since the algorithm has no notion of time, it is almost impossible to detect a nonstationary
jammer.

• Much more important, the algorithm assumes the jammer’s transmitting power is given.
This, of course, is never the case in the real world.

• When two (or more) jammers are presented, the algorithm will not be able to differ
between them (unless they are widely separated).

Figure 7. A heat map algorithm: Left: A field experiment in which a single jammer was located at the red star and the
yellow polygon presents the sensor (GNSS receiver) path. Right: The samples of the sensor are presented in colored dots
—the scale presents the maximal signal of the QNSS satellites. The heat map is presented in gray scale colors—the
brightest region in the ROI is marked in red and overlaps the actual location of the jammer. In case of a single (fixed)
jammer, this solution might be sufficient.

Figure 8. A heat map algorithm: No active jammer. Left: All samples. Right: The brightest regions of heat map are at the
upper left and lower right corners. Since no jammer exists, the algorithm assumes it is outside the ROI.

Heuristics and Hyper-Heuristics - Principles and Applications98



This algorithm suffers from several inherent flaws:

• It assumes an omnidirectional pattern of the jammer. In other words, the algorithm cannot
cope with more complex transmitting patterns.

• Since the algorithm has no notion of time, it is almost impossible to detect a nonstationary
jammer.

• Much more important, the algorithm assumes the jammer’s transmitting power is given.
This, of course, is never the case in the real world.

• When two (or more) jammers are presented, the algorithm will not be able to differ
between them (unless they are widely separated).

Figure 7. A heat map algorithm: Left: A field experiment in which a single jammer was located at the red star and the
yellow polygon presents the sensor (GNSS receiver) path. Right: The samples of the sensor are presented in colored dots
—the scale presents the maximal signal of the QNSS satellites. The heat map is presented in gray scale colors—the
brightest region in the ROI is marked in red and overlaps the actual location of the jammer. In case of a single (fixed)
jammer, this solution might be sufficient.

Figure 8. A heat map algorithm: No active jammer. Left: All samples. Right: The brightest regions of heat map are at the
upper left and lower right corners. Since no jammer exists, the algorithm assumes it is outside the ROI.

Heuristics and Hyper-Heuristics - Principles and Applications98

In order to tackle all of the above flaws, a more probabilistic approach should be taken. A
(modified) particle filter can efficiently address the multiagent localization and tracking problem
with a relatively small number of particles.

4.2. Single agent tracking algorithm

The following sections describe a robust method to detect, localize, and track several emitters
in the ROI. For the sake of clarity, we first assume a single jammer scenario. Several jammers
tracking algorithm will be explained in the next section. The proposed algorithm does not
assume a known number of emitters or their exact transmitting power. Moreover, this algo-
rithm copes well with scenarios where the jammers are mobile and may overlay each other.
Since we seek to know the position (and velocity) of the jammer(s), each particle is defined as a
possible jammer with a specific velocity, position, and transmitting power. The weight of each
particle will be proportional to the number of sensors (smartphones) consistent with it. This
approach assumes almost no prior knowledge regarding the jammers in the ROI. Since each
particle holds a velocity vector, the algorithm can also track moving jammers. The formal
description of the algorithm is given below:

As explained above, each particle represents a jammer. The initialization happens in line 1:
each particle is a jammer with a different transmitting pattern. Its weight is proportional to the
jammer’s probability of being in a specific location. One can compute this probability as the
sum of Gaussian distributions (since the pattern is known).

Convergence occurs when the longest distance between every two particles does not exceed a
certain threshold. If no jammer exists in the ROI, the particles will not converge and the
algorithm will not report a position. This algorithm tracks well a single jammer. However, the
inherent nature of the particle filter prevents it from operating well in several jammers sce-
nario. Figure 9 demonstrates this problem. In this figure, one can see two jammers, each with a
different strength and pattern, as represented by the black lines. The little squares represent
several dozen sensors (smartphones). Although two jammers transmit in this scenario, all the
particles converged to a single jammer.

Data: ROI, sensor data
Result: GNSS jammer location
1. Init: Distribute a set P of n particles in the ROI;
2. while P is not converged do

3. for each particle p ∈ P do
4. Approximate the action function ut(p) from v!t;
5. Update p-position according to ut(p);
6. Evaluate the belief (weight) function: w(p) based on the sensors input.

7. Resample P according the likelihood (weight) of each particle;
8. Compute best position in P ∈ ROI as pos(P);
9. Report pos(P);

Algorithm 2: Single GNSS jammer tracking.

Advanced Particle Filter Methods
http://dx.doi.org/10.5772/intechopen.69236

99



4.2.1. Unimodal versus multimodal

Although particles filters are not restricted to unimodal single peak PDFs, the resampling process
itself tends to converges to a single value. Thus, two different clusters of particles (representing
two jammers) will eventually converge to only one of the jammers due to the inherent resampling
process. Should this was a typical clustering problem, a K-mean algorithm [26] would work well
because the resampling process tends to favor one cluster over the others. This cluster will be the
last one to survive and the other clusters (jammer) will be ignored. A typical particle filter
algorithm can hold multimodal two-peak PDF, only as an intermediate phase. Multiagent track-
ing calls for a slightly different approach.

Figure 9. A single jammer localization. Although two jammers are active simultaneously, the particles converged only to
one of them.

Data: ROI, sensor data
Result: GNSS jammers’ locations
1. Init: Define Jammers to be an empty set of Jammers;
2. while JammerDetection(ROI) do

3. Let Ji be findjammer(ROI);
4. Add Ji to the Jammers;
5. Update the ROI to be ROI – ROI(Ji)

6. return Jammers;

Algorithm 3: A generic algorithm for Multi Agent Localization.

Heuristics and Hyper-Heuristics - Principles and Applications100



4.2.1. Unimodal versus multimodal

Although particles filters are not restricted to unimodal single peak PDFs, the resampling process
itself tends to converges to a single value. Thus, two different clusters of particles (representing
two jammers) will eventually converge to only one of the jammers due to the inherent resampling
process. Should this was a typical clustering problem, a K-mean algorithm [26] would work well
because the resampling process tends to favor one cluster over the others. This cluster will be the
last one to survive and the other clusters (jammer) will be ignored. A typical particle filter
algorithm can hold multimodal two-peak PDF, only as an intermediate phase. Multiagent track-
ing calls for a slightly different approach.

Figure 9. A single jammer localization. Although two jammers are active simultaneously, the particles converged only to
one of them.

Data: ROI, sensor data
Result: GNSS jammers’ locations
1. Init: Define Jammers to be an empty set of Jammers;
2. while JammerDetection(ROI) do

3. Let Ji be findjammer(ROI);
4. Add Ji to the Jammers;
5. Update the ROI to be ROI – ROI(Ji)

6. return Jammers;

Algorithm 3: A generic algorithm for Multi Agent Localization.

Heuristics and Hyper-Heuristics - Principles and Applications100

4.3. Multiagent tracking algorithm

The multiagent tracking algorithm is very similar to Algorithm 2. The main difference is a more
sophisticated approach toward convergence. After the algorithm converged to a single jammer,
the algorithm respread particles outside the region of interference. The first set of particles is
“assigned” to the first jammer and will track after it. The second set of particles will converge to
another jammer relatively quickly. This happens due to the fact that the second set of particles is
not affected by the first jammer. The formal description of this algorithm is given below.

Line 2: We denote JammerDetection(ROI). It is a Boolean function which returns true if the
probability of having a jammer in the ROI exceeds a certain threshold.

Lines 3 and 4: Algorithm 2 was utilized to find the most probable jammer in the ROI. As
mentioned above, Algorithm 2 reports a jammer position only after all the particles converged.
If a jammer is detected, it will be added to the list (line 4).

Line 5: If a jammer was detected (line 3), the algorithm respreads particles outside the region of
interference of the detected jammer. Calculating this region is easy since each particle holds the
antenna pattern and the jamming transmitting power.

The next figures validate the algorithm’s correctness. Figure 10 depicts a two-jammer tracking
scenario, each jammer having a different antenna pattern.

Figure 10. A single-jammer localization. Two jammers are active simultaneously and the algorithm converged to both of
them.

Advanced Particle Filter Methods
http://dx.doi.org/10.5772/intechopen.69236

101



Figure 11 shows an overlapping scenario. The interference regions of the jammers partly
overlap and yet, the algorithm tracks each jammer separately.

4.4. Implementation remarks

The proposed framework for multiagent localization and tracking produces relatively accurate
results, even with a small number of particles and sensors. While increasing the number of
particles depends solely on computing power, increasing the number of sensors can be much
more challenging and occasionally impossible. The results described here were achieved with
500 particles (for each jammer) and less than 30 sensors (smartphones).

5. Future research

Recent advances in technology such as autonomous driving, the Internet of Things (IoT), and
bioinspired robotics require sophisticated and robust methods for computing probabilistic
functions. In many cases, the problems of interest are NP-hard problems or have a real-time
(or online) requirements and therefore cannot be solved accurately and efficiently using deter-
ministic algorithms. Moreover, many mission critical systems are required to approximate not
just the “state” (e.g., position and velocity) but suggest a tight bound for the expected error of
the reported solution (i.e., an accuracy level). Such error-bound approximation is important for

Figure 11. A single-jammer localization. Although two jammers are active simultaneously, the particles converged only
to one of them.

Heuristics and Hyper-Heuristics - Principles and Applications102



Figure 11 shows an overlapping scenario. The interference regions of the jammers partly
overlap and yet, the algorithm tracks each jammer separately.

4.4. Implementation remarks

The proposed framework for multiagent localization and tracking produces relatively accurate
results, even with a small number of particles and sensors. While increasing the number of
particles depends solely on computing power, increasing the number of sensors can be much
more challenging and occasionally impossible. The results described here were achieved with
500 particles (for each jammer) and less than 30 sensors (smartphones).

