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Preface

“Excitons,” InTech Open Access book, consists of exciting complementary perspectives on
the progress in the field of excitons and their use in processes occurring in modern optoelec‐
tronic device structures, with contributions from authors from France, Switzerland, Moldo‐
va, China, and Japan.

Emeritus Prof. Wachter Peter, Switzerland, investigates and explains the heat conductivity,
thermal diffusivity, compressibility, sound velocity, and exciton-polaron dispersion, while
Dr. Etienne Thibaud, France, develops the problem of qualitative and quantitative topologi‐
cal analyses of molecular excitons. Dr. Ono Shota and Kaoru Ono, Japan, in their turn, elabo‐
rate on exciton dissociation in organic solar cells, while scientists from the Republic of China
(Taiwan), Dr. Sabyasachi Kar and Yew Kam, consider the interesting analogy of exciton,
biexciton, and trion to the positronium atom, molecule, and negative ion. The advantages
and recent progress in these areas, which are important and exciting problems currently un‐
der investigation in the field of excitons, are convincingly presented and discussed.

The potential for the use of excitons for the future technology is hard to underestimate. The
introductory chapter “Bound Excitons in Gallium Phosphide” presented by the editor of the
book, Prof. Sergei L. Pyshkin, scientific advisor at the Institute of Applied Physics, Academy
of Sciences of Moldova, and adjunct professor of Clemson University, SC, USA, discusses,
among other issues, that both study and application of the exciton properties are a difficult
task, mainly due to the low quality of freshly prepared semiconductor crystals. Freshly pre‐
pared crystals are usually characterized with a large concentration of crystal structure de‐
fects, such as vacancies and dislocations of the proper arrangement of intrinsic and impurity
atoms in the artificially grown crystal structures. Thus, despite all efforts of crystal growth
experts, it is virtually impossible to compete with natural crystals grown for thousands of
years in favorable natural conditions. The results of over 50 years of investigations of a
unique set of GaP semiconductor samples are also presented in the book. The discussion
highlights the significant improvement in the properties of GaP:N crystals prepared in the
1960s through the formation of the perfect host crystal lattice and the N‐impurity crystal
superlattice or of an excitonic crystal. A new approach to the selection and preparation of
perfect materials for optoelectronics is described, offering a unique opportunity of a new
form of solid‐state host—the excitonic crystal—as a high‐intensity light source with low
thresholds for nonlinear optical effects.

Generally, the book highlights the fact that excitonic crystals yield novel and useful proper‐
ties including enhanced stimulated emission and very bright and broadband luminescence
at room temperature. The discussion presented in the book is inspired by many outstanding
scientists, including the prominent in the field of exciton topics late Prof. Leonid V. Keldysh,
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and other well-known colleagues, representing numerous scientific centers worldwide, par‐
ticularly Russia, the USA, and Italy, who at various points made invaluable contribution to
understanding and advancing the ideas in the field of excitons. The studies presented are
relevant due to the unprecedented interest of researchers from all over the world in using
excitons and their properties in optoelectronics, nanoscience, and technology, such as in the
development of modern optoelectronic device structures. They are also relevant and inter‐
esting for the representatives of both public and private sectors as they offer a significant
contribution to high-technology driven industries.

Dr. Sc. Prof. Sergei L. Pyshkin
Adjunct Professor and Senior Fellow

Clemson University, SC, USA

Scientific Advisor at the Institute of Applied Physics
Academy of Sciences of Moldova, Moldova
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1. Introduction

The authors contributing to InTech open access book Excitons offer exciting complementary 
perspectives on the progress in the field of excitons and their use in processes occurring in 
modern optoelectronic device structures. This is both an important and a complex field, as 
will be elaborated further on, which is why it has been chosen as an introductory stance to 
summarize some findings in the field made by the author of this chapter, also the editor of 
this particular book.

As we note the unprecedented interest of researchers from all over the world in using exci-
tons in the development of modern optoelectronic device structures, we offer some of the 
results and material gathered in the process of our half-a-century long work for further study 
and application in electronic companies. The results presented here and in References to this 
Chapter are inspired by many outstanding scientists, my teachers and the colleagues, repre-
senting a number of scientific centers worldwide and in particular Russia, the USA, and Italy, 
who at various points made invaluable contributions to understanding and advancing the 
ideas on results obtained through the years of my research.

We have been growing and exploring gallium phosphide [1–8] for more than a half a cen-
tury, a process of experimenting, analysis and observation which resulted in unique material 
reflecting previously unexplored properties of excitons and new prospects for the use of GaP, 
which could be very interesting for application in the electronic industry.

Studying and using new properties of excitons are a difficult task, mainly due to the low qual-
ity of freshly prepared semiconductor and other crystals. Fresh crystals are usually character-
ized with a large concentration of crystal structure defects, such as vacancies and dislocations

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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of the proper arrangement of intrinsic and impurity atoms in the GaP (face-centered cube) 
crystal structure. Notably, despite all efforts of crystal growth experts, it is virtually impos-
sible to compete with natural crystals grown for thousands of years in favorable natural  
conditions. Large concentration of defects, noted above, inevitably arises from the rapid 
freezing of the constituent crystals of the atoms and the dopants in positions, which they 
occupy being in the liquid GaP phase at the time of the beginning of cooling and the forma-
tion of embryos, according to the adopted technology for obtaining crystals of GaP [1].

Natural tendency of own and impurity atoms to occupy the places assigned to them by the 
crystal lattice is hampered by their infinitesimally slow diffusion rate at room or at low tem-
perature of storage of grown crystals. In this way, decades pass before the lattice component 
occupies the exactly correct position in the crystal lattice, diffusing inside it at the storage 
temperature, from the place where it was at the time of the onset of cooling of a mixture of 
GaP, necessary for the onset of deposition and further growth of pure or doped crystals (see 
details in [1–8]). Naturally, most crystal manufacturers are reluctant to wait for improvements 
in the structure and properties of imperfect crystals, as this process is extremely slow. This 
fact leads to the need of using noncompliant materials with poor parameters, which however 
drastically reduces the lifetime and quality of device structures made from them, and in addi-
tion increases production costs and sharply reduces the value of the output into the electronic 
industry. For instance, presently manufactured low-quality materials cause high margin of 
error in microchips resulting in quality problems with microelectronic-based devices, such as 
mobile phones and computers, but also devices used in “heavy” industries, such as healthcare, 
space, or defense. Due to the described limitations, the possibility of using excitons as the most 
vulnerable material easily destroyed by defects of photon carriers is significantly reduced.

Taking the aforementioned into account, we consider some properties of bound excitons in 
GaP, including the possibility and the expected results of their application in optoelectronic 
device structures. Recall that the term bound exciton means an electron-hole pair localized near 
the impurity center. In our case this is an isoelectronic impurity N replacing the own P atom 
in the GaP lattice, possessing a giant-capture cross section with respect to the free electron. 
The captured electron attracts a hole, forming a bound exciton.

The presence of a heavy nucleus (atom N+ trapped electron) is an important feature of bound 
excitons, which, under appropriate conditions, allows them to form a solid exciton phase, 
in contrast to free excitons, where the transition to the solid phase is impossible due to the 
approximate equality of the effective masses of the electron and holes and so-called zero-point 
oscillations, which destroy our attempts to form a solid phase with further condensation of a 
system of coupled excitons. We also note the possibility of creating exciton crystals that arise 
in the ordered arrangement of impurity centers and the creation of an appropriate impurity 
sublattice with a crystal structure analogous to the GaP single crystal, but with a lattice param-
eter equal to the Bohr diameter of the bound exciton in this material (approximately 10 nm).

Keeping in mind possibly groundbreaking features (at least for some industries, we have 
already mentioned) of the solid exciton phase, we have focused our long-term technological 
efforts on obtaining perfect GaP crystals, including creation and investigation of the proper-
ties of perfect GaP crystals and certain device structures based on them. We have established 
that the mentioned above impurity sublattice arises with prolonged storage of GaP single 
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crystal plates under natural conditions (room temperature and normal pressure). According 
to our estimates [2, 6], the crystals must be 10–15 years old under these particular conditions. 
During this time, randomly distributed impurities form the correct crystalline sublattice at 
room temperature, due to the natural diffusion of impurities into places with their low con-
centration and their displacement to places that reduce mechanical tensions in the crystal. 
Despite the fact that this process takes over a decade, the qualities of the output material offer 
numerous opportunities in some of the key industries based on microelectronic technologies, 
especially strategic, long-cycle ones. Even though current expectations of the cycle of perfect 
crystal growth may last up to 15 years or more, we strongly believe that this long-term process 
can be significantly shortened by skillful selection of storage conditions (accelerating the dif-
fusion temperature, applying counterpressure using the vapor of volatile components P, etc.). 
Masterful selection of storage conditions and the eventual drastic reduction in the time needed 
for obtaining close to ideal crystals, along with other factors considered below, incentivize to 
test and potentially introduce the proposed method of nearly perfect crystal growth into some 
key electronic industries and make devices of highest quality based on the top quality crystals.

In addition to the above, after 10–15 years from the beginning of the introduction of the 
proposed system for obtaining perfect crystals, there will be no need to wait for decades to 
“mature” them. This is possible provided that new materials are stored permanently and 
only materials that have been ripening for a certain period of time, which according to our 
estimates are 10–15 years old, are taken out for use.

In order to incentivize further interest, part of the methodology is described in short as fol-
lows. We have used a sublattice of N atoms at distance of 10 nm prepared in advance in the 
crystal and engaged powerful optical pumping with photon energy exceeding the width of 
the forbidden band of GaP and the power of light sufficient to fill all the impurity centers. 
In this way, we were able, for the first time in global practice, to obtain an excitonic crystal, 
schematically depicted in Figure 1. In addition, Figure 1a shows phosphorus host atoms P in 
the GaP crystal lattice and atoms of nitrogen impurity N periodically replacing them through 
10 nm. The electrons trapped by the impurity centers and the holes interacting with them at 
corresponding excitation level form an excitonic crystal shown in Figure 1b.

Figure 1. Models of the well-ordered GaP:N [4, 8]. (a) The new type of crystal lattice with periodic substitution of N 
atoms for the host P atoms. (b) The excitonic crystal on the basis of this superlattice. Substitution period is equal to the 
Bohr diameter of exciton (~100 Å), and optical excitation is enough for complete saturation of the N sublattice with 
nonequilibrium electron-hole pairs (see details in Ref. [8]).
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Note that none of the nanotechnology methods are used in the creation or selection of dimen-
sions of these nanoparticles but only natural forces of electron-hole interaction. As the result, 
we get something like a neutral short-lived crystal nuclei (N atoms with captured electrons) 
and holes, interacting with them through Coulomb forces. The so-called zero vibrations do 
not destroy this solid phase of bound excitons having these heavy nuclei that give an oppor-
tunity to reach their crystal state—short-lived excitonic crystal.

It is interesting to compare the luminescence of freshly prepared, partially (a) and ideally 
ordered GaP:N (b) crystals presented in Figure 2.

We note that the same freshly prepared crystals do not possess any luminescence at all 
because of the enormous number of defects that supply the radiationless return to the valence 
band of electrons excited by light. The same partially ordered crystals exhibit a luminescence 
spectrum of excitons consisting of a zero-phonon line and its phonon satellites in the emission 
of the intrinsic acoustic and optical phonons of the GaP lattice (Figure 2a).

Earlier, we observed a clear stimulated emission from a GaP:N resonator at 80 K [4] in freshly pre-
pared crystals, as well as the so-called superluminescence from the GaP single crystals. Presently, 
our ordered crystals have a bright superluminescence at room temperature that implies their per-
fection and very lower light losses. Thus, we demonstrate that stimulated emission is developed 
even at room temperature by direct electron-hole recombination of an electron at the bottom of 
the conduction band with a hole at the top of the valence band and the LO phonon absorption.

We also note an interesting analogy between the radiation of a well-ordered and perfect GaP 
crystal and well-prepared nanoparticles based on it, which we present in Figure 3.

Thus, sticking to some specific rules, including the necessity to build single crystal the exci-
tonic superlattice with the identity period equal to the bound exciton Bohr dimension in the 
GaP:N, we get a unique opportunity to create a new solid state media consisting of short-lived 
nanoparticle excitonic crystal. It, obviously, has very useful and interesting properties for 
application in optoelectronics, nanoscience, and technology.

Figure 2. Luminescent spectra and schematic representation of the forbidden gaps (ΔE1, ΔE2) in the nitrogen-doped GaP 
aged for (a) 25 years and (b) 40 years.
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Abstract

In this publication, details of the calculation of heat conductivity and thermal diffusiv‐
ity, compressibility, sound velocity and exciton‐polaron dispersion will be shown. The 
properties of excitons, coupling to phonons, producing thus polarons, but also block‐
ing the phonons as running waves lead to an exciton condensation or exciton liquid. 
Surprisingly, this exciton liquid is contained in a macroscopic crystal, a solid, neverthe‐
less, which becomes extremely hard due to the exciton liquid and finally exhibits a strange 
type of superfluid in a two fluid model, where the superfluid phase increases more and 
more below about 20 K until the whole exciton liquid becomes a superfluid at zero tem‐
perature. Never else a superfluid phase has been observed at such high temperatures.

Keywords: excition-polarons, superfluidity, exciton, condensation, heat conductivity, 
compressibility, sound velocity

1. Introduction

Excitons are electron‐hole pairs and as such known in many materials, even in Si. Generally, 
it is not easy to create so many excitons that they can interact with each other and finally can 
even condense in an exciton liquid. In standard experiments with laser pulses, one can excite 
in semiconductors electrons from a valence band into a conduction band and then, due to the 
electron-hole attraction, the final state of the excited electron drops to somewhat below the 
bottom of the conduction band. An exciton is thus mobile, but it does not carry an electrical 
current due to its charge neutrality.
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However, if one uses rare-earth compounds, where the uppermost occupied state is a localized 
4f state and the lowest conduction band is a 5d band and one makes an optically induced 4f‐5d 
transition, the hole in the 4f state will be localized and the electron just below the bottom of the 
 conduction band will also be localized since it binds by Coulomb attraction to its hole, and the 
whole exciton will stay at the atom where the photoexcitation occurred and it will not be mobile. 
Then, this excitation energy will decay in typically 10−8 sec with the emission of a photon or 
phonons at the same atom where it is originated, resulting only in a localized excited atom in the 
lattice.

However, a p6–5d exciton is always possible since the initial state is in a band. Thus, 
Mitani and Koda [1] found Mott‐Wannier excitons with thermo‐reflectance in Eu chal‐
cogenides with about 4 eV (consult similar TmTe in Figure 1). The Tm mono‐chalco‐
genides exhibit a metal‐semiconductor transition inasmuch as Tm3+S2− + e is a trivalent 
metal with one free electron in the 5d conduction band (Figure 1). The occupied 4f12 
level is about 6.5 eV below the Fermi energy EF, and the empty 4f13 level is little above EF. 
Experimental evidence comes mainly from X‐ray photoemission spectroscopy (XPS) and 
Bremsstrahlen isochromat spectroscopy (BIS) [2]. TmTe on the other hand is a divalent 
semiconductor Tm2+Te2− with an occupied 4f13 level 0.3 eV below the bottom of an empty 
5d band (Figure 1). The driving force behind this different character is the crystal field 
splitting of the 5d band, which depends on the lattice constant due to the different anion 
radii.

TmSe, on the other hand, with an intermediate anion radius between sulfide and telluride 
has such a crystal field splitting of the 5d band that the bottom of this band overlaps with 
the 4f13 level. This f-d hybridization on the one hand leads to some d-character of the f-state 
and as a consequence to a narrow f‐band and on the other hand to some f‐character of the 

Figure 1. Electronic structure and density of states of the Tm chalcogenides, normalized to the Fermi level EF.
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bottom of the d-band. It has been conventional to describe the new hybridized f-state as 
4f13‐4f125d, consisting of a quantum mechanically mixed state [3]. This new phenomenon is 
called intermediate valence, since the valence of rare-earth ions is defined by the occupa‐
tion of the f‐state, and thus. TmSe has a valence, between 3+ and 2+, in fact 2.85+. This can 
only be achieved if the 4f-state is a narrow band, which is partially filled with electrons [3]. 
But also in the 5d band there are some free electrons, which yield in the visible a coupled 
plasma resonance of these electrons and are responsible for the copper‐like color of the 
crystals.

2. Material tailoring

One can now make mixtures between the semiconducting TmTe and the metallic interme‐
diate valence TmSe and thus tune the energy gap ΔE between 300 meV and zero (metal) 
[3, 4]. Experimentally semiconducting TmSe1−xTex has been created with x = 0.40, 0.55, 0.68, 
corresponding to ΔE of 40 meV, 110–120 meV, 170 meV. For these compositions the f-state 
is so close to the 5d band that some hybridization occurs between the tails of the wave func‐
tions. We have the unexpected situation of intermediate valence semiconductors. This in turn 
means that the originally localized 4f13‐state acquires now some bandwidth in the order of 
tens of meV.

Concerning now the existence of 4f-5d excitons, we have created a situation where the hole 
state in the 4f is mobile and the electron is in a 5d state below the bottom of the 5d band. Now 
we have the possibility of 4f‐5d excitons. Of course the hole in a narrow 4f‐band has a large 
effective mass, so that the 4f-5d exciton is a heavy (mh ≈ 50 me) nearly immobile particle. These 
excitons without application of external pressure have a low concentration at low tempera‐
tures because thermal excitations into the excitonic state are rare.

From Bohr’s formula for the hydrogen radius aH = 0.53 ε Å and from Figure 2 with the reflectiv‐
ity for ω → 0 = 50%, we obtain  n =   1 +  √ 

__
 R   ____ 

1 −  √ 
__

 R  
   = 5.8 =  √ 

__
 ε   . So the static dielectric constant is ε = 34, 

and the radius of the orbit of the exciton is about 18 Å. This would be a Mott–Wannier exciton. 
Its binding energy from the optical result is theoretically EB = 13.6/ε2 = 15 meV, about the same 
as from the electrical measurement [4], but experimentally from Figure 2 EB ≈ 60 meV. The most 
complete measurements have been performed on TmSe0.45Te0.55 with an energy gap ΔE of 110–120 
meV, confirmed by far infrared reflectivity (see inset of Figure 2). Similar absorptive peaks as for 
TmSe0.45Te0.55 are absolutely missing in other divalent rare-earth chalcogenides with only localized 
4f‐states (Figure 3).

In the fcc rocksalt structure, the 4f13-band has a maximum at the Γ point of the Brillouin zone 
and a minimum at the X point. The 5d band dispersion has its minimum at the X point. An opti‐
cal transition between the maximum of 4f and the minimum of 5d would be an indirect transi‐
tion and requires maximal the assistance of a Γ–X phonon for k conservation (black curve).
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Figure 3. Schematic band structure of TmSe0.45Te0.55. Due to 4f-5d hybridization, the 4f13‐state becomes a narrow band 
and has a dispersion. The exciton level with binding energy EB is indicated below the bottom of the 5d conduction band 
(black curve). The red curve represents the band structure at 5 kbar with the exciton level at X at the same height as the 
4f-level at Γ. In green is the Γ–X phonon [6].

Figure 2. Reflectivity of TmSe0.45Te0.55 between 1 meV and 6 eV photon energy. At low temperatures, the transverse 
optical (TO) phonons are the dominant feature. The inset in Figure 2 shows the absorptive part of the dielectric function 
and the energy gap ΔE ≈ 110 meV, and the binding energy of an exciton is EB ≈ 60 meV [5].

Excitons10

3. Creation of excitons

Under hydrostatic pressure, the bottom of the 5d band at X with its exciton level will be low‐
ered with respect to its center of gravity (5dt2g‐5deg) and shown for 5 kbar the exciton level is 
exactly at the energy of the 4f-state at Γ (red curve). Now the highest energy electrons in the 
4f13‐band can spill without energy loss into the excitonic state at X leaving behind a positive 
hole. This transition needs the emission or absorption of Γ–X phonons which couple to the 
excitons. So in fact we are dealing with an exciton-polaron. With higher pressure, the bottom 
of the 5d band at X will approach the energy of the 4f13-state at Γ and the 4f electrons will enter 
directly the 5d band and perform a first-order semiconductor–metal transition.

In Figure 4, these transitions can be observed directly with resistivity in the isotherms versus pres‐
sure for TmSe0.45Te0.55. We look at first at room temperature (300 K) and find a classical pressure 
dependence of a resistivity, namely the resistivity of a semiconductor decreases with increasing 
pressure, because the energy gap ΔE decreases with pressure and bands widen and finally the 
metallic state is achieved (above 11 kbar). Starting with about 5 kbar and best observed at 5 K, 
the resistivity now increases by about three orders of magnitude with pressure. This is exactly 
the pressure where excitons become stable states and electrons from the f‐band, which have been 
thermally excited into the 5d conduction band, drop into the excitonic state and are no longer 
available for electric conduction. We have created an excitonic insulator, a term coined by Sir 
Nevil Mott [7]. With further pressure increase, the resistivity drops again, until now the 4f elec‐
trons can enter the 5d band directly, which leads to a first-order semiconductor–metal transition. 
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Here we want to make a remark of another possibility of the semiconductor‐metal transition, 
namely a Mott transition to an electron-hole plasma or an electron-hole liquid. The experimen‐
tally derived exciton concentration is 3.9 x 1021cm−3 (see below). This is in fact too high (because 
of screening effects) for an electron-hole liquid as has been shown by Monnier et al. [8]. There 
it is calculated that the electron‐hole liquid must be less than 1020cm−3 excitons. In fact the rare 
earth nitrides may serve as experimental examples [9].

4. Exciton condensation

Since for the exciton creation no energy is needed, their number is enormous. But not all 
4f electrons can form excitons, because as electric dipoles and according to the Pauli prin‐
ciple [10, 11] they repel each other. This goes so far that the formation of this incredible high 
 concentration of excitons forces the whole crystal lattice to expand against the applied pres‐
sure. We show this in Figure 5 where we measure the lattice constant (Figure 5a) (with strain 
gauges) and the expansion coefficient (Figure 5b) of the crystal in an isobar at 11.9 kbar. We 
observe that at about 230 K the lattice expands by 1.6% isostructurally, an enormous amount. 
The expansion coefficient becomes negative, of course. We even think that the expansion is 
of first order (dashed–dot line), but the point-by-point measurement cannot reproduce this 
exactly, because we go from the semimetallic state to the excitonic state.

We can estimate the maximal number of excitons with the help of Figure 5a, and we observe 
that the lattice expansion occurs spontaneously when entering the excitonic phase. There 

Figure 5. a, b. Isobar lattice constant and expansion coefficient of TmSe0.45Te0.55 [12].

Excitons12

must be an energy balance between the lattice energy causing the expansion and the elec‐
tronic energy of the excitons. The energy balance can be described by the first equation in 
Figure 6. We take the lattice constant change from Figure 5a to go from 5.93 to 6.03 Å and 
compute Δl/l and ΔV/V. We choose a pressure of 8.5 kbar and an EB of 70 meV and compute 
the number of excitons nex = 3.9 × 1021 cm−3 (red field). We also can compute the number of 
Tm ions in the crystal in the fcc structure, and it is nTm = 1.8 × 1022 cm−3 (yellow field). In other 
words, the exciton concentration is about 22% of the atomic density, an enormous amount 
of excitons. With the exciton orbit of 18 Å, it is quite clear that we have an exciton band or 
an exciton condensation. Since the exciton couples to a phonon, the condensation is a Bose 
condensation, not a Bose–Einstein condensation. We can also estimate the Bose condensa‐
tion temperature shown in Figure 6, where the general accepted formula yields TB = 130 K, 
the right order of magnitude. The holes of the exciton are in a narrow 4f‐band, and with a 
pressure change of 5 to 8 kbar (Figure 4), one scans the width of the 4f‐band [12]. The clos‐
ing rate of the semiconductor rate has been measured to be dΔE/dp = −11 meV/kbar [4], so 
3 kbar · 11 meV = 33 meV for the width of the narrow 4f‐band. From this in turn, we use the 

Figure 6. Calculations of the exciton concentration.
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general estimate that a band width of 1.5 eV yields an effective mass of me and derive that 
a band width of 30 meV corresponds to an effective hole mass mh ≈ 50 me. The excitons are 
thus heavy bosons.

