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Preface

Amino acids are the nitrogenous compound that forms the basic component of all living
cells. It has a great role in the growth and development of plants and animals. It can either
be applied exogenously on plant leaves or supplemented with animal feed. In addition, it
has the positive impact as foliar spray on plants under stress conditions. While in animals,
amino acid improves product quality through the influence in different biochemical process‐
es of protein synthesis.

This book provides new aspects of amino acid structure, synthesis reactions, dietary applica‐
tion, and also metabolism in plants. The first few chapters describe the therapeutic uses, an‐
tiallergic effects, new aspects in the D-amino acid structure, historical background of
desmosines, and stereoselective synthesis of α-aminophosphonic acids. The role of amino
acids on plant includes new insights and aspects of D-amino acids, metabolism and trans‐
port in soybean, changes during energy storage compounds accumulation, etc. Dietary sup‐
plementation of amino acids for Japanese quails, laying hens, and finishing pigs is described
in the later part.

Interesting research on amino acids from around the world is brought together to produce
this resource for teachers, researchers, and advanced students of biological science.

Publication of this book would have been impossible without the interesting research work
of many researchers around the world. Acknowledgment goes to the chapter contributors,
who volunteered their valuable time to publish this book.

Dr. Toshiki Asao
Department of Agriculture

Faculty of Life and Environmental Science
Shimane University, Matsue, Japan

Dr. Md. Asaduzzaman
Horticulture Research Centre

Bangladesh Agriculture Research Institute
Gazipur, Bangladesh
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Role of Amino Acids in General





Chapter 1

Therapeutic Uses of Amino Acids

Amraibure Odia and Oaikhena Zekeri Esezobor

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68932

Abstract

Amino acids, which are the building blocks of peptides and proteins, are indispensable 
chemicals needed by the body for optimal metabolism and proper body functioning. 
Classified as essential, nonessential and conditionally essential, amino acids play vital 
roles in the body such as in protein synthesis and as precursors in the production of 
secondary metabolism molecules. Amino acid oxygenases also play vital metabolic roles 
such as in prevention of diseases; as a result, amino acids and their oxygenases isolated 
from various organisms are potent candidates in treatment of diseases which include 
cancers, inflammations, as well as antibacterial agents.

Keywords: amino acids, oxygenase, therapeutic, bacteria, flavoprotein, enzyme

1. Introduction

The use of amino acids in medicine today continues to be explored using clinical research and 
applications. Amino acids play several roles in the body [1]; they are essential in the synthesis 
of proteins and precursors in the formation of secondary metabolism molecules [2], and as a 
result, amino acids are found in all parts of the body [1].

Amino acids are mainly found as l-enantiomers in all forms of life. However, significant 
amounts of d-amino acids are produced by bacteria, which are the major producers of 
d-amino acids [3]. In bacteria, d-amino acids are involved in the synthesis and cross-linking 
of peptidoglycan [4].

In humans, amino acids participate in various physiological processes, such as skeletal mus-
cle function, atrophic conditions, sarcopenia, and cancer. They play key roles in cell signal-
ling, homeostasis, gene expression, synthesis of hormones, phosphorylation of proteins and 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



also possess antioxidant abilities [2, 5]. Amino acids are also key precursors in the synthesis of 
low molecular weight nitrogenous compounds, which have numerous biological importance. 
The existence of amino acids and their metabolites, such as glutathione, polyamines, taurine, sero-
tonin and thyroid hormones, in physiological amounts is important for proper body functions [5].

Traditionally, amino acids were classified as essential and nonessential amino acids [5]. 
However, another class known as conditionally essential amino acids now exists. These clas-
sifications are based on whether the body is able to synthesise the amount that it needs for 
metabolic maintenance [1]. Essential amino acids are those that cannot be synthesised or those 
that are synthesised inadequately by the body relative to needs and hence must be obtained 
from diets to meet physiological requirements. Amino acids which the body can synthesise 
in sufficient amounts to meet the body’s maximum requirements are known as nonessential 
amino acids. Conditionally essential amino acids are those which the body can synthesise in 
adequate amounts, but under situations of higher utilisation rate, the body obtains them from 
diets in order to meet optimal requirements [5].

Inadequate intake of amino acids from diets and below optimal synthesis by the body may 
expose an individual to amino acid deficiency symptoms, such as weight loss, poor growth 
and development. Because amino acids are not stored in the body for long periods of time 
and in sufficient amount, meeting maximum daily requirements from diets and/or amino acid 
supplements is necessary for healthy living [1].

The therapeutic use of amino acids presents a viable and important option for natural medi-
cine. Some of the most prominent areas of therapeutic applications of amino acids are for 
treatment of brain metabolism and neurotransmission imbalances. Other areas in which 
amino acids also find key applications are immune function, cardiovascular and gastroin-
testinal (GI) health [1], treatment of liver diseases, fatigue, skeletal muscle damage, cancer 
prevention, burn, trauma and sepsis, maple urine disease and diabetes [6].

2. d-Amino acids

Bardaweel [2] investigated the antibacterial activities of some d-amino acids, which include 
d-alanine, d-lysine, d-serine and d-proline (Figure 1), against Bacillus subtilis, Staphylococcus 
aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa and Xanthomonas 
vesicatoria and reported that the amino acids exhibited relatively low inhibitory effectiveness 
against the pathogens. However, d-lysine, followed by d-alanine, was more potent than the 
other amino acids examined, even though their minimum inhibitory concentration (MIC) val-
ues were in the millimolar ranges.

A study by Hochbaum et al. [7] reported that d-amino acids were effective in preventing biofilm 
(communities of cells held together by a self-produced extracellular matrix typically consisting of 
protein, exopolysaccharide and often DNA) development in S. aureus, which is a leading cause 
of hospital-acquired infections. The d-isomers that were found to be active in inhibiting biofilm 
formation were d-phenylalanine (Figure 2a) and d-proline and d-tyrosine (Figure 2b). Mixture 
of d-tyrosine, d-proline and d-phenylalanine was more effective in preventing biofilm formation 
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than the mixture of d-tryptophan, d-methionine, d-leucine (Figure 2c–e) and d-tyrosine. Earlier, 
the study by Kolodkin-Gal et al. [8] reported that d-tyrosine, d-leucine, d-tryptophan and d-methi-
onine were active in inhibiting biofilm formation by B. subtilis, whereas d-isomers of other amino 
acids, such as d-phenylalanine, were inert in inhibiting biofilm formation.

The therapeutic potential of d-amino acid oxidase (DAAO) inhibitors, a flavoenzyme that 
degrades d-amino acids through the process of oxidative deamination, in schizophrenia 
patients has also been studied [9]. DAAO catalyses the metabolism of d-serine, a known full 
agonist at the allosteric glycine binding site of the N-methyl- d-aspartic acid (NMDA) (Figure 3) 
receptor, which has been reported to improve negative and cognitive symptoms of schizophre-
nia [10]. As a result, several studies have focused on the design and development of selective 
DAAO inhibitors, which when administered to schizophrenia patients have been shown to 
increase the concentrations of d-serine in the blood and the brain [9].

3. Branched-chain amino acids

Branched-chain amino acids (BCAAs) are essential amino acids required for synthesis of body 
proteins. BCAAs play vital roles in regulation of protein synthesis and maintenance of gluta-
mate-glutamine levels in the body. BCAAs are oxidised during high-energy-demanding and 
stressful conditions, and as a result, limit their accessibility in body tissues, which in the long run 
upsets mechanisms controlling the synthesis of proteins and body glutamate-glutamine pool [6].

The use of BCAA supplements in treatment of diseases is a developing nutritional strategy 
in disease management. Several studies have reported that when BCAA supplements are 
administered, patients experience improvements in health, although there are some disease 
conditions where BCAAs showed no effects. However, increased levels of BCAAs in the body 
have been observed to be involved in disease pathology [6].

The BCAAs—leucine, isoleucine (Figure 4) and valine—are metabolically very active. In the 
peripheral tissues, they may be oxidised to produce energy or act as anticatabolic factors 
(particularly leucine) by stimulating the synthesis and lowering the rate of degradation of 
muscle protein [11]. They are three of nine essential amino acids that are not synthesised by 

O H
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O

O
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C H

3

Figure 3. Chemical structure of N-methyl-d-aspartic acid.
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the human body and therefore must be obtained from diet. Approximately 35% of indispens-
able muscle proteins and 40% of total amino acids required by mammals are composed of 
these BCAAs [6]. The three BCAAs either together or with leucine alone can stimulate protein 
synthesis and can also inhibit protein degradation depending on the context [12].

Although most of the amino acids are degraded in the liver, BCAAs are primarily broken 
down in the extrahepatic tissues (muscle, adipose, kidney and brain). Catabolism of these 
amino acids is initiated by transamination reaction with α-ketoglutarate to form glutamate 
and branched-chain keto acids (BCKAs). Then, the glutamate is converted to glutamine by 
the action of the glutamine synthetase enzyme [6]. Glutamine (Figure 5), which is derived 
mainly from skeletal muscles [13], is one of the most abundant amino acids in the body [14]. It 
is utilised readily by the liver, kidneys, GI tract and the immune system. Glutamine transports 
nitrogen and carbon inside the organs and plays a vital role in proper immune system func-
tion and GI integrity, as well as maintenance of overall amino-acid balance in the body [13, 14].

BCAAs have been considered as potential intervention for repair of damaged muscle tissues 
and some studies have suggested that BCAA supplementation may improve the repair of 
re-induced damaged muscle [15]. BCAAs, particularly leucine, have been reported to possess 
anabolic potential. They stimulate the metabolic pathways that initiate protein synthesis [16] 
and are involved in the control of protein breakdown (proteolysis) in impaired muscles [17].

The transamination product of BCAAs, α-ketoisocaproate (α-KIC) (Figure 6), is known to 
prevent the enzymatic action of branched-chain α-keto dehydrogenase complex (BCKDH), 
which increases the oxidation of BCAAs [18]. These anabolic potentials of BCAAs have led 
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to suggestions that BCAA supplementation could stimulate repair of impaired muscles by 
reducing oxidation of proteins, promoting the formation and development of muscle compo-
nents and improving muscle functioning ability [15].

In a study by Soomro et al. [11], BCAAs were reported to be effective in the management of 
hepatic encephalopathy. While comparing the recovery and recurrence of hepatic encephalop-
athy of patients who were on BCAAs given initially intravenously and then orally with those 
of group without BCAAs, the results showed that those on BCAAs showed early improve-
ments and recovery and subsequently on follow-up visits at 4 months. Improvements were 
observed in ammonia levels which were initially raised, but however decreased subsequently 
at 6 days and on 4 months of follow-up. In comparison to patients who did not receive BCAAs, 
the albumin levels of patients administered with BCAAs also increased from initial reading 
noticed at 4 months of follow-up.

BCAAs act as energy substrates, substrates for gluconeogenesis and modulators of muscle 
protein metabolism. These properties make their use in amino acid-enriched solutions theo-
retically appropriate for the management of the metabolic alterations that occur in sepsis. 
Forty-five percent branched-chain amino acid-enriched solutions have been suggested to 
intensify synthesis of proteins in the liver [19] and proteins whose plasma levels are elevated 
or reduced (acute-phase proteins) during severe illness [20]. Because acute-phase proteins 
might play vital roles in a septic patient’s defence mechanisms against infections, the admin-
istration of solutions containing high amounts of BCAAs may increase the likelihood of quick 
recovery and survival for such patients [19].

4. Amino acid oxidases

Amino acid oxidases (AAOs) are flavoenzymes that catalyse the oxidative deamination of 
amino acids to α-keto acids with the generation of ammonia and hydrogen peroxide [21], as 
shown in (Figure 7) [22]. Depending on the amino acid isomer used as a substrate, it is possible 
to differentiate between l-amino acid oxidases and d-amino acid oxidases [23]. However, of 
particular interest in AAOs are the l-amino acid oxidases (LAAOs) because AAOs are highly 
specific for l-amino acids, and generally hydrophobic amino acids (such as phenylalanine, 
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O

O

Figure 6. Chemical structure of α-ketoisocaproate.
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tryptophan, tyrosine and leucine) [24] are the best substrates [25]. These flavoenzymes are 
found in diverse organisms, such as bacteria, fungi, algae, fish, snails as well as venoms of 
snake families [26].

Several kinds of LAAOs have been isolated and their crystal structure presented (Figure 8). 
Most of the LAAOs isolated and characterised structurally to date are flavoproteins, which 
exist as dimers. The subunits in the structures are joined by noncovalent bonds with flavin 
mononucleotide (FMN) or flavin adenine dinucleotide (FAD) [27]. The venoms of many 
snakes have characteristic yellow colour which has been attributed to the flavin component 
in LAAOs isolated from the snakes. The flavins have also been reported to contribute to the 
toxicity of such venoms because of the oxidative stress caused by H2O2 production [26].

In a study by Joseph et al. [24], LAAOs isolated from snake venom induced platelet aggrega-
tion and cytotoxicity in various cancer cell lines. The enzyme also showed antibacterial activ-
ity by inhibiting the growth of Gram-positive (B. subtilis) and Gram-negative (E. coli) bacteria. 
Snake venom LAAOs have also been reported to exhibit oedema-inducing, apoptotic-induc-
ing as well as anti-bacterial, anti-coagulant and anti-HIV effects [25].

In a study of the king cobra (Ophiophagus hannah) venom l-amino acid oxidase, Lee et al. 
[32] reported that the heat-stable enzyme exhibited very potent anti-proliferative activity 
against human breast and lung tumorigenic cells, but not in their non-tumorigenic coun-
terparts. They further reported that after eight weeks of treatment of mice samples with 
the isolated LAAOs, the enzyme markedly inhibited PC-3 tumours when compared to the 
control group.

In another study of the heat stable l-amino acid oxidase isolated from the king cobra 
(O. hannah) venom, Phua et al. [33] reported that the LAAO showed antibacterial activity 
against Gram-positive bacteria, such as B. subtilis, Bacillus cereus, S. aureus [including meth-
icillin-resistant S. aureus (MRSA)], and S. epidermidis. The LAAO also showed antibacterial 
activity against gram-negative bacteria such as Salmonella enteridis, P. aeruginosa, Serratia 
marcescens, Klebsiella pneumoniae, E. coli and Enterobacter cloacae. They further reported that 
the snake venom showed the highest antibacterial activity against Staphylococcus spp. and 
E. coli, even though the inhibition zones increased with increasing concentration of venom 
in all cases.
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Figure 7. Mechanism of chemical reaction catalysed by l-amino acid oxidases (LAAOs) [22].
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LAAOs isolated from the venom of Calloselasma rhodostoma were also reported by Costa et 
al. [34] to induce  acute inflammatory responses in vivo, with recruitment of neutrophils and 
release of IL-6, IL-1β, LTB4 and PGE2. An in vitro study showed IL-6 and IL-1β production 
by peritoneal macrophages stimulated with LAAOs, which was dependent on the activation 
of the Toll-like receptors TLR2 and TLR4. They also reported that LAAOs promoted apop-
tosis of HL-60 and HepG2 tumour cells mediated by the release of hydrogen peroxide and 

(a) (b)

(c) (d)

Figure 8. Crystal structures of LAAOs isolated from (a) the venom of Vipera ammodytes [28], (b) Proteus vulgaris [29], (c) 
Rhodococcus opacus [30] and (d) Streptomyces sp. [31].
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activation of immune cells, resulting in oxidative stress and production of IL-6 and IL-1β that 
triggered a series of events, such as activation of caspase 8, 9 and 3, and the expression of the 
pro-apoptotic gene BAX.

l-Lysine α-oxidase (LysOx) isolated from the extracellular growth medium of Trichoderma cf. 
aureoviride was reported by Pokrovsky et al. [35] to have shown considerable cytotoxicity and 
anti-tumour effects in vitro against a panel of murine and human tumour cell lines and in vivo 
on murine tumours and on animals with human tumour xenografts (breast cancer SKBR3, 
melanoma Bro, colon cancer HCT116 and ovarian adenocarcinoma SCOV3). l-Amino acid 
oxidase isolated from Bothrops marajoensis has also been reported [36] to cause nephrotoxicity 
in isolated perfused kidney and cytotoxicity in MDCK renal cells.

5. Conclusion

The therapeutic effects of amino acids and amino acid oxygenases present interesting pros-
pects for the use of these chemicals in management of diseases. The future potential of amino 
acid-based therapeutics in treatment of diseases and the diverse effects of naturally occurring 
amino acid oxygenase is far reaching.
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Abstract

The type‐1 allergy, as typified by allergic rhinitis, pollen, and food allergies, is defined as 
a hypersensitivity reaction, and its frequency is increasing worldwide. There is a need to 
develop therapeutic agents that either prevent sensitization to allergens or suppress the 
allergic response after initiation. It has been reported that various peptides show anti‐
allergic effects, but there have been few reports concerning peptides derived from food. 
Previously, we studied the anti‐allergic effect of His‐Ala‐Gln (HAQ), which is present in 
CE90GMM, a peptide mixture derived from milk casein. In this chapter, special emphasis 
is placed on the anti‐allergic effects of the HAQ peptide in vitro and in vivo, and the effect 
of peptide binding, peptide sequence, number of amino acids, and the electron density of 
the amino acids is investigated.

Keywords: type‐1 allergy, milk casein, peptide, amino acid, anti‐allergic effect, in vitro, 
in vivo

1. Introduction

The prevalence of allergic diseases has been increasing in recent years, especially in Western 
countries. More than 25% of people living in developed Western countries suffer from aller‐
gies [1]. It has been reported that polyphenolic compounds, such as epigallocatechin gallate, 
show anti‐allergic effects, but there have been few reports regarding the anti‐allergenic effect 
of peptides. It has been reported that bioactive peptides from proteins in foods have several 
functions, such as reduction in blood pressure [2–4], activation of immune cells [5, 6], antivi‐
ral actions [7], and improvement of lipid metabolism [8]. Milk casein yields many peptides 
through hydrolysis with digestive and other enzymes. Hydrolyzed peptides have been indi‐
cated to have a variety of bioactive functions [2–8]. However, there have been few reports on 
the anti‐allergic effects of peptides derived from casein. In the present study, we examined 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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whether peptides derived from casein can inhibit type‐1 allergic reactions in vitro and in vivo. 
Furthermore, characteristics of peptides with anti‐allergic actions are investigated.

2. Mechanism of the type‐1 allergic response

Type‐1 allergies are hypersensitivity disorders mediated by immunological mechanisms, and 
type‐1 allergic responses are induced by certain types of antigens, such as those from plants, mam‐
mals, microbes, foods, drugs, and chemicals. Type‐1 allergic responses are known to be evoked by 
the antigen‐induced activation of high‐affinity IgE (FcεRI) expressed in mast cells and basophils.

When allergens invade the body, mast cells, basophils, eosinophils, and T cells are activated. Then, 
various tissues in the body are damaged by the physiologically active substances produced or 
released. Allergic sensitization involves T cell priming after dendritic cell (DC) activation, and 
the resultant T‐helper (Th) 2 response is characterized by the production of interleukin (IL)‐4, 
IL‐5, and IL‐13 from CD4+ T cells. This Th2 response leads to IgE production from B cells, and 
this IgE binds to FcεRI on the surface of mast cells and basophils in the skin, gut, and respiratory 
and cardiovascular systems, arming them for reactivity upon re‐exposure to the allergen. The 
elicitation of classic allergic symptoms occurs within minutes after allergen exposure, when the 
IgE‐bound mast cells and basophils recognize the allergen and become activated [9]. The bond 
between antigen and IgE is essential, and is the first step in triggering the signaling cascades that 
lead to degranulation. These signaling pathways are involved in the activation of protein kinase C, 
induced by 1,2‐diacylglycerol, or Ca2+ influx into the intracellular matrix induced by deacylglyc‐
erol [10, 11]. The activation of mast cells and basophils triggers the production of many chemical 
mediators, such as histamine, proteolytic enzymes, prostaglandins, leukotrienes, inflammatory 
cytokines, and arachidonic acid metabolites, including prostaglandins and leukotrienes [12–15]. 
These mediators cause immediate allergic reactions. Thus, mast cells and basophils are implicated 
in the development of diseases, such as asthma, allergic rhinitis, and inflammatory arthritis [13].

Th cells also play a central role in type‐1 allergic responses. The cells are classified into two 
types: Th1 and Th2. These cells are responsible for the modulation of cytokine secretion to 
maintain homeostasis in the host, and disruption of this balance induces various immunologi‐
cal diseases. Allergic diseases are characterized by an excessive Th2‐type immune response. 
It is generally accepted that IL‐4 regulates the differentiation of native CD4+ T cells into Th2 
cells and immunoglobulin class switching to the IgG1 and IgE isotypes. Excessive IL‐4 pro‐
duction by Th2 cells has been associated with an elevation of IgE levels and allergic reactions. 
Thus, modulation of the Th1/Th2‐balanced immune response is important to control allergic 
symptoms. There are several phases in the pathogenesis of type‐1 allergic responses as seen 
above, and allergic symptoms may be arrested by blocking the response at any of these points.

3. The search for peptides derived from casein with anti‐allergic actions

It has been reported that bioactive peptides from proteins in foods have several functions 
[2–8]. Milk casein yields many peptides through hydrolysis with digestive and other enzymes. 

Amino Acid - New Insights and Roles in Plant and Animal16



whether peptides derived from casein can inhibit type‐1 allergic reactions in vitro and in vivo. 
Furthermore, characteristics of peptides with anti‐allergic actions are investigated.

2. Mechanism of the type‐1 allergic response

Type‐1 allergies are hypersensitivity disorders mediated by immunological mechanisms, and 
type‐1 allergic responses are induced by certain types of antigens, such as those from plants, mam‐
mals, microbes, foods, drugs, and chemicals. Type‐1 allergic responses are known to be evoked by 
the antigen‐induced activation of high‐affinity IgE (FcεRI) expressed in mast cells and basophils.

When allergens invade the body, mast cells, basophils, eosinophils, and T cells are activated. Then, 
various tissues in the body are damaged by the physiologically active substances produced or 
released. Allergic sensitization involves T cell priming after dendritic cell (DC) activation, and 
the resultant T‐helper (Th) 2 response is characterized by the production of interleukin (IL)‐4, 
IL‐5, and IL‐13 from CD4+ T cells. This Th2 response leads to IgE production from B cells, and 
this IgE binds to FcεRI on the surface of mast cells and basophils in the skin, gut, and respiratory 
and cardiovascular systems, arming them for reactivity upon re‐exposure to the allergen. The 
elicitation of classic allergic symptoms occurs within minutes after allergen exposure, when the 
IgE‐bound mast cells and basophils recognize the allergen and become activated [9]. The bond 
between antigen and IgE is essential, and is the first step in triggering the signaling cascades that 
lead to degranulation. These signaling pathways are involved in the activation of protein kinase C, 
induced by 1,2‐diacylglycerol, or Ca2+ influx into the intracellular matrix induced by deacylglyc‐
erol [10, 11]. The activation of mast cells and basophils triggers the production of many chemical 
mediators, such as histamine, proteolytic enzymes, prostaglandins, leukotrienes, inflammatory 
cytokines, and arachidonic acid metabolites, including prostaglandins and leukotrienes [12–15]. 
These mediators cause immediate allergic reactions. Thus, mast cells and basophils are implicated 
in the development of diseases, such as asthma, allergic rhinitis, and inflammatory arthritis [13].

Th cells also play a central role in type‐1 allergic responses. The cells are classified into two 
types: Th1 and Th2. These cells are responsible for the modulation of cytokine secretion to 
maintain homeostasis in the host, and disruption of this balance induces various immunologi‐
cal diseases. Allergic diseases are characterized by an excessive Th2‐type immune response. 
It is generally accepted that IL‐4 regulates the differentiation of native CD4+ T cells into Th2 
cells and immunoglobulin class switching to the IgG1 and IgE isotypes. Excessive IL‐4 pro‐
duction by Th2 cells has been associated with an elevation of IgE levels and allergic reactions. 
Thus, modulation of the Th1/Th2‐balanced immune response is important to control allergic 
symptoms. There are several phases in the pathogenesis of type‐1 allergic responses as seen 
above, and allergic symptoms may be arrested by blocking the response at any of these points.

3. The search for peptides derived from casein with anti‐allergic actions

It has been reported that bioactive peptides from proteins in foods have several functions 
[2–8]. Milk casein yields many peptides through hydrolysis with digestive and other enzymes. 

Amino Acid - New Insights and Roles in Plant and Animal16

Hydrolyzed peptides have been indicated to have a variety of bioactive functions [2–8]. 
Therefore, we focused our search on peptides derived from casein, and examined degranula‐
tion‐inhibitory activity related to anti‐allergic effects. Degranulation of rat basophilic leukemia 
(RBL‐2H3) cells was monitored by measuring the activity of released β‐hexosaminidase. For 
antigen stimulation, DNP‐specific IgE‐primed RBL‐2H3 cells were preincubated for 10 min 
with various concentrations of peptides, then stimulated with antigen (mouse anti‐DNP IgE). 
After 30 min, the medium was collected and 0.2% Triton X‐100 was added to the cells. Levels 
of β‐hexosaminidase released into the medium, and within cells, were determined by colo‐
rimetric assay using p‐nitrophenyl‐2‐acetamide‐2‐deoxy‐β‐glucopyranoside and expressed 
as the percentage of activity released into the medium compared with total activity. In the 
first stage of this study, we investigated casein and CE90GMM (average molecular weight 
640 kDa), a peptide mixture derived from milk casein, on the degranulation of RBL‐2H3 cells 
and found that degranulation of the cells was not suppressed in the presence of casein. On 
the other hand, significant inhibition of β‐hexosaminidase release was seen with CE90GMM 
stimulation at 250 μg/mL (Figure 1) [16]. Thus, this finding suggested that a peptide capable 
of inhibiting β‐hexosaminidase release is present in CE90GMM. Several varieties of peptides 
have been identified inCE90GMM [17]. We tested the low‐molecular‐weight peptides: His‐Ala‐
Gln (HAQ), Glu‐Gln‐Pro‐Ile (EQPI), Asp‐Met‐Glu‐Ser (DMES), and Lys‐Ile‐Lys‐Glu (KIKE), 
which are present in CE90GMM, using RBL‐2H3 cells. With the four peptides, at concentra‐
tions ranging from 10 to 500 μg/mL, the inhibition of β‐hexosaminidase release was observed, 
which was dose dependent (Figure 2) [16].

We next investigated the effect of the four peptides on cytokine production [tumor necrosis 
factor (TNF)‐α and IL‐4] from RBL‐2H3 cells after antigen stimulation. After stimulation with 

Figure 1. Effects of Casein and CE90GMM on β‐hexosaminidase release from RBL‐2H3 cells. Data are expressed as the 
means ± SD values of triplicate determinations. *p < 0.05 vs control. DNP‐specific IgE sensitized RBL‐2H3 cells were 
challenged with DNP‐HSA for 30 min. Casein and CE90GMM were added 10 min before antigen challenge.
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anti‐DNP‐IgE only, control levels of TNF‐α and IL‐4 were 9.1 and 90.8 pg/mL, respectively. 
All peptides inhibited the production of the inflammatory cytokines TNF‐α and IL‐4. In par‐
ticular, the HAQ and EQPI peptides showed stronger inhibition of TNF‐α and IL‐4 than was 
seen with the DMES and KIKE peptides (Table 1). In addition, we also investigated the char‐
acteristics of peptides with degranulation depression effects [18]. It is known that concentra‐
tions of intracellular Ca2+([Ca2+]i) in mast cells and basophils rise through signaling after the 
cross‐linkage of antigen to FcεRI through IgE for degranulation. Thus, the degranulation‐
suppressing effect of the HAQ peptide on [Ca2+]i was examined using fluo‐3 AM. The [Ca2+]i 
from RBL‐2H3 cells was significantly increased by treatment with the HAQ peptide without 
affecting the proliferation and viability of the cells (Figure 3). These results imply that the 
HAQ peptide suppressed the elevation of [Ca2+]i induced by intracellular‐signaling pathways 
caused by the antigen‐antibody interaction.

TNF‐α IL‐4

Control 100 ± 8 (9.1 pg/mL) 100 ± 5 (90.8 pg/mL)

HAQ 46 ± 6 52 ± 1

DMES 48 ± 3 80 ± 8

EQPI 33 ± 9 56 ± 5

KIKE 61 ± 10 86 ± 3

Table 1. Amount of cytokine production.

Figure 2. Effects of HAQ, DMES, EQPI and KIKE on β‐hexosaminidase release from RBL‐2H3 cells. Data are expressed 
as the means ± SD values of triplicate determinations. DNP‐specific IgE sensitized RBL‐2H3 cells were challenged with 
DNP‐HSA for 30 min. Peptides were added 10 min before antigen challenge.
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4. Characteristics of the amino acids in peptides with anti‐allergic actions

We hypothesized that the amino acids constituting the peptide may be the reason that the 
degranulation‐inhibitory activity differs depending on the type of peptide. It is known that 
proteins are broken down into peptides in the stomach, which are then broken down into 
amino acids, dipeptides, and tripeptides that are absorbed in the bloodstream through the 
small intestine [19]. Thus, the amino acids making up the HAQ peptide were investigated for 
degranulation‐inhibitory activity, cytokine production, and electron density [16].

We measured β‐hexosaminidase levels released during degranulation in the antigen‐anti‐
body reaction in the presence of amino acids, and evaluated the anti‐allergic effects. For the 
amino acids making up the HAQ peptide, an inhibitory effect of degranulation was found 
with L‐histidine stimulation, but L‐alanine and L‐glutamine did not inhibit β‐hexosaminidase 
release (Figure 4). L‐histidine contains an imidazole group, one of the hetero‐aromatic rings 
in the side chain, whereas L‐alanine and L‐glutamine do not have hetero‐aromatic rings in the 
side chain. Polyphenols have multiple benzene rings as a construction feature. Therefore, we 
considered that amino acids with aromatic rings may show anti‐allergic effects. To confirm 
this hypothesis, we investigated the effect of amino acids with aromatic rings, L‐histidine, 
L‐tryptophan, L‐phenylalanine, and L‐tyrosine, on the degranulation of RBL‐2H3 cells. A sig‐
nificant inhibitory effect on the release of β‐hexosaminidase was found with L‐tryptophan, 
L‐phenylalanine, and L‐histidine, depending on the dose (p < 0.05), but L‐tyrosine did not 
inhibit β‐hexosaminidase release (Figure 5).

Figure 3. Effects of HAQ peptide on the release of [Ca2+]i of RBL‐2H3 cells. Data are presented as the means ± SD 
(n = 5). *p < 0.05 between each group. [Ca2+]i was measured by Calcium Kit‐Fluo‐3. Anti‐DNP IgE‐sensitized cells 
were incubated with Fluo‐3 AM for 1 h and then incubated with 500 μM HAQ or PBS for 10 min. Then, the treated 
cells were stimulated with DNP‐HSA, and the fluorescence intensity was measured. (○), non‐HAQ‐treated cells not 
sensitized with anti‐DNP IgE; (▲), HAQ‐treated cells stimulated with antigen; (●), non‐HAQ‐tpeptide‐treated cells 
stimulated with antigen.
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Figure 5. Effects of amino acids (His, Trp, Phe, Tyr) on β‐hexosaminidase release from RBL‐2H3. Data are expressed 
as the means ± SD values of triplicate determinations. DNP‐specific IgE sensitized RBL‐2H3 cells were challenged with 
DNP‐HSA for 30 min. Amino acids were added 10 min before antigen challenge.

We also performed ab initio molecular orbital calculations for the aromatic amino acids, to 
elucidate the mechanism of the anti‐allergic action. Geometrical optimization was carried out 
and the molecular electrostatic potential was calculated for each amino acid. The electrostatic 
potential maps enabled visualization of the charge distributions of the molecules (Figure 6). 
The aromatic ring of L‐tyrosine, which does not show an anti‐allergic effect, is positively 
charged. L‐tyrosine has a hydroxyl group on the side chain of the aromatic ring, which is not 
present in L‐histidine, L‐tryptophan, or L‐phenylalanine. The charge of this hydroxyl group 

Figure 4. Effects of amino acids (His, Ala, Gln) on β‐hexosaminidase release from RBL‐2H3. Data are expressed as 
the means ± SD values of triplicate determinations. DNP‐specific IgE sensitized RBL‐2H3 cells were challenged with  
DNP‐HSA for 30 min. Amino acids were added 10 min before antigen challenge.
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is positive. Furthermore, according to the octanol/water partition coefficient (LogP), L‐tyro‐
sine is less hydrophobic than the other amino acids containing aromatic rings. One reason 
why degranulation is not observed with L‐tyrosine may be that it is difficult for L‐tyrosine 
to pass through the membrane lipid bilayer and incorporate into the cell. On the other hand, 
L‐histidine is a hydrophilic amino acid and shows degranulation‐inhibitory activity. In addi‐
tion to this, the charge distribution on the aromatic ring of L‐histidine is largely negative. 
L‐tryptophan and L‐phenylalanine are hydrophobic amino acid and the charge distribution 
on the aromatic ring of L‐tryptophan and L‐phenylalanine is largely neutral. Consequently, 
the mechanism of the degranulation‐suppressing effect of L‐histidine is likely to be different 
from that of L‐tryptophan and L‐phenylalanine. These results indicate that amino acids with 
an anti‐allergic action have aromatic rings and neutral or negatively charged side chains.

5. Importance of peptide binding, number of amino acid residues, and 
peptide sequence on the anti‐allergic effect

The degranulation‐inhibitory activity differs depending on the type of amino acids. Thus, we 
examined the effect of peptide binding, number of amino acid residues, and peptide sequence 
on degranulation inhibition [20, 21].

Initially, we revealed that the level of degranulation‐inhibitory activity depends on the pep‐
tide binding. In other words, a significant inhibitory effect on the release of β‐hexosaminidase 
was found with the HAQ peptide, depending on the dose, but mixtures of the amino acids 
in the HAQ peptide did not show an inhibitory effect (Figure 7). It has been reported that 
bioactive peptides from proteins in foods have several functions [2–8]. Our results, indicating 
that the HAQ peptide can suppress the antigen‐induced degranulation of RBL‐2H3 cells, are 
consistent with those observed for other bioactive peptides.

We further found that the level of degranulation‐inhibitory activity depended on the num‐
ber of amino acid residues in the peptide. Our group has previously reported that peptides 

Figure 6. Charge distribution on four kinds of aromatic amino acids (His, Trp, Phe, Tyr).
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with an anti‐allergic action contain amino acids with aromatic rings and neutral or hydro‐
phobic side chains [16]. Thus, we used peptides containing L‐histidine, with an imidazole 
functional group, to assess the inhibitory effect of amino acid residues on the IgE‐induced 
allergic response in IgE‐sensitized RBL‐2H3 cells. Imidazole peptides containing only L‐his‐
tidine decreased the release of β‐hexosaminidase. In particular, the tri‐ and tetra‐peptides 
demonstrated degranulation‐inhibitory activity (Figure 8).

Figure 8. Effects of His and imidazole peptides of HAQ on β‐hexosaminidase release from RBL‐2H3 cells. Data are 
expressed as the means ± SD values of triplicate determinations. *p < 0.05. DNP‐specific IgE sensitized RBL‐2H3 cells 
were challenged with DNP‐HSA for 30 min. His and imidazole peptides were added 10 min before antigen challenge.

Figure 7. Effects of HAQ and amino acid mixtures made up of HAQ on β‐hexosaminidase release from RBL‐2H3 cells. 
Data are expressed as the means ± SD values of triplicate determinations. *p < 0.05. DNP‐specific IgE sensitized RBL‐2H3 
cells were challenged with DNP‐HSA for 30 min. HAQ and amino acid mixtures made up of HAQ were added 10 min 
before antigen challenge.
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Finally, we investigated the amino acid sequence of the HAQ peptide. The activity of released 
β‐hexosaminidase was evaluated for three peptides, with the L‐histidine residue at different 
positions, HAQ, Ala‐Gln‐His (AQH), and Gln‐His‐Ala (QHA). The level of degranulation‐
inhibitory activity was found to depend on the peptide sequence (Figure 9). Nishida et al. 
reported that metallic ion concentration was important for the degranulation‐inhibitory reac‐
tion and cytokine production from mast cells and basophils [22]. Therefore, we hypothesized 
that the degranulation from mast cells and basophils is related to an exaggerated effect of 
chelation. It has been reported that the HAQ peptide has a high affinity for metal ions, and 
peptides with histidine at the N‐terminus of the sequence show a strong chelation effect for 
copper ions compared with peptides with L‐histidine at the C‐terminus [23]. Therefore, the 
suppression of degranulation may be related to an increase in ability to chelate metal ions, 
because the HAQ peptide having an L‐histidine residue at the N‐terminus exhibited a stron‐
ger inhibitory action against β‐hexosaminidase than either AQH or QHA. In conclusion, we 
propose that the level of degranulation‐inhibitory activity depends on the peptide binding, 
the number of amino acid residues, and the peptide sequence.

6. Effect of the HAQ peptide on antibody production in mice

Th1 and Th2 polarization occurs according to cytokine patterns, which begin when anti‐
gen‐presenting cells interact with naïve T cells and polarize into type 1 and type 2 cells in 
response to the type of antigen encountered [12–15]. Th1 cells produce IFN‐γ and TNF‐α 
which induce T‐cell‐mediated immunity and IgG2a production and downregulate Th2 cells. 
On the other hand, IgE production in mice is induced by IL‐4 and IL‐5 secreted by Th2 cells. 
IgE response is accompanied by IgG1 production, which is also induced by IL‐4, resulting 
in allergic diseases.

Figure 9. Effects of HAQ, AQH and QHA on β‐hexosaminidase release from RBL‐2H3 cells. Data are expressed as the 
means ± SD values of triplicate determinations. *p < 0.05. DNP‐specific IgE sensitized RBL‐2H3 cells were challenged 
with DNP‐HSA for 30 min. HAQ, AQH and QHA were added 10 min before antigen challenge.
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IgA antibodies play an essential role in mucosal protection. Several properties of IgA antibodies, 
including an ability to be secreted when linked to secretory components, resistance to proteoly‐
sis, and an inability to trigger the complement cascade, allow the antibodies to clear antigens 
from mucosal surfaces in a process called immune exclusion [24]. Antigen delivery on surfaces 
may induce either immunization or unresponsiveness. Oral tolerance is usually defined as the 
suppression of humoral and cellular immune responses after mucosal presentation of a puta‐
tive protein antigen [25]. It has been reported that an increase in specific IgA antibodies occurs 
concomitantly with the systemic suppression induced by oral tolerance [26]. One proposed 
explanation is that the induction of regulatory T cells (Treg) causes not only enhancement of 
the Th1 response and suppression of the Th2 response but also results in an allergy‐suppressive 
mechanism. Thus, we examined immune responses (antibody and cytokine production) to con‐
tinuous ingestion of the HAQ peptide in a mouse model of type‐1 allergy to ovalbumin (OVA) 
[27]. BALB/c mice were randomly divided into phosphate‐buffered saline (PBS)‐PBS, PBS‐OVA, 
and HAQ‐OVA groups. An HAQ peptide‐added diet was orally administered to BALB/c mice 
for 35 days. The mice were immunized intraperitoneally with OVA on days 8, 18, and 25. Blood, 
feces, and spleen lymphocytes were obtained from the mice on day 35 or 36. The levels of total 
IgA, IFN‐γ, IL‐4, and OVA‐specific IgE, IgG1, IgG2a, and IgA were analyzed by enzyme‐linked 
immunosorbent assay (ELISA) (Table 2 and Figure 10). BALB/c mice that were orally admin‐
istered the HAQ peptide exhibited lower OVA‐specific IgE and IgG1 secretion, whereas OVA‐
specific IgG2a levels remained unchanged in the serum. An increase in OVA‐specific IgA was 
observed in feces, whereas total IgA levels remained unchanged. An increase in IgG1, IgG2a, 
and IFN‐γ levels was observed, while the IL‐4 level was decreased, in spleen lymphocytes, in the 

PBS‐PBS PBS‐OVA HAQ‐OVA

Serum

 Specific IgE (A490) 0.05 ± 0.02a 1.15 ± 0.57b 0.82 ± 0.18c

 Specific IgG1 (A490) 0.05 ± 0.01a 1.33 ± 0.10b 1.25 ± 0.07b

 Specific IgG2a (A490) 0.00 ± 0.00a 0.57 ± 0.10b 0.54 ± 0.06b

Faces

 Specific IgA (A490) 0.05 ± 0.03a 0.93 ± 0.13b 1.66 ± 0.18c

Total IgA (8g/g) 3.25 ± 0.74a 3.48 ± 0.74b 3.07 ± 0.74c

Spleen lymphocytes

 Specific IgE (A490) 0.00 ± 0.01 0.02 ± 0.00 0.05 ± 0.1

 Specific IgG1 (A490) 0.02 ± 0.00a 0.28 ± 0.05b 0.72 ± 0.07c

 Specific IgG2a (A490) 0.01 ± 0.01a 0.06 ± 0.02b 0.13 ± 0.02c

Data are expressed as the mean ± SEM. a‐b, a‐c, b‐c: p < 0.05, b‐d: p = 0.09. Groups of that had received orally administered 
HAQ or PBS during sensitization to OVA or PBS were challenged intraperitoneally. Unsensitized animals received the 
vehicle alone. Blood was obtained from the orbital veins of mice at 35 or 36 days after injection and subjected to ELISA 
specific for IgE or IgG1 against OVA.

Table 2. Effect of continuous ingestion of HAQ on antibodies production from OVA‐sensitized mice [27].
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presence of the HAQ peptide. These findings suggest that the HAQ peptide may cause a shift 
from a Th2‐type immune response toward a Th1‐type response. Thus, the HAQ peptide has a 
potential regulatory effect on antibody production in a type‐1 allergic response.

7. Effect of the HAQ peptide on allergic symptoms in mice

To investigate the effects of the HAQ peptide on the allergic reaction, we performed animal 
experiments using a murine type‐1 allergy model. C3H/HeJ mice were randomly divided into 
HAQ‐LHE, PBS‐PBS, and PBS‐LHE groups. The PBS‐PBS and PBS‐LHE groups were orally 
administered PBS alone. The HAQ‐LHE and PBS‐LHE groups were initially injected intraper‐
itoneally with 100 μg lysozyme from hen egg white (LHE) and 4 mg aluminum hydroxide in 
0.2‐mL PBS on day 1. LHE was then reduced to 50 μg and injected intraperitoneally with 4 mg 
aluminum hydroxide in 0.2 mL PBS on day 8. To assess the sensitization, blood was obtained 
from the orbital veins of mice under light anesthesia, 11 days after the initial injection, and 
subjected to ELISA. The HAQ‐LHE group was orally administered HAQ peptide (1 mg/day) 
in 0.2 mL PBS by gavage throughout the experimental period of 14 days.

We evaluated the effect of orally administered LHE on the suppression of allergic reactions in a 
murine model. The score assessment commonly increases and whole‐body temperature is com‐
monly reduced during systemic anaphylaxis [28, 29]. Score assessment and body temperature 
measurements were therefore conducted to assess anti‐allergic effects in mice. The HAQ‐LHE 
and PBS‐LHE groups were orally administered 10 mg LHE in 0.5 mL PBS, and then score assess‐
ment and rectal temperature measurements were performed to evaluate allergic symptoms 
(Figure 11). The PBS‐PBS group was orally administered 0.5 mL PBS alone. Score assessments 

Figure 10. Effect of continuous ingestion of HAQ on IFN‐γ and IL‐4 production by mouse spleen lymphocytes (72 h). 
Data are expressed as the mean ± SD values of triplicate determinations. *p < 0.05.
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were performed at 20 min after challenge with LHE using the scoring system as described by Li 
et al. [28]. To evaluate body temperature, the rectal temperature was measured at 30 min after oral 
administration of LHE. In the score assessment, the PBS‐LHE group score (0.9 ± 0.3) was signifi‐
cantly higher than the PBS‐PBS group (0.0 ± 0.0) (p < 0.05), but not the HAQ‐LHE group (0.4 ± 0.3). 
In terms of rectal temperature, the PBS‐LHE group (36.6 ± 0.5°C) had a significant decrease in 
body temperature compared with the PBS‐PBS (38.2 ± 0.3°C) and HAQ‐LHE (37.8 ± 0.4°C) groups 
(p < 0.05). These data demonstrate that continuous administration of the HAQ peptide to sensi‐
tized mice suppresses the consistent allergic symptoms induced by antigen stimulation. These 
results indicate that the HAQ peptide has anti‐allergic effects in vivo as well as in vitro [16].

8. Conclusion

The frequency of allergic disorders is increasing worldwide, and this causes serious issues, 
including escalation of medical costs, reduction in health levels, and decline in labor produc‐
tivity. We studied the anti‐allergic effects of the HAQ peptide, which is present in CE90GMM, 
a peptide mixture derived from milk casein. In these studies, we observed five major findings 
in vitro and in vivo as follows:

1. CE90GMM and four peptides (HAQ, EQPI, DMES, and KIKE) inhibited the degranulation 
of RBL‐2H3 and the effect varied with the dose.

Figure 11. Allergic symptoms after oral challenge in mice presensitized in the presene of HAQ peptide. ○, PBS‐PBS 
PBS orally administered group (n = 5); •, PBS‐LHE, PBS orally administered group (n = 9); ●, HAQ‐LHE, HAQ orally 
administered group (n = 8). Data are expressed as the mean ± SEM. *p < 0.05 between each group. Groups of mice that had 
received orally administered HAQ peptide or PBS during sensitization to LHE or PBS were challenged intraperitoneally. 
(A) Symptom scores of systemic anaphylaxis. Anaphylaxis‐like symptoms were scored at 20 min after oral challenge on 
a scale from 0 (no symptoms) to 5 (death) as described in the Materials and Methods. (B) Rectal temperature. The rectal 
temperature was measured at 30 min after oral challenge.
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2. The level of degranulation‐inhibitory activity depended on peptide binding, peptide se‐
quence, and the number of amino acids.

3. Peptides with anti‐allergic actions possess aromatic rings and neutral or hydrophobic side 
chains.

4. The HAQ peptide has a potential regulatory effect on antibody and cytokine production 
in type‐1 allergic responses.

5. Continuous administration of HAQ peptide suppressed the mild allergic symptoms in a 
murine model of type‐1 allergy.

Our studies suggest a possible use of the HAQ peptide in preventing type‐1 allergic responses. 
To use HAQ clinically for the prevention of allergic disease, the optimal dosage, efficacy, and 
adverse effects in humans should be determined.

We expect that the findings obtained in these studies will contribute to the prevention, and 
improve the treatment, of type‐1 allergies.
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Abstract

Among all the materials used in industry, gels play an increasingly important role. These 
so-called soft-matter materials are defined by their ability to fix a large amount of sol-
vent, either organic (organogels) or aqueous (hydrogels). The large majority of hydrogels 
are made of natural or synthetic polymers, or natural proteins. However, a new kind of 
hydrogel has appeared: the peptide-based hydrogels, developed from short amino acids 
sequences (<20 amino acids). Due to their exceptional qualities in term of biocompat-
ibility, biodegradability, and atom economy, these peptide-based hydrogels open new 
horizons in term of applications. They are mainly considered in the biomedical domain 
as injectable hydrogels, or as an extracellular culture matrix to support cell culture. While 
important, the possibilities of peptide design can exponentially grow using modified and 
non-natural amino acids instead of the “only” twenty natural ones. Thus, chemical modi-
fications virtually offer infinite opportunities both to improve applications window and 
to fine-tune properties of the resulting hydrogels. In this context, this chapter proposes to 
review peptide and amino acid modifications reported to impact the resulting hydrogel.

Keywords: bioinspired materials, modified amino acids, gelator, peptide-based 
hydrogel, self-assembly, soft matter, supramolecular chemistry

1. Introduction

1.1. Soft matter and hydrogels as powerful materials

At the tenuous frontier between the solid and the liquid states, soft matter is focusing research 
interest which has exponentially increased since the beginning of the 1990s (<20 peer-
reviewed articles published in 1990 versus >700 for 2014, 2015, and 2016). Interestingly, it is in 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



perfect accordance with the Nobel Prize in Physics received by Pr. Pierre-Gilles de Gennes in 
1991, who merely entitled his Nobel lecture “Soft Matter” [1]. He has definitely contributed to 
popularize this terminology. Soft matter includes a wide variety of materials, including col-
loidal suspensions, surfactants, liquid crystals, polymers, or gels. These latter ones constitute 
the major thread of this chapter.

Interestingly, the gel state can be described both as a solid state, because of the ability of 
gels to self-support their own weight (which is a solid state characteristic), and as a liquid, 
on account of the gel composition made of a large majority of a liquid (generally >98% w/w) 
and only a small amount of solid (<2% w/v) [2–4]. Thus, gels are defined by their ability to 
fix a large amount of solvent, either organic (organogels) [5] or aqueous (hydrogels) [6, 7]. 
Hydrogels are of particular interest and find plenty of applications from medical treatments 
(e.g., wound healing, dental care, cartilage repair, tissue engineering) [8] to cosmetics, agri-
culture, and water treatments [9]. The commercially available hydrogels are made of several 
kinds of starting materials, including natural polymers (e.g., xanthan or Arabic gums, agar-
agar), synthetic polymers (e.g., polyurethane (PU), polyethylene glycol (PEG), polyacrylic 
acid (PAA)), or natural proteins (e.g., collagen, sink fibroin, elastin) [10].

Depending on the nature of the interactions inside the matter, hydrogels can be discrimi-
nated between both chemical gels and physical gels [11]. For the first one, covalent bonds are 
created to form a network from the starting building block (also termed “gelator”), while for 
the latter, dynamic cross-links based on non-covalent interactions (mainly hydrogen bonds, 
π-π interactions, and Van der Waals interactions) control the supramolecular self-assembly 
of molecules of gelator [2–4].

Physical hydrogels, also called supramolecular hydrogels, draw scientific community’s 
attention due to their ability to be, in theory, dynamically assembled and disassembled sev-
eral times, thanks to the formation and break of non-covalent interactions. However, some 
examples reveal that some hydrogels are too strong to be broken without degradation of 
the starting gelator. Regardless, the simplicity of the formation of supramolecular hydrogels, 
consisting of mixing the gelator and water followed by the application of a stimulus to trig-
ger the gelation process, has made these materials of primary interest for a broad range of 
applications [8, 12, 13]. The stimuli applied are, depending of the system, of different nature 
including temperature, ultrasound, salt addition, addition of a specific chemical, pH, enzyme, 
light, electromagnetic field, etc. [2–4].

In the development of high-efficient hydrogels, the place taken by peptide-based hydrogels 
drastically increased during the last two decades. Based on the self-assembly of peptides, these 
hydrogels are particularly interesting for applications in biological and medical contexts [14–19]. 
Great expectations are placed on these innovative materials by the scientific community, and 
first commercially available systems have emerged, when others are in clinical research trials.

1.2. Peptide-based hydrogelators as innovative and efficient materials

Smaller than proteins, polypeptides and peptides are comprised of amino acids linked by 
amide bonds, the terminology depending on the length of the chain (respectively ≥100, <100, 
and <10 amino acids as generally accepted). In a biological context, common natural amino 
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acids (α-amino acids to be more specific) are 20 and are characterized by their molecular struc-
tures and their physicochemical properties including their isoelectric point,  hydrophobicity, 
pKa, etc. (Table 1) [20]. As a function of their sequence and conditions, proteins and pep-
tides have the ability to self-assemble in a non-covalent way, forming secondary structures 
termed β-sheets (parallel and antiparallel), α-helix, 310 helix, or π-helix. These structures are 
fundamental for physiological process and are mainly due to specific intra- or inter-molecu-
lar hydrogen bond interactions between the carbonyls and the protons of the amide groups. 
Other types of interactions are also crucial for peptide self-assembly, including van der Waals 
forces, electrostatic forces, π-π interactions, and hydrophobic affinity [2–4].

An overwhelming majority of the peptide-based hydrogels rests on peptide β-sheet assem-
blies. Indeed, starting gelators (i.e., peptides) mainly self-assemble into fibrils, which sub-
sequently combine each other via supramolecular interactions to form fibers. Altogether, 
these fibers form a network acting as the frame of the hydrogel, essentially self-supported by 
hydrogen bonds (Figure 1) [21]. This analogy to building construction is shared with numer-

Name Three-letter 
code

One-letter 
code

M (g.mol−1) Nature (lateral 
chain)

Isoelectric 
point (IP)

pKa (lateral 
chain)

Hydropathy 
index

Pβ

Alanine Ala A 89.09 Aliphatic 6.01 N/A 1.8 0.76

Glycine Gly G 75.07 Aliphatic 5.97 N/A −0.4 0.71

Isoleucine Ile I 131.17 Aliphatic 6.02 N/A 4.5 1.73

Leucine Leu L 131.17 Aliphatic 5.98 N/A 3.8 1.23

Proline Pro P 115.13 Aliphatic 6.48 N/A 1.6 0.43

Valine Val V 117.15 Aliphatic 5.97 N/A 4.2 1.82

Phenylalanine Phe F 165.19 Aromatic 5.48 N/A 2.8 1.48

Tryptophan Trp W 204.23 Aromatic 5.89 N/A −0.9 1.24

Tyrosine Tyr Y 181.19 Aromatic 5.66 10.07 −1.3 1.43

Aspartic acid Asp D 133.10 Acid 2.77 3.65 −3.5 0.52

Glutamic acid Glu E 147.13 Acid 3.22 4.25 −3.5 0.67

Asparagine Asn N 132.12 Amide 5.41 N/A −3.5 0.53

Glutamine Gln Q 146.15 Amide 5.65 N/A −3.5 0.78

Arginine Arg R 174.20 Basic 10.76 12.48 −4.5 0.86

Histidine His H 155.16 Basic 7.59 6.00 −3.2 1.01

Lysine Lys K 146.19 Basic 9.74 10.53 −3.9 0.82

Serine Ser S 105.09 Hydroxyl 5.68 N/A −0.8 0.92

Threonine Thr T 119.12 Hydroxyl 5.87 N/A −0.7 1.19

Cysteine Cys C 121.16 Sulfur-
containing

5.07 8.18 2.5 1.26

Methionine Met M 149.21 Sulfur-
containing

5.74 N/A 1.9 1.26

Table 1. Key properties of the main amino acids (with Pβ for amino acids β-sheet propensity).
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ous vital biological self-assemblies (e.g., antibody/antigen, RNA/protein, DNA/DNA, etc.), 
showing the pivotal role of supramolecular assemblies. Because peptides (i.e., short proteins) 
natively self-assemble each other, peptide-based hydrogels can be considered as Nature-
inspired materials [22].

While β-sheet assemblies are the predominant way peptides interact to form hydrogels, a 
handful of these soft matter materials are based on α-helical coiled-coil structures [23, 24]. 
Briefly, these architectures involve repeating heptapeptides (or heptads) mainly based on the 
sequence (HPPHPPP) in which H is a hydrophobic amino acid and P a polar one. Among them, 
few examples of coiled-coil-based hydrogels can be cited, including the tri heptad repeats (Ile-
Lys-Gln-Leu-Glu-Ser-Glu)3 and (Ile-Ala-Gln-Leu-Glu-Tyr-Glu)3 [25], a 34-mer based on the 
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[27], and the hydrogel formed by two 28-residue peptides termed hSAFAAA used as substrate 
for cell growth [28]. However, these gels based on coiled-coil peptide architecture are limited 
by both the length of the sequence (from ~20 to 40 amino acid residues) and the concentration 
of peptide (from 1 to 12% w/v) required. Comparatively, hydrogels based on peptide self-
assembling via β-sheet formation can be formed with ultrashort peptides (≤7 amino) and with 
smaller concentrations (≤0.1% w/v), making those indubitably better candidates in terms of 
efficiency and atom economy. Thus, the large majority of peptide-based hydrogels developed 
in the last two decades are based on β-sheet assemblies [2–4].