5. Future research

Recent advances in technology such as autonomous driving, the Internet of Things (IoT), and
bioinspired robotics require sophisticated and robust methods for computing probabilistic
functions. In many cases, the problems of interest are NP-hard problems or have a real-time
(or online) requirements and therefore cannot be solved accurately and efficiently using deter-
ministic algorithms. Moreover, many mission critical systems are required to approximate not
just the “state” (e.g., position and velocity) but suggest a tight bound for the expected error of
the reported solution (i.e., an accuracy level). Such error-bound approximation is important for

Figure 11. A single-jammer localization. Although two jammers are active simultaneously, the particles converged only
to one of them.

Heuristics and Hyper-Heuristics - Principles and Applications102

autonomous platforms in which performing well in 99% of the time is insufficient. Heuristics
based on particle filters allows a robust sensor fusion while maintaining the implementation
relatively simple. Using such methods one can report the expected accuracy level (error).
Using the modifications suggested in this work, one can significantly improve the expected
runtime of a particle filter algorithm which makes it suitable even for real-time vision-based
localization problems. For future work, we suggest that the need for robustness and real-time
accurate results will require the use of massive parallel computation platforms such as GPU.
Such platforms can allow an independent and parallel computing core for almost each particle
and, therefore, to allow speedups of 10–100 times over existing solutions. Other research
challenges include: designing particle filters on a sensor level—just as implementation of
Kalman filter is common in embedded sensors. Finally, there is an important problem of
setting and fine-tuning the parameters of a generic particle filter to a specific problem in the
most suitable way. This research challenge can be seen as a double-stage particle filter: higher
level particle filter seeks to improve its parameters while the lower level solves the problem of
interest using a particle filter which uses the above parameters. Such a self-tuning heuristic
might allow for a massive use of particle filter algorithms just as deep learning has allowed a
greater and more efficient use of neural networks.

Author details

Roi Yozevitch* and Boaz Ben-Moshe

*Address all correspondence to: yozevitch@gmail.com

Ariel University, Ariel, Israel

References

[1] Hartmann K, Steup C. The vulnerability of UAVs to cyber-attacks—An approach to the
risk assessment. In: 2013 5th International Conference on Cyber Conflict (CyCon). IEEE;
2013. pp. 1–23

[2] McKean HP. A class of Markov processes associated with nonlinear parabolic equations.
Proceedings of the National Academy of Sciences. 1966;56(6):1907–1911

[3] Del Moral P. Non-linear filtering: Interacting particle resolution. Markov Processes and
Related Fields. 1996;2(4):555–581

[4] Liu JS, Chen R. Sequential Monte Carlo methods for dynamic systems. Journal of the
American Statistical Association. 1998;93(443):1032–1044

[5] Crisan D, Rozovskii B. The Oxford Handbook of Nonlinear Filtering. Oxford University
Press, Oxford, England; 2011

Advanced Particle Filter Methods
http://dx.doi.org/10.5772/intechopen.69236

103



[6] Flury T, Shephard N. Bayesian inference based only on simulated likelihood: Particle
filter analysis of dynamic economic models. Econometric Theory. 2011;27(05):933–956

[7] Doucet A, De Freitas N, Gordon N. An introduction to sequential Monte Carlo methods. In:
Sequential Monte Carlo Methods in Practice. Springer, Berlin, Germany; 2001. pp. 3–14

[8] Van Der Merwe R, Doucet A, De Freitas N, Wan E. The unscented particle filter. In: NIPS.
Vol. 2000. Denver, CO, USA. 2000. pp. 584–590

[9] Gustafsson F. Particle filter theory and practice with positioning applications. IEEE Aero-
space and Electronic Systems Magazine. 2010;25(7):53–82

[10] Nurminen H, Ristimaki A, Ali-Loytty S, Piché R. Particle filter and smoother for indoor
localization. In: 2013 International Conference on Indoor Positioning and Indoor Naviga-
tion (IPIN). IEEE; 2013. pp. 1–10

[11] Montemayor AS, Pantrigo JJ, Sánchez Á, Fernández F. Particle filter on GPUS for real-
time tracking. In: ACM SIGGRAPH 2004 Posters. ACM; 2004. p. 94

[12] Hendeby G, Hol JD, Karlsson R, Gustafsson F. A graphics processing unit implementation
of the particle filter. In: 2007 15th European Signal Processing Conference. IEEE; 2007. pp.
1639–1643

[13] Chao M-A, Chu C-Y, Chao C-H, Wu A-Y. Efficient parallelized particle filter design on
cuda. In: 2010 IEEE Workshop on Signal Processing Systems (SIPS). IEEE; 2010. pp. 299–
304

[14] Farahmand S, Roumeliotis SI, Giannakis GB. Set-membership constrained particle filter:
Distributed adaptation for sensor networks. IEEE Transactions on Signal Processing. 2011;59
(9):4122–4138

[15] Rui Y, Chen Y. Better proposal distributions: Object tracking using unscented particle
filter. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2001. CVPR 2001., Vol. 2. IEEE; 2001. pp. 768–793

[16] Montemerlo M, Thrun S, Koller D, Wegbreit Ben, et al. Fastslam: A factored solution to
the simultaneous localization and mapping problem. In AAAI/IAAI; 2002. pp. 593–598

[17] Petrovskaya A, Thrun S. Model based vehicle detection and tracking for autonomous
urban driving. Autonomous Robots. 2009;26(2-3):123–139

[18] Niknejad HT, Takeuchi A, Mita S, McAllester D. On-road multivehicle tracking using
deformable object model and particle filter with improved likelihood estimation. IEEE
Transactions on Intelligent Transportation Systems. 2012;13(2):748–758

[19] Thrun S, Burgard W, Fox D. Probabilistic Robotics. MIT Press, Cambridge, Massachusetts
(United States); 2005

[20] Gu Y, Lo A, Niemegeers I. A survey of indoor positioning systems for wireless personal
networks. IEEE Communications Surveys & Tutorials. 2009;11(1):13–32

Heuristics and Hyper-Heuristics - Principles and Applications104



[6] Flury T, Shephard N. Bayesian inference based only on simulated likelihood: Particle
filter analysis of dynamic economic models. Econometric Theory. 2011;27(05):933–956

[7] Doucet A, De Freitas N, Gordon N. An introduction to sequential Monte Carlo methods. In:
Sequential Monte Carlo Methods in Practice. Springer, Berlin, Germany; 2001. pp. 3–14

[8] Van Der Merwe R, Doucet A, De Freitas N, Wan E. The unscented particle filter. In: NIPS.
Vol. 2000. Denver, CO, USA. 2000. pp. 584–590

[9] Gustafsson F. Particle filter theory and practice with positioning applications. IEEE Aero-
space and Electronic Systems Magazine. 2010;25(7):53–82

[10] Nurminen H, Ristimaki A, Ali-Loytty S, Piché R. Particle filter and smoother for indoor
localization. In: 2013 International Conference on Indoor Positioning and Indoor Naviga-
tion (IPIN). IEEE; 2013. pp. 1–10

[11] Montemayor AS, Pantrigo JJ, Sánchez Á, Fernández F. Particle filter on GPUS for real-
time tracking. In: ACM SIGGRAPH 2004 Posters. ACM; 2004. p. 94

[12] Hendeby G, Hol JD, Karlsson R, Gustafsson F. A graphics processing unit implementation
of the particle filter. In: 2007 15th European Signal Processing Conference. IEEE; 2007. pp.
1639–1643

[13] Chao M-A, Chu C-Y, Chao C-H, Wu A-Y. Efficient parallelized particle filter design on
cuda. In: 2010 IEEE Workshop on Signal Processing Systems (SIPS). IEEE; 2010. pp. 299–
304

[14] Farahmand S, Roumeliotis SI, Giannakis GB. Set-membership constrained particle filter:
Distributed adaptation for sensor networks. IEEE Transactions on Signal Processing. 2011;59
(9):4122–4138

[15] Rui Y, Chen Y. Better proposal distributions: Object tracking using unscented particle
filter. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2001. CVPR 2001., Vol. 2. IEEE; 2001. pp. 768–793

[16] Montemerlo M, Thrun S, Koller D, Wegbreit Ben, et al. Fastslam: A factored solution to
the simultaneous localization and mapping problem. In AAAI/IAAI; 2002. pp. 593–598

[17] Petrovskaya A, Thrun S. Model based vehicle detection and tracking for autonomous
urban driving. Autonomous Robots. 2009;26(2-3):123–139

[18] Niknejad HT, Takeuchi A, Mita S, McAllester D. On-road multivehicle tracking using
deformable object model and particle filter with improved likelihood estimation. IEEE
Transactions on Intelligent Transportation Systems. 2012;13(2):748–758

[19] Thrun S, Burgard W, Fox D. Probabilistic Robotics. MIT Press, Cambridge, Massachusetts
(United States); 2005

[20] Gu Y, Lo A, Niemegeers I. A survey of indoor positioning systems for wireless personal
networks. IEEE Communications Surveys & Tutorials. 2009;11(1):13–32

Heuristics and Hyper-Heuristics - Principles and Applications104

[21] Zekavat R, Buehrer RM. Handbook of Position Location: Theory, Practice and Advances.
Vol. 27. John Wiley & Sons, Hoboken, New Jersey; 2011

[22] Honkavirta V, Perala T, Ali-Loytty S, Piché R. A comparative survey of WLAN location
fingerprinting methods. In: 6th Workshop on Positioning, Navigation and Communica-
tion, 2009. WPNC 2009. IEEE; 2009. pp. 243–251

