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Biomimetic prosthetics are advanced devices that mimic the physical and functional 
properties of the replaced limb, thus restoring near-natural form and function. This 

flourishing field of research will continue to play an important role in improving 
quality of life, independence, and community participation for individuals with 
disabilities. This humble compilation showcases a few representative examples of 

progress in this exciting field.
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Preface

It was during my graduate studies, in 2005, that I was encouraged to work on a difficult
problem of reducing the high dimensionality in control and coordination of the human
hand. This is a complex problem as there are over 25 degrees of freedom in this complex
biomechanical architecture of the human hand. How the brain controls the human hand was
one of the difficult questions that fascinated me. In my graduate work, I developed theoreti‐
cal and conceptual models about how intelligent higher level centers (brain and spinal cord)
can control lower level biomechanical systems (limbs). Later, in 2008, in my postdoctoral
work, I was introduced to brain-machine interfaces, where I got an opportunity to test my
previously developed theoretical models in the real world and in real time. The applications
were limitless in the areas of prosthetics, paralysis, and many more. During these years, I
had the opportunity to work with individuals with spinal cord injury, stroke, and epilepsy.

In 2014, one life-changing event occurred in my life that shattered me. My mother, who was
61 at that time, had multiple seizures and stroke. Since then, she has right hand paralysis.
The very hand that taught me how to write and how to draw pencil drawings is now dys‐
functional. Her right hand is not functional to the extent that she cannot even perform basic
activities of daily living on her own. She lost her independence. Her quality of life diminish‐
ed in one fateful day. Although my area of research is in the field of assistive devices and
prosthetics, I could not empathize more with the fact that there were very limited solutions
that can bring back even half of her hand function without inconvenience. How can we, en‐
gineers and scientists, improve the feel and function of assistive devices? This question
keeps me up at nights.

My research is inspired and encouraged by many individuals such as my mother who need
assistive devices that can be more natural and less mechanistic. Biomimetic prosthetics is
one such flourishing field of research that brings assistive technology to finger tips. This
book is an effort to bring forth some important contributions in this field of research.

In this book, the readers will find various fields of biomimetic prosthetics in many areas of
this research such as neural control of prosthetics, sensory feedback in prosthetics, user inte‐
gration in assistive devices, aesthetics in prosthetics, and rehabilitation systems.

The introductory chapter briefly presents and puts biomimetic prosthetics in the context of
current prosthetics. This chapter discusses different fields of research and provides brief up‐
date on ongoing research in upper and lower limb prosthetics and exoskeletons.

The second chapter talks about decoding high-dimensional hand movements using nonin‐
vasive electroencephalographic (EEG) signals. Decoding the motor intent from neural sig‐
nals forms the basis of brain-machine interfaces. Understanding of neural basis of
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movement control enables us to design intuitive motor prosthesis that can mimic human
behavior. Decoding high-dimensional hand movements was only possible in invasive brain
recordings. Only recently researchers are attempting to decode hand movements in nonin‐
vasive brain recordings. In this chapter, by using fuzzy logic-based clustering and learning,
hand movements were decoded from EEG signals.

In the thirdchapter, sensory feedback in prosthetics is discussed. While action from the brain
to the end effector is the first half of the story, the rest belongs to sensation in the form of
feedback from end effector fed back to the brain. Sensory feedback plays a vital role in the
function of our limbs. In this chapter, a sensory feedback device for myoelectric prosthetic
hand was reported that can enhance the quality of life of myoelectric prosthetic hand users.
Two types of sensory feedback-force sense feedback and temperature sense feedback were
presented here.

In the fourth chapter, an important aspect of user integration with assistive devices is pre‐
sented. User integration with assistive devices to improve function is a key principle to con‐
sider to optimize the performance of prosthetics. This integration includes adapting and
customizing operation of devices and training programs according to several user character‐
istics. These characteristics may be physical dimensions, residual capabilities, restored sen‐
sory feedback, cognitive perception, or stereotypical actions. Adapting the design to include
these characteristics enables the user integration.

In the fifth chapter, the cosmetic prostheses that are natural in appearance are discussed. In
addition to the function of prosthetic, form, and appearance, in other words, aesthetics are
an important feature in improving the acceptability and usage of prosthetics. This chapter,
although limited to passive prosthetics, presents an important contribution that could be
used in conjunction with developments in active prosthetics.

In the sixth chapter, computer vision systems for tracking movements by prosthetic users
are presented. The treatment of postdebilitating injuries is a continuous dynamic process
that begins with prosthetic training and rehabilitation. Rehabilitation treatment can be car‐
ried out with computer vision systems such as recognition systems. This chapter discusses
the development of a skin color recognition system to be used with the residual limb and
prosthesis of skin-colored frame.

Finally, I would like to thank all the authors for their scholarly contributions and also Inte‐
chOpen staff especially Edi Lipovic, Mirena Calmic, and Ana Pantar for their kind assistance
throughout the editing process. Without their help, this book would not be possible. I hope
that readers will benefit in many ways from reading this book.

Ramana Vinjamuri
Assistant Professor

Department of Biomedical Engineering
Schaefer School of Engineering
Stevens Institute of Technology

New Jersey, USA
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1. Introduction

For thousands of years, the state-of-the-art prosthetics were very primitive. This is not due to
lack of effort or expertise. Rather, the technological capabilities of these eras restricted the
possible advancements in prosthetics, such that the most effective solutions leaned heavily
toward the most basic designs. These historic prosthetics were devices made of wood, metal,
and leather, crafted by blacksmiths and tradesmen, which served more as esthetic pieces than
functional tools. Technology today has progressed to the point where biomimetic and anthro-
pomorphic prosthetics are a reality and are beginning to rival their organic counterparts in
form and function. Biomimetics, as coined by Otto Schmitt, is the concept in which an artificial
device effectively mimics the structural, functional, and biological properties of the natural
entity in which it is modeled after [39]. Alternatively, devices that are anthropomorphic in
nature mimic the physical characteristics of the limb including its look and feel, integrating
aspects such as a textured skin-like material onto the device. These concepts in prosthetic
design are enabled by control systems, actuator designs, sensor and biosignal innovations,
biomechanical insights, and battery technology, among others. These advances have also led to
wearable robotic exoskeletons, allowing functional assistance for individuals with paralysis
whose affected limb remains intact. Properly leveraging these technologies requires one to
examine the device qualities desired by the user and learn about recent progress in research
and development. In this book, we will discuss these issues in the context of assistive limb
prosthetics and recent advances in the field.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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2. Background

An estimated 185,000 people undergo an amputation every year in America [32]. In the United
States, 1.6 million people were living with the loss of a limb in 2005, a number which is
expected to more than double by the year 2050 [42]. There are numerous causes for limb loss,
which can range from congenital-related instances to trauma [1]. The most common causes are
dysvascular and trauma related, making up 82 and 16% of all amputations, respectively [18].
Of all trauma-related amputations, upper limb amputations specifically account for 69%, as
well as 58% of all congenital-related amputations [3]. The economic cost to amputees comes
primarily from the procedure itself, additional hospital bills, prosthetic devices, and lost
wages. A traumatic lower limb amputation, as tracked in the NIH LEAP study, is expected to
cost the amputee $350,465 over 40 years, with $91,105 incurred within the first 2 years of the
injury. Of this total, an individual will spend $181,500 on prosthetics at approximately $10,232
per unit [13]. These costs are also corroborated in several unrelated studies on civilian and
veteran lower limb amputation costs [5, 19]. Similar estimates for upper limb amputations are
not readily available in the literature. Considering that children, along with veterans, are one
of the leading recipients of prosthetics [3], an additional economic burden comes with the
necessity of device abandonment. As most prosthetics are unable to change with a growing
child, a new prosthetic must be purchased to match the size of the child [3, 43]. Device rejection
rates in adolescents averaged approximately 45 and 35% for body-powered and electric pros-
thetics, while adult amputees saw significantly lower rejection rates of 26 and 23% for body-
powered and electric prosthetics, respectively [5].

Spinal cord injury, traumatic brain injury, and stroke are other major causes of functional
impairment. Traumatic brain injury alone was estimated to occur 1.74 million times per year
in the United States, with 10% of those occurrences being classified as severe with long-term
disability. Of those who are hospitalized for acute traumatic brain injury, 43% develop long-
term disability and have difficulty completing activities of daily living (ADL). Instances of
spinal cord injury occur between 12,000 and 20,000 times per year; 238,000–332,000 survivors
are still alive in the United States today, all with varying degrees of impairment. Stroke is the
most prevalent of the aforementioned conditions, with 795,000 annual occurrences, 610,000 of
which are first-time strokes. One study found 26% of individuals with stroke required assis-
tance for ADL, while half had reduced motor function and 30% required assistance walking.
An individual who survives a stroke will see a lifetime cost of $140,000, while an individual
with spinal cord injury will see anywhere from $334,170 to $1.02 million in expenses in the first
year and $40,589 to $177,808 per year after. The outcomes of traumatic brain injury vary too
much to estimate the annual cost per individual, but the overall direct cost in the United States
has been estimated to be $9.2 billion per year and $51.2 billion in indirect costs of work and lost
productivity [28].

An individual must undergo rehabilitation in the aftermath of any amputation or paralysis in
order to maintain as much function as possible. Many researchers believe rehabilitation out-
comes can be improved by using virtual reality-based training. This can be made more effec-
tive by tailoring difficulty of training to the user and by encouraging the user to transfer or
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empathize with the virtual model. Research groups have only recently begun investigating
virtual reality as a viable means of improving rehabilitation outcomes. Small-scale pilot studies
have shown that individuals with stroke improved functional scores in the Wolf Motor Func-
tion Test and Fugl-Meyer Assessment after playing commercial virtual reality video games
daily for 10 consecutive days [30]. These findings have been corroborated by numerous small
studies. No major study has taken place to examine this effect on a large patient population,
however. An individualized virtual reality rehabilitation scheme has been implemented in a
case study with a single hemiparetic individual poststroke with positive results [20]. Another
group conducted individualized virtual rehabilitation for 21 individuals with stroke, although
they did not report standard functional evaluation scores for their subjects [9]. In theory, a
subject who empathizes with the virtual model or exhibits transference onto the virtual world
could experience greater functional recovery than if they were training on an abstract game.
This is not a novel concept: the rubber hand experiment successfully mapped sensations on a
rubber hand to the user’s visually occluded hand by matching the sensation to the opposite
limb [6]. This technique has been successfully used to reduce phantom limb pain in the form of
mirror therapy [11] and virtual visual feedback [29].

Research conducted within the past 30 years has provided insight into the most sought-after
qualities of prosthetics. Designing systems, which satisfy these needs, are essential, as upper
limb amputees typically use their prosthetic for more than 8 hours a day [24]. The needs of
these users vary based on the type of amputation and type of prosthetic used, but several
common factors are present among the different groups. Passive prosthetic users tend to focus
more on cosmetics, comfort, and basic function, while users of body-powered and myoelectric
prosthetics tend to focus more on advanced function. Myoelectric prosthetic users tend to
request sensory feedback, along with simpler controls that can provide more dexterous
motions. Active or powered prostheses focus on even more advanced motor function by
providing external power through actuated motors. The most universally desired characteris-
tics among all groups are reductions in cost and weight. Overall, ADL tasks that people rank
as most important include mobility, object handling, and manipulation [14].

The decision to choose a passive or active prosthetic is primarily motivated by the type of
disability and the user’s desired level of physical activity. Additional factors include the user’s
ability to operate a powered device and personal requirements for cost, weight, and reliability.
A passive leg prosthetic would partially restore the user’s mobility, whereas a passive upper
limb prosthetic would not restore the user’s ability to interact with objects to the same degree.
Therefore, a passive lower limb prosthetic would be more appealing from a functional per-
spective than an equivalent upper limb prosthetic. Someone who expects minimal or low
levels of physical activity would be more likely to choose a passive prosthetic, since the extra
functionality of active systems would go unused while incurring additional cost and weight.
Furthermore, complex active prosthetics are more likely to break down and need repair, which
may not be acceptable for a user who is primarily interested in cosmetics.

There are several options for passive prosthetics. Local prosthetists are skilled in crafting
custom-fit cuffs and limb components, while several companies specialize in producing con-
vincing passive limbs. Some of the more prominent companies in upper limbs include Touch
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limb prosthetic would not restore the user’s ability to interact with objects to the same degree.
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Bionics and Liberating Technologies Inc. (LTI), which provide the Livingskin and FHL line of
passive hands, respectively. Livingskin products are custom-made silicon prosthetics that are
made to match the user’s skin tone and markings and can act as stand-alone prosthetics or skin
coverings for robotic systems. The FHL line of hands by LTI is foam endoskeletal hands, which
can be posed and mounted onto other products offered by the company, including passive
wrist, elbow, and shoulder prosthetics. Ottobock offers a whole-arm endoskeletal prosthetic
consisting of a metal articulated skeleton encased in foam and a silicon skin. Ottobock also
provides multiple passive lower limb prosthetics such as the Harmony P4, a vacuum-cuffed
below knee passive ankle, and the Aqualine, an above-knee endoskeletal prosthetic, which
features metals and coatings resistant to water and chlorine corrosion. The Solid Ankle,
Cushioned Heel (SACH) foot produced by NZALS is a popular passive foot prosthetic featur-
ing rubber regions that flex and deform through the wearer’s gait, replicating how the foot
articulates during normal walking. Ӧssur produces several passive lower limb solutions for
knee and ankle prosthetics for both low-activity and athletic populations. The Flex-Run and
Flex-Foot Cheetah foot prosthetics by Ӧssur are famous for providing unprecedented athletic
capability for transtibial amputees.

An alternative to passive limbs is body-powered prosthetics, which is controlled through a
series of cables that link the movement of the body to the movement of the prosthetic. These
devices are built to perform specific tasks and have terminal devices such as hooks to perform
gripping. However, these devices often require the user to exert large cable operation forces. A
study performed by Hichert et al. found that the force required to activate multiple body-
powered prosthetics elicited fatigue, discomfort, and even pain in the user [22]. One way to
control the prosthetic without fatiguing the user is to use an active prosthetic, which is
powered by external power sources and is capable of more precise movements through the
use of actuators. Many active prosthetics adapt biosignal-based control, in which signals
generated by the user’s own body are utilized to control the actuation of the device. Translat-
ing these initial signals into precise control of the prosthetic device can vary depending on the
individual needs of the particular prosthetic but generally includes three major stages: signal
acquisition, signal processing, and prosthetic interfacing and actuation. Signal acquisition is
dependent on the type of biosignal being measured and is subsequently converted from an
analog to digital signal. From here, the signal can undergo processing, which consists of
feature extraction (filtering and isolation of the targeted signal) and translation (determining
the intended movement). The prosthetic interface then takes this information and signals the
prosthetic to physically carry out the intended movement.

There are a few different biosignal inputs that can be used in active prosthetic control. Many
current active prosthetics are myoelectric, which are controlled through the use of electromy-
ography (EMG) signals, allowing the device to better reflect the intention of the user [21]. EMG
signals have been utilized to successfully control prosthetic hands [37]. Some myoelectric
devices have even been noted as commercially available and reimbursed by the French
health-care system [27] The I-Limb Quantum from Touch Bionics by Össur is a current com-
mercial model of a prosthetic hand that features 36 different available grip postures and can be
controlled through three methods in addition to muscle-based control. The LUKE arm by
Mobius Bionics is the first bionic arm to received market approval by the FDA. This arm is
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controlled through a variety of methods including EMG electrodes and features 10 degrees of
freedom. A few drawbacks to muscle-based control technology, however, are its generally high
cost [7] as well as repeatability and reliability issues in surface EMG signals [36], making this
input method difficult to use in prosthetic control. Implanted EMG sensors are a promising
technology that can provide high-quality signals; however, they are costly, invasive, and only
in the primary stages of human use [33]. Myoelectric control also relies on undamaged neuro-
muscular pathways being accessible to present the EMG signal [7]. Although strides are being
taken in targeted muscle reinnervation (TMR) to allow for greater EMG accessibility [21], this
may not be possible in all cases. Electroencephalogram (EEG)-based control of prosthetics
attempts to bypass this problem [21]. EEG-controlled prosthetics employ the user’s brain
signals in conjunction with brain-computer interface (BCI) systems for control. Brain signals
have been successfully detected through the use of an EEG to effectively control prosthetics
including that of bionic arms. Current bionic hands have been able to demonstrate two degrees
of freedom in the fingers [4, 7]. Additionally, Vidaurre et al. demonstrated EEG-based control
of an exoskeleton [38]. Invasive brain-computer interfaces have demonstrated accurate and
real-time control of advanced prosthetics such as modular prosthetic limb [15, 23, 40, 41].

Restoring hand function is one of the top priorities for individuals with paralysis and other
motor disabilities. Normal hand movement is dependent on both visual and tactile feedbacks
to assist the brain in determining the proper hand grasp, grip strength, movement speed, etc.
required to successfully perform the intended task. This feedback creates a closed-loop system
between the limb and the brain. Most current prostheses, however, operate through open-loop
control by which the flow of information is unidirectional, from the user to the prosthetic. It is
believed that the implementation of feedback to create a closed-loop system will improve the
performance of the prosthetic. In active prosthetics, three of the major ways to provide sensor
feedback to the user include substitution, modality-matched, and somatically matched feed-
back mechanisms [35]. In general, substitution feedback is the application of an indirect
stimulus that is intended to substitute another form of stimulus, i.e., substituting a touch
stimulus with an auditory one. There are different types of feedback including vibrotactile
and electrotactile sensory substitution, which utilize vibration and electrical current stimuli,
respectively. Alternatively, modality-matched feedback applies an identical sensation to the
one being detected but on a different part of the body. For instance, the user may feel a
prosthetic hand’s grip force through a force generated on the abdomen or chest.
Somatotopically matched feedback causes the user to perceive the correct sensation from the
correct location, as if the prosthetic was their natural limb. In order to create a prosthetic that
most accurately performs sensory feedback, both modality-matched and somatotopically
matched feedbacks should be employed [2, 35].

Somatotopically matched feedback may be made possible as an added benefit of afferent TMR
[36]; however, damage to the peripheral nerves from amputation may have altered their ability
to elicit the correct sensory response in thus altering the effects of the feedback [17]. In light of
this, new strides are being taken to directly stimulate the human somatosensory cortex. A
study conducted by Cronin et al. [16] demonstrated a subject’s ability to modulate hand motor
behavior in response to cortical sensory stimulation delivered by ECoG electrodes. It is
believed that this same technology may be used in the tactile feedback of a prosthetic hand
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[16]. Another very important factor to take into account, in addition to the type of feedback
present, is the time delay of the stimulus. At a distance of approximately 1 meter, the conduc-
tion times of afferent nerves range between approximately 14 and 28 ms [25]; therefore a short
latency of the additional feedback is important to create real-time reactions. Short latencies,
similar to that of a normal human hand, are also believed to help promote user ownership of
the prosthetic [35].

Prosthetic devices are traditionally viewed as systems intended to replace a missing limb.
However, a prosthetic can also be seen as a device that restores a missing bodily function.
Taking this definition introduces assistive robots such as exoskeletons, which promise to
restore missing function in those who are partially or completely paralyzed in one or more
parts of their body. Several companies offer exoskeletons for assistance and rehabilitation of
individuals with stroke, including Myomo’s MyoPro hand/arm system, Bioservo’s SEM Glove,
Hocoma’s ArmeoPower and ManovoPower upper limb systems, and Rehab-Robotics’Hand of
Hope. Cyberdyne’s HAL Lower Limb, Rewalk’s Rewalk Personal and Rewalk Rehabilitation,
and Rex Bionics’ Rex P among many others provide lower limb rehabilitation and walking
platforms for those with paralysis. Exoskeletons also exist in the academic research field,
including ExoGlove Poly [26], the Wyss Institute’s Soft Robotic Glove [34], HandSOME [12],
Pisa/IIT SoftHand [10], and several others [8, 31], which serve as platforms to research novel
control algorithms.

The above discussion provides a brief background and establishes relevance to the topics
discussed in this book. This discussion is in no way completely exhaustive. There are numer-
ous research studies in many of these research areas that could not be discussed due to time
and space constraints. In fact, there are many manuscripts in preparation and press while we
are reading or writing this chapter. We believe that biomimetic prosthetics will play a major
role in revolutionizing the form and function of assistive devices in the near future.
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Abstract

There have been tremendous efforts to understand the biological nature of human grasp-
ing, in such a way that it can be learned and copied to prosthesis–robotics and dextrous
grasping applications. Several biomimetic methods and techniques have been adopted,
hence applied to analytically comprehend ways human performs grasping to duplicate
human knowledge. A major topic for further study, is related to decoding the resulting
EEG brainwaves during motorizing of fingers and moving parts. To accomplish this,
there are a number of phases that are performed, including recording, pre-processing,
filtration, and understanding of the waves. However, there are two important phases
that have received substantial research attentions. The classification and decoding, of
such massive and complex brain waves, as they are two important steps towards under-
standing patterns during grasping. In this respect, the fundamental objective of this
research is to demonstrate how to employ advanced pattern recognition methods, like
fuzzy c-mean clustering for understanding resulting EEG brain waves, in such a way to
control a prosthesis or robotic hand, while relying sets of detected EEG brainwaves.
There are a number of decoding and classification methods and techniques, however we
shall look into fuzzy based clustering blended with principle component analysis (PAC)
technique to help for the decoding mechanism. EEG brainwaves during a grasping and
manipulation have been used for this analysis. This involves, movement of almost five
fingers during a grasping defined task. The study has found that, it is not a straight
forward task to decode all human fingers motions, as due to the complexity of grasping
tasks. However, the adopted analysis was able to classify and identify the different
narrowly performed and related fundamental events during a simple grasping task.
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grasping, prosthesis, robotic hand, robotics control
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1. Introduction

1.1. Biomimetic engineering for EEG applications

Human brain and other biological brains are the most complicated part of any intelligent life
forms, it controls almost every part in the human body. For controlling biological organs via
a brain, there must be communication between organs. After years of research, it was esta-
blished that brains communicate with organs via massive set of electrical signals that are
periodically sent to various body parts. These electrical signals, can be detected through
electroencephalography (EEG). These EEG waves are sent from neurons in the brain to the
ones in the spinal cord, and end in nerve endings in the organs. Neurons are connected
together, in addition to nerves using synapses. This is the basic structure of the nervous system
that is in charge of communications between the brain and the rest of the body. Brain signals
are basically electrical currents, however connecting them to artificial prosthesis, and robotic
hand has always been a challenge.

Given this fact, biomimetics is employed for imitation of models, systems, in addition to
elements of nature, Vincent et al. [1]. This is used for a purpose of solving complex human
related problems. Lately, electroencephalography(EEG)–has received considerable attention,
due to a number of advantages while data mining and dealing with brain waves. There are
tremendous efforts to make use of biomimicry for EEG waves understanding, [2–5]. In this
regard, Yuanfang et al. [6], stated they have used two novel classifiers: biomimetic pattern
recognition and sparse representation. Each classifier labels the unlabelled data for other
classifiers to extend the labeled set. An enlarged labeled set is used to generate the final
classifier BPR–SR. BPR–SR was constructed by combining BPR with SR. EEG features
extracted by common spatial patterns were used for classification. Perruchoud et al. [7], pre-
sented the concept of biomimetic rehabilitation engineering, and presented a more focus
review in this sense. The importance of somatosensory feedback for brain–machine interfaces
were also presented. Menniti et al. [8] stated that they used implanted electrodes, to obtain
acoustical information about the external environment generated by a biomimetic system and
converted in electrical signals. Bullock et al. [9], data was collected by recording two male
experienced machinist and two female housekeepers while working for at least 8 hours each.
Classification was done using modified Feix taxonomy to work with video footage. Data
showed that 80% of the time the housekeepers used only five grasps and the machinists 10
grasps. In [10] Bullock et al., it was found out that for basic objects handling, medium wrap
and lateral pinch are most suited. For precision and dexterous manipulation, three fingertips
were needed and thumb �two finger, tripod, or lateral tripod can be used.

