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Preface

The modern cosmology has been turned into an outstanding field of active research through
the years. Historically, since its origin as a search of understanding the universe came from a
mythological, religious, or philosophical point of view, the cosmology depended from es‐
sentially what culture, society, and/or what time we are referring to. It was not considered
strictly speaking as a natural science rather than a philosophical thinking about the world we
are living in. The breakthrough occurred in the sixteenth century with Galileo Galilei and
his enhanced version of telescope and the finding of new ways of not only thinking about
the natural world but new ways to see the world. Accordingly, the scenario radically
changed in the beginning of the twentieth century. To get this far, it is important to note that
this development has been long in the making. This is a fine example of the scientific way of
thinking and its modus faciendi as a human construction of knowledge. More importantly, any
advance comes from a collective work and collaborative spirit since our generation is em‐
bedded in the greatest challenging issues of scientific history. For instance, we cite seminal
works from Henrietta Leavitt with the observations of variable stars, Albert Einstein’s gen‐
eral relativity, Friedman’s metric launching the basics of the standard cosmological model of
an expanding universe, Vesto Slipher with the measurements of radial velocities of galaxies
and the use of spectroscopy for astronomical observations that led to the finding of galactic
redshift, Edwin Hubble’s expanding universe, and Fritz Zwicky’s anomalies in velocities of
the clusters of galaxies that were not predicted by Newtonian theory of gravity. Today, such
anomaly is called the dark matter problem. This was reinforced by Vera Rubin’s observations
in spiral galaxies in the 1970s also showing a huge discrepancy of Newton’s law to observa‐
tions and further developments in both theoretical and observational methods from genera‐
tions of scientists.

Particularly, in the last two decades, we have an intense growth of scientific interest in cos‐
mology due to the improvement of observational instruments of astronomical science,
which motivated theoretical advances from the necessity to deal with the resulting huge
amount of scientific data that should be taken into account, analyzed, and properly justified.
Accordingly, cosmology as a discipline turned to be a scientific ground-based branch of
physics. Today, we have more scientific data in modern cosmology (and also astronomy and
astrophysics) than we could get rid of it, which makes the present days an exciting era for
scientific knowledge.

In 1998, we have the discovery that our universe is not only expanding but expanding in an
accelerated way. The currently simpler explanation to this effect is that the universe is fulfil‐
led with a negative pressure fluid (regarded as fluctuations of the quantum vacuum energy
density) producing some sort of dark energy that drives the universe to speed up. Of course,
this is just one of the explanations for the accelerated regime of the universe, which has been



confirmed again by the recent Planck mission (European space agency) in their last report in
2015. Accordingly, more effort is currently made to understand the physics of the so-called
dark sector. Intriguingly enough, roughly 4% of the universe is barely known, and the rest is
not properly explained by the standard particle physics or cosmology, and new fresh modes
of perception are needed.

More recently, we had an incredible technological advance from the discovery of gravita‐
tional waves in the Laser Interferometer Gravitational-Wave Observatory (LIGO) confirm‐
ing Einstein’s prediction. It has given to scientific community a brand new open arena for
physics and several areas, particularly on the understanding of black hole physics, another
challenging problem on gravitational physics and astrophysics.

The title of this book could be no other. The chapters presented discuss different aspects of
cosmology pointed out by some experts in different areas. This book is divided into three
sections with related chapters. The first section is devoted to cultural aspects of cosmology
in which, as a human construction, it influenced other human activities such as arts, philoso‐
phy, and politics during the human history. The subsequent chapters are intended to dis‐
cuss technical scientific advances in the field with capital themes today as the problems of
the physics of dark sector (dark matter and dark energy problems), black holes, galaxies,
large structure formation, and particles. In fact, it shows our endless searching for better un‐
derstanding of the universe, and it remembers the human odyssey that is a journey of
knowledge as a legacy for next generations. It has been a great opportunity to work with
InTech’s editorial team and such an honor to read all the chapters proposed by professional
researchers in the field.

Abraão Jessé Capistrano de Souza,
Federal University of Latin American Integration,

Casimiro Montenegro Filho Astronomy Center
(Technological Park of Itaipu),

Brazil
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Cosmology and Culture





Chapter 1

The Importance of Cosmology in Culture: Contexts and

Consequences

Nicholas Campion

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67976

Abstract

Scientific cosmology is the study of the universe through astronomy and physics. 
However, cosmology also has a significant cultural impact. People construct anthro-
pological cosmologies (notions about the way the world works), drawing in scientific 
theories in order to construct models for activities in disciplines, such as politics and 
psychology. In addition, the arts (literature, film and painting, for example) comment 
on cosmological ideas and use them to develop plot lines and content. This chapter illus-
trates examples of such work, arguing that scientific cosmology should be understood as 
a significant cultural influence.