Here we want to make some remarks about this exciton condensation. Nobody in the world 
(to the best of our knowledge) has a comparable concentration of excitons which exist as long 
as we can sustain the pressure and as the liquid Helium lasts, this means for days. We can 
make all kinds of experiments in this condition, such as electrical conductivity, Hall effect, 
compressibility, heat conductivity, superfluidity, ultrasound velocity, phonon dispersion and 
specific heat. Nobody else has these possibilities. But the experiments are very demanding at 
low temperatures with simultaneous pressure and doing the measurements.

5. Phase diagram of semiconductor, excitonic insulator and semimetal

We plot in Figure 7 the coexistence ranges of the intermediate valence semiconductor, the 
excitonic insulator and the intermediate valence semimetal. We see that the highest tem‐
perature for which the excitonic insulator exists is about 260 K and the pressure range is 
between 7 and 13–14 kbar (pressures applied at room temperature). Experimentally one can 
only  measure  isobars in a clamped pressure cell. However, the isobars in Figure 7 are no 

Figure 7. Temperature–pressure diagram of TmSe0.45Te0.55 with three regions: intermediate valence semiconductor, 
excitonic insulator (A, B), intermediate valence semimetal. The lines K, L, M, N represent isobars, which are curved since 
the pressure applied at 300 K relaxes somewhat at low temperatures. The inset shows the 5d free carrier concentration 
from a Hall effect in function of pressure and at 5 K [6, 13].

Excitons14

straight lines, because the pressure applied at room temperature relaxes somewhat at low 
temperatures. In the inset of Figure 7, we see the Hall effect, which measures the free elec‐
tron concentration in the 5d band. In the semimetallic state (curve M) at 13 kbar, the electron 
concentration is about 3 × 1021 cm−3. For the excitonic insulator at 8 kbar, the free electron 
concentration is about 1018 cm−3 because now the free electrons condense into the excitons 
and do not contribute anymore to the Hall effect. In fact we observe that the carrier con‐
centration reduces by about three orders of magnitude, the same as has been observed in 
Figure 4 for the electrical resistivity. The change in resistivity is thus mainly an effect in the 
carrier concentration though the mobility changes also somewhat [13]. The concentration of 
the excitons is then 3 × 1021 cm−3–1018 cm−3 = 3 × 1021 cm−3, about the same as has been obtained 
in Figure 4.

We can consider in an analogy a pot with soup. The pot is the hard surrounding of the crystal 
and inside is a soup of liquid excitons.

In Figure 8, we show in the upper part a proposal from Kohn [14] from 1968 with the three-
phase semiconductor, excitonic insulator and semimetal plotted against the energy gap ΔE 
with increased pressure going to the left. When ΔE = EB, the excitonic instability starts. In the 
lower part of the figure, we show the E-k diagram again for the three phases. It is surprising 

Figure 8. In the upper part, we show a proposal by Kohn [14] of the excitonic insulator, long before any experimental 
evidence. When ΔE = EB,the excitonic instability starts. In the lower part, we show again the E‐k diagram of TmSe0.45Te0.55 
in three phases.
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and satisfying that the foresight of Walter Kohn has practically reached reality by comparing 
the inset of Figure 8 with the real phases of TmSe0.45Te0.55 as shown in Figure 7.

6. Isotherm and compressibility

We may ask what the direct evidence for the condensed excitonic state is. Typical for any 
liquid is its incompressibility. We can, for instance, at 1.5 K, apply an increasing pressure 
to TmSe0.45Te0.55, and this is shown in Figure 9 [12]. At first, we cool at zero pressure from 
300 to 1.5 K and volume and lattice constant decrease. Then, we increase pressure and 
measure the lattice constant with elastic neutrons through the pressure cell. Of course, 
lattice constant and volume decrease further, corresponding to a Birch–Mournaghan equa‐
tion (red curve). This is a very time‐consuming experiment, because for each pressure 
change the pressure cell had to be heated to room temperature to change to a higher pres‐
sure and then cooled down again and adjust the sample in the neutron beam and wait for 
beam time. Therefore, this experiment has only four points, but at the relevant pressures. 
As can be seen in Figure 9 when entering the excitonic state, the lattice constant remains 
unchanged with increasing pressure, which means a compressibility of zero, as shown in 
Figure 10.

Taking experimental uncertainties into account, we have at least a compressibility just as for 
diamond. Thus, we can take this experiment as evidence of an excitonic liquid.

Figure 9. Isotherm of TmSe0.45Te0.55 at 1.5 K at relevant pressures. In brackets values at 300 K [12].

Excitons16

7. Heat conductivity and superfluidity in the excitonic liquid

We now want to discuss the possibility of superfluidity in the excitonic liquid. Here we resort 
at first to theory [11, 15]. There is a similarity between pairs of particles: two electrons can 
condense and produce superconductivity, and an electron–hole pair (exciton) can upon con‐
densation result in superfluidity. A positron pair should also result in superconductivity, but 
no such experiment is known.

In any case, our exciton condensation may result in superfluidity. What would be the experi‐
ment to prove this? In our opinion, this is heat conductivity [16], because it would diverge 
when the material becomes superfluid, just as in 4He [17].

The experimental arrangement to measure heat conductivity and thermal diffusivity in 
a pressure cell is described in detail in Ref. [16], but the essence is isobars between 4 and 
300 K at various pressures. We show the results of measurements of the heat conductiv‐
ity λ with isobars at four different pressures, one in the semiconducting range (compare 
Figure 7) with 7 kbar, one in the semimetallic range at 15 kbar, both outside the excitonic 
region, and at two pressures 13 and 14 kbar within the excitonic range. Temperature has 
been measured automatically for each degree. In Figure 11, we collect a few relevant 
formulae for the heat conductivity λ and the thermal diffusivity a. We see that the heat 
conductivity depends on the specific heat cv and lph in direction x, the mean free path 

Figure 10. At room temperature (left-hand figures), the volume change with pressure has a dramatic change near 11 
kbar at the transition semiconductor‐semimetal, because the material is intermediate valence between Tm2+ and Tm3+ 
(also shown as reference in Figure 10), and it becomes soft with pressure. On the right‐hand side, we show the material 
at 1.5 K and the compressibility goes to zero; the material becomes extremely hard, because we have now the exciton 
condensation.
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for phonon scattering. In short, lph will increase with decreasing temperature because 
the density of phonons decreases and we have Umklapp processes involving three pho‐
nons. But the specific heat cv definitely will go toward zero for zero temperatures; thus, 
the heat conductivity outside the excitonic region will display a maximum near 50 K, 
as well for the semiconducting range (7 kbar) as for the metallic range (15 kbar); this 
is displayed in Figure 12, and this behavior is quite normal. The difference of the heat 
conductivity near 300 K for both cases is due to the electronic part of the heat conductiv‐
ity in the metallic state, and it corresponds roughly to the Wiedemann–Franz relation. 
This gives confidence to the measurements. We continue with the heat conductivity in 
the excitonic region at 13 and 14 kbar. We observe an unexpected downward jump in a 
first-order transition when entering the excitonic phase. Consulting Figure 7, it is obvi‐
ous that at different pressures one enters the excitonic phase at different temperatures. At 
these temperatures and pressures, one enters the insulating excitonic phase mainly from 
the semimetallic phase, thus with a metal–insulator transition. The downward jumps in 
the heat conductivity λ reflect the loss of the electronic part of the heat conductivity. The 
fascinating aspect of the heat conductivity in the excitonic region is the sharp increase 
of λ below about 20 K, quite in contrast with the λ outside the excitonic region. Since λ 
follows mainly the specific heat cv and the phonon mean free path lph, (Figure 11) and cv 
nevertheless must go to zero for T→0, it is the phonon mean free path which goes faster 
to infinite than cv toward zero. Finally, it means that the phonon mean free path becomes 

Heat Conductivity λ and
Thermal Conductivity (Diffusivity) a

from kinetic gas theory λ = 1/3 Cv v l

with temperature gradient dT/dx λ = ρcvvxlx

cv = spec. heat/kg
lx = mean free path
vx = particle velocity
ρ = density

cv = λ/ρvxlx λ/ρvx
2τ = λ/ρa with a = vxlx = vx

2τ

for T > ΘD (Dulong-Petit)  cv = 3R                                         λ = λph + λex + λel

for metal: λph + λex << λel

for insulator: λel << λph + λex

Figure 11. Formalities for the heat conductivity and the thermal diffusivity.
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infinite. When one makes a heat pulse at one end of the crystal, the excited phonon trans‐
ports its energy without scattering on other phonons to the other side of the crystal, 
meaning an infinite heat conductivity. This is, however, only possible if the concentra‐
tion of phonons as running waves is substantially reduced, because most of them couple 
to the heavy excitons as exciton‐polarons, as we have seen before and thus more or less 
correspond to local modes.

Unfortunately, the measurements were limited to 4.2 K, because at the time of the measure‐
ments one did not realize the implications. In any case 20 K, the onset of the sharp increase 
of λ with decreasing temperature can be considered as the onset of superfluidity, which, 
however, is different from the one of 4He, inasmuch as there the onset of superfluidity is 
a first-order transition [17]. For our exciton case, we propose a superthermal current in the 
two-fluid model, where the superfluid part increases gradually toward zero temperature [17]. 
A λ-anomaly in the specific heat as in the first-order Bose–Einstein transition in 4He is here not 
to be expected and also not found [17].

The proposed evidence of superfluidity within the condensed excitonic state necessitates 
an additional excitation spectrum of other quasiparticles, namely rotons or vortices [17]. λtot 
is the sum of individual contributions (Figure 11), and below about 20 K λtot = λph + λex. λph 
is the heat conductivity due to uncoupled phonons, which is proportional to T3 and can be 
neglected compared to λex at low temperatures. Thus, we obtain for λex an Arrhenius law for 
the increase of the heat conductivity toward zero temperature λex  ∝  exp Δ/kBT. This is shown 

Figure 12. Heat conductivity λ of TmSe0.45Te0.55 for various pressures in function of temperature. Dotted and full line 
in the excitonic region, dashed in the semimetallic region and dash–dotted line in the semiconducting phase. The inset 
shows the heat conductivity at 14 kbar in a linear scale [16].
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Thermal Conductivity (Diffusivity) a

from kinetic gas theory λ = 1/3 Cv v l

with temperature gradient dT/dx λ = ρcvvxlx

cv = spec. heat/kg
lx = mean free path
vx = particle velocity
ρ = density

cv = λ/ρvxlx λ/ρvx
2τ = λ/ρa with a = vxlx = vx

2τ

for T > ΘD (Dulong-Petit)  cv = 3R                                         λ = λph + λex + λel

for metal: λph + λex << λel

for insulator: λel << λph + λex

Figure 11. Formalities for the heat conductivity and the thermal diffusivity.
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Figure 12. Heat conductivity λ of TmSe0.45Te0.55 for various pressures in function of temperature. Dotted and full line 
in the excitonic region, dashed in the semimetallic region and dash–dotted line in the semiconducting phase. The inset 
shows the heat conductivity at 14 kbar in a linear scale [16].
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in Figure 13 at 13 kbar. The activation energy or the gap Δ is 1 meV or about 10 K. The appli‐
cation of heat in the heat conductivity experiment can excite quasiparticles, e.g., rotons with 
gap energy of about 5 K, which is the right order of magnitude. In superfluid 4He, the roton 
gap is 8.65 K [18].

8. Thermal diffusivity

In Figure 14, we display the thermal diffusivity a for the same four pressures as in 
Figure 12. The thermal diffusivity a = vxlx and thus follows mainly the phonon mean free 
path lx, with vx being about constant outside the excitonic region, consulting Figure 11. 
In fact outside the excitonic region with 7 and 15 kbar, it does exactly this, as can be seen 
in the theoretical curve for lx in Figure 15. For the lowest temperatures, the phonon mean 

Figure 13. Excitonic part of the heat conductivity λex at 13 kbar, shown in an Arrhenius plot [16].

Excitons20

free path becomes the dimension of the crystal and is thus constant. But in the excitonic 
region, again below about 20 K, the thermal diffusivity increases dramatically. Why then 
in the excitonic region the dimensions of the crystal do not seem to be important now? 
Just as in superfluid Helium heat can be transferred not only via phonon-phonon scat‐
tering in a diffuse manner, but ballistically via a highly directional quantum mechanical 
wave, the second sound. Also above 20 K, there are anomalies, but they can be explained 
with the velocity of sound vx, which increases now strongly in the excitonic region (see 
below).

In principle, the two measurements of heat conductivity and thermal diffusivity permit the 
calculation of the specific heat cv = λ/ρa, with ρ the density (see Figure 11) [16] and we did this 
in Figure 7 of Ref. [16]. But we never felt very happy with this curve because we divided two 
point-by-point measurements. But the specific heat in the excitonic range is definitely below 
the one of the specific heat outside this range. But it is also very complex since the density ρ 
diminishes when entering the excitonic phase, because the crystal expands (see Figure 5). It 
took us several years before we could make a direct measurement of the specific heat under 
pressure and below 300 K [6, 19].

Figure 14. The thermal diffusivity in the semiconducting (7 kbar), semimetallic (15 kbar) and the excitonic phase (13 and 
14 kbar) for TmSe0.45Te0.55 [16].
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9. The specific heat

The specific heat cv has been measured for TmSe0.45Te0.55 [6, 19] along isobars with 0 kbar, and 
corresponding to the curves K, N, M in Figure 7, which is shown in Figure 16 [6, 19].

The molar specific heat cm in J/mole K/f.u. has been matched at 300 K to the Dulong‐Petit value 
of 52 J/mole K/f.u. The specific heat at ambient pressure represents a normal Debye curve 
(black curve). This curve has been measured by our colleagues at the university of Geneva and 
ETH Zürich for T > 1 K and T > 0.3 K [20]. A Schottky anomaly due to crystal field splitting 
of the Tm ions and an exchange splitting due to magnetic order at 0.23 K has been subtracted 
from the measured curve, and the pure phonon contribution could be plotted as cv/T versus 
T2; thus, a Debye temperature ϴ of 117 K could be obtained [16]. Curve N is in the semimetal‐
lic high-pressure phase outside the excitonic region, and we find again a normal Debye curve 
(blue curve), but with a lower Debye temperature than at ambient pressure. This is at first sight 
surprising since at high pressure a solid becomes harder with a higher Debye temperature, but 
it has also been observed in reference [16]. A simple explanation can be that with high pres‐
sure we change somewhat the degree of valence mixing in the intermediate valence semimetal. 
Curve M (red curve) starts with about 13 kbar at 300 K in the metallic region, but enters the 
excitonic region at about 150 K. This occurs with a first-order transition as we see in Figure 5a. 

Figure 15. Theoretical curve for the mean free phonon path.

Excitons22

The specific heat should reveal a delta-function at the phase transition, but experimentally the 
spike reduces to a Gaussian shape [21]. All curves entering the excitonic region in Figure 7 
from the semimetallic region in a first-order transition (red squares and downward triangles 
in Figure 7) exhibit the Gaussian anomaly. We now discuss curve K (mauve), which enters the 
excitonic region in a second-order transition without a spike in the specific heat. We observe 
that the specific heat is no longer a Debye curve, but below about 250 K (arrow in Figure 17) 
one finds a quasi-linear drop of the specific heat until below about 30 K the specific heat joins 
the other curves. These measurements reveal a fundamental difference of the thermodynamic 
phases A and B in Figure 7.

In fact, such a specific heat like curve K with a non-Debye like curvature has never been seen 
before. Since the specific heat over a higher and larger temperature interval is entirely given 
by the phonons (in the absence of magnetic order and special effects like Schottky anomalies), 
we must conclude a strong renormalization of the phonon spectrum.

As we have stated already several times above the excitons in this indirect semiconductor 
couple strongly to phonons in a triple particle entity of hole‐electron and phonon as an exci‐
ton polaron. But when the phonons couple to the heavy excitons with effective masses of the 
holes around mh = 50 me they become more or less localized like a local mode and do no longer 
contribute significantly to the specific heat. So an essential part of the Debye spectrum of the 
specific heat is missing.

Figure 16. The measured specific heat of TmSe0.45Te0.55 at various pressures. The colors and letters are the same as in 
Figure 7 [6].
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So in Figure 17 we have made a model calculation of the specific heat with the assumption that 
the optical phonons are bound to the excitons below about 250 K (arrow in Figure 17). The acous‐
tic branches of the phonons are modelled with a Debye and the optical phonons with an Einstein 
ansatz, respectively [6]. The seeming disappearance of phonons, i.e., the binding of the optical 
phonons on the excitons is represented with a linear decrease of the density of states below 250 
K (inset to Figure 17). The model calculation in Figure 17 represents well the intriguing behavior 
of curve K in Figure 16. A strong coupling regime for the phonons to excitons prevails, and thus, 
while cooling, more and more wave‐like phonons become locked onto the excitons, giving no 
more contribution to the specific heat. This renormalization of the phonon spectrum and the 
resulting effect on the specific heat has never been seen before, and it is due to the extreme large 
concentration of exciton–polarons. Regarding now the Debye temperature ϴ of curve K in com‐
parison with curve N, we observe a further reduction of the Debye temperature, i.e., a minimum 
in the Debye temperature versus pressure in the excitonic region (red curve in Figure 17).

In a quantitative formula, we can express   c  
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(Debye) + (Einstein) with ρopt a temperature‐dependent density of optical phonons (see inset 
Figure 17). In fact, the model calculation in Figure 17 represents quite well the measured 
specific heat of curve K in Figure 16. Thus, the acoustic phonons alone exhibit a Dulong‐
Petit value c/R of 3 cal/degree and the optical phonons have a temperature‐dependent den‐
sity, their decrease with temperature representing the increase of excitons–polarons with 
decreasing temperature. The free optical phonons get lost for, e.g., the thermal conductivity. 
However, below about 20 K the excitons–polarons take over in the heat conductivity or the 
thermal diffusivity and with a diverging increase in these entities finally lead to superfluidity.

Figure 17. The specific heat of two typical schematic curves. One representing curve N in Figure 7 and typical for a 
Debye curve. The second representing curve K in Figure 7. The inset shows an assumed linear temperature dependence 
of the optical phonon density of states [6].

Excitons24

Curve M in Figure 16 is on the decreasing branch of exciton concentration (see Figure 7) 
where more and more free electrons in the 5d band are screening the Coulomb interaction 
between electron and hole. In dissolving the excitons in region B of Figure 7, the electrons 
from the excitons enhance the 5d electrons, further which leads to a cumulative process and 
a collective breakdown of the rest excitons in a first-order transition. Curve M enters the exci‐
tonic region at a temperature of about 150 K where the exciton concentrations are already 
about two orders of magnitude lower than at the maximum.

10. Sound velocity

An ultrasound transducer has been glued to one end of the crystal, and with a multiple 
echo from the other end of the crystal over the known length of the crystal, the sound 
velocity could be obtained. This is shown in Figure 18 for various pressures. At zero 
pressure and at 7 and 18 kbar, the sound velocity is about 4000 m/s and there is not 
much change with pressure. But best seen at 12 kbar, when entering the excitonic phase 
at 180 K, the sound velocity is enhanced by nearly a factor 2 (see Figure 7). With 10 kbar, 
we are entering the excitonic phase at 240 K, again with a jump of nearly a factor 2 but 
near 90 K the pressure loss in the cell was just the size for a reentrant transition to the 
non‐excitonic phase. This was a unique phenomenon, but supporting the experimental 
measurements.

As mentioned above in the chapter about the thermal diffusivity a, the upwards jumps in the 
excitonic region are indeed caused by the jumps in the sound velocity. But not only this, the 
increase in sound velocity contributes directly to the thermal conductivity above 20 K and is 
responsible for the bumps in the thermal diffusivity.

Figure 18. Longitudinal sound velocity outside and inside the excitonic region.
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The sound velocity is related to the bulk modulus B and its inverse the compressibility. For 
a cubic material B depends on the elastic moduli cij as B = 1/3 (c11 + 2c12) the elastic moduli 
instead, depend on the sound velocity as c11 = ρvL

2
[100] and c12 = ρ(vL

2
[100] – 2vT2

2
[110]). Assuming 

that in general vL is about 3 times vT2 we get the simplified relation B ≈ ρvL
2. Thus in the 

excitonic phase we find a 2 times larger vL and thus a 4 times larger B or a 4 times smaller 
compressibility. The material gets indeed appreciable harder in the excitonic state.

In Figure 9, we have shown that between 5 and 8 kbar the lattice constant remained practically con‐
stant during exciton condensation, meaning that the compressibility is close to zero. Putting a max‐
imal error bar through the points of measurement a bulk modulus B = 20 GPa outside the excitonic 
region and a bulk modulus B = 70 GPa in the excitonic region could be obtained. From the sound 
velocity measurement in Figure 18, we calculate a bulk modulus B = 24 GPa outside the excitonic 
region and one of 100 GPa in the excitonic region. So both types of measurements agree reasonable 
well and confirm the fact that during exciton condensation the material becomes extremely hard.

We offer two explanations for this phenomenon: the electron from the exciton enters a 5d-like 
orbit, which is much larger than the original 4f orbit it came from, and this in spite of the 
increasing pressure. Or the excitons, being electric dipoles, repel each other at short distances 
and large concentrations, creating a counter‐pressure to the applied pressure.

The dominant feature in Figure 18 is the sharp increase by a factor two of the sound velocity 
when entering the excitonic phase. But also at 300 K in an isotherm taken from Figure 18 with 
the relevant pressures the sound velocity is changing. Now at 300 K this is shown in Figure 19, 

Figure 19. Sound velocity measurements at 300 K as a function of pressure [16].

Excitons26

but it has nothing to do with excitons and the change is much smaller than the one due to exci‐
tons. Here we find a minimum of the sound velocity with increasing pressure, inverse to what 
we have discussed in the excitonic region. The relation of bulk modulus B with sound velocity 
is B ≈ ρvL

2, and a minimum of sound velocity implies a minimum in the bulk modulus, which 
is inverse to the compressibility. Thus, the minimum in the sound velocity means a maximum 
in the compressibility. This can be compared with the compressibility for 300 K in Figure 10, 
and we obtain a similar curve. At 300 K, the softening of the bulk modulus or a maximum in 
the compressibility is here due to a change of the degree of valence mixing with pressure. So 
these completely different experiments (also by different authors [4]) support each other and 
give again confidence into the experiments.

11. Dispersion of exciton‐polarons

We mentioned above regarding Figures 16 and 17 that the Debye temperature in the excitonic 
region is less than the Debye temperature ϴ = 117 K at 300 K but in Figure 18 we observe that 
the sound velocity is enhanced in the excitonic region. This seems to be a contradiction since in 
the Debye model the sound velocity is the slope of a linear phonon dispersion curve where the 
maximum frequency ωmax determines the Debye temperature ϴ. A lower Debye temperature has 
thus a lower sound velocity and a lower bulk modulus. In order to explain a lower ωmax together 
with a higher sound velocity, we have to leave the simple Debye model for bare longitudinal 
acoustic (LA) phonons ω  ∝  sin(ka/2) and use a new dispersion curve of an exciton–polaron 
quasi‐particle. This is no longer a simple sinus function. The dispersion of such an exciton–
polaron is treated in textbooks, e.g., [22]. The result is that the phonon spectrum will be greatly 
renormalized in the excitonic region [23]. We show in Figure 20 a LA phonon in Γ-X direction 
with ωLA (Γ-X) ≈ 14 meV [12], in Figure 20b an exciton with 4f character EB ‐  ℏ 2k2/2M, where M is 
the sum of electron and hole mass of the exciton M = mh + me ≈ mh with mh ≈ 50 me.

We can see in Figure 20 that now the dispersion of the exciton‐polaron has indeed simultane‐
ously a steeper slope (larger sound velocity) than the LA phonon and a lower ωmax than the 
simple phonon (smaller Debye temperature).

Figure 20. a. Dispersion of a LA phonon. b. Dispersion of a 4f exciton. c. Dispersion of an exciton–polaron.
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these completely different experiments (also by different authors [4]) support each other and 
give again confidence into the experiments.