Contrastingly to the use of polymers in hydrogel formation, peptides have indisputable 
advantages making them remarkably more attractive. In particular, they are both biocom-
patible and easily metabolized by proteolysis, making them perfect candidates for biomedi-
cal and therapeutic applications [15]. Unlike polymers, peptides are chemically defined and 
synthesized in a high-purity with high reproducibility. Moreover, due to their own struc-
ture, peptides are perfectly biodegradable and seem to be an ad hoc alternative to polymers 
when suitable. Nonetheless, it is fair to remind that polymer science still has an  indisputable 
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advantage because of its in-depth knowledge, while peptide-based hydrogels are still at 
their infancy. Fundamental research strongly supports the interest of these innovative 
 peptide-based  materials, trying to decipher the subtle mechanisms of self-assembly and the 
way(s) to optimize and fine-tune their thermodynamic and kinetic properties. Following this 
trend, applications have substantially increased and first commercially available peptide-
based hydrogels have started to be sold, demonstrating their real interest [29].

1.3. Applications, commercial innovations, and outlook of peptide-based hydrogels

Due to their bioinspired architecture, peptide-based hydrogels are biocompatible, non-immu-
nogenic, and potentially non-inflammatory [30], making them perfect materials for biomedi-
cal applications [31]. As a result, several systems were developed:

• as extracellular culture medium (or ECM) for cancer cells [16], stem cells, or neuronal 
SN4741 cells [32].

• as ECM to control α5β1 integrin expression of endothelial cells [33].

• as injectable hydrogel for controlled-release of opioids [34] or of embryonic stem cell sec-
retome [35].

• as implanted hydrogel-containing stem cells to treat spinal cord injury [36] or for nerve 
repair after traumatic injury in the nervous system [37]. In vivo implantation of RADA-16 
peptide derivatives enhances extensive bone regeneration of mice femurs [38].

• as injectable hydrogel incorporating a Gadolinium MRI agent to follow its degradation in 
vivo [35].

• as adjuvant for vaccines, for instance against West Nile virus [39].

• for rapid hemostasis [40].

• for controlled-release of growth factor [41], pindolol, quinine, timolol [42], 5-fluorouracil 
[43], vancomycin and vitamin B12 [44], tanshinones [45], microRNA [46], or proteins (e.g., 
BSA, IgG) [47].

• for immobilization of biocatalysts for chemical transformations [48].

• for removal of toxic dyes and heavy metal ions from waste water [49].

• to produce nanostructured silica [50] or to encapsulate carbon nanotubes [51].

• as antibacterial hydrogels [52], like the 20-mer MARG1 against methicillin-resistant Staphy-
lococcus aureus [53], or (Lys-Ile-Gly-Ala-Lys-Ile)3-NH2, #1 Figure 2) against E. coli [54].

This laundry list clearly illustrates the potential of peptide-based hydrogels and puts out a new 
avenue in term of polyvalence, mainly in the biomedical domain. It has not escaped the attention 
of generalist media, like for instance Times of India [55], Asian Scientist [56], LaboratoryNews 
[57], Phys Org [58], Medical News Today [59], Medical Daily [60], and so forth.
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Undoubtedly, peptide-based hydrogels are far from the laboratory curiosity, as evidenced by 
the new commercial market concerning these innovative materials. To the best of our knowl-
edge, five products are commercially available:

• HydromatrixTM, developed by Sigma-Aldrich® (Saint Louis, USA) as medium for cell cul-
ture. The average price to prepare a 5 mL solution (0.1% w/v) is around 270 USD [61].

• PuraMatrix®, developed by 3-D Matrix Group (Tokyo, Japan) as medium for cell culture is 
a 16-mer (sequence Ac-(Arg-Ala-Asp-Ala)4-NH2, #2 Figure 2). The average price to prepare 
a 5 mL solution (0.1% w/v) is around 230 USD [62].

• Peptigel, developed by PeptiGel Design (Cheshire, UK) as medium for cell culture. The 
average price to prepare a 1 mL solution is around 130 USD [63].

• PGmatrixTM, developed by PepGel LLC (Manhattan, USA) as medium for cell culture. The 
average price to prepare a 6 mL solution (0.1% w/v) is 375 USD [64].

• Curolox® technology, developed by Credentis (Windisch, Switzerland) as professional 
dental product for regeneration of enamel. It is not sold as it is, but as both toothpaste and 
a formulated product. The peptide used is an 11-mer termed P11-4 (sequence Ac-Gln-Gln-
Arg-Phe-Glu-Trp-Glu-Phe-Glu-Gln-NH2, #3 Figure 2) [65].

It is a good bet that the number of commercially available peptide-based hydrogelator will 
increase in a near future.

As described hereinbefore, although the 20 natural amino acids offer a multitude of combina-
tions, i.e., a multitude of peptide-based hydrogel designs, the use of modified and non-canon-
ical amino-acids drastically shoots up the possibilities and offers infinite opportunities both 
to improve the application window and to fine-tune properties of the resulting hydrogels. 
The next parts of this chapter are dedicated to the modifications developed to this end and 
illustrate the tremendous modularity of these materials.

Figure 2. Chemical structures of peptides forming hydrogels.
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2. Addition or insertion of organic moieties at the extremities or inside 
the amino acids sequences

2.1. Modifications at both N- and C-terminal ends

As discussed hereinbefore, gelation process is due to peptide self-assembly, driven by hydro-
gen bonds, electrostatic interactions, etc. In particular, π-π interactions and hydrophobic 
affinity are key parameters to design efficient hydrogelators, along with the subtle ability of 
the peptide to be partially soluble in water (mainly thanks to the presence of charged amino 
acids), and partially insoluble to form fibers. Thus, aromatic amino acids, mainly phenylala-
nine (Phe) and tyrosine (Y), are perfect candidates to balance these constraints. This is why 
a large majority of the peptide-based gelators are comprised of either these aromatic amino 
acids or other aromatic moieties.

Among them, it is not uncommon to observe the presence of a protecting group at the 
N-terminus. Indeed, protecting groups are widely used in both liquid and solid phase peptide 
synthesis (SPPS), and the easiest way to have them is simply by skipping the deprotection 
step at the end of the synthesis. Undoubtedly, Fmoc (fluorenylmethoxycarbonyl) is the more 
reported one, functionalizing peptide chains from one amino acid (e.g., Fmoc-Phe, #4 Figure 3), 
to two (e.g., Fmoc-Gly-Ser, #5 Figure 3), four (e.g., Fmoc-Phe-Arg-Gly-Asp, #6 Figure 3), and 
more. Contrastingly, the other classic Cbz (carboxybenzyl) protecting group has not been well 
adopted, due to its smaller aromatic area leading to weaker π-π interactions compared to the 
Fmoc moiety [66, 67]. Another phenyl group was introduced via a cinnamoyl at the N-terminus 
of a phenylalanine amino acid, but it required higher concentration to form a gel in water, 
compared to the Fmoc-Phe analog (1.0% versus 0.3% w/v, respectively) [67]. Addition of naph-
thyl (Nap) derivatives (e.g., 6-bromo-naphthyl (6Br-Nap) or 6-cyano-naphthyl (6CN-Nap)) has 
demonstrated high efficiency for several dipeptide gelators, like Nap-Ala-Ala (#7 Figure 3) 
or Nap-Phe-Phe (#8 Figure 3), (6Br-Nap)-Phe-Phe (#9 Figure 3), or (6CN-Nap)-Ala-Val (#10 
Figure 3) [68]. Interestingly, Nap-Gly-Ala (#11 Figure 3) is able to form a stable hydrogel at 
acidic pH (pH = 2) at a concentration as low as 0.07% w/v [69]. Other moieties with larger 
aromatic areas are reported, even if they are much less common, like phenothiazine (e.g., #12 
Figure 3) [66], pyrene (e. g., #13 Figure 3) [70, 71], spiropyran (e.g., #14 Figure 3) [72], or pyri-
dine (#15 Figure 3) [73]. In addition, few exotic aromatic groups were used to add specific 
properties to the peptide, including a fluorescent stilbene chromophore (#16 Figure 3) [74] or a 
photosensitive azobenzene (#17 Figure 3) [75]. In this latter, an E conformation leads to hydro-
gel formation, while the photo-induced isomerization of the double-bond to a Z one triggers a 
phase change (i.e., a liquid is thus obtained).

Another approach consists to graft a long alkyl chain at the N-terminus to form an amphiphilic 
hybrid molecule comprised of both a hydrophilic (peptide head) and a hydrophobic parts (alkyl 
tail). For instance, CH3(CH2)14-CO-Gly-Gly-Gly-Ser-Ser-Pro-His-Ser-Arg-Asn-(Ser-Gly)5-Arg-
Gly-Asp-Ser-Pro forms a stable hydrogel from a minimum gelation concentration of ~1.4% w/v 
[76]. This latter contains a cell attachment site, the so-called Arg-Gly-Asp (or RGD) tripeptide, 
making the resulting hydrogel a good candidate for long-term human umbilical vein endo-
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thelial cell adhesion and proliferation. According to this model, other amphiphilic peptides 
containing alkyl chains were designed [77, 78], including CH3(CH2)14-CO-Gly-Thr-Ala-Gly-
Leu-Ile-Gly-Gln-Glu-Arg-Gly-Asp-Ser (#18 Figure 4) [79] and CH3(CH2)14-CO-Val-Val-Val-
Ala-Ala-Ala-Glu-Glu-Glu (#19 Figure 4) [80]. In parallel, innovative antibacterial hydrogels 

Figure 3. Chemical structures of hydrogel-forming peptides with N-terminal modifications.
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were developed from peptides in which the nitrogen of the N-terminus was quaternalized, 
promoting the in situ synthesis of gold nanoparticules (#20, 21 Figure 4) [78, 81–83]. In order to 
favor self-assembly of peptides, addition of nucleobases was investigated and demonstrated 
promising results to develop biocompatible hydrogels (#22, 23 Figure 4) [84, 85]. Acetylation of 
the terminal primary amine is applied in some cases [86], such as for the design of the efficient 
KLD12 for cartilage tissue repair (#24 Figure 4) [87, 88]. Last of all, several hydrogelators are 
composed of a non-aromatic tert-butyloxycarbonyl (Boc) protecting group at their N-terminus, 
annihilating the charge of the amine group. In this case, the resulting peptides are weakly water 
soluble and often find applications as organogels instead of hydrogels [89–92]. However, Baral 
et al. show its interest in the formation of stable antibacterial hydrogels (#25 Figure 4) [93]. 
Functionalizations with tetraethylene glycol [94] or polyethylene glycol [95] are also reported 
and increase significantly the global water solubility of the peptide (#26 Figure 4).

Regarding the C-terminus, while neutralization of the carboxylic acid thanks to its substitu-
tion by an ester (mostly methyl and ethyl esters) [89–92] is widely used to favor organogels, 
only few modifications are reported for hydrogels. Indeed, the acidic group plays a pivotal 
role in the peptide self-assembly and solubilization in aqueous solvent. Conversion of the 
carboxylic acid to the corresponding amide (i.e., amidation) is well documented and tends 
toward faster hydrogel formation [96–99], but with weaker rigidity [100]. Peptides P11-I (#27 
Figure 5) [101] and Ac-Cys-(Phe-Lys-Phe-Glu)2-Cys-Gly-NH2 (#28 Figure 5) [102] can be 
cited as examples.

Figure 4. Chemical structures of hydrogel-forming peptides with N-terminal modifications (panel two).
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Besides, more anecdotal C-terminus modifications were experimented, including pyridinium 
moieties (e.g., #29 Figure 5) [103], thiol ethyl amides (#30 Figure 5) [104], tetraethylene glycol 
[94] or polyethylene glycol [95], kanamycin (an aminoglycoside antibiotic), or glycoside (#31 
Figure 5) [85].

2.2. Insertion of organic moieties inside the amino acid sequences

Another way to improve hydrogelation and/or to add properties to the resulting gel con-
sists to introduce an organic moiety inside the amino acid sequence. Thus, alkyl chains were 
inserted between two sequences of one or two amino acids to form a bolaamphiphilic mol-
ecule [73]. Indeed, these systems are comprised of a hydrophobic core (i.e., the alkyl chain), 
twice functionalized at both extremities by hydrophilic amino acids (#32 Figure 6) [105]. While 
several kinds of aggregates are observed for short alkyl chains (e.g., vesicles), longer ones 
favor hydrogel formation. For instance, with the presence of two histidines on each side (#33 
Figure 6), optimal length of the alkyl spacer is of 20 methylene groups; in contrast, a length 
of 10 or 12 methylene leads to too soluble molecules unable to self-assemble to form a gel 
[106]. Similarly, unsaturated hydrocarbon chains were used, like diacetylene units functional-
ized by two tetrapeptides on each extremity. This strategy is ingenious because it offers the 
possibility to add covalent links between the peptide-forming hydrogels (#34, 35 Figure 6). 
Indeed, these materials are simultaneously physical (i.e., by peptide self-assembly) and chem-
ical (i.e., chemical bonds obtained after polymerization) hydrogels, simply obtained by UV 
radiations (254 nm, 4 W, 30 min) [107].

As described hereinbefore, aromatic moieties play a pivotal role in the peptide self-assembly 
mechanism and were considered as efficient organic blocks to be inserted inside an amino 
acid chain. Among them, both naphthalene and perylene (#36 Figure 6) diimines demon-
strated good results, even if their syntheses were limited by modest yields [108]. However, the 
same authors described efficient peptide-based hydrogelators comprised of oligophenylenes, 
oligophenylene vinylenes (#37 Figure 6) [109], or oligothiophenes (#38 Figure 6).

Figure 5. Chemical structures of hydrogel-forming peptides with C-terminal modifications.
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These systems are also very interesting specimens thanks to their photoluminescence prop-
erties due to their large π-conjugated surfaces [108, 110, 111]. Last of all, formation of a 
disulfide bond inside a sequence, mainly between two cysteines, is an easy way to func-
tionalize hydrogelators. Besides, disulfite bond is often associated with protein and pep-
tide self-assembly [112, 113], which plays a fundamental role in the peptide-based gelation 
process.

Figure 6. Chemical structures of hydrogel-forming peptides with organic moieties inserted into.
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3. Using non-canonical and modified amino acids to tune peptide-based 
hydrogel properties

3.1. Impact of D-amino acids on the peptide-based hydrogel properties

In biological organism, the overwhelming majority of the natural proteins are exclusively 
composed of amino acids in their L-enantiomer forms. However, the chiral equivalents, i.e., 
D-enantiomers with a reverse chemical configuration (Figure 7A), are present in several 
cases. For instance, the D-amino acids are found in bacteria in which D-alanine, D-aspartic, 
and D-glutamic acids are essential constituents for the synthesis of the peptidoglycan, form-
ing the bacteria cell wall. Several antibiotics also contain a D-amino acid, like penicillin G 
(δ-(L-α-aminoadipyl)-L-Cys-D-Val), gramicidin, actinomycin, or polymyxins [114]. Not limited 
to prokaryotes, D-amino acids were also isolated from eukaryotic tissue, including dermo-
phin from frogs, venom toxins from spiders or platypus, or neurohormones from crustaceans. 
More recently, these D-amino acids have been discovered in various human tissues, espe-
cially due to the presence of D-aspartic acid. It is the case for elastin, β-amyloid, α-synuclein, 
or AB-crystallin. Interestingly, these proteins are involved in several pathologies: arterioscle-
rosis, Alzheimer’s and Parkinson’s diseases, and cataract, respectively, demonstrating the 
undisputable importance of chirality in physiological process [115]. Research on amino acid 
role in vivo (as signaling molecules in the brain or endocrine glands [116], or in age-related 
diseases) [117] is a current fascinating hot topic, far from the scope of this chapter, and author 
incites curious readers to have a look to some reviews cited in this paragraph.

Inspired by the existence of D-amino acids, several groups used them to design efficient 
peptide-based hydrogels. The shorter one is undoubtedly Fmoc-D-Glu, which forms right-
handed helical nanofibers in the presence of D-Lys (equimolar, #39 Figure 7B), while the same 
mixture with the L-enantiomer equivalents (i.e., Fmoc-L-Glu + L-Lys) leads to left-handed 
helical nanofibers. Interestingly, the hydrogel containing D-enantiomers has slightly bet-
ter  viscoelastic properties than the levorotatory one [118]. This example clearly highlights 
that the organization at the molecular level (i.e., the chirality) impacts the organization at 
the micro (i.e., the fibers) and macroscopic scales (i.e., the hydrogel). Series of dipeptides 
containing D-amino acids were also developed, one with Fmoc N-protecting group, and 
one with a naphtyl group (Nap). For the first instance, Fmoc-D-Ala-D-Ala (#40 Figure 7B) 
can be cited to be highly efficient to form a hydrogel (>0.13% w/v), slightly better than the 
corresponding Fmoc-L-Ala-L-Ala (>0.15% w/v), whereas Fmoc-Gly-D-Ala (#41 Figure 7B) 
required concentration >1.7% w/v [119]. Interestingly, Nap-Gly-D-Ala (#42 Figure 7B) dis-
plays exceptional properties with a minimum gelation concentration of only 0.07% w/v in 
water [69]. In this specific case, hydrogel characteristics are similar to the ones obtained with 
Nap-Gly-Ala, but the circular dichroism signature of each other is the perfect reverse, illus-
trating the opposite helical fibril structure. Tripeptides are also represented in this list with 
other Fmoc-derivatized structures containing three phenylalanine: Fmoc-Phe-Phe-Phe (#43 
Figure 7B), Fmoc-D-Phe-D-Phe-D-Phe (#44 Figure 7B), Fmoc-Phe-D-Phe-D-Phe (#45 Figure 7B), 
and Fmoc-D-Phe-Phe-Phe (#46 Figure 7B) [120]. Interestingly, the fibers obtained in water 
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the micro (i.e., the fibers) and macroscopic scales (i.e., the hydrogel). Series of dipeptides 
containing D-amino acids were also developed, one with Fmoc N-protecting group, and 
one with a naphtyl group (Nap). For the first instance, Fmoc-D-Ala-D-Ala (#40 Figure 7B) 
can be cited to be highly efficient to form a hydrogel (>0.13% w/v), slightly better than the 
corresponding Fmoc-L-Ala-L-Ala (>0.15% w/v), whereas Fmoc-Gly-D-Ala (#41 Figure 7B) 
required concentration >1.7% w/v [119]. Interestingly, Nap-Gly-D-Ala (#42 Figure 7B) dis-
plays exceptional properties with a minimum gelation concentration of only 0.07% w/v in 
water [69]. In this specific case, hydrogel characteristics are similar to the ones obtained with 
Nap-Gly-Ala, but the circular dichroism signature of each other is the perfect reverse, illus-
trating the opposite helical fibril structure. Tripeptides are also represented in this list with 
other Fmoc-derivatized structures containing three phenylalanine: Fmoc-Phe-Phe-Phe (#43 
Figure 7B), Fmoc-D-Phe-D-Phe-D-Phe (#44 Figure 7B), Fmoc-Phe-D-Phe-D-Phe (#45 Figure 7B), 
and Fmoc-D-Phe-Phe-Phe (#46 Figure 7B) [120]. Interestingly, the fibers obtained in water 
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are right-handed for Fmoc-Phe-Phe-Phe and Fmoc-Phe-D-Phe-D-Phe and left-handed for the 
two others. Their viscoelastic properties are also improved by the addition of D-enantiomers, 
with Fmoc-D-Phe-D-Phe-D-Phe about 23% higher than Fmoc-Phe-Phe-Phe in terms of stor-
age and loss moduli. Without protecting group at the N-terminus, Val-Phe-Phe and Phe-
Phe-Val peptides were unable to from hydrogels at neutral pH, while the D-Val-Phe-Phe 
(#47 Figure 7B) and D-Phe-Phe-Val (i.e., both with the D-amino acid at the N extremity, #48 
Figure 7B) equivalents did [121]. Another tripeptide, protected with an azobenzene moiety 
at the N-terminus, was developed from the sequence Azo-Lys-Phe-Ala, with D-enantiomers 
in different positions. Contrary to Azo-Lys-Phe-Ala which forms a hydrogel from 3.1% w/v, 
Azo-Lys-D-Phe-D-Ala (#49 Figure 7B) and Azo-D-Lys-Phe-Ala (#50 Figure 7B) require 6.8% 
w/v, more than twice. Interestingly, the all D-amino acid-containing peptide gel is a little bit 
more efficient, with a minimum concentration of 3.0% w/v [75].

Figure 7. Chemical structures of L- and D-amino acids (A), and chemical structures of hydrogel-forming peptides 
incorporating D-amino acid(s) (B).

Amino Acids Modification to Improve and Fine-Tune Peptide-Based Hydrogels
http://dx.doi.org/10.5772/intechopen.68705

43



The last, but clearly not the least, example of the use of D-amino acids to improve hydrogela-
tion is definitively the introduction of the sequence D-Pro-Pro. Indeed, this latter confers a type 
II’ turn (a β-hairpin), favoring the contact between the two peptide strands on both sides. This 
decrease of degrees of freedom drastically favors the hydrogel formation efficiency. Thus, 
plenty of sequences were developed [122, 123], including the 20-mers MAX1 (sequence (Val-
Lys)4-Val-D-Pro-Pro-Thr-(Lys-Val)4-NH2, #51 Figure 8) [124–129] and MAX8 ((Val-Lys)4-Val-
D-Pro-Pro-Thr-Lys-Val-Glu-Val-(Lys-Val)2-NH2) [128, 130], in which the D-Pro-Pro sequence 
is just in the middle, contrary to SSP1 ((Val-Lys)2-Val-D-Pro-Pro-Thr-(Lys-Val)6-NH2, #52 
Figure 8) or SSP2 ((Val-Lys)3-Val-D-Pro-Pro-Thr-(Lys-Val)5-NH2) [131, 132]. More complex, a 
series of three-stranded peptides was developed, including TSS1 (sequence (Val-Lys)4-Val-D-

Pro-Pro-Thr-(Lys-Val)3-Lys-D-Pro-Pro-(Lys-Val)4-NH2) [133].

Finally, derivatives from EAK-16 (sequence Ac-(Ala-Glu-Ala-Glu-Ala-Lys-Ala-Lys)2-NH2) 
incorporating D-amino acids were designed. Interestingly, the enantiomers EAK-16 and D-
EAK-16 (sequence Ac-(D-Ala-D-Glu-D-Ala-D-Glu-D-Ala-D-Lys-D-Ala-D-Lys)2-NH2, #53 Figure 8) 
have shown similar hydrogel thermodynamic properties (e.g., storage moduli ≈1 kPa at 1% 
w/v) [134–136]. In contrast, the corresponding diastereoisomers EDAK-16 (sequence Ac-(D-

Ala-Glu-D-Ala-Glu-D-Ala-Lys-D-Ala-Lys)2-NH2, #54 Figure 8) and DEADK (sequence Ac-(Ala-
D-Glu-Ala-D-Glu-Ala-D-Lys-Ala-D-Lys)2-NH2) appear to have extremely modest capability to 
form stable hydrogels [137].

Figure 8. Chemical structures of hydrogel-forming peptides incorporating D-amino acid(s).
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3.2. Using non-canonical amino acids to design peptide-based hydrogels

As described before, modifications of the peptide may be induced by functionalization of 
the N- and C-termini, along with the insertion of an organic moiety inside the sequence, or 
by inversion of the amino acids chirality, using D-amino acids. Furthermore, introduction 
of non-canonical amino acids (i.e., not from the 20 encoded proteinogenic ones) offers broad 
new possibilities and has been exploited by researchers to improve and fine-tune hydrogel 
formation.

Among them, the cyclohexylalanine (Cha), a hydrogenated phenylalanine, prevents the for-
mation of π-π interactions and significantly increases the global hydrophobicity of the pep-
tide in which it is inserted. For instance, using the octapeptide Ac-(Phe-Lys-Phe-Glu)2-NH2, 
the substitution of both phenylalanine by two cyclohexylalanine (i.e., Ac-(Cha-Lys-Cha-
Glu)2-NH2, #55 Figure 9) leads to a less soluble peptide requiring a few percentage of HFIP 
(for hexafluoroisopropanol) to ensure a gelation. However, while a self-supporting hydrogel 
was obtained at 0.23% w/v for this latter, the Phe-containing peptide necessitates 0.46% w/v 
[138]. In parallel, experiments on Ac-(Cha-Lys-Cha-Lys)2-NH2 demonstrate that at the same 
concentration, Ac-(Phe-Lys-Cha-Phe)2-NH2 (#56 Figure 9) forms a more rigid hydrogel (G’ ≈ 
1800 kPa versus 76 Pa) [139]. These experiments have illustrated the pivotal role of hydropho-
bicity in peptide self-assembly and consequently in the gelation process.

Another non-usual amino acid used is the ornithine (Orn), comprised of an aminopropyl 
lateral chain. It can be considered as a lysine but with only three methylenes in the side chain 
instead of four. Derived from P11 family [101, 140], an 11-mer containing three ornithine, 
positively charged, was synthesized (sequence Ac-Gln-Gln-Orn-Phe-Orn-Trp-Orn-Phe-
Gln-Gln-Gln-NH2, #57 Figure 9) and mixed with a close sequence, negatively charged, in 
which Orn were substituted by glutamic acids (sequence Ac-Gln-Gln-Glu-Phe-Glu-Trp-
Glu-Phe-Gln-Gln-Gln-NH2, #58 Figure 9). The equimolar mixture revealed both nematic 
gels and solutions properties. The assembly is favored by electrostatic interactions between 
charges carried by the primary amines (Orn) and the carboxylic acids (Glu) [96]. Other 
 Orn-containing hydrogelators were developed from a decapeptide. More specifically, an 
oligo(p-phenylvinylene) (termed OPV) was functionalized by two pentapeptides on both 
sides: Ac-Gln-Gln-Orn-Phe-Orn-OPV-Orn-Phe-Gln-Gln-Gln-NH2 and Ac-Gln-Gln-Arg-
Phe-Glu-OPV-Glu-Phe-Gln-Gln-Gln-NH2. They both form a stable hydrogel, the first been 
more robust than the second one [109]. Working with short sequences of two amino acids 
without protection either at the N- or at the C-termini, the use of α,β-dehydrophenylalanine 
(ΔPhe) provides distinguished results [141, 142]. Compared to canonical Phe, ΔPhe has no 
chirality on its Cα and favors π-π stacking due to its extended electron delocalization. Indeed, 
while Phe-Phe lacks to form a hydrogel, Phe-ΔPhe is drastically more efficient forming a stiff 
one with G’ ≈ 210,000 Pa for only 1% w/v. However, after a full study on Xxx-ΔPhe (in which 
Xxx = 1 of the 20 canonical amino acids), only 2 dipeptides were reported as able to gelify: 
Leu-ΔPhe (#59 Figure 9) and Phe-ΔPhe (#60 Figure 9). Recently, the first one was applied in 
vivo in a mouse model as a drug delivery platform for mitoxantrone, an anticancer drug, and 
seems to be very promising [141].
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Recently, based on the 20-mers MAX1 (sequence (Val-Lys)4-Val-D-Pro-Pro-Thr-(Lys-
Val)4-NH2, see hereinbefore) [124–129], other derivatives were synthesized in which eight 
valines ( excluding the Val adjacent to the D-Pro) were substituted by non-canonical aminobu-
tyric acid (Abu), norvaline (Nva, #61 Figure 9), or norleucine (Nle). Results have  highlighted 

Figure 9. Chemical structures of hydrogel-forming peptides incorporating non-canonical amino acid(s).
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that, at 1% w/v, only the peptide-containing norvaline forms a stiffer material than the 
 original MAX1, with G’ ≈ 3300 Pa versus 1800 Pa, respectively [143]. The use of cyclodipep-
tide was also reported as an efficient method. Indeed, cyclo(L-Tyr-L-Lys) (#62 Figure 9) and 
cyclo(L-Phe-L-Lys) Nε-acetylated by gluconic acid lead to thixotropic hydrogels, which can 
be stored for a long period of time as a solution. The gelation is simply triggered by a short 
and vigorous stirring [144]. In order to increase the aromatic surface available from an ultra-
short peptide, Fmoc-β-(2-naphthyl)-L-alanine (#63 Figure 9) was evaluated and the resulting 
hydrogel has exhibited good stability in a large range of pH, from 3 to 12 [145]. Inspired by 
the pentapeptide fragment Lys-Leu-Val-Phe-Phe from the 16 to 20 region of the Aβ protein 
(involves in Alzheimer’s disease) and well-known for its ability to form amyloid fibers, effects 
of β-2-thienyalanine (2-Thi) were evaluated. The obtained (2-Thi)-(2-Thi)-Val-Leu-Lys-Ala-
Ala (#64 Figure 9) has displayed high efficiency in hydrogel formation and liquid crystal 
properties [146].

Ingeniously, photoleucine, a diazirine-based photo-reactive analog of leucine, was introduced 
inside a pentapeptide protected with a naphthalene moiety at its N-terminus (#65 Figure 9). 
Thus, the system is applied for protein complex immunoprecipitation (also termed “pull-
down” method) and interacts with proteins from 42 to 55 kDa [147].

Derived from the L-proline, the L-4-hydroxyproline (Hyp) is one of the amino acids constitut-
ing the tropocollagen and, in fine, the collagen. Indeed, collagen fibers are composed of the 
repeating sequence Gly-Xxx-Hyp in which Xxx = Lys, Glu, Ser, Ala, and Pro [148]. Based 
on that, Nap-Gly-Phe-Phe-Tyr-Gly-Gly-Xxx-Hyp peptides were studied (#66 Figure 9). 
Depending on the amino acid at the seventh position (i.e., Xxx), the minimum gelation con-
centrations are between 0.04% and 0.10% w/v, demonstrating the assets of this bio-mimicking 
approach [149].

One of the last categories of modification this part would like to highlight is the functionaliza-
tion of phenylalanine. Indeed, a convincing body of work has been focused on this pivotal 
amino acid playing a central role in peptide self-assembly and in fine, in hydrogel formation. 
Thus, working on the short Fmoc-Phe, the group of Bradley L. Nilsson studied the impact 
of the substitution of the hydrogen in the para position by a nitro (-NO2, #67 Figure 10), a 
cyano (-CN, #68 Figure 10), an amino (-NH2), a hydroxyl (-OH, in this case the amino acid 
corresponds to a tyrosine), a methoxy (-OMe, #69 Figure 10), a trifluoromethyl (-CF3, #70 
Figure 10), or a methyl group [100, 150–152]. This modification leads to a redistribution of the 
electron density of the aromatic ring, influencing the π-π and dipolar interactions between 
benzyl groups. While Fmoc-Phe forms a weak hydrogel at 0.6% w/v (G’ ≈ 40Pa), all these 
para substitutions improve the mechanical behavior of the resulting gels, especially for Fmoc-
(pNO2-Phe), Fmoc-Tyr, and Fmoc-(pNH2-Phe), with storage moduli of ≈410 Pa, 506 Pa, and 
527 Pa, respectively. However, the gelation time is not directly linked to the mechanical prop-
erties, with tgel ≈ 0.5 min, 5 min, and 10 min for Fmoc-(pNO2-Phe), Fmoc-(pCN-Phe), and 
Fmoc-(pCH3-Phe), respectively.

The effect of halogenation was also investigated on Fmoc-Phe, with substitutions on the ortho, 
meta, and para positions, by fluorine, chlorine, or bromine [153]. In this work, in terms of 
gelation time, halogenation on the para position is drastically shorter (tgel ≈ 0.5 min) compared 
to both meta (tgel ≈ 3–15 min) and ortho (tgel ≈ 30–50 min) positions. However, regarding the 
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mechanical properties, the presence of a halogen in the meta position is the more efficient, fol-
lowed by the ortho and finally the para positions. In parallel, the impact of the atom seems to 
be determined by its polarizability, with the formation of more rigid hydrogels with fluorine, 
better than chlorine and then bromine. In this way, the use of a pentafluorinated phenylala-
nine Fmoc-(F5-Phe) (#71 Figure 10) was considered [100, 151]. This perfluorination drastically 
increases the hydrophobicity of the molecule and drops down the minimum gelation con-
centration to 0.1% w/v. At 0.2% w/v, the gel has good rheological results, with G’ ≈ 3100 kPa 
and G” ≈ 320 Pa, confirming its efficiency compared to the classic Fmoc-Phe. Incorporation of 
(F5-Phe) in a longer peptide chain was a success, as attested by the studies involving Ac-[(F5-
Phe)-Lys-(F5-Phe)-Lys]2-NH2 (#72 Figure 10) [139].

In the same way was reported the impact of a single-atom replacement of hydrogen with halo-
gen in the human calcitonin-derived amyloidogenic fragment Asp-Phe-Asn-Lys-Phe. Mainly, 
the substitution of phenylalanine(s) by para-X-Phe (X = Cl, Br, I) led to a drastic improvement of 
the thermodynamic and kinetic properties. Amyloid structures were confirmed by Atomic Force 
Microscopy (AFM) and cryo-Transmission Electron Microscopy (cryo-TEM) measurement, and 
by their green birefringence upon staining with Congo Red, highlighting the Asp-(pI-Phe)-Asn-
Lys-(pI-Phe) derivative (#73 Figure 10) as the most fibrilogenic peptide monomer. As reported 
in the literature, it was attested that these amyloid fibrils had the ability to form hydrogels with 
more efficiency compared to the wild-type Asp-Phe-Asn-Lys-Phe, illustrated by the 30-fold 
lower concentration required for the gelification of Asp-(pI-Phe)-Asn-Lys-Phe. However, best 
thermal stability (T = 116°C), lowest gelification time (<10 min), and highest stiffness (storage 
modulus G’ > 104 Pa) were observed for the same bis-iodinated sample (at 15 mM), far better 
than the bis-bromo and bis-chloro derivatives, respectively. All these results emphasize the posi-
tive role of halogenation of peptides, especially iodination, for supramolecular amplification of 
amyloid self-assembly [154].

3.3. Functionalization of amino acids on their side chain

Among the 20 canonical amino acids, a mere fraction contains a reactive organic group on 
its lateral chain. These amino acids are mainly the ones with a carboxylic acid: Asp and 
Glu, an amine (Lys), a guanidine (Arg), or a thiol group (Cys). Thus, modifications and 

Figure 10. Chemical structures of hydrogel-forming peptides incorporating non-canonical amino acid(s) (panel two).
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post-modifications (i.e., after the peptide synthesis) of the hydrogel-forming peptides can 
be carried out by chemical reactions between the amino acid cited above and an organic 
compound.

Following this rule, several structures have been developed, offering a new myriad of 
possibilities to enhance the versatility of the peptide-based hydrogels. Functionalization 
of lysine is clearly the more often used method. This amino acid has been grafted to a 
naphthalene diimine (NDI) moiety to increase the aromatic surface available on the pep-
tide in order to favor π-π interactions and subsequently, hydrogelation. The resulting 
Fmoc-Lys-Lys(NDI) (#74 Figure 11) self-assembles at low concentration (<1.5% w/v) and 
can act as a semiconductor [155]. Similarly, lysines were modified by addition of an azo-
benzene moiety, leading to photoswitchable hydrogels (#75 Figure 11) [156, 157]. Presence 
of a sorbamide group on the Lys side chain offers the possibility to photopolymerize the 
physical hydrogel obtained by non-covalent interactions in order to create chemical bonds 
rigidifying the network. This second step improves the mechanical rigidity by 2.5 [158]. 
Using the same approach, an amphiphilic peptide was developed, composed of a lysine 
functionalized with an alkyl chain containing a diacetylene segment (#76 Figure 11). The 
subsequent polymerization leads to polyacetylene-containing hydrogel applied for cell 
culture [159]. Furthermore, substituting the primary amine by an acrylamide group to 
secondly form polyacrylamide is also an adopted approach (#77 Figure 11) [160].

Addition of a hydrazine-containing arm to an amphiphilic peptide was proposed to control 
the release of ketones. Indeed, ketones can react with hydrazine to form a hydrazone. The high 
hydrolytic stability of this chemical function leads to a slow release of the ketone-containing 
compound from the hydrogel (#78 Figure 11) [161]. The presence of Boc protecting groups at 
the Nε of Lys, originating from the peptide synthesis, definitely improves the hydrogel prop-
erties, as described for Fmoc-Val-Leu-Lys(Boc) and Fmoc-Lys(Boc)-Leu-Val (#79 Figure 11). 
The first one is the weakest with G’ ≈ 4000 Pa (at 2% w/v), while the latter is the stiffest with 
G’ > 100,000 Pa [162]. The same approach was reported with Fmoc protecting-group simply 
using Lys(Nε-Fmoc). However, the hydrogelation was triggered by addition of one equiva-
lent of either Fmoc-Phe or Fmoc-Leu and both with two equivalents of Na2CO3. Comparing 
the two mixtures, the hydrogel formulated from Lys(Nε-Fmoc) + Fmoc-Phe (#80 Figure 11) 
is drastically more rigid than the one with Fmoc-Leu, with storage moduli of 25,000 Pa and 
3000 Pa, respectively [163, 164]. Lastly, a lysine-functionalized peptide reported concerns a 
linear amphiphilic nonapeptide Nε-functionalized in second and last position by a histine and 
a palmitoyl (including a C15 alkyl chain). Gelation properties are interesting, with a minimum 
concentration required of 0.1% w/v and pH > 6.5 [165].

Working on a 20-mer derived from MAX1, an ingenious zinc-triggered hydrogelation was 
designed using a 3-amidoethoxyaminodiacetoxy-2-aminopropionic acid instead of a valine 
at the last position of the peptide sequence. Thus, the two incorporated acid groups perfectly 
fit to bind metals, in particular Zn2+. While no gelation occurs for peptide alone in solution, 
addition of ZnCl2 triggers the formation of the hydrogel (#81 Figure 11) [166]. In order to pro-
duce composite materials comprised of peptide fibers mineralized by calcium, an amphiphilic 
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molecule of 11 amino acids and a long alkyl chain of 15 methylene groups were designed. 
The key amino acid is a phosphorylated serine, playing a pivotal role in the formation of 
calcium phosphate minerals. After the self-assembly of the fibers, cysteine thiol groups are 

Figure 11. Chemical structures of hydrogel-forming peptides incorporating functionalized side chains.
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oxidized to disulfides before being treated by CaCl2. After 20 min, the fibers start to be coated 
by crystalline minerals. These composite materials mimic the collagen fibrils and hydroxy-
apatite crystals in bone [167]. Concerning the phosphorylated serine, another peptide with the 
same global structure (alkyl chain and 11-mer) but with a different peptide sequence is able 
to form hydrogels for which the mechanical properties can be modulated by the cation added 
(#82 Figure 12). Indeed, while a viscous liquid is obtained with Na+ or K+, Mg2+ and Ca2+ lead 
to hydrogels with moderate storage moduli (around 500 Pa), while with Zn2+ or Cu2+, the gels 
are drastically stiffer (G’ ≈ 10,000 Pa) [168].

Working on Fmoc-Phe-Phe-Gly-Gly-Gly-Tyr, an innovative approach was experimented, 
based on Ru(bpy)3

2+-catalyzed photo-crosslinking of two tyrosine residues to give dityro-
sine adduct. The obtained dimer acts as an efficient hydrogelator, while the monomer does 
not, with an increase of the mechanical stability up to 10,000 times (#83 Figure 12) [169]. 
Interestingly, formation of dityrosine is a strategy used by Nature to improve elastic proper-
ties of biomaterials, including the well-known resilin, first identified in Drosophilia melano-
gaster [170].

Last of all, some peptide drugs are able of hydrogelating, offering undoubted perspectives 
for biomedical applications. Among them, analogs of gonadotropin-releasing hormone (or 
GnRH) were developed. GnRH is a peptide hormone composed of 10 amino acids (sequence 
pyro-Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) and discovered by Guillemin [171] 
and Schally [172] who received the Nobel Prize in Physiology and Medicine in 1977 with 
Yalow [173]. Analogs have been continuously and slowly releasing during a long period of 
time, up to 35 days. In particular, both ganirelix and degarelix show efficient gelation proper-
ties, and are composed of non-canonical amino acids (#82 Figure 12), including a pCl-Phe, a 
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Figure 12. Chemical structures of hydrogel-forming peptides incorporating functionalized side chains (panel two).
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a glycopeptide with antibiotic properties, demonstrates the degree of complexity which can 
be reached. The minimum concentration of this perplexing molecule is around 0.36% w/v 
and offers new perspective in term of materials for biomedical applications [175]. However, 
due to the complexity of the system, it has to be considered as a special case, far from the 
initial idea to develop short peptide-based hydrogels synthesized in a straightforward and 
fast way.

4. Development of pseudo-peptides and peptidomimetics

4.1. A brief description of peptide analogs

Research on peptide analogs mainly refers to the development of metabolically stable 
peptide-like structures for biomedical and therapeutic applications. Indeed, the rapid pro-
teolysis of native peptides and their inability to cross cellular membranes have required 
modifications of their intrinsic structure. Thus, changes of the peptide bond structure have 
been deeply studied and have led to efficient drugs commercialized by pharmaceutical 
company. For instance, Ziconotide (brand name Prialt®, sold by Elan Pharms) is a 25-mer 
indicated for severe chronic pains, Icatibant acetate (brand name Firazyr®, sold by Jerini 
AG) is a decapeptide indicated for hereditary angioedema, and Afamelanotide (brand name 
Scenesse®, sold by Clinuvel Pharmaceuticals) is a 13-mer indicated for erythropoietic pro-
phyries [176].

Thus, two terminologies were introduced. The term “pseudopeptide” proposed by Spatola in 
1981 strictly refers to peptide analogs in which the peptide backbone has been modified [177, 
178]. Briefly, their nomenclature is quite simple, with the use of the Greek letter psi “ψ[…]” in 
which the term under bracket refers to the “new” peptide link introduced. For example, the 
dipeptide #85 (Figure 13A) is represented as Phe-Leu (#85 Figure 13A), while Phe-ψ[CH2O]
Leu represents the pseudopeptide #86 (Figure 13A). In parallel, the term “peptidomimetic” 
refers to any compound able to mimic the specific action of a peptide (i.e., inhibition, activa-
tion, etc.) [179]. Thus a “peptidomimetic” can be an organic molecule without any similarities 
to a peptide. It is the case of morphine, a “non-peptide” molecule mimicking the opioid pep-
tides [177]. However, the word “pseudopeptide” has become obsolete years after years, and 
the generic term “peptidomimetic” is used to speak about both [180].

4.2. Peptidomimetics as efficient hydrogelators

First and foremost, the most represented peptidomimetics able to form hydrogels are 
undoubtedly the ones comprised of one or several β-amino acids. These latter differ from the 
native α-amino acids due to the presence of an additional carbon atom in the amino acid back-
bone. Besides, two regioisomers exist, depending on the position of the additional methylene 
group, termed β2 or β3-amino acids (Figure 13A, right panel) [181]. With this in mind, a series 
of β3-dipeptides was synthesized, protected at the N-terminus by a naphthalene (Nap) deriva-
tive. Peptidomimetics #87 (Nap-OCH2CO-αGly-β3HAla, Figure 13B) and #88 (Nap-CH2CO-
β3Phg-β3Phg, with Phg = phenylglycine, Figure 13B) have reasonable mechanical properties, 
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the first one being stiffer than the second one [182]. With the same β3Phg and naphthalene 
extremity, a tripeptide (Nap-CH2CO-β3Phg-β3Phg-αTyr, #89 Figure 13B) was studied as 
injectable hydrogel in vitro and in vivo, and offers longer biostability than the corresponding 
all α-containing-amino acids peptide Nap-CH2CO-αPhe-αPhe-αTyr [183]. Other compounds 
with a Fmoc N-protected group were developed and demonstrated ability to encapsulate and 

Figure 13. Chemical structures of peptidomimetics (A), and chemical structures of hydrogel-forming peptides 
incorporating peptidomimetics (B).
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release both vitamins B2 and B12 over a period of more than 48 hours, at physiological pH and 
temperature. Their structures are Fmoc-βAla-αVal (#90 Figure 13B) and Fmoc-βAla-αPhe 
and have comparable mechanical properties and release profiles [184]. In parallel, hydrogela-
tion of Fmoc-βAla-αHis (#91 Figure 13B) is triggered by addition of Zn2+ cations [185].

In a peptide, substitution of the native amide function by an ester leads to structures called dep-
sipeptides. The octapeptide Fmoc-DAKA-8 (sequence Fmoc-Asp-Ala-Asp-Ala-Lys-Ala-Lys-
Ala) was modified, inter alia, by the introduction between the first and the second amino acids 
of an ester bond. Thus, Fmoc-Asp-ψ[CO-O]Ala-Asp-ψ[CO-O]Ala-Lys-ψ[CO-O]Ala-Lys-Ala] 
(#92 Figure 13B) self-assembles and forms a hydrogel, with hydrolytic susceptibility (hydroly-
sis at the ester bond sites), which offer opportunities for applications such as tissue scaffold or 
drug delivery system [186]. Anecdotally, two peptidomimetics containing an oxalyl function 
are reported for their ability to form organogel as well as hydrogel, including #93 (Figure 13B) 
[187, 188]. As well, a molecule containing a maleic acid-like function is able to gelify in the pres-
ence of light and bromine. Indeed, starting with the Z configuration, UV irradiation (330 nm, 
400 W, 30 s) and bromine trigger the photochemical isomerization (formation of a fumaryl-like 
group). The obtained diastereoisomer is then able to self-assemble (#94 Figure 13B) [189].

In parallel, a constrained amino acid derived from oxazolidine was used by the group of C. 
Tomasini, named (4R,5S)-4-carboxy-5-methyl oxazolidin-2-one (3-letter code Oxd). The first 
hydrogelator including an Oxd (#95 Figure 13B) was composed of a central alkyl chain, two 
Phe (one on each side), and two terminal Oxd (one on each side). However, hydrogelation 
can only occur in a 50/50 water/MeOH mixture [190, 191] or 90/10 water/EtOH [192]. The sec-
ond system (#96 Figure 13B) is definitively more efficient (cpd xx) and exhibits properties of 
entrapment of aromatic dyes methylene blue (cationic) and eosin Y (anionic) [193].

Last of all, functionalization of the nitrogen of the amide group was proposed as a way to 
improve hydrogelation. Because of the high efficiency of phenylalanine, N-benzyl glycine 
(Nphe) derivatives synthesized were the following: Fmoc-Phe-Phe, Fmoc-Phe-Nphe (#97 
Figure 13B), Fmoc-Nphe-Phe (#98 Figure 13B), and Fmoc-Nphe-Nphe (#99 Figure 13B). 
While the latter failed to form a hydrogel, the two peptides with one Nphe inside turned 
out to be less stiff than Fmoc-Phe-Phe in the same conditions. However, these experiments 
provide new molecular tools to fine-tune the properties of peptide self-assembly and gelation 
process [194].

5. Conclusion

Peptide-based hydrogels are innovative materials able to efficiency tackle the challenges of 
biocompatible and biodegradable soft matter. Mainly, they pave the way to promising medi-
cal and biological applications, and it is a safe bet that in the next years, their market share will 
increase drastically. Furthermore, the first commercially available peptide-based hydrogel 
has been launched, and new companies have emerged. Nevertheless, all these applications 
are possible thanks to the plentiful body of work accomplished in fundamental research dur-
ing the last decades.
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In order to improve and fine-tune the hydrogelation process, a critical point to broaden the 
application window, several strategies have been envisaged, described all along this chap-
ter. Among them, addition of aromatic groups at the N-terminus, mainly via the presence 
of protecting groups (e.g., Fmoc, Cbz, etc.), clearly favors the hydrogel formation, thanks to 
the increase of π-π interactions. Introduction of organic moieties inside the peptide sequence 
is also an efficient strategy, whether they are aromatic or unsaturated. In this latter case, 
introduction of acetylene groups offers the opportunity to add to the peptide self-assembly 
polymerization, which reinforces the mechanical properties of the gel. Furthermore, intro-
duction of non-canonical D-amino acids is an efficient approach and leads to more stable 
hydrogels in term of proteolytic resistance. The development of new amino acids, includ-
ing α,β-dehydrophenylalanine, β-thienylalanine, or functionalized phenylalanine, especially 
designed to influence the peptide self-assembly, drastically impacts the final properties of 
the obtained hydrogel. Functionalization on the lateral chains is another opportunity to sup-
port interactions between peptides, and to include new properties, like photoswitchable ones 
thanks to the introduction of azobenzene moieties. Creation of additional bonds via dityro-
sine formation or subsequent polymerization is a smart strategy combining both the physical 
and chemical gels worlds. Last of all, substitution of the inner peptide bond by another one 
leads to the development of peptidomimetics which are burgeoning and promise a bright 
future.

This chapter has reviewed the recent advances in peptide-based hydrogel development using 
modified peptide structures.
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Abstract

Mammalian D-amino acid oxidase (DAAO) plays an important role for D-serine meta-
bolism in the brain and regulation of glutamatergic neurotransmission. In the present
work, the structures in solution obtained by the methods of molecular dynamic simula-
tion (MDS) and analyses of photoinduced electron transfer (ET) from aromatic amino
acids to the excited isoalloxazine (Iso*) are described based upon our recent works,
comparing among DAAO dimer, monomer, DAAO-benzoate (DAOB) complex dimer
and monomer. The fluorescence lifetimes of DAAO and DAOB in the time domain of
picoseconds and femtoseconds are used for the ET analyses as experimental data. The
ET parameters (static dielectric constants near isoalloxazine (Iso), standard free energy
gap (SFEG) between the photoproducts and reactants), ET rates, and related physical
quantities (solvent reorganization energy, net electrostatic energy between the photo-
products and ionic groups in the proteins), in addition to MDS structures, are used to
compare the protein structures. The structure of the DAOB dimer in solution obtained
by MDS is substantially different from the crystal structure, and the structures of the
two subunits are not equivalent in solution. The ET rates and related physical quantities
also differ between the two subunits.

Keywords: D-amino acid oxidase from porcine kidney, benzoate complex, molecular
dynamics simulation, dimer and monomer structures in solution, analyses of photoin-
duced electron transfer, rate of photoinduced electron transfer, fluorescence lifetimes
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1. Introduction

D-Amino acid oxidase contains flavin adenine dinucleotide (FAD) as a cofactor and exists in a
wide range of species from yeasts to humans. The enzyme catalyzes the oxidative degradation
of D-amino acids to the corresponding amino acids, ammonium, and hydrogen peroxide. A
number of review articles on D-amino acid oxidase (DAAO) from porcine kidney [1–3] and
yeast to humans [4–6] have been reported. Mammalian D-amino acid oxidase plays an important
role on D-serinemetabolism in the brain and regulation of glutamatergic neurotransmission [7, 8].
Various new inhibitors of human D-amino acid oxidase have been found using in silico screen-
ing [9]. The crystal structures of DAAO are determined in the DAAO-benzoate (DAOB) complex
and DAAO-o-aminobenzoate complex [2, 10, 11].

Photochemistry of flavins and flavoproteins [12] and the fluorescence quenching of flavins by
various substances [13, 14] have been pioneered byWeber. The quenching mechanism of isoallox-
azine (Iso) fluorescence upon complex formation with adenine in FAD is initially resolved by
means of fluorescence lifetime measurements [15, 16], and the fluorescence quenching of Iso by
indole with Iso-(CH2)n-indole diads is reported by McCormick [17]. Time-resolved fluorescence
spectroscopy of flavins and flavoproteins has been reviewed by van den Berg and Visser [18]. The
mechanism of the fluorescence quenching is studied in the systems of riboflavin tetrabutylate and
indole, riboflavin tetrabutylate and N,N0-dimethylaniline in organic solvents [19], and flavodoxin
from Desulfovibrio vulgaris (Miyazaki, F.) [20], by means of a picosecond transient-absorption
spectroscopy. The remarkable fluorescence quenching of flavins is ascribed to fast photoinduced
electron transfer (ET) from these substances to the excited Iso (Iso*). The ET mechanism in the
riboflavin binding protein from egg white is also reported by means of a femtosecond transient-
absorption spectroscopy [21]. A number of flavoproteins display very weak fluorescence, which
decays with ultrashort lifetimes observed upon excitation with a sub-picosecond pulse laser [22–
30]. These experimental results suggest that the valuable and detailed information on the micro-
scopic structures of DAAO can be obtained through analyses of ET rates. We have developed a
new method to analyze ET rates from aromatic amino acids to Iso* in flavoproteins using an
electron transfer theory and MDS and the fluorescence lifetimes or decays of the flavoproteins as
the experimental data [31–36].

In the present chapter, the ET analyses based upon MDS structures have been used to deduce
submicroscopic features of various species of DAAO dimer, DAAO monomer, DAOB dimer,
and DAOB monomer and compared them among these species.

2. Methods

2.1. Fluorescence spectroscopy of DAAO and DAOB

2.1.1. Steady-state excitation

Since fluorescence of free flavins was discovered by Weber [12–14], many workers have been
working on its fluorescence characteristics. Kozioł first investigated solvent effects of the fluores-
cence in organic solvents [37]. However, free flavins are almost insoluble in most organic solvents,
so that a number of solvents for the study were limited. Riboflavin tetrabutylate, which is soluble
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in organic solvents, was synthesized by Yagi’s group. Systematic study on the solvent effects of the
absorption and fluorescence spectra has been working with riboflavin tetrabutylate [38]. Fluores-
cence of DAAOwas first studied by Massey et al. [39]. McCormic et al. precisely examined on the
fluorescence properties of apo- and holo-DAAO [40].

Fluorescence intensity of the bound FAD in DAAO is quite weak compared to that of free FAD,
and further fluorescence polarization is also quite different between free and the bound
FAD [41]. A relative fluorescence intensity of the bound FAD to free FAD is defined as R1 = I/I0,
where I and I0 are the fluorescence intensities of the enzyme solution at certain concentration and
free FAD at the same concentration with the enzyme sample. A parameter R2 is defined with
experimental polarization anisotropies as R2 = (A � Af) / (Ab � A), where A, Af, and Ab are
polarization anisotropies of an enzyme solution, free FAD, and bound FAD, respectively. Disso-
ciation constant of FAD from DAAO (Kd) [42, 43] and relative quantum yield of the bound FAD
to the free FAD (r) were obtained with Eqs. (1) and (2) [44–46]:

Kd ¼ R1

1þ R2 � R1
P½ �0 � F½ �0 þ

R1

1þ R2
F½ �0

� �
ð1Þ

r ¼ R1R2

1þ R2 � R1
ð2Þ

In Eq. (1), [P]0 and [F]0 are the total concentration of the protein (apoprotein plus holoprotein)
and the total concentration of FAD (free and bound FADs) in the enzyme solution.

2.1.2. Fluorescence dynamics

Time-resolved fluorescence of free flavins was first studied by means of a phase-shift method
by Weber’s group [15, 16]. Transient fluorescence spectroscopy of flavoproteins is most useful
experimental tool for the conformational changes of flavoproteins [18]. In 1980, the fluores-
cence lifetimes of DAAO was first reported by means of a picosecond-resolved fluorescence
spectroscopy with a mode-locked Nd:YAG laser (pulse width, 30 ps) and streak camera
combination by Nakashima et al. [44, 45]. Later, the fluorescence dynamics was measured with
a synchronously pumped, cavity-dumped dye laser and single-photon counting system (pulse
width 35 ps) to study a temperature-induced conformational change as described later [46, 47].
The fluorescence lifetimes of DAOB, however, could not be determined in the picosecond time
domain [45]. The ultrafast fluorescence dynamics of DAOB was measured in the time domain
of femtoseconds by means of a fluorescence up-conversion method (pulse width, 80 fs) [23].

2.2. MDS calculations

The starting structure of the pig kidney DAAO monomer was obtained from using the X-ray
structure of the DAAO-benzoate complex dimer (PDB code 1VE9) [10], removing benzoate
and/or one of the subunits. All calculations were carried out using the AMBER 10 suite of
programs [47]. The parm99 force field [48] was used to describe the protein atoms, whereas the
general AMBER force field [49] with the restrained electrostatic potential (RESP) charges [50]
was used for the ligand and FAD. The simulated systems were subsequently solvated with a
cubic box of ca. 4000 TIP3P water molecules. Electrostatic interactions were corrected by the
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particle mesh Ewald method [51]. The SHAKE algorithm [52] was employed to constrain all
bonds involving hydrogen atoms. Details of the methods are described elsewhere [53–56].

