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The large potential of RNA sequencing and other “omics” techniques has contributed to 
the production of a huge amount of data pursuing to answer many different questions 

that surround the science’s great unknowns. This book presents an overview about 
powerful and cost-efficient methods for a comprehensive analysis of RNA-Seq data, 
introducing and revising advanced concepts in data analysis using the most current 
algorithms. A holistic view about the entire context where transcriptome is inserted 
is also discussed here encompassing biological areas with remarkable technological 

advances in the study of systems biology, from microorganisms to precision medicine.
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Preface

This book is an overview about transcriptome analysis and how other “omics” could be ap‐
plied in different fields, from microorganisms to precision medicine. The content of each
chapter was designed to encourage three types of readers. First, this book will benefit those
interested in learning about the most powerful and cost-efficient methods applied for a
broad analysis of gene expression regulation of a single cell, a tissue, or the whole living
organisms. We aim to offer a wide view of these applications in distinct areas, from agricul‐
ture to human diseases, introducing and revising advanced concepts of RNA-Seq technolo‐
gy. In addition, some particularities of the vast world of RNAs were investigated. Most
researchers would agree that the memorable event in the RNA area over the last 20 years
has been the discovery of the driver functions of noncoding RNAs, such as siRNA and miR‐
NA. These new findings allowed new extensive researches on the control of RNA levels.
Besides the contribution to uncover the multitude of small RNAs regulating gene expres‐
sion, the development of high-throughput sequencing technologies also allowed the investi‐
gation of mechanisms related to RNA modifications. Unlike the well-established role of
DNA modifications in gene regulation, little is known about modifications in RNA and their
influence on gene expression. Mechanisms of RNA modification were addressed here, dis‐
cussing future challenges and perspectives of studies that attempt to unravel the processes
related to the regulation of several stages of the biological system. In spite of the numerous
initiatives with animal model investigation, the study of gene expression in plants was also
assessed in this book. We point out tools and methodologies for those who are interested in
transcriptome analysis in this area, considering the most diverse aspects involved in this
challenge. Some points discussed were the influence of transcriptome regulation and mecha‐
nisms associated to the responses of environmental stresses, plant-pathogen interactions,
and resistance, which in many aspects are closely related to studies performed in the agri‐
culture field to improve, for example, the productivity.

Second, this book will also benefit those who are interested in developing an RNA-Seq
study, from the experimental design to the exploration of the most varied algorithms availa‐
ble, following the best practices currently recommended. We present an overview of state-
of-the-art methods including experimental design, library preparation, quality check, and
preprocessing of raw reads. The particularities involved in differential expression analysis
and an accurate investigation of data for specific biological questions aims to show the dif‐
ferent approaches that could be found by researchers during the development of the most
varied experiments using this technology. Besides presenting a description of concepts and
tools, the chapters also offer in silico mechanisms to initiate an experiment and to perform a
good quality data analysis. Numerous options of bioinformatics tools were presented con‐
sidering users with limited access for computational resources or little experience with com‐
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mand-line execution. Also, free online and commercial platforms that can be very helpful
and intuitive were discussed, once as important as having the methods available is to fully
understand each step in which this method could be used. A good prior planning to choose
the correct algorithms and statistical criteria that best fit the different conditions and types
of data results in a pleased journey toward success.

Third, it is also for those who are interested in an idea about other omics and the different
areas where the big data could be applied. Widely known for having a crucial role in biolog‐
ical systems, post-translational modifications contributed to the recent explosion of proteo‐
mic data. Remarkable technological advances in mass spectrometry-based proteomics have
resulted in a large quantity of information obtained with great sensitivity in different as‐
pects. We also introduce high-resolution shotgun proteomics technology in combination
with bioinformatics platforms to better understand the crucial network structures based on
phosphorylation dynamics, as well as global protein expression profiles. Another powerful
tool to study the hidden microbial treasure, the metagenomics field, has accelerated the in‐
vestigation of emerging pathogens, thereby contributing to the design of disease control
strategies. Here, we also present the most current knowledge about this technology in scien‐
tific studies and commercial application in aquaculture. Regardless of the omics investigat‐
ed, the large amount of data generated requires the development of new and efficient tools
to deal with such information and then to contribute to several studies worldwide. Regard‐
ing genomics field, we discuss many molecular tools that have been developed to allow a
better understanding of the biology of some diseases, their particularities and variabilities
concerning the sequencing of genomes of different species. These tools allow medical and
scientific groups to improve patient management, providing personalized prevention and
treatment of diseases with more specific and accurate approaches. The potential use of next-
generation sequencing in personalized medicine is enormous and the comprehension of this
technique is necessary for an effective implementation in the clinical workplace.

In general, there are a great number of books dealing with transcriptomics or other omics in
several areas, but our intention was to offer the readers the opportunity to have all this con‐
tent in one book. Here, the readers can find an overview of different areas of knowledge and
take advantage of such knowledges to develop their own pipelines and be in touch with the
most current algorithms and platforms used for the scientific community.

Fabio A. Marchi
A.C.Camargo Cancer Center

São Paulo, Brazil

Priscila D.R. Cirillo
Hermes Pardini Institute

Belo Horizonte, Brazil

Elvis C. Mateo
Hermes Pardini Institute

Belo Horizonte, Brazil
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RNA‐seq: Applications and Best Practices
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Abstract

RNA‐sequencing (RNA‐seq) is the state‐of‐the‐art technique for transcriptome analysis 
that takes advantage of high‐throughput next‐generation sequencing. Although being 
a powerful approach, RNA‐seq imposes major challenges throughout its steps with 
numerous caveats. There are currently many experimental options available, and a com‐
plete comprehension of each step is critical to make right decisions and avoid getting 
into inconclusive results. A complete workflow consists of: (1) experimental design; (2) 
sample and library preparation; (3) sequencing; and (4) data analysis. RNA‐seq enables 
a wide range of applications such as the discovery of novel genes, gene/transcript quan‐
tification, and differential expression and functional analysis. This chapter will encom‐
pass the main aspects from sample preparation to downstream data analysis. It will be 
discussed how to obtain high‐quality samples, replicates amount, library preparation, 
sequencing platforms and coverage, focusing on best recommended practices based on 
specialized literature. Basic techniques and well‐known algorithms are presented and 
discussed, guiding both beginners and experienced users in the implementation of reli‐
able experiments.

Keywords: RNA‐seq, next‐generation sequencing, transcriptome, data analysis, best 
practices

1. Introduction

A transcriptome represents the entire repertoire of RNA content from an organism, a tis‐
sue or a cell and it is dynamic, changing in response to genetic and environmental factors. 
Several approaches have been developed for transcriptome analysis: hybridization‐based 
(DNA microarray [1]) or sequence‐based (ESTs—Expressed Sequence Tags [2], SAGE—Serial 
Analysis of Gene Expression [3], CAGE—Cap Analysis of Gene Expression [4] and MPSS—
Massively Parallel Signature Sequencing [5]). The first sequence‐based methods relied on 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Sanger sequencing [6], but with advances in next‐generation sequencing technology (NGS), 
transcriptomic studies have evolved considerably and RNA‐seq [7, 8] became the state‐of‐art 
for transcriptome analysis.

RNA‐seq consists of the direct sequencing of transcripts by NGS. Several NGS platforms [9–11] 
are commercially available nowadays. In general, an RNA set of interest is converted to a library 
of complementary DNA (cDNA) fragments and sequenced in a high‐throughput manner. 
Compared to ESTs, RNA‐seq provides better resolution and representativeness, whereas when 
compared to microarrays, the independence of reference sequences facilitates the discovery of 
novel genes and isoforms [8].

RNA‐seq experiments harbors challenges from the experimental design to data analysis. 
Since a complete comprehension of each step is critical to make right decision, this chapter 
will encompass essential principles required for a successful RNA‐seq experiment, focusing 
on best recommended practices based on specialized and recent literature. Basic techniques 
and well‐known algorithms are presented and discussed, guiding both beginners and experi‐
enced users in the implementation of reliable experiments.

2. Experimental design

In order to obtain a successful RNA‐seq experiment, it is critical to have a good experimental 
design. Despite its importance, a proper planning is not always done. There are many experi‐
mental options available, and to fully comprehend each step, it is essential to make right 
decisions, avoiding inconclusive results. These choices depend on extrinsic (e.g., cost, time, 
samples availability) and intrinsic (e.g., experimental design complexity, transcriptional vari‐
ability among tissues, samples and organisms) factors. The amount of available resources is 
usually the main extrinsic limiting factor driving researchers’ decisions. First, it is necessary 
to identify the main goal of an RNA‐seq experiment in order to be able to choose the best 
approach. Qualitative (e.g., annotation) and quantitative (e.g., differential gene expression—
DGE) data analyses have some different requirements such as those related to the starting 
RNA amount, the number and type of replicates, library type and preparation, sequencing 
platforms, throughput, coverage and depth, and read length. Scotty [12], RNASeqPower 
[13] and RnaSeqSampleSize [14] are statistical tools designed to aid in the conception of the 
experimental design, adjusting many of these variables to the main objective and taking into 
account the financial limitations. A detailed workflow from experimental design to library 
sequencing is presented in Figure 1.

2.1. Starting sample amount

The necessary starting amount of an RNA sample varies between kits and platforms, and the 
amount of available RNA is one of the limiting factors for an RNA‐seq experiment. The major‐
ity of library construction kits require micrograms of RNA, sometimes limited to high‐quality 
samples. Takara Bio USA Inc presents some kits for low quantity and/or quality RNA sam‐
ples: SMARTer Ultra Low mRNA‐seq kits (as little as 1 cell or 10 pg of total RNA), SMARTer 

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health4

Figure 1. A typical RNA‐seq workflow. (1) Experimental design definition of qualitative and quantitative goals. 
Differential gene expression among different conditions is exemplified; (2) Sample selection, RNA extraction and 
elimination of contaminants such as genomic DNA; (3) Assessment of RNA integrity; (4‐6) RNA enrichment. (4) 
mRNA enrichment using magnetic or cellulose beads coated with oligo(dT) molecules or oligo(dT) priming; (5) mRNA 
enrichment through rRNA depletion with conserved probes or Selective Depletion of abundant RNA (SDRNA); (6) 
Small RNA size‐selection through electrophoresis or based on solid phase extraction; (7‐9) cDNA single/double strand 
synthesis. (7) cDNA synthesis followed by fragmentation; (8) mRNA fragmentation followed by cDNA synthesis; (9) 
cDNA synthesis for small RNA without fragmentation; (10) Adapters ligation; (11) Library quantification and (12) 
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Sanger sequencing [6], but with advances in next‐generation sequencing technology (NGS), 
transcriptomic studies have evolved considerably and RNA‐seq [7, 8] became the state‐of‐art 
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ples: SMARTer Ultra Low mRNA‐seq kits (as little as 1 cell or 10 pg of total RNA), SMARTer 
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Stranded kits (100 pg, regardless of RNA quality) and SMARTer Universal kits (200 pg, regard‐
less of RNA quality). These kits are compatible with both Illumina and Ion Torrent platforms. 
NuGEN company has also some kits with input RNA levels of 10 pg (Ovation Ultralow Library 
System V2 and Ovation SoLo RNA‐Seq System) available only for Illumina. For a comparison 
study of four commercially available RNA amplification kits using low‐input RNA samples, 
see Ref. [15].

2.2. Replicates

The variability of an RNA‐seq experiment depends on the organism, the biological question 
under investigation and the available laboratory techniques, and it can be measured by tech‐
nical and biological variances. Technical replication consists on the repeated analysis of the 
same sample to infer the variance associated with the technology, that is, equipment and pro‐
tocols [16]. If only experimental errors analysis is desired, technical replication is satisfactory. 
Otherwise, biological replicates are necessary [17]. Three biological replicates are the mini‐
mum suggested for any inferential analysis [18], although the minimum amount required 
for a reliable RNA‐seq experiment depends on the desired statistical power. For example, in 
DGE analysis, performing more biological replication is recommended over increasing the 
sequencing depth [19, 20], and from 6 to 12 biological replicates have been suggested [21]. 
Biological replication is often preferable to enrich the inferential analysis and increase your 
statistical power. Statistical knowledge helps to understand the different statistical analysis 
methods required for different levels of replication [16, 17, 22].

2.3. Sequencing platforms

There are several sequencing platforms available with diverse data formats, throughputs and 
qualities [9–11]. Two commonly used approaches are sequencing by synthesis (e.g., Illumina, 
Helicos and PacBio) and ion semiconductor sequencing (Ion Torrent). They can also be clas‐
sified as clonal amplification‐based sequencing (e.g., Illumina and Ion Torrent) or single‐mol‐
ecule‐based sequencing (e.g., Helicos, PacBio, Nanopore). For RNA‐seq experiments, the 
most popular platform is Illumina due to its high throughput and low‐error rates. PacBio has 
gained attention due to read length increases since its reads can be long enough to recapitu‐
late a full‐length cDNA transcript [23–26]. RNA‐seq approaches can also be combined to take 
advantage of each method benefits. Further information and comparison studies are available 
in Refs. [11, 27–29].

2.4. Sequencing depth

The required sequencing depth for RNA‐seq experiments varies over several degrees. 
Transcripts are expressed at different levels within the cell, and their coverage differs con‐
siderably in any RNA‐seq experiment. A deeper sequencing is required to detect low abun‐
dance transcripts and rare splicing events, but their relevance can only be assessed with a 
good biological replication [30]. However, deeper sequencing may increase the detection of 
off‐target RNA species and the number of false positives in differential expression calls [31]. A 
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correlation between sequencing depth and accuracy demonstrated that as low as one million 
reads can provide similar information of transcript abundance as more than 30 million reads 
for highly expressed genes. This result was consistently shown in all six widely used model 
organisms (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, 
Mus musculus and Saccharomyces cerevisiae) that represent a wide range of genome sizes [32]. 
For the majority of human tissue genes, the amount required was about 15–50 million reads 
[33]. It is noteworthy that there is a point of sequencing depth saturation where a deeper 
sequencing results in only a small gain of information. More about the impact of sequencing 
depth on gene detection, gene expression quantification and structural variants discovery can 
be found in Ref. [33].

2.5. Read length

Short‐read sequencing is cheaper than long‐read sequencing. RNA‐seq experiments usually 
make use of short‐reads; however, longer reads can be helpful and more informative. Reads 
are usually shorter than full‐length transcripts, and a single read may map to multiple posi‐
tions in the genome stickling expression analysis and transcriptome assembly. Longer read 
length reduces mapping bias and ambiguity in assigning reads to genomic elements [34] and 
improves splicing detection [35, 36] and complex transcriptome analysis [37, 38]. However, 
some studies question the advantages of long reads sustaining that for humans, there are no 
substantial improvements in transcriptome assembly quality with reads over 150 base pairs 
[39] and in differential expression analysis with reads over 50 base pairs [35].

2.6. Library type

Standard RNA‐seq library protocols do not retain the strand orientation for each original tran‐
script, making it difficult to discriminate gene expression from overlapping genes. Therefore, 
it is often desirable to construct strand‐specific libraries [40–42]. There are several strand‐spe‐
cific protocols available, and they can be performed by two main alternatives. One method 
consists of marking the second strand by chemical modification, preventing it from being 
amplified by PCR and leading to the amplification of the first strand only. The deoxy‐UTP 
(dUTP) approach [43] is a well‐known example, and it is one of the leading protocols. The 
other method involves adapter’s ligation in a known orientation in the RNA molecule such as 
Illumina RNA ligation method [44]. A comparison between seven library‐construction proto‐
cols reveals strong differences and substantial variation in the experimental complexity [40]. 
Stranded RNA‐seq provides more accurate downstream expression analysis, and it is the rec‐
ommend approach for RNA‐seq studies [40, 42]. Moreover, the dUTP and the Illumina RNA 
ligation methods were identified as the best overall protocols [40, 45].

2.7. Spike‐in

The External RNA Control Consortium (ERCC) [46] has developed a set of 92 polyadenylated 
synthetic spike‐in controls for normalization and noise reduction of gene expression. ERCC 
spike‐ins mimic eukaryotic mRNAs and can be added (‘spiked’) equally to each sample prior 
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to library construction [47]. Ambion ERCC spike‐in control mixes (Thermo Fisher Scientific) are 
commercially available. Sequins, another set of spike‐in RNA standards, can also be used as inter‐
nal controls and are freely available for non‐profit research upon request [48]. Normalization 
methods should be carefully chosen to ensure that spike‐in will behave as expected. The R pack‐
age erccdashboard [49] and Anaquin [50] can be used for spike‐in analysis.

3. Sample preparation and library construction

After defining the experimental design, a typical RNA‐seq experiment workflow consists of 
(i) RNA preparation, (ii) cDNA library construction, (iii) sequencing and (iv) bioinformatic 
analysis. Each step will be briefly discussed below.

3.1. RNA preparation

Since RNA is more labile than DNA and RNases are ubiquitous and very stable enzymes, 
special precautions and more stringent working practices should be taken to obtain pure and 
high‐quality RNA. Best practices can be found at [51] or spread on diverse companies’ web‐
sites such as Thermo Fisher Scientific, Qiagen and Ambion.

In an RNA‐seq experiment, the RNA preparation consists basically of isolation/extraction and 
enrichment. Many RNA sample preparation techniques and commercial kits are available. 
No unique method is optimal for every application, and combination of methods may vary 
depending on the sample type and the study goals. It is always recommended to carefully 
follow manufacturer’s instructions.

3.1.1. RNA isolation and extraction

In order to isolate high‐quality RNA, the samples need to be processed immediately after 
harvest. If an immediate isolation is not possible, samples can be stabilized in an intermedi‐
ary solution to preserve RNA integrity and allow storage. Commonly used stabilizers are 
RNAlater (Thermo Fisher Scientific and Qiagen) and RNAstable (Sigma‐Aldrich). RNA isola‐
tion and extraction methods can be manual (e.g., TRIzol–Thermo Fisher Scientific) or auto‐
mated (e.g., RNeasy—Qiagen), and different types of samples require different approaches, 
although all of them comprise: (i) sample solubilization in the presence of detergent and chao‐
tropic agents, (ii) sample homogenization for complete cell disruption and (iii) RNA recovery 
from the lysate with organic or solid‐phase extraction. It is also important to have a final RNA 
free of genomic DNA (gDNA) contaminants. Some protocols can carry over some gDNA into 
total RNA samples that can be removed by a DNAse treatment. gDNA contamination can 
lead to a counting bias in downstream analysis and can be detected by reads background over 
the whole genome (false positive signal). Further information about sample preparation tech‐
niques and some commercial kits available can be found in Ref. [52]. Different commercial kits 
demonstrated satisfactory RNA yield, but differences in the quality of extracted RNA were 
observed, which can interfere on the downstream analysis [53].
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RNA quality can be assessed by gel electrophoresis (agarose or polyacrylamide) or through 
Agilent Bioanalyzer. RNA quantity can be assessed using spectrophotometer (e.g., Nanodrop), 
fluorometer (e.g., Qubit) or Agilent Bioanalyzer. No single RNA quantification and quality 
control method are ideal, and it is necessary to know the limits of each method. We recom‐
mend Bioanalyzer since it measures the RNA integrity and level of degradation by the RNA 
Integrity Number (RIN) score that allows sample quality comparison by a scale with a range 
from 1 (most degraded) to 10 (most intact) [54, 55]. There is no consensus about the RIN cut‐
off for sample inclusion or exclusion in a study, but RIN ≥ 6 are commonly acceptable. DGE 
analysis could be performed even with RIN scores around 4 [56], but non‐degraded RNA is 
preferred for a successful transcriptome analysis. It is also important to highlight that some 
organisms do not present typical rRNAs peaks and cannot be evaluated by RIN value. Most 
insect RNA shows a cleavage of 28S rRNA into two similar fragments (28Sα and 28Sβ) that 
comigrate with 18S rRNA depending on pretreatment and electrophoresis conditions. This 
comigration is due to the disruption of the hydrogen bonds responsible for maintaining the 
two 28S fragments together. This profile should not be misinterpreted as low integrity and 
degradation [57]. In these cases, check the overall Bioanalyzer trace. More information about 
each method and a comparison study can be found in Refs. [58, 59], respectively.

3.1.2. RNA enrichment

The type of the desired RNA molecule drives the RNA enrichment approach. Selection of 
mature mRNAs by their poly(A) tails is the most common application and can be carried out 
with magnetic or cellulose beads coated with oligo(dT) molecules or through oligo(dT) prim‐
ing for reverse transcription (RT). Therefore, since RNAs from formalin‐fixed and paraffin‐
embedded (FFPE) are degraded and mRNA‐seq poorly captures degraded mRNAs, it is not 
an appropriate method to use with FFPE samples [42], unless adapted protocols are applied 
such as the recently described protocol based on in vitro T7 transcription for linear ampli‐
fication of mRNA [60]. In order to surpass this limitation, rRNA depletion protocols have 
been developed based on hybridization in highly conserved ribosomal regions, including the 
selective depletion of abundant RNA (SDRNA) with RNase H [61, 62], Ribominus (Thermo 
Fisher Scientific), Ribo‐Zero (Illumina), GeneRead (Qiagen) and RiboGone (Takara). Another 
approach is the duplex‐specific nuclease (DSN) normalization by depletion of abundant tran‐
scripts, such as rRNAs and tRNAs [63, 64]. Samples can be also enriched of small ncRNAs 
(e.g., miRNA, siRNA and piRNA) via size‐selection through electrophoresis or based on solid 
phase extraction with commercial kits such as mirVana (Thermo Fisher Scientific) and miR‐
Neasy (Qiagen). For comparison studies between these methods, see Refs. [42, 65]. rRNA 
depletion is recommended rather than oligo(dT) because it can capture a complete view of the 
transcriptome and can be used for low‐quality RNA samples [65].

3.2. cDNA Library construction

The library construction includes four steps: (i) RNA/cDNA fragmentation, (ii) cDNA synthe‐
sis, (iii) adapters ligation and (iv) quantification. Some specific points will be briefly discussed 
below, but additional information can be found in Refs. [41, 45].
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3.2.1. RNA/cDNA fragmentation

The length of your RNA insert is a key factor for library construction and sequencing. Since 
most current platforms sequence only short reads, most protocols incorporate an RNA or 
cDNA fragmentation step that allows amplification and sequencing. For short RNAs (under 
200 pb), no fragmentation is required. There are three main ways to fragment the nucleic 
acid samples: physical (e.g., sonication, nebulization), enzymatic (e.g., RNase III, DNase I or 
Fragmentase) and chemical (e.g., heat, metal ion) shearing. Little information is known about 
which is the best method for each application. A comparison study of nebulization, sonica‐
tion and enzymatic digestion showed that all three methods presented equal performance 
and that fragmentation is indicated [66]. In most cases, RNA is fragmented before conver‐
sion into cDNA. Furthermore, it is important to highlight that due to FFPE samples degrada‐
tion, cDNA fragmentation must be performed instead of RNA fragmentation when using 
oligo(dT) priming for first‐strand synthesis.

3.2.2. cDNA synthesis

After an adequate RNA preparation, RNA must be converted to double complementary DNA 
(cDNA) via RT, generating a cDNA:RNA hybrid. This process is known as first‐strand cDNA 
synthesis and requires an oligonucleotide primer. Three options are available: oligo(dT) prim‐
ing, random priming or gene‐specific priming. The first two are the mainly used for RNA‐
seq. Oligo(dT) priming is one of the oldest methods for first‐strand synthesis and involves 
oligo(dT) primer to capture the poly(A) tail of mature mRNA. Because of their specificity 
for poly(A) tails, oligo(dT) priming is not compatible with fragmented RNA, such as FFPE 
samples, nor for RNAs that lack poly(A) tails, such as non‐mRNAs (e.g., microRNAs (miR‐
NAs)). If using this methodology, cDNA fragmentation must be performed instead of RNA 
fragmentation. Besides that, RTs are not highly processive polymerases and can prematurely 
terminate the strand biosynthesis, leading to 3′ end bias and under‐representation of the 5′ 
ends. Random priming involves oligonucleotides with random base sequences that prime at 
random positions along the RNA (i.e., no template specificity), and it is preferable to oligo(dT) 
priming. This approach allows recovery of non‐poly(A) RNAs and prevents 3′ end bias, result‐
ing in a more uniform transcript coverage. However, it was shown that random priming is 
not completely random leading to a nucleotide bias across the first reads positions [67, 68].

The first‐strand cDNA is used as a template to generate double‐stranded cDNA. Second‐
strand cDNA synthesis can be performed by (i) RNA nicking of the RNA template by RNase 
H and synthesis with E. coli DNA polymerase I and T4 DNA ligase [69], (ii) using an oligo 
that is complementary to an adapter located in the 5′ end of the RNA template or by (iii) 
Clontech’s SMART (Switching Mechanism At 5′ end of RNA Transcript) technology [70]. 
RNase H method presented a better performance for low‐quality RNA when compared to 
four other methods (Ribo‐Zero, NuGEN, SMART and DSN‐lite) [65].

3.2.3. Adapters sequences and ligation

Adapters sequences must be ligated at the ends of every single molecule during library prepa‐
ration, and this process varies depending upon the sequencing platform. It can contain one 
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or more extra functional elements such as barcode/index to allow multiplexing and a sec‐
ond sequencing‐priming site to allow paired‐end sequencing. The addition of adapter via Y‐
adapter PCR is the most commonly used technique. Adapters can also be added via RT/PCR 
during the first‐ and second‐strand synthesis process or via ligation.

3.2.4. Library quantification

To ensure the maximum yield (i.e., data output) and quality from your RNA‐seq experiment, 
it is important to have a precise quantification of your NGS libraries. Inaccurate quantifi‐
cation may lead to lower throughput, lower sequences qualities and poor samples balance 
within your multiplex. There are many ways to quantify your libraries, but the most accurate 
and effective method is quantitative real‐time PCR (qPCR). qPCR is more sensitive and only 
quantifies amplifiable DNA molecules (i.e., molecules that contain both adaptor sequence), 
providing a more precise estimation. Some commercial kits available are KAPA Library 
Quantification Kit (Kapa Biosystem), GeneRead Library Quant System (Qiagen), Ion Library 
TaqMan Quantitation Kit (Thermo Fisher Scientific), QPCR NGS Library Quant Kit (Agilent), 
PerfeCTa NGS Quantitation Kit (Quantabio) and NEBNext Library Quant Kit (New England 
BioLabs). Other methods are similar to the previously mentioned for RNA quantification: 
spectrophotometer (e.g., Nanodrop), fluorometer (e.g., Qubit) and Agilent Bioanalyzer. 
However, since these methods measure total nucleic acid concentrations, including non‐
amplifiable DNA, they can lead to inaccurate results. It is also recommended to verify the 
libraries fragment size distribution, which can be performed by electrophoresis, preferably 
Agilent Bioanalyzer. Bioanalyzer electropherogram needs to show a narrow distribution with 
a peak height of the average size fragmentation value. After quantification, the library must 
be sequenced with the platforms discussed in Section 2.3, and data must be analyzed through 
bioinformatic tools. RNA‐seq data analysis will be discussed below.

4. Data analysis

RNA‐seq data analysis involves many different strategies that depend on the goals and biolog‐
ical questions established at the time of the study design. A typical data analysis includes qual‐
ity control, reads preprocessing, alignment to a reference or de novo assembly and downstream 
analysis such as transcripts annotation, DGE, gene fusion analysis and alternative splicing. In 
the following topics, we will emphasize common steps and applications of this technology. A 
detailed workflow for data analysis is presented in Figure 2. Bioinformatic tools discussed in 
this chapter are compiled at Table 1, and a more exhaustive list of available tools can be found 
in Ref. [71]. For those with limited access for computational resources or little experience with 
command‐line execution of these bioinformatic tools, free online (Galaxy [72]) and commercial 
(Illumina BaseSpace [73] and Geneious [74]) platforms can be very helpful and intuitive.

4.1. Quality control and reads preprocessing

A complete pipeline for an RNA‐seq analysis demands some checkpoints in order to ensure the 
quality of the results and elimination of noise from the biological samples. After  sequencing, 
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strand cDNA synthesis can be performed by (i) RNA nicking of the RNA template by RNase 
H and synthesis with E. coli DNA polymerase I and T4 DNA ligase [69], (ii) using an oligo 
that is complementary to an adapter located in the 5′ end of the RNA template or by (iii) 
Clontech’s SMART (Switching Mechanism At 5′ end of RNA Transcript) technology [70]. 
RNase H method presented a better performance for low‐quality RNA when compared to 
four other methods (Ribo‐Zero, NuGEN, SMART and DSN‐lite) [65].

3.2.3. Adapters sequences and ligation

Adapters sequences must be ligated at the ends of every single molecule during library prepa‐
ration, and this process varies depending upon the sequencing platform. It can contain one 
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or more extra functional elements such as barcode/index to allow multiplexing and a sec‐
ond sequencing‐priming site to allow paired‐end sequencing. The addition of adapter via Y‐
adapter PCR is the most commonly used technique. Adapters can also be added via RT/PCR 
during the first‐ and second‐strand synthesis process or via ligation.

3.2.4. Library quantification

To ensure the maximum yield (i.e., data output) and quality from your RNA‐seq experiment, 
it is important to have a precise quantification of your NGS libraries. Inaccurate quantifi‐
cation may lead to lower throughput, lower sequences qualities and poor samples balance 
within your multiplex. There are many ways to quantify your libraries, but the most accurate 
and effective method is quantitative real‐time PCR (qPCR). qPCR is more sensitive and only 
quantifies amplifiable DNA molecules (i.e., molecules that contain both adaptor sequence), 
providing a more precise estimation. Some commercial kits available are KAPA Library 
Quantification Kit (Kapa Biosystem), GeneRead Library Quant System (Qiagen), Ion Library 
TaqMan Quantitation Kit (Thermo Fisher Scientific), QPCR NGS Library Quant Kit (Agilent), 
PerfeCTa NGS Quantitation Kit (Quantabio) and NEBNext Library Quant Kit (New England 
BioLabs). Other methods are similar to the previously mentioned for RNA quantification: 
spectrophotometer (e.g., Nanodrop), fluorometer (e.g., Qubit) and Agilent Bioanalyzer. 
However, since these methods measure total nucleic acid concentrations, including non‐
amplifiable DNA, they can lead to inaccurate results. It is also recommended to verify the 
libraries fragment size distribution, which can be performed by electrophoresis, preferably 
Agilent Bioanalyzer. Bioanalyzer electropherogram needs to show a narrow distribution with 
a peak height of the average size fragmentation value. After quantification, the library must 
be sequenced with the platforms discussed in Section 2.3, and data must be analyzed through 
bioinformatic tools. RNA‐seq data analysis will be discussed below.

4. Data analysis

RNA‐seq data analysis involves many different strategies that depend on the goals and biolog‐
ical questions established at the time of the study design. A typical data analysis includes qual‐
ity control, reads preprocessing, alignment to a reference or de novo assembly and downstream 
analysis such as transcripts annotation, DGE, gene fusion analysis and alternative splicing. In 
the following topics, we will emphasize common steps and applications of this technology. A 
detailed workflow for data analysis is presented in Figure 2. Bioinformatic tools discussed in 
this chapter are compiled at Table 1, and a more exhaustive list of available tools can be found 
in Ref. [71]. For those with limited access for computational resources or little experience with 
command‐line execution of these bioinformatic tools, free online (Galaxy [72]) and commercial 
(Illumina BaseSpace [73] and Geneious [74]) platforms can be very helpful and intuitive.

4.1. Quality control and reads preprocessing

A complete pipeline for an RNA‐seq analysis demands some checkpoints in order to ensure the 
quality of the results and elimination of noise from the biological samples. After  sequencing, 
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the analysis starts with files containing the raw reads. The FASTQ [75] is the standard format 
used to store the nucleotide sequences along with a per base quality score in Phred log scale. 
The qualities, typically with scores from 0 to 40, are represented by single letters encoded with 
pre‐defined ranges of characters from the American Standard Code for Information Interchange 
(ASCII) table. Currently, there are two patterns: Phred + 64, used in initial Illumina versions 
1.3 + and 1.5 + and Phred + 33, the default encoding for Sanger and more recent sequencers. The 
FASTQ is widely accepted and used in most downstream software, although the unmapped 
BAM (uBAM) format has been recently encouraged as it is capable of storing important 
sequencing metadata not present in FASTQ, and for being binary, it demands less disk storage. 
Some sequencing platforms, like Ion Torrent, have already included uBAM as default output 
format in their pipelines. Both formats are interchangeable by using Picard [76], BamUtil [77] 
and BamTools [78].

The first step is to perform a quality control (QC) of the data, checking parameters like amount 
of reads per sample, general read and base qualities, mean reads length, G + C content, pres‐
ence of unclipped adapters or PCR primers and unexpected repetitive sequences. This general 
overview will indicate if library construction and sequencing were properly performed, or if 
errors like contaminants, poor ribosomal RNA depletion or low sequencing output will demand 
a new round of experiments. The most common software used to retrieve these basic statistics 
is FastQC [79] and PRINSEQ [80]. The first was mainly designed for Illumina, while the later for 
454/Roche technology and may be also used for preprocessing. Both programs are available with 
intuitive graphical user interfaces (GUI), accept other sequencing technologies input files and 
generate graphical reports, which are very useful for guiding the choice of filtering thresholds.

Figure 2. RNA‐seq data analysis. (1) Raw single‐end and paired‐end reads obtained from NGS sequencing; (2) Adapters 
clipping and base quality trimming. Alternatively error correction can be performed; (3) Mapping without preprocessing 
using soft‐clipping; (4) Unspliced or spliced‐aware reads mapping; (5) Assess mapping quality and biases; (6) Mapping 
visualization; (7) Transcriptome genome‐guided assembly; (8) Per feature quantification using mapped reads; (9) Per 
feature quantification using quasi‐mapping approach; (10) Transcriptome de novo assembly; (11) Mapping reads to de 
novo assembled transcriptome; (12) Downstream data analysis.

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health12

Category Tools

Experimental design Scotty [12]

Raw reads quality control FASTQC [75]

Reads preprocessing Read clipping/trimming Picard [72], BamUtil [73], BamTools [74], 
PRINSEQ [76], Cutadapt [78], FASTX‐Toolkit 
[79], Trimmomatic [80]

Paired‐end reads 
overlapping detection

FLASh [84], PEAR [85]

Reads error correction SEECER [86], Rcorrector [87]

Unspliced mapping Hash Table index based BFAST [90], MAQ [92], Mosaik [93], Novoalign 
[94], RMAP [95], SHRiMP [96]

FM‐index based Bowtie2 [97], BWA [100]

Spliced‐aware mapping Hash Table index based GSNAP [91], RNASEQR [103]

FM‐index‐based TopHat2 [98], HISAT2 [99], SOAP‐splice [101], 
STAR [102], RNASEQR [103]

Alignment quality assessment Picard [72], BamUtil [73], BamTools [74], 
Samtools [106], Qualimap2 [107], BAMstats 
[108], SAMstat [109]

Assembly Genome‐guided Cufflinks [111], Scripture [112], StringTie [113]

De novo Rnnotator [115], Trans‐ABySS [116], Trinity 
[119], Oases [120]

Assembly quality assessment Detonate [122], TransRate [123], BUSCO [124]

Alignment visualization IGV [125], Tablet [126], UCSC [127]

Raw read counts Mapped‐based featureCounts [129], HTSeq‐count [130], RSEM 
[136]

Pseudoalignment Kallisto [140], Salmon [141]

Raw read counts quality assessment NOISeq [131]

Differential expression DESeq [132], DESeq2 [133], edgeR [134], 
CuffDiff2 [137], BitSeq [138], Ballgown [139]

Annotation BLAST [145, 146], DIAMOND [147], 
InterProScan [148], tRNAscan‐SE [149], 
RNAmmer [150], Blast2GO [151], Annocript 
[152], TRAPID [153], Trinotate [154]

Enrichment analysis GSEA [155]

Alternative splicing Cufflinks [111], Scripture [112], StringTie [113]

Differential alternative splicing CuffDiff [111], Ballgown [139], DEXSeq [161], 
rMATS [162], SpliceR [163], MISO [164], 
DiffSplice [165]

Fusion genes SOAPfuse [170], FusionCatcher [171], JAFFA 
[172]

miRNA miRdeep2 [179], miReNA [180], miRanalyzer 
[181]

Table 1. Tools for RNA‐seq data analysis.
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The following preprocessing step is crucial and can greatly influence the data analysis [81]. 
Besides PRINSEQ, other tools like Cutadapt [82], FASTX‐Toolkit [83] and Trimmomatic 
[84] are efficient in preprocessing reads, but FASTX‐Toolkit cannot be used with paired‐end 
reads. Generally, due to problems inherent in sequencing technologies, the bases in 3’end of 
reads have lower quality, and one may choose to filter off reads with low mean quality or 
trim only the low‐quality ends. Trimming in most cases may improve mappability, although 
shorter reads have a higher probability of erroneous mapping. Therefore, it is recommended 
to remove short reads in conjunction with non‐aggressive base‐quality trimming to avoid 
spurious mapping and incorrect inferences [85, 86]. Adapter removal and trimming low‐qual‐
ity ends improve RNA‐seq assembly, single nucleotide polymorphism (SNP) detection and 
gene‐expression analysis.

Modern mapping tools (see next section) are capable of labeling the unaligned read ends, a 
process known as soft‐clipping, without actually removing them (hard‐clipping). There is no 
consensus on which approach is the best, but it has been considered that keeping as much 
as information as possible would be better for downstream analysis. For example, the soft‐
clipped reads are important for detection of genomic structural variants [87].

When the goal is to perform RNA‐seq de novo assembly, supplementary tools can be used to 
join overlapping paired‐end reads, like FLASh [88] and PEAR [89]. Additionally, base error 
correction can be applied as an alternative to read trimming and filtering, increasing the 
amount of useful data and consequently the contig sizes. SEECER [90] and Rcorrector [91] 
were specifically designed for this task. Both strategies will likely improve assembly qualities.

In summary, preprocessing is beneficial, but there is no best tool for any experiment or general 
rule for filtering thresholds. All software has its own standard parameters, advantages and 
limitations, being recommended a case‐by‐case analysis and a thorough software comparison.

4.2. Mapping, assembling and visualizing mapped reads

Now that the raw reads have been preprocessed, alternative approaches can be chosen 
according to the availability of a reference sequence. If present, reads can be mapped to the 
genome and the gene that originated the transcript from which the reads were derived may 
be inferred and expression quantified. The genome may also be used to guide transcriptome 
assembly, resulting in several contigs representing the genes and its isoforms. On the other 
hand, if the studied species still lacks a reference sequence, reads can be de novo assembled, 
and transcripts can now be used as a mapping reference.

4.2.1. Mapping to a reference

Mapping reads to a reference can be also seen as a traditional pair‐wise sequence alignment, 
as observed in common Basic Local Alignment Search Tool (BLAST) [92], but with the main 
difference that a vast amount of reads are compared with a database composed of fewer and 
longer sequences instead of several thousand nucleotides/proteins. This is a field under con‐
stant development with plenty of tools available [93]. These tools have to deal with inherent 
mapping challenges, such as sequencing errors, natural sequence variability like SNPs and 
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indels, reads spanning exon junctions and repetitive regions or pseudogenes in references. To 
guarantee reproducibility, it is highly recommended reporting alignment parameter details, 
such as mapper and reference versions and sources, allowed seed mismatches, minimal align‐
ment score and treatment given to multi mapping reads.

Mappers can be roughly divided by the algorithm chosen to create indexes and by the ability 
to recognize exon‐exon junctions. Indexes have the purpose of making the alignments signifi‐
cantly faster and are mainly divided into Hash Table or compressed prefix or suffix array‐like 
structures (FM‐index). Their principle is to quickly find small local alignments representing sub‐
strings of whole reads—designated as seeds—in the reference and then extend those alignments 
surpassing a defined quality threshold toward the read ends, assigning a Phred‐based mapping 
quality score for each read. Unfortunately, most mappers have developed their own mapping 
quality formulas, creating a non‐uniform mapping qualification. Some well‐known Hash Table‐
based algorithms are BFAST [94], GSNAP [95], MAQ [96], Mosaik [97], Novoalign [98], RMAP 
[99] and SHRiMP [100], while Bowtie2 [101], TopHat2 [102], HISAT2 [103], BWA [104], SOAP‐
splice [105] and STAR [106] are examples of FM‐index based algorithms.

Regarding the splicing events, they can be divided into unspliced and splice‐aware aligners. 
Most recent mappers are capable of using reference annotation files to deal with known exon‐
exon junctions and to predict new splice sites, which is essential when analyzing RNA‐seq 
data from most eukaryotes. GSNAP, SOAP‐splice, RNASEQR [107], STAR and TopHat2 are 
some recommended options for spliced alignments, but for intronless species, miRNA and 
transcriptomes, unspliced aligners can be used. Comparative evaluations showed that FM‐
index‐based mappers are preferable [108] and that, again, no tool is the best for every perfor‐
mance parameters like speed, alignment yield, exon discovery and accuracy [109].

The standard alignment output is the Sequence Alignment/Map (SAM) format or its binary 
version BAM and they are essential inputs for many downstream applications. Picard [76] 
and Samtools [110] are frequently used to manipulate these files. It is advisable to assess the 
alignment quality from SAM/BAM files with tools like Qualimap2 [111], BAMstats [112] and 
SAMstat [113] for general characterization or for comparing mappers’ performances.

4.2.2. Genome‐guided assembly

Short RNA‐seq reads represent only a small portion of most transcripts, and therefore, over‐
laps have to be detected in order to fully reconstruct the original molecules. Paralogous genes, 
alternative splicing, alternative transcription initiation and termination sites increase the 
complexity and impose computational challenges in Eukaryotic assembly analysis [114]. For 
Bacteria, Archaea and lower eukaryotes, the absence or smaller amount of introns makes the 
assembly more straightforward.

RNA‐seq assemblers greatly differ from DNA‐seq algorithms because a wide range of tran‐
scripts coverage is expected, and several gene isoforms can be observed resulting in thousands 
of contigs stead of ideally one per chromosome. When a good quality reference genome is 
available, the usual procedure is to use the coordinates of aligned reads to separate them into 
clusters and perform a de novo alignment individually for each locus, from which individual 
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Modern mapping tools (see next section) are capable of labeling the unaligned read ends, a 
process known as soft‐clipping, without actually removing them (hard‐clipping). There is no 
consensus on which approach is the best, but it has been considered that keeping as much 
as information as possible would be better for downstream analysis. For example, the soft‐
clipped reads are important for detection of genomic structural variants [87].

When the goal is to perform RNA‐seq de novo assembly, supplementary tools can be used to 
join overlapping paired‐end reads, like FLASh [88] and PEAR [89]. Additionally, base error 
correction can be applied as an alternative to read trimming and filtering, increasing the 
amount of useful data and consequently the contig sizes. SEECER [90] and Rcorrector [91] 
were specifically designed for this task. Both strategies will likely improve assembly qualities.

In summary, preprocessing is beneficial, but there is no best tool for any experiment or general 
rule for filtering thresholds. All software has its own standard parameters, advantages and 
limitations, being recommended a case‐by‐case analysis and a thorough software comparison.

4.2. Mapping, assembling and visualizing mapped reads

Now that the raw reads have been preprocessed, alternative approaches can be chosen 
according to the availability of a reference sequence. If present, reads can be mapped to the 
genome and the gene that originated the transcript from which the reads were derived may 
be inferred and expression quantified. The genome may also be used to guide transcriptome 
assembly, resulting in several contigs representing the genes and its isoforms. On the other 
hand, if the studied species still lacks a reference sequence, reads can be de novo assembled, 
and transcripts can now be used as a mapping reference.

4.2.1. Mapping to a reference

Mapping reads to a reference can be also seen as a traditional pair‐wise sequence alignment, 
as observed in common Basic Local Alignment Search Tool (BLAST) [92], but with the main 
difference that a vast amount of reads are compared with a database composed of fewer and 
longer sequences instead of several thousand nucleotides/proteins. This is a field under con‐
stant development with plenty of tools available [93]. These tools have to deal with inherent 
mapping challenges, such as sequencing errors, natural sequence variability like SNPs and 

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health14

indels, reads spanning exon junctions and repetitive regions or pseudogenes in references. To 
guarantee reproducibility, it is highly recommended reporting alignment parameter details, 
such as mapper and reference versions and sources, allowed seed mismatches, minimal align‐
ment score and treatment given to multi mapping reads.

Mappers can be roughly divided by the algorithm chosen to create indexes and by the ability 
to recognize exon‐exon junctions. Indexes have the purpose of making the alignments signifi‐
cantly faster and are mainly divided into Hash Table or compressed prefix or suffix array‐like 
structures (FM‐index). Their principle is to quickly find small local alignments representing sub‐
strings of whole reads—designated as seeds—in the reference and then extend those alignments 
surpassing a defined quality threshold toward the read ends, assigning a Phred‐based mapping 
quality score for each read. Unfortunately, most mappers have developed their own mapping 
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isoforms can be inferred. Cufflinks [115], Scripture [116] and StringTie [117] are recommended 
tools, and their algorithm strategies have been reviewed [118], with StringTie [117] presenting 
better transcript reconstruction performance. Paired‐end, strand‐specific libraries and longer 
reads are highly encouraged for better assemblies and to allow distinction in overlapping tran‐
scripts from opposite strands for gene‐dense species and antisense transcription. Genome‐
guided assembled transcriptomes can be used to improve gene structures annotation through 
detection of transcription boundaries and splice‐sites.

4.2.3. De novo assembly

In the absence of a reference sequence or if only a fragmented draft genome is available, 
overlaps have to be detected from the complete read set in a de novo assembly approach. The 
independence from a good quality reference and mapping procedures can be also seen as 
an advantage. The counterpart is that sequencing depth must be obtained in a higher cover‐
age, estimated around 30× [119], while genome‐guided approach requires about 10× [120, 
121] to find full‐length transcripts. The higher throughput increases the processing require‐
ments, so data digital normalization is recommended in order to remove redundancy without 
impacting the assembly outcome [122]. Although the de novo approach is usually more error 
prone and computationally intensive, it allows the discovery of novel splicing events, unpre‐
dicted genes and exons, chromosomal rearrangements and trans‐splicing. Trinity [123], Oases 
[124], Rnnotator [119] and Trans‐ABySS [120] are advised for this task. Whenever possible, 
a combined genome‐guided/de novo strategy is recommended, as enhanced performance is 
observed [125]. A comprehensive overview of transcriptome assembly can be found in Ref. 
[121]. Evaluation of the assembly quality and transcriptome completeness can be assessed 
with Detonate [126], TransRate [127] and BUSCO [128].

4.2.4. Visualization

Alignment output SAM files are hard to be interpreted with common text editors, and there‐
fore, a number of graphical browsers have been developed to inspect NGS sequencing data at 
any specific loci at nucleotide level. IGV [129], Tablet [130], Browser Genome [131] and UCSC 
[132] are extremely useful when validating novel transcripts and gene junctions, checking the 
coverage support for genomic variants and spot read piles, which may represent repetitive 
regions.

4.3. Downstream analyses

After conducting these general steps, the experiments can be directed to specific applications 
in order to address the scientific questions, designated as downstream analysis.

4.3.1. Quantification and differential expression

The primary goal of most RNA‐seq projects is to quantify and compare the gene expres‐
sion under different conditions and infer biological function to differential expression at gene 
or transcript level. Intra‐sample abundance comparisons were commonly performed with 
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Reads Per Kilobase per Million (RPKM mapped reads) or Fragments Per Kilobase per Million 
(FPKM mapped reads) metrics. Their principle is to count the amount of raw reads mapped to 
each genomic feature and normalize considering the gene length and library depth. Although 
still widely applied, these normalization metrics should be avoided as RPKM has shown to 
be inconsistent and Transcripts Per Million (TPM) is preferable [133]. Raw reads counting can 
be obtained with feature counts [134] and HTSeq‐count [135], which are capable of detecting 
multi‐mapping reads, exon junctions and overlapping reference features. NOISeq [136] can 
be used to assess the count quality parameters, such as saturation and specificity, in a set of 
comprehensive plots.

DESeq [137], DESeq2 [138] and edgeR [139] packages are recommended for between‐sample 
comparisons to detect differences in the relative abundances of genes [140]. Quantification 
at transcript level can be analyzed with Cufflinks [115] and RSEM [141] and compared with 
DESeq2, CuffDiff2 [142], BitSeq [143] or Ballgown [144]. Variations in expression between dif‐
ferent conditions are usually measured in log2 fold‐change units. DESeq2 can also perform 
pair‐wise and time series analysis.

Generally, a control set of housekeeping genes should present non‐differential expression and 
a high between replicates correlation (Spearman R2 ≥ 0.9) observable in Principal Component 
Analysis (PCA) plots [18]. For a set of 12 or less replicates, at gene level, edgeR or DESeq2 is 
recommended to detect differential expression and DESeq when more than 12 replicates are 
available [21]. Thresholds in log2 fold‐change should be applied to increase the true positive 
and decrease the false positive rates, but this parameter is highly dependent on the amount of 
biological replicates, varying from 0.1 to 0.5 [21].

Recently, quasi‐mapping (or pseudoalignment) approaches have been proposed for RNA‐
seq quantification, like Kallisto [145] and Salmon [146]. Their main difference is that reads 
are assigned to reference sequences without base‐to‐base alignment, making analyses usu‐
ally considerably faster. They have shown comparable performance over complete mapping‐
based methods, can incorporate information from multi‐mapping reads, and provide counts 
and abundances already as normalized TPM values, which can be used as input for differen‐
tial expression analysis. These are promising although under development tools.

Although RNA‐seq provides a precise and accurate estimation of RNA abundance, these 
findings are still widely required to be further validated through quantitative PCR, also 
known as qPCR or real‐time PCR as it is still considered the gold standard for gene expres‐
sion quantification. However, it is still questionable whether qPCR validation is still necessary 
for RNA‐seq studies. High correlation between RNA‐seq and qPCR results has been observed 
in previous studies [7, 147, 148]. Due to this high consistency, qPCR may be more useful when 
performed on different biological replicate samples from those already sequenced, confirm‐
ing the DGE findings and validating the biological conclusions.

4.3.2. Annotation

In computational biology, annotation is the process of identifying the location and sequence of 
genomic elements and/or assigning biological function to them. Despite the annotation process 
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coverage support for genomic variants and spot read piles, which may represent repetitive 
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After conducting these general steps, the experiments can be directed to specific applications 
in order to address the scientific questions, designated as downstream analysis.

4.3.1. Quantification and differential expression

The primary goal of most RNA‐seq projects is to quantify and compare the gene expres‐
sion under different conditions and infer biological function to differential expression at gene 
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Analysis (PCA) plots [18]. For a set of 12 or less replicates, at gene level, edgeR or DESeq2 is 
recommended to detect differential expression and DESeq when more than 12 replicates are 
available [21]. Thresholds in log2 fold‐change should be applied to increase the true positive 
and decrease the false positive rates, but this parameter is highly dependent on the amount of 
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Recently, quasi‐mapping (or pseudoalignment) approaches have been proposed for RNA‐
seq quantification, like Kallisto [145] and Salmon [146]. Their main difference is that reads 
are assigned to reference sequences without base‐to‐base alignment, making analyses usu‐
ally considerably faster. They have shown comparable performance over complete mapping‐
based methods, can incorporate information from multi‐mapping reads, and provide counts 
and abundances already as normalized TPM values, which can be used as input for differen‐
tial expression analysis. These are promising although under development tools.

Although RNA‐seq provides a precise and accurate estimation of RNA abundance, these 
findings are still widely required to be further validated through quantitative PCR, also 
known as qPCR or real‐time PCR as it is still considered the gold standard for gene expres‐
sion quantification. However, it is still questionable whether qPCR validation is still necessary 
for RNA‐seq studies. High correlation between RNA‐seq and qPCR results has been observed 
in previous studies [7, 147, 148]. Due to this high consistency, qPCR may be more useful when 
performed on different biological replicate samples from those already sequenced, confirm‐
ing the DGE findings and validating the biological conclusions.

4.3.2. Annotation

In computational biology, annotation is the process of identifying the location and sequence of 
genomic elements and/or assigning biological function to them. Despite the annotation process 
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being mostly carried over genomic sequences, such as newly sequenced genomes, RNA‐seq 
data can provide valuable information to improve existing annotations [149] or create novel 
transcript annotations for an unsequenced organism [123].

The major drawback of using genome sequences for annotation is that only features with pat‐
terns or conservation with annotated elements, such as open reading frames (ORFs), tRNAs 
and rRNAs can be inferred from it. On the other hand, RNA‐seq data provide a new layer 
of information that allows precise identification of pattern less features such as untranslated 
regions (UTRs), non‐coding RNAs and post‐transcriptional events. Even though some features 
can be somewhat inferred through DNA sequences, for example, Transcription Start Site (TSS), 
TATA box/CpG islands and splicing sites, transcriptomic data still provide a more reliable 
annotation.

Transcriptome assembly, de novo or reference‐guided, often reveals new potential transcripts 
whose functions are unknown. Before any further step can be made, it is crucial to gather 
information on these transcripts function in order to extract any meaningful answer.

The most common approach to annotate a transcript is to look for similar known transcripts 
or protein sequences in large databases. This is usually done using versatile tools like BLAST/
BLASTX [150, 151] or DIAMOND [152] when looking for similar nucleotide or protein sequences. 
It is often better to perform searches at protein level since it is easier to find homology, as they 
tend to be more conserved than nucleotide sequences, especially if the study subject has no close 
species sequenced.

InterProScan [153] can be used to search for conserved protein signatures. This is especially 
useful when it is difficult to find full sequence homologs given that the study organism might 
be too divergent from species sequences available in the database. Protein families often 
present signature domains that are well conserved even among divergent species, so these 
signatures can give insights into the putative function of the protein. The process for anno‐
tating non‐coding transcripts differs from protein coding transcripts. They usually present 
poor sequence conservation since their function relies on factors, such as secondary structure, 
rather than amino acid sequences. Therefore, their annotation process requires specialized 
software to detect those intrinsic characteristics of a given class of non‐coding transcripts, for 
example, tRNAscan‐SE [154] for tRNAs and RNAmmer [155] for rRNAs.

Given the importance of annotation, there are plenty of tools and pipelines developed to 
streamline this process. Some annotation tools like Blast2GO [156] are generic and very user‐
friendly, although it requires a paid license to use it. Others like Annocript [157], TRAPID 
[158] and Trinotate [159] are pipelines developed specifically for annotating transcriptomes. 
It is important to note that although automatic pipelines often ease and speed up the analysis, 
it comes at a cost of lesser control of the annotation process.

4.3.3. Enrichment analysis

Functional enrichment analysis is a computational method capable of determining whether a 
pre‐defined set of genes shows significant differences between samples. The GSEA software 
from Broad Institute runs the original GSEA algorithm [160]. Although alternative algorithms 
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have been published since then, the original algorithm is still the most widely used. In order 
to perform an enrichment analysis from RNA‐Seq data, the GSEAPreranked software is rec‐
ommended and it requires two types of data: a gene set list and a ranked list.

A gene set is a set of genes related to the feature to be tested for enrichment. A variety of fea‐
tures can be tested from general features such as pathways and chromosome location, to more 
specific features such as cancer signatures or miRNAs targets. Gene sets can be obtained from 
the Molecular Signatures Database (MSigDB) that comprehends thousands of pre‐defined 
gene sets, or it can be created by the user.

A ranked list of the genes needs to be provided to test if the chosen gene set is significantly 
enriched at either end of the ranking. The list can be ranked according to any quantitative 
feature such as gene expression or fold‐change results from DGE analysis.

4.3.4. Alternative splicing

Alternative splicing (AS) is a post‐transcriptional mechanism present in the majority of 
eukaryotes that greatly increases the diversity of proteins that can be encoded by a deter‐
mined genome. This process occurs when particular regions of a gene are included or 
excluded, through splicing, from the final processed mRNA sequence. AS can occur in sev‐
eral ways, such as exon skipping, intron retention, alternative 5′ donor and 3′ receptor sites 
[161, 162], analysis of new AS events or patterns is relevant since many traits, especially 
genetic diseases such as cancers, are related with disorders in splicing patterns that generates 
aberrant variants [162, 163].

AS analysis by deep sequencing requires splice‐aware programs capable of aligning tran‐
scripts reads to a reference genome while performing the difficult task of placing spliced 
reads across introns by determining the exon‐intron boundaries. A systematic evaluation 
of splice‐aware alignment programs for RNA‐seq data performed by the RNA‐seq Genome 
Annotation Assessment Project (RGASP) Consortium [109] tested 26 RNA‐seq alignment pro‐
tocols and concluded that, in general, GSNAP [164], MapSplice [165] and STAR [106] com‐
pared favorably to other methods. Still, two of this software (GSNAP and STAR) presented 
many false exons junctions in the output if they were not filtered based on the number of 
supporting alignments.

Following the alignment step, software like cufflinks [115], scripture [116] and StringTie [117] can 
be used to perform transcript reconstruction, which can reveal new splicing isoforms evidenced 
by the alignments. This step usually yields an updated GTF annotation file as output that can be 
used in subsequent steps.

If data from different conditions are available, differential AS analysis can be performed. With 
the alignment results (SAM file) and a GTF annotation file at hand, differential exon usage 
analysis can be performed with DEXSeq [166] and differential analysis of AS events, such as 
skipped exon, alternative 5′ and 3′ splice site, mutually exclusive exons, and retained intron 
events can be performed with rMATS [167]. There are plenty of other software specialized in 
performing differential AS analysis each one with their advantages and disadvantages, such 
as CuffDiff [115], Ballgown [144], SpliceR [168], MISO [169] and DiffSplice [170].
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many false exons junctions in the output if they were not filtered based on the number of 
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be used to perform transcript reconstruction, which can reveal new splicing isoforms evidenced 
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used in subsequent steps.

If data from different conditions are available, differential AS analysis can be performed. With 
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4.3.5. Fusion genes

Fusion genes or chimeras are aberrant alterations commonly found in tumor cells [171] that 
can be useful biomarkers or therapeutic targets [172]. They may originate from chromosomal 
rearrangements, insertions, deletions and inversions or even by trans‐splicing events. The 
increasing throughput and reads length from NGS technologies have facilitated their detec‐
tion and supported the development of several bioinformatic tools [173]. For fusion detection, 
most and more accurate methods rely on good quality read alignments supporting discordant 
mappings (read segments aligning to different genes) and both single‐ or paired‐end sequenc‐
ing, although paired data increase the probability of fusion detection [174]. A recent evalua‐
tion defined SOAPfuse [175], FusionCatcher [176] and JAFFA [177] the best tools among 18 
options for real and simulated data, and their combination has shown increased performance, 
albeit high false‐positive rates are still a reality in this field, with space for improvements [178].

4.3.6. miRNA

MicroRNAs (miRNAs) are a subset of small non‐coding RNAs, usually 21–23 nt long that 
play a post‐transcriptional regulatory role in several pathogenic and developmental pro‐
cesses [179]. These molecules are part of an RNA‐induced silencing complex (RISC) contain‐
ing Dicer, Argonaute and many associated proteins that can cause enhanced decay/cleavage 
of mRNA target, elongation and ribosomal binding inhibition, thus acting at transcriptional 
and translational levels [180].

A common miRNA pipeline follows the same steps as the conventional RNA‐seq: (i) raw 
data must be preprocessed as previously described where adapters and low quality bases are 
trimmed with a minimum length filter (e.g., 18–21 nt for miRNAs), (ii) sequences are mapped 
to a reference (genome, RefSeq, miRBase) and raw counts are estimated, (iii) the raw count 
of mapped reads is normalized and (iv) downstream analysis is conducted to investigate 
biologically relevant questions. Due to its small nature, miRNA sequencing analysis has some 
caveats that require attention especially in steps (ii) and (iii).

The read mapping step is crucial for accurate miRNA abundance estimation, and there‐
fore, the alignment algorithm must be carefully selected and adjusted to deal with its small 
size. Although a wide range of software are available to perform this task, some aligners 
are designed and optimized for specific tasks (e.g., SNP calling, splicing detection, gapped 
alignment) that might not be appropriate for the task at hand [181]. Compared with conven‐
tional RNA‐seq, indels and splicing events are usually not relevant to miRNA alignment, and 
therefore, splice‐aware aligners are not required for this task. To these extent general purpose 
aligners such as BWA‐MEM, bowtie [182] and STAR [106] can be used. Most aligners default 
settings are set for conventional longer RNA‐seq reads, and since miRNAs are very short, 
aligners’ parameters should be tweaked. The default seed size for these aligners is longer than 
miRNA sizes and therefore should be set to a value that is at least shorter than the smallest 
read size. Given that sequencing errors might occur and the fact that many miRNAs often 
does not present an exact match with their target, it is recommended to allow at least one 
mismatch in the seeding and alignment process as well [183]. Also during the mapping step, it 
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is very common to find multi‐mapping reads since we are dealing with very small sequences. 
Similarly to conventional RNA‐seq, multi‐mapping reads are usually not taken into account 
for the abundance estimation, since it is impossible to know from where the read was origi‐
nated. As long as these aligners are properly set, they should yield similar results [181].

Please note that for the aforementioned pipeline, miRNA annotations or sequences are usu‐
ally required for raw counting estimation. If annotations are not available for the study subject 
or looking for novel miRNAs candidates, algorithms such as miRdeep2 [184], miReNA [185] 
and miRanalyzer [186] can be used to annotate novel canonical and non‐canonical miRNA.

After raw miRNAs abundances are estimated, a normalization step is required in order to 
remove bias of non‐biological origin (e.g., sequencing depth, sample handling, library prepa‐
ration). A good normalization technique should reduce those biases without generating noise, 
so that the remaining differences between samples are truly of biological origin. Previous 
comparative studies on normalization procedures for miRNA data resulted in conflicting 
results. A study from Garmire and Subramaniam [187] supported the use of quantile and 
Lowess normalization, while Tam et al. [181] and Dillies et al. [140] advocated for the use 
of Trimmed Mean of M (TMM) and Upper quartile (UQ) normalization. Nevertheless, the 
results from any of these methods and also DESeq2 normalization [138] method should be 
highly similar, while other normalization methods such as CPM, total count scaling and lin‐
ear regression should be avoided since they tend to present higher variance and bias [181]. 
Several R/Bioconductor packages can be used to normalize the data and also run differential 
expression, such as edgeR [139] (TMM and UQ), DESeq2 [138] (DESeq normalization) and 
limma [188] (quantile and cyclic loess).

After all these processing steps, the resulting miRNA estimation is ready to conduct down‐
stream analysis. This can be done with useful databases. Being the primary miRNA sequence 
repository, miRBase [189] contains several features that may help to investigate the roles for 
miRNAs of interest, such as annotations for a wide range of species, references links for stud‐
ies and deep sequencing evidence.

4.3.7. eQTL

Quantitative trait loci (QTLs) are genomic regions that contain sequence variants that can 
affect any given trait. Since genome‐wide association studies (GWAS) started [190], thousands 
of variants have been associated with complex traits and diseases. The process of assigning 
variants to a gene is relatively straightforward when variants are located in coding regions 
that can have a direct effect on a gene product; however, most variants are found in non‐cod‐
ing regions making difficult to identify the causal genes [191]. By integrating transcriptomic 
data, it is possible to identify causal genes for non‐coding variants that affect its expression. 
When the trait in question is gene expression, they are referred as expression quantitative 
trait loci (eQTLs) that, similarly to other QTLs, are sequence variants capable of affecting 
the expression level of one or more genes that will ultimately result in different phenotypes. 
eQTLs can be classified according to the location of the QTL itself and its targeted gene, and 
according to the mechanism that affects the expression [192].
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4.3.5. Fusion genes

Fusion genes or chimeras are aberrant alterations commonly found in tumor cells [171] that 
can be useful biomarkers or therapeutic targets [172]. They may originate from chromosomal 
rearrangements, insertions, deletions and inversions or even by trans‐splicing events. The 
increasing throughput and reads length from NGS technologies have facilitated their detec‐
tion and supported the development of several bioinformatic tools [173]. For fusion detection, 
most and more accurate methods rely on good quality read alignments supporting discordant 
mappings (read segments aligning to different genes) and both single‐ or paired‐end sequenc‐
ing, although paired data increase the probability of fusion detection [174]. A recent evalua‐
tion defined SOAPfuse [175], FusionCatcher [176] and JAFFA [177] the best tools among 18 
options for real and simulated data, and their combination has shown increased performance, 
albeit high false‐positive rates are still a reality in this field, with space for improvements [178].

4.3.6. miRNA
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cesses [179]. These molecules are part of an RNA‐induced silencing complex (RISC) contain‐
ing Dicer, Argonaute and many associated proteins that can cause enhanced decay/cleavage 
of mRNA target, elongation and ribosomal binding inhibition, thus acting at transcriptional 
and translational levels [180].

A common miRNA pipeline follows the same steps as the conventional RNA‐seq: (i) raw 
data must be preprocessed as previously described where adapters and low quality bases are 
trimmed with a minimum length filter (e.g., 18–21 nt for miRNAs), (ii) sequences are mapped 
to a reference (genome, RefSeq, miRBase) and raw counts are estimated, (iii) the raw count 
of mapped reads is normalized and (iv) downstream analysis is conducted to investigate 
biologically relevant questions. Due to its small nature, miRNA sequencing analysis has some 
caveats that require attention especially in steps (ii) and (iii).

The read mapping step is crucial for accurate miRNA abundance estimation, and there‐
fore, the alignment algorithm must be carefully selected and adjusted to deal with its small 
size. Although a wide range of software are available to perform this task, some aligners 
are designed and optimized for specific tasks (e.g., SNP calling, splicing detection, gapped 
alignment) that might not be appropriate for the task at hand [181]. Compared with conven‐
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therefore, splice‐aware aligners are not required for this task. To these extent general purpose 
aligners such as BWA‐MEM, bowtie [182] and STAR [106] can be used. Most aligners default 
settings are set for conventional longer RNA‐seq reads, and since miRNAs are very short, 
aligners’ parameters should be tweaked. The default seed size for these aligners is longer than 
miRNA sizes and therefore should be set to a value that is at least shorter than the smallest 
read size. Given that sequencing errors might occur and the fact that many miRNAs often 
does not present an exact match with their target, it is recommended to allow at least one 
mismatch in the seeding and alignment process as well [183]. Also during the mapping step, it 
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is very common to find multi‐mapping reads since we are dealing with very small sequences. 
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Lowess normalization, while Tam et al. [181] and Dillies et al. [140] advocated for the use 
of Trimmed Mean of M (TMM) and Upper quartile (UQ) normalization. Nevertheless, the 
results from any of these methods and also DESeq2 normalization [138] method should be 
highly similar, while other normalization methods such as CPM, total count scaling and lin‐
ear regression should be avoided since they tend to present higher variance and bias [181]. 
Several R/Bioconductor packages can be used to normalize the data and also run differential 
expression, such as edgeR [139] (TMM and UQ), DESeq2 [138] (DESeq normalization) and 
limma [188] (quantile and cyclic loess).

After all these processing steps, the resulting miRNA estimation is ready to conduct down‐
stream analysis. This can be done with useful databases. Being the primary miRNA sequence 
repository, miRBase [189] contains several features that may help to investigate the roles for 
miRNAs of interest, such as annotations for a wide range of species, references links for stud‐
ies and deep sequencing evidence.

4.3.7. eQTL

Quantitative trait loci (QTLs) are genomic regions that contain sequence variants that can 
affect any given trait. Since genome‐wide association studies (GWAS) started [190], thousands 
of variants have been associated with complex traits and diseases. The process of assigning 
variants to a gene is relatively straightforward when variants are located in coding regions 
that can have a direct effect on a gene product; however, most variants are found in non‐cod‐
ing regions making difficult to identify the causal genes [191]. By integrating transcriptomic 
data, it is possible to identify causal genes for non‐coding variants that affect its expression. 
When the trait in question is gene expression, they are referred as expression quantitative 
trait loci (eQTLs) that, similarly to other QTLs, are sequence variants capable of affecting 
the expression level of one or more genes that will ultimately result in different phenotypes. 
eQTLs can be classified according to the location of the QTL itself and its targeted gene, and 
according to the mechanism that affects the expression [192].
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Regarding the eQTL‐Gene position, when they are located close to the genes, they influence 
they are called local eQTLs. Local eQTLs can affect a gene in two ways: in cis (cis‐eQTL) 
when the variant affects only the gene that is located on the same chromosome and not 
affecting the copy of the homologous chromosome, thus causing an allelic imbalance; and in 
trans (trans‐eQTL) when the eQTLs do not affect the target expression directly, but instead 
affect an intermediate factor that will ultimately affect its target expression. Since the inter‐
mediate factor acts equally for both alleles, it does not cause allelic imbalance. On the other 
hand, eQTLs located further away from their target genes are referred as distant eQTLs, 
usually act in trans and are harder to find [192]. Several eQTL‐mapping studies published in 
the past few years showed that many variants often affect gene expression levels of nearby 
and distant genes [193–197] highlighting the importance of integrating transcriptomic and 
genomic data.

Despite the mapping process for eQTL analysis being conceptually simple, since this anal‐
ysis is dealing with allelic specific expression, some caution is required during its counting 
estimation. For the aligning process, general purpose aligners or variant aware aligners 
such as GSNAP [164] can be used. After the alignment, some steps are recommended for 
retrieving allelic‐specific counts, such as removing duplicate reads that may arise from 
PCR artifacts. However, it is important that the choice for discarding a duplicate read 
is not done by mapping score as this might bias toward the reference allele [198]. Also, 
mapping bias should be controlled by filtering sites with likely bias [199]. Some tools like 
ASEReadCounter from GATK for allelic‐specific expression implement these filters by 
default [200].

The GTEx portal is a valuable resource to study human gene expression and regulation 
related to genetic variation. It hosts data from several eQTL studies and much information on 
laboratory and analysis methods for eQTL [201].

5. Concluding remarks

In the past few years, recent advances in sequencing technologies allowed the cost‐efficient 
generation of an unprecedented amount of biological information. Similarly, RNA‐seq tech‐
niques are under continuous improvements allowing wide range applications and develop‐
ment of high level resolution experiments such as those based on the emergent single‐cell 
RNA sequencing (scRNA‐seq) field. To couple with this ever increasing data, several tools 
and pipelines have been constantly developed. The bioinformatics field changes in an 
astonishing pace, in a way that it is almost impossible to keep up with all the new tenden‐
cies, the overwhelming amount of available software and the controversial opinions in the 
scientific community. For some aspects, it is difficult to find a consensus on the best pipeline 
to be applied. This chapter goal was to guide RNA‐seq users through its complex steps, 
providing a brief overview of the complete workflow, highlighting accessible protocols and 
currently available tools, most of which correlated with supporting benchmark studies.
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trans (trans‐eQTL) when the eQTLs do not affect the target expression directly, but instead 
affect an intermediate factor that will ultimately affect its target expression. Since the inter‐
mediate factor acts equally for both alleles, it does not cause allelic imbalance. On the other 
hand, eQTLs located further away from their target genes are referred as distant eQTLs, 
usually act in trans and are harder to find [192]. Several eQTL‐mapping studies published in 
the past few years showed that many variants often affect gene expression levels of nearby 
and distant genes [193–197] highlighting the importance of integrating transcriptomic and 
genomic data.

Despite the mapping process for eQTL analysis being conceptually simple, since this anal‐
ysis is dealing with allelic specific expression, some caution is required during its counting 
estimation. For the aligning process, general purpose aligners or variant aware aligners 
such as GSNAP [164] can be used. After the alignment, some steps are recommended for 
retrieving allelic‐specific counts, such as removing duplicate reads that may arise from 
PCR artifacts. However, it is important that the choice for discarding a duplicate read 
is not done by mapping score as this might bias toward the reference allele [198]. Also, 
mapping bias should be controlled by filtering sites with likely bias [199]. Some tools like 
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laboratory and analysis methods for eQTL [201].
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generation of an unprecedented amount of biological information. Similarly, RNA‐seq tech‐
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RNA sequencing (scRNA‐seq) field. To couple with this ever increasing data, several tools 
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astonishing pace, in a way that it is almost impossible to keep up with all the new tenden‐
cies, the overwhelming amount of available software and the controversial opinions in the 
scientific community. For some aspects, it is difficult to find a consensus on the best pipeline 
to be applied. This chapter goal was to guide RNA‐seq users through its complex steps, 
providing a brief overview of the complete workflow, highlighting accessible protocols and 
currently available tools, most of which correlated with supporting benchmark studies.
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Abstract

The rapid evolvement of sequencing technology has generated huge amounts of DNA/
RNA sequences, even with the continuous performance acceleration. Due to the wide 
variety of basic studies and applications derived from the huge number of species and 
the microorganism diversity, the targets to be sequenced are also expanding. The huge 
amounts of data generated by recently developed high-throughput sequencers have 
required highly efficient data analysis algorithms using recently developed high-per-
formance computers. We have developed a highly accurate and cost-effective mapping 
strategy that includes the exclusion of unreliable base calls and correction of the refer-
ence sequence through provisional mapping of RNA sequencing reads. The use of map-
ping software tools, such as HISAT and STAR, precisely aligned RNA-Seq reads to the 
genome of a filamentous fungus considering exon-intron boundaries. The accuracy of the 
expression analysis through the refinement of gene models was achieved by the results 
of mapped RNA-Seq reads in combination with ab initio gene finding tools using gen-
eralized hidden Markov models (GHMMs). Visualization of the mapping results greatly 
helps evaluate and improve the entire analysis in terms of both wet experiment and data 
processing. We believe that at least a portion of our approach is useful and applicable to 
the analysis of any microorganism.

Keywords: RNA sequencing, computational analysis, microorganisms, gene modeling, 
alternative splicing

1. Introduction

RNA sequencing (RNA-Seq) is currently one of the most powerful methods for the compre-
hensive analysis of the transcriptional expression of the entire genes of a particular organism. 
Due to recent extreme improvements in sequencing technology in terms of throughput and 
cost, large amounts of data have been accumulated, and the amount of data is increasing in 
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an accelerating manner. Multiplexing by so-called bar coding facilitates the flexible utilization 
of the high output capacity of sequencers for large numbers of samples without a significant 
increase in the overall sequencing cost. This technical improvement greatly contributes to the 
application of RNA-Seq to various microorganisms.

The purposes of using RNA-Seq are basically divided into two categories. One of these objec-
tives is counting the number of tags to analyze the intensity of gene expression, and the other 
is determining the transcript sequences for various purposes, such as annotating the genome 
of non-model organisms and analyzing splice variants.

In a typical RNA-Seq expression analysis, once sequence reads, which are generally 107–109 
reads with a length of 50–300 bases, are accumulated, they are mapped to the reference 
sequence, namely, a genome sequence corresponding to the organism that the RNA is pre-
pared from Refs. [1–3]. The mapping can be achieved using a sequence similarity search 
between the reads and the reference sequence with a general purpose computer. Although 
this procedure is highly suitable for current high-throughput computing (HTC) accelerated 
by parallel processing, the amount of sequence reads is too large to analyze the sequence 
similarity in a conventional manner, even using current high-throughput computers, due to 
the balance of costs between sequencing and data analysis. This issue is the most important 
when a large number of samples are obtained in a short period of time at low cost, which is 
often the case in research and development using microorganisms.

The DNA sequencers developed even with the most recent technologies cannot avoid errors 
in sequence reads. The RNA quality might be reduced by difficult sample preparation due 
to a small number of samples (cells) and low RNA extraction efficiency from cells grown 
under particular cultivation conditions. This effect might increase the sequence errors and 
reduce the amount of data obtained, further complicating the mapping. Although sample 
preparation might often be improved by finding better conditions and/or better methods 
for RNA preparation, optimization generally requires time and money. Thus, a bioinfor-
matics method with higher accuracy, higher efficiency, and lower cost is desired based 
on the balance of time and cost between wet experiments and computational analyses. 
Accuracy is the most important factor, which increases the motivation to improve the sam-
ple and computational analysis qualities, but the necessary quality of sequence reads is 
often unknown.

The sequencers currently available include those manufactured by Illumina [1], Life 
Technologies [2], Pacific Bioscience [4], and Oxford [5], and these have different speci-
fications in terms of the number of reads, read length, accuracy, and cost. The choice 
of platform depends on the purpose of the experiment. A search for genes that cause 
phenotypic differences under different culture conditions might require a search for dif-
ferentially expressed genes (DEGs) with high sensitivity among the conditions, and a 
sequencing platform that yields a higher number of reads rather than longer read lengths 
should be selected. In contrast, revealing the complete transcribed sequence of a gene of 
a higher eukaryote that has various isoforms would require a platform that outputs long 
sequences.

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health38

In addition to the various characteristics and output data formats, because sequencing tech-
nologies and their performance are continuously under development, it is also necessary to 
maintain current knowledge of the progress of the methods and software used for analysis. 
The important issue in such a fast-paced world is to not treat methods and software as com-
plete “black boxes” but to understand the type of information included in a file of a certain 
format and the statistical nature of the data being processed.

Nearly 10,000 complete microorganism genomes have been published to date according to 
GOLD [6], and the number is increasing in an accelerating manner. Therefore, a genome 
sequence used as a reference for a particular species of interest might be found in the data-
base. However, the strain to be analyzed is often not exactly the same. Sequence variations 
between strains cause serious problems in mapping, similar to the problem due to sequencing 
errors, as described above. Even if the reference and the experimental sample are from the 
same strain, the sequences might have variations due to multiple rounds of cultivation and/
or long-term storage without appropriate freezing conditions during the distribution process.

The quality of a reference sequence in terms of nucleotide assignment accuracy, length of con-
tigs or scaffolds, assembling reliability (artificial assembling rearrangement), and gene mod-
eling reliability also affects the reliability of RNA-Seq results. Nucleotide assignment errors 
cause issues similar to sequencing errors and the variation (mutation) problems described 
above. Low-quality reference sequences might cause problems when calculating the expres-
sion of each gene. One of the advantages of gene expression analysis by RNA-Seq is to obtain 
precise information regarding the location of the transcripts, e.g., an intron-exon boundary, 
without preparation of probes considering various possibilities in the case of DNA microar-
ray. This advantage is highly advantageous for the expression analysis of microorganisms for 
which no genomic information has been accumulated.

Although sequencing topics derived from sequencing platforms (chemistry, base calling 
method, hardware, etc.) and assembling are not addressed in this chapter, gene modeling, 
which defines CDSs (from coding DNA sequences), will be discussed because (i) RNA-Seq 
includes information that is important for correcting gene models and (ii) the calculation of 
expression levels from RNA-Seq depends on the gene model.

2. Factors affecting accuracy and efficiency

2.1. Quality control of sequence reads

If a reference sequence is available, a computational RNA-Seq analysis typically consists of 
mapping to the corresponding reference sequence and successive processes. The processes of 
removing unreliable reads and trimming unreliable segments of the reads are often applied 
without much consideration. Excluding bases with a lower quality score from the RNA-Seq 
reads improves the average quality score of the reads, which clearly improves the quality of 
the reads from the left to the right panel, as shown in Figure 1A. The upper panel of Figure 1B 
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shows a mapping result using unfiltered reads with the quality shown in the left panel of 
Figure 1A, indicating the presence of a significant number of bases mismatched to the refer-
ence sequence. However, using the reads in the right panel in Figure 1A, the mismatches 
are significantly decreased, as shown in the lower panel of Figure 1B. The filtering process 
requires only a relatively small calculation time but is thought to significantly improve reli-
ability, which solves various problems derived from mismatches between reads and the 
reference.

Williams et al. showed that in RNA-Seq experiments, read trimming prior to mapping might 
have a substantial effect on the estimation of the gene expression level [7]. Therefore, if trim-
ming is applied, extreme care should be taken, and other measures, such as length filtering, 
should be considered in the preprocessing pipeline to minimize the introduction of unwanted 

Figure 1. (A) Filtering of reads using quality values. The Escherichia coli genome was sequenced using a SOLiD 5500xl 
sequencer with a 50-bp read length and generated 5,869,272 reads. Quality score distribution of unfiltered (left) and 
filtered (right) reads visualized by FastQC (see Table 1 for reference). The average quality values for each sequence 
position are indicated by a thin curved line. The right panel was obtained by the application of bases with a quality 
value ≥ 20 for more than or equal to 95%. “N” is less than or equal to 1. The number of reads after filtering was reduced 
to 2,697,082. For each position, a Box-Whisker-type plot, in which the central red line, yellow box, upper and lower 
whiskers, and blue line represent the median value, interquartile range (25–75%), 10 and 90% points, and mean quality, 
respectively. The Y-axis on the graph shows the quality scores. A higher score reflects better base call. The background of 
the graph divides the Y-axis into high (Upper), moderate (Center), and poor (Lower) quality calls. (B) Effect of filtering 
sequence reads. The sequence reads obtained before and after filtering, as indicated in A, were mapped to the reference 
genome and visualized. Mismatches are indicated by black circles.
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Name Category Brief description1 Ref. Link

FastQC Quality control 
for raw reads

Providing a QC report to spot 
problems which originate either in 
the sequencer or in the starting library 
material.

https://www.bioinformatics.
babraham.ac.uk/projects/
fastqc/

Sickle Reads trimming Detection and trimming low quality 
region from all reads using sliding 
window.

https://github.com/najoshi/
sickle

Cut adapt Reads trimming Searching for and removing adapters 
in all reads.

http://cutadapt.readthedocs.
io/en/stable/index.html

BWA Mapping Mapping reads against a large 
reference genome sequence.

http://bio-bwa.sourceforge.
net/

TopHat2 Mapping A splice junction mapper for RNA-Seq 
reads.

[12] https://ccb.jhu.edu/software/
tophat/index.shtml

HISAT2 Mapping A spliced alignment program, a 
successor to TopHat2.

[13] http://www.ccb.jhu.edu/
software/hisat/index.shtml

STAR Mapping Spliced transcripts alignment to a 
reference.

[14] https://github.com/alexdobin/
STAR

Cufflinks Transcripto me 
assembly, etc.2

Assembling of transcripts, estimation 
of their abundances, and testing for 
differential expression and regulation 
in RNA-Seq samples.

[30] http://cole-trapnell-lab.github.
io/cufflinks/

Kallisto Quantificati 
on of gene 
expression

Quantification of abundances of 
transcripts from RNA-Seq data 
based on the novel idea of pseudo-
alignment for rapidly determining the 
compatibility of reads with targets, 
without the need for alignment.

[16] https://pachterlab.github.io/
kallisto/

Salmon Quantificati 
on of gene 
expression

Quantification of the expression of 
transcripts using RNA-seq data using 
new algorithms (quasi-mapping) to 
provide accurate expression estimates 
with high throughput and little 
memory.

[17] https://combine-lab.github.io/
salmon/

VarScan2 Variant call A mutation caller for targeted, exome, 
and whole-genome resequencing data.

[11] http://dkoboldt.github.io/
varscan/

AUGUSTUS Gene finding Prediction of genes in eukaryotic 
genomic sequences using extrinsic 
information as hints on the gene 
structure.

[18] http://bioinf.uni-greifswald.
de/augustus/

BRAKER1 Gene finding A pipeline for unsupervised RNA-Seq- 
based genome annotation.

[19] http://exon. gatech.edu/
braker1.html

CodingQuarry Gene finding A self-training gene predicting tool 
dedicated to fungal genome working 
with assembled, aligned RNA-seq 
transcripts.

[20] https://sourceforge.net/
projects/codingquarry/

Tablet Genome viewer A graphical viewer for next generation 
sequence assemblies and alignments.

[36] https://ics.hutton.ac.uk/tablet/
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shows a mapping result using unfiltered reads with the quality shown in the left panel of 
Figure 1A, indicating the presence of a significant number of bases mismatched to the refer-
ence sequence. However, using the reads in the right panel in Figure 1A, the mismatches 
are significantly decreased, as shown in the lower panel of Figure 1B. The filtering process 
requires only a relatively small calculation time but is thought to significantly improve reli-
ability, which solves various problems derived from mismatches between reads and the 
reference.

Williams et al. showed that in RNA-Seq experiments, read trimming prior to mapping might 
have a substantial effect on the estimation of the gene expression level [7]. Therefore, if trim-
ming is applied, extreme care should be taken, and other measures, such as length filtering, 
should be considered in the preprocessing pipeline to minimize the introduction of unwanted 

Figure 1. (A) Filtering of reads using quality values. The Escherichia coli genome was sequenced using a SOLiD 5500xl 
sequencer with a 50-bp read length and generated 5,869,272 reads. Quality score distribution of unfiltered (left) and 
filtered (right) reads visualized by FastQC (see Table 1 for reference). The average quality values for each sequence 
position are indicated by a thin curved line. The right panel was obtained by the application of bases with a quality 
value ≥ 20 for more than or equal to 95%. “N” is less than or equal to 1. The number of reads after filtering was reduced 
to 2,697,082. For each position, a Box-Whisker-type plot, in which the central red line, yellow box, upper and lower 
whiskers, and blue line represent the median value, interquartile range (25–75%), 10 and 90% points, and mean quality, 
respectively. The Y-axis on the graph shows the quality scores. A higher score reflects better base call. The background of 
the graph divides the Y-axis into high (Upper), moderate (Center), and poor (Lower) quality calls. (B) Effect of filtering 
sequence reads. The sequence reads obtained before and after filtering, as indicated in A, were mapped to the reference 
genome and visualized. Mismatches are indicated by black circles.
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bias. In our follow-up examination of the reads obtained using an Illumina MiSeq platform, 
we concluded that for relatively long sequencing reads, such as 100 or 150 bases, with low 
sequence errors, aggressive trimming of sequencing reads is generally no longer necessary 
for estimating the gene expression level. In the following section, we propose correction of 
the reference sequence using RNA-Seq reads in cases in which the genome sequence of the 
same strain used in the RNA-Seq experiment is not available to avoid mismatches between 
the RNA-Seq reads and the reference. The removal and trimming of unreliable sequences are 
necessary for this purpose.

2.2. Pipelines and peripheral tools

Figure 2A shows a typical pipeline for analyzing gene expression based on RNA-Seq 
reads. The pipeline effectively works for microorganisms, genome sequences, and gene 
models, which are reliable due to significant correction and curation by the efforts of a 
large number of researchers. Typical examples of such microorganism are Escherichia coli, 
Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Neurospora crassa, and 
Aspergillus nidulans, which are known as model organisms. Among microorganisms, fila-
mentous fungi generally have the largest genome sizes and introns in most existing genes 
and are thus thought to require a pipeline with the highest performance and various func-
tions for the analyses. Furthermore, filamentous fungi are potential producers of various 

Name Category Brief description1 Ref. Link

Artemis Genome viewer A genome browser and annotation 
tool that allows visualization of 
sequence features, next generation 
data.

[37] http://www.sanger.ac.uk/
science/tools/artemis

IGV Genome viewer Interactive exploration of genomic 
datasets supporting various data 
types, including array-based and 
next-generation sequence data, and 
genomic annotations.

[38, 
39]

http://software.broadinstitute.
org/software/igv/

CLC Genomics 
Workbench

Integrated 
solutions

Integrated package of software 
tools for genomic analysis and 
visualization supporting various data 
types, including array-based and 
next-generation sequence data, and 
genomic annotations.

https://www.
qiagenbioinformatics.
com/products/
clc-genomics-workbench

Genome 
Traveler

Integrated 
solutions

Integrated package of software 
tools for genomic analysis and 
visualization supporting various data 
types, including array-based and 
next-generation sequence data, and 
genomic annotations.

http://www.insilicobiology.j 
p/index.php?option=com_co 
ntent&view=article&id= 10 
7&Itemid=73&lang=en

1Functions related to the topics in this chapter are briefly summarized. Reading the references and/or accessing the web 
sites is required for details and other functions especially for the integrated package of software.
2Transcriptome assembly, quantification of gene expression and testing differential expression genes.

Table 1. Overview of software tools for transcriptome analysis.
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secondary metabolites, which are economically important and have a large number of 
highly diverse secondary metabolism-related genes. Thus, the genomes of filamentous 
fungi and actinomycetes remain attractive targets in this field. To effectively and accu-
rately analyze RNA-Seq reads from filamentous fungi without publicly available genomic 
information, we have developed several tools and introduced into the pipeline, as shown 
in Figure 2B.

RNA-Seq reads can be analyzed without their corresponding genome sequence as a refer-
ence through the de novo assembly of the reads. Long-read technologies, such as PacBio 
RS II (Pacific Bioscience) and MinION (Oxford Nanopore Technologies), should lead to bet-
ter results than sequencers that generate short reads using this approach. However, we do 
not include the de novo assembly of RNA-Seq reads in this chapter because sequencing the 
genome of a microorganism using next-generation sequencers, such as Illumina technology, 
is relatively inexpensive in terms of cost and time. For example, we have used the improved 
pipeline for the analysis of the genome sequences obtained from a short-read sequencer, 
SOLiD 500xl, in combination with the de novo assembly pipeline that the manufacturer 
developed for mate-paired sequences [8] with successive automatic annotation. Illumina and 
Life Technologies platforms, such as HiSeq/MiSeq/NextSeq and Ion Torrent/Ion PGM, respec-
tively, might also generate a reference genome sequence that is adequate for this purpose 
in an easy and cost-effective manner. Based on the assumption that the genome sequence is 

Figure 2. Example of the RNA-Seq analysis pipeline. (A) Typical simple pipeline. First, RNA-Seq reads are mapped to a 
reference sequence using a mapping tool such as TopHat. Next, tools such as Cufflinks count the number of reads mapped 
to each genomic feature and extract differentially expressed genes (DEGs). (B) Proposed pipeline for microorganisms 
whose reference sequence and gene models are not extensively corrected or curated. Fqpruner, GenRecon, SpliceSelect, 
and getRegion in the figure are in-house scripts. Fqpruner is a program written in C++ to trim the 3′-end of low-quality 
reads and has almost the same function as the combination of sickle (see Table 1 for reference) and Cutadapt [10]. 
GenRecon is a Perl script that outputs a consensus sequence based on output by the variant detect tool, VarScan [11]. 
SpliceSelect is a Perl script that integrates splice site positions from multiple TopHat output files. GetRegion is a Perl 
script that receives the BLAST results and outputs genomic regions to execute AUGUSTUS for the prediction of genes 
from genomic loci involving homologous genes with known amino acid sequences.
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bias. In our follow-up examination of the reads obtained using an Illumina MiSeq platform, 
we concluded that for relatively long sequencing reads, such as 100 or 150 bases, with low 
sequence errors, aggressive trimming of sequencing reads is generally no longer necessary 
for estimating the gene expression level. In the following section, we propose correction of 
the reference sequence using RNA-Seq reads in cases in which the genome sequence of the 
same strain used in the RNA-Seq experiment is not available to avoid mismatches between 
the RNA-Seq reads and the reference. The removal and trimming of unreliable sequences are 
necessary for this purpose.

2.2. Pipelines and peripheral tools

Figure 2A shows a typical pipeline for analyzing gene expression based on RNA-Seq 
reads. The pipeline effectively works for microorganisms, genome sequences, and gene 
models, which are reliable due to significant correction and curation by the efforts of a 
large number of researchers. Typical examples of such microorganism are Escherichia coli, 
Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Neurospora crassa, and 
Aspergillus nidulans, which are known as model organisms. Among microorganisms, fila-
mentous fungi generally have the largest genome sizes and introns in most existing genes 
and are thus thought to require a pipeline with the highest performance and various func-
tions for the analyses. Furthermore, filamentous fungi are potential producers of various 
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2Transcriptome assembly, quantification of gene expression and testing differential expression genes.

Table 1. Overview of software tools for transcriptome analysis.

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health42

secondary metabolites, which are economically important and have a large number of 
highly diverse secondary metabolism-related genes. Thus, the genomes of filamentous 
fungi and actinomycetes remain attractive targets in this field. To effectively and accu-
rately analyze RNA-Seq reads from filamentous fungi without publicly available genomic 
information, we have developed several tools and introduced into the pipeline, as shown 
in Figure 2B.

RNA-Seq reads can be analyzed without their corresponding genome sequence as a refer-
ence through the de novo assembly of the reads. Long-read technologies, such as PacBio 
RS II (Pacific Bioscience) and MinION (Oxford Nanopore Technologies), should lead to bet-
ter results than sequencers that generate short reads using this approach. However, we do 
not include the de novo assembly of RNA-Seq reads in this chapter because sequencing the 
genome of a microorganism using next-generation sequencers, such as Illumina technology, 
is relatively inexpensive in terms of cost and time. For example, we have used the improved 
pipeline for the analysis of the genome sequences obtained from a short-read sequencer, 
SOLiD 500xl, in combination with the de novo assembly pipeline that the manufacturer 
developed for mate-paired sequences [8] with successive automatic annotation. Illumina and 
Life Technologies platforms, such as HiSeq/MiSeq/NextSeq and Ion Torrent/Ion PGM, respec-
tively, might also generate a reference genome sequence that is adequate for this purpose 
in an easy and cost-effective manner. Based on the assumption that the genome sequence is 

Figure 2. Example of the RNA-Seq analysis pipeline. (A) Typical simple pipeline. First, RNA-Seq reads are mapped to a 
reference sequence using a mapping tool such as TopHat. Next, tools such as Cufflinks count the number of reads mapped 
to each genomic feature and extract differentially expressed genes (DEGs). (B) Proposed pipeline for microorganisms 
whose reference sequence and gene models are not extensively corrected or curated. Fqpruner, GenRecon, SpliceSelect, 
and getRegion in the figure are in-house scripts. Fqpruner is a program written in C++ to trim the 3′-end of low-quality 
reads and has almost the same function as the combination of sickle (see Table 1 for reference) and Cutadapt [10]. 
GenRecon is a Perl script that outputs a consensus sequence based on output by the variant detect tool, VarScan [11]. 
SpliceSelect is a Perl script that integrates splice site positions from multiple TopHat output files. GetRegion is a Perl 
script that receives the BLAST results and outputs genomic regions to execute AUGUSTUS for the prediction of genes 
from genomic loci involving homologous genes with known amino acid sequences.
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available as a reference for the microorganism, the strategy of mapping the transcriptome is 
not included in this chapter.

The sequencing platforms described above are widely used, and bioinformatics tools have 
been extensively developed for each platform. The characteristics of the errors depend on 
the sequencing platform, such as those manufactured by Illumina, Life Technologies, and 
Pacific Bioscience. The number of reads, read length, and data format also varies by plat-
form. Furthermore, more than one platform, such as a combination of Illumina and Pacific 
Bioscience or Life Technologies and Illumina [9], might be used, which also requires a specific 
methodology for obtaining reasonable results.

2.3. Basic mapping problems

The mapping of RNA-Seq reads to the reference genome has been a serious problem in RNA-
Seq analysis due to the extremely large data size (e.g., more than 500 Gb are obtained from a 
single run of HiSeq 2500) and sequence errors in both the RNA-Seq reads themselves and the 
reference. Most of the mapping tools search the nucleotide sequences with a similarity greater 
than a certain threshold value in the reference sequence for each RNA-Seq read. Multiple 
mapping algorithms are widely used to accurately identify the most homologous positions 
on the reference sequence. However, a shorter read length than the repetitive elements in the 
reference sequence and sequencing errors complicates the problem.

A typical RNA-Seq experiment consists of the sequencing of both ends of a cDNA fragment 
to generate two reads (a read pair) separated by a sequence of variable length. The accurate 
alignment of these read pairs is essential to the downstream analysis of an RNA-Seq experi-
ment, but RNA-Seq read alignment is challenging due to the noncontiguous nature of mRNA 
transcripts resulting from the existence of introns in eukaryotic genes. Recently developed 
mapping tools, such as TopHat [12], STAR [13], and HISAT [14], perform spliced alignment 
by considering an exon-intron boundary for the RNA-Seq reads. Software programs that sup-
port splice alignment use different strategies from several perspectives [15]. The method of 
determining the position on the reference sequence where a read is mapped can be roughly 
classified into two groups: exon first and seed and extend.

Exon-first methods, such as TopHat, utilize a two-step process. First, they map reads to 
the reference sequence without allowing large gaps. Subsequently, the unmapped reads 
are divided into short segments, and each is independently aligned to the reference 
sequence. The discontinued region on the genome where contiguous segments are mapped 
is treated as a candidate of two connected exons obtained by splice alignment. The exon-
first approach is the most effective in cases in which a majority of the reads can be mapped 
without gaps. If retrotransposed genes or pseudogenes originating from transcripts with 
multiple exons are present in the genome sequence, software that employs the exon-first 
approach might preferentially map the reads to the retrotransposed region. In seed-and-
extend methods, such as STAR, reads are divided into short seeds (k-mers), the positions 
where they are present in the genome are searched, and alignments are built and extended 
using this information.
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Seed-and-extend methods are generally considered more sensitive but slower than exon-first 
methods. However, with great efforts, excellent software programs using seed-and-extend or 
hybrid methods have been developed in recent years. Substantial effort has been spared, and 
software using the seed-and-extend method has become sufficiently fast. In a typical expres-
sion analysis of microorganisms using RNA-Seq, the computational processing time required 
for mapping reads to the reference genome sequence is no longer a major problem.

For transcript quantification, software such as Kallisto [16] and Salmon [17], which use newer 
algorithms that do not require the pre-mapping of reads to a reference sequence, has become 
increasingly faster. A very large-scale expression analysis with RNA-Seq could be performed 
using this type of software.

2.4. Mapping problems caused by mutation

Our analysis of RNA-Seq data from S. cerevisiae encountered another type of problem, which 
derived from the accumulation of mutations in the genome. Widely distributed strains, such 
as S. cerevisiae BY4741 and W303, can undergo a large number of mutations possibly during 
the distribution process due to relatively long-term storage without freezing and multiple 
rounds of inoculation and successive cultivation. The mutation frequency can be decreased 
by careful handling, such as decreasing the number of inoculation processes and avoiding 
stressful conditions. However, the introduction of mutations cannot be completely prevented 
due to spontaneous mutation, which is a natural characteristic of all organisms. The basic 
procedure for resolving this problem is to sequence the genome of the strain for which RNA-
Seq is performed. However, because the sequencing strategy, including sample preparation, 
for genome sequencing is different from that used for RNA-Seq and because of the cost- and 
time-saving requirements, RNA-Seq data sometime have to be analyzed using the reference 
sequence deposited in a public database. To overcome this problem without losing reliability, 
we have addressed the correction of the reference sequence using RNA-Seq reads based on 
two methods: (1) RNA-Seq reads are mapped to the reference sequence using the spliced 
mapper mentioned in the previous section, and the reference sequence is corrected using the 
consensus of the mapped reads. (2) The de novo transcriptome assembly of RNA-Seq reads 
is aligned to the reference genome. The former method was almost completely automatable 
and worked well for small variations, such as single-base substitution. With the latter method, 
it was necessary to process a number of isoform candidates at the same loci of the reference 
genome outputted by the transcriptome assembler, which required time and effort to tune the 
various parameters and threshold values. Unless the genome has undergone a complicated 
structural change from the reference sequence, the former method is sufficient. After correct-
ing the reference sequence, the reads were again mapped to the corrected reference sequence. 
This strategy worked fairly well.

2.5. Gene finding using RNA-Seq

Typical examples of the gene modeling problem are found by analyzing filamentous fungi. 
Industrially important fungi are often isolated due to their production of useful secondary 

Practical Data Processing Approach for RNA Sequencing of Microorganisms
http://dx.doi.org/10.5772/intechopen.69157

45



available as a reference for the microorganism, the strategy of mapping the transcriptome is 
not included in this chapter.

The sequencing platforms described above are widely used, and bioinformatics tools have 
been extensively developed for each platform. The characteristics of the errors depend on 
the sequencing platform, such as those manufactured by Illumina, Life Technologies, and 
Pacific Bioscience. The number of reads, read length, and data format also varies by plat-
form. Furthermore, more than one platform, such as a combination of Illumina and Pacific 
Bioscience or Life Technologies and Illumina [9], might be used, which also requires a specific 
methodology for obtaining reasonable results.