In [11], two machinists and two housekeepers were recorded during typical day at work. A
camera was head-mounted and was used to record hands when doing their work. With each
right hand grasp, the data was tagged with grasp type and object properties. In Feix et al. [12],
analysis of human grasping and behavior detection was done. Object characteristics and grasp
types were reported. Mainly, 10,000 grasp instances were recorded and a correlation between
the property of the object and the grasp type was established. In reference to [13, 14], various
analysis of EEG were conducted using some time and frequency analysis approaches. In [15],
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Feix et al., investigated task classification according to degrees of freedom, required force, and
the functional task type. Since these are thought to be natural considerations that humans
think of when doing tasks. In [16–18], have presented various ways for EEG analysis. A
versatile signal processing and analysis framework for EEG were conducted. Signals were
decomposed into frequency sub-bands using DWT. Set of statistical features were extracted
from the sub-bands to represent distribution of wavelet coefficients. Hazrati and Erfanian [19],
have presented an online EEG-based brain–computer interface for controlling hand grasp
using an adaptive probabilistic ANN. Jianjun et al. [20], have also implemented a robotics
control through a set of EEG waves. Group of 13 human subjects willingly modulate brain
activity to control a robotic arm.

Furthermore, due to complex robotic tasks, grasping by dextrous prosthesis–robotic hands, is
no longer can be achieved through analytical approaches, as done in the past using mathemat-
ically defined force computations, as found in Vinet et al. [21], and Cutkosky [22]. However,
human grasping experience and knowledge have been under massive studies to be transferred
to robots, Mattar et al. [23]. This is due to the advanced applications robots and prosthesis are
preforming nowadays.

1.2. Electroencephalography classification-decoding

In addition to the above introduction, recently human like hands have been developed world-
wide, to achieve accurate grasping, Figure 1, [24, 25]. In parallel, EEG based robotics control
systems have also received fundamental attention by researchers world-wide, Vinet et al. [21].
However, there are a number of issues related to interpretation of the massive waves. EEG signal
classification using principal component analysis (PCA), independent component analysis (ICA),
linear discriminant analysis (LDA) and SVM, were investigated by Subasi and Gursoy [26]. In
their work, they have investigated using EEG in diagnostics of epileptic seizure. First, data was
acquired from an outside source. These data contained EEG recordings from multiple seizure
patients that have been diagnosed and found the region where the seizure accrued and another
data from healthy people. The EEG signals then were transformed to sub-bands using discrete
wavelet transform (DWT). DWT was used because the EEG signals are non-stationary and
DWT is capable of handling such signals. Hence using statistical techniques, features related to

Figure 1. Current development of prosthesis, and robotic artificial limbs and hand. Left picture source with permission,
Dustin, [24]. Right source with permission, Touch Bionics, [25].
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regard, Yuanfang et al. [6], stated they have used two novel classifiers: biomimetic pattern
recognition and sparse representation. Each classifier labels the unlabelled data for other
classifiers to extend the labeled set. An enlarged labeled set is used to generate the final
classifier BPR–SR. BPR–SR was constructed by combining BPR with SR. EEG features
extracted by common spatial patterns were used for classification. Perruchoud et al. [7], pre-
sented the concept of biomimetic rehabilitation engineering, and presented a more focus
review in this sense. The importance of somatosensory feedback for brain–machine interfaces
were also presented. Menniti et al. [8] stated that they used implanted electrodes, to obtain
acoustical information about the external environment generated by a biomimetic system and
converted in electrical signals. Bullock et al. [9], data was collected by recording two male
experienced machinist and two female housekeepers while working for at least 8 hours each.
Classification was done using modified Feix taxonomy to work with video footage. Data
showed that 80% of the time the housekeepers used only five grasps and the machinists 10
grasps. In [10] Bullock et al., it was found out that for basic objects handling, medium wrap
and lateral pinch are most suited. For precision and dexterous manipulation, three fingertips
were needed and thumb �two finger, tripod, or lateral tripod can be used.

In [11], two machinists and two housekeepers were recorded during typical day at work. A
camera was head-mounted and was used to record hands when doing their work. With each
right hand grasp, the data was tagged with grasp type and object properties. In Feix et al. [12],
analysis of human grasping and behavior detection was done. Object characteristics and grasp
types were reported. Mainly, 10,000 grasp instances were recorded and a correlation between
the property of the object and the grasp type was established. In reference to [13, 14], various
analysis of EEG were conducted using some time and frequency analysis approaches. In [15],

Biomimetic Prosthetics12

Feix et al., investigated task classification according to degrees of freedom, required force, and
the functional task type. Since these are thought to be natural considerations that humans
think of when doing tasks. In [16–18], have presented various ways for EEG analysis. A
versatile signal processing and analysis framework for EEG were conducted. Signals were
decomposed into frequency sub-bands using DWT. Set of statistical features were extracted
from the sub-bands to represent distribution of wavelet coefficients. Hazrati and Erfanian [19],
have presented an online EEG-based brain–computer interface for controlling hand grasp
using an adaptive probabilistic ANN. Jianjun et al. [20], have also implemented a robotics
control through a set of EEG waves. Group of 13 human subjects willingly modulate brain
activity to control a robotic arm.

Furthermore, due to complex robotic tasks, grasping by dextrous prosthesis–robotic hands, is
no longer can be achieved through analytical approaches, as done in the past using mathemat-
ically defined force computations, as found in Vinet et al. [21], and Cutkosky [22]. However,
human grasping experience and knowledge have been under massive studies to be transferred
to robots, Mattar et al. [23]. This is due to the advanced applications robots and prosthesis are
preforming nowadays.

1.2. Electroencephalography classification-decoding

In addition to the above introduction, recently human like hands have been developed world-
wide, to achieve accurate grasping, Figure 1, [24, 25]. In parallel, EEG based robotics control
systems have also received fundamental attention by researchers world-wide, Vinet et al. [21].
However, there are a number of issues related to interpretation of the massive waves. EEG signal
classification using principal component analysis (PCA), independent component analysis (ICA),
linear discriminant analysis (LDA) and SVM, were investigated by Subasi and Gursoy [26]. In
their work, they have investigated using EEG in diagnostics of epileptic seizure. First, data was
acquired from an outside source. These data contained EEG recordings from multiple seizure
patients that have been diagnosed and found the region where the seizure accrued and another
data from healthy people. The EEG signals then were transformed to sub-bands using discrete
wavelet transform (DWT). DWT was used because the EEG signals are non-stationary and
DWT is capable of handling such signals. Hence using statistical techniques, features related to

Figure 1. Current development of prosthesis, and robotic artificial limbs and hand. Left picture source with permission,
Dustin, [24]. Right source with permission, Touch Bionics, [25].
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seizures were extracted. These techniques reduce the data by removing the redundancy in it and
focusing on the features. This is done by getting the low dimensional space of the features. The
first technique used was principal component analysis (PCA) that reduces dimension and max-
imize variance in the data of the lower dimension hence make it easier to extract waves features.
Independent component analysis (ICA) was used. This method generates mutually independent
components from random signals. This highlights the features in the signals. Finally, linear
discriminant analysis (LDA) was used. This method combines the predictors to generate a
discriminant score. This resulted in discriminant scores normally distributed in each class. All
the features from each technique was then submitted to support vector machine (SVM). The
SVM then generated the classification of having an epileptic seizure or not. The accuracy of
feature extraction was based on the specificity and sensitivity derived from the confusion matri-
ces. The PCA had the lowest classification at 98.75%. ICA achieved second best result at 99.5%.
LDA achieved a perfect score of 100%. The research showed that the generalization performance
of SVM was improved by dimensional reduction. This whole system was proven to be eligible
for the use in diagnostics.

Wang et al. [27], have also shown how feature extraction and recognition of epileptiform activity
in EEG by combining PCA with approximate entropy (ApEn) can be adopted. The paper also
investigated the use of EEG signals to identify the epileptiform activity associated with epilepsy.
The problems with older techniques for finding epileptiform activity was the speed, mainly due
to the huge amounts of data. First, the EEG data was recorded and then was subjected to PCA to
reduce the dimension of data, hence to identify patterns related to epileptiform activity based on
the variances. DWT was applied on the PCA data to generate the sub-bands associated with
signal types such as spike and sharp waves. Then, approximate entropy (ApEn) estimation was
done of the sub-bands. The ApEn is used to find out if the time series is random or deterministic
based on the value of the entropy (high or low respectively). Finally, to classify the data into
epilepsy or not, Neyman-Pearson criteria was applied. This was done by getting a threshold
value from the Neyman-Pearson criteria and comparing the ApEn value with the threshold. If
the signal ApEn was less than a threshold, it is epileptic otherwise it is normal. The paper
showed result is similar to other techniques, however because of PCA the detection speed was
much faster due to reduction of data. Mahajan et al. [28] have done classification of EEG using
PCA, ICA, and neural network. This is also another paper that focuses on the use of EEG signals
to diagnose epilepsy. This research was similar to Subasi and Gursoy, [26]. EEG data was taken
from an outside source. EEG signals were first divided into sub-bands using DWT. Then, some
features related to epilepsy were extracted from the sub-bands using PCA and ICA. Then,
features were sent to train a neural network that was used for classification. The neural network
is made of two layers and five perceptron. The training was done using feedforward algorithm.
The neural network was able to classify the EEG data and determine whether it is epileptic or
not. The accuracy of feature extraction was based on the specificity and sensitivity. ICA achieved
96.75% accuracy and PCA achieved 93.63%. The work showed that ICA is better than PCA
which was also established in by Subasi and Gursoy.

For electroencephalogram signal classification using neural networks with wavelet packet
analysis, PCA and data normalization as pre-processors was introduced by Aminian et al.
[29]. In this work, the authors try to predict hand/arm movement using EEG data. The EEG
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signals were recorded when subjects were asked to grasp an object, point to an object, and
extend an arm. This data was then subjected to wavelet packet analysis to reduce the number
of features to concentrate on the important ones. This was done by choosing approximate
coefficients as features. Then, generates an approximation and detail levels from the each of
the approximation and detail component by decomposing it. PCA is used to reduce features to
reduce the amount of data while keeping the important parts. A uniform scaling scheme was
applied to make sure that small important features are not taken for granted. This was
achieved by normalization of the data by getting zero mean and unity standard deviation.
Finally, a neural network was used for classification. It is a backpropagation trained neural
network with feedforward multilayers. The neural network generates outputs as many as the
classes (tasks). By doing so, each output corresponds to one of the classes and gives probabil-
ities for the inputs and their class. The network was unaffected by outliers because it does not
try to fit them due to its simplicity. Overtraining was also not an issue because of smooth
mapping function of the input–output. This scheme achieved a 100% accuracy in the classifi-
cation of the tasks for all the participants. Classification of direction perception EEG based on
PCA-SVM was also introduced by Wang and Wang, [30]. In this work, the paper uses EEG
signals to identify movement based on vision. The EEG data was recorded when subjects were
looking at a monitor with 3D environment. This environment contained roads and there was
movement in first person view. The objective was to identify the direction of movement
perceived by these individuals.

Discrete Fourier transform (DFT) was first applied to these signals to examine them in the
frequency domain. This allowed the identification of some features related to the perception of
movement based on the power at certain frequencies. Then, PCA was used to reduce the
dimension of the data and simplify the features. To classify the data, support victor machine
SVM was used. To overcome some error induced by the penalty factor in SVM, a new variable
was introduced to add degree of freedom margin in patter recognition. The two class classifi-
cation achieved (50–91.25%) accuracy between all the subjects and the two way movement
(left-right, right-front…). This could be due to the feature extraction technique used which is not
able to distinguish between similar movements. The use of DWTmay have been a better choice
due its ability to handle non-stationary signals such as EEG.

Within this chapter, and given the above review, the adopted technique, we shall introduce
another view for EEG analysis for prosthesis–robotics grasping. This is based on blending PCA
with C-means clustering. The technique has an ability to detect the grasping events.

1.3. Chapter contribution and organization

1.3.1. Chapter contribution

This chapter is presenting a unique classification technique for EEG brainwaves during a
defined grasping and lifting task. The study is presenting a mechanism for extracting focal
features, and patterns intrinsics for resulting EEG waves during experimentally conducted
grasping task. Definitely, knowledge of the features will help for robotics grasping based tasks.
The novel presented work in this chapter, is summarized in Figure 2, and as follow:
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seizures were extracted. These techniques reduce the data by removing the redundancy in it and
focusing on the features. This is done by getting the low dimensional space of the features. The
first technique used was principal component analysis (PCA) that reduces dimension and max-
imize variance in the data of the lower dimension hence make it easier to extract waves features.
Independent component analysis (ICA) was used. This method generates mutually independent
components from random signals. This highlights the features in the signals. Finally, linear
discriminant analysis (LDA) was used. This method combines the predictors to generate a
discriminant score. This resulted in discriminant scores normally distributed in each class. All
the features from each technique was then submitted to support vector machine (SVM). The
SVM then generated the classification of having an epileptic seizure or not. The accuracy of
feature extraction was based on the specificity and sensitivity derived from the confusion matri-
ces. The PCA had the lowest classification at 98.75%. ICA achieved second best result at 99.5%.
LDA achieved a perfect score of 100%. The research showed that the generalization performance
of SVM was improved by dimensional reduction. This whole system was proven to be eligible
for the use in diagnostics.

Wang et al. [27], have also shown how feature extraction and recognition of epileptiform activity
in EEG by combining PCA with approximate entropy (ApEn) can be adopted. The paper also
investigated the use of EEG signals to identify the epileptiform activity associated with epilepsy.
The problems with older techniques for finding epileptiform activity was the speed, mainly due
to the huge amounts of data. First, the EEG data was recorded and then was subjected to PCA to
reduce the dimension of data, hence to identify patterns related to epileptiform activity based on
the variances. DWT was applied on the PCA data to generate the sub-bands associated with
signal types such as spike and sharp waves. Then, approximate entropy (ApEn) estimation was
done of the sub-bands. The ApEn is used to find out if the time series is random or deterministic
based on the value of the entropy (high or low respectively). Finally, to classify the data into
epilepsy or not, Neyman-Pearson criteria was applied. This was done by getting a threshold
value from the Neyman-Pearson criteria and comparing the ApEn value with the threshold. If
the signal ApEn was less than a threshold, it is epileptic otherwise it is normal. The paper
showed result is similar to other techniques, however because of PCA the detection speed was
much faster due to reduction of data. Mahajan et al. [28] have done classification of EEG using
PCA, ICA, and neural network. This is also another paper that focuses on the use of EEG signals
to diagnose epilepsy. This research was similar to Subasi and Gursoy, [26]. EEG data was taken
from an outside source. EEG signals were first divided into sub-bands using DWT. Then, some
features related to epilepsy were extracted from the sub-bands using PCA and ICA. Then,
features were sent to train a neural network that was used for classification. The neural network
is made of two layers and five perceptron. The training was done using feedforward algorithm.
The neural network was able to classify the EEG data and determine whether it is epileptic or
not. The accuracy of feature extraction was based on the specificity and sensitivity. ICA achieved
96.75% accuracy and PCA achieved 93.63%. The work showed that ICA is better than PCA
which was also established in by Subasi and Gursoy.

For electroencephalogram signal classification using neural networks with wavelet packet
analysis, PCA and data normalization as pre-processors was introduced by Aminian et al.
[29]. In this work, the authors try to predict hand/arm movement using EEG data. The EEG
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signals were recorded when subjects were asked to grasp an object, point to an object, and
extend an arm. This data was then subjected to wavelet packet analysis to reduce the number
of features to concentrate on the important ones. This was done by choosing approximate
coefficients as features. Then, generates an approximation and detail levels from the each of
the approximation and detail component by decomposing it. PCA is used to reduce features to
reduce the amount of data while keeping the important parts. A uniform scaling scheme was
applied to make sure that small important features are not taken for granted. This was
achieved by normalization of the data by getting zero mean and unity standard deviation.
Finally, a neural network was used for classification. It is a backpropagation trained neural
network with feedforward multilayers. The neural network generates outputs as many as the
classes (tasks). By doing so, each output corresponds to one of the classes and gives probabil-
ities for the inputs and their class. The network was unaffected by outliers because it does not
try to fit them due to its simplicity. Overtraining was also not an issue because of smooth
mapping function of the input–output. This scheme achieved a 100% accuracy in the classifi-
cation of the tasks for all the participants. Classification of direction perception EEG based on
PCA-SVM was also introduced by Wang and Wang, [30]. In this work, the paper uses EEG
signals to identify movement based on vision. The EEG data was recorded when subjects were
looking at a monitor with 3D environment. This environment contained roads and there was
movement in first person view. The objective was to identify the direction of movement
perceived by these individuals.

Discrete Fourier transform (DFT) was first applied to these signals to examine them in the
frequency domain. This allowed the identification of some features related to the perception of
movement based on the power at certain frequencies. Then, PCA was used to reduce the
dimension of the data and simplify the features. To classify the data, support victor machine
SVM was used. To overcome some error induced by the penalty factor in SVM, a new variable
was introduced to add degree of freedom margin in patter recognition. The two class classifi-
cation achieved (50–91.25%) accuracy between all the subjects and the two way movement
(left-right, right-front…). This could be due to the feature extraction technique used which is not
able to distinguish between similar movements. The use of DWTmay have been a better choice
due its ability to handle non-stationary signals such as EEG.

Within this chapter, and given the above review, the adopted technique, we shall introduce
another view for EEG analysis for prosthesis–robotics grasping. This is based on blending PCA
with C-means clustering. The technique has an ability to detect the grasping events.

1.3. Chapter contribution and organization

1.3.1. Chapter contribution

This chapter is presenting a unique classification technique for EEG brainwaves during a
defined grasping and lifting task. The study is presenting a mechanism for extracting focal
features, and patterns intrinsics for resulting EEG waves during experimentally conducted
grasping task. Definitely, knowledge of the features will help for robotics grasping based tasks.
The novel presented work in this chapter, is summarized in Figure 2, and as follow:
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Figure 2. (Top): Overall system EEG-PCA detection of main components hierarchy. (Down): Layout of how the machine
learning tools and techniques can be integrated with the detection process.
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(i) A human grasping experimental task is initially conducted. The experiment was related to
grasping of an object to perform a defined grasping task. Further details about source, and the
EEG dataset will be further explained at later stage here in this chapter. Due to raw nature of
the detected EEG waves, EEG brainwaves have been filtered, hence they are processed to be
much easy to compute and analysis. (ii) To identify related events during the defined grasping
task for different participates. In his respect, a PCA and fuzzy clustering were applied to the
EEG dataset to identify the most identifiable wave characterization. Identified features are then
used for copying a human behavioral motion as used for robotic hand.

1.3.2. Chapter organization

To achieve the stated objectives, the chapter has been structured as follow. A set of experiments
were conducted with advanced EEG detection probes placed over the subject skull, as in
Luciw et al. [31]. PCA has been used to detect data features, hence C-fuzzy clustering, is used
to learn inherent characterization. Characterization will be further learned to a robotic system.

2. Gasping events detection

2.1. EEG gasping clustering for events detection

In order to detect different events during grasping or manipulations tasks, it is required to
classify the data via clustering of resulting EEG waves. This mean to classify different perfor-
mances. Based on above definitions, fuzzy clustering of the massive EEG dataset is precisely
formulated as an optimization problem. This is to minimize the distances to which the differ-
ent sampled EEG waves are belonging. Formulation of fuzzy clustering is as a minimization
problem, i.e. to minimize distances clusters centers uij:

J uij; vk
� � ¼

Xc

i¼1

Xn

j¼1

Xc

k¼1

g w xið Þ; uij
� �

d xj; vk
� �

i, k ¼ 1 2 ⋯ cð Þ j ¼ 1 2 ⋯ nð Þ
(1)

subject to the following clusters centers constraints:

Xc

i¼1

uij ¼ 1 j ¼ 1 2 ⋯ n 0 ≤
Xn

j¼1

uij ≤n i ¼ 1 2 ⋯ cð Þ (2)

One of the widely employed clustering methods based on Eq. (1) is the fuzzy c-means (FCM)
algorithm. The objective function of the FCM algorithm is expressed in the form of,

ð3Þ

In Eq. (3), m is known as exponential weight that influences the degree of fuzziness of the
membership or partition matrix. To solve this minimization problem, the objective function
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task for different participates. In his respect, a PCA and fuzzy clustering were applied to the
EEG dataset to identify the most identifiable wave characterization. Identified features are then
used for copying a human behavioral motion as used for robotic hand.

1.3.2. Chapter organization
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Luciw et al. [31]. PCA has been used to detect data features, hence C-fuzzy clustering, is used
to learn inherent characterization. Characterization will be further learned to a robotic system.
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In order to detect different events during grasping or manipulations tasks, it is required to
classify the data via clustering of resulting EEG waves. This mean to classify different perfor-
mances. Based on above definitions, fuzzy clustering of the massive EEG dataset is precisely
formulated as an optimization problem. This is to minimize the distances to which the differ-
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is differentiated in Eq. (3) with respect to vi (for fixed uij, i = 1,…,c, j = 1,…,n) and to uij
(for fixed vi, i = 1,…,c). Applying constraints conditions, thus obtaining:

ð4Þ

ð5Þ

The system described by Eqs. (4) and (5) cannot be solved analytically. However, fuzzy c-
means algorithm provides a computationally iterative approach to approximating the mini-
mum of the objective function starting from a given position.

2.2. EEG gasping events: dimensionally reduction

2.2.1. Concept of Eigen EEG waves

Principal components analysis (PCA), aims to find total variation in the set of the used EEG
waves, hence it helps to explain this variation by less number of variables. PCA does this by
computing the basis of a space which is represented by EEG waves. The basis vectors com-
puted by PCA are in direction of the largest variance of used EEG waves. These basis vectors
are computed by solution of an eigen problem, and as such the basis vectors are eigenvectors.

In order to deal with the massive dataset resulting from the grasping, we need also to reduce
the dimensionality of the data size, as most of the resulting brain waves look similar with very
minor differences. This is summarized as follows: Finding the mean of the signals, hence
compute the eigenvectors. First we need to find the mean of all the N columns separately by:

xn ¼ 1
M

XM
m¼1

xmn,n ¼ 1, 2,…,N (6)

In Eq. (6), xn is the mean of each N column (n = 1, 2, …, N).

The next step is to do cantering the massive EEG waves. Since PCA requires the matrix to be
cantered by subtracting the mean from each column. This will cause the mean of each column
to be zero.

Δn ¼ xn � xn (7)

where Δn is the column of the X matrix after subtracting the mean from the original column.
This will cause the data to be moved close to the centre (origin) of the principal components.
We then need also to compute the covariance matrix of the resulting EEG waves. It is required
to get the covariance matrix which is the variance between all the columns to get the relation-
ship between these columns in terms of the variance (multiple dimension variance). The
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variance is how much the data varies from its mean and the covariance is used to find some
kind of a relationship between only two dimensions. For example, relationship between
velocity, and car crashes. Therefore, the covariance matrix is just all the combinations of the
covariance between each dimension and another. The value of the covariance determines the
relationship between the two dimensions. If it is positive, then if one dimension increases the
other will increase as well. If it is negative, then the relationship is inversely proportional and
when one increase the other decreases. Finally, if it is zero, then the two dimensions are
independent of each other or have a nonlinear relationship. The magnitude of the covariance
will determine the amount of increase that will occur in the other dimension with maximum
relationship of one to one. The covariance matrix:

C ¼ 1
N

XN
n¼1

Δn∗ΔT
n (8)

In Eq. (8), ΔT
n is the transpose column of Δn. This is further expanded into:

C ¼
x1,1�x1 ⋯ x1,N�xN

⋮ ⋱ ⋮

xM,1�x1 ⋯ xM,N�xN

2
6664

3
7775∗

x1,1�x1 ⋯ xM,1�x1

⋮ ⋱ ⋮

x1,N�xN ⋯ xM,N�xN

2
6664

3
7775 (9)

Finally, the covariance matrix C is further expressed by Subasi and Gursoy [6]:

C ¼
cov x1; x1ð Þ ⋯ cov x1; xNð Þ

⋮ ⋱ ⋮

cov xN ; x1ð Þ ⋯ cov xN ; xNð Þ

2
664

3
775 (10)

The C, which is a square matrix, is said to be symmetric around the main diagonal because it
was results of multiplication of a matrix and its transpose. The main diagonal of C, is the
covariance between the dimension and it self. Therefore, once we are looking to find the
relationship between the dimensions, we will look at the non-diagonal elements and judge
based on their value, as in Subasi and Gursoy [26].