[23] Bar-Shalom Y. Multitarget-multisensor Tracking: Advanced Applications. Norwood,
MA: Artech House; 1990. p. 391

[24] Hue C, Le Cadre J-P, Pérez P. Tracking multiple objects with particle filtering. IEEE
Transactions on Aerospace and Electronic Systems. 2002;38(3):791–812

[25] Okuma K, Taleghani A, De Freitas N, Little JJ, Lowe DG. A boosted particle filter:
Multitarget detection and tracking. In: European Conference on Computer Vision. Springer;
2004. pp. 28–39

[26] Hartigan JA, WongMA. Algorithm as 136: A k-means clustering algorithm. Journal of the
Royal Statistical Society. Series C (Applied Statistics). 1979;28(1):100–108

Advanced Particle Filter Methods
http://dx.doi.org/10.5772/intechopen.69236

105





Chapter 6

On the Use of Hybrid Heuristics for Providing Service to
Select the Return Channel in an Interactive Digital TV
Environment

Marcos César da Rocha Seruffo,
Ádamo Lima de Santana,
Carlos Renato Lisboa Francês and
Nandamudi Lankalapalli Vijaykumar

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69615

Abstract

The technologies used to link the end-user to a telecommunication infrastructure, has 
been changing over time due to the consolidation of new access technologies. Moreover, 
the emergence of new tools for information dissemination, such as interactive digital 
TV, makes the selection of access technology, factor of fundamental importance. One of 
the greatest advantages of using digital TV as means to disseminate information is the 
installation of applications. In this chapter, a load characterization of a typical application 
embedded in a digital TV is performed to determine its behavior. However, it is impor-
tant to note that applications send information through an access technology. Therefore, 
this chapter, based on the study on load characterization, developed a methodology com-
bining Bayesian networks and technique for order preference by similarity to ideal solu-
tion (TOPSIS) analytical approach to provide support to service providers to opt for a 
technology (power line communication, PLC, wireless, wired, etc.) for the return channel.

Keywords: heuristics, model decision making, service provider, return channel, 
interactive digital TV

1. Introduction

The interactive digital TV (DTV) environment allows a new class of services around television 
content that was to broadcast, where interactive programs can be employed allowing user 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



interaction. The interaction implies totally different approaches to reflect and produce televi-
sion content. In addition, one must keep in mind that such issue makes telecommunication 
infrastructures to deal with new load of data.

In this aspect, service providers have to plan the implantation of technology, based on these 
new demands that will be a part of computing environments. The diversity of broadcast appli-
cations and the usage of an interactive channel, as external communication in the Brazilian 
context, lead to a case-study with the objective to consider the social inclusion specified in 
Brazilian Presidential Decree No. 4901.

It is even more necessary as the Brazilian digital TV system (SBTVD) presents as a promis-
ing alternative when considering digital inclusion, since the television, besides being present 
in more than 90% of Brazilian homes, according to national survey by household sample of 
Brazilian Institute of Geography and Statistics (IBGE) [1]. It is also available to virtually all 
social classes, in all regions of Brazil, which is not true in the case of other communication 
devices, such as computers.

Therefore, one can consider that the digital TV has a great scope and it should not be restricted 
to a mere process of improving the quality of transmission. One must also consider it to be 
used as a tool for digital inclusion, naturally with strong possibility of interactivity.

In this context, a universe of activities involving production of audio/visual content to include 
applications that allow the user to interact with the interactive TV applications has been grow-
ing. The possibility to offer applications to viewers by means of interactive digital television 
(iTV) [2] originates a new production chain involving programs and applications develop-
ment of interactive character. Based on this aspect, service providers should be concerned 
with the diversity of applications and services that can be offered.

One of the main challenges, for social and digital inclusion through digital TV, is to enable the 
population, mainly located in areas of difficult access and low-income, to gain access to services 
such as t-health and t-education. Besides, it becomes a major challenge to access providers to use 
the traditional TV broadcast, the interaction with multiscreens (tablets, PC, TV, smartphones, 
etc.) allowing access with different digital services, to enable facilities such as purchases via 
online, chats with or without video, etc. However, this challenge implies on making networks 
available with a larger capillarity, in particular, when comparing to services available now.

Thus, it is fundamental to address the issue of first mile, i.e., the first technology with which 
a user connects to a telecommunication network; this term is used synonymously with technology 
access that ensures the interactivity (return channel) service. Studies must be conducted to 
service providers to have an idea of system performance characteristics. In order to secure 
this, scenarios must be studied and understood so that applications embedded in SBTVD can 
be used by end-users. Besides, solutions must be devised in order to facilitate providers to 
predict possible problems in the system.

Research should be conducted considering the following features: return channel and quality 
of service (QoS). Besides, such features must be taken into account in a combined manner with 
applications, amount of interactions that such applications require, as well as other aspects 
for ensuring effectiveness to deal with significant volume of services providing interactivity.

Heuristics and Hyper-Heuristics - Principles and Applications108



interaction. The interaction implies totally different approaches to reflect and produce televi-
sion content. In addition, one must keep in mind that such issue makes telecommunication 
infrastructures to deal with new load of data.

In this aspect, service providers have to plan the implantation of technology, based on these 
new demands that will be a part of computing environments. The diversity of broadcast appli-
cations and the usage of an interactive channel, as external communication in the Brazilian 
context, lead to a case-study with the objective to consider the social inclusion specified in 
Brazilian Presidential Decree No. 4901.

It is even more necessary as the Brazilian digital TV system (SBTVD) presents as a promis-
ing alternative when considering digital inclusion, since the television, besides being present 
in more than 90% of Brazilian homes, according to national survey by household sample of 
Brazilian Institute of Geography and Statistics (IBGE) [1]. It is also available to virtually all 
social classes, in all regions of Brazil, which is not true in the case of other communication 
devices, such as computers.

Therefore, one can consider that the digital TV has a great scope and it should not be restricted 
to a mere process of improving the quality of transmission. One must also consider it to be 
used as a tool for digital inclusion, naturally with strong possibility of interactivity.

In this context, a universe of activities involving production of audio/visual content to include 
applications that allow the user to interact with the interactive TV applications has been grow-
ing. The possibility to offer applications to viewers by means of interactive digital television 
(iTV) [2] originates a new production chain involving programs and applications develop-
ment of interactive character. Based on this aspect, service providers should be concerned 
with the diversity of applications and services that can be offered.

One of the main challenges, for social and digital inclusion through digital TV, is to enable the 
population, mainly located in areas of difficult access and low-income, to gain access to services 
such as t-health and t-education. Besides, it becomes a major challenge to access providers to use 
the traditional TV broadcast, the interaction with multiscreens (tablets, PC, TV, smartphones, 
etc.) allowing access with different digital services, to enable facilities such as purchases via 
online, chats with or without video, etc. However, this challenge implies on making networks 
available with a larger capillarity, in particular, when comparing to services available now.

Thus, it is fundamental to address the issue of first mile, i.e., the first technology with which 
a user connects to a telecommunication network; this term is used synonymously with technology 
access that ensures the interactivity (return channel) service. Studies must be conducted to 
service providers to have an idea of system performance characteristics. In order to secure 
this, scenarios must be studied and understood so that applications embedded in SBTVD can 
be used by end-users. Besides, solutions must be devised in order to facilitate providers to 
predict possible problems in the system.

Research should be conducted considering the following features: return channel and quality 
of service (QoS). Besides, such features must be taken into account in a combined manner with 
applications, amount of interactions that such applications require, as well as other aspects 
for ensuring effectiveness to deal with significant volume of services providing interactivity.

Heuristics and Hyper-Heuristics - Principles and Applications108

As a contribution, a provision of service strategies for selecting return channel within inter-
active digital TV environment is proposed in this chapter. This approach is based on a com-
bination of measurements and analytical/artificial intelligence models, enabling decision 
making from a set of QoS parameters. With respect to measures, test results are obtained for 
measuring the delay, throughput, jitter, active connections, response time, data dropped, and 
number of retransmissions from access technologies. With respect to the analytical/compu-
tational intelligence models, two decision-making approaches—Bayesian network (BN) and 
technique for order preference by similarity to ideal solution (TOPSIS)—have been deployed 
to determine the best choice from the alternatives studied.

The selection of TOPSIS and Bayesian networks is encouraged by several factors, such as ease 
of implementation, use in several solutions (as shown in Section 2), experience of the research 
group in the use of these models, results obtained from the combination of these models, and 
the use of a hybrid proposal ratifies the excellence of the proposed model. It is necessary to 
reinforce that the proposal discussed here is quite generic and flexible making is easier to 
consider another parameters or technologies and thus adapting it to be prepared for the other 
kinds of decision making.

2. Related work

Based on constant advancement in technologies, several studies published in the areas 
of heuristics, service provider, digital TV, access technologies, and methods for decision 
making show that strategies for providing service to select the return channel are in the 
spotlight.

Usually, digital TV systems make use of the layered architecture to be represented. Lower 
layers provide services to upper layers. Architectures are similar but different with respect to 
modulation, coding, compression, transmission, running applications, and adopted middle-
ware. In particular, for Brazil, the adopted middleware is known as Ginga.

According to Ref. [3], iTV systems allow a new variety of services over broadcast TV content. 
Therefore, user interaction through digital TV apps is possible. This implies in a new means 
to manipulate the content (from the user's point of view), because of this, stimulate a different 
form to produce and think about TV. This chapter presents interactive service provider archi-
tecture for iTV systems, from a service-oriented architecture and guaranteeing a standardized 
communication among client apps and services with interactivity.

SBTVD and its characteristics are discussed in Ref. [4]. It elaborates the analysis of several aspects 
with respect to the definition of SBTVD and relates the electronics industry's impact on its pro-
ductive chain. It also identifies features and functions that are to be considered to be imple-
mented in the system and even goes further by discussing the potential of sales of digital signal 
receivers.