2.3. Basic mapping problems

The mapping of RNA-Seq reads to the reference genome has been a serious problem in RNA-
Seq analysis due to the extremely large data size (e.g., more than 500 Gb are obtained from a 
single run of HiSeq 2500) and sequence errors in both the RNA-Seq reads themselves and the 
reference. Most of the mapping tools search the nucleotide sequences with a similarity greater 
than a certain threshold value in the reference sequence for each RNA-Seq read. Multiple 
mapping algorithms are widely used to accurately identify the most homologous positions 
on the reference sequence. However, a shorter read length than the repetitive elements in the 
reference sequence and sequencing errors complicates the problem.

A typical RNA-Seq experiment consists of the sequencing of both ends of a cDNA fragment 
to generate two reads (a read pair) separated by a sequence of variable length. The accurate 
alignment of these read pairs is essential to the downstream analysis of an RNA-Seq experi-
ment, but RNA-Seq read alignment is challenging due to the noncontiguous nature of mRNA 
transcripts resulting from the existence of introns in eukaryotic genes. Recently developed 
mapping tools, such as TopHat [12], STAR [13], and HISAT [14], perform spliced alignment 
by considering an exon-intron boundary for the RNA-Seq reads. Software programs that sup-
port splice alignment use different strategies from several perspectives [15]. The method of 
determining the position on the reference sequence where a read is mapped can be roughly 
classified into two groups: exon first and seed and extend.

Exon-first methods, such as TopHat, utilize a two-step process. First, they map reads to 
the reference sequence without allowing large gaps. Subsequently, the unmapped reads 
are divided into short segments, and each is independently aligned to the reference 
sequence. The discontinued region on the genome where contiguous segments are mapped 
is treated as a candidate of two connected exons obtained by splice alignment. The exon-
first approach is the most effective in cases in which a majority of the reads can be mapped 
without gaps. If retrotransposed genes or pseudogenes originating from transcripts with 
multiple exons are present in the genome sequence, software that employs the exon-first 
approach might preferentially map the reads to the retrotransposed region. In seed-and-
extend methods, such as STAR, reads are divided into short seeds (k-mers), the positions 
where they are present in the genome are searched, and alignments are built and extended 
using this information.
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Seed-and-extend methods are generally considered more sensitive but slower than exon-first 
methods. However, with great efforts, excellent software programs using seed-and-extend or 
hybrid methods have been developed in recent years. Substantial effort has been spared, and 
software using the seed-and-extend method has become sufficiently fast. In a typical expres-
sion analysis of microorganisms using RNA-Seq, the computational processing time required 
for mapping reads to the reference genome sequence is no longer a major problem.

For transcript quantification, software such as Kallisto [16] and Salmon [17], which use newer 
algorithms that do not require the pre-mapping of reads to a reference sequence, has become 
increasingly faster. A very large-scale expression analysis with RNA-Seq could be performed 
using this type of software.

2.4. Mapping problems caused by mutation

Our analysis of RNA-Seq data from S. cerevisiae encountered another type of problem, which 
derived from the accumulation of mutations in the genome. Widely distributed strains, such 
as S. cerevisiae BY4741 and W303, can undergo a large number of mutations possibly during 
the distribution process due to relatively long-term storage without freezing and multiple 
rounds of inoculation and successive cultivation. The mutation frequency can be decreased 
by careful handling, such as decreasing the number of inoculation processes and avoiding 
stressful conditions. However, the introduction of mutations cannot be completely prevented 
due to spontaneous mutation, which is a natural characteristic of all organisms. The basic 
procedure for resolving this problem is to sequence the genome of the strain for which RNA-
Seq is performed. However, because the sequencing strategy, including sample preparation, 
for genome sequencing is different from that used for RNA-Seq and because of the cost- and 
time-saving requirements, RNA-Seq data sometime have to be analyzed using the reference 
sequence deposited in a public database. To overcome this problem without losing reliability, 
we have addressed the correction of the reference sequence using RNA-Seq reads based on 
two methods: (1) RNA-Seq reads are mapped to the reference sequence using the spliced 
mapper mentioned in the previous section, and the reference sequence is corrected using the 
consensus of the mapped reads. (2) The de novo transcriptome assembly of RNA-Seq reads 
is aligned to the reference genome. The former method was almost completely automatable 
and worked well for small variations, such as single-base substitution. With the latter method, 
it was necessary to process a number of isoform candidates at the same loci of the reference 
genome outputted by the transcriptome assembler, which required time and effort to tune the 
various parameters and threshold values. Unless the genome has undergone a complicated 
structural change from the reference sequence, the former method is sufficient. After correct-
ing the reference sequence, the reads were again mapped to the corrected reference sequence. 
This strategy worked fairly well.

2.5. Gene finding using RNA-Seq

Typical examples of the gene modeling problem are found by analyzing filamentous fungi. 
Industrially important fungi are often isolated due to their production of useful secondary 
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metabolites. Because their genomes are generally unknown, sequencing and successive gene 
modeling are indispensable but are performed by a limited number of researchers with a lim-
ited amount of knowledge. In such cases, RNA-Seq reads can be used to correct gene models 
prior to expression analysis to obtain accurate expression levels.

Several researchers have attempted to improve the accuracy of predicting protein-coding 
genes, and these attempts have included the use of RNA-Seq. AUGUSTUS is a gene prediction 
program that uses a generalized hidden Markov model (GHMM) [18], which is widely used 
for eukaryote genome sequencing projects. AUGUSTUS can incorporate hints of the gene 
structure from extrinsic sources. After RNA-Seq reads are mapped to the genome, spliced 
mapped reads can be used as valuable information for gene finding.

In recent years, gene prediction software using RNA-Seq for both model training and gene 
prediction with the trained model has been developed and has demonstrated high accuracy 
for gene structure prediction [19, 20]. The training of conventional gene finding depends on 
the gene models in the genomes of species other than the target one. However, the gene mod-
els of the species already deposited in public databases have not always been experimentally 
confirmed but are the results of predictions based on the results of other genomes. Thus, the 
use of the results of RNA-Seq read mapping, which provides direct information of the CDSs 
of the target species, in combination with recent gene finding algorithms, enables significant 
improvement in gene modeling.

We used an internally developed pipeline that performs training with RNA-Seq read map-
ping and ab initio gene prediction (Figure 2B). In this pipeline, exon-intron boundary infor-
mation is predicted using mapped RNA-Seq, and coding sequence candidates is obtained by 
homology searches between the genome sequence and protein sequence databases, such as 
the Swiss-Prot database. Subsequently, AUGUSTUS was trained using these pieces of infor-
mation, and all of the genes in the genome were predicted. This pipeline worked well for gene 
prediction of non-model organisms and has been used for the genome analysis of various fila-
mentous fungi. The improvements in the predicted gene structures are thought to contribute 
to more accurate RNA-Seq expression quantification as transcript references.

In the case of bacteria, which do not have poly-A tails, the degradation of ribosomal RNA 
is required for the extraction of mRNA. Because the degradation will not be complete, the 
ribosomal RNA sequences have to be removed after sequencing by searching the consensus 
sequence in the reads. Another problem is that bacterial genes are sometimes overlapped on 
the genome and might be transcribed even in different orientations. This can be problematic 
for identifying CDSs based on the RNA-Seq mapping results. To solve this problem, strand-
specific RNA-Seq has the advantage of obtaining useful information for gene modeling. 
However, because bacterial mRNA does not have poly-A tails, as described above, prepara-
tion of a strand-specific library is more difficult than the preparation of eukaryotic mRNA. A 
strand-specific library for bacteria can be prepared basically by two methods [21]: (i) adapter 
ligation to the first strand synthesized in the cDNA preparation [22] and (ii) chemical modifi-
cation of RNA or the second strand of the cDNA [23–25].

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health46

2.6. Quantification of gene expression and identification of differentially expressed genes

Expression analysis with RNA-Seq typically begins by counting the number of reads mapped 
to reference transcript sequences. We can resolve the various mapping problems mentioned 
above and perform mapping to the genome with accurately predicted gene structures or 
assembled transcript sequences using transcriptome assembly software.

Microarrays are widely used for the quantification of the abundance of mRNAs correspond-
ing to genes. In microarray experiments, the gene expression level is measured as a continuous 
value, intensity. RNA-Seq differs from microarrays in that it addresses nonnegative discrete 
values, i.e., the number of reads mapped to the gene, in order to measure the expression of 
a gene. Analytical methods for microarray data that assume a Gaussian distribution, such 
as linear discriminant analysis, might not perform as well for RNA-Seq data with a discrete 
distribution.

Let us consider the problem of quantifying gene expression levels using discrete RNA-Seq 
data and a related problem, namely, the identification of differentially expressed genes 
(DEGs) between conditions. In RNA-Seq experiments, transcribed mRNA is fragmented into 
a certain length, cDNA is subsequently synthesized, and sequencing is performed. Thus, the 
total number of observed reads for a transcript is proportional to the number of expressed 
mRNAs for the transcript multiplied by the length of the transcript. To compensate for this 
bias, it is a common practice to divide the number of mapped reads by the transcript length. 
RPKM (Reads Per Kilobase transcript per Million mapped reads) is the most commonly used 
method for length and sample size normalization.

Unfortunately, this correction is not sufficient to test whether gene expression differs between 
conditions. Oshlack and Wakefield showed that the power of a t-test of the count data, regard-
less of whether it is divided by the length of the transcript, is proportional to the square root of 
the length of the transcript [26]. Therefore, for a given expression level, the test becomes more 
significant for longer transcripts.

Many methods have been developed for assessing differential expression from RNA-Seq data. 
Count data, such as the counts of mapped fragments of RNA-Seq data, are often modeled as a 
Poisson distribution. The Poisson distribution has equal mean and variance values, and DEGs 
can be identified by conducting a likelihood ratio test between conditions. Real RNA-Seq data 
often exhibits overdispersion. The count data measured via RNA-Seq often has a variance 
that is larger than the mean due to various biases and errors as well as length bias. A negative 
binomial distribution is widely used for modeling such cases. Several RNA-Seq data analysis 
software packages incorporating these models have been developed. Soneson and Delorenzi 
evaluated eleven software packages that implemented various methods to model count data 
for differential expression analyses of RNA-Seq data [27]. When designing experiments to 
analyze differential expressions using RNA-Seq, it is necessary to carefully consider the type 
of method used for DEG extraction and the amount of biological replications that are needed. 
Three replicates often give reproducible results in successive independent experiments in 
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metabolites. Because their genomes are generally unknown, sequencing and successive gene 
modeling are indispensable but are performed by a limited number of researchers with a lim-
ited amount of knowledge. In such cases, RNA-Seq reads can be used to correct gene models 
prior to expression analysis to obtain accurate expression levels.

Several researchers have attempted to improve the accuracy of predicting protein-coding 
genes, and these attempts have included the use of RNA-Seq. AUGUSTUS is a gene prediction 
program that uses a generalized hidden Markov model (GHMM) [18], which is widely used 
for eukaryote genome sequencing projects. AUGUSTUS can incorporate hints of the gene 
structure from extrinsic sources. After RNA-Seq reads are mapped to the genome, spliced 
mapped reads can be used as valuable information for gene finding.

In recent years, gene prediction software using RNA-Seq for both model training and gene 
prediction with the trained model has been developed and has demonstrated high accuracy 
for gene structure prediction [19, 20]. The training of conventional gene finding depends on 
the gene models in the genomes of species other than the target one. However, the gene mod-
els of the species already deposited in public databases have not always been experimentally 
confirmed but are the results of predictions based on the results of other genomes. Thus, the 
use of the results of RNA-Seq read mapping, which provides direct information of the CDSs 
of the target species, in combination with recent gene finding algorithms, enables significant 
improvement in gene modeling.

We used an internally developed pipeline that performs training with RNA-Seq read map-
ping and ab initio gene prediction (Figure 2B). In this pipeline, exon-intron boundary infor-
mation is predicted using mapped RNA-Seq, and coding sequence candidates is obtained by 
homology searches between the genome sequence and protein sequence databases, such as 
the Swiss-Prot database. Subsequently, AUGUSTUS was trained using these pieces of infor-
mation, and all of the genes in the genome were predicted. This pipeline worked well for gene 
prediction of non-model organisms and has been used for the genome analysis of various fila-
mentous fungi. The improvements in the predicted gene structures are thought to contribute 
to more accurate RNA-Seq expression quantification as transcript references.

In the case of bacteria, which do not have poly-A tails, the degradation of ribosomal RNA 
is required for the extraction of mRNA. Because the degradation will not be complete, the 
ribosomal RNA sequences have to be removed after sequencing by searching the consensus 
sequence in the reads. Another problem is that bacterial genes are sometimes overlapped on 
the genome and might be transcribed even in different orientations. This can be problematic 
for identifying CDSs based on the RNA-Seq mapping results. To solve this problem, strand-
specific RNA-Seq has the advantage of obtaining useful information for gene modeling. 
However, because bacterial mRNA does not have poly-A tails, as described above, prepara-
tion of a strand-specific library is more difficult than the preparation of eukaryotic mRNA. A 
strand-specific library for bacteria can be prepared basically by two methods [21]: (i) adapter 
ligation to the first strand synthesized in the cDNA preparation [22] and (ii) chemical modifi-
cation of RNA or the second strand of the cDNA [23–25].
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2.6. Quantification of gene expression and identification of differentially expressed genes

Expression analysis with RNA-Seq typically begins by counting the number of reads mapped 
to reference transcript sequences. We can resolve the various mapping problems mentioned 
above and perform mapping to the genome with accurately predicted gene structures or 
assembled transcript sequences using transcriptome assembly software.

Microarrays are widely used for the quantification of the abundance of mRNAs correspond-
ing to genes. In microarray experiments, the gene expression level is measured as a continuous 
value, intensity. RNA-Seq differs from microarrays in that it addresses nonnegative discrete 
values, i.e., the number of reads mapped to the gene, in order to measure the expression of 
a gene. Analytical methods for microarray data that assume a Gaussian distribution, such 
as linear discriminant analysis, might not perform as well for RNA-Seq data with a discrete 
distribution.

Let us consider the problem of quantifying gene expression levels using discrete RNA-Seq 
data and a related problem, namely, the identification of differentially expressed genes 
(DEGs) between conditions. In RNA-Seq experiments, transcribed mRNA is fragmented into 
a certain length, cDNA is subsequently synthesized, and sequencing is performed. Thus, the 
total number of observed reads for a transcript is proportional to the number of expressed 
mRNAs for the transcript multiplied by the length of the transcript. To compensate for this 
bias, it is a common practice to divide the number of mapped reads by the transcript length. 
RPKM (Reads Per Kilobase transcript per Million mapped reads) is the most commonly used 
method for length and sample size normalization.

Unfortunately, this correction is not sufficient to test whether gene expression differs between 
conditions. Oshlack and Wakefield showed that the power of a t-test of the count data, regard-
less of whether it is divided by the length of the transcript, is proportional to the square root of 
the length of the transcript [26]. Therefore, for a given expression level, the test becomes more 
significant for longer transcripts.

Many methods have been developed for assessing differential expression from RNA-Seq data. 
Count data, such as the counts of mapped fragments of RNA-Seq data, are often modeled as a 
Poisson distribution. The Poisson distribution has equal mean and variance values, and DEGs 
can be identified by conducting a likelihood ratio test between conditions. Real RNA-Seq data 
often exhibits overdispersion. The count data measured via RNA-Seq often has a variance 
that is larger than the mean due to various biases and errors as well as length bias. A negative 
binomial distribution is widely used for modeling such cases. Several RNA-Seq data analysis 
software packages incorporating these models have been developed. Soneson and Delorenzi 
evaluated eleven software packages that implemented various methods to model count data 
for differential expression analyses of RNA-Seq data [27]. When designing experiments to 
analyze differential expressions using RNA-Seq, it is necessary to carefully consider the type 
of method used for DEG extraction and the amount of biological replications that are needed. 
Three replicates often give reproducible results in successive independent experiments in 
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terms of the assignment of a gene(s) with the expression of interest, although a single experi-
ment often fails to yield reproducible results.

The comparison of the transcriptome for each condition often shows a large number of DEGs. 
Therefore, outlining the changes in the expression profile by extracting features common to 
genes whose expression intensity has changed is a common approach. Gene set enrichment 
analysis (GSEA) is a popular method for condensing information from gene expression pro-
files into a summary of pathways or functional groups. GSEA was developed for microarray 
data and can also be used for RNA-Seq data. However, most RNA-Seq data obtained so far 
have only small replicates, which enforces application of the gene-permuting GSEA method 
(or preranked GSEA), resulting in a great number of false positives due to the inter-gene cor-
relation in each gene set. Yoon et al. demonstrated that the incorporation of the absolute gene 
statistic in one-tailed GSEA considerably improves the false-positive control and the overall 
discriminatory ability of the gene-permuting GSEA methods for RNA-Seq data [28].

2.7. Alternative splicing

As shown recently, RNA-Seq also enables the detection of alternative slicing from various 
fungi and higher organisms, such as mammals and plants. Alternative splicing from RNA-
Seq can also be performed using bioinformatics software, such as GESS (graph-based exon-
skipping scanner) [29] and Cufflinks [30]. Both tools can detect isoforms of transcripts based 
on mapping information generated by TopHat using a graph-based method. The former out-
puts all isoforms detected in the GTS format and requires MISO [31] to calculate the RPKM 
values for each isoform, whereas the latter is able to calculate the values. These tools are 
widely used for the analysis of higher organisms, such as mammals and plants, but not fungi.

Splicing variants have been found in various fungi, including Aspergillus oryzae [32], 
Magnaporthe grisea [33], Cryptococcus neoformans [34], and Trichoderma longibrachiatum [35], 
by deep RNA-Seq despite their significantly lower frequency compared with that found in 
higher organisms. Alternative splicing might affect the calculation of the FPKM (Fragments 
Per Kilobase of exon per Million fragments mapped)/RPKM values; however, because of the 
relatively low frequency (less than 10% of the entire genes on a genome) and abundance 
of “intron retention” [35], the results might not be significant without specific measures. 
Isoforms might also be detected through an inaccurate mapping of RNA-Seq reads resulting 
from base call errors and incorrect exon-intron boundaries. Thus, the calculation of RPKM 
values for the entire CDSs could be performed, particularly for the initial analysis.

2.8. Visualization and evaluation of the analysis

Visualization of RNA-Seq results is useful and strongly recommended during the analysis 
process for a rapid evaluation of the reliability of the analysis. Typical views of the results, 
including mapping, models, and nucleotide sequences, are shown in Figure 3B using Genome 
Traveler/in silico Molecular Cloning (GT/IMC) available from in silico biology, Inc. Various 
software tools, such as Tablet [36], Artemis [37], Integrative Genome Viewer (IGV) [38, 39], 
and CLC Genomics Workbench, were developed by the James Hutton Institute, Sanger 
Institute, Broad Institute, and CLC Bio, respectively. Some of these tools are operating  system 

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health48

 specific, but the others are executable on multiple platforms, e.g., by using Java. Because recent 
sequencing platforms output huge amounts of data, the operating system should be 64 bits 
with a memory size of at least 16 Gbytes. Differently from de novo assembly for genome 
sequencing, mapping requires less memory and lower CPU performance. Introduction of a 
small-scale server equipped with eight CPUs and 32 Gbytes of memory might help reduce the 
required time with a relatively low cost. The sequencing quality can also be validated by the 
read lengths and their variation, particularly when the reads are trimmed based on the quality.

Figure 3A presents a schematic diagram of how RNA-Seq analysis is achieved in combination 
with visual evaluation. The read mapping and alignment are displayed as shown in Figure 3B 
and C. When the reads have sufficient quality for the subsequent analyses, they are aligned 
without a significant number of mismatches. The read lengths aligned to the reference might 
sometimes have large differences in length, even after using a platform of fixed read length, 
such as Illumina and SOLiD. This effect occurs due to the low-quality values of the nucleo-
tides at the end of a read sequence, which are removed by a trimming process, as discussed 
above. High-quality reads have nearly the maximum or indicated read length of the sequenc-
ing platform used. It is important that each read does not have the same starting and ending 
positions on the reference to confirm that excess PCR amplification, which often occurs when 
the RNA quality is low, was not applied.

Another important indicator of experimental quality is the depth of reads inside CDSs. High AT 
or GC proportions, such as 70% and greater, in a particular region might cause a lower depth 
of coverage depending on the sequencing platform due to insufficient amplification during 
emulsion PCR. The depth of the reads should be roughly the same throughout the entire CDS. 

Figure 3. Visualization of the results. The RNA-Seq reads of Aspergillus flavus NRRL3357 (NCBI BioProject Accession: 
PRJNA299060) were mapped to the corresponding reference genome sequence with annotations (http://genome.jgi.
doe.gov/pages/dynamicOrganismDownload.jsf?organism=Aspfl1) analyzed by the Joint Genome Institute (JGI) [41]. 
Genome Traveler (GT) from in silico biology is used to visualize the read mapping, gene models, and nucleotide 
sequences in a single window. (A) Schematic diagram of RNA-Seq analysis evaluation. (B) Mapping result using BWA 
(upper) and HISAT (lower). Each panel shows the depth of the RNA-Seq reads (top panel), a gene model (middle panel), 
and the nucleotide sequences of the mapped reads (bottom panel). The top of the middle panel shows termination 
codons in six frames with vertical lines and relatively long ORFs with solid rectangles. The bottom of the middle panel 
shows the predicted exons. The width of the bottom panel corresponds to the region indicated by brackets with triangles 
in the top and middle panels. (C) Magnified version of the regions indicated by the dotted rectangle in (B).
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terms of the assignment of a gene(s) with the expression of interest, although a single experi-
ment often fails to yield reproducible results.

The comparison of the transcriptome for each condition often shows a large number of DEGs. 
Therefore, outlining the changes in the expression profile by extracting features common to 
genes whose expression intensity has changed is a common approach. Gene set enrichment 
analysis (GSEA) is a popular method for condensing information from gene expression pro-
files into a summary of pathways or functional groups. GSEA was developed for microarray 
data and can also be used for RNA-Seq data. However, most RNA-Seq data obtained so far 
have only small replicates, which enforces application of the gene-permuting GSEA method 
(or preranked GSEA), resulting in a great number of false positives due to the inter-gene cor-
relation in each gene set. Yoon et al. demonstrated that the incorporation of the absolute gene 
statistic in one-tailed GSEA considerably improves the false-positive control and the overall 
discriminatory ability of the gene-permuting GSEA methods for RNA-Seq data [28].

2.7. Alternative splicing

As shown recently, RNA-Seq also enables the detection of alternative slicing from various 
fungi and higher organisms, such as mammals and plants. Alternative splicing from RNA-
Seq can also be performed using bioinformatics software, such as GESS (graph-based exon-
skipping scanner) [29] and Cufflinks [30]. Both tools can detect isoforms of transcripts based 
on mapping information generated by TopHat using a graph-based method. The former out-
puts all isoforms detected in the GTS format and requires MISO [31] to calculate the RPKM 
values for each isoform, whereas the latter is able to calculate the values. These tools are 
widely used for the analysis of higher organisms, such as mammals and plants, but not fungi.

Splicing variants have been found in various fungi, including Aspergillus oryzae [32], 
Magnaporthe grisea [33], Cryptococcus neoformans [34], and Trichoderma longibrachiatum [35], 
by deep RNA-Seq despite their significantly lower frequency compared with that found in 
higher organisms. Alternative splicing might affect the calculation of the FPKM (Fragments 
Per Kilobase of exon per Million fragments mapped)/RPKM values; however, because of the 
relatively low frequency (less than 10% of the entire genes on a genome) and abundance 
of “intron retention” [35], the results might not be significant without specific measures. 
Isoforms might also be detected through an inaccurate mapping of RNA-Seq reads resulting 
from base call errors and incorrect exon-intron boundaries. Thus, the calculation of RPKM 
values for the entire CDSs could be performed, particularly for the initial analysis.

2.8. Visualization and evaluation of the analysis

Visualization of RNA-Seq results is useful and strongly recommended during the analysis 
process for a rapid evaluation of the reliability of the analysis. Typical views of the results, 
including mapping, models, and nucleotide sequences, are shown in Figure 3B using Genome 
Traveler/in silico Molecular Cloning (GT/IMC) available from in silico biology, Inc. Various 
software tools, such as Tablet [36], Artemis [37], Integrative Genome Viewer (IGV) [38, 39], 
and CLC Genomics Workbench, were developed by the James Hutton Institute, Sanger 
Institute, Broad Institute, and CLC Bio, respectively. Some of these tools are operating  system 

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health48

 specific, but the others are executable on multiple platforms, e.g., by using Java. Because recent 
sequencing platforms output huge amounts of data, the operating system should be 64 bits 
with a memory size of at least 16 Gbytes. Differently from de novo assembly for genome 
sequencing, mapping requires less memory and lower CPU performance. Introduction of a 
small-scale server equipped with eight CPUs and 32 Gbytes of memory might help reduce the 
required time with a relatively low cost. The sequencing quality can also be validated by the 
read lengths and their variation, particularly when the reads are trimmed based on the quality.

Figure 3A presents a schematic diagram of how RNA-Seq analysis is achieved in combination 
with visual evaluation. The read mapping and alignment are displayed as shown in Figure 3B 
and C. When the reads have sufficient quality for the subsequent analyses, they are aligned 
without a significant number of mismatches. The read lengths aligned to the reference might 
sometimes have large differences in length, even after using a platform of fixed read length, 
such as Illumina and SOLiD. This effect occurs due to the low-quality values of the nucleo-
tides at the end of a read sequence, which are removed by a trimming process, as discussed 
above. High-quality reads have nearly the maximum or indicated read length of the sequenc-
ing platform used. It is important that each read does not have the same starting and ending 
positions on the reference to confirm that excess PCR amplification, which often occurs when 
the RNA quality is low, was not applied.

Another important indicator of experimental quality is the depth of reads inside CDSs. High AT 
or GC proportions, such as 70% and greater, in a particular region might cause a lower depth 
of coverage depending on the sequencing platform due to insufficient amplification during 
emulsion PCR. The depth of the reads should be roughly the same throughout the entire CDS. 

Figure 3. Visualization of the results. The RNA-Seq reads of Aspergillus flavus NRRL3357 (NCBI BioProject Accession: 
PRJNA299060) were mapped to the corresponding reference genome sequence with annotations (http://genome.jgi.
doe.gov/pages/dynamicOrganismDownload.jsf?organism=Aspfl1) analyzed by the Joint Genome Institute (JGI) [41]. 
Genome Traveler (GT) from in silico biology is used to visualize the read mapping, gene models, and nucleotide 
sequences in a single window. (A) Schematic diagram of RNA-Seq analysis evaluation. (B) Mapping result using BWA 
(upper) and HISAT (lower). Each panel shows the depth of the RNA-Seq reads (top panel), a gene model (middle panel), 
and the nucleotide sequences of the mapped reads (bottom panel). The top of the middle panel shows termination 
codons in six frames with vertical lines and relatively long ORFs with solid rectangles. The bottom of the middle panel 
shows the predicted exons. The width of the bottom panel corresponds to the region indicated by brackets with triangles 
in the top and middle panels. (C) Magnified version of the regions indicated by the dotted rectangle in (B).
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Deeper coverage at the 3′ end than at the 5′ end indicates low mRNA quality, probably due to 
partial degradation, when poly-A-tailed RNA capture is applied in the preparation process.

In the case of fungi, introns might not be clearly displayed by a simple mapping approach 
without considering the exon-intron boundary because of the short intron length (typically 
in the range of 5–100 nt), even when using short reads of 50 bp. The predicted CDS at the 
center of Figure 3B and C shows two short exons close to the 5′-end. Mapping by BWA [40], 
which does not consider the intron-exon boundary, aligned some reads to the intron, intro-
ducing mismatches (the upper panel of Figure 3B and C—(ii)). By referring to the mismatches 
between the reference and the consensus of the mapped reads, the location of the intron can 
be assumed to be the region where gray asterisks instead of red vertical bars are clustered 
at the top of the bottom panel. In contrast, read mapping using HISAT2 (the lower panel of 
Figure 3B and C—(iii)) and STAR (data not shown), both of which consider the intron-exon 
boundary, fairly accurately mapped the reads connecting two adjacent exons, introducing an 
intron between the exons.

The above CDS has another long intron-predicted upstream of the two short introns men-
tioned above, although this third intron might be too long for a gene from a filamentous fun-
gus. Furthermore, the depth of reads for the first exon is much lower than those for the second 
and third exons (Figure 3C—(i)). Considering the precipitous change in depths between the 
first and second exons and the almost even distribution of the depth in the first exon despite its 
large size, the large difference in depth is not thought to result from partial mRNA degrada-
tion. Consequently, it is believed that the first exon should be separated from the other exons, 
resulting in two CDSs. In agreement with this consideration, RNA-Seq reads are also mapped 
to the region of the long intron with a depth similar to that of the first exon (the upstream part 
of the two CDSs after division) after a short intron is detected by HISAT2 (data not shown).

2.9. Perspective

Recently developed long-read sequencers, such as PacBio RS II, PacBio Sequel, and Oxford 
Nanopore MinION, promise to deliver more complete genome assemblies with fewer gaps. 
Higher error rates, low yields per cost, and stringent DNA requirements might be concerns. 
Short-read sequencers have an advantage for measuring transcriptional expression due to the 
production of a greater number of reads. In contrast, long-read sequencers have the poten-
tial to accurately analyze the structure of transcripts, including the linkage between multiple 
splicing variations [42]. The selection and combination of appropriate bioinformatics tools as 
well as sequencing platforms should be a key issue depending on the purpose of the analysis.
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Deeper coverage at the 3′ end than at the 5′ end indicates low mRNA quality, probably due to 
partial degradation, when poly-A-tailed RNA capture is applied in the preparation process.

In the case of fungi, introns might not be clearly displayed by a simple mapping approach 
without considering the exon-intron boundary because of the short intron length (typically 
in the range of 5–100 nt), even when using short reads of 50 bp. The predicted CDS at the 
center of Figure 3B and C shows two short exons close to the 5′-end. Mapping by BWA [40], 
which does not consider the intron-exon boundary, aligned some reads to the intron, intro-
ducing mismatches (the upper panel of Figure 3B and C—(ii)). By referring to the mismatches 
between the reference and the consensus of the mapped reads, the location of the intron can 
be assumed to be the region where gray asterisks instead of red vertical bars are clustered 
at the top of the bottom panel. In contrast, read mapping using HISAT2 (the lower panel of 
Figure 3B and C—(iii)) and STAR (data not shown), both of which consider the intron-exon 
boundary, fairly accurately mapped the reads connecting two adjacent exons, introducing an 
intron between the exons.

The above CDS has another long intron-predicted upstream of the two short introns men-
tioned above, although this third intron might be too long for a gene from a filamentous fun-
gus. Furthermore, the depth of reads for the first exon is much lower than those for the second 
and third exons (Figure 3C—(i)). Considering the precipitous change in depths between the 
first and second exons and the almost even distribution of the depth in the first exon despite its 
large size, the large difference in depth is not thought to result from partial mRNA degrada-
tion. Consequently, it is believed that the first exon should be separated from the other exons, 
resulting in two CDSs. In agreement with this consideration, RNA-Seq reads are also mapped 
to the region of the long intron with a depth similar to that of the first exon (the upstream part 
of the two CDSs after division) after a short intron is detected by HISAT2 (data not shown).

2.9. Perspective

Recently developed long-read sequencers, such as PacBio RS II, PacBio Sequel, and Oxford 
Nanopore MinION, promise to deliver more complete genome assemblies with fewer gaps. 
Higher error rates, low yields per cost, and stringent DNA requirements might be concerns. 
Short-read sequencers have an advantage for measuring transcriptional expression due to the 
production of a greater number of reads. In contrast, long-read sequencers have the poten-
tial to accurately analyze the structure of transcripts, including the linkage between multiple 
splicing variations [42]. The selection and combination of appropriate bioinformatics tools as 
well as sequencing platforms should be a key issue depending on the purpose of the analysis.
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Abstract

Since transcriptome analysis provides genome-wide sequence and gene expression infor-
mation, transcript reconstruction using RNA-Seq sequence reads has become popular dur-
ing recent years. For non-model organism, as distinct from the reference genome-based 
mapping, sequence reads are processed via de novo transcriptome assembly approaches to 
produce large numbers of contigs corresponding to coding or non-coding, but expressed, 
part of genome. In spite of immense potential of RNA-Seq–based methods, particularly 
in recovering full-length transcripts and spliced isoforms from short-reads, the accurate 
results can be only obtained by the procedures to be taken in a step-by-step manner. In this 
chapter, we aim to provide an overview of the state-of-the-art methods including (i) qual-
ity check and pre-processing of raw reads, (ii) the pros and cons of de novo transcriptome 
assemblers, (iii) generating non-redundant transcript data, (iv) current quality assessment 
tools for de novo transcriptome assemblies, (v) approaches for transcript abundance and 
differential expression estimations and finally (vi) further mining of transcriptomic data 
for particular biological questions. Our intention is to provide an overview and practical 
guidance for choosing the appropriate approaches to best meet the needs of researchers 
in this area and also outline the strategies to improve on-going projects.

Keywords: whole transcriptome, de novo assembly, genome-wide expression, non-model 
organism

1. Introduction

The on-going advances in sequencing technologies and a drastic drop in the cost of sequenc-
ing allow us to obtain genome-wide genetic information for virtually all kingdoms of life. 
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Particularly, making large-scale DNA sequencing more affordable and accessible for small-
scale laboratories has greatly promoted genomic research studies on non-model organisms 
genetically linked to a specific biological question of interest [1, 2]. Despite huge effort, de novo 
sequencing of an entire genome is not an easy task, even now, and this also makes ‘RNA 
sequencing (hereafter, RNA-Seq)-based transcriptomic analysis’ appealing for non-model 
organisms that are generally described as having no or limited genomic resources and tran-
scriptomic datasets as well as molecular tools [3–6]. In the field of ‘-omics’ disciplines, RNA-Seq 
is among high-throughput experimental methods and widely used for identifying all func-
tional elements in the genome. In other words, RNA-Seq data are directly derived from func-
tional genomic elements, mostly protein-coding genes. Therefore, analysing the expressed part 
of genome by RNA-Seq gives substantial information about the genome-wide transcriptome 
structure, profile and dynamics for non-model organism at genome-wide scale. Currently, 
large-scale sequencing efforts such as ‘Fish-T1K (Transcriptomes of 1000 fishes)’, ‘1KITE (1K 
insect transcriptome evolution)’ and ‘1KP (1000 Plants Project)’ have been initiated to serve 
as valuable source of transcriptome composition and dynamics. In spite of immense potential 
of RNA-Seq–based methods, particularly in recovering full-length transcripts and spliced iso-
forms from short-reads, the accurate results can be only obtained by the procedures to be taken 
in a step-by-step manner.

Compelling evidence show that a number of factors de novo transcript construction procedure 
were reported, such as error-prone and biased (e.g. GC%) nature of sequencing technologies, 
limitations of assembler algorithm and multi k-mer approaches [7–9], read length [10], coverage 
depth of reads [11], pre-processing options of raw reads [12, 13] and transcript complexity of 
organism (e.g. sequence variations at terminal regions, alternative splicing, antisense transcrip-
tion, overlapping genes) [14]. Therefore, the state-of-the-art advancements in methodologies 

Figure 1. An overview of de novo transcriptome analysis pipelines from assembly to quality checking and pre-processing 
to assembly and transcript quantification.
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and applications for transcriptome assembly should be meticulously considered while plan-
ning a project. As no consensus procedure exists, researchers mainly in the field of ecology and 
evolution use many different approaches and tools from sequence pre-processing to functional 
annotations (Figure 1). In this context, establishing a guideline that facilitates and standardizes 
the transcriptome assembly and post-assembly analysis provides a good starting point.

2. De novo transcriptome assembly methods and mining transcriptome 
data for non-model organism

2.1. Quality check and pre-processing of raw reads

Following sequencing reaction and initial processing, next-generation sequencing instru-
ments generate raw image files that are automatically processed via instrument base calling 
software to output a massive quantity of raw sequence data in “.fastq” format. The “.fastq” is 
a text format containing both sequence read and base calling information encoded in ASCII 
characters. The read quality at each base or quality score can be obtained by converting the 
ASCII characters into Phred score (Q) indicating the probability of an erroneous base call. 
Compelling evidences show that a minimum threshold of Phred score for assembly and align-
ment is 20 (equivalent to 99% probability of being correct) for each base in raw read. Despite 
remarkable progress in sequencing chemistry and base detection approaches, the instruments 
can still produce incomplete, erroneous and ambiguous reads. Therefore, a pre-processing 
step (quality checking and read filtering) is considered an essential prerequisite prior to 
de novo transcriptome assembly because erroneous and ambiguous bases can often lead to 
fragmented and misassembled transcripts.

Quality checking and visualization of raw reads (in fastq) start with the FastQC tool (a stand-
alone Java program available at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
FastQC generates a HTML output containing a number of graphical illustrations providing 
the number and length of raw reads and duplication rate, but two main component of the 
FastQC tool: (i) per base sequence content and (ii) per base sequence quality are particularly useful 
in guiding pre-processing step. The most popular pre-processing tools are FASTX-Toolkit 
[15], Trimmomatic [16], Cutadapt [17], NGS QC Toolkit [18] and Qtrim [19], and regardless 
of the tools used, common pre-processing steps include: (i) removing adapter sequences, (ii) 
discarding the low quality reads (Q ≤ 20) and ambiguous nucleotides (Ns), (iii) removing the 
short-read length sequences (length below 50 base pair (bp)) and (iv) trimming low qual-
ity bases at the both ends of reads (generally first 10 bp) (Figure 1) [20]. After pre-process-
ing, resulting high-quality reads are ready for downstream analysis; de novo transcriptome 
assembly.

2.2. A brief glance at de novo transcript assemblers

Currently, the length of sequence reads from NGS instruments (e.g. sequencing by synthesis 
from Illumina HiSeq Models) is ranged from 150 to 250 base pairs (bp) and, following quality 
checking and filtering step, the high-quality sequence reads have to be de novo assembled for 
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Particularly, making large-scale DNA sequencing more affordable and accessible for small-
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sequencing of an entire genome is not an easy task, even now, and this also makes ‘RNA 
sequencing (hereafter, RNA-Seq)-based transcriptomic analysis’ appealing for non-model 
organisms that are generally described as having no or limited genomic resources and tran-
scriptomic datasets as well as molecular tools [3–6]. In the field of ‘-omics’ disciplines, RNA-Seq 
is among high-throughput experimental methods and widely used for identifying all func-
tional elements in the genome. In other words, RNA-Seq data are directly derived from func-
tional genomic elements, mostly protein-coding genes. Therefore, analysing the expressed part 
of genome by RNA-Seq gives substantial information about the genome-wide transcriptome 
structure, profile and dynamics for non-model organism at genome-wide scale. Currently, 
large-scale sequencing efforts such as ‘Fish-T1K (Transcriptomes of 1000 fishes)’, ‘1KITE (1K 
insect transcriptome evolution)’ and ‘1KP (1000 Plants Project)’ have been initiated to serve 
as valuable source of transcriptome composition and dynamics. In spite of immense potential 
of RNA-Seq–based methods, particularly in recovering full-length transcripts and spliced iso-
forms from short-reads, the accurate results can be only obtained by the procedures to be taken 
in a step-by-step manner.

Compelling evidence show that a number of factors de novo transcript construction procedure 
were reported, such as error-prone and biased (e.g. GC%) nature of sequencing technologies, 
limitations of assembler algorithm and multi k-mer approaches [7–9], read length [10], coverage 
depth of reads [11], pre-processing options of raw reads [12, 13] and transcript complexity of 
organism (e.g. sequence variations at terminal regions, alternative splicing, antisense transcrip-
tion, overlapping genes) [14]. Therefore, the state-of-the-art advancements in methodologies 

Figure 1. An overview of de novo transcriptome analysis pipelines from assembly to quality checking and pre-processing 
to assembly and transcript quantification.

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health56

and applications for transcriptome assembly should be meticulously considered while plan-
ning a project. As no consensus procedure exists, researchers mainly in the field of ecology and 
evolution use many different approaches and tools from sequence pre-processing to functional 
annotations (Figure 1). In this context, establishing a guideline that facilitates and standardizes 
the transcriptome assembly and post-assembly analysis provides a good starting point.

2. De novo transcriptome assembly methods and mining transcriptome 
data for non-model organism

2.1. Quality check and pre-processing of raw reads

Following sequencing reaction and initial processing, next-generation sequencing instru-
ments generate raw image files that are automatically processed via instrument base calling 
software to output a massive quantity of raw sequence data in “.fastq” format. The “.fastq” is 
a text format containing both sequence read and base calling information encoded in ASCII 
characters. The read quality at each base or quality score can be obtained by converting the 
ASCII characters into Phred score (Q) indicating the probability of an erroneous base call. 
Compelling evidences show that a minimum threshold of Phred score for assembly and align-
ment is 20 (equivalent to 99% probability of being correct) for each base in raw read. Despite 
remarkable progress in sequencing chemistry and base detection approaches, the instruments 
can still produce incomplete, erroneous and ambiguous reads. Therefore, a pre-processing 
step (quality checking and read filtering) is considered an essential prerequisite prior to 
de novo transcriptome assembly because erroneous and ambiguous bases can often lead to 
fragmented and misassembled transcripts.

Quality checking and visualization of raw reads (in fastq) start with the FastQC tool (a stand-
alone Java program available at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
FastQC generates a HTML output containing a number of graphical illustrations providing 
the number and length of raw reads and duplication rate, but two main component of the 
FastQC tool: (i) per base sequence content and (ii) per base sequence quality are particularly useful 
in guiding pre-processing step. The most popular pre-processing tools are FASTX-Toolkit 
[15], Trimmomatic [16], Cutadapt [17], NGS QC Toolkit [18] and Qtrim [19], and regardless 
of the tools used, common pre-processing steps include: (i) removing adapter sequences, (ii) 
discarding the low quality reads (Q ≤ 20) and ambiguous nucleotides (Ns), (iii) removing the 
short-read length sequences (length below 50 base pair (bp)) and (iv) trimming low qual-
ity bases at the both ends of reads (generally first 10 bp) (Figure 1) [20]. After pre-process-
ing, resulting high-quality reads are ready for downstream analysis; de novo transcriptome 
assembly.

2.2. A brief glance at de novo transcript assemblers

Currently, the length of sequence reads from NGS instruments (e.g. sequencing by synthesis 
from Illumina HiSeq Models) is ranged from 150 to 250 base pairs (bp) and, following quality 
checking and filtering step, the high-quality sequence reads have to be de novo assembled for 
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transcript reconstruction. The sequence read length is shown to be one of the key parameters in 
determining de novo assembly strategy. While the overlap-layout consensus (OLC) approach 
has been used for the assembly of long reads generated from the third-generation sequencing 
instruments such as PacBio Sequel or Oxford Nanopore, de Bruijn graph approach has been 
used in both de novo genome and transcriptome assembly because this computationally effec-
tive algorithm can process billions of short reads to reconstruct the transcriptome as complete 
as possible. In the de Bruijn methods, the graphs are constructed from short reads and then 
paths in this graph are used to generate contigs. In graph construction, a given read is broken 
into k-mer seeds (nodes) and edges are added between consecutive k-mers (in manner; the 
suffix of length k−1 of one node is the prefix of length k−1 of the other) and then, these k-mers 
are arranged into a de Bruijn graph structure (Figure 2). Contigs are obtained by inversely 
transforming the optimal path in the de Bruijn graph into sequences [21]. However, de Bruijn 
graph-based strategy between de novo genome and transcriptome assembly is slightly modi-
fied because of the following reasons: (i) while the DNA sequencing depth is expected to be 
uniform across the genome (except in repetitive regions), the sequencing depth of transcripts 
can vary considerably, (ii) Genome assembly graph is considered as linear (theoretically one 
graph for each chromosome), but due to alternative splicing, transcriptome assembly is more 
complex than genome and requires a graph to represent the multiple alternative transcripts 
per locus [1, 21]. By considering these challenges, several de novo assembly tools such as 
Trinity [1], SOAPdenovo-Trans [22], Trans-AbySS [23], Oases [24], IDBA-Tran [25], BinPacker 
[26] and Bridger [27] have been developed so far (Box 1). Most of these tools, which are ini-
tially developed for de novo genome assembly (except for Trinity) use de Bruijn graph-based 
assembly strategy and have their own pros and cons in transcript reconstruction.

Figure 2. The de Bruijn graph approach is instrumental for reference-free transcriptome assembly and de Bruijn graphs 
are built from the short reads. These short reads are split into short k-mers (here, k-mer length, 5) and then k-mers are 
connected by overlapping prefix and suffix (k−1)-mers. When the de Bruijn graph is built from reads, the optimal paths 
are obtained in the graphs and reconstructed transcripts (or contigs) are recovered by inversely transforming the optimal 
path in the de Bruijn graph.
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The quality of assemblies in terms of transcript number and length generated by such assem-
blers is highly influenced by k-mer length or hash length. Schulz et al. [24] reported that 
although assemblies generated using short k-mer have the risk of introducing misassemblies, 
rare transcripts can only be retrieved by selecting short k-mers while longer k-values perform 
best on high expression genes. In order to identify the full spectrum of transcript abundance 
and isoforms, de novo assemblers utilize an iterative multi-kmer approach from 21 to 71, except 
for Trinity whose k-mer length is fixed to 25. Due to its apparent importance, an informed 
k-mer selection tool, KREATION, has been recently developed using fit-based algorithm, lim-
iting the number of k-mer values without significant loss in assembly quality but with saving 
in assembly time [28]. KREATION first clusters the assemblies generated from single k-mer 
to determine “extended clusters” showing the assembly quality and then, a heuristic model is 
applied to predict the optimal stopping threshold for a multi k-mer assembly study.

Box 1. A general overview of de novo transcriptome assembly tools from short-reads.

Trinity

Trinity’s main difference from other transcriptome assembly programs is that it is directly 
manufactured for de novo RNA assembly. It uses the parallel calculation method to create alter-
nate spliced isoforms and transcripts with de Bruijn method [1]. Trinity has three functional 
modules; Inchworm, Chrysalis and Butterfly of which work in succession and perform different 
tasks [29]. Inchworm uses greedy extension model based on k-mer overlap and reports full-
length transcripts for a dominant isoform. Then, Chrysalis clusters overlapping contigs and 
constructs de Bruijn graphs. Finally, Butterfly process these graphs in parallel and reconstructs 
full-length transcripts for each isoform. In addition to reconstruct accurate transcripts from 
RNA-Seq data, Trinity exhibit superior performance in recovering isoforms. Trinity requires 
extensive computational resources and running time, but it performs best in terms of assem-
bly quality such as N50 value, fewer chimeras and transcript coverage.

SOAPdenovo-Trans

SOAPdenovo-Trans is de Bruijn graph-based assembler, which derived from its genome assem-
bler version SOAPdenovo2 [22]. In SOAPdenovo-Trans algorithm, two module error-removal 
and heuristic graph traversal methods are borrowed from Trinity and Oases, respectively. The 
algorithm has two main steps: (i) contig assembly and (ii) transcript assembly. Contigs are gener-
ated using SOAPdenovo after globally and locally error removal. SOAPdenovo-Trans uses both 
single-end reads and paired-end reads which mapped back onto the contigs to build scaffolds 
and then it applies a strict transitive reduction method to simplify the scaffolding graphs, and 
provide more accurate results. SOAPdenovo-Trans uses less memory and shortest running time 
than other assembler programs. Although SOAPdenovo-Trans performed best in base coverage, 
the minimum, first quartile, median, mean and third quartile length of transcripts obtained from 
SOAPdenovo-Trans is shorter than that in BinPacker, Bridger, IDBA-Tran and Trinity.
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transcript reconstruction. The sequence read length is shown to be one of the key parameters in 
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can vary considerably, (ii) Genome assembly graph is considered as linear (theoretically one 
graph for each chromosome), but due to alternative splicing, transcriptome assembly is more 
complex than genome and requires a graph to represent the multiple alternative transcripts 
per locus [1, 21]. By considering these challenges, several de novo assembly tools such as 
Trinity [1], SOAPdenovo-Trans [22], Trans-AbySS [23], Oases [24], IDBA-Tran [25], BinPacker 
[26] and Bridger [27] have been developed so far (Box 1). Most of these tools, which are ini-
tially developed for de novo genome assembly (except for Trinity) use de Bruijn graph-based 
assembly strategy and have their own pros and cons in transcript reconstruction.

Figure 2. The de Bruijn graph approach is instrumental for reference-free transcriptome assembly and de Bruijn graphs 
are built from the short reads. These short reads are split into short k-mers (here, k-mer length, 5) and then k-mers are 
connected by overlapping prefix and suffix (k−1)-mers. When the de Bruijn graph is built from reads, the optimal paths 
are obtained in the graphs and reconstructed transcripts (or contigs) are recovered by inversely transforming the optimal 
path in the de Bruijn graph.
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The quality of assemblies in terms of transcript number and length generated by such assem-
blers is highly influenced by k-mer length or hash length. Schulz et al. [24] reported that 
although assemblies generated using short k-mer have the risk of introducing misassemblies, 
rare transcripts can only be retrieved by selecting short k-mers while longer k-values perform 
best on high expression genes. In order to identify the full spectrum of transcript abundance 
and isoforms, de novo assemblers utilize an iterative multi-kmer approach from 21 to 71, except 
for Trinity whose k-mer length is fixed to 25. Due to its apparent importance, an informed 
k-mer selection tool, KREATION, has been recently developed using fit-based algorithm, lim-
iting the number of k-mer values without significant loss in assembly quality but with saving 
in assembly time [28]. KREATION first clusters the assemblies generated from single k-mer 
to determine “extended clusters” showing the assembly quality and then, a heuristic model is 
applied to predict the optimal stopping threshold for a multi k-mer assembly study.

Box 1. A general overview of de novo transcriptome assembly tools from short-reads.

Trinity

Trinity’s main difference from other transcriptome assembly programs is that it is directly 
manufactured for de novo RNA assembly. It uses the parallel calculation method to create alter-
nate spliced isoforms and transcripts with de Bruijn method [1]. Trinity has three functional 
modules; Inchworm, Chrysalis and Butterfly of which work in succession and perform different 
tasks [29]. Inchworm uses greedy extension model based on k-mer overlap and reports full-
length transcripts for a dominant isoform. Then, Chrysalis clusters overlapping contigs and 
constructs de Bruijn graphs. Finally, Butterfly process these graphs in parallel and reconstructs 
full-length transcripts for each isoform. In addition to reconstruct accurate transcripts from 
RNA-Seq data, Trinity exhibit superior performance in recovering isoforms. Trinity requires 
extensive computational resources and running time, but it performs best in terms of assem-
bly quality such as N50 value, fewer chimeras and transcript coverage.

SOAPdenovo-Trans

SOAPdenovo-Trans is de Bruijn graph-based assembler, which derived from its genome assem-
bler version SOAPdenovo2 [22]. In SOAPdenovo-Trans algorithm, two module error-removal 
and heuristic graph traversal methods are borrowed from Trinity and Oases, respectively. The 
algorithm has two main steps: (i) contig assembly and (ii) transcript assembly. Contigs are gener-
ated using SOAPdenovo after globally and locally error removal. SOAPdenovo-Trans uses both 
single-end reads and paired-end reads which mapped back onto the contigs to build scaffolds 
and then it applies a strict transitive reduction method to simplify the scaffolding graphs, and 
provide more accurate results. SOAPdenovo-Trans uses less memory and shortest running time 
than other assembler programs. Although SOAPdenovo-Trans performed best in base coverage, 
the minimum, first quartile, median, mean and third quartile length of transcripts obtained from 
SOAPdenovo-Trans is shorter than that in BinPacker, Bridger, IDBA-Tran and Trinity.
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Trans-AbySS

Trans-abyss is a method and pipeline for the collection and analysis of short transcriptomic 
data. Abyss assembly process consists of single-ended and double-ended stages. The single-
ended stage is also based on the de Bruijn graph structure; when parameter k is given, it is 
transformed into tiled k-mer represented as read nodes and (k-1) bases are superimposed 
as directed edges. Allelic differences, minor changes in the sequence and repetitive random 
base invocation errors lead to ‘bubbles’ throughout the graph. Once these errors have been 
removed in the k-mer space, the single-ended contigs defined by the ‘walk’ clear across the 
graph. In the matched tier phase, the pairs aligned in the single-ended contigs define the 
empirical distribution of the distances of the pairs. Single-ended readings of different contigs 
to the co-aligned pairs and empirical distribution then intercontig distance and combined to 
form contigs are paired end contigs that can be combined [23]. Trans-AbySS reaches the end 
by creating direct sequenced readings with Bruijn graphics, removing possible errors from 
the middle and solving each connected Bruijn graph for each connected component. Compared 
to other assembler programs the lowest percentage of chimera is seen in Trans-AbySS [30]. 
Comparative studies showed that with Trinity, Trans-ABySS performed best in gene coverage 
and number of recovered full-length transcripts [31].

Oases

Oases is a RNA transcriptome assembler that contains many developmental constructs. 
Combines multiple k-mers and topological analysis methods. In addition, it uses the dynamic 
error correction feature developed for RNA-Seq data. Assembly process of Oases takes place 
by creating independent assemblies, which vary according to the length of the k-mers, and 
then assembling them all together in one assembly. In each assembly, readings are used to 
generate de Bruijn, and then faults are simplified, organized into a scaffold, divided into loci 
and eventually analysed. Then dynamic correction is performed and Oases creates contigs 
sets of clusters called loci. Since it is more likely to be unique, long contigs treated first when 
the scaffold is constructed and faults that may arise from alternative splices are eliminated. 
Oases provide a robust pipeline from RNA-Seq readings to generate full-length assemblies 
of transcripts. Especially designed for dealing with RNA-Seq condition, unequal coverage 
and alternative spliced situations [24]. Oases-Velvet produced the highest number of chimeric 
transcripts at different k-mer sizes and it has the highest RAM (i.e. random access memory) 
usage among all assemblers.

IDBA-Tran

IDBA-Tran uses a different approach. Firstly, it produces small de Bruijn graphs and enlarges 
the graph with larger k values. Subsequently, transcripts are found on a large Bruijn graph, 
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where the same genetic transcripts usually form a single component [25]. IDBA-Tran modu-
lates the products of the k-mers of the same composition with a very normal distribution, 
which depends on the expression levels of the corresponding isoforms. IDBA-Tran obtains a 
large number of small components, each representing a single gene. For each small compo-
nent, IDBA-Tran retrieves the isoform sequences with matched-ended reads by looking for 
compound pathways. Based on more than one normal distribution and contig length, IDBA-
Tran calculates a local threshold to determine whether a k-mer or contigs in error. Using the 
probabilities and depths that connect the two components together, taking into account the 
length of the path, the graphics that make up the IDBA-Tran components detect and remove 
faulty paths. For this reason, IDBA-Tran produces more contigs for low-expressed transcripts 
and performs better than Oases and Trinity [25].

BinPacker

BinPacker reshapes the problems and generates full-length transcripts by following the 
aggregated graph line generated by various techniques used in Bridger. Some advantages 
of BinPacker: (i) BinPacker allows the use of user-defined k-mer values for best performance 
and (ii) BinPacker uses a strict mathematical model. This allows the BinPacker to achieve a 
lower false positive rate at the same sensitivity level. (iii) BinPacker makes full use of the step 
depth applied to graphics, so that the assembly results are more accurate. BinPacker combines 
transcripts on every merging graph it creates [26]. BinPacker is more unsuccessful than other 
programs on chimeric data [31].

Bridger

Using a multi-k strategy to achieve high sensitivity leads to more false positives. However, 
identifying the optimal set of paths that represent the potential isoform can significantly 
reduce false positive estimates. Bridger’s basic idea is to build a bridge between two popular 
assemblers, Cufflinks (reference-based assembler) and Trinity (de novo assembler). Bridger 
uses a rigorous mathematical model called the minimum path envelope to search for the low-
est path set (transcript) supported by RNA-Seq readings. Bridger runs very fast and requires 
less memory space and CPU (i.e. Central Processing Unit) time than other methods and gen-
erates splicing graphics for all genes [27].

2.3. Generating non-redundant transcript data

As described in the previous section in detail, a reference transcriptome for non-model organ-
ism can be built using various types of de novo transcriptome assemblers. All these assemblers 
are successful to some extent in recovering expressed transcripts; however, constructing full-
length transcripts from short reads remains a daunting and complicated task. Therefore, to 
obtain more accurate data, researchers performed several studies to optimize a number of 
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where the same genetic transcripts usually form a single component [25]. IDBA-Tran modu-
lates the products of the k-mers of the same composition with a very normal distribution, 
which depends on the expression levels of the corresponding isoforms. IDBA-Tran obtains a 
large number of small components, each representing a single gene. For each small compo-
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and (ii) BinPacker uses a strict mathematical model. This allows the BinPacker to achieve a 
lower false positive rate at the same sensitivity level. (iii) BinPacker makes full use of the step 
depth applied to graphics, so that the assembly results are more accurate. BinPacker combines 
transcripts on every merging graph it creates [26]. BinPacker is more unsuccessful than other 
programs on chimeric data [31].

Bridger

Using a multi-k strategy to achieve high sensitivity leads to more false positives. However, 
identifying the optimal set of paths that represent the potential isoform can significantly 
reduce false positive estimates. Bridger’s basic idea is to build a bridge between two popular 
assemblers, Cufflinks (reference-based assembler) and Trinity (de novo assembler). Bridger 
uses a rigorous mathematical model called the minimum path envelope to search for the low-
est path set (transcript) supported by RNA-Seq readings. Bridger runs very fast and requires 
less memory space and CPU (i.e. Central Processing Unit) time than other methods and gen-
erates splicing graphics for all genes [27].

2.3. Generating non-redundant transcript data

As described in the previous section in detail, a reference transcriptome for non-model organ-
ism can be built using various types of de novo transcriptome assemblers. All these assemblers 
are successful to some extent in recovering expressed transcripts; however, constructing full-
length transcripts from short reads remains a daunting and complicated task. Therefore, to 
obtain more accurate data, researchers performed several studies to optimize a number of 
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key parameters affecting assembly results such as optimal sequencing depth [11], the read 
length [10], multi k-mer approaches [7–9], the quality score and error correction of sequence 
reads [12, 13]. However, transcriptome software themselves follow a multi-stage procedure to 
avoid introducing misassemble, chimeric assembly and transcript artefacts and to obtain all 
spliced isoforms from the same gene. For instance, the Inchworm module of Trinity assembles 
short-reads using greedy extension based on k-mer overlap and reports full-length transcripts 
for a dominant isoform. Then, the final module, Butterfly, processes the individual graphs in 
parallel and reconstructs full-length transcripts for each isoform after Chrysalis clusters over-
lapping contigs, and constructs de Bruijn graphs. Despite all these efforts, de novo assembly 
of short-reads, regardless of software used, results in hundreds of thousands of contigs, a set 
of contiguous transcript sequences. Without any further analysis such as clustering or post-
assembling, the final set of contigs includes (i) partial transcripts and rudimentary isoforms 
(splice variants), (ii) redundant transcripts (different lengths of the same transcripts, mostly 
fragments) and (iii) chimeric (fusion) and misassembled sequences [3].

Creating non-redundant transcript dataset with various bioinformatics approaches is a first 
step after de novo transcript assembly. Because, eliminating redundant transcripts and retaining 
one representative of each transcript isoform (generally, correct and longest in each transcript 
cluster) are particularly important for downstream applications such as the analysis of tran-
script structure, gene expression, phylogenomics and identification of SNP variants [8, 30, 32]. 
To date, several clustering algorithm and post-assembly implementations were developed 
and used in a significant number of articles for the purpose of creating a non-redundant con-
sensus dataset. The most popular tools used to reduce redundancy in the assembled dataset 
are CAP3 [33], CD-HIT-EST [34], iAssembler [35], MIRA [36] and TIGR-TGI Clustering tool 
[37] as well as Corset [32], if performing a differential gene expression analysis. In addition to 
these tools, some assemblers such as Oases and Trans-ABySS have their own “merging tools” 
to generate a consensus transcript set when applied multiple k-mer approaches.

So far, all studies using de novo transcriptome assembly procedure have included either post-
assembly or clustering analysis. Among the assembly-based approaches, CAP3 [33] is one 
of the first large-scale EST-based assembly tool, which filters for redundant information by 
detecting overlaps between the contigs and generate the consensus sequence for each tran-
script. As an overlap-layout-consensus (OLC)-based assembly pipeline, TIGR gene indices 
clustering tool (TGICL) [37] was developed for producing larger and more complete consensus 
sequences. In this pipeline, a final set of contigs is first clustered based on pairwise sequence 
similarity and then each cluster is assembled so that consensus sequences (or non-redundant 
unigenes) are generated. Yet these methods are successful in removing redundancy, the meth-
ods have failed to satisfy the needs of generating a contig per transcripts. It was suggested that 
there are two type problems, which might be responsible for such failure. The problems fre-
quently observed during assembly are (i) the misassembly of spliced transcripts or paralogs 
and (ii) contigs derived from the same transcript fail to be assembled together. The iAssembler 
[35] specially developed to overcome these problems encountered and it consists of seven 
modules grouped into three functional phases: general controller (input, output and assembly 
parameters), assembler and error corrector phases. The iAssembler utilizes the approaches of 
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CAP3 and MIRA assemblers for initial assembly of transcripts, and subsequently, the pair-
wise alignment information of overlapped transcripts is obtained using Megablast to assem-
ble them into one contig if those transcripts fail to be assembled by either MIRA or CAP3. 
The assembly process finishes after correcting the above-mentioned errors via error corrector 
phases, which is the main contribution of iAssembler. A comparison showed that iAssembler 
has a superior performance over CAP3, MIRA and TGICL in terms of generating much less 
assembly errors in assembling [35].

Another widely used approach to reduce redundancy in contig assembly is clustering 
sequences. In this regard, by far the most popular tool is CD-HIT-EST [34]. The CD-HIT-EST 
is generally used to remove the shorter redundant transcripts and duplicate contigs in large-
scale transcriptome datasets. Compared to assembly-based approaches, the CD-HIT-EST is 
dramatically faster in practice due to its novel parallelization strategy. Corset [32] as a state- of-
the-art approach was proposed for hierarchically clustering contigs using information about 
shared reads. The performance evaluation showed that Corset outperformed CD-HIT-EST in 
recall (i.e. true positives/(true positives + false negatives)) for genes with no fragmentation 
and the authors suggested that CD-HIT-EST is not the most effective contig clustering tool 
while Corset gives a convenient method to cluster contigs [32]. More recently, a clustering 
tool, RapClust [38] has been developed for de novo transcriptome clustering based on the rela-
tionships exposed by multi-mapping sequencing fragments and it generates clusters of com-
parable or better quality than current clustering approaches and does so substantially faster. 
Although accumulating evidences have indicated that the sequence identity threshold should 
be set above 90% in both assembly and clustering approaches, a detailed comparison analysis 
is required for those approaches in terms of accuracy and capability for removing redundant 
sequences.

2.4. Quality assessment tools for de novo transcriptome assemblies

Quality assessment of de novo assembled transcripts using reference-free or evidence-based 
tools seems to be a prerequisite for meaningful interpretation of downstream analysis such 
as discovery of novel transcripts and correct identification of differentially expressed genes. 
From a practical point of view, the quality assessment of assembled transcriptome sequences 
can be handled in three different ways: (i) basic statistical metrics, (ii) reference-free evalua-
tion tools and (iii) reference-dependent or sequence homology-based approaches. Generally, 
calculating basic statistical metrics is considered as first step in the evaluation of assembled 
transcriptome. These metrics include total number of transcripts, total base coverage, tran-
script coverage, N50 value, the presence of chimeric transcripts, longest transcript length, 
average length of transcripts, etc. These metrics are simple and useful to obtain information 
about the transcript numbers and coverage at a first glance, but provides no information 
about accuracy or reliability of transcripts. For instance, N50 value is a median length of a 
set of contigs (assembled transcripts), but it measures the continuity of contigs but not their 
accuracy. Recently, reference-free evaluation tools were developed for the accuracy and com-
pleteness of de novo transcriptome assemblies (see Box 2, i.e. RSEM-EVAL and TransRate). 
These approaches only process high-quality sequence reads and assembled transcriptome 
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key parameters affecting assembly results such as optimal sequencing depth [11], the read 
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based on their strong background models and producing scores indicating assembly quality. 
As for sequence homology-based quality metric, it is seen as standard evaluation criteria for 
transcriptome assemblies. In this approach, each contig in the assembled transcriptome set 
was aligned against a reference database (rnaQUAST) or publicly available databases using 
BLAST, BLAT or SCAN methods (Box 2). Besides, now it is well known that the genome of 
all living organisms from bacteria to mammals contains evolutionary conserved and phylo-
genetic clades characteristic of single-copy orthologous gene sets. Therefore, it is considered 
as an indicator of quality and completeness of transcriptome assembly (see BUSCO in Box 2).

Box 2. A general overview and framework of de novo transcriptome assembly evaluation tools.

DETONATE

Li et al. [39] proposed a software package called DETONATE (DE novo TranscriptOme rNa-
seq Assembly with or without the Truth Evaluation) which is a methodology for assessing and 
ranking of de novo transcriptome assemblies obtained from various assemblers. DETONATE 
software is consisted of two parts: RSEM-EVAL and REF-EVAL. As a reference-free evaluation 
method, RSEM-EVAL is considering as main contribution of the software and uses a probabilistic 
model that requires only an assembly and the RNA-Seq reads to compute the joint probability. 
RSEM-EVAL provides a score obtained from calculation of three components; maximum like-
lihood (ML) estimate, an assembly prior and a Bayesian information criterion (BIC) penalty, 
reflecting whether resulting contigs are supported by RNA-Seq reads or not. Then, RSEM-EVAL 
ranks these scores in descending order (from highest to lowest) and highest-scoring assembly is 
considered as ground truth, in other words, most reliable and compact assembly.

rnaQUAST

Bushmanova et al. [40] developed a quality evaluation tool for transcriptome assemblies. The 
tool, rnaQUAST, basically maps assembled transcripts to reference genome using BLAT [41] 
or GMAP [42] and comparing resulting alignments to gene database for measuring quality 
metrics. In addition to the basic descriptors for contig continuity such as total length, average 
length of assembled transcripts, longest transcripts and N50 value, the principal contribution 
of rnaQUAST is arised from the alignments of transcripts to isoforms’ positions and analy-
ses them to estimate how well the isoforms are covered by the assembly. For de novo quality 
assessment, rnaQUAST takes advantage of other tools like BUSCO.

BUSCO

In an evolutionary context, Simao et al. [43] presented a software package, BUSCO (Benchmarking 
Universal Single-Copy Orthologs) for assessment of transcriptome assembly and completeness. 
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For that purpose, BUSCO scans transcriptome assembly for the presence of near-universal sin-
gle-copy orthologous gene-sets generated from OrthoDB database of orthologs (http://www.
orthodb.org). Covering a high proportion of single-copy orthologous gene-sets indicates com-
pleteness of assembled transcripts. BUSCO sets are generated for six major phylogenetic clades; 
3023 genes for vertebrates, 675 for arthropods, 843 for metazoans, 1438 for fungi and 429 for 
eukaryotes. Accumulating evidence showed that above 90% covering of single-copy ortholo-
gous gene-sets indicates a good completeness of transcriptome assembly.

TransRate

Despite relative success in generating de novo transcriptome assemblies from short-reads, due 
to wide range of multiple and flexible parameters of de novo assembly methods, this methods 
can generate different assemblies, even if same data were used. These assemblies include 
chimeras, structural errors, incomplete assembly (e.g. hybrid assembly of gene families, spu-
rious insertions in contigs) and base errors. To overcome frequently occurring problems and 
filtering, optimization as well as comparison of assemblies, Smith-Unna et al. [44] developed 
a reference-free transcriptome assembly evaluation tool for the accuracy and completeness of 
de novo transcriptome assemblies using only input reads and assembled contigs. TransRate 
first aligns the input reads to final assembly, processes those alignments, and calculates contig 
scores using the full set of processed read alignments. Following these processes, TransRate 
classifies contigs into two classes; well assembled and poorly assembled, by learning a score 
cut-off from the data that maximizes the overall assembly score. TransRate gives two types of 
reference-free statistics; TransRate contig score and assembly score which are calculated by 
considering these errors. Therefore, TransRate is seen as a diagnostic quality score tool while 
RSEM-EVAL, another reference-free transcriptome assembly evaluation tool.

SCAN

Comparing assembled transcripts against a reference nucleotide or proteome is a routine task 
for annotating transcripts. By utilizing this information, Misner et al. [45] described an ana-
lytical R package called SCAN (sequence comparative analysis using networks) which gener-
ates gene-similarity networks illustrating sequence similarities between transcript assemblies 
and reference data. The SCAN differs from other software such as BLAST [46] or BLAT [41] in 
that it provides a robust statistical support in a biological context.

2.5. Current approaches for transcript quantification from RNA-Seq

Following to the assembly procedures, next step is to map the reads to a reference genome 
or transcriptome, quantify the transcript abundances and detect the differentially expressed 
transcripts among interested biological conditions. In this section, we give a brief overview of 
algorithms used is each analysis procedure (Figure 3).
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2.5. Current approaches for transcript quantification from RNA-Seq

Following to the assembly procedures, next step is to map the reads to a reference genome 
or transcriptome, quantify the transcript abundances and detect the differentially expressed 
transcripts among interested biological conditions. In this section, we give a brief overview of 
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Figure 3. Schematic representation of transcript quantification from alignment to differential expression analysis.

Alignment is an important step in RNA-Seq analysis, which refers to the mapping of the reads 
to a reference genome or transcriptome, if it is available. Aligners can be classified as spliced 
and unspliced aligners. Unspliced aligners, e.g. Burrows-Wheeler alignment tool (BWA) and 
Bowtie, align the reads to the transcriptome by using Burrows-Wheeler or seed methods. 
These aligners do not properly control intron-sized gaps since they are not designed for 
spliced alignments. For accurate and fast alignment of the sequence reads over exon/intron 
boundaries, spliced aligners are proposed which use either exon-first or seed-extended meth-
ods [47]. While mapping reads using splice-aware aligners such as HISAT [48], TopHat2 [49] 
and STAR [50] are generally preferred for genome alignment, the software that is particularly 
developed for differential gene expression analysis for de novo assembled transcriptome uses 
Bowtie alignment program with ‘—best’ option [32, 51]. Alignment process can be compli-
cated due to several factors: sequencing errors, polymorphisms, imperfect annotation, intron-
sized gaps, intron signal, alternative splicing and pathological splicing. Moreover, alignment 
results directly affect the results of downstream analysis, e.g. transcript quantification, dif-
ferential expression, gene ontology and pathway analysis [52].

After mapping, the next step is the quantification of each transcript for each sample. It has 
been reported that the number of reads aligned to the reference genome is linearly related to 
the abundance of transcripts. Large number of transcript quantification algorithms is avail-
able in the literature. rSeq models the sequence reads assumed to follow Poisson distribution 
with parameters related to the transcript abundances [53]. RSEM is a widely used approach 
that uses expectation-maximization (EM) algorithm to compute the maximum-likelihood 
estimates of θ parameters, where θi is the probability of a fragment derived from ith tran-
script. Gibbs sampling is used as well to estimate the posterior means and confidence inter-
vals of transcript abundances. RSEM does not require reference genome or transcriptome 
files from the users. RSEM conducts a quality score data within the scope of its statistical 
model or uses a position-dependent error model based on the FASTQ or FASTA input data 

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health66

types, respectively [51, 54]. Scripture uses the gapped alignments of the reads across splice 
junctions and the annotated transcripts and produces transcript expressions as RPKM (read 
per kilobase per million mapped reads) values [55]. Cufflinks assume the sequence reads 
are sampled independently with uniform probability along transcripts and proportional to 
the abundances among transcripts. A Bayesian method is used in parameter estimation [56]. 
IsoEM method exploits information from the distribution of insert sizes and estimates the 
isoform abundances using an EM algorithm [57]. MMSeq estimates haplotype, isoform and 
gene-specific expression using a Poisson-based model and EM algorithm. The priors of tran-
script abundances are assumed to follow a Gamma distribution [58]. BitSeq models the poste-
rior probabilities sequence reads with Markov chains and estimates the transcript expressions 
using a Bayesian approach [59]. eXpress has a similar methodology to cufflinks. However, 
it can determine the transcript abundances real-time, and can model indels and errors [60]. 
CEM identifies the RNA-Seq biases, i.e. positional, sequencing and mapping biases, with 
quasi-multinomial distribution model and estimates the isoform abundances with compo-
nent elimination EM approach [61]. Sailfish is an alignment-free approach that is based on 
indexing and counting k-mers of sequence reads. EM method is used in maximum-likeli-
hood estimation of the transcript abundances. Sailfish is reported as the fastest quantifica-
tion method as compared to other methods [62]. TIGAR2 models the insertion, deletion and 
substitution errors in a probabilistic framework, given the gapped alignment of reads to the 
reference genome. TIGAR2 uses a generative model, including alignment state, nucleotides, 
the read length distribution and read qualities at first and second positions, to estimate the 
transcript isoform expressions [63].

Kanitz et al. [64] benchmarked these methods on both simulated and an experimental datas-
ets. The performances are found to be very similar for all algorithms. Teng et al. [65] described 
several evaluation metrics and compared 7 quantification algorithms and reported that Flux 
Capacitor and eXpress underperformed, while RSEM outperformed other methods. We 
believe that RSEMs accuracy may result from its ability to properly handling short transcripts, 
poly (A) tails and the reads that map to multiple genes. Moreover, this method does not 
require a reference genome, which is stated to be challenging mostly for eukaryotic species, 
whose RNA transcripts are spliced and polyadenylated [51]. Beyond these methods, Corset 
has shown to be another powerful method, which clusters the transcripts into genes and cal-
culates the counts for each gene in a single step [32].

After mapping, per transcript read counts can be used as a relative measure of transcript 
abundance. In a perfect world, transcript abundance of steady-state mRNA should be 
directly proportional to the number of reads: a transcript from gene A with twice the cellular 
concentration of transcript B should have twice as many reads. This relationship should hold 
across a large range of expression levels spanning several orders of magnitude. Generated 
transcript abundances can be input to various analysis pipelines. In most cases, the objective 
is to identify the differentially expressed transcripts between given biological conditions. 
A key data assumption here is that the data should not contain any technical biases, which 
may arise from sequence composition, transcript length, sequence depth, sampling bias in 
library preparation, presence of majority fragments, etc. To enable comparison of genes 
across samples, these technical biases should be identified and corrected before starting 
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Figure 3. Schematic representation of transcript quantification from alignment to differential expression analysis.
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culates the counts for each gene in a single step [32].
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transcript abundances can be input to various analysis pipelines. In most cases, the objective 
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differential expression analysis. Total count (TC), upper quartile (UQ) and median methods 
are quantile-based methods, which divide transcript read counts by total number of reads, 
3rd quartile and median, respectively. The disadvantage of these methods is that the greater 
counts can dominate the lower counts in downstream analysis, e.g. differential expression 
analysis. Reads per kilobase per million mapped reads (RPKM) adjusts read counts both for 
sequence depth and gene length. RPKM produces unbiased estimates of number of reads; 
however, this affects the variance. Trimmed mean of M values (TMM) and DESeq2 median 
ratio approaches are considered as effective library size approaches. These methods assume 
that a majority of transcripts is not differentially expressed and thus minimize the effect 
of majority sequences. TMM trims the data based on the log-fold-changes and absolute 
intensities, then computes the weighted average of genewise log-fold-changes using delta 
method [66]. DESeq2 median ratio approach generates a pseudo reference sample, which 
is the geometric mean across samples. Size factors are obtained from the counts and the 
pseudo reference sample across all genes [67]. An important problem in differential expres-
sion analysis is to statistically model the obtained RNA-Seq counts. The preceding studies 
applied microarray-based methods to log-transformed counts [68, 69]. Some of the studies 
preferred modelling these data using Poisson distribution [61, 70]. Poisson distribution has 
a single parameter that represents both mean and variance. Nagalakshmi et al. [71] stated 
that the presence of biological replicates leads the variance exceeds the mean. This problem 
is referred to as overdispersion, which led to the development of novel approaches using 
negative binomial (NB) distribution. DESeq2 and edgeR are the two popular and NB-based 
approaches to model RNA-Seq data. Both approaches are based on the estimation of mean 
and variance relationship based on NB distribution. DESeq2 conducts local regression, 
while edgeR uses a single proportionality constant in this estimation [72, 73]. More recently, 
Law et al. [74] proposed the voom method, which estimates the mean and variance rela-
tionship from log-counts at observational level. Voom provides both gene expression esti-
mates and the corresponding precision weights for downstream analysis. Integration of this 
method with limma (linear models for microarray and RNA-Seq data) method provided the 
best control of type-I error, best power and lowest false discovery rate. Wang and Gribskov 
[31] points out that there may be differences on the differential expression results, between 
reference genome-based and de novo transcriptome assembly approaches. Incomplete and 
incorrect reference annotation, exon level expression differences and fragmentation of low 
coverage transcripts are pointed as the reasons of these differences. The authors suggest to 
perform both approaches even the reference genome is present.

2.6. Transcriptomics tells more: focusing on specific annotation tools and guidelines

The general analysis framework of de novo assembled transcripts has three phases: (i) generat-
ing non-redundant transcripts and quality assessment, (ii) basic sequence annotations includ-
ing homology-based sequence annotations (BlastX), gene ontology (GO Slim and Enrichment), 
pathway analysis (KEGG Enrichment) and (iii) transcript quantifications (Figure 1). Although 
annotation process (beyond the scope of this chapter) provides significant information regard-
ing cellular component, molecular functions and biological process in which transcripts 
involved, more information can be obtained if transcriptomic data can be further analysed and 
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interpreted in line with the study objectives and research questions. For instance, in evolution-
ary perspective, transcriptome data can be used for detecting positively selected or fast evolving 
genes (PSG, FEG) and are increasingly used in genome-wide phylogenetic studies [75–77] fol-
lowing the steps: orthologs gene detection (particularly single copy genes), multiple sequence 
alignment of coding regions with PRANK and GUIDANCE pipeline (PRANK algorithm is 
based on an exhaustive search of the best pairwise solution; the guidance assigning a confidence 
score for each residue, column and sequence in a multi-alignment from Prank [78], so Guidance 
[79] can be used for weighting, filtering or masking unreliably aligned positions in sequence 
alignments before positive selection using the branch-site dN/dS test). Following a multiple 
sequence alignment, the phylogeny is inferred by Phyml [80] based on proteins residues trans-
lated from multi-alignments of single copy orthologous. Then, multiple sequence alignment is 
used to detect positive selection using the branch-site model with the CodeML program of the 
PAML [81].

In the context of genome-wide sequence polymorphism within species, mining de novo con-
structed transcripts by appropriate variant calling tools may help us to elucidate the nucleotide-
level organismal differences. Among the genetic markers, single nucleotide polymorphisms 
(SNPs) are the most frequent DNA variation across genome and these genetic markers are 
widely used for characterising genetic diversity and population structure at genome level, 
construction of linkage and QTL mapping and association mapping due to their high density/
frequency and low mutation rate over generations. In non-model organism, lack of genome 
sequence information, the standard approach for identification of SNPs or insertion-deletion 
(InDels) starts by mapping high-quality reads against a reference transcript set constructed 
de novo and detect variations. Briefly, the high-quality reads were aligned against reference 
transcript set using unspliced aligners such as Burrows-Wheeler alignment tool (BWA) [82] or 
Bowtie2 [83] and then mapped file ‘.bam’ is obtained for variant calling. After sorting aligned 
reads and removing duplicates and merging ‘.bam’ alignment results, GATK2 (genome analy-
sis tool kit) [84] is used to perform SNP calling. GATK2 software first filters, realigns and reca-
librates reads using its standard filter and data pre-processing methods. The resulting analysis 
ready reads are parsed to detect SNPs using GATK-UnifiedGenotyper tool with parameters 
of “-stand_call_conf 30” and “-stand_emit_conf 10”. Following this step, SNP calls are hard-
filtered using GATK-VariantFiltration tool with parameters of “quality by depth > 5”, “unfil-
tered read depth ≥ 10” and “read mapping quality ≥ 40” to obtain reliable and accurate SNPs 
[85–87].

The eukaryotic genome harbours a large number of non-coding RNAs, which include small 
and long non-coding RNAs (lncRNAs). LncRNAs are RNA molecules that are longer than 
200 nucleotides in length and do not contain protein-encoding sequences. Recent studies have 
shown that although human genome contains about 19,000 protein-encoding genes (approxi-
mately 2% of the genome) [88], 58,684 high-quality lncRNAs have been identified in the 
genome using a large-scale transcriptome analysis [89]. Accumulating evidence showed that 
the protein-coding genes are accounted for only 50% of final assembled transcriptome data. 
Mining final non-redundant transcriptome data via long non-coding RNA identification tools 
such as PLEK [90], lncRScan-SVM [91], FEELnc [92] or measuring protein coding potential of 
transcripts using various tools such as coding potential calculator (CPC) [93], coding potential 
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differential expression analysis. Total count (TC), upper quartile (UQ) and median methods 
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that a majority of transcripts is not differentially expressed and thus minimize the effect 
of majority sequences. TMM trims the data based on the log-fold-changes and absolute 
intensities, then computes the weighted average of genewise log-fold-changes using delta 
method [66]. DESeq2 median ratio approach generates a pseudo reference sample, which 
is the geometric mean across samples. Size factors are obtained from the counts and the 
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sion analysis is to statistically model the obtained RNA-Seq counts. The preceding studies 
applied microarray-based methods to log-transformed counts [68, 69]. Some of the studies 
preferred modelling these data using Poisson distribution [61, 70]. Poisson distribution has 
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that the presence of biological replicates leads the variance exceeds the mean. This problem 
is referred to as overdispersion, which led to the development of novel approaches using 
negative binomial (NB) distribution. DESeq2 and edgeR are the two popular and NB-based 
approaches to model RNA-Seq data. Both approaches are based on the estimation of mean 
and variance relationship based on NB distribution. DESeq2 conducts local regression, 
while edgeR uses a single proportionality constant in this estimation [72, 73]. More recently, 
Law et al. [74] proposed the voom method, which estimates the mean and variance rela-
tionship from log-counts at observational level. Voom provides both gene expression esti-
mates and the corresponding precision weights for downstream analysis. Integration of this 
method with limma (linear models for microarray and RNA-Seq data) method provided the 
best control of type-I error, best power and lowest false discovery rate. Wang and Gribskov 
[31] points out that there may be differences on the differential expression results, between 
reference genome-based and de novo transcriptome assembly approaches. Incomplete and 
incorrect reference annotation, exon level expression differences and fragmentation of low 
coverage transcripts are pointed as the reasons of these differences. The authors suggest to 
perform both approaches even the reference genome is present.

2.6. Transcriptomics tells more: focusing on specific annotation tools and guidelines

The general analysis framework of de novo assembled transcripts has three phases: (i) generat-
ing non-redundant transcripts and quality assessment, (ii) basic sequence annotations includ-
ing homology-based sequence annotations (BlastX), gene ontology (GO Slim and Enrichment), 
pathway analysis (KEGG Enrichment) and (iii) transcript quantifications (Figure 1). Although 
annotation process (beyond the scope of this chapter) provides significant information regard-
ing cellular component, molecular functions and biological process in which transcripts 
involved, more information can be obtained if transcriptomic data can be further analysed and 

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health68

interpreted in line with the study objectives and research questions. For instance, in evolution-
ary perspective, transcriptome data can be used for detecting positively selected or fast evolving 
genes (PSG, FEG) and are increasingly used in genome-wide phylogenetic studies [75–77] fol-
lowing the steps: orthologs gene detection (particularly single copy genes), multiple sequence 
alignment of coding regions with PRANK and GUIDANCE pipeline (PRANK algorithm is 
based on an exhaustive search of the best pairwise solution; the guidance assigning a confidence 
score for each residue, column and sequence in a multi-alignment from Prank [78], so Guidance 
[79] can be used for weighting, filtering or masking unreliably aligned positions in sequence 
alignments before positive selection using the branch-site dN/dS test). Following a multiple 
sequence alignment, the phylogeny is inferred by Phyml [80] based on proteins residues trans-
lated from multi-alignments of single copy orthologous. Then, multiple sequence alignment is 
used to detect positive selection using the branch-site model with the CodeML program of the 
PAML [81].

In the context of genome-wide sequence polymorphism within species, mining de novo con-
structed transcripts by appropriate variant calling tools may help us to elucidate the nucleotide-
level organismal differences. Among the genetic markers, single nucleotide polymorphisms 
(SNPs) are the most frequent DNA variation across genome and these genetic markers are 
widely used for characterising genetic diversity and population structure at genome level, 
construction of linkage and QTL mapping and association mapping due to their high density/
frequency and low mutation rate over generations. In non-model organism, lack of genome 
sequence information, the standard approach for identification of SNPs or insertion-deletion 
(InDels) starts by mapping high-quality reads against a reference transcript set constructed 
de novo and detect variations. Briefly, the high-quality reads were aligned against reference 
transcript set using unspliced aligners such as Burrows-Wheeler alignment tool (BWA) [82] or 
Bowtie2 [83] and then mapped file ‘.bam’ is obtained for variant calling. After sorting aligned 
reads and removing duplicates and merging ‘.bam’ alignment results, GATK2 (genome analy-
sis tool kit) [84] is used to perform SNP calling. GATK2 software first filters, realigns and reca-
librates reads using its standard filter and data pre-processing methods. The resulting analysis 
ready reads are parsed to detect SNPs using GATK-UnifiedGenotyper tool with parameters 
of “-stand_call_conf 30” and “-stand_emit_conf 10”. Following this step, SNP calls are hard-
filtered using GATK-VariantFiltration tool with parameters of “quality by depth > 5”, “unfil-
tered read depth ≥ 10” and “read mapping quality ≥ 40” to obtain reliable and accurate SNPs 
[85–87].

The eukaryotic genome harbours a large number of non-coding RNAs, which include small 
and long non-coding RNAs (lncRNAs). LncRNAs are RNA molecules that are longer than 
200 nucleotides in length and do not contain protein-encoding sequences. Recent studies have 
shown that although human genome contains about 19,000 protein-encoding genes (approxi-
mately 2% of the genome) [88], 58,684 high-quality lncRNAs have been identified in the 
genome using a large-scale transcriptome analysis [89]. Accumulating evidence showed that 
the protein-coding genes are accounted for only 50% of final assembled transcriptome data. 
Mining final non-redundant transcriptome data via long non-coding RNA identification tools 
such as PLEK [90], lncRScan-SVM [91], FEELnc [92] or measuring protein coding potential of 
transcripts using various tools such as coding potential calculator (CPC) [93], coding potential 
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assessment tool (CPAT) [94], coding-non-coding index (CNCI) [95] provides us more informa-
tion about the transcriptome landscape of non-model organism.
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Abstract

Resilience is a network property of systems responding under stress, which for biomed-
icine correlates to chronic or acute insults. Current need exists for models and algo-
rithms to study whole transcriptome differences between tissues and disease states to
understand resilience. Goal of this effort is to interpret cellular transcription in a
dynamic system biology framework of RNA molecules forming an information struc-
ture with regulatory properties acting on individual transcripts. We develop and evalu-
ate a bioinformatics framework based on information theory that utilizes RNA
expression data to create a whole transcriptome model of interaction that could lead to
the discovery of new biological control mechanisms. This addresses a fundamental
question as to why transcription yields such a small fraction of protein products. We
focus on a transformative concept that individual transcripts collectively form an “infor-
mation cloud” of sequence words, which for some genes may have significant regula-
tory impact. Extending the concept of cis- and trans-regulation, we propose to search for
RNAs that are modulated by interactions with the transcriptome cloud and calling such
examples nebula regulation. This framework has implications as a paradigm change for
RNA regulation and provides a deeper understanding of nucleotide sequence structure
and -omic language meaning.

Keywords: transcriptome, RNA, diffusion, secondary structure, resilience, information
theory

1. Introduction

The concept of resilience is receiving increasing attention in chronic stress-related disease
conditions. Resilience has been shown in clinical studies to play a protective role in patients
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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with chronic disease conditions including osteoarthritis, breast and ovarian cancer, diabetes,
and cardiovascular disease. The purpose of this study is to explore the relationships between
RNA-RNA interactions and to devise a related measure of resilience from network properties
of the whole transcriptome.

1.1. RNA physiology

At various levels, RNA is processed by alternate mechanisms [1], suggesting a biological
framework that supports important system network features such as resilience. Trafficking of
RNAs is essential for cellular function and homeostasis, but only recently it has become
possible to visualize molecular events in vivo. Analysis of RNA motion within the cell nucleus
has been particularly intriguing as they have revealed an unanticipated degree of dynamics
within the organelle [2]. Single-molecule RNA imaging methods have revealed that the
intranuclear and cytoplasmic trafficking occurs largely by energy-independent mechanisms
and is driven by diffusion. RNA molecules undergo constrained diffusion, largely limited by
the spatial constraint imposed by chromatin and chromatin-binding proteins if in the nucleus
as demonstrated in numerous studies. In the cell, transcripts move by a stop-and-go mecha-
nism, where free diffusion is interrupted by random association with cellular structures [3].
The ability and mode of motion of RNAs has implications for how they find nuclear targets on
chromatin or cellular sub-compartments and how macromolecular complexes are assembled
in vivo. Most importantly, the dynamic nature of RNAs is emerging as a means to control
physiological cellular responses and pathways [4]. For example, unexpectedly complicated
nuclear egress and nuclear import of small RNAs is more common than previously
appreciated [5].

Much attention has been focused on noncoding RNAs and their physiological/pathological
implications [6]. This focus in RNA research is ultimately directed toward understanding the
regulation of protein-coding gene networks, but ncRNAs also form well-orchestrated regula-
tory interaction networks [7]. For example, computational prediction of miRNA target sites
suggests a widespread network of miRNA-lncRNA interaction [8]. Others suggest the possi-
bility of widespread interaction networks involving competitive endogenous RNAs (ceRNAs)
where ncRNAs could modulate regulatory RNA by binding and titration of binding sites on
protein coding messengers [9]. Cellular uptake and trafficking of RNA could be wide-
spread [10]. As the number of experiments increases rapidly, and transcriptional units are
better annotated, databases indexing RNA properties and function will become essential tools
to understand physiologic processes in the transcriptome.

1.2. Biological-omic information theory

Much of bioinformaticians sequence analyses focuses on methodologies based on string align-
ment algorithms. However, such approaches fail to discover genomic aspects of systemic
nature regarding dynamics or resilience. An alternative framework is based on alignment-free
methods of genome analysis, where global properties of genomes are investigated [11]. A key
concept of informational analysis is that of probability distributions. A genomic, or in our case
transcriptomic, distribution associates to discrete values defined on transcripts, the number of
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times these values occur in a given transcriptome. The general concept of discrete probability
distribution, called information source, was the starting point of information theory developed
by Shannon [12]. Links between information theory and biology emerged from Shannon’s Ph.
D. thesis, titled “An Algebra for Theoretical Genetics” (1940), where the notion of information
entropy was introduced [13]. For example, distributions of codons have shown characteristic
properties that are linked to biological meanings, such as secondary structure free energy [14].
Other approaches based on the recurrence of genomic elements and on correlation structures
in DNA sequences use mutual information, which plays a central role in the mathematical
analysis of message transmission. Dictionary-based methodologies analyze sequences through
properties of collections of words. Dictionaries are concepts from formal language theory,
probability, and information theory that provide new perspective which may uncover the
physiology of internal transcriptome structures.

2. Methods

We formally define the transcriptome as an information structure, and then construct several
simple models as examples. The most realistic model is used to examine real datasets of
partitioned RNAs for validation of framework.

2.1. Transcriptome information theory structure

RNA sequence is abstractly represented as a string over the nucleotide alphabet R ¼ {A, C, G,
U}. This can be extended to modified nucleotides with an extended alphabet R ffi {A, C, G, U,
N}, such that symbolN represents a modified nucleotide.Wk denotes a set of alphabet letters of
length k, called k-mers andWdenotes the set of all possible nonempty strings over the alphabet
R. Given a transcript string S ¼ s1, s2, … to sn, of length n, S[i, j] with 1 ≤ i ≤ j ≤ n is the
substring of S from position i to position j (included). The length of S is |S|¼ n. Substrings of S
of length k are called k-words or simply words of S. In the following, the entire transcriptome is
denoted by W based on k-mer dictionaries and entropies, which are aimed at defining and
computing informational indexes for representative sets of transcriptomes. We assume that the
complexity of a transcriptome increases with its distance from randomness, as identified by
suitable comparison between transcriptomes of the same length. This framework provides
clues about the appropriate k length to consider for analysis of transcriptome properties.

2.2. Spatial transcriptome information cloud (STIC) model construction

We hypothesized that miRNA localization in cellular compartments is an emergent property
from Brownian motion interactions of a cloud of RNA sequences and RNA-binding proteins
that can be analyzed in W [15]. There k-mer words of miRNA functional size were added to a
dictionary from sliding windows of transcript sequences S. A prediction from this cloud model
is that anomalous diffusion can occur if random-walk transcripts interact with their surround-
ing scaffold as a stochastic semantic cloud, and if the cloud relaxation time is a longer time
frame than transit [16]. We showed that RNAs with sequences similar to the whole
transcriptome exhibit modified or enhanced transport compared to RNA sequences without
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similar sequences [17]. Thus, RNAs were found to partition into different cellular compartments
based on a semantic similarity of word compositions within Wk. We determine the frequency
of all k-mers in the transcriptome as a matrix composed of RNA sequences and their word copy
levels. For each transcript, we count the number of k-mer words in common within Wk or
dictionary as a semantic similarity measure to the transcriptome, and we can also able to
compare such counts to randomizedWk sequence words.

Model assumptions are: (1) RNA diffuses away from point of transcription creating a cloud of
k-mer sequences. (2) All RNAs comprise the transcriptome, and each transcript is affected by
local RNAs with effective interaction windows of some sequence word length k nucleotides
(nt). We assume significant k-mer word size to be 3–22 nt, which is equal to the functional
miRNA size at the high side, and down to below the size of the “core” sequence [18]. (3) The
diffusion rate of individual RNAs depends on degree of (a) sequence similarity and (b) reverse
complementarity of RNAwords at that location in the STIC (Figure 1). (4) Cloud dictionaries
(collection of transcriptome word sets in Wk) change as function of distance from transcriptome
site and cell state. (5) The cloud affects anomalous RNA diffusion that can give rise to an
emergent and patterned behavior in the cell [19].

We model the RNA sequence word content of the transcriptome cloud as a function of distance
from transcription site at the chromosome. RNA molecule diffusion in nuclear compartments
would lead to cytoplasmic and extracellular localization of RNA if the transcript half-life is
greater than its transit time. Calculations at arbitrary transit distances could be determined

Figure 1. K-mer words classified as solvent-accessible or inaccessible. Note that in this framework, k-mer words are
generated from a sliding window and not from a contiguous word segments as could be interpreted by the figures
adjacent to word blocks. Transcriptome is a dictionary of N þ n words and their associated frequencies. Interaction of
transcript with transcriptome affects diffusion from solvent-accessible bases (words). Transcript itself is a part of the
transcriptome.
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from this model with a large set of partial differential equations modeling RNA mobility, but
was described as computationally prohibitive [15] for any realistic sized transcriptome. Each
sequence S would be dynamically modeled with a neighborhood sized number of RNA-RNA
interactions. Instead, we pursue a thermodynamic approach based on the Fokker-Planck
equation to quantify stochastic processes in liquid medium [20]. RNA interactions are assumed
to function over sequence lengths encompassing small single-stranded and solvent-accessible
regions.

Assuming smallest word in the cloud is 3 nt long, corresponding to the lower limit of size for a
seed sequence in miRNA [18]. The upper limit for word size is set at 22 nt, corresponding to the
size of a typical mature miRNA. Again, this is the same as the miRNA response elements (MRE)
size in the simpler related ceRNA hypothesis by Salmena [9]. Instead, we determine the fre-
quency of all words in the transcriptome as a matrix composed of RNA sequences and copy
levels from RNA-seq datasets. For each transcript, count number of words in common with the
cloud dictionary as a similarity measure to the transcriptome (tCount), and also count reverse
complement words (rcCount) for RNA-RNA interactions. These raw counts can be multiplied by
the frequencies of repetitive words inW to yield tWord¼ tCount * tFreq and rcWord¼ rcCount *
rcFreq. As shown by Seffens [17], miRNAs with greater similarity to the transcriptome, i.e.,
greater tCount and tWord, are suggested to diffuse differentially based on spatial partitioning.
In addition, greater intramolecular RNA-RNA interactionwould be expected to hinder diffusion.
This work proposes a general RNA sequence function that combines the influence of similarity
with native (NAM) and reverse complementarity (RCM) measures as a cloud interaction func-
tion: C[W, NAM, RCM], such that cloud interactions increase with RCM, and decrease with
NAM. Transcripts with low C would have “ideal solution” diffusion coefficients and found in
cytoplasmic compartment, and those with greaterCwould be slowed by RNA-RNA interactions
and hence enriched in nuclear or perinuclear compartments.

2.2.1. Accessibility of an RNA sequence word

For each component word of a transcript, determine whether it is expected to be in a single-
stranded and solvent-accessible state (state “A”), or double-stranded or buried within the RNA
molecule and is inaccessible (state “I”). For model calculations and preliminary studies (Model-1
W1 discussed later), we assume all words are accessible in state “A,” and the transcriptome is
uniform within the cell (i.e., ignore distance r from transcription site). Construct a matrix Wk(T,
fA, fI, r) for each word size k, and populate the respective matrix with the component words of
the transcriptome from RNA-seq reads such that S is the actual word sequence, fA is the
frequency or number of accessible words of that sequence, and fI is the frequency or number of
inaccessible words. Matrix Wk then contains information of all transcript sub-sequences and is a
representation of the spatial transcriptome information cloud in some volume elements of the
cell fraction. Let the diffusion coefficient for a transcript be described [24]as DRNA [21]. Then the
effect of interaction of that transcript with the cloud would yield

DRNA ¼ DRNA
ideal � C Wk S, fA, f I, r

� �
, S

� � ¼ DRNA
ideal � RCM þ NAM ð1Þ

where C is the cloud interaction term for molecule RNA exhibiting probabilities of RNA-RNA
interactions as a function of the STIC represented by matrix Wk at some position r in the cell.
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Figure 1. K-mer words classified as solvent-accessible or inaccessible. Note that in this framework, k-mer words are
generated from a sliding window and not from a contiguous word segments as could be interpreted by the figures
adjacent to word blocks. Transcriptome is a dictionary of N þ n words and their associated frequencies. Interaction of
transcript with transcriptome affects diffusion from solvent-accessible bases (words). Transcript itself is a part of the
transcriptome.
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from this model with a large set of partial differential equations modeling RNA mobility, but
was described as computationally prohibitive [15] for any realistic sized transcriptome. Each
sequence S would be dynamically modeled with a neighborhood sized number of RNA-RNA
interactions. Instead, we pursue a thermodynamic approach based on the Fokker-Planck
equation to quantify stochastic processes in liquid medium [20]. RNA interactions are assumed
to function over sequence lengths encompassing small single-stranded and solvent-accessible
regions.
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size in the simpler related ceRNA hypothesis by Salmena [9]. Instead, we determine the fre-
quency of all words in the transcriptome as a matrix composed of RNA sequences and copy
levels from RNA-seq datasets. For each transcript, count number of words in common with the
cloud dictionary as a similarity measure to the transcriptome (tCount), and also count reverse
complement words (rcCount) for RNA-RNA interactions. These raw counts can be multiplied by
the frequencies of repetitive words inW to yield tWord¼ tCount * tFreq and rcWord¼ rcCount *
rcFreq. As shown by Seffens [17], miRNAs with greater similarity to the transcriptome, i.e.,
greater tCount and tWord, are suggested to diffuse differentially based on spatial partitioning.
In addition, greater intramolecular RNA-RNA interactionwould be expected to hinder diffusion.
This work proposes a general RNA sequence function that combines the influence of similarity
with native (NAM) and reverse complementarity (RCM) measures as a cloud interaction func-
tion: C[W, NAM, RCM], such that cloud interactions increase with RCM, and decrease with
NAM. Transcripts with low C would have “ideal solution” diffusion coefficients and found in
cytoplasmic compartment, and those with greaterCwould be slowed by RNA-RNA interactions
and hence enriched in nuclear or perinuclear compartments.