2.3. Method of ET analysis

2.3.1. ET theory

The original Marcus theory [57–59] has been modified in various ways [60–73]. Kakitani
and Mataga (KM) theory [66–68] is used for ET phenomena in flavoproteins, because it is
applicable both for adiabatic and nonadiabatic ET process and has been found to give satisfac-
tory results for both static [26–30] and dynamic ET analyses [31–36].

Here, the ET rate with the KM model for the DAAO dimer [53] is described as expressed by
Eq. (3). The rates are similar for other DAAOs and DAOBs:

kjkET Tð Þ ¼ νq0
1þ exp βq Rjk � Rq

0

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffi
kBT
4πλq

jk

s
exp �

ΔG0
k Tð Þ � e2=εpk0 Rjk þ λq

jk þ Ek
Net jð Þ

n o2

4λq
jkkBT

2
64

3
75 ð3Þ

where kjkET Tð Þ is the ET rate from the donor j to the Iso* in subunit k (k = Sub A or Sub B) at

temperature T (�C), and q denotes Trp or Tyr. The term υq0 is an adiabatic frequency, βq is the ET
process coefficient, and Rjk and Rq

0 are the donor j-Iso distance in subunit k and its critical
distance for the ET process, respectively, and are expressed with Rc (center-to-center distance).
The ET process is adiabatic when Rjk < Rq

0 and nonadiabatic when Rjk > Rq
0. The temperature (T)

is expressed in K unit at the right-hand side. The term �e2=εpk0 Rjk is the electrostatic (ES) energy

between the donor cation and acceptor anion (ESDA), in which εpk0 is static dielectric constant.

The terms kB and e are the Boltzmann constant and electron charge, respectively. Ek
Net jð Þ is the net

ES (NetES) energy of the donor j in subunit k. The DAAO monomer contains 10 Trp and 14 Tyr
residues. In the present work, the ETrates from all of these aromatic amino acids to Iso* are taken
into account for the analysis.

Solvent reorganization energy (SROE) [57, 58] of the ETdonors q and j (λq
jk) is expressed in Eq. (4):

λq
jk ¼ e2

1
2aIso

þ 1
2aq

� 1
Rjk

� �
1
ε∞

� 1

εpk0

 !
ð4Þ

where aIso and aq are the radii of Iso and Trp or Tyr, ε∞ is the optical dielectric constant, and εpk0
is the static dielectric constant inside subunit k. The optical dielectric constant used was 2.0.
The radii of Iso (aIso), Trp (aTrp), and Tyr (aTyr) are 0.224, 0.196, and 0.173 nm, respectively, as
previously reported [26–36].

The standard free energy gap (SFEG) between the products and reactants, ΔG0
k Tð Þ, was

expressed with the ionization potential of the ET donor (Eq
IP) as in Eq. (5):
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ΔG0
k Tð Þ ¼ Eq

IP � G0
k Tð Þ ð5Þ

where G0
k Tð Þ is the standard free energy gap related to the electron affinity of Iso* in subunit k

at temperature T. The values of Eq
IP for Trp and Tyr are 7.2 eV and 8.0 eV, respectively [74].

2.3.2. Electrostatic energy between the photoproducts and ionic groups inside the DAAO dimer

The FAD cofactor in DAAO has two negative charges at the pyrophosphate, while DAAO
itself contains 22 Glu, 13 Asp, 12 Lys, and 21 Arg residues per subunit as ionic amino acids.
The ES energy between the Iso anion or donor cation j and all other ionic groups in subunit k
(Sub A or Sub B) is expressed by Eq. (6):

Ek jð Þ ¼
X44

i¼1

CjCGlu

εpk0 Rj Glu� ið Þ
þ
X26

i¼1

CjCAsp

εpk0 Rj Asp� ið Þ
þ
X24

i¼1

CjCLys

εpk0 Rj Lys� ið Þ

þ
X42

i¼1

CjCArg

εpk0 Rj Arg� ið Þ
þ
X8

i¼1

CjCP

εpk0 Rj P� ið Þ

ð6Þ

Here, j = 0 is for the Iso anion in subunit k, 1–10 and 11–20 for the Trp cations in Sub A and Sub
B, respectively, and 21–34 and 35–48 for the Tyr cations in Sub A and Sub B, respectively. The
charge of the aromatic ionic species j (Cj) is -e for j = 0 (Iso anion) and +e for j = 1–48 (cations of
the donors). CGlu (= �e), CAsp (= �e), CLys (= + e), and CArg (= + e) are the charges of the Glu, Asp,
Lys, and Arg residues, respectively. FAD contains two phosphate atoms, each of which binds
two oxygen atoms, where the charge of each oxygen atom is CP = �0.5e and so the total charge
of four oxygen atoms is �2e. The distances between the aromatic ionic species j and the ith Glu
(i = 1–44) were denoted as Rj(Glu � i), while the distances between the aromatic ionic species jth

and the ith Asp (i = 1–26) were denoted as Rj(Asp� i) and so on for the each amino acid residue.
The NetES in Eq. (3) is then expressed as in Eq. (7):

Ek
Net jð Þ ¼ Ek 0ð Þ þ Ek jð Þ ð7Þ

where j ranges from 1 to 48 and represents the jth ET donor.

2.3.3. Determination of the ET parameters

The calculated lifetimes of subunit k at temperature (T) are given by Eq. (8):

τTkCalc ¼
1

X48

j¼1

kjkET Tð Þ
ð8Þ

where the fluorescence lifetimes are expressed in ps unit. The physical quantities related to the
electronic coupling term (υq0, β

q, and Rq
0) for Trp and Tyr are taken from those reported for

flavin mononucleotide binding proteins [32] and are assumed to be independent of tempera-
ture within the 10–30�C temperature range. In contrast, the free energy, G0

k Tð Þ, which is related
to the electron affinity of Iso*, is assumed to be both temperature and subunit dependent,
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because G0
k Tð Þ may be modified with the H-bond structure. The unknown ET parameters are

G0
A 10ð Þ, G0

B 10ð Þ, G0
A 30ð Þ, and G0

B 30ð Þ in Eq. (5) and εA0 , ε
B
0 , and εDA

0 , which are assumed to be
independent of temperature. These ET parameters are determined so as to obtain the mini-
mum value of χ2, as given by Eq. (9):

χ2 ¼ τ10ACalc � τ10Obs

� �2
τ10ACalc

þ τ10BCalc � τ10Obs

� �2
τ10BCalc

þ τ30ACalc � τ30Obs

� �2
τ30ACalc

þ τ30BCalc � τ30Obs

� �2
τ30BCalc

ð9Þ

3. Cooperative binding of FAD associated with the monomer-dimer
equilibrium in DAAO

The DAAO exists in a monomer (Mw 39 kDa)-dimer equilibrium state at relatively low concen-
trations [75–79] and in a dimer-tetramer equilibrium at higher concentrations [80–82]. The
protein structures of the DAAO dimer in solution, as obtained by MDS [53, 54], are shown in
Figure 1. The values of Kd are obtained at various concentrations of holo-DAAO and apo-DAAO
[42, 43] according to Eq. (1). Figure 2 shows Kd vs. DAAO concentration relationship [42]. The
values of Kd are remarkably dependent on the protein concentration both in holo-DAAO and
apo-DAAO [42], higher at the low concentrations and lower at the high concentrations. Figure 3

Figure 1. Structure of FAD binding site in holo-DAAO dimer obtained by MDS. (A) Sub A10 and (B) Sub B10 denote
subunits of A and B at 10�C, and (C) Sub A30 and (D) Sub B30 denote subunits of A and B at 30�C. (Reproduced from [53]
with permission from the PCCP Owner Societies).
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Figure 2. Dependence of Kd on the concentration of DAAO. (A) shows the holo-DAAO and (B) apo-DAAO. DAAO was
dissolved into buffer solution at pH 8.3. (Reprinted with permission from [42]. Copyright (1979) American Chemical
Society).

Figure 3. Hill plot of FAD binding in holo-DAAO. Measurements were made at pH 8.3 and 20�C. The binding fraction of
FAD is ν ¼ F½ �b= P½ �0 where [F]b is the concentration of bound FAD. The dashed line indicates a straight line with the Hill
coefficient equal to 1. (Reprinted with permission from [42]. Copyright (1979) American Chemical Society).
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shows Hill plot for FAD binding, which reveals that the Hill coefficient is nearly 1 at the lower
concentrations but appreciably deviates from 1 toward greater than 1 at the higher concentra-
tions of DAAO [42]. The results show that the binding process of FAD is positively cooperative.
Approximate relative concentrations of various species of DAAO and the dissociation constants
are illustrated in Figure 4 [42]. The origin of the cooperativity is elucidated to be mainly that Kc
(0.01 μM) is much less than Ka (0.74 μM). Namely, the binding of FAD to apo-DAAO monomer
induces association of the holo-DAAO monomers into the holo-DAAO dimer, because the
protein dissociation constants between holo monomers (K2 = 3.8 μM) are least comparing to the
other protein dissociation constants (K1 and K0).

The concept of “allosteric transition” is originally proposed by Monod, Wyman, and Changeux
to explain the sigmoidal curve of O2 binding to hemoglobin [83]. Then, an induced-fit model for
the O2 binding is proposed by Koshland, Némethy, and Filmer [84]. A ligand-induced polymer-
ization of a protein is considered as an alternative model to explain allosteric effect [85–87]. The
enzyme activity of the DAAOmonomer is 1.5-fold higher than that of the dimer [88]. Under the
presence of enough FAD in the brain, DAAO is considered to form the dimer, for which activity
is lower than that of the monomer. The enzyme activity may be physiologically regulated
through the binding of FAD, which should be significant in schizophrenia, because the activity
of DAAO is twofold higher in the patients with schizophrenia [7].

4. Fluorescence lifetimes of DAAO and DAOB in picoseconds-
femtoseconds time domain

The dissociation constants of FAD in DAAO are much smaller by 1/74 in the dimer,
comparing to the monomer [42, 43] as stated above. This suggests that local structures near
Iso binding site are different between the dimer and monomer. The fluorescence lifetimes of

Figure 4. Dissociation equilibrium constants among the various species of DAAO. M1 andM0 indicate holomonomer and
apomonomer, and D2, D1, and D0 indicate holodimer, heterodimer of holo- and apomonomers, and apodimer, respec-
tively. Ka, Kb, and Kc are dissociation equilibrium constants of FAD from holomonomer, heterodimer, and holodimer,
respectively. The dissociation constants are indicated in the unit of μM. The square binds FAD, while the circle has no
FAD. The concentration of DAAO is 5 μM. The area of the various species is approximately proportional to their
concentrations. (Reprinted with permission from [42]. Copyright (1979) American Chemical Society).
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shows Hill plot for FAD binding, which reveals that the Hill coefficient is nearly 1 at the lower
concentrations but appreciably deviates from 1 toward greater than 1 at the higher concentra-
tions of DAAO [42]. The results show that the binding process of FAD is positively cooperative.
Approximate relative concentrations of various species of DAAO and the dissociation constants
are illustrated in Figure 4 [42]. The origin of the cooperativity is elucidated to be mainly that Kc
(0.01 μM) is much less than Ka (0.74 μM). Namely, the binding of FAD to apo-DAAO monomer
induces association of the holo-DAAO monomers into the holo-DAAO dimer, because the
protein dissociation constants between holo monomers (K2 = 3.8 μM) are least comparing to the
other protein dissociation constants (K1 and K0).

The concept of “allosteric transition” is originally proposed by Monod, Wyman, and Changeux
to explain the sigmoidal curve of O2 binding to hemoglobin [83]. Then, an induced-fit model for
the O2 binding is proposed by Koshland, Némethy, and Filmer [84]. A ligand-induced polymer-
ization of a protein is considered as an alternative model to explain allosteric effect [85–87]. The
enzyme activity of the DAAOmonomer is 1.5-fold higher than that of the dimer [88]. Under the
presence of enough FAD in the brain, DAAO is considered to form the dimer, for which activity
is lower than that of the monomer. The enzyme activity may be physiologically regulated
through the binding of FAD, which should be significant in schizophrenia, because the activity
of DAAO is twofold higher in the patients with schizophrenia [7].

4. Fluorescence lifetimes of DAAO and DAOB in picoseconds-
femtoseconds time domain

The dissociation constants of FAD in DAAO are much smaller by 1/74 in the dimer,
comparing to the monomer [42, 43] as stated above. This suggests that local structures near
Iso binding site are different between the dimer and monomer. The fluorescence lifetimes of

Figure 4. Dissociation equilibrium constants among the various species of DAAO. M1 andM0 indicate holomonomer and
apomonomer, and D2, D1, and D0 indicate holodimer, heterodimer of holo- and apomonomers, and apodimer, respec-
tively. Ka, Kb, and Kc are dissociation equilibrium constants of FAD from holomonomer, heterodimer, and holodimer,
respectively. The dissociation constants are indicated in the unit of μM. The square binds FAD, while the circle has no
FAD. The concentration of DAAO is 5 μM. The area of the various species is approximately proportional to their
concentrations. (Reprinted with permission from [42]. Copyright (1979) American Chemical Society).
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DAAO obtained by Nakashima et al. [44] are 40 ps in the dimer and 130 ps in the monomer.
Later, the lifetimes were measured with the new method of single-photon counting instru-
ments and listed in Table 1 at various concentrations of DAAO and temperatures [46, 47].
The values of lifetimes in DAAO monomer are 228 ps at 10�C and 182 ps at 30�C. The
values of the lifetime in the dimer are 44.2 ps at 10�C and 37.7 ps at 30�C [46]. The lifetime
of free FAD in water is 2.5 ns [15, 16]. The lifetime in DAAO dimer is shorter by ca. 1/60
times than that in free FAD in water, which is ascribed to fast ET from aromatic amino
acids to Iso* [19–21].

The fluorescence lifetime of DAOB is 60 ps in the monomer, and shorter than 5 ps in the dimer,
obtained by Nakashima et al. [44]. Time resolution of the lifetime instruments in 1980 was not
enough to obtain exact lifetime of DAOB dimer. In 2000 the lifetimes of the DAOB dimer are
obtained to be 0.848 and 4.77 ps [23] by means of the up-conversion method, which are much
shorter than those in DAAO, and described more in detail later.

T (�C) Conc. (μM) τ0
(ps)

α0 τ1
(ps)

α1 τ2 α2 τ3
(ns)

α3 χ2

40 1.6 27.9 �0.877 43.7 0.850 191 0.079 1.91 0.071 1.028

100 26.5 �0.962 36.2 0.945 162 0.047 1.61 0.008 1.362

Av. 25.9 40.0 169 1.76

35 0.78 26.2 �1.030 45.4 0.834 202 0.084 2.10 0.081 0.993

100 23.5 �0.903 39.9 0.910 161 0.080 1.68 0.010 1.516

Av. 25.6 41.8 170 1.91

30 1.6 26.7 �0.989 48.3 0.824 182 0.116 2.23 0.060 1.007

100 26.7 �1.024 37.7 0.956 169 0.044 1.76 0.005 1.479

Av. 26.2 43.2 177 2.02

25 0.78 28.6 �0.842 54.7 0.822 245 0.080 2.47 0.098 1.148

100 23.5 �0.977 41.0 0.906 165 0.086 1.83 0.008 1.559

Av. 26.0 43.7 184 2.20

15 0.78 29.5 �0.841 46.6 0.822 214 0.110 2.78 0.068 1.134

100 23.5 �1.003 42.9 0.892 179 0.099 1.95 0.009 1.324

Av. 26.1 45.2 190 2.44

10 0.78 27.6 �0.980 47.1 0.807 228 0.121 2.93 0.072 1.016

100 25.3 �0.979 44.2 0.899 194 0.092 2.04 0.009 1.366

Av. 25.1 48.5 208 2.61

aDAAOwas dissolved in 0.017 M pyrophosphate buffer at pH 8.3. The fluorescent species with the lifetimes, τ1, τ2, and τ3,
were assigned to be the dimer, monomer, and free FAD, respectively, and α1, α2, and α3 are their fractions. τ0 is a lifetime
for process from an intermediate state to the fluorescent state [46, 47]. χ2 means a reduced chi-square distribution between
the calculate decay function and experimental decay curve. Av. indicates the averaged lifetimes over seven or eight
different levels of the enzyme ranging from 100 to 1.6 or 0.78 M. (Reprinted with permission from [47]).

Table 1. Fluorescence decay parameters of FAD in DAAO measured with a synchronously pumped, cavity-dumped dye
laser and single-photon counting system.a.
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5. Conformational difference between the DAAO dimer and monomer
revealed by MDS and ET analyses

The results of the fluorescence lifetimes of DAAO and DAOB reveal that the local structures
differ between the monomers and dimers. However, no structural information can be drawn
by the lifetimes alone. Details of the structural difference between DAAOmonomer and dimer
are obtained through MDS and ET analyses [53, 54].

Table 2 lists the donor-acceptor distances between Iso and the five shortest donors from Iso in the
DAAO dimer and monomer. In the dimer, the Rc distances are the shortest in Tyr224 followed by
Tyr228, except for Sub A at 30�Cwhere Tyr228 is the shortest followed by Tyr224. In the monomer

Protein T (�C) Subunit Donor b (Rc/nm)

DAAO dimerc 10 A Tyr224 Tyr228 Tyr55 Tyr314 Tyr279

(0.74) (0.82) (1.07) (1.11) (1.32)

10 B Tyr224 Tyr228 Tyr55 Tyr314 Tyr279

(0.79) (0.83) (0.99) (1.05) (1.20)

30 A Tyr 228 Tyr 224 Tyr 314 Tyr 279 Tyr 55

(0.85) (0.90) (1.06) (1.30) (1.47)

30 B Tyr 224 Tyr 228 Tyr 314 Tyr 55 Trp 185

(0.72) (0.81) (1.06) (1.06) (1.14)

DAAO monomerd 10 Tyr224 Tyr228 Tyr314 Trp185 Tyr55

(0.82) (0.88) (1.06) (1.27) (1.64)

30 Tyr224 Tyr228 Tyr314 Tyr55 Trp185

(0.88) (0.88) (1.18) (1.20) (1.49)

DAOB dimere 20 A Tyr55 Tyr228 Tyr314 Trp185 Tyr224 Benzoate

(0.95) (0.96) (1.06) (1.10) (1.32) (0.66)

20 B Tyr228 Tyr314 Tyr224 Tyr55 Trp185 Benzoate

(0.99) (1.02) (1.04) (1.05) (1.31) (0.68)

DAOB monomerf 20 Tyr228 Tyr224 Tyr314 Tyr279 Tyr74 Benzoate

(0.81) (0.97) (1.07) (1.24) (1.80) (0.61)

aThe ET acceptor is Iso*. Mean donor-acceptor distances (Rc) are listed over 5000 snapshots in parentheses. A value of Rc
in one snapshot was evaluated as mean distance of all possible pairs between aromatic atoms in Iso and aromatic atoms in
a donor.
bFive shortest distances between Iso and the aromatic amino acids (plus Bz in DAOB) are listed in order from shorter to
longer distances.
cData taken from Ref. [53].
dData taken from Ref. [54].
eData taken from Ref. [56].
fData taken from Ref. [55].

Table 2. ET donor-acceptor distance in DAAO and DAOB.a.
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the distance is also the shortest in Tyr224 at both 10 and 30�C, followed by Tyr228 and Tyr314. The
hydrogen bonding (H-bond) structures between Iso and the amino acid residues markedly vary
with the protein systems (Table 3). At 10�C, in the dimer Iso forms H-bonds with Leu51 (IsoN3H),
Thr317 (IsoO2), Gly50 (IsoO4), and Leu51 (IsoO4) in Sub A and with Gly315 (IsoO2), Leu316
(IsoO2), and Thr317 (IsoO2) in Sub B (atom notations are shown inChart 1), while in themonomer,
Iso forms H-bond only with Gly50 (IsoO4). At 30�C Iso in the dimer forms H-bonds with Leu51
(IsoN3H) and Thr317 (IsoO2) in Sub A and with Gly315 (IsoO2), Leu316 (IsoO2), and Thr317
(IsoO2) in Sub B, while in the monomer, Iso forms H-bondwith Leu316 (IsoO2) and Gly50 (isoO4).
The number of H-bonds and kind of H-bond pairs are quite different between the DAAO dimer
and monomer, though Iso may also form H-bonds with water molecules as described below.

Protein Subunit T (�C) Iso N3H
Leu51
(O)

Iso N5
Ala49
(N)

Iso O2
Gly315
(N)

Iso O2
Leu316
(N)

Iso O2
Thr317
(OG1)

Iso O4
Gly50
(N)

Iso O4
Leu51
(N)

DAAO Ab 10 0.29 - - - 0.28 0.29 0.29

30 0.29 - - - 0.28 - -

Bb 10 - - 0.29 0.28 - - -

30 - - 0.29 0.28 - - -

Monomerc 10 0.29 0.29 - 0.29 0.28 0.28 0.29

30 - 0.29 - 0.28 0.28 0.28 -

DAOB Ad 20 0.31 0.31 - - 0.35 - -

Bd 0.32 0.31 - - - - -

Monomere 10 0.29 0.29 - 0.29 0.28 0.28 0.29

20 0.29 0.29 0.29 - 0.28 - -

30 0.29 0.29 - - - 0.28 0.29

Subunit T (�C) Bz O1 Bz O2 Bz O2
Arg283
(NH2)

Arg283
(NE)

Arg283
(NH2)

DAOB Ad 20 0.29 0.27 0.30

Bd 0.28 0.28 0.30

Monomere 10 0.28 0.28 0.29

20 0.26 0.28 0.29

30 0.28 0.28 0.28

aThe distances in nm units are obtained by averaging over 10,000 MDS snapshots and collected those shorter than 0.3 nm.
Atomic notations in Iso are indicated in Chart 1. Atom notations of amino acids shown in parentheses are taken from
PDB, where N, O, and OG1 denote peptide N and O atoms and O atom of the side chain, respectively. Bz O1 and Bz O2
denote two oxygen atoms of carboxylate in benzoate (Bz).
bThe data are taken from Ref. [53].
cThe data are taken from Ref. [54].
dThe data are taken from Ref. [56].
eThe data are taken from Ref. [55].

Table 3. Comparison of H-bond distances among the DAAO dimer, monomer, and DAOB dimer and monomer.a.
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As shown in Eq. (3), the ET rate contains several parameters, which are determined by the
method described above. Table 4 lists the ET parameters as εDA

0 and G0
k Tð Þ in DAAO dimer

(Sub A and Sub B), DAAOmonomer, DAOB dimer (Sub A and Sub B), and DAOB monomer.
Microscopic information can be obtained as the donor-acceptor distances and H-bond dis-
tances with MDS and the protein structures. Submicroscopic information can be obtained
with the ET parameters, ET rates, and related physical quantities. Among the ET parameters,
G0

k Tð Þ is one of most influential parameters for the ET rate, according to the fluorescence
lifetime.

The distribution of the logarithmic ET rates (ln rate) from the five fastest donors to Iso* in the
DAAO dimer and monomer is shown in Figure 5. At 10�C the three fastest donors are
Tyr224, Tyr314, and Tyr228 in Sub A in this order and Tyr314, Tyr224, and Tyr55 in Sub B in
the dimer, while they are Tyr224, Tyr314, and Tyr228 in the monomer. At 30�C the three
fastest donors are Tyr314, Tyr228, and Tyr224 in Sub A and Tyr224, Tyr314, and Trp185 in
Sub B in the dimer, while they are Tyr314, Tyr224, and Tyr55 in the monomer. The values of
ET rates are listed in Table 5. The ET rates in the dimer are several times faster than those in
the monomer.

T (�C) Protein Subunit εDA
0 b G0

k Tð Þc (eV) τ (ps)

Obs d Calc e

10 DAAO dimerf Sub A 5.79 8.61 44.2 44.2

Sub B 5.82 8.54 - -

DAAO monomerf � 5.88 8.69 228 228

30 DAAO dimerf Sub A 5.79 8.73 37.7 37.7

Sub B 5.82 8.48 - -

DAAO monomerf 5.89 8.51 182 182

20 DAOB dimerg Sub A 2.53 8.42 4.77 4.77

Sub B 2.64 8.43 0.848 0.848

DAOB monomerh - 2.45 8.53 60 60

aStatic dielectric constants inside the proteins (εA0 and εB0 ) are similar, 5.8–5.9 among all species. The reported values of ET

parameters were used for the electronic coupling term (νTrp0 = 1016 ps�1, νTyr0 = 197 ps�1, βTrp = 21.0 nm�1, βTyr = 6.25 nm�1,

RTrp
0 = 0.663 nm, and RTyr

0 = 0.499 nm) [32].
bThe static dielectric constant between Iso and the donors within 1 nm from Iso.
cTemperature-dependent electron affinity of Iso*.
dExperimental fluorescence lifetimes for DAAO dimer and monomer [46] and for DAOB dimer [23] and DAOB mono-
mer [45]. The lifetimes of Sub A and Sub B in DAAO dimer are not experimentally resolved.
eCalculated lifetimes.
fData are taken from the work for DAAO dimer [53] and DAAO monomer [54].
gData are taken from the reported work of Ref. [56].
hData are taken from the reported work of Ref. [55].

Table 4. ET parameter in DAAO and DAOB.a.
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A NetES sometimes plays an important role on the ET rates and is defined as an ES energy
between the photoproducts (Iso anion plus a donor cation), and other ionic groups in the pro-
tein [31–36] as described above are also listed in Table 5. The NetES has never been numerically
evaluated by other research groups. The NetES values in the monomer are greatly modified upon
the formation of dimer, which is ascribed to inter-subunit interactions, namely, that the NetES of a
donor in Sub A is strongly influenced by that in Sub B and vice versa, because the electrostatic
energy is influential over a long range.

Figure 5. Distribution of logarithmic ET rate from aromatic amino acids to Iso*. Sub A10 and Sub B10 denote Sub A and
Sub at 10�C, and Sub A30 and Sub B30 denote Sub A and Sub B at 30�C in DAAO dimer, respectively. Inserts show amino
acids with the top fastest ET rates. The distributions for DAAOmonomers at 10�C (Monomer 10) and 30�C (Monomer 30)
are also shown for comparison. The kinds of the amino acids are different among the six groups including monomer.
(Reproduced from [53] with permission from the PCCP Owner Societies).
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Protein T (�C) Subunit Donor Rate (ps�1) NetES energy (eV)

DAAO dimerb 10 A Tyr224 1.29 � 10�2 0.044

Tyr314 7.57 � 10�3 �0.406

Tyr228 1.20 � 10�3 0.146

Tyr55 9.08 � 10�4 �0.119

Trp185 9.71 � 10�6 �0.104

10 B Tyr314 1.38 � 10�2 �0.479

Tyr224 5.96 � 10�3 �0.021

Tyr55 1.54 � 10�3 �0.161

Tyr228 1.25 � 10�3 0.056

Tyr279 6.08 � 10�5 �0.076

30 A Tyr314 1.63 � 10�2 �0.293

Tyr228 5.86 � 10�3 0.130

Tyr224 3.39 � 10�3 0.108

Tyr55 2.43 � 10�4 �0.207

Trp52 2.15 � 10�4 �0.593

30 B Tyr224 1.68 � 10�2 �0.038

Tyr314 6.51 � 10�3 �0.422

Trp185 1.43 � 10�3 �0.465

Tyr55 9.70 � 10�4 �0.210

Tyr228 8.30 � 10�4 0.097

DAOB dimerd 20 A Tyr228 1.17 � 10�1 0.075

Bz 7.50 � 10�2 �0.085

Tyr55 1.14 � 10�2 �0.103

Trp185 4.65 � 10�3 �0.434

Tyr314 1.58 � 10�3 �0.323

Trp52 1.68 � 10�5 �0.113

20 B Bz 8.92 � 10�1 �0.094

Tyr228 2.80 � 10�1 0.070

Tyr314 6.56 � 10�3 �0.442

Tyr55 2.64 � 10�4 �0.159

Tyr224 5.38 � 10�5 �0.010

Trp185 3.72 � 10�5 �0.183

DAAO monomerc 10 Tyr224 2.27 � 10�3 0.192

Tyr314 1.38 � 10�3 �0.073

Tyr228 5.94 � 10�4 0.215

Trp185 1.15 � 10�4 �0.249
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The dependence of the ln Rate on the donor-acceptor distances has been predicted by a Dutton
rule to be linear [69]. In DAAO dimer and monomer, the ln Rate linearly decreased with Rc in
all cases [53, 54]. This means that the fluorescence lifetimes of FAD in DAAO become longer as
the Rc increased. The dimer Rc is mostly shorter than those in the monomer [53]. It is con-
cluded that the shorter lifetimes of the dimer are due to their shorter Rc values compared to the
monomer.

6. The two subunits in the DAAO dimer are not equivalent in solution

The conformations of the two subunits in the DAAO dimer are found to be not equivalent in
solution [53], as shown in Figure 1. The Rc values in Sub A between Iso and the main donors
are quite different from those in Sub B (Table 2), and the H-bond structure between Iso and the
nearby amino acids in Sub A is also quite different from that in Sub B (Table 3), though
H-bonds between Iso and water molecules are not taken into account. The structural differ-
ences led to the nonequivalent ET rate and NetES (Table 5), and its related physical quantities
as the electrostatic energy between the donor and acceptor (ESDA), and solvent reorganization
energy (SROE). The ratio of the ET rate in Sub A/the rate in Sub B is 2.3 in Tyr224, 0.55 in
Tyr314, and 0.96 in Tyr228 at 10�C and 0.20 in Tyr224, 2.5 in Tyr314, and 7.1 in Tyr228 at 30�C.

Protein T (�C) Subunit Donor Rate (ps�1) NetES energy (eV)

Tyr279 1.57 � 10�5 0.144

30 Tyr314 2.35 � 10�3 �0.434

Tyr224 1.65 � 10�3 �0.035

Tyr55 8.00 � 10�4 �0.324

Tyr228 6.85 � 10�4 0.051

Tyr106 5.47 � 10�6 �0.342

DAOB monomere 20 Bz 9.92 � 10�3 0.898

Tyr228 4.23 � 10�3 0.172

Tyr224 1.93 � 10�3 0.022

Tyr314 5.05 � 10�4 �0.130

Tyr55 6.59 � 10�5 �0.171

Trp185 1.37 � 10�5 �0.095

aMean ET rates from aromatic amino acids to Iso* and related physical quantities are listed over 10,000 snapshots. The
expression of ET rate with KM model is given by Eq. (3). NetES energy denotes electrostatic energy between the
photoproducts (Iso anion and a donor cation) and other ionic groups in the proteins given by Eq. (7).
bThe data are taken from Ref. [53].
cThe data are taken from Ref. [54].
dThe data are taken from Ref. [56].
eThe data are taken from Ref. [55].

Table 5. Comparison of ET rate and NetES energy among DAAO dimer and monomer and DAOB dimer and monomer.a.
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7. Temperature-induced structural transition in DAAO monomer

Massey et al. [39] first reported a temperature-induced conformational change (temperature
transition) of DAAO, where the tryptophan fluorescence exhibited a temperature transition at
around 15�C. The van’t Hoff plot of the enzyme activity is nonlinear and best expressed by two
straight lines with different activation energies. The enzyme activities showed a temperature-
dependent equilibrium between the high- and low-temperature states [89], while the equilib-
rium constant of the association of monomers to form dimers exhibited a discontinuous
change at 18�C [88]. However, this transition is not found in the specific heat change at the
transition temperature by means of a differential scanning microcalorimetry [90]. The temper-
ature transition of DAAO has been studied by monitoring the fluorescence lifetimes [46]. The
modified Arrhenius plots of the fluorescence quenching constants of the monomer and dimer
based upon the absolute rate theory displayed two linear functions both in the monomer and
dimer. The fluorescence quenching in DAAO is ascribed to the ET from aromatic amino acids
to Iso* [19–21], as described above. The activation enthalpy gap and the entropy gap for the
quenching constants of DAAO displayed different values in the lower and higher temperature
ranges than at 16–18�C, but not in the free FAD. The quenching constant of the monomer
displayed a more pronounced transition than that of the dimer. No indication of appreciable
transition in the specific heat change [90] may be due to the measurements being performed at
very high concentrations of DAAO, where the enzyme should be in the dimer or higher
association state, and so it might be difficult to detect the transition.

The structural basis for the temperature-induced transition in the DAAO monomer is studied
by means of MDS and ETanalyses [54]. The Rc values of Tyr224 are 0.82 and 0.88 nm at 10 and
30�C, respectively, and those of Tyr314 are 1.06 and 1.18 nm at 10 and 30�C, respectively, as
shown in Table 2. H-Bonds are formed between IsoN1 (see Chart 1 for atom notations of Iso
ring) and Gly315N (peptide), between IsoN3H and Leu51O (peptide), and between IsoN5 and

Chart 1. Chemical structure and atom notations of Iso.

Amino Acid - New Insights and Roles in Plant and Animal90



7. Temperature-induced structural transition in DAAO monomer

Massey et al. [39] first reported a temperature-induced conformational change (temperature
transition) of DAAO, where the tryptophan fluorescence exhibited a temperature transition at
around 15�C. The van’t Hoff plot of the enzyme activity is nonlinear and best expressed by two
straight lines with different activation energies. The enzyme activities showed a temperature-
dependent equilibrium between the high- and low-temperature states [89], while the equilib-
rium constant of the association of monomers to form dimers exhibited a discontinuous
change at 18�C [88]. However, this transition is not found in the specific heat change at the
transition temperature by means of a differential scanning microcalorimetry [90]. The temper-
ature transition of DAAO has been studied by monitoring the fluorescence lifetimes [46]. The
modified Arrhenius plots of the fluorescence quenching constants of the monomer and dimer
based upon the absolute rate theory displayed two linear functions both in the monomer and
dimer. The fluorescence quenching in DAAO is ascribed to the ET from aromatic amino acids
to Iso* [19–21], as described above. The activation enthalpy gap and the entropy gap for the
quenching constants of DAAO displayed different values in the lower and higher temperature
ranges than at 16–18�C, but not in the free FAD. The quenching constant of the monomer
displayed a more pronounced transition than that of the dimer. No indication of appreciable
transition in the specific heat change [90] may be due to the measurements being performed at
very high concentrations of DAAO, where the enzyme should be in the dimer or higher
association state, and so it might be difficult to detect the transition.

The structural basis for the temperature-induced transition in the DAAO monomer is studied
by means of MDS and ETanalyses [54]. The Rc values of Tyr224 are 0.82 and 0.88 nm at 10 and
30�C, respectively, and those of Tyr314 are 1.06 and 1.18 nm at 10 and 30�C, respectively, as
shown in Table 2. H-Bonds are formed between IsoN1 (see Chart 1 for atom notations of Iso
ring) and Gly315N (peptide), between IsoN3H and Leu51O (peptide), and between IsoN5 and

Chart 1. Chemical structure and atom notations of Iso.

Amino Acid - New Insights and Roles in Plant and Animal90

Ala49N (peptide) at 10�C, while no H-bond is formed at IsoN1 and IsoN3H at 30�C (Table 3).
The H-bond of IsoO4 with Leu51N (peptide) at 10�C is switched to Ala49N (peptide) at 30�C.
These results may account for the shorter reported fluorescence lifetime of the monomer at
10�C (228 ps) and 30�C (182 ps) [54]. The ET rate from Tyr224 is the fastest among donors at
10�C and the second fastest at 30�C among the donors, while that from Tyr314 is the second
fastest at 10�C and the fastest at 30�C (see Table 5). The values of NetES in Tyr224 are 0.192 eV
at 10�C and�0.035 eVat 30�C, and in Tyr314 are�0.073 eVat 10�C and �0.434 eVat 30�C. The
other physical quantities related to the ET rates also displayed appreciable differences at 10
and 30�C. The electron affinities of Iso* are calculated at both temperatures with the semiem-
pirical molecular orbital (MO) method (MOPAC software, PM6 basis set) [54]. The mean
calculated electron affinities over 100 snapshots with 0.1 ns intervals are 7.69 eV at 10�C and
7.59 eV at 30�C. Thus, the difference in the observed fluorescence lifetimes between 10 and
30�C is ascribed to the differences in the standard free energy gap and also NetES between the
two temperatures.

8. Comparison of the DAOB monomer and dimer structures

Characteristics of monomer and dimer in DAOB and DAAO are compared in Table 6.

The Rc values between Iso and Bz are 0.61 nm in the DAOB monomer but 0.66 and 0.68 in
Sub A and Sub B, respectively [55, 56], of the dimer as shown in Table 2. In the DAOB
monomer, the second and third shortest donors are Tyr228 and Tyr224 (0.81 and 0.97 nm,

Physical quantity DAOB DAAO

Fluorescence lifetime (ps)

Monomer 60b 130c, 228 at 10�Cd, 182 ps at 30�Cd

Dimer
Sub A
Sub B

4.8e

0.85e
40c, 44.2 at 10�Cd, 37.7 at 30�Cd

Relative quantum yield of FAD in the enzyme to free FAD e 0.0048–0.0077f 0.08–0.13c

Apparent dissociation constant of FAD (nm) 0.14–0.15f 100–300f

Dissociation constant of dimer into monomer (μM) 0.4 � 0.3f 3.7g

aData are taken with some modifications from [45]. The lifetimes of the DAAO dimer were not separated between the two
subunits [44, 46].
bTemperature was 20�C. Data are taken from Ref. [45].
cTemperature was 20�C. Data are taken from Ref. [44].
dData are taken from Ref. [46].
eData are taken from Ref. [23].
fData are taken from Ref. [45].
gData are taken from Ref. [42, 43].

Table 6. Comparison of characteristics among DAAO monomer and the dimer and DAOB monomer and the dimer.a.
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respectively), while in the dimer, they are Tyr55 and Tyr228 (0.95 and 0.96 nm) in Sub A
and Tyr228 and Tyr314 (0.99 and 1.02 nm) in Sub B. The donor-acceptor Rc distances in
the DAOB monomer are, therefore, modified substantially upon formation of the dimer.
The H-bond distances between Iso and the nearby amino acids in DAOB are shown in
Table 3. In the DAOB monomer, IsoN3H forms H-bonds with Leu51, IsoN5 with Ala49,
IsoO4 with Leu51, and IsoO2 with Gly315 and Thr317 (see Chart 1 for the atomic nota-
tions). In the dimer, Iso forms H-bonds with Leu51, Asp 49, and Thr317 in Sub A and only
with Leu51 and Ala49 in Sub B. The H-bonds of IsoO4 with Leu51 and Gly50 dissociate in
the dimer, and in addition the H-bond of IsoO2 with Thr317 dissociates in Sub B as does
the H-bond of BzO1 (one of two carboxylate O atoms in Bz) with Tyr228OH. Thus,
H-bond structures between Iso or Bz and the nearby amino acids are greatly modified upon
dimer formation.

Figure 6 shows comparison of distributions of ln Rate from aromatic amino acids and Bz
to Iso* among DAOB monomer and Sub A and Sub B in DAOB dimer [55, 56]. The
distribution of Bz in the DAOB monomer shifts to smaller values compared to those of
DAOB dimer.

9. Nonequivalent structure between the two subunits in the DAOB dimer
in solution

The MDS structures of DAOB dimer and monomer are shown in Figure 7 [56]. The local
structures near Iso display quietly different between the two subunits. The H-bond pairs and

Figure 6. Comparison of the distribution of ln Rate between DAOB dimer and monomer. (A) Sub A and (B) Sub B in the
dimer. It was identified that the observed fluorescence lifetime of the dimer, τobs1 = 0.848 ps, is from Sub B and τobs2 = 4.77 ps
is from Sub A. Inserts denote six fastest ET donors both in Sub A and Sub B. The distribution in the monomer is also
shown in (C) Monomer. The data are taken from [56]. (Reproduced by permission of The Royal Society of Chemistry).
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distances in DAOB also differ between them (see Table 3), where the H-bonds between IsoO2
and Thr317 and between BzO1 and Tyr228 in Sub A dissociate in Sub B.

Figure 8 shows ultrafast fluorescence dynamics of DAOB dimer [23]. It is evident that the
dimer displayed two lifetime components at any wavelengths monitored. Table 7 lists the
decay parameters at several wavelengths. The mean lifetimes are listed in Table 6, 0.848
and 4.77 ps, of which fluorescence is from Sub B and Sub A, respectively [56]. The three
main ET donors in the DAOB dimer are Bz, Tyr228, and Tyr55 in Sub A and Bz, Tyr228,
and Tyr314 in Sub B, while the three fastest are Bz, Tyr228, and Tyr224 donor in the DAOB
monomer. The ET rates and NetES in the DAOB dimer and monomer are listed in Table 5.
The ET rate from Bz is 7.50 � 10�2 ps�1 in Sub A and 8.92 � 10�1 ps�1 in Sub B of the
DAOB dimer. The ET rates from Tyr228 and Tyr55 are also quite different between Sub A
and Sub B in the DAOB dimer. Thus, the NetES values are not equivalent in the main
donors between Sub A and Sub B.

Figure 7. Structure of DAOB dimer at FAD binding site. (A) Sub A, (B) Sub B show subunits A and B in DAOB dimer.
(C) Superimposed shows superimposition of Sub A and Sub B. The potential ET donors, Bz, Tyr224, Tyr228, Tyr314,
Tyr55, Tyr279, and Trp185, are shown in addition to FAD. In bottom panel FAD and the aromatic amino acids are
indicated in green for Sub A, and in magenta for Sub B. MDS calculation was performed at 20 �C. The data are taken
from [56]. (Reproduced by permission of the Royal Society of Chemistry).
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Figure 8. Fluorescence dynamics of DAOB dimer observed at various emission wavelengths. The instrumental response
(fwhm ~210 fs) is also indicated with dotted line at the bottom. The decay parameters are listed in Table 6. (Reprinted
with permission from [23]. Copyright (2000) American Chemical Society).

Wavelength (nm) a1 a2 τ1 (fs) τ2 (ps) χ2

480 0.815 0.185 300 1.90 0.74

485 0.710 0.290 420 4.23 0.62

490 0.600 0.400 506 4.46 0.64

510 0.220 0.780 942 4.47 0.10

530 0.337 0.663 1486 4.95 0.04

550 0.360 0.640 1460 5.00 0.05

580 0.260 0.740 940 4.52 0.06

600 0.250 0.750 877 4.40 0.17

630 0.486 0.514 840 6.46 0.35

640 0.470 0.530 713 7.34 1.05

The fluorescence decay functions are expressed by F(t) = α1 exp(�t/τ1) + α2 exp(�t/τ2), where τ1 and τ2 are lifetimes of the
fluorescent components 1 and 2, respectively, and α1 and α2 are their respective fractions. The chi-square (χ2) value
between the observed and calculated intensities with the two exponential decay functions is shown. The lifetimes are
emission wavelength dependent. (Reprinted with permission from [23]. Copyright (2000) American Chemical Society).

Table 7. Fluorescence decay parameters of the DAOB dimer.
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10. Comparison between DAAO and DAOB

The Sub A and Sub B structures of DAOB are almost equivalent in crystal, at least near the
FAD binding sites [10]. However, the superimposed MDS-derived Sub A and Sub B structures
in solution revealed that the structures near the Iso binding sites are not equivalent [56].
Further, the structures are quite different between the crystal Sub A and MDS-derived Sub A
and between the crystal Sub B and MDS-derived Sub B. This may be ascribed that, in the
crystal structure, the protein molecules are under the crystal field in the cell units, and so that
not many water molecules, while in solution the protein can be relaxed in freely mobile water
molecules.

It is evident that the structures near Iso in DAAO are markedly modified upon complex
formation with Bz. Absorption spectrum of DAAO is much modified upon binding of Bz.
The peak wavelength of the absorption band at around 450 nm of DAAO [39] shifts toward
longer wavelength by 13 nm in the complex with vibrational structure [23]. The fluorescence
lifetime of the DAOB monomer is 60 ps [45], while ca. 130 [44] or 200 ps [46] in DAAO
monomer. The lifetimes of the DAOB dimer stated above [23] are much shorter compared to
those of DAAO dimer and DAOB monomer. The remarkably shorter lifetimes in DAOB dimer
are mainly ascribed to the ET from Bz to Iso*. To compare the conformation of the DAAO and
DAOB using the Rc values of the aromatic amino acids other than Bz, the Rc values in the
DAAO dimer at 20�C are taken as the average of those at 10 and 30�C. The Rc values of Tyr224
in the DAAO dimer, 0.82 nm in Sub A, and 0.76 nm in Sub B (Table 2) are much smaller than in
Sub A (1.32 nm) and Sub B (1.04 nm) in the DAOB dimer. The values of Rc of Tyr228 in the
DAAO dimer (0.84 nm in Sub A and 0.82 nm in Sub B) are smaller than in the DAOB dimer
(0.96 nm in Sub A and 0.99 nm in Sub B), while those for Tyr55 in the DAAO dimer (1.27 nm in
Sub A and 1.03 nm in Sub B) are larger than in Sub A (0.95 nm) but broadly similar to that in
Sub B (1.05 nm) in the DAOB dimer. Thus, the Rc values are greatly modified upon the binding
of Bz.

Root of mean square fluctuation (RMSF) is considered to be a useful index for protein
fluctuation. Figure 9 shows RMSF values against residue numbers in all four species. The
mean RMSF values over all amino acids and FAD are the smallest in the DAOB dimer
(0.191 and 0.171 in Sub A and Sub B, respectively) among the four proteins, the DAOB
monomer (0.522) and DAAO (0.347, 0.344, and 0.701 in the dimer Sub A, Sub B, and the
monomer, respectively). It is well known that the binding of Bz to DAAO greatly stabi-
lizes the protein, and indeed this trait is used in the purification procedure of DAAO [78].
It is also recognized that the DAAO monomer is the most unstable among the DAAO
and DAOB species, and so the mean RMSF may be related to protein stability in general.
In fact the dissociation constant of FAD is the least in DAOB dimer and the greatest in
DAAO monomer [42, 43, 45]. Denaturation of DAAO easily takes place after FAD dissoci-
ation.

The static dielectric constants (εDA
0 ) between Iso and ET donors within 1 nm from Iso are

compared in both DAAO and DAOB [53–56], where the dielectric constants are larger
(5.7–5.9) in the DAAO isomers than in the DAOB isomers (2.45–2.64), as shown in Table 4.
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The polarity near Iso is considered to be higher when the value of εDA
0 is higher. The radial

distribution functions (RDFs) of water molecules and numbers of water molecules near Iso
are reported in DAAO dimer [53] and in DAOB [56]. The RDFs of DAAOs are shown in
Figure 10. At 10�C approximately 5.5 and 16 molecules are predicted to exist near Iso in
Sub A and Sub B, respectively, while at 30�C this switched to 12 and 6 water molecules in
Sub A and Sub B, respectively. The number of water molecules could also relate to
polarity around Iso. The RDF in DAOB is shown in Figure 11, where in the DAOB dimers
are few if any, and five water molecules existed near Iso in Sub A and Sub B, respectively.
No water molecules are predicted to exist near Iso in the DAOB monomer. Thus, the
number of water molecules is much greater in the DAAO dimer than that in DAOB dimer
and the monomer, which is in accordance with the εDA

0 results. Stokes shift of the fluores-
cence spectra in flavoproteins is related to the polarity around Iso. The fluorescence
spectra of Iso display at 523 nm of peak wavelength in the DAOB dimer [23] and at 530
nm in DAAO [39]. The εDA

0 values obtained by ET analyses and the RDF of water
molecules obtained by MDS are both in accordance with the behavior of the fluorescence
spectra.

Figure 9. Comparison of root of mean square fluctuations among DAAO dimer, DAAO monomer, DAOB dimer, and
DAOBmonomer. Root of mean square fluctuations (RMSFs) were obtained by AMBER 10. Holo M, Holo A, and Holo B in
the insert denote the DAAO monomer, Sub A, and Sub B of the DAAO dimer, respectively. DAOB M, DAOB A, and
DAOB B denote the DAOB monomer, Sub A, and Sub B of the DAOB dimer, respectively. RMSFs of DAAO monomer
were taken from [54], those for DAAO dimer from [53] and those of DAOB monomer from [55], and DAOB dimer
from [56]. (Reproduced by permission of the Royal Society of Chemistry).
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11. Conclusions

MDS is a useful tool to study the structures of DAAO and DAOB in solution, while their
experimental fluorescence lifetimes are also a useful index to monitor their structural changes,
because the fluorescence lifetimes in flavoproteins are determined by the rates of ET from the
aromatic amino acids to Iso*. Thus, combining the MDS structures and the experimental
fluorescence lifetimes by ET analysis provides more precise information on the submicroscopic
features of the structures of DAAO and DAOB. It is concluded as follows:

1. The origin of the cooperativity in the FAD binding processes is due to much lower (1/74
fold) dissociation constant of FAD in the DAAO dimer than in the monomer. The structural

Figure 10. (A) Sub A 10 �C, (B) Sub B 10 �C, (C) Sub A 30 �C and (D) Sub B 30 �C show the radial distribution function
derived number of water molecules near hetero atoms in Iso ring in the DAAO dimer. The vertical axes, G(r), denote the
radial distribution function. Inserts indicate mean numbers of water molecules at the distances of first layer from the
hetero atoms in Iso (see Chart 1 for atom notations). The data are taken from [53]. Reproduced by permission of the PCCP
Owner Societies.
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basis for the cooperative binding in DAAO is elucidated by differences in the H-bond
structures, the Rc, and the NetES values between the DAAO dimer and the monomer.

2. The temperature-induced transition in the DAAO monomer is ascribed to the differences
in the SFEG and NetES between the two temperatures. The change in the SFEG with
temperature may be brought about by the change in H-bond structures.

3. The two subunits of the DAAO dimer are not equivalent in solution, as revealed by MDS
and ET analyses.

4. The structures of DAOB dimer are almost equivalent for the two subunits in the crystal
but are nonequivalent in solution as revealed by the experimental fluorescence lifetimes,
MDS structures, and ET analyses.

5. The mean RMSF values over all residues are the smallest in the DAOB dimer and the
largest in the DAAO monomer. It is well recognized that the binding of Bz to DAAO
greatly stabilizes the protein and the DAAO monomer is the most unstable among the
DAAO and DAOB isomers. The mean RMSF may be related to protein stability in general.

6. The εDA
0 values in the DAAO isomers (5.7–5.9) are much larger than those in the DAOB

isomers (2.45–2.64), which are elucidated by the number of water molecules near Iso, as
derived from the RDF analysis. Water molecules in DAAO are excluded upon the binding
of competitive inhibitor of Bz.

Figure 11. Radial distribution function of water molecules near the heteroatoms of Iso in DAOB. Vertical axes, G(r),
denote the radial distribution functions. Red, blue, and black numbers showed the mean number of water molecules in
Sub A and Sub B of DAOB dimer, and DAOB monomer is indicated in red, blue, and black, respectively. The data for the
DAOB dimer are taken from [56] and for DAOB monomer from [55]. (Reproduced by permission of The Royal Society of
Chemistry).
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2. The temperature-induced transition in the DAAO monomer is ascribed to the differences
in the SFEG and NetES between the two temperatures. The change in the SFEG with
temperature may be brought about by the change in H-bond structures.

3. The two subunits of the DAAO dimer are not equivalent in solution, as revealed by MDS
and ET analyses.

4. The structures of DAOB dimer are almost equivalent for the two subunits in the crystal
but are nonequivalent in solution as revealed by the experimental fluorescence lifetimes,
MDS structures, and ET analyses.

5. The mean RMSF values over all residues are the smallest in the DAOB dimer and the
largest in the DAAO monomer. It is well recognized that the binding of Bz to DAAO
greatly stabilizes the protein and the DAAO monomer is the most unstable among the
DAAO and DAOB isomers. The mean RMSF may be related to protein stability in general.

6. The εDA
0 values in the DAAO isomers (5.7–5.9) are much larger than those in the DAOB

isomers (2.45–2.64), which are elucidated by the number of water molecules near Iso, as
derived from the RDF analysis. Water molecules in DAAO are excluded upon the binding
of competitive inhibitor of Bz.

Figure 11. Radial distribution function of water molecules near the heteroatoms of Iso in DAOB. Vertical axes, G(r),
denote the radial distribution functions. Red, blue, and black numbers showed the mean number of water molecules in
Sub A and Sub B of DAOB dimer, and DAOB monomer is indicated in red, blue, and black, respectively. The data for the
DAOB dimer are taken from [56] and for DAOB monomer from [55]. (Reproduced by permission of The Royal Society of
Chemistry).
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7. The Stokes shift of the fluorescence spectra is related to the polarity around Iso, with a
change in the emission peak from 524 nm in the DAOB dimer to 530 nm in the DAAO
dimer. The εDA

0 values obtained by ET analysis and number of water molecules near Iso
obtained by RDF analyses are both in accordance with the observed Stokes shift.
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Abstract

Desmosine and isodesmosine (collectively known as desmosines), two unnatural amino 
acids unique to mature elastin in humans, have been widely discussed as being potential 
biomarkers of disorders, which involve connective tissue and whose clinical manifesta-
tions result in elastin degradation. In particular, experimental data accumulated over the 
last 40 years have demonstrated that patients with chronic obstructive pulmonary dis-
ease (COPD) excrete higher amounts of urinary desmosines than healthy controls. Based 
on this evidence, it has been speculated by several authors that these cross-links may be 
potential biomarkers of COPD with clinical significance. Nevertheless, a strict correlation 
between the amount of these amino acids and the severity of the disease still has to be 
demonstrated. For this reason, the debate on the opportunity to consider desmosines as 
biomarkers of COPD is still open, and the development of sophisticated methods aimed 
at obtaining very precise measurement of their concentration is still considered techni-
cally challenging. The aim of this chapter is to trace the history of this debate through 
the presentation and discussion of a large number of articles dealing with the detection 
and quantification of desmosines in different biological fluids, from early years until the 
present.
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1. Introduction

Elastin is a highly elastic protein in connective tissue that allows many tissues in the body to 
resume their shape after stretching or contracting. Being the main component of the elastic 
fiber, it provides resiliency to numerous pulmonary structures including the alveolar wall, 
thus influencing the characteristic shape of alveoli. The strong hydrophobicity of elastin, 
together with a good number of intermolecular cross-links, produces a highly insoluble net-
work of polypeptide chains working as a perfect elastomer in an aqueous environment [1, 2].

Elastin is synthesized and secreted from fibroblasts and vascular smooth cells as a soluble 
75-kDa precursor called tropoelastin, containing 12–13 repeats of alternating hydrophobic 
and cross-linking domains. While glycine, alanine, proline and valine are the predominant 
residues of the hydrophobic domains in a random-coil organization, polyalanine tracts con-
taining lysine residues embedded in a rigid α-helical structure are characteristic of the cross-
linking domains.

The formation of cross-links occurs extracellularly generating two amino acid isoforms, 
known as desmosine and isodesmosine (collectively, desmosines or DESs), whose content 
may be used as a quantitative measurement of insoluble elastin formation [1–4].

Given their uniqueness to mature elastin in mammals, DESs have been discussed as potential 
biomarkers of disorders, which involve connective tissue and whose clinical manifestations 
result in elastin degradation. In fact, being the desmosine-containing peptides derived from 
the destruction of the elastic fibers excreted in the urine, their determination in the body flu-
ids may represent an indirect measurement of extracellular matrix degradation or of elastase 
activity [5, 6].

Connective tissue destruction is a major problem in chronic obstructive pulmonary disease 
(COPD), a class of disorders characterized by massive destruction of the elastic fibers of the 
alveoli with disabling airflow limitation, productive cough and dyspnea [7, 8]. According to 
the protease/antiprotease hypothesis, elastolytic proteases, in particular human neutrophil 
elastase (HNE), are responsible for the digestion of alveolar elastin. If, for any reason, the 
level of this proteolytic enzyme overcomes that of α1-antitrypsin (AAT), the most important 
defense barrier in the lower respiratory tract, elastin present in the alveolar walls will be 
degraded with consequent loss of lung functions [9].