11. Dispersion of exciton‐polarons

We mentioned above regarding Figures 16 and 17 that the Debye temperature in the excitonic 
region is less than the Debye temperature ϴ = 117 K at 300 K but in Figure 18 we observe that 
the sound velocity is enhanced in the excitonic region. This seems to be a contradiction since in 
the Debye model the sound velocity is the slope of a linear phonon dispersion curve where the 
maximum frequency ωmax determines the Debye temperature ϴ. A lower Debye temperature has 
thus a lower sound velocity and a lower bulk modulus. In order to explain a lower ωmax together 
with a higher sound velocity, we have to leave the simple Debye model for bare longitudinal 
acoustic (LA) phonons ω  ∝  sin(ka/2) and use a new dispersion curve of an exciton–polaron 
quasi‐particle. This is no longer a simple sinus function. The dispersion of such an exciton–
polaron is treated in textbooks, e.g., [22]. The result is that the phonon spectrum will be greatly 
renormalized in the excitonic region [23]. We show in Figure 20 a LA phonon in Γ-X direction 
with ωLA (Γ-X) ≈ 14 meV [12], in Figure 20b an exciton with 4f character EB ‐  ℏ 2k2/2M, where M is 
the sum of electron and hole mass of the exciton M = mh + me ≈ mh with mh ≈ 50 me.

We can see in Figure 20 that now the dispersion of the exciton‐polaron has indeed simultane‐
ously a steeper slope (larger sound velocity) than the LA phonon and a lower ωmax than the 
simple phonon (smaller Debye temperature).

Figure 20. a. Dispersion of a LA phonon. b. Dispersion of a 4f exciton. c. Dispersion of an exciton–polaron.
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12. Theoretical Models

Since the binding energy EB of the exciton-polaron is with 60-70 meV relatively large also a 
Frenkel type of exciton‐polaron is conceivable. Thus in a theoretical paper [24] it is proposed that 
the exciton condensation occurs in an extended Falikov‐Kimball model [25] where, instead of 
the original model with localized 4f states a narrow hybridized 4f band is used, which is more 
realistic in this case. Extensively discussed has also been an effective mass model [26] with large 
differences between electron and hole mass, just as we proposed above. In a further paper [27] 
it has been shown, that weakly overlapping Frenkel type excitons can condense. Especially the 
coupling of excitons with phonons has been discussed in Ref. [28] and the formation of exciton‐
polarons. Finally in [29] exciton densities and superconductivity (sic) are discussed where for low 
exciton densities a Bose-Einstein condensate is proposed and for high density a Bardeen-Cooper-
Schrieffer condensate should prevail, especially in coupled bilayers. This certainly is not the case 
in our experiments.

13. Conclusion

In this review paper, we treat a special rare‐earth material, TmSe0.45Te0.55 which has been tailored 
so that with moderate pressures (up to 20 kbar) and low temperatures (down to 4 K) an enor‐
mous amount of excitons (1021 cm−3), about 22% of the atomic density, can be statically obtained. 
This high concentration of excitons with Bohr orbits of about 18 Å leads to a condensation of exci‐
tons, which forms a liquid inside a crystalline surrounding. The existence range of condensed 
excitons is below 250 K and between 5 and 14 kbar. The condensation is accompanied with a 
phenomenon of incompressibility and as such with a compressibility near zero. In this condition, 
the heat conductivity and the thermal diffusivity have been measured in order to investigate a 
possible superfluidity which has been proposed by Keldysh and Kopaev [11] and Kozlov and 
Maksimov [15]. Outside the excitonic region, both entities behave quite normal, whereas in the 
excitonic region the heat conductivity diverges to ever‐increasing values. This can be explained 
below 20 K within a two-fluid model, where the superfluid part always increases until at tem‐
perature zero the complete condensed excitons become superfluid. Also the thermal diffusivity 
expands in the excitonic region above the phonon mean free path corresponding to the size 
of the crystal. This can be explained with the quantum‐mechanical second sound, which is a 
ballistic transport of heat. The Debye temperature exhibits a minimum in the excitonic region 
where nevertheless the sound velocity is increasing. These two incompatible measurements 
can be explained with a strong phonon renormalization in the excitonic region, and the Debye 
phonon dispersion of LA phonons changes into the dispersion of an exciton–polaron, because 
every exciton binds to a phonon. This in turn means that the number of free phonons is strongly 
reduced in the excitonic region so that the specific heat becomes extremely anomalous, far away 
from a Debye specific heat. In general, it can be said that the anomalous physical properties of 
condensed excitons are unprecedented.

Excitons28

TmSe0.45Teo.55 is not the only material where these phenomena can be observed. YbO and YbS 
are similar materials though one will need much larger pressures to close their gaps of about 
1 eV [30]. But also Sm0.75La0.25S [31] is a possible candidate for which much lower pressures are 
needed. So with a good feeling for materials new and exciting effects can be found.
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Abstract

This chapter gives an introduction to qualitative and quantitative topological analyses of
molecular electronic transitions. Among the possibilities for qualitatively describing how
the electronic structure of a molecule is reorganized upon light absorption, we chose to
detail two of them, namely, the detachment/attachment density matrix analysis and the
natural transition orbitals strategy. While these tools are often introduced separately, we
decided to formally detail the connection existing between the two paradigms in the case
of excited states calculation methods expressing any excited state as a linear combination
of singly excited Slater determinants, written based on a single-reference ground state
wave function. In this context, we show how the molecular exciton wave function plays a
central role in the topological analysis of the electronic transition process.

Keywords: excited states, excitons, detachment/attachment, transition matrix and
orbitals, charge transfer

1. Introduction

Providing a quantitative insight into light-induced electronic structure reorganization of com-
plex chromophores remains a challenging task that has attracted a substantial attention from
theoretical communities in the past few years [1–15]. Indeed, a potential knowledge related to
the ability of a chromophore to undergo a charge transfer caused by photon absorption or
emission [16, 17] is of seminal importance for designing novel dyes with highly competitive
optoelectronic properties [18–21]. Most often, such quantitative probing of the charge transfer
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locality is accompanied by a qualitative study of the rearrangement of the electronic distribu-
tion in the molecule, and the aim of this contribution is to demonstrate how in certain cases
different topological paradigms are formally connected, with the junction point being the
definition of the molecular exciton wave function.

The outcome of the computation of the molecular electronic excited states using a quantum
calculation method is, in addition to the transition energy, a series of mathematical objects
allowing one to analyze the transition topology. If the reference ground state wave function is,
in a given basis (called the canonical basis), written as a Slater determinant, any excited state
written based on this ground state wave function is called a single-reference excited state.
From this single reference and in a given canonical basis, some methods express excited states
as a linear combination of singly excited Slater determinants, which means that the excited
state wave function is written as a pondered sum of Slater determinants constructed from the
ground state reference, in which one occupied spinorbital (vide infra) is replaced by a virtual
one. This type of excited state construction is often referred to as a configuration interaction
(CI) solely involving singly excited Slater determinants. In our case, the reference ground state
wave function can be a Hartree-Fock or a Kohn-Sham Slater determinant, and the excited
states calculation methods we deal with in this paper are called configuration interaction
singles (CIS), time-dependent Hartree-Fock (TDHF), random-phase approximation (RPA),
Tamm-Dancoff approximation (TDA), or time-dependent density functional theory (TDDFT).
For more details about the machinery of these methods, see Refs. [22–25]. While in the case of
CIS and TDA, the determination of the exciton wave function is very straightforward, for the
other methods, it has been subject to the so-called assignment problem which consisted in
providing a CI structure to the TDDFT excited state (since the central RPA/TDHF and TDDFT
equations have the same structure, the assignment problem is transferable to these methods
also) [26, 27].

Based on the outcome of the excited states calculation, one can select an electronic transition of
interest and inspect the different hole/particle contributions from the occupied/virtual canoni-
cal subspaces for having an insight into the light-induced charge displacement topology.
However, in some occurrences, such analyses are quite cumbersome because many of these
contributions can be significant while bearing a divergent physical meaning. For the purpose
of providing a straightforward picture of the electronic transition topology, multiple tools were
developed. Among them, one can cite the detachment/attachment strategy [3, 4, 25, 28–31],
which delivers a one-electron charge density function for the hole and for the particle that are
generated by photon absorption. This strategy is based on the diagonalization of the so-called
difference density matrix (the difference between the excited and ground state density matri-
ces) and a sorting of the resulting “transition occupation numbers” based on their sign. The
result of this analysis is a simple identification of the photogenerated depletion and increment
zones of charge density. Quantitative insights are then reachable through the manipulation of
the detachment/attachment density functions and the definition of quantum metrics [3–5]. On
the other hand, one can consider the projection of the exciton wave function in the canonical
basis through the so-called transition density matrix [13, 25, 29, 30, 32–43], which singular
value decomposition [44] provides the most compact spinorbital representation of the elec-
tronic transition. The great advantage of this method is that in most of the cases it condensates
the physics of an electronic transition into one couple of hole/particle wave functions.

Excitons32

This chapter first recalls some useful concepts related to the reduced density matrix formalism
and its relation to the notion of electron density and density matrix in a canonical space. The
detachment/attachment density matrix construction is then exposed in details and is used for
quantifying the charge transfer locality through several quantum descriptors. Afterward, the
notion of density matrix is extended to electronic transitions through the concept of transition
density matrix. The information contained in this particular matrix is shown to be extractable
and is discussed in details by introducing the so-called natural transition orbitals. The detach-
ment/attachment and natural transition orbitals formalisms are then compared, and we dem-
onstrate that the difference density matrix is constructed from the direct sum of two matrix
products involving only the transition density matrix, that is, the molecular exciton wave
function projected into the canonical space (Lemma III.1). It follows that the natural transition
orbitals are nothing but the eigenvectors of the detachment/attachment density matrices (The-
orem III.1), which is a major conclusion in this contribution since the two formalisms are often
introduced as being distinct and belonging to two separate paradigms. This conclusion is
finally used for showing that the quantum indices designed for quantifying the charge transfer
range and magnitude can be equivalently derived from the detachment/attachment and natu-
ral transition orbitals paradigms (Corollary III.1).

All the derivations are performed in the canonical space in the main text, but the important
concepts and conclusions are also written in the basis of atomic functions in Appendix B. The
calculations performed for this book chapter were done using the G09 software suite [45].

2. Theoretical background

Since this chapter will be mostly dealing with quantum state density matrices, the first para-
graph of this section consists in a short reminder about the one-particle reduced density
matrices corresponding to single-determinant wave functions.

2.1. One-particle reduced density matrix

We consider an N–electron system, with the N electrons being distributed in L spinorbitals
(N occupied, L�N virtual). In this contribution we will write any ground state wave function
ψ0 as an arrangement of the occupied spinorbitals into a single Slater determinant. The density
matrix kernel representing the corresponding ground electronic state writes
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, (1)

where x is a four-dimensional variable containing the spatial (r) and the spin-projection (σ)
coordinates. The density matrix kernel reduces to the electron density function when r1¼r01,
and its integral over the whole space returns the number of electrons:

~γ0 r1; r1ð Þ � n0 r1ð Þ ¼
XL
r¼1

XL
s¼1

φr r1ð Þ γ0� �
rsφ

∗
s r1ð Þ )

ð

R3
dr1 ~γ0 r1; r1ð Þ ¼

ð

R3
dr1 n0 r1ð Þ ¼ N: (2)

Theoretical Insights into the Topology of Molecular Excitons from Single-Reference Excited States Calculation…
http://dx.doi.org/10.5772/intechopen.70688

33



locality is accompanied by a qualitative study of the rearrangement of the electronic distribu-
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zones of charge density. Quantitative insights are then reachable through the manipulation of
the detachment/attachment density functions and the definition of quantum metrics [3–5]. On
the other hand, one can consider the projection of the exciton wave function in the canonical
basis through the so-called transition density matrix [13, 25, 29, 30, 32–43], which singular
value decomposition [44] provides the most compact spinorbital representation of the elec-
tronic transition. The great advantage of this method is that in most of the cases it condensates
the physics of an electronic transition into one couple of hole/particle wave functions.
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This chapter first recalls some useful concepts related to the reduced density matrix formalism
and its relation to the notion of electron density and density matrix in a canonical space. The
detachment/attachment density matrix construction is then exposed in details and is used for
quantifying the charge transfer locality through several quantum descriptors. Afterward, the
notion of density matrix is extended to electronic transitions through the concept of transition
density matrix. The information contained in this particular matrix is shown to be extractable
and is discussed in details by introducing the so-called natural transition orbitals. The detach-
ment/attachment and natural transition orbitals formalisms are then compared, and we dem-
onstrate that the difference density matrix is constructed from the direct sum of two matrix
products involving only the transition density matrix, that is, the molecular exciton wave
function projected into the canonical space (Lemma III.1). It follows that the natural transition
orbitals are nothing but the eigenvectors of the detachment/attachment density matrices (The-
orem III.1), which is a major conclusion in this contribution since the two formalisms are often
introduced as being distinct and belonging to two separate paradigms. This conclusion is
finally used for showing that the quantum indices designed for quantifying the charge transfer
range and magnitude can be equivalently derived from the detachment/attachment and natu-
ral transition orbitals paradigms (Corollary III.1).

All the derivations are performed in the canonical space in the main text, but the important
concepts and conclusions are also written in the basis of atomic functions in Appendix B. The
calculations performed for this book chapter were done using the G09 software suite [45].

2. Theoretical background

Since this chapter will be mostly dealing with quantum state density matrices, the first para-
graph of this section consists in a short reminder about the one-particle reduced density
matrices corresponding to single-determinant wave functions.

2.1. One-particle reduced density matrix

We consider an N–electron system, with the N electrons being distributed in L spinorbitals
(N occupied, L�N virtual). In this contribution we will write any ground state wave function
ψ0 as an arrangement of the occupied spinorbitals into a single Slater determinant. The density
matrix kernel representing the corresponding ground electronic state writes

~γ0 r1;r01
� �¼N

X
σ1¼α,β

ð
dx2…

ð
dxN ψ0 r1;σ1;…;xNð Þψ∗

0 r01;σ1;…;xN
� �¼

XL
r¼1

XL
s¼1

φr r1ð Þ γ0� �
rsφ

∗
s r01
� �

, (1)

where x is a four-dimensional variable containing the spatial (r) and the spin-projection (σ)
coordinates. The density matrix kernel reduces to the electron density function when r1¼r01,
and its integral over the whole space returns the number of electrons:

~γ0 r1; r1ð Þ � n0 r1ð Þ ¼
XL
r¼1

XL
s¼1

φr r1ð Þ γ0� �
rsφ

∗
s r1ð Þ )

ð

R3
dr1 ~γ0 r1; r1ð Þ ¼

ð

R3
dr1 n0 r1ð Þ ¼ N: (2)
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The (γ0)rs terms appearing in Eq. (1) are the elements of the one-particle reduced density
matrix expressed in the canonical space of spinorbitals {φ} and can be isolated by integrating
the product of ~γ0 with the corresponding spinorbitals

γ0� �
rs ¼

ð

R3
dr1

ð

R3
dr01 φ∗

r r1ð Þ ~γ0 r1; r01
� �

φs r01
� �

: (3)

Note that generally speaking the r� s density matrix element in a given spinorbitals space {φ}
for a given quantum state ∣ψ〉 writes

γ
� �

rs ¼ ψjbr†bsjψ
D E

; γ ∈ RL�L (4)

where conventionally r and s indices range from 1 to L. In Eq. (4) we introduced the annihila-
tion and creation operators from the second quantization.

2.2. Detachment and attachment density matrices

One known strategy for formally assigning the depletion and increment zones of charge
density appearing upon light absorption is the so-called detachment/attachment formalism.
This approach consists in separating the contributions related to light-induced charge removal
and accumulation by diagonalizing the one-particle difference density matrix γΔ ∈ RL� L. Such
matrix is obtained by taking the difference between the target excited state ∣ψx〉 and the ground
state ∣ψ0〉 density matrices:

γΔ ¼ γx � γ0: (5)

This density matrix can be projected into the Euclidean space in order to directly visualize the
negative and positive contributions to the light-induced charge displacement:

nΔ r1ð Þ ¼
XL
r¼1

XL
s¼1

φr r1ð Þ γΔ
� �

rsφ
∗
s r1ð Þ ¼ nx r1ð Þ � n0 r1ð Þ: (6)

Note that since no fraction of charge has been gained or lost during the electronic transition,
the integral of this difference density over all the space is equal to zero:

ð

R3
dr1 nΔ r1ð Þ ¼

ð

R3
dr1 nx r1ð Þ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
N

�
ð

R3
dr1 n0 r1ð Þ

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{N

¼ 0: (7)

However, visualizing this difference density does not provide a straightforward picture of the
transition. The interpretation of the transition in terms of charge density depletion and incre-
ment can be made more compact by diagonalizing the difference density matrix:

∃M ∣ M†γΔM ¼ m (8)

where m is a diagonal matrix and M is unitary. Similar to the eigenvalues of a quantum state
density matrix, the eigenvalues of γΔ, contained in m, can be regarded as the occupation
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numbers of the transition in the canonical space. Those can be negative or positive,
corresponding, respectively, to charge removal or accumulation. These eigenvalues can there-
fore be sorted with respect to their sign:

k� ¼ 1
2

ffiffiffiffiffiffiffi
m2

p
�m

� �
(9)

where k+ (respectively, k�) is a diagonal matrix storing the positive (absolute value of negative)
eigenvalues of the difference density matrix. These two diagonal matrices can be separately
backtransformed to provide the so-called detachment (d) and attachment (a) density matrices
and the corresponding charge densities:

Mk�M† ¼ γd !R
3

nd rð Þ ¼
XL
r¼1

XL
s¼1

γd� �
rs φr rð Þφ∗

s rð Þ; MkþM† ¼ γa !R
3

na rð Þ ¼
XL
r¼1

XL
s¼1

γa� �
rs φr rð Þφ∗

s rð Þ:

(10)

These detachment/attachment densities (nd(r) and na(r)) are then nothing but the hole and
particle densities we were seeking. These densities are reproduced in Figure 1 for two para-
digmatic cases of electronic transitions: one local transition and one long-range charge transfer.
In the next paragraph, we will see how the locality of a charge transfer can be quantified using
the detachment/attachment charge densities.

2.3. Quantifying the charge transfer locality

One possible strategy for evaluating the magnitude of the electronic structure reorganization is
to compute the spatial overlap between the hole and the particle. This is possible through the
assessment of a normalized, dimensionless quantity named ϕS:

ϕS ¼ ϑ�1
x

ð

R3
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nd rð Þna rð Þ

p
∈ 0; 1½ �; ϑx ¼ 1

2

X
q¼d, a

ð

R3
drnq rð Þ (11)

where ϑx is a normalization factor (the integral of detachment/attachment density over all the
space). Obviously, a long-range charge transfer means a low hole/particle overlap and will
correspond to a low value for ϕS. Conversely, a local transition will be characterized by a

Figure 1. Illustration of a local (left) and long-range (right) transition using detachment/attachment densities and theϕS index.
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The (γ0)rs terms appearing in Eq. (1) are the elements of the one-particle reduced density
matrix expressed in the canonical space of spinorbitals {φ} and can be isolated by integrating
the product of ~γ0 with the corresponding spinorbitals
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where conventionally r and s indices range from 1 to L. In Eq. (4) we introduced the annihila-
tion and creation operators from the second quantization.

2.2. Detachment and attachment density matrices

One known strategy for formally assigning the depletion and increment zones of charge
density appearing upon light absorption is the so-called detachment/attachment formalism.
This approach consists in separating the contributions related to light-induced charge removal
and accumulation by diagonalizing the one-particle difference density matrix γΔ ∈ RL� L. Such
matrix is obtained by taking the difference between the target excited state ∣ψx〉 and the ground
state ∣ψ0〉 density matrices:

γΔ ¼ γx � γ0: (5)

This density matrix can be projected into the Euclidean space in order to directly visualize the
negative and positive contributions to the light-induced charge displacement:
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Note that since no fraction of charge has been gained or lost during the electronic transition,
the integral of this difference density over all the space is equal to zero:
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dr1 nΔ r1ð Þ ¼
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|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
N

�
ð

R3
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zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{N

¼ 0: (7)

However, visualizing this difference density does not provide a straightforward picture of the
transition. The interpretation of the transition in terms of charge density depletion and incre-
ment can be made more compact by diagonalizing the difference density matrix:

∃M ∣ M†γΔM ¼ m (8)

where m is a diagonal matrix and M is unitary. Similar to the eigenvalues of a quantum state
density matrix, the eigenvalues of γΔ, contained in m, can be regarded as the occupation
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numbers of the transition in the canonical space. Those can be negative or positive,
corresponding, respectively, to charge removal or accumulation. These eigenvalues can there-
fore be sorted with respect to their sign:

k� ¼ 1
2

ffiffiffiffiffiffiffi
m2

p
�m

� �
(9)

where k+ (respectively, k�) is a diagonal matrix storing the positive (absolute value of negative)
eigenvalues of the difference density matrix. These two diagonal matrices can be separately
backtransformed to provide the so-called detachment (d) and attachment (a) density matrices
and the corresponding charge densities:

Mk�M† ¼ γd !R
3

nd rð Þ ¼
XL
r¼1

XL
s¼1

γd� �
rs φr rð Þφ∗

s rð Þ; MkþM† ¼ γa !R
3

na rð Þ ¼
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r¼1
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s¼1

γa� �
rs φr rð Þφ∗

s rð Þ:

(10)

These detachment/attachment densities (nd(r) and na(r)) are then nothing but the hole and
particle densities we were seeking. These densities are reproduced in Figure 1 for two para-
digmatic cases of electronic transitions: one local transition and one long-range charge transfer.
In the next paragraph, we will see how the locality of a charge transfer can be quantified using
the detachment/attachment charge densities.

2.3. Quantifying the charge transfer locality

One possible strategy for evaluating the magnitude of the electronic structure reorganization is
to compute the spatial overlap between the hole and the particle. This is possible through the
assessment of a normalized, dimensionless quantity named ϕS:

ϕS ¼ ϑ�1
x

ð

R3
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nd rð Þna rð Þ

p
∈ 0; 1½ �; ϑx ¼ 1

2

X
q¼d, a

ð

R3
drnq rð Þ (11)

where ϑx is a normalization factor (the integral of detachment/attachment density over all the
space). Obviously, a long-range charge transfer means a low hole/particle overlap and will
correspond to a low value for ϕS. Conversely, a local transition will be characterized by a

Figure 1. Illustration of a local (left) and long-range (right) transition using detachment/attachment densities and theϕS index.
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higher ϕS value. This is clearly illustrated in Figure 1 where the ϕS value drops from 0.77 to
0.17 when going from an electronic transition exhibiting a large hole/particle overlap to a long-
range charge transfer. These two cases are used solely to illustrate the potentiality of the ϕS

quantum metric to assess the locality of a charge transfer. The computation of ϕS is schemati-
cally pictured in the top of Figure 2.

It has also been demonstrated that ϕS can be used for performing a diagnosis on the exchange-
correlation functional used for computing the transition energy within the framework of
TDDFT [3].

An additional quantitative strategy consists in computing the charge effectively displaced
during the transition. The difference between the hole/particle and the effectively displaced
charge density is illustrated in Figure 2: since there can be some overlap between the hole and
the particle densities, the global outcome (the “bilan”) of the transition in terms of charge
displacement is not the detachment and attachment but the negative and positive contribu-
tions to the difference density, which can be obtained by taking the difference between the
attachment and detachment charge densities at every point of space. Indeed, from

m ¼ kþ � k� ) γΔ ¼ MmM† ¼ MkþM† �Mk�M† ¼ γa � γd (12)

we can write

nΔ rð Þ ¼ na rð Þ � nd rð Þ, (13)

and introduce the actual displacement charge density functions

n� rð Þ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffi
n2Δ rð Þ

q
� nΔ rð Þ

� �
(14)

Figure 2. Illustration of the complementarity between ϕS and ~φ.
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so the splitting operation is performed based on the sign of function entries in the three
dimensions of space instead of transition occupation numbers. From this separation we can
compute the normalized displaced charge:

ϑ�1
x

2

X
s¼þ,�

ð

R3
dr ns rð Þ ¼ ~φ ∈ 0; 1½ �: (15)

Obviously, splitting the transition occupation numbers and computing the detachment/attach-
ment overlap are complementary to the integration of the negative and positive contributions
to the difference density function: the ϕS descriptor provides an information related to the
locality of the charge transfer, while the ~φ metric relates the amount of charge transferred
during the transition.