2.2.1. Accessibility of an RNA sequence word

For each component word of a transcript, determine whether it is expected to be in a single-
stranded and solvent-accessible state (state “A”), or double-stranded or buried within the RNA
molecule and is inaccessible (state “I”). For model calculations and preliminary studies (Model-1
W1 discussed later), we assume all words are accessible in state “A,” and the transcriptome is
uniform within the cell (i.e., ignore distance r from transcription site). Construct a matrix Wk(T,
fA, fI, r) for each word size k, and populate the respective matrix with the component words of
the transcriptome from RNA-seq reads such that S is the actual word sequence, fA is the
frequency or number of accessible words of that sequence, and fI is the frequency or number of
inaccessible words. Matrix Wk then contains information of all transcript sub-sequences and is a
representation of the spatial transcriptome information cloud in some volume elements of the
cell fraction. Let the diffusion coefficient for a transcript be described [24]as DRNA [21]. Then the
effect of interaction of that transcript with the cloud would yield

DRNA ¼ DRNA
ideal � C Wk S, fA, f I, r

� �
, S

� � ¼ DRNA
ideal � RCM þ NAM ð1Þ

where C is the cloud interaction term for molecule RNA exhibiting probabilities of RNA-RNA
interactions as a function of the STIC represented by matrix Wk at some position r in the cell.
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For RNA expression data from the whole cell, r is ignored. In experiments from purified nuclei,
r ranges from 0 to the radius of the cell’s nucleus, rN. In experiments derived from the cytosol, r
ranges from rN to the cellular membrane radius rC. Experimental data from extracellular
vesicles will have r > rC and RNA half-life becomes important to consider as a factor. As a first
approximation for the C function, we assume that the deviation from ideal DRNA scales as the
number of reverse complement words (rcCount) in common with transcriptome Wk and is
measured by difference to the number tCount of words in common withWk, which normalizes
for transcript size. We could also compare to ranCount, number of words in common with a
randomized Wk. Putting together, we have

C Wk, S½ � ¼ α rcCount=4k ð2Þ

to normalize number of words, or alternately,

C Wk, S½ � ¼ α rcCount � rcFreq – tCount � tFreq
� � ¼ RCM for α ¼ 1:0 ð3Þ

where α is a scaling factor and is dimensionless. The reverse complement measure (RCM),
which factors rcCount word frequencies by rcFreq, then subtracting the count of words in
common with transcriptome (tCount) by the corresponding tFreq, is one of several possible
measures for correlation to measured compartmentalization of individual transcripts from
RNA-expression datasets. The content of Wk(r) changes as a function of r due to changing
concentrations of transcripts in the cell. Boundary condition on whole cell measurement from
microarray or RNA-seq experiments would be

Wk ¼
ðrC
0
WkðrÞ dr ð4Þ

assuming no export from the cell. If there are no reverse complement words in common
between transcript S and Wk, then C [Wk, S] is zero and the diffusion of that molecule is ideal.
As a first approximation for the C function, we assume that the deviation from ideal DRNA

scales as the number (rcCount) of reverse complement words in common with Wk and is
compared by a difference to the number tCount of words in common with Wk to normalize
for transcript size. We could also compare to ranCount, number of words in common with a
randomized Wk. Reverse complement measure (RCM) factors word frequencies to assess
transcript-cloud interactions that correlate to measured compartmentalization of individual
transcripts [17].

2.2.2. Words that are solvent-accessible

The above model treatment assumed that all RNA sequences are available for reverse comple-
mentarity interactions. RNAs except for miRNAs typically have regions that are solvent-
inaccessible and/or double-stranded, preventing intramolecular interactions [22]. mRNAs
have more secondary structures or intra-strand base pairing than expected by chance [23]. We
have determined the secondary structure of all RefSeq transcripts to predict single-stranded
regions using RNAfold [24], while others have used RNA structure predictors (RNAplfold in
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Refs. [25, 26]) in a pooling predictor using machine learning [27]. Additionally, nucleotide
solvent-accessibility in RNA structures could be estimated by the neural network method of
Singh [22] using models of window size 3 nt, which could be expanded to 5–9 nt windows for k
length. Alternatively, accessible surface area can be calculated by a publically available pro-
gram NACCESS [28] to refine the STIC transcriptome words to those populated from single-
stranded regions only, along with confidence measures. Solvent accessibility estimates for each
transcript word partition the frequency entries in the transcriptome matrix Wk(S, fA, fI, r) by
reducing fA in the amount that fI increases. Shifts of fA to fI could be caused by RNA-binding
factors (RNA or protein) that cover a word in the transcript or the word in the transcriptome,
or indirectly by binding to some other region of the RNA causing a cis-type of structural
alteration leading to solvent inaccessibility (Figure 2). Transcriptome cloud or nebula regula-
tion is introduced here and is proposed to occur as an indirect result of some factor that
changes fA/fI for some word that then alters a different interacting transcript’s diffusion coeffi-
cient. Conversely, fI to fA shifts could be caused by the release of binding factors or conforma-
tional change leading to exposure of the particular word and to nearby target RNAs.
Dictionaries with this dynamic accounting of the transcriptome are labeled T, instead of the
simpler W word matrix.

Figure 2. Words classified as solvent-accessible or -inaccessible in dynamic transitions. Interaction of RNA binding-
proteins and other RNA affects balance of solvent-accessible words in transcriptome and transcript.
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2.2.3. Genome-wide profiling of in vivo RNA structure

Recent transcriptome-wide RNA structure profiling through application of structure-probing
enzymes or chemicals combined with high-throughput sequencing promises in vivo RNA struc-
tural information availability. Resultant datasets provide opportunity to investigate RNA struc-
tural information on global scale for STIC development. The analysis of high-throughput RNA
structure profiling data requires considerable computational effort and currently dataset are not
readily available. StructureFold processes and performs analysis of raw high-throughput RNA
structure profiling data [29], incorporatingwet-bench structural information from chemical probes
and ribonucleases to restrain RNA structure prediction via RNAstructure and ViennaRNA pack-
age algorithms. StructureFold is deployed via the Galaxy platform. Alternatively, structure-seq is a
recent quantitative and high-throughputmethod that provides genome-wide information onRNA
structure with single-nucleotide resolution [30]. The methodology can perform both in vitro and
in vivoRNA structure-function determinations,with insights to RNA regulation of gene expression
and RNA processing. Implementation of structure-seq begins with chemical RNA structure prob-
ing under single-hit kinetics conditions. Modified RNA is then subjected to reverse transcription
using random hexamer primers, then reverse transcription executed until it is blocked by chemi-
cally modified residues. Resultant cDNAs are amplified by adapter-based polymerase chain reac-
tion (PCR) which are subjected to high-throughput sequencing, subsequently allowing retrieval of
structural information on a genome-wide scale. A single structure-seq experiment can provide
information on tens of thousands of RNA structures in a matter of weeks. Ding et al. [31] used
RNAstructure calculated for each of thousands ofmRNAs a positive predictive value (PPV), which
they use to compare relative frequencies of base pairing in vivo constrained RNA structures to in
silico predicted RNA structure. They found that most mRNAs do not fold in vivo as to in silico-
predicted structures, as evident from a broad PPV distribution. Interestingly, mRNAs of cold and
metal ion stress-response genes folded in vivo significantly different from their unconstrained in
silico predictions. These stressors are known to affect RNA structure and thermo-stability like
melting temperature Tm. Instead, genes involved with basic biological functions such as gene
expression, protein maturation or processing, and peptide metabolic processes show little change
in their in vivo-constrained and in silico-predicted RNA secondary structures. Ding speculated
mRNAs related to cell maintenance and showing high PPV may have evolved to resist large
conformational changes in order tomaintain homeostasis, an idea suggesting RNA resilience. This
bias may be detectable in our transcriptome model W. As genome-wide profiling of in vivo RNA
structure datasets becomes easily available [32], the information can be incorporated into the STIC
model by adding custom transform and load tools for each dataset.

2.3. Simplest models of transcriptomes

We consider simplest models of the transcriptome to examine some limits on the model
parameters and functions. Component of a transcriptome are listed in Table 1.

2.3.1. Transcriptome model 0 (W0)

Simplest model considers a spatially uniform transcriptome composed of ribosomes, tRNA,
and a minor number of mRNAs. Here, the distribution of transcripts is assumed uniform and
the transcriptome model lacks spatial elements. Further, consider a transcriptome where
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ribosomes and tRNAs are all “A” for adenosine, and the mRNAs are also all “A.” We can
construct transcriptome model W0 using transcript values found in Table 1 from Seffens [17],
with sizes n and respective abundances. The number of nonunique words (of size k) would be
n – k þ 1 for each transcript. Using sizes and respective abundance values in Table 1 [17], gives
2.8�1010 words, composed of all “A”s. Assume mRNAs are 2 kb “A”s, then there are no
reverse complement interactions, so RCM should be zero, while NAM would be maximal
(RCM and NAM defined in Section 2.2). The diffusion coefficient for these mRNAs would be
ideal since there are no base-pairing interactions within W0 and transcript similarity to the
transcriptome is maximal. Now assume the mRNAs are all “U”s, they now strongly interact
with the majority of W0. RCM becomes 2000�2.8�1010 or 5.6�1013 for each mRNA transcript
(while NAM would be zero). This would be the expected maximal value for RCM with
mRNAs of 2 kb size, yielding diffusion coefficients smaller than ideal values. These RNAs
would exhibit larger intramolecular RNA-RNA interactions, and they do not look (NAM ¼ 0)
and behave (DRNA ≪ DRNA

ideal) as the rest of the transcriptomes.

2.3.2. Transcriptome model 0-R (W0-R)

Now assume that the transcriptome W0 is composed of completely random sequences of A, C,
G, Us-labeled W0-R. How many of the 2.8�1010 words of length k composed of four different
letters would be unique (not identical) in the model? Combination of all possible k-mer words
would be 422 ¼ 1.76�1013 since there are four possible nucleotide letters at each of the k
positions. Since there are about 1000 times more possible combinations than there are k ¼ 22
words, we could assume that all 22-mer words are unique. Smaller values of k will result in
repeats or duplicate words increasing frequency values in Wk. These calculations give an
expected value for RCM based on no biases in the sequences.

2.3.3. Transcriptome model 1 (W1)

The next more realistic model is composed of eight real human RNA transcripts comprising a
simple representation of the transcriptome in a cell (Table 1 and in Ref. [17]). It is assembled

Transcriptome construction

Class Biotype Network system function

ncRNA rRNA Most abundant; constant character

ncRNA tRNA Most frequent; constant character

Protein coding mRNA Act as gene; bigger than coded protein

ncRNA miRNA Block some mRNA; smallest func. RNA

Processed transcripts lncRNA Block or regulate some other RNA

Transcriptome ¼ Σ WBiotype

Notes: Sequence words summed into dictionary over all transcript types.

Table 1. Transcriptome construction from different RNA biotypes. Transcriptome model W1 is a subset of 8 human
rRNA and tRNA types.
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from four of the most prevalent human tRNAs with lengths of n ¼ 71–73 nt, and four of the
major subunits of the eukaryotic ribosome with sizes from n ¼ 121 to 5034 nt, with the total
number of nucleotides N being the sum of the nucleotides in each transcript, or N ¼ 7470 nt.
Then the frequency of words with length k that are contained in each transcript is a subset of
the number of possible k-mer words which is n – k þ 1. In Model-1 labeled as W1, for each
word length from k¼ 3 to 22, word count was calculated along with the sum of the frequencies
of those words extracted from the simple eight RNA transcripts. The intermediate output from
program TIC-generator (for transcriptome information cloud generator, described in Ref. [17])
listed all k-mer words contained in each transcript, together with their frequency of occurrence.
These lists from the eight rRNA and tRNA transcripts were combined, and then duplicate
words resolved to form dictionary Wk

1. With the total possible number of words of length k ¼
4k, the fraction of all the words actually present inWk

1 decreased for increasing word size [17].
It is interesting that the peak in unique and total duplicate (blue diamonds in Ref. [17]) words
is maximal at the same size as the miRNA “seed” sequence as defined in Ref. [18].

2.3.4. Randomized transcriptome of Model-1 (W1-R)

We ran TIC-generator with shuffled-sequence transcripts labeled Model 1-R. Base composition
of Model-1 transcriptome is 1341 “A,” 2320 “C,” 2519 “G,” and 1291 “T,” or 18% “A,” 31% “C,”
34% “G,” and 17% “T.” Using a random letter generator, we assembled four random
transcriptomes with the same transcript length for the eight sequences and equal Model-1 base
composition. We examined mostly word lengths k of 7 and 8 in preliminary studies shown
below.

2.4. Real model validation

As a validation of this transcriptome model framework, we utilized the simple transcriptome
model version (simple model W1) that used real highly expressed genes, and for comparison
separately, randomized sequences of that transcriptome (W1-R). This simple realistic model
is composed of only eight real human RNA transcripts as a basic representation of the
transcriptome in a cell. Experimental validation of the basic model transcriptome for k-mers
considered various trial functions of semantic word similarity and reverse complementarity,
which were calculated using published data sets. For example, trial functions evaluated include
tWord for transcriptome words in common with target multiplied by respective word frequency
in Wk. A total of seven RNA studies, with data sources grouped into high and low study
parameter sets, were statistically analyzed by mean values and t-test calculated as two-tail t-test
under two-sample equal variance assumption models (Table 2). Validation for the STIC model
examined various functions of reverse complementarity using these published data sets. Here, we
assume that appearance in exosomes or microparticles requires greater mobility and hence larger
diffusion coefficients than cytoplasmic or nuclear RNAs [17]. Several functions tested include
tWord for transcriptome words in common with target multiplied by word frequency in the
transcriptome, rcWord (reverse complement k-mer words in common times frequency), RCM ¼
rcWord – tWord, reverse complement count (RCC) measure ¼ tCount – rcCount, Z-RCC as a z-
score of RCC compared to four randomized transcriptomes Model 1-R, Z-RCM as the z-score of
RCM, RCC-Ran which subtracts the value computed from 1-R and finally (RCC-Ran)/Len which
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is normalized for sequence length. The first five studies examined miRNA, while the Chen [33]
and Friedel [34] studies measured mRNAs. Description of data sources that were grouped into
high and low study parameter sets, with mean values and t-tests calculated detailed in sections
below.

2.4.1. Model 1 validation with miRNA from exosome datasets

The Villarroya-Beltri [35] work reports on microarray datasets of exosome and cellular frac-
tions from activated and resting human T lymphocyte cultures. They differentially assessed
whether RNAs are specifically enriched within exosomes by performing microarray analysis of
activation-induced variations in mRNA and miRNA profiles from primary T lymphoblast and
their secreted exosomes. Data found in their supplementary data and also data publicly
available at gene expression omnibus as Gene Expression Omnibus (GEO) Series accession
number GSE50972 were used for Table 2. They showed that for most cases, miRNAs modu-
lated upon activation are differentially found in cells and exosomes for either upregulated or
downregulated miRNAs. This suggests that mRNA andmiRNA loading into exosomes is not a
simple passive process. Specific miRNAs were more highly expressed in exosomes than found
in the cells, and in most cases this difference is preserved under cellular resting or activated
conditions. Similarly, most miRNAs that are preferentially found in cells than in exosomes also
keep this tendency regardless of the activation state of the cell. As such, Villarroya-Beltri
classified some miRNAs as specifically sorted into exosomes (labeled EXOmiRNAs), whereas
others are specifically retained in cells (as CLmiRNAs). We calculated tCount and rcCount as a
count (Table 2 in Ref. [17]), and tWord and rcWord, the latter which factor the expression level
of that word. Other measures compared counts and words to a randomized transcriptome
(RAN). We used a word size k ¼ 7 roughly equal to the miRNA seed sequence length [17].
Values of rcWord (mean 10.31) were lower than tWord (mean 12.45), and hence RCM and RCC
were more negative for exosomes compared to cytoplasmic miRNAs. This supports the STIC
model since exosome transcripts must diffuse further than cytoplasmic (CL) RNA, so avoid
reverse complementarity. In summary, all trial measures calculated from this dataset showed
significant support for the transcriptome model except for Z-RCM.

2.4.2. Model 1 validation with nuclear-enriched miRNAs

Park et al. [36] study compared microarray analysis of cytoplasmic and in this case nuclear
fractions of hct116 colon cancer cells. They identified various miRNAs that exist in isolated
nuclei from miRNA profiles correlated between cytoplasmic and nuclear fractions from multi-
ple microarray analyses. Nuclear confinement of the mature form of miRNAs was validated by
controlling reverse transcriptase RT-PCR conditions excluding the presence of precipitate
forms of miRNA (e.g., as pri-miRNA or pre-miRNA). They found that elevated levels of
representative miRNAs in purified nuclei support the idea that significant numbers of mature
miRNAs survive not only in the cytoplasm but also in the nucleus. We sorted their data byN/C
ratio and *partitioned these data into two groups: N/C > 0.47, which was nuclear-enriched (45
samples), and N/C < 0.47, which was preferentially found in the cytoplasm (33 samples). We
found that tCount was 4.02 for nuclear-enriched, and 5.00 for cytoplasmic, with a t-test p-value
of 0.116 between the groups; while tWord was 4.73 for nuclear and 10.58 for cytoplasmic
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the number of possible k-mer words which is n – k þ 1. In Model-1 labeled as W1, for each
word length from k¼ 3 to 22, word count was calculated along with the sum of the frequencies
of those words extracted from the simple eight RNA transcripts. The intermediate output from
program TIC-generator (for transcriptome information cloud generator, described in Ref. [17])
listed all k-mer words contained in each transcript, together with their frequency of occurrence.
These lists from the eight rRNA and tRNA transcripts were combined, and then duplicate
words resolved to form dictionary Wk

1. With the total possible number of words of length k ¼
4k, the fraction of all the words actually present inWk

1 decreased for increasing word size [17].
It is interesting that the peak in unique and total duplicate (blue diamonds in Ref. [17]) words
is maximal at the same size as the miRNA “seed” sequence as defined in Ref. [18].

2.3.4. Randomized transcriptome of Model-1 (W1-R)

We ran TIC-generator with shuffled-sequence transcripts labeled Model 1-R. Base composition
of Model-1 transcriptome is 1341 “A,” 2320 “C,” 2519 “G,” and 1291 “T,” or 18% “A,” 31% “C,”
34% “G,” and 17% “T.” Using a random letter generator, we assembled four random
transcriptomes with the same transcript length for the eight sequences and equal Model-1 base
composition. We examined mostly word lengths k of 7 and 8 in preliminary studies shown
below.

2.4. Real model validation

As a validation of this transcriptome model framework, we utilized the simple transcriptome
model version (simple model W1) that used real highly expressed genes, and for comparison
separately, randomized sequences of that transcriptome (W1-R). This simple realistic model
is composed of only eight real human RNA transcripts as a basic representation of the
transcriptome in a cell. Experimental validation of the basic model transcriptome for k-mers
considered various trial functions of semantic word similarity and reverse complementarity,
which were calculated using published data sets. For example, trial functions evaluated include
tWord for transcriptome words in common with target multiplied by respective word frequency
in Wk. A total of seven RNA studies, with data sources grouped into high and low study
parameter sets, were statistically analyzed by mean values and t-test calculated as two-tail t-test
under two-sample equal variance assumption models (Table 2). Validation for the STIC model
examined various functions of reverse complementarity using these published data sets. Here, we
assume that appearance in exosomes or microparticles requires greater mobility and hence larger
diffusion coefficients than cytoplasmic or nuclear RNAs [17]. Several functions tested include
tWord for transcriptome words in common with target multiplied by word frequency in the
transcriptome, rcWord (reverse complement k-mer words in common times frequency), RCM ¼
rcWord – tWord, reverse complement count (RCC) measure ¼ tCount – rcCount, Z-RCC as a z-
score of RCC compared to four randomized transcriptomes Model 1-R, Z-RCM as the z-score of
RCM, RCC-Ran which subtracts the value computed from 1-R and finally (RCC-Ran)/Len which
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is normalized for sequence length. The first five studies examined miRNA, while the Chen [33]
and Friedel [34] studies measured mRNAs. Description of data sources that were grouped into
high and low study parameter sets, with mean values and t-tests calculated detailed in sections
below.

2.4.1. Model 1 validation with miRNA from exosome datasets

The Villarroya-Beltri [35] work reports on microarray datasets of exosome and cellular frac-
tions from activated and resting human T lymphocyte cultures. They differentially assessed
whether RNAs are specifically enriched within exosomes by performing microarray analysis of
activation-induced variations in mRNA and miRNA profiles from primary T lymphoblast and
their secreted exosomes. Data found in their supplementary data and also data publicly
available at gene expression omnibus as Gene Expression Omnibus (GEO) Series accession
number GSE50972 were used for Table 2. They showed that for most cases, miRNAs modu-
lated upon activation are differentially found in cells and exosomes for either upregulated or
downregulated miRNAs. This suggests that mRNA andmiRNA loading into exosomes is not a
simple passive process. Specific miRNAs were more highly expressed in exosomes than found
in the cells, and in most cases this difference is preserved under cellular resting or activated
conditions. Similarly, most miRNAs that are preferentially found in cells than in exosomes also
keep this tendency regardless of the activation state of the cell. As such, Villarroya-Beltri
classified some miRNAs as specifically sorted into exosomes (labeled EXOmiRNAs), whereas
others are specifically retained in cells (as CLmiRNAs). We calculated tCount and rcCount as a
count (Table 2 in Ref. [17]), and tWord and rcWord, the latter which factor the expression level
of that word. Other measures compared counts and words to a randomized transcriptome
(RAN). We used a word size k ¼ 7 roughly equal to the miRNA seed sequence length [17].
Values of rcWord (mean 10.31) were lower than tWord (mean 12.45), and hence RCM and RCC
were more negative for exosomes compared to cytoplasmic miRNAs. This supports the STIC
model since exosome transcripts must diffuse further than cytoplasmic (CL) RNA, so avoid
reverse complementarity. In summary, all trial measures calculated from this dataset showed
significant support for the transcriptome model except for Z-RCM.

2.4.2. Model 1 validation with nuclear-enriched miRNAs

Park et al. [36] study compared microarray analysis of cytoplasmic and in this case nuclear
fractions of hct116 colon cancer cells. They identified various miRNAs that exist in isolated
nuclei from miRNA profiles correlated between cytoplasmic and nuclear fractions from multi-
ple microarray analyses. Nuclear confinement of the mature form of miRNAs was validated by
controlling reverse transcriptase RT-PCR conditions excluding the presence of precipitate
forms of miRNA (e.g., as pri-miRNA or pre-miRNA). They found that elevated levels of
representative miRNAs in purified nuclei support the idea that significant numbers of mature
miRNAs survive not only in the cytoplasm but also in the nucleus. We sorted their data byN/C
ratio and *partitioned these data into two groups: N/C > 0.47, which was nuclear-enriched (45
samples), and N/C < 0.47, which was preferentially found in the cytoplasm (33 samples). We
found that tCount was 4.02 for nuclear-enriched, and 5.00 for cytoplasmic, with a t-test p-value
of 0.116 between the groups; while tWord was 4.73 for nuclear and 10.58 for cytoplasmic
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miRNAs, with a significant t-test p-value of 0.023 between nuclear and cytoplasmic groups. We
also found nuclear-enriched miRNAs have higher rcWord values compared to cytoplasmic
miRNA (p-value ¼ 0.021 in Table 2), suggesting those transcripts have greater potential to
interact with other transcriptome RNAs and hence may have lower than expected diffusion
coefficients. The other evaluated measures did not show significance between groups.

2.4.3. Model 1 validation with additional RNA studies

Huang et al. [37] study utilized RNA-seq with exosomes from human plasma. We found that
the top 100 abundant miRNAs in exosomes had tCount (mean 4.80) and tWord (mean 6.72)
measures compared to those lower 100 with low “rcmm” reads (mean 4.64 and 7.41, respec-
tively). In support of the STIC model, exosome transcripts have more similarity to the simple
model transcriptome. Exosome abundant miRNAs had negative RCM (mean �0.87) and RCC
(mean �0.27) measures compared to those with low rcmm reads (mean 1.37 and 0.55, respec-
tively). The most significant trial function was RCM (p-value ¼ 0.002) followed by rcWord (p-
value ¼ 0.02) measure. From these data, we find similarity that exosome transcripts have less
reverse complementarity to the simple Model-1 transcriptome. Again, these results are
supported by Cheng et al. [38] study of exosomes in human blood. From 50 most abundant
miRNAs in exosome samples labeled “Plasma UC Exo,” we find mean tCount and tWord

Source experiment N tWord rcWord RCM RCC Z-RCC Z-RCM RCC-Ran (RCC-Ran)/Len

Villarroya-Beltri

EXO-CL resting 75 4�10�7** 2�10�5** 0.08* 0.023** 0.029** 0.603 0.04** 0.038**

EXO-CL activated 67 4�10�7** 1�10�5** 0.206 0.008 ** 0.033** 0.503 0.032** 0.028**

Park paper

N/C > 0.471 nuclear 43 0.024** 0.021** 0.62 0.76 0.77 0.31 0.41 0.42

Huang paper

Top-low rcmm 100 0.522 0.02** 0.002 ** 0.042 ** 0.83 0.16 0.078* 0.072*

Cheng paper

Top-low 50 0.128 0.002 ** 0.035 ** 0.002 ** 0.062* 0.25 0.132 nc

Guduric-Fuchs paper

Ratio EV/cell top-low 10 0.093* 0.39 0.3 0.075* 0.046** 0.178 0.03** nc

EV RPMM top-low 10 0.79 0.973 0.736 0.96 0.268 0.816 0.306 nc

Chen paper

Perinuclear-cell 6 0.62 0.76 0.24 0.14 0.15 0.18 0.076* 0.095*

Friedel

mRNA half-life 15 0.017** 0.025** 0.86 nc nc 0.44 nc nc

Notes: Double-asterisk cells have significance below 0.05, while single-asterisk cells have significance below 0.10 but above
0.05. Cells with “nc” were not calculated from randomized transcriptome.

Table 2. t-Tests of case studies with STIC model parameters.
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values of 4.56 and 6.00 compared to 5.58 and 8.80, respectively, for low abundance transcripts.
This set of exosome miRNAs had RCM and RCC values of �1.54 and 3.8 compared to 0.36 and
5.8 for low abundance transcripts, again supporting the STIC model. Several of the trial
functions in Table 2 were significant measures for data sets in that study.

Pursuing in-depth understanding of the mechanism supporting selective exportation of
miRNAs to extracellular vesicles (EVs), Guduric-Fuchs [39] employed next generation
sequencing to discriminate global expression patterns of small RNAs in HEK293T cells and
the EVs that they released. Enrichment of overexpressed miRNA in EVs was measured by RT-
qPCR in HEK293T cells, mesenchymal stem cells, macrophages, and immune cells. We sorted
data from Guduric-Fuchs by EV/cell ratio, then compared the top 10 (exosome-enriched) and
bottom (cytoplasmic enriched) miRNAs by evaluating the measures listed in Table 2. Only
trial functions Z-RCC and RCC-RAN were significant from this dataset. Overall from using
EV/cell in various measures examined across the studies, tWord and tCount (from Ref. [17]),
along with their difference (tW–tC), have values that progress from lower for nuclear, higher
for cytoplasmic, and highest for exosomal miRNAs. Therefore, we consider under transitivity,
EXO > CL > NUC for these transcriptome measures of similarity. This supports the notion that
miRNAs with sequence similarity to the overall transcriptome can random-walk furthest from
their points of transcription if the secretion mechanism requires a great distance to travel.
These conclusions on trial functions are most significant with the tCount measure, with a p-
value close to zero for the Villarroya-Beltri study, and 0.016 for the Guduric-Fuchs study, while
the Park study showed little difference (p-value ¼ 0.122) for tCount between nuclear and
cytoplasmic enrichment.

2.4.4. Word count normalization from RNA-seq datasets

Normalization is a crucial step in the analysis of RNA-seq data and has a strong impact on the
detection of differentially expressed genes sought to validate the STIC model. Several normal-
ization strategies have been proposed to correct for between-sample distributional differences
in read counts, such as differences in total counts (i.e., sequencing depths), and within-sample
gene-specific effects, such as gene length or GC-content effects [40]. Global-scaling normaliza-
tion adjusts gene-level counts by a single factor per sample, such as the per-sample total read
count, or reads per kilobase of exon model per million mapped reads (RPKM), or some
housekeeping gene count. Statistical corrections by a quantile per-sample count distribution
or other robust summaries obtained by relating each sample to a reference sample (e.g.,
trimmed mean of M values (TMM) and methods of Anders and Huber [41]). Although there
have been efforts to systematically compare normalization methods [42], this important aspect
of RNA-seq analysis is still not fully resolved. When data arise from complex experiments as in
Section 2 above, involving cell fractionation, low-input RNA or different batches and read
lengths, there may be more to correct for than differences in sequencing depth, referred to as
unknown nuisance technical variation error. One methodology correction is the addition of
spike-in controls within the normalization procedure [43]. Control designs have been success-
fully employed in microarray normalization, for miRNA and mRNA arrays [44]. Negative
controls in the normalization procedure test the assumption that the majority of genes are not
differentially expressed between study conditions. This assumption can be violated when a
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miRNAs, with a significant t-test p-value of 0.023 between nuclear and cytoplasmic groups. We
also found nuclear-enriched miRNAs have higher rcWord values compared to cytoplasmic
miRNA (p-value ¼ 0.021 in Table 2), suggesting those transcripts have greater potential to
interact with other transcriptome RNAs and hence may have lower than expected diffusion
coefficients. The other evaluated measures did not show significance between groups.

2.4.3. Model 1 validation with additional RNA studies

Huang et al. [37] study utilized RNA-seq with exosomes from human plasma. We found that
the top 100 abundant miRNAs in exosomes had tCount (mean 4.80) and tWord (mean 6.72)
measures compared to those lower 100 with low “rcmm” reads (mean 4.64 and 7.41, respec-
tively). In support of the STIC model, exosome transcripts have more similarity to the simple
model transcriptome. Exosome abundant miRNAs had negative RCM (mean �0.87) and RCC
(mean �0.27) measures compared to those with low rcmm reads (mean 1.37 and 0.55, respec-
tively). The most significant trial function was RCM (p-value ¼ 0.002) followed by rcWord (p-
value ¼ 0.02) measure. From these data, we find similarity that exosome transcripts have less
reverse complementarity to the simple Model-1 transcriptome. Again, these results are
supported by Cheng et al. [38] study of exosomes in human blood. From 50 most abundant
miRNAs in exosome samples labeled “Plasma UC Exo,” we find mean tCount and tWord

Source experiment N tWord rcWord RCM RCC Z-RCC Z-RCM RCC-Ran (RCC-Ran)/Len

Villarroya-Beltri

EXO-CL resting 75 4�10�7** 2�10�5** 0.08* 0.023** 0.029** 0.603 0.04** 0.038**

EXO-CL activated 67 4�10�7** 1�10�5** 0.206 0.008 ** 0.033** 0.503 0.032** 0.028**

Park paper

N/C > 0.471 nuclear 43 0.024** 0.021** 0.62 0.76 0.77 0.31 0.41 0.42

Huang paper

Top-low rcmm 100 0.522 0.02** 0.002 ** 0.042 ** 0.83 0.16 0.078* 0.072*

Cheng paper

Top-low 50 0.128 0.002 ** 0.035 ** 0.002 ** 0.062* 0.25 0.132 nc

Guduric-Fuchs paper

Ratio EV/cell top-low 10 0.093* 0.39 0.3 0.075* 0.046** 0.178 0.03** nc

EV RPMM top-low 10 0.79 0.973 0.736 0.96 0.268 0.816 0.306 nc

Chen paper

Perinuclear-cell 6 0.62 0.76 0.24 0.14 0.15 0.18 0.076* 0.095*

Friedel

mRNA half-life 15 0.017** 0.025** 0.86 nc nc 0.44 nc nc

Notes: Double-asterisk cells have significance below 0.05, while single-asterisk cells have significance below 0.10 but above
0.05. Cells with “nc” were not calculated from randomized transcriptome.

Table 2. t-Tests of case studies with STIC model parameters.
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values of 4.56 and 6.00 compared to 5.58 and 8.80, respectively, for low abundance transcripts.
This set of exosome miRNAs had RCM and RCC values of �1.54 and 3.8 compared to 0.36 and
5.8 for low abundance transcripts, again supporting the STIC model. Several of the trial
functions in Table 2 were significant measures for data sets in that study.

Pursuing in-depth understanding of the mechanism supporting selective exportation of
miRNAs to extracellular vesicles (EVs), Guduric-Fuchs [39] employed next generation
sequencing to discriminate global expression patterns of small RNAs in HEK293T cells and
the EVs that they released. Enrichment of overexpressed miRNA in EVs was measured by RT-
qPCR in HEK293T cells, mesenchymal stem cells, macrophages, and immune cells. We sorted
data from Guduric-Fuchs by EV/cell ratio, then compared the top 10 (exosome-enriched) and
bottom (cytoplasmic enriched) miRNAs by evaluating the measures listed in Table 2. Only
trial functions Z-RCC and RCC-RAN were significant from this dataset. Overall from using
EV/cell in various measures examined across the studies, tWord and tCount (from Ref. [17]),
along with their difference (tW–tC), have values that progress from lower for nuclear, higher
for cytoplasmic, and highest for exosomal miRNAs. Therefore, we consider under transitivity,
EXO > CL > NUC for these transcriptome measures of similarity. This supports the notion that
miRNAs with sequence similarity to the overall transcriptome can random-walk furthest from
their points of transcription if the secretion mechanism requires a great distance to travel.
These conclusions on trial functions are most significant with the tCount measure, with a p-
value close to zero for the Villarroya-Beltri study, and 0.016 for the Guduric-Fuchs study, while
the Park study showed little difference (p-value ¼ 0.122) for tCount between nuclear and
cytoplasmic enrichment.

2.4.4. Word count normalization from RNA-seq datasets

Normalization is a crucial step in the analysis of RNA-seq data and has a strong impact on the
detection of differentially expressed genes sought to validate the STIC model. Several normal-
ization strategies have been proposed to correct for between-sample distributional differences
in read counts, such as differences in total counts (i.e., sequencing depths), and within-sample
gene-specific effects, such as gene length or GC-content effects [40]. Global-scaling normaliza-
tion adjusts gene-level counts by a single factor per sample, such as the per-sample total read
count, or reads per kilobase of exon model per million mapped reads (RPKM), or some
housekeeping gene count. Statistical corrections by a quantile per-sample count distribution
or other robust summaries obtained by relating each sample to a reference sample (e.g.,
trimmed mean of M values (TMM) and methods of Anders and Huber [41]). Although there
have been efforts to systematically compare normalization methods [42], this important aspect
of RNA-seq analysis is still not fully resolved. When data arise from complex experiments as in
Section 2 above, involving cell fractionation, low-input RNA or different batches and read
lengths, there may be more to correct for than differences in sequencing depth, referred to as
unknown nuisance technical variation error. One methodology correction is the addition of
spike-in controls within the normalization procedure [43]. Control designs have been success-
fully employed in microarray normalization, for miRNA and mRNA arrays [44]. Negative
controls in the normalization procedure test the assumption that the majority of genes are not
differentially expressed between study conditions. This assumption can be violated when a
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global shift in expression occurs between conditions, such that control-based normalization
may be necessary for technical variation, and a global mean read for global differences in RNA
levels.

3. Spatial and temporal localization

We follow with a description of possible experimental data sets for populating transcriptome
model in W. RNA-seq data sets would be the preferred source for fine structure of word
contents, but microarray expression data could also be used for overall population of W.

3.1. Spatial localization by RNA imaging

The only method that provides insight into both the level and localization in single cells is in
situ hybridization (ISH), which has increased considerably in importance in RNA research.
ISH along with multiplex RNA profiling (MERFISH) can be used to measure the degree of
associations among transcripts. Numerous RNA species have been identified, counted, and
localized in single cells using MERFISH, a single-molecule imaging approach that uses combi-
natorial labeling and sequential imaging with an encoding scheme capable of detection and/or
correction of errors. This multiplexed measurement of individual RNAs can be used to mea-
sure the gene expression profile and noise, along with covariation in expression among differ-
ent genes, and spatial distribution of RNAs within single cells.

3.1.1. Localization of small RNAs

For miRNAs, ISH is exceptionally challenging because of miRNA features such as small size,
sequence similarity among various miRNA family members, and low tissue-specific or devel-
opment-specific expression levels. Standard ISH protocols can be modified to improve miRNA
detection [45]. Locked nucleic acid (LNA/DNA) probes have great utility in miRNA detection
because of short hybridization time, high efficiency, discriminatory power, and high melting
temperature of the miRNA/probe complex [46]. Minimal length of LNA/DNA probes was
found to be 12 nt with probes usually containing 30% LNA nucleotides [46]. A mixture of 20-
OMe RNA and LNA modifications in a 2:1 ratio resulted in improved specificity and stability
of the probe/RNA duplex in comparison to LNA/DNA probes [47]. Experiment specificity was
found to be further improved by lengthening the probe length to 19 nt [48].

3.1.2. Localization by MERFISH

Chen et al. [33] used array-synthesized oligopools as templates to make encoding probes in the
MERFISH protocol. An oligopaint approach developed by Beliveau et al. [49] can generate a
large number of oligonucleotide probes to label chromosome DNA. Inspired by this approach,
Chen et al. [33] designed a two-step labeling scheme to encode and read out cellular RNAs.
They labeled a target set of cellular RNAs with a set of encoding probes, each probe compris-
ing a RNA targeting sequence and two flanking readout sequences. Four readout sequences
were assigned to each target RNA species based on error-correction optimized code words.
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They identified these readout sequences with complementary FISH probes via rounds of
hybridization and imaging; each round using a different readout probe. To increase the sig-
nal-to-background ratio, each cellular RNA is labeled with �192 encoding probes.

3.2. RNA diffusion

Brownian effects are ubiquitous in numerous examples of soft condensed matter physics [20]
in which the system can be modeled as a set of interacting degrees of freedom in contact with a
heat reservoir. Brownian motion plays an important role when one infers macroscopic behav-
iors frommesoscopic levels of description, frequently a desire in the study of complex systems.
Dynamics at the mesoscopic level is governed by a set of Langevin processes or equivalently
by the corresponding N-particle Fokker–Planck equation. This scheme applies nonequilibrium
thermodynamics to derive the kinetic equations describing the evolution of an N-particle
probability distribution function [20]. One then considers a system of N Brownian particles
diluted in a solvent, which acts as a thermal reservoir. Particle velocities are then modeled as
internal thermodynamic variables and permit an analysis in the phase space of the Brownian
particles. A local equilibrium hypothesis constrains the phase space level and from it one
derives the thermodynamic entropy balance equation. Entropy production accounts for irre-
versible processes taking place in the phase space, then quantifying fluxes and forces can be
done in a similar manner as in the thermodynamics of irreversible processes [20]. A general
thermodynamic treatment of systems of N interacting Brownian motion particles as described
by Fokker-Planck equations is detailed by Savel’ev et al. [16].

4. Resilience as a systems biology measure from transcriptome model

Development of a resilience measure from transcriptome RNAs could improve basic knowl-
edge of the transcriptome and responses to stress. Transcriptome size and overall variation
have been documented across cell cycle stages, tissue types, developmental stages, diurnal
cycles, sexes, and environment [50]. Despite the ubiquity of transcriptome size variation, its
potential to introduce systematic bias into expression profiling has been largely overlooked
and this study uncovers responses of the transcriptome to stress.

4.1. Formalization of metric for resilience in biological systems using STIC metrics

Insight into structural determinants of robustness and resilience can guide the understanding
of systems that go through transitions. Systems engineering research has developed method-
ologies to measure the functionality and complexity of engineered systems for designing and
assessing system resilience. While system functions, resilience, functionality, and complexity
are widely used concepts in systems engineering, there is significant diversity in definitions
and no unified approach to measurement in the systems biology area [51]. One method for
measuring impacts on functionality in dynamic engineered systems is based on changes in
kinetic energy [52]. This metric can be applied at particular levels of abstraction and system
scales, consistent with the established multiscale nature of biological systems.
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global shift in expression occurs between conditions, such that control-based normalization
may be necessary for technical variation, and a global mean read for global differences in RNA
levels.
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contents, but microarray expression data could also be used for overall population of W.
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opment-specific expression levels. Standard ISH protocols can be modified to improve miRNA
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temperature of the miRNA/probe complex [46]. Minimal length of LNA/DNA probes was
found to be 12 nt with probes usually containing 30% LNA nucleotides [46]. A mixture of 20-
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of the probe/RNA duplex in comparison to LNA/DNA probes [47]. Experiment specificity was
found to be further improved by lengthening the probe length to 19 nt [48].
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Chen et al. [33] used array-synthesized oligopools as templates to make encoding probes in the
MERFISH protocol. An oligopaint approach developed by Beliveau et al. [49] can generate a
large number of oligonucleotide probes to label chromosome DNA. Inspired by this approach,
Chen et al. [33] designed a two-step labeling scheme to encode and read out cellular RNAs.
They labeled a target set of cellular RNAs with a set of encoding probes, each probe compris-
ing a RNA targeting sequence and two flanking readout sequences. Four readout sequences
were assigned to each target RNA species based on error-correction optimized code words.
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nal-to-background ratio, each cellular RNA is labeled with �192 encoding probes.
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Brownian effects are ubiquitous in numerous examples of soft condensed matter physics [20]
in which the system can be modeled as a set of interacting degrees of freedom in contact with a
heat reservoir. Brownian motion plays an important role when one infers macroscopic behav-
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thermodynamics to derive the kinetic equations describing the evolution of an N-particle
probability distribution function [20]. One then considers a system of N Brownian particles
diluted in a solvent, which acts as a thermal reservoir. Particle velocities are then modeled as
internal thermodynamic variables and permit an analysis in the phase space of the Brownian
particles. A local equilibrium hypothesis constrains the phase space level and from it one
derives the thermodynamic entropy balance equation. Entropy production accounts for irre-
versible processes taking place in the phase space, then quantifying fluxes and forces can be
done in a similar manner as in the thermodynamics of irreversible processes [20]. A general
thermodynamic treatment of systems of N interacting Brownian motion particles as described
by Fokker-Planck equations is detailed by Savel’ev et al. [16].

4. Resilience as a systems biology measure from transcriptome model

Development of a resilience measure from transcriptome RNAs could improve basic knowl-
edge of the transcriptome and responses to stress. Transcriptome size and overall variation
have been documented across cell cycle stages, tissue types, developmental stages, diurnal
cycles, sexes, and environment [50]. Despite the ubiquity of transcriptome size variation, its
potential to introduce systematic bias into expression profiling has been largely overlooked
and this study uncovers responses of the transcriptome to stress.

4.1. Formalization of metric for resilience in biological systems using STIC metrics

Insight into structural determinants of robustness and resilience can guide the understanding
of systems that go through transitions. Systems engineering research has developed method-
ologies to measure the functionality and complexity of engineered systems for designing and
assessing system resilience. While system functions, resilience, functionality, and complexity
are widely used concepts in systems engineering, there is significant diversity in definitions
and no unified approach to measurement in the systems biology area [51]. One method for
measuring impacts on functionality in dynamic engineered systems is based on changes in
kinetic energy [52]. This metric can be applied at particular levels of abstraction and system
scales, consistent with the established multiscale nature of biological systems.
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4.2. Measuring complexity

A difficulty in complexity theory is the lack of a clear definition for complexity, particularly
one that is measurable [53]. Underlying cause for this lack of a unified complexity definition is
that there are numerous conceptual types of complexity. The first formal treatment of com-
plexity focused on algorithmic complexity, which reflects the computation requirements for a
mathematical process [54]. Senge [55] and Sterman [56] expand the scope of definition to
include dynamic complexity, which is primarily characterized by difficult-to-discern and
hard-to-measure cause-effect relations. A recent workable definition is that of thermodynamic
depth, which essentially asserts that complexity is a “measure of how hard it is to put something
together” [57]. Several variations on this approach share the commonality that complexity
should disappear for both ordered and purely stochastic systems [58]. Additionally, Bar-
Yam [59] defined complexity as the length of the shortest string that can represent the properties
of a physical system. This string could be the result of measurements and observations over time.

An energy-based metric was proposed by Chaisson [60] measuring the energy rate density,
where Φm is energy rate density, E is energy flow through a system, τ is the time frame, and m
is system mass. Chaisson obtains results that correlate well with other notions of complexity,
and below we add our proposed relation from this transcriptome model framework

Φm ¼ E=τm or which we propose is : αðΣSNAMþ ΣSRCMÞ=N ð5Þ

A practical difficulty in using the Φm metric is determining the appropriate mass and energy.
In measuring theΦm of a transcriptome, we can use the mass of RNA production and the total
energy processed by the system. Energy in this framework could be the total sum of all
possible RNA-RNA interactions, which is just the count of all NAM and RCM in W as a sum
of overall transcript sequences S. However, the total energy of a transcriptome does not flow
just through its cell, but also exported to the extracellular space and captured from that
external source of transcripts, the mass of which is difficult to measure.

While higher functionality can be associated with increased resiliency and robustness, the
concepts are not synonymous. As defined by the INCOSE Resilient Systems Working Group,
“Resilience is the capability of a system with specific characteristics before, during, and after a
disruption to absorb the disruption, recover to an acceptable level of performance, and sustain
that level for an acceptable period of time” [61]. Robustness is the ability of a system to reject
disturbances without altering its state. A system is robust when it can continue functioning in
the presence of internal and external challenges without fundamental changes to the original
system. In relation to previous section on energy availability, robustness is the ability for a
system to retain reachable states in the event of falling available energy.

4.3. Framework for measuring resilience

Instead, complexity in the presented framework can be derived from properties of Wor T as in
Figure 3. Consider a transcriptome from a cell type alpha to be represented as Tα, such that it is
the sum of all RNAs, including mRNA, miRNA, lncRNA, and rRNAwithin the cell (Table 1).
This set is the result of transcripts produced from the cellular DNA, Tα

0, transcripts captured
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from the extracellular space (EC) in the form of microparticles and exosomes TEC
IN, and

depletion as microparticle or exosome export to the extracellular space with Tα
OUT. Or,

Tα ¼ T0
α þ TIN

EC � TOUT
α ð6Þ

with

Tα
OUT ¼ Tα �F½S, RC, n� ≈Tα � ½a � f SðSÞ=ðf RCðS,RCÞ � nÞ� ð7Þ

where F is a filter function with parameters S (transcript sequence), RC (reverse complement of
transcript sequence), n sequence length of S, and “a” is a fitting parameter with suitable dimen-
sions, derived from:F αNAM/(RCM * n) proportionality. Thus the extracellular pool is composed
of transcripts with greater similarity S, and less reverse complementarity RC to the transcriptome
of origin and also have smaller size n. The filter functions fS(S) and fRC(S,RC) operate on sequences
S and RC, and essentially is a semantic selection filter on transcripts by affecting diffusion. We
propose that resilience of the cell is proportional to size of the transcriptome filter F, then
resilience α |F|, where |F| ¼ |fS| þ |fRC|, or normalized for transcriptome size,

Resilience ¼ ðjf Sj þ jf RCjÞ=N ð8Þ

such that |fS| is sum of all similarity matches, |fRC| is sum of all reverse complement interac-
tions, and N is the total nucleotide size of the transcriptome.

Figure 3. Framework for deriving transcriptome interactions and resilience. Data source is from RNA expression exper-
iments using RNA-seq or microarray values, or randomized sets for controls. From input sets, the aligned gene ID and
frequency of the extracted words are populated into a dictionary. Gene ID is used to calculate solvent-accessible (A) and
inaccessible (I) word probabilities from full length transcripts in silico. The dictionary can be queried for any sequence S to
find probability distribution of S in the dictionary. Changes in the transcriptome will change the distribution due to
changes in A/I for affected words. Overall metrics of the dictionary measure resilience using Eq. (8) in the text.
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5. Discussion

The concept of resilience is receiving increasing attention in chronic stress-related diseases.
Resilience has been shown in clinical studies to play a protective role in patients with chronic
conditions including osteoarthritis, breast and ovarian cancer, diabetes, and cardiovascular
disease related to psychosocial dimensional levels. The purpose of this study is to explore the
relationships between RNA-RNA interactions and to devise a measure of resilience at the
cellular level.

5.1. Prospects, challenges, and limitations for resilience measure by variance in RNA-seq

Although research on empirical indicators of robustness and resilience is rudimentary, there is
already a fast-growing body of engineering modeling as well as empirical work in ecology.
Nonetheless, major challenges remain in developing robust procedures for assessment of the
transcriptome. A goal of systems biology is to analyze large-scale multidomain networks to
reveal relationships between network structures and their biological function. While generally,
it is not feasible to visualize and understand whole networks, a common analysis is to partition
the network into subnetworks responsible for specific biological functions. Since biological
functions can be carried out by particular groups of molecules, dividing networks into natu-
rally grouped clusters can help investigate the relationships between function and topology of
system networks or reveal hidden knowledge behind them. The expression in Eq. (8) for
resilience is a measure of the size of network interactions possible within a transcriptome.

5.2. Notion of the transcriptome as an information system

The body of this work considers the transcriptome as an information system modeling a
dynamic system. A dynamic system is characterized by two concerns: the static structure and
dynamic behavior. The structural elements of dynamic systems are those elements whichmay be
identified from static snapshots of the problem space; while dynamic aspects involve those
semantic elements of the system that exist over the time domain. While modeling the static
aspects of an information system like RNA expression data, an understanding of the dynamic
nature of information systems in the cell is low. Behavioral issues of large information systems
are usually complex, consisting of many interactive sessions with the outside environment, tasks
like coordination and collaboration among different entities. Dynamic systems can exhibit emer-
gent properties that result from the dynamics, and which cannot be attributed to static structural
factors. However, given any real world information system consisting of many multistream
interactive processes, emergent properties are usually complex, without a common characteristic
structure. Such emergent properties are beginning to be addressed with the transcriptome.

6. Conclusion

We show that the transcriptome can be modeled as an information system with emergent
dynamic properties. The term nebula regulation is introduced to consider the regulatory effects
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of the whole transcriptome acting locally through RNA-RNA interactions and shifts between
accessible and inaccessible stretches of RNA sequence. Described as a network of interactions
from semantic analysis of similarity and reverse complementarity, together with the size of a
transcript, affect the diffusion of transcripts in a cell, and hence the distribution of RNAs. A
measure to represent resilience is proposed as the sum of the component elements (similarity,
reverse complementarity, and normalized by total nucleotides) of this transcriptome filter.
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Abstract

The recent remarkable development of transcriptomics technologies, especially next 
generation sequencing technologies, allows deeper exploration of the hidden landscapes 
of complex traits and creates great opportunities to improve livestock productivity and 
welfare. Non-coding RNAs (ncRNAs), RNA molecules that are not translated into pro-
teins, are key transcriptional regulators of health and production traits, thus, transcrip-
tomics analyses of ncRNAs are important for a better understanding of the regulatory 
architecture of livestock phenotypes. In this chapter, we present an overview of com-
mon frameworks for generating and processing RNA sequence data to obtain ncRNA 
transcripts. Then, we review common approaches for analyzing ncRNA transcriptome 
data and present current state of the art methods for identification of ncRNAs and func-
tional inference of identified ncRNAs, with emphasis on tools for livestock species. We 
also discuss future challenges and perspectives for ncRNA transcriptome data analysis 
in livestock species.

Keywords: bioinformatics, genome editing, livestock species, long non-coding RNA, non-
coding RNA, microRNA, transcriptome

1. Introduction

A vast portion of the mammalian transcriptome is composed of non-protein coding  transcripts 
or non-coding RNA (ncRNA). Some ncRNAs are processed into functionally important tran-
scripts such as microRNA (miRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), small 
nucleolar RNA (snoRNA), small nuclear RNA (snRNA), small interfering RNA (siRNA), 
PIWI-interacting RNA (piRNA), circular RNA (circRNA), long non-coding RNA (lncRNA) 
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and several classes with limited information about their functions. In  addition to the well 
described ncRNA classes, clusters of ncRNA (22–200 nucleotides (nt)) were detected at the 5, 
and 3′end of human and mouse genes, and named promoter-associated short RNAs (PASRs) 
and termini-associated short RNAs (TASRs) [1]. Mercer et al. [2] described a class of ncRNA, 
about 50–200 nt, that are processed from the 3′UTRs of protein-coding genes (uaRNAs). 
The uaRNAs are in sense direction to the protein-coding gene and show stage, sex and sub-
cellular specific expression. A class of ncRNA derived from tRNA precursors and named 
tRNA-derived RNA fragments (tRF) or tRNA-derived small RNAs (tsRNAs) appear to be 
processed by Dicer while others are Dicer independently processed [3, 4]. Small nucleolar 
RNAs (snoRNA) can also be processed into small miRNA-like molecules called sno-derived 
RNAs or sdRNAs [5, 6] which play roles in guiding enzymes to target RNAs for modification 
[7]. In this chapter, only the main classes of functional ncRNAs (miRNA, snoRNA, siRNA, 
piRNA and lncRNA), not considering the translation related ncRNAs (rRNA and tRNA), will 
be further discussed. NcRNAs have been implicated in many biological processes includ-
ing transcriptional inference, translational modifications, mRNA cleavage, epigenetic modi-
fications, regulation of structural organization, and modulation of alternative splicing, small 
RNA precursor, and endo or secondary siRNA generation [7–10].

2. Transcriptome analysis of non‐coding RNA

2.1. Platforms for transcriptome analysis of non‐coding RNA

Transcriptome analysis reached a turning point in its history with the arrival of high through-
put next-generation sequencing technologies like RNA-Sequencing (RNA-Seq) [11, 12]. Before 
this time, microarray was the gold standard for transcript profiling or simultaneous measure-
ment of the expression level of thousands of genes in a given sample [13, 14]. Microarray 
technology however has major drawbacks like non-specific probe hybridization signals and 
errors in background level measurements [15], as well as limited gene diversity since probes 
are designed to represent only a set of preselected genes. Unique hybridization properties 
of each probe may affect their dynamic range and thus create bias in data processing algo-
rithms [16]. The flexibility offered by RNA-Seq technology enables detection of unknown 
splice junctions [17], novel transcripts [18], new single nucleotide polymorphisms (SNPs) [19] 
and many other features all in the same assay. RNA-Seq technology has taken the possibility 
of fine tuning our knowledge of the transcriptome to a much higher level. In recent years, 
RNA-Seq has proved its worth as a technology that will replace microarray in whole-genome 
transcript profiling [20–22]. Correlation of RNA-Seq to RNA-Seq differential gene expression 
data resulted in good overlap than RNA-Seq to microarray data [23, 24], thus confirming 
that RNA-Seq is the preferred method to analyze the transcriptome. Moreover, correlation of 
transcriptome quantification by the two methods versus transcript level measured by shot-
gun mass spectroscopy showed better estimation with RNA-Seq analysis [25]. Through the 
evolution process of RNA-Seq technology, other new aspects have been included such as 
allele specific transcriptome analysis. Moreover, since the RNA-Seq procedure does not rely 
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on known genome annotation, but rather on all the information available in a given sample, 
there is clear opportunity to make discoveries at a rate never expected before.

A diversity of platforms offer a wide range of RNA-sequencing possibilities[12]. For example, 
Illumina HiSeq and MiSeq technologies offer short sequence reads (36–300 base pairs (bp)) 
while Oxford Nanopore can reach sequence lengths of greater than 150 kilo base pairs (kb) [26]. 
The sequencing techniques could be DNA-polymerase dependent (i.e. sequencing-by-synthesis 
(e.g. Illumina MiSeq/HiSeq)) while others like PacBio and Oxford Nanopore are single-mole-
cule sequencers. The sequencing error rate ranges from 0.1% (Illumina MiSeq/HiSeq) to about 
1.3% (PacBio RSII single pass). An overview of sequencing platforms and their characteristics is 
shown in Table 1. The error rate between platforms varies [27], so it is important to consider this 
especially when the goal is to sequence short read transcripts like miRNA.

The challenges of managing RNA-Seq data are considerable in terms of data storage and anal-
ysis as well as algorithm development. Since the technology is not yet fully matured, short-
comings exist at every step of sequence analysis. Various tools are available for alignment 
of reads, transcript construction, quantification, differential gene expression, pathways and 
correlation analyses [28] (Tables 2 and 3). Nonetheless, the use and specificity of the softwares 
differ highly from one type of analysis to another and the hardest part is making sure that 
the right tool is chosen at every step. A review of best practices for RNA-Seq data analysis 
was published recently [29]. The gap between the rapid evolution of RNA-Seq technology 
and the development of data analysis tools is hindering wide application in livestock species. 
Most data analysis tools are developed for use with genomes of human and common model 
organisms (mouse, rat) and require tweaking before use with livestock genomes. For example, 
when performing target prediction analysis for newly discovered transcripts, it is the practise 
to use human/mouse databases as it brings a lot of power to the analysis. However, there 
is great bias coming from the assumption that livestock biological systems are identical to 
human or mouse.

2.2. Generation of ncRNA sequence data and pre‐mapping quality control

2.2.1. Generation of ncRNA sequence data

The choice of the sequencing platform is critical to attain the goals of a study. Numerous proto-
cols and commercial kits to generate cDNA libraries from RNA samples are available and they 
are mostly based on the same principles (e.g. fragmentation, reverse-transcription, adapter liga-
tion and amplification). The steps in library preparation for lncRNA are the same as for mRNA 
since they share similar biogenesis pathways. The starting material for lncRNA library prepara-
tion is total RNA. Majority of lncRNA transcripts have poly-A tails while a small proportion 
do not. Library preparation methods based on poly-A tail selection are cheaper but less robust 
since non-poly-A tail transcripts are lost. An ideal but more expensive method involves deple-
tion of rRNA (constitutes ~90% of total RNA). Library preparation with rRNA depleted total 
RNA is robust as it allows quantification of all other RNA transcripts including lowly expressed 
transcripts. Thus, the first step in lncRNA library preparation is to consider whether to perform 
poly-A tail selection or to deplete rRNA (Figure 1). The next dilemma is deciding whether or not 
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cols and commercial kits to generate cDNA libraries from RNA samples are available and they 
are mostly based on the same principles (e.g. fragmentation, reverse-transcription, adapter liga-
tion and amplification). The steps in library preparation for lncRNA are the same as for mRNA 
since they share similar biogenesis pathways. The starting material for lncRNA library prepara-
tion is total RNA. Majority of lncRNA transcripts have poly-A tails while a small proportion 
do not. Library preparation methods based on poly-A tail selection are cheaper but less robust 
since non-poly-A tail transcripts are lost. An ideal but more expensive method involves deple-
tion of rRNA (constitutes ~90% of total RNA). Library preparation with rRNA depleted total 
RNA is robust as it allows quantification of all other RNA transcripts including lowly expressed 
transcripts. Thus, the first step in lncRNA library preparation is to consider whether to perform 
poly-A tail selection or to deplete rRNA (Figure 1). The next dilemma is deciding whether or not 
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Platform Read length1 (base 
pair)

Throughput2 Number of reads3 Error profile

Illumina MiniSeq 
(high output)

75 (SE) 1.6–1.8 Gb 22–25 M <1%, substitution

75 (PE) 3.3–7.5 Gb 44–50 M <1%, substitution

150 (PE) 6.6–7.5 Gb 44–50 M

Illumina MiniSeq (mid 
output)

75 (SE) 2.1–2.4 Gb 14–16 M <1%, substitution

Illumina MiSeq v2 36 (SE) 540–610 Mb 12–15 M <0.1%, substitution

25 (PE) 750–850 Mb 24–30 M <0.1%, substitution

150 (PE) 4.5–5.1 Gb 24–30 M <0.1%, substitution

250 (PE) 7.5–8.5 Gb 24–30 M <0.1%, substitution

Illumina MiSeq v3 75 (PE) 3–4 Gb 44–50 M <0.1%, substitution

300 (PE) 13–15 Gb 44–50 M <0.1%, substitution

Illumina NextSeq 
500/550 (high output)

75 (SE) 25–30 Gb 400 M <1%, substitution

75 (PE) 50–60 Gb 800 M <1%, substitution

150 (PE) 100–120 Gb 800 M <1%, substitution

Illumina NextSeq 
500/550 (mid output)

75 (PE) 16–20 Gb ~260 M <1%, substitution

150 (PE) 32–40 Gb ~260 M <1%, substitution

Illumina HiSeq250v2 
Rapid run

36 (SE) 9–11 Gb 300 M 0.1%, substitution

50 (PE) 25–30 Gb 600 M 0.1%, substitution

100 (PE) 50–60 Gb 0.1%, substitution

150 (PE) 75–90 Gb 0.1%, substitution

250 (PE) 125–150 Gb 0.1%, substitution

Illumina HiSeq250v3 36 (SE) 47–52 Gb 1.5 B 0.1%, substitution

50 (PE) 135–150 Gb 3 B 0.1%, substitution

100 (PE) 270–300 Gb 0.1%, substitution

Illumina HiSeq250v4 36 (SE) 64–72 Gb 2 B 0.1%, substitution

50 (PE) 180–200 Gb 4 B 0.1%, substitution

100 (PE) 360–400 Gb 0.1%, substitution

125 (PE) 450–500 Gb 0.1%, substitution

Illumina 
HiSeq3000/4000

50 (SE) 105–125 Gb 2.5 B 0.1%, substitution

75 (PE) 325–375 Gb 0.1%, substitution

150 (PE) 650–750 Gb 0.1%, substitution

Illumina HiSeqX 150 (PE) 800–900 Gb 2.6–3 B 0.1%, substitution

150 (PE) 1.6–20 B 167 Gb–6 Tb
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to preserve strand information during library preparation. As lncRNA annotation is still in the 
initial phase, it is crucial to preserve strand information to enable correct genome localization 
of novel transcripts. Paired-end sequencing is to be considered over single end sequencing for 
lncRNA characterization to facilitate construction of transcripts with clear-cut exon boundaries. 
Paired-end sequencing also allows accurate detection of splicing position. Sequencing long frag-
ments (>100 bp) is also desired to get adequate coverage of the genome and consequently, bet-
ter transcript construction. The number of multiplexed samples on each sequencing lane affects 
lncRNA sequence depth. Reducing cost by multiplexing more samples than necessary reduces 
quality of results obtained. It has been demonstrated that the depth of sequencing is relative to 
the nature of the expected results [30, 31]. To accomplish lncRNA discovery with confidence, a 
minimum of 100 million reads per sample is suggested to enable de novo transcript assembly.

The procedure for the generation of miRNA sequence data differs slightly from the procedure 
for lncRNA analysis. First of all, miRNAs are small (18–24 bp) in size and do not require RNA 

Platform Read length1 (base 
pair)

Throughput2 Number of reads3 Error profile

Ion Proton 200 (SE) Up to 10 Gb 60 M 1% indel

Ion PGM 318 200 or 400 (SE) 0.6–2 Gb 4–5.5 M 1% indel

Ion PGM 316 200 or 400 (SE) 0.3–1 Gb 2–3 M 1% indel

Ion PGM 314 200 or 400 (SE) 30–100 Mb 0.4–0.5 M 1% indel

PacBio Sequel 8–12 kb (SE) 3.5–7 Gb >100,000 N/A

PacBio RS II ~20 kb 0.5–1Gb ~55,000 ~13%, indel

454 GS Junior ~400 (SE, PE) 35 Mb ~0.1 M 1%, indel

454 GS Junior+ ~700 (SE, PE) 70 Mb ~0.1 M 1%, indel

454 GS FLX Titanium 
XLR70

Up to 600; 450 mode 
(SE, PE)

450 Mb ~1 M 1%, indel

454 GS FLX Titanium 
XL+

Up to 1000; 700 mode 
(SE, PE)

700 Mb ~1 M 1%, indel

SOLiD 5500 xl 50 or 75 (SE) 160–320 Gb ~1.4 B ≤0.1%, AT bias

SOLiD 5500 Wildfire 50 or 75 (SE) 80–160 Gb 700 M ≤0.1%, AT bias

Oxford Nanopore 
MK1 MinION

Up to 200 Kb ~1.5 Gb ~12%, indel

Oxford Nanopore 
GridION X5

~Hundreds of Kb 100 Gb

Oxford Nanopore 
PromethION

~4 Tb

1SE: single end, PE: paired end, Kb, Kilo base pair.
2Mb: Megabyte, Gb: Gigabyte, TB: Terabyte.
3M: Million, B: Billion.

Table 1. Overview of some sequencing platforms for transcriptome analysis and their characteristics.
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Platform Read length1 (base 
pair)

Throughput2 Number of reads3 Error profile

Illumina MiniSeq 
(high output)

75 (SE) 1.6–1.8 Gb 22–25 M <1%, substitution

75 (PE) 3.3–7.5 Gb 44–50 M <1%, substitution

150 (PE) 6.6–7.5 Gb 44–50 M

Illumina MiniSeq (mid 
output)

75 (SE) 2.1–2.4 Gb 14–16 M <1%, substitution

Illumina MiSeq v2 36 (SE) 540–610 Mb 12–15 M <0.1%, substitution

25 (PE) 750–850 Mb 24–30 M <0.1%, substitution

150 (PE) 4.5–5.1 Gb 24–30 M <0.1%, substitution

250 (PE) 7.5–8.5 Gb 24–30 M <0.1%, substitution

Illumina MiSeq v3 75 (PE) 3–4 Gb 44–50 M <0.1%, substitution

300 (PE) 13–15 Gb 44–50 M <0.1%, substitution

Illumina NextSeq 
500/550 (high output)

75 (SE) 25–30 Gb 400 M <1%, substitution

75 (PE) 50–60 Gb 800 M <1%, substitution

150 (PE) 100–120 Gb 800 M <1%, substitution

Illumina NextSeq 
500/550 (mid output)

75 (PE) 16–20 Gb ~260 M <1%, substitution

150 (PE) 32–40 Gb ~260 M <1%, substitution

Illumina HiSeq250v2 
Rapid run

36 (SE) 9–11 Gb 300 M 0.1%, substitution

50 (PE) 25–30 Gb 600 M 0.1%, substitution

100 (PE) 50–60 Gb 0.1%, substitution

150 (PE) 75–90 Gb 0.1%, substitution

250 (PE) 125–150 Gb 0.1%, substitution

Illumina HiSeq250v3 36 (SE) 47–52 Gb 1.5 B 0.1%, substitution

50 (PE) 135–150 Gb 3 B 0.1%, substitution

100 (PE) 270–300 Gb 0.1%, substitution

Illumina HiSeq250v4 36 (SE) 64–72 Gb 2 B 0.1%, substitution

50 (PE) 180–200 Gb 4 B 0.1%, substitution

100 (PE) 360–400 Gb 0.1%, substitution

125 (PE) 450–500 Gb 0.1%, substitution

Illumina 
HiSeq3000/4000

50 (SE) 105–125 Gb 2.5 B 0.1%, substitution

75 (PE) 325–375 Gb 0.1%, substitution

150 (PE) 650–750 Gb 0.1%, substitution

Illumina HiSeqX 150 (PE) 800–900 Gb 2.6–3 B 0.1%, substitution

150 (PE) 1.6–20 B 167 Gb–6 Tb
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to preserve strand information during library preparation. As lncRNA annotation is still in the 
initial phase, it is crucial to preserve strand information to enable correct genome localization 
of novel transcripts. Paired-end sequencing is to be considered over single end sequencing for 
lncRNA characterization to facilitate construction of transcripts with clear-cut exon boundaries. 
Paired-end sequencing also allows accurate detection of splicing position. Sequencing long frag-
ments (>100 bp) is also desired to get adequate coverage of the genome and consequently, bet-
ter transcript construction. The number of multiplexed samples on each sequencing lane affects 
lncRNA sequence depth. Reducing cost by multiplexing more samples than necessary reduces 
quality of results obtained. It has been demonstrated that the depth of sequencing is relative to 
the nature of the expected results [30, 31]. To accomplish lncRNA discovery with confidence, a 
minimum of 100 million reads per sample is suggested to enable de novo transcript assembly.

The procedure for the generation of miRNA sequence data differs slightly from the procedure 
for lncRNA analysis. First of all, miRNAs are small (18–24 bp) in size and do not require RNA 

Platform Read length1 (base 
pair)

Throughput2 Number of reads3 Error profile

Ion Proton 200 (SE) Up to 10 Gb 60 M 1% indel

Ion PGM 318 200 or 400 (SE) 0.6–2 Gb 4–5.5 M 1% indel

Ion PGM 316 200 or 400 (SE) 0.3–1 Gb 2–3 M 1% indel

Ion PGM 314 200 or 400 (SE) 30–100 Mb 0.4–0.5 M 1% indel

PacBio Sequel 8–12 kb (SE) 3.5–7 Gb >100,000 N/A

PacBio RS II ~20 kb 0.5–1Gb ~55,000 ~13%, indel

454 GS Junior ~400 (SE, PE) 35 Mb ~0.1 M 1%, indel

454 GS Junior+ ~700 (SE, PE) 70 Mb ~0.1 M 1%, indel

454 GS FLX Titanium 
XLR70

Up to 600; 450 mode 
(SE, PE)

450 Mb ~1 M 1%, indel

454 GS FLX Titanium 
XL+

Up to 1000; 700 mode 
(SE, PE)

700 Mb ~1 M 1%, indel

SOLiD 5500 xl 50 or 75 (SE) 160–320 Gb ~1.4 B ≤0.1%, AT bias

SOLiD 5500 Wildfire 50 or 75 (SE) 80–160 Gb 700 M ≤0.1%, AT bias

Oxford Nanopore 
MK1 MinION

Up to 200 Kb ~1.5 Gb ~12%, indel

Oxford Nanopore 
GridION X5

~Hundreds of Kb 100 Gb

Oxford Nanopore 
PromethION

~4 Tb

1SE: single end, PE: paired end, Kb, Kilo base pair.
2Mb: Megabyte, Gb: Gigabyte, TB: Terabyte.
3M: Million, B: Billion.

Table 1. Overview of some sequencing platforms for transcriptome analysis and their characteristics.
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Step Tools Application/Web link References

Trimming* Trimmomatic Illumina single end and paired end quality and 
adapter trimming. http://www.usadellab.org/
cms/?page=trimmomatic

[39]

PEAT Specific for paired end sequencing quality and adapter 
trimming. https://github.com/jhhung/PEAT

[50]

Trim Galore Quality and adapter trimming with some extra functionality 
for Bisulfite-Seq. https://www.bioinformatics.babraham.
ac.uk/projects/trim_galore

[51]

Skewer Adapter trimming, can take into account indels. https://github.
com/relipmoc/skewer

[52]

AlienTrimmer Detect and remove alien k-mers in both ends of 
sequence reads. ftp://ftp.pasteur.fr/pub/gensoft/projects/
AlienTrimmer/.

[53]

Cutadapt Finds and remove adapter, primers, poly-A and other 
types of unwanted sequences. https://github.com/marcelm/
cutadapt

NxTrim Discard as little sequence as possible from Illumina Nextera 
Mate Pair reads, single end and paired end reads. https://
github.com/sequencing/NxTrim

[54]

SeqPurge Can detect very short adapter sequences. https://github.com/
imgag/ngs-bits/blob/master/doc/tools/SeqPurge.md

[55]

Alignment** STAR Align RNA-Seq reads to a reference genome, detect splice 
junctions. https://github.com/alexdobin/STAR

[45]

Bowtie / Bowtie2 Align short DNA sequences to genomes with Burrows-
Wheeler index. bowtie-bio.sourceforge.net/bowtie2

[56, 57]

BWA Mapping low-divergent sequences against large reference 
genome. bio-bwa.sourceforge.net

[58]

TopHat2 Use Bowtie for alignment. TopHat analyzes results to 
identify splice junctions. https://ccb.jhu.edu/software/tophat

[59]

Rockhopper Specific for bacterial RNA-Seq data. It supports de novo 
and reference based transcript assembly. cs.wellesley.
edu/~btjaden/Rockhopper

[60]

SpliceMap De novo splice junction discovery and alignment tool. https://
web.stanford.edu/group/wonglab/SpliceMap

[61]

StringTie De novo transcript assembly.
Quantitation of full-length transcripts representing multiple 
splice variants for each gene locus. https://ccb.jhu.edu/
software/stringtie

[47]

Trinity De novo reconstruction of transcriptomes from RNA-seq 
data. https://github.com/trinityrnaseq/trinityrnaseq/wiki

[62]

*Further trimming tools are available at: https://omictools.com/adapter-trimming-category/
**Further alignment tools are available at: https://omictools.com/read-alignment-category/

Table 2. Frequently used tools for trimming and alignment.
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Step Tools Application/Web link References

Trimming* Trimmomatic Illumina single end and paired end quality and 
adapter trimming. http://www.usadellab.org/
cms/?page=trimmomatic

[39]

PEAT Specific for paired end sequencing quality and adapter 
trimming. https://github.com/jhhung/PEAT

[50]

Trim Galore Quality and adapter trimming with some extra functionality 
for Bisulfite-Seq. https://www.bioinformatics.babraham.
ac.uk/projects/trim_galore

[51]

Skewer Adapter trimming, can take into account indels. https://github.
com/relipmoc/skewer

[52]

AlienTrimmer Detect and remove alien k-mers in both ends of 
sequence reads. ftp://ftp.pasteur.fr/pub/gensoft/projects/
AlienTrimmer/.

[53]

Cutadapt Finds and remove adapter, primers, poly-A and other 
types of unwanted sequences. https://github.com/marcelm/
cutadapt

NxTrim Discard as little sequence as possible from Illumina Nextera 
Mate Pair reads, single end and paired end reads. https://
github.com/sequencing/NxTrim

[54]

SeqPurge Can detect very short adapter sequences. https://github.com/
imgag/ngs-bits/blob/master/doc/tools/SeqPurge.md

[55]

Alignment** STAR Align RNA-Seq reads to a reference genome, detect splice 
junctions. https://github.com/alexdobin/STAR

[45]

Bowtie / Bowtie2 Align short DNA sequences to genomes with Burrows-
Wheeler index. bowtie-bio.sourceforge.net/bowtie2

[56, 57]

BWA Mapping low-divergent sequences against large reference 
genome. bio-bwa.sourceforge.net

[58]

TopHat2 Use Bowtie for alignment. TopHat analyzes results to 
identify splice junctions. https://ccb.jhu.edu/software/tophat

[59]

Rockhopper Specific for bacterial RNA-Seq data. It supports de novo 
and reference based transcript assembly. cs.wellesley.
edu/~btjaden/Rockhopper

[60]

SpliceMap De novo splice junction discovery and alignment tool. https://
web.stanford.edu/group/wonglab/SpliceMap

[61]

StringTie De novo transcript assembly.
Quantitation of full-length transcripts representing multiple 
splice variants for each gene locus. https://ccb.jhu.edu/
software/stringtie

[47]

Trinity De novo reconstruction of transcriptomes from RNA-seq 
data. https://github.com/trinityrnaseq/trinityrnaseq/wiki

[62]

*Further trimming tools are available at: https://omictools.com/adapter-trimming-category/
**Further alignment tools are available at: https://omictools.com/read-alignment-category/

Table 2. Frequently used tools for trimming and alignment.
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fragmentation prior to library construction. Total RNA is the recommended starting material 
for miRNA library preparation (Figure 1). Although some commercial kits provide the option 
to enrich the miRNA fraction prior to library preparation, there is evidence that some small 
RNA species are lost during enrichment [32]. The protocols for miRNA library preparation 
are generally similar to lncRNA and include adapter ligation step, reverse transcription and 
amplification followed by size selection and purification of the cDNA. Fifty bp single end 
sequencing is sufficient for miRNA libraries since miRNAs are generally small. Thus, Illumina 
platforms are well suited for sequencing miRNA libraries. Studies showed that approximately 
2 million reads are sufficient for differential expression analysis while 8 million reads are suf-
ficient for discovery analysis [33, 34]. Considering that over 150 million reads are available 
per lane on HiSeq machines, sample multiplexing can be as high as 18 to 20 libraries per lane.

2.2.2. Common data processing steps

Upon availability of sequence data, many bioinformatics tools are used in the analytical pro-
cedures. Some processing steps are optional but strongly recommended; while others are 
required before the next step can be performed. Many pipelines have been developed to 

Figure 1. Starting material and sequencing method considerations according to RNA species to be analyzed.
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fragmentation prior to library construction. Total RNA is the recommended starting material 
for miRNA library preparation (Figure 1). Although some commercial kits provide the option 
to enrich the miRNA fraction prior to library preparation, there is evidence that some small 
RNA species are lost during enrichment [32]. The protocols for miRNA library preparation 
are generally similar to lncRNA and include adapter ligation step, reverse transcription and 
amplification followed by size selection and purification of the cDNA. Fifty bp single end 
sequencing is sufficient for miRNA libraries since miRNAs are generally small. Thus, Illumina 
platforms are well suited for sequencing miRNA libraries. Studies showed that approximately 
2 million reads are sufficient for differential expression analysis while 8 million reads are suf-
ficient for discovery analysis [33, 34]. Considering that over 150 million reads are available 
per lane on HiSeq machines, sample multiplexing can be as high as 18 to 20 libraries per lane.

2.2.2. Common data processing steps

Upon availability of sequence data, many bioinformatics tools are used in the analytical pro-
cedures. Some processing steps are optional but strongly recommended; while others are 
required before the next step can be performed. Many pipelines have been developed to 

Figure 1. Starting material and sequencing method considerations according to RNA species to be analyzed.
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answer specific questions, but the softwares used can be very different. A global view of the 
general processing steps and frequently used tools for lncRNA and miRNA sequence data 
analyses are presented in Figures 2 and 3, respectively. These processing steps can be modi-
fied to include desired or specific tools depending on the research question.

2.2.3. Raw data quality control

Sequence data generated by Illumina platforms and most platforms is in FASTQ format. The 
FASTQ format is a text file consisting of the nucleic acid sequence (read) and base calling 
 accuracy score (Phred score) attributed to each base pair of the sequence. FastQC [35], Picard 

Figure 2. General processing steps and tools used in lncRNA sequence analysis.
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tools (https://broadinstitute.github.io/picard/) and NGS QC tool kit [36] are often used to assess 
the quality of raw sequence reads. This step is necessary to determine if the sequencing out-
come is as expected. These tools inform on the total number of reads, the overall quality of base 
call according to the position, GC percentage and other features. Care should be taken when 
interpreting the results because GC content is species specific and some softwares evaluate GC 
content according to the human genome. In order to avoid bias in the mapping step, a quality 
trimming is necessary to get rid of low quality base pairs and remaining adapter sequences. A 
recent study showed that incorrect trimming can lead to generation of short reads impairing the 
capacity to correctly predict differences in expression changes [37]. Several trimming tools are 
available [38] (https://omictools.com/adapter-trimming-category) including Trimmomatic [39], 
FASTX-Toolkit [40], CutAdapt [41], etc.(Table 2). Following trimming, filtering of reads is nec-
essary to get rid of very short and overall low quality reads to keep bias level as low as possible.

Figure 3. General processing steps and tools used in miRNA sequence analysis.
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2.2.4. Alignment

After trimming and filtering, reads are ready for alignment or de novo construction. Alignment 
consists of mapping reads to a reference genome. Various alignment tools have been devel-
oped [42, 43] (https://omictools.com/read-alignment-category) including frequently used 
tools like TopHat [44], STAR [45], Bowtie [46], StringTie [47], etc. (Table 2). These softwares 
have their own specifications highlighting the importance of understanding the utility of 
each tool and the options they offer. The alignment tool used can have great impact on the 
end results. It has been observed that the choice of aligner and specific options can affect 
results of differential gene expression analysis [48]. Aligners can be grouped in two types, 
gapped (also known as split, e.g. STAR, BWA, etc.) and ungapped (e.g. Bowtie, etc.). Bowtie 
(ungapped group) can easily map reads to a genome, but is less effective at finding spliced 
junctions. Aligners in the gapped group are able to align reads and detect spliced variants. In 
the absence of a reference genome, de novo assembly aligners (e.g. Trinity [49]) can be used. In 
the context of lncRNA read alignment, gapped softwares are preferred since the transcripts 
are not all annotated and portions of the reads of the same transcript may align to one position 
of the genome and the remaining to another position. Alignment is one of the longest steps in 
RNA-Seq sequence analysis therefore selection of the right tool might have significant impact 
on the outcome of the analysis. It is also important to perform mapping quality control fol-
lowing alignment. Quality check includes the percentages of mapped and unmapped reads, 
the location of the reads (intronic and exonic) and the 5′–3′ coverage.

2.2.5. Transcript construction and quantification

RNA-Seq transcript construction and the alignment steps can demand considerable comput-
ing time. Transcript construction tools are many (https://omictools.com/transcript-quantifi-
cation-category) including commonly used tools like Cufflinks [63], iReckon [64], StringTie 
[47], etc. This step requires paired-end data and high sequence coverage to reconstruct lowly 
expressed transcripts. With the assumption that transcripts are species specific, raw data or 
alignment files from all samples from the same population can be merged to increase cover-
age [65]. This modification will help clarify transcript boundaries in case of de novo transcript 
assembly. Particular considerations for lncRNA transcript construction include sample pool-
ing according to species and tissue type. LncRNA expression is known to demonstrate tissue 
specificity [66–68].

2.2.6. miRNA processing steps

Overall, the procedures for miRNA identification and discovery are less time consuming and 
do not include as many steps as for mRNA and lncRNA identification. The global process 
includes quality and adaptors trimming with quality checkpoints before and after each step. 
A size selection to keep sequences between 17 and 30 nt (sometimes up to 35 nt) is often per-
formed right after the quality and adaptors trimming step. This is followed by read mapping 
and filtering of other RNA sequences (rRNA, tRNA, snRNA, mRNA, lncRNA, etc.). The reads 
thought to represent miRNA are analyzed with miRNA prediction tools like miRDeep2 [69], 
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miRanalyzer [70], mirTools 2.0 [71], etc. (Table 3). Subsequent interrogation of miRBase data-
base enables classification of retained miRNAs as known or novel miRNAs. A tool like miRD-
eep2 has a quantifier module that generates a read count table for each miRNA using precursor 
and mature sequence files as input. An overview of tools for miRNA identification are pre-
sented in Table 3 and further discussed in the next section.

3. Tools for ncRNA identification

3.1. Tools for miRNA identification

The identification of miRNAs can be either annotation of known miRNAs or discovery of 
novel miRNAs. A variety of algorithms and bioinformatics tools are applied to annotate 
known miRNAs as well as to discover new miRNAs from sequence data. These tools can 
use several features such as sequence conservation among species, structural features like 
hairpin and minimal folding free energy [72]. Many tools are available for miRNA annota-
tion (https://tools4mirs.org/software/known_mirna_identification/) [73] including frequently 
used tools like miRdeep [74], miRanalyzer [75], mirTools 2.0[71], UEA sRNA Workbench [76], 
sRNAtoolbox [77], and SeqBuster [78] (Table 3). Many more tools have been developed for 
novel miRNA discovery and miRNA precursor prediction (https://tools4mirs.org/software/
precursor_prediction/)[73] including frequently used tools like MiPred [79], miRanalyzer [75], 
miR-Abela [80], MiReNA [81], UEA sRNA Workbench [76] and mirDeep [74] (Table 3). Major 
features of miRNA discovery tools have been reviewed [82–84]. Regarding livestock species, 
the choice of methods for miRNA discovery and novel miRNA annotation vary among stud-
ies and species. For example, De Vliegher et al. [85] used miRbase [86] and UNAFold [87] for 
miRNA annotation and discovery in bovine mammary gland tissues while Peng et al [88] 
used miRbase [86] and RNAfold [89] for these purposes in porcine mammary glands. In our 
own studies, miRbase [86] and mirDeep2 [74] were used to identify miRNAs in various tis-
sues including bovine mammary gland tissues [90], milk fat [90–92], milk whey and cells [90].

3.2. Tools for lncRNA identification

To date, a large number of lncRNA genes have been identified in the genomes of human 
(141,353), cow (23,896) and chicken (13,085) (http://www.bioinfo.org/noncode/analysis.php, 
accessed on 24-03-2017). Several methodologies have been described to identify/distinguish 
lncRNAs from mRNAs and successfully applied to livestock species such as coding potential 
calculator (CPC) [122], PhyLoCSF [123], coding-non-coding index (CNCI) [124], coding poten-
tial assessment tool (CPAT) [125], Predictor of Long non-coding RNAs and mRNAs based 
on an improved k-mer scheme (PLEK) [126] and Flexible Extraction of LncRNAs (FEELnc) 
[127], etc. The FEELnc program developed by the functional annotation of animal genome 
project consortium (FAANG) [128] is recommended as a standardized protocol for lncRNA 
analyses in animal species. In order to distinguish lncRNAs from mRNAs, FEELnc program 
uses a machine-learning method for estimation of a protein-coding score according to the  
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2.2.4. Alignment
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of the genome and the remaining to another position. Alignment is one of the longest steps in 
RNA-Seq sequence analysis therefore selection of the right tool might have significant impact 
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the location of the reads (intronic and exonic) and the 5′–3′ coverage.

2.2.5. Transcript construction and quantification

RNA-Seq transcript construction and the alignment steps can demand considerable comput-
ing time. Transcript construction tools are many (https://omictools.com/transcript-quantifi-
cation-category) including commonly used tools like Cufflinks [63], iReckon [64], StringTie 
[47], etc. This step requires paired-end data and high sequence coverage to reconstruct lowly 
expressed transcripts. With the assumption that transcripts are species specific, raw data or 
alignment files from all samples from the same population can be merged to increase cover-
age [65]. This modification will help clarify transcript boundaries in case of de novo transcript 
assembly. Particular considerations for lncRNA transcript construction include sample pool-
ing according to species and tissue type. LncRNA expression is known to demonstrate tissue 
specificity [66–68].

2.2.6. miRNA processing steps

Overall, the procedures for miRNA identification and discovery are less time consuming and 
do not include as many steps as for mRNA and lncRNA identification. The global process 
includes quality and adaptors trimming with quality checkpoints before and after each step. 
A size selection to keep sequences between 17 and 30 nt (sometimes up to 35 nt) is often per-
formed right after the quality and adaptors trimming step. This is followed by read mapping 
and filtering of other RNA sequences (rRNA, tRNA, snRNA, mRNA, lncRNA, etc.). The reads 
thought to represent miRNA are analyzed with miRNA prediction tools like miRDeep2 [69], 
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miRanalyzer [70], mirTools 2.0 [71], etc. (Table 3). Subsequent interrogation of miRBase data-
base enables classification of retained miRNAs as known or novel miRNAs. A tool like miRD-
eep2 has a quantifier module that generates a read count table for each miRNA using precursor 
and mature sequence files as input. An overview of tools for miRNA identification are pre-
sented in Table 3 and further discussed in the next section.

3. Tools for ncRNA identification

3.1. Tools for miRNA identification

The identification of miRNAs can be either annotation of known miRNAs or discovery of 
novel miRNAs. A variety of algorithms and bioinformatics tools are applied to annotate 
known miRNAs as well as to discover new miRNAs from sequence data. These tools can 
use several features such as sequence conservation among species, structural features like 
hairpin and minimal folding free energy [72]. Many tools are available for miRNA annota-
tion (https://tools4mirs.org/software/known_mirna_identification/) [73] including frequently 
used tools like miRdeep [74], miRanalyzer [75], mirTools 2.0[71], UEA sRNA Workbench [76], 
sRNAtoolbox [77], and SeqBuster [78] (Table 3). Many more tools have been developed for 
novel miRNA discovery and miRNA precursor prediction (https://tools4mirs.org/software/
precursor_prediction/)[73] including frequently used tools like MiPred [79], miRanalyzer [75], 
miR-Abela [80], MiReNA [81], UEA sRNA Workbench [76] and mirDeep [74] (Table 3). Major 
features of miRNA discovery tools have been reviewed [82–84]. Regarding livestock species, 
the choice of methods for miRNA discovery and novel miRNA annotation vary among stud-
ies and species. For example, De Vliegher et al. [85] used miRbase [86] and UNAFold [87] for 
miRNA annotation and discovery in bovine mammary gland tissues while Peng et al [88] 
used miRbase [86] and RNAfold [89] for these purposes in porcine mammary glands. In our 
own studies, miRbase [86] and mirDeep2 [74] were used to identify miRNAs in various tis-
sues including bovine mammary gland tissues [90], milk fat [90–92], milk whey and cells [90].

3.2. Tools for lncRNA identification

To date, a large number of lncRNA genes have been identified in the genomes of human 
(141,353), cow (23,896) and chicken (13,085) (http://www.bioinfo.org/noncode/analysis.php, 
accessed on 24-03-2017). Several methodologies have been described to identify/distinguish 
lncRNAs from mRNAs and successfully applied to livestock species such as coding potential 
calculator (CPC) [122], PhyLoCSF [123], coding-non-coding index (CNCI) [124], coding poten-
tial assessment tool (CPAT) [125], Predictor of Long non-coding RNAs and mRNAs based 
on an improved k-mer scheme (PLEK) [126] and Flexible Extraction of LncRNAs (FEELnc) 
[127], etc. The FEELnc program developed by the functional annotation of animal genome 
project consortium (FAANG) [128] is recommended as a standardized protocol for lncRNA 
analyses in animal species. In order to distinguish lncRNAs from mRNAs, FEELnc program 
uses a machine-learning method for estimation of a protein-coding score according to the  
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RNA size, open reading frame coverage and multi k-mer usage [127]. The FEELnc program 
can derive an automatically computed cut-off so it maximizes the lncRNA prediction sensitiv-
ity and specificity. An overview of tools for lncRNA identification/characterization is listed in 
Table 4.

Tools Type Major Function/web link References

ChIPBase Database Identifies binding motif matrices and their 
binding sites. Predicts transcriptional 
regulatory relationships between 
transcription factors and genes. http://rna.
sysu.edu.cn/chipbase/.

[129]

LNCipedia Database Provides basic transcript information and 
structure, human lncRNA transcripts and 
genes. http://www.lncipedia.org/.

[130]

lncRNAdb Database Provides comprehensive annotation of 
eukaryotic lncRNAs. Offers an improved 
user interface enabling greater accessibility 
to sequence information, expression data and 
the literature. http://www.lncrnadb.org/.

[131]

LNCat Database Stores the information of 24 lncRNA 
annotation resources. Allows achieving 
refined annotation of lncRNAs within the 
interested region. http://biocc.hrbmu.edu.cn/
LNCat/

[132]

LncRNASNP Database Provide comprehensive resources of single 
nucleotide polymorphisms (SNPs) in human/
mouse lncRNAs. bioinfo.life.hust.edu.cn/
lncRNASNP/

[133]

lncRNAWiki Database Provide open-content and publicly editable 
curation and collection of information on 
human lncRNAs. http://lncrna.big.ac.cn/
index.php/Main_Page

[134]

NONCODE Database Presents the most complete collection and 
annotation of non-coding RNAs (excluding 
tRNAs and rRNAs) for 18 species including 
human, mouse, cow, rat, chicken, pig, fruitfly, 
zebrafish, Caenorhabditis elegans and yeast. 
www.noncode.org/

[135]

ALDB Database Enables the exploration and comparative 
analysis of lncRNAs in domestic animals. 
Offers information on genome-wide 
expression profiles and animal quantitative 
trait loci (QTLs) of domestic animals. http://
res.xaut.edu.cn/aldb/index.jsp

[136]

GENCODE Database Presents all gene features in the human 
genome.
Contains annotation of lncRNA loci publicly 
available with the predominant transcript 
form consisting of two exons. https://www.
gencodegenes.org

[137]
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Tools Type Major Function/web link References

ncRDeathDB Database Present a comprehensive bioinformatics 
resource to ncRNA-associated cell death 
interactions. www.rna-society.org/
ncrdeathdb

[138]

LncVar Database Presents genetic variation associated with 
long noncoding genes. bioinfo.ibp.ac.cn/
LncVar

[139]

IRNdb Database Combines microRNA, PIWI-interacting 
RNA, and lncRNA information with 
immunologically relevant target genes. http://
irndb.org

[140]

AnnoLnc Annotation Presents online portal for systematically 
annotating newly identified human 
lncRNAs.

[141]

LongTarget Target 
prediction

Present a computational method and 
program to predict lncRNA DNA-binding 
motifs and binding sites. lncrna.smu.edu.cn

[142]

LncRNA2Function Functional 
inferences

Facilitates search for the functions 
of a specific lncRNA or the lncRNAs 
associated with a given functional term, 
or annotate functionally a set of human 
lncRNAs of interest. http://mlg.hit.edu.cn/
lncrna2function

[143]

Co-LncRNA Function 
inference

Presents a web-based computational tool 
that allows users to identify GO annotations 
and KEGG pathways that may be affected by 
co-expressed protein-coding genes of single 
or multiple lncRNAs. www.bio-bigdata.com/
Co-LncRNA/

[144]

LncReg Function 
inference

Provides regulatory information about 
lncRNAs, such as targets, regulatory 
mechanisms, and experimental evidence for 
regulation and key molecules participating in 
regulation. bioinformatics.ustc.edu.cn/lncreg/

[145]

Linc2GO Function 
inference

Provides comprehensive functional 
annotations for human lincRNA. http://
www.bioinfo.tsinghua.edu.cn/~liuke/
Linc2GO

[146]

FARNA Function 
annotation

Integrates ncRNA information related to 
expression, pathways and diseases in a large 
number of human tissues and primary cells. 
www.cbrc.kaust.edu.sa/farna/

[147]

ViRBase Database Provides the scientific community with 
a resource for efficient browsing and 
visualization of virus-host ncRNA-
associated interactions and interaction 
networks in viral infection. http://www.
rna-society.org/virbase

[148]
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RNA size, open reading frame coverage and multi k-mer usage [127]. The FEELnc program 
can derive an automatically computed cut-off so it maximizes the lncRNA prediction sensitiv-
ity and specificity. An overview of tools for lncRNA identification/characterization is listed in 
Table 4.

Tools Type Major Function/web link References

ChIPBase Database Identifies binding motif matrices and their 
binding sites. Predicts transcriptional 
regulatory relationships between 
transcription factors and genes. http://rna.
sysu.edu.cn/chipbase/.

[129]

LNCipedia Database Provides basic transcript information and 
structure, human lncRNA transcripts and 
genes. http://www.lncipedia.org/.

[130]

lncRNAdb Database Provides comprehensive annotation of 
eukaryotic lncRNAs. Offers an improved 
user interface enabling greater accessibility 
to sequence information, expression data and 
the literature. http://www.lncrnadb.org/.

[131]

LNCat Database Stores the information of 24 lncRNA 
annotation resources. Allows achieving 
refined annotation of lncRNAs within the 
interested region. http://biocc.hrbmu.edu.cn/
LNCat/

[132]

LncRNASNP Database Provide comprehensive resources of single 
nucleotide polymorphisms (SNPs) in human/
mouse lncRNAs. bioinfo.life.hust.edu.cn/
lncRNASNP/

[133]

lncRNAWiki Database Provide open-content and publicly editable 
curation and collection of information on 
human lncRNAs. http://lncrna.big.ac.cn/
index.php/Main_Page

[134]

NONCODE Database Presents the most complete collection and 
annotation of non-coding RNAs (excluding 
tRNAs and rRNAs) for 18 species including 
human, mouse, cow, rat, chicken, pig, fruitfly, 
zebrafish, Caenorhabditis elegans and yeast. 
www.noncode.org/

[135]

ALDB Database Enables the exploration and comparative 
analysis of lncRNAs in domestic animals. 
Offers information on genome-wide 
expression profiles and animal quantitative 
trait loci (QTLs) of domestic animals. http://
res.xaut.edu.cn/aldb/index.jsp

[136]

GENCODE Database Presents all gene features in the human 
genome.
Contains annotation of lncRNA loci publicly 
available with the predominant transcript 
form consisting of two exons. https://www.
gencodegenes.org

[137]
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Tools Type Major Function/web link References

ncRDeathDB Database Present a comprehensive bioinformatics 
resource to ncRNA-associated cell death 
interactions. www.rna-society.org/
ncrdeathdb

[138]

LncVar Database Presents genetic variation associated with 
long noncoding genes. bioinfo.ibp.ac.cn/
LncVar

[139]

IRNdb Database Combines microRNA, PIWI-interacting 
RNA, and lncRNA information with 
immunologically relevant target genes. http://
irndb.org

[140]

AnnoLnc Annotation Presents online portal for systematically 
annotating newly identified human 
lncRNAs.