Finally, we need to compute the eigenvalues and eigenvectors. In this respect, to understand
patterns of the normalized data, we need to understand the covariance C of the data. This can
be possible by getting some lines in the plot that will explain the data pattern based on the
covariance of the signals. This can be achieved by getting the eigenvectors of the covariance
matrix. We can find eigenvectors for the covariance matrix C, this is because of the square
nature which is a requirement for eigenvector calculations, Subasi and Gursoy [26]. For an
(n�n) matrix A, if we find a row vector X (n�1) that could be multiplied by A and get the same
vector X multiplied by a value λ called an eigenvalue and the vector is an eigenvector. Since
the matrix A transforms the vector X to scale positions by an amount equal to λ, it is called a
transformation matrix as presented by:
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We then need also to compute the covariance matrix of the resulting EEG waves. It is required
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variance is how much the data varies from its mean and the covariance is used to find some
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velocity, and car crashes. Therefore, the covariance matrix is just all the combinations of the
covariance between each dimension and another. The value of the covariance determines the
relationship between the two dimensions. If it is positive, then if one dimension increases the
other will increase as well. If it is negative, then the relationship is inversely proportional and
when one increase the other decreases. Finally, if it is zero, then the two dimensions are
independent of each other or have a nonlinear relationship. The magnitude of the covariance
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n is the transpose column of Δn. This is further expanded into:

C ¼
x1,1�x1 ⋯ x1,N�xN

⋮ ⋱ ⋮

xM,1�x1 ⋯ xM,N�xN

2
6664

3
7775∗

x1,1�x1 ⋯ xM,1�x1

⋮ ⋱ ⋮

x1,N�xN ⋯ xM,N�xN

2
6664

3
7775 (9)

Finally, the covariance matrix C is further expressed by Subasi and Gursoy [6]:

C ¼
cov x1; x1ð Þ ⋯ cov x1; xNð Þ

⋮ ⋱ ⋮

cov xN ; x1ð Þ ⋯ cov xN ; xNð Þ

2
664

3
775 (10)

The C, which is a square matrix, is said to be symmetric around the main diagonal because it
was results of multiplication of a matrix and its transpose. The main diagonal of C, is the
covariance between the dimension and it self. Therefore, once we are looking to find the
relationship between the dimensions, we will look at the non-diagonal elements and judge
based on their value, as in Subasi and Gursoy [26].

Finally, we need to compute the eigenvalues and eigenvectors. In this respect, to understand
patterns of the normalized data, we need to understand the covariance C of the data. This can
be possible by getting some lines in the plot that will explain the data pattern based on the
covariance of the signals. This can be achieved by getting the eigenvectors of the covariance
matrix. We can find eigenvectors for the covariance matrix C, this is because of the square
nature which is a requirement for eigenvector calculations, Subasi and Gursoy [26]. For an
(n�n) matrix A, if we find a row vector X (n�1) that could be multiplied by A and get the same
vector X multiplied by a value λ called an eigenvalue and the vector is an eigenvector. Since
the matrix A transforms the vector X to scale positions by an amount equal to λ, it is called a
transformation matrix as presented by:
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AX ¼ λX (11)

There are (n) eigenvalues for an (n�n) transformation matrix. Since every eigenvector is scaled
by an eigenvalue (λ), we shall have (n) eigenvectors as well. The eigenvalues (λ) is found by
solving for while using the identity given by equation Eq. (12):

A� Iλð ÞX ¼ 0 (12)

In Eq. (12), I is an identity/unity matrix which does not alter value of a matrix it’s multiple
with. Getting the determinant of |(A�Iλ)|, and solving for λ, results in finding eigenvalues.
Substituting each (λ) in Eq. (12), and solving for (X), results in the eigenvector (X) for that λ.

det A� Iλð Þ ¼ 0 (13)

3. Time-frequency analysis of grasping EEG waves

3.1. Time-frequency relation

It is essential to investigate both time and frequency domain relation among the detected EEG
waves. These relations reveal where (in term of frequency), and when (in term of time), and
when power densities are taking place during a course of thinking of grasping. EEGLAB in
addition to other tools have been used to analyze the brain data both in time and frequency
domain. EEGLAB is a Matlab based toolbox that was developed to further analyze the EEG
waves both in time and frequency domains, as found in Delorme and Makeig [32]. This shall
further observe results of using EEGLAB at different relations among the waves both time and
frequency domains. The experiments were conducted by 11 participates. Further analysis on
using the EEGLAB are presented at later stages. The grasping experiment can be further found
as in reference to Luciw et al. [31]. The entire dataset (11 individuals grasping experiment), was
passed into both a PCA algorithm, and fuzzy based clustering algorithm. PAC algorithm was
used to reduce the dimensionality of such massive dataset. Fuzzy c-means clustering was used
to identify a number of clusters, thus similar dataset events. It is well known, human do similar
actions while doing a similar grasping task. We shall identify (P1), as the first individual that
performed the grasping task, whereas (P9), for example is the ninth individual performing the
experiment. Similar naming are given to other individuals.

3.1.1. Time-domain analysis of grasping waves

A) EXAMPLE, FIRST PARTICIPANT: First we loaded dataset for the first person (P1), and then
plotted all channels in time domain. Signals are time stamped with labels of what they
correspond to in action that happed in the experiment and was recorded by all of the sensors.
These are just the main events and they include the LED turning on and off, when the hand
starts moving, when each finger touches the plates, the object lift off the table and replacing it
back to original position, if the new trial includes expected or unexpected high or low weights,
and finally the release of the fingers from the plates. The all the possible labels are clearly
shown in Table 1. In Figures 3 and 4, after the LED was turned on there was a minor increase
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in the voltage due to the intent to move in response to the event (ERP). If the hand started
moving there was a minor increase in some channels and decrease in the reference channels
due to hand movement. Consequently, as fingers touched the object, forces were applied.
Minor change happened until the lift off, which caused a high-low voltage for lift and then
relax in destination after (0.5 sec) from lifting off. In anticipation of LED turning on, there was
an increase in voltage and a sudden spike once LED tuned off due to eye blinking. Finally, after
releasing the object, there was a drop in voltage when relaxing the fingers and returning into
original position.

Event no. Label Meaning

Event-01 — tTouch Fingers touching

Event-02 — tStartLoadPhase Stating to apply load

Event-03 — tReplace Replacing the object

Event-04 — tRelease Releasing fingers

Event-05 ____ tLiftOff Lifting the object

Event-06 ____ tHandStart Hand movement started

Event-07 ____ Unexp.light weight lift Unexpected light weight

Event-08 ____ Unexp.heavy weight lift Unexpected heavy weight

Event-09 ____ LEDON LED turned On

Event-10 ____ LEDOFF LED turned Off

Event-11 ____ Expected Weight Lift Expected weight

Table 1. Grasping events labels, (Meaning for EEGLAB plot).

Figure 3. EEGLAB time-domain plot for (P1), and all 32 channels (Voltage (μV) vs. Time (Sec.)).
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These are just the main events and they include the LED turning on and off, when the hand
starts moving, when each finger touches the plates, the object lift off the table and replacing it
back to original position, if the new trial includes expected or unexpected high or low weights,
and finally the release of the fingers from the plates. The all the possible labels are clearly
shown in Table 1. In Figures 3 and 4, after the LED was turned on there was a minor increase
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B) EXAMPLE, SECOND PARTICIPANT: Second, is the plot for the second person (called (P4)
in the data) in a similar trial as the first person. This looks almost exact and similar as the first
participant, except the blinking happened just before the LED turning off.

3.1.2. Frequency- analysis of grasping waves: power spectrum

After we are done with the time domain analysis, we will now examine the spectral power
changes and the corresponding area of the brain that all the electrodes cover. This will indicate
any movement and its origin within the human head. This is further shown in both Figures 5
and 6.

We should indicate that, while the data were recorded by (32) channel brain waves cap, such
massive dataset are plotted in Figure 7. Figure 7 shows the time plot of only nine out of 32
channels that were used during the conduct of the experiment. The PCA and clustering
operations were performed over the entire (11 individuals – nine trails – different objects –
different weights), hence clustering operations were performed. This is further shown both in
Figure 8.

FIRST PARTICIPANT, SECOND PARTICIPANT: In reference to the frequency spectrum dur-
ing the grasping tasks, while looking at Figure 5we can deduce that power changes accrued at
(5.9 Hz) in theta band and corresponded to the frontal part of the brain which indicates
relaxation as shown in previous studies. There were only minor changes at (9.8 Hz) in alpha
band. Finally, there were big power changes in (F8, FC6, and T8) and minor to the counterpart

Figure 4. EEGLAB time-domain plot for (P4), and all 32 channels (voltage (μV) vs. Time (Sec.)).
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at (22 Hz) in beta band side this could indicate the blinking artifact we saw earlier. We can see
similar patterns in Figure 6 for the second person especially for blinking artifact in (22 Hz) in
beta band. However, there is significant difference in at (9.8 Hz) which could be due to the
finger or hand movement which will be investigated in the next section using PCA. For each
real grasping experiment, it was found the identical and similar EEG patterns, that was
detected by the locations of the clustered centers and gathered fuzzy membership function. In
this context, the gathered fuzzy memberships obtained through the fuzzy c-mean clustered, do
indicate the inherent knowledge about how the grasping was conducted. This knowledge is

Figure 5. EEGLAB frequency-domain power spectrum analysis, for (P1) for all (32 channels). ICA for the resulting
grasping waves.

Figure 6. EEGLAB frequency-domain power spectrum for the grasping trails, for (P4) for all (32 channels).
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further decoded for generating the most suitable patterns of motorizing finger motion to be
used for the robotic hand, or the human type prosthesis.

In reference to Table 2, the adopted dimensionality reduction via PCA, hence the clustering,
have helped in identifying there main events related to this experiment which was performed
during 6 seconds of time. Detecting EEG similar events during hand grasping is not an easy
task to achieve. Such similar events do indicate how the real human behavior was done. Once
this is done, this can be copied to a robotic system. Combining both PCA with clustering
mechanism has definitely help the inherent and hidden features on how the different individ-
uals performs grasping. PCA has proven the similar patterns, despite of the shapes of different
waves.

The inherent features are almost the same, as seen via the eigenvalues of the individual
experiments and the individual personals. In addition, fuzzy clustering has proven the
overlapped shapes of the EEG waves during the same experiments, however, despite of such
overlaps, the fuzzy clusters are able to detect the different grasping events that can be trans-
lated to a robotic hand. Within this chapter, we have presented a mechanism through which to
analyze brainwaves EEG patterns for robotics and prosthesis use. The main discussed theme
was based on using pattern recognition and clustering techniques for capturing the inherent
patterns characterization during a phase of grasping. Capturing events and these characteriza-
tions are useful for transferring human knowledge (for the grasping tasks) to robotics hand, or
prosthetics for complex grasping. In achieving that, a fuzzy clustering technique was able to
identify similar events. The presented methodology was very useful in getting the intrinsic
patterns. The presented approach also is efficient for mapping useful human thoughts, for
robotics grasping tasks.

Figure 7. Plot of (P1) for (9 trials) by the individuals. Note: here the weight changes but the type is the same (sandpaper).
Full time, same all-channels, and (9) trials (only weight change). (P1), Full time, all-channels, and (9) trials (series 1). (P1),
Full time, all-channels, and (9) trials.
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4. Conclusion

Electroencephalography and brain waves for robotics, human, computer, and machine inter-
faces (BMI, BCI), are evolving very fast. This is due to the fast development of high tech

Figure 8. Three regions of clustering patterns for second experimentation. Grasping EEG waves as being clustered into
three main clusters. Each cluster indicates the focus of where similar EEG patterns are centered. Above-Left: Time domain
signals during the course of grasping. Above-Right: Corresponding c-means clustering results. Four to Five main clusters
have been identified for all the trails. Down-Left-Right: PCA analysis of the resulting EEG waves during the grasping task.
Creating principle components does lead to observe similar waves, thus reducing the dimensionally of the EEG grasping
data size.

TASK 1 Event-1 Event-1 Overlapped Clusters

1 Hand motion Hand grasping Hand grasping Clusters 1,3

2 Figures motion Apply force Apply force Clusters 2,3

3 Hand motion Finger move Force releasing Clusters 3,2

Table 2. Grasping experimentation and patterns mapping and detected fuzzy clusters association.
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interfacing devices and computational methods. In this respect, the presented work is dedi-
cated towards deep understanding of resulting electroencephalography (EEG) brainwaves
during a typical grasp and lift human grasping task. During grasping, forces are applied by
fingertips dexterously, as observed through resulting EEG waves. For mirroring this to a
prosthesis-robotics and dextrous grasping applications, methods have to be developed to do
mining and catch features for optimal forces, movements, and accurate finger joints displace-
ments. Resulting EEG brainwaves during a grasp and lift task are very useful, however these
EEG waves are related, correlated, complicated, and raw. With the potential and analysis of
principal components analysis (PCA) of EEG, it indicated an overlap of valuable neural
behaviors from various locations over the human skull, indicating interrelated and coupled
events for robotic grasping. PCA has been used also to unlock few main features of EEG waves
during the grasp and lift task. The foremost grasping features are hence used in creating
accurate events for a robotic dexterous grasping.
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fingertips dexterously, as observed through resulting EEG waves. For mirroring this to a
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mining and catch features for optimal forces, movements, and accurate finger joints displace-
ments. Resulting EEG brainwaves during a grasp and lift task are very useful, however these
EEG waves are related, correlated, complicated, and raw. With the potential and analysis of
principal components analysis (PCA) of EEG, it indicated an overlap of valuable neural
behaviors from various locations over the human skull, indicating interrelated and coupled
events for robotic grasping. PCA has been used also to unlock few main features of EEG waves
during the grasp and lift task. The foremost grasping features are hence used in creating
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Abstract

In this work, a sensory feedback device for myoelectric prosthetic hand was developed 
to enhance the quality of life (QOL) of myoelectric prosthetic hand users. Two types of 
sensory feedback, namely, force sense feedback and temperature sense feedback, were 
proposed. As for the feedback device of force sense, the device is mounted on the user’s 
upper arm and provides hardness of the object onto the upper arm by winding a belt 
using a motor. On the other hand, as for the feedback device of temperature sense, 
the device is mounted on the user’s upper arm and presents temperature of the object 
onto the upper arm using a Peltier element. Finally, two-sensory feedback devices were 
united, and a two-sensory feedback device was built.

Keywords: sensory feedback device, myoelectric prosthetic hand, force sense, 
temperature sense

1. Introduction

A myoelectric prosthetic hand is an electrically driven artificial hand that is controlled based 
on biosignals generated by muscle movement. Therefore, the myoelectric prosthetic hand can 
be moved freely as intended by the user. However, the user cannot feel sensations when he/
she touches an object using the prosthetic hand. Healthy person uses the tactile sense and 
temperature sense to check the state of the object that he/she touched. A myoelectric pros-
thetic hand cannot produce any sensations. Therefore, the user has to operate the prosthetic 
hand only based on visual information. Thus, the user needs to watch the object constantly. 
This is a burden to the user. To solve this problem, sensory feedback which provides sensa-
tion to the user has been studied. Sensory feedback systems for an upper limb prosthesis in 
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the initial stage have been reported in [1]. Summary of studies involving sensory feedback in 
upper limb prosthetics is listed in [2].

A method of providing a sense of touch realized by vibration stimulation was proposed in 
[3], and a method of sensory feedback realized by the combination of vibration stimulation 
and electric stimulation was proposed in [4], respectively. On the other hand, Otsuka et al. [5] 
developed a device that perceives the temperature when an object was touched by a myoelec-
tric prosthetic hand using a hot and cold pad. Morimitsu and Katsura [6] examined transfer 
of temperature sense using the Peltier element.

In this study, two types of sensory feedback device were developed to enhance the quality 
of life (QOL) of myoelectric prosthetic hand users. First, a compact feedback device of force 
sense (hereinafter referred to as FFB device) with a safety mechanism was developed. The FFB 
device is mounted on the user’s upper arm, and when a prosthetic hand holds an object, a 
belt in the device is winded by a motor to present the holding force to the user’s arm. Besides, 
the winding speed of the belt is changed according to the hardness of the object held by the 
prosthetic hand. In the control system of the FFB device, a reference input creation model 
creates reference input signals according to the hardness. A self-tuning proportional-integral-
derivative (PID) control method proposed by [7] was employed to adjust the gain of the PID 
controller based on the state of a target object and control the belt-winding speed of the FFB 
device following the reference input. For the verification of the effectiveness of the control 
system for the FFB device, a myoelectric prosthetic hand made by [8] was combined with a 
control method proposed by [9], and experiments to distinguish among five kinds of springs 
of different hardness were conducted.

Second, a feedback device of temperature sense (hereinafter referred to as TFB device) was 
developed by using a Peltier element to present an object temperature when the user touches 
the object by a prosthetic hand. A temperature prediction algorithm was proposed to shorten 
the temperature measurement. Besides, the temperature sense differs at each body site. 
Therefore, the TFB device developed in this study transfers temperature sense felt by the 
fingertip to the upper arm based on the result of the experiment on temperature sense inves-
tigation. Furthermore, experiments to distinguish among five different temperatures were 
performed to verify the effectiveness of the TFB device. Finally, two-sensory feedback devices 
were united, and a two-sensory feedback device was built.

2. Myoelectric prosthetic hand

In this study, the myoelectric prosthetic hand made by [8] shown in Figure 1(a) is used. 
The prosthetic hand consists of motors and wires, and the fingers are bent by winding the 
wires. A pressure sensor is attached to a finger cushion on the prosthetic hand’s index fin-
ger, and a temperature sensor is attached at the fingertip of the prosthetic hand’s middle 
finger.

The myoelectric prosthetic hand used in this study only has three fingers, namely, the thumb, 
index finger, and middle finger. Therefore, the prosthetic hand grasps an object by bending 
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the index finger for contact force feedback case and bending the middle finger for tempera-
ture sense feedback case. The motion of the index finger and the middle finger is identified 
by measuring the surface electromyogram (SEMG) of the flexor digitorum superficialis (ch 1) 
and extensor carpi radialis longus (ch 2) shown in Figure 1(b) to control the proximal inter-
phalangeal (PIP) joint of the prosthetic hand’s index finger and middle finger.

3. Feedback device of force sense (FFB device)

3.1. Design concept

In this study, amputees who lost the lower half of a single forearm were chosen as subjects, 
and electrodes were placed on the upper half of the forearm to operate a prosthetic hand. To 
let prosthetic hand users recognize the sense more intuitively, the sense of pressure was given 
to the prosthetic hand users when they grasp an object. The sense of pressure was presented 
by the tightening force of a belt on the upper arm of the users.

The difference of the contact force according to the hardness of the object is expressed as the 
winding speed of the belt. The pressure value added to the finger and displacement of the fin-
ger are measured, and they are used to estimate the object hardness. Then, the winding speed 
of the belt is changed to present the estimated hardness. Namely, the high winding speed is 
for a hard object, and the low winding speed is for a soft object.

3.2. Overview of FFB device

3.2.1. Equipment

Figure 2 shows the developed FFB device and its attached state on the user’s upper arm. 
The working principle is described as follows. Contact force between an object and a finger 
is measured by the pressure sensor attached to the finger cushion on the prosthetic hand’s 

Figure 1.  (a) Myoelectric prosthetic hand. (b) positions of electrodes.
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index finger. The main shaft for winding the belt and the motor are connected through two 
gears. When the prosthetic hand grasps the object, namely, when the contact force is sensed, 
the motor rotates. Therefore, the main shaft is also rotated by the rotation of the motor. Thus, 
the belt is winded and tightens the upper arm.

The device is small with the dimensions 97 mm (width), 117 mm (depth), and 39 mm (height).

3.2.2. Safety mechanism

A safety measure against the motor’s failure or other emergent case needs to be taken. In the 
case of emergency, the belt is released by simply opening the cover, and then the device is 
released from the arm.

3.3. Control method of prosthetic hand

In this study, a control strategy proposed in [9] is used for the operation method of the myo-
electric prosthetic hand. It is well known that an integrated electromyogram (IEMG) reflects 
muscle activity. Hence, the IEMG is employed to identify the input motion for the operation 
of the prosthetic hand, and a support vector machine (SVM), which is one of the techniques of 
the machine learning, is used as an identifier. For the control of the prosthetic hand, a target 
angle of the finger of the prosthetic hand is set based on how long the user keeps the muscle 
force. This allows the user to arbitrarily control the finger angle.

3.4. Measurement of hardness

A pressure sensor “FSR402 Short Tail” made by Interlink Electronics was attached on the 
fingertip to measure the reaction force 𝐹𝐹 [N] from the grasped object. The displacement of 
the fingertip [m] is measured from the encoder attached on the driving motor of the finger. 
Then, the spring constant 𝐾𝐾 [N/m], hereinafter referred to as the hardness parameter, can be 
calculated from Hooke’s law:

  K =   F __ x    (1)

Figure 2. FFB device and its attached state.

Biomimetic Prosthetics34

A preliminary experiment was conducted in [10] to derive a conversion formula from the 
pressure (voltage V [v]) measured with the pressure sensor to the reaction force 𝐹𝐹 [N]. The 
resulting conversion formula is the following:

  F = 9.81 ×  { ( 8.01 ×  10   −3 )   V   6  −  (9.79 ×  10   −2 )   V   5  +  (4.52 ×  10   −1 )   V   4   
    −  (9.49 ×  10   −1 )   V   3  +  (8.56 ×  10   −1 )   V   2  −  (1.37 ×  10   −1 )  V}   (2)

With Eq. (2), a reaction force is calculated from the measurement value obtained with the 
pressure sensor. Thus, one can calculate the hardness parameter from Eq. (1).

3.5. Control of FFB device

3.5.1. Configuration of reference input creation model

For the purpose of this study, the winding speed of the belt in the FFB device needs to be 
adjustable according to the hardness of the grasped object. A reference input creation model 
is defined as shown in Figure 3, in which a reference input r(t) is obtained by a step input us(t) 
passing a primary delay filter.

The following relation is obtained from Figure 3:

  R (s)  =   1 ____ Ts + 1    U  s    (s)   (3)

A small time constant of the primary delay filter produces a rapidly rising reference input, 
and a large time constant produces a gradually rising reference input. The time constant T [s] 
of the primary delay filter is adjusted in accordance with the hardness parameter, K, to control 
the belt-winding motor to follow the reference input. Thus, T is denoted as T(K).

For safety reason, the FFB device is configured so that up to 10 mm of the belt is wound up.