One of the current emerging challenges of COPD is the research of parameters that may elu-
cidate the events associated with a given disease condition. The detection of reliable biomark-
ers that can be correlated with the clinical outcome of this disorder obviously plays a special 
role in this setting. In spite of the increasing number of biomarkers proposed, currently a 
useful biomarker for COPD is still lacking. However, being this disorder characterized by 
the uncontrolled degradation of the extracellular matrix with abnormal excretion of elastin-
derived fragments containing DESs, substantial interest has been placed in the development 
of reliable assays to measure their concentration in body fluids. The fact that these peptides 
are quantitatively excreted in urine provides the rationale for understanding why DESs may 
represent an indirect measurement of extracellular matrix degradation.
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The question of whether these amino acids may actually be considered surrogate markers 
of elastin degradation has been extensively debated [4, 6, 10–12]. Experimental evidences 
accumulated over the last 40 years have demonstrated that smokers as well as patients with 
COPD or other destructive lung diseases excrete in their urine amounts of DESs higher than 
non-smokers and healthy controls [13–17]. On the basis of these data, it has been speculated 
by several authors that these cross-links may be considered clinically significant biomarkers 
of COPD [11, 12]. As a consequence, efforts have been devoted by different research groups in 
the world to the determination of DESs excreted in a variety of biological fluids which include 
urine, plasma, and induced sputum. Despite a large number of articles describing the applica-
tion of different techniques for the screening and quantification of DESs has been published 
so far, only in few cases a strict correlation between the amount of these amino acids and the 
severity of the disease has been demonstrated [13–17]. In particular, what has emerged in the 
course of the last years is that only very accurate desmosine determinations can help research-
ers in understanding which is the degree of elastin degradation in COPD at different stages 
of severity and may allow these amino acids to become a reliable tool either in the differential 
diagnosis or in the clinical management of the disease [10, 12, 18].

For this reason, the debate on the opportunity to consider DESs as surrogate markers of COPD 
is still open, and the development of increasingly sophisticated techniques aimed at obtaining 
very precise measurement of their concentration is considered technically challenging.

Indeed, the significant step forward of both sensitivity/specificity and degree of reproducibil-
ity of results provided by these technological advancements allowed researchers to fully uti-
lize the power of such data sets thus improving the understanding of mechanisms involved 
in elastin degradation. Among the variety of research groups in the world that have focused 
their attention on DESs determination, a great contribution was provided by our own team. 
Novel strategies have been developed for the accurate determination of these amino acids in 
urine, plasma and sputum of a large number of smokers and patients affected by pulmonary 
diseases [3, 4, 6, 11, 13, 14, 16–19].

Aim of this chapter is to trace the history of this debate through the presentation and discus-
sion of a large number of articles dealing with the detection and quantification of DESs in 
different biological matrices from early years until the present.

2. Biosynthetic pathway of desmosines

The biosynthesis of these cross-links involves the oxidative deamination of the ε-amino group 
of four lysine residues, by means of lysyl oxidase, a copper-dependent enzyme. The aldehydic 
residues which yield from this oxidation can then participate in Schiff-base reaction with the 
ε-amino group of other lysine residues or in aldol condensations with other similar aldehydic 
residues. These reactions result in the cyclization of the side-chain groups of the four lysines 
with the formation of DESs, two isomeric pyridinium cross-links which are characteristic of 
insoluble elastin [20]. The schematic view of these reactions, together with the final structure 
of these two amino acids, is shown in Figure 1.
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3. Methodological aspects in the determination of desmosines

The first reports dealing with the determination of DESs in elastin appeared in the 1960s when 
such amino acids were isolated from purified elastin of bovine Ligamentum nuchae [21]. Given 
their peculiarity in humans, the question of whether these amino acids could be used as clini-
cally significant biomarkers of extracellular matrix disorders was of primary importance. In 
light of this, it became immediately evident that the only way to answer this question would 
have been the availability of strategies aimed at calculating the concentration of DESs in dif-
ferent matrices. The research of such strategies resulted in the development of a wide variety 
of techniques and, as a consequence, in the publication of a large number of articles describing 
their application to different tissues and fluids. This paragraph is planned to show that while 
the low technological content of methods available in the 1960s could provide poor results in 
terms of DESs’ clinical significance, the impressive advances achieved with the progression of 
technology have completely changed the scenario. It will appear that amino acid analysis and 

Figure 1. A schematic view of biosynthetic reaction of DESs and IDES.
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the immunochemical and early chromatographic methods, with their intrinsic limitations in 
terms of specificity and/or sensitivity, have been mainly used to the analysis of tissue hydrol-
yzates and/or urine. By contrast, thanks to the tremendous increase in sensitivity/specificity of 
modern methodologies, free and total DESs can currently be detected in all available tissues/
fluids. This overall improvement has strengthened the firm belief that DESs might indeed be 
possible biomarkers of elastin-degrading disorders, in particular lung disorders.

3.1. Amino acid analysis

From a chronological point of view, amino acid analysis was the first method developed for 
desmosine detection [22–24]. The rationale was that, being amino acids, DESs necessarily 
were ninhydrin-positive. In brief, desmosine-containing elastin fragments were submitted to 
a conventional acid hydrolysis and the amino acids separated by ion exchange chromatogra-
phy prior to be detected through the colorimetric reaction with ninhydrin. Despite appear-
ing as two well-resolved peaks that were integrated with precision, DESs in real samples 
could be separated only by applying elution conditions that were not coincident with those 
used for standard compounds. In addition, the quantification of DESs required a chromato-
graphic platform that was not identical to that applied for conventional amino acid analysis. 
This changeover of platforms was obviously quite laborious and time-consuming for those 
laboratories in which analysis of elastin hydrolyzates occurred infrequently. To overcome 
this drawback, an improved procedure was developed which provided excellent resolution 
and quantification of DESs without the necessity of systems changeover [25]. Despite this 
improvement, the methodological approach based on amino acid analysis was characterized 
by a number of limitations, the most important being the poor sensitivity and the need to 
perform on samples a series of preliminary steps which made the procedure very complex. 
Nevertheless, amino acid analysis was successfully used for a variety of applications includ-
ing: (i) determination of DESs concentration in elastin isolated from uterus and skin of young 
animals and humans [26]; (ii) measurement of elastin turnover in hamsters [27]; (iii) deter-
mination of the primary sequence around elastin cross-linking sites and correlation of this 
information to possible structural “signals” which might modulate or otherwise direct cross-
link formation [28]. Changes in elution buffers [29, 30] or in elution mode [31, 32] further 
improved resolution and sensitivity in the analysis of tissue hydrolyzates.

The application of amino acid analysis to the detection of DESs in human urine was a step 
forward in the generation of results that could be considered relevant from a diagnostic point 
of view. For example, the analysis of urine from patients affected by Marfan syndrome dur-
ing the early development of the disorder revealed that these subjects excreted a consistently 
lower amount of DESs than that of controls [33]. This was the first evidence of altered elastin 
cross-linking in a heritable connective-tissue disease. These data were correlated with a low 
lysyl oxidase activity and/or with an attenuation of the conversion of precursor aldehydes 
and lysyl cross-links into desmosines. Another study carried out on urines of cystic fibro-
sis (CF) patients chronically infected with Pseudomonas aeruginosa aimed at understanding 
whether destruction of the lung elastic fibers was an ongoing process in this disorder and 
whether proteolysis could contribute to the pathological changes in both airways and pulmo-
nary parenchyma [34]. The amino acid analysis showed that the urinary content of DESs was 
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significantly higher in patients than in the age-matched control group and that DESs excretion 
was significantly correlated with the disease severity. These observations, together with the 
evidence that fibers were fragmented and distorted, were the proof that destruction and re-
synthesis of elastic fibers are a chronic process in patients with CF.

3.2. Immunochemical methods

The application of immunochemical methods for detection of DESs originally started 
around the 1980s as soon as polyclonal antibodies against these cross-links became available. 
Although at the beginning RIA and ELISA assays suffered for poor specificity, they have 
been widely applied for at least 20 years. Their success was attributable to the remarkable 
increase in sensitivity that made these approaches, at least for a while, a valid alternative to 
chromatographic ones.

3.2.1. RIA

Initially developed to study the mechanisms of elastogenesis in cell cultures, DESs determina-
tion via RIA assay was also helpful for a better understanding of in vivo elastogenesis [35]. In 
this context, the levels of urinary DESs have been used as a measure of elastin catabolism in 
vivo to study the progression over months of experimental emphysema induced in hamsters 
by a single intratracheal injection of elastase [36]. DESs excretion was found to increase pro-
gressively during the first 24 h after injection, and to normalize after 6 days. This behavior 
seemed to suggest that the late progression of elastase-induced emphysema was not accom-
panied by increased elastolysis.

A remarkable improvement in the original RIA assay was the binding of antibodies to mag-
netic particles. Applied to urine of CF patients, this modified procedure allowed to show that 
urinary DESs in CF were higher than in controls [37]. Although a few interfering compounds 
present in the samples competed with DESs for the antibody, thus impoverishing method 
precision, this was a clear message that DESs measurement could be used to discriminate the 
two cohorts.

Although with conflicting results, other numerous lung disorders have been investigated by 
monitoring with RIA the levels of urinary DESs. These assays have been used: (i) to dem-
onstrate that the amount of urinary DESs excreted by healthy non-smokers over 24 h was 
around 10-fold lower than that of smokers with evidence of COPD [38, 39]; (ii) to compare uri-
nary DESs excretion in homozygous AAT-deficient patients with emphysema; patients with 
interstitial lung diseases and healthy subjects [40]; (iii) to detect DESs levels in patients with 
adult respiratory distress syndrome [41] and in patients with acute lung injury [42] and (iv) to 
assess elastin maturation during the development of human lungs [43].

3.2.2. ELISA

The sake of rapid, specific, safe and sensitive immunochemical assays resulted in the devel-
opment of ELISA methods. Although the early approaches suffered of poor specificity due 

Amino Acid - New Insights and Roles in Plant and Animal112



significantly higher in patients than in the age-matched control group and that DESs excretion 
was significantly correlated with the disease severity. These observations, together with the 
evidence that fibers were fragmented and distorted, were the proof that destruction and re-
synthesis of elastic fibers are a chronic process in patients with CF.

3.2. Immunochemical methods

The application of immunochemical methods for detection of DESs originally started 
around the 1980s as soon as polyclonal antibodies against these cross-links became available. 
Although at the beginning RIA and ELISA assays suffered for poor specificity, they have 
been widely applied for at least 20 years. Their success was attributable to the remarkable 
increase in sensitivity that made these approaches, at least for a while, a valid alternative to 
chromatographic ones.

3.2.1. RIA

Initially developed to study the mechanisms of elastogenesis in cell cultures, DESs determina-
tion via RIA assay was also helpful for a better understanding of in vivo elastogenesis [35]. In 
this context, the levels of urinary DESs have been used as a measure of elastin catabolism in 
vivo to study the progression over months of experimental emphysema induced in hamsters 
by a single intratracheal injection of elastase [36]. DESs excretion was found to increase pro-
gressively during the first 24 h after injection, and to normalize after 6 days. This behavior 
seemed to suggest that the late progression of elastase-induced emphysema was not accom-
panied by increased elastolysis.

A remarkable improvement in the original RIA assay was the binding of antibodies to mag-
netic particles. Applied to urine of CF patients, this modified procedure allowed to show that 
urinary DESs in CF were higher than in controls [37]. Although a few interfering compounds 
present in the samples competed with DESs for the antibody, thus impoverishing method 
precision, this was a clear message that DESs measurement could be used to discriminate the 
two cohorts.

Although with conflicting results, other numerous lung disorders have been investigated by 
monitoring with RIA the levels of urinary DESs. These assays have been used: (i) to dem-
onstrate that the amount of urinary DESs excreted by healthy non-smokers over 24 h was 
around 10-fold lower than that of smokers with evidence of COPD [38, 39]; (ii) to compare uri-
nary DESs excretion in homozygous AAT-deficient patients with emphysema; patients with 
interstitial lung diseases and healthy subjects [40]; (iii) to detect DESs levels in patients with 
adult respiratory distress syndrome [41] and in patients with acute lung injury [42] and (iv) to 
assess elastin maturation during the development of human lungs [43].

3.2.2. ELISA

The sake of rapid, specific, safe and sensitive immunochemical assays resulted in the devel-
opment of ELISA methods. Although the early approaches suffered of poor specificity due 

Amino Acid - New Insights and Roles in Plant and Animal112

to the cross-reactivity toward pyridoline of antibodies against desmosines [44, 45], optimi-
zation in the production of antibodies allowed to overcome this problem. The design of an 
anti-desmosine antiserum characterized by high specificity and sensitivity had a positive 
impact on the precision of DESs detection in tissue hydrolyzates [46, 47]. A very specific indi-
rect competitive ELISA test was also used to compare the urinary content of DESs in COPD 
patients with that of healthy controls. The finding that the amount of DESs excreted by the 
former cohort was significantly higher than that of controls, while not being a novelty, was a 
confirmation that these cross-links could be potential indicators of lung status [48]. Of great 
attractiveness was the observation that DESs concentration was higher in patients which 
showed no evidence of emphysema (or with only mild emphysema) than in those with mod-
erate-to-severe emphysema. This allowed to reason that urinary DESs could be a remarkable 
tool from a clinical point of view, being potential markers for the identification of subjects 
at risk of developing emphysema and for assessing the efficacy of therapeutic interventions.

3.3. High-performance liquid chromatography

With the development of high-performance liquid chromatography (HPLC), a marked improve-
ment in terms of resolution and robustness was contributed to the chromatographic platform. 
This big difference allowed HPLC methods to be used, for the first time, for simultaneous 
detection of DESs and other cross-links. These methods have been mostly dedicated to the 
analysis of DESs in tissues, being tailored for specific applications which range from the 
determination of DESs concentration on hamsters aorta [49] to their detection in hamsters 
lungs [50] or to the estimate of the amount of tissue elastin in human and dog aorta [30]. A 
great deal of research was also focused on the age-related changes in the content of elastin 
and collagen cross-links. To this aim, human aorta [51], human yellow ligament [52] and 
bovine Ligamentum nuchae or rat aorta have been often used as sources of DESs: desmopyri-
dine and isodesmopyridine. These studies were designed to understand the correlation of 
the elastic properties of this tissue with age [53] and to explore possible defects in elastin 
metabolism [54–56]. To find a biochemical explanation for the dilatation of vein wall, DESs 
and 4-l-Hydroxyproline have been quantified by HPLC in specimens of normal and varicose, 
dilated and non-dilated veins [57]. These determinations showed that the levels of cross-links 
were reduced in dilated vein, thus proving that dilatation may be related to elastin metabo-
lism. To investigate the biochemical basis of alterations present in upper esophagical sphinc-
ter of patients with Zenker’s diverticulum, the same cross-links were detected in samples of 
cricopharyngeal muscle [58].

Despite their above-mentioned features, when HPLC procedures were applied to urine, it 
appeared immediately evident that the interfering substances present in this matrix spuri-
ously increased DESs levels, thus being a strong limit for their quantification. After exploring 
a number of routes to implement resolution, RP-HPLC with isotope dilution was suggested 
as an affordable procedure to overcome this problem. This approach, successfully applied to 
investigate a variety of disorders, led to the achievement of significant biochemical insights, 
in particular from detection of DESs in urine of smokers with/without COPD or with/without 
rapid decline of lung function and of patients with CF [59, 60].
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3.4. Electrophoresis and capillary electrophoresis

Pioneering experiments carried out in the 1980s demonstrated that electrophoretic procedures 
could be helpful for detecting DESs in biological samples [61]. While 1-DE allowed a rapid 
detection of small amounts of these cross-links in hydrolyzates of elastin from Lingamentum 
nuchae, the complete separation of desmosine, isodesmosine and merodesmosine was 
achieved by applying a thin-layer methodology. The same procedure was used to measure 
cross-linked elastin synthesis in hamsters with pulmonary fibrosis induced by bleomycin [62]. 
The synthesis of cross-linked elastin was found to be significantly elevated in animals at 1–3 
weeks after exposure to bleomycin. The message associated with this increase was that this 
tissue component was, most likely, an important part of the fibrotic response of the pulmo-
nary parenchyma. The 2-D fingerprint (first dimension ascending chromatography, second 
one electrophoresis) of peptides produced by elastase digestion of elastin was another useful 
approach for DESs detection.

In the early 1990s, capillary electrophoresis (CE) was developed as a modern approach to 
obtain high efficiency, fast analysis times and excellent flexibility in changing the selectivity of 
the separation. As for other techniques described in previous paragraphs, capillary zone elec-
trophoresis (CZE) was initially applied to detect DESs in elastin hydrolyzates but, although 
analysis was fast, the peaks of the two amino acids could not be completely separated under 
the conditions used [63]. Although several attempts to improve resolution have been made, it 
became soon clear that CZE could not become the “gold standard” for the detection of DESs 
in human matrices for at least two reasons. First, separating the two analytes, whose peaks 
were largely overlapping, was not possible due to the strict similarity of DESs structures, and 
second, the sensitivity of the method, although promising for the analysis of hydrolyzates 
and urine, was not suitable to allow the investigation of other important matrices (plasma, 
sputum). Nevertheless, the application of this method to study elastin content of abdomi-
nal aorta and aortic function in rats exposed to Vitamin D during gestation and in postnatal 
period led to the finding that the mean content of DESs was higher in control rats than in those 
treated with high/low Vitamin D doses [64]. By addition of ionic and/or nonionic detergents 
to the BGE, the separation mode was switched to micellar electrokinetic chromatography 
(MEKC) in an effort to verify whether the formation of micelles was a suitable tool to obtain 
the differential migration of DES and IDES. The efficacy of MEKC was explored on urine of 
healthy controls and COPD patients. The finding that DESs levels were higher in patients 
than in controls, while not being surprising, was a sort of “proof of the pudding” that the path 
taken was the right one. Further confirmation of the robustness of this approach came from 
the analysis of a large number of urine samples from patients with a variety of pulmonary 
diseases ranging from stable COPD [14] to subjects with acute exacerbation of COPD [13, 14], 
with AAT deficiency [14]; bronchiectasis [14] and cystic fibrosis [14, 65]. Taken together, the 
results of these analyses generated a clear picture of DESs excretion in all subjects character-
ized. They allowed to speculate that the level of these cross-links, being able to report the 
airway inflammation or to evaluate the efficacy of replacement therapy, could indeed reflect 
the lung conditions. Unfortunately, to meet the requirements of sensitivity needed for the 
use of this approach, a preliminary concentration step of urines, with related drawbacks, was 
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mandatory. In an effort to improve sensitivity, a new procedure was developed in which uri-
nary DESs were labeled with a fluorescent probe to be visualized with a LIF detection system 
[66]. Due to heavy similarity of their final structure, the two labeled desmosines could not 
be resolved at all by the electrophoretic system. Despite this potential limitation, the method 
showed to be reliable and allowed DESs to be quantified with precision as the sum of the two 
isomers. Since its development and for at least a decade, the high sensitivity, the good accu-
racy and robustness of MECK-LIF have encouraged its utilization for the determination of 
DESs in a wide variety of human fluids. As a matter of fact, to the best of our knowledge, this 
is the protocol applied for screening the largest number of real samples ever investigated [4]. 
The scheme of Figure 2 indicates the number of samples analyzed per year and all different 
matrices in which DESs have been detected by MEKC and CE-LIF.

3.5. LC-MS

Despite being very sensitive, MEKC-LIF suffered for a limit in the quantitation of DESs. The 
procedure, based on the integration of peak corresponding to the two amino acids, was not 
free from errors which derived from the possible presence, under this peak, of small amounts 
of interfering substances. The advent of mass spectrometry-based approaches completely cir-
cumvented these technical limitation. In fact, the possibility of monitoring only selected ions 
and their fragments may lead to a higher chance for better analyses in terms of specificity 
and sensitivity. These technological advances have strongly increased the popularity of this 
approach, allowing liquid chromatography-mass spectrometry (LC-MS) to merge as the most 
popular protocol to date applied in the DESs field. In addition, only the extreme sensitivity 
and specificity of these techniques allowed, for the first time, very minute amounts of free 
DESs to be observed in urine after a simple clean up of the specimens. An example is the 
accurate measurement of DESs in urine and sputum of healthy volunteers and patients with 

Figure 2. The scheme indicates the number of samples analyzed per year in all different matrices in which DESs have 
been detected by MEKC and CE-LIF.
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previously diagnosed COPD [67]. A remarkable implementation of the analytical procedures, 
in terms of sensitivity and specificity, was indeed the coupling of ESI-MS to the HPLC sys-
tem. This platform drove the researchers to look forward and explore its potential also for 
the analysis of matrices other than urine. Once applied to sputum and plasma of AATD- and 
non-AATD-related COPD patients, this approach resulted in the production of very precise 
data which demonstrated that the amount of DESs in these matrices was significantly differ-
ent between the two cohorts [68]. In addition, the data allowed to hypothesize that it could 
be possible to differentiate patients with COPD of various phenotypes based on the levels of 
excreted DESs. A LC-MS/MS method with selected reaction monitoring (SRM) of transition 
ions was also standardized to obtain an accurate measurement, in all body fluids, of DESs 
as biomarkers for in vivo measurement of tissue elastin degradation in man and animals 
[69]. The data showed an increase of total DESs in sputum and plasma of COPD patients 
over normal controls along with an increase of free DESs in urine of these patients. The sug-
gestion that the total/free DESs ratio could be a possible parameter useful for studying the 
course of COPD and the response to therapy was also an interesting speculation. The mea-
surement of DESs in plasma, urine and sputum of COPD patients was also used as a useful 
tool to demonstrate therapeutic effects of different pharmacological interventions aimed at 
reducing elastin degradation in this disorder [70, 71]. The precision of LC-MS data seemed 
to indicate that DESs might indeed have a role as potential biomarkers for evaluating thera-
peutic effects of any treatment. The mentioned accuracy of the method was even increased 
by the use of deuterated DES (DES-d4) as internal standard in the LC-MS/MS analysis [72] 
and with the advent of ultra-performance liquid chromatography coupled to tandem mass 
spectrometry (UPLC-MS/MS) with selected reaction monitoring [73]. This was a further meth-
odological improvement that allowed to measure the level of DESs in small amounts of urine 
from patients with lymphangioleiomyomatosis, an elastin degrading disorder that, similarly 
to COPD, affects lung tissues. The LC-MS/MS analysis of DESs with the multiple reaction 
monitoring (MRM) acquisition modes for monitoring the transitions of interest was applied 
to urine of COPD patients, and to urine and blood of patients with COPD and asthma. This 
approach evidenced that while the elevation of urinary DESs levels was associated with the 
exacerbation status in COPD patients, blood DESs levels were strongly associated with age 
and were negatively correlated with lung diffusing capacity for carbon monoxide [12, 74, 
75]. From among the recently introduced high-sensitive techniques, a prominent position is 
also held by nano-LC-MS/MS. It has been applied to detect DESs in urine of: (i) COPD rapid 
decliners; (ii) COPD slow decliners; (iii) healthy smokers and healthy nonsmokers and also 
to detect hydroxyl-lysyl-pyridinoline and lysyl-pyridinoline as biomarkers for Chronic Graft-
versus-Host disease [76, 77]. These latter studies got the conclusion that the chemotherapy 
treatment had significant effect on the turnover of elastin and collagen.

Investigations performed to check the agreement between LC-MS and MEKC-LIF demon-
strated the compatibility of the two methods although the latter showed the tendency to over-
estimate DESs levels (likely due to the presence of interferents co-eluting with DESs peak) 
compared to the former [78]. Based on these results, the conclusion was drawn that, despite 
the advent of very sophisticated LC-MS/MS techniques, MEKC-LIF may still be considered a 
valuable method for assessment of DESs concentration in clinical investigations.
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4. Clinical validity of desmosines as biomarkers of lung disorders

Although the recent technological advancements have made the measurement of DESs more 
common practice, the question of whether these cross-links are ready to be introduced into 
the biomarker “hall of fame” is still unanswered. In fact, it remains unclear whether these 
surrogate markers can predict effects or clinically relevant endpoints of pulmonary disor-
ders. This is mainly due to a number of critical questions that, by making the clinical validity 
and utility of this assay controversial, need to be addressed. One of the major questions is 
the fact that elastic fibers, being present in many tissues including large elastic arteries and 
the dermis, are obviously not unique to lung interstitium. As a consequence, not necessarily 
an increase in elastin turnover could be primarily related to pulmonary diseases. Thus, the 
question arises whether increased DESs levels might be associated, for example, with accel-
erated elastin turn-over in the skin or major vessels. In this case, the use of DESs as markers 
of lung diseases will be inappropriate. However, the well-documented finding of DESs in 
sputum of individuals with pulmonary disorders and their good correlation with the lung 
conditions strongly supported the hypothesis that lung would be the major source of elastin 
cross-links in body fluids of these subjects. This being said, given that the analytical valida-
tion of a method is mandatory to guarantee the reliability of results, an equally important 
question is whether fully validated methods for DESs quantification are currently available. 
The rationale is that data of inadequate quality may lead to inaccurate patient monitoring 
and incorrect conclusions in clinical studies or over-/under-estimation of new drug effects.
The immunochemical tools for testing DESs, while being able to differentiate patients with 
lung disorders from healthy controls, evidenced a number of drawbacks. First of all, the 
matrix analyzed for their determination was mostly urine, a fluid not devoid of potential lim-
its. These included: (i) the use, in most cases, of single-point urine samples which are less rep-
resentative than urine collected over 24 h; (ii) the variability over time of urinary excretion of 
DESs in individuals with pulmonary disorders and (iii) the effect (never taken into account) 
that decreased renal function might have on DESs excretion into urine. Moreover, based on 
the absolute values determined (which were much higher than those observed with amino 
acid analysis or HPLC), immunochemical methods appeared to overestimate DESs, most 
likely because of the presence in urine of cross-reacting substances. The obvious consequence 
of such spurious elevation was the masking of important differences between controls and 
patients. Last but not least, the low size of individuals analyzed for each set of experiments 
was another limitation to be reckoned with. Thus, in spite of the efforts made to refine the 
data, it appeared clear that these methods, while being a tool for the measurement of urinary 
DESs, were not sufficiently powerful for pointing to these cross-links as biomarkers helpful 
for clinical use. The horizon was widened by the methodological progresses achieved with 
the advent of HPLC and CE that allowed DESs to be detected in a larger variety of human 
fluids. In particular, a tremendous improvement in data accuracy and reliability came from 
the combination of direct DESs analysis by CE-LIF, with an increase in sample size. This 
method of analysis had apparently the potential to provide important information in the 
understanding of the pathogenesis of pulmonary disorders in which degradation of lung 
elastin is believed to be an ongoing part of the disease process. In addition, at least in part, 
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it fulfilled its goal. The improved consistency of results allowed incontrovertible proofs of 
DESs differences existing among different groups of subjects or different clinical phenotypes 
within the group of patients affected by the same disease to be evidenced. However, since the 
effect of confounding factors (including gender, age and body mass index) which influence 
urinary DESs excretion was not considered, the clinical utility and validity of urinary DESs 
measurements remained unproven.

The application of new experimental strategies promoted by the rapid state of flux of this 
field, while allowing to dig deeper into the catabolism of elastin through the quantification 
of more and more minute amounts of DESs, did not answer the question of whether these 
cross-links could be considered surrogate markers of pulmonary diseases, in particular of 
COPD. Moreover, the lack of consensus on what should be quantified (free or total DESs, 
or DES + IDES) and in which biological fluid (plasma, sputum and urine) might obscure 
the view of these cross-links as reliable biomarkers for COPD diagnosis or prognosis. 
Nevertheless, the standardized methodologies already developed, together with the imple-
mentation of sample size and the taking into account of possible confounding factors, seem 
to indicate that DESs are mature to be addressed as candidate for becoming in the near future 
the “gold standard” for the study of COPD. Another important aspect of DESs validation is 
the longitudinal behavior and the relationship with progression and severity of the disease. 
Large longitudinal studies are necessary to confirm their predictive power for patients’ clini-
cal outcome. Indeed, these studies would add to the understanding of whether, besides their 
association with COPD in cross-sectional studies, DESs could be related to FEV1 decline 
and to the worsening of diffusing capacity in longitudinal cases, and perhaps to changes 
in lung CT scan densitometry. This would certainly confirm their capacity for monitoring 
progression of disease severity and response in effective interventional trials. In this context, 
something has already been done. After adjustment for age, sex, height, body mass index, 
and smoking status convincing evidence has been gained that, while urinary DESs had a sig-
nificant association with several lung function parameters (FEV1, FVC, RV, RV/TLC and DL, 
CO), plasma DESs correlated with FEV1, DL, and CO only. These correlations were much 
more pronounced in COPD subjects than in individuals without COPD. Of great interest 
was the finding that DESs can be independently influenced by a number of factors after 
adequately correcting for risk factors to avoid confounding results.

Thus, what has emerged from the scientific literature over the course of these years is that 
we are on the right path to utilizing these cross-links as valid tools or “biomarkers” in the 
differential diagnosis and clinical management of pulmonary diseases, COPD in particular. It 
remains to be seen whether DESs measurement could have an evidence-based role in stratify-
ing patients for specific treatment or prognosis.
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Abstract

Representative examples concerning the Pudovik and Kabachnik‐Fields reactions as the 
main strategies for the stereoselective synthesis of α‐aminophosphonic acids are dis‐
cussed, classifying these reactions according to the chiral auxiliary and chiral catalyst.

Keywords: α‐aminophosphonic acids, α‐aminophosphonates, stereoselective synthesis, 
Pudovik and Kabachnik‐Fields

1. Introduction

Optically active α‐aminophosphonic acids are the most important analogs of α‐amino acids, 
which are obtained by isosteric substitution of the planar and less bulky carboxylic acid (CO2H) 
by a sterically more demanding tetrahedral phosphonic acid functionality (PO3H2). Several α‐
aminophosphonic acids have been isolated from natural sources, either as free amino acids or as 
constituents of more complex molecules [1], such as the phosphonotripeptide K‐26 (Figure 1) [2].

The α‐aminophosphonic acids, α‐aminophosphonates, and phosphonopeptides are currently 
receiving significant attention in organic synthesis and medicinal chemistry as well as in 
agriculture, due to their biological and pharmacological properties. Additionally, the α‐ami‐
nophosphonic acids are used as key synthetic intermediates in the synthesis of phosphonic 
acids, phosphonamides, and phosphinates, which not only play an important role as protease 
inhibitors but also in the wide range of biochemical pathways (Scheme 1) [3].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The inhibitory activity of the α‐aminophosphonic acids and their derivatives has been attributed 
to the tetrahedral geometry of the substituents around the phosphonic moiety mimicking the 
tetrahedral high‐energy transition state of the peptide bond hydrolysis, favoring the inhibition 
of a broad spectrum of proteases and ligases (Scheme 2) [4].

Furthermore, it is well known that the biological activity of the α‐aminophosphonic acids and 
derivatives depends on the absolute configuration of the stereogenic α‐carbon to phosphorous 
[5]. For example, (R)‐phospholeucine is a more potent inhibitor of leucine aminopeptidase 
than the (S)‐phospholeucine [6], and (S,R)‐alaphosphalin shows higher antibacterial activity 
against both Gram‐positive and Gram‐negative microorganisms than the other three diaste‐
reoisomers [7]. Additionally, the L‐Pro‐L‐Leu‐L‐TrpP tripeptide acts as an MMP‐8 enzyme 
inhibitor, wherein the peptide responsible for the biological activity is that in which the three 
amino acids have L configuration (Figure 2) [8].

Scheme 2. 

Scheme 1. 

Figure 1. α‐Aminophosphonic acid analogs of α‐amino acids.
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In view of the different biological and chemical applications of the α‐aminophosphonic acids, 
nowadays the development of suitable synthetic methodologies for their preparation in opti‐
cally pure form is a topic of great interest and many reviews have been recently published 
concerning their stereoselective synthesis [9]. In this context, Pudovik and Kabachnik‐Fields 
reactions the main synthetic strategies for the stereoselective synthesis of α‐aminophosphonic 
acids will be described in this chapter.

2. Stereoselective C‐P bond formation (Pudovik methodology)

The diastereoselective and enantioselective hydrophosphonylation of aldimines and keti‐
mines, called as the Pudovik reaction, involves the addition of a phosphorus nucleophile 
agent over the corresponding imine, in such a way that one or both of the reactants can incor‐
porate a chiral auxiliary or nonchiral reagents may be reacted in the presence of a chiral cata‐
lyst (Scheme 3).

Figure 2. Importance of the chirality of the α‐aminophosphonic acids.

Scheme 3. Diastereo‐ and enantio‐selective synthesis of α‐aminophosphonic acids by Pudovik methodology.
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2.1. Chiral phosphorus compounds

One of the general methods for the synthesis of α‐aminophosphonic acids involves the dia‐
stereoselective hydrophosphonylation of achiral imines with chiral phosphites to introduce 
the phosphonate function, which by hydrolysis afforded the optically enriched α‐aminophos‐
phonic acids. For example, the nucleophilic addition of chiral C3‐symmetric trialkyl phosphite 2, 
obtained from the naturally occurring (1R,2S,5R)‐(–)‐menthol to the aldimine 1 in the presence 
of trimethylsilyl chloride (TMSCl) as an activator, provided the α‐aminophosphonate 3 in 60% 
yield and moderate induction at the α‐carbon atom (50% diastereoisomeric excess), which by 
hydrolysis with HCl in dioxane, followed by catalytic hydrogenolysis using Pd/C, produced the 
(R)‐phosphophenyl glycine 4 in 70% yield and with 95% enantiomeric excess (Scheme 4) [10].

Palacios et al. [11] proposed also the chiral cyclic (R,R)‐ α,α,α’,α’‐tetraphenyl‐2,2‐disubstituted 
1,3‐dioxolane‐4,5‐dimethanol (TADDOL) phosphite 5, derived from natural tartaric acid, as a 
suitable phosphorus nucleophile in the stereoselective synthesis of α‐aminophosphonic acids. 
In this context, the diastereoselective hydrophosphonylation reaction of N‐diphenylphosphi‐
noyl aldimines 6a,b with (R,R)‐TADDOL‐derived phosphite 5 in the presence of ZnEt2 and 
N,N,N’,N’‐tetramethylethylenediamine (TMEDA) in tetrahydrofuran (THF) at −80°C afforded 
the α‐aminophosphonates 7a,b in good yields and diastereoselectivities. Finally, the simultane‐
ous hydrolysis of (R,R)‐TADDOL phosphonate and diphenylphosphinoyl groups in the diaste‐
reoisomerically pure 7a,b with 4 N HCl, led to the optically pure (R)‐α‐aminophosphonic acids 
hydrochlorides (R)‐8a,b in 77 and 82% yield, respectively (Scheme 5).

Additionally, the (R,R)‐TADDOL framework has also proved its usefulness as a chiral auxil‐
iary in the diastereoselective addition of Grignard reagents to chiral α‐aminophosphonates. 
Thus, nucleophilic addition of chiral phosphite (R,R)‐5 to N‐tosylbenzaldimine 9 in the pres‐
ence of Et3N in toluene, afforded the α‐aminophosphonate 10 in 93% and 77:23 diastereoiso‐
meric ratio, which by oxidation and by treatment with trichloroisocyanuric acid (TCCA) and 
poly(4‐vinylpyridine), gave the α‐ketiminophoshonate 11 in 82% yield. Addition of methyl‐
magnesium bromide to 11, furnished the quaternary α‐aminophoshonate 12 in good yield 
and 94:6 diastereoisomeric ratio, which by hydrolysis with 10 M HCl, produced the optically 
enriched (S)‐α‐aminophosphonic acid 13 in 80% yield (Scheme 6) [12].

The Pudovik reaction has also been reported incorporating the chiral auxiliary attached not only 
to the phosphite residue, but also to the imine fragment. As a proof of concept, Olszewski and 

Scheme 4. 
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Majewski [13] reported the hydrophosphonylation reaction of (S)‐N‐tert‐butylsulfinylaldimines 
14a‐d with readily available chiral (R,R)‐TADDOL phosphite 5 in the presence of potassium 
carbonate in CH2Cl2 at room temperature, obtaining the α‐aminophosphonates 15a‐d in 80–87% 
yield and diastereoisomeric ratio (>95:5 d.r.). Simultaneous removal of both chiral auxiliaries in 
15a‐d by hydrolysis with 4 M HCl at 100°C, produced the (R)‐α‐aminophosphonic acids 4, 16a‐c 
in 78–92% yield (Scheme 7).

2.2. Imines from chiral carbonyl compounds

The hydrophosphonylation of chiral Schiff bases is another general method for the synthesis of 
optically enriched α‐aminophosphonates, which can be performed by addition of alkyl phos‐
phites to chiral imines readily obtained by condensation of chiral aldehydes with nonchiral 

Scheme 5. 

Scheme 6. 

Scheme 7. 
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amines. In this context, Bongini et al. [14] carried out the synthesis of (S,S)‐phosphothreonine 
19 through nucleophilic addition of trimethylsilyl diethyl phosphite to the chiral imine (S)‐17, 
obtained by condensation of (S)‐2‐triisopropylsilyloxy lactaldehyde and N‐trimethylsilyl amine. 
The reaction proceed in excellent way to give the β‐silyloxy‐α‐aminophosphonate (1S,2S)‐18 in 
85% yield and >98:2 syn/anti diastereoisomeric ratio. Cleavage of the O‐SiMe3 bond and hydro‐
lysis of the diethyl phosphonate in (S,S)‐18 with 6 N HCl provided the (1S,2S)‐phosphothreo‐
nine 19 in quantitative yield. Under identical conditions, the (1R,2R)‐phosphothreonine 19 was 
obtained starting from the enantiopure aldimine (R)‐17 (Scheme 8).

2.3. Imines from chiral amino compounds

On the other hand, the stereoselective hydrophosphonylation of chiral Schiff bases can also 
be conducted by addition of alkyl phosphites to chiral imines readily obtained by condensa‐
tion of nonchiral aldehydes with chiral amines. For example, the nucleophilic addition of 
dimethyl phosphite to the imine (S)‐20, readily obtained from the condensation of isobutyr‐
aldehyde and (S)‐α‐methylbenzylamine at 140°C, under solvent‐free conditions, afforded the 
α‐aminophosphonates (R,S)‐21 and (S,S)‐22 with a 85:15 diastereoisomeric ratio. Hydrolysis 
of the phosphonates in (R,S)‐21 and (S,S)‐22 followed by separation and hydrogenolysis using 
Pd(OH)2/C afforded the (R)‐ValP 16a in 65–70% yield. The (S)‐ValP 16a was obtained also from 
(R)‐α‐methylbenzylamine‐derived imine (Scheme 9) [15].

On the other hand, Vovk et al. [16] carried out the addition of sodium diethyl phosphite to the 
imine (S)‐23, obtaining the α‐aminophosphonate (S,R)‐24 in 98% yield and 95% diastereoiso‐
meric excess. Hydrogenolysis of the chiral auxiliary in (S,R)‐24 and hydrolysis of the diethyl 
phosphonate with trimethylsilyl bromide (TMSBr) in chloroform followed by the treatment 
with methanol gave the enantiomerically pure (R)‐α‐aminophosphonic acid 25 (Scheme 10).

Nucleophilic addition of triethyl phosphite to the chiral base imines (S)‐26a‐c bearing (S)‐1‐
(α‐aminobenzyl)‐2‐naphthol, promoted by trifluoroacetic acid (TFA) in toluene at room 

Scheme 9. 

Scheme 8. 
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temperature and subsequent crystallization, provided the α‐aminophosphonates (S,S)‐27a‐c 
in 44–57% yield and with excellent diastereoisomeric excess (>98%), which by cleavage of 
the chiral auxiliary and hydrolysis of the diethyl phosphonate with HCl in 1,4‐dioxane at 
80°C, afforded the (S)‐α‐aminophosphonic acids 4, 28a,b in 76–88% yield (Scheme 11) [17]. 
Additionally, the (R)‐α‐aminophosphonic acid 4 was obtained also starting from the aldi‐
mine (R)‐26c.

Smith et al. explored the generality of the diastereoselective addition of the lithium salt of 
diethyl phosphite to a variety of imines. Thus, addition of LiPO3Et2 to aldimines (R)‐29a‐c 
bearing the methyl ether of (R)‐phenylglycinol as chiral auxiliary, furnished the α‐amino‐
phosphonates (R,R)‐30a‐c in 37–81% yield and 96 to >99% diastereoisomeric excess. Cleavage 
of the chiral fragment in (R,R)‐30a‐c by hydrogenolysis using Pd(OH)2/C followed by hydro‐
lysis of the diethyl phosphonate with concentrated HCl at 100°C gave the enantiomerically 
pure (R)‐GluP 31a, (R)‐LeuP 31b, and (R)‐MetP31c in 55–74% yield (Scheme 12) [18].

The readily available chiral sulfinimides [19] containing an aryl‐ or tert‐butylsulfinyl moiety 
represent valuable chiral auxiliaries in stereoselective synthesis [20]. In this regard [21], the 
nucleophilic addition of the lithium salt of the diethyl phosphite to the enantiopure imine 
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(S)‐32a [22, 23], readily obtained by condensation of (S)‐p‐toluenesulfinamide with benzalde‐
hyde gave the α‐aminophosphonate (SS,RC)‐33a in 85% yield and 92:08 diastereoisomeric ratio. 
When the lithium salt of bis(diethylamido) phosphite was reacted with (S)‐32a, the α‐amino‐
phosphonate (SS,SC)‐33b was obtained in good yield and diastereoselectivity [24]. Cleavage 
of the chiral auxiliary and hydrolysis of the diethyl phosphonate and diamidophosphite in 
(SS,RC)‐33a and (SS,SC)‐33b with hydrochloric acid in acetic acid at 100°C led to the enantio‐
merically pure (R)‐ and (S)‐phosphophenyl glycine 4 (Scheme 13).

Mikolajczyk et al. [25] reported the addition of the lithium salt of the bis(diethylamido)phos‐
phine borane complex to the p‐toluenesulfinyl imines (S)‐32a‐e in THF at −78°C, obtaining 
mainly the (SS,SC)‐34a‐e diastereoisomers in 72–100% yield. Finally, cleavage of the N‐sulfi‐
nyl auxiliary and hydrolysis of the bis(diethylamido)phosphine borane function with hydro‐
chloric acid in acetic acid at reflux gave the (S)‐α‐aminophosphonic acids 4, 16b,c, 28b, 35 in 
75–93% yield and 76 to >98% enantiomeric excess. Under identical conditions, the (R)‐α‐ami‐
nophosphonic acids (R)‐4, 16b,c, 28b, 35 were obtained from the imines (R)‐32a‐e (Scheme 14).

On the other hand, the addition of the lithium salt of diethyl phosphite to the enantiopure 
p‐toluenesulfinyl imines (S)‐36a‐c, readily obtained by the Ti(OEt)4 catalyzed condensation 
of (S)‐p‐toluenesulfinamide with the corresponding ketones [26], furnished the α‐amino‐
phosphonates (SS,RC)‐37a‐c in 73–97% yield and excellent diastereoisomeric ratio (>99:1 d.r.). 
Cleavage of the chiral auxiliary and hydrolysis of the diethyl phosphonate in (SS,RC)‐37a‐c 
with 10 N HCl at reflux followed by the treatment with propylene oxide led to the (R)‐α‐ami‐
nophosphonic acids 38a‐c in 68–84% yield (Scheme 15) [23].

With the aim of obtaining the phosphonic analog of aspartic acid (R)‐42, Mikołajczyk et al. [27] 
reported the nucleophilic addition of the lithium salt of diethyl phosphite to the enantiopure 
sulfinylaldimine (S)‐39 at −78°C in THF, obtaining the α‐aminophosphonate (RC,SS)‐40 in 62% 
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yield and 16:1 diastereoisomeric ratio. Ozonolysis of diastereoisomerically pure (RC,SS)‐40 fol‐
lowed by NaBH4 reduction, provided the α‐aminophosphonate (RC,SS)‐41 in 99% yield, which 
under Mitsunobu reaction conditions led to the cyanide, that by hydrolysis with HCl in AcOH 
gave the phosphoaspartic acid (R)‐42 in 53% yield (Scheme 16).

The N‐tert‐butylsulfinyl group activates the imines for the nucleophilic addition, serves as a 
powerful chiral directing group and after the addition reaction is readily cleaved upon treat‐
ment of the product with acid. Competitive nucleophilic attack at the sulfur atom is mini‐
mized in the addition to N‐tert‐butylsulfinyl imines versus N‐p‐tolylsulfinyl imines, due to 
the greater steric hindrance and reduced electronegativity of the tert‐butyl group relative to 
the p‐tolyl moiety [28]. Under this context, reaction of the chiral N‐tert‐butylsulfinyl imines 
(S)‐43a‐e with dimethyl phosphite in the presence of K2CO3 in Et2O at room temperature gave 
the α‐aminophosphonates (SS,RC)‐44a‐e in 80–85% yield and with >95% diastereoisomeric 
excess, which by simultaneous cleavage of the sulfinyl group and hydrolysis of the diethyl 
phosphonate with 10 N HCl at reflux, followed by treatment with propylene oxide, produced 
the (R)‐α‐aminophosphonic acids 13, 38a, 45a‐c in 83–88% yield (Scheme 17) [29].

On the other hand, the addition of diethyl trimethylsilyl phosphite to chiral N‐tert‐butyl‐sulfinyl‐
aldimine (S)‐46 afforded the α‐aminophosphonate (SC,SS)‐47 in 69% yield and 84% diastereoiso‐
meric excess. Cleavage of the N‐tert‐butylsulfinyl group in (SC,SS)‐47 with 4 N HCl in methanol, 
produced the α‐aminophosphonate (S)‐48 in 89% yield. Finally, the hydrolysis of the diethyl 
phosphonate in (S)‐48 with 10N HCl at reflux followed by the treatment with propylene oxide 
gave the enantiomerically pure (S)‐phosphonotrifluoroalanine 49 in 96% yield (Scheme 18) [30].
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Lu et al. [31] reported the addition of diethyl phosphite to the enantiopure sulfinylketimines 
(R)‐50a‐c, to obtain the quaternary α‐aminophosphonates (SC,RS)‐51a‐c in 73–84% yield and 
8:1–43:1 diastereoisomeric ratio. Cleavage of the N‐tert‐butylsulfinyl group and hydrolysis of 
the diethyl phosphonate in (SC,RS)‐51a‐c with 6 N HCl at reflux, led to the enantiomerically 
pure α‐aminophosphonic acids (S)‐52a‐c in excellent yield (Scheme 19).

On the other hand, the sugar‐derived nitrones have also emerged as valuable synthetic 
intermediates in the stereoselective synthesis of α‐aminophosphonic acids. For example, 
the hydrophosphonylation reaction of the nitrones 53a‐c with the lithium salt of diethyl or 
dibenzyl phosphite, provided the N‐glycosyl‐α‐aminophosphonates 54a‐c in 41–63% yield 
and 90–98.7% diastereoisomeric excess, which by hydrolysis of the sugar fragment and the 
phosphonate with concentrated HCl and subsequent cleavage of the N‐OH bond by hydro‐
genation using Pd/C, afforded the optically enriched α‐aminophosphonic acids (S)‐16a, 55a,b 
in 36–80% yield. Additionally, the nucleophilic addition of tris(trimethylsilyl) phosphite to 
the enantiomerically pure nitrone 53c in the presence of HClO4 followed by hydrolysis of 
the sugar fragment and the phosphonate, led to the N‐hydroxyphosphovaline (R)‐56 in 78% 

Scheme 18. 

Scheme 19. 

Scheme 17. 

Amino Acid - New Insights and Roles in Plant and Animal136



Lu et al. [31] reported the addition of diethyl phosphite to the enantiopure sulfinylketimines 
(R)‐50a‐c, to obtain the quaternary α‐aminophosphonates (SC,RS)‐51a‐c in 73–84% yield and 
8:1–43:1 diastereoisomeric ratio. Cleavage of the N‐tert‐butylsulfinyl group and hydrolysis of 
the diethyl phosphonate in (SC,RS)‐51a‐c with 6 N HCl at reflux, led to the enantiomerically 
pure α‐aminophosphonic acids (S)‐52a‐c in excellent yield (Scheme 19).

On the other hand, the sugar‐derived nitrones have also emerged as valuable synthetic 
intermediates in the stereoselective synthesis of α‐aminophosphonic acids. For example, 
the hydrophosphonylation reaction of the nitrones 53a‐c with the lithium salt of diethyl or 
dibenzyl phosphite, provided the N‐glycosyl‐α‐aminophosphonates 54a‐c in 41–63% yield 
and 90–98.7% diastereoisomeric excess, which by hydrolysis of the sugar fragment and the 
phosphonate with concentrated HCl and subsequent cleavage of the N‐OH bond by hydro‐
genation using Pd/C, afforded the optically enriched α‐aminophosphonic acids (S)‐16a, 55a,b 
in 36–80% yield. Additionally, the nucleophilic addition of tris(trimethylsilyl) phosphite to 
the enantiomerically pure nitrone 53c in the presence of HClO4 followed by hydrolysis of 
the sugar fragment and the phosphonate, led to the N‐hydroxyphosphovaline (R)‐56 in 78% 

Scheme 18. 

Scheme 19. 

Scheme 17. 

Amino Acid - New Insights and Roles in Plant and Animal136

yield, which by hydrogenation of the N–OH bond and treatment with 1 N HCl, gave the (R)‐
ValP 16a in 71% yield and 95.4% enantiomeric excess (Scheme 20) [32].

Huber and Vasella [33] reported the synthesis of optically enriched (S)‐ValP 16a and (S)‐SerP 
55b from the enantiopure nitrones 53a,b with a slight modification of the reaction conditions. 
Thus, the nucleophilic addition of tris(trimethylsilyl) phosphite to the sugar‐derived nitrones 
53a,b catalyzed by ZnCl2/HCl afforded directly the corresponding α‐aminophosphonic 
acids (S)‐16a, 55b in good yield and with 43.8 and 87.7% enantiomeric excess, respectively 
(Scheme 21).

Similarly, the addition of tris(trimethylsilyl) phosphite to the enantiopure nitrone 57 in the 
presence of Zn(OTf)2 at −40°C and subsequent treatment with 1 N HCl in MeOH, led to the 
N‐hydroxy‐α‐aminophosphonic acid (R)‐58 in 71% yield, which by cleavage of the N‐OH 
bond by hydrogenation using Pd(OH)2/C, provided the (R)‐MetP 31c in 88% yield and 76.8% 
enantiomeric excess (Scheme 22) [33].
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2.4. Chiral catalyst

Catalytic asymmetric synthesis is one of the most important topics in modern synthetic 
chemistry and is considered the most efficient methodology to bring about the synthesis of 
enantiomerically pure compounds [34]. For example, the hydrophosphonylation reaction 
of N‐sulfonylaldimine 59 with diphenyl phosphite in the presence of catalytic amounts of 
hydroquinine gave the (S)‐α‐aminophosphonate 60 in quantitative yield and excellent enan‐
tiomeric excess (>99%). Cleavage of the N‐sulfonyl group in (S)‐60 by treatment with Mg in 
AcOH/AcONa and N,N‐dimethylformamide (DMF) afforded the (S)‐α‐aminophosphonate 61 
in 86% yield, which by hydrolysis of the diphenyl phosphonate with HBr in acetic acid fol‐
lowed by treatment with propylene oxide, produced the (S)‐phosphophenyl glycine 4 in 83% 
yield and 98% enantiomeric excess (Scheme 23) [35].

In order to obtain the optically enriched (R)‐phosphophenyl glycine 4, Wang et al. [36] carried 
out the nucleophilic addition of diethyl phosphite to the N‐benzoylimine 62 in the presence 
of catalytic amounts of (S,S)‐63 and ZnMe2, obtaining the (R)‐α‐aminophosphonate 64 in 91% 
yield and >99% enantiomeric excess. Simultaneous hydrolysis of the diethyl phosphonate and 
N‐benzoyl group in (R)‐64 with concentrated HCl at reflux, produced the optically enriched 
(R)‐phosphophenyl glycine 4 in 96% yield (Scheme 24).

On the other hand, Joly and Jacobsen [37] reported that the addition of di(o‐nitrobenzyl) phos‐
phite to the achiral N‐benzyl aldimines 1, 65a,b in the presence of catalytic amounts of the 
chiral urea 66, produced the (R)‐α‐aminophosphonates 67a‐c in 87–93% yield and 90–98% 
enantiomeric excess. Finally, the simultaneous cleavage of the di(o‐nitrobenzyl) phosphonate 

Scheme 22. 

Scheme 23. 

Amino Acid - New Insights and Roles in Plant and Animal138



2.4. Chiral catalyst

Catalytic asymmetric synthesis is one of the most important topics in modern synthetic 
chemistry and is considered the most efficient methodology to bring about the synthesis of 
enantiomerically pure compounds [34]. For example, the hydrophosphonylation reaction 
of N‐sulfonylaldimine 59 with diphenyl phosphite in the presence of catalytic amounts of 
hydroquinine gave the (S)‐α‐aminophosphonate 60 in quantitative yield and excellent enan‐
tiomeric excess (>99%). Cleavage of the N‐sulfonyl group in (S)‐60 by treatment with Mg in 
AcOH/AcONa and N,N‐dimethylformamide (DMF) afforded the (S)‐α‐aminophosphonate 61 
in 86% yield, which by hydrolysis of the diphenyl phosphonate with HBr in acetic acid fol‐
lowed by treatment with propylene oxide, produced the (S)‐phosphophenyl glycine 4 in 83% 
yield and 98% enantiomeric excess (Scheme 23) [35].

In order to obtain the optically enriched (R)‐phosphophenyl glycine 4, Wang et al. [36] carried 
out the nucleophilic addition of diethyl phosphite to the N‐benzoylimine 62 in the presence 
of catalytic amounts of (S,S)‐63 and ZnMe2, obtaining the (R)‐α‐aminophosphonate 64 in 91% 
yield and >99% enantiomeric excess. Simultaneous hydrolysis of the diethyl phosphonate and 
N‐benzoyl group in (R)‐64 with concentrated HCl at reflux, produced the optically enriched 
(R)‐phosphophenyl glycine 4 in 96% yield (Scheme 24).

On the other hand, Joly and Jacobsen [37] reported that the addition of di(o‐nitrobenzyl) phos‐
phite to the achiral N‐benzyl aldimines 1, 65a,b in the presence of catalytic amounts of the 
chiral urea 66, produced the (R)‐α‐aminophosphonates 67a‐c in 87–93% yield and 90–98% 
enantiomeric excess. Finally, the simultaneous cleavage of the di(o‐nitrobenzyl) phosphonate 

Scheme 22. 

Scheme 23. 

Amino Acid - New Insights and Roles in Plant and Animal138

and N‐Bn bond by hydrogenolysis in (R)‐67a‐c using Pd/C in MeOH afforded the enantio‐
merically enriched (R)‐α‐aminophosphonic acids 4, 31b, 68 in 87–96% yield and excellent 
enantioselectivity (Scheme 25).

Another exceptional example of the chiral catalyst approach is reported by Shibasaki et al. 
[38] who found that the catalytic hydrophosphonylation of the aldimine 69 in the presence of 
the lanthanoid‐potassium‐1,1’‐bi‐2‐naphthol (BINOL) complex [(R)‐LPB] afforded the (R)‐α‐
aminophosphonate 70 in 70% yield and 96% enantiomeric excess. Cleavage of p‐anisylmethyl 
fragment and simultaneous hydrolysis of the dimethyl phosphonate in (R)‐70 with concen‐
trated HCl at reflux, produced the enantiomerically enriched (R)‐ValP 16a (Scheme 26).