[141]

LongTarget Target 
prediction

Present a computational method and 
program to predict lncRNA DNA-binding 
motifs and binding sites. lncrna.smu.edu.cn

[142]

LncRNA2Function Functional 
inferences

Facilitates search for the functions 
of a specific lncRNA or the lncRNAs 
associated with a given functional term, 
or annotate functionally a set of human 
lncRNAs of interest. http://mlg.hit.edu.cn/
lncrna2function

[143]

Co-LncRNA Function 
inference

Presents a web-based computational tool 
that allows users to identify GO annotations 
and KEGG pathways that may be affected by 
co-expressed protein-coding genes of single 
or multiple lncRNAs. www.bio-bigdata.com/
Co-LncRNA/

[144]

LncReg Function 
inference

Provides regulatory information about 
lncRNAs, such as targets, regulatory 
mechanisms, and experimental evidence for 
regulation and key molecules participating in 
regulation. bioinformatics.ustc.edu.cn/lncreg/

[145]

Linc2GO Function 
inference

Provides comprehensive functional 
annotations for human lincRNA. http://
www.bioinfo.tsinghua.edu.cn/~liuke/
Linc2GO

[146]

FARNA Function 
annotation

Integrates ncRNA information related to 
expression, pathways and diseases in a large 
number of human tissues and primary cells. 
www.cbrc.kaust.edu.sa/farna/

[147]

ViRBase Database Provides the scientific community with 
a resource for efficient browsing and 
visualization of virus-host ncRNA-
associated interactions and interaction 
networks in viral infection. http://www.
rna-society.org/virbase

[148]
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3.3. Tools for identification of other non-coding RNA

Currently, few tools have been developed for the identification of groups of ncRNAs other 
than miRNAs and lncRNAs. The popular tools for piRNA identification include ProTRAC 
[152], piClust [153], piRNAQuest [154], etc. (Table 5). proTRAC detects piRNA clusters based 
on a probabilistic analysis with assumption of a uniform distribution while piClust uses a den-
sity based clustering approach for the detection of piRNAs. piRNAQuest allows a search of the 
piRNome for silencers [154]. Another notable framework is SeqCluster [155], a python pipeline 
for the annotation and classification of non-miRNA small ncRNAs. The pipeline permits a 

Tools Type Major Function/web link References

LncRNA2Target Database Stores lncRNA-to-target genes. Provides 
a web interface for searching targets of 
a particular lncRNA or for the lncRNAs 
that target a particular gene. https://www.
lncrna2target.org/

[149]

Lncin Function 
annotation

Identifies lncRNAs-associated modules from 
protein interaction networks and predicts the 
function of lncRNAs based on the protein 
functions in the modules. lncin.ym.edu.tw

[150]

NPInter Function 
annotation

Integrates experimentally verified functional 
interactions between noncoding RNAs 
(excluding tRNAs and rRNAs) and other 
biomolecules (proteins, RNA and genomic 
DNA). www.bioinfo.org.cn/NPInter

[151]

CPC Coding 
potential 
assessment

Distinguishes between coding and 
noncoding RNA. Uses a Support Vector 
Machine-based classifier to assess the 
protein-coding potential of a transcript. cpc.
cbi.pku.edu.cn/

[122]

CNCI Coding 
potential 
assessment

Distinguishes between protein-coding and 
non-coding sequences independent of known 
annotations. Applies to a variety of species 
without whole-genome sequence or with 
poorly annotated information. https://github.
com/www-bioinfo-org/CNCI

[124]

CPAT Coding 
potential 
assessment

Distinguishes between coding and noncoding 
RNA. Uses a logistic regression model to 
assess the protein coding potential. rna-cpat.
sourceforge.net/

[125]

FEELnc LncRNA 
prediction

Derives an automatically computed cut-off 
so it maximizes the lncRNA prediction 
sensitivity and specificity. https://github.
com/tderrien/FEELnc

[127]

PLEK lncRNA 
prediction

Uses k-mer scheme and a support vector 
machine (SVM) algorithm to distinguish 
lncRNAs from mRNAs. http://www.
ibiomedical.net/plek/

[126]

Table 4. Overview of tools for the analysis of lncRNA sequence data.
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highly versatile and user-friendly interaction with data in order to easily classify small RNA 
sequences with putative functional importance [155]. For other small RNAs, ncPRO-seq [156] 
allows the discovery of unknown ncRNA or siRNA-coding regions from small RNA sequence 
data. DARIO [94] is a web-tool that allows annotation and detection of ncRNAs from various 
species but not livestock species. CoRAL [157] is a machine learning method that classifies 
ncRNAs by relying on biologically interpretable features. Several tools also have been devel-
oped for predicting circRNAs such as PredicircRNATool [158] and PredcircRNA [159] which 
apply a machine learning approach to distinguish circRNAs from other ncRNAs (Table 5).

Tools Types Main Features/web link References

ProTRAC piRNA prediction Detects and analyses piRNA clusters 
based on quantifiable deviations from 
a hypothetical uniform distribution 
regarding the decisive piRNA cluster 
characteristics. https://sourceforge.net/
projects/protrac/

[152]

piClust piRNA prediction Finds piRNA clusters and transcripts 
from small RNA-seq data using a 
density based clustering approach. 
http://epigenomics.snu.ac.kr/piclustweb

[153]

piRNAQuest piRNA database Provides annotation of piRNAs based 
on their genomic location in gene, 
intron, intergenic, CDS, UTR, repeat 
elements, pseudogenes and syntenic 
regions. bicresources.jcbose.ac.in/
zhumur/pirnaquest

[154]

SeqCluster ncRNA classification A framework python for the annotation 
and classification of the non-miRNA 
small RNA transcriptome. http://
seqcluster.readthedocs.io/#

[155]

ncPRO-seq ncRNA discovery Allows the discovery of unknown 
ncRNA- or siRNA-coding regions from 
sRNA sequence data. http://ncpro.
curie.fr/.

[156]

DARIO ncRNA discovery Allows annotation and detection of 
ncRNAs from various species but not 
livestock species. http://dario.bioinf.
uni-leipzig.de/index.py

[94]

CoRAL ncRNA classification A machine learning method that 
classifies ncRNA by relying on 
biologically interpretable features. 
http://wanglab.pcbi.upenn.edu/coral

[157]

DASHR Database Stores human small ncRNAs: miRNAs, 
piRNAs, snRNAs, snoRNAs, scRNAs 
(small cytoplasmic RNAs), tRNAs, and 
rRNAs information. lisanwanglab.org/
DASHR

[160]

Sno/scaRNAbase Database A curated database for small nucleolar 
RNAs (snoRNAs) and small cajal body-
specific RNAs (scaRNAs). gene.fudan.
edu.cn/snoRNAbase.nsf

[161]
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3.3. Tools for identification of other non-coding RNA

Currently, few tools have been developed for the identification of groups of ncRNAs other 
than miRNAs and lncRNAs. The popular tools for piRNA identification include ProTRAC 
[152], piClust [153], piRNAQuest [154], etc. (Table 5). proTRAC detects piRNA clusters based 
on a probabilistic analysis with assumption of a uniform distribution while piClust uses a den-
sity based clustering approach for the detection of piRNAs. piRNAQuest allows a search of the 
piRNome for silencers [154]. Another notable framework is SeqCluster [155], a python pipeline 
for the annotation and classification of non-miRNA small ncRNAs. The pipeline permits a 

Tools Type Major Function/web link References

LncRNA2Target Database Stores lncRNA-to-target genes. Provides 
a web interface for searching targets of 
a particular lncRNA or for the lncRNAs 
that target a particular gene. https://www.
lncrna2target.org/

[149]

Lncin Function 
annotation

Identifies lncRNAs-associated modules from 
protein interaction networks and predicts the 
function of lncRNAs based on the protein 
functions in the modules. lncin.ym.edu.tw

[150]

NPInter Function 
annotation

Integrates experimentally verified functional 
interactions between noncoding RNAs 
(excluding tRNAs and rRNAs) and other 
biomolecules (proteins, RNA and genomic 
DNA). www.bioinfo.org.cn/NPInter

[151]

CPC Coding 
potential 
assessment

Distinguishes between coding and 
noncoding RNA. Uses a Support Vector 
Machine-based classifier to assess the 
protein-coding potential of a transcript. cpc.
cbi.pku.edu.cn/

[122]

CNCI Coding 
potential 
assessment

Distinguishes between protein-coding and 
non-coding sequences independent of known 
annotations. Applies to a variety of species 
without whole-genome sequence or with 
poorly annotated information. https://github.
com/www-bioinfo-org/CNCI

[124]

CPAT Coding 
potential 
assessment

Distinguishes between coding and noncoding 
RNA. Uses a logistic regression model to 
assess the protein coding potential. rna-cpat.
sourceforge.net/

[125]

FEELnc LncRNA 
prediction

Derives an automatically computed cut-off 
so it maximizes the lncRNA prediction 
sensitivity and specificity. https://github.
com/tderrien/FEELnc

[127]

PLEK lncRNA 
prediction

Uses k-mer scheme and a support vector 
machine (SVM) algorithm to distinguish 
lncRNAs from mRNAs. http://www.
ibiomedical.net/plek/

[126]

Table 4. Overview of tools for the analysis of lncRNA sequence data.
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highly versatile and user-friendly interaction with data in order to easily classify small RNA 
sequences with putative functional importance [155]. For other small RNAs, ncPRO-seq [156] 
allows the discovery of unknown ncRNA or siRNA-coding regions from small RNA sequence 
data. DARIO [94] is a web-tool that allows annotation and detection of ncRNAs from various 
species but not livestock species. CoRAL [157] is a machine learning method that classifies 
ncRNAs by relying on biologically interpretable features. Several tools also have been devel-
oped for predicting circRNAs such as PredicircRNATool [158] and PredcircRNA [159] which 
apply a machine learning approach to distinguish circRNAs from other ncRNAs (Table 5).

Tools Types Main Features/web link References

ProTRAC piRNA prediction Detects and analyses piRNA clusters 
based on quantifiable deviations from 
a hypothetical uniform distribution 
regarding the decisive piRNA cluster 
characteristics. https://sourceforge.net/
projects/protrac/

[152]

piClust piRNA prediction Finds piRNA clusters and transcripts 
from small RNA-seq data using a 
density based clustering approach. 
http://epigenomics.snu.ac.kr/piclustweb

[153]

piRNAQuest piRNA database Provides annotation of piRNAs based 
on their genomic location in gene, 
intron, intergenic, CDS, UTR, repeat 
elements, pseudogenes and syntenic 
regions. bicresources.jcbose.ac.in/
zhumur/pirnaquest

[154]

SeqCluster ncRNA classification A framework python for the annotation 
and classification of the non-miRNA 
small RNA transcriptome. http://
seqcluster.readthedocs.io/#

[155]

ncPRO-seq ncRNA discovery Allows the discovery of unknown 
ncRNA- or siRNA-coding regions from 
sRNA sequence data. http://ncpro.
curie.fr/.

[156]

DARIO ncRNA discovery Allows annotation and detection of 
ncRNAs from various species but not 
livestock species. http://dario.bioinf.
uni-leipzig.de/index.py

[94]

CoRAL ncRNA classification A machine learning method that 
classifies ncRNA by relying on 
biologically interpretable features. 
http://wanglab.pcbi.upenn.edu/coral

[157]

DASHR Database Stores human small ncRNAs: miRNAs, 
piRNAs, snRNAs, snoRNAs, scRNAs 
(small cytoplasmic RNAs), tRNAs, and 
rRNAs information. lisanwanglab.org/
DASHR

[160]

Sno/scaRNAbase Database A curated database for small nucleolar 
RNAs (snoRNAs) and small cajal body-
specific RNAs (scaRNAs). gene.fudan.
edu.cn/snoRNAbase.nsf

[161]
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Tools Types Main Features/web link References

snoRNA Database Contains over 1000 snoRNA 
sequences from Bacteria, Archaea, and 
Eukaryotes. http://evolveathome.com/
snoRNA/snoRNA.php

[162]

CircNet Provides the following resources: (i) 
novel circRNAs, (ii) integrated miRNA-
target networks, (iii) expression profiles 
of circRNA isoforms, (iv) genomic 
annotations of circRNA isoforms, and  
(v) sequences of circRNA isoforms. 
circnet.mbc.nctu.edu.tw

[163]

PredicircRNATool circRNA prediction Uses a machine learning method for 
predicting circRNAs from those of non-
circularized, expressed exons based on 
conformational and thermodynamic 
properties in the flanking introns. 
https://sourceforge.net/projects/
predicircrnatool

[158]

circRNADb circRNA database Contains 32,914 human circular RNAs. 
http://reprod.njmu.edu.cn/circrnadb

[164]

PredcircRNA cirRNA prediction Applies a machine learning approach 
to predict circRNA. https://github.com/
xypan1232/PredcircRNA

[159]

CirsBase Database Provides scripts to identify known 
and novel circRNAs in sequence data. 
circbase.org

[165]

Circ2Traits Database Contains a database of potential 
association of circular RNAs with 
diseases in human. http://gyanxet-beta.
com/circdb

[166]

CircInteractome Database Provides a web tool for mapping 
(RNA Binding Proteins (RBP)- and 
miRNA-binding sites on human 
circRNAs. Allows to (i) identify 
potential circRNAs which can act as 
RBP sponges, (ii) design junction-
spanning primers for specific detection 
of circRNAs of interest, (iii) design 
siRNAs for circRNA silencing, and (iv) 
identify potential internal ribosomal 
entry sites. https://circinteractome.nia.
nih.gov

[167]

tRNAdb Database Contains 12,000 tRNA genes from 577 
species and 623 tRNA sequences from 
104 species, provides various services 
such as graphical representations of 
tRNA secondary structures. trnadb.
bioinf.uni-leipzig.de

[168]

Table 5. Overview of tools and databases for sequence analysis of other small ncRNAs.
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4. Tools for differential expression analysis of non-coding RNA

Various tools allow for the detection of genes (mRNA or ncRNA) differentially expressed (DE) 
between two or more conditions or states from sequence data. The major differences among 
tools are their implemented statistical methods, input and output file formats as well as filter-
ing steps for DE analyses. Many tools such as DESeq [169], edgeR [170], NBPSeq [171], TSPM 
[172], baySeq [173], EBSeq [174], NOISeq [175], SAMseq [176] and ShrinkSeq [177] use count 
data as input file, while others like limma [178] and Cufflinks use transformed data or BAM 
files (the binary version of sequence alignment data) as input, respectively. Tools that use 
count data can be divided in to two groups; parametric (DESeq [169], edgeR [170], NBPSeq 
[171], TSPM [172], baySeq [173], EBSeq [174]) and non-parametric methods (NOISeq [175], 
SAMseq [176]). For parametric methods, most softwares (baySeq [173], DESeq [169], NBPSeq 
[171], edgeR [170], EBSeq [174] and NBPSeq) use a negative binomial model to account for 
over dispersion except ShrinkSeq which has two options for distribution, either negative 
binomial or a zero-inflated negative binomial distribution. These methods also implement 
different statistical test approaches; DESeq, edgeR and NBPSeq perform a classical hypothesis 
testing approach while baySeq, EBSeq and ShrinkSeq apply Bayesian methods. The compari-
son of methods and performances have been done and reviewed by many authors [29, 179–
183]. In general, no single method performs well for all datasets. In a survey of performance 
of DE analyses methods, Conesa et al. [29] observed that limma package [178] performed well 
under many conditions. Many studies observed similar performances by DESeq and edgeR 
in ranking genes [29, 179–183]. However, DESeq is more conservative while edgeR is more 
liberal in controlling false discovery rate (FDR) [29]. Other tools such as SAMseq is better in 
controlling FDR while NOISeq is efficient in avoiding false positives [29].

5. Bioinformatics tools for target prediction and functional inference of 
non‐coding RNA

Following discovery and detection of important ncRNAs from RNA sequence data, the 
important next steps are to understand their regulatory roles. Since ncRNAs commonly act by 
interacting with target genes (mostly inhibit expression), various tools have been developed 
to predict their target genes and to infer their functions (Tables 3 and 4). A simple work flow 
for inferring the functions of miRNAs is shown in Figure 4.

5.1. Functional inference of miRNAs

5.1.1. Bioinformatics tools for target prediction and functional inference of miRNAs

Inferring individual targets for a given miRNA can be done either by computational or 
experimental methods. Computational target prediction is coordinated in a sequence-specific 
manner and the target genes are normally predicted based on information derived from the 
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Tools Types Main Features/web link References

snoRNA Database Contains over 1000 snoRNA 
sequences from Bacteria, Archaea, and 
Eukaryotes. http://evolveathome.com/
snoRNA/snoRNA.php

[162]

CircNet Provides the following resources: (i) 
novel circRNAs, (ii) integrated miRNA-
target networks, (iii) expression profiles 
of circRNA isoforms, (iv) genomic 
annotations of circRNA isoforms, and  
(v) sequences of circRNA isoforms. 
circnet.mbc.nctu.edu.tw

[163]

PredicircRNATool circRNA prediction Uses a machine learning method for 
predicting circRNAs from those of non-
circularized, expressed exons based on 
conformational and thermodynamic 
properties in the flanking introns. 
https://sourceforge.net/projects/
predicircrnatool

[158]

circRNADb circRNA database Contains 32,914 human circular RNAs. 
http://reprod.njmu.edu.cn/circrnadb

[164]

PredcircRNA cirRNA prediction Applies a machine learning approach 
to predict circRNA. https://github.com/
xypan1232/PredcircRNA

[159]

CirsBase Database Provides scripts to identify known 
and novel circRNAs in sequence data. 
circbase.org

[165]

Circ2Traits Database Contains a database of potential 
association of circular RNAs with 
diseases in human. http://gyanxet-beta.
com/circdb

[166]

CircInteractome Database Provides a web tool for mapping 
(RNA Binding Proteins (RBP)- and 
miRNA-binding sites on human 
circRNAs. Allows to (i) identify 
potential circRNAs which can act as 
RBP sponges, (ii) design junction-
spanning primers for specific detection 
of circRNAs of interest, (iii) design 
siRNAs for circRNA silencing, and (iv) 
identify potential internal ribosomal 
entry sites. https://circinteractome.nia.
nih.gov

[167]

tRNAdb Database Contains 12,000 tRNA genes from 577 
species and 623 tRNA sequences from 
104 species, provides various services 
such as graphical representations of 
tRNA secondary structures. trnadb.
bioinf.uni-leipzig.de

[168]

Table 5. Overview of tools and databases for sequence analysis of other small ncRNAs.
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4. Tools for differential expression analysis of non-coding RNA

Various tools allow for the detection of genes (mRNA or ncRNA) differentially expressed (DE) 
between two or more conditions or states from sequence data. The major differences among 
tools are their implemented statistical methods, input and output file formats as well as filter-
ing steps for DE analyses. Many tools such as DESeq [169], edgeR [170], NBPSeq [171], TSPM 
[172], baySeq [173], EBSeq [174], NOISeq [175], SAMseq [176] and ShrinkSeq [177] use count 
data as input file, while others like limma [178] and Cufflinks use transformed data or BAM 
files (the binary version of sequence alignment data) as input, respectively. Tools that use 
count data can be divided in to two groups; parametric (DESeq [169], edgeR [170], NBPSeq 
[171], TSPM [172], baySeq [173], EBSeq [174]) and non-parametric methods (NOISeq [175], 
SAMseq [176]). For parametric methods, most softwares (baySeq [173], DESeq [169], NBPSeq 
[171], edgeR [170], EBSeq [174] and NBPSeq) use a negative binomial model to account for 
over dispersion except ShrinkSeq which has two options for distribution, either negative 
binomial or a zero-inflated negative binomial distribution. These methods also implement 
different statistical test approaches; DESeq, edgeR and NBPSeq perform a classical hypothesis 
testing approach while baySeq, EBSeq and ShrinkSeq apply Bayesian methods. The compari-
son of methods and performances have been done and reviewed by many authors [29, 179–
183]. In general, no single method performs well for all datasets. In a survey of performance 
of DE analyses methods, Conesa et al. [29] observed that limma package [178] performed well 
under many conditions. Many studies observed similar performances by DESeq and edgeR 
in ranking genes [29, 179–183]. However, DESeq is more conservative while edgeR is more 
liberal in controlling false discovery rate (FDR) [29]. Other tools such as SAMseq is better in 
controlling FDR while NOISeq is efficient in avoiding false positives [29].

5. Bioinformatics tools for target prediction and functional inference of 
non‐coding RNA

Following discovery and detection of important ncRNAs from RNA sequence data, the 
important next steps are to understand their regulatory roles. Since ncRNAs commonly act by 
interacting with target genes (mostly inhibit expression), various tools have been developed 
to predict their target genes and to infer their functions (Tables 3 and 4). A simple work flow 
for inferring the functions of miRNAs is shown in Figure 4.

5.1. Functional inference of miRNAs

5.1.1. Bioinformatics tools for target prediction and functional inference of miRNAs

Inferring individual targets for a given miRNA can be done either by computational or 
experimental methods. Computational target prediction is coordinated in a sequence-specific 
manner and the target genes are normally predicted based on information derived from the 
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potency of binding between miRNA and putative targets. Generally, the methods for compu-
tational prediction of miRNA targets can be grouped in single platforms such as TargetScan 
[95], PicTar [115], RNAhybrid [105] or multiple platforms such as miRwalk [116], TarBases 
[121], miRecords [117] as well as integrative platforms which include downstream analyses 
of putative target genes such as DIANA-microT-CDS [96], miRPathDB [184], etc. A collec-
tion of tools for miRNA target prediction are available at https://omictools.com/mirna-target-
prediction-category and https://tools4mirs.org/software/target_prediction/ [185] (Table 3). 
Among the prediction tools, the major differences in principles are in the algorithm applied 
and in filtering steps considering the secondary structure of the target mRNA (reviewed in 
[83, 115, 186]). Consequently, the specificity, sensitivity and accuracy of prediction are differ-
ent among tools. Additionally, the performances of tools also differ based on the skills of the 
user (such as formatting of input and output, programming skills, web interface and so on). 
Taken together, all these factors affect popularity of tools [72, 187]. A word cloud plot of the 
popularity of tools based on their citation per year is shown in Figure 5.

5.1.2. Popular single platforms for miRNA target prediction

TargetScan can be accessed via the web interface or by running a perl script (local run) [95]. 
The software detects targets in the 3′UTR of protein-coding transcripts by base-pairing rules 
(seed complementarity) and predicts miRNAs for miRNA families instead of individual 

Figure 4. A simple work flow for inference of miRNA function.
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miRNAs. To assess important miRNA-target interaction, TargetScan outputs two matrices: 
probability of conserved targeting (Pct) and total contextual score (TCS). Pct corresponds to a 
Bayesian estimate of the probability that a miRNA site on the 3′ UTR of a mRNA is conserved 
due to miRNA targeting while TCS represents the strength of the sequential features (site-
type, 3′ pairing contribution, local AU contribution, position contribution, target site abun-
dance and seed-pairing stability) that facilitate miRNA-target hybridization/cleavage. PicTar 
also searches for identical seed sequences to predict miRNA-mRNA interaction [115]. PicTar 
derives an overall score to assess the strength of the miRNA-target interaction. PicTar com-
putes a score based on the maximum likelihood that a given 3′ UTR sequence is targeted by a 
fixed set of miRNAs. The PicTar algorithm scores any 3′ UTR that has at least one aligned con-
served predicted binding site for a miRNA, and then incorporates all possible binding sites 
into the score. RNAhybrid computes target genes based on the free energy of hybridization 
of a long and a short RNA [105]. Hybridization is performed in a kind of domain mode; for 
example the short sequence is hybridized to the best fitting part of the long one. Rna22 [104] 
is a pattern-based approach to find miRNA binding sites and corresponding miRNA:mRNA 
complexes without a cross-species sequence conservation filter. Rna22 is resilient to noise 
and does not rely upon cross-species conservation. Unlike previous methods, Rna22 starts by 
finding putative miRNA binding sites in the sequence of interest followed by identification of 
the targeting miRNA. It can identify putative miRNA binding sites even though the targeting 
miRNA is unknown. miRanda was the first bioinformatics tool to predict the target genes of 
miRNAs. The miRanda algorithm is based on a comparison of miRNAs complementarity to 
3′UTR of genes [97]. miRanda calculates the binding energy of the duplex structure, evolu-
tionary conservation of the whole target site and its position within the 3′UTR and accounts 
for a weighted sum of match and mismatch scores for base pairs and gap penalties.

5.1.3. Portals for miRNA target prediction

miRWalk, a comprehensive database developed by Dweep et al [116] documents miRNA bind-
ing sites within the complete sequence of a gene and combines this information with predicted 

Figure 5. Word cloud for relative use of miRNA target prediction tools (based on number of citations per year).
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[121], miRecords [117] as well as integrative platforms which include downstream analyses 
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ent among tools. Additionally, the performances of tools also differ based on the skills of the 
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miRNAs. To assess important miRNA-target interaction, TargetScan outputs two matrices: 
probability of conserved targeting (Pct) and total contextual score (TCS). Pct corresponds to a 
Bayesian estimate of the probability that a miRNA site on the 3′ UTR of a mRNA is conserved 
due to miRNA targeting while TCS represents the strength of the sequential features (site-
type, 3′ pairing contribution, local AU contribution, position contribution, target site abun-
dance and seed-pairing stability) that facilitate miRNA-target hybridization/cleavage. PicTar 
also searches for identical seed sequences to predict miRNA-mRNA interaction [115]. PicTar 
derives an overall score to assess the strength of the miRNA-target interaction. PicTar com-
putes a score based on the maximum likelihood that a given 3′ UTR sequence is targeted by a 
fixed set of miRNAs. The PicTar algorithm scores any 3′ UTR that has at least one aligned con-
served predicted binding site for a miRNA, and then incorporates all possible binding sites 
into the score. RNAhybrid computes target genes based on the free energy of hybridization 
of a long and a short RNA [105]. Hybridization is performed in a kind of domain mode; for 
example the short sequence is hybridized to the best fitting part of the long one. Rna22 [104] 
is a pattern-based approach to find miRNA binding sites and corresponding miRNA:mRNA 
complexes without a cross-species sequence conservation filter. Rna22 is resilient to noise 
and does not rely upon cross-species conservation. Unlike previous methods, Rna22 starts by 
finding putative miRNA binding sites in the sequence of interest followed by identification of 
the targeting miRNA. It can identify putative miRNA binding sites even though the targeting 
miRNA is unknown. miRanda was the first bioinformatics tool to predict the target genes of 
miRNAs. The miRanda algorithm is based on a comparison of miRNAs complementarity to 
3′UTR of genes [97]. miRanda calculates the binding energy of the duplex structure, evolu-
tionary conservation of the whole target site and its position within the 3′UTR and accounts 
for a weighted sum of match and mismatch scores for base pairs and gap penalties.

5.1.3. Portals for miRNA target prediction

miRWalk, a comprehensive database developed by Dweep et al [116] documents miRNA bind-
ing sites within the complete sequence of a gene and combines this information with predicted 
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binding sites data resulting from 12 target prediction programs (DIANA-microTv4.0, DIANA-
microT-CDS, miRanda-rel2010, mirBridge, miRDB4.0, miRmap, miRNAMap, doRiNA, PicTar2, 
PITA, RNA22v2, RNAhybrid2.1 and Targetscan6.2) to build platforms of binding sites for the 
promoter, coding (5 prediction datasets), 5’ and 3′UTR regions. It also contains experimen-
tally verified miRNA-target interaction information collected via text-mining search and data 
from existing resources (miRTarBase, PhenomiR, miR2Disease and HMDD). MirRecords is a 
resource for animal miRNA-target interactions developed at the University of Minnesota [117]. 
MiRecords integrates predicted miRNA targets produced by 10 miRNA target prediction 
programs (DIANA-microTv4.0, miRanda-rel2010, miRDB4.0, PicTar2, PITA, RNAhybrid2.1, 
Targetscan6.2, miRTarget2, microinspector, NBmiRTar). It also contains information on experi-
mentally validated miRNA targets obtained from the literature. mirDIP integrates 12 miRNA 
prediction datasets from miRNA prediction databases (DIANA-microTv4.0, miRanda-rel2010, 
miRDB4.0, PicTar2, PITA, RNAhybrid2.1, Targetscan6.2 and microCosm) allowing to custom-
ize miRNA target searches. multiMiR contains a collection of nearly 50 million records from 
14 different databases [118]. It allows user-defined cut-offs for predicted binding strength to 
provide the most confident selection.

5.1.4. Integrated tools for miRNA analysis

Various integrated tools as well as work flow for miRNA analysis have been developed to 
perform downstream analyses of putative target genes (e.g. gene ontology, pathways enrich-
ments of target genes, etc.) such as MMIA [101], MAGIA [109] and miRconnX [119], to link 
miRNA to transcription factors or to analyze the effect of several miRNAs such as DIANA-
mirExTra v2.0 [120] and TransMIR [114]. Typically, predicted target genes are used as input 
for functional enrichment to infer the potential functions of miRNAs. Furthermore, several 
tools are also used to correlate the expression levels of miRNAs with mRNA in a particular 
experiment to infer miRNA function such as miRnet [110], miRSystem [111] and DIANA-
miRPath v3.0 [107]. Several tools have also been developed to directly link miRNAs to bio-
logical processes such as DMirNet [188], miRnet [110] and DIANA-miRPath v3.0 [107]. Many 
tools and resources have also been developed to link miRNAs to specific phenotypes/environ-
ments including diseases such as miRNAs in obsessive-compulsive disorder [189], autophagy 
in gerontology [190], epilepsy [191] and cancer [192]. Among the most popular integrated 
tools, DIANA-tools (www.microrna.gr) covers a wide scope and research scenarios inte-
grating several tools such as DIANA-microT-CDS, DIANA-TarBase v7.0, DIANA-miRGen 
v3.0, DIANA-miRPath v3.0, and DIANA-mirExTra v2.0. DIANA-microT-CDS uses different 
thresholds and meta-analysis followed by pathway enrichment to perform miRNA target 
prediction [96]. DIANA-TarBase is a manually curated target database with more than half a 
million miRNA-target interactions curated from published experiments performed with 356 
different cell types from 24 species. DIANA-miRPath is an online software suite dedicated 
to the assessment of miRNA regulatory roles and the identification of controlled pathways 
[107]. DIANA-mirExTra performs combined differential expression analysis of mRNAs and 
miRNAs to uncover miRNAs and transcription factors that play important regulatory roles 
between two investigated state [193]. miRNet is an easy-to-use web-based tool for statistical 
analysis and functional interpretation of various datasets generated in miRNAs studies in 
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various species. Moreover, it also allows users to explore the results of miRNA-target interac-
tion [110]. MMIA is a web tool for integration of miRNA and mRNA expression data with 
predicted miRNA target information for analyzing miRNA-associated phenotypes and bio-
logical functions by gene set enrichment analyses [101].

5.2. Functional inference of lncRNA

Compared to miRNAs, fewer bioinformatics tools have been developed for functional inference 
of lncRNAs. Several databases have been developed to curate computationally predicted and 
experimentally verified lncRNAs, such as LncRNAdb [194], GENCODE [137], lncRNAtor [7], 
lncRNome [195], NONCODE [135], lncRNAWiki [134], LncRNA2Function [143] and starBase 
v2.0 [196]. LncRNAdb was the first lncRNA database [194] and its updated version (LncRNAdb 
v2.0) integrates lncRNAs reported in livestock species (cattle, sheep, pig, horse and chicken) 
[131]. DeepBase database is an online platform for annotation and discovery of lncRNAs from 
RNA-seq data and it contains a large number of transcript entries for bovine (43,156) and chicken 
(47,004) lncRNAs. Other databases for livestock species are RNAcentral [197] which currently 
houses information from 23 ncRNA databases (http://rnacentral.org/, access March, 2017) but 
only contains a small number of lncRNAs from livestock species (cattle, pig, horse and chicken). 
NONCODE [135] contains lncRNAs for 16 species including cattle and chicken in the latest ver-
sion. The first lncRNA database with a particular focus on domesticated animals was ALDB [136]. 
ALDB contains 12,103 pig lincRNAs (long intergenic non-coding RNA), 8923 chicken lincRNAs, 
and 8250 cow lincRNAs (http://www.ibiomedical.net/aldb/, access March, 2017). However, no 
comprehensive database currently covers available information on lncRNAs from livestock spe-
cies, therefore the availability of a comprehensive tool will be valuable and helpful for subse-
quent genomic and functional annotation of lncRNAs and comparative interspecies analyses 
[198]. Inference of lncRNAs functions can also be done by connecting their expression patterns 
with specific cell types or biological processes to draw possible conclusions on their potential 
roles. LncRNAs can act in cis and/or trans manner to influence or interact with nearby or distant 
genes, respectively [2, 199]. For cis-regulation, the genomic location can be used as a guide for 
guilt-by-association analysis which allows global understanding of lncRNAs and protein cod-
ing genes that are tightly co-expressed and thus presumably co-regulated. Cis-relationships can 
foreseeably arise through complementary sequence motifs, tethering, blocking, and product-
independent transcription [2]. For example, the human HOTTIP lncRNA is a cis-acting lncRNA 
expressed in the HOXA cluster that activates transcription of flanking genes [200]. The bioin-
formatics tools for cis-regulation prediction include ncFANs (http://www.ebiomed.org/ncFANs) 
[201] which uses a coding-non-coding gene co-expression network to infer lncRNA function.

6. Emerging platforms and technologies for understanding and using 
ncRNAs

Efficient and reliable techniques for accurate detection of genome information are important 
for productivity and health of livestock species [202]. The introduction of next  generation 
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binding sites data resulting from 12 target prediction programs (DIANA-microTv4.0, DIANA-
microT-CDS, miRanda-rel2010, mirBridge, miRDB4.0, miRmap, miRNAMap, doRiNA, PicTar2, 
PITA, RNA22v2, RNAhybrid2.1 and Targetscan6.2) to build platforms of binding sites for the 
promoter, coding (5 prediction datasets), 5’ and 3′UTR regions. It also contains experimen-
tally verified miRNA-target interaction information collected via text-mining search and data 
from existing resources (miRTarBase, PhenomiR, miR2Disease and HMDD). MirRecords is a 
resource for animal miRNA-target interactions developed at the University of Minnesota [117]. 
MiRecords integrates predicted miRNA targets produced by 10 miRNA target prediction 
programs (DIANA-microTv4.0, miRanda-rel2010, miRDB4.0, PicTar2, PITA, RNAhybrid2.1, 
Targetscan6.2, miRTarget2, microinspector, NBmiRTar). It also contains information on experi-
mentally validated miRNA targets obtained from the literature. mirDIP integrates 12 miRNA 
prediction datasets from miRNA prediction databases (DIANA-microTv4.0, miRanda-rel2010, 
miRDB4.0, PicTar2, PITA, RNAhybrid2.1, Targetscan6.2 and microCosm) allowing to custom-
ize miRNA target searches. multiMiR contains a collection of nearly 50 million records from 
14 different databases [118]. It allows user-defined cut-offs for predicted binding strength to 
provide the most confident selection.

5.1.4. Integrated tools for miRNA analysis

Various integrated tools as well as work flow for miRNA analysis have been developed to 
perform downstream analyses of putative target genes (e.g. gene ontology, pathways enrich-
ments of target genes, etc.) such as MMIA [101], MAGIA [109] and miRconnX [119], to link 
miRNA to transcription factors or to analyze the effect of several miRNAs such as DIANA-
mirExTra v2.0 [120] and TransMIR [114]. Typically, predicted target genes are used as input 
for functional enrichment to infer the potential functions of miRNAs. Furthermore, several 
tools are also used to correlate the expression levels of miRNAs with mRNA in a particular 
experiment to infer miRNA function such as miRnet [110], miRSystem [111] and DIANA-
miRPath v3.0 [107]. Several tools have also been developed to directly link miRNAs to bio-
logical processes such as DMirNet [188], miRnet [110] and DIANA-miRPath v3.0 [107]. Many 
tools and resources have also been developed to link miRNAs to specific phenotypes/environ-
ments including diseases such as miRNAs in obsessive-compulsive disorder [189], autophagy 
in gerontology [190], epilepsy [191] and cancer [192]. Among the most popular integrated 
tools, DIANA-tools (www.microrna.gr) covers a wide scope and research scenarios inte-
grating several tools such as DIANA-microT-CDS, DIANA-TarBase v7.0, DIANA-miRGen 
v3.0, DIANA-miRPath v3.0, and DIANA-mirExTra v2.0. DIANA-microT-CDS uses different 
thresholds and meta-analysis followed by pathway enrichment to perform miRNA target 
prediction [96]. DIANA-TarBase is a manually curated target database with more than half a 
million miRNA-target interactions curated from published experiments performed with 356 
different cell types from 24 species. DIANA-miRPath is an online software suite dedicated 
to the assessment of miRNA regulatory roles and the identification of controlled pathways 
[107]. DIANA-mirExTra performs combined differential expression analysis of mRNAs and 
miRNAs to uncover miRNAs and transcription factors that play important regulatory roles 
between two investigated state [193]. miRNet is an easy-to-use web-based tool for statistical 
analysis and functional interpretation of various datasets generated in miRNAs studies in 
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various species. Moreover, it also allows users to explore the results of miRNA-target interac-
tion [110]. MMIA is a web tool for integration of miRNA and mRNA expression data with 
predicted miRNA target information for analyzing miRNA-associated phenotypes and bio-
logical functions by gene set enrichment analyses [101].

5.2. Functional inference of lncRNA

Compared to miRNAs, fewer bioinformatics tools have been developed for functional inference 
of lncRNAs. Several databases have been developed to curate computationally predicted and 
experimentally verified lncRNAs, such as LncRNAdb [194], GENCODE [137], lncRNAtor [7], 
lncRNome [195], NONCODE [135], lncRNAWiki [134], LncRNA2Function [143] and starBase 
v2.0 [196]. LncRNAdb was the first lncRNA database [194] and its updated version (LncRNAdb 
v2.0) integrates lncRNAs reported in livestock species (cattle, sheep, pig, horse and chicken) 
[131]. DeepBase database is an online platform for annotation and discovery of lncRNAs from 
RNA-seq data and it contains a large number of transcript entries for bovine (43,156) and chicken 
(47,004) lncRNAs. Other databases for livestock species are RNAcentral [197] which currently 
houses information from 23 ncRNA databases (http://rnacentral.org/, access March, 2017) but 
only contains a small number of lncRNAs from livestock species (cattle, pig, horse and chicken). 
NONCODE [135] contains lncRNAs for 16 species including cattle and chicken in the latest ver-
sion. The first lncRNA database with a particular focus on domesticated animals was ALDB [136]. 
ALDB contains 12,103 pig lincRNAs (long intergenic non-coding RNA), 8923 chicken lincRNAs, 
and 8250 cow lincRNAs (http://www.ibiomedical.net/aldb/, access March, 2017). However, no 
comprehensive database currently covers available information on lncRNAs from livestock spe-
cies, therefore the availability of a comprehensive tool will be valuable and helpful for subse-
quent genomic and functional annotation of lncRNAs and comparative interspecies analyses 
[198]. Inference of lncRNAs functions can also be done by connecting their expression patterns 
with specific cell types or biological processes to draw possible conclusions on their potential 
roles. LncRNAs can act in cis and/or trans manner to influence or interact with nearby or distant 
genes, respectively [2, 199]. For cis-regulation, the genomic location can be used as a guide for 
guilt-by-association analysis which allows global understanding of lncRNAs and protein cod-
ing genes that are tightly co-expressed and thus presumably co-regulated. Cis-relationships can 
foreseeably arise through complementary sequence motifs, tethering, blocking, and product-
independent transcription [2]. For example, the human HOTTIP lncRNA is a cis-acting lncRNA 
expressed in the HOXA cluster that activates transcription of flanking genes [200]. The bioin-
formatics tools for cis-regulation prediction include ncFANs (http://www.ebiomed.org/ncFANs) 
[201] which uses a coding-non-coding gene co-expression network to infer lncRNA function.

6. Emerging platforms and technologies for understanding and using 
ncRNAs

Efficient and reliable techniques for accurate detection of genome information are important 
for productivity and health of livestock species [202]. The introduction of next  generation 
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sequencing technologies has increased throughput studies of ncRNAs considerably. 
Consequently, studies on ncRNAs have contributed toward better understanding of dis-
ease resistance, productivity, breeding and meat quality in livestock species [203]. Although 
the numbers of detected ncRNA transcripts are increasing continuously, the ncRNAs iden-
tified and annotated in livestock species are still very scanty, compared with human data. 
Therefore, there is need to continue to explore the ncRNA transcriptome of livestock species 
[204]. The ability to explore and modify the genomes of livestock species could be beneficial 
in improving disease resistance, productivity, breeding capability as well as generation of 
new biomedical models [205].

Genome editing tools have emerged that allow efficient and precise genome manipulation of 
many organisms including livestock. The genome editing technique is built on engineered, 
programmable and highly specific nucleases that induce site-specific changes in the genomes 
of cellular organisms [206]. Subsequent cellular DNA repair processes generates desired inser-
tions, deletions or substitutions at the loci of interest establishing linkages between genetic 
variations and biological phenotypes [207]. Presently, four artificially engineered nuclease sys-
tems have been developed for genome editing: meganucleases derived from microbial mobile 
elements, zinc finger nucleases (ZFNs) based on eukaryotic transcription factor DNA binding 
motif, transcription activator-like effector-based nucleases (TALEN) derived from a plan-inva-
sive bacterial protein, and clustered regularly interspaced short palindromic repeats (CRISPR)-
CRISPR associated protein 9 (Cas9) system [208]. Centromere and Promoter Factor 1 (Cpf1) is 
used as an alternative to Cas9 nuclease which requires only a single CRISPR RNA (crRNA) for 
targeting [209]. CRISPR/Cas9 is easily applicable and has developed really fast over the past 
years since only programmable RNA is required to generate sequence specificity [210].

CRISPR–Cas9 system is based on a bacterial CRISPR-Cas9 nuclease from Streptococcus pyogenes 
enabling inexpensive and high-throughput interrogation of gene function [211]. CRISPR-based 
screening can be used to study non-coding sequences, characterize enhancer elements and regu-
latory sequences crucial to elucidate the roles of ncRNA [212]. With the CRISPR–Cas9 system, 
the genome can be sliced at specific sites [213]. Genome editing techniques have been modified 
and used to alter the genomes of many organisms, thus offering opportunities for generation of 
genetically modified farm animals [214]. CRISPR offers the ability to target and study particular 
DNA sequences in the vast expanse of a genome [215]. There are two chief ingredients in the 
CRISPR–Cas9 system: a Cas9 enzyme that snips through DNA like a pair of molecular scissors, 
and a small RNA molecule that directs the scissors to a specific sequence of DNA to make the 
cut. The genome can be edited as desired at nearly any site if a template is provided [216].

In order to adapt this far-reaching application of gene-editing technology to agricultural 
improvement, various approaches have been applied to a number of livestock species. In pigs, 
direct cytoplasmic injection of Cas9 mRNA and single-guide RNA into zygotes generated bial-
lelic knockout piglets [217]. The CRISPR-Cas9 system was used to generate gene-edited pigs pro-
tected from porcine reproductive and respiratory syndrome virus [218] and to genetically modify 
single blastocyst inducing indel mutations in a given gene locus[219]. Both Talen and ZNF have 
been injected directly into pig zygotes to produce live genome edited pigs [220]. Similarly, the 
porcine myostatin (MSTN) gene, which functions as a negative regulator of muscle growth, was 
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disrupted using CRISPR/Cas9 system to efficiently generate biologically safe genetically modi-
fied pigs [221]. Similarly, zygote injection of TALEN mRNA targeting MSTN gene led to produc-
tion of gene-edited cattle and sheep [205]

In cattle, the CRISPR/Cas9 system was successfully used to clone embryos that could be 
used to develop livestock transgenes for agricultural science [222]. Hornlessness was intro-
duced into dairy cattle by genome editing and reproductive cloning providing the potential 
to improve the welfare of millions of cattle [223]. In the cattle industry, gene-edited calves 
have been produced with specified genetics by ovum pickup, in vitro fertilization and zygote 
microinjection (OPU-IVF-ZM). The CRISPR/Cas9 system has also been used efficiently to gen-
erate gene knock out sheep [224].

In livestock, CRISPR-Cas9 has been greatly enhanced by single-guide RNA generating site-
specific DNA breaks through homology-directed repair and used for diverse applications, 
from disease modelling of individual loci to parallelized loss-of-function screens of thou-
sands of regulatory elements [225]. Equally, bioinformatics designs for CRISPR deletions are 
now possible with a tool known as CRISPETa developed with efficient CRISPR deletion of 
an enhancer and exonic fragment of MALAT1, a lncRNA. CRISPETa can be used for single 
target regions or thousands of targets and has high-coverage library designs for entire classes 
of non-coding elements which can be adopted for use in livestock species [226]. CRISPR-Cas9 
may be used with a gene drive incorporated with genome edit to investigate the control of 
any biological process and can be used to accelerate livestock breeding [225]. Gene drives can 
be constructed with the use of CRISPR-Cas9 tool that can favour the inheritance of edited 
alleles possible to modify a whole population [227]. In the DNA, a double strand break can be 
initiated by a gene drive during the copying process. Using the sequence of the chromosome 
containing the gene drive elements as a repair template, the DNA break could be repaired 
by cellular pathways such as homology-directed repair [228]. Editing the genomic DNA ele-
ments targeting non-coding regions is vital since silencing of ncRNA genes using RNA inter-
ference tools still presents major challenges. An improved vector system adapted to delete 
non-protein-coding regulatory elements; double excision CRISPR Knockout (DECKO) using 
two-step cloning to produce vectors (lentivirus) with two guide RNAs concurrently [229], has 
been used effectively to silenced five ncRNAs (miRNAs-miR21, miR29a and lncRNAs-UCA1 
and MALAT1) [230]. The use of genome editing technologies will create novel viewpoints for 
enquiry to advance our knowledge on biological function of ncRNAs in livestock species and 
facilitate creating animals with precise alterations.

7. Conclusion and remarks

With the application of next generation sequencing technologies, the number of ncRNAs 
reported in livestock species has increased dramatically in the last 5 years. Various tools and 
pipelines have been introduced to make sense out of ncRNA sequence data. This chapter has 
provided a comprehensive overview of the current and emerging tools and methods for gen-
erating and analyzing ncRNA (miRNA, lncRNA as well as other small ncRNAs) sequence 
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been injected directly into pig zygotes to produce live genome edited pigs [220]. Similarly, the 
porcine myostatin (MSTN) gene, which functions as a negative regulator of muscle growth, was 
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microinjection (OPU-IVF-ZM). The CRISPR/Cas9 system has also been used efficiently to gen-
erate gene knock out sheep [224].

In livestock, CRISPR-Cas9 has been greatly enhanced by single-guide RNA generating site-
specific DNA breaks through homology-directed repair and used for diverse applications, 
from disease modelling of individual loci to parallelized loss-of-function screens of thou-
sands of regulatory elements [225]. Equally, bioinformatics designs for CRISPR deletions are 
now possible with a tool known as CRISPETa developed with efficient CRISPR deletion of 
an enhancer and exonic fragment of MALAT1, a lncRNA. CRISPETa can be used for single 
target regions or thousands of targets and has high-coverage library designs for entire classes 
of non-coding elements which can be adopted for use in livestock species [226]. CRISPR-Cas9 
may be used with a gene drive incorporated with genome edit to investigate the control of 
any biological process and can be used to accelerate livestock breeding [225]. Gene drives can 
be constructed with the use of CRISPR-Cas9 tool that can favour the inheritance of edited 
alleles possible to modify a whole population [227]. In the DNA, a double strand break can be 
initiated by a gene drive during the copying process. Using the sequence of the chromosome 
containing the gene drive elements as a repair template, the DNA break could be repaired 
by cellular pathways such as homology-directed repair [228]. Editing the genomic DNA ele-
ments targeting non-coding regions is vital since silencing of ncRNA genes using RNA inter-
ference tools still presents major challenges. An improved vector system adapted to delete 
non-protein-coding regulatory elements; double excision CRISPR Knockout (DECKO) using 
two-step cloning to produce vectors (lentivirus) with two guide RNAs concurrently [229], has 
been used effectively to silenced five ncRNAs (miRNAs-miR21, miR29a and lncRNAs-UCA1 
and MALAT1) [230]. The use of genome editing technologies will create novel viewpoints for 
enquiry to advance our knowledge on biological function of ncRNAs in livestock species and 
facilitate creating animals with precise alterations.

7. Conclusion and remarks

With the application of next generation sequencing technologies, the number of ncRNAs 
reported in livestock species has increased dramatically in the last 5 years. Various tools and 
pipelines have been introduced to make sense out of ncRNA sequence data. This chapter has 
provided a comprehensive overview of the current and emerging tools and methods for gen-
erating and analyzing ncRNA (miRNA, lncRNA as well as other small ncRNAs) sequence 

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

127



data (transcriptome) with special emphases on the tools that can be applied to livestock 
species. While bioinformatics tools for miRNA analyses are quite mature, there is a gen-
eral lack of comprehensive bioinformatics tools for lncRNA and other small ncRNAs. It is 
our belief that comprehensive “omics” databases that integrate existing and future ncRNA 
transcriptome databases in the framework of livestock species will contribute towards elu-
cidation of the ambiguity surrounding RNA sequence data. Moreover, given the fact that 
several emerging platforms (such as genome editing tools) for understanding ncRNAs have 
been introduced recently, these tools certainly bring great opportunities for broader and 
also deeper exploration of ncRNA functions. In addition, meticulous in silico prediction and 
careful interpretation of results are critical when handling ncRNA sequence data. Finally, 
wet-lab validation of the results of transcriptome data will be vital to confirm the functions 
of ncRNAs in livestock species.
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our belief that comprehensive “omics” databases that integrate existing and future ncRNA 
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wet-lab validation of the results of transcriptome data will be vital to confirm the functions 
of ncRNAs in livestock species.

Acknowledgements

We acknowledge financial support from Agriculture and Agri-Food Canada.

Author details

Duy N. Do1,2, Pier-Luc Dudemaine1, Bridget Fomenky1,3 and Eveline M. Ibeagha-Awemu1*

*Address all correspondence to: eveline.ibeagha-awemu@agr.gc.ca

1 Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 
Sherbrooke, Quebec, Canada

2 Department of Animal Science, McGill University, Ste-Anne-de Bellevue, Quebec, Canada

3 Département des Sciences Animales, Université Laval, Québec, QC, Canada

References

[1] Mercer TR, Wilhelm D, Dinger ME, Solda G, Korbie DJ, Glazov EA, Truong V, Schwenke 
M, Simons C, Matthaei KI. Expression of distinct RNAs from 3′ untranslated regions. 
Nucleic Acids Research. 2011;39(6):2393-2403

[2] Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: Insights into functions. 
Nature Reviews Genetics. 2009;10(3):155-159

[3] Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-
derived small RNAs in the global regulation of RNA silencing. RNA. 2010;16(4):673-695

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health128

[4] Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: tRNA-derived 
RNA fragments (tRFs). Genes & Development. 2009;23(22):2639-2649

[5] Ender C, Krek A, Friedländer MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky 
N, Meister G. A human snoRNA with microRNA-like functions. Molecular Cell. 2008;32(4): 
519-528

[6] Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS. Small RNAs 
derived from snoRNAs. RNA. 2009;15(7):1233-1240

[7] Matera AG, Terns RM, Terns MP. Non-coding RNAs: Lessons from the small nuclear 
and small nucleolar RNAs. Nature Reviews Molecular Cell Biology. 2007;8(3):209-220

[8] Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and 
development. Nature Reviews Genetics. 2014;15(1):7-21

[9] Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nature Reviews 
Molecular Cell Biology. 2008;9(3):219-230

[10] Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: Regulators of 
disease. The Journal of Pathology. 2010;220(2):126-139

[11] Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. 
Nature Reviews Genetics. 2009;10(1):57-63

[12] Goodwin S, McPherson JD, McCombie WR. Coming of age: Ten years of next-generation 
sequencing technologies. Nature reviews Genetics. 2016;17(6):333-351

[13] Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression 
patterns with a complementary DNA microarray. Science. 1995;270(5235):467-470

[14] Tarca AL, Romero R, Draghici S. Analysis of microarray experiments of gene expression 
profiling. American Journal of Obstetrics and Gynecology. 2006;195(2):373-388

[15] Kroll KM, Barkema GT, Carlon E. Modeling background intensity in DNA microarrays. 
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 2008;77(6 Pt 1):061915

[16] Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F. A model-based back-
ground adjustment for oligonucleotide expression arrays. Journal of the American 
Statistical Association. 2004;99(468):909-917

[17] Schreiber K, Csaba G, Haslbeck M, Zimmer R. Alternative splicing in next generation 
sequencing data of Saccharomyces cerevisiae. PLoS One. 2015;10(10):e0140487

[18] Roberts A, Pimentel H, Trapnell C, Pachter L. Identification of novel transcripts in anno-
tated genomes using RNA-Seq. Bioinformatics. 2011;27(17):2325-2329

[19] Piskol R, Ramaswami G, Li JB. Reliable identification of genomic variants from RNA-seq 
data. American Journal of Human Genetics. 2013;93(4):641-651

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

129



[20] Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe 
AL, Wani S, Bethel G et al. Stem cell transcriptome profiling via massive-scale mRNA 
sequencing. Nature Methods. 2008;5(7):613-619

[21] Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, McDonald H, Varhol 
R, Jones S, Marra M. Profiling the HeLa S3 transcriptome using randomly primed cDNA 
and massively parallel short-read sequencing. Biotechniques. 2008;45(1):81-94

[22] Wang Y, Xue S, Liu X, Liu H, Hu T, Qiu X, Zhang J, Lei M. Analyses of Long Non-Coding 
RNA and mRNA profiling using RNA sequencing during the pre-implantation phases 
in pig endometrium. Scientific Report. 2016;6:20238

[23] Bottomly D, Walter NA, Hunter JE, Darakjian P, Kawane S, Buck KJ, Searles RP, Mooney 
M, McWeeney SK, Hitzemann R. Evaluating gene expression in C57BL/6J and DBA/2J 
mouse striatum using RNA-Seq and microarrays. PLoS One. 2011;6(3):e17820

[24] Sirbu A, Kerr G, Crane M, Ruskin HJ. RNA-Seq vs dual- and single-channel microarray data: 
Sensitivity analysis for differential expression and clustering. PLoS One. 2012;7(12):e50986

[25] Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, Menzel C, Chen W, Li Y, Zeng R et al. Estimating 
accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics. 2009;10:161

[26] Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: Delivery of nano-
pore sequencing to the genomics community. Genome Biology. 2016;17(1):239

[27] Chu Y, Corey DR. RNA sequencing: Platform selection, experimental design, and data 
interpretation. Nucleic Acid Therapeutics. 2012;22(4):271-274

[28] Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcrip-
tome annotation and quantification using RNA-seq. Nature Methods. 2011;8(6):469-477

[29] Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, 
Szcześniak MW, Gaffney DJ, Elo LL, Zhang X. A survey of best practices for RNA-seq 
data analysis. Genome Biology. 2016;17(1):13

[30] Liu Y, Ferguson JF, Xue C, Silverman IM, Gregory B, Reilly MP, Li M. Evaluating the impact 
of sequencing depth on transcriptome profiling in human adipose. PLoS One. 2013;8(6): 
e66883

[31] Liu Y, Zhou J, White KP. RNA-seq differential expression studies: More sequence or 
more replication? Bioinformatics. 2014;30(3):301-304

[32] Podolska A, Kaczkowski B, Litman T, Fredholm M, Cirera S. How the RNA isolation method 
can affect microRNA microarray results. Acta Biochimica Polonica. 2011;58(4):535-540

[33] Campbell JD, Liu G, Luo L, Xiao J, Gerrein J, Juan-Guardela B, Tedrow J, Alekseyev YO, 
Yang IV, Correll M et al. Assessment of microRNA differential expression and detection 
in multiplexed small RNA sequencing data. RNA. 2015;21(2):164-171

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health130

[34] Metpally RP, Nasser S, Malenica I, Courtright A, Carlson E, Ghaffari L, Villa S, Tembe W, 
Van Keuren-Jensen K. Comparison of analysis tools for miRNA high throughput sequenc-
ing using nerve crush as a model. Frontiers in Genetics. 2013;4:20

[35] Andrews S. FastQC: A quality control tool for high throughput sequence data. 2010. 
Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

[36] Patel RK, Jain M. NGS QC Toolkit: A toolkit for quality control of next generation 
sequencing data. PloS One. 2012;7(2):e30619

[37] Williams CR, Baccarella A, Parrish JZ, Kim CC. Trimming of sequence reads alters RNA-
Seq gene expression estimates. BMC Bioinformatics. 2016;17:103

[38] Chen C, Khaleel SS, Huang H, Wu CH. Software for pre-processing Illumina next-gener-
ation sequencing short read sequences. Source Code for Biology and Medicine. 2014;9:8-8

[39] Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence 
data. Bioinformatics. 2014;30(15):2114-2120

[40] Gordon A, Hannon G. Fastx-toolkit. FASTQ/A short-reads preprocessing tools (unpub-
lished). http://hannonlab cshl edu/fastx_toolkit; 2010

[41] Martin M. Cutadapt removes adapter sequences from high-throughput sequencing 
reads. EMBnetjournal. 2011;17(1): Next Generation Sequencing Data Analysis

[42] Mielczarek M, Szyda J. Review of alignment and SNP calling algorithms for next-gener-
ation sequencing data. Journal of Applied Genetics. 2016;57(1):71-79

[43] Shang J, Zhu F, Vongsangnak W, Tang Y, Zhang W, Shen B. Evaluation and compari-
son of multiple aligners for next-generation sequencing data analysis. BioMed Research 
International. 2014;2014:309650

[44] Trapnell C, Pachter L, Salzberg SL. TopHat: Discovering splice junctions with RNA-Seq. 
Bioinformatics. 2009;25(9):1105-1111

[45] Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, 
Gingeras TR. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21

[46] Langmead B. Aligning short sequencing reads with Bowtie. Current Protocols in 
Bioinformatics. 2010, Chapter 11:Unit 11 17

[47] Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables 
improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology. 
2015;33(3):290-295

[48] Yang C, Wu PY, Tong L, Phan JH, Wang MD. The impact of RNA-seq aligners on gene 
expression estimation. ACM BCB. 2015;2015:462-471

[49] Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles 
D, Li B, Lieber M, et al. De novo transcript sequence reconstruction from RNA-seq using the 
Trinity platform for reference generation and analysis. Nature Protocols. 2013;8(8):1494-1512

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

131



[20] Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe 
AL, Wani S, Bethel G et al. Stem cell transcriptome profiling via massive-scale mRNA 
sequencing. Nature Methods. 2008;5(7):613-619

[21] Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, McDonald H, Varhol 
R, Jones S, Marra M. Profiling the HeLa S3 transcriptome using randomly primed cDNA 
and massively parallel short-read sequencing. Biotechniques. 2008;45(1):81-94

[22] Wang Y, Xue S, Liu X, Liu H, Hu T, Qiu X, Zhang J, Lei M. Analyses of Long Non-Coding 
RNA and mRNA profiling using RNA sequencing during the pre-implantation phases 
in pig endometrium. Scientific Report. 2016;6:20238

[23] Bottomly D, Walter NA, Hunter JE, Darakjian P, Kawane S, Buck KJ, Searles RP, Mooney 
M, McWeeney SK, Hitzemann R. Evaluating gene expression in C57BL/6J and DBA/2J 
mouse striatum using RNA-Seq and microarrays. PLoS One. 2011;6(3):e17820

[24] Sirbu A, Kerr G, Crane M, Ruskin HJ. RNA-Seq vs dual- and single-channel microarray data: 
Sensitivity analysis for differential expression and clustering. PLoS One. 2012;7(12):e50986

[25] Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, Menzel C, Chen W, Li Y, Zeng R et al. Estimating 
accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics. 2009;10:161

[26] Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: Delivery of nano-
pore sequencing to the genomics community. Genome Biology. 2016;17(1):239

[27] Chu Y, Corey DR. RNA sequencing: Platform selection, experimental design, and data 
interpretation. Nucleic Acid Therapeutics. 2012;22(4):271-274

[28] Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcrip-
tome annotation and quantification using RNA-seq. Nature Methods. 2011;8(6):469-477

[29] Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, 
Szcześniak MW, Gaffney DJ, Elo LL, Zhang X. A survey of best practices for RNA-seq 
data analysis. Genome Biology. 2016;17(1):13

[30] Liu Y, Ferguson JF, Xue C, Silverman IM, Gregory B, Reilly MP, Li M. Evaluating the impact 
of sequencing depth on transcriptome profiling in human adipose. PLoS One. 2013;8(6): 
e66883

[31] Liu Y, Zhou J, White KP. RNA-seq differential expression studies: More sequence or 
more replication? Bioinformatics. 2014;30(3):301-304

[32] Podolska A, Kaczkowski B, Litman T, Fredholm M, Cirera S. How the RNA isolation method 
can affect microRNA microarray results. Acta Biochimica Polonica. 2011;58(4):535-540

[33] Campbell JD, Liu G, Luo L, Xiao J, Gerrein J, Juan-Guardela B, Tedrow J, Alekseyev YO, 
Yang IV, Correll M et al. Assessment of microRNA differential expression and detection 
in multiplexed small RNA sequencing data. RNA. 2015;21(2):164-171

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health130

[34] Metpally RP, Nasser S, Malenica I, Courtright A, Carlson E, Ghaffari L, Villa S, Tembe W, 
Van Keuren-Jensen K. Comparison of analysis tools for miRNA high throughput sequenc-
ing using nerve crush as a model. Frontiers in Genetics. 2013;4:20

[35] Andrews S. FastQC: A quality control tool for high throughput sequence data. 2010. 
Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

[36] Patel RK, Jain M. NGS QC Toolkit: A toolkit for quality control of next generation 
sequencing data. PloS One. 2012;7(2):e30619

[37] Williams CR, Baccarella A, Parrish JZ, Kim CC. Trimming of sequence reads alters RNA-
Seq gene expression estimates. BMC Bioinformatics. 2016;17:103

[38] Chen C, Khaleel SS, Huang H, Wu CH. Software for pre-processing Illumina next-gener-
ation sequencing short read sequences. Source Code for Biology and Medicine. 2014;9:8-8

[39] Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence 
data. Bioinformatics. 2014;30(15):2114-2120

[40] Gordon A, Hannon G. Fastx-toolkit. FASTQ/A short-reads preprocessing tools (unpub-
lished). http://hannonlab cshl edu/fastx_toolkit; 2010

[41] Martin M. Cutadapt removes adapter sequences from high-throughput sequencing 
reads. EMBnetjournal. 2011;17(1): Next Generation Sequencing Data Analysis

[42] Mielczarek M, Szyda J. Review of alignment and SNP calling algorithms for next-gener-
ation sequencing data. Journal of Applied Genetics. 2016;57(1):71-79

[43] Shang J, Zhu F, Vongsangnak W, Tang Y, Zhang W, Shen B. Evaluation and compari-
son of multiple aligners for next-generation sequencing data analysis. BioMed Research 
International. 2014;2014:309650

[44] Trapnell C, Pachter L, Salzberg SL. TopHat: Discovering splice junctions with RNA-Seq. 
Bioinformatics. 2009;25(9):1105-1111

[45] Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, 
Gingeras TR. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21

[46] Langmead B. Aligning short sequencing reads with Bowtie. Current Protocols in 
Bioinformatics. 2010, Chapter 11:Unit 11 17

[47] Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables 
improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology. 
2015;33(3):290-295

[48] Yang C, Wu PY, Tong L, Phan JH, Wang MD. The impact of RNA-seq aligners on gene 
expression estimation. ACM BCB. 2015;2015:462-471

[49] Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles 
D, Li B, Lieber M, et al. De novo transcript sequence reconstruction from RNA-seq using the 
Trinity platform for reference generation and analysis. Nature Protocols. 2013;8(8):1494-1512

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

131



[50] Li YL, Weng JC, Hsiao CC, Chou MT, Tseng CW, Hung JH. PEAT: An intelligent and efficient 
paired-end sequencing adapter trimming algorithm. BMC Bioinformatics. 2015;16(Suppl 
1):S2

[51] Wu Z, Wang X, Zhang X. Using non-uniform read distribution models to improve iso-
form expression inference in RNA-Seq. Bioinformatics. 2011;27(4):502-508

[52] Jiang H, Lei R, Ding SW, Zhu S. Skewer: A fast and accurate adapter trimmer for next-
generation sequencing paired-end reads. BMC Bioinformatics. 2014;15:182

[53] Criscuolo A, Brisse S. AlienTrimmer: A tool to quickly and accurately trim off multi-
ple short contaminant sequences from high-throughput sequencing reads. Genomics. 
2013;102(5-6):500-506

[54] O'Connell J, Schulz-Trieglaff O, Carlson E, Hims MM, Gormley NA, Cox AJ. NxTrim: 
Optimized trimming of Illumina mate pair reads. Bioinformatics. 2015;31(12):2035-2037

[55] Sturm M, Schroeder C, Bauer P. SeqPurge: Highly-sensitive adapter trimming for 
paired-end NGS data. BMC Bioinformatics. 2016;17:208

[56] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods. 
2012;9(4):357-359

[57] Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment 
of short DNA sequences to the human genome. Genome Biology. 2009;10(3):R25

[58] Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler trans-
form. Bioinformatics. 2010;26(5):589-595

[59] Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: Accurate align-
ment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome 
Biology. 2013;14(4):R36

[60] McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, Vanderpool 
CK, Tjaden B. Computational analysis of bacterial RNA-Seq data. Nucleic Acids 
Research. 2013;41(14):e140

[61] Au KF, Jiang H, Lin L, Xing Y, Wong WH. Detection of splice junctions from paired-end 
RNA-seq data by SpliceMap. Nucleic Acids Research. 2010;38(14):4570-4578

[62] Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, 
Eccles D, Li B, Lieber M et al. De novo transcript sequence reconstruction from RNA-Seq: 
Reference generation and analysis with Trinity. Nature Protocols. 2013;8(8):1494-1512. DOI: 
10.1038/nprot.2013.1084

[63] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, 
Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unanno-
tated transcripts and isoform switching during cell differentiation. Nature Biotechnology. 
2010;28(5):511-515

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health132

[64] Mezlini AM, Smith EJ, Fiume M, Buske O, Savich GL, Shah S, Aparicio S, Chiang DY, 
Goldenberg A, Brudno M. iReckon: Simultaneous isoform discovery and abundance esti-
mation from RNA-seq data. Genome Research. 2013;23(3):519-529

[65] Liu NY, Xu W, Papanicolaou A, Dong SL, Anderson A. Identification and characteriza-
tion of three chemosensory receptor families in the cotton bollworm Helicoverpa armigera. 
BMC Genomics. 2014;15:597

[66] Tsoi LC, Iyer MK, Stuart PE, Swindell WR, Gudjonsson JE, Tejasvi T, Sarkar MK, Li B, Ding 
J, Voorhees JJ et al. Analysis of long non-coding RNAs highlights tissue-specific expression 
patterns and epigenetic profiles in normal and psoriatic skin. Genome Biology. 2015;16:24

[67] Amin V, Harris RA, Onuchic V, Jackson AR, Charnecki T, Paithankar S, Lakshmi 
Subramanian S, Riehle K, Coarfa C, Milosavljevic A. Epigenomic footprints across 111 
reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs. Nature 
Communications. 2015;6:6370

[68] Koufariotis LT, Chen Y-PP, Chamberlain A, Vander Jagt C, Hayes BJ. A catalogue of 
novel bovine long noncoding RNA across 18 tissues. PLoS One. 2015;10(10):e0141225

[69] Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately iden-
tifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic 
Acids Research. 2012;40(1):37-52

[70] Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM. miRanalyzer: An update on the 
detection and analysis of microRNAs in high-throughput sequencing experiments. 
Nucleic Acids Research. 2011;39(Web Server issue):W132-W138

[71] Wu J, Liu Q, Wang X, Zheng J, Wang T, You M, Sheng Sun Z, Shi Q. mirTools 2.0 for non-
coding RNA discovery, profiling, and functional annotation based on high-throughput 
sequencing. RNA Biology. 2013;10(7):1087-1092

[72] Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD: Bioinformatic tools for 
microRNA dissection. Nucleic Acids Research. 2016;44(1):24-44

[73] Shukla V, Varghese VK, Kabekkodu SP, Mallya S, Satyamoorthy K. A compilation of 
Web-based research tools for miRNA analysis. Briefings in Functional Genomics. 2017. 
https://doi.org/10.1093/bfgp/elw042

[74] Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately iden-
tifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic 
Acids Research. 2012;40(1):37-52

[75] Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM. miRanalyzer: 
A microRNA detection and analysis tool for next-generation sequencing experiments. 
Nucleic Acids Research. 2009;37(suppl 2):W68-W76

[76] Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach 
F, Dalmay T, Moulton V. The UEA sRNA workbench: A suite of tools for analysing 
and visualizing next generation sequencing microRNA and small RNA datasets. 
Bioinformatics. 2012;28(15):2059-2061

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

133



[50] Li YL, Weng JC, Hsiao CC, Chou MT, Tseng CW, Hung JH. PEAT: An intelligent and efficient 
paired-end sequencing adapter trimming algorithm. BMC Bioinformatics. 2015;16(Suppl 
1):S2

[51] Wu Z, Wang X, Zhang X. Using non-uniform read distribution models to improve iso-
form expression inference in RNA-Seq. Bioinformatics. 2011;27(4):502-508

[52] Jiang H, Lei R, Ding SW, Zhu S. Skewer: A fast and accurate adapter trimmer for next-
generation sequencing paired-end reads. BMC Bioinformatics. 2014;15:182

[53] Criscuolo A, Brisse S. AlienTrimmer: A tool to quickly and accurately trim off multi-
ple short contaminant sequences from high-throughput sequencing reads. Genomics. 
2013;102(5-6):500-506

[54] O'Connell J, Schulz-Trieglaff O, Carlson E, Hims MM, Gormley NA, Cox AJ. NxTrim: 
Optimized trimming of Illumina mate pair reads. Bioinformatics. 2015;31(12):2035-2037

[55] Sturm M, Schroeder C, Bauer P. SeqPurge: Highly-sensitive adapter trimming for 
paired-end NGS data. BMC Bioinformatics. 2016;17:208

[56] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods. 
2012;9(4):357-359

[57] Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment 
of short DNA sequences to the human genome. Genome Biology. 2009;10(3):R25

[58] Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler trans-
form. Bioinformatics. 2010;26(5):589-595

[59] Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: Accurate align-
ment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome 
Biology. 2013;14(4):R36

[60] McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, Vanderpool 
CK, Tjaden B. Computational analysis of bacterial RNA-Seq data. Nucleic Acids 
Research. 2013;41(14):e140

[61] Au KF, Jiang H, Lin L, Xing Y, Wong WH. Detection of splice junctions from paired-end 
RNA-seq data by SpliceMap. Nucleic Acids Research. 2010;38(14):4570-4578

[62] Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, 
Eccles D, Li B, Lieber M et al. De novo transcript sequence reconstruction from RNA-Seq: 
Reference generation and analysis with Trinity. Nature Protocols. 2013;8(8):1494-1512. DOI: 
10.1038/nprot.2013.1084

[63] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, 
Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unanno-
tated transcripts and isoform switching during cell differentiation. Nature Biotechnology. 
2010;28(5):511-515

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health132

[64] Mezlini AM, Smith EJ, Fiume M, Buske O, Savich GL, Shah S, Aparicio S, Chiang DY, 
Goldenberg A, Brudno M. iReckon: Simultaneous isoform discovery and abundance esti-
mation from RNA-seq data. Genome Research. 2013;23(3):519-529

[65] Liu NY, Xu W, Papanicolaou A, Dong SL, Anderson A. Identification and characteriza-
tion of three chemosensory receptor families in the cotton bollworm Helicoverpa armigera. 
BMC Genomics. 2014;15:597

[66] Tsoi LC, Iyer MK, Stuart PE, Swindell WR, Gudjonsson JE, Tejasvi T, Sarkar MK, Li B, Ding 
J, Voorhees JJ et al. Analysis of long non-coding RNAs highlights tissue-specific expression 
patterns and epigenetic profiles in normal and psoriatic skin. Genome Biology. 2015;16:24

[67] Amin V, Harris RA, Onuchic V, Jackson AR, Charnecki T, Paithankar S, Lakshmi 
Subramanian S, Riehle K, Coarfa C, Milosavljevic A. Epigenomic footprints across 111 
reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs. Nature 
Communications. 2015;6:6370

[68] Koufariotis LT, Chen Y-PP, Chamberlain A, Vander Jagt C, Hayes BJ. A catalogue of 
novel bovine long noncoding RNA across 18 tissues. PLoS One. 2015;10(10):e0141225

[69] Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately iden-
tifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic 
Acids Research. 2012;40(1):37-52

[70] Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM. miRanalyzer: An update on the 
detection and analysis of microRNAs in high-throughput sequencing experiments. 
Nucleic Acids Research. 2011;39(Web Server issue):W132-W138

[71] Wu J, Liu Q, Wang X, Zheng J, Wang T, You M, Sheng Sun Z, Shi Q. mirTools 2.0 for non-
coding RNA discovery, profiling, and functional annotation based on high-throughput 
sequencing. RNA Biology. 2013;10(7):1087-1092

[72] Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD: Bioinformatic tools for 
microRNA dissection. Nucleic Acids Research. 2016;44(1):24-44

[73] Shukla V, Varghese VK, Kabekkodu SP, Mallya S, Satyamoorthy K. A compilation of 
Web-based research tools for miRNA analysis. Briefings in Functional Genomics. 2017. 
https://doi.org/10.1093/bfgp/elw042

[74] Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately iden-
tifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic 
Acids Research. 2012;40(1):37-52

[75] Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM. miRanalyzer: 
A microRNA detection and analysis tool for next-generation sequencing experiments. 
Nucleic Acids Research. 2009;37(suppl 2):W68-W76

[76] Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach 
F, Dalmay T, Moulton V. The UEA sRNA workbench: A suite of tools for analysing 
and visualizing next generation sequencing microRNA and small RNA datasets. 
Bioinformatics. 2012;28(15):2059-2061

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

133



[77] Rueda A, Barturen G, Lebrón R, Gómez-Martín C, Alganza Á, Oliver JL, Hackenberg 
M. sRNAtoolbox: An integrated collection of small RNA research tools. Nucleic Acids 
Research. 2015;43(W1):W467-W473

[78] Pantano L, Estivill X, Martí E. SeqBuster, a bioinformatic tool for the processing and 
analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human 
embryonic cells. Nucleic Acids Research. 2010;38(5):e34-e34

[79] Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z. MiPred: Classification of real and pseudo 
microRNA precursors using random forest prediction model with combined features. 
Nucleic Acids Research. 2007;35(Suppl 2):W339-W344

[80] Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, Brownstein MJ, Tuschl T, van 
Nimwegen E, Zavolan M. Identification of clustered microRNAs using an ab initio pre-
diction method. BMC Bioinformatics. 2005;6(1):267

[81] Mathelier A, Carbone A. MIReNA: Finding microRNAs with high accuracy and no learn-
ing at genome scale and from deep sequencing data. Bioinformatics. 2010;26(18):2226-2234

[82] Gomes CPC, Cho J-H, Hood L, Franco OL, Pereira RW, Wang K. A review of computa-
tional tools in microRNA discovery. Frontiers in Genetics. 2013;4:81

[83] Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB. 
Common features of microRNA target prediction tools. Frontiers in Genetics. 2014;5:23

[84] Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ 
C, Luo S, Babiarz JE. Mammalian microRNAs: Experimental evaluation of novel and pre-
viously annotated genes. Genes & Development. 2010;24(10):992-1009

[85] Li Z, Liu H, Jin X, Lo L, Liu J. Expression profiles of microRNAs from lactating and 
non-lactating bovine mammary glands and identification of miRNA related to lactation. 
BMC Genomics. 2012;13(1):731

[86] Kozomara A, Griffiths-Jones S. miRBase: Annotating high confidence microRNAs using 
deep sequencing data. Nucleic Acids Research. 2014;42(D1):D68-D73

[87] Markham NR, Zuker M. UNAFold: Software for nucleic acid folding and hybridization. 
Bioinformatics: Structure, Function and Applications. 2008:3-31

[88] Peng J, Zhao J-S, Shen Y-F, Mao H-G, Xu N-Y. MicroRNA expression profiling of lac-
tating mammary gland in divergent phenotype swine breeds. International Journal of 
Molecular Sciences. 2015;16(1):1448-1465

[89] Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The vienna RNA websuite. 
Nucleic Acids Research. 2008;36(suppl 2):W70-W74

[90] Li R, Dudemaine P-L, Zhao X, Lei C, Ibeagha-Awemu EM. Comparative analysis of the 
miRNome of bovine milk fat, whey and cells. PloS One. 2016;11(4):e0154129

[91] Schroeder DI, Jayashankar K, Douglas KC, Thirkill TL, York D, Dickinson PJ, Williams LE, 
Samollow PB, Ross PJ, Bannasch DL. Early developmental and evolutionary origins of gene 
body DNA methylation patterns in mammalian placentas. PLoS Genetics. 2015;11:e1005442

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health134

[92] Do DN, Li R, Dudemaine P-L, Ibeagha-Awemu EM. MicroRNA roles in signalling dur-
ing lactation: An insight from differential expression, time course and pathway analy-
ses of deep sequence data. Scientific Reports. 2017;7:44605

[93] Wang W-C, Lin F-M, Chang W-C, Lin K-Y, Huang H-D, Lin N-S. miRExpress: 
Analyzing high-throughput sequencing data for profiling microRNA expression. BMC 
Bioinformatics. 2009;10(1):328

[94] Fasold M, Langenberger D, Binder H, Stadler PF, Hoffmann S. DARIO: A ncRNA 
detection and analysis tool for next-generation sequencing experiments. Nucleic Acids 
Research. 2011;39(Web Server issue):W112-W117: gkr357

[95] Lewis BP, Shih I-h, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian 
microRNA targets. Cell. 2003;115(7):787-798

[96] Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko 
M, Filippidis C, Dalamagas T, Hatzigeorgiou AG. DIANA-microT web server v5. 0: 
Service integration into miRNA functional analysis workflows. Nucleic Acids Research. 
2013;41(W1):W169-W173

[97] Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in 
Drosophila. Genome Biology. 2003;5(1):R1

[98] Wong N, Wang X. miRDB: An online resource for microRNA target prediction and 
functional annotations. Nucleic Acids Research. 2014;43(D1):D146-D152. gku1104

[99] Hsu JBK, Chiu CM, Hsu SD, Huang WY, Chien CH, Lee TY, Huang HD. miRTar: 
An integrated system for identifying miRNA-target interactions in human. BMC 
Bioinformatics. 2011;12(1):300

[100] Hammell M, Long D, Zhang L, Lee A, Carmack CS, Han M, Ding Y, Ambros V. mir-
WIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–
enriched transcripts. Nature Methods. 2008;5(9):813-819

[101] Nam S, Li M, Choi K, Balch C, Kim S, Nephew KP. MicroRNA and mRNA integrated 
analysis (MMIA): A web tool for examining biological functions of microRNA expres-
sion. Nucleic Acids Research. 2009;37(suppl 2):W356-W362

[102] Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in 
microRNA target recognition. Nature Genetics. 2007;39(10):1278-1284

[103] Dai X, Zhao PX. psRNATarget: A plant small RNA target analysis server. Nucleic Acids 
Research. 2011;39(suppl 2):W155-W159

[104] Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, Lim B, Rigoutsos I. A 
pattern-based method for the identification of MicroRNA binding sites and their cor-
responding heteroduplexes. Cell. 2006;126(6):1203-1217

[105] Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flex-
ible. Nucleic Acids Research. 2006;34(Suppl 2):W451-W454

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

135



[77] Rueda A, Barturen G, Lebrón R, Gómez-Martín C, Alganza Á, Oliver JL, Hackenberg 
M. sRNAtoolbox: An integrated collection of small RNA research tools. Nucleic Acids 
Research. 2015;43(W1):W467-W473

[78] Pantano L, Estivill X, Martí E. SeqBuster, a bioinformatic tool for the processing and 
analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human 
embryonic cells. Nucleic Acids Research. 2010;38(5):e34-e34

[79] Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z. MiPred: Classification of real and pseudo 
microRNA precursors using random forest prediction model with combined features. 
Nucleic Acids Research. 2007;35(Suppl 2):W339-W344

[80] Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, Brownstein MJ, Tuschl T, van 
Nimwegen E, Zavolan M. Identification of clustered microRNAs using an ab initio pre-
diction method. BMC Bioinformatics. 2005;6(1):267

[81] Mathelier A, Carbone A. MIReNA: Finding microRNAs with high accuracy and no learn-
ing at genome scale and from deep sequencing data. Bioinformatics. 2010;26(18):2226-2234

[82] Gomes CPC, Cho J-H, Hood L, Franco OL, Pereira RW, Wang K. A review of computa-
tional tools in microRNA discovery. Frontiers in Genetics. 2013;4:81

[83] Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB. 
Common features of microRNA target prediction tools. Frontiers in Genetics. 2014;5:23

[84] Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ 
C, Luo S, Babiarz JE. Mammalian microRNAs: Experimental evaluation of novel and pre-
viously annotated genes. Genes & Development. 2010;24(10):992-1009

[85] Li Z, Liu H, Jin X, Lo L, Liu J. Expression profiles of microRNAs from lactating and 
non-lactating bovine mammary glands and identification of miRNA related to lactation. 
BMC Genomics. 2012;13(1):731

[86] Kozomara A, Griffiths-Jones S. miRBase: Annotating high confidence microRNAs using 
deep sequencing data. Nucleic Acids Research. 2014;42(D1):D68-D73

[87] Markham NR, Zuker M. UNAFold: Software for nucleic acid folding and hybridization. 
Bioinformatics: Structure, Function and Applications. 2008:3-31

[88] Peng J, Zhao J-S, Shen Y-F, Mao H-G, Xu N-Y. MicroRNA expression profiling of lac-
tating mammary gland in divergent phenotype swine breeds. International Journal of 
Molecular Sciences. 2015;16(1):1448-1465

[89] Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The vienna RNA websuite. 
Nucleic Acids Research. 2008;36(suppl 2):W70-W74

[90] Li R, Dudemaine P-L, Zhao X, Lei C, Ibeagha-Awemu EM. Comparative analysis of the 
miRNome of bovine milk fat, whey and cells. PloS One. 2016;11(4):e0154129

[91] Schroeder DI, Jayashankar K, Douglas KC, Thirkill TL, York D, Dickinson PJ, Williams LE, 
Samollow PB, Ross PJ, Bannasch DL. Early developmental and evolutionary origins of gene 
body DNA methylation patterns in mammalian placentas. PLoS Genetics. 2015;11:e1005442

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health134

[92] Do DN, Li R, Dudemaine P-L, Ibeagha-Awemu EM. MicroRNA roles in signalling dur-
ing lactation: An insight from differential expression, time course and pathway analy-
ses of deep sequence data. Scientific Reports. 2017;7:44605

[93] Wang W-C, Lin F-M, Chang W-C, Lin K-Y, Huang H-D, Lin N-S. miRExpress: 
Analyzing high-throughput sequencing data for profiling microRNA expression. BMC 
Bioinformatics. 2009;10(1):328

[94] Fasold M, Langenberger D, Binder H, Stadler PF, Hoffmann S. DARIO: A ncRNA 
detection and analysis tool for next-generation sequencing experiments. Nucleic Acids 
Research. 2011;39(Web Server issue):W112-W117: gkr357

[95] Lewis BP, Shih I-h, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian 
microRNA targets. Cell. 2003;115(7):787-798

[96] Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko 
M, Filippidis C, Dalamagas T, Hatzigeorgiou AG. DIANA-microT web server v5. 0: 
Service integration into miRNA functional analysis workflows. Nucleic Acids Research. 
2013;41(W1):W169-W173

[97] Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in 
Drosophila. Genome Biology. 2003;5(1):R1

[98] Wong N, Wang X. miRDB: An online resource for microRNA target prediction and 
functional annotations. Nucleic Acids Research. 2014;43(D1):D146-D152. gku1104

[99] Hsu JBK, Chiu CM, Hsu SD, Huang WY, Chien CH, Lee TY, Huang HD. miRTar: 
An integrated system for identifying miRNA-target interactions in human. BMC 
Bioinformatics. 2011;12(1):300

[100] Hammell M, Long D, Zhang L, Lee A, Carmack CS, Han M, Ding Y, Ambros V. mir-
WIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–
enriched transcripts. Nature Methods. 2008;5(9):813-819

[101] Nam S, Li M, Choi K, Balch C, Kim S, Nephew KP. MicroRNA and mRNA integrated 
analysis (MMIA): A web tool for examining biological functions of microRNA expres-
sion. Nucleic Acids Research. 2009;37(suppl 2):W356-W362

[102] Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in 
microRNA target recognition. Nature Genetics. 2007;39(10):1278-1284

[103] Dai X, Zhao PX. psRNATarget: A plant small RNA target analysis server. Nucleic Acids 
Research. 2011;39(suppl 2):W155-W159

[104] Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, Lim B, Rigoutsos I. A 
pattern-based method for the identification of MicroRNA binding sites and their cor-
responding heteroduplexes. Cell. 2006;126(6):1203-1217

[105] Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flex-
ible. Nucleic Acids Research. 2006;34(Suppl 2):W451-W454

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

135



[106] Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB. Determinants 
of targeting by endogenous and exogenous microRNAs and siRNAs. RNA. 2007;13(11): 
1894-1910

[107] Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis 
T, Dalamagas T, Hatzigeorgiou AG. DIANA-miRPath v3.0: Deciphering microRNA 
function with experimental support. Nucleic Acids Research. 2015;43(W1):W460-W466

[108] Nam S, Kim B, Shin S, Lee S. miRGator: An integrated system for functional annotation 
of microRNAs. Nucleic Acids Research. 2008;36(suppl 1):D159-D164

[109] Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C. MAGIA, a web-based 
tool for miRNA and genes integrated analysis. Nucleic Acids Research. 2010;38(Web 
Server issue):W352-W359. gkq423

[110] Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. miRNet-dissecting miRNA-
target interactions and functional associations through network-based visual analysis. 
Nucleic Acids Research. 2016;44(W1):W135-W141

[111] Lu TP, Lee CY, Tsai MH, Chiu YC, Hsiao CK, Lai LC, Chuang EY. miRSystem: An 
integrated system for characterizing enriched functions and pathways of microRNA 
targets. PloS One. 2012;7(8):e42390

[112] Hsu SD, Chu CH, Tsou AP, Chen SJ, Chen HC, Hsu PWC, Wong YH, Chen YH, Chen 
GH, Huang HD. miRNAMap 2.0: Genomic maps of microRNAs in metazoan genomes. 
Nucleic Acids Research. 2008;36(Suppl 1):D165-D169

[113] Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, 
Chiu CM. miRTarBase: A database curates experimentally validated microRNA–target 
interactions. Nucleic Acids Research. 2010;39(Database issue):D163-D169. gkq1107

[114] Wang J, Lu M, Qiu C, Cui Q. TransmiR: A transcription factor–microRNA regulation 
database. Nucleic Acids Research. 2010;38(suppl 1):D119-D122

[115] Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, Da 
Piedade I, Gunsalus KC, Stoffel M. Combinatorial microRNA target predictions. Nature 
Genetics. 2005;37(5):495-500

[116] Dweep H, Sticht C, Pandey P, Gretz N. miRWalk–database: Prediction of possible miRNA 
binding sites by “walking” the genes of three genomes. Journal of Biomedical Informatics. 
2011;44(5):839-847

[117] Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: An integrated resource for 
microRNA–target interactions. Nucleic Acids Research. 2009;37(suppl 1):D105-D110

[118] Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, Mahaffey S, Rossi S, 
Calin GA, Bemis L. The multiMiR R package and database: Integration of microRNA–
target interactions along with their disease and drug associations. Nucleic Acids 
Research. 2014;42(17):e133-e133

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health136

[119] Huang GT, Athanassiou C, Benos PV. mirConnX: Condition-specific mRNA-microRNA 
network integrator. Nucleic Acids Research. 2011;39(suppl 2):W416-W423

[120] Vlachos IS, Vergoulis T, Paraskevopoulou MD, Lykokanellos F, Georgakilas G, Georgiou 
P, Chatzopoulos S, Karagkouni D, Christodoulou F, Dalamagas T. DIANA-mirExTra v2. 
0: Uncovering microRNAs and transcription factors with crucial roles in NGS expres-
sion data. Nucleic Acids Research. 2016;44(Web Server issue):W128-W134. gkw455

[121] Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos 
S, Koziris N, Dalamagas T, Hatzigeorgiou AG. TarBase 6.0: Capturing the exponen-
tial growth of miRNA targets with experimental support. Nucleic Acids Research. 
2012;40(D1):D222-D229

[122] Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, Gao G. CPC: Assess the protein-
coding potential of transcripts using sequence features and support vector machine. 
Nucleic Acids Research. 2007;35(suppl 2):W345-W349

[123] Lin MF, Jungreis I, Kellis M. PhyloCSF: A comparative genomics method to distinguish 
protein coding and non-coding regions. Bioinformatics. 2011;27(13):i275-i282

[124] Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y. Utilizing sequence 
intrinsic composition to classify protein-coding and long non-coding transcripts. 
Nucleic Acids Research. 2013;41(17):e166-e166

[125] Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W. CPAT: Coding-Potential 
Assessment Tool using an alignment-free logistic regression model. Nucleic Acids 
Research. 2013;41(6):e74-e74

[126] Li A, Zhang J, Zhou Z. PLEK: A tool for predicting long non-coding RNAs and mes-
senger RNAs based on an improved k-mer scheme. BMC Bioinformatics. 2014;15(1):311

[127] Wucher V, Legeai F, Hedan B, Rizk G, Lagoutte L, Leeb T, Jagannathan V, Cadieu E, 
David A, Lohi H. FEELnc: A tool for long non-coding RNA annotation and its applica-
tion to the dog transcriptome. Nucleic Acids Research. 2017;45(8):e57. gkw1306

[128] Andersson L, Archibald AL, Bottema CD, Brauning R, Burgess SC, Burt DW, Casas 
E, Cheng HH, Clarke L, Couldrey C et al. Coordinated international action to acceler-
ate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes 
project. Genome Biology. 2015;16(1):57

[129] Yang J-H, Li J-H, Jiang S, Zhou H, Qu L-H. ChIPBase: A database for decoding the tran-
scriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq 
data. Nucleic Acids Research. 2013;41(D1):D177-D187

[130] Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, Vandesompele J, 
Mestdagh P. LNCipedia: A database for annotated human lncRNA transcript sequences 
and structures. Nucleic Acids Research. 2013;41(D1):D246-D251

[131] Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB, Gloss BS, Dinger 
ME. lncRNAdb v2. 0: Expanding the reference database for functional long noncoding 
RNAs. Nucleic Acids Research. 2014;43(Database issue):D168-D173. gku988

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

137



[106] Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB. Determinants 
of targeting by endogenous and exogenous microRNAs and siRNAs. RNA. 2007;13(11): 
1894-1910

[107] Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis 
T, Dalamagas T, Hatzigeorgiou AG. DIANA-miRPath v3.0: Deciphering microRNA 
function with experimental support. Nucleic Acids Research. 2015;43(W1):W460-W466

[108] Nam S, Kim B, Shin S, Lee S. miRGator: An integrated system for functional annotation 
of microRNAs. Nucleic Acids Research. 2008;36(suppl 1):D159-D164

[109] Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C. MAGIA, a web-based 
tool for miRNA and genes integrated analysis. Nucleic Acids Research. 2010;38(Web 
Server issue):W352-W359. gkq423

[110] Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. miRNet-dissecting miRNA-
target interactions and functional associations through network-based visual analysis. 
Nucleic Acids Research. 2016;44(W1):W135-W141

[111] Lu TP, Lee CY, Tsai MH, Chiu YC, Hsiao CK, Lai LC, Chuang EY. miRSystem: An 
integrated system for characterizing enriched functions and pathways of microRNA 
targets. PloS One. 2012;7(8):e42390

[112] Hsu SD, Chu CH, Tsou AP, Chen SJ, Chen HC, Hsu PWC, Wong YH, Chen YH, Chen 
GH, Huang HD. miRNAMap 2.0: Genomic maps of microRNAs in metazoan genomes. 
Nucleic Acids Research. 2008;36(Suppl 1):D165-D169

[113] Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, 
Chiu CM. miRTarBase: A database curates experimentally validated microRNA–target 
interactions. Nucleic Acids Research. 2010;39(Database issue):D163-D169. gkq1107

[114] Wang J, Lu M, Qiu C, Cui Q. TransmiR: A transcription factor–microRNA regulation 
database. Nucleic Acids Research. 2010;38(suppl 1):D119-D122

[115] Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, Da 
Piedade I, Gunsalus KC, Stoffel M. Combinatorial microRNA target predictions. Nature 
Genetics. 2005;37(5):495-500

[116] Dweep H, Sticht C, Pandey P, Gretz N. miRWalk–database: Prediction of possible miRNA 
binding sites by “walking” the genes of three genomes. Journal of Biomedical Informatics. 
2011;44(5):839-847

[117] Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: An integrated resource for 
microRNA–target interactions. Nucleic Acids Research. 2009;37(suppl 1):D105-D110

[118] Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, Mahaffey S, Rossi S, 
Calin GA, Bemis L. The multiMiR R package and database: Integration of microRNA–
target interactions along with their disease and drug associations. Nucleic Acids 
Research. 2014;42(17):e133-e133

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health136

[119] Huang GT, Athanassiou C, Benos PV. mirConnX: Condition-specific mRNA-microRNA 
network integrator. Nucleic Acids Research. 2011;39(suppl 2):W416-W423

[120] Vlachos IS, Vergoulis T, Paraskevopoulou MD, Lykokanellos F, Georgakilas G, Georgiou 
P, Chatzopoulos S, Karagkouni D, Christodoulou F, Dalamagas T. DIANA-mirExTra v2. 
0: Uncovering microRNAs and transcription factors with crucial roles in NGS expres-
sion data. Nucleic Acids Research. 2016;44(Web Server issue):W128-W134. gkw455

[121] Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos 
S, Koziris N, Dalamagas T, Hatzigeorgiou AG. TarBase 6.0: Capturing the exponen-
tial growth of miRNA targets with experimental support. Nucleic Acids Research. 
2012;40(D1):D222-D229

[122] Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, Gao G. CPC: Assess the protein-
coding potential of transcripts using sequence features and support vector machine. 
Nucleic Acids Research. 2007;35(suppl 2):W345-W349

[123] Lin MF, Jungreis I, Kellis M. PhyloCSF: A comparative genomics method to distinguish 
protein coding and non-coding regions. Bioinformatics. 2011;27(13):i275-i282

[124] Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y. Utilizing sequence 
intrinsic composition to classify protein-coding and long non-coding transcripts. 
Nucleic Acids Research. 2013;41(17):e166-e166

[125] Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W. CPAT: Coding-Potential 
Assessment Tool using an alignment-free logistic regression model. Nucleic Acids 
Research. 2013;41(6):e74-e74

[126] Li A, Zhang J, Zhou Z. PLEK: A tool for predicting long non-coding RNAs and mes-
senger RNAs based on an improved k-mer scheme. BMC Bioinformatics. 2014;15(1):311

[127] Wucher V, Legeai F, Hedan B, Rizk G, Lagoutte L, Leeb T, Jagannathan V, Cadieu E, 
David A, Lohi H. FEELnc: A tool for long non-coding RNA annotation and its applica-
tion to the dog transcriptome. Nucleic Acids Research. 2017;45(8):e57. gkw1306

[128] Andersson L, Archibald AL, Bottema CD, Brauning R, Burgess SC, Burt DW, Casas 
E, Cheng HH, Clarke L, Couldrey C et al. Coordinated international action to acceler-
ate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes 
project. Genome Biology. 2015;16(1):57

[129] Yang J-H, Li J-H, Jiang S, Zhou H, Qu L-H. ChIPBase: A database for decoding the tran-
scriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq 
data. Nucleic Acids Research. 2013;41(D1):D177-D187

[130] Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, Vandesompele J, 
Mestdagh P. LNCipedia: A database for annotated human lncRNA transcript sequences 
and structures. Nucleic Acids Research. 2013;41(D1):D246-D251

[131] Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB, Gloss BS, Dinger 
ME. lncRNAdb v2. 0: Expanding the reference database for functional long noncoding 
RNAs. Nucleic Acids Research. 2014;43(Database issue):D168-D173. gku988

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

137



[132] Xu J, Bai J, Zhang X, Lv Y, Gong Y, Liu L, Zhao H, Yu F, Ping Y, Zhang G. A comprehensive 
overview of lncRNA annotation resources. Briefings in bioinformatics. 2016;18(2):236-
249. bbw015

[133] Gong J, Liu W, Zhang J, Miao X, Guo A-Y. lncRNASNP: A database of SNPs in 
lncRNAs and their potential functions in human and mouse. Nucleic Acids Research. 
2015;43(D1):D181-D186

[134] Ma L, Li A, Zou D, Xu X, Xia L, Yu J, Bajic VB, Zhang Z. LncRNAWiki: Harnessing com-
munity knowledge in collaborative curation of human long non-coding RNAs. Nucleic 
Acids Research. 2014;43(Database issue):D187-D192. gku1167

[135] Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, Zhu W, Wu W, Chen R, Zhao Y. NONCODEv4: 
Exploring the world of long non-coding RNA genes. Nucleic Acids Research. 
2014;42(D1):D98-D103

[136] Cao J, Wei C, Liu D, Wang H, Wu M, Xie Z, Capellini TD, Zhang L, Zhao F, Li L. DNA 
methylation Landscape of body size variation in sheep. Scientific Reports. 2015;5

[137] Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin 
D, Merkel A, Knowles DG. The GENCODE v7 catalog of human long noncoding 
RNAs: Analysis of their gene structure, evolution, and expression. Genome Research. 
2012;22(9):1775-1789

[138] Wu D, Huang Y, Kang J, Li K, Bi X, Zhang T, Jin N, Hu Y, Tan P, Zhang L. ncRDeathDB: 
A comprehensive bioinformatics resource for deciphering network organization of the 
ncRNA-mediated cell death system. Autophagy. 2015;11(10):1917-1926

[139] Chen X, Hao Y, Cui Y, Fan Z, He S, Luo J, Chen R. LncVar: A database of genetic varia-
tion associated with long non-coding genes. Bioinformatics. 2017;33(1):112-118

[140] Denisenko E, Ho D, Tamgue O, Ozturk M, Suzuki H, Brombacher F, Guler R, Schmeier 
S. IRNdb: The database of immunologically relevant non-coding RNAs. Database. 
2016;2016. baw138

[141] Hou M, Tang X, Tian F, Shi F, Liu F, Gao G. AnnoLnc: A web server for systematically 
annotating novel human lncRNAs. BMC Genomics. 2016;17(1):931

[142] He S, Zhang H, Liu H, Zhu H. LongTarget: A tool to predict lncRNA DNA-binding motifs 
and binding sites via Hoogsteen base-pairing analysis. Bioinformatics. 2015;31(2):178-186

[143] Jiang Q, Ma R, Wang J, Wu X, Jin S, Peng J, Tan R, Zhang T, Li Y, Wang Y. LncRNA2Function: 
A comprehensive resource for functional investigation of human lncRNAs based on 
RNA-seq data. BMC Genomics. 2015;16(3):S2

[144] Zhao Z, Bai J, Wu A, Wang Y, Zhang J, Wang Z, Li Y, Xu J, Li X. Co-LncRNA: Investigating 
the lncRNA combinatorial effects in GO annotations and KEGG pathways based on 
human RNA-Seq data. Database. 2015;2015. bav082

[145] Zhou Z, Shen Y, Khan MR, Li A. LncReg: A reference resource for lncRNA-associated 
regulatory networks. Database. 2015;2015. bav083

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health138

[146] Liu K, Yan Z, Li Y, Sun Z. Linc2GO: A human LincRNA function annotation resource 
based on ceRNA hypothesis. Bioinformatics. 2013;29(17):2221-2222

[147] Alam T, Uludag M, Essack M, Salhi A, Ashoor H, Hanks JB, Kapfer C, Mineta K, 
Gojobori T, Bajic VB. FARNA: Knowledgebase of inferred functions of non-coding 
RNA transcripts. Nucleic Acids Research. 2016;45(5):2838-2848. gkw973

[148] Li Y, Wang C, Miao Z, Bi X, Wu D, Jin N, Wang L, Wu H, Qian K, Li C. ViRBase: A resource 
for virus–host ncRNA-associated interactions. Nucleic Acids Research. 2014;43(Database 
issue):D578-D582. gku903

[149] Jiang Q, Wang J, Wu X, Ma R, Zhang T, Jin S, Han Z, Tan R, Peng J, Liu G. LncRNA2Target: 
A database for differentially expressed genes after lncRNA knockdown or overexpres-
sion. Nucleic Acids Research. 2015;43(D1):D193-D196

[150] Wu CH, Hsu CL, Lu PC, Lin WC, Juan HF, Huang HC. Identification of lncRNA func-
tions in lung cancer based on associated protein-protein interaction modules. Scientific 
Reports. 2016;6:35959

[151] Wu T, Wang J, Liu C, Zhang Y, Shi B, Zhu X, Zhang Z, Skogerbø G, Chen L, Lu H. 
NPInter: The noncoding RNAs and protein related biomacromolecules interaction 
database. Nucleic Acids Research. 2006;34(suppl 1):D150-D152

[152] Rosenkranz D, Zischler H. proTRAC-a software for probabilistic piRNA cluster detec-
tion, visualization and analysis. BMC Bioinformatics. 2012;13(1):5

[153] Jung I, Park JC, Kim S. piClust: A density based piRNA clustering algorithm. 
Computational Biology and Chemistry. 2014;50:60-67

[154] Sarkar A, Maji RK, Saha S, Ghosh Z. piRNAQuest: Searching the piRNAome for silenc-
ers. BMC Genomics. 2014;15(1):555