3.5.2. Relation between time constant and hardness parameter

A function of the time constant T(K) related to the hardness parameter 𝐾𝐾 was derived in [10], 
which was determined as follows by trial and error:

  T (K)  =  tan   −1  (− K × 0.000734 + 2.1)  × 0.705 + 1.202  (4)

Figure 3. Reference input creation model.
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A preliminary experiment was conducted in [10] to derive a conversion formula from the 
pressure (voltage V [v]) measured with the pressure sensor to the reaction force 𝐹𝐹 [N]. The 
resulting conversion formula is the following:

  F = 9.81 ×  { ( 8.01 ×  10   −3 )   V   6  −  (9.79 ×  10   −2 )   V   5  +  (4.52 ×  10   −1 )   V   4   
    −  (9.49 ×  10   −1 )   V   3  +  (8.56 ×  10   −1 )   V   2  −  (1.37 ×  10   −1 )  V}   (2)

With Eq. (2), a reaction force is calculated from the measurement value obtained with the 
pressure sensor. Thus, one can calculate the hardness parameter from Eq. (1).
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is defined as shown in Figure 3, in which a reference input r(t) is obtained by a step input us(t) 
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The following relation is obtained from Figure 3:

  R (s)  =   1 ____ Ts + 1    U  s    (s)   (3)

A small time constant of the primary delay filter produces a rapidly rising reference input, 
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A function of the time constant T(K) related to the hardness parameter 𝐾𝐾 was derived in [10], 
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  T (K)  =  tan   −1  (− K × 0.000734 + 2.1)  × 0.705 + 1.202  (4)

Figure 3. Reference input creation model.
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3.5.3. Verification of reference input creation model

Numerical simulation was performed to verify the reference input creation model. In the 
verification, the hardness parameter was increased from 1000 to 6000 for each 1000, and the 
reference input derived from the reference input creation model was checked. The result is 
shown in Figure 4.

Figure 4 shows that the rise of the curve becomes rapid as the hardness parameter increases. 
This result indicates that the reference input could be efficiently created so that the user can 
feel a difference of the hardness.

3.5.4. Self-tuning PID control

The FFB device gives feedback of the force sense by pressing the upper arm of the user. The 
amount of fat and muscle of the human arm differs from person to person, and the arm hard-
ness could also change depending on how much the user strains the arm. Thus, the arm hard-
ness has a nonlinear characteristic. Therefore, an adaptive control is used for the control of the 
belt-winding motor of the FFB device. To this end, the self-tuning PID control proposed by [7] 
is used. Since the self-tuning PID control scheme is based on a discrete time control, Eq. (3) is 
discretized by a bilinear transformation to design a controller of the FFB device.

The control aim is to determine the control input u(k) so that the output angle y(k) of the FFB 
device follows the reference input r(k). The detail of the derivation of the control input is 
described in [10]. The PID gain can be calculated by using the estimation parameters     a ̂    

1
   (k)  ,     a ̂    

2
   

(k)  , and     a ̂    
3
   (k)   as follows:

    K  ̂    p   (k)  =   
2    a ̂    2   (k)  +    a ̂    3   (k)  − 2

  ___________    a ̂    1   (k)   ,   K  ̂    i   (k)  =   1 ____    a ̂    1   (k)   ,   K ̂    d   (k)  =   
1 −    a ̂    2   (k)  −    a ̂    3   (k) 

  __________    a ̂    1   (k)     (5)

Here, 𝑘𝑘 is the number of steps. Then, the control input is given by the following equation:

Figure 4. Reference inputs.
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  u (k)  = u (k − 1)  +   K  ̂    p   (k)  {y (k − 1)  − y (k) }  +   K  ̂    i   (k)  {r (k)  − y (k) }   
    +   K  ̂    d   (k)  {2y (k − 1)  − y (k)  − y (k − 2) }   (6)

3.6. Operation check of FFB device

For the verification of the functions of the whole system, the prosthetic hand was operated 
based on the SEMG of a subject, and the hardness of an object that was grasped by the hand 
was estimated. Then, how the FFB device controlled by the self-tuning PID could follow the 
reference input created from the estimated hardness was examined.

Five kinds of springs with different hardness were chosen as objects to grasp. Table 1 shows 
the physical properties of the springs.

The subject was an adult male in 20s. The results in which each of the springs was grasped 
once are shown in the following figures and tables. Figure 5 shows how the FFB device fol-
lowed the reference input. Table 2 shows the results of the hardness estimation. Table 3 
shows self-tuning PID gains and the time constant calculated from the estimated hardness.

Figure 5(a) and (b) shows a time delay of about 0.2 s in the response of the FFB device for 
any spring. However, the device clearly followed the reference input. Although a small 
error between the estimated value and the real value of the hardness parameter is seen 
in Table 2, the time constant was successfully calculated for all of the springs as shown 
in Table 3. Therefore, it was confirmed that the reference input could be created accord-
ing to the estimated hardness of the grasped object. In addition, the belt-winding action of 
the FFB device under the control of the self-tuning PID controller followed the reference 
input obtained from the estimated hardness. Thus, it was verified that the system worked 
properly.

3.7. Hardness identification experiment

The usefulness of the FFB device with the proposed system implemented is objectively veri-
fied with a psychophysics experiment method. Five kinds of springs, shown in Table 1 in the 
previous section, were used as the target of the hardness identification.

No. Spring constant K [N/m] Diameter [m] Length [m]

S1 990 14 × 10−3 25 × 10−3

S2 1800 8 × 10−3 25 × 10−3

S3 2980 10 × 10−3 30 × 10−3

S4 4390 13 × 10−3 25 × 10−3

S5 5340 7 × 10−3 25 × 10−3

Table 1. Physical properties of springs.
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3.7.1. Overview of the experiment

In the experiment, the myoelectric prosthetic hand was not used, but the spring constant of 
each spring was input directly to a computer, and then the hardness identification experiment 
using the FFB device was conducted.

Spring Force [N] Displacement [m] Estimated hardness 
parameter [N/m]

Real hardness 
parameter [N/m]

S1 5.23 3.76 × 10−3 1390 990

S2 5.27 2.56 × 10−3 2060 1800

S3 5.66 1.80 × 10−3 3150 2980

S4 5.15 1.27 × 10−3 4060 4390

S5 4.96 0.99 × 10−3 5030 5340

Table 2. Estimated and real hardness parameter.

Figure 5. Reference input and output of the FFB device.

Spring Time constant T [s] PID gain

   K  ̂    p   (k)     K  ̂    i   (k)     K  ̂    d   (k)  

S1 1.78 0.22706 0.0125 0.01154

S2 1.58 0.22707 0.0125 0.01154

S3 1.06 0.22713 0.0125 0.01150

S4 0.69 0.22710 0.0125 0.01151

S5 0.49 0.22717 0.0125 0.01147

Table 3. Time constant and self-tuned PID gains.
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The experiment was conducted by following the procedure of a constant method. The hard-
ness of a brass spring (K = 2980) was used as standard stimulation, and the hardness of five 
springs, including the brass spring, was used as comparative stimulation. The experimental 
procedure is described as follows:

1. FFB device is attached on the upper arm of the subject.

2. The subject is trained so that he can recognize the behavior of the FFB device.

3. The standard stimulation is given to the subject.

4. A 4-second interval is taken.

5. The comparative stimulation is given to the subject.

6. The subject answers which stimulation is harder or whether the two are the same.

7. 25 sets of operations [(3)–(6)] are conducted. In the operations, all the comparative stimula-
tions are used five times in random orders.

8. The operations [(3) and (5)] were replaced, and 25 sets of the operations [(3)–(6)] are con-
ducted again.

The experiments were performed for five healthy subjects in their 20s. In the operations, a 
1-min break was taken every five sets to prevent the subject from getting tired.

3.7.2. Results

Table 4 shows the results of experiments. The bold numbers show the ratio of correct identi-
fication of the stimulations.

From the results on the hardness identification experiment, one can see that the proposed 
method of presenting different varying hardness levels by using different belt-winding 
speeds was effective to identify the hardness of the five kinds of objects.

Stimulation Rate of the subject’s answer [%]

Hard Equal Soft

S1 4 12 84

S2 16 16 68

S3 24 46 30

S4 78 22 0

S5 88 12 0

Table 4. Identification results of hardness.
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4. Feedback device of temperature sense (TFB device)

4.1. Temperature sense

A combination of cold and warm sensations is called a temperature sense. The temperature 
sense differs at each body site even when an object of the same temperature is touched. In 
addition, when the skin is exposed to extreme heat or cold, the pain along with the risk of 
burns arises. Therefore, it is necessary to regulate the temperature of the TFB device.

4.2. Peltier element and thermocouple

The Peltier element is an electronic device that enables both cooling and heating by applying a 
voltage on the basis of the Peltier effect, and temperature is adjustable by regulating the voltage. 
The TFB device has a Peltier element; thus, the temperature sense is transferred to the user. The 
Peltier element used in the TFB device is “TEC1-12708” made by HB Electronic Components.

A thermocouple is a temperature sensor on the basis of the Seebeck effect. The thermocouple 
is attached to the silicone finger mounted on the fingertip of the myoelectric prosthetic hand 
to measure temperature of an object when the fingertip touches the object. A K-type thermo-
couple “AD-1214” made by T&D Corporation is used in this study.

4.3. Overview of TFB device

Figure 6 shows the developed TFB device and its attached state on the user’s upper arm. The 
Peltier element is attached to the inside of an aluminum board, and in order to raise a heat dissi-
pation efficiency, a radiation sheet and a heat sink are attached to the other side of the aluminum 
board. The TFB device is attached on the upper arm of the user in contact with the user’s skin, 
and the temperature sense that is corresponding to the temperature detected by the temperature 
sensor at the fingertip is transferred in the upper arm of the prosthetic hand user.

The device is small enough with the dimensions 50 mm (width), 60 mm (depth), and 17 mm 
(height).

When the TFB device is used for a long period, the accumulated heat causes a high temperature 
of the TFB device. Therefore, the continuous operating time of the TFB device is limited to 5 s.

Figure 6. TFB device and its attached state.
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When the TFB device decreases the temperature, it enables refrigeration of surface tempera-
ture to a minimum of 15°C for 5 s. On the contrary, when the TFB device increases the tem-
perature, it enables heating of surface temperature exceeding 50°C. Hence, the temperature of 
the TFB device is limited to 40°C for safety.

4.4. Temperature prediction

After the myoelectric prosthetic hand contacts with the object, the temperature sensor needs 
a long time for measuring the temperature. Therefore, a temperature prediction is performed 
to shorten the measurement time.

Let relationship between a sensor output y(t) and a temperature variation u(t) be given by the 
following equation in transfer function expression:

  Y (s)  = G (s) U (s)   (7)

To determine the transfer function G(s), the parameter identification was performed. 
Furthermore, let ∆T denote the predicted temperature variation and    y ̂   (t)   denote the estimated 
output, and then the estimated output is calculated as follows using the identified transfer 
function:

   Y ̂   (s)  =   0.89  s   3  + 0.66  s   2  + 0.49s + 0.06   ___________________    s   4  + 2.54  s   3  + 1.7  s   2  + 0.8s + 0.06   ∆T  (8)

Let ε(t) denote the error between the estimated output    y ̂   (t)   and sensor output y(t), which is 
presented by  ε (t)  =   y ̂   (t)  − y (t)  . The predicted temperature variation ∆T is updated by using ε(t) 
as follows in each sampling period:

  ∆  T  new   = ∆  T  old   + K ∙ ε (t)   (9)

where ∆Told is the predicted temperature variation one step before, ∆Tnew denotes an updated 
predicted temperature variation, and K is an arbitrary constant, which was chosen as K = 70.

Let T0 denote the room temperature, and then predicted temperature T is given as follows:

  T = ∆  T  new   +  T  0    (10)

The predicted temperature is updated to reduce the error when the sensor detected a tem-
perature variation; thus, the temperature when reached to the equilibrium state is given by 
Eq. (10). As a result, the sensor can detect the temperature of the object in a short time.

The verification experiment was performed to verify an effectiveness of the proposed tem-
perature prediction algorithm. In the experiment, under the room temperature of 26°C, the 
sensor touched an object of 40°C. Then, the temperature was predicted by the proposed algo-
rithm. Figure 7 shows the result.

The result showed that prediction of the temperature in a short time is possible by using the 
proposed temperature prediction method.
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4.5. Temperature sense investigation

The temperature sense of an individual differs at each body site. For example, the tempera-
ture senses when an object with the same temperature is touched with a finger and with the 
upper arm are different. Therefore, in order to investigate the difference in the temperature 
sense between the fingertip and the upper arm, a temperature sense investigation was per-
formed. Thus, the temperature experienced by the upper arm which is equivalent to the 
temperature experienced by the fingertip was determined as feedback temperature to the 
upper arm.

The temperature which should be presented at the upper arm and the voltage which should 
be applied to the TFB device were determined in [11] as follows. The relationship between the 
temperatures experienced by the fingertip and by the upper arm was interpolated. Then, the 
relationship between the predicted temperature at the fingertip T and the target temperature 
in the upper arm Tt and the relationship between the predicted temperature at the fingertip T 
and the input voltage to the TFB device V were approximated as shown in Eqs. (11) and (12), 
respectively, by using the least squares method:

   T  t   = 0.00008  T   4  − 0.006  T   3  + 0.1841  T   2  − 1.1439T + 16.902  (11)
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or decreasing. Hence, it is impossible to maintain the temperature using this control system. 
Therefore, the continuous operating time of the TFB device was limited to 5 s.

To use the TFB device continuously, a closed-loop control system was constructed. For this 
purpose, another temperature sensor was additionally attached on the surface of the Peltier 
element of the TFB device. The target temperature in the upper arm Tt corresponding to the 
predicted temperature at the fingertip of the myoelectric prosthetic hand T is determined by 
Eq. (11). Then, the input voltage to the TFB device is determined by a PID controller. The PID 
gains were determined by trial and error and chosen as KP = 1, KI = 0.05 and KD = 0.01.

4.6.2. Operation check of TFB device

In order to verify the effectiveness of the closed-loop control system with PID controller, 
experiment was performed. In the experiment, the target temperature is suddenly decreased 
from 40 to 15°C. The transition of the temperature of the TFB device and the input voltage to 
the TFB device are shown in Figure 8.

As shown in Figure 8, the results showed that the constructed closed-loop system enabled the 
adjustment of the temperature of the TFB device according to the temperature change and 
also enabled a long-time continuous operation of the TFB device.

4.7. Temperature identification experiment

In order to verify the performance of the TFB device controlled in the closed-loop control system, 
a temperature identification experiment was performed. The usefulness of the TFB device con-
trolled by the closed-loop system is objectively verified with a psychophysics experiment method.

4.7.1. Overview of the experiment

In this experiment, the myoelectric prosthetic hand was not used, but each temperature was 
input directly to a computer, and then the temperature identification experiment using the 
TFB device was conducted.

The temperature of 30°C was used as standard stimulation, and five kinds of temperature, 
28, 29, 30, 31, and 32°C, were used as comparative stimulation. The following describes the 
experimental procedure:

1. TFB device is attached on the upper arm of the subject.

2. An experimenter inputs the standard stimulation (30°C) to the computer, and standard 
stimulation is presented to the subject by the TFB device.

3. An experimenter inputs the comparative stimulation that is randomly selected from the 
five kinds of temperatures to the computer, and comparative stimulation is presented to 
the subject by the TFB device.

4. The subject answers which temperature is higher or whether the two are almost same.

5. 25 sets of the operations [(2)–(4)] are performed.

6. The operations [(2) and (3)] were replaced, and 25 sets of the operations [(2)–(4)] are 
performed.
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or decreasing. Hence, it is impossible to maintain the temperature using this control system. 
Therefore, the continuous operating time of the TFB device was limited to 5 s.
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input directly to a computer, and then the temperature identification experiment using the 
TFB device was conducted.
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In the operations, all the comparative stimulations were used 10 times in random orders. The 
experiments were performed for five healthy subjects in their 20s.

4.7.2. Results

Table 5 shows the results of experiments. The bold numbers show the ratio of correct identi-
fication of the stimulations.

From the results on the temperature identification experiment, one can see that the proposed 
method of presenting temperature by the TFB device controlled in the closed-loop control 
system was effective to identify the five kinds of temperatures.

5. Integration of the sensory feedback devices

5.1. New myoelectric prosthetic hand

To improve the operability of the myoelectric prosthetic hand, a new myoelectric prosthetic 
hand was designed and built by imitating the commercial prosthetic hand, which is shown in 
Figure 9. The pressure sensor and the temperature sensor were attached to the fingertip of the 

Temperature of comparison stimulus [°C] Rate of the subject’s answer [%]

Hot Equal Cold

28 0 14 86

29 4 36 60

30 6 82 12

31 60 34 6

32 86 10 4

Table 5. Identification results of temperature.

Figure 8. Temperature of the TFB device and input voltage to the TFB device.
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thumb and index finger of the prosthetic hand, respectively. Thus, this myoelectric prosthetic 
hand makes it possible to detect the force and temperature when the prosthetic hand holds 
an object.

5.2. Two-sensory feedback device

Finally, the FFB device and the TFB device were united, and a two-sensory feedback device 
was built, which is shown in Figure 10. The dimensions of the device are 75 mm (width), 
82 mm (depth), and 34 mm (height).

Figure 9. New myoelectric prosthetic hand.

Figure 10. Two-sensory feedback device and its attached state.
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6. Conclusion

In this study, force feedback device (FFB device) and temperature feedback device (TFB device) 
were proposed and built. When a user of a myoelectric prosthetic hand grasps an object, the 
FFB device provides pressure to the user’s upper arm by winding a belt using a motor, and the 
TFB device presents the temperature sense to the user’s upper arm using the Peltier element.

In the FFB device, the hardness of the object was estimated by a pressure sensor attached on 
the fingertip of the myoelectric prosthetic hand, and a reference input was produced by a 
reference input creation model according to the hardness. In addition, a self-tuning PID con-
troller was employed to control the FFB device so as to make the motor’s output angle follow 
the reference input. Furthermore, the hardness of the grasped object was presented by the 
winding speed of the belt. Hardness identification experiment to distinguish among the five 
kinds of springs of different hardness was carried out. The experimental results on the hard-
ness identification experiment showed that the proposed method was effective to identify the 
hardness of the five kinds of objects.

In the TFB device, a temperature prediction algorithm was proposed for short-time temperature 
detection. Then, based on the results of the temperature sense investigation, the corresponding 
temperature sense when the object was touched by a fingertip was transferred to the user’s upper 
arm by the TFB device. However, it was difficult to operate the TFB device continuously because 
this device was controlled in an open-loop control system. To solve this problem, a closed-loop 
control system was constructed for the TFB device and was tested for sudden change of the tem-
perature. Temperature identification experiment to distinguish among five different tempera-
tures was carried out to verify the effectiveness of the TFB device controlled in the closed-loop 
control system. The experimental results on the temperature identification experiment showed 
the sufficient capability of the TFB device controlled in the closed-loop control system.

In addition, a new myoelectric prosthetic hand was built to improve the operability of the 
myoelectric prosthetic hand. Finally, two-sensory feedback devices were united, and a two-
sensory feedback device was built.
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Abstract

User integration with assistive devices or rehabilitation protocols to improve movement 
function is a key principle to consider for developers to truly optimize performance gains. 
Better integration may entail customizing operation of devices and training programs 
according to several user characteristics during execution of functional tasks. These char-
acteristics may be physical dimensions, residual capabilities, restored sensory feedback, 
cognitive perception, or stereotypical actions.
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1. Introduction: User ‘feel’ for rehabilitation devices

#FeelBetterDoBetter was a recent campaign slogan by apparel giant Nike, suggesting how 
sportswear can provide a ‘feel’ that leads to better athletic performance. Does such a con-
cept apply to prosthetic devices and improved rehabilitation? Is feel a matter of user percep-
tion, product customization, or literally the sensation of touch? Great technological strides 
have been made to develop assistive devices and paradigms that restore motor capabilities 
of individuals with physical impairment. Augmenting function with prosthetic limbs after 
amputation [1] and neuroprostheses following spinal cord injury [2] are clear examples where 
the biological-technological interface has notably advanced. Smart-prosthetics are continu-
ally being equipped with greater computational processing and actuation methods to accu-
rately control movements involving several degrees of freedom [3]. Electromotor prosthetic 
limbs can now sufficiently power desired motor actions while maintaining compact form 
for increasingly biomimetic implementation [4]. Neuroprostheses for motor restoration now 
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includes greater access and finer control of paralyzed muscles activated by advanced stimula-
tion electrodes [5, 6]. While further advancements in augmenting the capacity of movement 
for those with motor dysfunction is still sought, it is clear there has been notable advancement 
for assistive device users to ‘do’.

How then is the full potential of ‘do’ realized with movement rehabilitation? The Nike slo-
gan would imply it is a matter of better ‘feel’. What defines how a user feels when using a 
rehabilitation device? A literal interpretation may be engineering novel sensations of touch 
or body movements to the user through the device interface itself. Such an example is a pros-
thetic hand following amputation that connects mechanical sensors to transduce physical 
sensations to neural activations and allow users to perceive touch or movement [7, 8]. With 
intact physiological systems interfacing with external objects, such sensory feedback is meant 
to facilitate the identification of object shape, size, weight, and texture [9]. This information 
should allow better manipulation of objects with appropriate motor planning, online adapta-
tions, and final goal achievement [10]. Another interpretation of feel is how a user perceives 
their ability to use the device. This may initially be reflected in usability surveys [11]. This 
could imply ease-of-use or sufficient capabilities to do activities of daily living. For the former, 
the perception of ease-of-use can be highly subjective. For the latter, the user’s perception of 
value could be in terms of what new tasks they cannot otherwise perform or at what new 
level they can perform certain tasks. Is perception of ability simply a matter of effort, or in 
the case of devices that are restoring functions in a biomimetic way, is it truly a matter of user 
integration?

Integration can also be described on multiple levels. In the case of a device, the user may 
see the device truly as an extension of oneself. Certainly, the ultimate objective for integra-
tion would be to provide means that maximize biomimicry, including allowing the user to 
feel embodiment to the device [12–14]. Not only should the device be anthropomorphic but 
it should also provide to the user sensory feedback, including touch and kinesthesia [15]. 
Finally, the device should reflect user intent. In cognitive neuroscience, this would entail hav-
ing a sense of ‘agency’, or belief one is the true author of one’s movements [16]. Understanding 
how better to integrate the user with a device may lead to better performance of a specific 
movement function. Therefore, it may be critical to identify the design specifications of a reha-
bilitation device that improves user integration to better execute the desired movement. With 
movement execution, feedback describing system kinematic states [17, 18] is fundamental at a 
device level. But allowing users to ‘feel’ more integrated with operation may be the key better 
performance by user-driven devices.

Areas of advancement to improve device ‘feel’ include: (1) using novel modes of feedback, (2) 
computational intelligence for processing control and identification, (3) targeted user-based 
command strategies to initiate and modulate control of actions, and (4) identifying optimal 
movements to be executed. For novel modes of feedback, not only could new sensory modali-
ties be biophysically restored, but device controller and rehabilitation protocols may better 
leverage how users employ intact sensory feedback capabilities. Users may rely on intact 
visual, audio, and haptic feedback to negotiate movements and modulate their control of a 
device or actions during a rehabilitation training protocol [19]. New control structures are 
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taking advantage of increasingly powerful computational capabilities and soft computing 
approaches [20]. These approaches may require less accurate descriptions of system identifi-
cation and can readily update parameters to adapt online in the presence of new performance 
data. Driving operation of assistive devices according to user commands for better perfor-
mance has typically involved selection of desirable user cues, tuning operational sensitivity 
to those cues, and facilitating heuristic learning [21]. Simple cues may allow users to invoke 
switch-type control to initiate operation with a mechanical trigger like a button push [22]. 
Extension to biomimetic operation would rely on more graded control and bioelectric sig-
naling from the user such as electromyographic (EMG) or electroencephalographic (EEG) 
recordings [23, 24]. Subsequent refinement and tuning between developers and users for cus-
tomization can be largely expected to generate satisfactory empirical results. Thus, custom-
izing devices and protocols to each user is an important design consideration to produces the 
best movement results for the user. Certainly, considering physical dimensions to better fit 
a device to someone is required for basic assimilation. However, the residual capabilities of 
the user may not be as well considered except to define a functional baseline from which the 
user is expected to improve with practice. This approach leaves the onus largely on the user 
to learn how to better operate the device or diligently engage in a protocol.