These two complementary approaches have been associated into a final, general quantum
metric of charge transfer:

ψ ¼ 2π�1 arctan
ϕS
~φ

� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
θS

¼ 2θS

π
∈ 0; 1½½ (16)

which, as it was the case for ϕS and ~φ, is normalized and dimensionless. The ψ metric can be
interpreted as the normalized angle resulting from the joint projection of ϕS and ~φ in a
complex plane (~φ being along the real axis and ϕS the imaginary one). Such projection is
characterized by a θS angle with the real axis (see Ref. [5]), taking values ranging from 0 to π/
2. Therefore, the 2π�1 factor in Eq. (16) is there to ensure that ψ is normalized. Note that there
exists multiple ways to derive the three quantum metrics exposed in this paragraph, as
mentioned in Ref. [5].

Figure 3 represents the ψ projection for a series of dyes. These chromophores are constituted
by an electron-donor fragment conjugated to an acceptor moiety through a molecular bridge
with a variable size (i.e., a variable number of subunits).

We see that when the first excited state of these dyes is computed using TDDFTwith the hybrid
PBE0 exchange-correlation functional [46, 47] and a triple-zeta split-valence Gaussian basis set
with diffuse and polarization functions on every atom [48], increasing the number of bridge
subunits leads to a net decrease in the ψ projection angle. It is therefore very clear from Figure 3
that increasing the length of the bridge for this family of dyes leads to an increase of the charge
transfer character of the first transition, when computed at the above-mentioned level of theory.

The following paragraph details another known strategy providing a straightforward qualita-
tive analysis of the charge transfer topology, based on another type of density matrix: the
transition density matrix.

2.4. Transition density matrix and natural transition orbitals

In the following section we will be interested in the determination of the exciton wave function
and its use for providing the most compact representation of an electronic transition. More
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correlation functional used for computing the transition energy within the framework of
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so the splitting operation is performed based on the sign of function entries in the three
dimensions of space instead of transition occupation numbers. From this separation we can
compute the normalized displaced charge:
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Obviously, splitting the transition occupation numbers and computing the detachment/attach-
ment overlap are complementary to the integration of the negative and positive contributions
to the difference density function: the ϕS descriptor provides an information related to the
locality of the charge transfer, while the ~φ metric relates the amount of charge transferred
during the transition.

These two complementary approaches have been associated into a final, general quantum
metric of charge transfer:
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which, as it was the case for ϕS and ~φ, is normalized and dimensionless. The ψ metric can be
interpreted as the normalized angle resulting from the joint projection of ϕS and ~φ in a
complex plane (~φ being along the real axis and ϕS the imaginary one). Such projection is
characterized by a θS angle with the real axis (see Ref. [5]), taking values ranging from 0 to π/
2. Therefore, the 2π�1 factor in Eq. (16) is there to ensure that ψ is normalized. Note that there
exists multiple ways to derive the three quantum metrics exposed in this paragraph, as
mentioned in Ref. [5].

Figure 3 represents the ψ projection for a series of dyes. These chromophores are constituted
by an electron-donor fragment conjugated to an acceptor moiety through a molecular bridge
with a variable size (i.e., a variable number of subunits).

We see that when the first excited state of these dyes is computed using TDDFTwith the hybrid
PBE0 exchange-correlation functional [46, 47] and a triple-zeta split-valence Gaussian basis set
with diffuse and polarization functions on every atom [48], increasing the number of bridge
subunits leads to a net decrease in the ψ projection angle. It is therefore very clear from Figure 3
that increasing the length of the bridge for this family of dyes leads to an increase of the charge
transfer character of the first transition, when computed at the above-mentioned level of theory.

The following paragraph details another known strategy providing a straightforward qualita-
tive analysis of the charge transfer topology, based on another type of density matrix: the
transition density matrix.

2.4. Transition density matrix and natural transition orbitals

In the following section we will be interested in the determination of the exciton wave function
and its use for providing the most compact representation of an electronic transition. More
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particularly, this paragraph exposes how we can find an alternative basis to the canonical one
and reduce the picture of the transition to one couple of hole/particle wave functions. The
following formalism is applied to the case of quantum excited states that can be written as a
linear combination of singly excited Slater determinants, constructed from the single-reference
wave function (ψ0) where the spinorbital φi from the occupied canonical subspace has been
replaced by the φa spinorbital belonging to the virtual canonical subspace. In these conditions,
the xth excited electronic state writes

∣ψxi ¼
XN

i¼1

XL
a¼Nþ1

z�1=2
x γ0x� �

ia∣ψ
a
i i; ∣ψa

i i ¼ ba†bi∣ψ0i (17)

where again we introduced the annihilationbi and creation ba† operators from the second quanti-
zation, so we actually see that ∣ψa

i i is obtained by annihilating the electron in the ith spinorbital
from the ground state wave function and creating an electron in the ath one. In Eq. (17),

zx ¼ tr γ0xγ0x†� � ¼ tr γ0x†γ0x� �
(18)

is a normalization factor and ðγ0xÞia is a transition density matrix element for the 0!x state
transition. Transition density matrix elements can be extracted from the exciton wave function:

Figure 3. Illustration of the evolution of the ψ index value for the first excited state of a series of push-pull dyes,
computed at the PBE0/6-311++G(2d,p)//PBE0/6-311G(d,p) level of theory in vacuum.
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~γ0x r1; r01
� � ¼ N

X
σ1¼α, β

ð
dx2…

ð
dxNψ0 r1;…; xNð Þψ�

x r01;…; xN
� �

¼ z�1=2
x

XN

i¼1

XL
a¼Nþ1

φi r1ð Þ γ0x� �
iaφ

∗
a r01
� �

,

(19)

That is, the so-called transition density matrix kernel locating the hole (r1) in the ground state
and the particle (r01) in the excited state. Similarly to the one-particle reduced density matrix in
Eq. (4), the transition density matrix elements write

z�1=2
x γ0x� �

ia ¼ ψ0jbi
†bajψx

D E
¼
XN

j¼1

XL

b¼Nþ1

z�1=2
x γ0x� �

jb ψ0jbi
†bajψb

j

D E

¼
XN

j¼1

XL

b¼Nþ1

z�1=2
x γ0x� �

jb ψa
i jψb

j

D Ezfflfflfflfflffl}|fflfflfflfflffl{δijδab

¼ z�1=2
x γ0x� �

ia:

(20)

Note that we conventionally set the i , j and a , b indices to match spinorbitals, respectively,
belonging exclusively to the occupied and virtual canonical subspaces, while r and s indices
have no restricted attribution to a given subspace. Similarly to the quantum state electron
density function, one can deduce the expression of the one-particle transition density from the
transition density matrix kernel:

n0x r1ð Þ ¼ z�1=2
x

XN

i¼1

XL
a¼Nþ1

φi r1ð Þ γ0x� �
iaφ

∗
a r1ð Þ

)
ð

R3
dr1 n0x r1ð Þ ¼ z�1=2

x

XN

i¼1

XL
a¼Nþ1

γ0x� �
ia φajφi

� �
|fflfflfflffl{zfflfflfflffl}

δia

¼ 0

(21)

where the δia Kronecker delta is systematically vanishing since φi and φa spinorbitals never
belong to the same subspace. Here again, we will take advantage of the possibility to use finite
mathematical objects such as matrices and perform a reduction of the one-particle transition
density matrix size: since we know that i and a indices are restricted to occupied and virtual
subspaces, we can introduce the normalized transition density matrix T (that we will call
transition density matrix in the following):

z�1=2
x γ0x� �

ia $ Tð Þic c ¼ a�Nð Þ (22)

so the connection between the two matrices is trivial:

z�1=2
x γ0x ¼ 0N�N T

0 L�Nð Þ�N 0 L�Nð Þ� L�Nð Þ

 !
; z�1=2

x γ0x ∈ RL�L $ T ∈ RN� L�Nð Þ (23)
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particularly, this paragraph exposes how we can find an alternative basis to the canonical one
and reduce the picture of the transition to one couple of hole/particle wave functions. The
following formalism is applied to the case of quantum excited states that can be written as a
linear combination of singly excited Slater determinants, constructed from the single-reference
wave function (ψ0) where the spinorbital φi from the occupied canonical subspace has been
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where again we introduced the annihilationbi and creation ba† operators from the second quanti-
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i i is obtained by annihilating the electron in the ith spinorbital
from the ground state wave function and creating an electron in the ath one. In Eq. (17),

zx ¼ tr γ0xγ0x†� � ¼ tr γ0x†γ0x� �
(18)

is a normalization factor and ðγ0xÞia is a transition density matrix element for the 0!x state
transition. Transition density matrix elements can be extracted from the exciton wave function:

Figure 3. Illustration of the evolution of the ψ index value for the first excited state of a series of push-pull dyes,
computed at the PBE0/6-311++G(2d,p)//PBE0/6-311G(d,p) level of theory in vacuum.
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~γ0x r1; r01
� � ¼ N

X
σ1¼α, β

ð
dx2…

ð
dxNψ0 r1;…; xNð Þψ�

x r01;…; xN
� �

¼ z�1=2
x

XN

i¼1

XL
a¼Nþ1

φi r1ð Þ γ0x� �
iaφ

∗
a r01
� �

,

(19)

That is, the so-called transition density matrix kernel locating the hole (r1) in the ground state
and the particle (r01) in the excited state. Similarly to the one-particle reduced density matrix in
Eq. (4), the transition density matrix elements write

z�1=2
x γ0x� �

ia ¼ ψ0jbi
†bajψx

D E
¼
XN

j¼1

XL

b¼Nþ1

z�1=2
x γ0x� �

jb ψ0jbi
†bajψb

j

D E

¼
XN

j¼1

XL

b¼Nþ1

z�1=2
x γ0x� �

jb ψa
i jψb

j

D Ezfflfflfflfflffl}|fflfflfflfflffl{δijδab

¼ z�1=2
x γ0x� �

ia:

(20)

Note that we conventionally set the i , j and a , b indices to match spinorbitals, respectively,
belonging exclusively to the occupied and virtual canonical subspaces, while r and s indices
have no restricted attribution to a given subspace. Similarly to the quantum state electron
density function, one can deduce the expression of the one-particle transition density from the
transition density matrix kernel:

n0x r1ð Þ ¼ z�1=2
x

XN

i¼1

XL
a¼Nþ1

φi r1ð Þ γ0x� �
iaφ

∗
a r1ð Þ

)
ð

R3
dr1 n0x r1ð Þ ¼ z�1=2

x

XN

i¼1

XL
a¼Nþ1

γ0x� �
ia φajφi

� �
|fflfflfflffl{zfflfflfflffl}

δia

¼ 0

(21)

where the δia Kronecker delta is systematically vanishing since φi and φa spinorbitals never
belong to the same subspace. Here again, we will take advantage of the possibility to use finite
mathematical objects such as matrices and perform a reduction of the one-particle transition
density matrix size: since we know that i and a indices are restricted to occupied and virtual
subspaces, we can introduce the normalized transition density matrix T (that we will call
transition density matrix in the following):

z�1=2
x γ0x� �

ia $ Tð Þic c ¼ a�Nð Þ (22)

so the connection between the two matrices is trivial:

z�1=2
x γ0x ¼ 0N�N T

0 L�Nð Þ�N 0 L�Nð Þ� L�Nð Þ

 !
; z�1=2

x γ0x ∈ RL�L $ T ∈ RN� L�Nð Þ (23)
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where 0k� l refers to the zero matrix with k� l dimensions. For the sake of simplicity, we will
use 0o and 0v for the occupied � occupied and virtual � virtual zero blocks and 0o� v and 0v� o

for the out-diagonal blocks.

We will now focus on T. This matrix contains the information related to the transition we seek,
and similarly to the difference density matrix, we will extract this information by diagonaliz-
ing T. However, since T is not square but rectangular (we rarely have the same number of
occupied and virtual orbitals), the diagonalization process is named singular value decompo-
sition (SVD) [44] and takes the form

∃O,V ∣ O†TV ¼ λ: (24)

The diagonal λ entries are called the singular values of T. Due to the dimensions of λ, the
number of singular values is equal to the dimensions of the lowest subspace (i.e., N or L�N).
Most often, the number of virtual orbitals is larger than the number of occupied orbitals.
Therefore, from now on we will assume that N < L�N.

While from the diagonalization of γΔ we could build detachment/attachment densities, here
we will use the left and right eigenvectors of T for rotating the occupied and virtual canonical
subspaces into the so-called occupied/virtual natural transition orbital (NTO) spaces:

φo
i rð Þ ¼

XN

j¼1

Oð Þjiφj rð Þ $λð Þii φv
i rð Þ ¼

XL�N

j¼1

Vð ÞjiφNþj rð Þ, (25)

where i ranges from 1 to N. We have built N couples of occupied/virtual NTOs, each couple
being characterized by the corresponding singular value (λ)ii. The great advantage of
performing an SVD on T is that in most of the cases, only one singular value is predominant,
which means that we can condensate all the physics of an electronic transition into one couple
of occupied/virtual NTOs, as represented in Figure 4.

We can conclude that, similarly to the usual quantum state natural orbitals which constitute
the basis in which the quantum state density matrix is diagonal, the NTOs provide the most
compact representation of the electronic transition and can be used to rewrite the expression of
the electronic excited state and the transition density matrix kernel (the exciton wave function):

∣ψxi ¼
XN

i¼1

λð Þii∣ψv, i
o, ii ¼

XN

i¼1

λð Þiibq v†
i bq o

i ∣ψ0i; ~γ0x r1; r01
� � ¼

XN

i¼1

λð Þiiφo
i r1ð Þφv∗

i r01
� �

(26)

where this time the creation/annihilation operators are bearing the “o” and “v” superscripts,
reminding that we are annihilating an electron in the ith occupied (o) NTO and creating one
electron in the ith virtual (v) NTO. Since we know that usually one singular value is predom-
inant, we can clearly identify the hole and particle wave functions and state, upon light
absorption, from where the electron goes and where it arrives.

Multiplying T by its own transpose and vice versa leads to two square matrices with interest-
ing properties:
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TT† ∈ RN�N; T†T ∈ R L�Nð Þ� L�Nð Þ: (27)

Due to their structure, these two new matrices share the same eigenvectors than T

O†TT†O ¼ λ2
o ; V

†T†TV ¼ λ2
v (28)

with, considering N <L�N, the following rules for their eigenvalues:

λð Þ2ii ¼ λ2
o

� �
ii ¼ λ2

v

� �
ii ∀i ≤N; λ2

v ¼ λ2
o ⊕ 0v: (29)

These rules can be demonstrated by developing the product of λ with its own transpose:

λλ† ¼ O†TVV†
|ffl{zffl}

Iv

T†O ¼ O†TT†O (30)

where Iv is the (L�N)� (L�N) identity matrix. Due to the dimensions of λ and its diagonal
structure, we can write

λ ∈ RN� L�Nð Þ ) λλ† ∈ RN�N ; λð Þij ¼ 0 ∀i 6¼ j ) λλ† ¼ λ2
o : (31)

Similarly, we have for λ†λ

λ†λ ¼ V†T†OO†

|ffl{zffl}
Io

TV ¼ V†T†TV (32)

Figure 4. Illustration of the hole (top) and particle (bottom) wave functions, that is, the predominant couple of occupied
(top) and virtual (bottom) NTOs for a random push-pull chromophore experiencing a photoinduced charge transfer.
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where 0k� l refers to the zero matrix with k� l dimensions. For the sake of simplicity, we will
use 0o and 0v for the occupied � occupied and virtual � virtual zero blocks and 0o� v and 0v� o

for the out-diagonal blocks.

We will now focus on T. This matrix contains the information related to the transition we seek,
and similarly to the difference density matrix, we will extract this information by diagonaliz-
ing T. However, since T is not square but rectangular (we rarely have the same number of
occupied and virtual orbitals), the diagonalization process is named singular value decompo-
sition (SVD) [44] and takes the form

∃O,V ∣ O†TV ¼ λ: (24)

The diagonal λ entries are called the singular values of T. Due to the dimensions of λ, the
number of singular values is equal to the dimensions of the lowest subspace (i.e., N or L�N).
Most often, the number of virtual orbitals is larger than the number of occupied orbitals.
Therefore, from now on we will assume that N < L�N.

While from the diagonalization of γΔ we could build detachment/attachment densities, here
we will use the left and right eigenvectors of T for rotating the occupied and virtual canonical
subspaces into the so-called occupied/virtual natural transition orbital (NTO) spaces:

φo
i rð Þ ¼

XN

j¼1

Oð Þjiφj rð Þ $λð Þii φv
i rð Þ ¼

XL�N

j¼1

Vð ÞjiφNþj rð Þ, (25)

where i ranges from 1 to N. We have built N couples of occupied/virtual NTOs, each couple
being characterized by the corresponding singular value (λ)ii. The great advantage of
performing an SVD on T is that in most of the cases, only one singular value is predominant,
which means that we can condensate all the physics of an electronic transition into one couple
of occupied/virtual NTOs, as represented in Figure 4.

We can conclude that, similarly to the usual quantum state natural orbitals which constitute
the basis in which the quantum state density matrix is diagonal, the NTOs provide the most
compact representation of the electronic transition and can be used to rewrite the expression of
the electronic excited state and the transition density matrix kernel (the exciton wave function):

∣ψxi ¼
XN

i¼1

λð Þii∣ψv, i
o, ii ¼

XN

i¼1

λð Þiibq v†
i bq o

i ∣ψ0i; ~γ0x r1; r01
� � ¼

XN

i¼1

λð Þiiφo
i r1ð Þφv∗

i r01
� �

(26)

where this time the creation/annihilation operators are bearing the “o” and “v” superscripts,
reminding that we are annihilating an electron in the ith occupied (o) NTO and creating one
electron in the ith virtual (v) NTO. Since we know that usually one singular value is predom-
inant, we can clearly identify the hole and particle wave functions and state, upon light
absorption, from where the electron goes and where it arrives.

Multiplying T by its own transpose and vice versa leads to two square matrices with interest-
ing properties:
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TT† ∈ RN�N; T†T ∈ R L�Nð Þ� L�Nð Þ: (27)

Due to their structure, these two new matrices share the same eigenvectors than T

O†TT†O ¼ λ2
o ; V

†T†TV ¼ λ2
v (28)

with, considering N <L�N, the following rules for their eigenvalues:

λð Þ2ii ¼ λ2
o

� �
ii ¼ λ2

v

� �
ii ∀i ≤N; λ2

v ¼ λ2
o ⊕ 0v: (29)

These rules can be demonstrated by developing the product of λ with its own transpose:

λλ† ¼ O†TVV†
|ffl{zffl}

Iv

T†O ¼ O†TT†O (30)

where Iv is the (L�N)� (L�N) identity matrix. Due to the dimensions of λ and its diagonal
structure, we can write

λ ∈ RN� L�Nð Þ ) λλ† ∈ RN�N ; λð Þij ¼ 0 ∀i 6¼ j ) λλ† ¼ λ2
o : (31)

Similarly, we have for λ†λ

λ†λ ¼ V†T†OO†

|ffl{zffl}
Io

TV ¼ V†T†TV (32)

Figure 4. Illustration of the hole (top) and particle (bottom) wave functions, that is, the predominant couple of occupied
(top) and virtual (bottom) NTOs for a random push-pull chromophore experiencing a photoinduced charge transfer.
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and

λ ∈ RN� L�Nð Þ ) λ†λ ∈ R L�Nð Þ� L�Nð Þ ; λð Þij ¼ 0 ∀i 6¼ j ) λ†λ ¼ λ2
v: (33)

Multiplying Eq. (28) by the left by T†O or TV leads to two new eigenvalue problems:

T†O O†TT†O ¼ λ2
o

� �
⇔ T†TT†O|ffl{zffl}

Vo

¼ T†Oλ2
o ; TV V†T†TV⇔λ2

v

� � ¼ TT† TV|{z}
Ov

¼ TVλ2
v (34)

where Vo ∈ R(L�N)�N contains the N eigenvectors of T†Twith a nonvanishing eigenvalue (i.e.,
the N first columns of V) and Ov ∈ RN� (L�N) is the juxtaposition of O and L� 2N zero
columns. The results in Eq. (34) prove that the eigenvectors of each of the two matrices in
Eq. (27) can be found from the eigenvectors of the other one and that both matrices share the
same nonvanishing eigenvalues, as mentioned in Eq. (29).

3. Bridging the detachment/attachment and NTO paradigms

We now have two general strategies for qualitatively studying the topology of the light-induced
electronic cloud polarization, and the locality of this electronic structure reorganization can be
quantified. This section is devoted to single-reference excited states calculation methods that
express the electronic excited state as a linear combination of singly excited Slater determinants
and brings the rigorous demonstration that in such case, the three quantum metrics we previ-
ously designed can be formally equivalently derived from the difference density matrix or the
transition density matrix. This result is the corollary to a theorem stating that the occupied/
virtual NTOs are nothing but the eigenvectors of the detachment/attachment density matrices.

3.1. Expression of the quantum state density matrices in the canonical space

In this paragraph we elucidate the structure of the difference density matrix by developing the
full expression of the excited state density matrix in the canonical space.

Lemma III.1 The difference density matrix is the direct sum of �TT† and T†T.

Proof. We start by writing the expression of the ground state density matrix: from Eq. (4) it
follows that for an N–electron single-determinant ground state wave function,

∀ r; sð Þ ∣ r ≤N and s ≤N, γ
� �

rs ¼ δrs ; ∀ r; sð Þ ∣ r > N and=or s > N, γ
� �

rs ¼ 0: (35)

It follows that the ground state one-particle density matrix in the canonical space writes

γ0 ¼ Io ⊕ 0v: (36)

If now we rewrite the electronic excited state ∣ψx〉 from Eq. (17) using the normalized transition
density matrix elements, we have
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∣ψxi ¼
XN

i¼1

XL
a¼Nþ1

Tð Þic∣ψa
i i c ¼ a�Nð Þ: (37)

From now on we will operate a systematic index shift between matrix elements and virtual
orbitals implied in the singly excited Slater determinants. Since the excited state wave function
is normalized, we can write

1 ¼ ψxjψx

� � ¼
XN

i, j¼1

XL

a, b¼Nþ1

Tð Þ�jd Tð Þic ψb
j jψa

i

D Ezfflfflfflfflffl}|fflfflfflfflffl{δijδab

ðd ¼ b�NÞ

¼
XN

i¼1

XL
a¼Nþ1

Tð Þ�ic Tð Þic ¼
XN

i¼1

XL
a¼Nþ1

Tð Þic T†
� �

ci ¼
tr TT†
� �

tr T†T
� �

8<
:

(38)

and, since the trace of a matrix is an unitary invariant,

tr λλ†
� � ¼ tr λ†λ

� � ¼ 1: (39)

Using the second quantization, we might rewrite ∣ψx〉

∣ψxi ¼
XN

i¼1

XL
a¼Nþ1

Tð Þic ba†bi∣ψ0i (40)

and the r� s density matrix element for the xth excited state writes

γx� �
rs ¼ ψxjbr†bsjψx

D E
¼
XN

i, j¼1

XL

a, b¼Nþ1

Tð Þ�jd Tð Þic ψb
j jbr

†bsjψa
i

D E

¼
XN

i, j¼1

XL

a, b¼Nþ1

Tð Þ�jd Tð Þic ψ0jbj
†bbbr†bsba†bijψ0

D E
:

(41)

We will now apply Wick’s theorem to the expression of the excited state density matrix written
using our fermionic second quantization operators. According to this theorem, one can rewrite
Eq. (41) as a combination of products of expectation values of couples of the second quantiza-
tion operators implied in the expression of γx. Since we are working with fermionic operators,
a phase is assigned to each term of this sum with the form (�1)ϱl where l corresponds to the
position of the term in the sum. Note that a number is also assigned to the position of each
fermionic operator both in the original expression of γx and after expanding it into a sum of
terms. Figure 5 illustrates the case of γx, which can be decomposed into a sum of three
nonvanishing terms. The central part of the figure shows how each term is constructed by
associating a creation to an annihilation operator. Note that other operator pairings are possi-
ble, but their expectation value is vanishing due to the fact that the associated operators do not
belong to the same subspace (occupied or virtual). The right part of Figure 5 shows how the
label sequence of the operators has been rearranged for each term.
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and

λ ∈ RN� L�Nð Þ ) λ†λ ∈ R L�Nð Þ� L�Nð Þ ; λð Þij ¼ 0 ∀i 6¼ j ) λ†λ ¼ λ2
v: (33)

Multiplying Eq. (28) by the left by T†O or TV leads to two new eigenvalue problems:

T†O O†TT†O ¼ λ2
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� �
⇔ T†TT†O|ffl{zffl}

Vo

¼ T†Oλ2
o ; TV V†T†TV⇔λ2

v

� � ¼ TT† TV|{z}
Ov

¼ TVλ2
v (34)

where Vo ∈ R(L�N)�N contains the N eigenvectors of T†Twith a nonvanishing eigenvalue (i.e.,
the N first columns of V) and Ov ∈ RN� (L�N) is the juxtaposition of O and L� 2N zero
columns. The results in Eq. (34) prove that the eigenvectors of each of the two matrices in
Eq. (27) can be found from the eigenvectors of the other one and that both matrices share the
same nonvanishing eigenvalues, as mentioned in Eq. (29).