[155] Pantano L, Estivill X, Martí E. A non-biased framework for the annotation and classifica-
tion of the non-miRNA small RNA transcriptome. Bioinformatics. 2011;27(22):3202-3203

[156] Chen C-J, Servant N, Toedling J, Sarazin A, Marchais A, Duvernois-Berthet E, Cognat 
V, Colot V, Voinnet O, Heard E et al. ncPRO-seq: A tool for annotation and profiling of 
ncRNAs in sRNA-seq data. Bioinformatics. 2012;28(23):3147-3149

[157] Leung YY, Ryvkin P, Ungar LH, Gregory BD, Wang L-S. CoRAL: Predicting non-coding 
RNAs from small RNA-sequencing data. Nucleic Acids Research. 2013;41(14):e137. gkt426

[158] Liu Z, Han J, Lv H, Liu J, Liu R. Computational identification of circular RNAs based on 
conformational and thermodynamic properties in the flanking introns. Computational 
Biology and Chemistry. 2016;61:221-225

[159] Pan X, Xiong K. PredcircRNA: Computational classification of circular RNA from other 
long non-coding RNA using hybrid features. Molecular Biosystems. 2015;11(8):2219-2226

[160] Leung YY, Kuksa PP, Amlie-Wolf A, Valladares O, Ungar LH, Kannan S, Gregory BD, 
Wang LS. DASHR: Database of small human noncoding RNAs. Nucleic Acids Research. 
2015;44(D1):D216-D222. gkv1188

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

139



[132] Xu J, Bai J, Zhang X, Lv Y, Gong Y, Liu L, Zhao H, Yu F, Ping Y, Zhang G. A comprehensive 
overview of lncRNA annotation resources. Briefings in bioinformatics. 2016;18(2):236-
249. bbw015

[133] Gong J, Liu W, Zhang J, Miao X, Guo A-Y. lncRNASNP: A database of SNPs in 
lncRNAs and their potential functions in human and mouse. Nucleic Acids Research. 
2015;43(D1):D181-D186

[134] Ma L, Li A, Zou D, Xu X, Xia L, Yu J, Bajic VB, Zhang Z. LncRNAWiki: Harnessing com-
munity knowledge in collaborative curation of human long non-coding RNAs. Nucleic 
Acids Research. 2014;43(Database issue):D187-D192. gku1167

[135] Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, Zhu W, Wu W, Chen R, Zhao Y. NONCODEv4: 
Exploring the world of long non-coding RNA genes. Nucleic Acids Research. 
2014;42(D1):D98-D103

[136] Cao J, Wei C, Liu D, Wang H, Wu M, Xie Z, Capellini TD, Zhang L, Zhao F, Li L. DNA 
methylation Landscape of body size variation in sheep. Scientific Reports. 2015;5

[137] Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin 
D, Merkel A, Knowles DG. The GENCODE v7 catalog of human long noncoding 
RNAs: Analysis of their gene structure, evolution, and expression. Genome Research. 
2012;22(9):1775-1789

[138] Wu D, Huang Y, Kang J, Li K, Bi X, Zhang T, Jin N, Hu Y, Tan P, Zhang L. ncRDeathDB: 
A comprehensive bioinformatics resource for deciphering network organization of the 
ncRNA-mediated cell death system. Autophagy. 2015;11(10):1917-1926

[139] Chen X, Hao Y, Cui Y, Fan Z, He S, Luo J, Chen R. LncVar: A database of genetic varia-
tion associated with long non-coding genes. Bioinformatics. 2017;33(1):112-118

[140] Denisenko E, Ho D, Tamgue O, Ozturk M, Suzuki H, Brombacher F, Guler R, Schmeier 
S. IRNdb: The database of immunologically relevant non-coding RNAs. Database. 
2016;2016. baw138

[141] Hou M, Tang X, Tian F, Shi F, Liu F, Gao G. AnnoLnc: A web server for systematically 
annotating novel human lncRNAs. BMC Genomics. 2016;17(1):931

[142] He S, Zhang H, Liu H, Zhu H. LongTarget: A tool to predict lncRNA DNA-binding motifs 
and binding sites via Hoogsteen base-pairing analysis. Bioinformatics. 2015;31(2):178-186

[143] Jiang Q, Ma R, Wang J, Wu X, Jin S, Peng J, Tan R, Zhang T, Li Y, Wang Y. LncRNA2Function: 
A comprehensive resource for functional investigation of human lncRNAs based on 
RNA-seq data. BMC Genomics. 2015;16(3):S2

[144] Zhao Z, Bai J, Wu A, Wang Y, Zhang J, Wang Z, Li Y, Xu J, Li X. Co-LncRNA: Investigating 
the lncRNA combinatorial effects in GO annotations and KEGG pathways based on 
human RNA-Seq data. Database. 2015;2015. bav082

[145] Zhou Z, Shen Y, Khan MR, Li A. LncReg: A reference resource for lncRNA-associated 
regulatory networks. Database. 2015;2015. bav083

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health138

[146] Liu K, Yan Z, Li Y, Sun Z. Linc2GO: A human LincRNA function annotation resource 
based on ceRNA hypothesis. Bioinformatics. 2013;29(17):2221-2222

[147] Alam T, Uludag M, Essack M, Salhi A, Ashoor H, Hanks JB, Kapfer C, Mineta K, 
Gojobori T, Bajic VB. FARNA: Knowledgebase of inferred functions of non-coding 
RNA transcripts. Nucleic Acids Research. 2016;45(5):2838-2848. gkw973

[148] Li Y, Wang C, Miao Z, Bi X, Wu D, Jin N, Wang L, Wu H, Qian K, Li C. ViRBase: A resource 
for virus–host ncRNA-associated interactions. Nucleic Acids Research. 2014;43(Database 
issue):D578-D582. gku903

[149] Jiang Q, Wang J, Wu X, Ma R, Zhang T, Jin S, Han Z, Tan R, Peng J, Liu G. LncRNA2Target: 
A database for differentially expressed genes after lncRNA knockdown or overexpres-
sion. Nucleic Acids Research. 2015;43(D1):D193-D196

[150] Wu CH, Hsu CL, Lu PC, Lin WC, Juan HF, Huang HC. Identification of lncRNA func-
tions in lung cancer based on associated protein-protein interaction modules. Scientific 
Reports. 2016;6:35959

[151] Wu T, Wang J, Liu C, Zhang Y, Shi B, Zhu X, Zhang Z, Skogerbø G, Chen L, Lu H. 
NPInter: The noncoding RNAs and protein related biomacromolecules interaction 
database. Nucleic Acids Research. 2006;34(suppl 1):D150-D152

[152] Rosenkranz D, Zischler H. proTRAC-a software for probabilistic piRNA cluster detec-
tion, visualization and analysis. BMC Bioinformatics. 2012;13(1):5

[153] Jung I, Park JC, Kim S. piClust: A density based piRNA clustering algorithm. 
Computational Biology and Chemistry. 2014;50:60-67

[154] Sarkar A, Maji RK, Saha S, Ghosh Z. piRNAQuest: Searching the piRNAome for silenc-
ers. BMC Genomics. 2014;15(1):555

[155] Pantano L, Estivill X, Martí E. A non-biased framework for the annotation and classifica-
tion of the non-miRNA small RNA transcriptome. Bioinformatics. 2011;27(22):3202-3203

[156] Chen C-J, Servant N, Toedling J, Sarazin A, Marchais A, Duvernois-Berthet E, Cognat 
V, Colot V, Voinnet O, Heard E et al. ncPRO-seq: A tool for annotation and profiling of 
ncRNAs in sRNA-seq data. Bioinformatics. 2012;28(23):3147-3149

[157] Leung YY, Ryvkin P, Ungar LH, Gregory BD, Wang L-S. CoRAL: Predicting non-coding 
RNAs from small RNA-sequencing data. Nucleic Acids Research. 2013;41(14):e137. gkt426

[158] Liu Z, Han J, Lv H, Liu J, Liu R. Computational identification of circular RNAs based on 
conformational and thermodynamic properties in the flanking introns. Computational 
Biology and Chemistry. 2016;61:221-225

[159] Pan X, Xiong K. PredcircRNA: Computational classification of circular RNA from other 
long non-coding RNA using hybrid features. Molecular Biosystems. 2015;11(8):2219-2226

[160] Leung YY, Kuksa PP, Amlie-Wolf A, Valladares O, Ungar LH, Kannan S, Gregory BD, 
Wang LS. DASHR: Database of small human noncoding RNAs. Nucleic Acids Research. 
2015;44(D1):D216-D222. gkv1188

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

139



[161] Xie J, Zhang M, Zhou T, Hua X, Tang L, Wu W. Sno/scaRNAbase: A curated data-
base for small nucleolar RNAs and cajal body-specific RNAs. Nucleic Acids Research. 
2007;35(suppl 1):D183-D187

[162] Ellis JC, Brown DD, Brown JW. The small nucleolar ribonucleoprotein (snoRNP) data-
base. RNA. 2010;16(4):664-666

[163] Liu Y-C, Li J-R, Sun C-H, Andrews E, Chao R-F, Lin F-M, Weng S-L, Hsu S-D, Huang 
C-C, Cheng C. CircNet: A database of circular RNAs derived from transcriptome 
sequencing data. Nucleic Acids Research. 2015;44(D1):D209-D215. gkv940

[164] Chen X, Han P, Zhou T, Guo X, Song X, Li Y. circRNADb: A comprehensive database for 
human circular RNAs with protein-coding annotations. Scientific Reports. 2016;6:34985

[165] Glazar P, Papavasileiou P, Rajewsky N. circBase: A database for circular RNAs. RNA. 
2014;20(11):1666-1670

[166] Ghosal S, Das S, Sen R, Basak P, Chakrabarti J. Circ2Traits: A comprehensive database 
for circular RNA potentially associated with disease and traits. Frontiers in Genetics. 
2013;4:283

[167] Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. 
CircInteractome: A web tool for exploring circular RNAs and their interacting proteins 
and microRNAs. RNA Biology. 2016;13(1):34-42

[168] Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J. tRNAdb 2009: 
Compilation of tRNA sequences and tRNA genes. Nucleic Acids Research. 2009;37 
(Database issue):D159-D162

[169] Anders S, Huber W. Differential expression analysis for sequence count data. Genome 
Biology. 2010;11

[170] Robinson MD, McCarthy DJ, Smyth GK. EdgeR: A bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40

[171] Di Y, Schafer DW, Cumbie JS, Chang JH. The NBP negative binomial model for assess-
ing differential gene expression from RNA-seq. Statistical Applications in Genetics and 
Molecular Biology. 2011;10(1): 1-28

[172] Auer PL, Doerge RW. A two-stage Poisson model for testing RNA-seq data. Statistical 
Applications in Genetics and Molecular Biology. 2011;10(1):1-26

[173] Hardcastle TJ, Kelly KA. baySeq: Empirical Bayesian methods for identifying differen-
tial expression in sequence count data. BMC Bioinforma. 2010;11:442

[174] Leng, Ning, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart 
MG Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. 
EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments.
Bioinformatics.2013;29(8):1035-1043

[175] Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in 
RNA-seq: A matter of depth. Genome Research. 2011;21(12):2213-2223

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health140

[176] Li J, Tibshirani R. Finding consistent patterns: A nonparametric approach for identify-
ing differential expression in RNA-seq data. Statistical Methods in Medical Research. 
2013;22(5):519-536

[177] Van de Wiel MA, Leday GGR, Pardo L, Rue H, Van der Vaart AW, Van Wieringen WN. 
Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors. 
Biostatistics. 2012;14(1):113-128

[178] Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differ-
ential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids 
Research. 2015;43(7):e47. gkv007

[179] Soneson C, Delorenzi M. A comparison of methods for differential expression analysis 
of RNA-seq data. BMC Bioinformatics. 2013;14(1):91

[180] Seyednasrollah F, Laiho A, Elo LL. Comparison of software packages for detecting dif-
ferential expression in RNA-seq studies. Briefings in Bioinformatics. 2015;16(1):59-70

[181] Zhang ZH, Jhaveri DJ, Marshall VM, Bauer DC, Edson J, Narayanan RK, Robinson GJ, 
Lundberg AE, Bartlett PF, Wray NR. A comparative study of techniques for differential 
expression analysis on RNA-Seq data. PloS One. 2014;9(8):e103207

[182] Robles JA, Qureshi SE, Stephen SJ, Wilson SR, Burden CJ, Taylor JM. Efficient experi-
mental design and analysis strategies for the detection of differential expression using 
RNA-Sequencing. BMC Genomics. 2012;13(1):484

[183] Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, Betel 
D. Comprehensive evaluation of differential gene expression analysis methods for 
RNA-seq data. Genome Biology. 2013;14(9):3158

[184] Backes C, Kehl T, Stöckel D, Fehlmann T, Schneider L, Meese E, Lenhof H-P, Keller 
A. miRPathDB: A new dictionary on microRNAs and target pathways. Nucleic Acids 
Research. 2017;45(D1):D90-D96

[185] Lukasik A, Wójcikowski M, Zielenkiewicz P. Tools4miRs–one place to gather all the 
tools for miRNA analysis. Bioinformatics. 2016;32(17):2722-2724

[186] Rajewsky N. microRNA target predictions in animals. Nature Genetics. 2006; 38:S8-S13

[187] Moore AC, Winkjer JS, Tseng TT. Bioinformatics resources for microRNA discovery. 
Biomarker Insights. 2015;10(Suppl 4):53

[188] Lee M, Lee H. DMirNet: Inferring direct microRNA-mRNA association networks. BMC 
Systems Biology. 2016;10(5):51

[189] Privitera AP, Distefano R, Wefer HA, Ferro A, Pulvirenti A, Giugno R. OCDB: A data-
base collecting genes, miRNAs and drugs for obsessive-compulsive disorder. Database: 
The Journal of Biological Databases and Curation. 2015;2015. bav069

[190] Zhang L, Xie T, Tian M, Li J, Song S, Ouyang L, Liu B, Cai H. GAMDB: A web resource to 
connect microRNAs with autophagy in gerontology. Cell Proliferation. 2016;49(2):246-251

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

141



[161] Xie J, Zhang M, Zhou T, Hua X, Tang L, Wu W. Sno/scaRNAbase: A curated data-
base for small nucleolar RNAs and cajal body-specific RNAs. Nucleic Acids Research. 
2007;35(suppl 1):D183-D187

[162] Ellis JC, Brown DD, Brown JW. The small nucleolar ribonucleoprotein (snoRNP) data-
base. RNA. 2010;16(4):664-666

[163] Liu Y-C, Li J-R, Sun C-H, Andrews E, Chao R-F, Lin F-M, Weng S-L, Hsu S-D, Huang 
C-C, Cheng C. CircNet: A database of circular RNAs derived from transcriptome 
sequencing data. Nucleic Acids Research. 2015;44(D1):D209-D215. gkv940

[164] Chen X, Han P, Zhou T, Guo X, Song X, Li Y. circRNADb: A comprehensive database for 
human circular RNAs with protein-coding annotations. Scientific Reports. 2016;6:34985

[165] Glazar P, Papavasileiou P, Rajewsky N. circBase: A database for circular RNAs. RNA. 
2014;20(11):1666-1670

[166] Ghosal S, Das S, Sen R, Basak P, Chakrabarti J. Circ2Traits: A comprehensive database 
for circular RNA potentially associated with disease and traits. Frontiers in Genetics. 
2013;4:283

[167] Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. 
CircInteractome: A web tool for exploring circular RNAs and their interacting proteins 
and microRNAs. RNA Biology. 2016;13(1):34-42

[168] Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J. tRNAdb 2009: 
Compilation of tRNA sequences and tRNA genes. Nucleic Acids Research. 2009;37 
(Database issue):D159-D162

[169] Anders S, Huber W. Differential expression analysis for sequence count data. Genome 
Biology. 2010;11

[170] Robinson MD, McCarthy DJ, Smyth GK. EdgeR: A bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40

[171] Di Y, Schafer DW, Cumbie JS, Chang JH. The NBP negative binomial model for assess-
ing differential gene expression from RNA-seq. Statistical Applications in Genetics and 
Molecular Biology. 2011;10(1): 1-28

[172] Auer PL, Doerge RW. A two-stage Poisson model for testing RNA-seq data. Statistical 
Applications in Genetics and Molecular Biology. 2011;10(1):1-26

[173] Hardcastle TJ, Kelly KA. baySeq: Empirical Bayesian methods for identifying differen-
tial expression in sequence count data. BMC Bioinforma. 2010;11:442

[174] Leng, Ning, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart 
MG Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. 
EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments.
Bioinformatics.2013;29(8):1035-1043

[175] Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in 
RNA-seq: A matter of depth. Genome Research. 2011;21(12):2213-2223

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health140

[176] Li J, Tibshirani R. Finding consistent patterns: A nonparametric approach for identify-
ing differential expression in RNA-seq data. Statistical Methods in Medical Research. 
2013;22(5):519-536

[177] Van de Wiel MA, Leday GGR, Pardo L, Rue H, Van der Vaart AW, Van Wieringen WN. 
Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors. 
Biostatistics. 2012;14(1):113-128

[178] Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differ-
ential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids 
Research. 2015;43(7):e47. gkv007

[179] Soneson C, Delorenzi M. A comparison of methods for differential expression analysis 
of RNA-seq data. BMC Bioinformatics. 2013;14(1):91

[180] Seyednasrollah F, Laiho A, Elo LL. Comparison of software packages for detecting dif-
ferential expression in RNA-seq studies. Briefings in Bioinformatics. 2015;16(1):59-70

[181] Zhang ZH, Jhaveri DJ, Marshall VM, Bauer DC, Edson J, Narayanan RK, Robinson GJ, 
Lundberg AE, Bartlett PF, Wray NR. A comparative study of techniques for differential 
expression analysis on RNA-Seq data. PloS One. 2014;9(8):e103207

[182] Robles JA, Qureshi SE, Stephen SJ, Wilson SR, Burden CJ, Taylor JM. Efficient experi-
mental design and analysis strategies for the detection of differential expression using 
RNA-Sequencing. BMC Genomics. 2012;13(1):484

[183] Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, Betel 
D. Comprehensive evaluation of differential gene expression analysis methods for 
RNA-seq data. Genome Biology. 2013;14(9):3158

[184] Backes C, Kehl T, Stöckel D, Fehlmann T, Schneider L, Meese E, Lenhof H-P, Keller 
A. miRPathDB: A new dictionary on microRNAs and target pathways. Nucleic Acids 
Research. 2017;45(D1):D90-D96

[185] Lukasik A, Wójcikowski M, Zielenkiewicz P. Tools4miRs–one place to gather all the 
tools for miRNA analysis. Bioinformatics. 2016;32(17):2722-2724

[186] Rajewsky N. microRNA target predictions in animals. Nature Genetics. 2006; 38:S8-S13

[187] Moore AC, Winkjer JS, Tseng TT. Bioinformatics resources for microRNA discovery. 
Biomarker Insights. 2015;10(Suppl 4):53

[188] Lee M, Lee H. DMirNet: Inferring direct microRNA-mRNA association networks. BMC 
Systems Biology. 2016;10(5):51

[189] Privitera AP, Distefano R, Wefer HA, Ferro A, Pulvirenti A, Giugno R. OCDB: A data-
base collecting genes, miRNAs and drugs for obsessive-compulsive disorder. Database: 
The Journal of Biological Databases and Curation. 2015;2015. bav069

[190] Zhang L, Xie T, Tian M, Li J, Song S, Ouyang L, Liu B, Cai H. GAMDB: A web resource to 
connect microRNAs with autophagy in gerontology. Cell Proliferation. 2016;49(2):246-251

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

141



[191] Mooney C, Becker BA, Raoof R, Henshall DC. EpimiRBase: A comprehensive database 
of microRNA-epilepsy associations. Bioinformatics. 2016;32(9):1436-1438

[192] Dong L, Luo M, Wang F, Zhang J, Li T, Yu J. TUMIR: An experimentally supported data-
base of microRNA deregulation in various cancers. Journal of Clinical Bioinformatics. 
2013;3(1):7

[193] Iftikhar H, Schultzhaus JN, Bennett CJ, Carney GE. The in vivo genetic toolkit for study-
ing expression and functions of Drosophila melanogaster microRNAs. RNA Biology. 2016 
(just-accepted):00-00

[194] Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. lncRNAdb: A refer-
ence database for long noncoding RNAs. Nucleic Acids Research. 2011;39(Suppl 
1):D146-D151

[195] Bhartiya D, Pal K, Ghosh S, Kapoor S, Jalali S, Panwar B, Jain S, Sati S, Sengupta S, 
Sachidanandan C et al. lncRNome: A comprehensive knowledgebase of human long non-
coding RNAs. Database. 2013;bat034

[196] Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H. starBase v2.0: Decoding miRNA-ceRNA, 
miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq 
data. Nucleic Acids Research. 2014;42(D1):D92-D97

[197] Consortium TR. RNAcentral: A comprehensive database of non-coding RNA sequences. 
Nucleic Acids Research. 2017;45(D1):D128-D134

[198] Weikard R, Demasius W, Kuehn C. Mining long noncoding RNA in livestock. Animal 
Genetics. 2016

[199] Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Molecular Cell. 
2011;43(6):904-914

[200] Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, Procino A, Kovac M, Moretti 
F, Makowska Z, Boldanova T. Long noncoding RNA HOTTIP/HOXA13 expression is 
associated with disease progression and predicts outcome in hepatocellular carcinoma 
patients. Hepatology. 2014;59(3):911-923

[201] Liao Q, Xiao H, Bu D, Xie C, Miao R, Luo H, Zhao G, Yu K, Zhao H, Skogerbø G et al. 
ncFANs: A web server for functional annotation of long non-coding RNAs. Nucleic Acids 
Research. 2011;39(Suppl 2):W118-W124

[202] Laible G, Wei J, Wagner S. Improving livestock for agriculture - technological progress 
from random transgenesis to precision genome editing heralds a new era. Biotechnology 
Journal. 2015;10(1):109-120

[203] Anamika K, Verma S, Jere A, Desai A. Transcriptomic Profiling Using Next Generation 
Sequencing—Advances, Advantages, and Challenges. In: Kulski JK, editor. Next 
Generation Sequencing - Advances, Applications and Challenges. 2016. Rijeka: InTech. 
Ch. 04

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health142

[204] Veneziano D, Nigita G, Ferro A. Computational approaches for the analysis of ncRNA 
through deep sequencing techniques. Frontiers in Bioengineering and Biotechnology. 
2015;3:77

[205] Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham 
AJ, McLaren DG, Whitelaw CB et al. Genome edited sheep and cattle. Transgenic 
Research. 2015;24(1):147-153

[206] Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: Progress, implications and 
challenges. Human Molecular Genetics. 2014;23(R1):R40-R46

[207] Yu L, Batara J, Lu B. Application of Genome Editing Technology to MicroRNA Research 
in Mammalians. In:  Modern Tools for Genetic Engineering, Michael Kormann (Ed.), 
InTech, Ch. 7, DOI: 10.5772/64330

[208] Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: Prospects and challenges. 
Nature Medicine. 2015;21(2):121-131

[209] Kevan MA Gartland MD, Tommaso B, Mariapia VM and Jill SG. Advances in biotech-
nology: Genomics and genome editing. The EuroBiotech Journal. 2017;1(1):3-10

[210] Shen S, Loh TJ, Shen H, Zheng X, Shen H. CRISPR as a strong gene editing tool. BMB 
Reports. 2017;50(1):20-24

[211] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for 
genome engineering. Cell. 2014;157(6):1262-1278

[212] Zhuo C, Hou W, Hu L, Lin C, Chen C, Lin X. Genomic editing of non-coding RNA genes 
with CRISPR/Cas9 ushers in a potential novel approach to study and treat schizophre-
nia. Frontiers in Molecular Neuroscience. 2017;10:28

[213] West J, Gill WW. Genome Editing in Large Animals. Journal of Equine Veterinary Science. 
2016;41:1-6

[214] Petersen B, Niemann H. Molecular scissors and their application in genetically modi-
fied farm animals. Transgenic Research. 2015;24(3):381-396

[215] Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB. Precision editing of 
large animal genomes. Advances in Genetics. 2012;80:37-97

[216] Zhang JH, Adikaram P, Pandey M, Genis A, Simonds WF. Optimization of genome 
editing through CRISPR-Cas9 engineering. Bioengineered. 2016;7(3):166-174

[217] Wang X, Zhou J, Cao C, Huang J, Hai T, Wang Y, Zheng Q, Zhang H, Qin G, Miao X et 
al. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin 
after rapid selection of highly active sgRNAs in pigs. Scientific Reports. 2015;5:13348

[218] Whitworth KM, Rowland RRR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, 
Samuel MS, Lightner JE, McLaren DG, Mileham AJ et al. Gene-edited pigs are protected 
from porcine reproductive and respiratory syndrome virus. Nature Biotechnology. 
2016;34(1):20-22

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

143



[191] Mooney C, Becker BA, Raoof R, Henshall DC. EpimiRBase: A comprehensive database 
of microRNA-epilepsy associations. Bioinformatics. 2016;32(9):1436-1438

[192] Dong L, Luo M, Wang F, Zhang J, Li T, Yu J. TUMIR: An experimentally supported data-
base of microRNA deregulation in various cancers. Journal of Clinical Bioinformatics. 
2013;3(1):7

[193] Iftikhar H, Schultzhaus JN, Bennett CJ, Carney GE. The in vivo genetic toolkit for study-
ing expression and functions of Drosophila melanogaster microRNAs. RNA Biology. 2016 
(just-accepted):00-00

[194] Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. lncRNAdb: A refer-
ence database for long noncoding RNAs. Nucleic Acids Research. 2011;39(Suppl 
1):D146-D151

[195] Bhartiya D, Pal K, Ghosh S, Kapoor S, Jalali S, Panwar B, Jain S, Sati S, Sengupta S, 
Sachidanandan C et al. lncRNome: A comprehensive knowledgebase of human long non-
coding RNAs. Database. 2013;bat034

[196] Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H. starBase v2.0: Decoding miRNA-ceRNA, 
miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq 
data. Nucleic Acids Research. 2014;42(D1):D92-D97

[197] Consortium TR. RNAcentral: A comprehensive database of non-coding RNA sequences. 
Nucleic Acids Research. 2017;45(D1):D128-D134

[198] Weikard R, Demasius W, Kuehn C. Mining long noncoding RNA in livestock. Animal 
Genetics. 2016

[199] Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Molecular Cell. 
2011;43(6):904-914

[200] Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, Procino A, Kovac M, Moretti 
F, Makowska Z, Boldanova T. Long noncoding RNA HOTTIP/HOXA13 expression is 
associated with disease progression and predicts outcome in hepatocellular carcinoma 
patients. Hepatology. 2014;59(3):911-923

[201] Liao Q, Xiao H, Bu D, Xie C, Miao R, Luo H, Zhao G, Yu K, Zhao H, Skogerbø G et al. 
ncFANs: A web server for functional annotation of long non-coding RNAs. Nucleic Acids 
Research. 2011;39(Suppl 2):W118-W124

[202] Laible G, Wei J, Wagner S. Improving livestock for agriculture - technological progress 
from random transgenesis to precision genome editing heralds a new era. Biotechnology 
Journal. 2015;10(1):109-120

[203] Anamika K, Verma S, Jere A, Desai A. Transcriptomic Profiling Using Next Generation 
Sequencing—Advances, Advantages, and Challenges. In: Kulski JK, editor. Next 
Generation Sequencing - Advances, Applications and Challenges. 2016. Rijeka: InTech. 
Ch. 04

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health142

[204] Veneziano D, Nigita G, Ferro A. Computational approaches for the analysis of ncRNA 
through deep sequencing techniques. Frontiers in Bioengineering and Biotechnology. 
2015;3:77

[205] Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham 
AJ, McLaren DG, Whitelaw CB et al. Genome edited sheep and cattle. Transgenic 
Research. 2015;24(1):147-153

[206] Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: Progress, implications and 
challenges. Human Molecular Genetics. 2014;23(R1):R40-R46

[207] Yu L, Batara J, Lu B. Application of Genome Editing Technology to MicroRNA Research 
in Mammalians. In:  Modern Tools for Genetic Engineering, Michael Kormann (Ed.), 
InTech, Ch. 7, DOI: 10.5772/64330

[208] Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: Prospects and challenges. 
Nature Medicine. 2015;21(2):121-131

[209] Kevan MA Gartland MD, Tommaso B, Mariapia VM and Jill SG. Advances in biotech-
nology: Genomics and genome editing. The EuroBiotech Journal. 2017;1(1):3-10

[210] Shen S, Loh TJ, Shen H, Zheng X, Shen H. CRISPR as a strong gene editing tool. BMB 
Reports. 2017;50(1):20-24

[211] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for 
genome engineering. Cell. 2014;157(6):1262-1278

[212] Zhuo C, Hou W, Hu L, Lin C, Chen C, Lin X. Genomic editing of non-coding RNA genes 
with CRISPR/Cas9 ushers in a potential novel approach to study and treat schizophre-
nia. Frontiers in Molecular Neuroscience. 2017;10:28

[213] West J, Gill WW. Genome Editing in Large Animals. Journal of Equine Veterinary Science. 
2016;41:1-6

[214] Petersen B, Niemann H. Molecular scissors and their application in genetically modi-
fied farm animals. Transgenic Research. 2015;24(3):381-396

[215] Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB. Precision editing of 
large animal genomes. Advances in Genetics. 2012;80:37-97

[216] Zhang JH, Adikaram P, Pandey M, Genis A, Simonds WF. Optimization of genome 
editing through CRISPR-Cas9 engineering. Bioengineered. 2016;7(3):166-174

[217] Wang X, Zhou J, Cao C, Huang J, Hai T, Wang Y, Zheng Q, Zhang H, Qin G, Miao X et 
al. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin 
after rapid selection of highly active sgRNAs in pigs. Scientific Reports. 2015;5:13348

[218] Whitworth KM, Rowland RRR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, 
Samuel MS, Lightner JE, McLaren DG, Mileham AJ et al. Gene-edited pigs are protected 
from porcine reproductive and respiratory syndrome virus. Nature Biotechnology. 
2016;34(1):20-22

Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity
http://dx.doi.org/10.5772/intechopen.69872

143



[219] Butler JR, Ladowski JM, Martens GR, Tector M, Tector AJ. Recent advances in genome 
editing and creation of genetically modified pigs. International Journal of Surgery 
(London, England). 2015;23(Pt B):217-222

[220] Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C. Live pigs produced 
from genome edited zygotes. Scientific Report. 2013;3:2847

[221] Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, Jiao H, Pang D. Efficient generation 
of myostatin mutations in pigs using the CRISPR/Cas9 system. Scientific Report. 
2015;5:16623

[222] Choi W, Yum S, Lee S, Lee W, Lee J, Kim S, Koo O, Lee B, Jang G. Disruption of exog-
enous eGFP gene using RNA-guided endonuclease in bovine transgenic somatic cells. 
Zygote (Cambridge, England). 2015;23(6):916-923

[223] Carlson DF, Lancto CA, Zang B, Kim E-S, Walton M, Oldeschulte D, Seabury C, 
Sonstegard TS, Fahrenkrug SC. Production of hornless dairy cattle from genome-edited 
cell lines. Nature Biotechnology. 2016;34(5):479-481

[224] Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, 
Creneguy A, Brusselle L, Anegon I et al. Efficient Generation of Myostatin Knock-Out 
Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes. PLoS One. 
2015;10(8):e0136690

[225] Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. 
Nature Biotechnology. 2016;34(9):933-941

[226] Pulido-Quetglas C, Aparicio-Prat E, Arnan C, Polidori T, Hermoso T, Palumbo E, 
Ponomarenko J, Guigo R, Johnson R. Scalable design of paired CRISPR guide RNAs for 
genomic deletion. PLOS Computational Biology. 2017;13(3):e1005341

[227] Wu B, Luo L, Gao XJ. Cas9-triggered chain ablation of cas9 as a gene drive brake. 
Nature Biotechnology. 2016;34(2):137-138

[228] Gonen S, Jenko J, Gorjanc G, Mileham AJ, Whitelaw CBA, Hickey JM. Potential of gene 
drives with genome editing to increase genetic gain in livestock breeding programs. 
Genetics Selection Evolution. 2017;49(1):3

[229] Aparicio-Prat E, Arnan C, Sala I, Bosch N, Guigó R, Johnson R. DECKO: Single-oligo, 
dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC 
Genomics. 2015;16(1):846

[230] Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach 
CA. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from 
promoters and enhancers. Nature Biotechnology. 2015;33(5):510-517

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health144

Chapter 6

Transcriptome Sequencing for Precise and Accurate
Measurement of Transcripts and Accessibility of TCGA
for Cancer Datasets and Analysis

Bijesh George, Vivekanand Ashokachandran,
Aswathy Mary Paul and Reshmi Girijadevi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.70026

Abstract

Next-generation sequencing (NGS) technologies are now well established and have 
become a routine analysis tool for its depth, coverage, and cost. RNA sequencing (RNA-
Seq) has readily replaced the conventional array-based approaches and has become 
method of choice for qualitative and quantitative analysis of transcriptome, quantifica-
tion of alternative spliced isoforms, identification of sequence variants, novel transcripts, 
and gene fusions, among many others. The current chapter discusses the multi-step tran-
scriptome data analysis processes in detail, in the context of re-sequencing (where a ref-
erence genome is available). We have discussed the processes including quality control, 
read alignment, quantification of gene from read level, visualization of data at different 
levels, and the identification of differentially expressed genes and alternatively spliced 
transcripts. Considering the data that are freely available to the public, we also discuss 
The Cancer Genome Atlas (TCGA), as a resource of RNA-Seq data on cancer for selection 
and analysis in specific contexts of experimentation. This chapter provides insights into 
the applicability, data availability, tools, and statistics for a beginner to get familiar with 
RNA-Seq data analysis and TCGA.

Keywords: RNA-Seq, transcriptome data analysis, NGS data analysis, TCGA

1. Introduction

Genetic and epigenetic features encompassed in the genome are the basic determinants of fate 
and functions of cells. At the human interface, qualitative and/or quantitative differences in tran-
scripts are the first level readout of these features in any specific context of their identification 
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[1]. These contexts may refer to a diseased state or the influence of stimulation such as intrinsic 
ligands or response to immunogens. With the total transcripts often referred to as transcriptome, 
the stage-specific or cell type-specific transcriptome of cells are valuable to evaluate the genetic 
and epigenetic features characteristic to them. From high- to low-input RNA, the RNA sequenc-
ing methods have considerably improved to appreciate the inter- and intra-level population 
heterogeneity of cells. Not restricted to messenger RNA (mRNA), these technologies are also 
being increasingly exploited to analyze other transcription-based products such as microRNAs 
and lncRNAs, reaching out to the identification of over 10–30 pg of a human cell or tissue [2]. 
RNA or transcripts are of two categories, protein coding mRNAs which synthesize protein and 
non-coding RNAs involved in regulating gene expression and in cell structure maintenance. 
mRNA makes up only 6% of the total RNA content of a cell or tissue; a number of methods and 
kits are available for RNA extraction from the cell [2, 3].

The human genome has more than 99.5% sequence identity to each other at the genomic level 
when analyzed in toto. However, they are also paradoxically personalized and are amenable 
to somatic variations. Hence, the cells could also be heterogeneous at genome level within 
an individual, and the genomic sequence variations are necessary to be accounted whenever 
they are analyzed at the transcriptome level. Toward this, the sequence obtained by RNA 
sequencing also reflects their coding sequence in the genome, kept aside, the RNA editing. 
Further, there are a plethora of other sequence determinants that could also be analyzed by 
sequence-based identification of transcripts. These determinants include the isoforms, gene 
fusions and identification of transcripts from putative pseudogenes. Unarguably, human can-
cer cells or tissues of diverse origins and stages in different populations are the most explored 
differential genome and transcriptome to date accounting the amount of data derived by RNA 
sequencing [4]. The Cancer Genome Atlas (TCGA) is probably the most extensive resource of 
providing access to cancer data especially from next-generation sequencing (NGS) platform. 
TCGA provides a number of options to perform analysis on cancer-related experimental data 
and stands as a major data repository for cancer data.

2. Transcriptomics

2.1. Gene expression

Gene expression at transcript level is a temporal dynamics event that involves turn “on” or 
“off” mechanism constituted by the coordinated action of epigenetic factors and transcrip-
tional regulators. Since gene products are part of metabolic pathways in the organism, the 
inefficiency of protein synthesis control mechanism can lead to an abnormal behavior of met-
abolic pathways and then lead to diseases [5]. Determining or quantifying the amount of tran-
scripts in a biological condition provides a clear picture about the involvement of that gene in 
a particular condition. It is necessary to use the quantitative methods to understand normal 
cell development, disease mechanisms and to determine when, where, and how much a gene 
is showing divergence with different biological condition [1]. Identification of key genetic 
factors/marker/a set of genes responsible for a certain biological process can make a sizable 
change to existing treatment mechanism approach [6].
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2.2. Applicability of transcriptome data

Functions of each gene are not completely defined, information about the involvement of 
genes in functional pathways is identified and available from biological databases which pro-
vide clues on how each gene behaves in different metabolic pathways. Estimating the genes 
expressed in a particular biological condition allows comparing with the existing annotations. 
Only a small percentage of the genome is expressed in each cell, and a portion of the RNA 
synthesized in the cell is specific for that cell type [4], identifying the genes which are differen-
tially expressed in similar tissue, but different context has therapeutic significance. Moreover, 
transcriptome sequencing allows identifying transcript level variations such as cassette exon, 
mutually exclusive exons, intron retentions, indels, alternative splice junctions, alternative 
promoters (Figure 1), and isoform-specific expression profiles [7].

2.3. Requirements

The number of biological/technical replicates, adequate sequencing depth, and essentially, the 
sequencing qualities are the major factors that should be accounted in a sequencing-based 

Figure 1. Alternative splicing. Here exons are boxes and lines are introns. Promoters represented by arrows and 
polyadenylation sites with AAA.
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study. The parameters such as the availability of reference genome for the organism from 
which the sample is analyzed, information about the sequencer quality encoding, and whether 
multiplexing has been performed are also critical for the analysis. One should have a clear 
understanding of the biological sample, experimental conditions, and the biological questions 
that are in pursuit before starting a bioinformatics analysis of any transcriptome data [9].

Computational specifications have to be taken care to perform a genome assembly in a rea-
sonable time without interruption. At least 8 core processor with 16 GB of RAM and enough 
fast storage system is required to perform a genome alignment within a reasonable time [7]. 
Genome assembly or alignment is the most computational resource consuming process, and 
the further downstream analysis such as variant calling or differential expression analysis can 
be performed using a desktop with an appreciable configuration.

Computational biologists prefer to use UNIX-based systems/servers for NextGen sequence 
analysis as large data can be handled more comfortably through command line by UNIX than 
a Windows OS [10].

2.4. Software requirements

A number of established and easily accessible one-shop sequence analysis tools [7, 11] are 
available online. However, it is important that one should understand the different steps 
involved in the analysis pipeline that are rather similar across them. There are various pieces 
of software in the pipeline, and each of them produces a number of output files. These include 
the main output file that can be used for further analysis and other supporting information 
such as the statistics of mapping, indicating the fraction of input data that had been success-
fully utilized by the algorithm (always get a higher fraction for good quality experiment) [7]. 
One should be aware of the files generated during each of the analysis steps that is fed into 
the next algorithm in the pipeline.

2.5. Precautions

A number of algorithms have been developed in recent years, and most of them are avail-
able as open-source algorithms. It is important to understand that the transcriptome 
analysis can be completed using open-source software and tools. Before starting the bio-
informatics analysis on transcriptome data, one should decide the algorithms that can be 
used (Figure 2) including its release/version information in each successive step in the 
pipeline. Following the review articles that compare multiple algorithms and the research 
publications that have used specific algorithms, appropriate algorithms can be selected 
in each step [12]. Now, the next step is to select the annotation files to be used for the 
analysis.

Even though the information is same, data representation varies between annotation files 
from different biological data resources. An example given below represents human chromo-
some 22 from various biological data resources. Hence, one should confirm the annotation 
files such as genome file (.fasta) and gene transfer format (.gtf) files are compactible to each 
other.
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2.6. File formats

In each step of the analysis pipeline, multiple file formats are generated or used. It is necessary 
to know the information contained in each type of files. Here, we discuss file types classified 
into three categories. The first category is the raw files that contain the information adopted 
from the sequencer to represent the raw sequences with a quality score for each base-pair 
identification [13]. The file formats can be .sff, .csfasta + .qual, .fastq, etc. The most common 
file format is the .fastq extension. Second file category is the alignment files that represent the 
information on how each read or the fragment had been aligned to the reference genome [14], 
these files can be in .sam, .bam, and .bed formats. The third category is the annotated data 
files that represent data readily available from standard biological databases such as reference 

Resource Representation

NCBI reference genome GRCh38.p7 >gi|568801992|ref|NT_167212.2| chromosome 22 genomic scaffold, 
GRCh38.p7 primary assembly HSCHR22_CTG1_1

UCSC latest version GRCh38/hg38 >chr22

Ensembl >22

Figure 2. Transcriptomics workflow.
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genome sequences (in .fasta format) and the annotated gene information (.gtf, .gff formats). 
Apart from all the standard file formats listed above, there are algorithm specific files which 
contain additional information about the specific run of the each algorithm in the pipeline.

3. Transcriptome data analysis

The high-throughput methods previously described (RNA-Seq) are done by direct sequencing 
of complementary DNA (cDNA) and as a result gives insights into the gene expression profiling 
[12, 15–17], quantification of alternative splicing [8, 9, 18, 19], variant calling [20–23], novel tran-
scripts [14, 24, 25], and several others. These quantitative measurements are done by the final 
data produced by each sequencing platforms. However, the process of sequencing involves dif-
ferent steps (reverse transcription, amplification, fragmentation, purification, adaptor ligation, 
and sequencing that the chance of error in any step is highly likely and could result in faulty out-
puts. It makes the data in the worst case not suitable for further analysis, so that the experiment 
may have to be repeated. Nonetheless, these errors can be monitored and necessary actions can 
be undertaken to rectify the errors prior to analysis. Such preliminary steps are often referred to 
as quality control analysis of sequencing data.

3.1. Quality control

This section of the chapter will discuss various reasons and statistical assessment of errors 
such as sequence read quality, read duplication, GC bias, nucleotide composition bias, 
adapter contamination, flow cell contamination, enrichment, and false positive errors [26, 27], 
and how those can be tackled using available tools. The data used for the analysis in this 
chapter are mainly in the “.fastq” format, the most common format output of runs on many 
platforms. However, there are many quality control analysis tools available that either come 
aligned with the machine itself or as standalone software (commercial and open source). The 
quality control analysis can be done using many software tools, and one of the popular open-
source software is FastQC [28].

Data output from sequencing machine includes the information about the sequence fragment 
as well as a score corresponding to each base identification, we are considering “.fastq” for-
mat, widely used in many platforms, to explain the features. A single read is represented by 
four consecutive lines in .fastq format. The first and third line represent sequence identifiers 
and other optional information, such as machine version, flow cell information, etc., related 
to the specific run of the sample in the machine. The second line is the sequence bases, and 
fourth is the quality value for each base which is represented as ASCII characters.

This ASCII quality value or phred quality score gives the accurate measure of the base calling 
quality during sequencing. Phred quality score is mathematically defined as

  Q = − 10 ×  log  10   (P)  or P =  10   –Q /  10   (1)

Where Q is the phred quality score, and P is the probability of getting a faulty base.
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In essence, a phred score of 30 is the probability of a base to be wrong is 1 in 1000. However, 
there are no standard methods to measure this exact quality; the phred score above 20–25 
(Figure 3a and b) is considered as the average score to be acceptable for further analysis 
because phred quality assessments are probabilistically stable [13, 29].

Figure 3. Quality control measures. (a) Per base sequence quality whisker plot: distribution of quality of bases all over the 
whole file, (b) distribution of percentage of sequences with different quality, and (c) distribution of bases in a .fastq file.
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For each sequencer, they use different set of ASCII values to score each base calling and a 
maximum score of 41 which is almost 1 in 10,000 (99.99% accuracy) is the probability that a 
base is called incorrectly (Table 1). However, if the quality of any read falls to much lower 
scale, it is better to trim those regions off. There are many standard trimming tools available 
as open source. Few popular tools are FASTX-Toolkit [30], cutadapt [31], and trimgalore [32]. 
They cannot only be used for quality trimming but also has several other purposes, such as 
adapter trimming, demultiplexing, etc.

3.2. Evaluation of read quality

There are several statistical analysis pipelines available as open source to check the quality of 
the NGS data. This session explains the basic backgrounds of quality checks such as (1) base 
quality, (2) sequence content and distribution, and (3) duplicated sequences.

3.2.1. Base quality

As explained previously, base calling bias is strictly avoided because any error in base calling 
means the base is not correctly called. This analysis is done basically by the quality encod-
ing values given to the reads in the file. This analysis is completely depending on the phred 
quality score throughout the base length. As an exception, the quality of reads will fall down 
toward the end of the reads, which is quite normal for long runs as the supplied base get 
reduced, and random calling of base leads to these false-positive errors.

Base quality analyzes are done for rectifying read errors could have happened during the 
run or library preparation. The data from the “.fastq” file can be plotted different ways based 
on the phred quality score of each bases, the proportion of reads being called wrong, N con-
tent distribution in the read, and finally, sequence length distribution. It is obvious that the 
sequence length would have uneven distribution in trimmed reads.

3.2.2. Sequence content and distribution

Evaluating GC content over the sequenced reads is as important as other modules because 
it leads to many biological reasoning. GC over AT is basically because of the stability of the 

Phred quality score Probability of incorrect base call Base call accuracy

10 1 in 10 90%

20 1 in 100 99%

30 1 in 1000 99.9%

40 1 in 10,000 99.99%

50 1 in 100,000 99.999%

60 1 in 1,000,000 99.9999%

Table 1. Phred quality score.
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bonds between them, and the annealing process of PCR is based on the melting temperature 
of GC bonding. DNA methylation happens at cytosine, and comparatively, exons are high in 
GC content than introns.

In an NGS run, the bases are provided with an equal ratio, and the average of each base as 
output is expected to be 25% of each base (Figure 3c). Any fluctuation from this composition 
is considered as bias which is due to overrepresented sequences like adapter dimers or rRNA 
in the sample. However, it is expected that a little bias at the first few bases from 5′ which is 
essentially produced by the random hexamer priming from PCR amplification.

Before starting any analysis, adapters are trimmed off from the reads because the presence 
of adapters in the sample will lead to the expression of overrepresented sequences. This is 
more like a final check to be done to make sure the overrepresented sequences or enrichment 
identified is not spurious.

3.2.3. Duplicated sequences

As discussed in the GC content, there are few other ways to check the overrepresented 
sequences. These methods are used to confirm the sample is not contaminated, unless there 
is some kind of enrichment in the reads. The enrichment analysis is done basically on differ-
ent scales. The length of the read is considered as the scale here. Creating K-mers of different 
length can make sure that how often an enrichment or overrepresented sequence can occur in 
the read, and this can be calculated to double check the presence of contamination or enrich-
ment study.

3.3. Genome alignment

This is the second major step in transcriptomic data analysis. If the reference genome is 
available for the organism, it can be referred to as resequencing analysis else should be 
referred to as de novo sequencing analysis. In resequencing data, the analysis pipeline is 
comparatively easier compared to de novo sequencing. If reference genome is available, all 
we need is to map the fragments to the genome and find out the genes showing expression 
in the experiment. Although the amount of data generated from the sequencer is huge, 
it is short in length compared to the actual size of the genome. However, an advanced 
computationally efficient algorithm is required to perform this time consuming and banal 
process [5].

Genome alignment is the most important step in transcriptome analysis as all the down-
stream analysis, and the result accuracy is based on the efficiency of the alignment algorithm. 
As the data are obtained from transcriptome, the algorithm cannot directly map the reads to 
reference genome. An efficient splice aligner algorithm is required to complete the task [12], 
and most of these algorithms use a technique called hashing or indexing either in raw data or 
the genome data or both.

Read alignment algorithm has a number of parameters such as input and index as man-
datory, and many other optional parameters also based on the computational resources 
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output is expected to be 25% of each base (Figure 3c). Any fluctuation from this composition 
is considered as bias which is due to overrepresented sequences like adapter dimers or rRNA 
in the sample. However, it is expected that a little bias at the first few bases from 5′ which is 
essentially produced by the random hexamer priming from PCR amplification.

Before starting any analysis, adapters are trimmed off from the reads because the presence 
of adapters in the sample will lead to the expression of overrepresented sequences. This is 
more like a final check to be done to make sure the overrepresented sequences or enrichment 
identified is not spurious.
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As discussed in the GC content, there are few other ways to check the overrepresented 
sequences. These methods are used to confirm the sample is not contaminated, unless there 
is some kind of enrichment in the reads. The enrichment analysis is done basically on differ-
ent scales. The length of the read is considered as the scale here. Creating K-mers of different 
length can make sure that how often an enrichment or overrepresented sequence can occur in 
the read, and this can be calculated to double check the presence of contamination or enrich-
ment study.

3.3. Genome alignment

This is the second major step in transcriptomic data analysis. If the reference genome is 
available for the organism, it can be referred to as resequencing analysis else should be 
referred to as de novo sequencing analysis. In resequencing data, the analysis pipeline is 
comparatively easier compared to de novo sequencing. If reference genome is available, all 
we need is to map the fragments to the genome and find out the genes showing expression 
in the experiment. Although the amount of data generated from the sequencer is huge, 
it is short in length compared to the actual size of the genome. However, an advanced 
computationally efficient algorithm is required to perform this time consuming and banal 
process [5].

Genome alignment is the most important step in transcriptome analysis as all the down-
stream analysis, and the result accuracy is based on the efficiency of the alignment algorithm. 
As the data are obtained from transcriptome, the algorithm cannot directly map the reads to 
reference genome. An efficient splice aligner algorithm is required to complete the task [12], 
and most of these algorithms use a technique called hashing or indexing either in raw data or 
the genome data or both.

Read alignment algorithm has a number of parameters such as input and index as man-
datory, and many other optional parameters also based on the computational resources 
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available that can be set for the efficient mapping of reads. For example, we can set the 
number of multiple alignments for a single read and the maximum insertion or deletion 
length that can be allowed. A precise understanding of experimental conditions helps to 
set appropriate parameters according to a specific experiment. Moreover, default values 
provided to help and avoid confusions [7].

3.4. Gene quantification

Gene quantification is performed after alignment to a genome. The first step is to identify 
the amount of fragments or reads that could be mapped to each genomic location. Gene 
level or transcript level quantification can be performed according to user’s choice. A number 
of software tools (coverageBED [33], htseq-count [34], and featureCounts [35]) are available 
for gene quantification. Quantification is performed against a reference annotation (GTF/
GFF) file with coordinates for the gene, transcript, or exon. For example, htseq-count uses 
“--idattr=<id attribute>” that indicates GFF attribute to be used as feature ID from the ninth 
column where unique ids or accession numbers are available. Gene qualification has to be 
performed after normalization to avoid misleading measurements. Hence, gene level or sam-
ple level normalization of the data in terms of total number of reads mapped, read length, 
and coverage should be performed.

The reads per kilobase of exon model per million mapped reads (RPKM) measure normal-
izes with the sequencing depth that varies significantly between samples as well as the gene 
length. Fragments per kilobase of exon model per million mapped reads (FPKM) measure 
normalizes similar to RPKM but for the paired-end data and the transcripts per million 
(TPM) first normalizes by gene length, then by sequencing depth, preferably a better way of 
 normalization [36].

3.5. Splice variation analysis

Transcriptome analysis can identify transcript sequence level features such as cassette 
exon, mutually exclusive exons, intron retentions, indels, alternative splice junctions, 
and hence, different possible isoforms all based on genome mapping (Figure 1). There 
are ~41,000 unique transcripts that are identified from a total of ~20,000 genes in human 
(NCBI RefSeq) [37].

Identification of transcripts from short and specific number of reads aligned across the gene, 
and the identification of splice junctions is a challenge in variation analysis. A number of algo-
rithms such as Cufflinks [38], SLIDE [39], and StringTie [40] are available to analyze the align-
ment with user-provided existing annotations. Cufflinks [38] efficiently utilizes the advantage 
of paired-end sequencing data to annotate the splice variations (Figure 4).

3.6. Differential expression analysis

Once the genome assembly is completed, the downstream analysis can follow two routes—the 
variation analysis and the differential expression analysis. Differential expression analysis refers 

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health154

the gene level expression difference between two or more samples. This can be performed using R 
packages like edgeR [9], DESeq [10] that can load gene quantification information from multiple 
samples and report the expression level difference for each transcript/gene. The above-mentioned 
R packages also can generate multiple figures such as heatmaps, histograms, dispersion plots, 
etc., which can be used for representing results as well as publications purposes. The comparison 
is performed after normalization of the data across samples that account the length of the frag-
ments, sequencing depth, and the total number of reads mapped. RPKM, FPKM, and TPM are 
commonly used normalization values. Genes with at least 2-fold change are usually considered 
as differentially expressed, although a fold change of 1.5 is also considered in certain instances.

Types of graphical methods are available to visually represent the identified variations among 
experiments or samples used. Overview of gene expression studies can be represented by vol-
cano plot, MA plot, heatmap, etc. Heatmap with hierarchical clustering clearly represents the 
trend of gene expression between samples.

Visualization is integral to NGS data from the evaluation of sequencing quality to the repre-
sentation of the biologically significant results. Initially, the raw data have to undergo qual-
ity checking to assess the overall sequencing quality and decide quality measures (FastQC 
(Figure 3a) [28], NGSQC [41]). The next level of visualization is applicable to the alignment to 
the genome as perceived for the number of reads aligned to particular gene, exons, introns, 
and splice junctions with genome browsers such as UCSC browser [42], Integrative Genomics 
Viewer (IGV) [43], and Genome Maps [44]. Genome browsers load genome (.fasta), annota-
tions (.gff, .gtf), variations (as bed files) to their interface to obtain clear visualization of col-
lective data for a specified region along with the available annotation, identified evidence or 
mapped reads, and variations observed. They also host inbuilt tools to represent the data as 
plots and figures that can be used for publication [43].

Figure 4. Transcript enrichment. Cufflinks identify three transcripts from reads mapped to the same genomic region.
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4. TCGA: a genomic hub of cancer

The Cancer Genome Atlas well known as TCGA in short is a combined effort of National 
Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) investing 
$50 million each to increase the better understanding of molecular basis of cancer using 
advanced genome analysis technology. The overall aim of launching such a big project was 
to improve the ability to diagnose, treat, and prevent cancer. The first phase of the study 
started in the year 2005 focused on the brain, lung, and ovarian cancers was aimed to test 
and develop the infrastructure for further research. The second phase of the study com-
prises of around 30 different type of cancers started in the year 2009 and analyzed by the 
year 2014.

The first phase of the study proved that an atlas specific for cancer can be created with 
a worldwide network of research and teams working on different cancer and develop a 
single platform for making the data publically accessible pooling all the data. The publicly 
available data from TCGA would also enable researchers around the world to make vali-
date important discoveries. TCGA is supported by Genomic Data Commons (GDC) as one 
among the several programs at the NCI’s Center for Cancer Genomics along with another 
program Therapeutically Applicable Research to Generate Effective Treatments (TARGET). 
Now, GDCs host genomic alterations of exactly 39 projects combining the TCGA and 
TARGET.

Data availability has categorized based on primary site of study, and they are kidney, adrenal 
gland, brain, colorectal, lung, uterus, bile duct, bladder, bone marrow, breast, cervix, esopha-
gus, eye, head and neck, liver, lymph nodes, ovary, pancreas, pleura, prostate, skin, soft tis-
sue, stomach, testis, thymus, and thyroid. Some of the primary sites are again divided into 
different subdivions. For example, kidney again divided into three different projects: kidney 
renal clear cell carcinoma, kidney renal papillary cell carcinoma, and kidney chromophobe. 
So as the case with adrenal gland, brain, colorectal, lung, and uterus which all are divided 
again into two different sub categories as follows: pheochromocytoma & paraganglioma, 
adrenocortical carcinoma, glioblastoma multiforme, brain lower grade glioma, colon adeno-
carcinoma, rectum adenocarcinoma, lung adenocarcinoma, lung squamous cell carcinoma, 
uterine corpus endometrial carcinoma, uterine carcinosarcoma.

4.1. TCGA data and file formats

The main category of data available in TCGA are:

• Clinical

• Raw sequencing data

• Transcriptome profiling

• Simple nucleotide variation

• Biospecimen
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• Copy number variation

• DNA methylation

Main categories of data type are:

• Aligned reads

• Gene expression quantification

• Annotated somatic mutation

• Raw simple somatic mutation

• Copy number segment

• Masked copy number segment

• Methylation beta value

• Isoform expression quantification

• miRNA expression quantification

• Biospecimen supplement

• Clinical supplement

• Aggregated somatic mutation

• Masked somatic mutation

These data that are generated from different experimental strategies such as WXS, RNA-
Seq, and miRNA-Seq were studied under illumina platform, whereas Illumina Human 
Methylation 450 and Illumina Human Methylation 27 platforms were used for methylation 
array and genotyping array was carried out using Affymetrix SNP 6.0.

4.2. miRNA analysis

TCGA provides tissue-specific miRNA expression profiles, their isoforms, connection with 
diseases, and the discovery of unreported miRNAs. Alignment of the reads with BWA-aln is 
the very first step in the miRNA pipeline. Either the input can be FASTQ or BAM file format 
for alignment. The output after the alignment will be of BAM format. The alignment follows 
the expression workflow. The output from the expression workflow is raw read counts and 
normalized to reads per million mapped reads. There are two types of files, controlled and 
open. The aligned file which is having a controlled access, and the quantification files are open 
accessible (Table 2). The RPM comes in two separate files as “mirnas.quantification.txt” and 
“isoforms.quantification.txt.” The mirna.quantification.txt data file describes the summed 
expression for each miRNA. The file contains the information:

• miRNA name

• raw read count
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• Isoform expression quantification

• miRNA expression quantification

• Biospecimen supplement

• Clinical supplement

• Aggregated somatic mutation

• Masked somatic mutation

These data that are generated from different experimental strategies such as WXS, RNA-
Seq, and miRNA-Seq were studied under illumina platform, whereas Illumina Human 
Methylation 450 and Illumina Human Methylation 27 platforms were used for methylation 
array and genotyping array was carried out using Affymetrix SNP 6.0.

4.2. miRNA analysis

TCGA provides tissue-specific miRNA expression profiles, their isoforms, connection with 
diseases, and the discovery of unreported miRNAs. Alignment of the reads with BWA-aln is 
the very first step in the miRNA pipeline. Either the input can be FASTQ or BAM file format 
for alignment. The output after the alignment will be of BAM format. The alignment follows 
the expression workflow. The output from the expression workflow is raw read counts and 
normalized to reads per million mapped reads. There are two types of files, controlled and 
open. The aligned file which is having a controlled access, and the quantification files are open 
accessible (Table 2). The RPM comes in two separate files as “mirnas.quantification.txt” and 
“isoforms.quantification.txt.” The mirna.quantification.txt data file describes the summed 
expression for each miRNA. The file contains the information:

• miRNA name

• raw read count

Transcriptome Sequencing for Precise and Accurate Measurement of Transcripts and...
http://dx.doi.org/10.5772/intechopen.70026

157



• reads per million miRNA reads

• cross-mapped to other miRNA forms (Y or N)

whereas the isoform.quantification.txt file contains every individual sequence isoform 
observed as follows:

• miRNA name

• alignment coordinates as <version>:<Chromosome>:<Start position>-<End position>:<Strand>

• raw read count

• reads per million miRNA reads

• cross-mapped to other miRNA forms (Y or N)

• region within miRNA

4.3. RNA-Seq analysis

TCGA uses an Illumina system as the basic platform. Information for nucleotide sequence 
and gene expression is found at TCGA. RNA sequence coverage, sequence variants (e.g., 
fusion genes), expression of genes, exon, or junction are different category of information 
available after the sequence alignment. The NCBI dbGaP database is the official repository for 
the actual sequence data [45]. After aligning the reads to reference genome, gene expression 
level is quantified in various forms such as HT-Seq raw mapping count, fragments per kilo-
base of transcript per million mapped reads (FPKM) and FPKM-UQ (upper quartile normal-
ization) in TCGA mRNA quantification pipeline (Table 3). In case of mRNA analysis also the 
rules for data access are the same. Access for aligned reads file is controlled, whereas access 
for rest of the files is open.

4.4. DNA-Seq analysis

Genomic diversity across different cancer types has been characterized by utilizing DNA 
sequencing systems based on Sanger Sequencing at different Genome Sequencing Centers. 

Type Description Format

Aligned reads miRNA-Seq reads that have been aligned to the GRCh38 
build. Reads that were not aligned are included to facilitate 
the availability of raw read sets

BAM

miRNA expression quantification A table that associates miRNA IDs with read count and a 
normalized count in reads per million miRNA mapped

TXT

Isoform expression quantification A table with the same information as the miRNA 
Expression Quantification files with the addition of isoform 
information such as the coordinates of the isoform and 
the type of region it constitutes within the full miRNA 
transcript

TXT

Table 2. Data types and file formats.
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Somatic variants from whole-genome sequencing are identified using this pipeline. Somatic 
variants are identified by comparing the tumor samples with the normal samples allele fre-
quency. After annotating each mutation, one project is created combining files from mul-
tiple cases. Identification of somatic mutation has achieved through four pipelines. Identified 
somatic variants are then annotated. Information from multiple files is combined into one 
single MAF for each pipeline. Mutations are listed in a tab delimited format as Mutation 
Annotation Format (MAF). Two types of MAF files are produced for each variant calling in 
a project, i.e., the protected and the somatic or public MAF files. These MAF files are pro-
duced on the basis of annotated Variant Call Format (VCF) file. This VCF file contains variants 
reported in multiple transcripts. Only the critical ones are reported in the protected MAF file, 
whereas Public MAF are processed to remove the low quality and potential germline variants 
restricting the confidential information.VCF files are of two type, raw unannotated simple 
somatic mutations and annotated somatic mutation VCF files.

4.5. Single-nucleotide polymorphism

TCGA utilized SNP-based technology to analyze genome-wide variations. It also includes 
platforms to define CNV and loss of LOH across multiple samples.

4.6. DNA methylation sequencing

TCGA utilizes the Illumina platform for the DNA methylation study ensures single-base-pair 
resolution, high accuracy, easy workflows, and low input of DNA requirements. DNA methyl-
ation data files (Table 4) contain information of signal intensities (raw and normalized), detec-
tion confidence, and calculated beta values for methylated (M) and unmethylated (U) probes.

4.7. Reverse-phase protein array (RPPA)

Is a high throughput, functional, and quantitative proteomic method for large-scale protein 
expression profiling which helps in biomarker discovery and cancer diagnostics eventually. 

Type Description Format

RNA-Seq alignment RNA-Seq reads that have been aligned to the 
GRCh38 build. Reads that were not aligned are 
included to facilitate the availability of raw read sets

BAM

Raw read counts The number of reads aligned to each protein-coding 
gene, calculated by HT-Seq

TXT

FPKM A normalized expression value that takes into 
account each protein-coding gene length and the 
number of reads mappable to all protein-coding 
genes

TXT

FPKM-UQ A normalized raw read count in which gene 
expression values, in FPKM, are divided by the 75th 
percentile value

TXT

Table 3. Gene quantification data formats.
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• reads per million miRNA reads

• cross-mapped to other miRNA forms (Y or N)

whereas the isoform.quantification.txt file contains every individual sequence isoform 
observed as follows:

• miRNA name

• alignment coordinates as <version>:<Chromosome>:<Start position>-<End position>:<Strand>

• raw read count

• reads per million miRNA reads

• cross-mapped to other miRNA forms (Y or N)

• region within miRNA

4.3. RNA-Seq analysis

TCGA uses an Illumina system as the basic platform. Information for nucleotide sequence 
and gene expression is found at TCGA. RNA sequence coverage, sequence variants (e.g., 
fusion genes), expression of genes, exon, or junction are different category of information 
available after the sequence alignment. The NCBI dbGaP database is the official repository for 
the actual sequence data [45]. After aligning the reads to reference genome, gene expression 
level is quantified in various forms such as HT-Seq raw mapping count, fragments per kilo-
base of transcript per million mapped reads (FPKM) and FPKM-UQ (upper quartile normal-
ization) in TCGA mRNA quantification pipeline (Table 3). In case of mRNA analysis also the 
rules for data access are the same. Access for aligned reads file is controlled, whereas access 
for rest of the files is open.

4.4. DNA-Seq analysis

Genomic diversity across different cancer types has been characterized by utilizing DNA 
sequencing systems based on Sanger Sequencing at different Genome Sequencing Centers. 

Type Description Format

Aligned reads miRNA-Seq reads that have been aligned to the GRCh38 
build. Reads that were not aligned are included to facilitate 
the availability of raw read sets

BAM

miRNA expression quantification A table that associates miRNA IDs with read count and a 
normalized count in reads per million miRNA mapped

TXT

Isoform expression quantification A table with the same information as the miRNA 
Expression Quantification files with the addition of isoform 
information such as the coordinates of the isoform and 
the type of region it constitutes within the full miRNA 
transcript

TXT

Table 2. Data types and file formats.
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Somatic variants from whole-genome sequencing are identified using this pipeline. Somatic 
variants are identified by comparing the tumor samples with the normal samples allele fre-
quency. After annotating each mutation, one project is created combining files from mul-
tiple cases. Identification of somatic mutation has achieved through four pipelines. Identified 
somatic variants are then annotated. Information from multiple files is combined into one 
single MAF for each pipeline. Mutations are listed in a tab delimited format as Mutation 
Annotation Format (MAF). Two types of MAF files are produced for each variant calling in 
a project, i.e., the protected and the somatic or public MAF files. These MAF files are pro-
duced on the basis of annotated Variant Call Format (VCF) file. This VCF file contains variants 
reported in multiple transcripts. Only the critical ones are reported in the protected MAF file, 
whereas Public MAF are processed to remove the low quality and potential germline variants 
restricting the confidential information.VCF files are of two type, raw unannotated simple 
somatic mutations and annotated somatic mutation VCF files.

4.5. Single-nucleotide polymorphism

TCGA utilized SNP-based technology to analyze genome-wide variations. It also includes 
platforms to define CNV and loss of LOH across multiple samples.

4.6. DNA methylation sequencing

TCGA utilizes the Illumina platform for the DNA methylation study ensures single-base-pair 
resolution, high accuracy, easy workflows, and low input of DNA requirements. DNA methyl-
ation data files (Table 4) contain information of signal intensities (raw and normalized), detec-
tion confidence, and calculated beta values for methylated (M) and unmethylated (U) probes.

4.7. Reverse-phase protein array (RPPA)

Is a high throughput, functional, and quantitative proteomic method for large-scale protein 
expression profiling which helps in biomarker discovery and cancer diagnostics eventually. 

Type Description Format

RNA-Seq alignment RNA-Seq reads that have been aligned to the 
GRCh38 build. Reads that were not aligned are 
included to facilitate the availability of raw read sets

BAM

Raw read counts The number of reads aligned to each protein-coding 
gene, calculated by HT-Seq

TXT

FPKM A normalized expression value that takes into 
account each protein-coding gene length and the 
number of reads mappable to all protein-coding 
genes

TXT

FPKM-UQ A normalized raw read count in which gene 
expression values, in FPKM, are divided by the 75th 
percentile value

TXT

Table 3. Gene quantification data formats.
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Protein arrays consist of data representing protein expression and concentration. These data 
archives are deposited to the TCGA DCC and include original images of protein arrays, calcu-
lated raw signals, relative concentrations of proteins and normalized protein signals (Table 5).

4.8. Data processing workflow

TCGA have a well-organized structure from sample collection to bioinformatics analysis with 
involvement of several centers (Table 6).

Platform code File type Description

IlluminaDNAMethylation_
OMA002_CPI

Tab-delimited, ASCII 
text (.txt)

Cy3 and Cy5 signals and detection confidence of methylated 
probes

IlluminaDNAMethylation_
OMA002_CPI

Tab-delimited, ASCII 
text (.txt)

Calculated beta values

IlluminaDNAMethylation_
OMA003_CPI

Tab-delimited, ASCII 
text (.txt)

Cy3 and Cy5 signals and detection confidence of methylated 
probes

IlluminaDNAMethylation_
OMA003_CPI

Tab-delimited, ASCII 
text (.txt)

Calculated beta values

HumanMethylation27 Binary (.idat) Intensity data file with statistics for each bead type in terms 
of bead count, mean and standard deviation per dye

HumanMethylation27 Tab-delimited, ASCII 
text (.txt)

Calculated beta values and mean signal intensities for 
replicate methylated and unmethylated probes

HumanMethylation27 Tab-delimited, ASCII 
text (.txt)

Calculated beta values, gene symbols, chromosomes and 
genomic coordinates (build 36). Some data have been masked 
(including known SNPs)

HumanMethylation450 Binary (.idat) Intensity data file with statistics for each bead type in terms 
of bead count, mean and standard deviation per dye

HumanMethylation450 Tab-delimited, ASCII 
text (.txt)

Background-corrected methylated (M) and unmethylated (U) 
summary intensities as extracted by the methylumi package

HumanMethylation450 Tab-delimited, ASCII 
text (.txt)

Calculated beta values, gene symbols, chromosomes and 
genomic coordinates (hg18). Some data have been masked 
(including known SNPs)

Table 4. DNA methylation data files format.

File type Description

Array Slide Image (tiff) Black and white, high-resolution image of protein array

RPPA Slide Image Measurements (txt) Raw signals from a black and white, high-resolution 
image of protein array

Super Curve Results (tab-delimited, txt) Supercurve results, use dilution to calculate relative 
concentration

Normalized Protein Expression (MAGE-TAB data matrix, 
txt)

Signals for genes

Table 5. Protein data file format.
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Project Details Source

Tissue Source 
Sites (TSSs)

Collection of the samples (blood and tissue 
from tumour and normal controls) and clinical 
metadata from patients (donors)
Shipment of the annotated biospecimens to 
Biospecimen Core Resources (BCR)
https://wiki.nci.nih.gov/display/TCGA/
Tissue+Source+Site

https://tcga-data.nci.nih.gov/datareports/
codeTablesReport.htm?codeTable=tissue%20
source%20site

Biospecimen 
Core Resource 
(BCR)

Coordination of sample delivery and data 
collection, cataloguing, processing, and 
verifying the quality and quantity
Isolation and distribution of RNA and DNA 
from biospecimens to other institutions for 
genomic characterization and high-throughput 
sequencing
http://cancergenome.nih.gov/abouttcga/
overview/howitworks/bcr
http://www.nationwidechildrens.org/
biospecimen-core-resource-about-us

Research Institute at Nationwide Children’s 
Hospital in Columbus, Ohio

Genome 
Sequencing 
Centers (GSCS)

High-throughput sequencing (data are 
available in TCGA Data Portal or at NIH’s 
database of Genotype and Phenotype)
Identification of the DNA alterations
http://cancergenome.nih.gov/abouttcga/
overview/howitworks/sequencingcenters

Broad Institute Sequencing Platform in 
Cambridge
Human Genome Sequencing Center, Baylor 
College of Medicine in Houston
The Genome Institute at Washington University

Cancer Genome 
Characterization 
Centers (GCCs)

Utilization of novel technologies and multiple 
platforms
Comprehensive description of the genomic 
changes: alterations in miRNA and gene 
expression, SNP, CNV, and others
http://cancergenome.nih.gov/abouttcga/
overview/howitworks/characterizationcenters

Copy Number Alteration (Brigham and 
Women’s Hospital and Harvard Medical School 
in Boston, The Broad Institute in Cambridge)
Epigenomics (University of Southern California 
in Los Angeles, Johns Hopkins University in 
Baltimore)
Gene (mRNA) Expression (University of North 
California at Chapel Hill)
miRNA Analysis (British Columbia Cancer 
Agency in Vancouver)
Targeted Sequencing Center (Baylor College of 
Medicine in Houston)
Functional Proteomics (MD Anderson Cancer 
Center)

Proteome 
Characterization 
Centers (PCCs)

Identification of cancer-specific proteins
http://cancergenome.nih.gov/
abouttcga/overview/howitworks/
proteomecharacterization

Cancer Proteomic Center
Center for Application of Advanced Clinical 
Proteomic Technologies for Cancer
Proteo-Genomic Discovery
Prioritization and Verification of Cancer 
Biomarkers
Proteome Characterization Centre and 
Vanderbilt Proteome Characterization Center

Data 
Coordinating 
Center (DCC)

Management of all generated data and transfer 
them to public databases (TCGA Data Portal 
and Cancer Genomics Hub)
http://cancergenome.nih.gov/abouttcga/
overview/howitworks/datasharingmanagement

University of California Santa Cruz

Table 6. TCGA centers and data processing.
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Protein arrays consist of data representing protein expression and concentration. These data 
archives are deposited to the TCGA DCC and include original images of protein arrays, calcu-
lated raw signals, relative concentrations of proteins and normalized protein signals (Table 5).

4.8. Data processing workflow

TCGA have a well-organized structure from sample collection to bioinformatics analysis with 
involvement of several centers (Table 6).

Platform code File type Description

IlluminaDNAMethylation_
OMA002_CPI

Tab-delimited, ASCII 
text (.txt)

Cy3 and Cy5 signals and detection confidence of methylated 
probes

IlluminaDNAMethylation_
OMA002_CPI

Tab-delimited, ASCII 
text (.txt)

Calculated beta values

IlluminaDNAMethylation_
OMA003_CPI

Tab-delimited, ASCII 
text (.txt)

Cy3 and Cy5 signals and detection confidence of methylated 
probes

IlluminaDNAMethylation_
OMA003_CPI

Tab-delimited, ASCII 
text (.txt)

Calculated beta values

HumanMethylation27 Binary (.idat) Intensity data file with statistics for each bead type in terms 
of bead count, mean and standard deviation per dye

HumanMethylation27 Tab-delimited, ASCII 
text (.txt)

Calculated beta values and mean signal intensities for 
replicate methylated and unmethylated probes

HumanMethylation27 Tab-delimited, ASCII 
text (.txt)

Calculated beta values, gene symbols, chromosomes and 
genomic coordinates (build 36). Some data have been masked 
(including known SNPs)

HumanMethylation450 Binary (.idat) Intensity data file with statistics for each bead type in terms 
of bead count, mean and standard deviation per dye

HumanMethylation450 Tab-delimited, ASCII 
text (.txt)

Background-corrected methylated (M) and unmethylated (U) 
summary intensities as extracted by the methylumi package

HumanMethylation450 Tab-delimited, ASCII 
text (.txt)

Calculated beta values, gene symbols, chromosomes and 
genomic coordinates (hg18). Some data have been masked 
(including known SNPs)

Table 4. DNA methylation data files format.

File type Description

Array Slide Image (tiff) Black and white, high-resolution image of protein array

RPPA Slide Image Measurements (txt) Raw signals from a black and white, high-resolution 
image of protein array

Super Curve Results (tab-delimited, txt) Supercurve results, use dilution to calculate relative 
concentration

Normalized Protein Expression (MAGE-TAB data matrix, 
txt)

Signals for genes

Table 5. Protein data file format.
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Project Details Source

Tissue Source 
Sites (TSSs)

Collection of the samples (blood and tissue 
from tumour and normal controls) and clinical 
metadata from patients (donors)
Shipment of the annotated biospecimens to 
Biospecimen Core Resources (BCR)
https://wiki.nci.nih.gov/display/TCGA/
Tissue+Source+Site

https://tcga-data.nci.nih.gov/datareports/
codeTablesReport.htm?codeTable=tissue%20
source%20site

Biospecimen 
Core Resource 
(BCR)

Coordination of sample delivery and data 
collection, cataloguing, processing, and 
verifying the quality and quantity
Isolation and distribution of RNA and DNA 
from biospecimens to other institutions for 
genomic characterization and high-throughput 
sequencing
http://cancergenome.nih.gov/abouttcga/
overview/howitworks/bcr
http://www.nationwidechildrens.org/
biospecimen-core-resource-about-us

Research Institute at Nationwide Children’s 
Hospital in Columbus, Ohio

Genome 
Sequencing 
Centers (GSCS)

High-throughput sequencing (data are 
available in TCGA Data Portal or at NIH’s 
database of Genotype and Phenotype)
Identification of the DNA alterations
http://cancergenome.nih.gov/abouttcga/
overview/howitworks/sequencingcenters

Broad Institute Sequencing Platform in 
Cambridge
Human Genome Sequencing Center, Baylor 
College of Medicine in Houston
The Genome Institute at Washington University

Cancer Genome 
Characterization 
Centers (GCCs)

Utilization of novel technologies and multiple 
platforms
Comprehensive description of the genomic 
changes: alterations in miRNA and gene 
expression, SNP, CNV, and others
http://cancergenome.nih.gov/abouttcga/
overview/howitworks/characterizationcenters

Copy Number Alteration (Brigham and 
Women’s Hospital and Harvard Medical School 
in Boston, The Broad Institute in Cambridge)
Epigenomics (University of Southern California 
in Los Angeles, Johns Hopkins University in 
Baltimore)
Gene (mRNA) Expression (University of North 
California at Chapel Hill)
miRNA Analysis (British Columbia Cancer 
Agency in Vancouver)
Targeted Sequencing Center (Baylor College of 
Medicine in Houston)
Functional Proteomics (MD Anderson Cancer 
Center)

Proteome 
Characterization 
Centers (PCCs)

Identification of cancer-specific proteins
http://cancergenome.nih.gov/
abouttcga/overview/howitworks/
proteomecharacterization

Cancer Proteomic Center
Center for Application of Advanced Clinical 
Proteomic Technologies for Cancer
Proteo-Genomic Discovery
Prioritization and Verification of Cancer 
Biomarkers
Proteome Characterization Centre and 
Vanderbilt Proteome Characterization Center

Data 
Coordinating 
Center (DCC)

Management of all generated data and transfer 
them to public databases (TCGA Data Portal 
and Cancer Genomics Hub)
http://cancergenome.nih.gov/abouttcga/
overview/howitworks/datasharingmanagement

University of California Santa Cruz

Table 6. TCGA centers and data processing.
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Eligible patient samples (blood and tissue) are collected by different Tissue Source Sites 
(TSSs) and delivered to the Biospecimen Core Resource (BCR). BCR catalogue, process, and 
verify the quality and quantity of these samples and then submit clinical data and meta-
data to the Data Coordinating Center (DCC). Genome Characterization Centers (GCCs) 
and Genome Sequencing Centers (GSCs) then do the genomic characterization and high-
throughput sequencing once the DCC provide molecular analytes. After sequencing, DCC 
again receives the sequence-related data from GSS. Trace files, sequences, and alignment 
mappings from Genome Characterization Centers are also submitted to the NCI’s secure 
repository Cancer Genomic Hub (CGHub). Access to research community for these data 
is made available along with Genome Data Analysis Centers (GDACs). Information man-
aged by DCC that has stored into public free-access databases (TCGA portal, NCBI’s Trace 
Archive, CGHub), allows researchers to access the data and hence helps to advance in cancer 
studies.

4.9. TCGA data identifiers

Barcodes were initially used as the primary identifier for biospecimen data in TCGA during 
the beginning of the data. Tissue source site delivers the patient sample and the metadata to 
Biospecimen Core Resource (BCR). Once the sample is received by BCR, a human readable 
TCGA barcode was assigned. TCGA barcode was assigned to keep the navigation of the vari-
ous results produced by the different data-generating centers for one particular sample con-
nected. Sections of barcode also provide metadata information about the sample. Nowadays, 
BCR is also assigning universally unique identifiers (UUIDs) along with TCGA barcode to 
samples keeping UUIDs as the primary identifier instead of barcodes.

4.9.1. Barcodes

BCR generates the barcode for each sample received from TSS. Barcode initial numbers after 
the program code are assigned according to the TSS and the participant from which the tissue 
sample was received. The barcodes TCGA-02 and TCGA-02-0001 are assigned, respectively. 
Types of tissue are also differentiated with codes (Table 7). Next number in the barcode stands 
for the sample followed by the vial number; the sample was split into TCGA-02-0001-01 and 
TCGA-02-0001-01B. This vial number is again divided into different portions—TCGA-02-
0001-01B-02. Analytes represented with barcode, e.g., TCGA-02-0001-01B-02D was extracted 
and distributed across one or more than one plates TCGA-02-0001-01B-02D-0182. Each well 
represented as, e.g., TCGA-02-0001-01B-02D-0182-06 is identified as an aliquot. These plates 
are later given to various characterize and sequencing centers.

4.9.2. Universally unique identifier (UUID)

UUIDs are randomly generated 32-digit hexadecimal value. TCGA became more complex, 
and the barcode was not enough to handle the generated data because there was not enough 
barcode combinations to represent the data. Also, flexibility in altering the barcode was also 
less when the associated metadata changes with a barcode. Considering all these factors, 
TCGA changed from using barcode for biospecimen and clinical data.
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The generated data are not only categorized based on the type but also the level at which 
these data can be accessed. In addition to the analyzed tumor data, TCGA also collects non-
tumor samples aimed to analyze every patients germ line DNA to identify which alteration 
found in tumor sample responsible for the oncogenic process. For most of the tumors, TCGA 
collects and analyzes normal blood samples. In the absence of a matching normal blood sam-
ple, a normal tissue sample from the same patient is used as the germ line control for DNA 
assays. But in the case of RNA assays, using a normal blood sample as a control is not logi-
cally correct. Because RNA profile of blood sample is expected to be different from the RNA 
profile of tissues from other organs such as brain, breast, and lungs or ovary. Because of this 
reason, TCGA attempts to collect normal tissue matched to the anatomic site of the tumor not 
matched to the patient.

4.10. Accessibility of data

Access to the data is strictly controlled. There are two levels of data access:

• Open access data tier [raw, non-normalized data (Level I), processed data (Level II)].

• Controlled access data tier [segmented/interpreted data (Level III) apply to individual sam-
ples, while summarized data (Level IV)].

Tissue code Letter code Definition

1 TP Primary Solid Tumor

2 TR Recurrent Solid Tumor

3 TB Primary Blood Derived Cancer—Peripheral Blood

4 TRBM Recurrent Blood Derived Cancer—Bone Marrow

5 TAP Additional—New Primary

6 TM Metastatic

7 TAM Additional Metastatic

8 THOC Human Tumor Original Cells

9 TBM Primary Blood Derived Cancer—Bone Marrow

10 NB Blood Derived Normal

11 NT Solid Tissue Normal

12 NBC Buccal Cell Normal

13 NEBV EBV Immortalized Normal

14 NBM Bone Marrow Normal

20 CELLC Control Analyte

40 TRB Recurrent Blood Derived Cancer—Peripheral Blood

50 CELL Cell Lines

60 XP Primary Xenograft Tissue

61 XCL Cell Line Derived Xenograft Tissue

Table 7. Tissue code.
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Eligible patient samples (blood and tissue) are collected by different Tissue Source Sites 
(TSSs) and delivered to the Biospecimen Core Resource (BCR). BCR catalogue, process, and 
verify the quality and quantity of these samples and then submit clinical data and meta-
data to the Data Coordinating Center (DCC). Genome Characterization Centers (GCCs) 
and Genome Sequencing Centers (GSCs) then do the genomic characterization and high-
throughput sequencing once the DCC provide molecular analytes. After sequencing, DCC 
again receives the sequence-related data from GSS. Trace files, sequences, and alignment 
mappings from Genome Characterization Centers are also submitted to the NCI’s secure 
repository Cancer Genomic Hub (CGHub). Access to research community for these data 
is made available along with Genome Data Analysis Centers (GDACs). Information man-
aged by DCC that has stored into public free-access databases (TCGA portal, NCBI’s Trace 
Archive, CGHub), allows researchers to access the data and hence helps to advance in cancer 
studies.

4.9. TCGA data identifiers

Barcodes were initially used as the primary identifier for biospecimen data in TCGA during 
the beginning of the data. Tissue source site delivers the patient sample and the metadata to 
Biospecimen Core Resource (BCR). Once the sample is received by BCR, a human readable 
TCGA barcode was assigned. TCGA barcode was assigned to keep the navigation of the vari-
ous results produced by the different data-generating centers for one particular sample con-
nected. Sections of barcode also provide metadata information about the sample. Nowadays, 
BCR is also assigning universally unique identifiers (UUIDs) along with TCGA barcode to 
samples keeping UUIDs as the primary identifier instead of barcodes.

4.9.1. Barcodes

BCR generates the barcode for each sample received from TSS. Barcode initial numbers after 
the program code are assigned according to the TSS and the participant from which the tissue 
sample was received. The barcodes TCGA-02 and TCGA-02-0001 are assigned, respectively. 
Types of tissue are also differentiated with codes (Table 7). Next number in the barcode stands 
for the sample followed by the vial number; the sample was split into TCGA-02-0001-01 and 
TCGA-02-0001-01B. This vial number is again divided into different portions—TCGA-02-
0001-01B-02. Analytes represented with barcode, e.g., TCGA-02-0001-01B-02D was extracted 
and distributed across one or more than one plates TCGA-02-0001-01B-02D-0182. Each well 
represented as, e.g., TCGA-02-0001-01B-02D-0182-06 is identified as an aliquot. These plates 
are later given to various characterize and sequencing centers.

4.9.2. Universally unique identifier (UUID)

UUIDs are randomly generated 32-digit hexadecimal value. TCGA became more complex, 
and the barcode was not enough to handle the generated data because there was not enough 
barcode combinations to represent the data. Also, flexibility in altering the barcode was also 
less when the associated metadata changes with a barcode. Considering all these factors, 
TCGA changed from using barcode for biospecimen and clinical data.
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The generated data are not only categorized based on the type but also the level at which 
these data can be accessed. In addition to the analyzed tumor data, TCGA also collects non-
tumor samples aimed to analyze every patients germ line DNA to identify which alteration 
found in tumor sample responsible for the oncogenic process. For most of the tumors, TCGA 
collects and analyzes normal blood samples. In the absence of a matching normal blood sam-
ple, a normal tissue sample from the same patient is used as the germ line control for DNA 
assays. But in the case of RNA assays, using a normal blood sample as a control is not logi-
cally correct. Because RNA profile of blood sample is expected to be different from the RNA 
profile of tissues from other organs such as brain, breast, and lungs or ovary. Because of this 
reason, TCGA attempts to collect normal tissue matched to the anatomic site of the tumor not 
matched to the patient.

4.10. Accessibility of data

Access to the data is strictly controlled. There are two levels of data access:

• Open access data tier [raw, non-normalized data (Level I), processed data (Level II)].

• Controlled access data tier [segmented/interpreted data (Level III) apply to individual sam-
ples, while summarized data (Level IV)].

Tissue code Letter code Definition

1 TP Primary Solid Tumor

2 TR Recurrent Solid Tumor

3 TB Primary Blood Derived Cancer—Peripheral Blood

4 TRBM Recurrent Blood Derived Cancer—Bone Marrow

5 TAP Additional—New Primary

6 TM Metastatic

7 TAM Additional Metastatic

8 THOC Human Tumor Original Cells

9 TBM Primary Blood Derived Cancer—Bone Marrow

10 NB Blood Derived Normal

11 NT Solid Tissue Normal

12 NBC Buccal Cell Normal

13 NEBV EBV Immortalized Normal

14 NBM Bone Marrow Normal

20 CELLC Control Analyte

40 TRB Recurrent Blood Derived Cancer—Peripheral Blood

50 CELL Cell Lines

60 XP Primary Xenograft Tissue

61 XCL Cell Line Derived Xenograft Tissue

Table 7. Tissue code.
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4.10.1. Open access data tier

The open access data level is composed of public data not unique to a patient. The open access 
data tier does not require any user certification [45].

Type of data accessible at open tier:

• Biospecimen

• Transcriptomic profiling

• Copy number variations

• DNA methylation

• Clinical

• Single-nucleotide variation

4.10.2. Controlled access data tier

Patient’s unique information falls into the controlled access tier. Each data type has unique 
identifiers. In order to get the access to the data, user needs the certification.

Type of data accessible at controlled level:

• BAM and FASTQ files

• Level 1 and level 2 SNP6 array data

• Level 1 and level 2 exon array data

• Variant Call Format files

• Peculiar data of MAFs

In order to attain the access to these data, the researchers must:

• Complete the Data Access Request (DAR) form which is available electronically through 
the Database of Genotypes and Phenotypes (dbGaP).

Once the submitted request is evaluated and approved, researchers must

• Agree to restrict their use of the information to biomedical research purposes only

• Agree with the statements within TCGA Data Use Certification (DUC)

• Have their institutions certifiably agree to the statements within TCGA DUC

All patient samples are sworn to use for TCGA and there is no provision of sharing the mate-
rial with a third party. Even this is not the case because 95% of material used up in different 
characterization. Even there is chance left to get the samples from the TSS centers. One can 
directly contact the TSS center for samples, and the decision lays on them.

4.11. TCGA data: visualization and data analysis

A huge amount of data accumulation demanding for advanced visualization technology and 
number of tools are available (Table 8). Visualization is essential to understand the data at ease.
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Tool Application

The Cancer Imaging Archive, CIA (http://www.
cancerimagingarchive.net)

TCIA hosts a large archive of medical images of cancer 
accessible for public download. Information regarding 
patients treatment details, outcomes, pathology and 
genomics are also provided as supporting information 
based on availability

Berkeley Morphometric Data (http://tcga.lbl.gov:9999/
biosig/tcgadownload.do)

Characterize tumour histopathology, through the 
delineation of the nuclear regions, from hematoxylin 
and eosin (H&E) stained tissue sections. The advantages 
of such a database is that other samples can be cross-
referenced for personalized therapy and precision 
medicine as it contains information regarding responses 
to therapies, molecular correlates and morphometric 
subtypes

The Cancer Digital Slide Archive, CDSA (http://cancer.
digitalslidearchive.net/)

Is an integrated Web-based platform supporting whole-
slide pathology image visualization and data integration 
of the TCGA data

The Broad GDAC Firehose (http://firebrowse.org/) Is a powerful tool for exploring cancer data. FireBrowse 
helps researchers to easily find any of thousands of data 
archives generated by the same. A powerful RESTful 
API is provided, with bindings to the UNIX command 
line, Python and R for programmers. For easy access, 
graphical interface like viewGene to explore expression 
levels and iCoMut are provided to explore the mutation 
information of each TCGA disease study with an 
interactive figure

The MD Anderson GDAC’s MBatch (http://
bioinformatics.mdanderson.org/tcgabatcheffects)

Is designed to help researchers to assess, diagnose and 
correct for any batch effects in TCGA data. It first allows 
the user to assess and quantify the presence of any batch 
effects through Principal Component Analysis and 
Hierarchical Clustering algorithms. The results from 
these algorithms are presented graphically as diagrams

Cancer Genome Workbench, CGWB (https://cgwb.nci.
nih.gov/)

NCI developed application which integrate and display 
genomic and transcription alterations across various 
cancers. Integrated tracks view, Heatmap view, Bambino 
are the major viewers

UCSC Cancer Genomics Browser (https://genome-cancer.
soe.ucsc.edu/)

Is an open access suite integrate, visualize and cancer 
genomic data along with clinical data

Integrative Genomics Viewer, IGV (http://www.
broadinstitute.org/igv)

Is a freely available visualization tool of the genome 
developed by Broad Institute

The cBioPortal for Cancer Genomics (http://cbioportal.org) Is interactive open-access resource for the exploration 
of multidimensional cancer genomics data sets. The 
barriers between the genomic data and the researchers 
are reduced rapidly after the resources was established. 
This database stores DNA copy-number data (deep 
deletions or amplification), non-synonymous mutations, 
mRNA and microRNA expression data, protein level, 
phosphoprotein level (RPPA) data, limited de-identified 
clinical data and DNA methylation data

Regulome Explorer (http://explorer.cancerregulome.org/) It explores the association between and molecular features 
of TCGA data. According to user-specified parameters the 
data can be filtered for the search and visualize

Table 8. Visualization and data analysis tools.
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Abstract

Gene expression studies in aquaculture have slowly evolved from the traditional reduc‐
tionist approach of single gene sequencing to high throughput sequencing (HTS) tech‐
niques able to sequence entire genomes of living organisms. The upcoming of HTS 
techniques has led to emergence of metagenomics, nutrigenomics, epigenetics and other 
omics technologies in aquaculture in the last decade. Metagenomics analyses have accel‐
erated the speed at which emerging pathogens are being discovered, thereby contribut‐
ing to the design of timely disease control strategies in aquaculture. Using metagenomics, 
it is easy to identify and monitor microbial communities found in different ecosystems. 
In vaccine production, genomic studies are being used to identify cross neutralizing anti‐
gens against variant strains of the same pathogens. In genetics and epigenetics, genomics 
traits have been identified that are beginning to gain commercial applications in aquacul‐
ture. Nutrigenomics have not only enhanced our understanding of the biological mark‐
ers for nutrition‐related diseases, but they have also enhanced our ability to formulate 
diets able to maintain a stable immune homeostasis in the gut. Overall, herein, we have 
shown that functional genomics provide multifaceted applications ranging from moni‐
toring microbial communities in aquatic environments to optimizing production systems 
in aquaculture.

Keywords: genomics, aquaculture, metagenomics, nutrigenomics, epigenetics

1. Introduction

The ability to decipher the molecular composition of nucleic acids of living organisms is of 
prime importance in biological sciences. Although the traditional approaches of single gene 
expression analyses using polymerase chain reaction (PCR) tests [1, 2], quantitative real 
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time PCRs (qRT‐PCRs) [3, 4], competitive PCRs [5] or nested PCRs [6] have been and are 
still widely used in biological sciences, they inherently lack the ability to provide a global 
overview of genomic transcripts found in living organisms. However, the recent advent of 
omics technologies such as metagenomics, nutrigenomics and epigenetics based on high 
throughput sequencing (HTS) is rapidly enhancing our ability to understand complex sys‐
tems underlying different biological functions. These omics technologies have not only accel‐
erated whole genome sequencing projects of different aquatic organisms [7, 8], but they also 
have the capacity to unravel the sequences of entire genomes without prior knowledge of 
the genes to be sequenced thereby enhancing the discovery and annotation of novel genes 
in non‐model species. And as shown from recent studies, their applications in aquaculture 
have accelerated our ability to identify emerging pathogens [9], monitor the microbiomes of 
different aquatic environments [10], develop nutritional diets with less side effects [11, 12] 
and understand the cellular networks that regulate different biological processes in aquatic 
organisms [13–15]. It is evident from studies carried out this far that an integrated use of dif‐
ferent omics technologies is bound to improve our production systems in aquaculture [10, 12, 
16–18]. Hence, this chapter provides an overview of different omics technologies currently 
used in aquaculture mainly focusing on their overall contribution to transforming genomics 
studies into functional applications.

2. Application of metagenomics analyses

Studies carried out this far show that metagenomics can be used to identify novel pathogens 
as well as microbiota found on mucosal surfaces of cultured aquatic organisms.

2.1. Application of metagenomics in diagnostics and discovery of novel pathogens

The rapid expansion of aquaculture to become a leading source of proteins for human con‐
sumption in the world has brought with it a rapid increase in the number pathogens infecting 
farmed aquatic organisms [19]. To expedite the process of identifying emerging pathogens, 
there has been a shift in recent years from the use of traditional diagnostic tools based on 
isolation, culture and pathogen characterization to include metagenomics analyses in the 
identification of novel pathogens in aquaculture [10]. Metagenomics is a culture independent 
diagnostic tool that does not require prior knowledge of nucleic acids to be sequenced unlike 
conventional PCR that require prior knowledge of the nucleic acid to be sequenced for the 
design of primers [20]. Metagenomics analyses have the capacity to sequence all nucleic acids 
present in a sample at once thereby generating a vast array of data that requires computational 
analyses for interpretation [20, 21]. As pointed out in our previous studies [9, 10], it has the 
advantage of identifying co‐infections and in the case of viral pathogens, it has the capacity 
to generate all variable proteins that form complete virions thereby permitting comparative 
phylogenetic analyses with other viruses present in public databases. Moreover, it is a pro‐
active diagnostic tool able to identify novel pathogens before they cause outbreaks unlike 
the reactive traditional diagnostic tools in which etiological agents are only identified after 
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causing disease outbreaks reaching epidemic proportions [21]. Using metagenomics, several 
novel pathogens have been identified at a much faster rate than traditional approaches in 
which the duration from first observation of clinical signs to identification of the pathogens 
is long [10]. For example, infectious pancreatic necrosis (IPN) was first reported as an acute 
infectious enteritis [22] in salmonids in the 1940s while the etiological was later characterized 
as IPN virus after 20 years in 1960 [23]. Similarly, viral haemorrhagic septicaemia (VHS) was 
first reported in the early 1950s in salmonids while the causative agent was characterized later 
after 10 years in 1962 [24]. This trend was observed for several other diseases such as infec‐
tious hematopoietic necrosis virus (IHNV), nervous necrosis virus (NNV), heart and skeletal 
muscle inflammation (HSMI) and cardiac myopathy syndrome (CMS) in which identification 
of the etiological agents took long after clinical signs were first reported [25–33]. However, the 
upcoming of metagenomics has accelerated our discovery of novel pathogens in which the 
duration from observation of first clinical signs to identification of the etiological agent has 
been reduced. In fish, viruses discovered using metagenomics include circoviruses from com‐
mon bream [34] and European eel [35], posavirus [36] and seadornavirus [37] from freshwater 
carp and totivirus from golden shiner. As shown in our recent study [9], more than 20 novel 
fish pathogenic viruses have been identified using metagenomics in the last 4 years, which is 
more than the number identified using traditional diagnostic tools in the last 5 decades, clearly 
showing the rapid rate at which metagenomics has accelerated our ability to identify novel 
pathogens compared with traditional diagnostic methods.

In crustaceans, mortalities due to white spot syndrome virus (WSSV) in shrimps were first 
reported in 1992 while the causative agent was identified in 2001 [38–40]. Mortalities due to 
taura syndrome virus (TSV) in shrimps were first reported in Ecuador in 1991 [41] and the virus 
was characterized in 1994 [42]. A similar trend was observed for Yellow heard disease virus 
(YTV) [43, 44], infectious hypodermal and hematopoietic necrosis virus (IHHNV) [45–47],  
shrimp infectious myonecrosis virus (SIMV) [48] and Penaues vannamei nodavirus (PvNV) 
[49, 50] in which the duration between the first report of the disease and identification of the 
etiological agent was long. Shrimps viruses discovered using metagenomics analyses include 
Frafantepenaeus duorarum nodavirus (FdNV) and shrimp hepatopancreas‐associated circular 
nodavirus (ShrimpCDV) [51].