In this chapter, we will suggest rehabilitation approaches with examples that consider ‘feel’ 
in development of devices and protocols that better integrates users for improved perfor-
mance. In Section 2, we outline the major components in a user-driven rehabilitation device 
or protocol and their bases of interaction. In Sections 3–5, we discuss alternative methods and 
considerations to better incorporate the user into assistive devices or rehabilitation protocols. 
We first postulate an example of controlling a gait-restoration exoskeletons that could opti-
mally relate volitional actions of the user with computation of device control parameters that 
optimize performance. We then discuss methods that consider how user perception of agency 
over a device may affect performance. The discussion context will be a proposed experiment 
to optimize an individual’s ability to perform grasping actions with a virtual hand prosthesis 
based on cognitive agency. Finally, we suggest a rehabilitation paradigm to minimize injury 
when they consider individualized physiological responses to movement activity.

2. System view of user-centered rehabilitation

There are three major components to consider for a system that restores or rehabilitates move-
ment function (Figure 1, top). First, there is the biomechanical plant which is composed of 
the physical body of the person executing a movement task objective within an environment, 
including objects to be manipulated. In this formulation, we interpret the fundamental move-
ment goal as a fixed property of the system plant. The physical body includes the size and 
shape characteristics of the limbs to be moved, perhaps the entire body as with ambulation. 
Second, a device may assist in executing the movement or provide constraints and cues to the 
user on how better to perform the function. Third, the user volitionally commands themselves 
and/or the device to drive movement operation of the entire system. The extent of the drive 
depends on residual capabilities of the user, contingent on the disorder, the capabilities of 
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includes greater access and finer control of paralyzed muscles activated by advanced stimula-
tion electrodes [5, 6]. While further advancements in augmenting the capacity of movement 
for those with motor dysfunction is still sought, it is clear there has been notable advancement 
for assistive device users to ‘do’.

How then is the full potential of ‘do’ realized with movement rehabilitation? The Nike slo-
gan would imply it is a matter of better ‘feel’. What defines how a user feels when using a 
rehabilitation device? A literal interpretation may be engineering novel sensations of touch 
or body movements to the user through the device interface itself. Such an example is a pros-
thetic hand following amputation that connects mechanical sensors to transduce physical 
sensations to neural activations and allow users to perceive touch or movement [7, 8]. With 
intact physiological systems interfacing with external objects, such sensory feedback is meant 
to facilitate the identification of object shape, size, weight, and texture [9]. This information 
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device level. But allowing users to ‘feel’ more integrated with operation may be the key better 
performance by user-driven devices.

Areas of advancement to improve device ‘feel’ include: (1) using novel modes of feedback, (2) 
computational intelligence for processing control and identification, (3) targeted user-based 
command strategies to initiate and modulate control of actions, and (4) identifying optimal 
movements to be executed. For novel modes of feedback, not only could new sensory modali-
ties be biophysically restored, but device controller and rehabilitation protocols may better 
leverage how users employ intact sensory feedback capabilities. Users may rely on intact 
visual, audio, and haptic feedback to negotiate movements and modulate their control of a 
device or actions during a rehabilitation training protocol [19]. New control structures are 
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taking advantage of increasingly powerful computational capabilities and soft computing 
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naling from the user such as electromyographic (EMG) or electroencephalographic (EEG) 
recordings [23, 24]. Subsequent refinement and tuning between developers and users for cus-
tomization can be largely expected to generate satisfactory empirical results. Thus, custom-
izing devices and protocols to each user is an important design consideration to produces the 
best movement results for the user. Certainly, considering physical dimensions to better fit 
a device to someone is required for basic assimilation. However, the residual capabilities of 
the user may not be as well considered except to define a functional baseline from which the 
user is expected to improve with practice. This approach leaves the onus largely on the user 
to learn how to better operate the device or diligently engage in a protocol.

In this chapter, we will suggest rehabilitation approaches with examples that consider ‘feel’ 
in development of devices and protocols that better integrates users for improved perfor-
mance. In Section 2, we outline the major components in a user-driven rehabilitation device 
or protocol and their bases of interaction. In Sections 3–5, we discuss alternative methods and 
considerations to better incorporate the user into assistive devices or rehabilitation protocols. 
We first postulate an example of controlling a gait-restoration exoskeletons that could opti-
mally relate volitional actions of the user with computation of device control parameters that 
optimize performance. We then discuss methods that consider how user perception of agency 
over a device may affect performance. The discussion context will be a proposed experiment 
to optimize an individual’s ability to perform grasping actions with a virtual hand prosthesis 
based on cognitive agency. Finally, we suggest a rehabilitation paradigm to minimize injury 
when they consider individualized physiological responses to movement activity.

2. System view of user-centered rehabilitation

There are three major components to consider for a system that restores or rehabilitates move-
ment function (Figure 1, top). First, there is the biomechanical plant which is composed of 
the physical body of the person executing a movement task objective within an environment, 
including objects to be manipulated. In this formulation, we interpret the fundamental move-
ment goal as a fixed property of the system plant. The physical body includes the size and 
shape characteristics of the limbs to be moved, perhaps the entire body as with ambulation. 
Second, a device may assist in executing the movement or provide constraints and cues to the 
user on how better to perform the function. Third, the user volitionally commands themselves 
and/or the device to drive movement operation of the entire system. The extent of the drive 
depends on residual capabilities of the user, contingent on the disorder, the capabilities of 
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the device, and the user-device interface. For example, an individual with stroke performing 
walking may largely be servicing the movement with their own residual capabilities. They 
may utilize an assistive device such as a spring-loaded ankle-foot orthosis (AFO) for pro-
pulsive boost during gait push-off. The user may further govern execution of gait with their 
vision and the haptic feedback they receive at their feet or even an additional assistive device 
such as a walking cane.

All three major system components (plant, device, user) must act in concert to successfully 
maintain or execute movement. The synergistic interactions between each component repre-
sent areas of research investigation to be developed to better restore movement performance. 

Figure 1. Top: Three major components for control system that rehabilitates movement function. Bottom: Component 
areas of overlap having distinct research thrusts.
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In Figure 1 (bottom), areas 1, 2, 3 are specifications for each fundamental component pre-
viously described. Area 4 signifies how the device utilizes its onboard sensing capabilities 
to receive feedback about actions of the plant, and in turn utilizes its actuation capabilities 
to manipulate the plant. Depending on the level of assistance the device provides, it likely 
requires proportionate information about the states of the plant. For movement, these feed-
back states are likely kinematics. The device may utilize potentiometers to measure joint 
angles or inertial sensing units that integrate accelerometers, gyroscopes, and magnetometers 
to derive real-time estimates of global orientation [25]. Load sensors may be utilized to dis-
cern pressure or force information between plant and environment such as ground-foot con-
tact [26] or hand grasp loads onto objects [27]. Device actuation may be more passive as with 
AFO assistance from spring-loads being applied proportional to displacements ala Hooke’s 
law (F = -kx) and mediated through well-executed clutching [28]. Device actuation may be 
more active such as functional neuromuscular stimulation (FNS) to activated paralyzed mus-
culature and restore standing balance capabilities [29] or electromotor actuation to restore 
walking [30] following spinal cord injury (SCI).

Area 5 similarly denotes how the user may rely on his or her own residual sensory capabilities 
(such as vision or touch) to interpret states of the plant and can enact residual motor capabili-
ties to further manipulate the plant independently or with the device. For the purposes of 
rehabilitation, user-volitional capabilities alone are not sufficient to achieve the desired levels 
of function. Thus, a device or training program to enhance overall function is necessary to 
desirably improve movement performance. The relative user versus device contribution func-
tion can vary considerably depending on application. The user typically drives most of the 
action, which is only enhanced by the device, for gait following stroke. Alternatively, it may 
be the device that makes movement even possible such as with FNS or powered exoskeletons 
to restore standing and walking following complete SCI.

Area 6 is the fundamental link between user and device. Often, the device operates in a pre-
programmed manner according to distinct phases of the movement (e.g., gait cycle), or the 
user will command operation of the device (e.g., button push, tilting action, signal threshold 
exceeded). In the latter case, the onus is on the user to monitor the plant and select when the 
device should intervene. Ultimately, the user responds not only to his or her own observa-
tions of the plant but must react to the actions of the device as well. The device may also 
provide information to the user about the plant that the user does not otherwise have. In this 
case, the device may restore sensory feedback (touch or movement) to the user about body-
environment-task interactions [31, 32]. The device may do so through neural activation to 
restore basic sensory capabilities such as vision, hearing, touch, or kinesthesia [33]. Or the 
device may provide supplementary sensory cues to alert the user to events or cautionary 
indicators related to the movement. For example, vibrational cues have been used for training 
individuals on how better to use a device [34], and audio cues have been provided for assist-
ing individuals in balance function [35].

Moving forward, it is research initiatives in Area 7, that designs simultaneous synergies 
between plant, user, and device that may truly optimize rehabilitation for better functional per-
formance. Considering how best to integrate the user may be most key to this end. Mechanical 

Optimizing User Integration for Individualized Rehabilitation
http://dx.doi.org/10.5772/intechopen.70267

53
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vision and the haptic feedback they receive at their feet or even an additional assistive device 
such as a walking cane.

All three major system components (plant, device, user) must act in concert to successfully 
maintain or execute movement. The synergistic interactions between each component repre-
sent areas of research investigation to be developed to better restore movement performance. 
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Biomimetic Prosthetics52

In Figure 1 (bottom), areas 1, 2, 3 are specifications for each fundamental component pre-
viously described. Area 4 signifies how the device utilizes its onboard sensing capabilities 
to receive feedback about actions of the plant, and in turn utilizes its actuation capabilities 
to manipulate the plant. Depending on the level of assistance the device provides, it likely 
requires proportionate information about the states of the plant. For movement, these feed-
back states are likely kinematics. The device may utilize potentiometers to measure joint 
angles or inertial sensing units that integrate accelerometers, gyroscopes, and magnetometers 
to derive real-time estimates of global orientation [25]. Load sensors may be utilized to dis-
cern pressure or force information between plant and environment such as ground-foot con-
tact [26] or hand grasp loads onto objects [27]. Device actuation may be more passive as with 
AFO assistance from spring-loads being applied proportional to displacements ala Hooke’s 
law (F = -kx) and mediated through well-executed clutching [28]. Device actuation may be 
more active such as functional neuromuscular stimulation (FNS) to activated paralyzed mus-
culature and restore standing balance capabilities [29] or electromotor actuation to restore 
walking [30] following spinal cord injury (SCI).

Area 5 similarly denotes how the user may rely on his or her own residual sensory capabilities 
(such as vision or touch) to interpret states of the plant and can enact residual motor capabili-
ties to further manipulate the plant independently or with the device. For the purposes of 
rehabilitation, user-volitional capabilities alone are not sufficient to achieve the desired levels 
of function. Thus, a device or training program to enhance overall function is necessary to 
desirably improve movement performance. The relative user versus device contribution func-
tion can vary considerably depending on application. The user typically drives most of the 
action, which is only enhanced by the device, for gait following stroke. Alternatively, it may 
be the device that makes movement even possible such as with FNS or powered exoskeletons 
to restore standing and walking following complete SCI.

Area 6 is the fundamental link between user and device. Often, the device operates in a pre-
programmed manner according to distinct phases of the movement (e.g., gait cycle), or the 
user will command operation of the device (e.g., button push, tilting action, signal threshold 
exceeded). In the latter case, the onus is on the user to monitor the plant and select when the 
device should intervene. Ultimately, the user responds not only to his or her own observa-
tions of the plant but must react to the actions of the device as well. The device may also 
provide information to the user about the plant that the user does not otherwise have. In this 
case, the device may restore sensory feedback (touch or movement) to the user about body-
environment-task interactions [31, 32]. The device may do so through neural activation to 
restore basic sensory capabilities such as vision, hearing, touch, or kinesthesia [33]. Or the 
device may provide supplementary sensory cues to alert the user to events or cautionary 
indicators related to the movement. For example, vibrational cues have been used for training 
individuals on how better to use a device [34], and audio cues have been provided for assist-
ing individuals in balance function [35].

Moving forward, it is research initiatives in Area 7, that designs simultaneous synergies 
between plant, user, and device that may truly optimize rehabilitation for better functional per-
formance. Considering how best to integrate the user may be most key to this end. Mechanical 
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descriptions of the plant and target movement is necessarily done for designing the functional 
specifications of an assistive device. But integrating the user is comparatively more challeng-
ing without a priori indication of their responses (mechanical, physiological) using a device. It 
is often expected that the user will adapt and train with the device, and device parameters can 
be tuned by developers according to empirical patterns, ad hoc adjustments, and anecdotal 
feedback from the user. These approaches are understandable and imminently practical, but 
are they ultimately optimal? Rehabilitation approaches that better consider user integration 
in the early stages of development may better produce the synergy between plant, user, and 
device that maximizes performance. In the next three sections, we postulate examples of reha-
bilitation approaches to maximize movement performance by considering: device operation 
according to user actions, optimizing user sense of agency over a device, and identifying 
optimal movements from user-specific physiological responses.

3. Enacting device control from user actions

A biomechanical rehabilitation system with great potential for better incorporating user 
actions into enacted device operation is gait-restoration by powered exoskeletons. To over-
come clinical barriers to translation, powered lower-limb orthoses for gait following SCI 
should be light-weight, cosmetic, and well-integrated with standard wheelchairs. With these 
design constraints, however, joint degrees-of-freedom and torque magnitudes are typically 
limited. Users must then utilize walking aids such as crutches or canes for balance and sup-
port. While exoskeleton-assisted gait is achievable, the observed motions are staggered and 
expend energy inefficiently for the user and orthosis. Feedback control schemes may be better 
designed to synergistically combine functional capabilities and actions of the user and worn 
exoskeleton to produce gait patterns that are more natural and energy cost effective.

An optimal control structure would consider full body dynamics in generating exoskeleton 
motion patterns that resemble able-bodied gait while also operating at minimal energy cost 
[36]. The motion patterns may be limited according to constraints on actuation by both the 
user and the device. These actuation constraints may be in terms of how many degrees of 
freedom are actively under control and the maximum torques that can be generated. It is, in 
part, due to the constraints that users must support and balance the actions of the device with 
upper-body walking aids such as crutches. The user typically must reactively respond to the 
actions of the device after the user initially triggers the device on a step-by-step basis. Upper-
body actions have previously been used for command triggering the next step of exoskeleton 
operation [22]. Ideally, controllers would be online modulate operation of the exoskeleton 
according to proactive user actions of the support aids to generate the most efficient (optimal) 
walking patterns. An optimal feedback controller could continuously vary feedback gains 
over the walking cycle to synergistically combine actions of the user upper-body and lower-
limb orthosis. This could provide better performance and a more natural command interface. 
This user-centered objective in controller development would be to utilize user-commanded 
crutch motions in real-time to efficiently regulate exoskeleton actuation. In Figure 2, we show 
a block-diagram schematic of how such an exoskeleton control system may be considered.
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The linear quadratic regulator (LQR) is a classical optimal control approach to regulate the 
dynamics of a linear system. The LQR can also be utilized on non-linear dynamical systems 
such as bipedal human gait by approximating as a linear time-varying system. Extending such 
an approach could provide a foundation for optimal control of powered gait devices such 
as exoskeletons. Exoskeletons to restore or augment gait function have previously employed 
time-varying proportional-derivative (PD) control [30]. However, gains and setpoints for 
closed-loop joint control were empirically fitted to human angle-moment data and conse-
quently not unique nor optimal toward specific performance objectives. This is unlike an opti-
mal control approach where parameters are uniquely identified for minimizing a specified 
cost function such as controller effort while better tracking desired motion trajectories.

Bipedal walking can largely be simulated with a sagittal plane model. A minimal representa-
tion may consist of seven rigid bodies, connected by six bilateral joints of the hips, knees, and 
ankles [37]. For full-state description, there would be nine kinematic generalized coordinates: 
global anterior-posterior and superior-inferior position coordinates of the hip joint, torso ori-
entation, right/left hip angles, right/left knee angles, and right/left ankle angles. In this model, 
contact between feet and ground can be modeled with spring-damper elements uniformly dis-
tributed along each foot sole [37] and include some passive joint moments to provide realistic 
joint motions and limits. Reasonable passive moments include basic stiffness (1 N-m/rad) and 

Figure 2. Example of controller system to modulate assistive device operation according to user actions and generate 
optimal walking function.
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descriptions of the plant and target movement is necessarily done for designing the functional 
specifications of an assistive device. But integrating the user is comparatively more challeng-
ing without a priori indication of their responses (mechanical, physiological) using a device. It 
is often expected that the user will adapt and train with the device, and device parameters can 
be tuned by developers according to empirical patterns, ad hoc adjustments, and anecdotal 
feedback from the user. These approaches are understandable and imminently practical, but 
are they ultimately optimal? Rehabilitation approaches that better consider user integration 
in the early stages of development may better produce the synergy between plant, user, and 
device that maximizes performance. In the next three sections, we postulate examples of reha-
bilitation approaches to maximize movement performance by considering: device operation 
according to user actions, optimizing user sense of agency over a device, and identifying 
optimal movements from user-specific physiological responses.

3. Enacting device control from user actions

A biomechanical rehabilitation system with great potential for better incorporating user 
actions into enacted device operation is gait-restoration by powered exoskeletons. To over-
come clinical barriers to translation, powered lower-limb orthoses for gait following SCI 
should be light-weight, cosmetic, and well-integrated with standard wheelchairs. With these 
design constraints, however, joint degrees-of-freedom and torque magnitudes are typically 
limited. Users must then utilize walking aids such as crutches or canes for balance and sup-
port. While exoskeleton-assisted gait is achievable, the observed motions are staggered and 
expend energy inefficiently for the user and orthosis. Feedback control schemes may be better 
designed to synergistically combine functional capabilities and actions of the user and worn 
exoskeleton to produce gait patterns that are more natural and energy cost effective.

An optimal control structure would consider full body dynamics in generating exoskeleton 
motion patterns that resemble able-bodied gait while also operating at minimal energy cost 
[36]. The motion patterns may be limited according to constraints on actuation by both the 
user and the device. These actuation constraints may be in terms of how many degrees of 
freedom are actively under control and the maximum torques that can be generated. It is, in 
part, due to the constraints that users must support and balance the actions of the device with 
upper-body walking aids such as crutches. The user typically must reactively respond to the 
actions of the device after the user initially triggers the device on a step-by-step basis. Upper-
body actions have previously been used for command triggering the next step of exoskeleton 
operation [22]. Ideally, controllers would be online modulate operation of the exoskeleton 
according to proactive user actions of the support aids to generate the most efficient (optimal) 
walking patterns. An optimal feedback controller could continuously vary feedback gains 
over the walking cycle to synergistically combine actions of the user upper-body and lower-
limb orthosis. This could provide better performance and a more natural command interface. 
This user-centered objective in controller development would be to utilize user-commanded 
crutch motions in real-time to efficiently regulate exoskeleton actuation. In Figure 2, we show 
a block-diagram schematic of how such an exoskeleton control system may be considered.
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dynamics of a linear system. The LQR can also be utilized on non-linear dynamical systems 
such as bipedal human gait by approximating as a linear time-varying system. Extending such 
an approach could provide a foundation for optimal control of powered gait devices such 
as exoskeletons. Exoskeletons to restore or augment gait function have previously employed 
time-varying proportional-derivative (PD) control [30]. However, gains and setpoints for 
closed-loop joint control were empirically fitted to human angle-moment data and conse-
quently not unique nor optimal toward specific performance objectives. This is unlike an opti-
mal control approach where parameters are uniquely identified for minimizing a specified 
cost function such as controller effort while better tracking desired motion trajectories.

Bipedal walking can largely be simulated with a sagittal plane model. A minimal representa-
tion may consist of seven rigid bodies, connected by six bilateral joints of the hips, knees, and 
ankles [37]. For full-state description, there would be nine kinematic generalized coordinates: 
global anterior-posterior and superior-inferior position coordinates of the hip joint, torso ori-
entation, right/left hip angles, right/left knee angles, and right/left ankle angles. In this model, 
contact between feet and ground can be modeled with spring-damper elements uniformly dis-
tributed along each foot sole [37] and include some passive joint moments to provide realistic 
joint motions and limits. Reasonable passive moments include basic stiffness (1 N-m/rad) and 
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damping (1 N-m-s/rad) through normal ranges of motion, and then high stiffness (1000 N-m/
rad) near range of movement limits. Modes to generate equations of motion (e.g., Autolev by 
Online Dynamics Inc., Sunnyvale, CA) can be readily integrated with MEX functionality [38] 
to compute system dynamics in the form:

   x ˙   = f  (  x, u )         (1)

Where x is the full set of states, consisting of the nine generalized position coordinates and the 
corresponding nine velocities, and u are the six joint torques. The model dynamics equations 
should be formulated as twice differentiable to facilitate use of gradient-based optimization, 
linearization, and implicit solvers [39]. For a linear system in general state-space form in dis-
crete time: xi + 1 = Aixi + Biui, an LQR formulation would provide an optimal feedback gain (k) 
solution given a control law of ui = − kixi that minimizes the quadratic cost function of:

  J =   ∑  
k=0

  
∞

    (   x  k  T  Q  x  k   +  u  k  T  R  u  k   )   as the optimal control problem.  (2)

The diagonal weighting matrices Q and R quantify how to relatively minimize deviations 
from desired states and controls, respectively. The matrices serve as control design param-
eters to specify the relative desired effects for better tracking (smaller errors in states) versus 
less effort (lower joint torques). Each diagonal term corresponds to a respective state (i) or 
control (j) that normalizes its contribution to the objective function by the variance of the 
respective optimal trajectory. For variance, the matrix diagonal terms are set equal to the 
standard deviation (σ) values of the optimal trajectory for each state or control. These σ val-
ues allow us to perform quadratic normalization of each state and control term for units and 
magnitudes of variation during gait as follows:

   Q  ii   = ϕ   (  1 ___  σ   x  i  
    )    

2
  where i = 1 to 18 states  (3)

   R  jj   =   (  1 ___  σ   u  j  
    )    

2
  where j = 1 to 6 joint − torque controls  (4)

To uniformly vary weighting toward tracking over effort, only the Qii terms need be sub-
sequently and multiplied by a single Q/R ratio, ϕ. This ratio serves as the single controller 
design parameter. It is assumed with ϕ = 1, there is equal consideration of tracking and effort 
in controller performance. The optimal feedback gain matrix, k, can then be solved across time 
using a discrete, periodic Riccati equation solver [40].