3. Bridging the detachment/attachment and NTO paradigms

We now have two general strategies for qualitatively studying the topology of the light-induced
electronic cloud polarization, and the locality of this electronic structure reorganization can be
quantified. This section is devoted to single-reference excited states calculation methods that
express the electronic excited state as a linear combination of singly excited Slater determinants
and brings the rigorous demonstration that in such case, the three quantum metrics we previ-
ously designed can be formally equivalently derived from the difference density matrix or the
transition density matrix. This result is the corollary to a theorem stating that the occupied/
virtual NTOs are nothing but the eigenvectors of the detachment/attachment density matrices.

3.1. Expression of the quantum state density matrices in the canonical space

In this paragraph we elucidate the structure of the difference density matrix by developing the
full expression of the excited state density matrix in the canonical space.

Lemma III.1 The difference density matrix is the direct sum of �TT† and T†T.

Proof. We start by writing the expression of the ground state density matrix: from Eq. (4) it
follows that for an N–electron single-determinant ground state wave function,

∀ r; sð Þ ∣ r ≤N and s ≤N, γ
� �

rs ¼ δrs ; ∀ r; sð Þ ∣ r > N and=or s > N, γ
� �

rs ¼ 0: (35)

It follows that the ground state one-particle density matrix in the canonical space writes

γ0 ¼ Io ⊕ 0v: (36)

If now we rewrite the electronic excited state ∣ψx〉 from Eq. (17) using the normalized transition
density matrix elements, we have
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∣ψxi ¼
XN

i¼1

XL
a¼Nþ1

Tð Þic∣ψa
i i c ¼ a�Nð Þ: (37)

From now on we will operate a systematic index shift between matrix elements and virtual
orbitals implied in the singly excited Slater determinants. Since the excited state wave function
is normalized, we can write

1 ¼ ψxjψx

� � ¼
XN

i, j¼1
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Tð Þ�jd Tð Þic ψb
j jψa

i

D Ezfflfflfflfflffl}|fflfflfflfflffl{δijδab

ðd ¼ b�NÞ

¼
XN

i¼1

XL
a¼Nþ1

Tð Þ�ic Tð Þic ¼
XN

i¼1

XL
a¼Nþ1

Tð Þic T†
� �

ci ¼
tr TT†
� �

tr T†T
� �

8<
:
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and, since the trace of a matrix is an unitary invariant,

tr λλ†
� � ¼ tr λ†λ

� � ¼ 1: (39)

Using the second quantization, we might rewrite ∣ψx〉

∣ψxi ¼
XN

i¼1

XL
a¼Nþ1

Tð Þic ba†bi∣ψ0i (40)

and the r� s density matrix element for the xth excited state writes

γx� �
rs ¼ ψxjbr†bsjψx

D E
¼
XN

i, j¼1

XL

a, b¼Nþ1

Tð Þ�jd Tð Þic ψb
j jbr

†bsjψa
i

D E

¼
XN

i, j¼1

XL

a, b¼Nþ1

Tð Þ�jd Tð Þic ψ0jbj
†bbbr†bsba†bijψ0

D E
:

(41)

We will now apply Wick’s theorem to the expression of the excited state density matrix written
using our fermionic second quantization operators. According to this theorem, one can rewrite
Eq. (41) as a combination of products of expectation values of couples of the second quantiza-
tion operators implied in the expression of γx. Since we are working with fermionic operators,
a phase is assigned to each term of this sum with the form (�1)ϱl where l corresponds to the
position of the term in the sum. Note that a number is also assigned to the position of each
fermionic operator both in the original expression of γx and after expanding it into a sum of
terms. Figure 5 illustrates the case of γx, which can be decomposed into a sum of three
nonvanishing terms. The central part of the figure shows how each term is constructed by
associating a creation to an annihilation operator. Note that other operator pairings are possi-
ble, but their expectation value is vanishing due to the fact that the associated operators do not
belong to the same subspace (occupied or virtual). The right part of Figure 5 shows how the
label sequence of the operators has been rearranged for each term.
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Once the excited state density matrix is developed, one can write a bijection fl(x) = y between the
original sequence of operators label (here 1, …, 6) and the one characterizing each term
(l = 1 , 2 , 3). The ϱl value is then obtained by counting the number of pairs of projections satisfying

x1; x2ð Þ ∣ x1 < x2; f l x1ð Þ > f l x2ð Þ� �
(42)

in the bijection. For example, for the first term (l = 1), the (x1 = 2, x2 = 5) pair satisfies this
condition, because f1(2) = 6 > 3 = f1(5). The evaluation of the phase to be assigned to the first
term (l = 1) reported in Figure 5 is fully detailed in Figure 6. The deduction of the phase for l = 2
and 3 is given in Appendix (Figures 7 and 8).

For each term in the developed expression of γx, six permutations of its factors are possible
without affecting the phase, for the parity of ϱl is guided only by the primary association of
creation/annihilation operators characterizing the lth term. According to what precedes, we
are now able to write the r� s excited state density matrix element:

γx� �
rs ¼

XN

i, j¼1

XL

a, b¼Nþ1

Tð Þ�jd Tð Þic ℐ1 �ℐ2 þℐ3ð Þ (43)

with

ℐ1 ¼ ψ0jbj
†bijψ0

D Ezfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{δij

ψ0jbbba†jψ0

D E
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

δab

ψ0jbr†bsjψ0

D Ezfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{δrsnr

(44)

where nr is the occupation number of spinorbital r (see Eq. (35) for more details). For ℐ2 we
have

Figure 5. Wick’s theorem applied to single-reference excited state density matrices.
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ℐ2 ¼ ψ0jbj
†bsjψ0

D Ezfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{δjs

ψ0jbbba†jψ0

D E
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

δab

ψ0jbr†bijψ0

D Ezfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{δri

(45)

and for ℐ3,

ℐ3 ¼ ψ0jbj
†bijψ0

D Ezfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{δij

ψ0jbsba†jψ0

D E
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

δsa

ψ0jbbbr†jψ0

D Ezfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{δbr

: (46)

Note that since i and j are corresponding to occupied spinorbitals, writing δjs is equivalent to
writing δjsns and is not vanishing only when φs belongs to the occupied subspace. This is also
the case for δri. On the other hand, since φa and φb belong to the virtual subspace, writing δsa is
equivalent to writing δsa(1� ns) and is not vanishing only when s is superior to N. Note also
that writing δab when dealing with spinorbitals corresponds to δcd when working with matrix
elements (see Eqs. (37) and (38)). Therefore, (γx)rs now writes

γx� �
rs ¼ δrsnr

XN

i, j¼1

XL

a, b¼Nþ1

Tð Þ�jd Tð Þicδijδab
2
4

3
5

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{tr TT†ð Þ¼tr T†Tð Þ¼1

�
XN

i, j¼1

XL

a, b¼Nþ1

Tð Þ�jd Tð Þicδabδjsnsδrinr

þ
XN

i, j¼1

XL

a, b¼Nþ1
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Figure 6. Illustration of the evaluation of ϱ1.
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Once the excited state density matrix is developed, one can write a bijection fl(x) = y between the
original sequence of operators label (here 1, …, 6) and the one characterizing each term
(l = 1 , 2 , 3). The ϱl value is then obtained by counting the number of pairs of projections satisfying

x1; x2ð Þ ∣ x1 < x2; f l x1ð Þ > f l x2ð Þ� �
(42)

in the bijection. For example, for the first term (l = 1), the (x1 = 2, x2 = 5) pair satisfies this
condition, because f1(2) = 6 > 3 = f1(5). The evaluation of the phase to be assigned to the first
term (l = 1) reported in Figure 5 is fully detailed in Figure 6. The deduction of the phase for l = 2
and 3 is given in Appendix (Figures 7 and 8).

For each term in the developed expression of γx, six permutations of its factors are possible
without affecting the phase, for the parity of ϱl is guided only by the primary association of
creation/annihilation operators characterizing the lth term. According to what precedes, we
are now able to write the r� s excited state density matrix element:

γx� �
rs ¼

XN

i, j¼1

XL

a, b¼Nþ1

Tð Þ�jd Tð Þic ℐ1 �ℐ2 þℐ3ð Þ (43)

with

ℐ1 ¼ ψ0jbj
†bijψ0

D Ezfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{δij

ψ0jbbba†jψ0

D E
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

δab

ψ0jbr†bsjψ0

D Ezfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{δrsnr

(44)

where nr is the occupation number of spinorbital r (see Eq. (35) for more details). For ℐ2 we
have

Figure 5. Wick’s theorem applied to single-reference excited state density matrices.
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ℐ2 ¼ ψ0jbj
†bsjψ0

D Ezfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{δjs

ψ0jbbba†jψ0

D E
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

δab

ψ0jbr†bijψ0

D Ezfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{δri

(45)

and for ℐ3,

ℐ3 ¼ ψ0jbj
†bijψ0

D Ezfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{δij

ψ0jbsba†jψ0

D E
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

δsa

ψ0jbbbr†jψ0

D Ezfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{δbr

: (46)

Note that since i and j are corresponding to occupied spinorbitals, writing δjs is equivalent to
writing δjsns and is not vanishing only when φs belongs to the occupied subspace. This is also
the case for δri. On the other hand, since φa and φb belong to the virtual subspace, writing δsa is
equivalent to writing δsa(1� ns) and is not vanishing only when s is superior to N. Note also
that writing δab when dealing with spinorbitals corresponds to δcd when working with matrix
elements (see Eqs. (37) and (38)). Therefore, (γx)rs now writes
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Figure 6. Illustration of the evaluation of ϱ1.

Theoretical Insights into the Topology of Molecular Excitons from Single-Reference Excited States Calculation…
http://dx.doi.org/10.5772/intechopen.70688

45



that is,

γx� �
rs ¼ δrsnr � TT†

� �
ijδjsnsδrinr þ T†T

� �
dc 1� nrð Þδd r�Nð Þ 1� nsð Þδc s�Nð Þ: (48)

We see that the first and second terms belong to the occupied � occupied block, while the third
term belongs to the virtual � virtual one. According to this, the excited state density matrix in
the canonical space finally writes

γx ¼ Io � TT†
� �

⊕T†T: (49)

Subtracting the ground state density matrix taken from Eq. (36) to γx gives γΔ

γΔ ¼ �TT† ⊕T†T: ■ (50)

Since TT† and T†T have positive eigenvalues (i.e., they are positive definite), we deduce

mð Þii ≤ 0 ∀i ≤N; mð Þaa ≥ 0 ∀a > N: (51)

Therefore, we must have that

TT† ⊕ 0v ¼ γd ; 0o ⊕T†T ¼ γa (52)

which obviously leads to

γΔ ¼ γa � γd: (53)

This last statement is in agreement with (12). Note that

XN
r¼1

TT†
� �

rr ¼
ð

R3
dr nd rð Þ ¼ ϑx ¼

ð

R3
dr na rð Þ ¼

XL�N

s¼1

T†T
� �

ss: (54)

It follows that ϑx = 1.

3.2. Detachment/attachment density matrix eigenvectors

This paragraph aims at demonstrating the connection between the NTOs and detachment/
attachment paradigms by using the structure of the difference density matrix.

Theorem III.1 NTOs are the eigenvectors of the detachment/attachment density matrices.

Proof. We know from Lemma III.1 that

γΔ ¼ �TT† ⊕T†T ¼
0o 0o�v

0v�o T†T

 !zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{γa

� TT† 0o�v

0v�o 0v

 !

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
γd

; ∃M ∣ M†γΔM ¼ m: (55)
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Since TT† and T†T are positive definite, we deduce that the only negative eigenvalues of γΔ

belong to the occupied � occupied block, while the positive ones belong to the virtual �
virtual block. Since we know how to obtain the eigenvalues of TT† and T†T thanks to
Eq. (28), we know that the matrix M diagonalizing the difference density matrix must be the
direct sum of O and V:

m ¼ �λ2
o ⊕λ2

v ; M ¼ O⊕V: ■ (56)

According to Eq. (52), we deduce that the eigenvectors of the detachment/attachment density
matrices are nothing but the occupied/virtual natural transition orbitals: the Md , a matrices
diagonalizing γd , a are

Md ¼ O⊕ 0v ) Md†γdMd ¼ λ2
0 ⊕ 0v; Ma ¼ 0o ⊕V ) Ma†γaMa ¼ 0o ⊕λ2

v: (57)

3.3. Equivalence of the two paradigms through quantitative analysis

Finally, and since we demonstrated that there is a direct relationship between the NTOs and
the detachment/attachment, we will use Lemma III.1 and Theorem III.1 to demonstrate that
our quantitative analysis is equivalent when derived in the two paradigms when the ground
state wave function is a single Slater determinant and the excited state is a normalized linear
combination of singly excited Slater determinants.

Corollary III.1 The quantum descriptors derived from γΔ can be derived from T's eigenvectors and
singular values.

Proof. From Lemma III.1 and Theorem III.1, we can construct the following scheme:

O†TV ¼ λ ! λ2
o ;λ

2
v

� �! γΔ ¼ �Oλ2
oO

† ⊕Vλ2
vV

†: (58)

Following the structure of m deduced in Theorem III.1, we simply find k�

m ¼ �λ2
o ⊕λ2

v ) kþ ¼ 0o ⊕λ2
v ; k� ¼ λ2

o ⊕ 0v: (59)

Backtransformation and few manipulations lead to

O⊕Vð Þk� O† ⊕V†
� � ¼ γd, a ! ϕS; ~φ;ψg: ■

�
(60)

'The joint computation of the NTOs and detachment/attachment density matrices from a single
SVD, as a preliminary to the quantum metrics assessment, can even be simplified as

O†TV ¼ λ ! O⊕Vð Þ
λλ† ⊕ 0v

0o ⊕ λ†λ

( )
O† ⊕V†
� � ¼

γd

γa

( )
! ϕS; ~φ;ψg:
�

(61)

Note finally that from Eq. (52) we see that the computation of the detachment/attachment
density matrices (hence, the assessment of the topological metrics) can be performed without
requiring any matrix diagonalization.
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3.3. Equivalence of the two paradigms through quantitative analysis

Finally, and since we demonstrated that there is a direct relationship between the NTOs and
the detachment/attachment, we will use Lemma III.1 and Theorem III.1 to demonstrate that
our quantitative analysis is equivalent when derived in the two paradigms when the ground
state wave function is a single Slater determinant and the excited state is a normalized linear
combination of singly excited Slater determinants.

Corollary III.1 The quantum descriptors derived from γΔ can be derived from T's eigenvectors and
singular values.

Proof. From Lemma III.1 and Theorem III.1, we can construct the following scheme:
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Backtransformation and few manipulations lead to

O⊕Vð Þk� O† ⊕V†
� � ¼ γd, a ! ϕS; ~φ;ψg: ■

�
(60)

'The joint computation of the NTOs and detachment/attachment density matrices from a single
SVD, as a preliminary to the quantum metrics assessment, can even be simplified as

O†TV ¼ λ ! O⊕Vð Þ
λλ† ⊕ 0v

0o ⊕ λ†λ

( )
O† ⊕V†
� � ¼

γd
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( )
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Note finally that from Eq. (52) we see that the computation of the detachment/attachment
density matrices (hence, the assessment of the topological metrics) can be performed without
requiring any matrix diagonalization.
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4. Conclusion

We rigorously detailed the theoretical background related to two methods allowing one to
straightforwardly visualize how the absorption or emission of a photon impacts the electronic
distribution of any complex molecular system. Based on one of these two methods, we showed
that quantitative insights can be easily reached. Subsequently, we bridged the formalism of our
two qualitative strategies in the case of single-reference excited states methods solely involving
singly excited Slater determinants. Finally, it was demonstrated that in these cases any of the two
qualitative methods can be used as a basis for deriving equivalent quantitative results. The
totality of the features exposed in this book chapter is currently coded in the Nancy-Ex 2.0 [49]
software suite and will be revisited, together with new strategies, in the TÆLES software [50] to
be published soon.
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A. Derivation of the phase for l = 2 and 3

Figures 7 and 8 illustrate the evaluation process for the phase of terms 2 and 3 of Wick’s
expansion of the excited state density matrix elements in Eq. (41).

Figure 7. Illustration of the evaluation of ϱ2.
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B. Derivation of the equations in the atomic orbitals space

Most of the time, the spinorbitals themselves are expressed in a basis (often called basis of
atomic orbitals, basis of atomic functions, or more simply a basis set) of K functions {ϕ}. K
might be superior to L when multiple spinorbitals in the atomic space are linearly dependent.
The expression of spinorbitals in the atomic space is called linear combination of atomic
orbitals (LCAO), and the pondering coefficients for a given spinorbital are stored in the
column of a matrix, C ∈ RK� L, so that any spinorbital writes

φl rð Þ ¼
XK
μ¼1

Cð Þμl ϕμ rð Þ: (62)

Note that atomic orbitals are denoted by Greek letters for matrix elements. Since the

spinorbitals correspond to columns in C, we can split C into two matrices, eO ∈ RK�N and
~V ∈ RK� L�Nð Þ, where the former contains the LCAO coefficients of the N first spinorbitals (the
occupied ones) and the latter contains the LCAO coefficients for the last L�N spinorbitals (the
virtual ones). This splitting operation will be used later.

The spatial overlap between two atomic functions is also stored into a matrix, S, which has the
following elements:

Sð Þμν ¼
ð

R3
dr ϕ∗

μ rð Þϕν rð Þ: (63)

According to the LCAO expansion, the one-particle reduced density matrix kernel from Eq. (1)
can be written in the atomic space for defining the density matrix P in the atomic space

Figure 8. Illustration of the evaluation of ϱ3.
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~γ r1; r01
� � ¼

XL

r¼1

XL

s¼1

XK

μ¼1

XK

ν¼1
ϕμ r1ð Þ Cð Þμr γ

� �
rs Cð Þ∗νsϕ∗

ν r01
� � ¼

XK

μ¼1

XK

ν¼1
ϕμ r1ð Þ

XL

r¼1

XL

s¼1
Cð Þμr γ

� �
rs C†
� �

sν

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pð Þμν

ϕ∗
ν r01
� �

¼
XK

μ¼1

XK

ν¼1
Pð Þμνϕμ r1ð Þϕ∗

ν r01
� �

: (64)

In these conditions, the number of electrons is given by the trace of PS. The central object for
our investigations is now P, so that in the atomic space, the difference density matrix writes

Δ ¼ Px � P0 ) tr ΔSð Þ ¼ 0: (65)

The difference density matrix in the atomic space can be diagonalized

∃U ∣ U†ΔU ¼ δ: (66)

Note here that δ is a diagonal matrix containing the Δ eigenvalues and should not be confused
with the Kronecker delta. The Δ eigenvalues can be sorted according to their sign:

σ� ¼ 1
2

ffiffiffiffiffi
δ2

p
� δ

� �
(67)

and the resulting diagonal matrices can be separately backtransformed to provide the so-
called detachment (D) and attachment (A) density matrices and the corresponding charge
densities:

Uσ�U† ¼ D !R
3

nd rð Þ ¼
XK
μ¼1

XK
ν¼1

Dð Þμν ϕμ rð Þϕ∗
ν rð Þ ; UσþU† ¼ A !R

3

na rð Þ ¼
XK
μ¼1

XK
ν¼1

Að Þμν ϕμ rð Þϕ∗
ν rð Þ:

(68)

From the detachment and attachment charge densities, one can then compute ϕS, ~φ, and ψ.
Note that D and A should not be confused with “Donor” and “Acceptor” when dealing with
push-pull dyes since, as we saw in Figure 1, the detachment or attachment densities are not
strictly localized on fragments. Indeed, the detachment/attachment analysis is said to be
systematic (or global), so is the quantitative analysis derived from it.

According to the structure of γΔ derived in Lemma III.1, and the connection between density
matrices in the canonical and atomic spaces (see Eq. (64)), we can write Δ using T:

Δ ¼ CγΔC† ¼ C �TT† ⊕T†T
� �

C† (69)

which reduces to

Δ ¼ ~V T†T
� �

~V† � ~O TT†
� �

~O†: (70)
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This means that from the transition density matrix one can easily reconstruct the difference
density matrix in the atomic space, diagonalize it, and process until the obtention of the
quantum metrics is achieved. This is the generalization of Corollary III.1 to the atomic space.
We deduce from Eq. (69) that if K = L we have U = SCM.

Note finally that in the atomic space, occupied and virtual NTO LCAO coefficients are stored,

respectively, in ~OO ∈ RK�N and ~VV ∈ RK� L�Nð Þ, where O and V are the left and right matrices
implied in the SVD of T (see Eq. (24)).
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In these conditions, the number of electrons is given by the trace of PS. The central object for
our investigations is now P, so that in the atomic space, the difference density matrix writes

Δ ¼ Px � P0 ) tr ΔSð Þ ¼ 0: (65)

The difference density matrix in the atomic space can be diagonalized

∃U ∣ U†ΔU ¼ δ: (66)

Note here that δ is a diagonal matrix containing the Δ eigenvalues and should not be confused
with the Kronecker delta. The Δ eigenvalues can be sorted according to their sign:

σ� ¼ 1
2

ffiffiffiffiffi
δ2

p
� δ

� �
(67)

and the resulting diagonal matrices can be separately backtransformed to provide the so-
called detachment (D) and attachment (A) density matrices and the corresponding charge
densities:

Uσ�U† ¼ D !R
3

nd rð Þ ¼
XK
μ¼1

XK
ν¼1

Dð Þμν ϕμ rð Þϕ∗
ν rð Þ ; UσþU† ¼ A !R

3

na rð Þ ¼
XK
μ¼1

XK
ν¼1

Að Þμν ϕμ rð Þϕ∗
ν rð Þ:

(68)

From the detachment and attachment charge densities, one can then compute ϕS, ~φ, and ψ.
Note that D and A should not be confused with “Donor” and “Acceptor” when dealing with
push-pull dyes since, as we saw in Figure 1, the detachment or attachment densities are not
strictly localized on fragments. Indeed, the detachment/attachment analysis is said to be
systematic (or global), so is the quantitative analysis derived from it.

According to the structure of γΔ derived in Lemma III.1, and the connection between density
matrices in the canonical and atomic spaces (see Eq. (64)), we can write Δ using T:

Δ ¼ CγΔC† ¼ C �TT† ⊕T†T
� �

C† (69)

which reduces to

Δ ¼ ~V T†T
� �

~V† � ~O TT†
� �

~O†: (70)
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This means that from the transition density matrix one can easily reconstruct the difference
density matrix in the atomic space, diagonalize it, and process until the obtention of the
quantum metrics is achieved. This is the generalization of Corollary III.1 to the atomic space.
We deduce from Eq. (69) that if K = L we have U = SCM.

Note finally that in the atomic space, occupied and virtual NTO LCAO coefficients are stored,

respectively, in ~OO ∈ RK�N and ~VV ∈ RK� L�Nð Þ, where O and V are the left and right matrices
implied in the SVD of T (see Eq. (24)).
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Abstract

Using a temperature (T)-dependent tight-binding (TB) model for an electron-hole pair at
the donor-acceptor (DA) interface, we investigate the dissociation of charge transfer exci-
ton (CTE) into free carriers, that is, an electron and a hole. We observe the existence of the
localization-delocalization transition at a critical T, below which the charges are localized
to the DA interface, and above which the charges are delocalized over the system. This
explains the CTE dissociation observed in organic solar cells. The present study highlights
the combined effect of finite T and carrier delocalization in the CTE dissociation.