2.2. Monitoring of environmental microbiomes

A good understanding of microbial communities found in freshwater and marine environ‐
ment used for aquaculture is a prerequisite to designing effective disease control strategies 
tailored for each ecosystem. Metagenomics analyses provide a unique opportunity to study 
infectious agents in water samples outside their susceptible hosts [10]. Its ability to sequence 
all nucleic acids present in a sample at once enables it to profile microbial communities found 
in different ecosystems. For example, Angly et al. [52] showed that microbial composition 
varies with latitude gradient with highest diversity being in warm climates around the equa‐
tor and less diversity in the poles. After analysis of viromes from 32 different marine sites, 
Dinsdale et al. [53] noted that viral richness decreased from deep sea to surface waters and 
with distance from shore in surface waters and increased from winter to summer. Given that 
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taura syndrome virus (TSV) in shrimps were first reported in Ecuador in 1991 [41] and the virus 
was characterized in 1994 [42]. A similar trend was observed for Yellow heard disease virus 
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A good understanding of microbial communities found in freshwater and marine environ‐
ment used for aquaculture is a prerequisite to designing effective disease control strategies 
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infectious agents in water samples outside their susceptible hosts [10]. Its ability to sequence 
all nucleic acids present in a sample at once enables it to profile microbial communities found 
in different ecosystems. For example, Angly et al. [52] showed that microbial composition 
varies with latitude gradient with highest diversity being in warm climates around the equa‐
tor and less diversity in the poles. After analysis of viromes from 32 different marine sites, 
Dinsdale et al. [53] noted that viral richness decreased from deep sea to surface waters and 
with distance from shore in surface waters and increased from winter to summer. Given that 

Current Advances in Functional Genomics in Aquaculture
http://dx.doi.org/10.5772/intechopen.69883

175



over 40% of the global human population live within 100 km of coastlines, anthropogenic 
activities have been shown to influence the composition of microbial communities in coastal 
areas where aquaculture activities are mostly carried out [54]. These anthropogenic activities 
include host species composition changes introduced by aquaculture [55, 56], waste disposal 
[57], agriculture [58], recreation [59] and industrial activities [59]. As a result, metagenomics 
is currently being used to monitor the impact of anthropogenic activities on coastal micro‐
bial composition. Port et al. [60] found an increase in antibiotic resistance genes caused by 
coastal effluent discharges, while Morán et al. [61] showed significant changes in bacterial 
community structures caused by coastal copper disposal in La Lancha and Chañaral bay in 
the Pacific Ocean. Overall, these studies show that metagenomics is not only used to identify 
novel pathogens, but it is also used to monitor the impact of human activities on microbial 
composition in different aquatic environments.

2.3. Application of metagenomics in recirculation systems

In contrast to outdoor aquaculture systems that are dependent on natural water basins such 
as rivers and oceans, the recirculation aquaculture system (RAS) uses water that is filtered 
before it is recycled back into culture tanks in closed systems. Water used in RAS is subjected 
to several treatment processes such as biofiltration to reduce ammonium, removal of solids, 
oxygenation, pH control and pathogen denaturation using ozone and UV‐light. Although a 
well‐designed state‐of‐the‐art RAS has the potential to reduce the presence of waterborne 
microorganisms, some pathogens are able to resist RAS disinfection. Bacteria phyla detected 
from RAS biofilters include Actinobacteria [62], Firmicutes, Bacteroides [63–65], Protobacteria 
[63, 65], Verrucomicrobia [65] and Sphingobacteria [62, 65]. Hence, some microorganisms are 
being used as biosafety indicators whose dominance points to increase in the proliferation of 
pathogenic microorganisms [66]. As a result, metagenomics analyses are being used to moni‐
tor the increase in proliferation of pathogens in RAS [67].

2.4. Metagenomics analyses of mucosa microbiota

Given that mucosal surfaces are the major portals of microbial invasion, there has been a 
growing interest to study mucosal microbiota of cultured aquatic organisms. Metagenomics 
studies show that different environmental factors influence the composition of mucosal 
microbiota on different fish species.

2.4.1. Skin mucosa microbiota

Larsen et al. [68] compared the skin microbiota of six different fish species (Mugil cephalus, 
Lutjanus campechanus, Cynoscion nebulosus, Cynoscion arenarius, Micropogonias undulatus and 
Lagodon rhomboides) from the Gulf of Mexico and showed that Proteobacteria was the pre‐
dominant phylum followed by Firmicutes and Actinobacteria across all species. Although 
Aeribacillus was found in 19% of all fish species examined, genera such as Neorickettsia and 
Microbacterium were fish species‐specific pointing to existence of phyla and genera associated 
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with particular fish species. Lokesh and Kiron [69] showed that the bacterial operational tax‐
onomy unit (OTU) composition on the skin of Atlantic salmon (Salmo salar L.) changed signifi‐
cantly as a result of transfer from fresh to seawater. Proteobacteria was the dominant phylum 
both in fresh and seawater while Bacteroidetes, Actinobacteria, Firmicutes, Cyanobacteria 
and Verrucomicrobia were the most abundant in freshwater. The genus Oleispira was the 
most abundant in seawater. Similarly, Wilson et al. [70] showed that bacterial communi‐
ties from the epidermal mucus of Atlantic cod (Gadus morhua) from the Baltic, Iceland and 
North seas collected over three seasons mainly comprised of Psychrobacter, Bacteroides and 
Photobacterium OTUs in all seasons although there were significant inter‐site and seasonal 
variations in community composition.

Boutin et al. [71] combined 16S RNA metagenomics and QTL analyses to show that host 
genotype can regulate the microbiota composition on the skin surface of brook charr 
(Salvelinus fontinalis). They found a strong negative correlation between Flavobacterium and 
Methylobacterium, pointing to a mutually competitive relationship between pathogenic and 
non‐pathogenic bacteria on the skin mucosa of brook charr. Flavobacterium is known to be 
pathogenic among different fish species, while Methylobacteria provide protection against 
pathogenic bacterial infections on skin surfaces suggesting that a shift from Methylobacteria 
to Flavobacterium dominance on the skin mucosal could point to increase in susceptibility to 
bacterial infection. Hence, by monitoring changes on mucosal bacteria composition, metage‐
nomics can be used to determine the susceptibility of fish to microbial infections.

2.4.2. Gut mucosal microbiota

As pointed out by Lyons et al. [72] that to better understand the gut microbiome and its impact 
on the health status of aquatic organisms, it is vital to determine its structure, diversity and 
potential functional capacity. Gajardo et al. [12] analysed the microbiota profile of the digesta 
and gut mucosal of Atlantic salmon (S. salar L.) fed commercial diets and showed that micro‐
biota richness and diversity differed significantly between the digesta and gut. The digesta 
had a higher and diverse richness than the gut mucosa. Proteobacteria was the dominant 
phyla in the mucosa whereas Proteobacteria and Firmicules were dominant in the digesta. In 
addition, there were significant differences in microbiota composition in different segments 
of the gut. Actinobacteria was dominant in the posterior intestinal (PI) than the mid‐intestinal 
(MI) mucosa. Moreover, the PI showed presence of Spirochaetes that were not found in the 
MI showing that metagenomics can be used to identify microbial communities that inhabit 
different segments of the gut. In another study, Gajardo et al. [11] identified bacterial groups 
associated with diet‐induced gut dysfunction that could serve as biological markers of the gut 
health status in Atlantic salmon. Mouchet et al. [73] compared the gut microbiota of 15 fish 
species from the Atlantic Ocean near Brazil and showed that the microbiota genetic diversity 
was highly influenced by the fish species, geographical location and diet. Put together, these 
studies show that metagenomics can be used to profile bacteria species on mucosal surfaces 
of different fish species and that different factors such as host species, geographical areas and 
diet influence mucosal microbiota in fish.
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pathogenic bacterial infections on skin surfaces suggesting that a shift from Methylobacteria 
to Flavobacterium dominance on the skin mucosal could point to increase in susceptibility to 
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had a higher and diverse richness than the gut mucosa. Proteobacteria was the dominant 
phyla in the mucosa whereas Proteobacteria and Firmicules were dominant in the digesta. In 
addition, there were significant differences in microbiota composition in different segments 
of the gut. Actinobacteria was dominant in the posterior intestinal (PI) than the mid‐intestinal 
(MI) mucosa. Moreover, the PI showed presence of Spirochaetes that were not found in the 
MI showing that metagenomics can be used to identify microbial communities that inhabit 
different segments of the gut. In another study, Gajardo et al. [11] identified bacterial groups 
associated with diet‐induced gut dysfunction that could serve as biological markers of the gut 
health status in Atlantic salmon. Mouchet et al. [73] compared the gut microbiota of 15 fish 
species from the Atlantic Ocean near Brazil and showed that the microbiota genetic diversity 
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studies show that metagenomics can be used to profile bacteria species on mucosal surfaces 
of different fish species and that different factors such as host species, geographical areas and 
diet influence mucosal microbiota in fish.
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2.5. Metagenomics technologies and their limitations

Of the most widely used NGS technologies, both 454 pyrosequencing Roche and Illumina 
sequencers have been widely used in the metagenomics analyses of different aquatic 
organisms. For example, 454 pyrosequencing Roche has been used to study microbial 
communities of different fish species including rainbow trout (Oncorhynchus mykiss) [74], 
Atlantic cod (G. morhua) [75], Atlantic salmon [76], brook trout (S. fontinalis) [77], brown 
trout (Salmo trutta) [78], zebrafish (Dario rerio) [79], Gizzard shad (Dorosoma cepedianum) 
[80], silver carp (Hypophthalmichthys molitrix) [81], common carp (Cyprinus carpio) [82], grass 
carp (Ctenopharyngodon idellus) [83], orange spotted grouper (Epinephelus coioides) [84] and 
Senegalese sole (Solea senegalensis) [85]. On the other hand, Illumina sequencers have been 
used for the analyses of microbiota found in seabass (Lates calcarifer) [86], blunt snout bream 
(Megalobrama amblycephala) [87], grass carp (GC) [87], mandarin fish (Siniperca chuatsi) [87], 
topmouth culter (Culter alburnus), common carp [87] and Crucian carp (Carassius auratus) 
[87], silver carp [87] and bighead carp (Hypophthalmichthys nobilis) [87]. In terms of assembly, 
both whole genome shotgun and marker gene guided sequencing have been used on differ‐
ent aquatic organisms. The commonly used marker gene in metagenomics analyses is the 
16S ribosomal RNA (16S rRNA), which has been widely used to characterize the microbiota 
of different aquatic organisms including rainbow trout [88, 89], Atlantic salmon [11, 12], tur‐
bot (Scophthalmus maximus) [90], lamprey (Lampetra morii) [91] and Baleen whale [92]. Whole 
genome shotgun sequencing has also been widely used in the study of environmental micro‐
bial communities and pathogens infecting different aquatic organisms. The major advantage 
with this approach is that it can be used to sequence whole genomes of known or unknown 
organisms using de novo assemblies unlike guided marker assemblies that are dependent on 
a reference gene [93–96].

Despite its positive contribution to the discovery of novel pathogens and environmental mon‐
itoring of microbial communities, metagenomics has significant limitations that require the 
support of other tools [95]. The immense metagenome data generated using NGS technolo‐
gies require the support of other tools for clustering, classification and annotation of individ‐
ual sequences [95]. For de novo assembled sequences, the most reliable annotation approach 
is by homology search using reference sequences available in public databases. However, the 
number of existing public databases for aquatic organisms is limited, which makes it difficult 
to identify novel pathogens [97]. In general, functional annotation lags behind the rate at 
which metagenome data is generated. Alternative methods used to identify novel pathogens 
include motif or pattern‐based identification [98, 99], phylogenetic profiling [100] and neigh‐
bourhood tree alignments [101, 102].

3. Nutrigenomics in aquaculture

Nutrigenomics is the study of the role of nutrition on gene expression. Galduch‐Giner et al. 
[103] showed that there was specialization in the functional properties of different compo‐
nents of the intestinal tract of the European seabass (Dicentarchus labrax). They observed that 
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molecular markers linked to nutrient digestion and absorption were high in the anterior (AI) 
and middle intestine (MI) while the posterior intestine (PI) predominantly expressed genes 
linked to immune defence mechanisms. These observations are in line with other scientists 
who showed that the AI and MI are mainly responsible for nutrient digestion and absorption 
[104, 105] while the PI is responsible for induction of innate immune responses linked to acti‐
vation of adaptive immunity in teleosts fish [106–109].

Different scientists have studied the genomic changes induced by various nutrients in the 
guts of different fish species. Krol et al. [110] compared the differential response of the Atlantic 
salmon gut to soybean meal (SBM) and fish meal (FM) as positive and negative controls for 
enteritis, respectively. They noted that SBM altered the gut histology and induced extensive 
transcriptomic changes linked to underlying mechanisms of SBM‐induced enteropathy. They 
found 18 enriched pathways linked to inflammation and immune responses induced by SBM 
enteropathy. Among these were the NF‐kB and IL‐8 signalling pathways known to induce the 
synthesis of various pro‐inflammatory cytokines. Phagocytic pathways such as the Fcγ recep‐
tor mediated phagocytosis and monocyte pathways were highly enriched. In another study, 
Torrecillas et al. [111] showed downregulation of TCRβ, COX‐2, TNFα, IL‐8, IL‐6, IL‐10, TGFβ 
and IgM when MHC‐II was upregulated in European seabass fed to Soya‐bean oil (SBO). 
Expression of these genes corresponded with reduced lengths of intestinal folds and mucus 
density in the gut. Conversely, mannan oligosaccharides (MOS) diets increased the length 
of intestinal folds and mucus density and upregulated MHC‐CD4, COX‐2, TNFα and IgM 
expression. Combined MOS and SBO diets reduced the harmful effects of SBO diets by mod‐
erating the downregulation of GALT‐related genes. Therefore, these observations show the 
importance of optimizing feed formulation in order to produce balanced diets able to pre‐
serve the GALT‐immune homeostasis.

Apart from soyabean, nutrigenomics have also been used to evaluate the impact of other 
nutrients in fish diets. Azeredo et al. [112] showed that the immune status of the European 
seabass was impaired by arginine dietary supplements. They observed that different cell‐
mediated immune markers were downregulated in fish fed 1–2% arginine diets. Leukocytes 
obtained from fish fed arginine diets showed low respiratory burst compared to control 
fish. After challenge with Vibrio aguillarum, fish fed arginine diet supplements showed 
higher mortality than control fish. Interestingly, reducing arginine levels to 0.5% in the diet 
supplements significantly increased respiratory burst to levels comparable with control 
fish. In another study, Estensoro et al. [113] showed that butyrate (BP‐70 ®NOREL) helped 
to restore the intestinal status of marine gilthead sea bream (Sparus aurata) fed extremely 
low diets of fish meal (FM) and fish oil (FO). They observed that extremely low FO and FM 
diet levels significantly altered the transcriptomic profiles linked to nutrient absorption 
in the AI and increased expression of inflammatory, antioxidant, permeability and mucus 
production genes that coincided with increased granulocyte and lymphocyte presence in 
the PI submucosa. Interestingly, expression of these genes was restored to control values by 
adding butyrate (BP‐70) to the feed. As pointed out by Krol et al. [110], gut transcriptomic 
profiling is a useful tool for testing the adverse impacts of different feeds and that under‐
standing gut‐diet interactions is a prerequisite to designing diets able to prevent induction 
of diet‐related diseases in the gut.
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who showed that the AI and MI are mainly responsible for nutrient digestion and absorption 
[104, 105] while the PI is responsible for induction of innate immune responses linked to acti‐
vation of adaptive immunity in teleosts fish [106–109].
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found 18 enriched pathways linked to inflammation and immune responses induced by SBM 
enteropathy. Among these were the NF‐kB and IL‐8 signalling pathways known to induce the 
synthesis of various pro‐inflammatory cytokines. Phagocytic pathways such as the Fcγ recep‐
tor mediated phagocytosis and monocyte pathways were highly enriched. In another study, 
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and IgM when MHC‐II was upregulated in European seabass fed to Soya‐bean oil (SBO). 
Expression of these genes corresponded with reduced lengths of intestinal folds and mucus 
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expression. Combined MOS and SBO diets reduced the harmful effects of SBO diets by mod‐
erating the downregulation of GALT‐related genes. Therefore, these observations show the 
importance of optimizing feed formulation in order to produce balanced diets able to pre‐
serve the GALT‐immune homeostasis.

Apart from soyabean, nutrigenomics have also been used to evaluate the impact of other 
nutrients in fish diets. Azeredo et al. [112] showed that the immune status of the European 
seabass was impaired by arginine dietary supplements. They observed that different cell‐
mediated immune markers were downregulated in fish fed 1–2% arginine diets. Leukocytes 
obtained from fish fed arginine diets showed low respiratory burst compared to control 
fish. After challenge with Vibrio aguillarum, fish fed arginine diet supplements showed 
higher mortality than control fish. Interestingly, reducing arginine levels to 0.5% in the diet 
supplements significantly increased respiratory burst to levels comparable with control 
fish. In another study, Estensoro et al. [113] showed that butyrate (BP‐70 ®NOREL) helped 
to restore the intestinal status of marine gilthead sea bream (Sparus aurata) fed extremely 
low diets of fish meal (FM) and fish oil (FO). They observed that extremely low FO and FM 
diet levels significantly altered the transcriptomic profiles linked to nutrient absorption 
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production genes that coincided with increased granulocyte and lymphocyte presence in 
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Omics technologies commonly used for nutrigenomics analyses in aquaculture mainly comprise 
of microarray and RNA‐seq. RNA‐seq has been widely used to study the impact of different 
diets in various fish species including Atlantic salmon [114], rainbow trout [115], channel catfish 
(Iactalurus punctatus) [116], blue catfish (Ictalurus furcatus) [117] and zebrafish [118]. On the other 
hand, microarray has also been widely used to study nutrigenomics in different fish species that 
include Atlantic salmon, rainbow trout, Atlantic cod (G. morhua) and Gilthead sea bream (S. aurata). 
However, the use of RNA‐seq and microarray leads to several challenges that include the need for 
large data processing softwares as well as the need of bioinformatics tools required for differential 
gene expression, network pathway, alternative splicing and gene duplication analyses. To cope 
with these challenges, different bioinformatics tools have been developed and new innovations 
are being invented to cover different aspects of quality assessment of mapped genes, mapping for 
de novo assembled genes, expression quantification, differential expression analyses, alternative 
splicing and network pathway analyses [119–122]. Different reviews have been published provid‐
ing in‐depth comparative analyses of existing tools highlighting their strengths and weakness that 
could serve as a guide for end users to select the most appropriate tool suitable for nutrigenomics 
studies in different aquatic organisms [119, 123, 124].

4. Functional genomics in vaccine development

Given that most pathogens exist as multiple strains having different antigenic proteins, the 
challenge in vaccine design has been to find cross protective antigens against variant strains 
of the same pathogen. In the case of viruses, different approaches have been used aiming 
at finding the most neutralizing epitopes using methods such as epitope mapping, peptide‐
scan and reverse genetics [125–128]. However, the upcoming of next generation sequencing 
(NGS) supported with current advances of bioinformatics tools is expected to expedite our 
ability to identify the most immunogenic proteins for vaccine production against viral dis‐
eases. For example, Ou‐yang et al. [129] used bioinformatics to identify the antigenic proteins 
for Singapore grouper iridovirus. They used the 162 open reading frames (ORFs) of SGIV 
for sequence similarity searches to identify motifs, cellular locations and other prediction 
domains to identify the most immunogenic epitopes required for vaccine production. They 
identified 13 genes that were cloned to produce DNA vaccines of which three vaccines pro‐
duced relative percent survival (RPS) ranging from 58.3 to 66.7% in vaccinated grouper.

In the case of bacterial vaccines, identification of protective antigens can be a challenge given 
that they contain several antigenic proteins such as capsular antigens, fimbriae, pili and outer 
membrane proteins [130–132]. Some of these proteins lead to serotype, biovar or strain differ‐
ences leading to antigenic diversity within bacterial species. Hence, the challenge is to identify 
broad neutralizing antigens able to confer cross protection against variant bacterial strains can 
be a difficult task. To overcome this problem, Handfield et al. [133] developed an in vivo induced 
antigen technology (IVIAT) that uses antibodies generated from individuals infected by the 
bacterial strain homologous to the vaccine strain to probe for immunogenic proteins using an in 
vitro expression system. To do this, a genomic library is generated using DNA fragments from 
the bacteria strain to be used for vaccine production. The DNA fragments are digested using 
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restriction enzymes and cloned into plasmid vectors. Induced colonies of the expression library 
are probed using pooled sera from bacterial infected individuals as shown in Figure 1. Reactive 
clones are purified and used as vaccine candidates [133]. This technology has been widely used 
to identify antigenic proteins for different bacteria species such as Streptococcus iniae [134], Vibrio 
anguillarum [135], Aeromonas salmonicida [136, 137], Edwardsiella tarda [138] and Streptococcus 
parauberis [139]. Jia et al. [138] used the IVIAT to identify a 510 aa peptidase protein, which they 
used to produce a subunit vaccine against E. tarda in Japanese flounder. Sun et al. [134] used the 
IVIAT technique to identify a secretory antigen, which they designated as Sia10, and cloned it 
to produce a DNA vaccine against S. iniae. In vaccinated turbot, the Sia10 protein was detected 
in the muscle, liver, kidney and spleen by 7 days post‐vaccination (dpv) lasting until 49 dpv. 
Post‐challenge RPS showed 73.9 and 92.3% in fish challenged with high‐ and low‐challenge 
dose, respectively. In addition, the Sia10 protein produced protective antibodies in passively 
vaccinated fish. In another study, Sun et al. [140] used the IVIAT method to identify a surface 

Figure 1. Schematic layout of the IVIAT technique for the identification of bacterial antigenic proteins essential for the 
production of fish vaccines: A: bacteria culture. B: bacteria infection in fish and the sera from infected fish is pooled. C: 
library construction using chromosomal DNA fragments of the bacteria cultured in (A). D: bacteria eliminate absorbed 
antibodies from sera while IVIAT unbound antibodies are used to probe the library constructed in (C). E: clones from 
fragments of bacterial chromosomal DNA are probed with IVIAT pooled sera. F: after probing with pooled sera from 
infected fish, clones depicting binding capacity to IVIAT sera are sub‐cultured. G: the identified clones are purified, 
sequenced and used for subunit or DNA vaccine production followed by vaccination and challenge trials.
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antigen designated as Esa1, which they used to produce a DNA vaccine against E. tarda in 
Japanese flounder. They showed that the pCEsa1 vaccine enhanced respiratory burst, acid 
phosphatase activity and bactericidal activity of headkidney macrophages. In addition, it 
produced RPS = 57% in passively vaccinated fish. Overall, these studies show that genomics 
approaches can be used to identify the most immunogenic proteins for different bacterial 
strains in order to produce the most protective vaccines for use in aquaculture.

5. Marker‐assisted selection of growth and disease resistance traits

5.1. Growth traits

Genetic selection in which individuals with the best growth traits are selected as parent stock 
for the next generation is one of the major strategies used for improving production in aqua‐
culture. And as such, several breeding programmes have been going on using natural selec‐
tion approaches [141–143]. The major drawback with this approach is that it takes several 
generation cycles to identify individuals having positive growth traits. To expedite the pro‐
cess of identifying genetic traits for optimal growth performance, marker‐assisted selection 
(MAS) processes such as single nucleotides polymorphism (SNP), microsatellite, amplified 
fragment length polymorphism (AFLP), random amplified polymorphism DNA (RAPD), 
restriction fragment length polymorphism (RFLP) and quantitative trait loci (QTL) are being 
used to scan chromosomal DNA of different farmed aquatic organisms. Among these, the 
most widely used is QTL analysis, which has been applied across most of the commercial fish 
and crustacean species used in aquaculture [144–147]. As defined by Geldermann [148], QTLs 
are chromosomal regions made of single genes or gene clusters determining a quantitative 
character of a given trait. Given their high heritability, mapped QTLs have proved to be a 
useful tool in selective breeding, which has played an important role in accelerating genetic 
improvement in aquaculture.

As shown in Tables 1 and 2, the most important genetic traits sought for in aquaculture are 
growth rate, body weight and length. These traits influence the commercial value of farmed 
aquatic organisms. Traits for body weight and length have been identified in several fish spe‐
cies such as Atlantic salmon [149], rainbow trout [150], Big heard carp (H. nobilis) [151], common 
carp [152, 153] and tilapia (Oreochromis niloticus) [154], nine spined stickleback (Pungitius pun‐
gitius) [155] and Arctic char (Salvelinus alpinus) [156]. In shrimps and prawns, body weight and 
length traits have been identified in kruma shrimp [157, 158], Chinese shrimp [159], Giant fresh 
water prawn [160], Ridge white prawn [161] and Oriental river prawns [162]. Another impor‐
tant trait, which has contributed to improved production in aquaculture is sexual maturation. 
It has been shown that in some some species, sex is closely related to growth. For example, 
Sun and Liang [163] showed that in common carp, females grow bigger than males at the same 
age, while in tilapia, the males grow faster than females [164]. Hence, the selection of males 
for aquaculture increases production in tilapia while the females increase production in carp. 
Important traits related to improving meat quality include muscle quality [154], muscle fibre 
[165], texture [165], colour [166, 167], fat percentage [166] and dressed weight percentage [166]. 
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Fish species Trait Method References

Blue bream (Ballerus ballerus) 
(Cyprinidae

Thyroid hormones Transcriptome [241]

Blunt snout bream (Megalobrama 
amblycephala)

Growth trait Transcriptome [242]

Turbot (Scophthalmus maximus) Growth trait Transcriptome [243]

Grouper hybrids (Epinephelus 
fuscogutatus)

Superiority in growth Transcriptome [244]

Mandarin fish (Siniperca chuatsi) Growth traits Microsatellite [245]

Atlantic salmon (Salmo salar L.) Growth traits SNP/GWAS [149]

Rainbow trout (Oncorhynchus mykiss) Robustness Transcriptome [173]

Nile tilapia (Oreochromis niloticus) Growth traits Transcriptome [154]

Nile tilapia (Oreochromis niloticus) Skeletal muscle quality Transcriptome [154]

gilthead sea bream (Sparus aurata) Skeletal muscle quality Transcriptome [246]

Rainbow trout (Oncorhynchus mykiss) Growth traits SNP [150]

Rainbow trout (Oncorhynchus mykiss) Stress factor traits Transcriptome [247]

Atlantic cod (Gadus morhua) Growth/reproduction Transcriptome [248]

Lake whitefish pairs (Coregonus spp. 
Salmonidae)

Reproduction Transcriptome [249]

Lake whitefish pairs (Coregonus spp. 
Salmonidae)

Adaptation QTL [250]

Atlantic salmon (Salmo salar L.) Smoltification Transcriptome [177]

Common carp (Cyprinus carpio) Cold tolerance QTL [163]

Arctic char (Salnelinus alpinus) Temperature tolerance QTL [176]

Arctic char (Salnelinus alpinus) Growth rate SNP [251]

Tilapia (Oreochromis niloticus) Cold tolerance QTL [175]

Tilapia (Oreochromis niloticus) Fish size QTL [175]

Coho salmon (Oncorhynchus kisutch) Flesh colour QTL [167]

Rainbow trout (Oncorhynchus mykiss) Spawning time QTL [178]

Rainbow trout (Oncorhynchus mykiss) Albinism QTL [170]

Rainbow trout (Oncorhynchus mykiss) High temperature 
tolerance

QTL [252]

Table 1. Growth and performance traits for different fish species.
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antigen designated as Esa1, which they used to produce a DNA vaccine against E. tarda in 
Japanese flounder. They showed that the pCEsa1 vaccine enhanced respiratory burst, acid 
phosphatase activity and bactericidal activity of headkidney macrophages. In addition, it 
produced RPS = 57% in passively vaccinated fish. Overall, these studies show that genomics 
approaches can be used to identify the most immunogenic proteins for different bacterial 
strains in order to produce the most protective vaccines for use in aquaculture.

5. Marker‐assisted selection of growth and disease resistance traits

5.1. Growth traits

Genetic selection in which individuals with the best growth traits are selected as parent stock 
for the next generation is one of the major strategies used for improving production in aqua‐
culture. And as such, several breeding programmes have been going on using natural selec‐
tion approaches [141–143]. The major drawback with this approach is that it takes several 
generation cycles to identify individuals having positive growth traits. To expedite the pro‐
cess of identifying genetic traits for optimal growth performance, marker‐assisted selection 
(MAS) processes such as single nucleotides polymorphism (SNP), microsatellite, amplified 
fragment length polymorphism (AFLP), random amplified polymorphism DNA (RAPD), 
restriction fragment length polymorphism (RFLP) and quantitative trait loci (QTL) are being 
used to scan chromosomal DNA of different farmed aquatic organisms. Among these, the 
most widely used is QTL analysis, which has been applied across most of the commercial fish 
and crustacean species used in aquaculture [144–147]. As defined by Geldermann [148], QTLs 
are chromosomal regions made of single genes or gene clusters determining a quantitative 
character of a given trait. Given their high heritability, mapped QTLs have proved to be a 
useful tool in selective breeding, which has played an important role in accelerating genetic 
improvement in aquaculture.

As shown in Tables 1 and 2, the most important genetic traits sought for in aquaculture are 
growth rate, body weight and length. These traits influence the commercial value of farmed 
aquatic organisms. Traits for body weight and length have been identified in several fish spe‐
cies such as Atlantic salmon [149], rainbow trout [150], Big heard carp (H. nobilis) [151], common 
carp [152, 153] and tilapia (Oreochromis niloticus) [154], nine spined stickleback (Pungitius pun‐
gitius) [155] and Arctic char (Salvelinus alpinus) [156]. In shrimps and prawns, body weight and 
length traits have been identified in kruma shrimp [157, 158], Chinese shrimp [159], Giant fresh 
water prawn [160], Ridge white prawn [161] and Oriental river prawns [162]. Another impor‐
tant trait, which has contributed to improved production in aquaculture is sexual maturation. 
It has been shown that in some some species, sex is closely related to growth. For example, 
Sun and Liang [163] showed that in common carp, females grow bigger than males at the same 
age, while in tilapia, the males grow faster than females [164]. Hence, the selection of males 
for aquaculture increases production in tilapia while the females increase production in carp. 
Important traits related to improving meat quality include muscle quality [154], muscle fibre 
[165], texture [165], colour [166, 167], fat percentage [166] and dressed weight percentage [166]. 
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Fish species Trait Method References

Blue bream (Ballerus ballerus) 
(Cyprinidae

Thyroid hormones Transcriptome [241]

Blunt snout bream (Megalobrama 
amblycephala)

Growth trait Transcriptome [242]

Turbot (Scophthalmus maximus) Growth trait Transcriptome [243]

Grouper hybrids (Epinephelus 
fuscogutatus)

Superiority in growth Transcriptome [244]

Mandarin fish (Siniperca chuatsi) Growth traits Microsatellite [245]

Atlantic salmon (Salmo salar L.) Growth traits SNP/GWAS [149]

Rainbow trout (Oncorhynchus mykiss) Robustness Transcriptome [173]

Nile tilapia (Oreochromis niloticus) Growth traits Transcriptome [154]

Nile tilapia (Oreochromis niloticus) Skeletal muscle quality Transcriptome [154]

gilthead sea bream (Sparus aurata) Skeletal muscle quality Transcriptome [246]

Rainbow trout (Oncorhynchus mykiss) Growth traits SNP [150]

Rainbow trout (Oncorhynchus mykiss) Stress factor traits Transcriptome [247]

Atlantic cod (Gadus morhua) Growth/reproduction Transcriptome [248]

Lake whitefish pairs (Coregonus spp. 
Salmonidae)

Reproduction Transcriptome [249]

Lake whitefish pairs (Coregonus spp. 
Salmonidae)

Adaptation QTL [250]

Atlantic salmon (Salmo salar L.) Smoltification Transcriptome [177]

Common carp (Cyprinus carpio) Cold tolerance QTL [163]

Arctic char (Salnelinus alpinus) Temperature tolerance QTL [176]

Arctic char (Salnelinus alpinus) Growth rate SNP [251]

Tilapia (Oreochromis niloticus) Cold tolerance QTL [175]

Tilapia (Oreochromis niloticus) Fish size QTL [175]

Coho salmon (Oncorhynchus kisutch) Flesh colour QTL [167]

Rainbow trout (Oncorhynchus mykiss) Spawning time QTL [178]

Rainbow trout (Oncorhynchus mykiss) Albinism QTL [170]

Rainbow trout (Oncorhynchus mykiss) High temperature 
tolerance

QTL [252]

Table 1. Growth and performance traits for different fish species.
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Body appearance traits identified include the red body colour excluding normal black pigmen‐
tation in tilapia [168], silvery skin with few spots in rainbow trout [169], albinism in rainbow 
trout [170] and melanization in threespine sticklebacks (Gasterosteus aculeatus) [171]. Genetic 
traits essential for improving production in fish farming include traits for feed conversion ratio 
[172], robustness [173], maturation timing [174], cold tolerance [163, 175], high temperature 
tolerance [176] and salinity tolerance. In anadromous species such as Atlantic salmon, genetic 
traits for smoltification [177], migration and spawning timing [178] have been determined.

5.2. Disease resistance and susceptibility traits

The rapid expansion of aquaculture to become one of the leading sources of protein in the world 
has brought with it an increase in infectious diseases in aquaculture. To reduce the disease  

Crustacean species Trait Method References

Pandad shrimp (Pandalus latirostris) Microsatellite [253]

Giant freshwater prawn 
(Macrobrachium rosenbergii)

Growth traits SNP [160]

Ridgetail white prawn (Exopalaemon 
carinicauda)

Growth traits Transcriptome [161]

Kuruma shrimp (Marsupenaeus 
japonicas)

Growth traits QTL [157]

Kuruma shrimp (Marsupenaeus 
japonicas)

High temperature tolerance QTL [157]

Kuruma shrimp (Marsupenaeus 
japonicas)

Growth traits AFLP [158]

Pacific white shrimp (Litopenaeus 
vannamei)

Growth traits QTL [147]

Kuruma shrimp (Marsupenaeus 
japonicas)

Total and carapace length ALFP [254]

Indian black tiger shrimp (Penaeus 
monodon)

Sex determining loci QTL [255]

Pacific white shrimp (Litopenaeus 
vannamei)

Sex determining loci Microsatellite [256]

Chinese shrimp (Fenneropenaeus 
chinensis)

Body length QTL [159]

Pacific white shrimp (Litopenaeus 
vannamei)

Body weight and length QTL [257]

oriental river prawn (Macrobrachium 
nipponense)

Body length QTL [162]

Kuruma shrimp (Marsupenaeus 
japonicas)

Body length QTL [158]

Table 2. Growth and performance traits for different crustacean species.
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burden and prevent the use of antibiotics, which have been shown to have adverse environ‐
mental effects, there has been a tremendous increase in genomics studies aimed at identify‐
ing disease resistance traits in different cultured organisms. And as such, different approaches 
such as SNP, MTLS, AFLP, RAPD, RFLP and QTL analyses have been used for the iden‐
tification of disease resistance and susceptibility traits in different aquatic organisms. In 
the case of fish viral diseases, QTL resistance traits have been generated for grass cap reo‐
virus (GCRV) infection in grass carp [179], nervous necrosis virus (NNV) in seabass [180],  
viral hemorrhagic septicemia (VHS) in turbot [181] and rainbow trout [182], infectious salmon 
anaemia (ISAV) virus in Atlantic salmon, lymphocytic disease virus in Japanese flounder [183] and 
infectious pancreatic necrosis virus (IPNV) in Atlantic salmon [184, 185]. Among these, the QTL 
for resistance against IPNV has contributed to significantly reducing the IPNV incidence by >80% 
from 2008 when IPNV resistance fish were introduced in the Norwegian Atlantic salmon indus‐
try to 2015 [186]. Bacteria disease for which QTL resistance traits have been identified include 
coldwater disease in rainbow trout [187], Aeromonas hydrophila in rohu (Labeo rohita) [188], Vibrio 
anguillarum in Japanese flounder [189], Flavobacterium psychrophilum in rainbow trout [190] and 
pastuerellosis in Gilhead seabream [191]. As for parasitic diseases, QTL resistance traits have been 
identified for Gyrodactylus salaris in Atlantic salmon [192] and Monohenean parasite (Benedenia 
seriolae) in Yellow tail (Seriola quinqueradiata) [193].

In shrimps, resistance traits have been identified for white spot syndrome virus (WSSV) in 
Indian black tiger shrimp (Penaeus monodon) [194, 195], Fenneropenaeus (Penaeus chinensis), 
infectious hypodermal and hematopoietic necrosis virus (IHHNV) resistance in shrimp 
(Litopenaeus stylirostris) [196] and taura syndrome resistance in Pacific white shrimp (P. van‐
namei) [197]. Among these, the QTL for resistance against TSV has contributed to significant 
reduction of the disease prevalence in shrimps by generating pathogen‐specific free disease 
shrimps for us in breeding programmes in aquaculture.

6. Application of epigenetics in aquaculture

The term ‘epigenetics’ was first coined by Waddington in 1942 and was defined as changes in the 
phenotype without inducing changes in the genotype [198, 199]. Studies on chemical modifica‐
tion of DNA bases date as far back as 1948 [200] and by the 1970s, the role of DNA methylation in 
gene regulation was identified [201]. In subsequent years, the link between DNA methylation and 
gene expression was established [202] paving way to the discovery of therapeutic drugs such as 
5‐azacytidine used to block DNA methylation [203]. In principle, epigenetic changes are regulated 
by (i) chemical modifications on DNA cytosine residues resulting in DNA methylation and, (ii) 
histone protein modifications on DNA [204, 205]. Current advances in HTS have refined genomic 
analyses to base‐pair resolution making it easier to map entire epigenomes of living organ‐
isms enabling us to identify biological markers predictive of the outcome of disease infections, 
reproduction, growth and adaptation to new environments [206]. As a result of these advances, 
epigenetics studies in aquaculture have tremendously increased in the last decades with the 
view to identifying biological markers relevant for improving the production of farmed aquatic 
organisms. Technologies used for epigenetics analyses in aquaculture include (i) RNA‐seq in  
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Body appearance traits identified include the red body colour excluding normal black pigmen‐
tation in tilapia [168], silvery skin with few spots in rainbow trout [169], albinism in rainbow 
trout [170] and melanization in threespine sticklebacks (Gasterosteus aculeatus) [171]. Genetic 
traits essential for improving production in fish farming include traits for feed conversion ratio 
[172], robustness [173], maturation timing [174], cold tolerance [163, 175], high temperature 
tolerance [176] and salinity tolerance. In anadromous species such as Atlantic salmon, genetic 
traits for smoltification [177], migration and spawning timing [178] have been determined.

5.2. Disease resistance and susceptibility traits

The rapid expansion of aquaculture to become one of the leading sources of protein in the world 
has brought with it an increase in infectious diseases in aquaculture. To reduce the disease  

Crustacean species Trait Method References

Pandad shrimp (Pandalus latirostris) Microsatellite [253]

Giant freshwater prawn 
(Macrobrachium rosenbergii)

Growth traits SNP [160]

Ridgetail white prawn (Exopalaemon 
carinicauda)

Growth traits Transcriptome [161]

Kuruma shrimp (Marsupenaeus 
japonicas)

Growth traits QTL [157]

Kuruma shrimp (Marsupenaeus 
japonicas)

High temperature tolerance QTL [157]

Kuruma shrimp (Marsupenaeus 
japonicas)

Growth traits AFLP [158]

Pacific white shrimp (Litopenaeus 
vannamei)

Growth traits QTL [147]

Kuruma shrimp (Marsupenaeus 
japonicas)

Total and carapace length ALFP [254]

Indian black tiger shrimp (Penaeus 
monodon)

Sex determining loci QTL [255]

Pacific white shrimp (Litopenaeus 
vannamei)

Sex determining loci Microsatellite [256]

Chinese shrimp (Fenneropenaeus 
chinensis)

Body length QTL [159]

Pacific white shrimp (Litopenaeus 
vannamei)

Body weight and length QTL [257]

oriental river prawn (Macrobrachium 
nipponense)

Body length QTL [162]

Kuruma shrimp (Marsupenaeus 
japonicas)

Body length QTL [158]

Table 2. Growth and performance traits for different crustacean species.
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burden and prevent the use of antibiotics, which have been shown to have adverse environ‐
mental effects, there has been a tremendous increase in genomics studies aimed at identify‐
ing disease resistance traits in different cultured organisms. And as such, different approaches 
such as SNP, MTLS, AFLP, RAPD, RFLP and QTL analyses have been used for the iden‐
tification of disease resistance and susceptibility traits in different aquatic organisms. In 
the case of fish viral diseases, QTL resistance traits have been generated for grass cap reo‐
virus (GCRV) infection in grass carp [179], nervous necrosis virus (NNV) in seabass [180],  
viral hemorrhagic septicemia (VHS) in turbot [181] and rainbow trout [182], infectious salmon 
anaemia (ISAV) virus in Atlantic salmon, lymphocytic disease virus in Japanese flounder [183] and 
infectious pancreatic necrosis virus (IPNV) in Atlantic salmon [184, 185]. Among these, the QTL 
for resistance against IPNV has contributed to significantly reducing the IPNV incidence by >80% 
from 2008 when IPNV resistance fish were introduced in the Norwegian Atlantic salmon indus‐
try to 2015 [186]. Bacteria disease for which QTL resistance traits have been identified include 
coldwater disease in rainbow trout [187], Aeromonas hydrophila in rohu (Labeo rohita) [188], Vibrio 
anguillarum in Japanese flounder [189], Flavobacterium psychrophilum in rainbow trout [190] and 
pastuerellosis in Gilhead seabream [191]. As for parasitic diseases, QTL resistance traits have been 
identified for Gyrodactylus salaris in Atlantic salmon [192] and Monohenean parasite (Benedenia 
seriolae) in Yellow tail (Seriola quinqueradiata) [193].

In shrimps, resistance traits have been identified for white spot syndrome virus (WSSV) in 
Indian black tiger shrimp (Penaeus monodon) [194, 195], Fenneropenaeus (Penaeus chinensis), 
infectious hypodermal and hematopoietic necrosis virus (IHHNV) resistance in shrimp 
(Litopenaeus stylirostris) [196] and taura syndrome resistance in Pacific white shrimp (P. van‐
namei) [197]. Among these, the QTL for resistance against TSV has contributed to significant 
reduction of the disease prevalence in shrimps by generating pathogen‐specific free disease 
shrimps for us in breeding programmes in aquaculture.

6. Application of epigenetics in aquaculture

The term ‘epigenetics’ was first coined by Waddington in 1942 and was defined as changes in the 
phenotype without inducing changes in the genotype [198, 199]. Studies on chemical modifica‐
tion of DNA bases date as far back as 1948 [200] and by the 1970s, the role of DNA methylation in 
gene regulation was identified [201]. In subsequent years, the link between DNA methylation and 
gene expression was established [202] paving way to the discovery of therapeutic drugs such as 
5‐azacytidine used to block DNA methylation [203]. In principle, epigenetic changes are regulated 
by (i) chemical modifications on DNA cytosine residues resulting in DNA methylation and, (ii) 
histone protein modifications on DNA [204, 205]. Current advances in HTS have refined genomic 
analyses to base‐pair resolution making it easier to map entire epigenomes of living organ‐
isms enabling us to identify biological markers predictive of the outcome of disease infections, 
reproduction, growth and adaptation to new environments [206]. As a result of these advances, 
epigenetics studies in aquaculture have tremendously increased in the last decades with the 
view to identifying biological markers relevant for improving the production of farmed aquatic 
organisms. Technologies used for epigenetics analyses in aquaculture include (i) RNA‐seq in  
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Medaka [207] and Nile tilapia [208]; (ii) genome‐wide methylated DNA immunoprecipitation 
sequencing (MeDIP‐seq) in Nile tilapia [209] and Medaka [207]; (iii) bisulfite sequencing (BS‐seq) 
in smooth tongue sole (Cynoglossus semilaevis) [210, 211], rainbow trout [212] and Nile tilapia 
[208]; (iv) genetic linkage map analysis using simple sequence length polymorphisms (SSLPs) 
in medaka [213, 214]; (v) methylation sensitivity amplified polymorphism (MSAP) in Atlantic 
salmon [18], grass carp [215], brown trout [17], sea urchin (Glyptocidaris crenularis) [216] and sea 
cucumber (Apostichopus japonicas) [217]; (vi) 5‐methylcytosine immunolocation in sea lamprey 
(Petromyzon marinus) [218]; (vii) restriction endonuclease hydrolysis of DNA using methylation 
enzymes in Zebrafish [219] and (viii) bisulfite sequencing PCR in Pacific Oyster (Crassostrea gigas) 
[220] and grass carp [221]. As shown in Table 3, epigenetics studies carried out this far include 
studies on reproduction, growth and adaptation traits. In the case of Atlantic salmon, which is one 
of the most widely studied species, epigenetic studies have been carried out at different stages of 
the production cycle as shown in Figure 2.

6.1. Embryogenesis and reproduction traits

Embryogenesis and reproduction traits determined by epigenetic analyses in aquatic organ‐
isms include sexual dimorphism, embryo development, control of gonadal aromatase and 
male meiosis [208, 222, 223]. Mhanni and McGowan [219] examined the methylation patterns 
of the zebrafish genome during early embryogenesis and showed that parental genetic contri‐
butions to the zygote were differently methylated with the sperm being more hypermethyl‐
ated than the oocyte genome. However, immediately after fertilization there was a significant 
decrease in the embryonic genome methylation, but increased rapidly as the embryo devel‐
oped to normal levels by the gastrulation stage. These observations are consistent with those 
seen in mouse [224] suggesting that embryo demethylation/re‐methylation is conserved across 
the vertebrate taxa as of part embryogenesis. As for reproduction traits, Wan et al. [208] found 
several differentially methylated regions (DMRs) on tilapia chromosomal DNA linked to sex‐
ual dimorphism in which the males had high methylation levels after prolonged exposure to 
high temperature conditions. Similarly, Navarro‐Martín et al. [222, 223] showed that European 
seabass juvenile males had double DNA methylation levels than females in the promoter 
region of gonadal aromatase, the enzyme that converts androgens to estrogens suggesting 
that methylation levels on gonadal aromatase were predictive of sex determination. Other fish 
species for which DNA methylation of aromatase has been linked to sex determination include 
medaka [225] and Japanese flounder (Paralichthys olivaceus) [226]. In crustacean, Gómez et al. 
[227] analysed the post‐translational histone modifications in the testis of Daphnia magna and 
identified cytological markers linked to meiosis progression and the silencing of unsynapsed 
chromatin. Put together, these studies show that DNA methylation and histone modification 
can induce reproduction and embryogenesis changes in different aquatic organisms.

6.2. Growth and productivity traits

Epigenetic factors associated with growth and productivity identified in aquatic organisms 
include early maturation, regulation of muscle growth and disease resistance. Early matu‐
ration in Atlantic salmon has emerged to be an interesting topic because prior to migration, 
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parr can reach sexual maturity and successfully fertilize adult females. Up to 60% of total 
paternity in wild populations has been attributed to these precocious male parr or ‘sneakers’. 
To determine the underlying causes of early sexual maturation in parr, Morán and Pérez‐
Figueroa [18] compared genetic and epigenetic differences of two populations of parr and 
mature fish originating from two different rivers and found no genetic difference between 

Aquatic organism Epigenetic trait References

Zebrafish (Danio rerio) Carcinogenesis [258]

Zebrafish (Danio rerio) Embryo development [219]

Zebrafish (Danio rerio) Embryonic cardiogenesis [259]

Medaka (Oryzias latipes) Excision of ToL2 transposal [260]

Medaka (Oryzias latipes) Control of cardiomyocyte production 
in response to stress

[214]

Medaka (Oryzias latipes) Hypoxia and transgenerational 
reproduction impairment

[207]

Nile tilapia (Oreochromis niloticus) High temperature induced 
masculinization of skeletal muscles

[209]

Nile tilapia (Oreochromis niloticus) Sexual dimorphism [208]

Atlantic salmon (Salmo salar L.) Early maturation [18]

European seabass (Dicentrarchus labrax) Temperature dependent sex ratio 
shift

[222, 223]

Tongue sole (Cynoglossidae) Sex reversal [210, 211]

Senegalese sole (Solea senegalensis) Thermal epigenetic regulation of 
muscle growth

[261]

European eel (Anguillarum 
anguillarum)

Low cadmium exposure [232]

European eel (Anguillarum 
anguillarum)

Abnormal ovarian DNA 
methylation‐gonadal

[262]

Red eared slider turtle (Trachemys 
scripta elegans)

Control of gonadal aromatase [263]

Daphnia magna Male meiosis [227]

Pacific oyster (Crassostrea gigas) Growth [220]

Rainbow trout (Oncorhynchus mykiss) Glucose intolerance [230]

Rainbow trout (Oncorhynchus mykiss) Migration‐related phenotypic 
divergence

[212]

Atlantic Cod (Gadus morhua L.) Photoperiod influence [228, 229]

Grass carp (Ctenopharyngodon idella) Individual variations [215]

Grass carp (Ctenopharyngodon idella) Resistance against grass reovirus [221]

Table 3. Epigenetics application in aquatic organisms.
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Medaka [207] and Nile tilapia [208]; (ii) genome‐wide methylated DNA immunoprecipitation 
sequencing (MeDIP‐seq) in Nile tilapia [209] and Medaka [207]; (iii) bisulfite sequencing (BS‐seq) 
in smooth tongue sole (Cynoglossus semilaevis) [210, 211], rainbow trout [212] and Nile tilapia 
[208]; (iv) genetic linkage map analysis using simple sequence length polymorphisms (SSLPs) 
in medaka [213, 214]; (v) methylation sensitivity amplified polymorphism (MSAP) in Atlantic 
salmon [18], grass carp [215], brown trout [17], sea urchin (Glyptocidaris crenularis) [216] and sea 
cucumber (Apostichopus japonicas) [217]; (vi) 5‐methylcytosine immunolocation in sea lamprey 
(Petromyzon marinus) [218]; (vii) restriction endonuclease hydrolysis of DNA using methylation 
enzymes in Zebrafish [219] and (viii) bisulfite sequencing PCR in Pacific Oyster (Crassostrea gigas) 
[220] and grass carp [221]. As shown in Table 3, epigenetics studies carried out this far include 
studies on reproduction, growth and adaptation traits. In the case of Atlantic salmon, which is one 
of the most widely studied species, epigenetic studies have been carried out at different stages of 
the production cycle as shown in Figure 2.

6.1. Embryogenesis and reproduction traits

Embryogenesis and reproduction traits determined by epigenetic analyses in aquatic organ‐
isms include sexual dimorphism, embryo development, control of gonadal aromatase and 
male meiosis [208, 222, 223]. Mhanni and McGowan [219] examined the methylation patterns 
of the zebrafish genome during early embryogenesis and showed that parental genetic contri‐
butions to the zygote were differently methylated with the sperm being more hypermethyl‐
ated than the oocyte genome. However, immediately after fertilization there was a significant 
decrease in the embryonic genome methylation, but increased rapidly as the embryo devel‐
oped to normal levels by the gastrulation stage. These observations are consistent with those 
seen in mouse [224] suggesting that embryo demethylation/re‐methylation is conserved across 
the vertebrate taxa as of part embryogenesis. As for reproduction traits, Wan et al. [208] found 
several differentially methylated regions (DMRs) on tilapia chromosomal DNA linked to sex‐
ual dimorphism in which the males had high methylation levels after prolonged exposure to 
high temperature conditions. Similarly, Navarro‐Martín et al. [222, 223] showed that European 
seabass juvenile males had double DNA methylation levels than females in the promoter 
region of gonadal aromatase, the enzyme that converts androgens to estrogens suggesting 
that methylation levels on gonadal aromatase were predictive of sex determination. Other fish 
species for which DNA methylation of aromatase has been linked to sex determination include 
medaka [225] and Japanese flounder (Paralichthys olivaceus) [226]. In crustacean, Gómez et al. 
[227] analysed the post‐translational histone modifications in the testis of Daphnia magna and 
identified cytological markers linked to meiosis progression and the silencing of unsynapsed 
chromatin. Put together, these studies show that DNA methylation and histone modification 
can induce reproduction and embryogenesis changes in different aquatic organisms.

6.2. Growth and productivity traits

Epigenetic factors associated with growth and productivity identified in aquatic organisms 
include early maturation, regulation of muscle growth and disease resistance. Early matu‐
ration in Atlantic salmon has emerged to be an interesting topic because prior to migration, 
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parr can reach sexual maturity and successfully fertilize adult females. Up to 60% of total 
paternity in wild populations has been attributed to these precocious male parr or ‘sneakers’. 
To determine the underlying causes of early sexual maturation in parr, Morán and Pérez‐
Figueroa [18] compared genetic and epigenetic differences of two populations of parr and 
mature fish originating from two different rivers and found no genetic difference between 
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Zebrafish (Danio rerio) Carcinogenesis [258]

Zebrafish (Danio rerio) Embryo development [219]
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European eel (Anguillarum 
anguillarum)

Low cadmium exposure [232]
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anguillarum)

Abnormal ovarian DNA 
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Red eared slider turtle (Trachemys 
scripta elegans)

Control of gonadal aromatase [263]

Daphnia magna Male meiosis [227]

Pacific oyster (Crassostrea gigas) Growth [220]
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Rainbow trout (Oncorhynchus mykiss) Migration‐related phenotypic 
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[212]

Atlantic Cod (Gadus morhua L.) Photoperiod influence [228, 229]
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parr and mature fish. However, epigenetic analysis showed significant single‐locus varia‐
tions in the gonads followed by the brain and liver between parr and mature fish suggesting 
that early maturation in Atlantic salmon parr was mediated by epigenetic processes and 
not genetic differences. As for disease resistance, Shang et al. [221] showed that CpA/CpG 
methylation of grass carp Ctenopharyngodon idella melanoma differentiation associated gene 
5 (MDA5) (CiMDA5) was tightly associated with resistance against GCRV. In their findings, 
they found CpA/CpG methylation sites in the CiMDA5 genome that consisted of putative 
densely methylated elements (DMEs) that were significantly higher in GCRV susceptible 
fish than in the resistant fish. In terms of muscle growth, Giannetto et al. [228] found a 
correlation between DNA (cytosine‐5)‐methyltransferases (DNMTs) increase in fast muscle 
with prolonged exposure to light indicating that photoperiod influence may be involved in 
the DNMTs regulation of muscle growth in Atlantic cod. Similarly, Nagasawa et al. [229] 
found high histone methyltransferases levels of the mixed‐lineage leukaemia (MLL) gene in 
fast muscle of Atlantic cod subjected to prolonged light exposure, which corresponded with 

Figure 2. The cycle shows the use of different aspects of functional genomics to improve the production of Atlantic 
salmon at different stages of the production‐cycle. Note that genetics and epigenetics studies are focused on identifying 
important traits in fish while metagenomics studies are mostly focused on environmental identification of infectious 
pathogens. Fish from different growth stages are also evaluated for the mucosal microbiota investigations using 
metagenomics analyses. Nutrigenomics is mostly applied at the outgrower stage. Growth stages are depicted from 
spawning (A), embryogenesis (B), hatching (C), fingerlings and fry stage (D), Parr stage (E), post‐smolts (F), outgrower 
stage (G) and broodstock (H). Nutrigenomics are after through the feeding stages while the timing of most vaccinations 
is the parr (D) stage in order to enable fish develop protective antibodies by the post‐smolt (E) stage and outgrower stage 
when they are most vulnerable to stress‐related infectious diseases. (X): Depicts the migration of adult fish from seawater 
into freshwater for spawning. (Z): depicts migration from freshwater to seawater at the parr stage.
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increase in mRNA expression of myogenic regulatory factors (Myog and Myf‐5) and Pax7 in 
fast muscle. Overall, these studies show that DNA methylation and histone modification of 
chromosomal DNA play an important role in regulating muscle growth, disease resistance 
and sex maturation in fish.

6.3. Adaption epigenetic traits

Epigenetic factors shown to induce adaptation changes in cultured aquatic organisms 
include nutrition, migration, salinity and photoperiod exposure. Several nutritional studies 
have shown that rainbow trout displays persistent hyperglycaemia when fed high carbo‐
hydrate (HighCHO) diets. To underpin the underlying causes, Marandel et al. [230] exam‐
ined the liver of rainbow trout fed HighCHO diets and found global DNA hypomethylation 
and hypoacetylation of histone H3K9 resembling hyperglycaemic and diabetes conditions in 
zebrafish and mammals. They also showed that g6pcb2 ohnologs that encode the glucose‐6‐
phosphatase (G6pc) enzyme involved in gluconeogenesis catalysis were hypomethylated 
at specific CpG sites indicating that the hepatic epigenetic landscape of rainbow trout can 
be affected by dietary carbohydrates. As for migration traits, Baerwald et al. [212] identi‐
fied several DMRs between migratory smolts and resident rainbow trout juveniles in which 
most DMRs encoded proteins associated with migration showing that epigenetic variations 
were linked to migration traits in anadromous fish. Their findings were in concordance with 
Morán et al. [17] who found genome‐wide methylation differences between hatchery reared 
and seawater brown trout. In addition, Morán et al. [17] showed that salt diets used during 
the seawater phase triggered genome‐wide methylation changes when administered in fresh‐
water reared trout indicating that DNA methylation could play a vital role in enabling anad‐
romous fish acclimatize to seawater after transfer from freshwater. DNA methylation and 
histone modification have also been associated with adaptation changes induced by adverse 
environmental conditions as shown in Nile tilapia exposed to industrial pollutions [231], eels 
to cadmium exposure [232], sea urchin (G. crenularis) exposure to perfluoroctane sulfonate 
(PFOS) [216] and the three‐spine stickleback (G. aculeatus) hexabromocyclododecane (HBCD) 
exposed to 17‐β oestradiol (E2) and 5‐aza 2′ deoxycytidine (5AdC) pollutants [233]. In sum‐
mary, these studies demonstrate that DNA methylation and histone modification contribute 
to nutritional, environmental and photoperiod adaptation in different aquatic organisms and 
that these factors could have an influence on improving production in aquaculture.

7. Whole genome sequencing of aquatic organisms

Although teleost fish are the largest known vertebrate group with more than 27,000 species 
[8], they account for a small proportion of vertebrate species whose whole genomes have 
been fully sequenced and characterized. The pufferfish genome is one of the earliest fish 
genome to be sequenced and characterized by 2002 [234], which raised interests to sequence 
the genomes of other fish species. The zebrafish (Danio rerio) whole genome sequencing proj‐
ect was started by Welcome Trust Sanger Institute in 2001 [235] while the Medaka genome 
was sequenced in 2007 [236]. Thus, Zebrafish and medaka are not only among the earliest 
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increase in mRNA expression of myogenic regulatory factors (Myog and Myf‐5) and Pax7 in 
fast muscle. Overall, these studies show that DNA methylation and histone modification of 
chromosomal DNA play an important role in regulating muscle growth, disease resistance 
and sex maturation in fish.

6.3. Adaption epigenetic traits

Epigenetic factors shown to induce adaptation changes in cultured aquatic organisms 
include nutrition, migration, salinity and photoperiod exposure. Several nutritional studies 
have shown that rainbow trout displays persistent hyperglycaemia when fed high carbo‐
hydrate (HighCHO) diets. To underpin the underlying causes, Marandel et al. [230] exam‐
ined the liver of rainbow trout fed HighCHO diets and found global DNA hypomethylation 
and hypoacetylation of histone H3K9 resembling hyperglycaemic and diabetes conditions in 
zebrafish and mammals. They also showed that g6pcb2 ohnologs that encode the glucose‐6‐
phosphatase (G6pc) enzyme involved in gluconeogenesis catalysis were hypomethylated 
at specific CpG sites indicating that the hepatic epigenetic landscape of rainbow trout can 
be affected by dietary carbohydrates. As for migration traits, Baerwald et al. [212] identi‐
fied several DMRs between migratory smolts and resident rainbow trout juveniles in which 
most DMRs encoded proteins associated with migration showing that epigenetic variations 
were linked to migration traits in anadromous fish. Their findings were in concordance with 
Morán et al. [17] who found genome‐wide methylation differences between hatchery reared 
and seawater brown trout. In addition, Morán et al. [17] showed that salt diets used during 
the seawater phase triggered genome‐wide methylation changes when administered in fresh‐
water reared trout indicating that DNA methylation could play a vital role in enabling anad‐
romous fish acclimatize to seawater after transfer from freshwater. DNA methylation and 
histone modification have also been associated with adaptation changes induced by adverse 
environmental conditions as shown in Nile tilapia exposed to industrial pollutions [231], eels 
to cadmium exposure [232], sea urchin (G. crenularis) exposure to perfluoroctane sulfonate 
(PFOS) [216] and the three‐spine stickleback (G. aculeatus) hexabromocyclododecane (HBCD) 
exposed to 17‐β oestradiol (E2) and 5‐aza 2′ deoxycytidine (5AdC) pollutants [233]. In sum‐
mary, these studies demonstrate that DNA methylation and histone modification contribute 
to nutritional, environmental and photoperiod adaptation in different aquatic organisms and 
that these factors could have an influence on improving production in aquaculture.

7. Whole genome sequencing of aquatic organisms

Although teleost fish are the largest known vertebrate group with more than 27,000 species 
[8], they account for a small proportion of vertebrate species whose whole genomes have 
been fully sequenced and characterized. The pufferfish genome is one of the earliest fish 
genome to be sequenced and characterized by 2002 [234], which raised interests to sequence 
the genomes of other fish species. The zebrafish (Danio rerio) whole genome sequencing proj‐
ect was started by Welcome Trust Sanger Institute in 2001 [235] while the Medaka genome 
was sequenced in 2007 [236]. Thus, Zebrafish and medaka are not only among the earliest 
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fish species to have their genomes sequenced and characterized, but they have attracted the 
highest research in genomic studies among teleost species. Their genomes have been widely 
used for comparative analyses as model species [235, 237–239]. Sequence analyses of the 
Atlantic cod genome in 2011 using the whole genome shotgun 454 pyrosequencing technol‐
ogy showed that this fish species lacks the major histocompatibility (MHC) II genes, which 
are compensated with expansion of the MHC‐I and specific adaption of toll‐like receptor 
genes demonstrating that whole genome sequencing can be used to elucidate evolutionary 
differences in the vertebrate taxa [240]. As shown in Table 4, there has been a spontane‐
ous increase in the number of fish species whose genomes have characterized since the dis‐
covery of HTS technologies in recent years. Sequencing of other aquatic organism genomes 
is going on and it is anticipated that as HTS becomes cheaper, more sequences of aquatic 
organisms will become readily available for more advanced functional genomics research 
in aquaculture.

8. Conclusions

In this chapter, we have shown that HTS has contributed to the rapid discovery of novel patho‐
gens in aquaculture using metagenomics, which has significantly contributed in enhancing our 
ability to develop rationale disease control strategies unlike in the past when it took long from 
the first report of a clinical disease to identification of a novel pathogen. Moreover, metagenom‐
ics enable us to identify and monitor microbial communities found in different ecosystems 

Common name Scientific name Year Published Reference

Atlantic salmon Salmon salar L. 2016 [264]

Atlantic cod Gadus morhua 2011 [240]

Asian arowana Scleropages formosus 2015 [8]

Medaka Oryzias latipes 2007 [236]

Nile tilapia Oreochromis niloticus 2015 [7]

Platyfish Xiphophorus maculatus 2013 [265, 266]

Puffer fish Takifugu rubripes 2002 [234]

Puffer fish Tetraodon nigroviridis 2004 [267]

Three‐spined stickleback Gasterosteus aculeatus 2012 [268]

Rainbow trout Oncorhynchus mykiss 2014/2016 [269, 270]

Killifish Nothobranchius furzeri 2015 [271, 272]

Pearl oyster Pinctada fucata 2012 [273]

Table 4. Whole genome sequencing of aquatic organisms.
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used in aquaculture. It has also proved to be an important tool able to map mucosal micro‐
biota of different aquatic organisms. In vaccine production, genomics studies are being used to 
identify cross‐neutralizing antigens able to confer protection across variant strains of the same 
pathogens. In genetics and epigenetics, several genomics traits have been identified that cur‐
rently contributing to the improvement of production in aquaculture. Nutrigenomics have not 
only enhanced our understanding of the genetic markers for enteropathy and other nutritional 
diseases, but they have also highlighted our ability to formulate diets able to maintain stable 
GALT homeostasis in the gut. And as shown from the example of the Atlantic salmon produc‐
tion cycle in Figure 2, it is evident that functional genomics are used at different production 
stages of aquatic organisms to improve the overall production in aquaculture. Hence, genomics 
studies are not only useful at elucidating host‐pathogen interactions [13‐15], but they also serve 
as optimization tools for improving the quality and quantity of aquaculture products.

9. Future perspective

As HTS technologies become cheaper, it is anticipated that more genomes for different aquatic 
organisms will characterized and that this shall pave to a better understanding of the genome 
duplication seen in some fish species. The use of HTS technologies in pathogen discovery and 
microbiota inhabiting mucosal surfaces of different aquatic organisms is expected to pave 
way into timely design of rational disease control strategies. Hence, in future generations, we 
shall not only sequence whole genomes of all aquatic organisms, but we expect to provide a 
better understanding of the evolutionary aspects of the vertebrate taxa as well as providing 
new insight into host‐pathogen interaction mechanisms at protein‐protein level. It is our per‐
ception that current HTS studies are building a strong foundation for more advanced func‐
tional genomics developments in the future.
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Abstract

Genetic engineering is the most powerful technology of this century which is dramati-
cally revolutionizing the agriculture, health, pharmaceutical, and food industries all over 
the world. Transcriptomics and genetic engineering go hand in hand from the devel-
opment of a genetically modified organism (GMO) to its utilization by the humans. 
Transcriptome analysis is the analysis of messenger RNAs (mRNAs), which are pro-
duced by transcription of deoxyribonucleic acid (DNA) in an organism in response to 
a specific internal/external environment. Transcriptome analysis is not only useful to 
dig out the potential target genes for genetic modifications but also utilized to study the 
proper functioning of a genetically engineered gene, evaluation of the GMO for biosafety 
risks and for monitoring the presence and movement of GMO. Despite huge scope of 
genetic engineering, these manipulations can upset the natural balance of a genome by 
insertional, soma clonal, and pleiotropic effects of a foreign gene resulting in unintended 
alterations along with the targeted changes. The untargeted alterations pose risks to 
environment and health of animals and plants. In this chapter, the key advancements in 
the field of biotechnology and the relevant biosafety issues are reviewed. The advantages 
and limitations of the current methods used for the evaluation, monitoring, and regula-
tion of GMOs are discussed.

Keywords: genetic engineering, gene silencing, genetically modified organisms, unintended 
modifications, pleiotropic effects, enzyme-linked immunosorbent assay, soma clonal effects, 
next-generation sequencing

1. Introduction

Genetic engineering is an advanced field of biology that deals with modification of genomic 
deoxyribonucleic acid (DNA) in the living organisms to introduce desired traits to benefit man-
kind. Through genetic engineering, a DNA fragment (gene) is isolated from the donor organism 
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and transferred to the recipient where it can be transcribed into messenger RNA (mRNA) and 
translated to proteins by utilizing the recipient machinery. The donor protein in the recipient 
system performs its targeted function to modify the desired character of recipient plant, animal, 
or microorganism. Genomic DNA manipulations may involve addition of a foreign gene from 
another genome, deletion of an existing gene, or enhancing the expression of an indigenous 
gene. RNA interfering (RNAi) technology is used to silence the expression of an unwanted 
gene by inhibiting the mRNA availability for protein synthesis [1]. The genome-level genetic 
engineering approaches require an insight in the genome, transcriptome, and metabolome [2] 
of the organisms under study. Like all other applied fields, genetic engineering requires com-
prehensive information about the genome structure of the donor and recipient before genetic 
modification. Decision about the morphological character that needs to be improved, the choice 
of a particular donor and recipient species, genetic networks, and metabolic pathways involved 
in the expression of a specific trait need to be explored.

Transcriptome analysis is a robust and cost-efficient method which provides information 
about the internal biological processes, cellular biosynthesis, and metabolic functions of a 
cell, tissue, or living organism [3]. This technique can be utilized by the genetic engineering 
scientists for the identification and quantification of genetic factors which positively or nega-
tively regulate a particular trait of interest [4]. Comparison of gene expression profiles of an 
organism exhibiting the desired traits with the genetically similar organism lacking that trait 
can help in the identification of genetic factors involved in the development of that trait [5, 6]. 
These genetic factors might affect that trait positively or negatively. Enhanced accumulation 
of a particular transcript in the organism with desired phenotype as compared to the refer-
ence organism indicates that overexpression of that transcript is required for the exhibition of 
that trait. This phenomenon is called as positive regulation. In negative regulation, reduced 
expression of a gene is responsible for the exhibition of a desired trait [7, 8].

Positively regulated genes serve as genetic engineering tools for overexpression of a gene 
regulating a particular trait resulting in the introduction of that trait in genetically modified 
organism (GMO). For example, in transgenic cotton, expression of crystal protein (Cry10Aa) 
is responsible for resistance against boll weevil [9]. Advances in gene silencing technology 
through RNAi have led to utilization of genes which are negatively correlated with the 
desired traits. In cotton plant, seed-oil content increased by 16.7% by silencing GhPEPC1 gene 
through RNAi technology [8].

Transcriptome analysis and genetic engineering go hand in hand in the modern era of 
genetic improvements. Comparative transcriptional studies using single gene approaches 
or high-throughput approaches are used to identify the differentially expressed genes in a 
specific condition/organism as compared to reference. In single gene approaches, the expres-
sion of a gene of interest is quantified in different sets of conditions/tissues using northern 
blotting or reverse transcriptase polymerase chain reaction (RT-PCR). Northern blotting 
technique utilizes the gene-specific probes for comparative quantification of mRNAs of the 
target gene, whereas RT-PCR uses gene-specific primers to amplify and subsequently quan-
tify the mRNA molecules. High-throughput technologies have the power to measure and 
analyze the expression of all the genes in a set of conditions. Differential display reverse 
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transcriptase PCR (DDRT-PCR), gene expression microarray, and next-generation sequenc-
ing (NGS) techniques are high-throughput techniques which are currently used. DDRT-PCR 
can study the expression of hundreds of genes at the same time, whereas microarray and 
NGS can study the whole transcriptome in a single experiment. Expression microarrays can 
give insight of the comparative transcriptomics, whereas NGS can provide absolute quanti-
fication of each transcript. All these techniques help in the identification of genes which give 
differential expression under different conditions.

These identified genes serve as targets to be used in different genetic engineering events. 
These genes are manipulated in the living organisms to produce GMOs. The modified organ-
ism is tested for the proper functioning of the transgene by single gene transcriptional analy-
sis. Then the GMO is tested for the potential risks to the environment and human/animal 
health using targeted approaches which are biased and require preexisting knowledge of the 
risk. The comprehensive and unbiased assessment of the GMO should be done using global 
transcriptome analysis of the GMO with the commercial safe variety. After biosafety testing, 
GMO is released for commercialization and human/animal utilization. There is great deal of 
resentment and resistance against utilization of genetically altered organisms. Many govern-
ments have designed policies to properly monitor the presence and movement of GMOs. 
Transcriptional analysis is widely being utilized for the monitoring of various newly devel-
oped organisms.

2. Genetic engineering for human benefit

Genetic engineering is the field of science which is revolutionizing the world by manipulat-
ing the genome and transcriptome of living organisms to introduce desired traits in them. 
Since the commercialization of “Flavr Savr” tomato in 1994 [10], 357 GM crops belonging to 
27 species all over the world have been commercialized [11], and this number is increasing 
day by day. Genetic engineering is widely being used for the improvement of crops, animals, 
fungi [12], bacteria [13], and other organisms to benefit mankind. Insect resistance, herbicide 
resistance, disease resistance, and abiotic resistance are being incorporated in the industrially 
important crops to make them tolerant to stresses. Yield and nutritional content of food crops 
are being modified to improve the feed for humans and animals. Scientists [14] produced 
transgenic maize with overexpressing Oryza sativa myeloblastosis 55 (OsMYB55) gene and 
found that the transgenic maize became more tolerant to heat and drought stress through 
activating the expression of stress-responsive genes. Microorganisms (bacteria and fungi) are 
being genetically engineered for the production of useful enzymes [13], secondary metabo-
lites, beneficial oils [12], and antibiotics on commercial scale to be utilized in the pharmaceuti-
cal, food, and medical industry.

In 2010, 29 countries were growing genetically modified crops, and 31 countries had the 
approval to import GM crops. In USA, more than 94% of the cultivated soybean and cot-
ton while 92% of corn is genetically modified [15]. The commercialization of the first geneti-
cally modified animal “AquAdvantage Salmon” for food was approved recently in 2015 [16]. 

Transcriptome Analysis and Genetic Engineering
http://dx.doi.org/10.5772/intechopen.69372

215



and transferred to the recipient where it can be transcribed into messenger RNA (mRNA) and 
translated to proteins by utilizing the recipient machinery. The donor protein in the recipient 
system performs its targeted function to modify the desired character of recipient plant, animal, 
or microorganism. Genomic DNA manipulations may involve addition of a foreign gene from 
another genome, deletion of an existing gene, or enhancing the expression of an indigenous 
gene. RNA interfering (RNAi) technology is used to silence the expression of an unwanted 
gene by inhibiting the mRNA availability for protein synthesis [1]. The genome-level genetic 
engineering approaches require an insight in the genome, transcriptome, and metabolome [2] 
of the organisms under study. Like all other applied fields, genetic engineering requires com-
prehensive information about the genome structure of the donor and recipient before genetic 
modification. Decision about the morphological character that needs to be improved, the choice 
of a particular donor and recipient species, genetic networks, and metabolic pathways involved 
in the expression of a specific trait need to be explored.

Transcriptome analysis is a robust and cost-efficient method which provides information 
about the internal biological processes, cellular biosynthesis, and metabolic functions of a 
cell, tissue, or living organism [3]. This technique can be utilized by the genetic engineering 
scientists for the identification and quantification of genetic factors which positively or nega-
tively regulate a particular trait of interest [4]. Comparison of gene expression profiles of an 
organism exhibiting the desired traits with the genetically similar organism lacking that trait 
can help in the identification of genetic factors involved in the development of that trait [5, 6]. 
These genetic factors might affect that trait positively or negatively. Enhanced accumulation 
of a particular transcript in the organism with desired phenotype as compared to the refer-
ence organism indicates that overexpression of that transcript is required for the exhibition of 
that trait. This phenomenon is called as positive regulation. In negative regulation, reduced 
expression of a gene is responsible for the exhibition of a desired trait [7, 8].

Positively regulated genes serve as genetic engineering tools for overexpression of a gene 
regulating a particular trait resulting in the introduction of that trait in genetically modified 
organism (GMO). For example, in transgenic cotton, expression of crystal protein (Cry10Aa) 
is responsible for resistance against boll weevil [9]. Advances in gene silencing technology 
through RNAi have led to utilization of genes which are negatively correlated with the 
desired traits. In cotton plant, seed-oil content increased by 16.7% by silencing GhPEPC1 gene 
through RNAi technology [8].

Transcriptome analysis and genetic engineering go hand in hand in the modern era of 
genetic improvements. Comparative transcriptional studies using single gene approaches 
or high-throughput approaches are used to identify the differentially expressed genes in a 
specific condition/organism as compared to reference. In single gene approaches, the expres-
sion of a gene of interest is quantified in different sets of conditions/tissues using northern 
blotting or reverse transcriptase polymerase chain reaction (RT-PCR). Northern blotting 
technique utilizes the gene-specific probes for comparative quantification of mRNAs of the 
target gene, whereas RT-PCR uses gene-specific primers to amplify and subsequently quan-
tify the mRNA molecules. High-throughput technologies have the power to measure and 
analyze the expression of all the genes in a set of conditions. Differential display reverse 

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health214

transcriptase PCR (DDRT-PCR), gene expression microarray, and next-generation sequenc-
ing (NGS) techniques are high-throughput techniques which are currently used. DDRT-PCR 
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27 species all over the world have been commercialized [11], and this number is increasing 
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fungi [12], bacteria [13], and other organisms to benefit mankind. Insect resistance, herbicide 
resistance, disease resistance, and abiotic resistance are being incorporated in the industrially 
important crops to make them tolerant to stresses. Yield and nutritional content of food crops 
are being modified to improve the feed for humans and animals. Scientists [14] produced 
transgenic maize with overexpressing Oryza sativa myeloblastosis 55 (OsMYB55) gene and 
found that the transgenic maize became more tolerant to heat and drought stress through 
activating the expression of stress-responsive genes. Microorganisms (bacteria and fungi) are 
being genetically engineered for the production of useful enzymes [13], secondary metabo-
lites, beneficial oils [12], and antibiotics on commercial scale to be utilized in the pharmaceuti-
cal, food, and medical industry.

In 2010, 29 countries were growing genetically modified crops, and 31 countries had the 
approval to import GM crops. In USA, more than 94% of the cultivated soybean and cot-
ton while 92% of corn is genetically modified [15]. The commercialization of the first geneti-
cally modified animal “AquAdvantage Salmon” for food was approved recently in 2015 [16]. 
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 RNA-based genetic engineering technology is becoming more attractive after the approval of 
white button mushroom for commercialization without stringent testing by the USDA, as this 
technology does not involve the introduction of foreign DNA [17].

3. GMOs and biosafety issues

Due to the advancements in the field of biotechnology and genetic engineering, new varieties 
are extensively prevailing in the society. Despite their huge potential for human welfare, their 
commercialization is controversial. Many people perceive all the GMOs to be bad for their 
health and environment. People who are aware of the mechanism of genetic engineering are 
concerned about the unintended modifications and their effect on the soil microorganisms 
[18], plant-microbe interaction [19], and imbalances in the natural biosystems. GMO’s con-
troversy mainly revolves around environmental safety [20], human and animal health [21], 
concerns over interfering with nature [22], and patent issues [23].

Genetically modified organisms produced by genetic engineering or conventional plant 
breeding are targeted to enhance the desired commercial traits, but GMOs might exhibit unin-
tended traits as well. In the international meeting on “Genetic Basis of Unintended Effects in 
Modified Plants,” biotechnology industry, government, and academia emphasized that no 
genetic modification is without unintended effects whether conventional breeding or genetic 
engineering [24]. The source of unintended modifications could be attributed to gene inser-
tions or deletions involving deletion or disruption of endogenous genes and chimeric protein 
production which perform abnormal function. Genetic engineering approaches involving tis-
sue culturing and in vitro culturing pose the risk of soma clonal modifications arising from 
the genetic and epigenetic effects of in vitro cultures [25]. Pleiotropic effects may contribute 
to the unintended modifications if the transgene plays multiple roles or is the part of multiple 
pathways in an organism leading to the production of potentially harmful secondary metabo-
lites [26].

Biosafety policies involve principles, procedures, and rules devised and adapted for protect-
ing the environment and health of the individuals against potentially harmful metabolites and 
toxins. Biosafety involves containment of harmful material to avoid unintentional  exposure to 
toxic agents produced by genetically modified organisms [27].

4. Monitoring of GMOs

Due to the resentment of the consumers in utilizing GMOs for food and animal feed purposes, 
many governments have devised policies to give its people freedom over utilization of GMOs. 
Policies mainly revolve around detection, proper labeling, isolation of propagation area, and 
tracking of GMOs. International trading requires standardization of procedures and policies 
related to GMO monitoring and marketing among trading countries. Moreover, in order to 
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limit the entry of approved varieties across the borders of a country, proper monitoring of 
GMOs is required.

The first step in the monitoring of GMO is the detection of transgene in an organism under 
question. Many methods are being used to detect the genetically modified varieties. GMOs 
produced by insertion of DNA fragments can be detected by protein-based assays [Enzyme-
linked immunosorbent assay (ELISA), Western blotting, etc.] or nucleotide-based assays 
including PCR. PCR-based detection is the most sensitive method which makes use of 
sequence-specific primers [28]. Due to the abundance of GMOs in the market, it has become 
very difficult to keep the sequence information of all the transgenes. The advanced high-
throughput technologies for GMO detection/monitoring are developed to detect multiple 
transgenes or related nucleotide components (promoter, enhancer, and terminator) of the 
cassette [29, 30] in a single experiment. For rapid PCR at atmospheric temperature, various 
methods have been developed [31]. DNA microarray chips are being developed which con-
tain the probes against all the transgenes present in the commercial varieties [32]. Sampling 
and hybridization of DNA of a variety under question can detect the presence of any trans-
gene. More efficient, sensitive, and robust methods are required for proper monitoring.

All the above methods are used for the detection of DNA insertion in the transgenic organ-
isms. However, in the RNA-based GMOs, the detection of transgene requires transcriptomic 
approaches. Transcriptional methods including RT-PCR, gene expression microarray, and 
RNA-seq can detect all types of GMOs produced through RNA- or DNA-based methods. 
In transcriptomic approaches, RNA is isolated from the sample and reverse transcribed to 
produce complementary DNA (cDNA). Due to resemblance in the biochemical properties of 
RNA and DNA, DNA is often present in the RNA preparations which is eliminated by treat-
ing the sample with DNase enzyme. By avoiding this step of DNase treatment, we get both 
RNA and DNA in the sample. This crude RNA is transcribed and RT-PCR is used for the 
detection of RNA or DNA of the transgene.

5. Validation of genetically modified organisms

The developers of GMOs are required to assess the phenotypic and molecular characteristics 
of modified organisms. Many countries have adopted regulations for commercialization of 
GMOs which mainly include the comprehensive risk assessment of the new organism before 
field trials, to be used as feed/food or before release to the environment. These risk assessment 
methods mainly involve the comparison of the agronomic traits, composition, animal nutri-
tion, and production of toxins of the new product with commercially available for multiple 
years and at multiple sites. But these assessments are targeted and require the prior informa-
tion about the risk. The untargeted risks can be left without evaluation with the potential to 
harm the environment and health.

During the screening and selection of a GMO, the emphasis is given to the insertion of the 
transgene as a single copy without disruption of an endogenous gene, preserving the gene 
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cassette and the absence of vector backbone. Safety of the GMO is tested on a very limited 
scale only when the GMO is ready to be commercialized. The main focus of the biosafety 
studies is limited to the assessment of the effect of the GMO on the consumer health and 
safety. The phenotypic and agronomic traits of the newly produced plant and a genetically 
similar organism are compared [33], but thorough profiling of the genetically modified organ-
ism is lacking.

Newly produced plants by genetic engineering and other genetic methods should not only 
be assessed by target-based approaches as these assessments are biased and cannot recog-
nize the unintended risks thoroughly [34]. Genome-wide approaches like transcriptome 
analysis, proteome analysis, or metabolome analysis have the advantage of being unbiased 
and robust [35–37] and provide a lot of information about the new plant variety. Scientists 
compare the protein profiles of genetically modified organisms with their wild types to 
identify the aberrant proteins. Proteome of a commercial variety of maize was compared 
with the isogenic transgenic line which was resistant to European corn borer by express-
ing Cry1Ab gene [38]. The results spotted unwanted/unintended protein expression in the 
transgenic lines and suggested for the untargeted evaluation of the new transgenic organ-
isms. Other studies using proteomic or transcriptomic approaches to compare the GMO 
with the wild type found only intended alterations [7], while no unintended changes were 
found.

Unintended changes arising as a result of pleiotropic effects of genetic modification are not 
always harmful. A group of scientists has performed transcriptome analysis in GMO lines 
developed for enhanced insect attraction in Arabidopsis and compared it with naturally occur-
ring non-GMO lines to identify transcriptional distance between the two groups [39]. They 
identified that the pleiotropic effects of gene insertion are equivalent to the gene expres-
sion changes naturally occurring in Arabidopsis indicating that the specific modified lines of 
Arabidopsis were equally safe as naturally occurring lines. Thus unbiased and untargeted risk 
assessment of GMOs through newly developed “omic” techniques is necessary [40] before its 
release in the environment or trials for human and animal use.

6. Transcriptome analysis for GMO validation

Unbiased detection of unintended effects of transgene in a genetically modified organism 
requires comparison of transcriptome [41], proteome [38] and metabolome [40] of the modi-
fied organism with the isogenic unmodified organism. The thorough profiling helps in the 
identification of genes, proteins, and metabolites modified in the newly developed organism. 
By digging the gene networks, protein functions, and metabolic processes of the altered bio-
molecule, scientists can depict the effects of GMO on the environment, health, and nutrition 
of the consumer. The absence of unintended aberrations in the biomolecules declares the new 
variety as safe, whereas the presence of unintended aberrations does not declare it to be unsafe 
but indicates that the variety requires more targeted validation before commercialization [7].
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Transcriptome analysis stands out of the other omic-based approaches due to its comparative 
simplicity and cost efficiency. Latest technologies of gene expression microarray and NGS 
are commonly used for global transcriptional profiling of GMO and wild-type ecotype for 
transcriptional equivalence. Gene expression microarray involves the use of chips containing 
probes which represent the complete genome of an organism under study. Hybridization 
of these chips with fluorescently labeled cDNA can identify the genes which are differen-
tially expressed between GMO and wild type. NGS technologies involve sequencing and 
quantification of nucleotides at the same time. RNA-seq is the type of NGS which specifi-
cally deals with the transcriptional studies. Gene expression microarray and RNA-seq have 
proved themselves equally for the detection of intended and unintended effects. However, 
both approaches have some advantages and disadvantages. Microarray experiments are com-
paratively cheaper and easier than RNA-seq. But the chips are commercially available only 
for a limited number of organisms, and custom printed chips require the genome sequence 
information of the specific organism. The full power of this technology can only be utilized 
for sequenced genomes. While RNA-seq is the only technology which can sequence as well as 
quantify the mRNA libraries of unsequenced genomes. Moreover, RNA-seq provides us the 
absolute quantification as compared to microarray which give comparative quantification. 
Table 1 shows some examples where scientists have utilized these transcriptomic approaches 
for GMO validation.

Gene expression microarray and RNA-seq methods not only identify the unintended effects 
of genetic engineering but are also useful in elucidating the mechanism of action of a trans-
gene. Pathway analysis and gene ontology analysis of modified genes lead to the evaluation 
of molecular basis of phenotypic changes in the newly produced organisms [48]. Transgenic 
variety of papaya (Carica papaya L.) fruit which was resistant to papaya ring spot virus (PRSV) 
was evaluated against its progenitor variety through RNA-seq analysis. The transcriptional 
profiles revealed the transcription factors, signaling pathways which were responsible for the 
stress tolerance and pathogen resistance [43].

Biotic and abiotic stress tolerance is a complex mechanism involving many gene networks 
and pathways causing changes in the morphology and physiology. Stress-related transcrip-
tion factors which can bind to the promoters of multiple genes are largely used as transgenes 
to produce stress-tolerant GMOs. Genetically engineered crops for tolerance against stresses 
are difficult to get approval for commercialization due to increased risk of pleiotropic effects. 
Global transcriptome analysis can identify all the pathways affected by any kind of genetic 
modification and targets for risk assessment.

Transcriptomic approaches have an added benefit of detection of gene silencing in the GMOs 
produced by gene silencing technology. RNAi-based technologies where double-stranded 
RNA targeting a specific gene is introduced in an organism. This RNA after being processed 
in the recipient organism is converted into smaller piece of nearly 21–22 nucleotides. These 
RNAs reach their targets and inhibit the translation of specific messenger RNA into respec-
tive proteins, thus functionally silencing the genes post-transcriptionally. The increasing 
popularity of this technology is due to its ability to not affect the genome of the GMO [49].
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7. Conclusion

The newly produced GMOs could be very harmful for the environment, microbial life, and 
human and animal health, but they are not always harmful. The producers of genetically 
modified organisms should analyze the global transcriptional profiles of the GMO in com-
parison with the safe commercial variety to assess the presence or absence of unintended 
modifications. This data would also provide comprehensive and unbiased information about 
the metabolic pathways altered in the new organism that can be helpful in designing the strat-
egy for biosafety risk assessment of GMOs.

Transcriptome analysis is very useful for detection and evaluation of transgenics produced 
by RNAi technology or transcription factor transformations. However, evaluation of gene 
expression is a very sensitive phenomenon and variable in different tissues and changing 
conditions. So, for transcriptional analysis, the selection of suitable sample and experimental 
conditions is critical for reliable results.

Organism Altered trait Gene Method of 
evaluation

References

Wheat Drought and salt 
tolerance

Glycine max drought-responsive 
element-binding factor (GmDREB1)

RNA-seq Jiang et al. [7]

Arabidopsis Drought tolerance Abscisic acid-responsive element 
binding factor 3 (ABF3)

Expression 
microarray

Abdeen et al. [42]

Arabidopsis Insect attraction Farnesyl diphosphate synthase 1 
long isoform (FPS1L), nerolidol 
synthase 1 from Fragaria ananassa 
(FaNES1), short (cytosolic) isoform 
of 3-hydroxy-3-methylglutaryl 
coenzyme A reductase 1 (HMGRIS)

Expression 
microarray

Houshyani et al. [39]

Papaya Resistance against 
papaya ring spot virus

Coat protein (CP) of PRSV RNA-seq Fang et al. [43]

Maize Insect resistance Cry1Ab Expression 
microarray

Coll et al. [44]

Rice Antifungal protein Antifungal protein (AFP) Expression 
microarray

Montero [45]

Barley Defense against stresses Endochitinase Expression 
microarray

Kogela [46]

Soybean Human and viral protein 
production in plants

Human myelin basic protein 
(hMBP), human thyroglobulin 
protein (hTG), mutant nontoxic 
staphylococcal enterotoxin B gene 
(mSEB)

RNA-seq Lambirth et al. [47]

Table 1. Evaluation of GMOs by transcriptome analysis.
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7. Conclusion

The newly produced GMOs could be very harmful for the environment, microbial life, and 
human and animal health, but they are not always harmful. The producers of genetically 
modified organisms should analyze the global transcriptional profiles of the GMO in com-
parison with the safe commercial variety to assess the presence or absence of unintended 
modifications. This data would also provide comprehensive and unbiased information about 
the metabolic pathways altered in the new organism that can be helpful in designing the strat-
egy for biosafety risk assessment of GMOs.

Transcriptome analysis is very useful for detection and evaluation of transgenics produced 
by RNAi technology or transcription factor transformations. However, evaluation of gene 
expression is a very sensitive phenomenon and variable in different tissues and changing 
conditions. So, for transcriptional analysis, the selection of suitable sample and experimental 
conditions is critical for reliable results.

Organism Altered trait Gene Method of 
evaluation

References

Wheat Drought and salt 
tolerance

Glycine max drought-responsive 
element-binding factor (GmDREB1)

RNA-seq Jiang et al. [7]

Arabidopsis Drought tolerance Abscisic acid-responsive element 
binding factor 3 (ABF3)

Expression 
microarray

Abdeen et al. [42]

Arabidopsis Insect attraction Farnesyl diphosphate synthase 1 
long isoform (FPS1L), nerolidol 
synthase 1 from Fragaria ananassa 
(FaNES1), short (cytosolic) isoform 
of 3-hydroxy-3-methylglutaryl 
coenzyme A reductase 1 (HMGRIS)

Expression 
microarray

Houshyani et al. [39]

Papaya Resistance against 
papaya ring spot virus

Coat protein (CP) of PRSV RNA-seq Fang et al. [43]

Maize Insect resistance Cry1Ab Expression 
microarray

Coll et al. [44]

Rice Antifungal protein Antifungal protein (AFP) Expression 
microarray

Montero [45]

Barley Defense against stresses Endochitinase Expression 
microarray

Kogela [46]

Soybean Human and viral protein 
production in plants

Human myelin basic protein 
(hMBP), human thyroglobulin 
protein (hTG), mutant nontoxic 
staphylococcal enterotoxin B gene 
(mSEB)

RNA-seq Lambirth et al. [47]

Table 1. Evaluation of GMOs by transcriptome analysis.
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plant biology research since studying expressed genes facilitates investigation into plant 
development, responses to environmental stresses, plant‐microbe interactions and so on. 
Transcriptomic analysis of model organisms, such as the classical object of plant genetics, 
Arabidopsis thaliana (L.) Heyhn., with available full‐genome sequence enables researchers to 
conduct more precise measurements of gene expression level, including alternative splicing 
and epigenetic modifications studies, in order to reveal the molecular mechanisms involved 
in specific biological processes [1]. Undoubtedly, many aspects of plant biology, for example, 
economically important traits such as specific immunity, pathogen resistance and symbiotic 
efficiency contributing to high crop productivity, cannot be studied with the use of model 
plants only, making the investigation of non‐model plants a necessity.

The rapid decrease of per‐base sequencing cost coupled with unprecedented development 
rates of computational biology practices opened the field of transcriptomics for in‐depth inves‐
tigation of non‐model plants [1]. In the last few years, a large number of studies concerning 
differential gene expression, mapping of genes and quantitative trait loci (QTLs), analysis of 
genotyping variations and so on using next‐generation sequencing (NGS) techniques has been 
conducted on several non‐model plants including legumes (members of family Fabaceae) [2–4].

The leguminous plants (chickpea (Cicer arietinum L.), pea (Pisum sativum L.) and lentil (Lens 
culinaris Medik.)) were among the earliest domesticated plant species [5] and are to this day 
an integral part of agricultural systems [6]. These and other members of the Fabaceae family 
are essential for economics as a food, fodder and oil source [3]. A significant feature of most 
legume species is their capability of forming mutualistic symbioses with soil microorganisms. 
Root‐nodule symbiosis, the association of the legumes with nodule bacteria collectively called 
rhizobia, provides the plant with fixed atmospheric nitrogen [7]. This fact makes the legume‐
rhizobial inter‐organismal system an essential component of natural and agricultural ecosys‐
tems [8]. Arbuscular‐mycorrhizal (AM) symbiosis (association with arbuscular mycorrhizal 
fungi), inherent to over 80% of land plants including most of legumes [9], facilitates water and 
mineral (especially phosphorous) uptake of the plant and consequently the nutritional value 
of the crop. Legumes are also capable of forming symbioses with endophytic plant growth 
promoting bacteria also contributing to plant productivity [10, 11].

In the early 1990s, two legume species—Medicago truncatula Gaertn. and Lotus japonicus 
(Regel.) K. Larsen—were introduced as model objects for studying plant genetics of symbi‐
otic nitrogen fixation and AM development [12–14]. Both species have small diploid genomes 
(approx. 500 Mb) [15] and are self‐pollinators with short generation time able to produce 
hundreds to thousands of seeds per plant. Intensive studies of genetics resulted in high‐qual‐
ity annotated genomes for both L. japonicus and M. truncatula, accumulation of gene expres‐
sion microarray datasets and development of several tools and repositories combining the 
diverse genetic, genomic and transcriptomic data in these model species (the Medicago Gene 
Expression Atlas [16, 17], the Medicago genome database [18], the Lotus Base information por‐
tal [19], etc.).

During the last decade, rapid development of sequencing and bioinformatics technologies sig‐
nificantly improved the state of genomics in non‐model legumes. In the past few years, genomes 
of important legumes, such as Glycine max (L.) Merr. [20], Phaseolus vulgaris L. and Trifolium 
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pratense L. [21], were sequenced and are currently available at Phytozome website (https://phy‐
tozome.jgi.doe.gov/pz/portal.html) and in the integrative bioinformatic platform Legume IP 
providing information about gene and protein sequences, gene models and annotations, syn‐
tenic regions, protein families and phylogenetic trees [22].

Despite all the recent research progress, most of the agriculturally important legumes were 
considered ‘orphan’ crops for a long time as separated from the intense genomic studies due 
to large genomes, and their agricultural significance mainly in developing countries lacking 
funds for large‐scale ‘omics’ studies [3]. Most genome and transcriptome analysis tools were 
developed for particular model objects [23] and can generally be used for studying ‘orphan’ 
species [24, 25], although careful fine‐tuning may be necessary for successful deployment of 
said tools in non‐model organisms (see Figure 1). With the cost of genome assemblies remain‐
ing prohibitively high, researchers are forced to work with only transcriptome data, making 
the analysis strategy all the more important.

It is worth noting that one of the most challenging steps of transcriptome analysis pipelines is cor‐
rect transcript annotation. The simplest approach giving a sufficiently accurate result is BLAST 
search against annotated sequences of other species. The development of transcriptome annota‐
tion pipelines, for example, Trinotate [26], has more or less taken the burden of transcriptome 

Figure 1. Pipelines of transcriptome assembly in non‐model plants (based on the information from Refs. [23, 24].) Three 
strategies for RNA‐seq analysis. (A) Using a draft genome. Novel transcript discovery, quantification and functional 
annotation. (B) De novo transcriptome assembly with no reference. For quantification, reads are mapped back to the 
novel reference transcriptome followed by the functional annotation of the novel transcripts as in (A). (C) Combination 
of the two methods. Transcriptomes are first assembled using methods (A) and (B) then merged using CD‐HIT‐EST and 
cap3. Transcripts are then annotated as in (B).
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annotation off of the researcher. Trinotate combines the output of a number of annotation tools 
into an integrated database simplifying the following deeper analysis of acquired data.

One example of an ‘orphan’ legume is garden pea (Pisum sativum L.), a valuable pulse crop 
capable of forming both nitrogen‐fixing symbiosis and arbuscular mycorrhiza. Global pro‐
duction of green pea in 2014 was 17.4 million tons, harvested from 2.3 million hectares, with 
an additional 11.2 million tons of dried pea from 6.9 million hectares [6]. The genome of the 
species is considered to be about 4300 Mb with high percentage of repetitive sequences [27]. 
Adaptation of RNA‐seq data analysis approaches standardised for model plants to P. sativum 
should facilitate both studying of pea molecular genetics and breeding of new cultivars pos‐
sessing agriculturally important traits.

Black medick (Medicago lupulina L.), a close relative of a model legume plant barrel medick 
(M. truncatula Gaertn.), is another example of an important (but almost not studied in terms of genet‐
ics) non‐model legume. It is valuable as a pasture legume component in complex grass mixtures 
and can also be used as an intermediate culture in crop rotation and as green manure. Black 
medick is characterised by high protein, vitamin and mineral content, long growing season and 
ability for improving soil fertility due to nitrogen fixation, therefore being a perfect lawn plant 
[28]. Black medick is a very promising object for studying AM functioning and development, 
since a unique genetic line of M. lupulina obligatory dependent on arbuscular mycorrhiza symbi‐
osis formation has been selected from the spring landrace population VIK‐32 of M. lupulina var. 
vulgaris Koch originating from Kazakhstan [28, 29]. Plants of the line MlS‐1 (for Medicago lupulina 
Spring) [28] demonstrate dwarfism when grown in the soil with low Pi (inorganic phosphorus) 
level in the absence of the AM fungi inoculation but can grow normally when inoculated with 
AM fungus. Therefore, MlS‐1 line is considered highly effective in AM symbiosis formation (as 
inoculation by fungi dramatically heightens the plant biomass). Apparently, MlS‐1 line is only 
capable of using the symbiotrophic way of phosphorus uptake from the soil, supposedly due to 
yet unidentified mutation(s) and, consequently, can serve as a model object for the investigation 
of arbuscular‐mycorrhizal symbiosis. For instance, this line is suitable for mutagenesis aimed at 
selection of mutants with defects in arbuscular mycorrhiza development, since plants carrying 
mutations in genes related to AM formation can be easily identified by visual examination as 
demonstrating dwarfism under inoculation with AM fungi [29].

High level of genome synteny, similarity of gene sequences and developmental processes pro‐
vide the opportunity to use the vast amounts of data accumulated on M. truncatula in genetics, 
genomic and transcriptomics of these non‐model legumes M. lupulina and P. sativum. In this 
chapter, we give a brief description of the current achievements in the field of transcriptomics 
of non‐model legumes black medick (M. lupulina) and garden pea (P. sativum).

2. Transcriptome assembly studies

2.1. P. sativum transcriptomics

The genome of P. sativum is as of yet not assembled due to its comparatively large size and numer‐
ous repeats, greatly reducing the number of research methods available. Pea  transcriptome, 
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unlike genome, is closer in size to transcriptomes of other legumes, including model plant 
M. truncatula, making it more susceptible to analysis. Due to the existence of tissue‐specific gene 
expression, different plant tissues possess unique sets of transcripts, making the choice of tis‐
sue samples important for further research. Furthermore, transcriptome assemblies from distinct 
plant organs should be used as reference for analysis of tissue‐specific processes. A high‐quality 
transcriptome assembly with full tissue representation is therefore crucial for studies associated 
with gene interactions (differential gene expression, see section 3), gene polymorphism studies 
and proteome analysis.