Scheme 24. 
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3. Stereoselective C‐P bond formation (Kabachnik‐Fields methodology)

Another important method for the stereoselective synthesis of α‐aminophosphonic acids is 
the “one‐pot” three‐component reaction, known as the Kabachnik‐Fields reaction. In this 
process, the reactants (carbonyl compound, amine and the phosphorus nucleophile agent) 
are placed all together to give the diastereo or enantiomerically pure α‐aminophosphonates, 
which are easily transformed into the corresponding α‐aminophosphonic acids. To induce 
the stereochemistry in the α‐aminophosphonates, the chirality inducer may be at the source of 
phosphorus, in the amine, in the aldehyde or ketone, or in a chiral catalyst. Additionally, the 
reactions are carried out in solvent or under solvent free conditions (Scheme 27).

3.1. Chiral phosphorus compounds

The “one‐pot” three‐component reaction of benzyl carbamate, benzaldehyde, and diethyl 
(R,R)‐2‐chloro‐1,3,2‐dioxaphospholane‐4,5‐dicarboxylate 71, readily obtained from the reac‐
tion of diethyl L‐tartrate with phosphorous trichloride, followed by dioxaphospholane ring 
opening with H2O, led to the α‐aminophosphonates (R,R,R)‐72 and (S,R,R)‐73 in 40% yield 
and 1.9:1.0 diastereoisomeric ratio. Saponification of diastereoisomer (R,R,R)‐72 gave the 
(R)‐N‐Cbz‐phosphophenyl glycine 74 in 53% yield (Scheme 28) [39].

On the other hand, Xu and Gao [40] carried out the stereoselective synthesis of the depsiphos‐
phonopeptides 76 and 77, as key intermediates in the synthesis of α‐aminophosphonic acids. 
Thus, the three‐component reaction of (R)‐1‐carboethoxy phosphorodichloridite 75 with ben‐
zyl carbamate and benzaldehyde in benzene at room temperature and subsequent treatment 
with H2O, produced the depsiphosphonopeptides (S,R)‐76 and (R,R)‐77 in 86% yield and 

Scheme 27. Diastereo and enantioselective synthesis of α‐aminophosphonic acids by Kabachnik‐Fields methodology.
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85:15 diastereoisomeric ratio. Saponification of the phosphonic ester in the diastereoisomeri‐
cally pure (S,R)‐76 followed by hydrogenolysis of N‐Cbz bond using Pd/C in AcOH gave the 
enantiomerically pure (S)‐phosphophenyl glycine 4 in 57% yield (Scheme 29).

3.2. Chiral carbonyl compounds

In order to prepare conformationally restricted α‐aminophosphonic acids, Fadel et al. [41] 
carried out the TMSCl promoted three‐component reaction of the chiral ketal (2S)‐78 with 
(S)‐α‐methylbenzylamine hydrochloride and triethyl phosphite in EtOH at 55°C, obtaining 
the α‐aminophosphonates (1S,2S)‐79 and (1R,2S)‐80 in 80% yield and 87:13 diastereoisomeric 
ratio. Cleavage of the methylbenzyl fragment by hydrogenolysis in the major diastereoisomer 
(1S,2S)‐79 using Pd(OH)2/C in EtOH at room temperature, provided the α‐aminophospho‐
nate (1S,2S)‐81 in 82% yield, which by hydrolysis of the diethyl phosphonate with trimethylsi‐
lyl iodide (TMSI) followed by treatment with propylene oxide, produced the enantiomerically 
pure (1S,2S)‐1‐amino‐2‐methylcyclopropane phosphonic acid 82 in 86% yield (Scheme 30).

Similarly, the one‐pot reaction of chiral ketal (2S)‐78, (R)‐phenylglycinol and triethyl phos‐
phite catalyzed by TMSCl in ethanol at 55°C, led to the α‐aminophosphonates (1S,2S)‐83 and 
(1R,2S)‐84 in 71% yield and 89:11 diastereoisomeric ratio. Hydrogenolysis of diastereoisomeri‐
cally pure (1S,2S)‐83 over Pearlman’s catalyst in EtOH, provided the α‐aminophosphonate 
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monoester (1S,2S)‐85 in 79% yield. Finally, hydrolysis of (1S,2S)‐85 with TMSI followed by 
treatment with propylene oxide afforded the enantiomerically pure α‐aminophosphonic acid 
(1S,2S)‐82 in 87% yield. In a similar way, the α‐aminophosphonate (1R,2S)‐84 was transformed 
into α‐aminophosphonic acid (1R,2S)‐86 (Scheme 31) [42].

3.3. Chiral amino compounds

The “one‐pot” three‐component reaction of (S)‐α‐methylbenzylamine, anhydrous hypo‐
phosphorous acid and different aldehydes in EtOH at reflux, furnished the corresponding 
α‐aminophosphonous acids (S,R)‐88a‐e as a single diastereoisomers in 19–50% yield, which 
by treatment with bromine water solution at 70°C and subsequent treatment with propyl‐
ene oxide, gave the enantiomerically pure (R)‐α‐aminophosphonic acids 4, 16a, 31b, 89a,b in 
65–88% yield (Scheme 32). Using (R)‐α‐methylbenzylamine as starting material, the (S)‐α‐
aminophosphonic acids 4, 16a, 31b, 89a,b were obtained in good yields [43].

Scheme 30. 

Scheme 31. 
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On the other hand, Fadel et al. [44] carried out the “one‐pot” reaction of N‐Boc‐piperidin‐3‐
one, (S)‐α‐methylbenzylamine (X = H), triethyl phosphite and AcOH as catalyst in ethanol at 
50°C, to obtain the quaternary α‐aminophosphonates (3R,1ꞌS)‐90 and (3S,1ꞌS)‐91 in 75% yield 
and 60:40 diastereoisomeric ratio. The use of (S)‐α‐methoxymethylbenzylamine (X = OMe) as 
chiral amine in this three‐component reaction afforded the α‐aminophosphonates (3R,1ꞌR)‐92 
and (3S,1ꞌR)‐93 in 55% yield and with the same diastereoisomeric ratio (60:40). Cleavage of 
N‐Boc bond with TFA at room temperature, chromatographic separation, and removal of the 
chiral fragment by hydrogenolysis using Pd(OH)2/C in each pure diastereoisomer, furnished 
the quaternary (R)‐ and (S)‐α‐aminophosphonates 94 in good yield. Finally, the hydrolysis 
of diethyl phosphonate in (R)‐ and (S)‐94 with 6 M HCl at reflux followed by treatment with 
propylene oxide gave the enantiomerically pure α‐aminophosphonic acids (R)‐ and (S)‐95 in 
98% yield (Scheme 33).

Enantiomerically pure carbamates and urea have also shown a potential as chiral auxiliaries in 
the stereoselective synthesis of α‐aminophosphonic acids. For example, the “one‐pot” reaction 
of carbamate 96, readily obtained from naturally occurring (–)‐menthol or the urea 97 derived 
from (S)‐α‐methylbenzylamine, with acetaldehyde or propionaldehyde and triphenyl phos‐
phite in the presence of acetic acid as catalyst, provided the α‐aminophosphonates (R)‐98, which 
by hydrolysis with concentrated HCl followed by treatment with propylene oxide, afforded the 
(R)‐AlaP 55a and (R)‐ValP 16a in moderate yield but low enantiomeric excess (Scheme 34) [45].

Scheme 32. 

Scheme 33. 

Stereoselective Synthesis of α‐Aminophosphonic Acids through Pudovik and Kabachnik‐Fields Reaction
http://dx.doi.org/10.5772/intechopen.68707

143



3.4. Chiral catalyst

The development of methodologies under chiral catalysis protocols has become one of the 
most relevant issues in the field of modern synthetic chemistry [46]. In this respect, List et al. 
[47] described the Kabachnik‐Fields reaction of 2‐cyclopentyl‐2‐phenylacetaldehyde, p‐anisi‐
dine and di‐(pent‐3‐yl) phosphite in the presence of catalytic amounts of the chiral phosphoric 
acid (S)‐99 in cyclohexane at 50°C, obtaining the (R,R)‐α‐aminophosphonate 100 in 86% yield 
with both high diastereoisomeric and enantiomeric ratio. Removal of p‐methoxyphenyl frag‐
ment with cerium ammonium nitrate (CAN) followed by the hydrolysis of the diethyl phos‐
phonate in (R,R)‐100 with TMSBr, produced the optically enriched (R,R)‐α‐aminophosphonic 
acid 101 in 54% yield (Scheme 35).

In another example, Shibata et al. [48] reported that the reaction of benzaldehyde, p‐anisidine, 
and di‐(o‐methoxyphenyl) phosphite in the presence of catalytic amounts of Zn(NTf2)2 and 
102 as chiral ligand in CH2Cl2 at −50°C gave the (S)‐α‐aminophosphonate 103 in 99% yield and 
90% enantiomeric excess. Removal of p‐methoxyphenyl group in (S)‐103 was accomplished 

Scheme 34. 
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by treatment with N‐bromosuccinimide (NBS), obtaining the (S)‐α‐aminophosphonate 104 in 
55% yield without racemization, which by hydrolysis of the phosphonate with HBr/AcOH 
followed by treatment with propylene oxide, led to the optically enriched (S)‐phosphophenyl 
glycine 4 in 91% yield and 92% enantiomeric excess (Scheme 36).
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Abstract

The relevance of the homochirality of proteinogenic amino acids for life is undisputed, 
but also to their D-enantiomers a growing number of biological functions could be 
assigned. When it comes to D-amino acids in plants, information was relatively scarce for 
a long time. Nowadays, also in this field, knowledge is growing which will be presented 
and discussed in this review. In this respect, it was shown that D-amino acids are taken 
up by plants from soil but could also be synthesized de novo. Investigations of plant 
D-amino acid metabolism as well as other studies revealed a central function of D-Ala 
in plants, which await further elucidation. Also other D-amino acids are shown to cause 
physiological effects in plants, ranging from nitrogen utilization over stress adaptation to 
chloroplast division, and indicate that D-amino acids are responsible for a variety of yet 
poorly understood or even undiscovered functions in plants.

Keywords: D-amino acids in plants, D-amino acid biochemistry, functions of D-amino 
acids in plants and bacteria, D-alanine

1. Introduction

L-amino acids (L-AAs) are the basis of life on our planet (and maybe also on other  animate 
ones), mainly due to their property to be the building blocks of all proteins. These  proteinogenic 
amino acids are also one of the fundamentals of the universality of the genetic code. The limi-
tation of protein coding sequences on 20 different L-AAs was one of the key developments in 
evolution to ensure the compatibility between different life forms, regardless if they belong to 
the same species or if their genetic material is exchanged between a bacterial pathogen and its 
plant host, as it is the case in the Agrobacterium-plant relationship.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In the course of limitation to 20 proteinogenic amino acids, also the convention of exclusive 
usage of L-AAs (homochirality) in the primary structure of proteins evolved to ensure the 
intended structure and functionality of a protein. But since the very beginning of evolution 
also the enantiomers of L-AAs, the D-amino acids (D-AAs) were existent. These D-AAs are 
mainly products of abiotic and enzymatic racemization of L-AAs [1] or synthesized by ami-
notransferases from other D-AAs [2]. One possibility of organisms during evolution to handle 
D-AAs would have been to develop mechanisms for their elimination. But instead almost all 
organismal classes in the tree of life learned to live with substantial amounts of D-AAs and 
even made use of them. One prominent example of such usage is the bacterial cell wall. It 
contains many layers of peptidoglycan, polysaccharide chains cross linked by oligopeptides. 
Parts of these oligopeptides are D-AAs, especially D-Ala and D-Glu, which protect the cell 
due to their resistance to cleavage by conventional proteases [3].

The decay of the bacterial cell wall is also one of the major sources of D-AAs in soil [4] and 
the reason why plants are specifically surrounded and challenged by D-AAs. In soil samples, 
almost all D-enantiomers of proteinogenic amino acids could be found in significant amounts 
[4–7]. For a long time, it was assumed that D-AAs are just inhibitory for plant growth and 
therefore plants evolved mechanisms to avoid and eliminate them. But recent studies have 
shown that plants are instead able to import D-AAs and metabolize them. They even synthe-
size D-AA themselves for physiological reasons, which raised the question about the benefi-
cial effects of D-AAs for plants. In this review, we want to summarize the current knowledge 
about these processes and highlight different aspects and questions of future research with a 
focus on Arabidopsis thaliana as a model plant to investigate D-AAs in plants.

2. How do D-AAs get into the plant?

It is a widely accepted fact that plants harbour free D-AAs as they could be identified in 
 different plant species and tissues [8–12]. In this regard, the question arose, if all these amino 
acids are synthesized by plants themselves or also taken up from the soil. By detecting various 
D-AAs in seedlings of runner and soy beans, garden and water cress, as well as alfalfa, raised 
on amino acid free media in Ref. [10], first indirect indications were given that these plants 
are able to synthesize D-AAs de novo. This hypothesis was supported by the  discovery, 
identification and characterization of alanine, serine and isoleucine racemases from different 
plant species [13–16]. The toxicity of D-AAs on Arabidopsis [12, 17] and the toxic effect of 
D-Ser on other species [18] were first hints for a general D-AA uptake mechanism in plants. 
Furthermore, it was shown that almost all D-enantiomers of proteinogenic amino acids could 
be detected in Arabidopsis plants after their exogenous application [12, 19]. The direct uptake 
of D-Ala and its utilization could be demonstrated for the first time in wheat [20].

At that point, it was interesting which transporters are involved in the uptake of D-AAs and 
which properties they have. One of the first hints in this respect was given by the works of 
Ref. [21]. In an initial screen, they germinated Arabidopsis mutants on 3 mM D-Ala, a toxic 
D-Ala concentration for wild-type plants and found plants to survive with mutations in the 
LYSINE HISTIDINE TRANSPORTER 1 (LHT1) gene. Furthermore, the uptake for D-Ala in 
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these plants was reduced by more than 90% in these mutants. Also the uptake of many other 
D-AAs was found to be reduced in lht1 mutants [12]. This was the first evidence that a broad 
range specificity L-AA transporter in plants was also able to take up D-AAs from soil. A sec-
ond example for plant D-AA transporters are the proline transporters of A. thaliana (AtProTs); 
they facilitate the uptake of L- and D-Pro, and mutants of AtProT2 show reduced sensitivity 
against D-Pro [22].

These reports implied that transporters involved in the uptake and transport of L-AAs could 
also be responsible for the same processes of D-AAs. That D-AA transporting proteins are 
most probably not restricted to the LHT, and ProT families were given by experiments of 
our group: in toxicity tests, performed as described before [12], an Arabidopsis mutant of 
LHT1 was confirmed to be less sensitive against D-Ala than the corresponding wild type 
(Figure 1A). A mutant of AAP1, belonging to the Amino Acid Permease family and shown to 
be responsible for root uptake of uncharged L-AAs [23], revealed a higher resistance against 
D-Met and D-Phe than Col-0 (Figure 1B and C). This result implies that AAP1 is involved in 
the import of D-AAs, specifically of D-Met and D-Phe.

For these diagrams, different mutants and their corresponding background line Col-0 were 
germinated for 14 days in ½ MS + 1% sucrose including different D-AAs. Afterward the fresh 

Figure 1. Seed growth inhibition of D-AAs on different transporter mutants compared to their corresponding 
background accession Col-0.

D-Amino Acids in Plants: New Insights and Aspects, but also More Open Questions
http://dx.doi.org/10.5772/intechopen.68539

157



weight was recorded. For each measurement, three times eight seedlings were measured. 
In (A), lht1 was treated with D-Ala, in (B) and (C), aap1 was treated with D-Met and D-Phe, 
respectively, and in (D), mrp5 was treated with D-Phe. Mutant values are always represented 
by grey blocks, control values in black blocks. All values are calculated and given in relation 
to the untreated control seedlings. Error bars indicate standard deviation.

But the interpretation of toxicity experiments using transporter mutants should be handled 
with care as another example shows: in a series of toxicity tests with different D-AAs, an 
Arabidopsis mutant of AtMRP5 showed less resistance against D-Phe compared to the cor-
responding control (Figure 1D), instead of increased resistance like in the case of the tested 
AAP1 mutant (Figure 1C). AtMRP5 belongs to a gene family of 14 ABC transporters in the 
Arabidopsis genome [24] and found to transport inositol phosphate for phytate storage 
[25]. A functionality as amino acid transporter has not been reported for this protein, yet. 
Surprisingly, at mrp5 mutant allele showed also drastically reduced root exudation of almost 
all L-AAs [26]. It is tempting to speculate whether the reduced D-Phe resistance of the mrp5 
mutant in our experiments may be a consequence of reduced exudation of this amino acid, 
which may lead to accumulation of it to toxic levels.

Altogether the presented studies in this chapter indicate that plants seem to take up D-AAs 
actively from their rhizosphere. As also shown above candidate transporter proteins for this 
uptake are found among L-AA transporting proteins like LHT1, ProT2 and AAP1. There is a 
certain possibility that these three transporters are not the only ones within their families to 
transport D-AAs. In the Arabidopsis genome, there are 10 LHTs, 3 ProTs and 8 AAPs encoded 
[22, 27]. This means that at least among the members of these three transporter families, 
further D-AA transport proteins may be found. Taking into account that members of other 
amino acid transporter families may also be able to do so, raises the number of candidates 
in Arabidopsis up to 63. Even more could be found in other plant species, as there are for 
instance 189 putative amino acid transporter genes encoded in the soybean genome [28].

3. What happens to D-AAs in the plant?

The fact that plants take up D-AAs from their surrounding rhizosphere leads to the question 
what happens to them in consequence in the plant. An approach to answer this question was 
given by our group by feeding Arabidopsis mutants and accessions with different D-AAs to 
measure the D- and L-AA contents in these plants afterwards [12, 29]. These analyses revealed 
two major metabolic processes which could be observed; one of them was the conversion of 
particular D-AAs like D-His, D-Met, D-Phe and D-Trp to their L-enantiomers. In this respect, the 
increase of these L-AAs was about 2–50 times compared to the untreated control plants, depend-
ing on the applied D-AA. The other one was the increase of D-Glu and D-Ala contents after treat-
ment with any given D-AA. In this regard, D-Ala was the major compound to be found after 
D-AA application with concentrations more than 20 times higher than the ones of D-Glu. These 
observations led to speculations about the metabolic processes responsible for these effects. 
To explain the outcome of our amino acid profiling three different possibilities of  enzymatic 
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 reaction have been discussed: racemization, deamination and transamination [4]. Recent studies 
of our group revealed that as well the D- to L-AA conversion as also the  occurrence of D-Glu and 
D-Ala can be explained by the activity of a single D-AA specific transaminase in the Arabidopsis 
genome (Suarez et al., unpublished results).

All these studies shifted our focus towards the evolution and metabolic fate of D-Ala in plants. 
D-Ala appears to be the major product of D-AA metabolism in Arabidopsis, but, at the same 
time, it is one of the most toxic D-AAs for this species when applied exogenously [12, 17]. This 
raises the question how plants process D-Ala specifically and why it is the preferred product 
of D-AA metabolization. Several possibilities for this process are summarized in Figure 2.

A common feature of all possible pathways in Figure 2 is that none of them have been charac-
terized sufficiently to date in plants, especially in Arabidopsis. But there are a series of reports 
and evidences arguing for the scheme in this figure, which will be discussed in this section.

The ligation of D-Ala to its dipeptide D-Ala-D-Ala is among the best characterized ways to 
metabolize D-Ala (Figure 2). D-Ala-D-Ala could be detected in different grasses and tobacco 
long before [30–32], indicating the existence of a D-Ala ligating enzyme. Recently, this 
enzyme, D-Ala-D-Ala ligase (DDL), could be characterized physiologically for the first time 
from a plant source, PpDDL1 from the moss Physcomitrella patens [33]. As it can be seen in 
Table 1 also in the Arabidopsis genome, a DDL encoding gene could be found, an orthologue 
of PpDDL1, which has not been characterized biochemically, yet. The situation is similar for a 
putative D-amino acid oxidase (DAO) from Arabidopsis: Its homologue from maize has been 
biochemically characterized and shown to oxidize preferably D-Ala [34], but its Arabidopsis 
homologue has not been characterized biochemically or physiologically, yet.

When it comes to the alanine racemase in plants (Figure 2), knowledge is rather scarce; 
Alanine racemase enzyme activity and its corresponding enzyme activity could be iso-
lated and measured in Chlamydomonasreinhardtii and alfalfa [13, 35], but identification of the 

Figure 2. D-Ala as central product of D-AA metabolism and possible metabolic fates of it in plants.
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 corresponding gene is still pending. In the Arabidopsis genome, two genes with homologies 
to alanine  racemases are annotated (Table 1), but characterization is still pending. Even less 
is known about malonylation of D-Ala, which is given as the fourth major enzymatic way to 
metabolize D-Ala in Figure 2: In pea seedlings, N-malonyl-D-Ala had been detected [36, 37]. 
Additionally, in mung bean seedlings, D-Ala malonylating activity could be shown [38], but 
the corresponding enzyme still awaits identification.

Apart from the enzymatic metabolization of D-Ala, other ways of its deposition have to be 
taken into account as depicted in Figure 2: The spatial distribution of D-Ala within the plant, 
but also of D-AAs in general, would be of interest in this respect. Then, the question could be 
answered if D-Ala is deposited in the root or if it is transported to other organs, in order to 
dilute its toxicity. Another possibility would be rhizodeposition, the exudation of metabolites 
from the root into soil. Rhizodeposition of L-AAs has been shown for plants several times [26, 
39, 40]. This process has a strong impact on the microbial community in the rhizosphere, but 
reports of rhizodeposition of D-AAs are still missing.

Another look into Table 1 reveals further D-AA processing enzymes in the Arabidopsis 
genome apart from either synthesizing or metabolizing D-Ala. First of all, there are four D-AA 

Function Name AGI code Localization References

D-amino acid 
transaminase

AtDAAT1 At5g57850 chloroplast [41]

At3g05190 (unknown)

At3g54970 (unknown)

At5g27410 (unknown)

Alanine racemase At1g11930 (chloroplast)

At4g26860 (chloroplast)

D-amino acid 
racemase

AtDAAR1 At4g02850 (unknown) [16]

AtDAAR2 At4g02860 (cytosol) [16]

Serine racemase AtSR1 At4g11640 (unknown) [14]

Asp-Glu racemase At1g15410 (chloroplast)

D-aminoacyl-
tRNAdeacylase

AtGEK1 At2g03800 cytosol, nucleus [55]

D-Tyr-tRNAdeacylase At4g18460 (unknown)

D-amino acid oxidase At5g67290 (chloroplast)

D-Cysdesulfhydrase At1g48420 mitochondria [42]

D-Ala-D-Ala ligase At3g08840 (chloroplast)

Localization refers to the experimentally determined subcellular localization; localization predictions on the basis of 
peptide sequencing data by the Plant Proteome Database (PPD; http://ppdb.tc.cornell.edu) and unknown localizations 
are given in parentheses.

Table 1. Putative D-AA metabolizing genes in the Arabidopsis genome.
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specific transaminases, from which just one has been shown to produce D-Ala and preferably 
D-Glu using various D-AAs as substrates with different affinities [41]. Beside the already 
mentioned alanine racemase, also three other racemases with specificities for other amino 
acids can be found in the Arabidopsis genome: First, there is a putative Asp-Glu racemase 
encoded in the Arabidopsis genome, but currently, there are no reports available about it. The 
second one is the serine racemase AtSR1, which catalyses the racemization of serine, but also 
to lesser extent alanine, arginine and glutamine. Beside its racemase activity, it acts also as a 
dehydratase on D- and L-serine [13]. The third one are the so-called D-amino acid racemases 
AtDAAR1 and AtDAAR2, which are indeed specific for Ile with D-allo-Ile as a product. Leu 
and Val were just racemized with 1 and 5% relative activity, respectively [16]. The D-Cys 
desulfhydrase from Arabidopsis is another example for a D-AA metabolizing enzyme with a 
specificity apart from D-Ala; this specificity to catabolize D-Cys to pyruvate, NH3 and H2S has 
been shown previously [42], but the physiological function of this enzyme and especially of 
D-Cys still remains unclear and will be discussed in the next chapter. Altogether the collection 
of D-AA processing enzymes in Table 1 is a reminder that D-Ala seems to be central product 
of D-AA metabolism, but that there are far more putative enzyme encoding genes annotated 
to produce and process also other D-AAs.

4. What are the effects and functions of D-AAs in the plant?

The abundance and fate of D-AAs in plants are indicators that these compounds are actively 
processed and therefore play a role in the physiology of plants. This leads to the question: 
Which role(s) are these? In the last years, three different scenarios about the effects of D-AAs 
on plants were discussed. The first one was that D-AAs have either no effect on plants or even 
inhibit growth and therefore have to be considered as toxins for plants [19]. In contrast, it could 
be shown before that at least D-Ile and D-Val promoted seedling growth [17], and that for differ-
ent D-AAs even the highest tested concentration did not cause growth inhibition [12]. Together 
with the de novo synthesis of various D-AAs in plants described above a general toxic function 
of all D-AAs is rather unlikely and depends on dosage, which also applies to many L-AAs.

There are also other arguments speaking against this scenario like the utilization of D-AAs as 
possible nitrogen source [4, 40], which is the second major postulated function of D-AAs in 
plants. In this respect, it could be shown that wheat plants are able to assimilate D-Ala as well 
as D-trialanine, which they took up from the soil [20]. This was the first evidence of direct uti-
lization of D-AAs as a nitrogen source. Additionally, it revealed that plants are able to utilize 
not just free forms of D-AAs but also as oligomers, as also found as a degradation product of 
the bacterial cell wall. Nevertheless, more plant species and other D-AAs have to be analysed 
in this respect to confirm the general utilization of D-AAs as nitrogen sources for plants.

The third major complex of functions of D-AAs in plants is the ones, which have been 
either just recently discovered, and need to be further analysed and characterized, or 
which have not been discovered at all. Among these novel functions is, for instance, D-Ala 
as a stress signal: It has been reported that duckweed seedlings accumulate D-Ala after 
UV light exposure [43], but the confirmation of this finding by other groups or in other 

D-Amino Acids in Plants: New Insights and Aspects, but also More Open Questions
http://dx.doi.org/10.5772/intechopen.68539

161



species is still pending. Another, more prominent, example of a novel physiological func-
tion of a D-AA in plants is the impact of D-Ser on pollen tube growth in Arabidopsis [44]; 
In that report, the authors provided evidence that D-Ser affects pollen tube growth via its 
agonistic action on the glutamate receptor AtGLR1.2. Furthermore, it was shown that the 
loss of the serine racemase AtSR1 leads to aberrant pollen tube growth. AtGLR1.2 belongs 
to a protein family of 20 members in Arabidopsis with highest homologies towards the 
mammalian ionotropic glutamate receptors (GLRs), also known as N-methyl-D-Aspartate 
(NMDA) receptors [45]. In humans and other mammalians, these receptors, involved in 
neurotransmission, have been shown to be activated by L-Glu and D-Ser synergistically 
[46]. The homologous action of D-Ser on GLRs in animals and plants together with the 
relatively large number of GLRs in the Arabidopsis genome implies further effects of 
D-Ser on physiological functions in plants, especially on pathogen response, which may 
be regulated by GLRs, too [45].

Another type of novel functions of D-AAs was unravelled by the analyses of the structure 
of the chloroplast membrane of mosses [33]. The authors provided evidence that the mem-
branes of chloroplasts from the moss P. patens contain the dipeptide D-Ala-D-Ala and 
therefore possess a major structural component of peptidoglycan, the building block of 
bacterial cell walls [3]. Another indication of the structural similarity of bacterial cell wall 
and plastidial envelopes in mosses was given by genetical experiments. Loss-of-function 
mutants of the Physcomitrella D-Ala-D-Ala ligase, PpDDL1, were not able for chloroplast 
division and therefore showed megachloroplasts in their protonema cells [33]. All these 
findings fit to the observation made before in the Physcomitrella genome, which har-
boured all gene homologues from bacteria to synthesize peptidoglycan including PpDDL1 
[47]. The structural similarity between bacterial cell walls and plastidial envelopes seems 
to be limited to cryptogamic plants, because loss-of-function mutants of AtDDL1 did not 
show the megachloroplast phenotype observed in mosses [33]. This observation seems to 
be in concordance to the situation in the Arabidopsis genome which harbours just four 
homologues of the ten mentioned genes needed for peptidoglycan synthesis [47]. It is 
interesting in this respect that homologues of these four genes were found in all higher 
plant genomes [48].

Nevertheless, D-Ala seems to play a role in chloroplasts of higher plants as well. Many 
proteins directly involved in D-Ala metabolism in Arabidopsis were either found in the 
chloroplast or were predicted to be localized there (Table 1). Furthermore, we were able 
to synthesize a fluorescent D-Ala analogue, HADA (7-hydroxycoumarin-3-amino-D-ala-
nine), according to a previously published protocol [49], and fed it to Arabidopsis seed-
lings. In these experiments, we could trace the HADA fluorescence evenly distributed 
in the chloroplasts (Figure 3). This targeting of the D-Ala analogue to the chloroplasts 
indicated a central metabolization of this compound in this compartment. The even dis-
tribution of it, in contrast to the accumulation, found in moss chloroplast envelopes [33] 
points to a different function of D-Ala in higher plant chloroplasts, which still awaits to 
be unravelled.
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Fourteen days old Col-0 seedlings grown in liquid culture were incubated overnight in 
0.1 mM HADA and then analysed microscopically. The pictures in the first column show 
bright field images of sponge parenchyma cells. The chlorophyll in the chloroplasts was 
detected by its autofluorescence (Chlorophyll, second column), and fluorescence of HADA 
was recorded in the DAPI channel (HADA, third column) with a laser-scanning microscope. 
The upper row shows cells without HADA treatment (untreated) as control, the lower one 
with HADA treatment (HADA treated). The size bars indicate 5 μm.

Among D-AAs with novel functions in plants, there are D-AAs to be known to affect specific pro-
teins, but not how they cause the associated physiological reactions. One example for such a rela-
tionship is the one between D-Cys and drought resistance. As described above, a desulfhydrase 
specific for D-Cys could be characterized from Arabidopsis, which also produces H2S [42]. In further 
experiments, it turned out that increased H2S production leads to enhanced drought resistance [50], 
which can be partially assigned to increased D-Cysdesulfhydrase activity [51]. This effect seems 
to be related to ethylene induced stomatal aperture. Furthermore, H2S production leads to cross 
adaptation of plants to several other stress factors [52]. But nevertheless, the source of D-Cys, its sig-
nificance in stress signalling and adaptation and its detailed way of action still need to be elucidated.

Another example for an enigmatic relation between a D-AA and physiological response was 
described previously: In this case, an Arabidopsis mutant with hypersensitivity to ethanol, 
gek1, was isolated [53], where the respective mutation could be assigned to a D-aminoacyl-
tRNAdeacylase (AtGEK1) [54]. Later, it was found that this gene encodes an active enzyme 
with broad substrate specificity [55]. But its overexpression led neither in Escherichia coli nor 
in yeast to an increase of ethanol tolerance [54]. Therefore, a functional explanation how the 
loss of AtGEK1, and therefore the inability to repair accidental loading of tRNAs with D-AAs, 
causes ethanol hypersensitivity in plants is still missing.

Figure 3. Fluorescent D-Ala analogue HADA accumulates in chloroplasts of Arabidopsis leaves.
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5. Conclusions

As discussed largely in this text, knowledge gathered in the last decade implies that D-AAs 
are involved in more plant physiological processes than assumed before. Furthermore, the 
view of D-AAs as generally toxic molecules needs to be changed to a view of them as physi-
ologically active compounds, which can cause detrimental effects by over dosage. Therefore, 
the investigation of their uptake and elimination, their metabolic pathways, and their physi-
ological functions in plants will gain more interest and significance in the future.

To understand the transport processes for uptake, distribution (intracellular, intercellular and 
also at long distances) as well as of possible excretion of D-AAs will be one of the major fields 
to be investigated. Although there are candidate transport proteins given to be analysed with 
the classical L-AA transporters as described above, also other, yet unknown, proteins may 
contribute to D-AA transport processes, as the D-Phe toxicity on mrp5 mutants demonstrates 
(Figure 1). In this regard, one of the first questions to be solved would be the proof of active 
uptake of D-AAs by candidate transporters instead of indirect evidences.

When it comes to the metabolization of D-AAs, the formation of D-Ala appeared to be central, 
which puts also this molecule into the centre of future investigations. As it has been shown in 
the preceding chapter, D-Ala seems to accumulate in the chloroplast. In this respect, D-Ala may 
play a double role. On the one hand, it is an intermediate metabolite, which needs to be further 
metabolized due its toxicity in excess concentration. In this regard, the different putative meta-
bolic pathways await elucidation. On the other hand, D-Ala is a physiologically active com-
pound as it has been shown as a building block of moss chloroplast envelopes. In this context, 
the function of D-Ala in chloroplasts of higher plant and the concentration of different D-AA-
related enzymes in this compartment will be of specific interest. Furthermore, it would be inter-
esting if also other D-AAs take this way over chloroplasts and what functions they fulfil there.

Finally, which physiological role(s) the different D-AAs play in plants are the major questions 
to be solved. One of these questions will be, to which extent and under which circumstances 
D-AAs from the rhizosphere are utilized as nitrogen sources. As it was mentioned above, 
the accumulation of D-Ala and of D-AA-related enzymes in the chloroplasts may point to 
their involvement in plastid biogenesis, assembly and maintenance. The unresolved functions 
of D-Cys in stress resistance and the unclear involvement of AtGEK1 in ethanol resistance 
indicate that there is a high probability that there are still many D-AA-related functions and 
processes in plants waiting to be discovered.
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Abstract

The ammonium produced by nitrogen fixation in the bacteroid is rapidly excreted to 
cytosol of infected cell of soybean nodules and then assimilated into glutamine and 
glutamic acid, by glutamine synthetase/glutamate synthase pathway. Most of the nitro-
gen is further assimilated into ureides, allantoin, and allantoic acid, via purine synthe-
sis, and they are transported through xylem to the shoots. Nitrate absorbed in the roots 
is reduced by nitrate reductase and nitrite reductase to ammonia either in the roots or 
leaves. The ammonia is also assimilated by glutamine synthetase/glutamate synthase 
pathway, and mainly transported by asparagine, and not ureides. The nitrogen trans-
ported into leaves is readily utilized for protein synthesis, and then, some of them are 
decomposed and retransported to roots, apical shoots, and pods via phloem mainly in 
the form of asparagine.

Keywords: soybean, amino acid, nitrogen fixation, nitrate absorption, nodule, root, leaf

1. Introduction

1.1. Role of amino acids in plants

Plants are photoautotrophs, and they can synthesize all organic compounds from inorganic 
materials such as carbon dioxide (CO2), water (H2O), and minerals using light energy. Amino 
acids are the key metabolites in nitrogen (N) metabolism of higher plants. First, the inorganic 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



N, such as ammonium absorbed in the roots or produced from nitrate reduction, nitrogen fixa-
tion, and photorespiration, is initially assimilated into glutamine (Gln) and glutamate (Glu) by 
the glutamine synthetase (GS)/glutamate synthase (GOGAT) pathway. Second, amino acids 
are the essential components of proteins. Third, amino acids are used for long-distance trans-
port of nitrogen among organs (roots, nodules, stems, leaves, pod, seeds, and apical buds) 
through xylem or phloem. Fourth, nonprotein amino acids may play a role in protecting plants 
from feeding damages by animals, insects, or infection by fungi. In this chapter, we would like 
to review the amino acid metabolism in soybean nodules, roots, leaves, pods, and seeds. In 
addition, we will introduce the amino acids transport via xylem and phloem among organs.

Soybean plants absorb inorganic N from the roots, and they can fix atmospheric N2 in the 
nodules associated with soil bacteria rhizobia. Figure 1 shows a model of nutrients and water 
flow via xylem and phloem in soybean plants. Soybean roots absorb water and nutrients in 
soil solution, and they are transported to the shoots via xylem vessels by the transpiration and 
root pressure. The fixed N in nodule is also transported to the shoots via xylem. On the other 
hand, photoassimilates (mainly sucrose), amino acids (Asn, etc.), and minerals (potassium, 
etc.) are transported from leaves to the apical buds, roots, nodules, and pods via the phloem 
by osmotic pressure or protoplasmic streaming.

phloem flow

xylem flow

Apical buds

Leaves

Stems

Roots

Nodules

Figure 1. Transport pathways of nutrients and water by xylem and phloem in a soybean plant.
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Figure 2 shows the distribution of radioactivity showing xylem flow (Figure 2A) [1] or phloem 
flow (Figure 2B) [2]. Figure 2A shows the positron imaging of the distribution of radioactivity 
in nodulated soybean (T202) after 1 hour of 13NO3

− supply to the root medium [1]. All parts 
of the roots exhibited the highest radioactivity (red), and stems and first trifoliolate leaf were 
relatively high (yellow). The radioactivity was not observed in the nodules, although they are 
attached in the roots. Figure 2B shows the positron imaging of distribution of radioactivity 
in nodulated soybean (cv. Williams). After 11C-labeled CO2 was exposed to the first trifolio-
late leaf, and the radioactivity was monitored after 2 hours [2], the highest radioactivity was 
shown in the 11CO2-fed leaf (red) and stems (red) with apical bud (red) and root (yellow) and 
nodules (red). No radioactivity was observed in the primary leaf and other matured leaves. 
Nodules showed a higher radioactivity than that in the roots.

1.2. Role of amino acids on inorganic nitrogen assimilation

Ammonium ion (NH4
+) is first assimilated into glutamine (Gln) combined with glutamic acid 

(Glu) by the enzyme glutamine synthetase (GS) consuming one molar of ATP (Figure 3). 
Then, the amide group of Gln is transferred to an organic acid, 2-oxoglutarate (2-OG), by glu-
tamate synthase (GOGAT) in plastids using 2 molar of reduced Feredoxin (Fdred). Previously, 
NH4

+ was considered to be initially assimilated into Glu by glutamate dehydrogenase (GDH). 
However, the enzyme GOGAT has been discovered in nitrogen-fixing bacteria Aerobacter aero-
genes in 1970 [3], and GS/GOGAT cycle has been confirmed as the principal route of ammo-
nium assimilation in plants [4–8].

A     Xylem flow                              B        Phloem flow   

Figure 2. Positron imaging pictures of xylem flow and phloem flow in nodulated soybean plants. (A) Distribution of 
radioactivity after 13NO3

− was supplied from the roots. (B) Distribution of radioactivity after 11CO2 was exposed to the 
first trifoliolate leaves of a split-rooted soybean.
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Nitrate is most abundant inorganic nitrogen in upland fields, because NH4
+ is readily oxi-

dized to NO3
− by nitrifying bacteria under aerobic conditions. NO3

− is reduced to nitrite (NO2
−) 

by the enzyme nitrate reductase (NR) using one molar of NADH or NADPH as a reductant. 
The NO2

− is transported to plastids and further reduced to NH4
+ by the enzyme nitrite reduc-

tase (NiR) using 6 molar of Fdred.

1.3. Role of amino acids for synthesis of proteins and nucleic acids in plants

Protein is a polymer or a complex of polymers of 20 amino acids in higher plants and plays 
an essential role on metabolism as enzymes, storage proteins, and structure components of 
the cells. The 20 amino acids consist of alanine, arginine, asparagine, aspartic acid, cysteine, 
glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylal-
anine, proline, serine, threonine, tyrosine, tryptophan, and valine. Enzyme is a kind of protein 
that catalyzes a specific chemical reaction in plant cells, and regulation of enzyme synthesis 
and the activity are essential for maintaining life and growth.

Nucleic acids, deoxyribonucleic acid (DNA), and ribonucleic acid (RNA) are a polymer of 
purine bases (adenine and guanine) and pyrimidine bases (thiamine, cytosine for DNA, and 
uracil, cytosine for RNA) with pentose (2-deoxyribose for DNA and ribose for RNA) and 
phosphate. DNA serves as a template of mRNA, and the mRNA is translated into amino acid 
sequences of protein. Purine base contains 4 N atoms in a molecule, and they are derived from 
two glutamines, one aspartic acid, and one glycine. Pyrimidine base contains 2 N atoms in a 
molecule, and they are derived from one glutamine and one aspartic acid. Amino acids are the 
precursors of most of N compounds in plants.

1.4. Role of amino acids for nitrogen transport and storage in plants

Amino acids and amides, especially Gln and Asn, are used for N transport through xylem and 
phloem in many plants. In addition, these amides are used for temporary N storage. Gln and 
Asn are suitable for N transport and storage, because they have two N atoms in one molecule, 
and the solubility is high among amino acids.

2-oxoglutarate glutamate glutamine 
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Figure 3. Chemical structures of 2-oxoglutarate, glutamate, and glutamine.
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1.5. Role of amino acids for protecting the plants

In addition to the 20 protein amino acids, over 400 nonprotein amino acids are found in 
various natural sources, and about 240 of them have been found in plants [9]. 4-Methylene 
glutamine is a nonprotein amino acid found only in groundnut (Arachis hypogaea) [10] and 
tulip (Tulipa gesneriana) [11], and this amide is highly accumulated in the leaves and stems of 
the tulip plants [12], and the tentatively stored N is used for reuse of bulb storage N. Some 
nonprotein amino acids are toxic such as canavanine and concanavanine A in sword bean 
(Canavalia gladiate), and these toxic amino acids may contribute to protect plant from feeding 
damages by animals, insects, or fungi [9].

2. Concentrations of free amino acids and soluble N constituents in 
various parts of soybean plants

In soybean plants, ureides, allantoin, and allantoic acid are mainly used for transport of N in 
addition to amino acids (Figure 4). Ureides have 4 N and 4 C atoms in a molecule, and it is 
considered to be more efficient to transport of N than asparagine (2N and 4C) by the view of 
carbon economy.

Table 1 shows the total amino acid-N, ureides-N, nitrate-N, ammonium-N, and others in 80% 
ethanol soluble fraction of each organ. Both hydrophilic and hydrophobic low-molecular-
weight compounds, such as sugars, amino acids, ureides, organic acids, and chlorophylls, 
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Figure 4. Chemical structures of allantoin, allantoic acid, nitrate, ammonium, and asparagine.
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can be extracted by 80% ethanol. Macromolecules such as proteins, nucleic acids, and starch 
remain in the precipitate of 80% ethanol extraction. As shown in Table 1, the total soluble N 
concentration in root nodules (5460 μgN/gDW) was much higher than that in the roots (714 
μgN/gDW). In the shoots, the total soluble N concentration was the highest in seeds (10,170 
μgN/gDW for upper part and 7630 μgN/gDW for lower part), followed by pods (3222 μgN/
gDW for upper part and 2768 μgN/gDW for lower part), and relatively low in stems (923 μgN/
gDW for upper part and 627 μgN/gDW for lower part) and leaves (832 μgN/gDW for upper 
part and 851 μgN/gDW for lower part). The concentration of total amino acid-N was high-
est in seeds (1243 μgN/gDW in upper part and 982 μgN/gDW in the lower parts), followed 
by pods (776 μgN/gDW in upper part and 415 μgN/gDW in the lower parts) and nodules 
(519 μgN/gDW), and lowest in the leaves (96 μgN/gDW in upper part and 96 μgN/gDW in 
the lower parts). Comparing nodules and roots, amino acid concentration was about 4 times 
higher in nodules (519 μgN/gDW) than in roots (147 μgN/gDW). The organs in the upper part 
were relatively high in total amino acid concentrations compared with the lower parts, and 
this is due to the upper part was younger than lower part. The ureide-N concentration was 
25 times higher in the nodules (483 μgN/gDW) than that in the roots (19 μgN/gDW). In the 
shoots, ureides are highly accumulated in the pods (1529 μgN/gDW for upper part and 916 
μgN/gDW for lower part) compared with leaves and seeds. The concentrations of nitrate and 
ammonium were high in the nodules, but relatively low and constant among other organs.

Table 2 shows the composition of free amino acids in nodules, roots, stems, leaves, pods, and 
seeds at pod-filling stage [13]. Soybean (cultivar Norin No. 2) seeds were inoculated with 
Bradyrhizobium japonicum (NIAS J-501) and cultivated with hydroponic solution containing 
nitrate (10 mgN/L). Table 2 exhibits the amino acids composition at 67 days after planting, 
and the shoots were separated the upper parts and lower parts. Asparagine was abundant in 
every part, especially in pods and stems. Asparagine is known to play a major role in trans-
port of nitrogen in legumes [14]. The contents of glutamate were higher in nodules, roots, 
and leaves, which are the primary nitrogen assimilatory organs, but relatively low in stems, 
pods, and seeds. Alanine was relatively high in the roots and nodules. The content of γ-amino 
butylic acid (GABA) was detected at a high level in most organs.

 Nodules Roots Stems  
(UP)

Stems  
(LP)

Leaves  
(UP)

Leaves  
(LP)

Pods  
(UP)

Pods  
(LP)

Seeds  
(UP)

Seeds  
(LP)

Total amino  
acid-N

519 147 270 134 96 96 776 415 1243 982

Ureides-N 483 19 143 62 35 36 1529 916 82 82

Nitrate-N 147 32 56 32 33 43 95 32 91 69

Ammonium-N 132 39 36 23 46 46 167 124 119 171

Others-N 4179 477 418 376 622 630 655 1281 8635 6326

Total soluble-N 5460 714 923 627 832 851 3222 2768 10170 7630

Table 1. Concentration of amino acid, ureides, nitrate, ammonium, and other 80% ethanol soluble fraction of soybean 
organs (μgN/gDW).
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the lower parts). Comparing nodules and roots, amino acid concentration was about 4 times 
higher in nodules (519 μgN/gDW) than in roots (147 μgN/gDW). The organs in the upper part 
were relatively high in total amino acid concentrations compared with the lower parts, and 
this is due to the upper part was younger than lower part. The ureide-N concentration was 
25 times higher in the nodules (483 μgN/gDW) than that in the roots (19 μgN/gDW). In the 
shoots, ureides are highly accumulated in the pods (1529 μgN/gDW for upper part and 916 
μgN/gDW for lower part) compared with leaves and seeds. The concentrations of nitrate and 
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Table 2 shows the composition of free amino acids in nodules, roots, stems, leaves, pods, and 
seeds at pod-filling stage [13]. Soybean (cultivar Norin No. 2) seeds were inoculated with 
Bradyrhizobium japonicum (NIAS J-501) and cultivated with hydroponic solution containing 
nitrate (10 mgN/L). Table 2 exhibits the amino acids composition at 67 days after planting, 
and the shoots were separated the upper parts and lower parts. Asparagine was abundant in 
every part, especially in pods and stems. Asparagine is known to play a major role in trans-
port of nitrogen in legumes [14]. The contents of glutamate were higher in nodules, roots, 
and leaves, which are the primary nitrogen assimilatory organs, but relatively low in stems, 
pods, and seeds. Alanine was relatively high in the roots and nodules. The content of γ-amino 
butylic acid (GABA) was detected at a high level in most organs.

 Nodules Roots Stems  
(UP)

Stems  
(LP)

Leaves  
(UP)

Leaves  
(LP)

Pods  
(UP)

Pods  
(LP)

Seeds  
(UP)

Seeds  
(LP)

Total amino  
acid-N

519 147 270 134 96 96 776 415 1243 982

Ureides-N 483 19 143 62 35 36 1529 916 82 82

Nitrate-N 147 32 56 32 33 43 95 32 91 69

Ammonium-N 132 39 36 23 46 46 167 124 119 171

Others-N 4179 477 418 376 622 630 655 1281 8635 6326

Total soluble-N 5460 714 923 627 832 851 3222 2768 10170 7630

Table 1. Concentration of amino acid, ureides, nitrate, ammonium, and other 80% ethanol soluble fraction of soybean 
organs (μgN/gDW).

Amino Acid - New Insights and Roles in Plant and Animal176

3. Amino acid metabolism in soybean nodules

Nitrogen is abundant (about 78% in volume) in the atmosphere, but plant itself cannot use the 
N2 except for symbiotic association with nitrogen-fixing microorganisms. Symbiotic associa-
tion by soybean and rhizobia is one of the most efficient nitrogen-fixing system, and it con-
tributes to soybean seed yield [15]. Figure 5 shows a photograph of nodulated soybean roots 
cultivated with hydroponics (A) and a model of structure of mature soybean nodule attached 
to the root (B). Soybean nodules have a spherical form, and they grow up to about 8 mm in 
diameter. Soybean nodule is classified as a determinate-type nodule, and the cell division 
and nodule development are completed in early stage of nodule growth. The nodule growth 
thereafter is mainly due to cell expansion.

Figure 6 shows the scheme of N assimilation in soybean nodules. N2 gas is diffused into cen-
tral symbiotic region of the nodule and reduced into ammonia by the enzyme “nitrogenase” 
in the bacteroid, a symbiotic form of rhizobia. Most of ammonia produced by N2 fixation 

Amino acids Nodules Roots Stems  
(UP)

Stems  
(LP)

Leaves  
(UP)

Leaves  
(LP)

Pods  
(UP)

Pods  
(LP)

Seeds  
(UP)

Seeds  
(LP)

Aspartate 22.317 1.764 4.59 3.618 2.688 2.112 10.864 3.735 55.935 34.37

Threonine 8.304 2.205 5.94 3.484 2.016 1.728 14.744 8.3 34.804 35.352

Serine 33.216 8.379 14.04 6.968 10.56 7.392 22.504 14.11 38.533 38.298

Asparagine 120.408 14.7 105.57 56.012 15.456 9.888 401.192 148.57 343.068 169.886

Glutamate 106.395 25.284 3.78 3.886 16.512 10.176 4.656 3.32 17.402 15.712

Glutamine 6.228 2.205 3.78 2.814 0 0 42.68 17.845 4.972 4.91

Proline 2.076 0 4.59 0 0 0 12.416 14.525 32.318 47.136

Glycine 15.57 0 0 0 0 0 2.328 0 27.346 30.442

Alanine 78.369 43.218 9.18 3.082 5.952 7.392 17.848 9.96 52.206 41.244

Citruline 7.785 0 0 0 0 0 25.608 0 31.075 25.532

Valine 8.823 3.234 6.75 3.752 3.648 3.456 20.952 16.185 48.477 47.136

Cysteine 5.19 2.058 2.97 2.948 2.4 2.784 1.552 1.66 2.486 1.964

Isoleucine 7.785 5.145 7.29 6.03 2.496 3.648 17.072 16.185 36.047 36.334

Leucine 6.747 4.263 7.02 5.628 2.4 3.84 11.64 12.45 47.234 52.046

Tyrosine 3.114 0 1.89 1.34 1.44 0 3.88 3.735 13.673 16.694

Phenylalanine 3.114 1.176 3.78 3.082 2.016 2.208 5.432 8.715 19.888 22.586

GABA 46.71 22.785 43.47 25.862 9.888 33.6 126.488 112.05 335.61 233.716

Arginine 11.937 4.557 22.95 5.628 11.904 7.872 22.504 11.62 65.879 43.208

Data from SSPN [13].

Table 2. Concntation of free amino acids in various parts of soybean plants (μgN/gDW).
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Figure 5. Photograph of nodulated soybean roots and a model of the structure of soybean nodule. (A) Photograph of 
nodulated soybean roots cultivated in culture solution. (B) A model of the structure of soybean nodule.
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Figure 6. Model of nitrogen flow and metabolism in a soybean nodule.
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is rapidly excreted into the cytosol through peribacteroid membrane (PBM) of infected cell. 
Based on the time course experiment with 15N2 feedings in the nodulated intact soybean 
plants, the ammonia produced by nitrogen fixation is initially assimilated into amide group 
of Gln with Glu by the enzyme glutamine synthetase (GS) [16, 17]. Then, Gln and 2-OG pro-
duce two moles of Glu by the enzyme glutamate synthase (GOGAT). Some part of Gln is used 
for purine base synthesis, and uric acid is transported from the infected cells to the adjacent 
uninfected cells in the central symbiotic region of nodule. Uric acid is catabolized into allan-
toin and allantoic acid in the uninfected cells and then transported to the shoot through xylem 
vessels in the roots and stems. A small portion of fixed N was assimilated into alanine and Glu 
in the bacteroids, but it was not by GS/GOGAT pathway [18].

A small portion of fixed N is transported as amino acid-like asparagine (Asn) in addition to 
ureides, but the percentage is about 10–20% of total fixed N. Small amount of ureides is syn-
thesized from NO3

− in soybean nodules [19]. Nitrate in culture solution can be absorbed from 
nodule surface [20] and assimilated in the cortex of the nodules. Nitrate absorbed from lower 
part of roots has not readily transported to the nodules attached to the upper part of the root 
system [1].

4. Amino acid metabolism in soybean roots

Higher plants absorb soil inorganic nitrogen such as ammonium or nitrate from roots. Figure 7 
shows the photograph of a nodulated soybean root system (A) and a model of structure of 
soybean root (B). In a longitudinal direction, there are three regions in root (B): Root cell divi-
sion occurs in the “apical meristem,” and the cells are differentiated and elongated in the 
upper “region of elongation.” Then, the root cells mature in the “region of maturation.” There 
are three parts, epidermis, cortex, and stele, in a cross-section of mature roots. There are two 
transport pathways, xylem and phloem, in the stele.

Figure 8 shows a model of nutrient flow from soil to xylem vessel in the roots. Nutrients, 
such as NH4

+ and NO3
− in soil solution, are absorbed by epidermal cells or root hairs and are 

transported cell to cell by the symplastic pathway. Nutrients also enter into the free space of 
the root cortex by the apoplastic pathway and are absorbed by cortical cells. The apoplas-
tic pathway is blocked by a water proof Casparian strip, so the nutrients should be passed 
through endodermis by a symplastic pathway into stele. Then, the nutrients are released from 
parenchima cells of stele to the free space in the stele and loaded into the xylem vessel, which 
is the vertically connected dead cell walls. The nutrients and water are transported from roots 
to the shoots by transpiration in leaves and root pressure.

Figure 9 shows a model of ammonium and nitrate assimilation in a plant cell. NH4
+ is trans-

ported into cell cytoplasm by the ammonium transporter, which is located in a plasma mem-
brane. NH4

+ is first assimilated into glutamine (Gln) combined with glutamic acid (Glu) by the 
enzyme glutamine synthetase (GS) consuming one molar of ATP. Then, the amide group of 
Gln is transferred to an organic acid, 2-oxoglutarate (2-OG), by glutamate synthase (GOGAT) 
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in plastids using two molar of reduced Feredoxin (Fdred). Various amino acids are synthesized 
by amino transferases or amino acid metabolism. Amino acids are used for the synthesis of 
proteins, nucleic acids, etc. Some parts of amino acids are exported outside the cell to trans-
port to the other organs.
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A. Photograph of nodulated soybean roots                   B. Structure of soybean root.

Figure 7. Photograph of nodulated soybean roots and a model of the structure of soybean root. (A) Photograph of 
nodulated soybean roots cultivated in soil. (B) A model of the structure of soybean root.
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Figure 8. A model of nutrients and water flow in the root.
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Nitrate is most abundant inorganic nitrogen in upland fields under aerobic conditions. NO3
− 

is transported into cell cytoplasm by nitrate transporters on plasmamembrane. Two types of 
nitrate transporters are present in plants, a high-affinity transport system (HATS) and a low-
affinity transport system (LATS). Affinity to nitrate is high in HATS (Km is about 10–100 μM) 
but low in LATS (Km is over 0.5 mM) [21]. The nitrate uptake is driven by a proton motive 
force and mediated by 2H+/NO3

−symport. By analyzing circulation system of culture solution, 
the nitrate absorption rate of soybean roots was measured. The kinetics between nitrate con-
centration versus nitrate absorption rate indicated that soybean root has only one high-affin-
ity nitrate transporter in the roots, which Km was 19 μM. NO3

− is reduced to nitrite (NO2
−) by 

the enzyme nitrate reductase (NR) using one molar of NADH or NADPH as a reductant. The 
NO2

− is transported to plastids and further reduced to NH4
+ by the enzyme nitrite reductase 

(NiR) using six molars of Fdred. Then, NH4
+ is assimilated into Gln by GS located in plastids. 