Keywords: charge transfer exciton, localization-delocalization transition,
donor-accepter interface, tight-binding model, temperature

1. Introduction

Exciton, which is a two-particle state of electron and hole created by photon absorption of semi-
conductors or insulators, has been extensively studied since the seminal works of Frenkel [1, 2]
and Wannier [3]. The binding energy of the exciton determines the photon absorption spectra
near the band edges, where the Rydberg series, similar to the hydrogen-like excitation spectra,
can be observed [4]. The concept of excitons is valid not only in solids but also in complex
systems, such as nanostructures and interfaces. For example, let us consider two molecules with
an appropriate separation. Given an electron-hole (EH) pair created in one molecule by a photon
absorption, an electron in the molecule would be transferred to the other molecule due to the
different lowest unoccupied molecular orbital (LUMO) energies, while a hole is left behind. Since
the electron in the latter molecule and the hole in the former molecule interact with each other via
the Coulomb interaction forces, they form a bound state, called as the charge transfer exciton
(CTE) [5]. Recently, the CTE near the organic semiconductor interfaces has attracted much
interest in the field of organic solar cells [6, 7]. This is a main concern in this chapter.
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1. Introduction

Exciton, which is a two-particle state of electron and hole created by photon absorption of semi-
conductors or insulators, has been extensively studied since the seminal works of Frenkel [1, 2]
and Wannier [3]. The binding energy of the exciton determines the photon absorption spectra
near the band edges, where the Rydberg series, similar to the hydrogen-like excitation spectra,
can be observed [4]. The concept of excitons is valid not only in solids but also in complex
systems, such as nanostructures and interfaces. For example, let us consider two molecules with
an appropriate separation. Given an electron-hole (EH) pair created in one molecule by a photon
absorption, an electron in the molecule would be transferred to the other molecule due to the
different lowest unoccupied molecular orbital (LUMO) energies, while a hole is left behind. Since
the electron in the latter molecule and the hole in the former molecule interact with each other via
the Coulomb interaction forces, they form a bound state, called as the charge transfer exciton
(CTE) [5]. Recently, the CTE near the organic semiconductor interfaces has attracted much
interest in the field of organic solar cells [6, 7]. This is a main concern in this chapter.
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Organic solar cells, which generate electric power from the sunlight, play an important role in
green energy industry and possess a variety of advantages: low cost, light, flexibility and easy-
fabrication. The organic solar cells consist of the heterojunction between the electron donor
and electron acceptor molecules. For example, in the C60-based solar cells, the C60-molecules
serve as the accepter molecule and the organic thin-films such as X-phthalocyanine (XPc,
X = Cu, Zn) [8–12] and single-walled carbon nanotubes [13, 14] serve as the donor molecules.

The principle of power generation in organic solar cells is decomposed into three steps, as
shown in Figure 1: (i) exciton creation at the donor site by photon absorption, (ii) CTE creation
following the movement of the created excitons to the donor-accepter (DA) interface and
(iii) charge generation by the CTE dissociation into free carriers. While the second step may occur
due to the different LUMO energies between the donor and acceptor molecules, the microscopic
mechanism of the third step has not been understood; Since the CTE binding energy is a few
hundreds of meV [6, 7, 15], the thermal energy is not enough to separate the EH pair into free
carriers. In this way, several effects, such as dark dipoles [16, 17], disorder [18, 19], carrier
delocalization [20–23], light effective mass [24] and entropy [25–28], on the CTE dissociation
have been investigated. However, the relative importance of these factors is under debate.

In this chapter, we present an origin of the CTE dissociation by investigating the EH pair at the
DA interface within a temperature (T)-dependent tight-binding (TB) model [29]. The important
fact is that there exists a localization-delocalization transition at a critical T. The transition
temperature estimated is in agreement with experimental observations in semiconductor inter-
faces [27]. Based on the T-dependence of the EH pair energy, we interpret the EH pair dynam-
ics observed in time-resolved two-photon photoemission experiments [28]. Our model has
shown that the transition can be observed only when the finite-T and the carrier delocalization
effects are simultaneously considered. This review provides an important fact that more than
one phenomenon might contribute to CTE dissociation.

The reminder of this chapter is organized as follows. In Section 2, we review the previous
models of the CTE dissociation in organic solar cells. How the carrier delocalization effect is
important in understanding the CTE dissociation is discussed. In Section 3, we present the
formulation of the T-dependent TB model and the numerical results on the CTE dissociation.
Our model is distinct from others in that the finite-T as well as the carrier delocalization effect
is taken into account. In Section 4, how our model interprets the experimental data is
discussed. Summary is presented in Section 5.

2. Literature review

We shall describe briefly some of the works that have theoretically discussed the origin of the
CTE dissociation at the DA interface. The models can be classified into three levels on the basis
of the approximation made (I) both charges, that is, electron and hole, are treated as localized
particles [Figure 2(a)]; (II) one of the charges is treated as a delocalized particle, while the other
is still treated as a localized one [Figure 2(b)] and (III) both charges are treated as delocalized
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particles [Figure 2(c)], where the motion of the localized and delocalized particles would be
described within the classical (or semi-classical) and quantum mechanics, respectively.

In the earliest study, Arkhipov et al. have constructed a dark dipole model within the approx-
imation (I) above [16]. In this model, the DA interface consists of several polymer chains
parallel to the DA interface. They computed the total energy of the CTE, that is, the sum of
the electrostatic potential energy and the kinetic energy of the zero-point oscillations, by
assuming the presence of the several dipoles at the DA interface. While the movement of the
charged particle away from the interface lowers the Coulomb attractive forces, it also decreases
the kinetic energy. They have found that the latter overcomes the former when the effective
mass of the charged particle is less than 0.3me, where me is the free electron mass, yielding the
CTE dissociation. The effect of the different numbers of dipoles at the DA interface has also
been investigated [17].

Deibel et al. have pointed out the importance of the charge delocalization along the polymer
chains on the CTE dissociation by performing the kinetic Monte Carlo simulations [20]. To
rationalize the concept of the delocalization, Nenashev et al. have developed an analytical
model for the CTE dissociation within the approximation (II) [21]. They also studied the
dissociation rate as a function of applied electric field by using the Miller-Abrahams expression
for the hopping rate [30] and the dissociation probability formula for one-dimensional lat-
tices [19]. The model has been further improved to include the effect of the dark dipoles at the
DA interface [24]. However, those models have still employed the crude approximation
(II) that one of the particles is fixed at a site.

Within the treatment (III), Raos et al. have computed the distribution of the electron and hole
near the DA interface [22]. Using the TB approximation, they have shown that the sites where
charge concentrates are not necessarily those just next to the DA interface, and this holds even

Figure 1. Schematic illustration of power generation in organic solar cells. The CTE, enclosed by an ellipse, consists of the
electron and hole at the acceptor and donor, respectively. The donor and acceptor regions are abbreviated by D and A,
respectively.
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discussed. Summary is presented in Section 5.
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particles [Figure 2(c)], where the motion of the localized and delocalized particles would be
described within the classical (or semi-classical) and quantum mechanics, respectively.

In the earliest study, Arkhipov et al. have constructed a dark dipole model within the approx-
imation (I) above [16]. In this model, the DA interface consists of several polymer chains
parallel to the DA interface. They computed the total energy of the CTE, that is, the sum of
the electrostatic potential energy and the kinetic energy of the zero-point oscillations, by
assuming the presence of the several dipoles at the DA interface. While the movement of the
charged particle away from the interface lowers the Coulomb attractive forces, it also decreases
the kinetic energy. They have found that the latter overcomes the former when the effective
mass of the charged particle is less than 0.3me, where me is the free electron mass, yielding the
CTE dissociation. The effect of the different numbers of dipoles at the DA interface has also
been investigated [17].

Deibel et al. have pointed out the importance of the charge delocalization along the polymer
chains on the CTE dissociation by performing the kinetic Monte Carlo simulations [20]. To
rationalize the concept of the delocalization, Nenashev et al. have developed an analytical
model for the CTE dissociation within the approximation (II) [21]. They also studied the
dissociation rate as a function of applied electric field by using the Miller-Abrahams expression
for the hopping rate [30] and the dissociation probability formula for one-dimensional lat-
tices [19]. The model has been further improved to include the effect of the dark dipoles at the
DA interface [24]. However, those models have still employed the crude approximation
(II) that one of the particles is fixed at a site.

Within the treatment (III), Raos et al. have computed the distribution of the electron and hole
near the DA interface [22]. Using the TB approximation, they have shown that the sites where
charge concentrates are not necessarily those just next to the DA interface, and this holds even
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in the ground state if diagonal and/or off-diagonal disorder exists. Athanasopoulos et al. have
also confirmed that the CTE can efficiently dissociate into free carriers by extending the
Arkhipov-Nenashev model above [23]. Recently, the authors have developed a T-dependent
TB model applicable to the EH pair motion at the DA interface [29]. It has been shown that
there exists a localization-delocalization transition of the EH pair at a critical T, below which
the charges are localized to the DA interface, and above which the charges are delocalized over
the system. This will be demonstrated below.

3. Localization-delocalization transition of EH pair

3.1. Formulation

We briefly provide the T-dependent TB model for describing the EH pair distribution at the
DA interface. The details of the model have been provided in Ref. [29]. A similar approach has
been used to study the size-dependent exciton energy of the quantum dots at zero T [31]. First,
we consider an EH pair near the DA interface, assuming that only one photon is absorbed and
that the electron-electron and hole-hole interaction energies are negligible. The electron and
hole move around the acceptor and donor region, respectively, while they interact with each
other via the attractive Coulomb interaction forces. Then, the Schrödinger equation for the two
particles is given by

HðiÞjϕðiÞ
α 〉 ¼ εαðiÞjϕðiÞ

α 〉, (1)

where ϕðiÞ
α and εðiÞα are the eigenfunction and eigenenergy with a quantum number α for the

electron (i = e) and hole (i = h). Using the TB approximation, the Hamiltonian is given by

HðiÞ ¼ �Σp,p0 t
ðiÞ
p,p0 jp〉〈p0j þ ΣpVðiÞ

p jp〉〈pj, (2)

where the first and second term denotes the kinetic and potential energies for the particle i,

respectively. tðiÞp,p0 and VðiÞ
p are the hopping integral between sites p and p0 and the on-site

potential energy at the site p = (px, py, pz) with integers px, py, and pz. The former is set to

Figure 2. Schematic illustration of charged particles at the DA interface. (a) Localized hole and localized electron,
(b) Localized hole and delocalized electron, and (c) delocalized hole and delocalized electron. Figures extracted and
edited from Ref. [29].
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tðiÞp,p0 ¼ t0, where t0 is a positive constant, for simplicity. The effect of the long-range and

anisotropic hopping has been investigated in Ref. [29]. The latter is explicitly given as

VðeÞ
p ¼ wðeÞ

p �U0Σp0
1

jp� p0j n
ðhÞ
p0 , (3)

VðhÞ
p ¼ wðhÞ

p �U0Σp0
1

jp� p0j n
ðeÞ
p0 , (4)

where U0 determines the strength of the Coulomb interaction energy between the electron and

hole. wðiÞ
p is the potential barrier height for the particle i, which will be given below. nðiÞp is the

charge density for the particle i and is defined as

nðiÞp ¼ Σall
α f ðiÞα j〈pjϕðiÞ

α 〉j2, (5)

where j〈pjϕðiÞ
α 〉j2 is the probability amplitude of the site p for the eigenstate ϕðiÞ

α . The summation

is taken over the all eigenstates weighted by the Fermi distribution function f ðiÞα defined as

f ðiÞα ¼ fexp½βðεαðiÞ � μðiÞÞ� þ 1g�1
(6)

with the inverse temperature (β) and the chemical potential μ(i), which will be determined by
the relation of

ΣpnðeÞp ¼ ΣpnðhÞp ¼ 1: (7)

The self-consistent solution of Eqs. (1)–(7) yields the electron and hole distributions near the
DA interface. The solution enables us to compute the T-dependence of the free energy

Ω ¼ Uint � TS (8)

with the internal energy

Uint ¼ Σi¼e,hΣαεαðiÞf ðiÞα þU0ΣpΣp0
1

jp� p0j n
ðeÞ
p nðhÞp0 (9)

and the entropic energy

�TS ¼ kBTΣi¼e,hΣα f ðiÞα lnf ðiÞα þ ð1� f ðiÞα Þlnð1� f ðiÞα Þ
h i

, (10)

where S denotes the entropy and kB is the Boltzmann constant. Below, the hopping parameter
t0 will be used as an energy unit.

For later use, we define the charge density integrated over the px - py plane parallel to the interface

QðiÞ
totðpzÞ ¼ ΣpxΣpyn

ðiÞ
p (11)

with i = e and h.
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TB model applicable to the EH pair motion at the DA interface [29]. It has been shown that
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the charges are localized to the DA interface, and above which the charges are delocalized over
the system. This will be demonstrated below.
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We briefly provide the T-dependent TB model for describing the EH pair distribution at the
DA interface. The details of the model have been provided in Ref. [29]. A similar approach has
been used to study the size-dependent exciton energy of the quantum dots at zero T [31]. First,
we consider an EH pair near the DA interface, assuming that only one photon is absorbed and
that the electron-electron and hole-hole interaction energies are negligible. The electron and
hole move around the acceptor and donor region, respectively, while they interact with each
other via the attractive Coulomb interaction forces. Then, the Schrödinger equation for the two
particles is given by

HðiÞjϕðiÞ
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p jp〉〈pj, (2)

where the first and second term denotes the kinetic and potential energies for the particle i,

respectively. tðiÞp,p0 and VðiÞ
p are the hopping integral between sites p and p0 and the on-site

potential energy at the site p = (px, py, pz) with integers px, py, and pz. The former is set to

Figure 2. Schematic illustration of charged particles at the DA interface. (a) Localized hole and localized electron,
(b) Localized hole and delocalized electron, and (c) delocalized hole and delocalized electron. Figures extracted and
edited from Ref. [29].
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tðiÞp,p0 ¼ t0, where t0 is a positive constant, for simplicity. The effect of the long-range and

anisotropic hopping has been investigated in Ref. [29]. The latter is explicitly given as
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p0 , (3)
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p0 , (4)

where U0 determines the strength of the Coulomb interaction energy between the electron and

hole. wðiÞ
p is the potential barrier height for the particle i, which will be given below. nðiÞp is the

charge density for the particle i and is defined as

nðiÞp ¼ Σall
α f ðiÞα j〈pjϕðiÞ

α 〉j2, (5)

where j〈pjϕðiÞ
α 〉j2 is the probability amplitude of the site p for the eigenstate ϕðiÞ

α . The summation

is taken over the all eigenstates weighted by the Fermi distribution function f ðiÞα defined as

f ðiÞα ¼ fexp½βðεαðiÞ � μðiÞÞ� þ 1g�1
(6)

with the inverse temperature (β) and the chemical potential μ(i), which will be determined by
the relation of

ΣpnðeÞp ¼ ΣpnðhÞp ¼ 1: (7)

The self-consistent solution of Eqs. (1)–(7) yields the electron and hole distributions near the
DA interface. The solution enables us to compute the T-dependence of the free energy

Ω ¼ Uint � TS (8)

with the internal energy
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and the entropic energy

�TS ¼ kBTΣi¼e,hΣα f ðiÞα lnf ðiÞα þ ð1� f ðiÞα Þlnð1� f ðiÞα Þ
h i

, (10)

where S denotes the entropy and kB is the Boltzmann constant. Below, the hopping parameter
t0 will be used as an energy unit.

For later use, we define the charge density integrated over the px - py plane parallel to the interface
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with i = e and h.
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Figure 3 shows the DA interface model, where the simple cubic lattice is assumed. The
movement of the electron and hole is restricted to the region of �Nx ≤ px ≤Nx, �Ny ≤ py ≤Ny,

and �Nz � 1 ≤ pz ≤Nz. The potential barrier is assumed to be

wðeÞ
p ¼ w0θð�0:5� pzÞ, (12)

wðhÞ
p ¼ w0θð0:5þ pzÞ, (13)

where θ(x) is the Heaviside step function, where θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0. The
numerical parameters in the model are set to ðNx,Ny,NzÞ ¼ ð5, 5, 10Þ, w0 = 10t0, and U0 ¼ 10t0,
yielding the electron and hole that localize only to the acceptor and donor region, respectively
at T = 0.

3.2. Numerical Results

Figure 4(a) shows the pz-dependence of Q
ðeÞ
totðpzÞ and QðhÞ

tot ðpzÞ in Eq. (11) for kBT/t0 = 0, 0.3, and

0.5. At zero T, QðeÞ
totðpzÞ ðQðhÞ

tot ðpzÞÞ has the maximum value of 0.8 at pz = 0 (pz = �1) and decays

within a few positive (negative) pzs. As T increases, the pz-dependence of QðeÞ
totðpzÞ and QðhÞ

tot ðpzÞ
changes dramatically at around kBT=t0 ≃ 0:3: The values of QðeÞ

totðpzÞ and QðhÞ
totðpzÞ have the

maximum of 0.3 at the sites away from those just next to the interface, that is, pz = 1 and pz = �2,
respectively, and are averaged out over all pz, which clearly indicate the CTE dissociation.

The localization-delocalization transition observed in Figure 4(a) can be understood as the
free-energy anomaly. Figure 4(b) shows Ω in Eq. (8) as a function of T. The anomaly in Ω is
observed at a critical temperature kBTc=t0 ≃ 0:27. Ω is almost independent of T below Tc, while
Ω decreases monotonically with increasing T above Tc. Figure 4(c) shows the T-dependence of
the internal energy Uint and the entropy �TS defined as Eqs. (9) and (10), respectively. Similar

Figure 3. Simple cubic lattice for the DA interface model. The donor and acceptor regions are –Nz � 1 ≤ pz ≤ � 1 and
0 ≤ pz ≤Nz, respectively. The total number of sites is ð2Nx þ 1Þð2Ny þ 1Þð2Nz þ 2Þ. Figure extracted from Ref. [29].
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anomalies are also observed in the T-dependence of Uint and �TS; Uint and �TS jump at T = Tc,
below which Uint and �TS are almost independent of T, and above which Uint and �TS
increases and decreases, respectively. Since S ≃ 0 below Tc,Ω is dominated by the contribution
from Uint. On the other hand, Ω is dominated by the entropy contribution above Tc.

To understand the microscopic mechanism of the localization-delocalization transition, we
compute the density-of-states (DOS) for the EH pair, where the EH pair energy is defined as

Eα
ðehÞ ¼ εðeÞα þ εðhÞα . Figure 5(a) and (b) show the EH DOS at kBT=t0 ¼ 0 and 0.6, respectively. At

lower T, we can observe several peaks below the band edge: Eα
ðehÞ ¼ �19:9, � 17:1 (doubly

degenerate), and 16.4 eV. On the other hand, at higher T, no peaks are observed. Figure 6(a)
shows the charge density of the electron and hole for the lowest 10 energy peaks at T = 0. The
charge density is localized to the DA interface at lower Eα

ðehÞ, while it is delocalized over the
system at higher Eα

ðehÞ. Note that at the lowest T the occupation probability of the lowest
energy state is unity. When T is increased, the eigenvalue distribution changes. This is because
the Fermi distribution function in Eq. (6) is broadened. This leads to the decrease in the
Coulomb attractive forces between the electron and hole, yielding an upper shift of the EH
pair energy. Figure 6(b) shows the T-dependence of Eα

ðehÞ for α = 1�10. In fact, Eα
ðehÞ increases

as T increases. The important fact is that the value of Eα
ðehÞ drastically increases at T = 0.3t0,

above which the energy level spacing is small compared to that below Tc. This yields the
absence of peaks in the DOS near the band edge, shown in Figure 5(b). The absence of isolated
peaks means that all eigenstates are delocalized, indicating the localization-delocalization
transition at a critical T.

Figure 4. (a) The pz dependence of Q
ðeÞ
tot (filled) and QðhÞ

tot (open) given by Eq. (11) for kBT=t0 ¼ 0 (circle), 0.3 (triangle), and
0.5 (square). The values of U0/t0 and w0/t0 are set to 10. (b) The T dependence of the free energy Ω(T) given by Eq. (8). The
arrow indicates the free-energy anomaly that originates from the localization-delocalization transition. (c) Uint in Eq. (9)
and �TS in Eq. (10) as a function of T. Figures extracted and edited from Ref. [29].
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Figure 3 shows the DA interface model, where the simple cubic lattice is assumed. The
movement of the electron and hole is restricted to the region of �Nx ≤ px ≤Nx, �Ny ≤ py ≤Ny,

and �Nz � 1 ≤ pz ≤Nz. The potential barrier is assumed to be
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observed at a critical temperature kBTc=t0 ≃ 0:27. Ω is almost independent of T below Tc, while
Ω decreases monotonically with increasing T above Tc. Figure 4(c) shows the T-dependence of
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anomalies are also observed in the T-dependence of Uint and �TS; Uint and �TS jump at T = Tc,
below which Uint and �TS are almost independent of T, and above which Uint and �TS
increases and decreases, respectively. Since S ≃ 0 below Tc,Ω is dominated by the contribution
from Uint. On the other hand, Ω is dominated by the entropy contribution above Tc.

To understand the microscopic mechanism of the localization-delocalization transition, we
compute the density-of-states (DOS) for the EH pair, where the EH pair energy is defined as

Eα
ðehÞ ¼ εðeÞα þ εðhÞα . Figure 5(a) and (b) show the EH DOS at kBT=t0 ¼ 0 and 0.6, respectively. At

lower T, we can observe several peaks below the band edge: Eα
ðehÞ ¼ �19:9, � 17:1 (doubly

degenerate), and 16.4 eV. On the other hand, at higher T, no peaks are observed. Figure 6(a)
shows the charge density of the electron and hole for the lowest 10 energy peaks at T = 0. The
charge density is localized to the DA interface at lower Eα

ðehÞ, while it is delocalized over the
system at higher Eα

ðehÞ. Note that at the lowest T the occupation probability of the lowest
energy state is unity. When T is increased, the eigenvalue distribution changes. This is because
the Fermi distribution function in Eq. (6) is broadened. This leads to the decrease in the
Coulomb attractive forces between the electron and hole, yielding an upper shift of the EH
pair energy. Figure 6(b) shows the T-dependence of Eα

ðehÞ for α = 1�10. In fact, Eα
ðehÞ increases

as T increases. The important fact is that the value of Eα
ðehÞ drastically increases at T = 0.3t0,

above which the energy level spacing is small compared to that below Tc. This yields the
absence of peaks in the DOS near the band edge, shown in Figure 5(b). The absence of isolated
peaks means that all eigenstates are delocalized, indicating the localization-delocalization
transition at a critical T.

Figure 4. (a) The pz dependence of Q
ðeÞ
tot (filled) and QðhÞ

tot (open) given by Eq. (11) for kBT=t0 ¼ 0 (circle), 0.3 (triangle), and
0.5 (square). The values of U0/t0 and w0/t0 are set to 10. (b) The T dependence of the free energy Ω(T) given by Eq. (8). The
arrow indicates the free-energy anomaly that originates from the localization-delocalization transition. (c) Uint in Eq. (9)
and �TS in Eq. (10) as a function of T. Figures extracted and edited from Ref. [29].
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The critical temperature increases significantly when one of the carriers is localized to only a
site near the DA interface, that is, the approximation (II) is employed. This is because such a
fixed charge enhances the attractive Coulomb interaction energy through Eqs. (3) and (4) and
thus enhances the CTE binding energy significantly. The present result indicates that both the

Figure 5. Electron-hole DOS (a) for kBT=t0 ¼ 0 and (b) kBT=t0 ¼ 0:6 from EðehÞ=t0 ¼ �25 to �10. The whole DOS is shown
in the inset. Figures extracted from Ref. [29].

Figure 6. (a) The pz dependence of electron (filled circle) and hole (open circle) density from the first to 10th eigenstate at

T = 0. The eigenenergy EðehÞ
α is also shown in units of t0. (b) E

ðehÞ
α as a function of T for α = 1�10. The values of U0/t0 and w0/

t0 are set to 10. Figures extracted and edited from Ref. [29].
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finite-T and the carrier delocalization effect are important to understand the CTE dissociation
at the DA interface.

4. Discussion

4.1. Application to experiments

In this Section, we interpret the recent experimental observations on the CTE dissociation at the
DA interfaces. Recently, Gao et al. have studied the charge generation in C60-based organic solar
cells through a measurement of the open-circuit voltage in a temperature range from 30 to 290 K.
They have found that the number of free carriers created in the solar cells increases with
increasing T, where the activation energy for the CTE dissociation is estimated to be 9 and 25
meV in annealed and unannealed systems, respectively [27]. To understand the magnitude of
the activation energy, we compute the magnitude of Tc in typical organic solar cells. We set
U0 ¼ e2=ð4πEdÞ≃ 0:5 eV by using E≃ 3E0 (E0 is the dielectric constant of vacuum) and the equilib-
rium molecule-molecule distance d ≃ 1 nm of C60 crystals. The hopping parameter at the DA
interface is set to t0 ≃U0=10, by assuming that the single-particle band width is a few hundred
meV. The height of the barrier potential is set tow0 ≃U0, so that the CTE (not the Frenkel exciton)
is formed at T = 0 K. Then, the value of kBTc=t0 ≃ 0:27 corresponds to kBTc ≃ 13 meV. The
magnitude of this energy is in agreement with the activation energy reported experimen-
tally [27].