In the last 5 years, several pea transcriptome assemblies of distinct organs and tissues were 
presented by different workgroups. The first publication of pea transcriptome sequencing 
and assembly was made by Franssen et al. [30]. Total of 20 libraries from flowers, leaves, 
cotyledons, epicotyls and hypocotyls and etiolated and light‐treated etiolated seedlings were 
sequenced using the Roche 454 sequencing platform. Several iterations of de novo assembly 
and merging yielded 81,449 unigenes. Sudheesh et al. [31] sequenced transcriptomes from dif‐
ferent parts (leaf, stipule, stem, tendril tissues from multiple nodes, root‐tip tissues, flowers, 
stamens, pistils, immature pods, immature seeds and nodules) of two pea cultivars (Parafield 
and Kaspa) differing in both seed and plant morphological characteristics. Read assembly for 
separate cultivars yielded 126,335 and 145,730 contigs, respectively, with 87% showing signif‐
icant expression levels in both cultivars. Later on, Liu et al. sequenced samples from pea seeds 
harvested at the stage of 10 and 25 days after pollination and assembled 77,273 unigenes [32].

Several transcriptome assembly sets were generated for Single Nucleotide Polymorphism  
(SNP) marker development and genetic mapping in pea (see section 4). Duarte et al. [33] 
sequenced libraries from eight pea cultivars (six spring sown, one winter sown field pea, one 
fodder pea cultivar) with Roche 454 technology. A total of 3,826,797 reads were assembled into 
68,850 contigs by MIRA transcriptome assembler [34]. Sindhu et al. sequenced 3’‐anchored 
libraries of eight diverse pea accessions (six P. sativum cultivars (CDC Bronco, Alfetta, Cooper, 
CDC Striker, Nitouche and Orb) and two wild accessions P651 (P. fulvum), PI 358610 (P. sati‐
vum ssp. abyssinicum)) with Roche 454 technology, generating 4,008,648 reads in total. De novo 
assembly was performed for 520,797 reads from the CDC Bronco by MIRA, resulting in a set of 
29,725 reference contigs representing a significant proportion of the 3′ end of genes in pea [35].

Since analysis of inter organismal genetic network between pea and rhizobia is a poorly 
developed field, assembly of a high‐quality transcriptome provided researchers with the 
much‐needed data on nodule‐specific transcripts. Transcriptomes of pea nodules and root tips 
were obtained by Zhukov et al. [36]. Transcriptome sequencing using the Illumina Genome 
Analyzer IIx platform (Illumina Inc.) generated 52,021,865 reads from the ‘Nodules’ library and 
17,684,604 reads from the ‘Root Tips’ library, yielding 58,397 and 37,287 contigs assembled de 
novo by Trinity, respectively [37]. A total of 13,000 nodule‐specific contigs were annotated by 
alignment to known plant protein‐coding sequences and by Gene Ontology search. Of these, 
581 sequences were found to possess full Coding DNA Sequence (CDSs) and could thus be 
considered novel nodule‐specific transcripts of pea. Further investigation of those transcripts 
can potentially lead to the discovery of key regulators of nodule symbiosis, such as identifica‐
tion of pea gene homologous to Nodulation signaling pathway 1 (NSP1) gene of M. truncatula [38]. 
In this study, pea gene Sym34 was shown to be homologous to the M. truncatula NSP1 gene, 
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581 sequences were found to possess full Coding DNA Sequence (CDSs) and could thus be 
considered novel nodule‐specific transcripts of pea. Further investigation of those transcripts 
can potentially lead to the discovery of key regulators of nodule symbiosis, such as identifica‐
tion of pea gene homologous to Nodulation signaling pathway 1 (NSP1) gene of M. truncatula [38]. 
In this study, pea gene Sym34 was shown to be homologous to the M. truncatula NSP1 gene, 
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based on preliminary stop codons detected in an open reading frame of NSP1 homologous 
sequence in two sym34 allelic mutants (RisNod1 and RisNod23) and full co‐segregation of the 
alleles of the hypothetical pea Nsp1 gene with the nodulation phenotype in F2 generation.

Alves‐Carvalho et al. [39] sequenced transcriptomes of roots, nodules, shoots, leaves, flowers, 
seeds, tendrils and pods harvested at different developmental stages of pea cultivar ‘Caméor’. 
Sequencing of 20 cDNA libraries produced one billion reads. After de novo assembly and sev‐
eral steps of redundancy reduction, 46,099 contigs were obtained. The main objective of their 
study was to obtain the most complete transcriptome and to filter out all the artefacts and chime‐
ric contigs so a rigorous filtration pipeline was developed and implemented. The accumulated 
transcriptome data was used for the development of the Pea RNA‐Seq gene atlas containing 
expression profiles of thousands of genes in several organs, including symbiotic nodules. It is 
worth noting that the pipeline used in this work filtered out a large proportion of short protein‐
coding transcripts, including a number of NCR peptide‐coding transcripts [40], making the Pea 
RNA‐Seq gene atlas less useful than tissue‐specific transcriptomes in some cases.

Pea RNA‐Seq gene atlas is also lacking information regarding mycorrhiza‐specific transcripts. 
Genetic framework of mycorrhizal symbiosis is as of yet not fully understood in either model 
or non‐model legumes [38]. In order to discover symbiotically active genes both in plant roots 
and arbuscular‐mycorrhizal fungus, a transcriptome of Frisson pea cultivar roots colonised 
by Rhizophagus irregularis isolate BEG144 was assembled by our workgroup. Sequencing was 
performed on an Illumina HiSeq2000 sequencing platform yielding 120 million pair end 
reads. In order to separate the transcriptomes of two organisms present in the samples, all the 
reads were mapped using the HISAT2 mapper [41] to the genome of R. irregularis [42]. Over  
5 million successfully mapped reads were assembled by Trinity with default parameters yield‐
ing 30,000 transcripts, in good correlation with 28,000 of known genes for the fungus [42, 43].

All the transcripts not mapped to the R. irregularis genome were then assembled with the 
Trinity pipeline with standard assembly parameters and quality trimming parameters. This 
resulted in more than 200,000 contigs, of which more than 100,000 were similar to genes of pea 
and other plants of the Fabaceae family.

An assessment of transcriptome assembly and annotation completeness with single‐copy 
orthologs for all available pea transcriptomes was carried out using BUSCO V.2 software with 
OrthoDB v9.1 ‘embryophyta’ base as a reference [44]. The lowest number of present groups in 
the transcriptome published by Franssen et al. [30] named ‘Franssen’ is due to low transcrip‐
tome coverage. High number of missing groups in ‘Kaspa’, ‘Parafield’ and ‘SGE’ assemblies 
are most likely the result of limited tissue representation (see Figure 2). Deep sequencing of 
mycorrhized roots yielded similar results in regard to transcriptome completeness as a com‐
bined transcriptome from 20 tissues, indicative of assembly of low‐copy transcripts due to 
high transcriptome coverage.

2.2. M. lupulina transcriptomics

M. lupulina is a plant of the Fabaceae family, a close relative to the M. truncatula, for which a 
unique genetic line MlS‐1 characterised by obligate mycotrophic lifestyle was obtained [28]. 
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This line may potentially be extremely useful as a model for investigation of genetic founda‐
tions of mycorrhizal symbiosis. M. lupulina is a novel object for genomic studies, so to kick‐
start its analysis the transcriptome of the mycorrhized roots of M. lupulina was sequenced 
using the Illumina 2500 platform. Plants of MlS‐1 line were grown in soil under inoculation 
with R. irregularis strain RCAM00320, followed by total RNA extraction from the mycorrhized 
root system and appropriate preparation of cDNA libraries for Illumina sequencing. Using 
Trinity assembly pipeline, 41 million paired reads were assembled yielding over 138,000 con‐
tigs, of which 19,022 showed resemblance to genes of R. irregularis. Further analysis revealed 
over 70,000 contigs similar to known genes of M. truncatula. The assembled transcriptome can 
be used as reference for differential gene expression analysis.

3. Differential gene expression (DGE)

Analysis of alterations in gene expression between conditions or genotypes is the most sig‐
nificant part of transcriptomic data analysis. The differences in expression levels can help 
determine the important genes and elucidate the processes taking place in the investigated 
samples.

Extensive analysis of gene expression can be carried out by microarray analysis or RNA 
sequencing technology. Microarray technology requires prior knowledge of gene sequences and 
is more suitable for objects with available genome sequence. In the case of model object M. trun‐
catula, combination of microarray data resulted in development of atlas of gene expression pro‐
files (Medicago truncatula Gene Expression Atlas (MtGEA)) (https://mtgea.noble.org/v3/). MtGEA 
contains information about gene expression in roots, nodules, stems, petioles, leaves, vegetative 
buds, flowers, seeds, pods and is potentially helpful for studying other legumes. Despite the fact 
that pea genome is not sequenced yet, several studies of pea gene expression have been carried 

Figure 2. The results of BUSCO analysis of pea transcriptomes. Light‐blue: complete and single‐copy genes; dark‐blue: 
complete and duplicated genes; yellow: fragmented genes; red: missing genes.
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based on preliminary stop codons detected in an open reading frame of NSP1 homologous 
sequence in two sym34 allelic mutants (RisNod1 and RisNod23) and full co‐segregation of the 
alleles of the hypothetical pea Nsp1 gene with the nodulation phenotype in F2 generation.
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transcriptome data was used for the development of the Pea RNA‐Seq gene atlas containing 
expression profiles of thousands of genes in several organs, including symbiotic nodules. It is 
worth noting that the pipeline used in this work filtered out a large proportion of short protein‐
coding transcripts, including a number of NCR peptide‐coding transcripts [40], making the Pea 
RNA‐Seq gene atlas less useful than tissue‐specific transcriptomes in some cases.
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or non‐model legumes [38]. In order to discover symbiotically active genes both in plant roots 
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by Rhizophagus irregularis isolate BEG144 was assembled by our workgroup. Sequencing was 
performed on an Illumina HiSeq2000 sequencing platform yielding 120 million pair end 
reads. In order to separate the transcriptomes of two organisms present in the samples, all the 
reads were mapped using the HISAT2 mapper [41] to the genome of R. irregularis [42]. Over  
5 million successfully mapped reads were assembled by Trinity with default parameters yield‐
ing 30,000 transcripts, in good correlation with 28,000 of known genes for the fungus [42, 43].

All the transcripts not mapped to the R. irregularis genome were then assembled with the 
Trinity pipeline with standard assembly parameters and quality trimming parameters. This 
resulted in more than 200,000 contigs, of which more than 100,000 were similar to genes of pea 
and other plants of the Fabaceae family.

An assessment of transcriptome assembly and annotation completeness with single‐copy 
orthologs for all available pea transcriptomes was carried out using BUSCO V.2 software with 
OrthoDB v9.1 ‘embryophyta’ base as a reference [44]. The lowest number of present groups in 
the transcriptome published by Franssen et al. [30] named ‘Franssen’ is due to low transcrip‐
tome coverage. High number of missing groups in ‘Kaspa’, ‘Parafield’ and ‘SGE’ assemblies 
are most likely the result of limited tissue representation (see Figure 2). Deep sequencing of 
mycorrhized roots yielded similar results in regard to transcriptome completeness as a com‐
bined transcriptome from 20 tissues, indicative of assembly of low‐copy transcripts due to 
high transcriptome coverage.

2.2. M. lupulina transcriptomics

M. lupulina is a plant of the Fabaceae family, a close relative to the M. truncatula, for which a 
unique genetic line MlS‐1 characterised by obligate mycotrophic lifestyle was obtained [28]. 
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start its analysis the transcriptome of the mycorrhized roots of M. lupulina was sequenced 
using the Illumina 2500 platform. Plants of MlS‐1 line were grown in soil under inoculation 
with R. irregularis strain RCAM00320, followed by total RNA extraction from the mycorrhized 
root system and appropriate preparation of cDNA libraries for Illumina sequencing. Using 
Trinity assembly pipeline, 41 million paired reads were assembled yielding over 138,000 con‐
tigs, of which 19,022 showed resemblance to genes of R. irregularis. Further analysis revealed 
over 70,000 contigs similar to known genes of M. truncatula. The assembled transcriptome can 
be used as reference for differential gene expression analysis.

3. Differential gene expression (DGE)

Analysis of alterations in gene expression between conditions or genotypes is the most sig‐
nificant part of transcriptomic data analysis. The differences in expression levels can help 
determine the important genes and elucidate the processes taking place in the investigated 
samples.

Extensive analysis of gene expression can be carried out by microarray analysis or RNA 
sequencing technology. Microarray technology requires prior knowledge of gene sequences and 
is more suitable for objects with available genome sequence. In the case of model object M. trun‐
catula, combination of microarray data resulted in development of atlas of gene expression pro‐
files (Medicago truncatula Gene Expression Atlas (MtGEA)) (https://mtgea.noble.org/v3/). MtGEA 
contains information about gene expression in roots, nodules, stems, petioles, leaves, vegetative 
buds, flowers, seeds, pods and is potentially helpful for studying other legumes. Despite the fact 
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out by microarray technology. Analysis of gene expression during Mycosphaerella pinodes infec‐
tion was carried out using a microarray [45] containing 16,470 different 70‐mer oligonucleotides 
from M. truncatula and only 25 did not show a detectable signal [46]. In another study, microarray 
transcriptome profiling based on known pea Expressed Sequence Tags (ESTs) revealed altered 
expression of genes associated with programmed cell death, oxidative stress and protein ubiqui‐
tylation during seed aging [47].

In spite of many advantages of microarrays, this technique is not effective for quantification of 
transcript splice variants and, furthermore, cannot provide information about novel genes not 
included in the array. The development of NGS technology made analysis of full transcriptome 
gene expression possible. To date, there were several studies of pea gene expression based on 
RNA‐seq technology. Comparative analysis of transcriptional control of pea seed development 
conducted by RNA‐seq revealed significant differences in gene expression between vegetable 
and grain pea. Genes associated with sugar and starch biosynthesis were significantly activated 
during seed maturation. Analysis of differential expression of these genes revealed a nega‐
tive correlation between soluble sugar and starch flux in vegetable and grain pea seeds [32]. 
Alves‐Carvalho et al. [39] developed the Pea RNA‐Seq gene atlas containing expression profiles 
of thousands of genes in different pea tissues harvested at distinct developmental stages [48].

Although RNA‐seq technology is indispensable for exhaustive transcriptome studies, it is not 
the most cost‐efficient tool for gene expression analysis due to substantial sequencing depth 
required for rare transcript detection. There are RNA‐seq modifications, for example, Massive 
Analysis of cDNA Ends (MACE) developed by GenXPro GmbH (Frankfurt am Main, Germany) 
(http://genxpro.net/) that increase the sequencing depth (number of reads per‐transcript) by 
sequencing only a 50–500 bp fragment (adjacent to the 5’ or 3’‐end of the transcript, dependent 
on the version) [49]. As each read originates from a distinct copy of mRNA, MACE technology 
is free of duplications and similar artefacts, leading to much more accurate transcript quantifi‐
cation. Even though MACE data cannot be used to distinguish expression of splice‐variants of 
genes, it can be successfully applied in a number of scenarios even with species not possessing 
a high‐quality transcriptome.

In our opinion, 5’MACE is a technology possessing potential for simultaneous analysis of 
gene expression in prokaryotic and eukaryotic organisms; therefore, this technology is practi‐
cally tailor‐made for the analysis of plant‐microbe interaction, particularly for studying the 
process of root nodule development in the plants of the Fabaceae family.

One of the many challenges in analysing the onset of nodule symbiosis is the small amounts 
of tissue available. Enclosed environments of symbiotic compartments complicate direct 
measurements. Implementation of 5’MACE technology made it possible to analyse the gene 
expression patterns of both organisms simultaneously in a developing nodule and at a frac‐
tion of the cost of a full RNA‐seq study.

In our group, 5’MACE was implemented in a study investigating the expression changes in 
pea nodules caused by a mutation in the Sym31 gene with unknown function. This gene is 
responsible for the unique fix− mutant phenotype (non‐nitrogen‐fixing nodules) with halted 
bacteroid development [50]. Two plant genotypes Sprint‐2Fix− (carrying a mutation in the 
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Sym31 gene) and parental wild‐type line Sprint‐2 were inoculated with an efficient Rhizobium 
leguminosarum bv. viciae RCAM1026 [51]. All the obtained reads were sequentially mapped 
to the RCAM1026 genome (about 8% mapped reads), then to the pea transcriptome assem‐
bly from Alves‐Carvalho et al. [39] (about 60% mapped reads) resulting in two sets of dif‐
ferential transcriptome data. The transcript quantification was carried out using the edgeR 
package [52]. Differentially expressed genes were then visualised on a metabolic map using 
KOBAS 2.0 annotation server [53]. Analysis resulted in the discovery of a coordinated shift in 
sulphur metabolism in both organisms. These preliminary data show the great potential of 
the 5’MACE technology in furthering our understanding of inter‐organismal gene regulatory 
networks in plant‐microbe interactions.

4. Transcript‐based markers and their usage

The application of NGS for massive genetic polymorphism discovery is widely used due to 
being much more labour and time efficient than previously used methods such as microar‐
ray hybridisation [54] or denaturing high‐performance liquid chromatography (HPLC) [55]. 
Originally, the main challenge in using NGS methods for massive polymorphism screening 
was obtaining sequences of a particular genomic locus for multiple lines due to complexity 
of plant genomes and the relatively low productivity of the first‐generation NGS‐sequencing 
platforms, leading to the development of several methods for sequencing optimisation.

For example, Restriction site Associated DNA‐sequencing method (RAD‐Seq) consists of 
genome cleavage and selection of fragments of appropriate size flanked by specific restriction 
sites (as with RFLP and AFLP analyses) [56]. RAD‐Seq yields fragments distributed randomly 
over a genome and is suitable for discovering indels (insertion‐deletion polymorphisms), 
SNVs (single nucleotide variations) and microsatellites simple sequence repeats (SSR). Using 
RAD‐Seq, Boutet et al. [57] discovered a total of 419,024 SNVs between at least two of the 
four pea lines analysed in their work. Pea genetic map constructed by genotyping a sub‐
set of 64,754 SNVs on a subpopulation of 48 RILs (recombinant inbred lines) was collinear 
with previous pea consensus maps and therefore with the M. truncatula genome. Yang et al. 
[58] using Illumina HiSeq 2500 platform uncovered 8899 putative SSR‐containing sequences. 
Reliable amplifications of detectable polymorphic fragments among 24 genotypes of pea were 
obtained for about a half of randomly selected SSR, 820 in total.

Another way of data complexity reduction is transcriptome sequencing. It makes the discovery 
of polymorphic sites in open reading frames (ORFs) and 5′‐ and 3′‐untranslated regions (UTR) of 
a gene possible. Moreover, polymorphic sites associated with individual genes may have special 
meaning for evolutionary studies and QTL analyses. Even though the transcriptome sequencing 
omits introns and intergenic regions, it can successfully be used for SSR site detection.

Several polymorphism‐screening studies aimed on SNVs and SSR sites discovering in tran‐
scriptomic data were performed on pea (see Table 1). SNVs detection may be executed by map‐
ping NGS reads to an existing reference transcriptome assembly [59] or by de novo  assembly 
of those reads [33, 35, 60]. In the case of existing assembly, the additional data  complexity 
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Although RNA‐seq technology is indispensable for exhaustive transcriptome studies, it is not 
the most cost‐efficient tool for gene expression analysis due to substantial sequencing depth 
required for rare transcript detection. There are RNA‐seq modifications, for example, Massive 
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on the version) [49]. As each read originates from a distinct copy of mRNA, MACE technology 
is free of duplications and similar artefacts, leading to much more accurate transcript quantifi‐
cation. Even though MACE data cannot be used to distinguish expression of splice‐variants of 
genes, it can be successfully applied in a number of scenarios even with species not possessing 
a high‐quality transcriptome.

In our opinion, 5’MACE is a technology possessing potential for simultaneous analysis of 
gene expression in prokaryotic and eukaryotic organisms; therefore, this technology is practi‐
cally tailor‐made for the analysis of plant‐microbe interaction, particularly for studying the 
process of root nodule development in the plants of the Fabaceae family.

One of the many challenges in analysing the onset of nodule symbiosis is the small amounts 
of tissue available. Enclosed environments of symbiotic compartments complicate direct 
measurements. Implementation of 5’MACE technology made it possible to analyse the gene 
expression patterns of both organisms simultaneously in a developing nodule and at a frac‐
tion of the cost of a full RNA‐seq study.

In our group, 5’MACE was implemented in a study investigating the expression changes in 
pea nodules caused by a mutation in the Sym31 gene with unknown function. This gene is 
responsible for the unique fix− mutant phenotype (non‐nitrogen‐fixing nodules) with halted 
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Sym31 gene) and parental wild‐type line Sprint‐2 were inoculated with an efficient Rhizobium 
leguminosarum bv. viciae RCAM1026 [51]. All the obtained reads were sequentially mapped 
to the RCAM1026 genome (about 8% mapped reads), then to the pea transcriptome assem‐
bly from Alves‐Carvalho et al. [39] (about 60% mapped reads) resulting in two sets of dif‐
ferential transcriptome data. The transcript quantification was carried out using the edgeR 
package [52]. Differentially expressed genes were then visualised on a metabolic map using 
KOBAS 2.0 annotation server [53]. Analysis resulted in the discovery of a coordinated shift in 
sulphur metabolism in both organisms. These preliminary data show the great potential of 
the 5’MACE technology in furthering our understanding of inter‐organismal gene regulatory 
networks in plant‐microbe interactions.

4. Transcript‐based markers and their usage

The application of NGS for massive genetic polymorphism discovery is widely used due to 
being much more labour and time efficient than previously used methods such as microar‐
ray hybridisation [54] or denaturing high‐performance liquid chromatography (HPLC) [55]. 
Originally, the main challenge in using NGS methods for massive polymorphism screening 
was obtaining sequences of a particular genomic locus for multiple lines due to complexity 
of plant genomes and the relatively low productivity of the first‐generation NGS‐sequencing 
platforms, leading to the development of several methods for sequencing optimisation.

For example, Restriction site Associated DNA‐sequencing method (RAD‐Seq) consists of 
genome cleavage and selection of fragments of appropriate size flanked by specific restriction 
sites (as with RFLP and AFLP analyses) [56]. RAD‐Seq yields fragments distributed randomly 
over a genome and is suitable for discovering indels (insertion‐deletion polymorphisms), 
SNVs (single nucleotide variations) and microsatellites simple sequence repeats (SSR). Using 
RAD‐Seq, Boutet et al. [57] discovered a total of 419,024 SNVs between at least two of the 
four pea lines analysed in their work. Pea genetic map constructed by genotyping a sub‐
set of 64,754 SNVs on a subpopulation of 48 RILs (recombinant inbred lines) was collinear 
with previous pea consensus maps and therefore with the M. truncatula genome. Yang et al. 
[58] using Illumina HiSeq 2500 platform uncovered 8899 putative SSR‐containing sequences. 
Reliable amplifications of detectable polymorphic fragments among 24 genotypes of pea were 
obtained for about a half of randomly selected SSR, 820 in total.

Another way of data complexity reduction is transcriptome sequencing. It makes the discovery 
of polymorphic sites in open reading frames (ORFs) and 5′‐ and 3′‐untranslated regions (UTR) of 
a gene possible. Moreover, polymorphic sites associated with individual genes may have special 
meaning for evolutionary studies and QTL analyses. Even though the transcriptome sequencing 
omits introns and intergenic regions, it can successfully be used for SSR site detection.

Several polymorphism‐screening studies aimed on SNVs and SSR sites discovering in tran‐
scriptomic data were performed on pea (see Table 1). SNVs detection may be executed by map‐
ping NGS reads to an existing reference transcriptome assembly [59] or by de novo  assembly 
of those reads [33, 35, 60]. In the case of existing assembly, the additional data  complexity 
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Year Plant material Platform, 
technique

Number 
of putative 
discovered 
SNVs

Number 
of putative 
discovered 
SSR‐sites

Number of 
created and 
mapped 
markers

References

2013 Parafield, Yarrum, Kaspa, 96–286 454 Roche, 
GS‐FLX

36,188 2932 705 Leonforte et 
al. [60]

2014 Six spring sown: Lumina, Hardy, Panache, 
Rocket, Kayanne, Terese

Roche 454, 
GS‐FLX

35,455 2397 1340 Duarte et al. 
[33]

One winter sown: Cherokee

One fodder: Champagne

2014 Pisum sativum: CDC Bronco, Alfetta, 
Cooper, CDC Striker, Nitouche, Orb.

Roche 454, 
Titanium

over 20,000 406 1536 Sindhu et al. 
[35]

P. fulvum: P651

P. sativum ssp. abyssinicum: PI 358610

2017 SGE = JI3023 Illumina 
HiSeq 2000, 
MACE

34,711 ‐ ‐ Zhernakov et 
al. [59]

Finale = JI2678

Frisson = JI2491

NGB1238 = JI0073

Sparkle = JI0427

Sprint‐2 = JI2612

Table 1. Studies aimed at gene polymorphism detection in pea (Pisum sativum L.) using transcriptome NGS‐sequencing.

reduction is achievable by limiting sequenced mRNA regions. Since UTRs are generally more 
polymorphic than ORFs using sequences from the 3’ and 5’ mRNA, ends in SNV analysis 
should yield comparable results to those obtained with RNA‐seq. 3’MACE protocol for 
cDNA‐libraries preparation was used by Zhernakov et al. [59] to discover SNVs distinguish‐
ing six pea lines. Mapping MACE reads to the reference nodule transcriptome assembly of 
the pea line SGE [36] resulted in characterisation of over 34,000 polymorphic sites in more 
than 9700 contigs. Several of these SNVs were located within recognition sites of restriction 
endonucleases which allowed the design of co‐dominant Cleaved Amplified Polymorphic 
Sequences (CAPS) markers for the particular transcript.

SNVs are markers of choice now due to their abundance and the availability of high‐through‐
put screening techniques. SNV genotyping systems are now available, varying in the number 
of samples and markers to be genotyped, such as GoldenGate® and Infinium from Illumina 
Inc., SNPStream from Beckman Coulter and GeneChip from Affymetrix [61]. Illumina 
GoldenGate® oligonucleotide pool assay (OPA) designed for transcriptome‐discovered SNVs 
was used for pea salinity tolerance QTLs search [60].

As the pea genome is not sequenced yet, the genetic linkage maps are still relevant, since 
determination of loci responsible for target traits requires their fine mapping and subsequent 
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search for candidate genes in the already sequenced genome of the model legume plant M. 
truncatula. Transcriptome‐discovered SNVs and high‐throughput genotyping systems made 
the construction of several highly saturated genetic maps of pea possible (see Table 1) [33, 
35, 60].

5. Conclusion

Next‐generation sequencing techniques make the analysis of differential gene expression 
and molecular marker development by transcriptome sequencing possible even in species 
lacking genomic information. Further development of sequencing and bioinformatics should 
substantially promote the investigation into genetics of non‐model plants. It is worth noting 
that numerous traits like effectiveness of symbioses development [62] or specific resistance 
to pathogens can only be studied in each particular cultivated plant species, most having 
limited genomic data available. In addition, the decline in biodiversity makes the investiga‐
tion of unique secondary metabolites inherent to non‐model medicinal plants a pressing 
matter.

Leguminous plants capable of improving the soil quality due to the formation of the mutual‐
istic symbioses with nodule bacteria and arbuscular mycorrhizal fungi are an integral part of 
agricultural systems. The genetics of most crop legumes lags behind that of model plants, and 
some are even considered ‘orphan’ crops, separated from the intense genomic studies due to 
a number of factors. Fortunately, the similarity of genome organisation, or ‘genome synteny’, 
characteristic for most related species, can help ‘translate’ the genomic data from the model 
legumes to their pulse crop relatives [63].

Using RNA‐seq technologies for de novo transcriptome assembly provides opportunities for 
finding novel genes and isoforms in non‐model species and investigation of their differential 
expression. Comparison to genomes and transcriptomes of closely related species can help 
determine the level of evolutionary distance between the two species and discover possible 
evolutionary pressures shaping contemporary species. Technologies for determining gene 
expression levels using transcript ends (like 3’ and 5’ MACE) can be used to conduct large‐
scale gene expression studies on a smaller budget. 5’ MACE, a technology for simultane‐
ous analysis of prokaryotic and eukaryotic transcript abundancies, is particularly useful for 
studying plant‐bacteria interactions. Using transcriptome‐sequencing data in genetic marker 
development streamlines the construction of high‐quality genomic maps, crucial for routine 
gene identification tasks as well as potentially for refining genome assemblies for non‐model 
organisms. All the methods are useful in investigation of the unique phenotypes not present 
in the model plants, for example, M. lupulina MlS‐1 genetic line, uniquely dependent on the 
AM formation. Adaptation of standardised RNA‐seq approaches and data analysis devel‐
oped for model plants to an important crop culture P. sativum should facilitate the breeding 
of new cultivars that meet the requirements of the present‐day agriculture and possess the 
complex of beneficial traits, including increased efficiency of interactions with nodule bacteria 
and arbuscular‐mycorrhizal fungi.
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al. [60]

2014 Six spring sown: Lumina, Hardy, Panache, 
Rocket, Kayanne, Terese

Roche 454, 
GS‐FLX

35,455 2397 1340 Duarte et al. 
[33]

One winter sown: Cherokee

One fodder: Champagne

2014 Pisum sativum: CDC Bronco, Alfetta, 
Cooper, CDC Striker, Nitouche, Orb.

Roche 454, 
Titanium

over 20,000 406 1536 Sindhu et al. 
[35]

P. fulvum: P651

P. sativum ssp. abyssinicum: PI 358610

2017 SGE = JI3023 Illumina 
HiSeq 2000, 
MACE

34,711 ‐ ‐ Zhernakov et 
al. [59]

Finale = JI2678

Frisson = JI2491

NGB1238 = JI0073

Sparkle = JI0427

Sprint‐2 = JI2612

Table 1. Studies aimed at gene polymorphism detection in pea (Pisum sativum L.) using transcriptome NGS‐sequencing.

reduction is achievable by limiting sequenced mRNA regions. Since UTRs are generally more 
polymorphic than ORFs using sequences from the 3’ and 5’ mRNA, ends in SNV analysis 
should yield comparable results to those obtained with RNA‐seq. 3’MACE protocol for 
cDNA‐libraries preparation was used by Zhernakov et al. [59] to discover SNVs distinguish‐
ing six pea lines. Mapping MACE reads to the reference nodule transcriptome assembly of 
the pea line SGE [36] resulted in characterisation of over 34,000 polymorphic sites in more 
than 9700 contigs. Several of these SNVs were located within recognition sites of restriction 
endonucleases which allowed the design of co‐dominant Cleaved Amplified Polymorphic 
Sequences (CAPS) markers for the particular transcript.

SNVs are markers of choice now due to their abundance and the availability of high‐through‐
put screening techniques. SNV genotyping systems are now available, varying in the number 
of samples and markers to be genotyped, such as GoldenGate® and Infinium from Illumina 
Inc., SNPStream from Beckman Coulter and GeneChip from Affymetrix [61]. Illumina 
GoldenGate® oligonucleotide pool assay (OPA) designed for transcriptome‐discovered SNVs 
was used for pea salinity tolerance QTLs search [60].

As the pea genome is not sequenced yet, the genetic linkage maps are still relevant, since 
determination of loci responsible for target traits requires their fine mapping and subsequent 
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search for candidate genes in the already sequenced genome of the model legume plant M. 
truncatula. Transcriptome‐discovered SNVs and high‐throughput genotyping systems made 
the construction of several highly saturated genetic maps of pea possible (see Table 1) [33, 
35, 60].

5. Conclusion

Next‐generation sequencing techniques make the analysis of differential gene expression 
and molecular marker development by transcriptome sequencing possible even in species 
lacking genomic information. Further development of sequencing and bioinformatics should 
substantially promote the investigation into genetics of non‐model plants. It is worth noting 
that numerous traits like effectiveness of symbioses development [62] or specific resistance 
to pathogens can only be studied in each particular cultivated plant species, most having 
limited genomic data available. In addition, the decline in biodiversity makes the investiga‐
tion of unique secondary metabolites inherent to non‐model medicinal plants a pressing 
matter.

Leguminous plants capable of improving the soil quality due to the formation of the mutual‐
istic symbioses with nodule bacteria and arbuscular mycorrhizal fungi are an integral part of 
agricultural systems. The genetics of most crop legumes lags behind that of model plants, and 
some are even considered ‘orphan’ crops, separated from the intense genomic studies due to 
a number of factors. Fortunately, the similarity of genome organisation, or ‘genome synteny’, 
characteristic for most related species, can help ‘translate’ the genomic data from the model 
legumes to their pulse crop relatives [63].

Using RNA‐seq technologies for de novo transcriptome assembly provides opportunities for 
finding novel genes and isoforms in non‐model species and investigation of their differential 
expression. Comparison to genomes and transcriptomes of closely related species can help 
determine the level of evolutionary distance between the two species and discover possible 
evolutionary pressures shaping contemporary species. Technologies for determining gene 
expression levels using transcript ends (like 3’ and 5’ MACE) can be used to conduct large‐
scale gene expression studies on a smaller budget. 5’ MACE, a technology for simultane‐
ous analysis of prokaryotic and eukaryotic transcript abundancies, is particularly useful for 
studying plant‐bacteria interactions. Using transcriptome‐sequencing data in genetic marker 
development streamlines the construction of high‐quality genomic maps, crucial for routine 
gene identification tasks as well as potentially for refining genome assemblies for non‐model 
organisms. All the methods are useful in investigation of the unique phenotypes not present 
in the model plants, for example, M. lupulina MlS‐1 genetic line, uniquely dependent on the 
AM formation. Adaptation of standardised RNA‐seq approaches and data analysis devel‐
oped for model plants to an important crop culture P. sativum should facilitate the breeding 
of new cultivars that meet the requirements of the present‐day agriculture and possess the 
complex of beneficial traits, including increased efficiency of interactions with nodule bacteria 
and arbuscular‐mycorrhizal fungi.
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Abstract

Extensive analyses of transcriptome have been carried out in chickpea, which is the 
third most important legume valued as a source of dietary protein and micronutrients. 
Over the last two decades, several laboratories have used a wide range of techniques 
encompassing expressed sequence tag (EST) analysis, serial analysis of gene expression 
(SAGE), microarray and next-generation sequencing (NGS) technologies for analys-
ing the chickpea transcriptomes. However, chickpea transcriptome analysis witnessed 
significant progress with the advent of the NGS platforms. Gene expression analyses 
using NGS platforms were carried out in the vegetative and reproductive tissues such 
as shoot, root, mature leaf, flower bud, young pod, seed and nodule by various groups 
which resulted in identification of several tissue-specific transcripts. Some laborato-
ries have utilized transcriptomics to explore the response of chickpea to abiotic and 
biotic stresses such as drought, salinity, heat, cold, Fusarium oxysporum and Ascochyta 
rabiei differentially expressed genes and also established crosstalk between biotic and 
abiotic stress responses. Transcriptome analysis has been utilized extensively to iden-
tify non-coding RNAs such as miRNAs and long intergenic non-coding (LINC) RNAs. 
Transcriptome analysis has facilitated the development of molecular markers such as 
simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs) and potential 
intron polymorphisms (PIPs) that are being used to expedite the chickpea breeding pro-
grammes. The available chickpea transcriptomes will continue to serve as the foundation 
for devising strategies for chickpea improvement.

Keywords: transcriptome, chickpea, next-generation sequencing (NGS), gene expression, 
molecular markers
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1. Introduction

Chickpea (Cicer arietinum L.) is a diploid (2n = 16), self-pollinated plant which is grown in the 
cool season and has a genome size of 738 Mb [1]. It is the third most produced pulse crop in 
the world (13.73 million tons) after beans (26.52 million tons) and green pea (17.43 million 
tons) (FAOSTAT 2014). It is considered to be an ideal crop for the semiarid and arid regions 
as it exhibits an extensive tap root system. Chickpea seeds are an excellent source of nutrition 
as they contain ≈40% carbohydrates, ≈6% oil and 20–30% protein and good source of minerals 
and trace elements such as calcium, magnesium, phosphorus, iron and zinc [2]. Moreover, 
chickpea contributes to improvement of soil fertility since it has the capability to establish 
symbiotic association with Mesorhizobium ciceri that helps in fixing atmospheric nitrogen to 
the reduced nitrogen (NH3). Chickpea, through symbiotic nitrogen fixation (SNF), can fulfil 
up to 80% of its nitrogen requirement [3]. All these qualities make chickpea an economically 
important crop as it is an affordable source that can fulfil the dietary protein requirement of 
the masses.

2. Challenges in chickpea production

The world average of chickpea productivity is 982.1 kg/ha (FAOSTAT 2014); however, a simu-
lated study showed that potential productivity of chickpea in rain-fed situations ranged from 
1390 to 4590 kg/ha [4]. There is a huge yield gap of 408–3608 kg/ha. A number of biotic and abi-
otic factors affect chickpea plant growth and, therefore, are responsible for poor productivity.

Chickpea is mostly raised on conserved soil moisture under rain-fed conditions [5]. Therefore, 
drought stress generally affects the crop at terminal stage [6] and leads to productivity loss 
of up to 50% [7]. Drought reduces overall biomass, reproductive growth and seed yield and 
increases flower abortion, pod abscission and number of empty pods [8]. Soil salinity affects 
productivity by delaying the flowering leading to decrease in reproductive success of chick-
pea [9]. Since chickpea is a cool season crop, high temperatures adversely affect the develop-
ment of the plant [10]. Chander [11] reported a decline in yield of chickpea by about 301 kg/ha 
per 1°C increase in mean seasonal temperature in India [12, 13]. Biotic factors also adversely 
affect the yield of chickpea crop. Fusarium wilt, caused by Fusarium oxysporum f.sp. ciceri; 
Ascochyta blight, caused by Ascochyta rabiei and Botrytis grey mould, caused by Botrytis cinerea 
mainly affect the leaves of chickpea, whereas Pythium ultimum causes root and seed rot and is 
common in the areas where the chickpea growing season is cool and humid [14, 15]. A num-
ber of other fungi, such as Alternaria sp., Ascochyta pisi, Uromyces sp., Botrytis sp., Phytophthora 
 medicaginis and so on, cause considerable damage to chickpea crops. Pod borer (Helicoverpa 
armigera Hubner) is the major pest affecting chickpea worldwide [15–17]. Therefore, improve-
ment in yield, nutritional quality and stress tolerance are the major targets of chickpea research 
and breeding programmes which may be facilitated by detailed understanding of biological 
processes occurring in tissue-specific and developmental pathways. Moreover, responses to 
various stresses at molecular level also need to be elucidated in detail.
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3. Legume genomics

With the advent of next-generation sequencing technologies, there has been a rapid increase 
in the efficiency of DNA and RNA sequencing and decrease in the cost involved. Leguminosae 
is a very important family known due to the economic and nutritional value of its mem-
bers [18]. The recent years have witnessed a spurt in the number of studies utilizing genomic 
approaches to understand the biology of several agronomic traits in legumes.

The advances in DNA sequencing have led to whole genome sequencing of important legumes 
such as Glycine max [19], Medicago truncatula [20], Lotus japonicus [21], Cajanus cajan [22], 
Phaseolus vulgaris [23], diploid ancestors of peanut Arachis duranensis and Arachis ipaensis [24] 
and C. arietinum [1, 25]. Moreover, whole genome resequencing has been carried out for soy-
bean [26, 27], Medicago [28] and chickpea [1] in order to understand the genetic variability, evo-
lution and domestication in greater depth. Simultaneously, in order to unravel the functional 
aspects of legume biology, several NGS-based studies of transcriptomes were carried out. 
These studies have made significant contributions towards understanding of gene expression, 
alternative splicing events and small RNA identification. Gene expression atlases have been 
developed for soybean [29, 30], Medicago [31], L. japonicus [32] and pigeon pea [33]. Moreover, 
in chickpea a number of transcriptome studies have been performed. These include exploring 
the overall transcriptome of various tissues [34–37], specifically understanding of the develop-
ment of flower [38], seed [39] and root nodule [40]. Transcriptome analysis of chickpea under 
different abiotic and biotic stresses such as drought, desiccation, salinity, cold and Fusarium 
wilt has also been carried out [41–43].

Next-generation sequencing (NGS)-based plant genomics has also assisted in under-
standing of genetic variation within and between species mostly through identification 
of single-nucleotide polymorphisms (SNPs). In chickpea, a number of studies have been 
performed to identify SNPs and utilized for various applications such as construction of 
linkage maps, synteny analysis, anchoring of whole genome sequencing and quantitative 
trait loci (QTL) analysis [44–49]. A CicArVarDB has also been developed which includes 
SNP and InDel variations in chickpea [50].

4. Transcriptome

A cell undergoing a functional or developmental process has a specific set of genes under-
going transcription at a particular time and is collectively called the ‘transcriptome’. Thus, 
a transcriptome represents up to an extant physical, biochemical and developmental status 
of a cell. A transcriptome represents a pool of protein coding as well as nonprotein-coding 
RNAs; moreover, there may be the presence of variants of genes originating from alternative 
splicing and RNA editing, making the transcriptome more complex than a genome. Study of 
transcriptome may reveal information regarding spatial and temporal expression patterns of 
genes, and therefore it is possible to generate global expression profiles of genes representing 
developmental stages of an organism [34].
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developed for soybean [29, 30], Medicago [31], L. japonicus [32] and pigeon pea [33]. Moreover, 
in chickpea a number of transcriptome studies have been performed. These include exploring 
the overall transcriptome of various tissues [34–37], specifically understanding of the develop-
ment of flower [38], seed [39] and root nodule [40]. Transcriptome analysis of chickpea under 
different abiotic and biotic stresses such as drought, desiccation, salinity, cold and Fusarium 
wilt has also been carried out [41–43].

Next-generation sequencing (NGS)-based plant genomics has also assisted in under-
standing of genetic variation within and between species mostly through identification 
of single-nucleotide polymorphisms (SNPs). In chickpea, a number of studies have been 
performed to identify SNPs and utilized for various applications such as construction of 
linkage maps, synteny analysis, anchoring of whole genome sequencing and quantitative 
trait loci (QTL) analysis [44–49]. A CicArVarDB has also been developed which includes 
SNP and InDel variations in chickpea [50].

4. Transcriptome

A cell undergoing a functional or developmental process has a specific set of genes under-
going transcription at a particular time and is collectively called the ‘transcriptome’. Thus, 
a transcriptome represents up to an extant physical, biochemical and developmental status 
of a cell. A transcriptome represents a pool of protein coding as well as nonprotein-coding 
RNAs; moreover, there may be the presence of variants of genes originating from alternative 
splicing and RNA editing, making the transcriptome more complex than a genome. Study of 
transcriptome may reveal information regarding spatial and temporal expression patterns of 
genes, and therefore it is possible to generate global expression profiles of genes representing 
developmental stages of an organism [34].
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5. Methods for transcriptome analysis

Transcriptome analysis was initiated with the generation of expressed sequence tags (ESTs) 
that are 200–800 nucleotide long cDNA sequences, synthesised from mRNA through reverse 
transcription. ESTs represent the expressed part of an organism’s genome and hence are an 
excellent resource for the study of gene expression at a genome-wide level. Conventionally, 
EST resources have been developed through Sanger sequencing. Although this process is used 
to generate and sequence longer fragments of cDNA, it is tedious and labour intensive and 
offers poor coverage of the transcriptome. These limitations of EST-based transcriptome anal-
ysis inspired scientists to develop microarray and other tag-based methods for gene expres-
sion analysis. Therefore, tools such as microarrays and serial analysis of gene expression 
(SAGE) continued to be used for several years for analysis of global gene expression patterns. 
However, with the advent of NGS and the simultaneous development of in silico analytical 
tools, global genome and transcriptome analysis has become a standard practice for deriving 
information to relate genotype to phenotype. However, it is not possible to sequence the tran-
scripts to the full length due to technological limitations. Transcriptome analysis is based on 
the principle that the depth of coverage of a sequence is proportional to the level of expression 
of the corresponding gene. Therefore, by mapping and counting the sequenced reads onto the 
given transcript, expression can be measured, thereby translating sequence information to 
some biologically significant information. A host of NGS technologies such as sequencing by 
synthesis (Illumina Inc., USA), SOLiD (ThermoFisher Scientific) and pyrosequencing (454 bio-
sciences/Roche) has provided unprecedented opportunities for high-throughput functional 
genomic research [51–53]. Moreover, a number of technologies for transcriptome sequencing 
are emerging such as The Ion Torrent (ThermoFisher Scientific), single-molecule real time 
(SMRT) (Pacific Biosciences, USA) and Nanopore (Oxford Nanopore Technologies, UK).

6. Using transcriptome analysis for studying biological processes in 
chickpea

Extensive transcriptome analysis has been carried out in chickpea in order to gain insights 
into the numerous biological processes. Techniques, such as EST sequencing, SAGE and most 
importantly the NGS, have been used to analyse the transcriptomes of root, shoot, flower, seed 
and nodule tissues in order to understand the tissue-specific development and function. Several 
groups undertook EST sequencing, and till date (March 2017) 53,333 chickpea ESTs are reported 
in the NCBI database. In another earlier study of the root transcriptome, an EST library was 
constructed by subtractive suppressive hybridization (SSH) of two related chickpea varieties, 
ICC 4958 and Annigeri, as they show different root traits. Sequences of more than 2800 ESTs 
were reported and used to develop the ‘Chickpea Root Expressed Sequence Tag Database’ [54].

A major advancement in transcriptome analysis for understanding developmental and biolog-
ical processes occurred with the advent of the NGS platform. Several large-scale NGS-based 
transcriptome analyses were carried out in chickpea [34–36]. In one of the first NGS-based 
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studies, the Illumina sequencing of transcriptome of chickpea genotype ICC 4958 root and 
shoot followed by de novo assembly resulted in generation of 53,409 transcripts. Of these 
34,676 transcripts were annotated, and 6577 transcripts were identified as transcription fac-
tors (TFs) belonging to 57 families. Another study by Garg et al. reported the Roche/454-based 
transcriptomes of ‘shoot’, ‘root’, ‘mature leaf’, ‘flower bud’ and ‘young pod’ of chickpea geno-
type ICC 4958 [34]. These sequence reads generated by the Roche/454 platform were merged 
with the Illumina reads from the previous study, and a hybrid assembly was generated [34], 
which resulted in 34,760 tentative consensus (TC) transcripts. Of these, 1851 transcripts were 
annotated as transcription factors belonging to 84 families. This analysis also led to the iden-
tification of 1132, 695, 513, 408 and 126 TCs specifically expressed in flower bud, young pod, 
shoot, root and mature leaf, respectively. The complete data were integrated leading to the 
development of the ‘Chickpea Transcriptome Data Base’ (CTDB) which provides a searchable 
interface to the chickpea transcriptome data [34]. Further, transcriptome analysis of the wild 
progenitor of chickpea, i.e. Cicer reticulatum PI489777, was also performed by Jhanwar et al. 
[37]. Moreover, transcriptomes of the kabuli, desi and wild chickpeas were compared [55] 
and used to create an improved version of the Chickpea Transcriptome Data Base V2.0 [56].

Flower development is an important and specialized process that takes place in angiosperms. 
Hence, in order to gain insights into the molecular mechanisms responsible for flower devel-
opment in chickpea, transcriptome analysis was carried out using the Illumina sequencing 
platform [38]. Transcriptome sequencing of eight successive developing stages of flower 
(flower buds at sizes 4, 6, 8 and 8–10 mm and flowers with closed petals, partially opened 
petals, opened and faded petals and senescing petals) along with young leaf, germinating 
seedling and shoot apical meristem was carried out. Differential expression analysis revealed 
1572 genes to be differentially expressed in at least one stage of flower development. A num-
ber of 1118 genes (908 upregulated and 201 downregulated) and 966 genes (857 upregulated 
and 109 downregulated) were found to be differentially regulated in flower bud and flower 
developmental stages, respectively [38]. The majority of the differentially expressed genes 
were found to be involved in various flower developmental pathways such as floral organ 
identity; development of corolla, androecium and gynoecium and gametophyte develop-
ment. Moreover, genes related to cell wall development and transport were also found to 
be differentially expressed. In addition, 111 TF genes were found differentially expressed in 
floral bud and flower.

Chickpea is most valued for its seeds since they serve as a source of protein, especially for 
vegetarian population. Therefore, a thorough understanding of the transcriptional flux during 
seed development is important in order to get insights into the biological processes that define 
the seed. Towards this, an NGS-based deep transcriptome analysis of chickpea seed at four 
developmental stages, i.e. 10 days after anthesis (DAA), 20 DAA, 30 DAA and 40 DAA, was car-
ried out [39]. The transcriptome was sequenced using the 454 pyrosequencing on the GS-FLX 
Titanium platform followed by its assembly into 51,099 transcripts. A gene ontology enrich-
ment of seed-specific genes revealed genes related to reproductive structure development, fruit 
development and embryonic and post-embryonic development to be highly represented. Many 
metabolic pathways such as proteolysis, lipid metabolic process, regulation of RNA metabolic 
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5. Methods for transcriptome analysis

Transcriptome analysis was initiated with the generation of expressed sequence tags (ESTs) 
that are 200–800 nucleotide long cDNA sequences, synthesised from mRNA through reverse 
transcription. ESTs represent the expressed part of an organism’s genome and hence are an 
excellent resource for the study of gene expression at a genome-wide level. Conventionally, 
EST resources have been developed through Sanger sequencing. Although this process is used 
to generate and sequence longer fragments of cDNA, it is tedious and labour intensive and 
offers poor coverage of the transcriptome. These limitations of EST-based transcriptome anal-
ysis inspired scientists to develop microarray and other tag-based methods for gene expres-
sion analysis. Therefore, tools such as microarrays and serial analysis of gene expression 
(SAGE) continued to be used for several years for analysis of global gene expression patterns. 
However, with the advent of NGS and the simultaneous development of in silico analytical 
tools, global genome and transcriptome analysis has become a standard practice for deriving 
information to relate genotype to phenotype. However, it is not possible to sequence the tran-
scripts to the full length due to technological limitations. Transcriptome analysis is based on 
the principle that the depth of coverage of a sequence is proportional to the level of expression 
of the corresponding gene. Therefore, by mapping and counting the sequenced reads onto the 
given transcript, expression can be measured, thereby translating sequence information to 
some biologically significant information. A host of NGS technologies such as sequencing by 
synthesis (Illumina Inc., USA), SOLiD (ThermoFisher Scientific) and pyrosequencing (454 bio-
sciences/Roche) has provided unprecedented opportunities for high-throughput functional 
genomic research [51–53]. Moreover, a number of technologies for transcriptome sequencing 
are emerging such as The Ion Torrent (ThermoFisher Scientific), single-molecule real time 
(SMRT) (Pacific Biosciences, USA) and Nanopore (Oxford Nanopore Technologies, UK).

6. Using transcriptome analysis for studying biological processes in 
chickpea

Extensive transcriptome analysis has been carried out in chickpea in order to gain insights 
into the numerous biological processes. Techniques, such as EST sequencing, SAGE and most 
importantly the NGS, have been used to analyse the transcriptomes of root, shoot, flower, seed 
and nodule tissues in order to understand the tissue-specific development and function. Several 
groups undertook EST sequencing, and till date (March 2017) 53,333 chickpea ESTs are reported 
in the NCBI database. In another earlier study of the root transcriptome, an EST library was 
constructed by subtractive suppressive hybridization (SSH) of two related chickpea varieties, 
ICC 4958 and Annigeri, as they show different root traits. Sequences of more than 2800 ESTs 
were reported and used to develop the ‘Chickpea Root Expressed Sequence Tag Database’ [54].

A major advancement in transcriptome analysis for understanding developmental and biolog-
ical processes occurred with the advent of the NGS platform. Several large-scale NGS-based 
transcriptome analyses were carried out in chickpea [34–36]. In one of the first NGS-based 
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studies, the Illumina sequencing of transcriptome of chickpea genotype ICC 4958 root and 
shoot followed by de novo assembly resulted in generation of 53,409 transcripts. Of these 
34,676 transcripts were annotated, and 6577 transcripts were identified as transcription fac-
tors (TFs) belonging to 57 families. Another study by Garg et al. reported the Roche/454-based 
transcriptomes of ‘shoot’, ‘root’, ‘mature leaf’, ‘flower bud’ and ‘young pod’ of chickpea geno-
type ICC 4958 [34]. These sequence reads generated by the Roche/454 platform were merged 
with the Illumina reads from the previous study, and a hybrid assembly was generated [34], 
which resulted in 34,760 tentative consensus (TC) transcripts. Of these, 1851 transcripts were 
annotated as transcription factors belonging to 84 families. This analysis also led to the iden-
tification of 1132, 695, 513, 408 and 126 TCs specifically expressed in flower bud, young pod, 
shoot, root and mature leaf, respectively. The complete data were integrated leading to the 
development of the ‘Chickpea Transcriptome Data Base’ (CTDB) which provides a searchable 
interface to the chickpea transcriptome data [34]. Further, transcriptome analysis of the wild 
progenitor of chickpea, i.e. Cicer reticulatum PI489777, was also performed by Jhanwar et al. 
[37]. Moreover, transcriptomes of the kabuli, desi and wild chickpeas were compared [55] 
and used to create an improved version of the Chickpea Transcriptome Data Base V2.0 [56].

Flower development is an important and specialized process that takes place in angiosperms. 
Hence, in order to gain insights into the molecular mechanisms responsible for flower devel-
opment in chickpea, transcriptome analysis was carried out using the Illumina sequencing 
platform [38]. Transcriptome sequencing of eight successive developing stages of flower 
(flower buds at sizes 4, 6, 8 and 8–10 mm and flowers with closed petals, partially opened 
petals, opened and faded petals and senescing petals) along with young leaf, germinating 
seedling and shoot apical meristem was carried out. Differential expression analysis revealed 
1572 genes to be differentially expressed in at least one stage of flower development. A num-
ber of 1118 genes (908 upregulated and 201 downregulated) and 966 genes (857 upregulated 
and 109 downregulated) were found to be differentially regulated in flower bud and flower 
developmental stages, respectively [38]. The majority of the differentially expressed genes 
were found to be involved in various flower developmental pathways such as floral organ 
identity; development of corolla, androecium and gynoecium and gametophyte develop-
ment. Moreover, genes related to cell wall development and transport were also found to 
be differentially expressed. In addition, 111 TF genes were found differentially expressed in 
floral bud and flower.

Chickpea is most valued for its seeds since they serve as a source of protein, especially for 
vegetarian population. Therefore, a thorough understanding of the transcriptional flux during 
seed development is important in order to get insights into the biological processes that define 
the seed. Towards this, an NGS-based deep transcriptome analysis of chickpea seed at four 
developmental stages, i.e. 10 days after anthesis (DAA), 20 DAA, 30 DAA and 40 DAA, was car-
ried out [39]. The transcriptome was sequenced using the 454 pyrosequencing on the GS-FLX 
Titanium platform followed by its assembly into 51,099 transcripts. A gene ontology enrich-
ment of seed-specific genes revealed genes related to reproductive structure development, fruit 
development and embryonic and post-embryonic development to be highly represented. Many 
metabolic pathways such as proteolysis, lipid metabolic process, regulation of RNA metabolic 
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process, regulation of transcription, terpenoid metabolic process and gibberellin metabolic pro-
cesses were also found to be significantly represented [39]. In another study, sequencing of 
ESTs from the chickpea embryo resulted in identification of 1480 unigenes expressed during 
embryo development [57]. The analysis also identified 12 genes encoding for F-box proteins, of 
which 2 F-box genes (CarFbox_PP2 and CarF-box_LysM) were predicted to be involved in seed 
development [57].

Another important distinctive feature of chickpea is its ability to form symbiotic relationship 
with M. ciceri which results in the formation of specialized structures called root nodules. 
These are formed by the host plant and protect the oxygen-sensitive, bacterial nitrogen fix-
ing machinery. It is a complex phenomenon and a detailed understanding of the molecular 
pathways governing that the process of nodule development and nitrogen fixation would cer-
tainly help plant scientists in developing sustainable farming strategies for chickpea. Towards 
this, a DeepSuperSAGE-based transcriptome analysis led to the identification of 71 genes 
being differentially expressed in root nodules [58]. Further, in order to understand the root 
nodulation in greater depth, a deep transcriptome analysis of the chickpea root nodule at 
different developing stages was carried out using the 454 pyrosequencing [40]. Sequencing 
of transcriptomes of uninfected root and three developing stages of nodules followed by 
reference-based assembly resulted in 83,405 transcripts. Of these 3760 were found to be dif-
ferentially expressed in at least one of the stages of nodule when compared to uninfected root. 
Also, 1606 transcripts were identified as transcription factors, of which 171 TFs were found to 
be differentially expressed during nodulation.

7. Using transcriptome analysis for study of stress response in chickpea

Transcriptome analysis has been utilized exclusively to study different abiotic and biotic 
stress responses in chickpea. Drought and salinity are the major factors that limit the growth 
and productivity of the plants. Terminal drought is thought to be a major constraint affect-
ing productivity of chickpea as it can lower the yield of chickpea by about 50% [59]. Cold 
stress also affects susceptible chickpea mainly at the reproductive stage where it leads to 
pollen sterility and flower abortion [60]. Thus, it is important to study the response of chick-
pea under these stress conditions in order to devise strategies for development of stress-tol-
erant chickpea. Earlier studies based on EST sequencing, SAGE and microarray provided 
preliminary evidence for drought responses of chickpea at transcriptome level [61–66]. An 
EST sequencing-based study of drought and salinity stress in chickpea resulted in genera-
tion of 20,162 ESTs, of which 105 were found to have differential expression during one of 
the stresses [65]. In another comparison between ESTs generated from chickpea, ICC 4958 
(drought tolerant) and ICC 1882 (drought resistant) varieties resulted in identification of 5494 
drought-responsive ESTs [61]. A microarray-based transcriptome analysis of root and leaf of 
chickpea under drought stress resulted in identification of 4815 differentially expressed genes. 
Approximately 2623 and 3969 genes were found to be differentially expressed, whereas 88 
and 52 genes were found to be specifically expressed during drought stress in root and leaf 
tissues, respectively [66]. Another microarray analysis in chickpea revealed 109, 210 and 386 
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genes to be  differentially expressed in drought, cold and high-salinity stresses, respectively 
[62]. A SuperSAGE-based transcriptome analysis of chickpea drought stressed and control 
tissues gave rise to 17,493 unique transcripts (UniTags) of which 7532 were differentially 
expressed in drought stress [63]. Another SuperSAGE followed by 454 sequencing of root 
nodule transcriptome of salt-tolerant variety INRAT-93 identified 363 and 106 genes to be 
upregulated and downregulated, respectively, in root and nodule tissues [64].

The more global view of stress response in chickpea was provided by the study of Garg 
et al. [41] in which the transcriptome of chickpea root and shoot under desiccation, salin-
ity and cold stress was analysed. The Illumina sequencing-based transcriptome and com-
parison revealed 11,640 transcripts to be differentially expressed during at least one of the 
stresses. Seven hundred forty-five transcription factors (TFs) were also found to be differ-
entially regulated in at least one stress condition. Moreover 3536 unannotated genes from 
the chickpea transcriptome were also identified [41]. A more detailed transcriptome analy-
sis of drought-tolerant (ICC 4958), drought-sensitive (ICC 1882), salinity-tolerant (JG 62) 
and salinity-sensitive (ICCV2) chickpea varieties resulted in identification of 18,462 tran-
scripts representing 13,964 unique loci in at least one sample/stress condition. The study 
also revealed 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-
tolerant varieties. A number of 775 TFs encoding genes belonging to 80 families were also 
found differentially regulated in stress conditions. Members of the bHLH, WRKY, NAC, 
AP2-EREBP and MYB were found among the top differentially expressed TFs in stress con-
dition [42]. In order to understand the effect of cold stress, AFLP-based transcript profil-
ing (cDNA-AFLP) approach was used [67], which showed that in cold-tolerant chickpea, 
102 transcript-derived fragments (TDFs) were differentially expressed during cold stress. 
Moreover, transcriptome analysis of cold-tolerant chickpea ICC 16349 using cDNA differ-
ential display (DDRT-PCR) resulted in identification of 127 ESTs as differentially expressed 
in anthers during cold stress conditions.

Ascochyta blight caused by A. rabiei and Fusarium wilt caused by F. oxysporum are major fun-
gal diseases of chickpea. In order to understand the response of chickpea to A. rabiei, an EST 
library sequencing of blight-resistant chickpea variety ICC 3996 infected with A. rabiei was 
performed by Coram and Pang [68]. The study reported 516 genes of which 4% were related to 
defense and found to encode for lignin and phytoalexin biosynthesis enzymes, pathogenesis-
related proteins, signalling proteins and putative-defensive proteins [68]. For further identifi-
cation of resistance-related genes, transcriptome analysis of four genotypes, C. arietinum ICC 
3996, C. arietinum Lasseter, C. arietinum FLIP94-508C and Cicer echinospermum ILWC245, was 
performed using 756 featured microarrays. The study revealed 97 genes to be differentially 
expressed upon infection with A. rabiei. A comparison between resistant and susceptible vari-
eties identified many genes such as pathogenesis-related proteins, SNAKIN2 antimicrobial 
peptide, proline-rich protein, disease resistance response protein DRRG49-C, environmental 
stress-inducible protein, leucine-zipper protein, polymorphic antigen membrane protein and 
Ca-binding protein, which might be responsible for imparting resistance to the tolerant vari-
eties [69]. On the other hand, in order to identify genes involved in wilt resistance in chickpea, 
EST sequencing followed by microarray analysis of chickpea wilt susceptible genotype (JG-
62) and resistant genotype (WR-315) was performed after infecting them with F. oxysporum 
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process, regulation of transcription, terpenoid metabolic process and gibberellin metabolic pro-
cesses were also found to be significantly represented [39]. In another study, sequencing of 
ESTs from the chickpea embryo resulted in identification of 1480 unigenes expressed during 
embryo development [57]. The analysis also identified 12 genes encoding for F-box proteins, of 
which 2 F-box genes (CarFbox_PP2 and CarF-box_LysM) were predicted to be involved in seed 
development [57].

Another important distinctive feature of chickpea is its ability to form symbiotic relationship 
with M. ciceri which results in the formation of specialized structures called root nodules. 
These are formed by the host plant and protect the oxygen-sensitive, bacterial nitrogen fix-
ing machinery. It is a complex phenomenon and a detailed understanding of the molecular 
pathways governing that the process of nodule development and nitrogen fixation would cer-
tainly help plant scientists in developing sustainable farming strategies for chickpea. Towards 
this, a DeepSuperSAGE-based transcriptome analysis led to the identification of 71 genes 
being differentially expressed in root nodules [58]. Further, in order to understand the root 
nodulation in greater depth, a deep transcriptome analysis of the chickpea root nodule at 
different developing stages was carried out using the 454 pyrosequencing [40]. Sequencing 
of transcriptomes of uninfected root and three developing stages of nodules followed by 
reference-based assembly resulted in 83,405 transcripts. Of these 3760 were found to be dif-
ferentially expressed in at least one of the stages of nodule when compared to uninfected root. 
Also, 1606 transcripts were identified as transcription factors, of which 171 TFs were found to 
be differentially expressed during nodulation.

7. Using transcriptome analysis for study of stress response in chickpea

Transcriptome analysis has been utilized exclusively to study different abiotic and biotic 
stress responses in chickpea. Drought and salinity are the major factors that limit the growth 
and productivity of the plants. Terminal drought is thought to be a major constraint affect-
ing productivity of chickpea as it can lower the yield of chickpea by about 50% [59]. Cold 
stress also affects susceptible chickpea mainly at the reproductive stage where it leads to 
pollen sterility and flower abortion [60]. Thus, it is important to study the response of chick-
pea under these stress conditions in order to devise strategies for development of stress-tol-
erant chickpea. Earlier studies based on EST sequencing, SAGE and microarray provided 
preliminary evidence for drought responses of chickpea at transcriptome level [61–66]. An 
EST sequencing-based study of drought and salinity stress in chickpea resulted in genera-
tion of 20,162 ESTs, of which 105 were found to have differential expression during one of 
the stresses [65]. In another comparison between ESTs generated from chickpea, ICC 4958 
(drought tolerant) and ICC 1882 (drought resistant) varieties resulted in identification of 5494 
drought-responsive ESTs [61]. A microarray-based transcriptome analysis of root and leaf of 
chickpea under drought stress resulted in identification of 4815 differentially expressed genes. 
Approximately 2623 and 3969 genes were found to be differentially expressed, whereas 88 
and 52 genes were found to be specifically expressed during drought stress in root and leaf 
tissues, respectively [66]. Another microarray analysis in chickpea revealed 109, 210 and 386 
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genes to be  differentially expressed in drought, cold and high-salinity stresses, respectively 
[62]. A SuperSAGE-based transcriptome analysis of chickpea drought stressed and control 
tissues gave rise to 17,493 unique transcripts (UniTags) of which 7532 were differentially 
expressed in drought stress [63]. Another SuperSAGE followed by 454 sequencing of root 
nodule transcriptome of salt-tolerant variety INRAT-93 identified 363 and 106 genes to be 
upregulated and downregulated, respectively, in root and nodule tissues [64].

The more global view of stress response in chickpea was provided by the study of Garg 
et al. [41] in which the transcriptome of chickpea root and shoot under desiccation, salin-
ity and cold stress was analysed. The Illumina sequencing-based transcriptome and com-
parison revealed 11,640 transcripts to be differentially expressed during at least one of the 
stresses. Seven hundred forty-five transcription factors (TFs) were also found to be differ-
entially regulated in at least one stress condition. Moreover 3536 unannotated genes from 
the chickpea transcriptome were also identified [41]. A more detailed transcriptome analy-
sis of drought-tolerant (ICC 4958), drought-sensitive (ICC 1882), salinity-tolerant (JG 62) 
and salinity-sensitive (ICCV2) chickpea varieties resulted in identification of 18,462 tran-
scripts representing 13,964 unique loci in at least one sample/stress condition. The study 
also revealed 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-
tolerant varieties. A number of 775 TFs encoding genes belonging to 80 families were also 
found differentially regulated in stress conditions. Members of the bHLH, WRKY, NAC, 
AP2-EREBP and MYB were found among the top differentially expressed TFs in stress con-
dition [42]. In order to understand the effect of cold stress, AFLP-based transcript profil-
ing (cDNA-AFLP) approach was used [67], which showed that in cold-tolerant chickpea, 
102 transcript-derived fragments (TDFs) were differentially expressed during cold stress. 
Moreover, transcriptome analysis of cold-tolerant chickpea ICC 16349 using cDNA differ-
ential display (DDRT-PCR) resulted in identification of 127 ESTs as differentially expressed 
in anthers during cold stress conditions.

Ascochyta blight caused by A. rabiei and Fusarium wilt caused by F. oxysporum are major fun-
gal diseases of chickpea. In order to understand the response of chickpea to A. rabiei, an EST 
library sequencing of blight-resistant chickpea variety ICC 3996 infected with A. rabiei was 
performed by Coram and Pang [68]. The study reported 516 genes of which 4% were related to 
defense and found to encode for lignin and phytoalexin biosynthesis enzymes, pathogenesis-
related proteins, signalling proteins and putative-defensive proteins [68]. For further identifi-
cation of resistance-related genes, transcriptome analysis of four genotypes, C. arietinum ICC 
3996, C. arietinum Lasseter, C. arietinum FLIP94-508C and Cicer echinospermum ILWC245, was 
performed using 756 featured microarrays. The study revealed 97 genes to be differentially 
expressed upon infection with A. rabiei. A comparison between resistant and susceptible vari-
eties identified many genes such as pathogenesis-related proteins, SNAKIN2 antimicrobial 
peptide, proline-rich protein, disease resistance response protein DRRG49-C, environmental 
stress-inducible protein, leucine-zipper protein, polymorphic antigen membrane protein and 
Ca-binding protein, which might be responsible for imparting resistance to the tolerant vari-
eties [69]. On the other hand, in order to identify genes involved in wilt resistance in chickpea, 
EST sequencing followed by microarray analysis of chickpea wilt susceptible genotype (JG-
62) and resistant genotype (WR-315) was performed after infecting them with F. oxysporum 
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ciceri. The analysis resulted in identification of 257 differentially expressed genes associated 
with the early signalling pathway [70]. In order to understand the differential response of 
susceptible and tolerant/resistant chickpea varieties to F. oxysporum, transcriptomes of wilt 
susceptible (JG62) and wilt-tolerant/wilt-resistant (ICCV2, K850 and WR315) chickpea variet-
ies were analysed using the Illumina platform. Comparison among the transcriptomes led to 
identification of 303 polymorphic SSRs, 14,462 SNPs and 1864 insertions/deletions (InDels). 
Moreover, a large number of SNPs and/or InDels were found to be present in defence-related 
genes [43].

In order to identify common genes between biotic and abiotic responses in chickpea, Mantri 
et al. [71] performed microarray analysis of chickpea ICC 3996 under three abiotic stresses 
(drought, cold and high salinity) and biotic stress (infection with A. rabiei). This analysis 
revealed 46, 54, 266 and 51 genes to be differentially regulated in drought, cold, high salinity 
and A. rabiei stresses, respectively. A. rabiei stress response was found to be more similar to 
that of high-salinity stress [71].

8. Transcriptome analysis for non-coding RNA studies in chickpea

Non-coding RNAs usually act as regulatory elements that have a decisive role in fine regulation 
of gene activity. Non-coding transcripts comprise of small and long non-coding RNAs. Small 
non-coding RNAs regulate diverse developmental processes by controlling gene expression 
at transcriptional and post-transcriptional level [72, 73]. MicroRNAs (miRNAs) constitute the 
major class of small non-coding RNAs and are 20–24 nucleotides long key regulatory ele-
ments. They are highly conserved and play an important part in various developmental pro-
cesses in plants such as leaf development, flowering, formation and maintenance of the shoot, 
floral and axillary meristems, establishment of organ polarity, root nodule symbiosis, vegeta-
tive to reproductive phase transition and response to biotic and abiotic stresses [73–77]. In 
chickpea, small RNA libraries were sequenced from normal tissues and those under different 
stress conditions [78–80]. Small RNA sequence data were filtered and processed for miRNA 
prediction using miRDeep pipeline resulting in identification of distinct conserved miRNAs 
from shoot (302, including Cat-miR156b-5p, Cat-miR156j.1, Cat-miR159.1, Cat-miR169b-5p), 
root (280, including Cat-miR156c.1, Cat-miR169n, Cat-miR171k-3p), mature leaf (248, includ-
ing Cat-miR156k, Cat-miR172d.2, Cat-NovmiR319b, Cat-miR167a, Cat-miR167d.2), stem (268, 
including Cat-miR172c-3p, Cat-miR159.3, Cat-NovmiR319d, Cat-miR171k-3p), flower bud 
(247, Cat-miR319g.2, Cat-miR167c.2, Cat-miR167d.1, Cat-miR171b-3p.2), flower (293, Cat-
miR159.4, Cat-miR159e, Cat-miR171m) and young pod (274, Cat-miR172d.1, Cat-NovmiR159a, 
Cat-miR167-5p). By ab initio prediction, a total of 109, 76, 123, 100, 106, 98 and 120 novel can-
didate miRNAs were identified from the above tissues, respectively. Overall 618 miRNAs 
were identified from all the tissues with the maximum being 373 miRNAs from the shoot and 
minimum 303 from flower buds. Of the 618 miRNAs predicted, 158 were present in all the tis-
sues, and 29% of the miRNAs were found to be tissue specific. Of the 618 miRNAs, 421 were 
clustered to 73 miRNA families, and 197 could not find similarity to any miRNA family and 
were termed putative novel. Chickpea miRNAs targeted a wide range of transcripts involved 
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in diverse cellular processes including protein turnover and modification, metabolism, tran-
scriptional regulation and signal transduction [78]. A similar kind of study performed in leaf 
and flower tissue resulted in the prediction of 96 highly conserved miRNAs belonging to 38 
miRNA families and 20 novel miRNAs belonging to 17 miRNA families in chickpea [80]. In 
addition to identification of miRNA from different tissues, studies were also conducted for 
characterization of miRNA in response to different biotic and abiotic stresses. In one such 
kind of study, three libraries were sequenced for small RNA identification [79]. Libraries were 
constructed from fungal-infected (F. oxysporum f.sp. ciceris), salt-treated and untreated seed-
lings of chickpea and were sequenced using the Illumina GAIIx platform. The analysis identi-
fied 122 conserved miRNAs belonging to 25 different families along with 59 novel miRNAs. 
miR156, miR396 and miR319 were upregulated in response to salt stress. miR156 and miR396 
expression was found to be 1.5 times upregulated in both wilt and salt stresses, indicating a 
common mechanism implied by chickpea involving these miRNAs to cope up with both the 
stresses. miR530 was found to be significantly upregulated during wilt stress and may be 
involved in defence to fungal infection. Three legume-specific miRNAs, miR2111, miR2118 
and miR5213, were also indicated to play a critical role in defence to pathogen attack. Targets 
of miR2111 include F-box protein and TIR (Toll/Interleukin-1 Receptor) domain-containing 
NBS-LRR disease-resistance proteins, and miR2118 and miR5213 also target the same class of 
R genes. Interestingly, miR2118 is upregulated following wilt infection and downregulated 
following salt stress [79].

Long intergenic non-coding (linc) RNAs belong to a class of non-coding transcripts which 
have a length of at least 200bp lacking coding potential and are transcribed from intergenic 
region of protein coding genes [81, 82]. Linc RNAs control gene regulation at transcriptional 
and post-transcriptional level by mechanisms including chromatin modification, promoter 
binding complex attachment and shielding mRNA degradation by acting as sponge against 
miRNA [83–85]. RNA-seq data from 11 different tissues of chickpea were used for mining 
linc-RNA [86]. RNA-seq data were processed using TopHat2 and Cufflinks program using 
chickpea genome as the reference. From 32,984 transcripts obtained, 5782 putative intergenic 
transcripts were extracted out and subjected to the optimized pipeline for identification of linc-
RNA. After removing potential coding transcripts and transcripts having similarity to protein 
domains, finally a total of 2248 transcripts were retained as putative chickpea linc-RNAs. 
About 79%, i.e. 1790 linc-RNAs, could be assigned a putative function. Through expression 
profiling it was evident that a large number of linc-RNAs have tissue-specific expression in 
distinct tissues. Along with this several linc-RNAs were found to be targets of miRNAs and 
were involved in various developmental and reproductive processes [86].

9. Expanding transcriptome data to aid development of molecular 
markers

A DNA-based molecular marker is a DNA sequence with an identifiable location on the 
genome that can be transmitted from one generation to the next following the standard laws 
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floral and axillary meristems, establishment of organ polarity, root nodule symbiosis, vegeta-
tive to reproductive phase transition and response to biotic and abiotic stresses [73–77]. In 
chickpea, small RNA libraries were sequenced from normal tissues and those under different 
stress conditions [78–80]. Small RNA sequence data were filtered and processed for miRNA 
prediction using miRDeep pipeline resulting in identification of distinct conserved miRNAs 
from shoot (302, including Cat-miR156b-5p, Cat-miR156j.1, Cat-miR159.1, Cat-miR169b-5p), 
root (280, including Cat-miR156c.1, Cat-miR169n, Cat-miR171k-3p), mature leaf (248, includ-
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miR159.4, Cat-miR159e, Cat-miR171m) and young pod (274, Cat-miR172d.1, Cat-NovmiR159a, 
Cat-miR167-5p). By ab initio prediction, a total of 109, 76, 123, 100, 106, 98 and 120 novel can-
didate miRNAs were identified from the above tissues, respectively. Overall 618 miRNAs 
were identified from all the tissues with the maximum being 373 miRNAs from the shoot and 
minimum 303 from flower buds. Of the 618 miRNAs predicted, 158 were present in all the tis-
sues, and 29% of the miRNAs were found to be tissue specific. Of the 618 miRNAs, 421 were 
clustered to 73 miRNA families, and 197 could not find similarity to any miRNA family and 
were termed putative novel. Chickpea miRNAs targeted a wide range of transcripts involved 
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in diverse cellular processes including protein turnover and modification, metabolism, tran-
scriptional regulation and signal transduction [78]. A similar kind of study performed in leaf 
and flower tissue resulted in the prediction of 96 highly conserved miRNAs belonging to 38 
miRNA families and 20 novel miRNAs belonging to 17 miRNA families in chickpea [80]. In 
addition to identification of miRNA from different tissues, studies were also conducted for 
characterization of miRNA in response to different biotic and abiotic stresses. In one such 
kind of study, three libraries were sequenced for small RNA identification [79]. Libraries were 
constructed from fungal-infected (F. oxysporum f.sp. ciceris), salt-treated and untreated seed-
lings of chickpea and were sequenced using the Illumina GAIIx platform. The analysis identi-
fied 122 conserved miRNAs belonging to 25 different families along with 59 novel miRNAs. 
miR156, miR396 and miR319 were upregulated in response to salt stress. miR156 and miR396 
expression was found to be 1.5 times upregulated in both wilt and salt stresses, indicating a 
common mechanism implied by chickpea involving these miRNAs to cope up with both the 
stresses. miR530 was found to be significantly upregulated during wilt stress and may be 
involved in defence to fungal infection. Three legume-specific miRNAs, miR2111, miR2118 
and miR5213, were also indicated to play a critical role in defence to pathogen attack. Targets 
of miR2111 include F-box protein and TIR (Toll/Interleukin-1 Receptor) domain-containing 
NBS-LRR disease-resistance proteins, and miR2118 and miR5213 also target the same class of 
R genes. Interestingly, miR2118 is upregulated following wilt infection and downregulated 
following salt stress [79].

Long intergenic non-coding (linc) RNAs belong to a class of non-coding transcripts which 
have a length of at least 200bp lacking coding potential and are transcribed from intergenic 
region of protein coding genes [81, 82]. Linc RNAs control gene regulation at transcriptional 
and post-transcriptional level by mechanisms including chromatin modification, promoter 
binding complex attachment and shielding mRNA degradation by acting as sponge against 
miRNA [83–85]. RNA-seq data from 11 different tissues of chickpea were used for mining 
linc-RNA [86]. RNA-seq data were processed using TopHat2 and Cufflinks program using 
chickpea genome as the reference. From 32,984 transcripts obtained, 5782 putative intergenic 
transcripts were extracted out and subjected to the optimized pipeline for identification of linc-
RNA. After removing potential coding transcripts and transcripts having similarity to protein 
domains, finally a total of 2248 transcripts were retained as putative chickpea linc-RNAs. 
About 79%, i.e. 1790 linc-RNAs, could be assigned a putative function. Through expression 
profiling it was evident that a large number of linc-RNAs have tissue-specific expression in 
distinct tissues. Along with this several linc-RNAs were found to be targets of miRNAs and 
were involved in various developmental and reproductive processes [86].

9. Expanding transcriptome data to aid development of molecular 
markers

A DNA-based molecular marker is a DNA sequence with an identifiable location on the 
genome that can be transmitted from one generation to the next following the standard laws 
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of inheritance [87]. Recent years have witnessed an immense interest in generation and utili-
zation of molecular markers, as they provide the essential tools for a variety of genomic appli-
cations such as QTL mapping, map-based cloning, marker-assisted breeding, association 
mapping and genetic diversity assessment. These approaches can be applied to understand 
the genomic architecture of the crop and can expand the efficiency of breeding programmes, 
thereby aiding to expedite agricultural research. The advent of NGS has enabled the explora-
tion of thousands of markers across entire genomes and transcriptomes. Although transcrip-
tomics has been majorly used for gene expression analysis, it has also been utilized to identify 
molecular markers such as SSRs and SNPs especially in the genic regions. Such gene-based 
markers located in coding regions of the genes greatly enhance the opportunity of precise map-
ping of genes linked to important traits. Transcriptome sequencing offers another advantage 
for those crops in which a reference genome is not available. To identify SSRs from transcrip-
tome data, several bioinformatics tools have been developed such as MISA (MIcroSAtellite 
identification tool) (pgrc.ipk-gatersleben.de/misa/), RISA (Rapid Identification of SSRs and 
Analysis of primers) (http://sol.kribb.re.kr/RISA/) and RepeatAnalyzer [88]. In chickpea, ini-
tially a large number of molecular markers were derived from ESTs. Buhariwalla et al. [89] 
reported 106 EST-based markers developed from an EST library of root tissue from chickpea. 
In another study by Choudhary et al. [90], 2131 ESTs were utilized for development of 246 
EST-SSR markers. Apart from SSRs, several types of markers such as ESTPs, PIPs and EST-
SNPs were developed in chickpea using transcriptome data. For instance, Choudhary et al. 
[91] reported 125 EST-SSRs, 109 ESTPs, 102 SNPs and 151 ITPs. Gupta et al. [57] reported 
367 novel EST-derived functional markers which included 187 EST-SSRs, 130 potential intron 
polymorphisms (PIPs) and 50 expressed sequence tag polymorphisms (ESTPs). In another 
study, 71 gene-based SNP markers were developed utilizing candidate chickpea transcripts 
[92]. However, currently transcriptomic resources can be easily generated by high-through-
put NGS technologies and utilized to identify molecular markers very rapidly and cost-effec-
tively. Hiremath et al. [36] utilizing the Roche platform generated about 3000 gene-based 
markers from a large subset of transcripts derived from different chickpea tissues. Currently, 
SNPs are the markers of choice and are preferred over the SSRs and other markers because of 
their genome-wide presence and amenability to high-throughput genotyping. Theoretically, 
SNP calling may be defined as the process of identifying a single-nucleotide variation from an 
accession read that differs from the existing reference genome or a de novo assembly at simi-
lar nucleotide position. Read assembly files generated by mapping programs such as BWA, 
Bowtie and SOAP are used to perform SNP calling. Bioinformatics tools such as HaploSNPer 
[93], SAMtools [94, 95], POLYBAYES [96], SNVer [97] and SOAPsnp [98] have been designed 
to detect the variations in the NGS data. Comparison of transcriptome datasets from contrast-
ing genotypes could help derive SNPs. To date, several studies have been carried out using 
NGS technology-based transcriptome sequencing to generate large sets of molecular markers 
in various crop species including chickpea. For instance, a report by Garg et al. [35] facili-
tated identification of 4816 SSRs from the de novo assembly of the chickpea transcriptome. 
In another study, sequencing the transcriptome of C. reticulatum (PI489777), the wild rela-
tive of chickpea, by GS-FLX 454 technology, generated a total of 4072 SSRs and 36,446 SNPs. 
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Likewise, Agarwal et al. (2012) sequenced the transcriptome of ICCV2 and identified 5409 
SSRs. Amongst these, 130 and 493 SSRs were found to be polymorphic after comparing with 
the transcriptome of desi and wild chickpea. In addition to the SSRs, a total of 1986 and 37,954 
SNPs were also identified between the desi, kabuli and wild genotypes. Similarly, in another 
study, 51,632 genic SNPs were identified by 454 transcriptome sequencing of C. arietinum 
and C. reticulatum genotypes [99]. In a recent study, Srivastava et al. [100] identified 11,621 
differentially expressed genes in root vs shoot tissues using RNA sequencing of a wild peren-
nial Cicer microphyllum and integrated above transcriptome profiling with high-resolution 
QTL mapping in order to identify drought-responsive root-specific genes. The transcriptomic 
resources, therefore, clearly have remarkable potential to expedite the development of large 
numbers of molecular markers which can be used in genomic-assisted breeding for develop-
ing improved varieties of chickpea.

10. Future perspectives

The last few years have witnessed legume genomics attaining new heights as genomes, and 
transcriptomes of many model legumes (M. truncatula, L. japonicus) and crop legumes (G. max, 
C. cajan, P. vulgaris, Arachis hypogaea, Vignas, etc.) were sequenced. Transcriptomes of both 
types of cultivated chickpea (desi and kabuli) and its wild progenitor (C. reticulatum) have 
also been sequenced. Several studies have been carried out to analyse the transcriptome of 
chickpea which have led to genome-wide determination of transcript levels in various tissues 
and developmental pathways as well as during biotic and abiotic stresses. This comprehen-
sive analysis of the chickpea transcriptome has advanced the understanding of the molecular 
mechanisms underlying several critical biological pathways in chickpea. Moreover, analyses 
of the non-coding RNAs have revealed potential regulators of important pathways affect-
ing the overall development and stress tolerance in chickpea. Further, transcriptome analysis 
has also facilitated the development of large sets of genic molecular markers such as SSRs 
and SNPs that will serve as excellent tools for advancing the chickpea breeding programmes. 
Overall, the transcriptome sequencing of chickpea has not only provided a deep insight into 
the gene space and quantitation of gene expression but also an opportunity to isolate genes of 
interest and functional markers for use in chickpea improvement.
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of inheritance [87]. Recent years have witnessed an immense interest in generation and utili-
zation of molecular markers, as they provide the essential tools for a variety of genomic appli-
cations such as QTL mapping, map-based cloning, marker-assisted breeding, association 
mapping and genetic diversity assessment. These approaches can be applied to understand 
the genomic architecture of the crop and can expand the efficiency of breeding programmes, 
thereby aiding to expedite agricultural research. The advent of NGS has enabled the explora-
tion of thousands of markers across entire genomes and transcriptomes. Although transcrip-
tomics has been majorly used for gene expression analysis, it has also been utilized to identify 
molecular markers such as SSRs and SNPs especially in the genic regions. Such gene-based 
markers located in coding regions of the genes greatly enhance the opportunity of precise map-
ping of genes linked to important traits. Transcriptome sequencing offers another advantage 
for those crops in which a reference genome is not available. To identify SSRs from transcrip-
tome data, several bioinformatics tools have been developed such as MISA (MIcroSAtellite 
identification tool) (pgrc.ipk-gatersleben.de/misa/), RISA (Rapid Identification of SSRs and 
Analysis of primers) (http://sol.kribb.re.kr/RISA/) and RepeatAnalyzer [88]. In chickpea, ini-
tially a large number of molecular markers were derived from ESTs. Buhariwalla et al. [89] 
reported 106 EST-based markers developed from an EST library of root tissue from chickpea. 
In another study by Choudhary et al. [90], 2131 ESTs were utilized for development of 246 
EST-SSR markers. Apart from SSRs, several types of markers such as ESTPs, PIPs and EST-
SNPs were developed in chickpea using transcriptome data. For instance, Choudhary et al. 
[91] reported 125 EST-SSRs, 109 ESTPs, 102 SNPs and 151 ITPs. Gupta et al. [57] reported 
367 novel EST-derived functional markers which included 187 EST-SSRs, 130 potential intron 
polymorphisms (PIPs) and 50 expressed sequence tag polymorphisms (ESTPs). In another 
study, 71 gene-based SNP markers were developed utilizing candidate chickpea transcripts 
[92]. However, currently transcriptomic resources can be easily generated by high-through-
put NGS technologies and utilized to identify molecular markers very rapidly and cost-effec-
tively. Hiremath et al. [36] utilizing the Roche platform generated about 3000 gene-based 
markers from a large subset of transcripts derived from different chickpea tissues. Currently, 
SNPs are the markers of choice and are preferred over the SSRs and other markers because of 
their genome-wide presence and amenability to high-throughput genotyping. Theoretically, 
SNP calling may be defined as the process of identifying a single-nucleotide variation from an 
accession read that differs from the existing reference genome or a de novo assembly at simi-
lar nucleotide position. Read assembly files generated by mapping programs such as BWA, 
Bowtie and SOAP are used to perform SNP calling. Bioinformatics tools such as HaploSNPer 
[93], SAMtools [94, 95], POLYBAYES [96], SNVer [97] and SOAPsnp [98] have been designed 
to detect the variations in the NGS data. Comparison of transcriptome datasets from contrast-
ing genotypes could help derive SNPs. To date, several studies have been carried out using 
NGS technology-based transcriptome sequencing to generate large sets of molecular markers 
in various crop species including chickpea. For instance, a report by Garg et al. [35] facili-
tated identification of 4816 SSRs from the de novo assembly of the chickpea transcriptome. 
In another study, sequencing the transcriptome of C. reticulatum (PI489777), the wild rela-
tive of chickpea, by GS-FLX 454 technology, generated a total of 4072 SSRs and 36,446 SNPs. 
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Likewise, Agarwal et al. (2012) sequenced the transcriptome of ICCV2 and identified 5409 
SSRs. Amongst these, 130 and 493 SSRs were found to be polymorphic after comparing with 
the transcriptome of desi and wild chickpea. In addition to the SSRs, a total of 1986 and 37,954 
SNPs were also identified between the desi, kabuli and wild genotypes. Similarly, in another 
study, 51,632 genic SNPs were identified by 454 transcriptome sequencing of C. arietinum 
and C. reticulatum genotypes [99]. In a recent study, Srivastava et al. [100] identified 11,621 
differentially expressed genes in root vs shoot tissues using RNA sequencing of a wild peren-
nial Cicer microphyllum and integrated above transcriptome profiling with high-resolution 
QTL mapping in order to identify drought-responsive root-specific genes. The transcriptomic 
resources, therefore, clearly have remarkable potential to expedite the development of large 
numbers of molecular markers which can be used in genomic-assisted breeding for develop-
ing improved varieties of chickpea.

10. Future perspectives

The last few years have witnessed legume genomics attaining new heights as genomes, and 
transcriptomes of many model legumes (M. truncatula, L. japonicus) and crop legumes (G. max, 
C. cajan, P. vulgaris, Arachis hypogaea, Vignas, etc.) were sequenced. Transcriptomes of both 
types of cultivated chickpea (desi and kabuli) and its wild progenitor (C. reticulatum) have 
also been sequenced. Several studies have been carried out to analyse the transcriptome of 
chickpea which have led to genome-wide determination of transcript levels in various tissues 
and developmental pathways as well as during biotic and abiotic stresses. This comprehen-
sive analysis of the chickpea transcriptome has advanced the understanding of the molecular 
mechanisms underlying several critical biological pathways in chickpea. Moreover, analyses 
of the non-coding RNAs have revealed potential regulators of important pathways affect-
ing the overall development and stress tolerance in chickpea. Further, transcriptome analysis 
has also facilitated the development of large sets of genic molecular markers such as SSRs 
and SNPs that will serve as excellent tools for advancing the chickpea breeding programmes. 
Overall, the transcriptome sequencing of chickpea has not only provided a deep insight into 
the gene space and quantitation of gene expression but also an opportunity to isolate genes of 
interest and functional markers for use in chickpea improvement.
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Abstract

Post‐translational modifications, such as phosphorylation, acetylation and ubiquitina-
tion, are widely known to play various important roles in cellular signalling. Recent 
significant advances in mass spectrometry‐based proteomics technology enable us not 
only to comprehensively identify expressed proteins but also to unveil their post‐trans-
lational modifications with high sensitivity. In our advanced proteome bioinformatics 
frameworks, statistical network analyses of large‐scale information on various post‐
translational modification dynamics were conducted to define the key machinery for 
cancer stem cell properties. The bioinformatical approaches using IPA (ingenuity path-
way analysis), NetworKIN and a newly developed platform named PTMapper (post‐
translational modification mapper) allowed us to perform network‐wide prediction of 
upstream interactors/kinases with the related information on the diseases and functions, 
leading to systematic finding of novel drug candidates to regulate aberrant signalling in 
cancer stem cells. In this chapter, we apply patient‐derived glioblastoma stem cells as a 
representative model of cancer stem cells to introduce some useful platforms for statisti-
cal and mathematical network analyses based on the large‐scale phosphoproteome data.

Keywords: glioblastoma stem cells, signal transduction, proteomics, post‐translational 
modification, network analysis

1. Introduction

Glioblastoma (GBM) is known to be the most common and aggressive brain tumour in adults. 
Despite the enormous efforts to overcome this tumour for many years, the median survival 
for GBM patients remains around only 1 year [1]. GBM is characterized by high invasiveness 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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and intratumoral heterogeneity (ITH) [2, 3]. Up to date, it is known that GBM‐ITH contributes 
to the resistance to chemotherapy, radiation and surgical resection. Since functional diversity 
is the main feature of multilineage differentiation of cancer stem cells (CSCs) [4, 5], glioblas-
toma stem cells (GSCs) were thought to be major therapeutic targets of GBM. Furthermore, 
post‐translational modifications (PTMs) of GSCs are reported to tightly regulate highly 
tumourigenic potential of GSCs through aberrant signalling [6, 7]. Therefore, it is important 
to comprehensively elucidate PTM‐based GSC signalling networks for developing the effec-
tive treatment of GBM.

Advanced nanoscale liquid chromatography‐tandem mass spectrometry (nanoLC‐MS/MS) 
enables us to identify and quantify thousands of proteins in a single experiment [8]. Moreover, 
using the nanoLC‐MS/MS system coupled to the high‐affinity enrichment methods of the 
peptides with PTMs, we can also acquire in‐depth biological information on PTM dynamics. 
In this chapter, we introduce high‐resolution shotgun proteomics technology for large‐scale 
PTM determination in combination with statistical bioinformatics platforms such as IPA [9], 
NetworKIN [10, 11] and PTMapper [12].

2. System‐wide proteomic analysis of PTM dynamics

PTMs are widely known to play crucial roles in cell fate control, such as proliferation, dif-
ferentiation and apoptosis. More than 500 kinds of PTMs regarding eukaryotes and prokary-
otes have been registered with Unimod, a comprehensive database of protein modifications 
for mass spectrometry [13]. Recent technological advances in mass spectrometry‐based pro-
teomics in combination with appropriate enrichment techniques for each PTM enable us to 
perform comprehensive identification and quantification of PTMs [14]. Here, we introduce 
biochemical purification methods for highly sensitive detection of the representative PTMs: 
phosphorylation, acetylation and ubiquitination (Figure 1).

2.1. Phosphorylation

Protein phosphorylation is recognized as one of the most important and well‐studied PTMs and 
regulates a variety of biological processes by transmitting diverse external signals [15, 16]. About 
as many as 280,000 phosphorylation sites have already been registered in PhosphoSitePlus, a 
knowledgebase containing non‐redundant mammalian PTMs [17]. Titanium dioxide (TiO2), 
which has very high affinity for phosphorylated peptides, is widely used for large‐scale phos-
phoproteome analysis [18, 19].

2.2. Acetylation

Lysine acetylation plays a key role in modulating transcriptional regulation through the coor-
dinated function of histone acetyltransferases (HATs) and histone deacetylases (HDACs) [20]. 
The stabilization of p53, one of the most important transcription factors, is reported to greatly 
depend on lysine acetylation [21]. Thousands of lysine acetylation sites can be identified using 
an antibody against acetyl‐lysine in combination with a high‐resolution mass spectrometry 
system [22, 23].
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2.3. Ubiquitination

The ubiquitin system transmits protein degradation signal to proteasome as well as regu-
lates multiple cellular functions such as cell‐cycle progression, DNA repair and transcrip-
tional regulation. Dysfunction of this system leads to various pathological conditions [24]. 
Ubiquitination sites are detected as diglycine (Gly‐Gly) remnants on the modified lysine resi-
dues, which are generated by tryptic digestion of ubiquitinated proteins [25, 26].

3. Systematic characterization of the phosphoproteome dynamics in 
GSCs

The quantitative information on the phosphoproteome dynamics can provide us with system-
atic description of the key machinery for cellular signalling. In this section, we introduce two 
examples of global phosphoproteome analyses of GSCs using SILAC (stable isotope labelling 
by amino acids in cell culture)‐based quantitative technique [27, 28] (Figure 2). One was  carried 
out using epidermal growth factor (EGF) to elucidate the mechanism for stemness mainte-
nance of GSCs [29], whereas the other was conducted through serum‐induced differentiation 
of GSCs to unveil the key pathways responsible for disrupting stemness characteristics [30].

Figure 1. Strategy for mass spectrometry‐based identification of peptides modified with phosphorylation, acetylation 
and ubiquitination. Regarding ubiquitinated lysine residues, Gly‐Gly remnants are generated from the C‐terminal 
of ubiquitin as a consequence of tryptic digestion. PTMs: post‐translational modifications, P: phosphorylation, Ac: 
acetylation, Ub: ubiquitination, TiO2: titanium dioxide.
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3.1. Global quantitative phosphoproteome analyses of EGF‐stimulated GSCs

EGF is known to be essential for maintenance and growth of GSCs [31]. The quantitative 
phosphoproteomic analysis of EGF‐stimulated GSCs was performed to acquire network‐wide 
information on the molecules related to stemness maintenance. As a result, a total of 6073 
phosphopeptides from 2282 phosphorylated proteins were identified, leading to quantitative 
classification of 516 upregulated and 275 downregulated phosphorylation sites [29].

Figure 2. Schematic workflow for quantitative proteome analysis using SILAC, a representative relative quantitation 
technique based on metabolic labelling of specific amino acids such as arginine. Two populations of GSCs were cultured in 
the media supplemented with 12C6

14N4‐Arg (light) or 13C6
15N4‐Arg (heavy), respectively. After one of the two cell populations 

was stimulated/perturbed, both of the cells were lysed, equally combined and enzymatically digested to perform nanoLC‐
MS/MS analyses. The intensity of each mass peak is used for relative quantitation of each peptide with high accuracy.

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health268

3.1.1. IPA‐based network analysis

IPA canonical pathway analysis was then performed using SILAC‐based quantitative phos-
phoproteome data on EGF‐stimulated GSCs [29] (Figure 3). Protein synthesis‐related path-
ways (EIF2 signalling, mTOR signalling) and cell cycle regulation‐related pathways (cyclins 
and cell cycle regulation, cell cycle: G1/S checkpoint regulation, cell cycle: G2/M DNA dam-
age checkpoint regulation) were extracted with statistical significance (‐log (p‐value) > 5).

3.1.2. Upstream kinase prediction analysis

Protein phosphorylation is known to be controlled by specific kinases depending on consen-
sus sequence motifs of substrates [32]. The motif‐x algorithm [33, 34] is applicable to statistical 
extraction of significant consensus sequence motifs from the large‐scale phosphoproteome 
data on EGF‐stimulated GSCs (Figure 4(A) and (B)).

NetworKIN [10, 11] is designed to predict upstream kinases based on the sequence motifs 
around the functionally regulated phosphorylation sites through construction of the related 
protein‐protein interaction (PPI) networks using STRING [35]. The NetworKIN algorithm 
enables further interpretation of the results obtained from the motif‐x analyses (Figure 4 (C)).

3.2. Global quantitative phosphoproteome analyses of serum‐induced GSCs

CSCs are regarded as one of the most clinically important cell populations in causing tumour 
heterogeneity, which is responsible for the resistance to chemotherapy [36]. As recent studies 
have demonstrated that non‐CSCs can also readily acquire CSC‐like characteristics [37], it is 
very important to figure out the detailed mechanisms underlying CSC differentiation and 

Figure 3. IPA‐based pathway analysis of the quantitative phosphoproteome data on EGF‐stimulated GSCs. (A) The 
significant canonical pathways across the entire dataset (‐log (p‐value) > 5). (B) The mTOR signalling pathway is 
representatively depicted with the predicted information on the biological activities related to this pathway.
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understand the principle of their heterogeneity. Serum‐induced phosphoproteome dynamics 
in GSCs was measured to systematically elucidate the regulatory nodes for stemness alter-
ation over the entire signalling networks [30]. Among 2876 phosphorylation sites on 1584 
proteins identified, 732 phosphorylation sites on 419 proteins were found to be regulated 
through serum‐induced differentiation. The integrative network analyses of the quantitative 
phosphoproteome data using various bioinformatical tools including IPA and NetworKIN 
indicated that transforming growth factor‐β receptor type‐2 (TGFBR2) might be one of the 
crucial upstream regulators concerning GSC alteration (Figure 5).