Finally, Gln and 2-OG are converted to 2 Glu by the enzyme GOGAT. Soybean roots absorb 
NO3

− not only during day but also during night. The absorption rate in night was about 2/3 
compared with that in day time [22].

In order to compare the assimilation and transport of nitrate, nitrite, and ammonium, 15NO3
−, 

15NO2
−, or 15NH4

+ was supplied to the nodulated soybean plants [23]. The N from nitrate and 
ammonium was rapidly absorbed, and 70% of 15N absorbed was distributed in the shoots at 
24 hours after 15N treatments. The partitioning of 15N among the organs was similar between 
15NO3

− and 15NH4
+ treatments. However, 15N absorption was low, and most of 15N remained in 

the roots after 15NO3
− treatment.

Figure 10 shows the scheme of N flow from roots and nodules.
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Figure 9. A model of ammonium and nitrate transport and metabolism in root cells. Gln: glutamine, Glu: glutamate, 
2-OG: 2-oxo-glutarate, AA: amino acids, GS: glutamine synthetase, GOGAT: glutamate synthase.
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5. Amino acid metabolism in soybean stems

Stems support the upright structure of shoots, and they connect among roots, leaves, flowers, 
and fruits in higher plants. Soybean has a main stem and several lateral stems. The structure 
of the soybean stem was shown in Figure 11. In the bark of the stem, there are epidermis and 
cortex including vascular bundles with phloem. In the central woody part of the stem, there 
are xylem vessels and pith. Xylem sap comes up through xylem vessels in the stem from root 
xylem vessels via transpiration stream and root pressure. As shown in Figure 12, xylem vessel 
is not closed pipe, but they have pits on the wall and water and solutes move to the apoplast 
from xylem vessels and also liquid in apoplast come back to xylem vessels [24].

Stems play a role in storing nutrients temporary or long term in perennial plants. In soy-
bean, ureides and amino acids can be temporarily stored in the stems, and these compounds 
are eventually transported to the leaves, pods, and seeds. For analyzing concentrations of 
nitrogen constituents, such as amino acids, ureides, and nitrate, stem extract and stem fluid 
collected by centrifugation or xylem bleeding sap were used. Stem extract contains all the 
extractable compounds in the cells including cytoplasm and vacuoles, apoplast fluid outside 
of the cells, and xylem sap in xylem vessels. Stem extract contains a large amount of cellular 
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Figure 10. Nitrogen metabolism and transport in nodules and roots of soybean plants.
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components such as temporary storage N compounds. When the apoplast fluid collected by 
centrifugation and xylem bleeding sap were compared, the concentrations of nitrate and ure-
ides are relatively same between two fluids, but the concentrations of amino acids are several 
times higher in apoplast fluid compared with xylem bleeding sap [25]. Therefore, for the 
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Figure 11. Model of the structure of soybean stem. (A) 3-D image of stem. (B) Cross-section of soybean stem.
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estimation of the percentage dependence of nitrogen fixation in total nitrogen assimilation by 
relative ureide method, we use the xylem bleeding sap from cut basal stump. Ohtake et al. [26] 
reported that Asn is the major amino acid in soybean xylem sap, and the average N atoms per 
an amino acid in xylem sap was about 2.0, irrespective of growth stages.

Sometimes, it is not successful for collecting xylem sap, especially when soil is dry or during 
late growth stage. Herridge and Peoples [27] used a vacuum extracted stem exudate from 
lower part of the main stem of the cut shoot or hot-water extraction of the stems.

A relative ureide method is a simple and reliable method for estimating the percentage of 
nitrogen depending on nitrogen fixation (%Ndfa) in a field-grown soybean [27–29]. Figure 13 
shows the concept of the simple relative ureide method estimating ratio of N2 fixation and 
N absorption in the fields. Although a small portion of ureides are transported from non-
nodulated soybean grown with nitrate and small portion of amino acids are transported from 
nodulated soybean without nitrate, we simply estimate the percentage of ureide-N in total N 
of ureide-N, amide-N plus nitrate-N in root bleeding sap. Takahashi et al. [29] reported the 
comparison of ureide-N concentration in xylem sap between nodulating and nonnodulating 
isoline (Figure 14), indicating that ureides concentration is much higher in nodulated soybean 
compared with nonnodulated soybean at any stage [29]. To confirm the origin of ureides in 
the stems, two treatments have been done for 8 hours. 15N2 gas was exposed to a group of 
soybean plants, and 15NO3

− was added to the culture solution to another group, and then 
the ratios of 15N abundance from 15N2/15NO3

− in each compounds in stems and nodules were 
calculated (Figure 15). The ratios in most amino acids in stems were between 0.1 and 0.5, and 
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Figure 13. Concept of the simple ureide method for estimating N derived from nitrogen fixation and soil + fertilizer N.
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only ureides showed a high value nearly 10. This indicated that most of ureides in stems are 
derived from nitrogen fixation and amino acids in stem derived from nitrate absorption [19]. 
The ratios of ureides and amino acids in the nodules showed about 10.

6. Amino acid metabolism in soybean leaves

Soybean has trifoliolate leaves, in addition to a first pair of green cotyledons, the second pair 
of primary leaves, and the prophylls [30]. Figure 16 shows the model of soybean leaflet of 
trifoliolate leaves (A) and the internal structure of soybean leaf tissue (B) [31]. Each leaflet is 
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highly vasculated and as many as six orders of veins have been observed. All vascular bundles 
in a leaf are collateral, with adaxial xylem and abaxial phloem. The adaxial layer of mature 
leaflet is the upper epidermis, and the second and third layers are palisade tissue containing 
chloroplasts. A portion of fourth layer differentiates into veins and the paravenal mesophyll 
which is flanked by minor vain. The fifth and sixth layers become spongy mesophyll, and the 
abaxial layer becomes the lower epidermis [31].

Leaves are the organ of photosynthesis-producing sugar from carbon dioxide (CO2) in the 
atmosphere and H2O absorbed from roots. Also, leaves play an important role in N metabo-
lism such as nitrate reduction and amino acid metabolism. The metabolic products in leaves 
are transported to the roots and apical buds to support their nutrition through phloem ves-
sels. Evapotranspiration of water through stomata or leaf surface helps upward water flow 
and nutrient transport from root to shoots via xylem vessels. Xylem vessels are dead cell wall, 
but phloem vessels are living cells. Therefore, when petiole was treated by heat, phloem trans-
port can be blocked (petiole-girdling treatment).

Petioles of upper or lower soybean leaves cultivated with solution culture with 10 mgN-NO3
− 

at 69 days after planting were girdling treatment by hot steam. Then, after 10 hours of 15N2 or 
15NO3

− treatment, leaf blades are harvested for analysis [32].

Table 3 shows the concentration of total amino acid, ureides, nitrate, ammonium, and total 
soluble N in intact and girdled leaves. The ratios of ureides and nitrate were almost 1.0, indi-
cating that the concentrations of these compounds did not change by the petiole girdling. 
This may be due that all the ureides and nitrate are metabolized in the leaf blades and not 
retransported via phloem. Table 4 shows the sugar concentration in petiole girdled and intact 
leaves. The concentrations of fructose, glucose, and sucrose in the petiole-girdled leaves are 
1.8–3.8 times higher than those in the intact leaves, irrespective of upper or lower leaves. 
These accumulations of sugars were due to a blockage of phloem transport from leaves to 
stems. On the other hand, the concentration of amino acids and ammonia (Table 5) increased 
about 1.5–2.6 times by petiole-girdling treatment, which is similar to the sugar concentration. 

A. Soybean leaflet                            B.  Internal structure of soybean leaf tissue 
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Figure 16. A model of soybean leaflet of trifoliolate leaves and the internal structure of soybean leaf. (A) Mature soybean 
leaflet of trifoliolate leaves with network of veins. (B) Model of the internal structure of soybean leaf tissue.
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A. Soybean leaflet                            B.  Internal structure of soybean leaf tissue 

Veins 

Xylem 
vessels 

Bundle 
sheeth 

Palisade 
mesophyll 

Adaxial 
epidermis 

Stomata 

Spongy 
mesophyll 

Paraveinal 
mesophyll 

Abaxial 
epidermis Stomata 

Figure 16. A model of soybean leaflet of trifoliolate leaves and the internal structure of soybean leaf. (A) Mature soybean 
leaflet of trifoliolate leaves with network of veins. (B) Model of the internal structure of soybean leaf tissue.

Amino Acid - New Insights and Roles in Plant and Animal186

Upper leaves Lower leaves

 Intact leaves Stem girdling Ratio Intact leaves Stem girdling Ratio

Total amino acid-N 16 41 2.6 15 34 2.3

Ureides-N 36 36 1 45 50 1.1

Nitrate-N 36 44 1.2 37 32 0.9

Ammonium-N 60 88 1.5 56 92 1.6

Total soluble-N 769 1024 1.3 981 1065 1.1

Table 3. Concentration of amino acid, ureides, nitrate, ammonium, and 80% ethanol soluble fraction of intact and girdled 
leaves (μgN/gDW).

Upper leaves Lower leaves

 Intact leaves Stem girdling Ratio Intact leaves Stem girdling Ratio

Fructose 2.78 9.35 3.4 2.35 8.43 3.6

Glucose 2.84 7.31 2.6 1.86 7.1 3.8

Sucrose 4.74 8.35 1.8 6.03 11 1.8

Table 4. Concentration of 80% ethanol soluble sugar of soybean leaves (mgN/gDW).

Upper leaves Lower leaves

Intact leaves Stem girdling Ratio Intact leaves Stem girdling Ratio

Asparagine 347 781 2.3 390 669 1.7

Threonine 287 772 2.7 222 677 3

Serine 782 1440 1.8 649 1283 2

Asparagine 928 8089 8.7 875 7760 8.9

Glutamate 1729 3290 1.9 1888 2597 1.4

Glutamine 0 914 0 774  

Proline 653 4.837 7.4 1008 2597 1.4

Alanine 492 1587 3.2 579 1106 1.9

Valine 775 1918 2.5 585 1509 2.6

Cysteine 270 294 1.1 221 282 1.3

Isoleucine 758 2674 3.5 730 2270 3.1

Leucine 733 2196 3 641 1824 2.8

Tyrosine 156 579 3.7 123 380 3.1

Phenylalanine 536 1426 2.7 404 896 2.2

GABA 3332 6267 1.9 3035 4683 1.5

Arginine 1582 1036 0.7 1043 1022 1

Data from SSPN [32].

Table 5. Composition of free amino acids in intact and girdled leaves of soybean plants.
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Among amino acids, Asn was the highest ratio about 9.0 by the petiole-girdling treatment. 
Most of the other amino acids show the ratios 2–4, but only arginine showed the ratio 0.7 and 
1.0 in upper leaves and lower leaves, respectively. Pate et al. [33] reported that asparagine and 
glutamine are predominant in phloem exudate obtained by phloem bleeding technique from 
legume fruits.

Figure 17 summarizes the flow of N in soybean leaves. Ureides, nitrate, and Asn transported 
to the leaf blades via xylem vessels are metabolized in leaves and assimilated into leaf protein. 
Then, the degradation products of leaf protein are retransported to the apical buds, roots, and 
pods via phloem.

7. Amino acid metabolism in soybean pods and seeds

Figure 18 shows the top (A) and side (B) views of a mature soybean seed and growing coty-
ledons in a pod (C, D) [31]. The mature soybean seed consists of a seed coat surrounding a 
large embryo. Seed coat has a hilum (seed scar), and there is a tiny hole (micropyle) at the 
end of the hilum. The tip of the hypocotyl radical axis is located just below the micropyle. 
There is a main vain at the dorsal part of a pod, and nutrients such as sugar and ureides and 
amino acids are transported through the vain. Seed coat has a funiculus connecting main vain 
and hilum. Nutrients are transported through vasucular bundles in seed coat; however, the 
vascular systems are not directly connected to the cotyledons. The cotyledons are cultured in 
a seed coat cavity. Therefore, nutrients are excreted to the cavity, and cotyledons absorb them 
by themselves.
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Figure 17. A model of nitrogen flow in soybean leaves.
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As shown in Table 1, young pods contained a high concentration of ureides both in the upper 
and the lower pods. The high accumulation of ureides in the pods may be due to that ureides 
are tentatively stored in the pods before transporting to the seeds. Seeds contain a high con-
centration of amino acids especially Asn and GABA (Table 2).

Figure 19 shows the changes in ureide-N and amino acid-N in seeds and pods of nodulated 
and nonnodulated soybean [34]. The concentrations of ureides in the pods of nodulated 
soybean were high at 1st September and decreased after 15th September. The ureide-N con-
centration kept low in the pods of nonnodulated soybean plants. Amino acid-N concentra-
tions were similar between nodulated and nonnodulated soybeans and decreased linearly 
from 1st September to 10th October at maturing stage. On the other hand, the ureide-N 
concentrations in the seeds of nodulated and nonnodulated plants were constantly low. The 
amino acid-N concentrations were similar between nodulated and nonnodulated soybeans, 
decreased from 1st September to 22nd September, and then constant until maturity at 10th 
October.

A.  Top view of soybean seed B.  Side view of soybean seed

Hypocotyl-radicle axis

Micropyle

Hilum with central fissure

Raphe

Seed coat

Main vain

Funiculus

Helum
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Seed coat

C.  Soybean pod                                                        D.  So ybean seed

Figure 18. Structures of soybean seed and pod. (A) Top view of soybean seed. (B) Side view of soybean seed. (C) Soybean 
pod with seeds inside. (D) Soybean seed.
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Most parts of N stored in matured seeds are storage proteins in the cotyledons (Figure 20A) 
[35]. Soybean seed storage protein consists of glycinin and β-conglycinin (Figure 20B). The 
glycinin is the hexamer, which has acidic and basic subunits. The β-conglycinin is the trimer, 
which has α′, α, and β subunits.

Nodulated 

Non-nodulated 

Figure 19. Changes in udeide-N and amino acid-N in pods and seeds of nodulated and nonnodulated soybean plants.

A B

0.05mm

Cotyledon cells filled with protein 
bodies. (pb: protein body)

SDS-PAGE profile of soybean 
Seed protein.

conglycinin

glycinin

b- 

Figure 20. Microscopic picture of soybean cotyledon and soybean seed storage proteins. (A) Microscopic picture of thin slice 
of soybean cotyledon. Pb: protein body. (B) Soybean seed storage protein separated by SDS-PAGE and stained with CBB.
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Figure 21 summarizes the metabolism and transport of N from pod into seeds. The ureides, 
allantoin, and allantoic acid, transported from nodules, are tentatively accumulated in the 
young pods, and these are metabolized into amino acids such as Gln, Asn, and then, these 
amino acids are secreted into the cavity of seed coat. Then, cotyledons absorb amino acids 
and synthesize storage protein and sort to the protein body. Asn and amino acids from roots 
and leaves are also transported to the pods and secreted into seed coat, and then, cotyledons 
absorb them for storage protein synthesis.

8. Recycling of nitrogen from shoot to roots

Recycling of nitrogen from shoot to roots via phloem supports the initial growth of roots 
and nodules that need external nitrogen nutrients until nitrogen absorption and nitrogen 
fixation start to meet the N demand. The quantitative measurement of recycling of N in soy-
bean cultivar Williams and hypernodulation mutant lines, NOD1-3, NOD2-4, and NOD3-7, 
was carried out by split root experiment in which a half root system was in the pot with 
15N-labeled solution and the other was in nonlabeled solution (Figure 22) [36]. The roots of 
soybean plants cultivated in culture solution were separated into two pots at 33 days after 
planting. At the next day, 15N-labeled nitrate (10 mgN L−1) was added in the one side of pot 
and non-labeled nitrate (10 mgN L−1) in the other side of pot. After 2 days of treatment, plants 
were harvested and percentage of N from 15N-labeled source (15N%) was determined in each 
part. The 15N was highest in the roots in 15N-labeled pot (14.0%), followed by stems (6.0%) and 
leaves (3.9%). A small portion of recycling 15N was detected both in roots (0.7%) and nodules 
(0.3%) in the nonlabeled pot after 2 days of split root treatment in Williams. The distribution 
of 15N in sum of nodules and roots was the same in NOD1-3, NOD2-4, and NOD3-7 hyper-
nodulation lines.
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Figure 21. Model of the flow of ureides and amino acids in soybean pod to a seed.
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9. Overall nitrogen transport from fixed N and absorbed N

Figure 23 shows the model of initial flow of N in soybean plants originated from N2 fixation 
(A) in nodules and NO3

− absorption from roots (B).

The ureides produced by nitrogen fixation in nodules are transported to leaves and used for 
the leaf growth and metabolism. Mature leaves do not retransport ureides from phloem, but 
these are transported as amino acids, especially Asn. Some ureides are directly transported 
to the pods, and young pods accumulate a large amount of ureides, then it is used for seed 
growth via seed coat after decomposition into amino acids, such as Gln and Asn.

The absorbed nitrate in the roots is transported as NO3
− or amino acids especially Asn after 

assimilated in the roots. The absorbed NO3
− is transported to the leaves, then reduced by leaf 

nitrate reductase and nitrite reductase, then assimilated into amino acids. The amino acids are 
transported to the pods, and then seeds from the leaves.

Figure 22. Recycling of N derived from a half root of soybean plants with 15N-labeled nitrate. Percent in parenthesis is 
percentage of labeled N in total N in each part.
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Abstract

The nitrogen depletion stress is widely used to promote energy storage compound 
(ESC) production of microalgae, such as starch and lipids. Previous reports show that 
the fast ESC’s accumulation happens around the overall nitrogen content lowered to 
the half of normal cells. It indicates that the cells take an active nitrogen reassembly 
to rebalance the requirement of nitrogen, in which the amino acid conversion should 
play an important role. So here, using a marine strain, Isochrysis zhanjiangensis, as 
the model to give a detail view on metabolic, transcriptomic and proteomic levels dur-
ing ESC’s fast accumulation. The intracellular metabolite fluctuation within 32 h was 
profiled by GC-MS and LC-MS. These techniques identified and quantified the levels 
of 14 SMAs, 2 carbohydrates involved in the TCA cycle and glycolysis, and 28 free 
amino acids (AAs). The pulsed increase of pyruvate indicated a potential to produce 
more FAs. Although overall AAs showed a decreasing trend, Ala and Phe increased 
initially. Meanwhile, the transcriptomic and proteomic studies were utilized to show 
the nitrogen metabolic pathways changes. It is found that gamma-aminobutyric acid 
(GABA) and other nonprotein AAs play important roles in the regulation of energy 
metabolism.

Keywords: nitrogen reassembly, microalgae, energy storage compound, Isochrysis
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1. Introduction

As the potential producer of the third-generation biofuels [1], and the origin of plenty of 
high-value products [2], microalgae have attracted more and more attentions from the last 
decade. An ideal algal biofuel production process should have high biofuel yield, with eco-
nomic raw material utilization and proper biomass formulation. To meet these requirements, 
a two-stage culture method has been widely utilized, with nitrogen deficiency (N-deficiency) 
stress applied after the growth stage of the culture [3–7]. Nitrogen is the key element among 
the creatures, and the response to nitrogen deficiency varies among different plants [8]. For 
example, Isochrysis zhangjiangensis (synonym Isochrysis zhanjiangensis), a marine microalga 
with high carbon fixation capacity, will accumulate both polysaccharides and lipids as ESCs 
under N-deficiency conditions [3, 6, 9], while wild Chlamydomonas reinharditii stores starch 
and Nannochloropsis oceanica stores lipid preferentially.

However, the regulatory mechanism beneath the coordination of carbon and nitrogen metabo-
lism is unclear, which is important for the design of high efficient process. For photoautotroph 
microalgae, carbohydrates are from the complex photosynthesis system. The synthesis of lipids 
is a more complex process than that of carbohydrates, which needs more ATP together with 
the reduction power from NADPH [10]. During the accumulation of ESCs, it can be reason-
ably assumed that plenty of enzymes are involved and a considerable portion of amino acids 
(AAs) are consumed or turned over to produce proteins (enzymes) for metabolism adjustment. 
Otherwise, some AAs involve the ESCs production directly. For instance, branched AAs (leu, 
Ile and Val) take part in the Ac-CoA production [11, 12], which is the raw material for the fatty 
acid synthesis; Glu is the precursor of chlorophyll synthesis. The clear understanding of carbo-
hydrate and lipid accumulation coordinating process will contribute to oriental enrichment of 
bio-products according to the interest of industry.

The fast development of various “-omics” analyses provides versatile tools for probing com-
plex biological problems. Different levels of “-omics” are combined to show a multidimen-
sional information and widen our views on the essence of biological processes. Therefore, it 
gives us the opportunity to investigate the facts involving in this “golden period” of ESC’s 
production, especially here, focused on the AA-related processes.

2. The methods used for “-omics” studies of I. zhangjiangensis

2.1. Strain and cultivation

I. zhangjiangensis FACHB-1750 was maintained by the Freshwater Algae Culture Collection 
of the Institute of Hydrobiology, Chinese Academy of Sciences. The microalga had been pre-
viously cultivated in F/2 medium without silica under 14:10 light/dark cycle [3]. Algal cells 
were harvested in the exponential phase and re-suspended in nitrate-free medium to a final 
concentration of 3.0–4.0 × 106 cells/mL. For flask cultures, 200 mL seeds were inoculated in 
500-mL glass shaking flasks with hand shake after inoculation and sampling. For bioreactor 
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cultures, 500 mL seeds were inoculated in 600-mL glass bubbling reactors and aired by CO2 
enriched air (2%, v/v) at the speed of 100 mL/min. The cultivation was under the control of 
self-made Algal Station Platform for reproducible growth (http://www.mbpe.dicp.ac.cn/yjcg/
kyjz/kyjzpage.html).

2.2. “-omics” analysis procedures

I. zhangjiangensis cells from standard 7 day’s cultivation were used as sample pools for the 
transcriptomic database construction. Sequencing was performed on Illumina HiSeq™ 2000 
by BGI Tech (Shenzhen, China). Reads were assembled to unigenes (7511 clusters and 16,712 
singleton transcripts) by Trinity [13] and further annotated against NCBI NR database (non-
redundant protein database) and using Nt (non-redundant nucleotide database), SwissProt, 
KEGG and COG database by blastx (e-value <10−5). The calculation of unigene expression uses 
FPKM method (Fragments Per kb per Million fragments) [14]. The COG cluster enrichment 
analysis was performed basing on the expression. The RNA-seq data are available with acces-
sion No. PRJNA217946 on NCBI.

The proteomics analysis was performed according to previous report [15] against above RNA-
seq database. Totally 1862 proteins were identified and quantified.

The AAs and other small molecular acids (SMAs) were inspected by SIM LC-MS and GC-MS, 
respectively. The experimental details can be found from Zhang et al. [16]. Furthermore, by 
the pulse-isotope label of 15N on nitrogen containing compounds (NCCs) during the “golden 
period,” the turnover of nitrogen between AAs was investigated.

2.3. Growth, photosystem II (PS II) activity and other biochemical composition analyses

Other biochemical and physiological parameters were detected as previous description [3, 6, 9]. 
In brief, dry weight was determined gravimetrically after filtration by Whatman GF/C filters (47 
mm diameter) and air dried in the air until constant weight achieved. Nitrate analysis was con-
ducted with SEAL Analytical AutoAnalyzer 3 following the manufacturer’s instructions. Lipid 
analysis was performed using Nile Red or GC according to Wang’s method [6, 9]. The chlo-
rophyll fluorescence measurements were performed using a chlorophyll fluorometer (Water-
PAM, Heinz Walz GmbH).

3. Overall of cell growth and turnover of AAs

3.1. The newly synthesized AAs during the fast accumulation of ESCs by pulsing label

The assimilation of nitrogen starts from the reduction of nitrate and the formation of gluta-
mate. Without nitrate supply from the medium, free AAs were turn over between different 
NCCs, including proteins, nucleic acids and AAs themselves. By pulsing adding 12.3 mg/L 
15N (in form of Na15NO3) at day 2, when initial 24.6 mg/L N was nearly used out, the labeled 
ratio of free AAs was detected within 32 h.
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It has been reported, while the external nitrogen supply depleted, the protein, especially ribu-
lose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), was partially degrade as a nitrogen 
pool to reassemble AAs and other NCCs [17]. So, the final labeled ratio of AAs was expected 
near 33% (according to total nitrogen supplied). Most of AAs (15/23) consisted with the theo-
retical value with about 33% labeled ratio. However, some AAs showed interesting changing 
patterns (Figure 1).

The labeled AAs were newly synthesized, and therefore, most of free AAs show a high labeled 
ratio at the beginning (day 3-1 of Figure 1), except Arg, which increased stepwise. The Arg is 
mostly from the conversion of ornithine. The low level of labeled Arg indicates a slower than 
average AAs’ synthesis rate of it in the early of exponential growth phase.

Among 23 AAs detected, 6 of them (His, taurine, Asn, Gln, Arg, and Trp) show a the final 
label ratio higher than 35%, indicating more than average newly synthesized of them were left 
inform of free AAs. Together with the low label level of Arg, the nitrogen assimilation may 
mostly form Gln branch.

The first undetectable labeled AA was methionine sulfoxide, which disappeared within 24 h. 
It is the oxidation form of methionine and formed post-translationally. The content of methio-
nine sulfoxide is about one-fifth of that of Met in I. zhangjiangensis [16].

The second disappeared labeled AA was ornithine. It may be the result of the increasing 
labeled Arg and function involving in the urea cycle [11].

Figure 1. 15N labeling percentage of AAs during the ESC fast accumulation period. (A) The labeling ratio of AAs changed 
within 32 h. The theoretical labeled ratio is about 33%. (B) The nitrogen changes during a standard bioreactor cultivation. 
The dotted line is nitrate concentration in medium of pulsing label experiment. (C) The dry weight, Fv/Fm and neutral 
lipids content changes in above cultivation. The black arrow indicates the start of pulsing label of 15N.
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3.2. The change of free AAs together with SMAs

The AAs metabolism relates to other SMAs closely. Zhang et al. have reported a de tailed 
metabolic network change, with 18 protein AAs, 11 non-protein AAs, 14 SMAs and 2 
carbohydrates [16]. As shown in Figure 1B, the total nitrogen was steady during the 
fast ESC accumulation stage, so the per cell-based qualification was used to tracing 
the changes. The cell number doubled after nitrogen depletion, and it is reasonable that  
the AA content level decreased to about half level. However, Phe had an evident 3-time 
increase during the early stage of nitrogen depletion. Other AAs maintained a steady state 
or increased in quantity slightly at the beginning and then decreased below their initial 
amounts.

The relative constant of protein AAs may contribute to the release of AAs from Rubisco. 
Table 1 is the comparison of AA content in Rubisco large subunit and whole cell of I. zhangji-
angensis. The data for Rubisco are from the putative AA sequence translated based on RNA-
seq and that for whole cell is measured by MS from nitrogen-rich cultured cells. They share a 
similar composition. Only Glu shows a great difference.

In non-protein AAs, only Gamma-aminobutyric acid (GABA) shows a profoundly inc-
rease after nitrogen depleted, indicating an important role in the response of nitrogen 
stress.

Together with the changes of AAs, including the metabolites of glycolysis (d-glucose-
1p,dihydroxyacetone-p, glyceraldehyde-3p, d-fructose-6p) and the glyoxylate or TCA cycles 
(citrate, cis-aconitate, isocitrate, α-ketoglutarate) showed a pattern of initial increase in quan-
tity followed by subsequent decrease. Malate, fumarate and succinate, all from the TCA cycle, 
shared the same tendency of steady decline. Glucose and lactate showed steady increase in 
quantity [16].

In general, nitrogen has positive effects on the growth of microalgae, while having a nega-
tive impact on the accumulation of lipids, for aims of biofuel production. When carbon is not 
a limiting factor, intracellular energy substrates will accumulate under nitrogen starvation. 
Evidence shows that glutamate dehydrogenase as a metabolism shunt plays an important 
role in ensuring that the nitrogen metabolism does not affect the function of mitochondria and 
nitrogen recycling [18]. As a consequence, Gln, Glu, Asp, and Asn form the basis of several 
other organic nitrogen compounds, especially AAs [18].

3.3. AA metabolism–related transcriptomics and proteomics change

The overall transcriptomics and proteomics annotation results by KEGG pathways show 
opposite changes, up-regulated in transcriptomics while down-regulated in proteomics 
(Figure 2). The transcription and translation are controlled complex mechanisms. Their trends 
difference is a result of different level responses to the nitrogen deficiency.

To have a more global view of cell response, basing on the Clusters of Orthologous Groups 
(COGs) enrichment analysis of differentially expressed genes, amino acid transport and 
metabolism cluster (E) is the most significantly down-regulated cluster (Figure 3).
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3.4. Glu vs. α-ketoglutarate

Glu is the key AA for photosynthesis cell as the precursor of chlorophyll. Also, it is the second 
AA products after the series reduction of nitrate to ammonia. It is the most abundant AA (in 
weight ratio) in I. zhangjiangensis (Table 1). α-Ketoglutarate plays two vital roles in the bio-
chemical pathways of microalgae. One role is its participation in the TCA cycle, and the other is 
its involvement in the synthesis of glutamate. α-Ketoglutarate accumulates in the early stage of 
nitrogen deficiency in Phaeodactylum tricornutum and I. zhangjiangensis [10, 16]. α-Ketoglutarate 
accumulated incipiently instead of participating in the synthesis of glutamate, as indicated by 
the smooth decline in glutamine levels during the same time period. Then, both the level of 
glutamate and glutamine decreased significantly and the high level of α-ketoglutarate then 
resulted in feedback inhibition for its precursors, leading to their accumulation and  apparent 

AA Mole % in Mass % in

Rubisco large subunit Whole cell Rubisco large subunit Whole cell

His 1.5% 0.3% 1.8% 0.4%

Cys 1.8% 0.4% 1.7% 0.4%

Trp 1.8% 0.0% 2.9% 0.0%

Glu 3.4% 9.0% 3.8% 10.9%

Met 3.7% 2.1% 4.2% 2.6%

Phe 3.8% 4.8% 4.9% 6.5%

Asn 4.0% / 4.1% /

Ile 4.1% 5.3% 4.2% 5.7%

Tyr 4.3% 2.1% 6.0% 3.1%

Gln 4.4% 0.7% 5.0% 0.8%

Pro 4.7% 4.5% 4.2% 4.2%

Lys 4.9% 6.2% 5.5% 7.4%

Ser 5.0% 7.9% 4.1% 6.9%

Arg 6.0% 4.8% 8.1% 6.9%

Thr 6.4% 4.8% 5.9% 4.7%

Asp 6.6% 4.5% 6.8% 4.9%

Gly 7.3% 13.0% 4.3% 8.0%

Val 7.6% 7.4% 6.9% 7.2%

Leu 8.0% 9.0% 8.1% 9.7%

Ala 10.6% 13.2% 7.3% 9.7%

*The bold italic underlined AAs are first 7 abundant AA in each group.

Table 1. The AA profiling in Rubisco large subunit and whole cell*.
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increase (isocitrate, cis-aconitate, citrate) consequently [10, 16]. Nitrogen supply status showed 
directly influence on nitrogen assimilation, and by way of α-ketoglutarate intrigued the 
rebalance the carbon metabolism on a certain degree.  AKG-Gln-Glu is the linker between 
 nitrogen assimilation and central carbon metabolism in I. zhangjiangensis’ response to nitrogen 
starvation.

Figure 2. The mapping of significant changed AA metabolism related genes and proteins on KEGG metabolic pathways 
(map01100). The thin line indicates the significantly down-regulated elements, while the thick line indicates the 
significantly up-regulated elements.

Figure 3. Enrichment of COG clusters analysis. Bars indicated the number of identified genes in different COG clusters 
and up or down regulated gene number in each cluster. The significant enrichment classes were mark with asterisk (*) 
on the top of the bar. The meaning of letters (A–Z) is listed below and significantly up or down regulated clusters were 
mark with up* or down* after their names correspondingly and the number after * was the Q-value. RNA processing 
and modification (A); chromatin structure and dynamics (B); energy production and conversion (up*, 2.95E−02) (down*, 
1.00E−05) (C); cell cycle control, cell division, chromosome partitioning (up*, 1.05E−02) (D); amino acid transport 
and metabolism (down*, 0.0) (E); nucleotide transport and metabolism (F); carbohydrate transport and metabolism 
(G); coenzyme transport and metabolism (up*, 2.95E−02) (H); lipid transport and metabolism (down*, 1.88E−03) (I); 
translation, ribosomal structure and biogenesis (J); transcription (K); replication, recombination and repair (up*, 1.93E−03) 
(L); cell wall/membrane/envelope biogenesis (up*, 2.42E−11) (M); cell motility (N); posttranslational modification, 
protein turnover, chaperones (O); inorganic ion transport and metabolism (P); secondary metabolites biosynthesis, 
transport and catabolism (up*, 6.57E−05) (down*, 1.54E−07) (Q); general function prediction only (R); function unknown 
(up*, 3.60E−07) (S); signal transduction mechanisms (T); intracellular trafficking, secretion, and vesicular transport (U); 
defense mechanisms (V); extracellular structures (W); nuclear structure (Y); Cytoskeleton (up*, 2.54E−02) (Z).
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It’s reported that Gln and Glu subject influence on the intermediates of the TCA cycle. The 
transcription repressor of aconitase, CcpC, can be suppressed by glutamate, when nitrate is 
assimilated in phototrophic eukaryotes, glutamate or its precursors can arrest the glutamate 
synthase operon, which is closely affected by both carbon and nitrogen sources, and induced 
in the presence of ammonium and glycolytic carbon sources to form a feedback inhibition 
cycle [19]. The nitrogen source for the increased glutamine was considered as the recycling of 
internal nitrogen, indicating by the higher level of a key intermediate in the urea cycle, citrul-
line. Proteolysis and AA metabolism consume plenty of energy and release CO2, resulting 
in the low level of intermediates in central carbon metabolism in the early stage of nitrogen 
deficiency [16].

Furthermore, in I. zhangjiangensis, the photosynthesis brought enough glucose to cell after the 
growth was inhibited by nitrogen depletion, and further stored in form of β-1,3 glucan [9, 16]. 
The wholly increased intermediates in glycolysis process inhibit glyoxylate cycle from the 
very beginning. By sharing the intermediates with TCA, the influence also causes the transi-
tory increase of α-ketoglutarate, and further influence Gln and Glu metabolism.

3.5. Succinate and Asp, pyruvate and Ala: two secondary intersections of carbon and 
nitrogen metabolism

In most microalgae species, aspartate and glutamate usually constitute a large proportion of 
the total amino acid content, while GABA, Trp, Met, His, ornithine and others only represent 
a small proportion [20]. Asp makes up 6.9% or more of the total AA content and approxi-
mately 1.5–1.8% of total detected free AAs in I. zhangjiangensis. Asp serves as the source of 
nitrogen for transaminations and as the early product of the carbon fixation pathway for car-
bon storage in blue-green algae [21]. Succinate and Asp are intermediates between the gly-
oxylate cycle and the TCA cycle in cells. The glyoxylate cycle is involved in the formation of 
glucose and further AAs and nucleotides, whereas the TCA cycle targets the generation of 
ATP as an energy carrier. For I. zhangjiangensis, when nitrogen was limited, some cell physi-
ological activities related to growth receded or stopped, and the product of carbon fixation, 
glucose, accumulated, while the surplus energy was stored in the form of polysaccharose or 
lipids [3, 6, 9]. The increase of intermediates of glycolysis and the TCA cycle, as well as AMP 
and ADP [10], blocked the glyoxylate and TCA cycles. Most of metabolites of the TCA cycle 
in the inhibitor-treated sample showed a stable concentration at the beginning, except suc-
cinate and fumarate. Subsequently, with a further decrease in photosynthetic activity, the 
TCA cycle activity increased to produce more energy, and the levels of all TCA cycle metabo-
lites decreased. While lipid accumulation increased lately, malate, α-ketoglutarate and other 
metabolites in TCA decreased. More energy consumed in lipid synthesis than that of polysac-
charose may be the reason for this.

Due to the share of intermediates of above cycles, citrate, cis-aconitate and isocitrate accu-
mulated rapidly. In one glyoxylate cycle, two molecules of Ac-CoA are consumed, while one 
molecular Ac-CoA is consumed during one TCA cycle. Otherwise, from the stable level of 
pyruvate, it is postulated the initiative synthesis of Ac-CoA was intact. Therefore, the block of 
above two cycles induced a transitory net accumulation of Ac-CoA, which redirected to FAs, 
which also consists with our previous work [6, 9].
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Pyruvate and Ala are another pair of metabolites at the carbon-nitrogen metabolism intersec-
tion. Pyruvate is the key linker between different sub cell component (Figure 4), and the pre-
cursor of acetyl-CoA, the precursor for FAs synthesis and TCA cycle. As the most abundant 
AA in Rubisco, which contributes about 3% dry weight of normal I. zhangjiangensis cells, Ala 
was considered to release ammonium after nitrogen depleted by consuming α-ketoglutarate 
and producing Glu and pyruvate. The free Ala kept decrease in this period.

4. Conclusion

The AA metabolism changes during the fast ESCs accumulation process of I. zhangjiangensis 
was detailed illustrated by “-omics” analysis. An overall changing model is raised from above 
data, which will help us to understand the function of different AAs and promote the new 
regulation methodology for the bioenergy development. A draft global change of AA-related 
metabolism is shown in Figure 5.

Figure 4. Postulated carbon partition of I. zhangjiangensis under during the “golden period.” While exogenous nitrogen 
depleted, the nitrogen assimilation stopped and α-ketoglutarate as the reactant of Gln-Glu cycle had a transitory 
increase. The synthesis of Gln was reduced, and proteolysis was enhanced, while GABA acted as a transient N buffer 
as well as a signal to indicating the nitrogen level in cells to stimulate subsequent response. The slowdown of growth 
without exogenous nitrogen also caused the accumulation of carbohydrates, such as glucose or glucan, which and whose 
derivants in glycolysis together with α-ketoglutarate inhibited the activities in TCA and glyoxylate cycle. Partial of 
carbon flowed to pyruvate for further FAs or lipids. Words with doubled underline: increased, others: no significant 
change. Drafted based on Zhang et al.
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Abstract

Currently, wide world research is focused on sustainable development and the demand 
for innovative clean technologies, nevertheless natural potential reconsideration could 
represent a viable solution for the identification and design of new pharmacological 
agents from renewable resources. The main reason consists of special properties of these 
natural derivates: immunomodulating activity with continuously perfectible selectiv‐
ity and efficiency. Plants and herb extracts have been used for centuries as traditional 
medicines, throughout the entire world. Romanian phytotherapy represents practically a 
very important part of our traditional knowledge and heritage. Therapeutic properties of 
plant active principles still continue to be the subject of many researches. In this chapter, 
an overview of plant bioactive molecules from the perspective of modern phytochemis‐
try is presented. A special part is devoted to a very special medicinal plant, Viscum album, 
in particular identification of amino acids and thionins from mistletoe.

Keywords: phytochemicals, secondary metabolites, analytic methods

1. Introduction

Since ancient times, people have searched and found in nature remedies for various dis‐
eases [1, 2]. Romanian tradition pays a special attention to plants which attributes them the 
properties of living beings (soul, feeling, hearing and sight). Also there is an extraordinary 
relation between human beings and nature, an almost mystical interdependence. Most often 
the healing herbs were considered sacred. Phytotherapy origins are lost in the mists of time. 
In Romania, the traditional medicine has a very long history. Platon, Herodot and Pedanos 
Dioscoride have mentioned about the herbal medical system from Dacia and medicinal plants 
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used by our ancestors [1]. In Romanian tradition, there is a ritual harvesting these herbs which 
requires strict compliance with the optimal schedule at a specified date and time. Such is the 
case of belladonna (Atropa belladonna) that is harvested on full moon only from April–May 
period, before Pentecost. Medicago falcate known as earth vortex must be collected only on 
harvest time. Melilotus officinali is plucked only on Sanziene holiday and on Cross day, two 
important Romanian holidays. It is believed that after this period the plant loses its proper‐
ties. Romanian traditional medicine involves a very large number of heal plants: twigs, buds, 
bark and leaves of trees (alder, sambucus), flowers, seeds, stems or roots from plants. Some 
of the healing herbs were specific to Romanian herbal medicine: Salicornia herbacea, Anchusa 
officinalis, Actaea spicata, Symphytum officinale, Verbascum thapsus, Urtica dioica, Cicuta virosa, 
Typha angustifolia, Chelidonium majus, Bryonia alba L., Thymus vulgaris L., Alisma plantago‐
aquatica L., Hyoscyamus niger L., Verbascum phlomoides L., Achillea millefolium L., Veratrum 
album, Clemantis vitalba L., Potentilla reptans L., Lappa maior Gartn., Datura stramonium L., 
Dipsacus pilosus L., Erythraea centaurium Pers., Mentha piperita L., Cynoglossum officinale L., 
Lithospermum arvense L. and Galim verum [3]. But then their use was spread throughout Balkan 
areal and Europe. Currently, it is widely used for Symphytum officinale for its anti‐inflammatory 
and wound healing activity. Withal, this plant has a high content of allantoin, one of the active 
principles of the plant it became more important as an ingredient in cosmetics [4–7].

Recent studies on medicinal plants assigned the therapeutic capacity of medicinal plants to 
their complex structure composed mainly from highly bioactive compounds, minerals, vita‐
mins, etc. [2].

Generally, medicines contain just one active substance, synthetically, whereas medicinal 
plants are practically a mixture of over dozens or even hundreds of chemicals that act syn‐
ergistically [2–3]. Moreover, medicinal plants contain a large amount of vitamins and miner‐
als, easily assimilated by human body. Many recent studies demonstrate that vitamins and 
minerals obtained through chemical synthesis have not the same beneficial effect as similar 
natural products. It may be due to the fact that in natural products there is a synergistic and 
complementary action between vitamins, minerals and enzymes, while synthetic compounds 
(vitamins or minerals) are isolated and even obtained as a different enantiomeric form [8–10]. 
On the other hand, drugs present other major disadvantages compared with medicinal plants: 
(i) various side effects; (ii) contraindications; (iii) interactions with other substances; (iv) drug 
resistance (drug dependence); (v) expensive and (vi) long time consuming research [8]. In 
comparison, natural compounds present a superior structural diversity, complex structure 
and multiple stereocenters [10–12]. These are just few arguments that may tilt the scales in 
favor of herbal medicines. Moreover, World Health Organization (WHO) aims to increase the 
integration of traditional medicine in order to improve health care system [13].

2. Plant metabolite

Paramount importance of botanic products for humanity is due mainly to their phytocom‐
pounds, active principles with therapeutic properties. Several studies have investigated these 
plant‐derived compounds [14–19]. Depending on the role they hold in living organisms, 
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natural substances are divided in the next major categories: (i) primary metabolites, molecules 
common to all biological systems (proteins, fats, sugars) and (ii) secondary metabolites, com‐
pounds that could be specific for different species as a direct result of the evolution process 
of a particular phylogenetic group [16, 18–20]. Figure 1 shows a schematic representation of 
plant metabolites [16–20].

Bioactive molecules are basically those secondary metabolites exhibiting therapeutic, prevent‐
ing, toxicological and immunostimulating activity [16–20]. The most known plant‐derived 
bioactive compounds are presented in Figure 2.

Figure 1. Plant metabolites.

Figure 2. Schematic representation of plant bioactive compounds.
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Biological activity of these compounds has been extensively investigated in particular in the 
last decades [4–32]. Thus, it demonstrated that there is a close connection between the chemi‐
cal structure of the natural active principles (functional group types, number and position 
related to carbon skeleton, substitution in aromatic ring, stereochemistry, side chain length, 
saturation, etc.) [17, 20, 22, 25, 27, 34]. The role of metabolites in human organism is briefly 
presented in Table 1. And some examples of these compounds are shown in Table 2.

Secondary metabolites Important molecules References

Alkaloids Caffeine, piperine, atropine, berberine, morphine, quinine, cocaine, 
nicotine, strychnine, codeine, ephedrine, dopamine, serotonine, 
vinblastine, vincristine, brucine, capsaicin, solanine, tomatine, choline, 
etc.

[15, 21, 34]

Terpenes Hemiterpene: isoprene, isovaleric acid [15, 34]

Monoterpene: limonele, eucalyptol, menthol, nerol, citral

Sesquiterpene: zinziberene, farnesol

Diterpene: cafestol, retinal, retinol

Sesterterpenes: bulgarene, farnesol, lindarene

Triterpene: provitamin A, betulin, cymarin

Tetraterpene: lycopen, α si β carotenoids

Polyterpene: vitamin E, gutta‐percha

Flavonoids Flavones: luteolin, diosmetin, apigenin [15, 22, 23]

Flavonols: quercetin, myricetin, rutin, kaempferol

Flavanones: hesperetin, naringenin

Flavanonol: silymarin, taxifolin

Isoflavones: daidzin, genistin

Anthocyanidin: cyanidin, delphinidin, peonidin, petunidin

Compound type Pharmacological properties

Terpenoid Antimicrobial, antiviral, antiviral, anthelmintic, antibacterial, anticancer, antimalarial, anti‐
inflammatory [15, 34]

Phenolics acids Anticarcinogenic and antimutagenic, anti‐inflammation and anti‐allergic [16, 20, 25, 31–35]

Alkaloids Antispasmodic, antimalarial, analgesic, diuretic activities, local anesthetic, antihypertensive, 
antiasthma, antimalarials, diuretic, bactericidal [14–16, 20, 21]

Flavonoids Antioxidant activity, cardiovascular protective, anti‐inflammatory, hepatoprotective, antiviral, 
antibacterial [20, 22–24, 34]

Saponins Antitumor, antiviral, antifungal, anti‐inflammatory, immunostimulant, antihypoglycemic, 
antihepatotoxic and hepatoprotective, anticoagulant, neuroprotective, antioxidant [16, 20, 24–27, 34]

Tannins Antioxidant, anti‐carcinogenic, diuretics, hemostatic, anti‐mutagenic, metal ion‐chelators, 
antiseptic, [14, 16, 20, 25, 28–32]

Table 1. Biologic activity of main groups of natural compounds.
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3. Profiling of plant bioactive molecule

Achievement of the natural plant bioactive molecules profile involves more consecutive 
stages (Figure 3) [14, 17, 18].

3.1. Selection of plant species

First and foremost stage is required to evaluate the existing ethnomedicinal studies, che‐
motaxonomical data regarding a particular medicinal plant, information collected from 
different historic documents, traditional knowledge from even local quacks and specialists 
[14, 37].

Secondary metabolites Important molecules References

Phenolic acids Cinnamic acid, benzoic acid, ferulic acid, coumaric acid, caffeic acid, 
salicylic acid, gallic acid

[15, 33]

Saponins Panaxadiol, diosgenin [15]

Table 2. Some well‐known examples of plant metabolites.

Figure 3. Flowchart of plant bioactive molecules profiling.
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3.2. Collection and identification of plant species

This represents a key stage required to afford a reliable profile of natural active principles. 
And involve the next steps:

(a) Procurement of botanic component only from sources with guaranteed good agriculture 
and collection practices. An essential step demand to investigate a possible microbial, pes‐
ticide or heavy metals contaminations to avoid adversely affect the results of the chemical 
screening of bioactive metabolites, increased the time and cost of studies [18, 36, 37]. Table 3 
presents the main analytical techniques used to detect a possible plant contamination.

(b) Plant taxonomic or genetic identification [18, 36, 37]. A modern method for authentifica‐
tion the botanic precursor use genomic analysis (DNA barcoding method) [38]. Research 
has been shown that biodiversity and plant growth environmental conditions (tempera‐
ture, humidity, soil physic and chemical properties) could influence the bioactive mol‐
ecules profile [39].

3.3. Preparation of plant material (drying, micronisation, etc.)

The botanical material processing is needed to avoid the degradation of plant bioactive com‐
pounds [14]. The drying is recommended to be performed in areas‐controlled atmosphere 
(absence of humidity, well‐ventilated, constant temperature).

The dried botanic material is subjected to micronization process through mechanical tech‐
niques. The other methods of plant sample preparation involve: (i) botanic material homog‐
enization or (ii) plant maceration [14, 39, 42].

This step aims to minimize the sample particle dimensions and thus to enhance the extraction 
yield [14].

3.4. Extraction and isolation of bioactive molecules

This is the key stage in evaluation of natural bioactive compounds.

(a) Extraction and separation techniques: In literature, there are many studies on extraction of cer‐
tain groups of plant metabolites. However, the selectivity of conventional extraction meth‐
ods (soxhlet extraction, hydrodistillation, maceration, percolation, steam distillation, etc.) 

Plant contamination assay Analytical method

Heavy metals Atomic absorption spectroscopy, ICP‐MS, etc.

Pesticide or/and herbicide residues GC‐MS, mass spectrometry, HPLC‐MS, etc.

Microbial content HPLC‐MS, etc

Table 3. Plant contamination: chemical assays.
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are at least moderate and economically inefficient (energy, hazardous reagents consump‐
tion, time and temperature) [18, 39–42]. The other main disadvantages of these techniques 
are (i) not environment friendly; (ii) high possibility of degradation of thermostable active 
principles and (iii) additional steps (extract concentration, cleanse) [39–42]. Advanced ex‐
traction processes (solid‐phase extraction, ultra‐sound‐assisted extraction, microwave‐as‐
sisted extraction, supercritical fluid extraction, pulsed electric field extraction, pressurized 
liquid extraction, enzyme‐assisted extraction, surfactant‐mediated extraction) have mini‐
mized many of these shortcomings. Usually, the separation of a particular group of bioac‐
tive compounds from a complex natural product required a selective separation strategy 
based on phytochemicals partition in several different polarity solvents [43]. Nevertheless, 
natural product chemistry research concerns the development of new and highly efficient 
extraction techniques. Recent studies have reported that calixarenes could represent an 
attractive opportunity in this regard [44].

(b) Isolation methods: The physical properties (solubility, molecular weight, stability, dipole 
moment, etc.) of targeted bioactive compounds are essential for an efficient isolation 
method [39, 41, 42]. Another important factor is the nature of extraction solvent [39]. 
Generally, based on existing databases, the plant metabolites isolation are carried out 
through chromatographic methods: thin chromatography (TLC), flash chromatography, 
high performance liquid chromatography (HPLC), high‐performance thin‐layer chroma‐
tography (HPTLC), gas chromatography (GC) or Fourier transform infrared spectroscopy 
(FT‐IR) [14, 39, 41, 42]. A biological material previously uninvestigated and is in demand 
to develop an appropriate isolation procedure that require following additional steps: (i) 
phytochemical evaluation; (ii) bioassay (immunoassay (monoclonal antibodies) [14, 39].

3.5. Identification and structural elucidation (chemical screening)

This is the forefront but also the most difficult step in natural product chemistry. Achievement 
of the bioactive molecules complete profile requires the cutting‐edge technology and advanced 
knowledge specialists. Investigation on new natural compounds entails a larger work vol‐
ume determined mainly by the absence of plant scientific data [14, 39, 45–48]. Plant bioactive 
molecules profiling is based on various spectroscopic techniques, advanced chromatographic 
(hyphenated techniques) methods and a complete morphostructural characterization pro‐
cedure using X‐ray crystallographic techniques, polarimetry and electronic microscopy 
(Table 4) [14, 39, 45–48]. An optimal strategy based on high‐tech technology provides fast 
and highly efficient complete structural information about the targeted compounds [39, 42, 
47, 48]. Table 5 shows the main analytical techniques applied in natural bioactive compounds 
chemical screening [14, 39, 45–48].

3.6. Biological and pharmacological screening

There are various methods designed to investigate the biological activity of a targeted 
natural compounds. An optimal procedure must fulfill several criteria: fast, simple, reli‐
able, high sensibility and selectivity, availability and low cost. Bioactivity evaluation for a 
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Plant sample Propose structure Abbreviation SIM (selected‐ion monitoring)

V1 (hexane) Cystine C‐C 41, 42

Glutamic acid Glu 38, 40

Phenylalanine Phe 56, 57

Ornithine Orn 59,60,61

Histidine His 84, 89

Tyrosine Tyr 61, 63, 94

Glycine Gly 116, 74

Homoserine HSER 102,128, 143

Asparagine Asn 155, 69

Isoleucine Ile 171, 129

Valine Val 158, 116

Threonine Thr 160, 101

β‐Alanine β Ala 158, 98

Valine Val 158,72

β‐Alanine β Ala 129, 158, 98

Homoserine HSER 102, 128, 143

Asparagine Asn 155, 69

Spectroscopic methods UV‐Vis spectroscopy

Fourier transform infrared spectroscopy

Mass spectroscopy:

(a) Electron impact mass spectrometry (EIMS)

(b) Chemical ionization mass spectrometry (CIMS)

(c) Electrospray ionization mass spectrometry (ESIMS)

(d) Electrospray ionization mass spectrometry (ESIMS)

(e) Fast atom bombardment mass spectrometry (FABMS)

Nuclear Magnetic Resonance (NMR) spectroscopy:

(a) One‐dimensional techniques: 1HNMR, 13CNMR, 13CDEPT, 13CPENDANT,13C J 
mod.

(b) Two‐dimensional techniques: 1H‐1H COSY, 1H‐1H DQF‐COSY, 1H‐1H COSY‐lr, 
1H‐1H NOESY, 1H‐1H ROESY, 1H‐1H TOCSY, 1H‐13C HMBC, 1H‐13C HMQC, 
1H‐13C HSQC,HSQCTOCSY

Chromatography methods Gas‐chromatography: GC, GC‐MS, GC‐TOF‐MS; GC‐MS/MS, two‐dimensional GC 
coupled with mass spectrometry (GC×GC‐MS), GC‐FTIR, GC‐NMR

Liquid chromatography: LC/UV; LC/MS; LC/UV/MS; LC/MS‐MS; LC/NMR, LC‐
UV‐DAD, HPLC‐NMR

Other analytic techniques XRD; TEM; polarimetry

Table 4. A brief overview of bioactive molecules profiling tools [39, 42, 47, 48].
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Plant sample Propose structure Abbreviation SIM (selected‐ion monitoring)

V2 (CCl4) Asparagine Asn 155, 69

Cystine C‐C 41,42

Alanine Ala 130, 70

Glutamic acid Glu 38, 40

Ornithine Orn 59,60,61

Tryptophan Trp 130

β‐Alanine β Ala 129, 158, 98

Phenylalanine Phe 56, 57

Tyrosine Tyr 61, 63, 94

Homoserine HSER 102,128, 143

Valine Val 158,72

Lysine Lys 170, 129

Glycine Gly 116, 74

Isoleucine Ile 170, 130

Hystidine Hys 84, 87

V3 (petroleum ether) Glutamic acid Glu 38, 40

Cystine C‐C 41,42

Phenylalanine Phe 56, 57

Glycine Gly 116, 74

Leucine Leu 172, 86

β‐Alanine β Ala 129, 158, 98

Isoleucine Ile 170, 130

Cysteine Cys 248, 162, 206

Tyrosine Tyr 61, 63, 94

Hystidine Hys 84, 87

Glutamine Gln 84, 187

Lysine Lys 170, 129

Tryptophan Trp 130

Valine Val 158,72

Aspartic acid Asp 216, 130

Methionine sulfoxide 229,182,138

S‐Carboxymethyl‐cysteine 144,203,262

Proline‐hydroxyproline (dipeptide) PHP 156, 186

Lysine‐alanine (dipeptide) LYS‐ALA 170, 224, 153

3‐Methyl‐cysteine 1MHIS 172,259,130

Arginino succinic acid ARG‐SUC 441, 326

Methionine Met 203, 277

Cystathionine CTH 203, 272
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plant extraction (plant fraction) is usually performed through in vitro or/and in vivo studies 
[14, 49, 50]. Most often, in vitro studies are focused on the evaluation of specific cell biology 
(cell count, growth rate, metabolic rate, cell function and protein expression). In vitro tests 
are conducted on various animal or human cell cultures, enzymes, depending on targeted 
natural compound biological activity [14, 49, 50]. For instance, the bioassays for antitu‐
mor activity are conducted on tumor experimental models. Complementary, the immuno‐
logical activity on normal cell culture should be monitored. The cells will be analyzed by 
fluorescence microscopy and will be quantified to establish the degree of apoptosis and 
implicitly the cell viability. Also, the time‐lapse video microscopy can be used to evaluate 
the bioactive phytochemicals [43]. The in vivo biotests are applied on animals (mice, rats, 
pigs, etc.).