Another paper [5] gave a relevant contribution by showing a variety of studies that 
addressed the connection between the end-user and telecommunication infrastructure. 
Authors in Ref. [6] address the concern in the behavior of networks given the increase in the 

On the Use of Hybrid Heuristics for Providing Service to Select the Return Channel...
http://dx.doi.org/10.5772/intechopen.69615

109



number of end-users with access to systems like asymmetric digital subscriber line (ADSL), 
cable modem, wireless, power line communication (PLC), and optical fiber.

Reviewed literature showed technologies employed as a return channel for interactive digital 
TV. For example, based on the number of active subscribers, several models were designed 
and simulated to evaluate the performance of the system's capacity [7]. It brought evidences 
that WiMAX would perfectly fit as a return channel for digital TV interactive application. In 
Ref. [8], the tests use PLC as a return channel to test how effective it is for applications such 
as e-health and e-learning.

Traditional TV sets have been enhanced with new services due after digital TV has been 
introduced [9]. For example, set-top boxes enable access to Internet to send emails. This new 
approach allows interaction of the viewers with TV stations. The most important contribution 
of Ref. [9] is the analysis whether an ad-hoc wireless network is feasible to be used as a return 
channel as such networks are cheap and flexible.

Among the range of access technologies available in the market, the selection of access technology 
to be used by the service provider is the subject much discussed in the literature. As in Ref. [10], 
that uses the stochastic control technique, Markov decision process (MDP) studies and examines 
the relationship between optimal decisions that should be applied by the service provider.

Literature also shows that infrastructure for telecommunication must consider its improve-
ment, as it is clear that there is an increase in the number of digital TVs if bottlenecks are to 
be avoided. Some methods have been suggested in Refs. [11, 12] to control such bottlenecks 
due to heavy telecommunication traffic. The method suggested is to enable access for volatile 
traffic and this is based on sample monitoring.

There are several tools to monitor and control and these may be employed to measure the 
system load and evaluate how bottlenecks can be avoided. In this sense, it becomes necessary 
to understand multicriteria decision-making methods.

Authors in Ref. [13] present an overview of various approaches to multicriteria decision mak-
ing by comparing their performances, which can be used as a basis for the study of models 
employed for decision making.

One approach for the first mile problem to select user's connection can be found in Ref. 
[14]. It is based on multicriteria analysis and can be considered as a combination model as it 
addresses issues such as multicriteria ranking, knapsack-like problems, hierarchical cluster-
ing, and morphological synthesis.

Heuristics for multicriteria decision making have been widely used, as shown in Ref. [15], 
with several papers addressing algorithms for selecting the return channel in heterogeneous 
environments, such as Refs. [16–21], with different kinds of models.

Bayesian networks are graphical models for reasoning based on uncertainty, where nodes repre-
sent the variables (discrete or continuous) and arcs represent the direct connection between them. 
From the set of computational intelligence models surveyed in the literature, Bayesian Networks 
were chosen to model decision making to extract knowledge of a typical iTV application.

Heuristics and Hyper-Heuristics - Principles and Applications110



number of end-users with access to systems like asymmetric digital subscriber line (ADSL), 
cable modem, wireless, power line communication (PLC), and optical fiber.

Reviewed literature showed technologies employed as a return channel for interactive digital 
TV. For example, based on the number of active subscribers, several models were designed 
and simulated to evaluate the performance of the system's capacity [7]. It brought evidences 
that WiMAX would perfectly fit as a return channel for digital TV interactive application. In 
Ref. [8], the tests use PLC as a return channel to test how effective it is for applications such 
as e-health and e-learning.

Traditional TV sets have been enhanced with new services due after digital TV has been 
introduced [9]. For example, set-top boxes enable access to Internet to send emails. This new 
approach allows interaction of the viewers with TV stations. The most important contribution 
of Ref. [9] is the analysis whether an ad-hoc wireless network is feasible to be used as a return 
channel as such networks are cheap and flexible.

Among the range of access technologies available in the market, the selection of access technology 
to be used by the service provider is the subject much discussed in the literature. As in Ref. [10], 
that uses the stochastic control technique, Markov decision process (MDP) studies and examines 
the relationship between optimal decisions that should be applied by the service provider.

Literature also shows that infrastructure for telecommunication must consider its improve-
ment, as it is clear that there is an increase in the number of digital TVs if bottlenecks are to 
be avoided. Some methods have been suggested in Refs. [11, 12] to control such bottlenecks 
due to heavy telecommunication traffic. The method suggested is to enable access for volatile 
traffic and this is based on sample monitoring.

There are several tools to monitor and control and these may be employed to measure the 
system load and evaluate how bottlenecks can be avoided. In this sense, it becomes necessary 
to understand multicriteria decision-making methods.

Authors in Ref. [13] present an overview of various approaches to multicriteria decision mak-
ing by comparing their performances, which can be used as a basis for the study of models 
employed for decision making.

One approach for the first mile problem to select user's connection can be found in Ref. 
[14]. It is based on multicriteria analysis and can be considered as a combination model as it 
addresses issues such as multicriteria ranking, knapsack-like problems, hierarchical cluster-
ing, and morphological synthesis.

Heuristics for multicriteria decision making have been widely used, as shown in Ref. [15], 
with several papers addressing algorithms for selecting the return channel in heterogeneous 
environments, such as Refs. [16–21], with different kinds of models.

Bayesian networks are graphical models for reasoning based on uncertainty, where nodes repre-
sent the variables (discrete or continuous) and arcs represent the direct connection between them. 
From the set of computational intelligence models surveyed in the literature, Bayesian Networks 
were chosen to model decision making to extract knowledge of a typical iTV application.

Heuristics and Hyper-Heuristics - Principles and Applications110

The use of Bayesian networks with multicriteria decision-making methods is found in the lit-
erature, like Ref. [22], in which the authors show a problem of multicriteria decision making. 
The authors aim is to select the most suitable solution (given many alternatives). The idea is to 
propose a method that centers on the person since the “weight” given to each criterion is defined 
according to the features of the person. The solution is based on Bayesian network (BN) and ana-
lytic hierarchy process (AHP) method, the chart of the BN and the probabilities associated with 
nodes are designed to convert the knowledge of the specialists on the choice of an alternative.

In Ref. [23], the author presents a decision model to determine weights for the application, 
using a multi-attribute decision-making model based on Bayesian networks. Critical tech-
nique, dasiaBayesian networkspsila, is used to determine values for the weights, which com-
bined prior information (other expertspsila knowledge, or numerical simulation, etc.) with 
expertspsila knowledge.

According to Ref. [24], “the weight in technique for order preference by similarity ideal solu-
tion (TOPSIS) is given by experts or decision makers. The value of weight would be influ-
enced by expertspsila subjective judgments. A slight difference in value of weights may result 
in diversity of order of alternatives. In this chapter, a Bayesian method for the decision of 
weight for Multi-attribute decision-making model with interval data is introduced. The value 
of weight is decided by a priori information (other expertspsila knowledge, or numerical sim-
ulation, etc.) and experts' knowledge (or decision makerspsila experience/preference).” This 
paper is an example of the hybrid solution, using TOPSIS and BN in MADM.

To develop this chapter, a thorough literature survey on TOPSIS either standalone or 
hybridized with other heuristics/machine learning models was done. Papers like Refs. 
[25–30] show different types of use of TOPSIS as heuristic for decision making in the most 
diverse areas. Though, it is currently a hot research topic in the academic community; how-
ever, some gaps need attention which include the lack of studies using a heuristic, based on 
multicriteria analysis, using data collected, testing implementations on real devices, imple-
mentation of these heuristic in open platforms, mounting a consolidated database from 
simulation scenarios, using the TOPSIS method from a weight vector based on simulation 
tests, not experts, and comparison of different technologies that are already consolidated in 
the market.

Thus, the proposal discussed in this chapter contemplates the highlighted gaps by present-
ing a strategy for providing service to select the access technology for iTV environment. 
Therefore, the service provider can analyze the best technology to be used in a real scenario. 
For this, models are used for decision making based on Bayesian networks and TOPSIS.

3. Models for multicriteria decision making

When there are conflicting aims that may omit optimal solutions, decision making comes into 
picture as it can lead to a good solution. Multicriteria methods become important as they support 
decision making. According to Ref. [31], decision making can be simply described as an effort to 
solve the dilemma of conflicting goals. In problems concerning decision making, a decision maker 

On the Use of Hybrid Heuristics for Providing Service to Select the Return Channel...
http://dx.doi.org/10.5772/intechopen.69615

111



usually assists in the process by listing several important criteria and analytical methods may be 
employed to aid in such decisions. There are two analytical approaches: American and European.

The North American approach is mainly represented by analytic hierarchy process (AHP) devel-
oped by Thomas Lorie Saaty. The European approach has a wider range of multicriteria deci-
sion methods, such as TOPSIS, elimination and choice translating reality (ELECTRE), measuring 
attractiveness by a categorical-based evaluation technique (MACBETH), among others [24].

From an extensive bibliographical survey in the area of decision making, TOPSIS was chosen 
due to its easy implementation, good behavior in mathematical tests performed, and solu-
tions to be widespread in several areas, as in Refs. [24, 32–34].

Thus, studies were conducted with a view to decision making based on two components: (a) com-
putational intelligence based on Bayesian networks; (b) multicriteria analysis based on TOPSIS.

4. Tests

Once the models that would be used were selected, a typical scenario was set for transmission 
of digital content, and a server was configured to respond to the user requests, simulating 
an iTV service infrastructure. Thus, characterization of the load of a typical digital TV was 
obtained. Figure 1 shows the assembled infrastructure, with a transmission layer, respon-
sible for transmitting the television programs for broadcast and interactive applications.