Figure 4. Phosphorylation site‐oriented network analysis of the quantitative phosphoproteome data on EGF‐stimulated 
GSCs. The consensus sequence motifs surrounding the quantitatively regulated phosphorylation sites regarding (A) 
downregulation and (B) upregulation can be described as a result of the motif‐x analyses. (C) The numerical distribution 
of the putative kinases predicted by NetworKIN. The colour of cells reflects the number of the predicted kinases for each 
consensus sequence as described in (A) and (B).

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health270

Figure 5. Upstream kinase/regulator analyses based on the regulated phosphoproteome data on serum‐induced GSCs. 
(A) Heatmap of the over‐representation p‐values calculated for each predicted kinase using PhosphoSiteAnalyzer, a 
bioinformatical platform for the NetworKIN prediction results from the phosphoproteome data [38]. The subset ‘serum (−)’ 
indicates SILAC ratio > 2.0, whereas ‘serum (+)’ shows SILAC ratio < 0.5. TGFBR2 and ACVR2A/B‐specific phosphorylation 
sites were predicted to be significantly enriched in the ‘serum (−)’ subset (adjusted p‐value < 0.05). (B) Upstream regulator 
analysis by IPA. The top 10 upstream regulators relevant to the regulated phosphoproteome are shown with the 
corresponding score (−log [p‐value]). (C) IPA‐based description of TGF‐β1 and the target molecules in the phosphoproteome 
data. Dashed lines represent indirect interactions caused by TGF‐β1, adapted from Ref. [30].
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Figure 6. Construction of phosphorylation‐oriented PPI networks via PTMapper. (A) Workflow for the visualization 
of kinase‐phosphorylation site relationships in PPI networks via PTMapper. Phosphorylation sites are connected 
with the parental protein nodes in PPI networks and the upstream kinases are then added to the phosphorylation 
sites. (B) Phosphorylation site‐oriented networks constructed from the phosphoproteome data on EGF‐stimulated 
glioblastoma stem cells. The solid arrows represent functionally directed protein‐protein interactions or kinase‐
substrate interactions, whereas the dotted lines show the linkages of proteins and their phosphorylation sites, adapted 
from Ref. [12].
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Figure 7. Comparison of the sub‐networks extracted from EGF‐dependent phosphorylation dynamics of glioblastoma stem 
cells. (A) Schematic procedure for the evaluation of PTMapper‐based network construction. (B) The most significantly 
regulated sub‐networks extracted from the conventional protein interaction network. (C) The phosphorylation site‐
oriented network generated via PTMapper. The nodes surrounded by the border with the upper‐right numbers indicate 
the common molecules in the two types of the sub‐networks. The solid arrows represent functionally directed protein‐
protein interactions or kinase‐substrate interactions, whereas the dotted lines show the linkages of proteins and their 
phosphorylation sites. The dashed circles indicate p70S6K and Lyn, adapted from  Ref. [12].
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4. Development of advanced bioinformatical platforms for complicated 
kinase‐substrate interaction networks

Although shotgun proteomics strategy based on advanced nanoLC‐MS/MS system can pro-
vide us with large‐scale information on various kinds of PTMs, there are only a few PTM‐
based network analysis tools available compared to conventional protein‐protein interaction 
(PPI). Recently, CEASAR: connecting enzymes and substrates at amino acid resolution [39] 
and PhosphoPath [40] were developed to visualize kinase‐substrate interactions in a phos-
phorylation site‐oriented manner. CEASAR was designed to provide a high‐resolution map 
of kinase‐phosphorylation networks based on functional protein microarrays and bioinfor-
matics analysis. On the other hand, PhosphoPath was developed as a Cytoscape app [41] 
to visualize both quantitative proteome and phosphoproteome data using PPI information 
extracted from BioGRID [42] and PhosphoSitePlus [17]. Recently, we also have developed 
a Cytoscape‐based bioinformatical platform named ‘post‐translational modification mapper 
(PTMapper)’ to visualize kinase‐substrate interactions regarding multiple phosphorylation 
sites on signalling molecules (Figure 6) [12]. The kinase‐phosphorylation site interaction data-
set for this platform was integratively generated from PhosphoSitePlus [17], Phospho.ELM 
[43], PhosphoNetworks [44] and Uniprot KB [45], leading to construction of phosphoryla-
tion site‐oriented PPI networks using Pathway Commons [46]. We applied this platform to 
extract crucial kinase‐substrate interactions from the quantitative phosphoproteome data on 
EGF‐stimulated GSCs [29]. As a result, p70S6K and Lyn were significantly extracted as key 
regulators (Figure 7).

5. Perspectives and conclusions

The bioinformatical description of GSC signalling dynamics based on the global quantitative 
phosphoproteome data led to network‐wide extraction of critical molecules and their related 
pathways for defining stemness characteristics. Further integrative description of multiple 
PTM dynamics in GSCs will deepen our understanding of the nature of their cell signal-
ling complexity at the network level. We believe that shotgun proteomics‐based quantitative 
analyses of cancer stem cell signalling networks in combination with various statistical and 
mathematical platforms will pave the way to establish new directions towards systematic 
evaluation of drug targets in a cell‐type specific manner.
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Abstract

Epitranscriptomics is a newly burgeoning field pertaining to the complete delineation 
and elucidation of chemical modifications of nucleotides found within all classes of RNA 
that do not involve a change in the ribonucleotide sequence. More than 140 diverse and 
distinct nucleotide modifications have been identified in RNA, dwarfing the number of 
nucleotide modifications found in DNA. The majority of epitranscriptomic modifications 
have been identified in ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear 
RNA (snRNA). However, in total, the knowledge of the occurrence, and specifically the 
function, of RNA modifications remains scarce. Recently, the rapid advancement of 
next‐generation sequencing and mass spectrometry technologies have allowed for the 
identification and functional characterization of nucleotide modifications in both pro-
tein‐coding and non‐coding RNA on a global, transcriptome scale. In this chapter, we 
will introduce the concepts of nucleotide modification, summarize transcriptome‐wide 
RNA modification mapping techniques, highlight recent studies exploring the functions 
of RNA modifications and their association to disease, and finally offer insight into the 
future progression of epitranscriptomics.
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1. Introduction

RNA has been shown to play critical roles in regulating cellular functions. Comparative transcrip-
tomics between mammals has revealed that ∼66% of human genomic DNA is transcribed. 
Remarkably, only ∼2% of the transcriptional production is protein‐coding messenger RNA 
(mRNA), while ∼98% encompasses a wide variety of non‐coding RNA (ncRNA) molecules 
[1, 2]. ncRNAs have been classified functionally as either housekeeping or regulatory. The 
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housekeeping ncRNA genes include ribosomal RNA (rRNA), transfer RNA (tRNA), and 
small nuclear RNA (snRNA), while examples of regulatory ncRNAs are microRNA (miRNA) 
and long non‐coding RNA (lncRNA) [3–5]. The complexity of RNA is further complicated 
by numerous post‐transcriptional modifications which alter the chemical structure of the 
nucleotides without changing the nucleotide sequence. Similar to the field of epigenetics 
which investigates the modifications of DNA and histone proteins, the study of chemical 
modifications of RNA is called epitranscriptomics [6, 7]. More than 140 chemically diverse 
and distinct modified nucleotides have been identified in both mRNA and ncRNA, includ-
ing N6‐methyladenosine (m6A), 5‐methyl cytidine (m5C), pseudouridine (Ѱ), adenosine (A) 
to inosine (I), and N1‐methyladenosine (m1A). These modifications have been identified 
mostly in the housekeeping ncRNAs [3, 4, 8]; however, chemical modifications have also 
been detected in mRNA and the regulatory ncRNAs [9–11]. Unfortunately, the knowledge 
about the occurrence and function of RNA modifications at transcriptome level remains 
scarce. Recently, the interest in RNA modifications and their functions have gained momen-
tum owing mainly to the application of novel modifications to next‐generation sequenc-
ing (NGS) and mass spectrometry technologies, which have allowed transcriptome‐wide 
detection of distinct RNA modifications [12, 13]. Accurate regulation of the transcriptome 
is critical for gene expression and its subsequent control of cellular functions, including 
metabolism, proliferation, differentiation, and development. Thus, alterations in transcrip-
tome regulation can disrupt cellular functions and lead to disease. Accumulating evidence 
has identified and functionally characterized several distinct types of chemical modifica-
tions of RNA nucleotides in both protein‐coding and ncRNAs, further advancing the bur-
geoning field of epitranscriptomics. In this chapter, we will first provide an overview of 
RNA modifications and then synopsize several transcriptome‐wide RNA modification map-
ping techniques such as m6A‐seq, m5C‐seq, pseudouridine‐seq, and NAD captureSeq. Next, 
we will highlight novel insights into the potential functions of RNA modifications and their 
disease relevance as revealed and facilitated by epitranscriptomic profiling. Finally, we will 
offer our perspective on how the field will progress or evolve in the near future.

2. An overview of post‐transcriptional modifications of RNA

The process of mRNA maturation involving 5ʹ‐capping, splicing, and polyadenylation has 
been well studied [14]. However, the more subtle post‐transcriptional modifications of 
epitranscriptomics, also termed RNA‐epigenetics, are now just fully coming to light. The 
post‐transcriptional modifications found in RNA are often called marks because they mark 
a region of RNA that potentially contributes to the regulation of cellular processes, includ-
ing gene expression, protein translation, or RNA stability. Like mRNA maturation, enzymes 
are required to catalyze the reactions, which chemically modify RNA nucleotides. The most 
common post‐transcriptional RNA modification, Ψ, was also the first to be discovered [15]. 
Originally discovered in rRNA and tRNA, Ψ modifications are also present in mRNA [16, 
17]. Site‐specific isomerization of uridine (U) to Ψ (5‐ribosyluracil) is irreversibly catalyzed 
via Ψ synthases. The family of Ψ synthases (PUS) consists of enzymes which can either func-
tion independently or those that require H/ACA ribonucleotide complexes [18]. Compared to 
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U, Ψ contains an extra imino group (>C═NH), which serves as an additional hydrogen bond 
donor, while the carbon‐carbon (C─C) glycosidic bond linking the sugar to the base is more 
stable than the carbon‐nitrogen (C─N) found in U. These two chemical changes confer rigid-
ity to the sugar‐phosphate backbone and enhances local base stacking [19].

The most common internal modification in eukaryotic mRNA is m6A [20]. Unlike Ψ, m6A 
modifications are reversible, suggesting that the modifications are involved in regulatory 
switches. Methyltransferases (METTL3, METTL14, and WTAP), termed writers, catalyze the 
methylation of adenosine [21–23], whereas demethylases (FTO and ALKBH5), termed eras-
ers, remove the methyl group [24, 25]. The m6A marks are recognized by YTH domain pro-
teins, termed readers, which regulate mRNA processing and metabolism [26, 27].

An additional class of nucleotide modifications, termed RNA editing, creates an irreversible 
change in the nucleotide sequence. These modifications include insertions, deletions, and 
base substitutions and occur in all classes of RNA. When they occur in mRNA, the amino 
acid sequence of the protein will be altered relative to the sequence encoded by genomic 
DNA. RNA editing by deamination results in adenosine (A) to inosine (I) and cytosine (C) 
to uridine (U). A‐to‐I editing is an abundant class of RNA modifications found throughout 
metazoans [28]. The conversion of A‐to‐I residues by base deamination results in the synthesis 
of distinct proteins, which creates functional diversity and serves to enhance the response to 
rapid environmental changes [29]. RNA editing by deamination is mediated by two major 
classes of enzymes; the first class is a group of tissue‐specific and context‐dependent adenos-
ine deaminases called ADARs [30–32]. The ADAR enzyme class (adenosine deaminases act-
ing on RNA) catalyzes hydrolytic deamination of A‐to‐I in double‐stranded regions of RNA 
secondary structure [33]. The second class of enzymes, the vertebrate‐specific apolipoprotein 
B mRNA editing catalytic polypeptide‐like (APOBEC) family, promotes C‐to‐U editing by 
cytosine deamination [34]. APOBEC1, the first‐discovered member of the APOBEC family, 
was characterized as the zinc‐dependent cytidine deaminase which catalyzed a C‐to‐U modi-
fication, resulting in an in‐frame stop codon in APOB mRNA [35].

3. NGS‐based RNA modification techniques

The first transcriptome‐wide and NGS‐based approach for mapping m6A modifications dem-
onstrated the feasibility of identifying RNA modifications across the entire transcriptome and 
established the field of epitranscriptomics [6]. The most important aspects of NGS‐based tech-
niques are the ability to map modifications on a global scale at the single nucleotide resolution 
and that the modified nucleotides are analyzed within the context of the surrounding gene 
sequence. These features insure that the nucleotide modifications are accurately assigned to 
the appropriate RNA and not falsely attributed to homologous genes or RNA contaminates 
[6]. Now, several high‐throughput NGS‐based technologies, including RNA‐seq, have been 
established to profile and quantitate RNA modifications (m6A, m6Am, m5C, m1A, A‐to‐I, Ѱ, 
and NAD cap). These RNA‐seq‐based methodologies can be divided into two classes: immu-
noprecipitation‐based and chemical‐based methods. Table 1 lists six representative NGS‐
based detection methods of RNA modifications.
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RNA immunoprecipitation (RIP)‐based methods use an RNA modification‐specific antibody 
or an enzyme‐specific antibody to capture modified RNA followed by RNA‐seq. m6A‐seq [26], 
methylated RIP‐seq (MeRIP‐seq) [36] and m6A‐level, and isoform‐characterization sequenc-
ing (m6A‐LAIC‐seq) [37] combine RNA‐seq with RIP specific for m6A methylation. Figure 1A 
displays a typical m6A‐seq workflow. RIP is performed using an anti‐m6A antibody to enrich 
m6A‐modified RNAs followed by cDNA library preparation and high throughput NGS 
sequencing and finally analysis to identify the occurrence and consensus motif (RRACU) of 
global m6A modifications. A modified RIP approach, called m6A individual‐nucleotide‐reso-
lution by cross‐linking and immunoprecipitation (miCLIP), uses ultraviolet light‐induced 
antibody RNA cross‐linking to induce site‐specific mutations at m6A marks. These mutational 
signatures block reverse transcription and facilitate the detection of m6A marks at single‐
nucleotide resolution [38]. As illustrated in Figure 1B, m1A‐ID‐seq, which combines m1A 

Figure 1. Immunoprecipitation‐based strategies to detect RNA modifications. (A) m6A‐seq workflow: RNA immuno‐
precipitation is done using anti‐m6A antibody to enrich m6A‐modified RNAs followed by cDNA library preparation 
and high throughput NGS sequencing before occurrence and consensus motif (RRACU) of global m6A modifications 
are analyzed. (B) m1A‐ID‐seq workflow: RNA immunoprecipitation is carried out using anti‐m1A antibody to enrich 
m1A‐modified RNAs, which are then subjected to either the demethylase (−) treatment or the demethylase (+). Reverse 
transcription is stopped at m1A site in demethylase (−) group while extended in the demethylase (+) group. After NGS, 
m1A site can be identified by comparing the data of the demethylase (−) group to those of the demethylase (+) group.

Method Modification Strategies

m6A‐seq [26], MeRIP‐seq [36],  
m6A‐LAICIC‐seq [37]

m6A, m6Am Methyl‐RNA immunoprecipitation and UV cross‐linking

m1A‐ID‐seq [39] m1A Methyl‐RNA immunoprecipitation and the inherent ability of 
m1A to stall reverse transcription

Bisulfite sequencing [40] m5C Chemical conversion of modified nucleotides

ICE‐seq [42] A‐to‐I editing Cyanoethylation of RNA combined with reverse transcription

Pseudo‐seq [16], Ѱ‐seq [17] ѱ Chemical modification to terminate reverse transcription in 
the pseudouridylated site

NAD captureSeq [43] NAD Chemoenzymatic capture

Table 1. NGS‐based methods to profile transcriptome‐wide RNA modifications.
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immunoprecipitation and the m1A residue to cause truncated reverse transcription products, 
has been applied successfully for the transcriptome‐wide characterizations of m1A [39].

Chemical‐based methods rely on the misincorporation of nucleotide or nucleotide conver-
sion to truncate or stop RNA products during reverse transcription. RNA bisulfite conver-
sion followed by high‐throughput sequencing (BS‐seq, Figure 2A) is a chemical conversion 
method based on converting unmodified cytosine residues to uracil and keeping m5C 
residues unchanged by bisulfite treatment. BS‐seq is the only method currently available 
for the  detection of site‐specific endogenous m5C [40, 41]. Inosine chemical erasing (ICE) 
uses nucleotide switching to detect A‐to‐I modifications [42]. Inosine ribonucleotides are 

Figure 2. Chemical‐based strategies to detect RNA modification. (A) BS‐seq: Bisulfite selectively converts cytosine, not 
m5C, into uracil, subsequent to reverse transcription and RNA‐seq processes. After comparison with reference genome 
or control, m5C residues are identified as cytosine, whereas unmethylated cytosine as thymine. (B) ICE‐seq: The 
acrylonitrile can cyanoethylate inosine into N1‐cyanoethylinosine (ce1I). Reverse transcription will transcript inosine 
into cytidine but arrest at the ce1I site after the CE treatment. cDNA library, sequencing, reads mapping, and analysis 
will detect A‐to‐I sites. (C) Ѱ‐seq: The reagent CMC followed by incubation at alkaline pH leads to hydrolysis of U‐
CMC adducts, which are less stable than Ѱ‐CMC. Reverse transcription in Ѱ‐CMC sample will stop at Ѱ site. Following 
RNA‐seq and reads mapping will detect Ѱ sites with increased transcript termination in the CMC‐treated sample. (D) 
NAD captureSeq: ADPRC enzyme catalyzes a transglycosylation reaction of NAD with pentynol, which are bound by 
CuAAC with biotin azide. The RNA with NAD is captured by streptavidin beads before being readied for cDNA library 
preparation and sequenced for identifying NAD‐capped RNAs.
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RNA immunoprecipitation (RIP)‐based methods use an RNA modification‐specific antibody 
or an enzyme‐specific antibody to capture modified RNA followed by RNA‐seq. m6A‐seq [26], 
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displays a typical m6A‐seq workflow. RIP is performed using an anti‐m6A antibody to enrich 
m6A‐modified RNAs followed by cDNA library preparation and high throughput NGS 
sequencing and finally analysis to identify the occurrence and consensus motif (RRACU) of 
global m6A modifications. A modified RIP approach, called m6A individual‐nucleotide‐reso-
lution by cross‐linking and immunoprecipitation (miCLIP), uses ultraviolet light‐induced 
antibody RNA cross‐linking to induce site‐specific mutations at m6A marks. These mutational 
signatures block reverse transcription and facilitate the detection of m6A marks at single‐
nucleotide resolution [38]. As illustrated in Figure 1B, m1A‐ID‐seq, which combines m1A 

Figure 1. Immunoprecipitation‐based strategies to detect RNA modifications. (A) m6A‐seq workflow: RNA immuno‐
precipitation is done using anti‐m6A antibody to enrich m6A‐modified RNAs followed by cDNA library preparation 
and high throughput NGS sequencing before occurrence and consensus motif (RRACU) of global m6A modifications 
are analyzed. (B) m1A‐ID‐seq workflow: RNA immunoprecipitation is carried out using anti‐m1A antibody to enrich 
m1A‐modified RNAs, which are then subjected to either the demethylase (−) treatment or the demethylase (+). Reverse 
transcription is stopped at m1A site in demethylase (−) group while extended in the demethylase (+) group. After NGS, 
m1A site can be identified by comparing the data of the demethylase (−) group to those of the demethylase (+) group.

Method Modification Strategies
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m6A‐LAICIC‐seq [37]

m6A, m6Am Methyl‐RNA immunoprecipitation and UV cross‐linking

m1A‐ID‐seq [39] m1A Methyl‐RNA immunoprecipitation and the inherent ability of 
m1A to stall reverse transcription

Bisulfite sequencing [40] m5C Chemical conversion of modified nucleotides

ICE‐seq [42] A‐to‐I editing Cyanoethylation of RNA combined with reverse transcription

Pseudo‐seq [16], Ѱ‐seq [17] ѱ Chemical modification to terminate reverse transcription in 
the pseudouridylated site

NAD captureSeq [43] NAD Chemoenzymatic capture
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immunoprecipitation and the m1A residue to cause truncated reverse transcription products, 
has been applied successfully for the transcriptome‐wide characterizations of m1A [39].

Chemical‐based methods rely on the misincorporation of nucleotide or nucleotide conver-
sion to truncate or stop RNA products during reverse transcription. RNA bisulfite conver-
sion followed by high‐throughput sequencing (BS‐seq, Figure 2A) is a chemical conversion 
method based on converting unmodified cytosine residues to uracil and keeping m5C 
residues unchanged by bisulfite treatment. BS‐seq is the only method currently available 
for the  detection of site‐specific endogenous m5C [40, 41]. Inosine chemical erasing (ICE) 
uses nucleotide switching to detect A‐to‐I modifications [42]. Inosine ribonucleotides are 

Figure 2. Chemical‐based strategies to detect RNA modification. (A) BS‐seq: Bisulfite selectively converts cytosine, not 
m5C, into uracil, subsequent to reverse transcription and RNA‐seq processes. After comparison with reference genome 
or control, m5C residues are identified as cytosine, whereas unmethylated cytosine as thymine. (B) ICE‐seq: The 
acrylonitrile can cyanoethylate inosine into N1‐cyanoethylinosine (ce1I). Reverse transcription will transcript inosine 
into cytidine but arrest at the ce1I site after the CE treatment. cDNA library, sequencing, reads mapping, and analysis 
will detect A‐to‐I sites. (C) Ѱ‐seq: The reagent CMC followed by incubation at alkaline pH leads to hydrolysis of U‐
CMC adducts, which are less stable than Ѱ‐CMC. Reverse transcription in Ѱ‐CMC sample will stop at Ѱ site. Following 
RNA‐seq and reads mapping will detect Ѱ sites with increased transcript termination in the CMC‐treated sample. (D) 
NAD captureSeq: ADPRC enzyme catalyzes a transglycosylation reaction of NAD with pentynol, which are bound by 
CuAAC with biotin azide. The RNA with NAD is captured by streptavidin beads before being readied for cDNA library 
preparation and sequenced for identifying NAD‐capped RNAs.
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cyanoethylated with acrylonitrile to form N1‐cyanoethylinosine (ce1I). Subsequently, the 
Watson‐Crick base pairing of I with C is inhibited by the newly formed N1‐cyanoethyl 
group of ce1I. Thus, cyanoethylation of I blocks cDNA synthesis by preventing extension 
of the cDNA that bears a cytosine (C) corresponding to the editing site during reverse 
transcription. However, I will be replaced by guanosine (G) [42] (Figure 2B). To detect 
RNA pseudouridylation, several groups developed Pseudo‐seq (Ѱ‐seq). RNA is treated 
with N3‐[N‐cyclohexyl‐Nʹ‐β‐(4‐methylmorpholinium) ethylcarbodiimide‐Ѱ (N3‐CMC‐Ѱ)], 
which binds covalently to U, G, and Ѱ residues and then exposed to alkaline pH to reduce 
stable U‐CMC and G‐CMC adducts. Reverse transcription will pause at the remaining 
intact Ѱ‐CMC sites, allowing for the mapping of Ѱ‐modifications [16, 17] (Figure 2C). 
Comparison of mapping reads from CMC‐treated samples versus non‐treated controls, 
Ѱ will be detected as the sites with an increased proportion of reads supporting reverse 
transcription termination. NAD captureSeq (Figure 2D) requires the chemo‐enzymatic 
modification of NAD which is capping the 5ʹ end of RNA. The first step, the transglyco-
sylation of NAD, is catalyzed by ADP‐ribosyl cyclase (ADPRC) from Aplysia californica in 
the presence of an alkynyl alcohol. In the second step, the modified NAD is biotinylated 
by a copper‐catalyzed azide‐alkyne cycloaddition. Thirdly, the biotin‐linked RNA is cap-
tured on streptavidin beads and processed further for cDNA library preparation and NGS. 
The NAD‐biotin‐captured sequences are then identified by comparison with the control 
samples which were not subjected to the first step of chemo‐enzymatic biotinylation [43].

4. Physiological functions of RNA modifications

Although we do not have full knowledge on the effects of RNA modification on physiologi-
cal function, there is increasing evidence that they play critical roles in the regulation of gene 
expression, cellular functions, and development. Disruptions of RNA modification mecha-
nisms have also been associated with disease. We present here a few examples, which dem-
onstrate the importance of RNA modification on physiological function.

As stated earlier, m6A modifications are commonly found throughout eukaryotes, as dem-
onstrated by multiple m6A‐seq studies. Human m6A‐seq analyses revealed 12,769 putative 
m6A sites within 6990 and 250 protein‐coding and non‐coding transcripts, respectively 
[26], whereas, in mice, 4513 m6A peaks were identified in 3376 and 66 protein‐coding and 
non‐coding transcripts, respectively [26]. The m6A consensus motif, RRACU, was iden-
tified with a median distance from m6A peaks of 24 nucleotides [26]. Interestingly, the 
majority of m6A sites were conserved between both mouse and human transcriptomes and 
enriched further within long internal exons and around stop codons, suggesting strong 
evolutionary selection [26, 36]. m6A‐LAIC‐seq showed that methylated transcripts utilized 
proximal alternative polyadenylation (APA) sites, which resulted in shorter 3′ untrans-
lated regions, whereas non‐methylated transcripts tended to use distal APA sites [37]. This 
observation correlated with the finding that m6A‐modified transcripts had both signifi-
cantly shorter RNA half lives and slightly lower translational efficiencies than unmarked 
transcripts [44].
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In vitro and in vivo genetic depletion of the m6A writer, Mettl3, in both mouse and human, 
led to the absence of m6A modification within Nanog mRNA which encodes a pluripotency 
factor. The absence of m6A marks extended Nanog expression throughout differentiation 
and inhibited embryonic stem cell exit from self‐renewal towards lineage differentiation [44]. 
m6A‐seq in mouse naïve embryonic stem cells (ESCs), 11‐day‐old embryoid bodies (EBs), and 
mouse embryonic fibroblasts (MEFs) revealed m6A marks in naïve pluripotency‐promoting 
genes reduced mRNA stability of key pluripotency‐promoting transcripts and facilitated dif-
ferentiation [45]. These findings suggest that m6A modification provides the flexibility of the 
stem cell transcriptome required to differentiate into different lineages [44]. NANOG is also 
important in both the maintenance and specification of cancer stem cells which can metas-
tasize and form primary tumors. The exposure of breast cancer cells to hypoxia induced 
the expression of the eraser ALKBH5 which resulted in m6A demethylation in the 3ʹ UTR of 
NANOG mRNA and the increased half life of NANOG mRNA, thereby promoting the breast 
cancer stem cell (BCSC) phenotype [46]. The m6A reader YTHDF2 protects the 5′ UTR of 
stress‐induced transcripts from demethylation. Cap‐independent translation initiation was 
enhanced by 5′ UTR methylation [47]. m6A modification is critical for the regulation of HIV‐1 
replication and HIV‐1ʹs effect on the host immune system [48]. HIV‐1 viral infection induced 
m6A modification in both host and viral mRNAs. HIV‐1 coding, non‐coding, and splicing 
regulatory regions contained a total of 14 m6A methylation peaks. In addition, methylation of 
two highly conserved m6A target sites in the HIV‐1 rev response element (RRE) stem loop II 
region enriched the binding of the HIV‐1 rev protein to the RRE in vivo and enhanced nuclear 
export of HIV‐1 RNA [48]. The long non‐coding RNA X‐inactive specific transcript (XIST) 
regulates transcriptional silencing of genes on the X chromosome. XIST is heavily modified 
with at least 78 m6A sites. Knockdown of METTL3 leads to decreased XIST m6A marks and 
impairs XIST‐mediated gene silencing [49].

The tRNA T‐loop at position 58 commonly contains a m1A modification [50], along with posi-
tion 9 of metazoan mitochondrial tRNAs [51] and eukaryotic rRNAs [52]. Initiator tRNAMet 
contains fully modified m1A 58 which stabilizes its tertiary structure. Hypomodification of 
tRNA m1A 58 affects the association with polysomes and the subsequent efficiency of transla-
tion [53, 54]. m1A modifications in tRNA function in response to environmental stress [55], 
whereas m1A‐modified rRNA regulates ribosome biogenesis [52]. m1A‐ID‐seq demonstrated 
that m1A methylation regulated the dynamic response to stimuli and identified 901 m1A 
peaks enriched within the 5ʹ UTR near the start codons of 600 distinct protein‐coding and 
non‐coding RNAs [39].

m5C sites have been detected in several eukaryotic tRNA, Rrna, and mRNA. m5C marks sta-
bilize the secondary structure of tRNA, alter aminoacylation and codon recognition [56], and 
regulate translational fidelity [57]. A low level of internal m5C was found in mRNA cap struc-
tures in mammalian‐ and virus‐infected mammalian cells [58, 59]. BS‐seq identified 10,275 
sites in protein‐coding and non‐coding RNAs [41]. m5C marks in mRNAs were enriched near 
argonaute‐binding sites within the 3ʹ UTR [41].

A‐to‐I editing sites are distributed through human mRNA, including exons, introns. and 5ʹ 
and 3ʹ UTRs [60]. Alu repeat elements contain the highest frequency of A‐to‐I editing sites 
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cyanoethylated with acrylonitrile to form N1‐cyanoethylinosine (ce1I). Subsequently, the 
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group of ce1I. Thus, cyanoethylation of I blocks cDNA synthesis by preventing extension 
of the cDNA that bears a cytosine (C) corresponding to the editing site during reverse 
transcription. However, I will be replaced by guanosine (G) [42] (Figure 2B). To detect 
RNA pseudouridylation, several groups developed Pseudo‐seq (Ѱ‐seq). RNA is treated 
with N3‐[N‐cyclohexyl‐Nʹ‐β‐(4‐methylmorpholinium) ethylcarbodiimide‐Ѱ (N3‐CMC‐Ѱ)], 
which binds covalently to U, G, and Ѱ residues and then exposed to alkaline pH to reduce 
stable U‐CMC and G‐CMC adducts. Reverse transcription will pause at the remaining 
intact Ѱ‐CMC sites, allowing for the mapping of Ѱ‐modifications [16, 17] (Figure 2C). 
Comparison of mapping reads from CMC‐treated samples versus non‐treated controls, 
Ѱ will be detected as the sites with an increased proportion of reads supporting reverse 
transcription termination. NAD captureSeq (Figure 2D) requires the chemo‐enzymatic 
modification of NAD which is capping the 5ʹ end of RNA. The first step, the transglyco-
sylation of NAD, is catalyzed by ADP‐ribosyl cyclase (ADPRC) from Aplysia californica in 
the presence of an alkynyl alcohol. In the second step, the modified NAD is biotinylated 
by a copper‐catalyzed azide‐alkyne cycloaddition. Thirdly, the biotin‐linked RNA is cap-
tured on streptavidin beads and processed further for cDNA library preparation and NGS. 
The NAD‐biotin‐captured sequences are then identified by comparison with the control 
samples which were not subjected to the first step of chemo‐enzymatic biotinylation [43].

4. Physiological functions of RNA modifications

Although we do not have full knowledge on the effects of RNA modification on physiologi-
cal function, there is increasing evidence that they play critical roles in the regulation of gene 
expression, cellular functions, and development. Disruptions of RNA modification mecha-
nisms have also been associated with disease. We present here a few examples, which dem-
onstrate the importance of RNA modification on physiological function.

As stated earlier, m6A modifications are commonly found throughout eukaryotes, as dem-
onstrated by multiple m6A‐seq studies. Human m6A‐seq analyses revealed 12,769 putative 
m6A sites within 6990 and 250 protein‐coding and non‐coding transcripts, respectively 
[26], whereas, in mice, 4513 m6A peaks were identified in 3376 and 66 protein‐coding and 
non‐coding transcripts, respectively [26]. The m6A consensus motif, RRACU, was iden-
tified with a median distance from m6A peaks of 24 nucleotides [26]. Interestingly, the 
majority of m6A sites were conserved between both mouse and human transcriptomes and 
enriched further within long internal exons and around stop codons, suggesting strong 
evolutionary selection [26, 36]. m6A‐LAIC‐seq showed that methylated transcripts utilized 
proximal alternative polyadenylation (APA) sites, which resulted in shorter 3′ untrans-
lated regions, whereas non‐methylated transcripts tended to use distal APA sites [37]. This 
observation correlated with the finding that m6A‐modified transcripts had both signifi-
cantly shorter RNA half lives and slightly lower translational efficiencies than unmarked 
transcripts [44].
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In vitro and in vivo genetic depletion of the m6A writer, Mettl3, in both mouse and human, 
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and inhibited embryonic stem cell exit from self‐renewal towards lineage differentiation [44]. 
m6A‐seq in mouse naïve embryonic stem cells (ESCs), 11‐day‐old embryoid bodies (EBs), and 
mouse embryonic fibroblasts (MEFs) revealed m6A marks in naïve pluripotency‐promoting 
genes reduced mRNA stability of key pluripotency‐promoting transcripts and facilitated dif-
ferentiation [45]. These findings suggest that m6A modification provides the flexibility of the 
stem cell transcriptome required to differentiate into different lineages [44]. NANOG is also 
important in both the maintenance and specification of cancer stem cells which can metas-
tasize and form primary tumors. The exposure of breast cancer cells to hypoxia induced 
the expression of the eraser ALKBH5 which resulted in m6A demethylation in the 3ʹ UTR of 
NANOG mRNA and the increased half life of NANOG mRNA, thereby promoting the breast 
cancer stem cell (BCSC) phenotype [46]. The m6A reader YTHDF2 protects the 5′ UTR of 
stress‐induced transcripts from demethylation. Cap‐independent translation initiation was 
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replication and HIV‐1ʹs effect on the host immune system [48]. HIV‐1 viral infection induced 
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region enriched the binding of the HIV‐1 rev protein to the RRE in vivo and enhanced nuclear 
export of HIV‐1 RNA [48]. The long non‐coding RNA X‐inactive specific transcript (XIST) 
regulates transcriptional silencing of genes on the X chromosome. XIST is heavily modified 
with at least 78 m6A sites. Knockdown of METTL3 leads to decreased XIST m6A marks and 
impairs XIST‐mediated gene silencing [49].

The tRNA T‐loop at position 58 commonly contains a m1A modification [50], along with posi-
tion 9 of metazoan mitochondrial tRNAs [51] and eukaryotic rRNAs [52]. Initiator tRNAMet 
contains fully modified m1A 58 which stabilizes its tertiary structure. Hypomodification of 
tRNA m1A 58 affects the association with polysomes and the subsequent efficiency of transla-
tion [53, 54]. m1A modifications in tRNA function in response to environmental stress [55], 
whereas m1A‐modified rRNA regulates ribosome biogenesis [52]. m1A‐ID‐seq demonstrated 
that m1A methylation regulated the dynamic response to stimuli and identified 901 m1A 
peaks enriched within the 5ʹ UTR near the start codons of 600 distinct protein‐coding and 
non‐coding RNAs [39].

m5C sites have been detected in several eukaryotic tRNA, Rrna, and mRNA. m5C marks sta-
bilize the secondary structure of tRNA, alter aminoacylation and codon recognition [56], and 
regulate translational fidelity [57]. A low level of internal m5C was found in mRNA cap struc-
tures in mammalian‐ and virus‐infected mammalian cells [58, 59]. BS‐seq identified 10,275 
sites in protein‐coding and non‐coding RNAs [41]. m5C marks in mRNAs were enriched near 
argonaute‐binding sites within the 3ʹ UTR [41].
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among the untranslated regions of the genome [61]. Intronic editing mediated by ADAR1 
contributes to the maintenance of mature mRNA by protecting it against unfavorable pro-
cessing of the Alu sequence and by degradation of aberrant transcripts by nonsense‐medi-
ated decay (NMD) [42]. A‐to‐I RNA editing is diminished in brain tissue from patients with 
Alzheimerʹs disease relative to controls [62]. The reduction occurs predominantly in the hip-
pocampus and to a lesser extent in the temporal and frontal lobes. These alterations result 
in decreased levels of protein recoding, the process of changing the amino acid sequence by 
A‐to‐I editing, in Alzheimerʹs disease [62]. The APOBEC3 family of cytidine deaminases has 
been associated with mutations in cancer genomes in several types of cancer. Accumulated 
data linking mutations in oncogenes and tumor suppressor genes with APOBEC3B activity 
are providing evidence that cytidine deaminase‐induced mutagenesis is activated in tumori-
genesis, thus providing novel therapeutic targets [63].

Pseudo‐seq revealed that mRNA Ψ marks mRNA are regulated in response to stimuli, such 
as serum starvation in human cells and nutrient deprivation in yeast. The observations indi-
cate that Ψ triggers a rapid regulatory mechanism to rewire the genetic code through induc-
ible mRNA [16]. Pseudouridylation of rRNA and telomerase RNA component (TERC) were 
also found to be reduced in dyskeratosis congenita patients [17]. Furthermore, missense 
mutations in pseudouridine synthase 1 (PUS1) may lead to deficient pseudouridylation 
of mitochondrial tRNAs in mitochondrial myopathy and sideroblastic anemia (MLASA) 
patients [64].

NAD captureSeq identified NAD as a 5ʹ RNA cap in a subset of regulatory RNAs in bacteria 
[43] and subsequently proposed that this type of capping may be common across all of life [65]. 
It is safe to predict that investigation of the roles and mechanisms of 5ʹ NAD caps in eukary-
otes will draw increasing attention in the biomedical field. This is due to mainly two reasons. 
First, the chemical modification of the 5ʹ end of RNA is critical for RNA processing, local-
ization, stability, translational efficiency, and epitranscriptomic regulation of gene expression 
[66]. Second, NAD is both a co‐substrate for enzymes, such as the sirtuins and poly(adenosine 
diphosphate‐ribose) polymerases, and a critical electron‐carrying coenzyme for enzymes that 
catalyze oxidation‐reduction reactions. NAD is involved in nearly all physiological processes. 
For example, cellular NAD+ levels are modulated during aging, and the use and production 
of NAD+ usage has been associated with prolonged health and life spans [67]. Regulation of 
NAD‐mediated RNA capping and hence gene expression will undoubtedly enrich our under-
standing of NADʹs expanding roles in normal physiology and disease pathogenesis.

5. Perspective

Although rapid advances have been made in the past few years in epitranscriptomics, 
more work is needed in this field. To date, more than 140 different RNA modifications 
have been identified. However, there are only a few reliable high‐throughput techniques 
available to determine the global occurrence of a particular RNA modification. Thus, 
there is a need for the development of more high‐throughput techniques to characterize 
the full spectra of RNA modifications. It is also important to pursue the comprehensive 
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identification and  characterization of the enzymes responsible for RNA modification since 
several of these enzymes have been shown to play important roles in development and 
disease. It is essential to decipher all functions and disease involvements of all RNA mod-
ifications. Development of additional technologies to alter RNA modifications, includ-
ing the engineering of RNA‐modifying enzymes with modified substrate specificity and 
activity via the CRISPR‐Cas 9 system, will open the door to new types of detection and 
analysis pipelines. With further technological development, we will be able to elucidate 
the sequence‐specific signatures in RNA that direct modifications and then better relate 
these RNA marks to their corresponding biological functions. Finally, the advancement 
of current approaches, coupled with new technologies, will allow for the development of 
new therapies and therapeutic targets for human diseases associated with deficient RNA 
modification.
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among the untranslated regions of the genome [61]. Intronic editing mediated by ADAR1 
contributes to the maintenance of mature mRNA by protecting it against unfavorable pro-
cessing of the Alu sequence and by degradation of aberrant transcripts by nonsense‐medi-
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are providing evidence that cytidine deaminase‐induced mutagenesis is activated in tumori-
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ible mRNA [16]. Pseudouridylation of rRNA and telomerase RNA component (TERC) were 
also found to be reduced in dyskeratosis congenita patients [17]. Furthermore, missense 
mutations in pseudouridine synthase 1 (PUS1) may lead to deficient pseudouridylation 
of mitochondrial tRNAs in mitochondrial myopathy and sideroblastic anemia (MLASA) 
patients [64].

NAD captureSeq identified NAD as a 5ʹ RNA cap in a subset of regulatory RNAs in bacteria 
[43] and subsequently proposed that this type of capping may be common across all of life [65]. 
It is safe to predict that investigation of the roles and mechanisms of 5ʹ NAD caps in eukary-
otes will draw increasing attention in the biomedical field. This is due to mainly two reasons. 
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For example, cellular NAD+ levels are modulated during aging, and the use and production 
of NAD+ usage has been associated with prolonged health and life spans [67]. Regulation of 
NAD‐mediated RNA capping and hence gene expression will undoubtedly enrich our under-
standing of NADʹs expanding roles in normal physiology and disease pathogenesis.
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Although rapid advances have been made in the past few years in epitranscriptomics, 
more work is needed in this field. To date, more than 140 different RNA modifications 
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available to determine the global occurrence of a particular RNA modification. Thus, 
there is a need for the development of more high‐throughput techniques to characterize 
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identification and  characterization of the enzymes responsible for RNA modification since 
several of these enzymes have been shown to play important roles in development and 
disease. It is essential to decipher all functions and disease involvements of all RNA mod-
ifications. Development of additional technologies to alter RNA modifications, includ-
ing the engineering of RNA‐modifying enzymes with modified substrate specificity and 
activity via the CRISPR‐Cas 9 system, will open the door to new types of detection and 
analysis pipelines. With further technological development, we will be able to elucidate 
the sequence‐specific signatures in RNA that direct modifications and then better relate 
these RNA marks to their corresponding biological functions. Finally, the advancement 
of current approaches, coupled with new technologies, will allow for the development of 
new therapies and therapeutic targets for human diseases associated with deficient RNA 
modification.
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Abstract

Next-generation sequencing (NGS) technologies represented the next step in the evo-
lution of DNA sequencing, through the generation of thousands to millions of DNA 
sequences in a short time. The relatively fast emergence and success of NGS in research 
revolutionized the field of genomics and medical diagnosis. The traditional medicine 
model of diagnosis has changed to one precision medicine model, leading to a more accu-
rate diagnosis of human diseases and allowing the selection of molecular target drugs 
for individual treatment. This chapter attempts to review the main features of NGS tech-
nique (concepts, data analysis, applications, advances and challenges), starting with a 
brief history of DNA sequencing followed by a comprehensive description of most used 
NGS platforms. Further topics will highlight the application of NGS towards routine 
practice, including variant detection, whole-exome sequencing (WES), whole-genome 
sequencing (WGS), custom panels (multi-gene), RNA-seq and epigenetic. The potential 
use of NGS in precision medicine is vast and a better knowledge of this technique is nec-
essary for an efficacious implementation in the clinical workplace. A centralized chapter 
describing the main NGS aspects in the clinic could help beginners, scientists, researchers 
and health care professionals, as they will be responsible for translating genomic data 
into genomic medicine.
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1. Introduction

Precision medicine is a new way of practising medicine, which has been gaining strength in 
recent years, is based on the individual characteristics of each patient (genetic, environmental, 
behavioural) to optimize and customize strategies for prevention, detection and therapy [1, 
2]. The molecular knowledge has contributed strongly to the advancement of precision medi-
cine, providing specific strategies for target therapies and diagnosis of patients with cancer, 
Mendelian diseases and others. Statistics indicated that traditional clinical practices some-
times lead to poor health outcomes and also a waste of medical resources. It is estimated that 
about 75 billion US dollars per year (30% of health care expenditure) are destined for unneces-
sary or ineffective treatments in the USA [3].

As a result of the genome project, many molecular tools have been developed and allow 
medical and scientific groups to improve patient management based on a better under-
standing of disease biology, providing a more specific and accurate prevention and treat-
ment of diseases [4]. Precision medicine redefines the way traditional medicine is practised. 
There is a great deal of investment nowadays in prevention using these new technologies, 
as opposed to old medicine based on treatment since the disease was already evident or 
irreversible [2].

In recent times, Sanger sequencing, referred to as a ‘first-generation’ sequencing method, 
has partly been replaced by ‘next-generation’ sequencing (NGS) methods [4, 5]. NGS allows 
identifying biomarkers for early diagnosis as well as for personalized treatments. The emer-
gence of NGS has changed the way clinical research, basic and applied science are done. The 
NGS allows producing millions of data with a smaller investment [4, 6]. Among the available 
NGS applications, one of them will be the resequencing of the human genome and the better 
genetic understanding of various human diseases. A great challenge will be the interpreta-
tion of this great number of data and its translation for the medical application [6]. One of the 
major near-term medical impact of the NGS revolution will be the elucidation of mechanisms 
of human pathogenesis, leading to improvements in the diagnosis and the selection of treat-
ment and prevention. Thanks to second-generation sequencing technologies, it has become 
easier to sequence the expressed genes (‘transcriptomes’), known exons (‘exomes’) and com-
plete genomes of patient’s samples [7].

This chapter encompasses revised concepts, applications, advances, limitations and the his-
tory of technological advances until the emergence of NGS technique in the era of precision 
medicine, starting with a brief history of DNA sequencing followed by a comprehensive 
description of most used NGS platforms, sequencing chemistries methodology and general 
workflows. Further topics will highlight the application of NGS towards routine practice, 
including variant detection, whole-genome sequencing (WGS), whole-exome sequencing 
(WES) and multi-gene panels. A centralized chapter describing the main NGS features in the 
clinic could help beginners, scientists, researchers and health care professionals, as they will 
be responsible for translating genomic data into genomic medicine.
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2. From Sanger to NGS sequencing

In 1908, Garrod introduced his concept ‘the inborn error of metabolism’ that changed the 
areas of biochemistry, genetics and medicine [8]. His principal contribution was the under-
standing about the relationship between gene-enzyme, the molecular basis of genetic diseases. 
Although today this concept is considered outdated because of discoveries like RNA splicing, 
RNAi and others, its development allowed the researchers to understand how changes in 
DNA sequence could cause genetic disease. This finding increased the interest of scientists to 
know about human DNA sequence and mutations.

The search to know the nucleotide sequence of DNA began in the 1960s with several studies 
that demonstrated new methods with different strategies [9–13], but it was in 1977 that Sanger 
developed the method called ‘Chain-termination’ that became the most used method (first 
generation) to sequencing DNA (Figure 1). The method consisted of the use of dideoxynucle-
otides (ddNTPs), which are deoxynucleotide analogs (dNTPs) that disrupt DNA synthesis, 
and the separation of the different DNA fragments in a gel. These special nucleotides were 
radiolabeled and therefore the sequence could be inferred after the disclosure of gel autoradi-
ography [14]. Numerous modifications have been made in this technique to make the method 
more efficient, robust and sensitive. Among them are the substitution of nucleotide radiola-
beled to fluorescence that allowed the sequencing reaction to occur in one tube [15], the devel-
opment of the polymerase chain reaction [16], the separation of DNA fragments by capillary 
electrophoresis [17] and later the development of equipment that allowed the sequencing of 

Figure 1. Timeline of DNA sequencing evolution from Sanger to NGS and the cost per raw megabase of DNA sequenced 
[17]. Equipment of all generations is still being improved and released commercially. Dot: milestones; rectangle: 
equipments; White: first-generation sequencing; Light gray: second-generation sequencing; Dark gray: third-generation 
sequencing.
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more complex genomes. The most famous sequencing project, the Human Genome Project, 
produced in 13 years 3 billion of sequenced bases with the estimated cost around $2.7 billion 
[18]. To date, Sanger is still the gold-standard method in diagnostic tests and although the 
most recent methods have a much higher processing capacity, confirmation of some findings 
is made using this method.

The second generation of DNA sequencing can be defined as the era of the parallel mas-
sive sequencing on a micro scale. The Pyrosequencing method developed by Nyrén and 
colleagues in 1996 was the starting point for this generation. This technique differed sub-
stantially from previous ones because it did not use radio or fluorescence-labelled nucleo-
tides and there was no need of electrophoretic run. The method is based on the action of two 
enzymes: ATP sulfurylase and luciferase. ATP sulfurylase converts pyrophosphate released 
in nucleotide incorporation into an ATP molecule that is used by luciferase substrate. This 
process releases light signal in proportion to the amount of nucleotides incorporated, and 
the sequence can be determined according to the serial addition of nucleotides [19]. Later on, 
this technology was improved and licensed generating the first ‘second-generation’ equip-
ment, known as 454 (Roche). Among the improvements made, there are the DNA binding 
in beads through an adapter and the amplification of this DNA in water-in-oil microreac-
tors (emulsion PCR). These changes and the use of microplates that compartmentalized the 
process and high-definition detection systems dramatically increased the amount of DNA 
sequenced and defined the second generation [20]. The disadvantage of this technology is 
related to homopolymer regions because of difficulty in interpreting the signal strength when 
five or more nucleotides are incorporated in a single wash cycle. Other technologies were 
then developed, such as that used by Illumina which consists of binding the DNA in a flow-
cell through adapters, and the parallel massive amplification occurs in clusters for each DNA 
strand that was originally bound in the flow-cell, called bridge-amplification. This process 
generates paired-ends sequences that are an advantage over other methodologies, since they 
improve the accuracy of mapping, mainly in repetitive regions or where DNA rearrange-
ments or gene fusions occur. The method uses ‘reversible terminator chemistry’ which is a 
modified fluorescent dNTP that reversibly blocks DNA synthesis, so the addition of each 
nucleotide can be synchronized and monitored by a charge-coupled device (CCD) sensor 
[21]. This is one of the most accurate and with lowest error rate of sequencing methodologies 
used currently; however, it generally requires higher DNA concentration. Another method-
ology is based on oligonucleotide ligation sequencing known as SOLiD and developed by 
Applied Biosystems (now Thermo Fisher Scientific). The method does not do sequencing by 
synthesis but by ligation of oligonucleotides fluorescence-labelled. Each probe is an octamer, 
which contains two known nucleotides in the 3’ end followed by six degenerated nucleotides 
with one of four fluorescent labels linked to the 5’ end. After probe annealing and ligation, 
fluorescent dye is cleavage and a new probe is ligated. Multiple cycles are performed accord-
ing to the read length. The template from primer (n) is removed and the second round of 
sequencing is performed with a primer complementary to the (n-1) position [22]. This method 
shows good results; however, it is considered slow compared to the others and therefore was 
replaced by Ion Torrent (Thermo Fisher Scientific) technology. Like 454, the DNA bound in 
a bead is massively amplified by emulsion PCR and detection occurs in picotiter wells using 
complementary metal-oxide-semiconductor (CMOS) due to the pH difference caused by the 

Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health296

release of H+ ions in the nucleotide incorporation. This methodology is the first to use a detec-
tion method that does not work with light signal [23]. The advantage of this technology is the 
speed of the process and the low cost of the equipment; however, it has the same problem 
about the detection of homopolymers. The second generation of the sequencing was marked 
by the high capacity of the sequencers in the generation of data in a single run and conse-
quently the computational development-like bioinformatics tools to analyse them. The cost 
of sequencing decreased dramatically at this stage. At the beginning of the first-generation 
sequencing (2001), the approximate cost per megabase sequenced was $5292.39 and at the 
end of this phase (2007) was $397.09, while in the second generation the sequencing cost was 
$102.13 (2008) and at the end (2015) only $0.014 [18], showing a more pronounced decline in 
this phase (Figure 1).

There are some discussions about which technology marked the beginning of the third gen-
eration [24–27]. In this review, we will consider the technology of single-molecule sequencing 
(SMS), which has no need to amplify the DNA. The first technology to use SMS was ‘virtual 
terminators’ based on a method very similar to Illumina, but a single DNA molecule is fixed in 
a flow-cell with 25 channels. The process occurs in cycles where the dNTPs are incorporated 
and the corresponding fluorescence is captured by a CCD camera. This process generates 
short readings (25 bp) and it is considered slow and there is a lot of noise in the signal [28]. 
Despite being the first third-generation sequencing technology, its history was brief because 
the company Helicos Biosciences filed for Chap. 11 bankruptcy. Another technology devel-
oped is the ‘single molecule real time’ (SMRT) that is commercialized by Pacific Biosciences. 
The SMRT consists of the immobilization of a single molecule in a chamber called ‘zero-mode 
waveguide (ZMW)’ where the incorporation of the fluorescent nucleotides occurs. ZMW 
allows the incorporation of each nucleotide to be monitored in real time and without interfer-
ence from other light signals. The reads are very long (40 kb) and allow detecting modified 
bases [29, 30]. Finally, the technology of ‘nanopores’ consists of conducting a molecule of 
DNA or RNA through a biological or not nanopore. The detection occurs due to differences in 
the current of ions generated by each nucleotide. The reads are incredibly long (500 kb), and 
the process is extremely fast without the need for special nucleotides. The company Oxford 
Nanopore Technologies (ONT) is the first company to commercialize sequencers using this 
technology, including a portable version (MinION) that was used to sequence a mixture of 
bacteriophage, Escherichia coli and Mus musculus DNA at the international space station (ISS) 
[31]. In common, these technologies still have high error rates that are improving with the 
development of technology. Its main use today is to aid in the assembly of complex regions of 
the genome where gene fusions, large deletions and insertions and repetitive regions occur. 
The third generation will further revolutionize precision medicine, enabling sequencing at 
lower cost and enabling this to occur virtually anywhere.

3. Clinical applications

In recent times, NGS has made possible a better understanding of genetic diseases and 
became a significant technological advance in the practice of diagnostic and clinical medicine 
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colleagues in 1996 was the starting point for this generation. This technique differed sub-
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tides and there was no need of electrophoretic run. The method is based on the action of two 
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in nucleotide incorporation into an ATP molecule that is used by luciferase substrate. This 
process releases light signal in proportion to the amount of nucleotides incorporated, and 
the sequence can be determined according to the serial addition of nucleotides [19]. Later on, 
this technology was improved and licensed generating the first ‘second-generation’ equip-
ment, known as 454 (Roche). Among the improvements made, there are the DNA binding 
in beads through an adapter and the amplification of this DNA in water-in-oil microreac-
tors (emulsion PCR). These changes and the use of microplates that compartmentalized the 
process and high-definition detection systems dramatically increased the amount of DNA 
sequenced and defined the second generation [20]. The disadvantage of this technology is 
related to homopolymer regions because of difficulty in interpreting the signal strength when 
five or more nucleotides are incorporated in a single wash cycle. Other technologies were 
then developed, such as that used by Illumina which consists of binding the DNA in a flow-
cell through adapters, and the parallel massive amplification occurs in clusters for each DNA 
strand that was originally bound in the flow-cell, called bridge-amplification. This process 
generates paired-ends sequences that are an advantage over other methodologies, since they 
improve the accuracy of mapping, mainly in repetitive regions or where DNA rearrange-
ments or gene fusions occur. The method uses ‘reversible terminator chemistry’ which is a 
modified fluorescent dNTP that reversibly blocks DNA synthesis, so the addition of each 
nucleotide can be synchronized and monitored by a charge-coupled device (CCD) sensor 
[21]. This is one of the most accurate and with lowest error rate of sequencing methodologies 
used currently; however, it generally requires higher DNA concentration. Another method-
ology is based on oligonucleotide ligation sequencing known as SOLiD and developed by 
Applied Biosystems (now Thermo Fisher Scientific). The method does not do sequencing by 
synthesis but by ligation of oligonucleotides fluorescence-labelled. Each probe is an octamer, 
which contains two known nucleotides in the 3’ end followed by six degenerated nucleotides 
with one of four fluorescent labels linked to the 5’ end. After probe annealing and ligation, 
fluorescent dye is cleavage and a new probe is ligated. Multiple cycles are performed accord-
ing to the read length. The template from primer (n) is removed and the second round of 
sequencing is performed with a primer complementary to the (n-1) position [22]. This method 
shows good results; however, it is considered slow compared to the others and therefore was 
replaced by Ion Torrent (Thermo Fisher Scientific) technology. Like 454, the DNA bound in 
a bead is massively amplified by emulsion PCR and detection occurs in picotiter wells using 
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about the detection of homopolymers. The second generation of the sequencing was marked 
by the high capacity of the sequencers in the generation of data in a single run and conse-
quently the computational development-like bioinformatics tools to analyse them. The cost 
of sequencing decreased dramatically at this stage. At the beginning of the first-generation 
sequencing (2001), the approximate cost per megabase sequenced was $5292.39 and at the 
end of this phase (2007) was $397.09, while in the second generation the sequencing cost was 
$102.13 (2008) and at the end (2015) only $0.014 [18], showing a more pronounced decline in 
this phase (Figure 1).

There are some discussions about which technology marked the beginning of the third gen-
eration [24–27]. In this review, we will consider the technology of single-molecule sequencing 
(SMS), which has no need to amplify the DNA. The first technology to use SMS was ‘virtual 
terminators’ based on a method very similar to Illumina, but a single DNA molecule is fixed in 
a flow-cell with 25 channels. The process occurs in cycles where the dNTPs are incorporated 
and the corresponding fluorescence is captured by a CCD camera. This process generates 
short readings (25 bp) and it is considered slow and there is a lot of noise in the signal [28]. 
Despite being the first third-generation sequencing technology, its history was brief because 
the company Helicos Biosciences filed for Chap. 11 bankruptcy. Another technology devel-
oped is the ‘single molecule real time’ (SMRT) that is commercialized by Pacific Biosciences. 
The SMRT consists of the immobilization of a single molecule in a chamber called ‘zero-mode 
waveguide (ZMW)’ where the incorporation of the fluorescent nucleotides occurs. ZMW 
allows the incorporation of each nucleotide to be monitored in real time and without interfer-
ence from other light signals. The reads are very long (40 kb) and allow detecting modified 
bases [29, 30]. Finally, the technology of ‘nanopores’ consists of conducting a molecule of 
DNA or RNA through a biological or not nanopore. The detection occurs due to differences in 
the current of ions generated by each nucleotide. The reads are incredibly long (500 kb), and 
the process is extremely fast without the need for special nucleotides. The company Oxford 
Nanopore Technologies (ONT) is the first company to commercialize sequencers using this 
technology, including a portable version (MinION) that was used to sequence a mixture of 
bacteriophage, Escherichia coli and Mus musculus DNA at the international space station (ISS) 
[31]. In common, these technologies still have high error rates that are improving with the 
development of technology. Its main use today is to aid in the assembly of complex regions of 
the genome where gene fusions, large deletions and insertions and repetitive regions occur. 
The third generation will further revolutionize precision medicine, enabling sequencing at 
lower cost and enabling this to occur virtually anywhere.

3. Clinical applications

In recent times, NGS has made possible a better understanding of genetic diseases and 
became a significant technological advance in the practice of diagnostic and clinical medicine 
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[32]. NGS allows the analysis of multiple regions of the genome in one single reaction and has 
been shown to be a cost-effective and an efficient tool in investigating patients with genetic 
diseases. Genetic data produced via NGS provides significant benefits to medical practice 
including accurate identification of biomarkers of disease, detecting inherited disorders and 
identifying genetic factors that can help predict responses to therapies [32, 33]. However, rec-
ommendations on clinical implementation of NGS that are still in discussion and that hamper 
its use in the genetic clinic. A variety of molecular diagnostic test use sequencing technology, 
such as single- and multi-gene panel tests, cell-free DNA for non-invasive prenatal testing, 
whole-exome sequencing (WES), whole-genome sequencing (WGS). Considering that the use 
of NGS as a diagnostic tool is recent, there are challenges including when to order, on whom 
to order and how to interpret and communicate the results to the patient and family [32]. 
Therefore, it is necessary to understand the application, strength and limitations of the dif-
ferent approaches to recognize which one is the most suitable for your case. In the following 
topics, we will emphasize common applications of this technology into clinical practice.

3.1. Multi-gene panels

The traditional approach still holds great value for many disorders. Single-gene testing is 
indicated when the clinical features for a patient are typical for a particular disorder and the 
association between the disorder and the specific gene is well established and has the mini-
mal locus heterogeneity [34]. However, many genetic conditions are intractable to diagnostic 
evaluation, mainly because of the clinical variability and genetic locus heterogeneity, such as 
cardiomyopathies, epilepsy, congenital muscular dystrophy, X-linked intellectual disability 
and cancer susceptibility in families with atypical phenotypes [35]. The diagnostic process is 
exhausted, with clinical assessment followed by sequential laboratory testing, in most cases 
tests being negative. In cases with unidentified genetic conditions (e.g., developmental delay/
cognitive disability and autism spectrum disorders), the diagnosis rate can vary greatly [36] 
and a multi-gene panel is more appropriate. In diagnostic of cancer, for example, Tothill and 
colleagues [37] illustrate the application of these multi-gene panel by analysing samples of 
patients with cancers of unknown primary (CUP). The clinical management of patients with 
CUP is hampered by the absence of a definitive site of origin and this kind of NGS analysis 
could help to define new therapeutic options.

In multi-gene panel tests, many genes associated with a specific phenotype are sequenced 
and analysed concomitantly, decreasing cost and improving efficiency of genetic diagnostic 
[37]. The number and which genes will be evaluated for the same or similar indications may 
vary significantly among different clinical laboratories and several considerations need to be 
taken for gene inclusion. The majority of authors believe that only genes with a strong disease 
association should be included since the ability to interpret their findings is much better due 
to clinical evidence [38]. However, some authors consider including associated genes that 
have overlapping phenotypes for the purpose of differential diagnosis, or all possible genes 
that are remotely associated with the phenotype of interest with the objective of a better and 
faster diagnostic [34]. For cancer diagnostic, multi-gene panel may include high-penetrance 
genes as well as associated genes with a moderate increase in risk [35].
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The transition from single-gene to multi-gene testing should not compromise the sensitivity 
of the test to identify variants, mainly at genes that are responsible for a significant propor-
tion of the defects (core genes). The sensitivity of NGS does not depend only on horizontal 
coverage but the vertical coverage is important as well [39]. Additional genes will increase the 
chance of the diagnostic, but this should not be at cost of missing mutations that would pre-
viously have been detected by single-gene testing [38]. Sanger sequencing or other available 
techniques can help to solve this problem for filling in low-coverage and no-coverage regions.

3.2. Whole-genome and whole-exome sequencing

Whole-genome sequencing (also known as WGS, full-genome sequencing, complete genome 
sequencing or entire genome sequencing) is the process of determining the complete DNA 
sequence of an organism's genome at a single time. The major benefit of WGS is completed cov-
erage of the genome, including promoters and regulatory regions. In whole-exome sequenc-
ing (WES), all coding regions are sequenced with a relatively deeper depth. Compared to 
WGS, the major advantage of WES is a significant cost reduction [40].

Human genome comprises ~3 × 109 bp having coding and non-coding sequences. About 3 × 107 
bp (1%) (30 Mb) of the genome are the coding sequences [33]. It is estimated that 85% of the 
disease-causing mutations are located in coding and functional regions of the genome [41, 42]. 
For this reason, sequencing the complete coding regions (exome) has the power to uncover the 
causes of large number of rare, mostly monogenic, genetic disorders as well as predisposing 
variants in common diseases and cancers [33]. In 2009, Choi and colleagues first showed the 
value of WES in the medical practice by making genetic diagnoses of congenital chloride diar-
rhoea in patients suspected of Bartter syndrome, a renal salt-wasting disease. WES was con-
ducted on six patients who do not show any mutations in classic genes for Bartter syndrome. 
Results revealed homozygous deletion in SLC26A3 gene for all patients, which provided a 
molecular diagnosis of congenital chloride diarrhoea that was later confirmed on clinical eval-
uation. This result was the first to show the value of WES in making a clinical diagnosis and 
several similar studies have followed [43].

There are certain considerations to order WES instead of other NGS tools [32]. Although 
exomes are supposed to cover all the protein-coding regions of the genome, the average cov-
erage in many platforms tends to be between 85 and 95% [32, 44]. This means that a particular 
gene of interest that is closely linked to patient’s phenotype may not be covered, completely 
or partially. There are many reasons that include poorly performing capture probes due to 
high GC content, sequence homology or repetitive sequences. A targeted approach, such as 
NGS single- or multi-gene panels, on the other hand, has higher or even complete cover-
age of all the specific genes by filling in the gaps with complementary technologies such as 
Sanger sequencing or long-range PCR. Besides offering a more comprehensive coverage of 
the ‘known’ phenotype-specific gene panels, this targeted approach also allows for deeper 
coverage of these genes compared to WES, which provides greater confidence in the vari-
ants detected. However, all NGS tools are still prone to sequencing artefacts, and Sanger 
sequencing is recommended to confirm the variants detected before returning the results to 
the patient [44]. In addition, the patient and their family need to be aware of all the nuances 
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tion of the defects (core genes). The sensitivity of NGS does not depend only on horizontal 
coverage but the vertical coverage is important as well [39]. Additional genes will increase the 
chance of the diagnostic, but this should not be at cost of missing mutations that would pre-
viously have been detected by single-gene testing [38]. Sanger sequencing or other available 
techniques can help to solve this problem for filling in low-coverage and no-coverage regions.

3.2. Whole-genome and whole-exome sequencing

Whole-genome sequencing (also known as WGS, full-genome sequencing, complete genome 
sequencing or entire genome sequencing) is the process of determining the complete DNA 
sequence of an organism's genome at a single time. The major benefit of WGS is completed cov-
erage of the genome, including promoters and regulatory regions. In whole-exome sequenc-
ing (WES), all coding regions are sequenced with a relatively deeper depth. Compared to 
WGS, the major advantage of WES is a significant cost reduction [40].

Human genome comprises ~3 × 109 bp having coding and non-coding sequences. About 3 × 107 
bp (1%) (30 Mb) of the genome are the coding sequences [33]. It is estimated that 85% of the 
disease-causing mutations are located in coding and functional regions of the genome [41, 42]. 
For this reason, sequencing the complete coding regions (exome) has the power to uncover the 
causes of large number of rare, mostly monogenic, genetic disorders as well as predisposing 
variants in common diseases and cancers [33]. In 2009, Choi and colleagues first showed the 
value of WES in the medical practice by making genetic diagnoses of congenital chloride diar-
rhoea in patients suspected of Bartter syndrome, a renal salt-wasting disease. WES was con-
ducted on six patients who do not show any mutations in classic genes for Bartter syndrome. 
Results revealed homozygous deletion in SLC26A3 gene for all patients, which provided a 
molecular diagnosis of congenital chloride diarrhoea that was later confirmed on clinical eval-
uation. This result was the first to show the value of WES in making a clinical diagnosis and 
several similar studies have followed [43].

There are certain considerations to order WES instead of other NGS tools [32]. Although 
exomes are supposed to cover all the protein-coding regions of the genome, the average cov-
erage in many platforms tends to be between 85 and 95% [32, 44]. This means that a particular 
gene of interest that is closely linked to patient’s phenotype may not be covered, completely 
or partially. There are many reasons that include poorly performing capture probes due to 
high GC content, sequence homology or repetitive sequences. A targeted approach, such as 
NGS single- or multi-gene panels, on the other hand, has higher or even complete cover-
age of all the specific genes by filling in the gaps with complementary technologies such as 
Sanger sequencing or long-range PCR. Besides offering a more comprehensive coverage of 
the ‘known’ phenotype-specific gene panels, this targeted approach also allows for deeper 
coverage of these genes compared to WES, which provides greater confidence in the vari-
ants detected. However, all NGS tools are still prone to sequencing artefacts, and Sanger 
sequencing is recommended to confirm the variants detected before returning the results to 
the patient [44]. In addition, the patient and their family need to be aware of all the nuances 
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related to WES and WGS [45]. It is important to let them know that the test may not yield posi-
tive results, and it is crucial to clarify that even positive results can offer diagnoses but do not 
improve prognosis and treatment.

To request an exam that uses the WES technique, one must start collecting as much informa-
tion as possible about the patient. It is important to have a detailed family history, phenotype 
condition, symptoms and also, if possible, the inheritance pattern of the suspected disease 
[46]. With the phenotype and pedigree information, a systematic review of literature and 
databases should be performed to guide the clinician on which gene(s) are crucial and must 
be analysed. In cases of genetic heterogeneity, targeted NGS may be the preferred approach. 
On the other hand, if the disease mechanism is unknown, WES may be the best choice [47].

WES can result in approximately 60,000–100,000 genetic variants that can be classified into 
pathogenic, benign or with uncertain significance (VUS) [48]. With WES, a single pathogenic 
variant that is probably the cause of the patient phenotype can be detected in about 20–36%. 
For the other cases, it is possible to find multiple candidate variants or even no one. If no 
candidate variants are found, there are many reasons for it that include poor coverage or 
the mutation residing outside the protein-coding region of the gene, clinical summary with 
insufficient information or the defect is not due to a simple nucleotide change in a single gene 
[49–53].

The outcome of an exome should be evaluated by a multidisciplinary team that is involved 
with each patient's case. A discussion is necessary between physicians, geneticists, and other 
health professionals about all the clinical and laboratory findings to make a link with phe-
notype, family history and symptoms. It is necessary to review the WES results, scientific 
literature and medical information [32]. If more than one candidate variant is detected, this 
multidisciplinary team must perform further evaluation(s) to determine which of the variant 
is causing the phenotype. Finally, if the test results are negative, reasons for this should be 
discussed in the report. As the use of this tool is becoming more frequent and more accessible, 
it is possible that in the near future new pathogenic variants and genetic syndromes will be 
described and characterized, which causes these negative results to be reanalysed within a 
few years [32].

In cases of suspicion of Mendelian disease, the exome sequencing is usually indicated for the 
detection of rare variants and samples from the patient and his/her parents could be needed. 
This is usually the standard setting in cases where the Sanger sequencing of the candidate 
gene gave negative result or so there are multiple genes that must be tested for the condition 
that would be costly and time consuming. In most cases, the results obtained from WES reach 
a molecular diagnosis but do not alter the management, treatment or prognosis [32, 54].

Targeted exome sequencing is becoming increasingly popular in oncology for assessing the 
full sequence of cancer-related genes. Targeted exome sequencing also facilitates sequencing 
at a greater depth, and thus the identification of subclonal mutations. Alternately, rather than 
sequencing the full exome sequence, it is possible to look at all the genes reported to be related 
to cancer in general. Although hotspot mutation testing facilitates large-scale sequencing of 
many samples, it does limit the knowledge that is acquired through sequencing because it 
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limits the evaluation to small regions in selected genes. Consequently, small, targeted NGS 
panels increase the possibility of omitting relevant mutations for which evaluation is not being 
conducted, thus limiting the clinical knowledge that is gained through WES. WES could high-
light novel insights into cancer mechanisms; identification of the DNA sequence of cancer 
cells in comparison with that of normal cells could help to reach an in-depth understanding 
of cancer. Using WES, it is also feasible to check germline and somatic mutations in human 
cancers [33].

Approximately 5–10% of cancers are hereditary. WES allows testing of multiple genes at 
once and greatly improves the variation detection rate. Many patients with hereditary cancer 
have tested negative for one specific genetic variation, but with WES, it is easier to find caus-
ative mutations. In a study of 300 high-risk breast cancer families, it was found previously 
undetected mutations in 52 probands and the reduced sequencing costs and turnaround time 
made the approach even more practical in clinics [55].

To detect familial germline mutations, WGS might be advantageous for WES-negative cases 
in families with a great chance of carrying a genetic variant [56]. The major technical advan-
tage of WGS is that the specificity is theoretically 100% (average 95–98% in practice, practi-
cally without gaps) with a uniform coverage in the regions of interest (ROIs) throughout the 
input material. Thus, the chance of losing disease-causing variants due to technical errors is 
much lower with WGS [57–59]. The major challenge in applying this tool on a medical routine 
is the great costs, the complex pipeline for data analysis and data interpretation. However, 
in the near future, the costs of NGS should be lowered, studies on genetics over non-coding 
regions should be improved and more approach will be implemented. With that, WGS should 
be performed regularly for diagnostic in order to find the causative genetic variants [56].

Under gene panel analysis, about 70–92% of all cases remain negative, depending on the 
disease. It is expected that important genes will not be contemplated with these tools, mak-
ing WES and WGS analysis more appropriate to identify genetic variants in cases of familial 
syndromes. These tools (WES and WGS) have already been reported in identifying several 
risk genes for various types of cancer such as the PALB2 and ATM genes in pancreatic cancer, 
the hereditary pheochromocytoma susceptibility gene MAX [60] or the hereditary colorectal 
cancer moderate-risk genes POLD1 and POLE [61].

Nowadays, the clinical utility of WES and WGS as a generic test for mutation discovery for 
every genetic diagnostic question is not yet appropriate [62] and should be directed to specific 
patient groups [63]. This limitation is due to the high cost, the need of complex bioinformatics 
pipelines, large storage capacity and the expected high number of VUS detected.

3.3. RNA-sequencing

A transcriptome represents the complete set of RNA molecules from any genome at any time 
or condition and RNA plays essential role in several biological processes, including untrans-
lated RNA species such as microRNAs (miRNAs). RNA-sequencing (RNA-seq) consists of an 
in-depth RNA analysis through NGS technologies and became the state-of-art technique for 
transcriptomic [64]. A typical RNA-seq experiment consists of a good experimental design, 
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related to WES and WGS [45]. It is important to let them know that the test may not yield posi-
tive results, and it is crucial to clarify that even positive results can offer diagnoses but do not 
improve prognosis and treatment.

To request an exam that uses the WES technique, one must start collecting as much informa-
tion as possible about the patient. It is important to have a detailed family history, phenotype 
condition, symptoms and also, if possible, the inheritance pattern of the suspected disease 
[46]. With the phenotype and pedigree information, a systematic review of literature and 
databases should be performed to guide the clinician on which gene(s) are crucial and must 
be analysed. In cases of genetic heterogeneity, targeted NGS may be the preferred approach. 
On the other hand, if the disease mechanism is unknown, WES may be the best choice [47].

WES can result in approximately 60,000–100,000 genetic variants that can be classified into 
pathogenic, benign or with uncertain significance (VUS) [48]. With WES, a single pathogenic 
variant that is probably the cause of the patient phenotype can be detected in about 20–36%. 
For the other cases, it is possible to find multiple candidate variants or even no one. If no 
candidate variants are found, there are many reasons for it that include poor coverage or 
the mutation residing outside the protein-coding region of the gene, clinical summary with 
insufficient information or the defect is not due to a simple nucleotide change in a single gene 
[49–53].

The outcome of an exome should be evaluated by a multidisciplinary team that is involved 
with each patient's case. A discussion is necessary between physicians, geneticists, and other 
health professionals about all the clinical and laboratory findings to make a link with phe-
notype, family history and symptoms. It is necessary to review the WES results, scientific 
literature and medical information [32]. If more than one candidate variant is detected, this 
multidisciplinary team must perform further evaluation(s) to determine which of the variant 
is causing the phenotype. Finally, if the test results are negative, reasons for this should be 
discussed in the report. As the use of this tool is becoming more frequent and more accessible, 
it is possible that in the near future new pathogenic variants and genetic syndromes will be 
described and characterized, which causes these negative results to be reanalysed within a 
few years [32].

In cases of suspicion of Mendelian disease, the exome sequencing is usually indicated for the 
detection of rare variants and samples from the patient and his/her parents could be needed. 
This is usually the standard setting in cases where the Sanger sequencing of the candidate 
gene gave negative result or so there are multiple genes that must be tested for the condition 
that would be costly and time consuming. In most cases, the results obtained from WES reach 
a molecular diagnosis but do not alter the management, treatment or prognosis [32, 54].

Targeted exome sequencing is becoming increasingly popular in oncology for assessing the 
full sequence of cancer-related genes. Targeted exome sequencing also facilitates sequencing 
at a greater depth, and thus the identification of subclonal mutations. Alternately, rather than 
sequencing the full exome sequence, it is possible to look at all the genes reported to be related 
to cancer in general. Although hotspot mutation testing facilitates large-scale sequencing of 
many samples, it does limit the knowledge that is acquired through sequencing because it 
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limits the evaluation to small regions in selected genes. Consequently, small, targeted NGS 
panels increase the possibility of omitting relevant mutations for which evaluation is not being 
conducted, thus limiting the clinical knowledge that is gained through WES. WES could high-
light novel insights into cancer mechanisms; identification of the DNA sequence of cancer 
cells in comparison with that of normal cells could help to reach an in-depth understanding 
of cancer. Using WES, it is also feasible to check germline and somatic mutations in human 
cancers [33].

Approximately 5–10% of cancers are hereditary. WES allows testing of multiple genes at 
once and greatly improves the variation detection rate. Many patients with hereditary cancer 
have tested negative for one specific genetic variation, but with WES, it is easier to find caus-
ative mutations. In a study of 300 high-risk breast cancer families, it was found previously 
undetected mutations in 52 probands and the reduced sequencing costs and turnaround time 
made the approach even more practical in clinics [55].

To detect familial germline mutations, WGS might be advantageous for WES-negative cases 
in families with a great chance of carrying a genetic variant [56]. The major technical advan-
tage of WGS is that the specificity is theoretically 100% (average 95–98% in practice, practi-
cally without gaps) with a uniform coverage in the regions of interest (ROIs) throughout the 
input material. Thus, the chance of losing disease-causing variants due to technical errors is 
much lower with WGS [57–59]. The major challenge in applying this tool on a medical routine 
is the great costs, the complex pipeline for data analysis and data interpretation. However, 
in the near future, the costs of NGS should be lowered, studies on genetics over non-coding 
regions should be improved and more approach will be implemented. With that, WGS should 
be performed regularly for diagnostic in order to find the causative genetic variants [56].

Under gene panel analysis, about 70–92% of all cases remain negative, depending on the 
disease. It is expected that important genes will not be contemplated with these tools, mak-
ing WES and WGS analysis more appropriate to identify genetic variants in cases of familial 
syndromes. These tools (WES and WGS) have already been reported in identifying several 
risk genes for various types of cancer such as the PALB2 and ATM genes in pancreatic cancer, 
the hereditary pheochromocytoma susceptibility gene MAX [60] or the hereditary colorectal 
cancer moderate-risk genes POLD1 and POLE [61].

Nowadays, the clinical utility of WES and WGS as a generic test for mutation discovery for 
every genetic diagnostic question is not yet appropriate [62] and should be directed to specific 
patient groups [63]. This limitation is due to the high cost, the need of complex bioinformatics 
pipelines, large storage capacity and the expected high number of VUS detected.

3.3. RNA-sequencing

A transcriptome represents the complete set of RNA molecules from any genome at any time 
or condition and RNA plays essential role in several biological processes, including untrans-
lated RNA species such as microRNAs (miRNAs). RNA-sequencing (RNA-seq) consists of an 
in-depth RNA analysis through NGS technologies and became the state-of-art technique for 
transcriptomic [64]. A typical RNA-seq experiment consists of a good experimental design, 
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sample preparation, library construction, sequencing and data analysis. However, due to sev-
eral experimental options available, a careful planning and cost estimation is necessary before 
starting. These include number and type of replicates (technical vs. biological), sequencing 
platform (e.g. Illumina, Ion Torrent), library preparation method (e.g. rRNA depletion or 
mRNA enrichment; strand-specific or not; single or paired end), throughput, read length, 
sequencing depth and coverage. RNA-seq best practices can be found in Chap. RNA-seq: 
Applications and Best Practices from this book.

RNA-seq enables detection of novel genes and isoforms, gene fusions, splice and chimeric 
variants, genomic alterations and gene expression quantification. Although RNA-seq outper-
forms microarray in transcriptomic analysis [65], its clinical application is still in its infancy 
and, for instance, will not replace current approaches. RNA-seq is considered a complemen-
tary method depending on the needs and resources available, assisting clinicians in making 
decisions. In clinical practice, RNA measurement has applications across different areas in 
human health such as therapeutic selection, disease diagnostic and treatment [66].

Clinical diagnosis of infectious disease through RNA-seq is still rare, since quantitative PCR 
(RT-qPCR) assays are still the most common technique used for viral detection and geno-
typing. Applications of NGS in virology diagnostic can be used for analysis of patients with 
unexplained illness, especially during outbreaks and epidemics [67–70]. It also includes the 
identification of novel pathogens [71–74], viral community characterization [75–77], whole 
viral genome reconstruction [73, 78, 79], antiviral drug resistance [80–83], epidemiology [84–87] 
and transcriptomic [88–90]. The use of NGS in virology is increasing the knowledge of viral 
infection dynamics and their correlation with human health and treatment.

For oncology, RNA-based cancer diagnostics is being used by clinical oncologist to define 
tumour transcriptome due to its potential to guide treatment and drug therapy [91]. Its 
application are especially related to gene expression profile and variants, and gene fusions 
detection. The pathogenicity of gene fusions in cancer is well known. Most gene fusions are 
correlated with specific tumour subtypes, representing diagnostic biomarkers and leading to 
novel therapeutic opportunities and benefits [92–94]. Some pharmacological treatments are 
already in clinical use [94]. Key somatic DNA mutations can also represent cancer biomarkers 
and can be identified by transcriptomic mapping [95–98].

Gene expression in cancer is still quantified by non-sequencing methods (e.g. RT-qPCR and 
microarrays) [91]. RNA-seq can measure expression of tumour antigens or immune check-
point receptors and ligands after a given treatment, giving some answers about patient drug 
response [91, 99, 100]. Gene expression signatures can also be used for cancer types’ classifica-
tion that directly impact prognosis and treatment definition and response [100].

NGS can also be applied for circulating tumour RNA (ctRNA) discovery. The analysis of 
ctRNA in plasma is still in its beginning and presents specific challenges. ctRNA degrades 
faster than circulating tumour DNA (ctDNA) and needs to be purified rapidly or added in 
preservative solutions (e.g. TRIzol) and freezed at −80°C, not always an accessible technique 
to many clinical sites [101]. Despite these challenges, ctRNAs represent good biomarkers of 
early detection of multiple tumour types, such as breast, lung, prostate and colorectal cancers 
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[101–109]. NGS is a more powerful tool for ctRNA detection; however, RT-qPCR remains 
more usable for clinical diagnostic applications [110].

3.4. Epigenetics

An emerging field that has a huge impact on medicine and clinical diagnostic is epigenetics. 
The term was coined by Conrad Waddington in the 1940s and refers to the study of heritable 
changes in gene activity and expression that do not involve the DNA sequence itself, that is, a 
change in phenotype without a change in genotype [111, 112]. Additional information about 
epigenetics history can be found in Ref. [113]. Epigenetics mechanisms represent another 
layer of gene regulation and NGS allowed to understand the epigenetics status on a large 
scale and at a single base-resolution, including mainly DNA methylation, histone modifica-
tion and non-coding RNA (ncRNA)-associated silencing [111, 112].

DNA methylation was the first epigenetic mechanism identified and is the best known and 
the most frequent in human cancer. It involves covalent modification of cytosine through the 
addition of a methyl group to cytosines of CpG (cytosine/guanine) islands [111, 112]. This meth-
ylation is maintained by DNA methyltransferase (DNMTs) and plays roles for gene transcrip-
tional repression, transposable elements silencing and viral defence [111]. Unmethylated DNA 
is found in active regions of chromatin, and methylated DNA is found in inactive regions [112].

Post-translational histone modifications are markers for chromatin activity through acetyla-
tion and methylation of conserved lysine residues on the amino-terminal tail domains [112]: 
acetylation is found in active regions of chromatin, whereas hypoacetylation is found in inac-
tive euchromatic or heterochromatic regions [111, 112]. Enzymes involved in this process 
include histone deacetylases (HDACs), histone acetylases and histone methyltransferases 
[112]. These and other post-translational histone modification processes (e.g. phosphoryla-
tion) result in distinct histone modification patterns that form a ‘histone code’ [114].

Since epigenetic mechanisms regulate DNA accessibility, perturbations of the cell epigene-
tic pattern affect gene expression and can give rise to human diseases, that can be inherited 
or somatically acquired [111, 112]. Prader-Willi, Angelman and Beckwith-Wiedemann syn-
dromes, for example, are the best characterized congenital imprinting disorders [111, 115, 116].

4. Data analysis

Data analysis is a critical step of NGS tests. This analysis consist of a primary analysis, in 
which the base pairs are called and quality score are generated; a secondary analysis, numer-
ous reads are aligned to the human reference sequence; and a tertiary analysis which consists 
of variant calling and annotation [117]. Many databases are useful for helping the variant 
annotation, such as the 1000 Genome Project [118], dbSNP database [119], Clinvar—NCBI 
[120], LOVD—Leiden Open Variation Database [121], The Cancer Genome Atlas (TCGA) [122] 
and others. However, information from these sources can contain ambiguous and insufficient 
information. Variants detected should be reported according to Human Genome Variation 
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sample preparation, library construction, sequencing and data analysis. However, due to sev-
eral experimental options available, a careful planning and cost estimation is necessary before 
starting. These include number and type of replicates (technical vs. biological), sequencing 
platform (e.g. Illumina, Ion Torrent), library preparation method (e.g. rRNA depletion or 
mRNA enrichment; strand-specific or not; single or paired end), throughput, read length, 
sequencing depth and coverage. RNA-seq best practices can be found in Chap. RNA-seq: 
Applications and Best Practices from this book.

RNA-seq enables detection of novel genes and isoforms, gene fusions, splice and chimeric 
variants, genomic alterations and gene expression quantification. Although RNA-seq outper-
forms microarray in transcriptomic analysis [65], its clinical application is still in its infancy 
and, for instance, will not replace current approaches. RNA-seq is considered a complemen-
tary method depending on the needs and resources available, assisting clinicians in making 
decisions. In clinical practice, RNA measurement has applications across different areas in 
human health such as therapeutic selection, disease diagnostic and treatment [66].

Clinical diagnosis of infectious disease through RNA-seq is still rare, since quantitative PCR 
(RT-qPCR) assays are still the most common technique used for viral detection and geno-
typing. Applications of NGS in virology diagnostic can be used for analysis of patients with 
unexplained illness, especially during outbreaks and epidemics [67–70]. It also includes the 
identification of novel pathogens [71–74], viral community characterization [75–77], whole 
viral genome reconstruction [73, 78, 79], antiviral drug resistance [80–83], epidemiology [84–87] 
and transcriptomic [88–90]. The use of NGS in virology is increasing the knowledge of viral 
infection dynamics and their correlation with human health and treatment.

For oncology, RNA-based cancer diagnostics is being used by clinical oncologist to define 
tumour transcriptome due to its potential to guide treatment and drug therapy [91]. Its 
application are especially related to gene expression profile and variants, and gene fusions 
detection. The pathogenicity of gene fusions in cancer is well known. Most gene fusions are 
correlated with specific tumour subtypes, representing diagnostic biomarkers and leading to 
novel therapeutic opportunities and benefits [92–94]. Some pharmacological treatments are 
already in clinical use [94]. Key somatic DNA mutations can also represent cancer biomarkers 
and can be identified by transcriptomic mapping [95–98].

Gene expression in cancer is still quantified by non-sequencing methods (e.g. RT-qPCR and 
microarrays) [91]. RNA-seq can measure expression of tumour antigens or immune check-
point receptors and ligands after a given treatment, giving some answers about patient drug 
response [91, 99, 100]. Gene expression signatures can also be used for cancer types’ classifica-
tion that directly impact prognosis and treatment definition and response [100].

NGS can also be applied for circulating tumour RNA (ctRNA) discovery. The analysis of 
ctRNA in plasma is still in its beginning and presents specific challenges. ctRNA degrades 
faster than circulating tumour DNA (ctDNA) and needs to be purified rapidly or added in 
preservative solutions (e.g. TRIzol) and freezed at −80°C, not always an accessible technique 
to many clinical sites [101]. Despite these challenges, ctRNAs represent good biomarkers of 
early detection of multiple tumour types, such as breast, lung, prostate and colorectal cancers 
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[101–109]. NGS is a more powerful tool for ctRNA detection; however, RT-qPCR remains 
more usable for clinical diagnostic applications [110].

3.4. Epigenetics

An emerging field that has a huge impact on medicine and clinical diagnostic is epigenetics. 
The term was coined by Conrad Waddington in the 1940s and refers to the study of heritable 
changes in gene activity and expression that do not involve the DNA sequence itself, that is, a 
change in phenotype without a change in genotype [111, 112]. Additional information about 
epigenetics history can be found in Ref. [113]. Epigenetics mechanisms represent another 
layer of gene regulation and NGS allowed to understand the epigenetics status on a large 
scale and at a single base-resolution, including mainly DNA methylation, histone modifica-
tion and non-coding RNA (ncRNA)-associated silencing [111, 112].

DNA methylation was the first epigenetic mechanism identified and is the best known and 
the most frequent in human cancer. It involves covalent modification of cytosine through the 
addition of a methyl group to cytosines of CpG (cytosine/guanine) islands [111, 112]. This meth-
ylation is maintained by DNA methyltransferase (DNMTs) and plays roles for gene transcrip-
tional repression, transposable elements silencing and viral defence [111]. Unmethylated DNA 
is found in active regions of chromatin, and methylated DNA is found in inactive regions [112].

Post-translational histone modifications are markers for chromatin activity through acetyla-
tion and methylation of conserved lysine residues on the amino-terminal tail domains [112]: 
acetylation is found in active regions of chromatin, whereas hypoacetylation is found in inac-
tive euchromatic or heterochromatic regions [111, 112]. Enzymes involved in this process 
include histone deacetylases (HDACs), histone acetylases and histone methyltransferases 
[112]. These and other post-translational histone modification processes (e.g. phosphoryla-
tion) result in distinct histone modification patterns that form a ‘histone code’ [114].

Since epigenetic mechanisms regulate DNA accessibility, perturbations of the cell epigene-
tic pattern affect gene expression and can give rise to human diseases, that can be inherited 
or somatically acquired [111, 112]. Prader-Willi, Angelman and Beckwith-Wiedemann syn-
dromes, for example, are the best characterized congenital imprinting disorders [111, 115, 116].

4. Data analysis

Data analysis is a critical step of NGS tests. This analysis consist of a primary analysis, in 
which the base pairs are called and quality score are generated; a secondary analysis, numer-
ous reads are aligned to the human reference sequence; and a tertiary analysis which consists 
of variant calling and annotation [117]. Many databases are useful for helping the variant 
annotation, such as the 1000 Genome Project [118], dbSNP database [119], Clinvar—NCBI 
[120], LOVD—Leiden Open Variation Database [121], The Cancer Genome Atlas (TCGA) [122] 
and others. However, information from these sources can contain ambiguous and insufficient 
information. Variants detected should be reported according to Human Genome Variation 
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Society (HGVS) recommendations, with information of the human reference genome version 
and transcript information used to variant description [117]. The reference coding sequence 
should be preferably from the RefSeq database [123].

All pathogenic, likely pathogenic and VUS variants have to be reported. Secondary or inci-
dental finding (IF) is one significant matter, especially for WES, WGS and multi-gene panels, 
and its report will depend on local practice [38].

An in-house database containing all relevant variants identified in the laboratory provides an 
important tool in order to allow for further annotations, which greatly streamline the diag-
nostic process. Furthermore, an in-house database, linking patients and variants can help 
when a variant is re-classified. In this case, the laboratory is responsible for re-contacting the 
clinicians of the patients that are possibly affected by the new status of the variant [38].

4.1. Sanger sequencing validation

Concerning the limitations of technology, the false positive rate for NGS, a second method, 
as Sanger sequencing, is required to confirm any findings with possible clinical significance. 
The laboratory must be able to guarantee that report variants are true variants; therefore, it 
is essential to mention that the variant reports were confirmed by Sanger method. An NGS 
technology will likely evolve, and within a few years confirmation might prove to be unneces-
sary [34, 39].

In some cases, mainly in large panels, complementing NGS testing with Sanger sequencing is 
inevitable. This limitation of NGS is dependent on the platform and on the enrichment meth-
ods, once that there are a number of strategies available with advantages and disadvantages. 
Sanger sequencing can also be used to fill regions that fail to amplify for having sequence 
complexities, such as sequence homology with pseudo genes, highly repetitive regions, 
GC-rich content, allelic dropout, or regions that are supported by an insufficient number of 
reads to call variants confidently [34]. However, in practice, the laboratories can opt to apply 
different settings for NGS tests. Three kinds of tests of multi-genes panel are identified: (A) the 
lab informs that more than 99% of interest region are covered, and all the gaps are filled with 
Sanger sequencing; (B) the lab describes which regions are sequenced and fills some specific 
gaps (core genes) with Sanger sequencing; and (C) no additional Sanger sequencing is offered 
[38]. It is essential to mention the horizontal coverage acquired in the test and the limitations 
of these tests in a disclaimer [39].

5. Challenges

The diversity and rapid evolution of NGS technology causes many challenges associated 
with data generation, data manipulation and data storage [124]. Some of the major issues 
with analysis, interpretation, reproducibility and accessibility of NGS data includes: (A) 
NGS is still too expensive to be accessible by small labs or an individual; (B) data analysis is 
time-consuming and needs sufficient knowledge of bioinformatics; (C) the short sequencing 
read lengths supported by NGS is one of the major shortcomings which limit its application, 
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especially in de novo and highly repetitive regions sequencing; (D) data processing steps or 
bioinformatics is one major bottleneck for the implementation of NGS; (E) routine analysis 
of NGS data requires multidisciplinary teams; (F) it is critical to standardize the quality met-
rics for the NGS data generated. These include validation and comparison among platforms, 
data reliability, robustness and reproducibility, and quality of assemblers; (G) it is crucial to 
have a complete knowledge of family and personal history of the patient to help define the 
ideal analysis method, the analysis of the results obtained, and the post-test counselling and 
management [124–127].

Despite some challenges, it is hard not to be optimistic about the future of personalized 
genome sequencing and its potential impact on patient care and the advancement of knowl-
edge of human biology and disease.

5.1. Regulation on NGS tests

With the advancement of gene-sequencing technologies, numerous opportunities have arisen 
in the genetic diagnostic, preventive medicine and other areas of human health. As a result, 
several life science companies and clinical laboratories started their activities in this field 
offering equipment and supplies as well as molecular tests using the new-generation (par-
allel massive) sequencing methodology. However, most manufacturers do not market IVD 
products (in vitro diagnostic), but, in general, these products are classified as RUO (research 
use only). In practice, this difference in the classification of products and reagents represents 
serious implications on health. Products classified as IVD are regulated and therefore follow 
technical standards in their production and use, and consequently the efficiency must be guar-
anteed by the manufacturer. The ISO 13485 [128] is often used to ensure the quality of medical 
products, but other regulatory agencies such as the US Food and Drug Administration (FDA) 
may require other tests to prove this product is safe and effective, which is necessary for 
the product be classified as IVD and be commercialized on the American market. The same 
applies to the CE-IVD Marking in the European Economic Area (EEA). These requirements 
are part of an effort to ensure that users of these services and devices do not seek unneces-
sary treatment, delay their treatment or are exposed to inappropriate therapies. In the case 
of RUO products, none of these situations can be guaranteed, so the manufacturer will only 
be obliged to replace the product or its cost if it is performing improperly. In fact, some 
manufacturers may use standards of good manufacturing practice in the production of RUO 
equipment and supplies, but rarely perform tests to prove their efficiency in a particular case 
of diagnostic.

In some cases due to the need to respond quickly to the market, especially in areas where the 
technological advance exceeds the regulatory capacity, some agencies allow the use of tests 
developed by clinical laboratories. The regulation in these cases is very simpler and favours 
the development of new technologies as the case of new-generation sequencing (NGS). 
However, these tests should also be used with caution, and the laboratories must prove its 
accuracy, or otherwise there may be the same hazards of products classified as RUO. In 2013, 
the US FDA agency required to genetic testing company 23andME to suspend the marketing 
of its products until it receives clearance from the agency. In a letter addressed to one of its 
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founders, the agency states its concern about the use of one of its tests and the implications on 
the health of the patient in case of false results.

Some of the uses for which PGS (Personal Genome Service) is intended are particu-
larly concerning, such as assessments for BRCA-related genetic risk and drug responses 
(e.g., warfarin sensitivity, clopidogrel response, and 5-fluorouracil toxicity) because of 
the potential health consequences that could result from false positive or false negative 
assessments for high-risk indications such as these. For instance, if the BRCA-related 
risk assessment for breast or ovarian cancer reports is false positive, it could lead to 
undergo prophylactic surgery, chemoprevention, intensive screening, or other morbid-
ity-inducing actions, while false negative could result in failure to recognize an existing 
risk that may exist. [129]

This example illustrates the importance of evaluating the analytical characteristics of diagnos-
tic tests as well as the reagents and equipment used to perform these tests. In 2013, Illumina 
was the first company to get FDA approval for the commercialization of four NGS products. 
It was the first approval for a system based on NGS technology that will allow other com-
panies to develop their own tests using this technology. In 2014, it was the time of SOPHiA 
Genetics and Vela Diagnostics companies that obtained the CE-IVD Marking of the first prod-
ucts based on the NGS technology for clinical use.

Since then, the number of products that have the classification of IVD has been increasing; 
however, it is important to note that the classification of an IVD product depends on local 
regulations, and therefore products that are classified as IVD in a market may not have this 
classification in other markets. This is due to the regulatory differences between the agencies 
and the different requirements from each market. Anyway, it is usual that classification pro-
cess of these products for clinical use must be complex and sometimes elaborated, especially 
in areas such as genomics. Therefore, initiatives are needed to make the approval process for 
these products simpler and more flexible, to make the products available, but that ensures the 
accuracy and usefully testing.

In 2016, the US FDA agency issued two draft guidelines: ‘Use of Standards in FDA's Regulatory 
Oversight of Next Generation Sequencing (NGS) Based In Vitro Diagnostics (IVDs) Used for 
Diagnosing Germ line Diseases’ and ‘Use of Public Human Genetic Variant Databases to 
Support Clinical Validity for Next Generation Sequencing (NGS)-Based In Vitro Diagnostics’. 
Both are part of an initiative that aims to contribute to new testing using the NGS technology 
to reach the public with more speed and quality required by the market and health system.

5.2. Clinical validation

Almost all NGS approaches are still RUO, and validation is necessary before implementation 
as a diagnostic test. Prior clinical utility, a test must demonstrate analytical and clinical validity. 
Sensitivity, specificity, robustness, limits of detection, reproducibility, accuracy, precision and 
concordance between test results and clinical diagnosis should be analysed and measured. The 
test needs to evaluate patient outcomes and have positive impact on patient care [66, 130]. To assist 
the usage and implementation of NGS in clinical laboratories, some standards and best practice 
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guidelines are already available [38, 39, 44, 131–134]. Several NGS validation studies in clinical 
laboratories have been published and are rich sources of information [135–138]. Improvements 
in NGS technologies and data analysis require revalidation before implementation.

5.3. Computational infrastructure

The high volume of NGS data generated requires a complex computational infrastructure for 
processing, analysing and storing the data, including sophisticated data analysis pipelines. 
Cloud solutions such as Google, Amazon and Microsoft can be an alternative to an in-house 
computational infrastructure. More user-friendly bioinformatics software are desirable for 
non-bioinformaticians, such as Google Genomics [139], SOPHiA Genetics [140], IBM Watson 
[141], Illumina BaseSpace [142], Ion Reporter [143], Galaxy [144], CLC Genomics [145]. The 
variability of data formats generated during the analysis (e.g. FASTQ, UBAM, BAM/SAM and 
VCF files) and the laboratory must decide the appropriate data to be stored since the cost of 
managing, analysing and storing is high [124, 130, 146–149].

5.4. Genomic education

A multidisciplinary team of bioinformaticians, computational biologists, IT technicians, 
statisticians, molecular biologists, geneticists, genetic counsellors and clinicians is strongly 
needed and should be properly trained and educated for a successful implementation of NGS 
into routine diagnostic. Other related areas, such as lawyers, policy-makers, sales representa-
tive and investors, also need to be trained. Due to the constant updates of NGS approaches, 
an ongoing and continuing education about emerging technologies, software, databases and 
data analysis pipelines that reflect current practice is necessary. Genomic education also 
needs to be incorporated into medical school curriculum [148, 150].
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