Natural compounds bioassay can be demonstrated also using computational chemical meth‐
ods: quantitative structure‐activity relationship (2D or 3D QSAR) and structure‐activity rela‐
tionship (SAR) [75, 76].

Regarding the antioxidant activity of natural compounds, literature demonstrates the existence 
of a considerable number of studies using two analytical techniques: electron spin resonance 
(ESR) and chemiluminescence. But the obtained results depend on the type of reactant (specific 
free radical) used [51]. Electrochemistry, especially by the instrumentality of voltammetry has 

Plant sample Propose structure Abbreviation SIM (selected‐ion monitoring)

V4 (acetone) Cystine C‐C 41,42

Glutamic acid Glu 38, 40

Phenylalanine Phe 56, 57

β‐Alanine β Ala 129, 158, 98

Ornithine Orn 59,60,61

Glycine Gly 116, 74

Isoleucine Ile 170, 130

Histidine Hys 84, 87

Glutamine Gln 84, 187

Valine Val 158,72

Tyrosine Tyr 61, 63, 94

Lysine Lys 170, 129

Homoserine HSER 102,128, 143

Proline‐hydroxyproline (dipeptide) PHP 156, 186

3‐Methyl‐cysteine 1MHIS 172,259,130

Homocysteine HCYS 142, 203

Glycyl‐glycine (dipeptide) Gly‐Gly 117, 144, 201

Table 5. Compounds identified through GC‐MS analysis.
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been shown to be a useful method for the investigation of the antioxidant activity of different 
targeted compounds [52].

4. Natural compounds in Viscum album as an example of medicinal plant

One of the most renowned medicinal plants is Viscum album L., which has very different appli‐
cations: tonic, cardiotonic, antiviral, cancer, etc. In different European countries, mistletoe 
extracts are prepared and commercially available (Iscador, Isorel, Eurixor, Plenesol, Vysorel, 
Lektinol, Helixor, etc.) as alternative treatment for cancer therapy [53–58].

First information on the use of this plant for its benefits on the human body dates back to 
ancient times. The druids and Celts considered as sacred mistletoe that grows on oak. Over 
time, peoples were attributed a special symbolism to this evergreen plant: immortality, knowl‐
edge, wisdom, universal panacea, love, fortune, fertility, etc. [54, 57]. There are considered that 
magical properties of mistletoe are kept only if the complied both the collection ceremony: a 
golden knife in a special moment of day before full moon, on right period (summer or winter 
solstice) [54].

In traditional medicine, Viscum are used for various health benefits: poison antidote, anti‐age, 
anti‐inflammatory, fertility, antitumor, headaches, preventing epilepsy, cure for plague, ery‐
sipelas, etc. [53–55].

Many studies have been carried out for determination of the outstanding biological effects: 
antiproliferative activity, antitumor activity, antiviral activity, cardiovascular, immunostimu‐
lant and antidiabetic [56, 58–65]. But the extremely complex chemical composition of this 
plant has not been precisely determined yet. Nevertheless, several secondary metabolites 
such as flavonoids, alkaloids, steroids, terpenoids were detected [66]. However, research has 
demonstrated that viscum chemical composition varies depending on (i) the type of host tree 
on which it grows (oak, maples, acacia, robinia, poplar, etc.), (ii) time of harvesting, (iii) envi‐
ronmental conditions and (iv) extraction method [56, 67].

The attempts to establish the compounds responsible for biological, immunomodulating and 
cytotoxic activity had targeted especially the lectins and viscotoxins as active components 
[56, 67]. Nevertheless, these compounds represent only a small content of percent from the 
entire plant peptide content which is not fully understood in terms of chemical structure 
and biological activity. Relatively recent research had emphasized on the presence of other 
peptide derivate, viscumamide with antitumor activity [68]. However, there are still many 
compounds pharmacologically active that can be found. Continuous development of analysis 
techniques can provide important information about new highly bioactive compounds iso‐
lated from plant extracts.

4.1. Importance of natural small peptide

From the multitude of classes of biomolecules isolated from natural compounds, a special 
attention has been given to amino acids and small peptides due to their remarkable properties 
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(high solubility, strong antioxidant, reduce high blood pressure, analgesic, anti‐tumor, immu‐
nomodulatory, etc.). In addition, these biologically active compounds have various applica‐
tions in pharmacology, cosmetics, sports and food.

In plants, these biomolecules are involved also in defense mechanisms against various classes 
of pathogens (bacteria, fungi, parasites, etc.) [69, 70].

Given that cancer is the second leading cause of death in European countries, and one of the 
most imminent health problems in the developed world [71–73], there is an overwhelming 
interest for new efficient antitumor agents with high bioavailability and minimal side effects. 
In this context, research on plant bioactive molecules with putative antitumor activity is even 
more justified.

Thionins represent a special class of small peptide with multiple disulfide bonds [43, 68, 69]. 
They have shown cytotoxicity and antitumor activity [69, 70]. Research has reported that 
mistletoe contains several types of thionins: viscothionin A1, viscothionin A2, viscothionin 
A3, viscothionin B, viscothionin C1, viscothionin D, viscothionin E, viscothionin P1 [69, 70].

4.2. Determination of amino acids and thionins from Viscum album

In an effort to detect the amino acids and thionins from Viscum album a selective partition 
strategy based on solvents with different polarities (methanol, hexane and carbon tetrachlo‐
ride) was developed [43]. The plant material (Viscum album leaves and young leaves from 
Quercus robur) was obtained from a collection taken in December 2015 in Timis, Romania. 
Plant sample was identified at Victor Babes University of Medicine and Pharmacy Timisoara. 
The botanical material was dried and then finely ground in a ball mill. A plant sample (3 g) 
was placed in a 100 mL volumetric flask containing 50 mL of methanol. The result mixture 
was sonicated for 60 min at 40°C, with a frequency of 50 kHz. Then the solution was filtered 
through a 0.30 μm pore size filter and subsequently extracted with the following organic 
solvents: n‐hexane (V1) and carbon tetrachloride and (V2). The separation of thionins was car‐
ried on the next experiment: 2 g of sample was extracted successively with petroleum ether 
(30 mL) and acetone (30 mL) [43]. Identity of the compounds from the obtained viscum frac‐
tions: V1 (hexane), V2 (CCl4), V3 (petroleum ether) and respectively, fraction V4(acetone) was 
performed using GC‐MS and TOF MS methods.

4.3. GC‐MS analysis

The GC‐MS chromatograms for mistletoe extract fraction V1–V5 are presented in Figure 4(a)–(d).

The results of design isolation strategy based on different solvent polarity were analyzed 
through GC‐MS [43]. The identified compounds are presented in Table 5; after a careful com‐
parison with spectral database, NIST/NBS was used to compare the results of analysis [43].

4.4. TOF‐MS analysis

The mass spectra of mistletoe fractions V1–V4 (acquired in positive ion mode, in a mass range 
of 100–3000 m/z) are presented in Figure 5(a)–(d).
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Plant sample was identified at Victor Babes University of Medicine and Pharmacy Timisoara. 
The botanical material was dried and then finely ground in a ball mill. A plant sample (3 g) 
was placed in a 100 mL volumetric flask containing 50 mL of methanol. The result mixture 
was sonicated for 60 min at 40°C, with a frequency of 50 kHz. Then the solution was filtered 
through a 0.30 μm pore size filter and subsequently extracted with the following organic 
solvents: n‐hexane (V1) and carbon tetrachloride and (V2). The separation of thionins was car‐
ried on the next experiment: 2 g of sample was extracted successively with petroleum ether 
(30 mL) and acetone (30 mL) [43]. Identity of the compounds from the obtained viscum frac‐
tions: V1 (hexane), V2 (CCl4), V3 (petroleum ether) and respectively, fraction V4(acetone) was 
performed using GC‐MS and TOF MS methods.

4.3. GC‐MS analysis

The GC‐MS chromatograms for mistletoe extract fraction V1–V5 are presented in Figure 4(a)–(d).

The results of design isolation strategy based on different solvent polarity were analyzed 
through GC‐MS [43]. The identified compounds are presented in Table 5; after a careful com‐
parison with spectral database, NIST/NBS was used to compare the results of analysis [43].

4.4. TOF‐MS analysis

The mass spectra of mistletoe fractions V1–V4 (acquired in positive ion mode, in a mass range 
of 100–3000 m/z) are presented in Figure 5(a)–(d).
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Figure 4. TIC of (a) V1 extract, (b) V2 extract, (c) V3 extract and (d) V4 extract.

Figure 5. Positive ion mode TOF‐MS of (a) V1extract, (b) V2extract, (c) V3extract and (d) V4extract.
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4.5. FT‐IR spectroscopy

The solid (fine grounded) sample of mistletoe was analyzed also through FT‐IR spectroscopy 
(Figure 6). It has been aimed to identify the absorptions bands specific to amino acids and 
peptides from: (i) 3400 cm−1 (O‐H and N‐H bonds); (ii) 3330–3130 cm−1 (NH3+ groups); (iii) 
symmetric absorption at 2080–2140 cm−1or 2530–2760 cm−1; (iv) 1500–1600 cm−1 (ammonium 
group deformation vibrations); (v) 1610–1660 cm−1 (carboxylate group); (vi) 1724–1754 cm−1 
(carbonyl vibrations) and (vii) vibrations bands characteristic for thionins (1687, 1675, 1663, 
1654, 1644, 1632, 1621, 1611) [45, 74].

The FT‐IR spectra were recorded using a Universal ATR accessory (UATR) and mistletoe samples 
20 mg and 30 mg, respectively, mixed with KBr.

From the spectra analysis, the presence of bands specific to amino acids, thionins and pep‐
tides can be noticed.

5. Conclusions

The collective results suggest that chosen separation solvent and analytic strategies are effi‐
cient for isolation and identification of targeted natural compounds from mistletoe sample. 
Further studies on mistletoe extract are necessary to gain insight into the complete bioactive 
molecules profile with high antitumor activity.

Figure 6. The FT‐IR spectra for the mistletoe sample.
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Continuous development of analysis techniques can provide important information about 
highly bioactive molecules isolated from natural compounds. Particular importance must be 
paid to the choice of optimal separation methods which must be simple but highly selective 
and efficient for separation of a certain class of natural metabolites. A special emphasis has 
been given to identify the peptides because it was considered that nature of amino acids, their 
quantity in plant and the ratio to known peptides for their high bioactivity may be relevant to 
their anticancer action. Research on small peptide with pharmacological activity continues to 
be a topic of great interest to the current science due to their special high biological activity, 
chemical stability, bioavailability, etc. From this perspective, further research will allow to 
predict the formulation of the peptide profile from natural extract with a specific biological 
effect with application in cancer prevention or therapy.
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Abstract

The methodologies applied to chickens and laying hens, to determine the digestibility 
and requirement of protein and amino acids are used with quails, however, they need 
a more careful evaluation due to peculiarities inherent to the Coturnix genus, in order 
to provide consistent results. The nutritional requirements of the birds are determinate 
using the dose-response and the factorial method. Several mathematical models and 
techniques of diet formulation are allied to the dose-response method in determining 
nutritional requirements. The curvilinear (hyperbolic) models better portray population 
behaviour in response to increasing nutrient doses in diets. The reading model, allow a 
better estimation of the requirement, in relation to the mathematical models used in the 
dose-response method. The techniques of comparative slaughter and nitrogen balance 
are effective in determining the nutritional requirements of quails, however, the latter 
need to be corrected by the loss of nitrogen in the feathers in determining the require-
ments of crude protein and amino acids for maintenance. The protein-free diet, coupled 
with the industrial amino acid supplementation, provides more robust digestibility val-
ues, since it more effectively predicts the endogenous excretion pattern.

Keywords: amino acids, physiology, Japanese quails, methodologies, requirements
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1. Introduction

Created for various purposes (hunting, meat, ornamentation, eggs) the production of quail 
is a reality worldwide. Countries such as Spain, France, China and the United States stand 
out for the production of meat, however, when the production is intended to egg production, 
countries, as China, Japan and Brazil are highlights.

Quail farming in Brazil in the year 2015 reached a total of 21.99 million head, either for meat 
or for eggs and 447.47 million dozens of eggs [1], which means an increase of 8.1 and 13.9%, 
respectively, in relation to 2014.

The success of the activity in Brazil is due to the large producing companies that have settled 
in the territory and to the creation of research groups inserted in Academic Center, with 
studies directed to the genetic improvement, management and production, and nutrition of 
quail. The Centers that stand out are: Group of Studies and Poultry Technologies—Federal 
University of Paraiba, Areia, PB; Nucleus of Fish and Bird Studies—Federal University of 
Paraiba, Bananeiras, PB; Nucleus of Studies in Poultry Science and Technology—Federal 
University of Lavras, Lavras, MG. As well as research groups located at the University 
of Espirito Santo, Alegre—ES, Federal University of Minas Gerais, Belo Horizonte, MG, 
Maringa State University, Maringa, PR, and Federal University of Viçosa, Viçosa, MG, and 
the last three groups differ from the firsts, because they also present a breeding program. 
Worldwide countries such as India, France, Spain and Egypt also stand out with quail 
research.

[2] World studies on quails date back to 1992, and since 2002 the number of studies in the 
various research Centers has increased, both in the world and in Brazil. This advance in the 
Brazilian researches is concomitant with advances in methodologies for food evaluation and 
nutritional requirements [3, 4], in the knowledge of cellular biochemistry, physiology and 
animal nutrition, in the development of laboratories in the Research Centers, and in industrial 
manufacturing of amino acids, premix, etc.

Although of the same family (Phasianidae), commercial poultry, broilers, chickens and quail 
are of different genres. The latter belong to the genus Coturnix, while the former are of the 
Gallus genus. Faced with this taxonomic difference, quails have peculiar digestive physiol-
ogy, and in addition, growth and early reproductive activity, and among others, have low 
feed intake, which gives them a higher rate of passage in the gastric tract. These differences 
denote a specific nutritional requirement, mainly protein and amino acid.

Several methodologies applied to chickens and laying hens [4] are effective in quail use; how-
ever, they need a more careful evaluation, due to peculiarities inherent to the Coturnix genus, 
in order to provide consistent results. Another aggravating factor is the lack of quail stan-
dard lineages that makes nutrition dynamism even more peculiar with quail. There are few 
reputable and reputable companies in Brazil that work on quail breeding and provide genetic 
material for sale. There are few reputable companies in Brazil that work on quail breeding 
and provide genetic material for sale.
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There are two basic methods (dose response and factorial method) for determining the nutri-
tional requirements of birds. However, several mathematical models and techniques for 
formulating diets that are allied, to the dose-response method, and techniques such as com-
parative slaughter (CS) and nitrogen balance (NB), used in the factorial model to predict the 
nutritional requirement values of crude protein and amino acids for birds.

In this chapter, we will discuss the peculiarities of Japanese quails in relation to broilers, lay-
ing hens and heavy matrices, and the need to use with criteria, the methodologies to estimate 
digestibility and requirement, and also review the use of mathematical models, diet formula-
tion and the methodologies of CS and NB.

2. Peculiarities and methodologies

2.1. Peculiarities

Part of the requirements for amino acids and protein for maintenance (laying hens and quail) 
is directly related to precocity, intestinal gastric tract size (IGT), feather production, devel-
opment of the reproductive tract, and part of the gain requirement is related to egg weight 
(inside the same species), and also, rate of muscle deposition (maturity).

Quails, whether intended for laying or cutting, have early maturity and are related to growth 
rate, and also to size of animals [5, 6], and thus, smaller animals have higher growth rates and 
lower age to maturity.

Precocity in growth is related to the time the animal takes to achieve sexual maturity, is a 
guiding parameter in breeding programs, and also denotes different requirements for ani-
mals. In this sense, the models that describe growth curves [7–10] validate the premise that 
each species/lineages and animal category have different nutritional requirements.

Comparing the Gompertz growth curves for Japanese quails [9], meat quails [7, 9], light and 
semi‐heavy laying hens [11] and broilers [8, 10], it is worth mentioning, that between maturity 
rates (0.720, 0.0594 and 0.0694, 0.0245 and 0.0230, 0.0373 and 0.0411), respectively, and Japanese 
quails have the highest maturity rate, which refers to higher nutritional needs, protein and 
amino acids.

Japanese quails have a lower weight of IGT than chickens, laying hens and heavy matrices, 
but, a higher relative weight in relation to body weight and this factor predisposes a higher 
rate of passage of the digest by IGT [12–14].

Japanese quail [15] presented weight absolute and relative oviduct of 10.18 g and 3.05%, and 
ovary of 6.36 g and 2.16%, that are lower in relative to laying hens [16] that presented absolute 
and relative oviduct weight of 76.98 g and 6.58%, and absolute and relative ovary weight of 
36.04 g and 3.08%. However, the relative weight of quail eggs is higher, and may reach 10% of 
body weight. The weight of eggs of quails has a mean value of 12 g [17–20] and eggs of laying 
hens around 65 g [21–24].
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2.2. Crude protein: methodologies and requirement

The protein and amino acids requirements for quails can be defined by the method of dose and 
factorial method. The most common is dose-response method and has generated a lot of informa-
tion’s. However, considering the more accurate method, in predicting the  requirement of amino 
acids and crude protein, in this topic of proteins, we will approach a subject only on the factorial 
model. The approach of the dose-response method will be in the topic about amino acids.

Some studies have been carried out to estimate crude protein (CP) requirements for commer-
cial bird keeping, gain and production using CS and NB techniques.

There studying the requirements of CP for maintenance and gain with Japanese quails in pro-
duction using the CS technique, [18] obtained the following equation: CP (g/bird/day) = 6.71 
× body weight0.75 + 0.615 × weight gain + 0.258 × egg mass.

The requirement of CP for maintenance and gain for growing Japanese quails was estimated 
in the period from 01 to 32 days of age, through the CS technique. The predicted equations 
were: CP (g/bird/day) = 2.845 × body weight0.75 + 0.461 × weight gain for quails aged 01–12 days 
of age and CP (g/bird/day) = 4.752 × body weight0.75 + 0.843 × weight gain for quails in the 
period from 15 to 32 days of age [25, 26].

The CP requirement for maintenance and gain using the BN technique was determined by the 
following equation for the 52 week old Lohmann LSL® laying hens: CP (g/bird/day) = 1.94 × 
body weight0.75 + 0.480 × weight gain + 0.301 × egg mass [27].

Using the NB technique to determine the maintenance and gaining needs of Ross® broilers, at 
7 days of age of 56, [28] the following equation was obtained: CP (g/bird/day) = 1.323 × body 
weight0.75 + 0.272 × weight gain for males and the following equation for females: CP (g/bird/
day) = 1.748 × body weight0.75 + 0.277 × weight gain.

Working with 5-week-old Hubbard® matrices, [29] determined the CP (g/bird/day) values for 
maintenance using the CS and NB techniques, and values their obtained, respectively, were 
3.77 and 2.02 × body weight0.75, and the mean value for CP requirement for gain was 0.406 × 
weight gain, for techniques CS.

Working with light replacement pullets, Lohmann LSL®, from the age of 42–63 days, using the 
CS technique, [30] found CP (g/bird/day) values for maintenance and gain of: 4.7625 × body 
weight0.75 and 0.313 × weight gain.

When evaluating laying hens Hubbard® at age 36–46 weeks of age, [31] estimated the follow-
ing equation to predict protein requirements: CP (g/bird/day) = 2.282 × body weight0.75 + 0.356 
× weight gain + 0.262 × egg mass.

It is known that nutritional needs are changed according to species, animal category, room 
temperature, diet composition and animal density. However, another important factor that 
changes the nutritional needs is the methodologies used [18, 25–31], such as the CS and NB 
techniques used in the elaboration of prediction equations.
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In an attempt to elucidate the effects of the two techniques in determining PB requirements 
for maintenance and gain, the values predicted by these two techniques will be compared.

The CP (g/bird/day) requirements for maintenance were predicted by the CS technique, with 
growing animals, in the studies [26, 29, 30], which, respectively, used: pullets (42–63 days of 
age), heavy matrices (3–20 weeks of age) and Japanese quails (15–32 days of age). The values 
are similar between the species, 4.765 and 4.752 × body weight0.75 for pullets and quails; how-
ever, they are discrepant when compared to heavy matrices 3.77 × body weight0.75.

Using the NB technique to determine CP (g/bird/day) requirements for maintenance, the 
values predicted by the authors, [27, 28, 31], who, respectively, worked with broiler chick-
ens (7–56 days of age), laying hens, and heavy matrices, were: 1.323; 1.94 and 2.28 × body 
weight0.75. It can be observed that there is no similarity between the all determined values. 
However, the values are consistent when analyzing animals in the same category [27, 31] 
which were: 1.94 and 2.28 × body weight0.75.

It can be observed that the net requirement of CP (g/bird/day) for gain, determined by 
the two techniques (CS and NB) and reported in the works of [18, 25–31], is, respectively: 
0.615; 0.461; 0.843; 0.480; 0.272; 0.406; 0.313 and 0.356 × weight gain. Comparing the require-
ments of CP (g/bird/day) to gain, with the CS technique, the values are: 0.406; 0.461; 0.615 
and 0.843 × weight gain. Those predicted in the NB technique are: 0.272; 0.356 and 0.480 × 
weight gain.

A relevant comparison is to analyze the same technique and animal’s age, growth and pos-
ture. Within the CS technique, with growing animals, the values were: 0.313; 0.461 and 0.843 
× weight gain, respectively, pullets (42–63 days of age), quails (01–12 days) and quails (15–
32 days of age). In NB technique for growing animals, the values were, respectively: 0.272 × 
weight gain, for broilers; and for the animals in posture were: 0.356 and 0.480 × weight gain, 
respectively for, laying hens and heavy matrices.

The values of requirement of CP (g/bird/day) estimated for egg mass production in laying 
hens and Japanese quails were, respectively, 0.301 × egg mass [26], and 0.258 × egg mass [18]. 
However, the first one presents a lower requirement of amino acids and CP, evidencing that 
the greater requirement of quails is related to the higher maturity rate, that is, higher precoc-
ity [9–11]. Corroborating the findings of [18, 25–27, 29], where these authors found a require-
ment of CP for greater maintenance and gain for Japanese quails in relation to laying hens 
and heavy matrices.

It is clear from the aforementioned works that the CS and NB techniques used to determine 
PB requirements for maintenance and gain provide conflicting, inter and intraspecific val-
ues, which makes comparison difficult. In an attempt to elucidate this difference between the 
methodologies, [32] described the potential of nitrogen retention in laying pullets by analyz-
ing the two techniques: CS and NB. The authors describe that excreted nitrogen measured in 
the BN technique does not seem to contain all possible physiological effects, except for amino 
acid oxidation, in relation to the CS technique. This factor suggested by the authors seems to 
be the accounting for the nitrogen lost in feathers (NF), which is not measured when used in 
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the NB technique, and with that, the CP requirement values for maintenance between the two 
techniques are more discrepant.

For [33], the use of the BN technique is even more aggravating, because in this technique, 
diets are formulated with different levels of protein to generate deficiency and excess CP in 
the animals’ diet. In this sense, the relationship between the protein level and the loss of NF 
was established, described by the equation NF = 0.3007 + 0.0086 N, where, for each gram of 
increase in the nitrogen concentration of the diet, there was a loss of 8.6 mg of nitrogen in 
feathers, that is, the deficiency in proteins leads to less deposition of amino acids in the feath-
ers, thus, changes the requirement of maintenance the animals. [34] Also verified the influence 
of nitrogen losses on feathers on the need for maintenance, using the BN technique.

Using the correction value of nitrogen losses in the feathers found by [33], [32] in their work 
using this correction could conclude that differences between CP needs  for maintenance 
between the two techniques, CS and NB, decreased fell from of 1.56: 1 for 1.28: 1, comparing 
CS: NB.

2.3. Amino acids: methodologies, digestibility and requirement

The requirements of amino acids have been described by two methodologies: empirical 
and factorial method [4]. To evaluate the nutritional requirements in the dose-response or 
empirical method, the diets are formulated with increasing levels amino acid, gradually, and 
observed the response of the animals through polynomials (linear and quadratic), broken line 
and hyperbolic and analyzed in order to estimate the requirements of birds. In the factorial 
method, the requirements are described in function of the maintenance, growth and produc-
tion, and relate to the metabolic weight, weight gain and eggs mass production. This method 
was described in the topic of proteins.

In addition to the methodologies, there are also techniques for formulating diets that also 
change the requirements. One of the techniques consists of gradual increases of the nutrient 
tests [35], the other prioritizes the dilution of the diets, which consists of formulating a diet 
free of the test nutrient and another diet with the same nutrient in excess, and the nutrient 
levels studied will be obtained by the dilution of the two diets [36].

The success in determining the requirements is a thin line, that is, the robustness of the pro-
posed models and determined requirement are allied to the knowledge and interpretation 
of each physiological factor of the animals, and mathematical model, in order to promote 
satisfactory performance to birds.

2.3.1. Amino acids methodologies: techniques for preparing diets

In the technique proposed by [35], the supplementation of a single amino acid generates 
imbalances in the relations between amino acids and amino acids/lysine. This point is crucial, 
since it refers to the ideal protein concept proposed by [37], where the diet needs to have an 
optimal balance of amino acids to provide maximum performance to the animals with lower 
nitrogen excretion.
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posed models and determined requirement are allied to the knowledge and interpretation 
of each physiological factor of the animals, and mathematical model, in order to promote 
satisfactory performance to birds.

2.3.1. Amino acids methodologies: techniques for preparing diets

In the technique proposed by [35], the supplementation of a single amino acid generates 
imbalances in the relations between amino acids and amino acids/lysine. This point is crucial, 
since it refers to the ideal protein concept proposed by [37], where the diet needs to have an 
optimal balance of amino acids to provide maximum performance to the animals with lower 
nitrogen excretion.
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The supplementation technique is widely used [38–45] and has generated a large number of 
discrepant nutritional information. The main factor is the imbalance between amino acids. 
The main antagonist relationships between amino acids are: arginine and lysine and the rela-
tionship between leucine, isoleucine and valine.

The excess of lysine in the diets, when using the technique proposed by [35], to assessing the 
lysine requirements, promotes an increase in serum lysine levels, and consequently, a greater 
loss of arginine by renal catabolism due to the increase in enzyme arginase [46], and generat-
ing confusion in the determination of the optimal levels of lysine.

Ref. [45] evaluated different levels of digestible arginine in the diet of Japanese quails, with 
diets formulated by the supplementation technique, estimated an ideal dietary arginine level 
of 1.148% in diets with 1.083% digestible lysine and relation arginine/lysine of 1.06.

Refs. [47, 48] evaluated the requirement of digestible lysine with Japanese laying quails, using 
the supplementation technique, but these authors maintained the relationships between 
the amino acids of the diets. The authors found digestible lysine levels of 1.117 and 1.120%, 
respectively, in diets with arginine/lysine ratios of 1.26 and 1.16, respectively.

Ref. [17] found levels of digestible lysine for Japanese quails in production of 1.030% in diets for-
mulated by the supplementation technique and without correction of the arginine/lysine ratio.

The Brazilian Poultry and Swine Table [49] and the Table for Japanese and European Quails 
[50] present, respectively, digestible lysine values of 1.083 and 1.030% and digestible arginine 
of 1.256 and 1.260%, respectively, with arginine/lysine ratios of 1.16 and 1.22.

Looking at the data, mentioned above, it is evident that the imbalance of the diets promotes 
different results among the authors [17, 47, 48]. However, [47, 48] found values equal, but 
maintained the relationship between the major amino acids; however, this practice of supple-
menting all amino acids to maintain relationships raises the cost of formulating diets.

Another known, but poorly studied amino acid relationship is branched-chain amino acids 
(isoleucine, leucine and valine). These three amino acids compete for the same intestinal 
transporter and for the same enzymes in cell metabolism [46].

When applying the concept of protein reduction and ideal protein, the basal diets composed 
of corn and soybean meal have increased maize levels, with this there is an increase in dietary 
leucine levels in relation to isoleucine and valine. Excess leucine [46] in the diet depresses the 
use of valine and isoleucine by animals, decreasing their performance.

Ref. [51] observed that high concentrations of isoleucine and low levels of valine and leucine 
affected the performance of laying hens in the laying phase. This same effect was verified by 
[52] when evaluating valine/lysine and isoleucine/lysine relations for Japanese quails in produc-
tion. The author recommends relations, respectively, of 0.75 and 0.82, for isoleucine and valine.

Analyzing the diets [52] of experiment I, where valine/lysine relations were evaluated, and 
the level of isoleucine in the diets was 1.0%. In experiment II, where the ideal isoleucine/lysine 
relations was verified, the level of valine in the diets was 0.75%, the latter was determined in 
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experiment I. The higher levels of isoleucine (1.0%) used in the diets of experiment I, may 
have promoted lower performance in the animals, even in diets with higher levels of valine 
(0.75, 0.80, 0.85, 0.90, 0.95 and 1.05%).

This assumption is found in Experiment II, where the ideal level of isoleucine was 0.82%, 
when the diet contained 0.75% valine, indicating that excess isoleucine (1.0%—in experiment I) 
affected performance of the birds, not allowing to verify improvement, even with higher levels 
of valine, or even the level of 0.82% of isoleucine that promoted the best performance the birds 
was limited to the value of 0.75% valine in the diet, since in experiment II levels of isoleucine 
were of 0.65, 0.70, 0.75, 0.80, 0.85 and 0.90%, corroborating the findings of [51]. In addition, in 
both experiments (I and II), the diets contained near levels of leucine, respectively, 1.597 and 
1.537%.

Aiming to understand the relationship between valine/isoleucine and recommend the best 
level of valine and isoleucine in the diet of Japanese laying quails [53], proposed the fol-
lowing methodology. In experiment I, were studied valine levels of 0.74, 0.81, 0.88, 0.95 and 
1.02%, with fixed level of isoleucine (0.70%). In experiment II, the same levels of valine were 
evaluated, now, with different levels of isoleucine (0.64, 0.70, 0.76, 0.82 and 0.88%). The author 
recommends valine levels of 0.74 and 0.64% of isoleucine in the diet of Japanese quails in pro-
duction. In addition, the leucine level used in both experiments was 1.47%.

It is noteworthy that the interpretations of the results of [53] do not repeat with those of [52], 
and these findings show that there are other factors involved in the study of the relationship 
between branched chain amino acids, intestinal transporters and metabolic enzymes, and 
which have not yet been described.

Comparing the two techniques of diet formulation [54], in his work proposed to study the 
technique of supplementation and dilution of diets, and to evaluate the levels of digestible 
lysine for broilers from 01 to 42 days of age. The author suggests the most appropriate dilu-
tion technique to formulate the diets, since it promotes better performance to the animals, 
and this technique reduces the use of supplemental amino acids to maintain the relationship 
between amino acids, since many of them have high cost of supplementation.

2.3.2. Amino acids methodologies: requirement

The two methodologies used to evaluate the amino acid requirements for poultry are the 
empirical method and the factorial method, and have as diet formulation techniques, supple-
mentation and dilution, discussed above. In this topic, we will address the methodologies, 
specifically the dose‐response method, since the factorial method has already been described 
in the topic on proteins.

In the empirical method, the requirement is determined through the addition of the nutrient test 
in the diets. The levels studied should promote a response curve where they can observe defi-
ciency, gain, stability and toxicity [55]. The response curve can be interpreted by several math-
ematical models [4], and the choice of them can change the value of the animal requirements.

The models used are: first and second degree polynomials, the broken line model and 
exponential.
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The first polynomial models and the interrupted line model describe the linear performance 
of the animal due to the addition of nutrients. In addition, the interrupted line model predicts 
that, from a given level of nutrient supplementation, there is no effect, establishing whether 
a plateau, where the requirement is determined by the intercept of the line with the plateau. 
In the first model (first‐degree polynomial), there is no predict an optimal level, but only data 
behavior, increasing or decreasing, and it is not possible to infer whether the behaviors of the 
line will be kept at lower levels or higher doses high.

The description of the behavior of the data in a linear way is the premise of the response of a sin-
gle animal however, the population response pattern tends to be curvilinear, since the  animals 
have different responses, even those of the same genetics and age [56], and thus, linear models 
do not accurately predict the requirements of animals.

The quadratic model presents an advantage in relation to the two models already mentioned, 
since the answer is curvilinear, describing the population pattern; however, in this model, the 
optimum point tends to be in the middle of the points studied, since there is a tendency of 
symmetry between the points to generate the response curve, so the authors work with the 
estimated value of 95% as the requirement of the animals.

For [57, 58], the models used to predict the requirements must have biological and math-
ematical meaning.

Nonlinear models predict that the animal’s response tends to decrease as it reaches maximum 
performance or asymptotic point. However, in this type of model, the exponential, the maxi-
mum performance would never reach, that is, it never reaches the asymptotic point, so, the 
authors suggest assigning a percentage ranging from 95 to 99% of the asymptotic response [4] 
as being the requirement of the animals.

Several are the works that use the empirical method to determine the requirements of amino 
acids with Japanese quail, using the most diverse mathematical models. The choice of model 
should be judicious, and the model should most accurately describe the animal’s response.

For [59] the linear, polynomial and exponential models, within their limitations, present good 
adjustments; however, the answers are varied, with this, there is indecision about the best 
to be recommended level. In this way, [59–61] propose the use of the reading model in an 
attempt to overcome the indecision generated in the choice of the mathematical model to esti-
mate the nutritional requirements of amino acids, since this model allows a better interpreta-
tion of the behavior of the population in function of the levels studied.

Ref. [62] reviewed the reading model and noted that it would allow better estimation, in rela-
tion to the mathematical models used in the dose-response method. However, other factors 
that affect nutritional requirements such as temperature and type of lodging are not possible 
to include in the model.

As previously reported, the factorial method, described in the topic on proteins, is considered 
the most appropriate, since in this methodology, it is possible to fractionate the requirements 
in maintenance, gain and production, and it is possible to add other factors such as tempera-
ture, etc.
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The mathematical models of prediction with amino acids resemble their construction, with 
the models already described in the topic on protein, through the factorial method. All pecu-
liarities inherent to quails in relation to broilers and laying hens need to be weighed in the 
construction of the prediction equations for amino acids.

Due to the scarcity of work in these molds for Japanese quails, and especially with amino 
acids, no research data will be presented for comparison and elucidation of the techniques, 
since the premises discussed in the models of protein requirements are the same.

The Brazilian Poultry and Swine Tables [49] indicate the lysine requirements for Japanese 
quails in posture by the factorial method, but are approximate data of other species.

2.3.3. Amino acids Methodologies: digestibility

The digestibility of the amino acids can be influenced by the physiology of the animal and 
the technique/methodology used. The digestibility is measured by comparing the amount of 
amino acids present in the test feed, and the intake of the same by the animals and the differ-
ence of what are recovered in the excreta.

Quails have a higher relative weight of large intestine in relation to broilers and laying hens. 
In the large intestine of the animals, there is microorganism that ferments the cecal content 
and with this can contribute to cecal production of amino acids and or nitrogen, underesti-
mating the digestibility of the amino acids and altering the nitrogen balance. In this sense, 
quails would present values of amino acid digestibility, less than roosters, laying hens and 
broilers [63, 64] and allied to this factor, the greater passage rate would contribute to greater 
escape of protein/amino acids to the large intestine, greater amino acid excretion and fecal 
nitrogen, further underestimating the results.

To avoid increased cecal amino acid production, ileal content collection, cecectomy, and accu-
rate feeding techniques are suggested to predict amino acid digestibility [49, 50, 65–67]. In addi-
tion, fasting [65], used in the precise feeding technique, is criticized by several authors, since 
fasting animals have patterns of endogenous loss of amino acids different from fed animals. 
Values of digestible amino acids determined with quails and using the above techniques are 
scarce.

Using the precise feeding technique, with intact and cecectomized roosters and intact 
Japanese quail, [68] studied the amino acid digestibility of different foods (maize, low tan-
nin sorghum) and verified that the digestibility of amino acids with cecectomized roosters 
is greater in relation to intact roosters for most of the amino acids present in maize, with the 
exception of the amino acids: cystine, threonine, arginine and histidine. The digestibility 
of the amino acids present in the sorghum did not change due to the cecectomy, except for 
methionine, where the cecectomized roosters had a higher value. When comparing quails 
with intact roosters, the authors concluded that the digestible amino acid values with quails 
are larger, analyzing the corn, but with sorghum, there was no difference except for the 
amino acid histidine.
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Although the authors [68] did not present statistical data comparing the amino acid digest-
ibility values of cecectomized roosters and quails, in absolute values, for maize, the data pre-
sented similarities, but when comparing sorghum, values with Japanese quails showed the 
lower digestibility values. For the amino acid proline (2% points) and histidine (36% points), 
the other amino acids on average the difference were around seven percentage points less in 
the digestibility values for quails. These data for maize suggest that although quails have pro-
portionately larger ceca, this factor did not interfere with digestible amino acid values. Another 
important factor is that using digestible amino acid values of intact roosters for quails is not 
recommended.

Some authors [69, 70] have suggested, respectively, some methodologies to stabilize the 
endogenous loss of amino acids by the animals, such as protein-free diet (PFD) and enzymati-
cally hydrolyzed casein (EHC) techniques.

All these methodologies were worked with broilers and laying hens, and several authors criti-
cized their use [71, 72]. However [73] suggest the PFD technique associated with amino acid sup-
plementation, as being the one that best estimates the endogenous loss of amino acids by birds.

Studies evaluating these techniques with quails are scarce, especially those that evaluate the 
EHC and PFD and PFD techniques associated with industrial amino acid supplementation, as 
well as the technique of cecectomy and collection of ileal content.

The above-mentioned propositions suggest that formulating diets based on recommendations 
of digestible amino acids determined with intact and cecectomized roosters is not recom-
mended for Japanese quails and should make considerations about the digestive physiology 
of quails, as well as the methodologies described. In quail nutrition, there are rare papers 
describing mathematical models to predict the requirement for amino acids.

3. Conclusions

Quails present physiological and behavioral peculiarities in relation to laying hens, heavy 
matrices and broilers. The differences between species of industrial poultry are premised to 
develop specific feeding programs for each species, lineage and animal category.

The nitrogen balance and comparative slaughter technique provide discrepant data, but are 
more consistent and close when the correction factor for nitrogen deposited in feathers is used.

The mathematical models used to describe nutritional requirements, in dose-response 
method, must be used with discretion, since the ideal model must have not only mathemati-
cal meaning but also biological meaning.

Prediction equations developed with broilers and laying hens should not be used to predict 
the protein and amino acids requirement for quails, should developing models appropriate 
for the each species, and animal category.
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Chapter 12

Effects of Excess Dietary Tryptophan on Laying

Performance, Antioxidant Capacity and Immune

Function of Laying Hens

Xinyang Dong and Xiaoting Zou

Additional information is available at the end of the chapter
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Abstract

Present study was conducted to establish Tryptophan (Trp) needs of Xinyang green-
shell laying hens by evaluating its effect on laying performance, egg quality, antioxidant 
capacity, and the immune functions. A total of 525 laying hens, 28 weeks of age, were 
randomly allocated to five treatment groups, each of which included 5 replicates of 21 
hens. Hens were fed the basal diet based on corn and soybean meal for 12 weeks. L-Trp 
was added to the control diet at 0.0 0.02, 0.04, 0.06, and 0.08%, respectively, to achieve 
0.15, 0.17, 0.19, 0.21 or 0.23% Trp. Laying rate, average egg weight, and feed conver-
sion ratio (FCR) were significantly increased by Trp levels from 0.19 to 0.23%. Dietary 
Trp from 0.17 to 0.19% increased egg internal quality (albumen height and haugh unit) 
rather than external quality. Supplementing with Trp increased glutathione peroxidase 
and total superoxide dismutase activity, total antioxidative capacity concentration and 
decreased malondialdehyde concentration. Serum IgA concentration increased at 0.21–
0.23% dietary Trp, while serum IgM increased linearly in response to dietary Trp levels. 
We suggest that the optimum level of dietary Trp was ranged from 0.19 to 0.21% for 
Xinyang green-shell laying hens under the current study conditions.

Keywords: laying hens, Tryptophan, laying performance, egg quality, antioxidant capacity, 
immunoglobulins

1. Introduction

Tryptophan (Trp) is a nutritionally essential amino acid in animals with a wide range of physi-
ological roles. It is considered to be a substrate for protein synthesis [1], a feed intake enhancer 
in livestock and poultry [2], a contributor to improved growth performance [3], and a factor in 
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the generation of hormone-like substances [4]. In addition, it has been reported that a deficiency 
of Trp decreased antibody production in rats [5], indicating that Trp may have a role in immune 
function. Apart from being a structural component of all proteins, Trp is a precursor of serotonin 
[5-hydroxytryptamine (5-HT)]. Serotonin (a neurotransmitter) has many functions in the central 
nervous system to inhibit aggression and modulates stress response, including social and envi-
ronmental adaptability [6]. Recent findings suggested that dietary Trp may have beneficial effects 
on the enzymatic and non-enzymatic antioxidant capacity in laying hens [7], rats [8], and fish [9].

Tryptophan concentration in animals is the lowest of all the amino acids, and thus, it can 
easily become rate-limiting for protein anabolism [10]. Practical diets composed of vegetable 
protein sources typically result in the essential amino acids such as Trp being limiting to a 
similar extent after that of total sulphur amino acids, lysine, threonine and isoleucine in poul-
try [11]. Although many researchers conducted studies to evaluate the requirements of Trp 
in poultry, results of dose-response studies addressing the Trp need are variable [7, 11]. This 
might due to the effect of a variety of factors, such as genotype, age, and diet. Present study 
was conducted to establish Trp needs of chicks using Xinyang green-shell laying hens, a local 
strain hybridized by varieties of White Leghorns (female) and domestic green-shell (male), by 
evaluating the effects of different levels of Trp supplementation on their laying performance, 
egg quality, antioxidant capacity, and the immune functions.

2. Material and methods

The experiment was conducted in accordance with the Chinese guidelines for animal wel-
fare and approved by the Animal Welfare Committee of Animal Science College, Zhejiang 
University.

2.1. Birds and housing

Xinyang green-shell laying hens (n = 525), 28 weeks of age, were randomly allocated to five 
treatment groups, each of which included 5 replicates of 21 hens. Hens were fed the basal 
diet based on corn and soybean meal. L-Trp (Ajinomoto, Japan) was added to the control diet 
at 0.0 0.02, 0.04, 0.06, and 0.08%, respectively, to achieve 0.15, 0.17, 0.19, 0.21 or 0.23% Trp. 
Ingredient composition and calculated nutrients are presented in Table 1. Hens were kept in 
three-layer complete ladder cages (3 birds per cage) under the same managerial conditions in 
a ventilated room. The temperature inside the barn was 21–27°C, and relative humidity was 
60–70%. The photoperiod was 16L: 8D throughout the experiment. Each cage was equipped 
with two nipple drinkers and one feeder. Diets were offered twice daily for ad libitum intake 
and laying hens had free access to water. The experiment lasted 12 week, including a one-
week acclimation period and an 11-week experimental period.

2.2. Laying performance parameters and egg quality

During the experimental period, feed residues were collected and weighted weekly to enable 
estimation of average daily feed intake (ADFI). Eggs from each replicate were counted and 
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similar extent after that of total sulphur amino acids, lysine, threonine and isoleucine in poul-
try [11]. Although many researchers conducted studies to evaluate the requirements of Trp 
in poultry, results of dose-response studies addressing the Trp need are variable [7, 11]. This 
might due to the effect of a variety of factors, such as genotype, age, and diet. Present study 
was conducted to establish Trp needs of chicks using Xinyang green-shell laying hens, a local 
strain hybridized by varieties of White Leghorns (female) and domestic green-shell (male), by 
evaluating the effects of different levels of Trp supplementation on their laying performance, 
egg quality, antioxidant capacity, and the immune functions.

2. Material and methods

The experiment was conducted in accordance with the Chinese guidelines for animal wel-
fare and approved by the Animal Welfare Committee of Animal Science College, Zhejiang 
University.

2.1. Birds and housing

Xinyang green-shell laying hens (n = 525), 28 weeks of age, were randomly allocated to five 
treatment groups, each of which included 5 replicates of 21 hens. Hens were fed the basal 
diet based on corn and soybean meal. L-Trp (Ajinomoto, Japan) was added to the control diet 
at 0.0 0.02, 0.04, 0.06, and 0.08%, respectively, to achieve 0.15, 0.17, 0.19, 0.21 or 0.23% Trp. 
Ingredient composition and calculated nutrients are presented in Table 1. Hens were kept in 
three-layer complete ladder cages (3 birds per cage) under the same managerial conditions in 
a ventilated room. The temperature inside the barn was 21–27°C, and relative humidity was 
60–70%. The photoperiod was 16L: 8D throughout the experiment. Each cage was equipped 
with two nipple drinkers and one feeder. Diets were offered twice daily for ad libitum intake 
and laying hens had free access to water. The experiment lasted 12 week, including a one-
week acclimation period and an 11-week experimental period.

2.2. Laying performance parameters and egg quality

During the experimental period, feed residues were collected and weighted weekly to enable 
estimation of average daily feed intake (ADFI). Eggs from each replicate were counted and 
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weighted daily to calculate laying rate and average egg weight. Egg mass was calculated 
by multiplying egg weight by egg production. Feed conversion ratio (FCR) was calculated 
as grams of feed intake per gram of egg mass produced. Health status and mortalities were 
visually observed and recorded daily during the entire experimental period. The magnitude 
of performance parameters such as laying rate was adjusted for hen mortalities. 

At the end of the experiment, 30 eggs from each treatment were randomly collected to assess 
egg quality parameters. The eggs were weighed and cracked, and albumen height, haugh 
units, yolk colour, eggshell thickness, and eggshell strength were measured with a digital egg 
tester (DET-6000, NABEL, Kyoto, Japan). Eggshell thickness (without the shell membrane) 
was measured at the middle part of the egg.

2.3. Blood sampling and laboratory analyses

At the end of the experiment, 12 h after feed withdrawal, two birds were randomly selected from 
each replicate, and blood samples were collected from the axillary vein. Blood samples were 
drawn into Eppendorf tubes (10 ml) and centrifuged at 3000 × g for 10 min to separate out serum. 
The obtained serum was stored in 1.5-mL Eppendorf tubes at −70°C until analyses and thawed 
at 4°C before analysis. Serum concentrations or activities of total superoxide dismutase (T-SOD), 
catalase (CAT), glutathione peroxidase (GSH-Px), total antioxidative capacity (T-AOC), and 
malondialdehyde (MDA) were measured spectrophotometrically (UV-2000, Unico Instruments 
Co. Ltd., Shanghai, China) using commercial diagnostic kits (Nanjing Jiancheng Bioengineering 
Institute, Nanjing, China). Immunoglobulins in the serum were analysed by a microplate reader 
(SpectraMax M5, Molecular Devices, Sunnyvale, CA) using a sandwich enzyme linked immu-
nosorbent assay (ELISA) using chicken specific IgA, IgG, IgM ELISA quantitation kits (R&D 
company, System, Inc., McKinley Place NE Minneapolis, MN), respectively, according to the 
instructions of the manufacturer, and absorbance was measured at 450 nm.

Ingredients % Nutrient levels2 %

Corn 62.00 ME/(MJ/Kg) 10.86

Soybean meal 6.60 CP 16.36

Peanut meal 14.50 Ca 3.30

Limestone 9.00 TP 0.32

Wheat bran 5.60 Lys 0.72

Met 0.10 Met 0.30

Lys⋅HCl 0.20 Thr 0.52

Premix1 2.00 Trp 0.15

Total 100.00

1Premix provided the following per kilogram: Vitamin A, 9900 IU; vitamin D3, 2625 IU; vitamin E, 49.5 mg; vitamin K3, 
6 mg; vitamin B1, 3 mg; vitamin B2, 10.5 mg; vitamin B6, 6 mg; vitamin B12, 0.03 mg; niacin, 60 mg; folic acid, 3 mg; 
pantothenic acid, 18 mg; biotin, 0.3 mg; Cu, 9 mg; Fe, 120 mg; Mn, 140 mg; Zn, 120 mg; I, 1.1 mg; Se, 0.4 mg.
2Values were calculated from data provided by Feed Database in China (2013).

Table 1. Ingredients and nutrient composition of basal diet.
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2.4. Statistical analysis

The data were expressed as means ± SE and analysed statistically by one-way ANOVA, using 
SPSS 18.0 for Windows (SPSS Inc., Chicago, IL). When significant differences were found 
(P  <  0.05), Tukey post hoc tests were performed.

3. Results

The laying performance parameters (Table 2) were significantly (P < 0.05) affected by dietary 
Trp levels. Laying rate, average egg weight, and FCR in hens fed 0.21–0.23, 0.19–0.21, and 
0.21% dietary Trp were significantly improved (P < 0.05), respectively, compared with those 
hens fed on the control diet. No significant difference of ADFI was observed among all the 
groups (P > 0.05).

Results of egg quality characteristics are provided in Table 3. The highest value of albumen 
height (P < 0.05) came from 0.19% Trp group. Haugh unit in 0.17 to 0.19% Trp group was sig-
nificantly higher (P < 0.05) than that of other groups. No significant difference of yolk colour, 
eggshell strength, and eggshell thickness was observed among all the groups (P > 0.05).

Results of antioxidant parameters in serum (Table 4) showed that supplementing with Trp 
increased (P < 0.05) GSH-Px and T-SOD activity, T-AOC concentration, and decreased (P 
< 0.05) MDA concentration (P > 0.05) but had no effect on CAT activity (P > 0.05). Briefly, 
serum GSH-Px activity in 0.17 and 0.19% Trp group was significantly increased by 27.62% 
(P < 0.05) and 27.42% (P < 0.05), respectively, compared with the control group. With the 
increase of supplemental Trp levels, serum T-SOD activity and T-AOC contents were gradu-
ally increased, whereas serum MDA content was gradually decreased. 

Regarding serum antibodies (Table 5), serum IgA concentration increased (P < 0.05) at 0.21 
to 0.23% dietary Trp, compared with those receiving 0.15% Trp. Serum IgM concentra-
tion increased linearly (P < 0.05) in response to dietary Trp levels. No significant effect was 
observed for serum IgG concentration due to dietary Trp levels (P > 0.05).

Items1 Dietary L-tryptophan levels, %

0.15 0.17 0.19 0.21 0.23

Laying rate, % 63.76 ± 0.65b 64.15 ± 0.67b 65.17 ± 1.86b 66.70 ± 0.38a 66.91 ± 1.34a

ADFI, g/hen 85.78 ± 1.14 87.68 ± 2.62 86.81.43 ± 1.18 84.49 ± 2.55 85.52 ± 0.44

Egg weight, g 45.57 ± 0.14b 46.02 ± 0.06ab 46.30 ± 0.15a 46.60 ± 0.04a 46.09 ± 0.36ab

FCR 2.88 ± 0.03a 2.88 ± 0.02a 2.85 ± 0.01a 2.79 ± 0.01b 2.81 ± 0.02a

1ADFI = average daily feed intake; FCR = feed conversion ratio.
Means sharing different letters (a, b) in the same row are significantly different (P < 0.05).

Table 2. Effect of dietary L-tryptophan on laying performance.
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4. Discussion

Tryptophan plays a significant role in laying hen nutrition because it is considered to be the 
third-limiting amino acid, after the sulphur-containing amino acids and lysine. Most commer-
cial diets are calculated on an amino acid basis, rather than a protein basis [12]. Therefore, it is 
important to have an accurate value of amino acids to use as a requirement when  formulating 

Items Dietary L-tryptophan levels, %

0.15 0.17 0.19 0.21 0.23

Albumen height, mm 4.47 ± 0.17b 4.50 ± 0.05b 4.96 ± 0.22a 4.66 ± 0.13b 4.41 ± 0.17b

Haugh units 68.94 ± 1.26b 70.96 ± 0.60a 73.41 ± 1.88a 69.10 ± 0.48b 68.22 ± 1.54b

Yolk colour, points 7.56 ± 0.17 7.22 ± 0.22 7.34 ± 0.19 7.26 ± 0.14 7.46 ± 0.16

Eggshell strength, Kgf 3.67 ± 0.20 3.35 ± 0.35 3.60 ± 0.35 3.58 ± 0.29 3.69 ± 0.32

Eggshell thickness, mm 0.31 ± 0.00 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.00

Means sharing different letters (a, b) in the same row are significantly different (P < 0.05).

Table 3. Effect of dietary L-tryptophan on egg quality.

Items1 Dietary L-tryptophan levels, %

0.15 0.17 0.19 0.21 0.23

GSH-Px, U/ml 3236.74 ± 164.11b 4130.87 ± 198.83a 4124.35 ± 322.76a 3503.48 ± 56.12b 3388.70 ± 369.18b

T-SOD, U/L 394.85 ± 14.48b 396.65 ± 7.25b 440.11 ± 8.38a 415.92 ± 11.62a 418.37 ± 8.8a

CAT, U/ml 2.81 ± 0.21 2.67 ± 0.16 2.69 ± 0.13 2.87 ± 0.19 2.83 ± 0.24

MDA, nmol/ml 3.45 ± 0.17a 3.12 ± 0.37a 2.60 ± 0.34b 2.47 ± 0.23b 2.44 ± 0.20b

T-AOC, U/L 3.85 ± 0.84b 4.67 ± 0.42a 4.71 ± 0.40a 4.49 ± 0.53a 5.15 ± 0.46a

1 T-SOD = total superoxide dismutase; CAT = catalase; GSH-Px = glutathione peroxidase; T-AOC = total antioxidative 
capacity; MDA = malondialdehyde.
Means sharing different letters (a, b) in the same row are significantly different (P < 0.05).

Table 4. Effect of dietary L-tryptophan on antioxidant parameters in serum.

Items Dietary L-tryptophan levels, %

0.15 0.17 0.19 0.21 0.23

IgA, ng/ml 1779.98 ± 100.03c 1830.65 ± 158.94bc 2034.70 ± 121.37abc 2226.91 ± 94.59ab 2329.05 ± 118.36a

IgG, ng/ml 413.24 ± 36.50 448.67 ± 36.83 451.85 ± 34.55 475.49 ± 36.83 499.89 ± 34.09

IgM, μg/mL 1743.24 ± 24.63b 1999.39 ± 61.72a 2022.86 ± 155.02a 2057.07 ± 169.52a 2244.93 ± 107.29a

Means sharing different letters (a, b) in the same row are significantly different (P < 0.05).

Table 5. Effect of dietary L-tryptophan on serum immunoglobulins concentrations.
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diets. Results of dose-response studies addressing the Trp need are variable, although the [13] 
suggests a requirement of 160 mg per hen per d for the commercial layer. In a study using 
Hy-Line hens (53 week), egg production was similar among groups receiving 0.17, 0.21 or 
0.23 g/kg Trp, but at 0.19 g/kg Trp, egg production had maximized significantly compared to 
those given 0.17 g/kg Trp [12]. By using Rhode Island Red × White Leghorn layers (25 week), 
researchers found that 500 mg Trp/kg diet improved the egg production rate in laying hens 
[14]. However, in Babcock Brown layers (40 week), the authors found that supplementing 
Trp had no effect on laying performance [7]. In the current study, we found that the laying 
performance parameters (i.e. laying rate, egg weight, and FCR) were significantly improved 
by dietary Trp levels (from 0.19 to 0.23%) in Xinyang green-shell laying hens (28 week). 
Combining to all the aforementioned, it is clearly that the variable need for Trp in laying hens 
is partially due to the genotype and age.