The application is received and executed in the user layer, which has a TV with a set-top box 
connected and access technology for a return channel. The infrastructure of the return chan-
nel is represented in the layer service provider and can be wired and wireless, leaving it to the 
provider to decide which technology is to be employed.

Figure 1. Scenario test the app of digital TV.

Heuristics and Hyper-Heuristics - Principles and Applications112



usually assists in the process by listing several important criteria and analytical methods may be 
employed to aid in such decisions. There are two analytical approaches: American and European.

The North American approach is mainly represented by analytic hierarchy process (AHP) devel-
oped by Thomas Lorie Saaty. The European approach has a wider range of multicriteria deci-
sion methods, such as TOPSIS, elimination and choice translating reality (ELECTRE), measuring 
attractiveness by a categorical-based evaluation technique (MACBETH), among others [24].

From an extensive bibliographical survey in the area of decision making, TOPSIS was chosen 
due to its easy implementation, good behavior in mathematical tests performed, and solu-
tions to be widespread in several areas, as in Refs. [24, 32–34].

Thus, studies were conducted with a view to decision making based on two components: (a) com-
putational intelligence based on Bayesian networks; (b) multicriteria analysis based on TOPSIS.

4. Tests

Once the models that would be used were selected, a typical scenario was set for transmission 
of digital content, and a server was configured to respond to the user requests, simulating 
an iTV service infrastructure. Thus, characterization of the load of a typical digital TV was 
obtained. Figure 1 shows the assembled infrastructure, with a transmission layer, respon-
sible for transmitting the television programs for broadcast and interactive applications.

The application is received and executed in the user layer, which has a TV with a set-top box 
connected and access technology for a return channel. The infrastructure of the return chan-
nel is represented in the layer service provider and can be wired and wireless, leaving it to the 
provider to decide which technology is to be employed.

Figure 1. Scenario test the app of digital TV.

Heuristics and Hyper-Heuristics - Principles and Applications112

The layer of the test server is responsible for responding to requests from tests, with only the 
application server, which has the function of helping in the measurement criteria used for 
decision making.

The assembly of the aforementioned scenario was based on extracting measures of a typi-
cal network of digital TV. The application used in these tests was developed by the research 
group of this article, and is called DTV-Educ 2.0 [35].

The purpose of this application, a chat conversation, is to make it available for regular televi-
sion program, so that a student who is watching television can make classroom questions in 
real time or even conduct group work with other students.

Figure 2 shows a screenshot of the developed application running on OpenGinga (Ginga 
emulator platform) during a conversation. It presents the history of messages exchanged 
between participants in the chat during a television program.

4.1. Characterization of load application

To characterize the load application in the network, tests were performed where two real 
users, for 10 min, exchanged messages via the chat provided by the application.

All application information was recorded during the conversation via a spy program net-
work, and Table 1 summarizes the measured statistical results of this application.

Figure 2. Application DTV-Educ 2.0 during a chat.

On the Use of Hybrid Heuristics for Providing Service to Select the Return Channel...
http://dx.doi.org/10.5772/intechopen.69615

113



Configuration parameter Value

HTTP specification HTTP 1.1

Page interarrival time (s) Weibull (0.30419, 0.1139)

Page properties Lognormal (4.2996, 0.25489)

Type of service Best effort (0)

Table 2. Parameters for digital TV Application.

The measured data in Table 1 were used for configuring the application in a simulation scenario. 
It is noteworthy that this application when compared with other types of traditional applica-
tions does not occupy the network much, because its traffic is only in plain text that is typed by 
users. In general, the applications used in digital TV environment present this behavior.

From the characterization of the DTV load application, other parameters that would be 
inserted in the simulation environment were set.

4.2. Definition of applications and parameters

After characterization of load application, it was necessary to conduct a research on flow 
commonly used on the Internet. The idea is to make the environment of a user utilizing an 
interactive application in as real scenario as possible.

Therefore, three streams that were used in simulation tests were defined: (i) application of 
video (video conferencing), (ii) application of voice over IP (VoIP), and (iii) typical application 
of digital TV (DTV-Educ 2.0). These three applications aimed to model traffic used by typical 
customers who use the Internet, and the first two were taken from Ref. [36].

The probability of some configuration parameters within digital TV application was 
obtained (from empirical studies) to characterize the traffic load and was fed as input to the 
simulator. The specification of the traffic load for the application DTV-Educ 2.0 is found 
in Table 2: type of HTTP, page interarrival time, the properties of pages loaded, and the 
type of service.

The configurable parameters for video traffic (Table 3) are the values of packet arrival time 
(frame interarrival time), expressed by a constant value, and package size (frame size), which 

Parameter Value

Packets transmitted 575

Average packet per second 1.016

Average size of package 59.927 bytes

Average throughput 60.898 bytes/s

Table 1. Values DTV-EDUC 2.0.

Heuristics and Hyper-Heuristics - Principles and Applications114



Configuration parameter Value

HTTP specification HTTP 1.1

Page interarrival time (s) Weibull (0.30419, 0.1139)

Page properties Lognormal (4.2996, 0.25489)

Type of service Best effort (0)

Table 2. Parameters for digital TV Application.

The measured data in Table 1 were used for configuring the application in a simulation scenario. 
It is noteworthy that this application when compared with other types of traditional applica-
tions does not occupy the network much, because its traffic is only in plain text that is typed by 
users. In general, the applications used in digital TV environment present this behavior.

From the characterization of the DTV load application, other parameters that would be 
inserted in the simulation environment were set.

4.2. Definition of applications and parameters

After characterization of load application, it was necessary to conduct a research on flow 
commonly used on the Internet. The idea is to make the environment of a user utilizing an 
interactive application in as real scenario as possible.

Therefore, three streams that were used in simulation tests were defined: (i) application of 
video (video conferencing), (ii) application of voice over IP (VoIP), and (iii) typical application 
of digital TV (DTV-Educ 2.0). These three applications aimed to model traffic used by typical 
customers who use the Internet, and the first two were taken from Ref. [36].

The probability of some configuration parameters within digital TV application was 
obtained (from empirical studies) to characterize the traffic load and was fed as input to the 
simulator. The specification of the traffic load for the application DTV-Educ 2.0 is found 
in Table 2: type of HTTP, page interarrival time, the properties of pages loaded, and the 
type of service.

The configurable parameters for video traffic (Table 3) are the values of packet arrival time 
(frame interarrival time), expressed by a constant value, and package size (frame size), which 

Parameter Value

Packets transmitted 575

Average packet per second 1.016

Average size of package 59.927 bytes

Average throughput 60.898 bytes/s

Table 1. Values DTV-EDUC 2.0.

Heuristics and Hyper-Heuristics - Principles and Applications114

is a random variable with exponential distribution. The values assigned in these two variables 
generate a video application rate of 1.5 Mbps to each customer. The parameter type of service 
is also configured and represents that the priority will be given to the application on the net-
work, which is the best effort type.

The configuration of the VoIP application is presented in Table 4. The times of silence and speech 
used to model the voice application parameters are represented by talk spurt and silence length. 
The parameters such as encoder scheme and voice frame per packet, characterize, respectively, 
the type of encoder used in the generation of voice traffic and the number of voice frames per 
packet during the simulation.

According to Table 4, the VoIP application uses the GSM encryption and generates a rate of 
approximately 20 kbps. The parameter type of service is also configured and represents the 
priority assigned to application on the network, which is best effort type.

Thus, applications have been developed and their characteristics were modeled using the 
parameters configurable by the simulator.

4.3. Simulation of a scenario

The development of the simulation tests required a tool that can simulate the performance of 
the network. Thus, an OPNET is the name of Network Simulator modeler was opted, which 
is widely used as a tool for modeling telecommunications networks, and their work environ-
ment allows creating a network from a library of templates, and set parameters not only for 
the environment, as well as for each object that is composed, and the impacts of its variations 
[37].

Configuration parameter Value

Frame interarrival time (s) Constant (0.1)

Frame size (bytes) Exponential (15625)

Type of service Best effort (0)

Table 3. Parameters for video application.

Configuration parameter Value

Silence length (s) Exponential (0.65)

Talk spurt length (s) Exponential (0.352)

Encoder scheme GSM (silence)

Voice frames per packet 1

Type of service Best effort (0)

Table 4. Parameters for voice application.

On the Use of Hybrid Heuristics for Providing Service to Select the Return Channel...
http://dx.doi.org/10.5772/intechopen.69615

115



Through this software, it was possible to observe the behavior of a network based on WiMAX, 
with the parameters defined in the previous section. Figure 3 shows a scenario simulator that 
was set up containing 32 nodes, using the three streams defined above; a WiMAX antenna 
communicating with a backbone, which in turn communicates with the test server; box set-
tings of the applications, the profiles, and WiMAX antenna.

Settings were made with parameters of real devices in order to make the simulation as real-
istic as possible, by applying these settings in the simulator. Table 5 shows the main settings 
used in the simulation.

After analyzing the data input and configuration of the simulator, simulations were per-
formed using a simulation time of 15 min to set up each scenario.

The tests were done thoroughly from the variation in the number of users on the network 
(until 40 users) and the change of seed of the simulation, which meant that for the same 
amount of users, different values were obtained. An extensive database was generated and 
consolidated, containing all the measured results of simulation experiments.

Figure 3. Scenario mounted on the OPNET simulator.

Heuristics and Hyper-Heuristics - Principles and Applications116



Through this software, it was possible to observe the behavior of a network based on WiMAX, 
with the parameters defined in the previous section. Figure 3 shows a scenario simulator that 
was set up containing 32 nodes, using the three streams defined above; a WiMAX antenna 
communicating with a backbone, which in turn communicates with the test server; box set-
tings of the applications, the profiles, and WiMAX antenna.