For “exoskeleton walking,” which typically requires volitional upper-body support, feedback 
states would need to include kinematics of the torso and upper-extremities as well. The upper-
extremities could include extensions of the crutches that make ground contact, converting the 
model to a type of quadruped. Alternatively, if arm support actions were more suspensory, as 
with a walker, user ‘control’ could be equivalently modeled as loads at the shoulders [41, 42]. 
However, the upper-extremities with crutch walking would allow controller developers to 
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utilize volitional motion of the upper extremities of the user to signal gait intentions. From 
these gross kinematic actions, desirable operation of the powered exoskeleton may be better 
identified. An LQR controller could be defined for the entire plant (include upper and lower 
extremities). A family of LQR controllers for different sets of optimal whole-body kinematic 
trajectories could be generated offline. Each set could represent a different gait speed or vari-
ous couplings between upper and lower body motions. In any case, the sets of trajectories 
should comprehensively cover the spectrum of potential motion behaviors for a given user. 
But to parse out upper extremity actions to trigger lower extremity control, two distinct con-
trol loops would be necessary. First, if the user (human operator model) has the freedom 
to modulate gait from their upper extremities, then one loop needs to map the expected or 
desired lower extremity control actions. These actions would be necessarily coupled from the 
observed/measured upper extremity feedback states. Some mapping structure (e.g., artificial 
neural network) is necessary to identify from the upper extremity kinematics what is the 
corresponding desired kinematic states (xo), gains (ko), and controls (uo) for the exoskeleton. 
Beyond controller actions, the remaining actuating elements on the plant are the user (i.e., 
human operator) and external disturbances. Such a block diagram system for user-driven 
exoskeleton walking could be simulated if stereotypical actions for the human operator and 
environmental (external) disturbances could be reasonably modeled.

4. Optimizing user agency over device

User-driven devices are often judged by measured ability to restore or add functional capa-
bilities following neuromuscular disorder or injury. Limb loss has a profound impact on an 
individual’s capability to perform activities of daily living. Amputations of the upper-limb can 
be especially debilitating to one’s ability to interact with their environment and feel physically 
engaged to the world. Prostheses for limb loss are first-level evaluated by simple physical fit 
and comfort [43]. But further criteria for artificial limbs is feeling natural and operating as real 
ones based on embodiment [44] or brain-level control [45]. Applied neurosciences are also 
creating prostheses to provide a better sense of interaction with the external world and to 
seamlessly take actions according to user intent. Neuro-applications have been developed to 
elicit motor and sensory signals at a peripheral neurophysiological level for novel electromyo-
grams and restoration of touch [1, 8]. But more complete user integration with the device may 
reside at a cognitive level. The user should have a better ‘feel’ for the device, not just by literal 
touch restoration, but a sense they are controlling the device intuitively. These devices should 
be operated with sense of agency, or the perception the user is the true author of the device 
actions [14, 16]. In this section, we propose a framework to identify processes that optimize 
sensory-feedback hand prostheses according to agency. Such an approach may provide insight 
into design formulations that better integrate users with their devices, facilitate clinical accep-
tance, and ultimately produce skilful performance control that is more intuitive to the user.

For a user to inherently recognize the prosthesis as an extension of self, device operation 
should facilitate a sensorimotor basis of self-awareness. A key aspect of self-awareness is rec-
ognition of being the author of one’s own voluntary actions and the related consequences. 
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grams and restoration of touch [1, 8]. But more complete user integration with the device may 
reside at a cognitive level. The user should have a better ‘feel’ for the device, not just by literal 
touch restoration, but a sense they are controlling the device intuitively. These devices should 
be operated with sense of agency, or the perception the user is the true author of the device 
actions [14, 16]. In this section, we propose a framework to identify processes that optimize 
sensory-feedback hand prostheses according to agency. Such an approach may provide insight 
into design formulations that better integrate users with their devices, facilitate clinical accep-
tance, and ultimately produce skilful performance control that is more intuitive to the user.

For a user to inherently recognize the prosthesis as an extension of self, device operation 
should facilitate a sensorimotor basis of self-awareness. A key aspect of self-awareness is rec-
ognition of being the author of one’s own voluntary actions and the related consequences. 
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This phenomenon is known as a sense of agency. It has been shown that cognitive processes 
underlying agency may be abstracted even in the presence of intermediaries such as pros-
theses [14]. Thus, a sense of agency may not require direct physiological embodiment, or 
body ownership, and can exist across novel instrumental associations. Both agency and body 
ownership can be present with a surrogate prosthesis, as shown with the rubber hand illusion 
[12, 44]. But the sense of agency may be reduced by altered embodiment. However, distor-
tions in the causal chain that produce end-effector actions that are incongruent with user 
intention more notably reduces agency [14]. There is evidence that with increased agency 
there is greater ability to perform functional tasks [46].

There are innovative approaches restore sensory and motor pathways for better control of 
functional hand prostheses after upper-limb amputation. One such approach is targeted 
muscle reinnervation (TMR) where nerves that once controlled the lost hand are surgically 
reassigned to target sites upon denervated pectoral muscles [1]. Resultant EMG recordings 
from these sites represent motor commands to the missing hand that can be reliably utilized 
to drive a motorized prosthesis. And tactile manipulation of skin at these sites stimulates 
afferent pathways that elicit sensory feedback of the missing hand to the amputee. The bio-
logical neural-machine-interface created by TMR is a unique platform for investigating con-
trol of multi-sensory prosthesis [7, 31, 32] and potential cognitive frameworks of agency. 
Specifically, agency considerations may enhance the EMG motor command interface and 
augment how sensory feedback is perceived by the user. One could utilize a computer-gener-
ated virtual hand [47] to represent multi-joint prosthesis dynamics to be driven by descending 
motor commands recorded at TMR muscle sites. Tactile pressure and vibratory stimulation of 
reinnervated skin areas can activate feedback pathways that elicit illusions of touch [48] and 
kinesthesia [33] to be perceived as superimposed upon the computer hand. Procedures for 
perceptual mapping to restore robotic touch [12] can be used to identify locations and param-
eters for pressure and vibratory stimulation. The virtual hand could perform functional grasp 
tasks such as matching dynamic grip-load profiles [49, 50] with concurrent visual feedback of 
the hand. The hand could be driven by EMG command with concurrent sensory illusions pro-
vided according to hand motion and contact with virtual objects. The end of the grip loading 
profile will represent task completion, after which tones will be sounded at variable intervals 
to detect intentional binding as a measure of agency. Intentional binding is the perceptual 
compression of the time-interval between a movement event and sensory consequence with 
action is voluntary [51], i.e., greater agency. Ultimately, patterns of EMG and visual illusions 
for touch and movement can be preferentially selected based on agency. Efficacy of such an 
approach may reflect improvement in performance at various levels of prosthesis develop-
ment. These levels include EMG classification accuracy of user motor intent, user ability to 
interpret sensory feedback, and user functional performance.

Myoelectric control has been a major focus area for improved hand prosthesis function to 
create user command interfaces that are intuitive and effective [21, 52, 53]. Notable work has 
demonstrated the advantages of EMG pattern recognition over amplitude-based command 
to provide intuitive prosthesis control [54]. While these methods are largely based on pros-
thesis operation, the motor command interface could be designed to co-maximize function 
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and sense of agency. Typically, EMG data from target muscle sites are collected to identify 
specific grasp patterns based on feature extraction [55–57]. Several of these methods produce 
similar identification results provided an appropriate selection of features [58]. Subsequently, 
the real-time effectiveness of the pattern classifier is evaluated in testing environments that 
observe functional metrics such as task times and success rates [59] under proportional con-
trol [60]. We postulate that collection of EMG-driven prosthesis grasping data with an inten-
tional binding paradigm [16] may facilitate improved classification and performance given 
user-preferred grasping patterns. We postulate the collection of data and implementation of a 
hand prosthesis based on agency in Figure 3.

It may be possible that preferential selection of electromyography data for pattern classifi-
cation training from trials where the subject indicates greater agency will produce higher 
classification success rates for various functional grips (cylinder, flat, and precision) [61]. For 
amputee subjects, training data collection can be done as part of grip matching paradigm 
between intact hand and missing (imagined) hand [62]. Using standard classifier plus stan-
dard proportional control [63], users could undergo functional EMG-drive trials to execute 
open-to-close grips of the virtual hand according to visual cues for target speed and position. 
For each trial, the sensory illusion and virtual hand being visualized could be systematically 
altered. With each trial, the intentional binding metric with interval estimation would be eval-
uated to assess sense of agency. Optimal grip configurations for posture and movements may 
be identified that maximize agency and subsequently grasp performance. It is then reason-
ably hypothesized that subjects will more reliably generate EMG patterns for conditions in 
which they have greater agency. Ultimately, the EMG data used to train and test the pattern 
classifier, the grip kinesthetic illusions, and grip configuration illusions while having tactile 
feedback could all be preferentially selected according to user agency.

Figure 3. Left: Proposed data to collect for sensory-feedback prosthesis that considers optimization based on user’s 
visual observations of preferred illusions. Right: Block diagram to evaluate functional performance of optimized sensory 
prosthesis.
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action is voluntary [51], i.e., greater agency. Ultimately, patterns of EMG and visual illusions 
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approach may reflect improvement in performance at various levels of prosthesis develop-
ment. These levels include EMG classification accuracy of user motor intent, user ability to 
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and sense of agency. Typically, EMG data from target muscle sites are collected to identify 
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5. Identifying optimal movements from individual physiology

Observable biomechanical characteristics such as kinematics, external forces, masses, lengths, 
inertias) can be well assessed for function, but the underlying physiological patterns may not 
be. Muscle force patterns are often estimated from optimization with the criterion of minimal 
muscle effort [64] following an inverse analysis [65] to determine joint moments. We hypoth-
esize the value of customizing the minimization criterion based on observable physiological 
responses for an individual. In turn, a model-based approach could be developed for reha-
bilitation paradigms to identify movements that are optimal for an individual based on other 
criteria such as minimizing injury stresses. For the remainder of this section, we propose an 
example methodology to modify a musculoskeletal modeling environment based on person-
specific physiological responses to identify optimal movements that potentially minimize 
shoulder injury for those using wheelchairs.

Disease or injury affecting mobility commonly requires afflicted individuals to excessively 
recruit the upper-body when ambulating with walking aids, executing seated transfers, or pro-
pelling a wheelchair. The repetitive and unnatural loading of the arms creates abnormal joint 
stresses that often precipitate shoulder pathologies. The spectrum of shoulder injury includes 
shoulder impingement syndrome, rotator cuff tears, glenohumeral instability, avascular necro-
sis, acromioclavicular joint degeneration, biceps tendonitis, and distal clavicle osteolysis [66]. 
The etiology of shoulder pathology for the movement disabled is typically associated with 
increased mechanical loading at the shoulder complex [67] and abnormal internal stresses at 
the shoulder joints [68]. Higher magnitudes of forces at the shoulder and poorly directed forces 
with inefficient motion can be detrimental to surrounding muscles and bones [69]. It has been 
suggested that proper technique may reduce progression of shoulder pathology despite high 
usage. Wheelchair athletes have fewer hospitalizations and no greater incidence of shoulder 
pathology [70], and focal strengthening of target muscles [71] and optimal maneuver techniques 
[72] can be vital in preventing shoulder injury. While increased mechanical stressing of muscles 
and bones of the shoulder are well correlated to pathology, methodologies to identify user-spe-
cific movement training patterns to mitigate injury progression are lacking. Methodologies that 
utilize person-specific physiological responses with computational methods to identify move-
ments that are optimal in function and minimizing potential injury would be of high clinical 
value. This would provide platforms to identify optimal movements and develop customized 
training protocols for those movements. Integrating medical imaging, multi-scale musculoskel-
etal modeling, and advanced apparatuses could provide such a platform.

As an example, we describe such a methodology for wheelchair propulsion to identify opti-
mal movements for minimizing functional stresses at the shoulder. The developmental flow of 
the proposed approach is shown in Figure 4. The proposed approach exploits unique advan-
tages of imaging, modeling, and a training apparatus. The first step would be to create a cus-
tom testing apparatus with specialized instrumentation, computer-controlled actuation, and 
visualization facilities to simulate advanced propulsion functions. Feedback control of wheel 
resistance could serve to systematically simulate ridges, harsh surfaces, and inclines. This 
advanced biomechanical testing apparatus facilitates well-controlled investigation of wheel-
chair propulsion for consistently repetitive and functionally specific data for an individual.
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The second step would be to identify injury stresses at the shoulder by integrating high-
resolution imaging and multi-scale musculoskeletal modeling. Advanced medical imaging 
is typically used for physiological diagnosis of disease progression or structural characteriza-
tion. Magnetic resonance imaging (MRI) can quantify activity-dependent muscle usage from 
contrast-detection of edema patterns following exercise [73, 74]. After a session of wheelchair 
propulsion, the motion and MRI data for that person could be input into a musculoskeletal 
model to compute shoulder stresses. The model would be multi-scale with global rigid-body 
dynamics used to compute muscle forces local finite element models (FEM) [75] to quan-
tify local bone and muscle stresses that precipitate injury. The MRI data could be used to 
create outlines of the FEM models but also bias an objective function being minimized for 
optimality for the specific person. The optimization can have a multi-objective minimization 
function:

Figure 4. Top: Simulator for wheelchair propulsion with visual feedback and force and motion data capture. Bottom: Data 
flow to compute shoulder stresses by integrating high-resolution imaging and multi-scale musculoskeletal modeling.
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visualization facilities to simulate advanced propulsion functions. Feedback control of wheel 
resistance could serve to systematically simulate ridges, harsh surfaces, and inclines. This 
advanced biomechanical testing apparatus facilitates well-controlled investigation of wheel-
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  f =  K  1     ∑  
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#muscles

   b  i    a  i,model  2   +  K  2     ∑  
i=1

  
#muscles

   σ  i,intrinsic  2   +  K  3     ∑  
i=1

  
#bones

   σ  i,contact  2    (5)

The K-terms pre-multiply each summation based on experimenter discretion to relatively 
weight contribution of each criterion and ensure robust solution convergence. The first sum-
mation represents muscle activation levels at the shoulder. Minimization of this term desir-
ably reduces muscle activity at the shoulder for locomotor efficiency [64]. The bias coefficients 
(bi) weight distribution of the relative muscle edema to consider the strain results from MRI 
and to shift task requirements away from the shoulder muscles that the subject relatively 
overuses. The second and third summations are for explicit minimization of the injury mecha-
nisms for intrinsic muscle and bone stresses, respectively.

Finally, a rehabilitation paradigm could be generated from this methodology to provide cus-
tomized training to individuals for performing the optimal movements to minimize injury. 
The optimization routine should identify propulsion patterns that efficiently distribute func-
tional requirements across the arms and torso while reducing stresses at the shoulders based 
on person-specific data. A proposed rehabilitation protocol may utilize visual feedback tar-
gets to train its users to modify their cyclic motor actions toward the biomechanical patterns 
that minimize injury. Such training results could provide new perspectives into sensorimotor 
adaptations that occur when balancing natural motor tendencies versus performance targets 
to minimize injury. Such an approach to identify sensorimotor principles of model-based 
learning for injury prevention is novel and readily extensible to other exercise science, sports 
performance, and motor control studies.

6. Conclusions

In this chapter, we outlined the importance in user integration for the next major advance-
ment in the feel and performance of movement rehabilitation devices and protocols. We pre-
sented three case examples for user integration: (1) optimizing device operation according to 
user actions, (2) designing a prosthesis controller according to cognitive agency, (3) develop-
ing musculoskeletal modeling platforms based on person-specific physiology. There is great 
potential to further develop such ideas for new applications and in combination for improved 
rehabilitation. In any case, user-centered approaches for movement rehabilitation offers the 
greatest promise for user acceptance of such devices and programs beyond further techno-
logical breakthroughs for sensing, actuation, and biological interfacing.
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  f =  K  1     ∑  
i=1

  
#muscles

   b  i    a  i,model  2   +  K  2     ∑  
i=1

  
#muscles

   σ  i,intrinsic  2   +  K  3     ∑  
i=1

  
#bones

   σ  i,contact  2    (5)

The K-terms pre-multiply each summation based on experimenter discretion to relatively 
weight contribution of each criterion and ensure robust solution convergence. The first sum-
mation represents muscle activation levels at the shoulder. Minimization of this term desir-
ably reduces muscle activity at the shoulder for locomotor efficiency [64]. The bias coefficients 
(bi) weight distribution of the relative muscle edema to consider the strain results from MRI 
and to shift task requirements away from the shoulder muscles that the subject relatively 
overuses. The second and third summations are for explicit minimization of the injury mecha-
nisms for intrinsic muscle and bone stresses, respectively.

Finally, a rehabilitation paradigm could be generated from this methodology to provide cus-
tomized training to individuals for performing the optimal movements to minimize injury. 
The optimization routine should identify propulsion patterns that efficiently distribute func-
tional requirements across the arms and torso while reducing stresses at the shoulders based 
on person-specific data. A proposed rehabilitation protocol may utilize visual feedback tar-
gets to train its users to modify their cyclic motor actions toward the biomechanical patterns 
that minimize injury. Such training results could provide new perspectives into sensorimotor 
adaptations that occur when balancing natural motor tendencies versus performance targets 
to minimize injury. Such an approach to identify sensorimotor principles of model-based 
learning for injury prevention is novel and readily extensible to other exercise science, sports 
performance, and motor control studies.

6. Conclusions

In this chapter, we outlined the importance in user integration for the next major advance-
ment in the feel and performance of movement rehabilitation devices and protocols. We pre-
sented three case examples for user integration: (1) optimizing device operation according to 
user actions, (2) designing a prosthesis controller according to cognitive agency, (3) develop-
ing musculoskeletal modeling platforms based on person-specific physiology. There is great 
potential to further develop such ideas for new applications and in combination for improved 
rehabilitation. In any case, user-centered approaches for movement rehabilitation offers the 
greatest promise for user acceptance of such devices and programs beyond further techno-
logical breakthroughs for sensing, actuation, and biological interfacing.
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Abstract

Advancement in prosthetic technology provides the prosthesis more natural function and 
cosmesis to the amputee limb. But in most of the cases due to some limitations of the patient, 
the most appropriate prosthetic solution is not possible. Custom made silicone prosthesis 
with some passive function plays the major role to rehabilitate those patients. The cosmetic 
prosthesis mimics the natural colour and texture of the normal body. Nowaday the cos-
metic prosthesis becomes the foremost choice of the amputee individuals.
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1. Introduction

Prosthesis (plural prostheses), the proper name for an artificial limb, derives from the Greek 
roots meaning “to replace an addition”. The replacement of lost part was for the functional, 
cosmetic or protective reasons or some combinations of these. The earliest concept of cosmesis 
was started, and the first cosmetic wooden prosthesis of Hallux fitted in Egypt about 1000 
BCE [1]. In the process of development and continuous research, the robotic prostheses are 
the new-generation prosthesis that mimics most natural movements and cosmesis. Advanced 
functional prostheses are with some disadvantages like high maintenance and cost and not 
reachable to every individual living in a rural area. The deformed shape of the stump in case 
of finger, partial hand and partial foot sometimes are not suitable for the fitment of functional 
prosthesis, but the patients are willing to fit the prosthesis to get cosmesis as well as some 
function. The passive prosthesis is the only option to fit any kind of irregular stump to make it 
cosmetic and provide some passive function. The individuals with passive prosthesis actively 
use their prostheses as frequently as do functional prostheses. The passive prostheses are 
used to stabilize objects, push against item and assist them in various ADL activities.
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1.1. Cosmetic silicone prosthesis

In the development of material science, the silicone is found to be the most acceptable material 
to fabricate the cosmetic prosthesis. The silicone prosthesis can often restore a near-normal 
function in distal phalange amputations. The fabrication of the prosthesis required an artist 
hand with implementation of scientific knowledge [2]. The role of prosthesis is to replace the 
part by providing natural function and shape. The psychological aspect is more important to 
keep in mind during fabrication of any prosthesis. Aesthetic silicone prostheses have been 
shown to play a useful role in restoring normal appearance and assist in the rehabilitation 
of patients with amputations involving the upper limbs. Custom made finger prosthesis is 
aesthetically acceptable and comfortable for use in patients with amputated fingers, resulting 
in psychological improvement and well-being [3] (Figures 1 and 4).

The aesthetic hand prosthesis is previously used for cosmetic purposes, but the functional 
aspect has not been considered [4]. But role of this prosthesis is found in both cosmesis 
and passive functions (Figure 2). The usefulness of aesthetic prostheses is confirmed by the 
improvement of patients’ living conditions and the continued wearing of these prostheses by 
the patients. Although a variety of materials have been used for aesthetic restoration, silicone 
is generally preferred because of its versatility, durability and compatibility with human tis-
sue. Polymers of dimethyl siloxane (silicones) allow copying of the natural hand in every 
detail. Silicone prostheses are usually of high quality, match well with the patients remaining 
digits and thus are more aesthetically pleasing; long-term wearing of this prosthesis confirms 
as therapeutic tools. To achieve the normal appearance in the prosthesis, the cosmetic nail, the 
hair and flocking are used.

Figure 1. After fitment of silicone finger prosthesis in right side middle and index finger amputation.
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Apart from the finger and hand, toe and partial foot silicone prosthesis is mostly accepted by 
the patients [5] (Figures 3, 5). The cosmetic prosthesis mimics the natural appearance without 
any complicated mechanism. These are easy to use with very low maintenance. So, nowadays, 
the use of cosmetic prosthesis is more than a complicated functional prosthesis.

1.2. Cosmetic silicone prosthesis with passive function (custom made)

The cosmetic prosthesis of the finger and hand is not usually having the movable digits. The 
prosthesis is only used for the cosmesis purpose and psychological benefit for the patients. 
Now these prostheses are having some passive movements of the fingers due to the involve-
ment of some copper wires inside the prosthesis during the time of fabrication. This process 
is cost-effective and time-saving [6] (Figure 6).

Figure 2. Partial silicone hand prosthesis.

Figure 3. Before and after fitment of silicone toe.
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1.3. Attachment and alignment of cosmetic prosthesis

The attachment of prosthesis depends upon the remaining part and contours of the stump. 
The finger amputation of PIP and DIP level, the suction suspension is the method of attach-
ment, and amputation through metacarpophalangeal attachment is through strap suspension 
(Figure 7). The alignment is done before the fabrication during this process, and the overall 
length is checked with the opposite limb.

Figure 5. Silicone partial foot prosthesis.

Figure 4. Fitting of silicone finger prosthesis in the middle and ring fingers.
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1.4. Maxillofacial silicone prosthesis

The face is considered as the most beautiful and expressive part of the body. The eye, ear, chick 
and nose, play different roles in various expressions (Figures 8–11). If the patient lost any part of 
the organ in the face, they felt as a half-dead person. These kinds of people were not having the 
courage to face the society. In the process of plastic surgery, they may modify the structure but 

Figure 6. Copper wire and silicone die of partial hand with copper wire.

Figure 7. The finger and toes with strap suspension.
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the scar and lost part not be fulfilled. The role of rehabilitation can be able to reduce the disfig-
urement by the cosmetic prosthesis. The silicone is very compatible with the body and it can be 
used as laryngeal prosthesis in the case of patient with tracheotomy during the chemotherapy. 
The number of breast cancer is increasing nowadays; the silicone breast is considered as the best 
option to maintain the shape without any complications.

1.5. Methods

The patients for passive prosthesis are selected according to the requirement of the patients, 
availability of the material and condition of the stump. The patients sometimes prefer cosmesis 

Figure 8. Patient with cosmetic eye.

Figure 9. Before and after photo of cosmetic ear.
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over functional prosthesis in that case the passive prosthesis plays the role of cosmetic prosthe-
sis with the removal of additional component of functional prosthesis ultimately reduced the 
weight. The patients were assessed by the clinical team members and decided to fit the pas-
sive prosthesis, which was the suitable option for the patients. The criteria for selection of the 
patients were (1) uncosmetic appearance of the stump, (2) the functional prosthesis cannot be 
fitted, (3) the patient needs only cosmetic appearance, (4) unavailability of the functional com-
ponents and (5) pain and insensitive stump. The selected patients were again assessed for the 
appropriate passive prosthesis such as finger prosthesis, partial hand prosthesis, toe prosthesis, 
below elbow prosthesis or maxillofacial prosthesis. The custom made passive prostheses were 
fabricated by using silicone material, which is the most preferable material nowadays hav-
ing biocompatibility properties and most natural appearance [7–9]. The passive custom made 

Figure 11. Patient with cosmetic silicone nose.