Egg quality is important for consumer appeal and encompasses several aspects related to the 
shell (external quality) and to the albumen and yolk (internal quality). Egg quality has a genetic 
basis, and the parameters of egg quality vary between strains of hens [15, 16]. However, egg 
quality is also influenced by diet nutrition such as dietary protein and amino acid content [17]. 
Limited research has been conducted on the effects of supplemental Trp on egg quality of lay-
ing hens. In Ref. [7], the authors found that adding 0.2 or 0.4 g/kg Trp to the basal diet (0.17% 
Trp) improved egg shell strength quadratically in Babcock Brown layers, but had no effect on 
egg internal quality. Conversely, in the current study, we found that dietary Trp from 0.17 to 
0.19% increased egg internal quality (albumen height and haugh unit) rather than external 
quality. The mechanism of Trp regulating egg quality is not well understood due to limited 
references. Thus, further studies are needed to conduct to verify the role of Trp on egg quality.

It is known that serotonin, with Trp as its precursor, has many functions in the central ner-
vous system to inhibit aggression and modulates stress response [6], suggesting that dietary 
Trp may sever as a free radical scavenger, and hence have beneficial effects on the antioxidant 
capacity of animals. Almost all the phenomena of life and pathological processes are related 
to the perspectives of free radicals that can induce body damage when they are presented in 
excessive levels [18]. MDA can generally be used as a biomarker for free radical induced dam-
age and can endogenously reflect lipid peroxidation, which is the consequence of diminished 
antioxidant protection as concentrations of reactive oxygen species increase [19]. SOD and 
GSH-Px are the main parameters used to assess oxidative status in the enzymatic system, 
while T-AOC represents enzymatic and non-enzymatic antioxidant defence systems [10, 18]. 
In the current study, the higher T-AOC level, T-SOD and GSH-px activities and lower MDA 
concentrations due to supplemental Trp in laying hens reflect a greater antioxidant defence. 
In accordance with our results, previous researchers also found that Trp increased the serum 
SOD activity of laying hens [7] and elevated the GSH content in the hepatic tissues of rats [8]. 
The present study suggested that appropriate Trp levels in the diet may have a positive effect 
on both the enzymatic and non-enzymatic antioxidant capacity function of laying hens. 

Recent studies have also proved that Trp may play an important role in immune function. Dietary 
Trp deficiency has been demonstrated to reduce the levels of nutrition and to depress immune 
function to cause a significant increase in the susceptibility to disease infection, morbidity, and 
mortality in animals [20]. The addition of Trp to the control diet resulted in  increasing the levels of 
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serum IgA and IgM in the current study. Substantiating the findings on serum immunoglobulins, 
a previous study showed that a deficiency of Trp decreased antibody production in rats [5]. In 
addition, a recent study in laying hens also found that the addition of Trp at 0.4 g/kg to the basal 
diet (0.17% Trp) resulted in quadratically increasing the levels of serum IgM in Babcock Brown 
layers [7]. From the nutritional viewpoint, we speculated that amino acids affect the synthesis of 
effector molecules (immunoglobulins, nitric oxide, lysozyme, and complement). It is worth noting 
that tryptophan is not the only amino acid that affects the immune function. Researchers observed 
that a deficiency of phenylalanine decreased antibody production in rats [5], while threonine sup-
plementation increased IgG concentrations in the serum of laying hens [21]. In contrast, excess 
methionine [5] and leucine [22] suppressed humoral immune function in the rat. Our results indi-
cated that Trp plays important roles in the regulation of poultry humoral immune through regu-
lation of the generation of immunoglobulins; however, our understanding of the function of Trp 
in the regulation of immune response is far from complete, and its involved mechanisms require 
further study.

5. Conclusion

In conclusion, supplemental Trp to the control diet can improve laying performance, egg 
quality, antioxidant capacity, and the immune functions in Xinyang green-shell laying hens. 
We suggest that the optimum level range of dietary Trp is from 0.19 to 0.21% for Xinyang 
green-shell laying hens under the current study conditions.
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Abstract

This study was undertaken to investigate the effects of dietary lysine on the plasma con-
centrations of three growth‐related hormones in pigs. Nine late‐stage finishing barrows 
were assigned to three dietary treatments according to a completely randomized experi-
mental design (3 pigs/treatment). Three corn and soybean meal‐based diets were formu-
lated to contain three levels of lysine, which were 0.43, 0.71, and 0.98% for Diets 1 (lysine 
deficient), 2 (lysine adequate), and 3 (lysine excess), respectively. The feeding trial lasted 4 
weeks, during which the pigs were allowed ad libitum access to the diets and water. After 
the 4 weeks, blood was collected and plasma samples were obtained. Then, the plasma 
concentrations of insulin, growth hormone (GH), and insulin‐like growth factor 1 (IGF‐1) 
were measured. No difference in the plasma concentration of insulin or GH among the 
three treatments was found (P > 0.10). However, the plasma IGF‐1 concentration was lower 
(P < 0.05) in the pigs fed Diet 1 or 3 than fed Diet 2, suggesting that either dietary lysine 
deficiency or excess can lead to a lower concentration of plasma IGF‐1. It was concluded 
that IGF‐1, instead of insulin or GH, in the blood may be a key controlling growth factor in 
response to dietary lysine supply for regulating muscle growth in late‐stage finishing pigs.

Keywords: lysine, hormone, blood plasma, finishing pig

1. Introduction

The biochemical process of protein turnover in the skeletal muscle of pigs is of great impor-
tance for the production of food protein for human consumption [1]. Some nutrients, such as 
glucose and fatty acids, play important roles not only as energetic substrates but also as cell 
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signaling molecules to regulate the protein turnover in animal body [2–4]. Similarly, besides 
their function as building blocks for body protein biosynthesis, some amino acids (AAs) can 
also function as cell signaling molecules regulating those metabolic pathways that are neces-
sary for muscle protein accretion [5, 6]. The regulation of key signaling and metabolic path-
ways of muscle protein turnover by AAs (Wang et al., personal communication) is closely 
associated with the concomitant responses of some growth‐related hormones [1, 7, 8].

The plasma concentrations of growth‐related polypeptide hormones, such as insulin, growth 
hormone (GH; a.k.a. somatotropin), and insulin‐like growth factor 1 (IGF‐1), can be affected 
by animal nutritional status and, in turn, regulate cell and tissue growth and development in 
animal body [9–11]. Because these hormones are not fat‐soluble, they cannot penetrate cell 
membranes into cytosol. Therefore, they exert cell signaling effects through binding to their 
corresponding receptors on the cell membranes, where they further activate cell signaling 
cascades to regulate gene expression and protein turnover [7, 12].

Lysine is the first limiting AA in typical grain‐based swine diets [1, 13], and sufficient dietary 
lysine supply is critical for pig growth performance, especially the growth of skeletal muscle, 
the largest AA reservoir in the body [14–16]. According to some previous studies on growing 
pigs [14, 17], dietary lysine supplementation stimulated the insulin secretion, increased the 
plasma insulin concentration, but not the plasma concentrations of GH and IGF‐1, in a dose‐
dependent manner. On nursery pigs, it was reported that the plasma IGF‐1 concentration was 
reduced when animals were fed a diet lower in lysine level [18]. However, whether or not 
the effect of dietary lysine on the growth performance of finishing pigs is mediated via these 
growth‐related hormones is still unknown. Therefore, the objective of this study was to inves-
tigate the effect of dietary lysine at different levels on the plasma concentrations of three key 
growth‐related hormones, which were insulin, GH, and IGF‐1, in late‐stage finishing pigs.

2. Materials and methods

2.1. Animal trial and sample collection

All the experimental protocols involving caring, handling, and treatment of pigs were 
approved by Mississippi State University Institutional Animal Care and Use Committee. 
A total of nine crossbred (Large White × Landrace) barrows with an average initial body 
weight (BW) 94.4 ± 6.7 kg were housed in an environment‐controlled swine barn at the Leveck 
Animal Research Center of Mississippi State University. The pigs were randomly assigned 
to nine individual feeding pens, and then were assigned to three dietary treatment groups 
according to a completely randomized experimental design. Each treatment consisted of 3 
pen replicates (n = 3) with one pig per pen.

A corn and soybean meal‐based diet (a lysine‐deficient diet; defined as Diet 1) was formulated 
to meet or exceed the NRC [13] recommended requirements of various nutrients, including 
crude protein (CP) and essential AAs, but not of lysine. Diet 2 (a lysine‐adequate diet) and 
Diet 3 (a lysine‐excess diet) were formulated by adding L‐lysine monohydrochloride (Archer 
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Daniels Midland Co., Quincy, IL, USA) to Diet 1 at the expense of corn at the rates of 0.35% and 
0.70%, respectively (Table 1). The total lysine contents (calculated, as‐fed basis) in Diets 1, 2, and 
3 were 0.43, 0.71, and 0.98%, respectively. To confirm the contents of major nutrients, samples 
of the three diets were submitted to the Essig Animal Nutrition Laboratory at Mississippi State 
University for proximate analysis, and the results are shown in Table 2. The AA contents of the 
three diets were analyzed by using the high‐performance liquid chromatography methods [19] 
at Texas A&M University (College Station, TX, USA), and the results are also shown in Table 2.

Diet 1 Diet 2 Diet 3

Ingredients (%)

Corn 90.844 90.494 90.144

Soybean meal 6.400 6.400 6.400

Canola oil 0.800 0.800 0.800

L‐Lysine‐HCl (98.5%) 0.000 0.350 0.700

DL‐Methionine (99%) 0.040 0.040 0.040

L‐Threonine (98.5%) 0.090 0.090 0.090

L‐Tryptophan (99%) 0.035 0.035 0.035

Limestone 0.650 0.650 0.650

Dicalcium phosphate 0.900 0.900 0.900

Salt 0.200 0.200 0.200

Mineral premix2 0.033 0.033 0.033

Vitamin premix3 0.008 0.008 0.008

Total 100.000 100.000 100.000

Composition4

Metabolizable energy (kcal/
kg)

3319 3323 3326

Crude Protein (%) 10.45 10.75 11.05

Total Lysine (%) 0.43 0.71 0.98

Total Methionine (%) 0.24 0.24 0.24

Total Threonine (%) 0.50 0.50 0.50

Total Tryptophan (%) 0.14 0.14 0.14

Total Ca (%) 0.46 0.46 0.46

Total P (%) 0.43 0.43 0.43

1Diets 1, 2, and 3 were formulated to contain dietary lysine at 0.43%, 0.71%, and 0.98% (as‐fed basis), respectively, of 
which Diets 2 and 3 were formulated by adding 0.35% and 0.70% L‐lysine‐HCl (Archer Daniels Midland Co., Quincy, 
IL) to Diet 1 at the expense of corn.
2The mineral premix contained 13.2% Ca, 1.0% Cu, 8.0% Fe, 5.0% Mn, 10.0% Zn, 500 ppm I, and 300 ppm Se.
3Each kilogram of vitamin premix contained the following: 22.05 million IU vitamin A, 3.31 million IU vitamin D3, 66,138 
IU vitamin E, 88 mg vitamin B12, 220 mg biotin, 8,818 mg menadione, 15,432 mg riboflavin, 61,728 mg d‐pantothenic 
acid, and 88,183 mg niacin.
4Calculated major nutrients.

Table 1. Ingredient and nutrient compositions (as‐fed basis) of the three experimental diets fed to the late‐stage finishing 
pigs1.
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Nutrient and Energy Experimental Diet

Diet 1 Diet 2 Diet 3

Dry matter, % 87.10 87.10 87.10

Gross energy, kcal/kg 3,663 3,608 3,559

Crude protein, % 9.77 10.60 10.86

Individual Amino Acids, %

Lysine 0.42 0.70 1.01

Aspartate 0.98 0.97 0.98

Asparagine 0.74 0.75 0.75

Glutamate 1.01 1.03 1.03

Glutamine 1.42 1.44 1.43

Serine 0.53 0.52 0.54

Histidine 0.34 0.33 0.34

Glycine 0.61 0.62 0.62

Threonine 0.50 0.51 0.50

Arginine 0.73 0.74 0.74

Alanine 0.81 0.83 0.82

Tyrosine 0.52 0.52 0.53

Tryptophan 0.14 0.13 0.14

Methionine 0.25 0.25 0.26

Valine 0.65 0.66 0.65

Phenylalanine 0.66 0.65 0.66

Isoleucine 0.52 0.52 0.53

Leucine 1.42 1.44 1.45

Cysteine 0.26 0.26 0.30

Proline 1.08 1.07 1.09

1The energy, crude protein, and dry matter contents were analyzed at the Essig Animal Nutrition Laboratory, Mississippi 
State University (Starkville, MS, USA). The amino acid contents were analyzed at Texas A&M University (College 
Station, TX, USA).

Table 2. The analyzed nutrient compositions (as‐fed basis) of three experimental diets fed to the late‐stage finishing 
pigs1.

The feeding trial lasted a total of 4 weeks, during which the pigs were allowed ad libitum access 
to the experimental diets and fresh water. All the pigs, feeders, waterers, and room tempera-
ture were checked two to three times on a daily basis (6:00 am to 7:00 pm). After the 4‐week 
trial period, blood samples were collected by venipuncture of the jugular veins of individual 
pigs (10 mL/pig) in the early morning (6:00–8:00 am). Immediately after collection, the blood 
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samples were kept onto ice until the plasma was separated by centrifugation (at 800 × g) of the 
vacutainer tubes at 4°C for 16 min. The plasma samples were then stored in 200 μL aliquots at 
−80°C until the laboratory analysis of hormones was conducted.

2.2. Laboratory analyses of the growth‐related hormones

2.2.1. Analysis of plasma insulin

The plasma concentration of insulin was measured in duplicate using a porcine insulin ELISA 
kit (ENZO Life Sciences, Farmingdale, NY, USA) according to the manufacturer’s instructions. 
Briefly, the plasma samples were first diluted (1:3) to remove matrix interference. The diluted 
samples were then added to a pre‐coated insulin ELISA plate (100 μL/well/sample) and incu-
bated on an orbital shaker (Forma 420; Thermo Fisher Scientific Inc., USA) at room tempera-
ture for 1 h, allowing the liquid to be thoroughly mixed. The plate was then rinsed four times 
with wash buffer (200 μL/well) and blotted on lint free paper towels after each rinse. After the 
final blot, the primary insulin antibody solution was added to the plate (100 μL/well) and incu-
bated on the shaker at room temperature for 1 h. Residual primary antibody on the plate was 
then rinsed and blotted as described above. One hundred microliter of blue solution of horse-
radish peroxidase (HRP) conjugate was added to each well, and the plate was incubated on 
the shaker at room temperature for 30 min. After incubation, the plate was rinsed and blotted 
again to remove the residual blue conjugate if any. Then the HRP substrate solution was added 
to the plate (100 μL/well) and the plate was incubated on the shaker at room temperature for 
30 min again. Finally, the reaction stop solution was added to the plate (100 μL/well), and the 
optical density (OD) value of the solution was measured at 450 nm using a microplater reader 
(SpectraMax Plus 384; Molecular Devices, San Francisco, CA, USA). The insulin concentration 
of each sample was calculated based on the OD values of the standard curve of known concen-
trations using Curve Expert 1.4 computer program (http://www.curveexpert.net).

2.2.2. Analysis of plasma growth hormone

The plasma concentration of GH was measured in duplicate using a porcine GH ELISA kit 
(Cloud‐Clone Corp., Wuhan, China) according to the manufacturer’s instructions. Briefly, 
the plasma samples were added to a pre‐coated GH ELISA plate (100 μL/well/sample) and 
incubated at 37°C for 2 h. Then, the liquid was removed from each well, the “Detection 
Reagent A” working solution was added to each well (100 μL/well), and the plate was incu-
bated at 37°C for 1 h. The plate was then rinsed three times with wash buffer (350 μL/well) 
and blotted on lint free paper towels after each rinse. Following the final blot, the “Detection 
Reagent B” working solution was added to the plate (100 μL/well), which was incubated at 
37°C for 30 min. The plate was rinsed and blotted again for five times as described above. The 
substrate solution was then added to the plate (90 μL/well), and the plate was incubated at 
37°C for 15 min with protection from light. Finally, the reaction stop solution was added to 
the plate (50 μL/well), and the OD value of the solution in each well was measured at 450 nm 
using a microplater reader (SpectraMax Plus 384). The GH concentration of each sample was 
calculated based on its OD values against the standard curve of known concentrations using 
Curve Expert 1.4 computer program (http://www.curveexpert.net).
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2.2.3. Analysis of plasma insulin‐like growth factor 1

The plasma concentration of IGF‐1 was measured in duplicate using a human IGF‐1 ELISA kit 
(ENZO Life Sciences) according to the manufacturer’s instructions. Briefly, each plasma sam-
ple was mixed in a solution of 100% ethanol (1:5) and 2 N hydrochloric acid (7:1) and incubated 
at room temperature for 30 min to dissociate IGF‐1 from IGF binding proteins. The binding 
proteins were then pelleted by centrifugation at 9900 × g for 5 min at room temperature. The 
supernatant was removed and neutralized with an equal volume of the neutralizing reagent. 
The supernatant sample was then diluted to a final concentration of 1:35 with the assay buffer.

The diluted samples in the assay buffer were added to a pre‐coated IGF‐1 ELISA plate (100 μL/
well/sample) and incubated on the orbital shaker (Forma 420, Thermo Fisher Scientific Inc.) at 
room temperature for 1 h, allowing the liquid to be thoroughly mixed. The ELISA plate was 
rinsed five times with the wash buffer (200 μL/well) and blotted on lint free paper towels after 
each rinse. After the final blot, the primary IGF‐1 antibody solution was added to the plate 
(100 μL/well) and the plate was incubated on the shaker at room temperature for 2 h. Residual 
primary antibody on the plate was then rinsed and blotted again as described earlier. Then, 
the blue solution of HRP conjugate was added to the plate (100 μL/well) and the plate was 
incubated on the shaker again at room temperature for 30 min. After incubation, the plate was 
rinsed and blotted to remove any residual blue conjugate. The HRP substrate solution was 
then added to the plate (100 μL/well), which was incubated on the shaker at room tempera-
ture for 30 min. Finally, the reaction stop solution was added to the plate (100 μL/well), and 
the OD value of the solution in each well was measured at 450 nm using a microplater reader 
(SpectraMax Plus 384). The plasma IGF‐1 concentration of each sample was calculated based 
on OD values against the standard curve of known concentrations using Curve Expert 1.4 
computer program (http://www.curveexpert.net).

2.3. Statistical analysis

The plasma concentration of each hormone of each sample was averaged from 2 values of the 
duplicate measurements and then subjected to analysis of variance (ANOVA) for a completely 
randomized experimental design using the general linear model (GLM) procedure of SAS 9.4 
(SAS Institute Inc., Cary, NC, USA) with dietary lysine level being the main effect and indi-
vidual pigs being the experiment units. Three means of the treatments were separated by the 
protected t‐test using the LSMEANS/PDIFF option in the GLM procedure. Probability values 
(P) less than 0.05 were considered as significant differences and the P values between 0.05 and 
0.10 were considered as tendencies to be different.

3. Results and discussions

3.1. Lysine effect on the plasma insulin concentration

As shown in Figure 1A, there are no differences in the plasma insulin concentrations  
(P = 0.25) among the three dietary treatments, which suggests that the plasma insulin 
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level of the late‐stage finishing pigs was not affected by the dietary lysine concentration, 
at least at the range from 0.43 to 0.98% (Table 1). As it is known, insulin plays a critical 
role in the metabolism of nutrients such as carbohydrates, lipids and proteins, and is a 
primary acute anabolic coordinator of nutrient partitioning [20]. As a signaling molecule, 
insulin can activate the insulin signaling transduction pathway, leading to an increase in 
phosphatidylinositol 3‐kinase (PI3K) activity followed by an increase in protein kinase B  

Figure 1. ELISA analyses of the plasma concentrations of (A) insulin, (B) growth hormone (GH), and (C) insulin‐like 
growth factor 1 (IGF‐1) in the late‐stage finishing pigs fed a lysine‐deficient diet (Diet 1), a lysine‐adequate diet (Diet 2), or 
a lysine‐excess diet (Diet 3). Shown on the y‐axis are the hormone concentrations (μIU/mL or ng/mL) Bars denote means 
±SD. All measurements were carried out in duplicate The *signs denote differential concentrations between two treatment 
groups (P < 0.05).
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(PKB/Akt) activity. The PKB/Akt activity is associated with the phosphorylation and inhi-
bition of the tuberous sclerosis complex (TSC2) and further the mTOR (mechanistic target 
of rapamycin) kinase activity to regulate protein turnover in skeletal muscle and other 
 tissues [21, 22].

Amino acids and insulin can independently stimulate protein synthesis in skeletal muscle 
[23, 24]. However, dietary AAs or protein can also affect insulin secretion, although insulin 
is secreted primarily in response to the elevated blood glucose concentration [20, 25]. The 
reduction in dietary CP concentration has been shown to decrease plasma insulin concentra-
tion in growing pigs [10, 26]. In addition, it was observed that a leucine‐induced stimulation 
of protein synthesis in the skeletal muscle of rats was facilitated by a transient increase in the 
blood concentration of insulin [27, 28].

Different AAs may have different capacities in stimulating insulin secretion. An intrave-
nous administration of 30 g of AA mixtures or of certain individual AAs to healthy human 
subjects (19–27 years old) induced prompt and large increases in the level of plasma insulin 
[25]. While a mixture of 10 essential AAs, or the cationic lysine or arginine alone, appeared 
to be the most potent, cationic histidine was the least potent, and no obvious common phys-
icochemical property or configuration could characterize the more potent or less potent 
AAs [25]. In pigs, it was reported that dietary administration of lysine also had a stimulat-
ing effect on insulin secretion, and this stimulation is in a dose‐dependent manner. For 
example, the growing barrows fed diets containing 0.45 and 0.75% total lysine showed 
no difference in plasma insulin concentration, but the plasma insulin concentration was 
increased by 39% when dietary lysine concentration was raised to 0.98% [14]. Similarly, 
while the dietary concentration of total lysine at 0.71, 0.95, or 1.20% did not show any 
influence on plasma insulin concentration in growing pigs, 1.45% lysine in the diet sig-
nificantly increased the plasma concentration of insulin [17]. In this present study on the 
late‐stage finishing pigs, dietary lysine did not show any effect on the plasma insulin level, 
and there might be a few reasons responsible for the discrepancy between our results and 
those reported in the literature: (1) the late‐stage finishing pigs may not be as sensitive as 
young humans or young growing pigs in response to AA stimulation, (2) our dietary lysine 
concentrations (Table 1) might not be high enough to stimulate the release of insulin, and 
(3) the different blood sample collection time relative to the time of AA administration or 
feed intake might cause the differences.

3.2. Lysine effects on the plasma concentrations of growth hormone and insulin‐like 
growth factor 1

As shown in Figure 1B, there are no differences in the plasma GH concentrations (P = 0.18) 
among the three dietary treatments, which suggests that the plasma GH level of the late‐stage 
finishing pigs was not affected by the dietary lysine concentration, at least at the range from 
0.43 to 0.98% (Table 1). As shown in Figure 1C, however, the plasma IGF‐1 concentration of 
the pigs fed either Diet 1 or Diet 3 was lower (P < 0.05) than that of the pigs fed Diet 2, which 
suggests that either dietary lysine deficiency or dietary lysine excess can lead to a lower level 
of plasma IGF‐1 concentration in the late‐stage finishing pigs.
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In humans, it has been shown that the plasma level of GH can change in response to a number 
of physiologic stimuli, including plasma AAs [29]. Different single AAs intravenously admin-
istrated into blood vary in their capacities to evoke a release of GH into the blood circulation 
[29]. Oral administration of lysine (1200 mg) plus arginine (1200 mg) to some healthy volun-
teers (male, aged 15–20 years) also provoked a release of GH and insulin into the blood, and 
this effect appeared to be specific to the combination of these two AAs because neither one 
demonstrated appreciable stimulating activity when administered alone [30].

Primarily consisting of GH, IGF‐1, and their associated carrier proteins and receptors, somato-
tropin axis (a.k.a., GH‐IGF‐1 axis) is a very critical regulatory pathway for mammalian muscle 
growth and development, as well as the protein and lipid metabolism in various tissues [31–33]. 
The stimulating effect of GH on the growth and development of pig muscle has been reported 
by many previous in vivo studies with daily injection (i.m.) of exogenous porcine GH [34, 35], 
and it was hypothesized that the actions of GH on muscle growth are mediated by the insulin‐
like growth factors (IGFs). A great deal of evidence supports the view that the IGFs (especially, 
IGF‐1) are important myogenic agents that could mediate the actions of GH, but this did not 
demonstrate that GH has no direct effect on the skeletal muscle to stimulate its growth [32].

Essential AAs, especially lysine, can promote swine muscle growth when sufficiently supplied, 
but it is unknown how or if its promotion effect on swine muscle growth is mediated via the 
GH‐IGF‐1 axis. This present study showed that the plasma concentration of IGF‐1 in the late‐
stage finishing pigs fed either a lysine‐deficient or lysine‐excess diet was reduced (P < 0.05), 
although the plasma concentration of GH was not affected. These results support some previ-
ous studies conducted by Roy et al. [14] and Ren et al. [17], who reported that the dietary lysine 
level had no effect on the plasma GH concentration in growing pigs.

That the dietary lysine deficiency decreased the plasma IGF‐1 concentration in the finishing 
pigs of this study supports the research conducted by Takenaka et al. [36] and Katsumata et al. 
[18], who showed that the plasma IGF‐1 concentration was reduced when young rats (6 weeks 
of age) and nursery pigs were fed the diets lower in lysine. The previous studies on growing 
pigs, however, did not show that dietary lysine levels influence the plasma concentration of 
IGF‐1 [14, 17].

The conflicting results regarding the effects of dietary lysine levels on the plasma IGF‐1 con-
centration from different studies may be due to various factors, such as animal species used, 
growing stages of the animals, and the amounts of lysine provided in the diets. It has been 
known that a principal hormonal stimulus for IGF‐1 production is GH [37]. However, it is 
interesting to find that the plasma IGF‐1 concentration of the late‐stage finishing pigs fed 
either a lysine‐deficient or a lysine‐excess diet was reduced when compared to the pigs fed 
a lysine‐adequate diet, whereas the dietary lysine level had no effect on the plasma GH con-
centration. While the animal nutritional status is a key factor in regulating the activity and 
function of GH‐IGF‐1 axis [38], the regulation of IGF‐1 release may be a key control point for 
animal muscle growth and nitrogen retention [9, 17]. In terms of animal growth performance, 
we have reported that there was no further improvement in the average daily gain when 
excess dietary lysine was provided to the late‐stage finishing pigs [16]. Therefore, the lysine 
promotion effect on pig average daily gain might not be associated with the plasma GH, and 
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the plasma IGF‐1 may be one of the limiting growth factors that restricts the pigs from further 
increasing in average daily gain or further increasing in muscle protein accretion in response 
to the dietary lysine provision above the NRC [13] recommended requirement.

4. Conclusions

The results generated from this study in late‐stage finishing pigs suggest that dietary defi-
ciency or excess of lysine did not affect the plasma concentrations of insulin and GH. However, 
the plasma concentration of IGF‐1 was affected by the dietary lysine levels. In particular, 
either dietary lysine deficiency or excess led to a reduction in the plasma concentration of 
IGF‐1 in the pigs relative to the pigs fed a lysine‐adequate diet. Thus, it can be concluded 
that IGF‐1, instead of insulin or GH, in the blood circulation may be a key controlling growth 
factor in response to dietary provision of lysine for regulating muscle growth in late‐stage 
finishing pigs.

Acknowledgements

This material is based upon the work supported by a Hatch/Multistate Project (under 
No. 1007691) funded from the National Institute of Food and Agriculture, United States 
Department of Agriculture. Authors wish to thank Dr. Jean Feugang and Dr. Derris Burnett in 
the Department of Animal and Dairy Sciences, Mississippi State University, for their guidance 
and training of TW on their laboratory work for this study. Donations of various feed ingredi-
ents from several swine operations and feed manufacturers, such as the Prestage Farms, Inc. 
(West Point, MS), Archer Daniels Midland Co., (Quincy, IL), and Ajinomoto Heartland, Inc. 
(Chicago, IL), are greatly appreciated.

Author details

Taiji Wang1, Mark A. Crenshaw1, Md Shamimul Hasan1, Guoyao Wu2 and Shengfa F. Liao1*

*Address all correspondence to: s.liao@msstate.edu

1 Department of Animal and Dairy Sciences, Mississippi State University, Mississippi, USA

2 Department of Animal Science, Texas A&M University, Texas, USA

References

[1] Liao SF, Wang T, Regmi N. Lysine nutrition in swine and the related monogastric ani-
mals: Muscle protein biosynthesis and beyond. SpringerPlus. 2015;4:147 (1‐12)

Amino Acid - New Insights and Roles in Plant and Animal268



the plasma IGF‐1 may be one of the limiting growth factors that restricts the pigs from further 
increasing in average daily gain or further increasing in muscle protein accretion in response 
to the dietary lysine provision above the NRC [13] recommended requirement.

4. Conclusions

The results generated from this study in late‐stage finishing pigs suggest that dietary defi-
ciency or excess of lysine did not affect the plasma concentrations of insulin and GH. However, 
the plasma concentration of IGF‐1 was affected by the dietary lysine levels. In particular, 
either dietary lysine deficiency or excess led to a reduction in the plasma concentration of 
IGF‐1 in the pigs relative to the pigs fed a lysine‐adequate diet. Thus, it can be concluded 
that IGF‐1, instead of insulin or GH, in the blood circulation may be a key controlling growth 
factor in response to dietary provision of lysine for regulating muscle growth in late‐stage 
finishing pigs.

Acknowledgements

This material is based upon the work supported by a Hatch/Multistate Project (under 
No. 1007691) funded from the National Institute of Food and Agriculture, United States 
Department of Agriculture. Authors wish to thank Dr. Jean Feugang and Dr. Derris Burnett in 
the Department of Animal and Dairy Sciences, Mississippi State University, for their guidance 
and training of TW on their laboratory work for this study. Donations of various feed ingredi-
ents from several swine operations and feed manufacturers, such as the Prestage Farms, Inc. 
(West Point, MS), Archer Daniels Midland Co., (Quincy, IL), and Ajinomoto Heartland, Inc. 
(Chicago, IL), are greatly appreciated.

Author details

Taiji Wang1, Mark A. Crenshaw1, Md Shamimul Hasan1, Guoyao Wu2 and Shengfa F. Liao1*

*Address all correspondence to: s.liao@msstate.edu

1 Department of Animal and Dairy Sciences, Mississippi State University, Mississippi, USA

2 Department of Animal Science, Texas A&M University, Texas, USA

References

[1] Liao SF, Wang T, Regmi N. Lysine nutrition in swine and the related monogastric ani-
mals: Muscle protein biosynthesis and beyond. SpringerPlus. 2015;4:147 (1‐12)

Amino Acid - New Insights and Roles in Plant and Animal268

[2] Sohal PS, Baracos VE, Clandinin MT. Dietary omega 3 fatty acid alters prostaglandin 
synthesis, glucose transport and protein turnover in skeletal muscle of healthy and dia-
betic rats. Biochemical Journal. 1992;286:405‐411

[3] Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Cadenas JG, Yoshizawa F, Volpi E, 
Rasmussen BB. Nutrient signalling in the regulation of human muscle protein synthesis. 
The Journal of Physiology. 2007;582:813‐823

[4] Blad CC, Ahmed K, Ijzerman AP, Offermanns S. Biological and pharmacological roles of 
HCA receptors. Advances in Pharmacology. 2011;62:219‐250

[5] Wu G. Amino acids: Metabolism, functions, and nutrition. Amino Acids. 2009;37:1‐17

[6] Wu G. Functional amino acids in growth, reproduction, and health. Advances in 
Nutrition. 2010;1:31‐37

[7] Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1‐Akt/PKB 
pathway: Insights from genetic models. Skeletal Muscles. 2011;1:1‐14

[8] Rhoads RP, Baumgard LH, El‐Kadi SW, Zhao LD. Physiology and endocrinology sym-
posium: Roles for insulin‐supported skeletal muscle growth. Journal of Animal Science. 
2016;94:1791‐1802

[9] Straus DS. Nutritional regulation of hormones and growth factors that control mamma-
lian growth. FASEB Journal. 1994;8:6‐12

[10] Guay F, Trottier NL. Muscle growth and plasma concentrations of amino acids, insulin‐
like growth factor‐I, and insulin in growing pigs fed reduced‐protein diets. Journal of 
Animal Science. 2006;84:3010‐3019

[11] Davis TA, Suryawan A, Orellana RA, Fiorotto ML, Burrin DG. Amino acids and insulin 
are regulators of muscle protein synthesis in neonatal pigs. Animal. 2010;4:1790‐1796

[12] Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabo-
lism. Nature. 2001;414:799‐806

[13] NRC. Nutrient Requirements of Swine. 11th rev ed. Washington, DC: The National 
Academies Press; 2012. p. 420

[14] Roy N, Lapierre H, Bernier JF. Whole‐body protein metabolism and plasma profiles of 
amino acids and hormones in growing barrows fed diets adequate or deficient in lysine. 
Canadian Journal of Animal Science. 2000;80:585‐595

[15] Shelton NW, Tokach MD, Dritz SS, Goodband RD, Nelssen JL, DeRouchey JM. Effects 
of increasing dietary standardized ileal digestible lysine for gilts grown in a commercial 
finishing environment. Journal of Animal Science. 2011;89:3587‐3595

[16] Wang T, Crenshaw MA, Regmi N, Armstrong T, Blanton JR, Liao SF. Effect of dietary 
lysine fed to pigs at late finishing stage on market‐value associated carcass characteris-
tics. Journal of Animal and Veterinary Advances. 2015;14:232‐236

EEffects of Dietary Lysine Levels on the Plasma Concentrations of Growth-Related Hormones...
http://dx.doi.org/10.5772/intechopen.68545

269



[17] Ren J, Zhao G, Li Y, Meng Q. Influence of dietary lysine level on whole‐body protein 
turnover, plasma IGF‐I, GH and insulin concentration in growing pigs. Livestock 
Science. 2007;110:126‐132

[18] Katsumata M, Kawakami S, Kaji Y, Takada R, Dauncey MJ. Differential regulation of 
porcine hepatic IGF‐I mRNA expression and plasma IGF‐I concentration by a low lysine 
diet. Journal of Nutrition. 2002;132:688‐692

[19] Dai ZL, Wu ZL, Jia SC, Wu G. Analysis of amino acid composition in proteins of animal 
tissues and foods as pre‐column o‐phthaldialdehyde derivatives by HPLC with fluores-
cence detection. Journal of Chromatography B. 2014;964:116‐127

[20] Baumgard LH, Hausman GJ, Sanz Fernandez MV. Insulin: Pancreatic secretion and adi-
pocyte regulation. Domestic Animal Endocrinology. 2016;54:76‐84

[21] Avruch J, Hara K, Lin Y, Liu M, Long X, Ortiz‐Vega S, Yonezawa K. Insulin and amino‐
acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. 
Oncogene. 2006;25:6361‐6372

[22] Proud CG. Regulation of protein synthesis by insulin. Biochemical Society Transactions. 
2006;34:213‐216

[23] O’Connor PMJ, Bush JA, Suryawan A, Nguyen HV, Davis TA. Insulin and amino acids 
independently stimulate skeletal muscle protein synthesis in neonatal pigs. American 
Journal Physiology. Endocrinology and Metabolism. 2003;284:E110‐E119

[24] Suryawan A, O’Connor PMJ, Bush JA, Nguyen HV, Davis TA. Differential regulation of 
protein synthesis by amino acids and insulin in peripheral and visceral tissues of neona-
tal pigs. Amino Acids. 2009;37:97‐104

[25] Floyd JC Jr, Fajans SS, Conn JW, Knopf RF, Rull J. Stimulation of insulin secretion by 
amino acids. The Journal of Clinical Investigation. 1966;45:1487‐1502

[26] Caperna TJ, Steele NC, Komarek DR, McMurtry JP, Rosebrough RW, Solomon MB, 
Mitchell AD. Influence of dietary protein and recombinant porcine somatotropin admin-
istration in young pigs: Growth, body composition and hormone status. Journal of 
Animal Science. 1990;68:4243‐4252

[27] Buse MG, Atwell R, Mancusi V. In vitro effect of branched chain amino acids on the ribo-
somal cycle in muscles of fasted rats. Hormone and Metabolic Research. 1979;11:289‐292

[28] Anthony JC, Lang CH, Crozier SJ, Anthony TG, MacLean DA, Kimball SR, Jefferson 
LS. Contribution of insulin to the translational control of protein synthesis in skeletal 
muscle by leucine. American Journal of Physiology. Endocrinology and Metabolism. 
2002;282:E1092‐E1101

[29] Knopf RF, Conn JW, Fajans SS, Floyd JC, Guntsche EM, Rull JA. Plasma growth hor-
mone response to intravenous administration of amino acids. The Journal of Clinical 
Endocrinology & Metabolism. 1965;25:1140‐1144

Amino Acid - New Insights and Roles in Plant and Animal270



[17] Ren J, Zhao G, Li Y, Meng Q. Influence of dietary lysine level on whole‐body protein 
turnover, plasma IGF‐I, GH and insulin concentration in growing pigs. Livestock 
Science. 2007;110:126‐132

[18] Katsumata M, Kawakami S, Kaji Y, Takada R, Dauncey MJ. Differential regulation of 
porcine hepatic IGF‐I mRNA expression and plasma IGF‐I concentration by a low lysine 
diet. Journal of Nutrition. 2002;132:688‐692

[19] Dai ZL, Wu ZL, Jia SC, Wu G. Analysis of amino acid composition in proteins of animal 
tissues and foods as pre‐column o‐phthaldialdehyde derivatives by HPLC with fluores-
cence detection. Journal of Chromatography B. 2014;964:116‐127

[20] Baumgard LH, Hausman GJ, Sanz Fernandez MV. Insulin: Pancreatic secretion and adi-
pocyte regulation. Domestic Animal Endocrinology. 2016;54:76‐84

[21] Avruch J, Hara K, Lin Y, Liu M, Long X, Ortiz‐Vega S, Yonezawa K. Insulin and amino‐
acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. 
Oncogene. 2006;25:6361‐6372

[22] Proud CG. Regulation of protein synthesis by insulin. Biochemical Society Transactions. 
2006;34:213‐216

[23] O’Connor PMJ, Bush JA, Suryawan A, Nguyen HV, Davis TA. Insulin and amino acids 
independently stimulate skeletal muscle protein synthesis in neonatal pigs. American 
Journal Physiology. Endocrinology and Metabolism. 2003;284:E110‐E119

[24] Suryawan A, O’Connor PMJ, Bush JA, Nguyen HV, Davis TA. Differential regulation of 
protein synthesis by amino acids and insulin in peripheral and visceral tissues of neona-
tal pigs. Amino Acids. 2009;37:97‐104

[25] Floyd JC Jr, Fajans SS, Conn JW, Knopf RF, Rull J. Stimulation of insulin secretion by 
amino acids. The Journal of Clinical Investigation. 1966;45:1487‐1502

[26] Caperna TJ, Steele NC, Komarek DR, McMurtry JP, Rosebrough RW, Solomon MB, 
Mitchell AD. Influence of dietary protein and recombinant porcine somatotropin admin-
istration in young pigs: Growth, body composition and hormone status. Journal of 
Animal Science. 1990;68:4243‐4252

[27] Buse MG, Atwell R, Mancusi V. In vitro effect of branched chain amino acids on the ribo-
somal cycle in muscles of fasted rats. Hormone and Metabolic Research. 1979;11:289‐292

[28] Anthony JC, Lang CH, Crozier SJ, Anthony TG, MacLean DA, Kimball SR, Jefferson 
LS. Contribution of insulin to the translational control of protein synthesis in skeletal 
muscle by leucine. American Journal of Physiology. Endocrinology and Metabolism. 
2002;282:E1092‐E1101

[29] Knopf RF, Conn JW, Fajans SS, Floyd JC, Guntsche EM, Rull JA. Plasma growth hor-
mone response to intravenous administration of amino acids. The Journal of Clinical 
Endocrinology & Metabolism. 1965;25:1140‐1144

Amino Acid - New Insights and Roles in Plant and Animal270

[30] Isidori A, Lo Monaco A, Cappa M. A study of growth hormone release in man after oral 
administration of amino acids. Current Medical Research and Opinion. 1981;7:475‐481

[31] Tomas FM, Campbell RG, King RH, Johnson RJ, Chandler CS, Taverner MR. Growth 
hormone increases whole‐body protein turnover in growing pigs. Journal of Animal 
Science. 1992;70:3138‐3143

[32] Florini JR, Ewton DZ, Coolican SA. Growth hormone and the insulin‐like growth factor 
system in myogenesis. Endocrine Reviews. 1996;17:481‐517

[33] Etherton TD. ASAS centennial paper: Animal growth and development research: 
Historical perspectives. Journal of Animal Science. 2009;87:3060‐3064

[34] Evock CM, Caperna TJ, Steele NC, McMurtry JP, Rosebrough RW. Influence of time 
of injection of recombinant porcine somatotropin (rpST) relative to time of feeding on 
growth performance, hormone and metabolite status, and muscle RNA, DNA, and pro-
tein in pigs. Journal of Animal Science. 1991;69:2443‐2451

[35] Thiel LF, Beermann DH, Krick BJ, Boyd RD. Dose‐dependent effects of exogenous por-
cine somatotropin on the yield, distribution, and proximate composition of carcass tis-
sues in growing pigs. Journal of Animal Science. 1993;71:827‐835

[36] Takenaka A, Oki N, Takahashi SI, Noguchi T. Dietary restriction of single essential amino 
acids reduces plasma insulin‐like growth factor‐I (IGF‐I) but does not affect plasma IGF‐
binding protein‐1 in rats. Journal of Nutrition. 2000;130:2910‐2914

[37] Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin‐like 
growth factors. Endocrine Reviews. 1994;15:80‐101

[38] Breier BH. Regulation of protein and energy metabolism by the somatotropic axis. 
Domestic Animal Endocrinology. 1999;17:209‐218

EEffects of Dietary Lysine Levels on the Plasma Concentrations of Growth-Related Hormones...
http://dx.doi.org/10.5772/intechopen.68545

271





Chapter 14

Identification and Differential Activity of Glutathione

S-Transferase Mu in Strains of Fasciola hepatica

Susceptible and Resistant to Triclabendazole

Vanesa Fernández

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69189

Abstract

Fasciola hepatica is a helminth parasite that causes fascioliasis in domestic ruminants 
and humans. Economic losses due to its infection are estimated in US$ 2000–3000 
million yearly [1]. The anthelmintics are at present the only weapon against these 
parasitic helminths [2]. The parasite resistance to different anthelmintics including 
that of F. hepatica to triclabendazole (TCBZ) is growing worldwide. Glutathione S‐
transferases (GSTs) are enzymes involved in the detoxification of a wide range of sub‐
strates through chemical conjugation with glutathione, so that the product becomes 
more soluble in water, less toxic and easier to excrete. Eight GST isoenzymes are 
present in F. hepatica [3]. Since the different isoenzymes do not necessarily have the 
same metabolic activity, in the present work, we evaluated the metabolic activity of 
total cytosolic GST and GST mu and GST pi isoenzymes in adult strains of F. hepatica 
susceptible (Cullompton) and resistant (Sligo and Oberon) to TCBZ of the highest meta‐
bolic activity of total GST. The genetic sequence database at the National Center for 
Biotechnical Information (NCBI) (GenBank ID: KF680281–KF680282) corresponding 
to the GST mu gene isolated from Cullompton strain (TCBZ‐susceptible) and (GenBank 
ID: KF680283–KF680284) corresponding to the GST mu gene isolated from Sligo strain 
(TCBZ‐resistant) in F. hepatica. Comparative analysis of both strains, Cullompton and 
Sligo, showed two nucleotide changes and change of one amino acid in the GST mu 
isoenzyme of the TCBZ‐resistant strain. These results together with the higher enzy‐
matic activity of GST have a potential relevance as it contribute to the understanding 
the mechanisms that generate resistance to anthelmintics and the activity, metabo‐
lism, and disposition of these drugs in the parasite.

Keywords: Fasciola hepatica, triclabendazole, isoenzymes, glutathione S‐transferases
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1. Introduction

Fasciola hepatica is a helminth parasite that causes fascioliasis in domestic ruminants and 
humans. Economic losses due to its infection are estimated in U$S 2000–3000 million yearly 
[1]. The anthelmintics are at present the only weapon against these parasitic helminths [2]. 
The parasite resistance to different anthelmintics including that of F. hepatica to triclabenda‐
zole (TCBZ) is growing worldwide [3]. In the last few years, a rise in cattle fasciolosis cases 
has been reported, probably due to weather changes determining a different distribution of 
the snail Galba truncatula, which is a required intermediate host [4]. Helminth parasites pos‐
sess different biochemical mechanisms for detoxification. Overall, parasites may evade drug 
antiparasitic effects by: (i) mutation of target receptors, (ii) overexpression of efflux transport 
pumps, and/or (iii) overexpression of metabolic enzymatic systems [5].
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and adult stages. The nematodicidal action of benzimidazoles (BZDs) is based on their 
binding to beta‐Tubulin, which produces subsequent disruption of the tubulin‐microtu‐
bule dynamic equilibrium [6]. When the in vivo effect of TCBZ on the distribution of alpha 
and beta‐Tubulin was evaluated in the testis tubules of F. hepatica obtained from bovines 
exposed to this drug, the results obtained confirmed that TCBZ alters the distribution of the 
microtubules and reaffirmed that this is one of its main mechanisms of action [7, 8]. TCBZ 
is metabolized into its anthelmintically active metabolite sulphoxide (TCBZ‐SO) by the host 
liver [9] but also by the parasite’s subcellular fractions [10]. It has also been reported that F. 
hepatica has significantly higher sulphoxidation activity than nematode and cestode parasites 
[10]. The resistance to (BZDs) detected in other helminths such as Haemonchus contortus [11]. 
Although the flukicidal activity of TCBZ remains to be fully understood, there are data to 
support a microtubule‐based action of this compound. However, it has been shown that the 
TCBZ‐resistant F. hepatica is not associated with residue changes in the primary amino acid 
sequence of beta‐Tubulin [11]. This suggests that there may be an alternative mechanism of 
TCBZ resistance in F. hepatica [5].

The development of drug resistance can be facilitated by the action of xenobiotic metabolizing 
enzymes (XMEs) of phase I and phase II of detoxification [12]. In all organisms, XMEs serve 
as an efficient defense against the potential negative action of xenobiotics. Several phase I 
enzymes are expressed in mammalians, where they introduce or unmask new functionalities 
on xenobiotic compounds. Examples of these enzymes include cytochrome P450s (Cyt P450), 
flavin‐containing monooxygenases (FMO), alcohol and aldehyde dehydrogenases, and ester‐
ases. To eliminate a large array of chemicals, living organisms have developed, in virtually 
all tissue enzyme systems, XMEs that transform exogenous and endogenous compounds into 
more hydrophilic derivatives through reactions collectively known as biotransformation. At 
present, much less is known about the activity of certain phase II enzymes and relatively less 
attention has been paid to hydrolytic and conjugative pathways. Many phase II reactions in 
mammals involve conjugating potentially toxic substances to glutathione. These reactions are 
mediated by the enzyme glutathione S‐transferase (GST) enzymes [13]. Recent research has 
highlighted the importance of these transferases in the establishment of chronic helminth 
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infections. These proteins appear to be the main phase II detoxification system present in 
parasitic worms. General biological roles of helminth GSTs include xenobiotic detoxification 
and ligand binding/transport functions [14].

As many as eight GST isoforms have been shown to be present in F. hepatica [15]. The genes 
encoding the mu class of enzymes are organized in a gene cluster on 45 chromosome 1p13.3 
and are known to be highly polymorphic. The ability of helminth GSTs to effectively neutral‐
ize known cytotoxic products arising from the attack of reactive oxygen species on cell mem‐
branes provides evidence that GSTs have the potential to protect the parasite against different 
xenobiotics. In F. hepatica, GSTs are found in the tegument, muscular tissues, parenchymal 
cells, and the intestine [16]. GSTs account for as much as 4% of the total soluble protein [17] 
and are major detoxification enzymes in adult helminths, as these organisms appear to lack 
the important Cyt P450‐dependent detoxification reactions [18]. Results obtained in our labo‐
ratory confirmed that Cyt P450 are not only involved in detoxification mechanisms but also 
actively participate in the development of resistance to TCBZ by the trematode [19]. GSTs 
have been investigated in parasitic worms with respect to their biochemistry and have also 
been identified as potential vaccine candidates in digenean parasite. This property has been 
exploited with cGSTs [20–22]. Most studies concerning the metabolic response of F. hepatica 
against the anthelmintic TCBZ have used in vitro or ex vivo test models [23].

Whereas the background about the interactions with such enzymatic systems may drastically 
affect the disposition kinetics of different drugs [24], the aim of the present work was to evalu‐
ate in vitro of total cGST and cGSTmu and cGSTpi isoenzymes in the susceptible (Cullompton) 
and resistant (Sligo and Oberon) strains of F. hepatica and identified and characterized the gene 
GST mu isolated isolate from Cullompton strain (TCBZ‐susceptible) and Sligo (TCBZ‐resistant) in 
F. hepatica.

2. Materials and methods

2.1. Collection of parasite material

Nine (9) parasite‐free Corriedale weaned lambs were orally infected each with 200 metacer‐
cariae of F. hepatica.

2.2. Collection and processing of adult flukes

Adult flukes were collected from bile ducts and liver and processed. The collection of the 
flukes, their processing to obtain the cytosolic [25].

2.3. Preparation of cytosolic fractions

Parasite specimens (10–15 g) of the TCBZ‐susceptible or TCBZ‐resistant isolates of F. hepatica were 
rinsed with cold KCl (1.15%) and then transported to the laboratory in flasks filled with phosphate 
buffer (PB) (0.1 M, pH 7.4) at 4°C. All subsequent operations were performed between 0 and 4°C. 
Each sample was cut into small pieces and washed several times with PB. Samples were homogenized 
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(1:1) in PB, pH 7.4 with an Ultra‐Turrax homogenizer (IKA Works Inc., Wilmington, USA), centri‐
fuged at 10,000 g for 20 min and the resulting supernatant centrifuged at 100,000 g for 60 min.

The supernatant was collected and stored at −80°C until the analysis. Protein content from the 
supernatant fractions was determined using bovine serum albumin as a standard [26].

Total cGST activity using 1‐chloro, 2,4‐dinitrobenzene as substrate (CDNB), GST‐pi activity using 
ethacrynic acid as substrate and GST mu activity using 3,4‐dichloronitrobenzene (DCNB) as 
substrate were monitored by a continuous spectrophotometric method [27].

2.4. Reverse transcription polymerase chain reaction (RT‐PCR)

Total RNA was isolated from each strain of adult trematodes (n = 15) using Trizol, and reverse 
transcribed using superscript III RNAase® (Applied Biosystems, Brunn am Gebirge, Austria) 
following the protocol recommended by the manufacturers [28].

2.5. PCR amplification of cDNA

The PCR product was analyzed by electrophoresis in 1% agarose gel.

3. Results

Total GST activity (n = 13) in each strains was different in all strains tested. In the Sligo (1277 
± 32 nmol/min/mg protein) and Oberon (1216 ± 16 nmol/min/mg protein), strains were 59 
and 52%, respectively, higher (P < 0.001) than in the susceptible Cullompton strain (800 ± 60 
nmol/min/mg protein) (Figure 1). GST mu activity in Oberon (1.37 nmol/min/mg protein) 

Figure 1. Quantification of total activity of glutathione S‐transferase (GST) in Fasciola hepatica susceptible (Cullompton 
strain) and resistant (Sligo and Oberon strains) to triclabendazole.
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and Sligo (1.28 nmol/min/mg protein) resistant strains was 17 and 26%, respectively, higher 
than in the susceptible Cullompton strain (0.8 nmol/min/mg protein) (Figure 2) while GST‐
pi activity did not differ between the different strains tested (Figure 3). RT‐PCR (Figure 4). 
The genetic sequence database at the National Center for Biotechnical Information (NCBI) 
(GenBank ID: KF680281–KF680282) corresponding to the GST mu gene isolated from the 
Cullompton strain (TCBZ‐susceptible) and (GenBank ID:KF680283–KF680284) to the GST 

Figure 2. Quantification of activity of mu glutathione S‐transferase (GST) in Fasciola hepatica susceptible (Cullompton 
strain) and resistant (Sligo and Oberon strains) to triclabendazole.

Figure 3. Quantification of activity of pi glutathione S‐transferase (GST) in Fasciola hepatica susceptible (Cullompton strain) 
and resistant (Sligo and Oberon strains) to triclabendazole.
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mu gene isolated from the Sligo strain (TCBZ‐resistant) in F. hepatica (Figures 5 and 6) can 
be substituted by other polar or small amino acids in particular threonine which differs 
only in that it has a methyl group in place of a hydrogen group found in serine. Serines are 
quite common in protein functional centers.

4. Discussion

In the absence of an efficacious vaccine, chemotherapy remains the main tool in treating fas‐
ciolosis. Although other alternatives exist, current measures to control fasciolosis are based on 
the use of drugs such as triclabendazole (TCBZ) [29, 30].

In the anthelmintics, has been adults [9, 29, 31].

Parasite defense mechanisms include detoxifying and anti‐oxidant enzymes that would suppress its 
oxidative killing [23]. Therefore, it is necessary to know the mechanisms of detoxification and mecha‐
nism of anthelmintic resistance of F. hepatica.

Other possibilities include enhanced substrate affinity of the enzymes brought about by 
mutations within their encoding genes. Residue changes may also influence the substrate 
specificity of the enzymes and could explain why TCBZ‐resistant flukes remain susceptible 
to ABZ [14, 32–35].

Figure 4. A 657‐bp band compatible with the expected size in the 100‐bp DNA ladder marker (lane 1), Cullompton strain 
(lane 2), and Sligo (lane 3) was obtained.
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Figure 5. CLUSTAL 2.1 multiple sequence alignment.
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GSTs are regulated by a structurally diverse range of xenobiotics, and at least 100 chemicals 
have been identified to induce GSTs. Many of the compounds that induce GSTs are them‐
selves substrates for these enzymes or are metabolized (by CytP450 or FMO) to compounds 
that can serve as GST substrates, suggesting that GST induction represents part of an adaptive 
response mechanism to chemical stress caused by electrophiles [36].

In the present work, cGST was analyzed in three strains of F. hepatica (Cullompton, a  
TCBZ‐susceptible strain, and Sligo and Oberon, TCBZ‐resistant strains).

The activity of Sligo and Oberon strains expressed significantly higher metabolic activity 
than that measured in the cytosolic fractions obtained from the susceptible strain. In this 
work identified and characterized the GST mu gene isolated from TCBZ‐susceptible and  
TCBZ‐resistant F. hepatica strains, and comparative analysis of both strains Cullompton and 
Sligo showed change two nucleotide and changes GST mu protein: Threonine in the TCBZ‐ 
susceptible strain by Serine in the TCBZ‐resistant strain can be substituted by other polar or 
small amino acids in particular threonine which differs only in that it has a methyl group in 
place of a hydrogen group found in serine [37]. These genetic variations can change an indi‐
vidual’s susceptibility to carcinogens and toxins as well as affect the toxicity and efficacy of 
certain drugs but GST mu protein in active sites not present the classical Asp‐His‐Ser therefore 
not would find affected by this change of amino acid mu GST biological activity.

5. Conclusion

GST activity has this great potential importance as it might contribute to generating the phe‐
nomenon of resistance to TCBZ. These results contribute to the understanding not only of this 

Figure 6. Amino acid alignments of GST mu isoenzyme of Fasciola hepatica susceptible and resistant to TCBZ. Light 
shading indicates change of one amino acid at position 143 in the TCBZ resistant strain.
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metabolic pathway but also of the mechanism of resistance to TCBZ in F. hepatica. The results 
also add information to the knowledge of the response that the parasites have exposure to 
different xenobiotics.
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