It is noteworthy that the magnitude of the CTE binding energy EB can be estimated from the EH
DOS. Assuming that the continuum states start from α ≃ 10 at lower T shown in Figure 5(a), the

νth CTE binding energy is EBðνÞ ¼ EðehÞ
α¼10 � EðehÞ

α¼ν. For example, EB(v = 1) = 5.3 t0 ≃ 0.26 eV, which
is an order of magnitude higher than thermal energy at room temperature, but is consistent with
experimental observations [15].

4.2. Scenario of the CTE dissociation

The agreement between our theory and experiments implies that the combined effect of the
finite-T and carrier delocalization play a major role in the CTE dissociation. Based on our
model, we show a possible scenario of the CTE dissociation in Figure 7.

1. The exciton is initially created at the donor region by photon absorption.

2. The electron transfer occurs at the DA interface, yielding the CTE formation.

3. The excess energy [32] created by the CTE formation (i.e. the energy difference between
the donor LUMO and acceptor LUMO) excites phonons at the interface and disturbs the
cold phonon distribution initially at T0.

4. Through the phonon-phonon and phonon-electron scatterings, the phonon modes will
obey the Bose distribution function with temperature T0 higher than T0 after the phonon
thermalization time.

5. When T0 is larger than Tc, the CTE can dissociate.
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If this scenario holds, the magnitude of T0 gradually increases with time. Then, the CTE energy

also increases with time, as expected by the T-dependent EðehÞ
α shown in Figure 6(b). This

behaviour is quite similar to the experimental observations, where the CTE spontaneously
climbs up the Coulomb potential at the pentacene-vacuum interface, by the time-resolved
two-photon photoemission spectroscopy [28]. Such a CTE evolution has occurred within 100 fs
that may be an order of the period of the optical phonon oscillations. For deeper understanding,
it is necessarily to study the time-dependence of the interface phonon temperature T0. This may
be studied in the framework of the non-equilibrium theory of phonons [33–35].

4.3. Some remarks

We also emphasize the finite-T effect on the excitonic properties. The exciton is usually
described within many-body perturbation theory or time-dependent density-functional theory
[36]. Recently, the CTE has been studied in such a first-principles context [37, 38]. The extension
to the T-dependent Bethe-Salpeter or time-dependent Kohn-Sham equations and their solutions
would give an accurate estimation of the CTE binding energy and predict the localization-
delocalization transition or the free-energy anomaly mentioned in the present work.

In the present study, we have assumed that the dielectric constant is homogeneous across the
DA interface. Recently, we have studied the effect of the inhomogeneity of the dielectric
constant on the charge transfer behaviour within the continuum approach [39]. In such a
system, the Coulomb interaction energy between two particles is given by

q1q2
4πE0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðr1ÞEðr2Þ

p , (14)

where qi and ri are the charge and the position of the particle i. E(r) is the local dielectric
constant that describes the morphology of the DA interface. By solving the two-particle
Schrödinger equation, we have demonstrated that the inhomogeneity of the dielectric constant
yields an anisotropy of the charge distribution at the DA interface. Furthermore, we have
found that the anisotropic distribution of the hole along the normal to the DA interface is
important to yield the electron transfer, or vice versa. More investigation about the relation
between the carrier distribution and the interface morphology is desired.

Figure 7. Temperature evolution of the charge carriers and phonons, provided that both the finite Tmechanism proposed
in the present study and the excess energy mechanism [32] hold. The excess energy created by the CTE formation excites
the phonon at the DA interface. The phonon temperature increases with time and becomes over Tc within the phonon
thermalization time. Above Tc, the CTE dissociates into the free electron and hole. Figure extracted from Ref. [29].
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5. Summary

In this chapter, we have derived the T-dependent TB model for a EH pair at the DA interface,
which enabled us to study the finite-T as well as the carrier delocalization effect on the CTE
dissociation. Our numerical calculations have revealed that there exists the localization-
delocalization transition at a critical temperature Tc, above which the CTE dissociates. This is
related to the anomaly of the free energy Ω. Below and above Tc, Ω is determined by the
internal energy and the entropic energy, respectively. The transition can be observed only
when the carrier delocalization treatment is employed. The magnitude of Tc and the CTE
binding energy estimated were in agreement with the experimental data. A possible scenario
involving the phonon thermalization has been discussed.

So far, the origin of the CTE dissociation has been extensively investigated with consideration
of a variety of models. Several effects on the CTE dissociation have been proposed, although
the relative impact is not clear. The present study has emphasized the importance of the
combined impact of the finite T and the carrier delocalization. Our work would be the first step
for understanding the CTE dissociation observed at various DA interface in a unified manner.
We hope that the localization-delocalization transition is observed in future experiments.
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detection is possible by indirect means. Excitons can be described at various levels of sophis-
tication; among them, the simplest and intuitive pictures can be understood using the
effective mass approximation. Such approximation suggests that the Coulomb interaction
between an electron and a positive hole leads to a hydrogen-like problem with a Coulomb
potential term �e2/(4πε0ε|re�rh|). Indeed, excitons in semiconductors form, to a good app-
roximation, a hydrogen- or positronium-like series of states below the gap. The analogy of
excitons to the hydrogen atom or even better the positronium atom can be pushed further. In
analog to the formation hydrogen molecule or positronium molecule, two excitons can bind
to form a new quasiparticle, the so-called bi-exciton or excitonic molecule. Similarly, in
analog to the hydrogen molecular ion or the positronium negative ion, it is possible to form
trions which are charged excitons or bi-excitons, i.e., quasiparticles of two electrons and one
hole or vice versa. Like Ps molecule or Ps negative ion, bi-excitons or trions can also form
bound states or quasi-bound states from the theoretical point of view. For detail discussions,
classifications, and list of references on excitons, interested readers are referred to the review
book authored by Klingshirn [1]. Keeping the above discussion in mind, it would be of great
interest to review our works on the Ps atom, Ps negative ion, or Ps-Ps interaction for better
understanding of spectroscopic properties of excitons, bi-excitons, or trions. The study of
excitons under the influence of external environments is also of great interest both from
theoretical and experimental sides. In this work, we have also discussed our recent study of
the proposed systems under the influence screened Coulomb and cosine-screened Coulomb
potentials.

The positronium negative ion (Ps�) is the simplest bound three-lepton system (e+, e�, e�) for
which the 1Se state is the only state stable against dissociation but unstable against annihilation
into photons. The Ps� has gained increasing interest from the theoretical studies and experi-
mental investigations since its theoretical prediction [2] and discovery [3]. This ion is a unique
model system for studying three-body quantum mechanics as the three constituents of the Ps
negative ion are subject only to the electroweak and gravitational forces. This elusive ion is of
interest in the various branches of physics including solid-state physics, astrophysics, and
physics of high-temperature plasmas, etc. It is also important for workability of many technical
devices, such as modern communication devices. The Ps� has been observed first by Mills [4]
almost 40 years ago, and he subsequently measured its positron annihilation rate [5]. Since
then, several experiments have been performed on this ion. Review of the most recent exper-
iments can be found in the article of Nagashima [6] which also contains a large number of
useful references. This review [6] also includes discussion on efficient formation of ion, its
photodetachment, and the production of an energy-tunable Ps beam based on the technique of
the photodetachment. It is here noteworthy to mention the accurate measurement of the decay
rate [7] and only measurement of the 1Po shape resonance of Ps� [8]. Several theoretical studies
have been calculated so far on various properties of this ion, such as bound state [9–17],
annihilation rate [16–18], photodetachment cross sections [19, 20], resonance states [21–24],
and polarizability [25–27], using the numerical approaches such as the variational principle
of Rayleigh-Ritz [9, 15–17, 28, 29], the correlation function hyperspherical harmonics method
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[30–32], the complex-coordinate rotation method [33–36], the stabilization method [36–40], and
the pseudostate summation method [25–27, 41–43]. Full list of articles can be found in the next
sections. Besides such properties in the Coulomb case, several properties of the Ps negative ion
have been studied under the influence of screened Coulomb potential (SCP) and exponential
cosine-screened Coulomb potential (ECSCP). It is important to mention here that the study of
atomic processes under the influence of screened interactions is an interesting, relevant, and hot
topic of current research [44–49]. The complete SCP in a general form can be written as [50, 51]

V rð Þ ¼
Ze2

1
r
� 1
λD þ λA

� �
, r ≤λA

λD

λD þ λA

� �
Ze2

r
exp � r� λA

λD

� �
, r ≥λA

,

8>>>><
>>>>:

(1)

where Z, λD, and λA denote the nuclear charge, the screening length, and the mean radius of
the ion sphere, respectively. In the limit when λA! 0, Eq. (1) reduces to the Debye-Hückel
potential [52]. The ECSCP in form can be written as [53]

V rð Þ ¼ Ze2

r

� �
exp �μr

� �
cos μr

� �
, (2)

where μ is the screening parameter. The SCP or ECSCP occurs in several areas of physics
(solid-state physics, ionized plasma, statistical thermodynamics, and nuclear physics). The
potentials are also used in describing the potential between an ionized impurity and an
electron in a metal or a semiconductor and the electron-positron interaction in a positronium
atom in a solid [44–55]. In the next sections, we will briefly describe the properties of Ps
negative ion, such as bound state, positron annihilation, resonance states, photodetachment,
and polarizability. Bound states of the Ps atom and the Ps2 molecule and dispersion coefficients
on Ps-Ps interaction have also been discussed in the next sections.

2. Bound states

It is well-described that variational methods are the most effective and powerful tool for
studying the Coulomb three-body bound-state problem [8, 11, 12, 16, 17, 56]. From here, we
will concentrate on the works based on the variational approach. As mentioned in the last
section, the Ps� has very simple bound-state spectra that contain only one bound (ground),
singlet state with total angular momentum, L = 0, i.e., 1 1S state for short. To calculate ground
state energy of such ion, one needs to obtain the solutions of the Schrödinger equation,
HΨ = EΨ, where Ε<0 following the Rayleigh-Ritz variational method. Here, we review our
works using correlated exponential wave functions. The nonrelativistic screened Hamiltonian
H (in atomic units) for a system having two electrons and a positron is given by
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where 1 and 2 denote the two electrons and 3 denotes the positively charged particle and |ri�rj|
= rji = rji = |rj�ri|. In Eq. (6), ξ = 0 for SCP, ξ = 1 for ECSCP, and μ = 0 for unscreened case (UC).

The variational wave functions for the 1S-state of positronium negative ion can be shown as

Ψ0 μ
� � ¼ 1þ P

_

12

� �XNB0

i¼1

C0
i μ
� �

exp �α0
i r13 � β0i r23 � γ0

i r12
� �

, (7)

where the operator bP12 is the permutation of the two identical particles 1 and 2. NB0 is the
number of basis terms. The nonlinear variational parameters α0

i , β
0
i ,γ

0
i in the basis sets (7) are

generated by the judicious implementation of a pseudorandom process of the following form
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R2,X � R1,Xð Þ þ R1,X, (8)

[x] is the fractional part of x, [R1,X,R2,X](X = α,β,γ) are real variational intervals which need to
be optimized, and pX assigns a separate prime number for each X. Quite a few theoretical
studies have been performed to calculate binding energies of the proposed ion using varia-
tional wave functions (7) and the Hylleraas-type wave functions:

Ψkmn ¼
X
kmn

Ckmn exp �α r13 þ r23ð Þ½ �rk12rm13rn23 þ 1 $ 2ð Þ� �
: (9)

In Eq. (9), we also have k + m + n ≤ Ω, with Ω, l, m, and n being positive integers or zero.
Detailed works in free atomic cases can be found from the earlier works [9–17, 57, 58]. In the
screening environments, the ground state energy of Ps� along with the electron affinity of Ps
atom has been estimated variationally by Saha et al. [57] using multi-term correlated basis sets
and SCP. The bound-state properties including ground state energies, radial and correlation
cusp for this ion, and electron affinity of Ps have been investigated by us [58] using SCP and
correlated wave functions (7). The bound states of Ps atom have also been described in our
previous work under SCP ([59], references therein). To calculate the bound states of Ps atom,
we have used standard Slater-type orbitals (see Eq. (40) in Section 7). Similar properties have
been studied by Ghoshal and Ho [59] using ECSCP and wave function (9). The results show
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interesting behavior in the screening environments. The binding energies of the Ps molecule
have been reported in previous works [60, 61].

3. Positron annihilation

The (e+,e�)-pair annihilation (or positron annihilation, for short) can proceed with the emission
of a number of photons, for illustration, e+ + e� = γ1 + γ2 + γ3⋯ +γK, where γK is the emitted
photons and K is the maximal number of such photons [16, 17]. Each of the annihilation
processes has its unique annihilation width or annihilation rate Γkγ. For the proposed ion, the
two-photon case would be the dominant annihilation process. However, the one-photon and
three-photon, etc., annihilation are possible but in smaller rates. The annihilation rates Γ2γ, Γ3γ,
Γ4γ, Γ5γ, and Γ1γ (arranged according to their numerical values) are important in applications.
Here, we mention the formula for the one-, two-, three-, four-, and five-photon and total
annihilation (Γ) rates, respectively [16, 17, 58]:

Γ1γ ¼ 64π2

27
α8ca�1

0 <δ321> ¼ 1065:7569198 <δ321> s�1, (10)

Γ2γ ¼ nπα4ca�1
0 1� α
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¼ 100:3456053781� 109 <δ r31ð Þ> s�1,
(11)
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(12)
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12
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(15)

where α, c, and a0 denote, respectively, the fine structure constant, the velocity of light, and the
Bohr radius and <δ321> denotes the expectation value of three-particle delta function. It is
obtained from the expectation value <Ψ∣Ψ> evaluated for r32 = r31 = r21 = 0. Exploiting the
results for <δ321> and <δ(r31)>, one can easily calculate the values of Γ1γ, Γ2γ, Γ3γ, Γ4γ, Γ5γ, and
Γ using the explicit relation (10)–(15). The total annihilation rate along with the one-, two-, and
three-photon annihilation rates, together with the values of <δ321> and <δ(r31)> for various
Debye lengths, is reported in our earlier work. The annihilation rates obtained from our
calculations [59] are in agreement with the reported results [16, 17]. Detailed calculations of
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Γ4γ, Γ5γ, and Γ1γ (arranged according to their numerical values) are important in applications.
Here, we mention the formula for the one-, two-, three-, four-, and five-photon and total
annihilation (Γ) rates, respectively [16, 17, 58]:

Γ1γ ¼ 64π2

27
α8ca�1

0 <δ321> ¼ 1065:7569198 <δ321> s�1, (10)

Γ2γ ¼ nπα4ca�1
0 1� α

π
5� π2

4

� �� �
<δ r31ð Þ>

¼ 100:3456053781� 109 <δ r31ð Þ> s�1,
(11)
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0

4 π2 � 9
� �

3
<δ r31ð Þ>
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(12)
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α
π

� �2
Γ2γ, (13)
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α
π

� �2
Γ3γ, (14)

Γ ≈n Γ2γ þ Γ3γ
� � ¼ 2πα4ca�1

0 1� α
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π

� 19π
12

� �� �
<δ r31ð Þ>
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(15)

where α, c, and a0 denote, respectively, the fine structure constant, the velocity of light, and the
Bohr radius and <δ321> denotes the expectation value of three-particle delta function. It is
obtained from the expectation value <Ψ∣Ψ> evaluated for r32 = r31 = r21 = 0. Exploiting the
results for <δ321> and <δ(r31)>, one can easily calculate the values of Γ1γ, Γ2γ, Γ3γ, Γ4γ, Γ5γ, and
Γ using the explicit relation (10)–(15). The total annihilation rate along with the one-, two-, and
three-photon annihilation rates, together with the values of <δ321> and <δ(r31)> for various
Debye lengths, is reported in our earlier work. The annihilation rates obtained from our
calculations [59] are in agreement with the reported results [16, 17]. Detailed calculations of
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annihilation rate can be found from previous articles. As mentioned above, the positron
annihilation process is of great interest in several areas of physics, such as astrophysics, solid-
state physics, etc. It is also important for applicability of many technical devices, e.g., modern
communication devices. In this review, we cited the recent references for free atomic case. For
screened interaction, Kar and Ho [58] reported the annihilation rate under the influence of
SCP, and Ghoshal and Ho [59] studied the similar features under ECSCP. The annihilation
rates decrease with increasing screening strength.

4. Resonance states

A great number of theoretical studies on Ps� have been performed in last few decades. Several
studies have been performed on the resonances in e�-Ps scattering using the theoretical
methods such as the Kohn-variational method [20], adiabatic treatment in the hyperspherical
coordinates [62, 63], adiabatic molecular approximation [64], the hyperspherical close coupling
method [65], the complex-coordinate rotation method [23, 24, 66–71], and the stabilization
method [67, 68, 72–74]. For the recent advances in the theoretical studies on the resonances in
Ps�, readers are referred to recent reviews [23, 24, 66, 67, 75–77]. Review on resonance states of
the proposed ion can be found in the articles of Ho [21–24, 33, 67–71]. Here, we review the
resonance calculations using correlated exponential wave functions within the framework of
two simple and powerful variational methods: the stabilization method (SM) and the complex-
coordinate rotation method (CRM). The variational correlated exponential wave functions for
higher partial wave states can be written as

Ψn μ
� � ¼ 1þ SpnbP12

� � XNBn

i ¼ 1
l1 þ l2 ¼ Lþ ε

XL

l1¼ε

Cn
i μ
� � �1ð Þκf r13; r23; r21ð ÞYl1, l2

LM r13; r12ð Þ, (16)

with the radial function f(r13,r23,r21) and the bipolar harmonics Yl1, l2
LM r13; r23ð Þ,

f r13; r23; r21ð Þ ¼ exp �χ αn
i r13 þ βni r23 þ γn

i r21
� �� �

, (17)

Yl1, l2
LM r13; r23ð Þ ¼ rl113r

l2
23

X
m1,m2

< l1l2m1m2∣LM > Yl1m1 br13ð ÞYl1m2 br23ð Þ, (18)

where l1 = i�(L + 1)mod{i/(L + 1)} for natural parity states, l1 = mod{i/L} + κ for unnatural
parity states, mod{i/I} denotes the remainder of the integer division i/I, NBn is the number of
basis terms, κ = 0 for natural parity states, κ = 1 for unnatural parity states, and χ is a scaling
factor. Now, we would like to point out briefly the computational aspects of SM and CRM.

4.1. Computational aspect of SM

In the first step of resonance calculations using the stabilization method [37–40, 55, 67, 68,
72–74], it is mandatory to obtain precise values of energy levels. Resonance position can be
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identified after constructing stabilization diagram by plotting energy levels, E versus the
scaling factor χ for certain μ. A stabilization diagram for the resonance states for the 3De states
of Ps� for certain range of energy is depicted in Figure 1. The stabilized or slowly decreasing
energy levels in the stabilization diagram indicate the position of the resonance at an energy E.
Then to extract parameter (Er,Γ) for a particular resonance state, one needs to calculate the
density of the resonance states for each single energy level in the stabilization plateau using the
formula

ρn Eð Þ ¼ En αjþ1
� �� En αj�1

� �
αjþ1 � αj�1

����
����
�1

En αjð Þ¼E

, (19)

where the index j is the jth value for α and the index n is for the nth resonance. After calculating
the density of resonance states ρn(E) using formula (18), we fit it to the following Lorentzian
form that yields resonance energy Er and a total width Γ, with

ρn Eð Þ ¼ y0 þ
A
π

Γ=2

E� Erð Þ2 þ Γ=2ð Þ2 , (20)

where y0 is the baseline offset, A is the total area under the curve from the baseline, Er is the
center of the peak, and Γ denotes the full width of the peak of the curve at half height.

We obtained the desired results for a particular resonance state by observing the best fit (with
the least chi-square and with the best value of the square of the correlation coefficient) to the
Lorentzian form. The best fitting (solid line, using formula (20)) of the calculated density of
states (circles, using formula (18)) for the lowest 3De state of the Ps negative ion is presented in
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Figure 1. Stabilization diagram for the 3De states of the Ps negative ion using 600 basis terms in Eq. (26).
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72–74], it is mandatory to obtain precise values of energy levels. Resonance position can be
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scaling factor χ for certain μ. A stabilization diagram for the resonance states for the 3De states
of Ps� for certain range of energy is depicted in Figure 1. The stabilized or slowly decreasing
energy levels in the stabilization diagram indicate the position of the resonance at an energy E.
Then to extract parameter (Er,Γ) for a particular resonance state, one needs to calculate the
density of the resonance states for each single energy level in the stabilization plateau using the
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We obtained the desired results for a particular resonance state by observing the best fit (with
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Figure 2. The resonance position and width obtained from this work for the lowest 3Destate
below the Ps (N = 2) threshold as Er = �0.06259(1) a.u. and Γ = 2.2(8)�10�6 a.u. are comparable
with the results Er = �0.0625878(10) a.u. and Γ = 6.4(20)�10�6 a.u. reported by Bhatia and Ho
(see Refs. [70, 71]). As the 3De resonance states are too narrow, so it seems difficult to extract
resonance parameters for the other states above the Ps (N = 2) threshold. However, a 3De

resonance parameter is obtained for the first time using the stabilization method, as well as
using correlated exponential wave functions.

4.2. Computational aspect of CRM

In the complex-rotation method [23, 24, 33], the radial coordinates are transformed by

r ! reiθ (21)

and the transformed Hamiltonian takes the form:

H ! T exp �2iθð Þ þ Ve�iθ exp �reiθµ
� �

(22)

where T and V are the kinetic and the Coulomb part of potential energies. The wave functions
are those of Eqs. (7) and (9). In the case of non-orthogonal functions, there are overlapping
matrix elements:

Nij ¼ ψijψj

D E
(23)

and

Hij ¼ ψijH θð Þjψj

D E
(24)
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Figure 2. The best fitting (solid line) of the calculated density of states (circles) for the lowest 3De state of the Ps negative
ion.
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The complex eigenvalues problem can be solved with
X
i

X
j

Cij Hij � ENij
� � ¼ 0 (25)

Resonance poles can be identified by observing the complex energy levels, E(θ,α). The com-
plex resonance eigenvalue is given by

Eres ¼ Er � iΓ
2
, (26)

where Er is the resonance energy and Γ is the width. The resonance parameters are determined
by locating stabilized roots with respect to the variation of the nonlinear parameters in the
wave functions and of the rotational angle θ.

Resonance states for P, D, and F states of the Ps� were reported following the abovementioned
wave functions (16) and CRM [23, 24]. We have also located an S-wave shape resonances of the
Ps� lying above the Ps (N = 2) threshold using wave functions (18) and (9) and CRM [78]. Later,
S-wave resonance states associated with and lying above the Ps (N = 2, 3, 4, 5) thresholds are
reported by Jiao and Ho [79] using the wave function (9) and CRM. We have mentioned that a
1Po shape resonance has been observed in the laboratory [8]. The observed 1Po shape resonance
is in agreement with the available theoretical data [80–82] and the present work using corre-
lated exponential wave functions and CRM. Figure 3 shows the rotational path for the 1Po

shape resonance of the Ps� lying above the Ps (N = 2) threshold, in the complex plane for four
different values of the scaling factor, χ using 500-term correlated exponential basis functions.
From this work, we have obtained the lowest 1Po shape resonance parameters as Er = �0.06212
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Figure 3. Rotational path of the 1Po shape resonance of the Ps� lying above the Ps(N = 2) threshold, in the complex plane
for four different values of the scaling factor, χ using 500-term correlated exponential basis functions.
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S-wave resonance states associated with and lying above the Ps (N = 2, 3, 4, 5) thresholds are
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(3) a.u. and Γ = 0.00044(3) a.u. The numbers in the parentheses indicate the uncertainty in the
last digits. The resonance states of Ps-Ps interaction were also studied by Ho [69].