Figure 10. Before and after the use of silicone chick prosthesis.
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prosthesis was fabricated in the silicone laboratory and fitted to the individual patients. The 
fabrication processes were the same for all the passive prostheses, but the casting and mould 
modification differ. The processes of fabrication were casting and measurement, mould modifi-
cation, wax alignment, die preparation, colour matching, pouring, die compression and finish-
ing of the prosthesis. The overview of the fabrication procedure of finger and hand is shown 
in Figure 12. The passive movements of the finger were achieved by the placement of copper 
wire inside the silicone during preparation of the die (Figure 7). Similar methods were followed 
in maxillofacial prosthesis. The functionality of finger and hand prosthesis were conducted by 
DASH questionnaire and Jebson hand function test and found this prosthesis plays the role in 
enhancement of function though treated as passive prosthesis [6].

1.6. Case studies

1.6.1. Case study 1

The male of 35 years old reported to the clinic having one middle finger amputation of the 
LT hand. He is professionally an engineer, and the chief complaint was that he had lost his 
support during the activities like feeding. The stump was good to fit the cosmetic silicone 
prosthesis with passive function. The copper wire was inserted inside the silicone mixture 
during the pouring process for the passive movement of the prosthesis. After the fitment of 
the prosthesis, he can be able to hold the bottle, got support to write and found improvement 
in activities of daily living (Figure 13).

Figure 12. Procedure for fabrication of finger and hand prosthesis.
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1.6.2. Case study 2

A 12-year-old boy incurred with amputation of right first metacarpophalangeal joint (thumb) 
secondary to crush injury. He was a boy and a student, so the primary aim of fitting was sup-
ported during ADL’s activities mainly during writing. The stump of the boy was not enough 
to fit the regular design with suction suspension. We decided to give him prosthesis with strap 
suspension. The boy was the donor for the opposite hand, and some changes in the alignment 
were required during the wax alignment process. For the strap the total cast of the hand was 
taken, and the area was decided in the hand where the maximum reduction can give to hold 
the finger in proper position. The prosthesis was fabricated and fitted successfully to get the 
support and cosmesis as required (Figure 14).

1.7. Components of passive cosmetic prosthesis

At present, cosmetic terminal devices consist largely of passive hands and various types 
of mechanical hands. It is therefore important to remember that cosmesis is attained only 
through the sacrifice of at least some degree of function. A woman may desire maximum 
cosmesis, preferring a soft, passive hand with a cosmetic glove, despite the fact that all func-
tions are sacrificed. Different individuals may require different functions, but cosmesis is the 
priority for most of the users. The cosmetic silicone glove is an option, which can be used by 
all individuals with different occupations [10].

Figure 13. Patient with middle finger silicone prosthesis doing ADL.
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1.7.1. Cosmetic gloves

The gloves are made of polyvinyl chloride (PVC) plastic or advanced silicone and are made in 
moulds taken from human hands. As a result, all the structures like fingernails, lines, knuck-
les and vein prominences have a realistic appearance.

1.7.2. Glove colouring

The cosmetic glove can be of silicone and polyvinyl chloride varieties. The custom made variet-
ies are matched maximum to the natural shape and colour of the body. The artificial hand colour 
remains unchanged in different climatic conditions. When choosing the colour, match the sound 
hand while it is hanging and in natural lighting. A colouring kit is used first to tone or “charac-
terize” the colour of the glove. In the case of custom made silicone prosthesis during the time of 
colour matching, the required colour can be matched with the presence of the patient in midday 
time, and the colour of the nail can be fabricated by silicone or acrylic. The hair and vein can also 
be impregnated inside the mixed silicone to maintain the natural appearance of the prosthesis.

1.7.3. Passive hands

Passive hands are made of PVC foam over a flexible steel wire skeleton. The fingers and thumb 
can be positioned and repositioned by pressing the hand and bending the wire. Cosmetic 
gloves fit over the passive hands to give a natural looking. The passive hand is lighter than a 
mechanical hand and looks and feels more like human flesh. The passive hand, however, has 
no prehension. The passive hand is basically used for limited function in assisting the sound 
hand. Passive hands are also available without the wrist block; they can then be fitted directly 
to a socket, a forearm extension or a partial hand amputation.

Figure 14. Cosmetic finger with strap suspension.
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1.7.4. Passive lower arms

Passive prosthesis for lower arm or below elbow amputation can be available in two forms, pre-
fabricated or custom made. It is directly covered over the below elbow stump, and its colour is 
matched up to the expectation level of the amputee.

2. Discussion

The amputation of one or more fingers of the hand, as a consequence of trauma or congenital 
absence, carries a serious reduction in hand functional in addition to a psychological impair-
ment [11, 12]. Jennifer Methot et al. (2010) studied grip strength in 50 subjects excluding 
ulnar two digits and found that the ulnar two digits also play a significant role in overall grip 
strength of the entire hand. Exclusion of the ulnar two digits resulted in a 34–67% decrease in 
grip strength, with a mean decrease of 55%. Exclusion of the little finger from a functional grip 
pattern decreased the overall grip strength by 33%. Exclusion of the ring finger from a func-
tional grip pattern decreased the overall grip strength by 21%. It is clear that limitation of one 
or both of the ulnar digits adversely affects the strength of the hand. Custom made finger pros-
thesis is aesthetically acceptable and comfortable for use in patients with amputated fingers, 
resulting in psychological improvement and well-being [3, 4, 13]. The passive finger prosthesis 
in multiple finger amputation shows a significant improvement in cosmesis and function [12].

Analysis of function is an important component for hand rehabilitation. It assesses the initial 
limitations for the appropriate management. The hand function is the result of forceful flexion 
of all finger joints with the maximum voluntary force that the subject is able to exert under 
normal biokinetic condition. The synergistic action of flexor and extensor muscles and the 
interplay of muscle groups are important factors in the strength of hand [14].

The amputation of one finger of the hand, as a consequence of trauma, carries a serious reduction 
in hand function. The index finger plays a vital role in hand function strength [12]. According to 
Karle et al., the amputation of the proximal phalanx of the index finger found the loss of 17–35% 
in pinch strength [15]. Custom made finger prosthesis is aesthetically acceptable and comfort-
able for use in patients with amputated fingers, resulting in psychological improvement and 
well-being [3].

The functional improvement in partial hand shows after using the custom made silicone hand 
prosthesis in terms of ADL activities that the passive prosthesis is not only used for the cosmetic 
purpose but also helping in some passive functions. Pain was reduced markedly due to the com-
pression provided by the prosthesis. Passive finger movement allowed the patient to ride his 
motorcycle and improved his ability to carry out different activities [6, 16]. The maxillofacial sili-
cone prosthesis enhances the cosmesis and inner confidence of the patients to face the society [17].

Silicone elastomeric materials are more commonly used because they provide better stability 
and good marginal adaptation, which satisfies patient’s cosmetic and aesthetic needs and 
possesses soft tissue-like consistency, and provide additional advantage when they are used 
to restore the defects in movable soft tissues [18].
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ies are matched maximum to the natural shape and colour of the body. The artificial hand colour 
remains unchanged in different climatic conditions. When choosing the colour, match the sound 
hand while it is hanging and in natural lighting. A colouring kit is used first to tone or “charac-
terize” the colour of the glove. In the case of custom made silicone prosthesis during the time of 
colour matching, the required colour can be matched with the presence of the patient in midday 
time, and the colour of the nail can be fabricated by silicone or acrylic. The hair and vein can also 
be impregnated inside the mixed silicone to maintain the natural appearance of the prosthesis.

1.7.3. Passive hands

Passive hands are made of PVC foam over a flexible steel wire skeleton. The fingers and thumb 
can be positioned and repositioned by pressing the hand and bending the wire. Cosmetic 
gloves fit over the passive hands to give a natural looking. The passive hand is lighter than a 
mechanical hand and looks and feels more like human flesh. The passive hand, however, has 
no prehension. The passive hand is basically used for limited function in assisting the sound 
hand. Passive hands are also available without the wrist block; they can then be fitted directly 
to a socket, a forearm extension or a partial hand amputation.

Figure 14. Cosmetic finger with strap suspension.
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1.7.4. Passive lower arms

Passive prosthesis for lower arm or below elbow amputation can be available in two forms, pre-
fabricated or custom made. It is directly covered over the below elbow stump, and its colour is 
matched up to the expectation level of the amputee.

2. Discussion

The amputation of one or more fingers of the hand, as a consequence of trauma or congenital 
absence, carries a serious reduction in hand functional in addition to a psychological impair-
ment [11, 12]. Jennifer Methot et al. (2010) studied grip strength in 50 subjects excluding 
ulnar two digits and found that the ulnar two digits also play a significant role in overall grip 
strength of the entire hand. Exclusion of the ulnar two digits resulted in a 34–67% decrease in 
grip strength, with a mean decrease of 55%. Exclusion of the little finger from a functional grip 
pattern decreased the overall grip strength by 33%. Exclusion of the ring finger from a func-
tional grip pattern decreased the overall grip strength by 21%. It is clear that limitation of one 
or both of the ulnar digits adversely affects the strength of the hand. Custom made finger pros-
thesis is aesthetically acceptable and comfortable for use in patients with amputated fingers, 
resulting in psychological improvement and well-being [3, 4, 13]. The passive finger prosthesis 
in multiple finger amputation shows a significant improvement in cosmesis and function [12].

Analysis of function is an important component for hand rehabilitation. It assesses the initial 
limitations for the appropriate management. The hand function is the result of forceful flexion 
of all finger joints with the maximum voluntary force that the subject is able to exert under 
normal biokinetic condition. The synergistic action of flexor and extensor muscles and the 
interplay of muscle groups are important factors in the strength of hand [14].

The amputation of one finger of the hand, as a consequence of trauma, carries a serious reduction 
in hand function. The index finger plays a vital role in hand function strength [12]. According to 
Karle et al., the amputation of the proximal phalanx of the index finger found the loss of 17–35% 
in pinch strength [15]. Custom made finger prosthesis is aesthetically acceptable and comfort-
able for use in patients with amputated fingers, resulting in psychological improvement and 
well-being [3].

The functional improvement in partial hand shows after using the custom made silicone hand 
prosthesis in terms of ADL activities that the passive prosthesis is not only used for the cosmetic 
purpose but also helping in some passive functions. Pain was reduced markedly due to the com-
pression provided by the prosthesis. Passive finger movement allowed the patient to ride his 
motorcycle and improved his ability to carry out different activities [6, 16]. The maxillofacial sili-
cone prosthesis enhances the cosmesis and inner confidence of the patients to face the society [17].

Silicone elastomeric materials are more commonly used because they provide better stability 
and good marginal adaptation, which satisfies patient’s cosmetic and aesthetic needs and 
possesses soft tissue-like consistency, and provide additional advantage when they are used 
to restore the defects in movable soft tissues [18].
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Nowadays, the osseointegration of the ear with outer custom made silicone prosthesis was 
adopted by the patients though it integrated with the bone so the regular changing of prosthe-
sis can be avoided [19–22]. Passive custom made tracheal prosthesis can be fabricated to pro-
vide the chemotherapy. The passive prosthesis plays the important role by providing comfort 
and cosmesis.

3. Conclusion

Cosmetic silicone prosthesis mimics the natural body structure, gives an aesthetic appearance 
and provides some passive functions. The cosmetic prosthesis are simple to use with low 
maintenance cost. The user can easily handle the prosthesis without any complication com-
pared to high jagged prosthesis, but the maximum achievement of function is not possible by 
these prostheses. Apart from some limitations, these silicone cosmetic prostheses are found 
the most acceptable prosthesis nowadays and can able to retain the little smile on the face of 
the patients.
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Abstract

The content of this work is the proposal of the technical HS-ab for the detection and
tracking of the regions of skin in real time. First, two proposed techniques are analyzed
for the modeling of skin color in images using a combination of color spaces HSV with
YCbCr and HSV with CIELab. In the process of definition of the intervals of pixels is
taken into account the following: non-skin color uses the components H and S, whereas
skin color uses the components Cb, Cr, a, and b. The results showed that the HS-ab
technique is better than the HS-CbCr technique because of the precision in detecting
skin color according to the percentages C (34.8%) and CDR (67%). After, the morpho-
logic operations are applied to debug the images of the previous segmentation and
detect regions of skin using methods such as blob extraction and contour detection.
Subsequently, the tracking of skin color consists of calculating the moments and posi-
tions of each frame to know the trajectory of the regions of skin. The purpose of the work
is to design an easy-to-use computer vision system that will facilitate the early rehabil-
itation of patients before they are clinically ready to be fitted with a prosthesis.

Keywords: color spaces, skin, technique, threshold, tracking

1. Introduction

The loss of a limb in the body, such as the arms, hands, and legs, is one of the most devastating
events that can happen to a person. Subsequently, people require an amputation in order to
reduce disability, eliminate useless limbs, and save lives. The treatment of the amputated
person includes not only the surgery but also the restoration of the function and the setting of
an artificial limb. The treatment must be considered as a continuous dynamic process that
begins at the time of injury and continues until the patient has reached the maximum
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usefulness of his or her prosthesis and is able to perform the essential activities of daily living.
The treatment can be divided into two stages: the preprosthetic stage and the prosthetic stage.
The first is rehabilitation before using the prosthesis, and the second is rehabilitation with the
use of the prosthesis. Both stages consist of physical exercises to recover muscular strength,
functional independence of the limb, and mobility of the residual limb [1]. This rehabilitation
treatment can be carried out with computer vision systems such as the recognition system.
This project develops a skin color recognition system so that it can be used with the residual
limb and prosthesis of skin-colored frame.

Today, the use of recognition systems is increasingly being recognized as a useful tool for the
study, assessment, and rehabilitation of functional abilities. This system can offer innovative
and exciting ways to rehabilitate, making the treatment more enjoyable and, therefore, increas-
ing the motivation of patients [2]. In addition, these systems have the ability to create a
dynamic stimulus environment by offering an active behavioral response in patients, which
cannot be obtained from traditional therapies. The applications of the system are focused on
cognitive processes, including attention processes, spatial abilities, and memory. Application
scenarios of recognition systems are designed to teach the basic activities of daily living such as
common object recognition, meal preparation, shopping, etc. These applications allow patients
a feedback when they continue their exercise program in the home environment [3].

The mission of this work is the development of applications focused on the rehabilitation of
patients with amputation. On this occasion, this document presents the beginning of the
project that is to detect and track the areas of skin on human body; therefore, the concepts that
form a recognition system are described below.

The recognition systems such as face detection, corporal detection, hands tracking, etc. use
skin detection as the main step in the system. Color image segmentation is useful in many
applications, mainly for the purpose of human-computer interaction (HCI) [4, 5]. The segmen-
tation results allow to identify regions of interest in different scenes, which is very beneficial to
provide the needed information. In this work, the skin color is our interest, for which the
segmentation of images in skin color is realized. The information in the color of the skin is
useful for the detection, the location, and the tracking of the parts of human body; it also
allows a fast processing and provides robustness in the application. A system of detection and
tracking of skin consists of the following points: to choose an appropriate color space for the
detection of skin color, to extract skin color by a modeling, to debug the regions of the skin and
to follow the movements of the parts of skin in people. Each point in the system is described
below.

1.1. Color spaces

The aim of skin color pixel classification is to determine if a color pixel is a skin color or non-
skin color. A useful classification should differentiate all skin types as yellowish, brownish,
whitish, etc., and stock different lighting conditions. The color classification is employed using
only pixels chrominance because it is expected that skin segmentation may be more robust to
lighting variations when the pixels luminance are discarded [6]. This section describes four
color spaces, which are commonly used in the skin segmentation:
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• RGB: colors are specified in three primary colors red (R), green (G), and blue (B). The
advantage is simplicity but it does not separate luminance and chrominance.

• HSV: also known as HSB (B-brightness) color space. The component hue (H) defines the
dominant color (such as red, green, purple, and yellow) of an area and varies from 0 to 1,
saturation (S) measures the colorfulness of an area in proportion to its brightness, and
value (V) is related to the color luminance, that is to say, it corresponds to brightness and it
varies from 0 to 1. The HSV color space is computed using Eqs. (1)–(3). This model gives
poor result where the brightness is very low. This color space discards luminance from
chrominance. Other similar color spaces are hue, saturation, and intensity (HIS) and hue,
saturation, and lightness (HSL).

H ¼ arccos
1=2½ðR� GÞ þ ðR� BÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðR� GÞ2 þ ðR� BÞðG� BÞ�
q (1)

S ¼ 1� 3
minðR,G, BÞ
Rþ Gþ B

(2)

V ¼ 1
3
ðRþ Gþ BÞ (3)

• YCbCr: the Y, Cb, and Cr components refer to luminance, chromatic blue, and chromatic
red. It provides an excellent color space for luminance and chrominance separability [7].
The simplicity of the transform in Eqs. (4)–(6) and the explicit separation of luminance and
chrominance components make this color space very attractive for skin color detection [8].

Y ¼ 0:299R� 0:587G� 0:114B (4)

Cb ¼ R� Y (5)

Cr ¼ B� Y (6)

• CIELab: it is a perceptually uniform color space that was proposed by G. Wyszecki and
standardized by Commission Internationale de L’Eclairage (CIE). It separates a luminance
variable L from two perceptually uniform chromaticity variables a and b.

In this document, the color spaces HSV, YCrCb, and CIELab are used for the segmentation of
color of the skin, due to the fact that they separate the components of chrominance and
luminance achieving a characterization of the different colors of skin [9].

1.2. Skin color segmentation

A part of the process of the segmentation is to construct a rule of decision that discriminates or
differs between the pixels of an image that corresponds to skin color and non-skin color. This
can be done by nonparametric modeling as Bayesian classifier and histogram-based
thresholding or parametric modeling such as Gaussian model (GM) and Gaussian mixture
model (GMM) [10]. This paper describes the technique of histogram threshold to image
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segmentation of images in skin color is realized. The information in the color of the skin is
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tracking of skin consists of the following points: to choose an appropriate color space for the
detection of skin color, to extract skin color by a modeling, to debug the regions of the skin and
to follow the movements of the parts of skin in people. Each point in the system is described
below.

1.1. Color spaces

The aim of skin color pixel classification is to determine if a color pixel is a skin color or non-
skin color. A useful classification should differentiate all skin types as yellowish, brownish,
whitish, etc., and stock different lighting conditions. The color classification is employed using
only pixels chrominance because it is expected that skin segmentation may be more robust to
lighting variations when the pixels luminance are discarded [6]. This section describes four
color spaces, which are commonly used in the skin segmentation:
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• RGB: colors are specified in three primary colors red (R), green (G), and blue (B). The
advantage is simplicity but it does not separate luminance and chrominance.

• HSV: also known as HSB (B-brightness) color space. The component hue (H) defines the
dominant color (such as red, green, purple, and yellow) of an area and varies from 0 to 1,
saturation (S) measures the colorfulness of an area in proportion to its brightness, and
value (V) is related to the color luminance, that is to say, it corresponds to brightness and it
varies from 0 to 1. The HSV color space is computed using Eqs. (1)–(3). This model gives
poor result where the brightness is very low. This color space discards luminance from
chrominance. Other similar color spaces are hue, saturation, and intensity (HIS) and hue,
saturation, and lightness (HSL).

H ¼ arccos
1=2½ðR� GÞ þ ðR� BÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðR� GÞ2 þ ðR� BÞðG� BÞ�
q (1)

S ¼ 1� 3
minðR,G, BÞ
Rþ Gþ B

(2)

V ¼ 1
3
ðRþ Gþ BÞ (3)

• YCbCr: the Y, Cb, and Cr components refer to luminance, chromatic blue, and chromatic
red. It provides an excellent color space for luminance and chrominance separability [7].
The simplicity of the transform in Eqs. (4)–(6) and the explicit separation of luminance and
chrominance components make this color space very attractive for skin color detection [8].

Y ¼ 0:299R� 0:587G� 0:114B (4)

Cb ¼ R� Y (5)

Cr ¼ B� Y (6)

• CIELab: it is a perceptually uniform color space that was proposed by G. Wyszecki and
standardized by Commission Internationale de L’Eclairage (CIE). It separates a luminance
variable L from two perceptually uniform chromaticity variables a and b.

In this document, the color spaces HSV, YCrCb, and CIELab are used for the segmentation of
color of the skin, due to the fact that they separate the components of chrominance and
luminance achieving a characterization of the different colors of skin [9].

1.2. Skin color segmentation

A part of the process of the segmentation is to construct a rule of decision that discriminates or
differs between the pixels of an image that corresponds to skin color and non-skin color. This
can be done by nonparametric modeling as Bayesian classifier and histogram-based
thresholding or parametric modeling such as Gaussian model (GM) and Gaussian mixture
model (GMM) [10]. This paper describes the technique of histogram threshold to image
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segmentation of skin color. This technique is fast and practical in training, also it is theoreti-
cally independent from the shape of skin distribution [11].

The method uses an approximate estimate to define the interval of a color space corresponding
to skin color that appears in the training images, see Eq. (7).

PskinðcÞ ¼ skin½c�
Norm

(7)

where skin[c] is the interval value of the histogram, c corresponds to the color vector, and Norm
is the normalization coefficient (sum of all histogram values) or the maximum value of the
intervals.

Some research [12, 13] used the histogram-based thresholding for segmenting the skin pixels
that is projected to work with lighting conditions, skin tones, and for real-time skin segmenta-
tion in video.

1.3. Morphological operations

The detection system involves subsequently the usage of morphological operations to refine
the skin regions extracted from the segmentation. Morphological operations are a set of simple
local filters, which can be combined to obtain more complex results.

Two morphological operations are used in this chapter. Erosion, which reduces the image
regions that represent non-skin color pixels, and dilation that expands the regions of the image
of skin color pixels, which were lost due to the aggressive erosion applied in the previous step.
Applying the erosion and later the dilation will allow to smooth contour of the objects,
eliminate small protuberances, and disappear fine structures.

1.4. Detection and tracking

This section describes the procedures to detect and track the regions of skin in image
sequences.

The first, the detection of constant changes can be carried out with the blob method, which it is
possible to know the positions of the moving object [14]. A blob is a group of connected pixels
in an image that shares some common property, for example, color. There are two commonly
used manners for getting the blobs: one is to choose an appropriate threshold to differentiate
moving objects (skin regions) from the background and another way is to conduct motion
analysis [14]. The latter can be set using open source computer vision (OpenCV), which is a
library of programming functions mainly aimed at real-time computer vision. There are three
blob detection libraries for OpenCV, cvBlobsLib, cvBlob, and Bloblib that allow to know the
positions of the blobs. On the other hand, in the first, the blobs are extracted (areas of skin
color) with the threshold and create a binary mask of skin color pixels. Subsequently, the
method of contour detection is applied, it has as main target to locate all the pixels that belong
to the contour of the body parts, in other words, this stage detects all the contours that
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surround the blob that matches with the skin regions. This last form is used in this project,
which is the extraction of blob with contour detection.

One way of tracking the skin regions is through the moments. In pattern recognition, the
moments have been extensively used as global features of images [15]. The moments can
calculate the position of the center of the skin regions. This calculation consists to calculate
first-order spatial moments around x-axis and y-axis and the Zero-order central moments of
the binary image. Zero-order central moments of the binary image are equal to the white area
of the image in pixels. In the same way, this calculation can be carried out with OpenCV.

The chapter is organized as follows. Section 2 presents the procedure to calculate the thresh-
old, the implementation of the techniques, the evaluation of the results of the techniques, and
the description of the system algorithm. Section 3 demonstrates experimental results. Section 4
discusses the conclusions.