Settings were made with parameters of real devices in order to make the simulation as real-
istic as possible, by applying these settings in the simulator. Table 5 shows the main settings 
used in the simulation.

After analyzing the data input and configuration of the simulator, simulations were per-
formed using a simulation time of 15 min to set up each scenario.

The tests were done thoroughly from the variation in the number of users on the network 
(until 40 users) and the change of seed of the simulation, which meant that for the same 
amount of users, different values were obtained. An extensive database was generated and 
consolidated, containing all the measured results of simulation experiments.

Figure 3. Scenario mounted on the OPNET simulator.

Heuristics and Hyper-Heuristics - Principles and Applications116

5. Generating the Bayesian network

After the organization of the database, computational intelligence model capable of extract-
ing patterns was used. This model is Bayesian network that is used to assess the influence 
(weight) that each parameter has on the final result (selection of return channel).

BN is a model that codifies probabilistic relationships between variables that represent a cer-
tain domain. The BN is shaped by qualitative structure, expressing the dependencies among 
nodes, quantitative part (conditional probability tables of these nodes), quantifying these 
dependencies in probabilistic terms. To summarize, the cited components can give an efficient 
representation of the joint probability distribution of the set of variables for a given domain. 
More information can be obtained accessing Refs. [38–40].

BN was used given expertise of the group in BN area, exceptional analytical properties to expose 
domains, easy visualization and understanding of the relations among the variables, consisting 
on a crucial factor, and of great value for the representation and analysis of the domain (by the 
users).

For the Bayesian network, in order to establish correlations between the variables in the domain, 
it was necessary to define the attributes (metrics) considered for the analysis proposed in this 
chapter. These metrics were selected from the set of tests in the scenarios modeled in OPNET.

Thus, among the metrics provided by OPNET for analysis, seven were defined, which were 
used in the process of decision making. These metrics are shown in Table 6, as well as the 
description of their purpose.

From the definition of the metric (also called criteria) that would be used for decision making, 
a Bayesian network was generated using the search algorithm and scoring K2, widespread in 
the literature [41]. To this end, the application Bayesware Discoverer was employed. Figure 4 
shows the network generated from the tool, with seven nodes and their dependencies.

Parameter Value

Frequency channel 5 MHz

Programming model HATA

Antenna model Ominidirecional

Gain transmission 1 dBm

Receive gain 1 dBm

Power transmission 0.125 dB

Length of frame 20 ms

Packet size 1024 bytes

Time of simulation 15 min

Table 5. WiMAX radio settings.

On the Use of Hybrid Heuristics for Providing Service to Select the Return Channel...
http://dx.doi.org/10.5772/intechopen.69615

117



The goal of setting up the Bayesian network is to extract the weight that each criterion has mea-
sured in the simulation environment. Thus, a weight vector was generated to the application of the 
TOPSIS method for decision making, considering the Probability distribution shown in Figure 5.

We set up the conditional entropy (Eq. (1)) as a measure of the uncertainty that obtains the 
value of Y is known as X. If the value of (X, Y) ~ p (x, y), then the conditional entropy H (Y|X).

  H  (   Y |  X  )    =   ∑  
x∈X

   p  (  x )   H  (  Y|X = x )      (1)

Guiding on the theory proposed for Bayesian networks, we could verify the impact that alter-
ations between the states of the variable X cause on the states of the variable Y. That means, 
when we infer the state Xi = 1, for example, we determine the impact that the first X state is 
causing on the states of the variable Y. Then, we were able to verify the impact that each X 

Metric Description

Active connection Total number of active TCP connections on the surrounding node.

Throughput This statistic represents the average number of bits successfully received or 
transmitted by the receiver or transmitter channel per unit time, in bits per 
second.

Jitter It is the value of delay variation, i.e., the difference between two delay times, 
measured in milliseconds.

Delay Represents end-to-end delay of all the packets received by the WiMAX 
MACs of all WiMAX nodes in the network and forwarded to the higher 
layer.

Retransmissions Number of TCP retransmissions on this node.
Written when data is retransmitted from the TCP unacknowledged buffer.

Object response time Specifies response time for each inlined object from the HTML page.

Data dropped Higher layer data traffic dropped (in bits/s) by the WiMAX MAC due to data 
buffer overflow.

Table 6. Metrics used in the decision-making model.

Figure 4. Bayesian network generated.

Heuristics and Hyper-Heuristics - Principles and Applications118



The goal of setting up the Bayesian network is to extract the weight that each criterion has mea-
sured in the simulation environment. Thus, a weight vector was generated to the application of the 
TOPSIS method for decision making, considering the Probability distribution shown in Figure 5.

We set up the conditional entropy (Eq. (1)) as a measure of the uncertainty that obtains the 
value of Y is known as X. If the value of (X, Y) ~ p (x, y), then the conditional entropy H (Y|X).

  H  (   Y |  X  )    =   ∑  
x∈X

   p  (  x )   H  (  Y|X = x )      (1)

Guiding on the theory proposed for Bayesian networks, we could verify the impact that alter-
ations between the states of the variable X cause on the states of the variable Y. That means, 
when we infer the state Xi = 1, for example, we determine the impact that the first X state is 
causing on the states of the variable Y. Then, we were able to verify the impact that each X 

Metric Description

Active connection Total number of active TCP connections on the surrounding node.

Throughput This statistic represents the average number of bits successfully received or 
transmitted by the receiver or transmitter channel per unit time, in bits per 
second.

Jitter It is the value of delay variation, i.e., the difference between two delay times, 
measured in milliseconds.

Delay Represents end-to-end delay of all the packets received by the WiMAX 
MACs of all WiMAX nodes in the network and forwarded to the higher 
layer.

Retransmissions Number of TCP retransmissions on this node.
Written when data is retransmitted from the TCP unacknowledged buffer.

Object response time Specifies response time for each inlined object from the HTML page.

Data dropped Higher layer data traffic dropped (in bits/s) by the WiMAX MAC due to data 
buffer overflow.

Table 6. Metrics used in the decision-making model.

Figure 4. Bayesian network generated.

Heuristics and Hyper-Heuristics - Principles and Applications118

state was influencing on Y; in this case, the quantity of inference done in all states of the base-
variables of the three defined factors was affecting the states of the other variable, which we 
aim to determine the weight. This influence from each state on the variable X over Y is added 
together, obtaining a vector of probability Vp.

Vp = [0.24 0.27 0.27 0.08 0.07 0.07]

Weight values for each criterion obtained from the Bayesian network express the influence 
that certain criteria have about setting the scene.

Thus, by extrapolating the fitted model and assuming that a service provider has more than 
one choice of access technology for a given scenario, the purpose of this chapter is to define 
what technology should be used.

6. Tests to evaluate the first miles

From the weights defined, real test scenarios and experiments were performed to test the 
proposed strategies.

Figure 5. Probability distribution.

On the Use of Hybrid Heuristics for Providing Service to Select the Return Channel...
http://dx.doi.org/10.5772/intechopen.69615

119



In order to perform measurements in real scenarios, three access technologies were used 
such as PLC, WiMAX, and ADSL. The choice of these different technologies is based on 
the availability of resources for testing and the focus of these tests on heterogeneous net-
works, since the metrics analyzed should provide different values due to each technology's 
peculiarities.

WiMAX networks, for example, suffer interference caused by external factors such as distance 
between antennas and similar frequencies. PLC networks, which use electricity to transfer 
data, suffer interference caused by devices that operate in frequency bands similar to those 
used for data transmission. ADSL technology uses fixed telephony lines for data transmission 
and is characterized by impulsive and background noises.

Thus, scenarios were set to test the different types of technologies, as illustrated in Figure 1, 
based on four layers already defined. Then, a java applet to obtain the results of the criteria 
established was employed.

Based on the sampling theory, the tests performed were repeated over 50 times, to obtain an 
acceptable average for comparison. The average results are shown in Table 7.

The values shown in Table 7 show the average of the results obtained from 1 to 40 users. 
These numbers represent measurements from real-world scenarios at any given time and 
were used in the decision-making process presented in this chapter.

From these values, a decision-making framework using TOPSIS was implemented to calcu-
late decision making based on weights previously obtained.

7. Heuristics for decision making

After the evaluation on real scenarios of the access technologies (PLC, WiMAX and ADSL), a 
decision of which technology to be used follows. For the decision making, TOPSIS method is 

PLC WiMAX ADSL

Number of active 
connections

1.000 2.227 3.000

Average jitter (ms) 4.8 6.7 3.1

Average delay (ms) 16.6 21 13.5

Average throughput (kbps) 716 1436.6 6912.5

Object response time (s) 31.6 25.8 21.9

Number of data dropped 2.500 1.800 1.100

Number of retransmissions 3.000 3.700 2.200

Table 7. Results with different technologies.

Heuristics and Hyper-Heuristics - Principles and Applications120



In order to perform measurements in real scenarios, three access technologies were used 
such as PLC, WiMAX, and ADSL. The choice of these different technologies is based on 
the availability of resources for testing and the focus of these tests on heterogeneous net-
works, since the metrics analyzed should provide different values due to each technology's 
peculiarities.

WiMAX networks, for example, suffer interference caused by external factors such as distance 
between antennas and similar frequencies. PLC networks, which use electricity to transfer 
data, suffer interference caused by devices that operate in frequency bands similar to those 
used for data transmission. ADSL technology uses fixed telephony lines for data transmission 
and is characterized by impulsive and background noises.