In the screening environment, Kar and Ho [67, 68, 72–74] investigated the effects of SCP on the
S-, P-, and D-wave resonance states of the Ps� using correlated exponential wave functions,
and Ghoshal and Ho [83] reported the effects of ECSCP on the lowest S-wave resonance state
using the wave function (11) within the framework of SM. The resonance states have also
successfully obtained using Hylleraas-type wave functions (9). Ho and Kar [76, 77] also inves-
tigated the S-wave resonance states of the proposed ion under the influence of SCP using CRM
and wave function (9). In this work, wave functions (9) with up to Ω = 21, NB0 = 1078, were
used. The resonance parameters below the N = 2, 3, 4, 5, and 6 Ps thresholds, for various
screening parameters, were reported. The lowest S-wave resonances of this ion interacting with
ECSCP have also been studied by Ghoshal and Ho [83] using wave function (9) and ECSCP.

5. Photodetachment

The photoionization or photodetachment process is a subject of special interest in several areas
of physics, such as astrophysics, plasma physics, and atomic physics due to its extreme
importance in the atomic structures and correlation effects between atomic electrons [16, 17,
82, 84, 85]. The photoionization processes are also of great interest due to their applications in
plasma diagnostics. Photodetachment of the Ps� is also of particular interest as the experi-
ments on Ps� suggest that the Ps could be used to generate Ps beams of controlled energy, and
this will involve acceleration of Ps� and photodetachment of one electron. Photodetachment of
the Ps� is also of utmost importance due to its application in propagation of radiation in our
galaxy. It is well known that the center of our galaxy, the Milky Way, contains a number of
sources of the annihilation γ-quanta with Eγ ≈ 0.511 MeV [86].

We reported the effect of screened Coulomb (Yukawa) potentials on the photodetachment
cross sections of the positronium negative ion by using the asymptotic form of the bound-
state wave function and a plane wave form for the final-state wave function. For detailed
calculations and applications of the photodetachment of the positronium negative ion, inter-
ested readers are referred to the articles of Bhatia and Drachman [19], Frolov [17], Igarashi [82,
84, 85], Michishio et al. [8], Nagashima [6], and Ward et al. [20]. Here, we outlined the
computational details in brief as mentioned in our earlier work [87] and in the works of Bhatia
and Drachman [19].

In our previous work [87], we have considered the final-state wave function of the form

Ψf ¼ exp i p! : r!
� �

with E = 3p2/4 and the initial bound-state wave function in the asymptotic

region with the following form: Ψi = Cexp(�γr)/r. The constant C for the Ps negative ion is
obtained from the formula

C ¼ GAr exp γrð ÞΨi r; 0; rð Þ, (27)
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where GA is some normalization constant and γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 EPs � EPs�ð Þ=3p

, with EPs� and EPs, the
ground state energies of the Ps� ion and Ps atom, respectively. The ground state energy of the
Ps atom has been calculated using basis functions (40) prescribed in Section 7.

The photodetachment cross sections (σ) having photon energy Ep can be expressed as

σ ¼ 2
3
αa20pg Ep

� �
< Ψf ∣bΛ 1; 2ð Þ∣Ψi > , (28)

where α is the fine structure constant and g(E) = E or E�1 for the dipole length and velocity
approximations, respectively. The operator Λ represents the position and gradient operators
for the length and velocity approximations, respectively, and can be written in explicit form as
bΛ 1; 2ð Þ ¼ Λ r!13

� �
þΛ r!23

� �
.

The final form of σ in terms of wavelength takes the form

σ ¼ 4:30255225� 10�17ρ5 C
2

γ3

λ
λ0

� �3=2
1� λ

λ0

� �3=2
cm2,withλ ≤λ0, (29)

and λ0 = 911.267057/γ2 (in Å), where ρ denotes the reduced electron mass. For the Ps� ion,

ρ ¼ 1þM�1
c

� ��1
withMc = 2. The required normalization constant has been determined in this

from highly accurate, completely non-adiabatic wave functions in Eq. (7) for the three-particle
systems. Similar type of work was reported by Ghoshal and Ho using ECSCP and wave
function (9) [88].

6. Polarizability

The study of atomic and ionic polarizabilities (both static and dynamic) plays an important
role in a number of applications in physical sciences ([25–27, 44, 45, 89–98], references therein).
When an atom or ion or molecule is placed in an electric field, the spatial distribution of its
electrons experiences a distortion, the extent of which can be described in terms of its polariz-
ability. The dynamic (dc) polarizability describes the distortion of the electronic charge distri-
bution of an atom, ion, or molecule in the presence of an oscillating electric field of certain
angular frequency. In this review, we describe the polarizability calculations of the Ps negative
ion reported by Bhatia and Drachman [25], Kar and Ho [99], and Kar et al. [26, 27]. We also
describe the polarizability calculations with SCP and ECSCP. To obtain dipole and quadrupole
polarizability for the Ps� ion, it is an important task to determine precisely the energies and
wave functions for the ground state and the final P and D states. The dynamic 2l-pole polariz-
ability of the Ps� ion in the screening environment can be written as [27]

αl ωð Þ ¼ αþ
l ωð Þ þ αþ

l �ωð Þ (30)
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84, 85], Michishio et al. [8], Nagashima [6], and Ward et al. [20]. Here, we outlined the
computational details in brief as mentioned in our earlier work [87] and in the works of Bhatia
and Drachman [19].

In our previous work [87], we have considered the final-state wave function of the form

Ψf ¼ exp i p! : r!
� �

with E = 3p2/4 and the initial bound-state wave function in the asymptotic

region with the following form: Ψi = Cexp(�γr)/r. The constant C for the Ps negative ion is
obtained from the formula

C ¼ GAr exp γrð ÞΨi r; 0; rð Þ, (27)
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where GA is some normalization constant and γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 EPs � EPs�ð Þ=3p

, with EPs� and EPs, the
ground state energies of the Ps� ion and Ps atom, respectively. The ground state energy of the
Ps atom has been calculated using basis functions (40) prescribed in Section 7.

The photodetachment cross sections (σ) having photon energy Ep can be expressed as

σ ¼ 2
3
αa20pg Ep

� �
< Ψf ∣bΛ 1; 2ð Þ∣Ψi > , (28)

where α is the fine structure constant and g(E) = E or E�1 for the dipole length and velocity
approximations, respectively. The operator Λ represents the position and gradient operators
for the length and velocity approximations, respectively, and can be written in explicit form as
bΛ 1; 2ð Þ ¼ Λ r!13

� �
þΛ r!23

� �
.

The final form of σ in terms of wavelength takes the form

σ ¼ 4:30255225� 10�17ρ5 C
2

γ3

λ
λ0

� �3=2
1� λ

λ0

� �3=2
cm2,withλ ≤λ0, (29)

and λ0 = 911.267057/γ2 (in Å), where ρ denotes the reduced electron mass. For the Ps� ion,

ρ ¼ 1þM�1
c

� ��1
withMc = 2. The required normalization constant has been determined in this

from highly accurate, completely non-adiabatic wave functions in Eq. (7) for the three-particle
systems. Similar type of work was reported by Ghoshal and Ho using ECSCP and wave
function (9) [88].

6. Polarizability

The study of atomic and ionic polarizabilities (both static and dynamic) plays an important
role in a number of applications in physical sciences ([25–27, 44, 45, 89–98], references therein).
When an atom or ion or molecule is placed in an electric field, the spatial distribution of its
electrons experiences a distortion, the extent of which can be described in terms of its polariz-
ability. The dynamic (dc) polarizability describes the distortion of the electronic charge distri-
bution of an atom, ion, or molecule in the presence of an oscillating electric field of certain
angular frequency. In this review, we describe the polarizability calculations of the Ps negative
ion reported by Bhatia and Drachman [25], Kar and Ho [99], and Kar et al. [26, 27]. We also
describe the polarizability calculations with SCP and ECSCP. To obtain dipole and quadrupole
polarizability for the Ps� ion, it is an important task to determine precisely the energies and
wave functions for the ground state and the final P and D states. The dynamic 2l-pole polariz-
ability of the Ps� ion in the screening environment can be written as [27]

αl ωð Þ ¼ αþ
l ωð Þ þ αþ

l �ωð Þ (30)

Excitons and the Positronium Negative Ion: Comparison of Spectroscopic Properties
http://dx.doi.org/10.5772/intechopen.70474

79



with

αþ
l ωð Þ ¼ 8π

2lþ 1
M

Mþ 1

� �2lþ1X
n

f nl
En μ
� �� E0 μ

� �þ ω
in units of a2lþ1

0

� �
, (31)

where

f nl ¼ Ψ0 μ
� �j

X2

i¼1

rliYlm rið ÞjΨn μ
� �* +�����

�����
2

(32)

The summation in the above expression includes all the discrete and continuum eigenstates. Ψ0

and Ψn describe the ground state eigenfunction with the corresponding energy eigenvalue E0
and the nth intermediate eigenfunction for the final states with the corresponding eigenvalue, En,
respectively. In the limit when ω!0, αl(ω) is the static polarizability. For precise determination of
eigenvalues and eigenfunction for each frequency and for each screening parameter for a partic-
ular system, one needs to solve the Schrödinger equation, HΨ = EΨ, by diagonalization of the
Hamiltonian with the properly chosen wave functions in Eqs. (7) and (10). We rewrite the explicit
form of wave function in Eq. (10) for polarizability calculations of this ion as

Ψn μ
� � ¼ 1þ bP12

� � XNBn

i ¼ 1
l1 þ l2 ¼ L

Cn
i μ
� �

exp �αn
i r13 � βni r23 � γn

i r21
� �

Yl1, l2
LM r13; r12ð Þ (33)

where l1 = i�(L + 1)mod{i/(L + 1)}, mod{i/(L + 1)} denotes the remainder of the integer division
i/(L + 1), and NBn is the number of basis term.

The static dipole and quadrupole polarizability for Ps� has been reported by Bhatia and
Drachman [25]. Kar and Ho also reported the static dipole polarizability of this ion in the
screening environments as well in free atomic system [99]. Kar et al. also reported the dipole
and quadrupole polarizabilities (static and dynamic) of this ion using SCP and exponential
wave functions (33) [26, 27]. The dynamic dipole polarizability of the Ps� was also studied by
Kar et al. [27] in the screening environments. In this present work, we calculate the dipole and
quadrupole polarizabilities (static and dynamic) under the influence of ECSCP and wave
functions (33). The polarizabilities as functions of screening parameter and photon frequency
are reported in Figures 4 and 5 and Tables 1 and 2.

7. Dispersion coefficients for Ps-Ps interaction

Knowledge of the Van der Waals two-body dispersion coefficients in the multipole expansion
of the second-order long-range interaction between a pair of atoms is of utmost importance for
the quantitative interpretation of the equilibrium properties of gases and crystals, of transport
phenomena in gases, and of phenomena occurring in slow atomic beams ([93, 100–102],
references therein). The long-range part of the interaction potential between two spherically
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symmetric atoms a and b separated by a distance R can be written as a series with coefficients
Cn denoted as dispersion coefficients [93, 100–102]:

Vab ¼ �C6

R6 �
C8

R8 �
C10

R10 �⋯, (34)

with

C6 ¼ 3
π
Gab 1; 1ð Þ, (35)

C8 ¼ 15
2π

Gab 1; 2ð Þ þ Gab 2; 1ð Þ½ �, (36)

C10 ¼ 14
π

Gab 1; 3ð Þ þ Gab 3; 1ð Þ½ � þ 35
π
Gab 2; 2ð Þ, (37)

where

Gab la; lbð Þ ¼ π
2

X
nm

f lað Þ
n0 f

lbð Þ
m0

Ea
n0E

b
m0 Ea

n0 þ Eb
m0

� � , (38)
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Figure 4. The dipole polarizability of the positronium negative ion as a function of screening parameter and photon
frequency.
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i/(L + 1), and NBn is the number of basis term.

The static dipole and quadrupole polarizability for Ps� has been reported by Bhatia and
Drachman [25]. Kar and Ho also reported the static dipole polarizability of this ion in the
screening environments as well in free atomic system [99]. Kar et al. also reported the dipole
and quadrupole polarizabilities (static and dynamic) of this ion using SCP and exponential
wave functions (33) [26, 27]. The dynamic dipole polarizability of the Ps� was also studied by
Kar et al. [27] in the screening environments. In this present work, we calculate the dipole and
quadrupole polarizabilities (static and dynamic) under the influence of ECSCP and wave
functions (33). The polarizabilities as functions of screening parameter and photon frequency
are reported in Figures 4 and 5 and Tables 1 and 2.

7. Dispersion coefficients for Ps-Ps interaction
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of the second-order long-range interaction between a pair of atoms is of utmost importance for
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Figure 4. The dipole polarizability of the positronium negative ion as a function of screening parameter and photon
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Ei
n0 ¼ Ei

n � Ei
0 is the excitation energy for atom i and is positive for the atoms in the ground

state, and f lð Þ
n0 denotes the 2

l-pole oscillator strengths and defined by

f lð Þ
n0 ¼

8π
2lþ 1

En � E0ð Þ < Ψ0

X
i

rliPl cosϑið Þ
�����

�����Ψn

* +�����

�����
2

, (39)

with i = 1 for Ps and H atom. We also review here the dispersion coefficients for H-H interac-
tions to establish a relation of dispersion coefficients with Ps-Ps and H-H interaction.

For positronium and hydrogen atoms, we have employed the Slater-type basis set:

Ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p

4π

XN

i¼l

Diriþle�λrPl cosθ1ð Þ, (40)

where λ is the nonlinear variation parameters; l = 0, 1 for S and P states, respectively, and
Di(i=1,.…,N) are the linear expansion coefficients.
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Figure 5. The quadrupole polarizability of the positronium negative ion as a function of screening parameter and photon
frequency.
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ω μ = 0.01 μ = 0.02 μ = 0.04 μ = 0.05 μ = 0.06 μ = 0.08 μ = 0.09 μ = 0.10

0.000 231.3779 231.7355 234.4589 237.308 241.438 254.3094 263.4554 274.709

0.001 231.8534 232.2127 234.9495 237.813 241.964 254.9026 264.0985 275.416

0.002 233.2980 233.6626 236.4406 239.348 243.563 256.7081 266.0575 277.572

0.003 235.7687 236.1426 238.9923 241.976 246.302 259.8077 269.4255 281.285

0.004 239.3685 239.7562 242.7131 245.810 250.304 264.3508 274.3733 286.755

0.005 244.2600 244.6673 247.7751 251.033 255.763 270.5782 281.1787 294.311

0.006 250.6914 251.1256 254.4422 257.922 262.979 278.8678 290.2821 304.479

0.007 259.0429 259.5144 263.1203 266.908 272.423 289.8223 302.397 318.132

0.008 269.917 270.441 274.458 278.687 284.857 304.455 318.753 336.819

0.009 284.332 284.935 289.567 294.457 301.624 324.642 341.717 363.680

0.010 304.207 304.939 310.583 316.576 325.43 354.54 376.95 407.13

0.011 334.00 334.98 342.67 350.97 363.53 408.6 4.53[2]

0.012 392.9 395.2 4.17[2]

The numbers in square brackets indicate the power of 10.

Table 1. The dipole polarizability of the Ps negative ion for different screening parameters and photon frequencies.

ω μ = 0.01 μ = 0.02 μ = 0.03 μ = 0.05 μ = 0.06 μ = 0.07 μ = 0.09 μ = 0.10

0.000 8630.1 8649.4 8701.3 8962.1 9198.5 9522.9 10496.4 11182.1

0.001 8647.3 8666.7 8718.8 8980.7 9218.0 9543.7 10521.4 11210.1

0.002 8699.5 8719.2 8771.9 9036.9 9277.2 9607.0 10597.3 11295.5

0.003 8788.6 8808.6 8862.4 9132.9 9378.2 9715.0 10727.4 11442.0

0.004 8917.6 8938.2 8993.7 9272.3 9525.0 9872.2 10917.3 1.1656[4]

0.005 9091.6 9113.1 9170.8 9460.7 9723.7 10085.4 1.1176[4] 1.1950[4]

0.006 9318.1 9340.7 9401.4 9706.6 9983.6 10364.9 1.1518[4] 1.2339[4]

0.007 9608.2 9632.3 9697.0 10022.7 1.0319[4] 1.0726[4] 1.1965[4] 12852[4]

0.008 0.9978[4] 1.0005[4] 1.0075[4] 1.0428[4] 1.0750[4] 1.1195[4] 1.2554[4] 1.3534[4]

0.009 1.0456[4] 1.0485[4] 1.0563[4] 1.0956[4] 1.1314[4] 1.1811[4] 1.3343[4] 1.4465[4]

0.010 1.1086[4] 1.1119[4] 11209[4] 1.1660[4] 1.2074[4] 1.2650[4] 1.446[4] 1.582[4]

0.011 1.196[4] 1.200[4] 1.211[4] 1.266[4] 1.317[4] 1.388[4] 1.62[4] 1.81[4]

0.012 1.330[4] 1.336[4] 1.350[4] 1.43[4] 1.50[4] 1.60[4]

The numbers in square brackets indicate the power of 10.

Table 2. The quadrupole polarizability of the Ps� in terms of screening parameter and photon frequency.
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Figure 5. The quadrupole polarizability of the positronium negative ion as a function of screening parameter and photon
frequency.
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To investigate the effect on the dispersion coefficients C6 in the screening environments, one
can assume that the leading term in the Van der Waals interaction between two atoms a and b
in their ground states still has a form of R�6, as [101, 102]

Vab ¼ �C6 μ
� �

R6 þO 1=R8� �þ⋯: (41)

Here, the plasma effect on Vab is reflected on the value of C6, which now depends on the
screening parameter μ, and is denoted by C6(μ). Similarly, to consider the plasma effect on the
dispersion coefficients C8 and C10, we assume the coefficients depend on the screening param-
eter μ and are denoted, respectively, by C8(μ) and C10(μ). To calculate the dispersion coeffi-
cients for the interactions for Ps-Ps or H-H interactions, one needs to obtain the energy levels
for the positronium atom or the hydrogen atom in the different partial wave states with the
optimum choices of nonlinear parameters. To obtain the energy levels for hydrogen and
positronium atoms with different Debye lengths, we diagonalize the Hamiltonian

H ¼ � η
2
∇2 � exp �r=λDð Þ

r
(42)

with the wave functions (40). Here, η = 1 is for the hydrogen atom and η = 2 for the positronium
atom. In our previous work, we have reported the C6, C8, and C10 coefficients for Ps-Ps
interactions under the influence of SCP. We have found from our calculations that the C6, C8,
and C10 coefficients are, respectively, 2

5, 27, and 28 times larger than the corresponding coeffi-
cients of hydrogen-hydrogen interactions [103].

8. Comparison of spectroscopic properties and concluding remarks

To describe a semiconductor, one needs in principle to solve the Schrödinger equation for the
problem. Depending on the coordinates of the ion cores having the nucleus and the tightly
bound electrons in the inner shells and the outer or valence electrons with coordinates Rj and ri
and masses Mj and m0, respectively, the Hamiltonian looks as ([1], Chapter 7)

H ¼ � ℏ2

2

XM

j¼1

1
Mj

∇2
Rj
� ℏ2

2m0

XM

j¼1

∇2
ri þ

1
4πε0

X
j>j0

e2ZjZj

Rj � Rj0

���
���
þ
X
i>i0

e2

ri � ri0j j þ
X
i, j

e2Zj

Rj � ri
�� ��

0
B@

1
CA, (43)

where Zj is the effective charge of the ion core j and the indices j and i run over all M ion cores
and N electrons, respectively. The wave function solving (43) can be constructed using all
coordinates Rj and ri including spins. The optical properties of the electronic system of a
semiconductor or an insulator or even a metal can be understood as a description of the excited
states of the N particle problem. The quanta of these excitations are known as “excitons” in
semiconductors and insulators. The ground state of the electronic system for a perfect semi-
conductor can be described from various points of view as a completely filled valence band
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and a completely empty conduction band [1]. However, from the theoretical side, the wave
function of the bound state for excitons is said to be hydrogenic, an exotic atom (such as
positronium atom) state akin to that of a hydrogen atom or even much better positronium
atom. However, the binding energy is much smaller and the particle’s size much larger than a
hydrogen atom or larger than a positronium atom. This is due to the screening of the Coulomb
force by other electrons in the semiconductor and due to the small effective masses of the
excited electron and positive hole. However, it can be understood that the Hamiltonian for an
exciton can be similar to a positronium atom if one can consider units using the Bohr radius for
the respective system. The exciton Bohr radius is aexB ¼ aHB ε

m0
τ where the reduce exciton mass

τ ¼ memh
meþmh

; me and mh indicate the effective mass of electron and hole, respectively, and m0 is the

free electron mass. Exciton Rydberg energy is Ry∗ ¼ 13:6eV τ
m0

1
ε2 [1]. In similar way, the Ham-

iltonian for a trion and a bi-exciton can be related, respectively, with the Hamiltonian Ps
negative ion and the Ps molecule. Wave functions for a trion or a bi-exciton could be similar
with the Ps atoms or the Ps molecule. So, it is expected that the spectroscopic properties of the
Ps atom, Ps negative ion, or Ps molecule might be useful to understand the spectroscopic
properties of an exciton, trion, or bi-exciton.

Let us describe other types of comparison with bound excitons which are well studied in
semiconductor, especially in gallium phosphide doped by nitrogen (GaP:N). The role and
application of bound excitons in nanoscience and technology have been discussed in the article
of Pyshkin and Ballato [104]. This investigation [104] observes something like neutral short-
lived atom analog—a particle consisting of heavy negatively charged nucleus (N atom with
captured electron) and a hole. Using bound excitons as short-lived analogs of atoms and
sticking to some specific rules, Pyshkin and Ballato have been able to create a new solid-state
media—consisting of short-lived nanoparticles excitonic crystal, obviously, with very useful
and interesting properties for application in optoelectronics, nanoscience, and technology. Note
that such specific rules include the necessity to build the excitonic superlattice with the identity
period equal to the bound exciton Bohr dimension in the GaP:N single crystal. This study [104]
also reports that the excitonic crystals yield novel and useful properties. These properties
include enhanced stimulated emission and very bright and broadband luminescence at room
temperature. With such development of bound excitons as short-lived analogs of atoms under
some specific rules, it is also important to mention here that the emission spectra of represen-
tatives of exciton and positronium negative ion families can be realized from the earlier articles
[104–108]. These articles support the usefulness of such comparisons of spectroscopic proper-
ties of excitons and the positronium negative ion. We hope that this chapter will provide a new
direction and would be a remarkable reference for the future studies on excitons, bi-excitons, or
trions as well as positronium, positronium molecule, and positronium negative ion.

Finally, we should also mention recent investigations on quantum information and quantum
entanglement in few-body atomic systems, including the positronium negative ion. Quantifi-
cation of Shannon information entropy, von Neumann entropy and its simpler form, linear
entropy, for the two entangled (correlated) electrons in Ps�, has been reported in the literature
[109–111].
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To investigate the effect on the dispersion coefficients C6 in the screening environments, one
can assume that the leading term in the Van der Waals interaction between two atoms a and b
in their ground states still has a form of R�6, as [101, 102]

Vab ¼ �C6 μ
� �

R6 þO 1=R8� �þ⋯: (41)

Here, the plasma effect on Vab is reflected on the value of C6, which now depends on the
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dispersion coefficients C8 and C10, we assume the coefficients depend on the screening param-
eter μ and are denoted, respectively, by C8(μ) and C10(μ). To calculate the dispersion coeffi-
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2
∇2 � exp �r=λDð Þ

r
(42)

with the wave functions (40). Here, η = 1 is for the hydrogen atom and η = 2 for the positronium
atom. In our previous work, we have reported the C6, C8, and C10 coefficients for Ps-Ps
interactions under the influence of SCP. We have found from our calculations that the C6, C8,
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5, 27, and 28 times larger than the corresponding coeffi-
cients of hydrogen-hydrogen interactions [103].

8. Comparison of spectroscopic properties and concluding remarks
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CA, (43)

where Zj is the effective charge of the ion core j and the indices j and i run over all M ion cores
and N electrons, respectively. The wave function solving (43) can be constructed using all
coordinates Rj and ri including spins. The optical properties of the electronic system of a
semiconductor or an insulator or even a metal can be understood as a description of the excited
states of the N particle problem. The quanta of these excitations are known as “excitons” in
semiconductors and insulators. The ground state of the electronic system for a perfect semi-
conductor can be described from various points of view as a completely filled valence band
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