2. Methodology

The methodology is based on the following parts: determination of thresholds in the color
spaces for skin color or non-skin color pixels, development of algorithm for the techniques HS-
CbCr and HS-ab, evaluation of the results of the techniques and algorithm for detection, and
tracking of skin color.

2.1. Segmentation of skin color and non-skin color with histogram based thresholding

Two techniques are proposed: HS-CbCr, which is the combination of the components H and S
of HSV color space with the components Cb and Cr of the YCbCr color space, and the technique
HS-ab (it is the same form of the technique previously) is the combination of H and S but with
the components a and b of CIELab color space. To determine the intervals of pixels non-skin
color uses the components H and S, in the case of the intervals of pixels skin color uses the
components Cb, Cr, a, and b.

This section uses 80 images, of which 40 are images of different types of color skin obtained
from the database of SFA [16] and the other 40 images are different colors to skin color.

In the case of non-skin images, each image is transformed to the HSV color space by obtaining
the histograms of the channels H and S. In each, histogram is estimated the minimum and
maximum values for the components H and S. After having all the values of the 40 images and
using the Eq. (7), the minimum and maximum average values of H are obtained, as well as the
minimum and maximum average values of S. In this way, the thresholds for non-skin color
pixels are obtained.

In the case of skin images, it is the same procedure described as above except that it transforms
into the YCbCr color space to obtain the thresholds of the components Cb and Cr and also
converts into CIELab color space to get as result the thresholds of the components a and b.
Then, to get the skin color pixel thresholds for each color space, only the chrominance compo-
nents are considered.
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color) with the threshold and create a binary mask of skin color pixels. Subsequently, the
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to the contour of the body parts, in other words, this stage detects all the contours that
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surround the blob that matches with the skin regions. This last form is used in this project,
which is the extraction of blob with contour detection.

One way of tracking the skin regions is through the moments. In pattern recognition, the
moments have been extensively used as global features of images [15]. The moments can
calculate the position of the center of the skin regions. This calculation consists to calculate
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the description of the system algorithm. Section 3 demonstrates experimental results. Section 4
discusses the conclusions.
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spaces for skin color or non-skin color pixels, development of algorithm for the techniques HS-
CbCr and HS-ab, evaluation of the results of the techniques and algorithm for detection, and
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from the database of SFA [16] and the other 40 images are different colors to skin color.

In the case of non-skin images, each image is transformed to the HSV color space by obtaining
the histograms of the channels H and S. In each, histogram is estimated the minimum and
maximum values for the components H and S. After having all the values of the 40 images and
using the Eq. (7), the minimum and maximum average values of H are obtained, as well as the
minimum and maximum average values of S. In this way, the thresholds for non-skin color
pixels are obtained.

In the case of skin images, it is the same procedure described as above except that it transforms
into the YCbCr color space to obtain the thresholds of the components Cb and Cr and also
converts into CIELab color space to get as result the thresholds of the components a and b.
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nents are considered.

Detection and Tracking of the Regions of Skin Using the Technique HS-ab
http://dx.doi.org/10.5772/intechopen.70027

87



For example, a non-skin image is transformed into the HSV color space, and the histograms of
H and S are obtained. The histogram of H has a minimum value (a1) and a maximum value
(b1), when applying to the 40 images, the minimum values are a1 + a2 + ⋯ + a40, and the
maximum values are b1 + b2 + ⋯ + b40. Then, in Eq. (7), skin[a] is the average of all the
minimum values of a while Norm is the maximum value of all values of a, this process is also
performed for the maximum values so that the minimum and maximum thresholds of H are
Pskin(a) < H < Pskin(b). In this way, the intervals of the components of interest are obtained.

The procedure described in this section is shown in Figure 1. The algorithm for obtaining skin
and non-skin color thresholds is implemented in MATLAB (R2016a—The MathWorks).

The aim of this section is to obtain the ranges of the components H and S for the non-skin color
and the components Cb, Cr, a, and b for the skin color.

2.2. Techniques HS-CbCr and HS-ab

This chapter presents two techniques of color models for the detection of skin color. Both
techniques use the HSV color space that provides additional information of hue and chromi-
nance of an image with the aim to improve discrimination between skin pixels and non-skin
pixels [17]. In this work, the HSV color space is used to detect non-skin color pixels later, in one
technique, the YCbCr color space is applied to detect the skin color pixels and in the other, the
CIELab color space.

After knowing the thresholds of each color space, an algorithm is developed to detect the skin
regions of an image. The algorithm is implemented in Microsoft Visual Studio (C++ 2015). This
algorithm consists of loading the image, transforming the image into HSV color space, and
identifying non-skin pixels with the thresholds H and S to discard them. Later with the same
image, it turns in the YCbCr color space to select the skin color pixels with the thresholds Cb

and Cr and displays the image with only skin regions, which is known as the technique HS-
CbCr. On the other hand, the technique HS-ab has the same procedure described earlier with

Figure 1. Color segmentation process with histogram. It is the processing of non-skin images in HSV color space and
images of skin in YCbCr and CIELab color spaces. Subsequently, the thresholds are obtained with histograms.
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the exception that uses the thresholds a and b to identify skin color pixels. The algorithm of the
techniques HS-CbCr and HS-ab is presented below:

1: Function SKIN SEGMENTATION

2: for all images C in the training set T do

3: Convert to HSV color space

4: for each pixel c in an image C do

5: if Pskin-min(h1)<H<Pskin-min(h2) and Pskin-min(s1)<S<Pskin-min(s2) then

6: Classify the pixel as non-skin color

7: Remove pixels in the image C

8: Convert to YCbCr/CIELab color space

9: for each pixel c in an image C do

10: if Pskin-min(Cb1/a1)<Cb/a<Pskin-min(Cb2/a2) and Pskin-min(Cr1/b1)

<Cr/b<Pskin-min(Cr2/b2) then

11: Classify the pixel as skin color

12: Remove pixels in the image C

13: Display image C

14: else

15: Re-read image C

16: end if

17: end for

18: else

19: Re-read image C

20: end if

21: end for

22: end for

23: end Function

The purpose of the development of the algorithm is to separate the skin areas against the non-
skin areas in two different ways.

2.3. Performance evaluation

The metric parameters are used to evaluate the results of the skin detection algorithms. In this
work, three different metrics, C, CDR, and FDR, are implemented as in [18, 19]. The C is the

Detection and Tracking of the Regions of Skin Using the Technique HS-ab
http://dx.doi.org/10.5772/intechopen.70027

89



For example, a non-skin image is transformed into the HSV color space, and the histograms of
H and S are obtained. The histogram of H has a minimum value (a1) and a maximum value
(b1), when applying to the 40 images, the minimum values are a1 + a2 + ⋯ + a40, and the
maximum values are b1 + b2 + ⋯ + b40. Then, in Eq. (7), skin[a] is the average of all the
minimum values of a while Norm is the maximum value of all values of a, this process is also
performed for the maximum values so that the minimum and maximum thresholds of H are
Pskin(a) < H < Pskin(b). In this way, the intervals of the components of interest are obtained.

The procedure described in this section is shown in Figure 1. The algorithm for obtaining skin
and non-skin color thresholds is implemented in MATLAB (R2016a—The MathWorks).

The aim of this section is to obtain the ranges of the components H and S for the non-skin color
and the components Cb, Cr, a, and b for the skin color.

2.2. Techniques HS-CbCr and HS-ab

This chapter presents two techniques of color models for the detection of skin color. Both
techniques use the HSV color space that provides additional information of hue and chromi-
nance of an image with the aim to improve discrimination between skin pixels and non-skin
pixels [17]. In this work, the HSV color space is used to detect non-skin color pixels later, in one
technique, the YCbCr color space is applied to detect the skin color pixels and in the other, the
CIELab color space.

After knowing the thresholds of each color space, an algorithm is developed to detect the skin
regions of an image. The algorithm is implemented in Microsoft Visual Studio (C++ 2015). This
algorithm consists of loading the image, transforming the image into HSV color space, and
identifying non-skin pixels with the thresholds H and S to discard them. Later with the same
image, it turns in the YCbCr color space to select the skin color pixels with the thresholds Cb

and Cr and displays the image with only skin regions, which is known as the technique HS-
CbCr. On the other hand, the technique HS-ab has the same procedure described earlier with

Figure 1. Color segmentation process with histogram. It is the processing of non-skin images in HSV color space and
images of skin in YCbCr and CIELab color spaces. Subsequently, the thresholds are obtained with histograms.

Biomimetic Prosthetics88

the exception that uses the thresholds a and b to identify skin color pixels. The algorithm of the
techniques HS-CbCr and HS-ab is presented below:

1: Function SKIN SEGMENTATION

2: for all images C in the training set T do

3: Convert to HSV color space

4: for each pixel c in an image C do

5: if Pskin-min(h1)<H<Pskin-min(h2) and Pskin-min(s1)<S<Pskin-min(s2) then

6: Classify the pixel as non-skin color

7: Remove pixels in the image C

8: Convert to YCbCr/CIELab color space

9: for each pixel c in an image C do

10: if Pskin-min(Cb1/a1)<Cb/a<Pskin-min(Cb2/a2) and Pskin-min(Cr1/b1)

<Cr/b<Pskin-min(Cr2/b2) then

11: Classify the pixel as skin color

12: Remove pixels in the image C

13: Display image C

14: else

15: Re-read image C

16: end if

17: end for

18: else

19: Re-read image C

20: end if

21: end for

22: end for

23: end Function

The purpose of the development of the algorithm is to separate the skin areas against the non-
skin areas in two different ways.

2.3. Performance evaluation

The metric parameters are used to evaluate the results of the skin detection algorithms. In this
work, three different metrics, C, CDR, and FDR, are implemented as in [18, 19]. The C is the
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percentage of the correct skin detection to determine which chrominance component is the best
skin detection result. The C is given in Eq. (8). The correct detection rate (CDR) is the percent-
age of the pixels that are classified correctly by the algorithm as skin pixels. It is expressed in
Eq. (9). The false detection rate (FDR) is the percentage of the pixels that are classified wrongly
by the algorithm as non-skin pixels. This corresponds to Eq. (10).

C ¼ P
T

� 100% (8)

CDR ¼ Pc

Ts
� 100% (9)

FDR ¼ Pw

Tns
� 100% (10)

Where P is the number of pixels correctly classified as skin color of some color space, T is the total
number of pixels in the database (training images), Pc represents the total number of pixels that
are classified correctly as skin pixels by the proposed algorithm, Ts is the total number of skin
pixels that are classified by the ground truth, Pw represents the total number of pixels that are
classified wrongly as non-skin pixels by the algorithm, and Tns is the total number of non-skin
pixels that are classified by the ground truth. The term ground truth refers to the information of
the actual data, for example, the skin images are truthful information of skin color.

The performance metrics are essential concepts in verifying a specified algorithm as skin
detection algorithm.

2.4. Skin color tracking

According to the results of the previous section, the best technique is selected to subsequently
implement in the next algorithm. The algorithm is implemented in Microsoft Visual Studio (C+
+ 2015) with the library OpenCV 3.1.0, and this software is tested under Windows 10 of a
computer ASUS Notebook UX32A. The algorithm is observed in Figure 2 and consists of the
following steps:

• Step 1. This step is to capture the image and to read temporary images via webcam, and
then each frame image is converted into HSV to eliminate pixels of non-skin color and is
subsequently transformed into the CIELab color space to represent only skin color
pixels. Then, the values of the thresholds H, S, a, and b are implemented. Last, the image
becomes binary, with 1 representing skin color pixels and 0 representing non-skin color
pixels.

• Step 2. The application of morphological operations clarifies the regions of skin extracted
from the segmentation of the previous step. This project applies erosion and dilation with
the aim of separating areas of skin that are connected to areas not to skin that managed to
survive the segmentation.

• Step 3. The methods of blob and contour detection are applied in this step. A blob is a
connected part of a binary image that also refers to the regions in an image that are either
brighter or darker than the surrounding. All blobs are classified in the image by their area,
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then the background of the image is extracted, and the blob of the body parts is obtained.
Later, contour detection is used to store all the contours of skin regions. There are two
most common types, the convex hull and the ellipse. The first is elemental to get the
convexities of the body gestures, while the second is defined as the rectangle that includes
all the points that compose the contour of skin regions that is making a gesture. On this
occasion, it works with the convex hull, although it is still not getting the information of
the position of the parts of the body by each frame. However, it is a work for future to
implement it at the stage of tracking. The library cvBlobsLib is used to generate and filter
any blobs, and the function cvFindContours() that gives the contour (outline) and blob
area. The library and the function are from OpenCV.

• Step 4. The tracking consists of knowing the positions of the user gesture to display on a
computer screen the path of the movements. The problem is that the position of user can
vary depending on the gesture performed. To carry out this, one must know the positions
of the user’s movement. The information of the positions is obtained through the
moments. Moments moments() is an OpenCV function that calculates all of the spatial
moments and returns a moments object with the results, and this function is applied.
Then, it is considered that if the white area of the binary image is less than or equal to
10,000 pixels, then there are not skin zones in the image because the skin zones are
expected to have an area more than 10,000 pixels. Therefore, the positions of the x-axis
and y-axis in the image are calculated considering the moment between the areas. In this
way, the path can be displayed in the continuous images.

The algorithm of the previously described steps is shown below:

1: Function SKIN SEGMENTATION

2: for all images C in the training set T do

Figure 2. Detection and tracking of the areas of skin color in the image is a diagram on the development of the project.
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2: for all images C in the training set T do

Figure 2. Detection and tracking of the areas of skin color in the image is a diagram on the development of the project.
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3: Convert to HSV color space

4: for each pixel c in an image C do

5: if Pskin-min(h1)<H<Pskin-min(h2) and Pskin-min(s1)<S<Pskin-min(s2) then

6: Classify the pixel as non-skin color

7: Remove pixels in the image C

8: Convert to CIELab color space

9: for each pixel c in an image C do

10: if Pskin-min(a1)<a<Pskin-min(a2)andPskin-min(b1)<b<Pskin-min(b2)then

11: Classify the pixel as skin color

12: Remove pixels in the image C

13: Display image C

14: Apply morphological operations

15: Extract blobs

16: Detect contour

17: Calculate the moments

18: if area<=10000 then

19: Calculate the positions

20: if (X1 >= 0 && Y1 >=0 && X2 >= 0 && Y2 >= 0) then

21: Draw the line

22: else

23: X1=X2, Y1=Y2

24: else

25: Re-calculate area

26: else

27: Re-read image C

28: end if

29: end for

30: else

31: Re-read image C
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32: end if

33: end for

34: Show continuous images

35: end for

36: end Function

This section explains the process of design of a computer vision system for tracking of the skin
areas of the user. Then, the following section presents the results.

3. Results

In this section, representative results are provided for a proposed algorithm for the detection
and tracking of human skin parts. As mentioned, each non-skin image is converted into HSV
color space, and each skin image is transformed into YCbCr and CIELab color spaces to obtain
the maximum and minimum thresholds of the channels H, S, Cb, Cr, a, and b. An example is
presented in Figure 3, where a skin image is converted into the YCbCr color space and its
respective histograms of each channel are presented where its thresholds are Cb = [110, 114]
and Cr = [138, 142], which shows that this case is the procedure of an alone image. In this work,
40 skin images and 40 non-skin images are used to obtain the thresholds based on Eq. (7). For
non-skin images, the thresholds of H and S are 0 < H < 0.2 and 0.15 < S < 0.9, whereas for skin
images in YCbCr color space, the thresholds are 88 < Cb < 130 and 127 < Cr < 175, and in CIELab
color space, the thresholds are 142 < a < 225 and 115 < b < 177. These thresholds are
implemented in the algorithm of the techniques HS-CbCr and HS-ab.

For the application of the techniques HS-CbCr and HS-ab, 20 real images are used where
people are able to detect areas of skin. After implementing the thresholds of H, S, Cb, Cr, a,
and b in the algorithm of the techniques HS-CbCr and HS-ab, Figure 4 presents the results of
some real images with the application of both techniques.

According to the experimental results, it is possible to say that the images with the technique
HS-ab present better results in comparison with the technique HS-CbCr, since the latter
technique shows false alarms in the confusion of the colors of sand, wood, hair brown, among
others such as skin, i.e., the colors similar to the skin are detected as skin. To obtain quantita-
tive results, both techniques are evaluated with the metric parameters.

For the use of mathematical equations, Eqs. (8)–(10) are considered as follows:

P is the total number of skin color pixels of the skin images after transforming to the YCbCr
and CIELab color space taking into account only the chrominance components, T is the total
number of skin color pixels of the 40 skin images after converting to YCbCr and CIELab color
space. In this case, two percentages of C are obtained, one for the YCbCr color space and
another for CIELab. On the other hand, two percentages of CDR are obtained, one for the
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3: Convert to HSV color space

4: for each pixel c in an image C do
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11: Classify the pixel as skin color
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14: Apply morphological operations
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26: else
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28: end if

29: end for

30: else

31: Re-read image C
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32: end if

33: end for

34: Show continuous images

35: end for

36: end Function

This section explains the process of design of a computer vision system for tracking of the skin
areas of the user. Then, the following section presents the results.

3. Results

In this section, representative results are provided for a proposed algorithm for the detection
and tracking of human skin parts. As mentioned, each non-skin image is converted into HSV
color space, and each skin image is transformed into YCbCr and CIELab color spaces to obtain
the maximum and minimum thresholds of the channels H, S, Cb, Cr, a, and b. An example is
presented in Figure 3, where a skin image is converted into the YCbCr color space and its
respective histograms of each channel are presented where its thresholds are Cb = [110, 114]
and Cr = [138, 142], which shows that this case is the procedure of an alone image. In this work,
40 skin images and 40 non-skin images are used to obtain the thresholds based on Eq. (7). For
non-skin images, the thresholds of H and S are 0 < H < 0.2 and 0.15 < S < 0.9, whereas for skin
images in YCbCr color space, the thresholds are 88 < Cb < 130 and 127 < Cr < 175, and in CIELab
color space, the thresholds are 142 < a < 225 and 115 < b < 177. These thresholds are
implemented in the algorithm of the techniques HS-CbCr and HS-ab.

For the application of the techniques HS-CbCr and HS-ab, 20 real images are used where
people are able to detect areas of skin. After implementing the thresholds of H, S, Cb, Cr, a,
and b in the algorithm of the techniques HS-CbCr and HS-ab, Figure 4 presents the results of
some real images with the application of both techniques.

According to the experimental results, it is possible to say that the images with the technique
HS-ab present better results in comparison with the technique HS-CbCr, since the latter
technique shows false alarms in the confusion of the colors of sand, wood, hair brown, among
others such as skin, i.e., the colors similar to the skin are detected as skin. To obtain quantita-
tive results, both techniques are evaluated with the metric parameters.

For the use of mathematical equations, Eqs. (8)–(10) are considered as follows:

P is the total number of skin color pixels of the skin images after transforming to the YCbCr
and CIELab color space taking into account only the chrominance components, T is the total
number of skin color pixels of the 40 skin images after converting to YCbCr and CIELab color
space. In this case, two percentages of C are obtained, one for the YCbCr color space and
another for CIELab. On the other hand, two percentages of CDR are obtained, one for the
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technique HS-CbCr and another for the technique HS-ab, where Pc is the total number of skin
color pixels found in the algorithm HS-CbCr and HS-ab on real images, and Ts is the total
number of skin color pixels of the 40 skin images. FDR has the same percentage for both
techniques, since in detecting, the non-skin color pixels use the same procedure, then Pw is the
total number of non-skin color pixels detected in the algorithms HS-CbCr and HS-ab on real
images, and Tns is the total number of non-skin color pixels of the 40 non-skin images. These
percentages appear in Table 1.

As seen in Table 1, the percentage of C in CIELab is higher with respect to YCbCr, which
means that the CIELab color space is more accurate in detecting skin color with chrominance
components; therefore, the best results are expected if the CIELab color space is used. The
proposed algorithm of the technique HS-ab presents a high detection of pixels correctly
classified as skin color compared to the technique HS-YCbCr, due to the fact that HS-ab has a
greater CDR than HS-CbCr besides not presenting false alarms. This is the reason for the
choice of technique HS-ab for the application in the next algorithm.

Figure 3. A skin image in YCbCr color space with histograms. In this, a is a skin image, b is the conversion to the YCbCr
color space, c is the histogram of the channel Cb, and d is the histogram of the channel Cr. In both histograms, the
minimum and maximum thresholds of the components Cb and Cr are obtained.
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The results of algorithm for detecting and tracking skin color are presented in Figure 5. The
operation of the algorithm is to capture the continuous images through the camera of the PC,
showing on the screen the images of blob and the path in red color of the regions of greater
area of skin in motion.

This system has been tested with different skin types for which a satisfactory response is
obtained.

Figure 4. Images with application of the proposed techniques. From left to right, in the first column the real images are
shown, in the second column are the images with the application of the technique HS-CbCr, and in the latter the images
are processed with the technique HS-ab.

Parameters YCbCr color space CIELab color space Technique HS-CbCr Technique HS-ab

C (%) 33.51 34.80 – –

CDR (%) – – 64.88 67

FDR (%) – – 48.87 48.87

Table 1. Percentages of the three metric parameters.
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4. Conclusion

Numerous application areas use segmentation process such as computer vision and object
recognition. Segmentation process is the partitioning of input image or input scene (video
scenes) into meaningful objects, and each object can be treated, processed, or discriminated
by its salient color. Several color spaces are applied for processing colored images. Each color
space has different characteristics and allows to represent the color images. The choice of color
space is of the utmost importance and goes according to the application; in this case, our
interest is human skin color. There are color spaces for the segmentation of human skin color
among the most common HSV, YCbCr, and CIELab [9]. These color spaces consist of chromi-
nance and luminance components, in which the luminance component is affected with lighting
changes. This is the reason for the decision to discard the luminance components and use only
the chrominance components (H, S, Cb, Cr, a, and b) for skin color segmentation. Based on the
above, two techniques are created.

Figure 5. System of detection and tracking of the skin with the technique HS-ab. From top to bottom, the first row displays
images temporarily captured by the camera, then in the second, the images can distinguish two types of blobs: black blobs
(non-skin regions) and white blobs (skin regions), and the last shows the path (red color) realized by the subject.
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The skin segmentation for color images is a simple and easy way to classify into skin and non-
skin pixels. In this work, the skin detection algorithm is used the techniques HS-YCbCr and
HS-ab applying histogram threshold-based approach, where the global threshold value for
each chrominance component is determined to differentiate pixels from skin color and non-
skin color. Later, image preprocessing is required to achieve an efficient segmentation. Mor-
phological operations are the needed operations to complete the segmentation process and
reduce noise. There are applied morphological dilation and erosion operations to extract skin
pixel. The last stage of the system is the tracking of skin regions. The method of moments is
applied to calculate the positions of the largest area of skin color. This method has low
computational cost and is easy to implement for the application in computer vision.

This work presents the comparison of two techniques for the modeling of skin color. The
experimental results of both skin color segmentation techniques show a good detection of skin
color in all images; therefore, the techniques are able to model skin color. However, the
technique HS-YCbCr also presents false detections by confusing skin colors with similar ones.
With respect to the results of the three metric parameters, the technique HS-ab presents high
percentage compared with the other technique indicating that it is a reliable and accurate
technique for the detection of skin color pixels. On the other hand, the algorithm for tracking
is able to segment skin color in real time.

To end this chapter, a new technique for detection and tracking of skin color has been
presented. This proposed system can cope successfully with different colors of skin and
complex backgrounds. It can operate with images acquired by a camera and with various
body movements.

The future work of research will focus to implement the stage of recognition of gestures in the
system and finally test it with amputated people either before or after fixing the prosthesis.
Then, this system will be better able to fulfill its main purpose, which consists in developing an
effective rehabilitation using the technology of a computer vision system, to return to the
patients the highest level of independence and functioning as possible.
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