Thus, scenarios were set to test the different types of technologies, as illustrated in Figure 1, 
based on four layers already defined. Then, a java applet to obtain the results of the criteria 
established was employed.

Based on the sampling theory, the tests performed were repeated over 50 times, to obtain an 
acceptable average for comparison. The average results are shown in Table 7.

The values shown in Table 7 show the average of the results obtained from 1 to 40 users. 
These numbers represent measurements from real-world scenarios at any given time and 
were used in the decision-making process presented in this chapter.

From these values, a decision-making framework using TOPSIS was implemented to calcu-
late decision making based on weights previously obtained.

7. Heuristics for decision making

After the evaluation on real scenarios of the access technologies (PLC, WiMAX and ADSL), a 
decision of which technology to be used follows. For the decision making, TOPSIS method is 

PLC WiMAX ADSL

Number of active 
connections

1.000 2.227 3.000

Average jitter (ms) 4.8 6.7 3.1

Average delay (ms) 16.6 21 13.5

Average throughput (kbps) 716 1436.6 6912.5

Object response time (s) 31.6 25.8 21.9

Number of data dropped 2.500 1.800 1.100

Number of retransmissions 3.000 3.700 2.200

Table 7. Results with different technologies.

Heuristics and Hyper-Heuristics - Principles and Applications120

applied on the results measured from the network (Table 7), based on the vector Vp, which is 
the weight for each metric evaluated.

Using an applet, the results were compared with other applications available in the market to 
see the degree of certainty, all of which were proved satisfactorily.

Figure 6 shows the relative closeness to the ideal solution, ranking the alternatives in 
increasing order of selection.

In this case, from the use of the results of real scenarios, the best choice to service provider is 
the ADSL technology as it presented the best performance compared to other technologies.

If for some reason (financial, political, etc.), ADSL technology cannot be used, the WiMAX 
network would be selected and, as a last alternative, the PLC technology. If in case, a new 
evaluation is made on the networks, or another service is available with different weights, a 
new score table must be generated.

8. Conclusion

The papers, to serve as a basis for this chapter, surveyed for showed that several studies 
are being conducted in areas covered: access technologies, service provider, Digital TV, and 
decision support.

After analyzing the papers, gaps were found that need attention, among which are the lack of 
studies using a heuristic, based on multicriteria analysis, using data collected; testing imple-
mentations on real devices; implementation of these heuristic in open platforms; setting up a 
consolidated database from simulation scenarios; using TOPSIS from a weight vector based 
on simulation tests, not experts; and comparison of different technologies that are already 
consolidated in the market.

Thus, this chapter presents a novel strategy that considers the use of real test scenarios, draw-
ing a comparison between more than one access technologies such as PLC, WiMAX, and 
ADSL. This comparison is performed by a heuristic decision making, based on the Bayesian 
networks and TOPSIS, which measures the best choice of the access technology.

Access providers can plan for optimizing interactive services for digital TV, using a heuristic 
that considers seven network performance measures active connection, jitter, delay, through-
put, object response time, data dropped, and retransmissions.

Figure 6. Results with different technologies.

On the Use of Hybrid Heuristics for Providing Service to Select the Return Channel...
http://dx.doi.org/10.5772/intechopen.69615

121



As future studies, new tests will be conducted with other access technologies, for confirming 
the results obtained in these experiments. In addition, new techniques will be adopted to 
optimize the system, such as genetic algorithms and Markov decision process. Furthermore, 
the proposed criteria will be improved to obtain other measures for network performance.

Author details

Marcos César da Rocha Seruffo1*, Ádamo Lima de Santana1, Carlos Renato Lisboa Francês1 
and Nandamudi Lankalapalli Vijaykumar2

*Address all correspondence to: marcos.seruffo@gmail.com

1 Federal University of Pará, Belém, Pará, Brazil

2 National Institute for Space Research (INPE), São José dos Campos, São Paulo, Brazil

References

[1] Brazilian Institute of Geography and Statistics (IBGE). National Survey by Household 
Sample [Internet]. 2009. Available from: <http://www.ibge.gov.br/home/estatistica/pop-
ulacao/trabalhoerendimento/pnad2009/default.shtm> [Accessed: January 31 2017]

[2] Montez C, Becker V. Interactive Digital TV: Concepts, Challenges and Prospects for 
Brazil. UFSC Publishing company, Second Edition; 2005

[3] Prado GM, Zorzo SD. Interactive service provider architecture for interactive digital 
television systems. In: 2010 International Conference on Computer Information Systems 
and Industrial Management Applications (CISIM); 2010

[4] Costanzo BP, Neto JA. Analysis of the Brazilian digital TV system (BDTVS) and signal-
converting devices. In: Portland International Center for Management of Engineering 
and Technology (PICMET). Annals; 2007. pp. 1830-1838

[5] Xiao Y, et al. Internet protocol television (IPTV): The killer application for the next-gen-
eration internet. IEEE Communications Magazine. 2007;45(11):126-134

[6] Dutta-roy A. Bring home the internet. Journal IEEE Spectrum. 2012;39(12):32-38

[7] Budri AK, et al. WiMAX simulation models for return channel in digital television sys-
tems. In: International Telecommunications Symposium. Annals; Fortaleza. Vol. 3; 2006. 
pp. 688-693

[8] Polo EI, et al. PLC as a return channel for interactive digital TV. In: International Conference 
on Communications and Networking in China. Annals; Shangai, China; 2007. pp. 1-5

Heuristics and Hyper-Heuristics - Principles and Applications122



As future studies, new tests will be conducted with other access technologies, for confirming 
the results obtained in these experiments. In addition, new techniques will be adopted to 
optimize the system, such as genetic algorithms and Markov decision process. Furthermore, 
the proposed criteria will be improved to obtain other measures for network performance.

Author details

Marcos César da Rocha Seruffo1*, Ádamo Lima de Santana1, Carlos Renato Lisboa Francês1 
and Nandamudi Lankalapalli Vijaykumar2

*Address all correspondence to: marcos.seruffo@gmail.com

1 Federal University of Pará, Belém, Pará, Brazil

2 National Institute for Space Research (INPE), São José dos Campos, São Paulo, Brazil

References

[1] Brazilian Institute of Geography and Statistics (IBGE). National Survey by Household 
Sample [Internet]. 2009. Available from: <http://www.ibge.gov.br/home/estatistica/pop-
ulacao/trabalhoerendimento/pnad2009/default.shtm> [Accessed: January 31 2017]

[2] Montez C, Becker V. Interactive Digital TV: Concepts, Challenges and Prospects for 
Brazil. UFSC Publishing company, Second Edition; 2005

[3] Prado GM, Zorzo SD. Interactive service provider architecture for interactive digital 
television systems. In: 2010 International Conference on Computer Information Systems 
and Industrial Management Applications (CISIM); 2010

[4] Costanzo BP, Neto JA. Analysis of the Brazilian digital TV system (BDTVS) and signal-
converting devices. In: Portland International Center for Management of Engineering 
and Technology (PICMET). Annals; 2007. pp. 1830-1838

[5] Xiao Y, et al. Internet protocol television (IPTV): The killer application for the next-gen-
eration internet. IEEE Communications Magazine. 2007;45(11):126-134

[6] Dutta-roy A. Bring home the internet. Journal IEEE Spectrum. 2012;39(12):32-38

[7] Budri AK, et al. WiMAX simulation models for return channel in digital television sys-
tems. In: International Telecommunications Symposium. Annals; Fortaleza. Vol. 3; 2006. 
pp. 688-693

[8] Polo EI, et al. PLC as a return channel for interactive digital TV. In: International Conference 
on Communications and Networking in China. Annals; Shangai, China; 2007. pp. 1-5

Heuristics and Hyper-Heuristics - Principles and Applications122

[9] Campista MEM, et al. The ad hoc return channel: A low-cost solution for Brazilian inter-
active digital TV. IEEE Communications Magazine. 2007;45(1):136-143

[10] Nasser N. A Theoretical approach for service provider decision in heterogeneous wire-
less networks. In: IEEE Communications Society Subject Matter Experts for Publication 
in the IEEE CCNC 2016 Proceedings; 2016

[11] Hideyuki K, et al. Combined adaptive congestion control method for communication-
broadcasting integrated services. In: Global Telecommunications Conference. Annals; 
2006. p. 1

[12] Hideyuki K, et al. Access control method based on sample monitoring for volatile traffic in 
interactive TV services. In: Global Telecommunications Conference. Annals; 2008. pp. 16

[13] Habiba U, Asghar S. A survey on multi-criteria decision making approaches. In: 
International Conference on Emerging Technologies ICET 2009; 2009. Pp. 321-325

[14] Levin M. Selection of user´s connection in last-mile problem. IEEE Transaction on 
System, Man, and Cybernetics—Part a: Systems and Humans. 2011;41(2):370-374

[15] Kabat MR, Patel MK, Tripathy CR. A heuristic algorithm for core selection in multicast 
routing. Journal of Computer Science and Technology. 2011;26(6):954=961

[16] Charilas DE, et al. Application of fuzzy AHP and ELECTRE to network selection. Mobile 
Lightweight Wireless Systems. Lecture Notes of the Institute for Computer Sciences 
Social Informatics and Telecommunications Engineering. 2009;13:63-73

[17] Sgora A, et al. An access network selection algorithm for heterogeneous wireless envi-
ronments. In: IEEE Symposium on Computers and Communications (ISCC), 2010; 2010

[18] Sgora A, et al. Network selection in a WiMAX-WiFi environment. Journal of Pervasive 
and Mobile Computing. 2010;7(5):584-594

[19] Chen Y. Fuzzy AHP-based method for project risk assessment. In: Conference on Fuzzy 
Systems and Knowledge Discovery (FSDK); 2010; Yantai, Shandong. Annals; 2010. pp. 
1249=1253

[20] Yan G, et al. The design and application of a generic AHP evaluation system. In: 4th 
International Conference on Wireless Communications, Networking and Mobile 
Computing (WICOM); 2008; Donghua Univ., Shanghai. Annals; 2008. p. 1

[21] Chunhao L, et al. An improved ranking approach to AHP alternatives based on variable 
weights. In: 7th World Congress on Intelligent Control and Automation (WCICA); 2008. 
Annals. Jilin Univ., Changchun; 2008. pp. 8255-8260

[22] Zhe Fu, Delcroix V. Bayesian network based on the method of AHP for making decision. 
In: Information Technology and Artificial Intelligence Conference (ITAIC), 2011 6th IEEE 
Joint International; 2011

On the Use of Hybrid Heuristics for Providing Service to Select the Return Channel...
http://dx.doi.org/10.5772/intechopen.69615

123



[23] Sun Xuan. A Novel Kind of Decision of Weight of Multi-attribute Decision-Making Model 
Based on Bayesian Networks. In: International Seminar on Business and Information 
Management (ISBIM 08); 2008

[24] Xuan S, Qinzhou N, Hefei X. A Bayesian method for decision of weight for MADM 
model with interval data. In: International Conference on Advanced Computer Control 
(ICACC 09); 2009

[25] Supraja S, Kousalya P. A comparative study by AHP and TOPSIS for the selection of 
all round excellence award. In: International Conference on Electrical, Electronics, and 
Optimization Techniques (ICEEOT); 2016

[26] Nag K, Helal M. A Fuzzy TOPSIS approach in multi-criteria decision making for sup-
plier selection in a pharmaceutical distributor. In: International Conference on Industrial 
Engineering and Engineering Management (IEEM); 2016; IEEE; 2016

[27] Kaur S, Sehra SK, Sehra SS. A framework for software quality model selection using 
TOPSIS. In: IEEE International Conference on Recent Trends in Electronics, Information 
& Communication Technology (RTEICT); 2017

[28] Larasati AA, Setyaningrum AH, Wardhani LK. Development decision support system of 
choosing medicine using TOPSIS method (Case Study: RSIA Tiara). In: 6th International 
Conference on Information and Communication Technology for The Muslim World 
(ICT4M); 2016

[29] Sari WP, Cahyaningsih E, Sensuse DI, Noprisson H. The welfare classification of 
Indonesian national civil servant using TOPSIS and k-Nearest Neighbour (KNN). In: 
2016 IEEE Student Conference on Research and Development (SCOReD); 2016

[30] Loganathan J, Latchoumi TP, Janakiraman S, Parthiban L. A novel multi-criteria chan-
nel decision in co-operative cognitive radio network using E-TOPSIS. In: International 
Conference on Informatics and Analytics (ICIA); 2016

[31] Costa CAB. Absolute and relative evaluation problematiques: The concept of neutral 
level and the MCDA robot technique. In: Proceedings of the International Multicriteria 
Decision Making Workshop; 1991; Lieblice, Março. Annals; 1991. pp. 7-15

[32] Salehi M, Moghaddam TR. Project selection by using a Fuzzy topsis technique. World 
Academy of Science, Engineering and Technology. 2008;2(4):375-380

[33] Bankmaz B, Bojkovic Z, Bakmaz M. Network selection algorithm for heterogeneous 
wireless environment. In: XXVII Annual IEEE International Symposium on Personal, 
Indoor and Mobile Radio Communications (PICK) 2007;2007

[34] Lo C, et al. Service selection based on fuzzy Topsis method. In: IEEE 24th International 
Conference on Advanced Information Networking and Applications Workshops 
(WAYNE), 2010; 2010

[35] Seruffo MCR, Monteiro FP, Silva CN, Jacob Junior AFL, Cardoso DL, Francês CRLC. 
DTV-EDUC 2.0: A case study of interactive educational application for Digital TV. In: 
20th International Symposium on Digital Television; 2011

Heuristics and Hyper-Heuristics - Principles and Applications124



[23] Sun Xuan. A Novel Kind of Decision of Weight of Multi-attribute Decision-Making Model 
Based on Bayesian Networks. In: International Seminar on Business and Information 
Management (ISBIM 08); 2008

[24] Xuan S, Qinzhou N, Hefei X. A Bayesian method for decision of weight for MADM 
model with interval data. In: International Conference on Advanced Computer Control 
(ICACC 09); 2009

[25] Supraja S, Kousalya P. A comparative study by AHP and TOPSIS for the selection of 
all round excellence award. In: International Conference on Electrical, Electronics, and 
Optimization Techniques (ICEEOT); 2016

[26] Nag K, Helal M. A Fuzzy TOPSIS approach in multi-criteria decision making for sup-
plier selection in a pharmaceutical distributor. In: International Conference on Industrial 
Engineering and Engineering Management (IEEM); 2016; IEEE; 2016

[27] Kaur S, Sehra SK, Sehra SS. A framework for software quality model selection using 
TOPSIS. In: IEEE International Conference on Recent Trends in Electronics, Information 
& Communication Technology (RTEICT); 2017

[28] Larasati AA, Setyaningrum AH, Wardhani LK. Development decision support system of 
choosing medicine using TOPSIS method (Case Study: RSIA Tiara). In: 6th International 
Conference on Information and Communication Technology for The Muslim World 
(ICT4M); 2016

[29] Sari WP, Cahyaningsih E, Sensuse DI, Noprisson H. The welfare classification of 
Indonesian national civil servant using TOPSIS and k-Nearest Neighbour (KNN). In: 
2016 IEEE Student Conference on Research and Development (SCOReD); 2016

[30] Loganathan J, Latchoumi TP, Janakiraman S, Parthiban L. A novel multi-criteria chan-
nel decision in co-operative cognitive radio network using E-TOPSIS. In: International 
Conference on Informatics and Analytics (ICIA); 2016

[31] Costa CAB. Absolute and relative evaluation problematiques: The concept of neutral 
level and the MCDA robot technique. In: Proceedings of the International Multicriteria 
Decision Making Workshop; 1991; Lieblice, Março. Annals; 1991. pp. 7-15

[32] Salehi M, Moghaddam TR. Project selection by using a Fuzzy topsis technique. World 
Academy of Science, Engineering and Technology. 2008;2(4):375-380

[33] Bankmaz B, Bojkovic Z, Bakmaz M. Network selection algorithm for heterogeneous 
wireless environment. In: XXVII Annual IEEE International Symposium on Personal, 
Indoor and Mobile Radio Communications (PICK) 2007;2007

[34] Lo C, et al. Service selection based on fuzzy Topsis method. In: IEEE 24th International 
Conference on Advanced Information Networking and Applications Workshops 
(WAYNE), 2010; 2010

[35] Seruffo MCR, Monteiro FP, Silva CN, Jacob Junior AFL, Cardoso DL, Francês CRLC. 
DTV-EDUC 2.0: A case study of interactive educational application for Digital TV. In: 
20th International Symposium on Digital Television; 2011

Heuristics and Hyper-Heuristics - Principles and Applications124

[36] Castro MC. Proposals for implementing quality of service in MPLS VPN architecture 
using formal specification language SDL object-oriented and performance analysis 
using OPNET simulator [thesis]. Dissertation submitted to the Faculty of Electrical 
Engineering and Computer Sciences; 2004

[37] OPNET Modeler. Available from http://www.opnet.com

[38] Chen Z. Data Mining and Uncertain Reasoning—An Integrated Approach. John Wiley 
Professional; 2001

[39] Korb KB, Nicholson. Bayesian Artificial Intelligence. CRC Press Publishing company, 
Second Edition; 2003

[40] Pearl J. Probabilistic Reasoning in Intelligent System. Morgan Kaufmann Publishing 
company; 1988

[41] Chen XW, Anantha G, Lin X. Improving bayesian network structure learning with 
mutual information-based node ordering in the K2 algorithm. In: IEEE Transactions on 
Knowledge and Data Engineering; 2008;20(5):628-640

On the Use of Hybrid Heuristics for Providing Service to Select the Return Channel...
http://dx.doi.org/10.5772/intechopen.69615

125



Heuristics  
and Hyper-Heuristics 

Principles and Applications

Edited by Javier Del Ser Lorente

Edited by Javier Del Ser Lorente

Photo by Radachynskyi / iStock

In the last few years, the society is witnessing ever-growing levels of complexity in the 
optimization paradigms lying at the core of different applications and processes. This 
augmented complexity has motivated the adoption of heuristic methods as a means 
to balance the Pareto trade-off between computational efficiency and the quality of 
the produced solutions to the problem at hand. The momentum gained by heuristics 

in practical applications spans further towards hyper-heuristics, which allow 
constructing ensembles of simple heuristics to handle efficiently several problems of a 
single class. In this context, this short book compiles selected applications of heuristics 

and hyper-heuristics for combinatorial optimization problems, including scheduling 
and other assorted application scenarios.

ISBN 978-953-51-3383-4

H
euristics and H

yper-H
euristics - Principles and A

pplications

ISBN 978-953-51-4677-3


	Heuristic and Hyperheuristics - Principles and Applications
	Contents
	Preface
	Section 1
Heuristics and Hyper-Heuristics
	Chapter 1
Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization Problems
	Chapter 2
Multi‐Objective Hyper‐Heuristics

	Section 2
Scheduling Heuristics
	Chapter 3
Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
	Chapter 4
Efficient Heuristics for Scheduling with Release and Delivery Times

	Section 3
Heuristic Techniques and Applications
	Chapter 5
Advanced Particle Filter Methods
	Chapter 6
On the Use of Hybrid Heuristics for Providing Service to Select the Return Channel in an Interactive Digital TV Environment