Keywords: cosmology, culture, politics, psychology, literature, film, space travel

1. Introduction

Modern scientific cosmology is valuable in itself for what it reveals about the nature of the 
cosmos we inhabit [1]. It is a demonstration of the power of modern science to transform our 
understanding of who we are and where we came from. However, most cosmologists focus on 
scientific questions and are not fully aware of the impact of cosmological theories on culture, 
including politics and the arts. This chapter introduces this wider context on the basis that 
both scientists and the public should be aware of the broader importance of their work and its 
influence on the way we think. Cosmologists often rely on the fascination the subject brings: 
as Rowe observed in his textbook way back in 1968, ‘In the fields of astronomy and cosmol-
ogy we live in a period of excitement’ [2]. Cosmology therefore both impacts culture and is 
described and represented by it. This chapter explores some ways in which this happens. As 
Muriel Rukeyser wrote, ‘The universe is made of stories, not of atoms’ [3]; see also Impey [4].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



If we select four fundamental causes of changes in our perceptions of the world in the last 
century, then they would be first relativity, second quantum mechanics, third the expand-
ing universe and fourth, the space programme. The first three date from a fairly narrow time 
band, if we date special relativity from 1905, general relativity from 1915, that the universe 
is expanding and is much bigger than previous thought from Edwin Hubble’s publications 
from 1924 to around 1930 and quantum mechanics from Niels Bohr and Werner Heisenberg’s 
formulation of the Copenhagen interpretation in 1925–1927 [5]. This epic revision of scientific 
knowledge of underlying structures of the universe was therefore concentrated into just a 
quarter of a century. The dramatic period of the human space programme was concentrated 
into just over 8 years from the first human space flight in 1961 to the Moon landing in 1969.

All have fundamentally altered the way that we think about life here on Earth. Often these 
changes are taken for granted. For example, mobile phone technology, dependent as it is on 
satellite networks, is transforming not only the social lives of teenagers in the west, but also 
the economic muscle of poor farmers across the third world. Meanwhile, super‐fast quantum 
computing makes use of phenomena such as entanglement and is driving the development 
of artificial intelligence, and hence of robotics. The implications for society over the next few 
decades are potentially enormous. The most important conclusion to be drawn from this com-
bination of revolutionary changes is the role of the observer: as the basis of differing perspec-
tives of time and space in relativity, an influence on the world (at least, at the sub‐atomic level) 
in quantum mechanics, and the witness for the first time, of the spherical earth, hanging in 
space, in photographs taken by Apollo astronauts in 1968. Such ideas and experiences have 
decisively underpinned modern ideas that one person’s complete individual experience or 
perception is as equally valid as anyone else’s. Einstein is held particularly responsible for 
these ideas [6, 7] as a result of popular equations between relativity on the one hand, and 
cultural relativism (the idea that no one culture is superior or inferior to another) on the 
other. Moral relativism (the idea that no one culture is morally superior or inferior to another) 
is controversial and widely rejected, but cultural relativism does have beneficial scholarly 
consequences. This is especially the case in the new field of cultural anthropology in which 
academic rigour requires that in order to better understand other cultures, researchers must 
abandon any idea that one culture is superior or inferior to another.

2. Defining cosmology

The term cosmology can be traced to the 1730s, although its appearance in a scientific sense 
dates from only after the Second World War [8]. The logos, which is the root of ‘logy’, means 
‘an account’, so that, as a preliminary working definition, cosmology is simply ‘an account of 
the cosmos’. The primary Latin equivalent of the Greek Kosmos is Universus, from Unus verto, 
or ‘changing into one’, thereby suggesting unity. We can divide the definitions of cosmology 
into two: the scientific and the anthropological. The scientific are perhaps the more familiar, 
but even here there is variation. Scientific definitions range from the narrow, such as ‘the study 
of the universe’ [9], to the broad (‘the science, theory or study of the universe as an orderly 
system, and of the laws that govern it; in particular, a branch of astronomy that deals with the 
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structure and evolution of the universe’) [10]. The idea that cosmology is synonymous with 
astronomy is widespread [2, 11]. Yet the relationship between astronomy and cosmology is 
not settled, and Hawley and Holcomb [9] argue that cosmology is a separate discipline, which 
combines features of both astronomy and physics. There are other places where disciplines 
overlap. For example, astronomy has to include geophysics precisely because the Earth itself 
is in space [12].

Anthropological cosmologies are based on the proposition that ideas about the cosmos are 
integral part of human cultural and social systems. For example, the archaeologist Timothy 
Darvill talks of a cosmology as being, ‘The world view and belief system of a community 
based upon their understanding of order in the universe’ [13]. George Gumerman and 
Miranda Warburton argued that ‘… to truly comprehend a culture we must have some sense 
of its cosmology – the group’s conception of themselves in relation to the heavens’ [14]. And 
without diminishing the scientific status of modern cosmology, ideas do not come from the-
ory and experiment alone, but can be inspired by wider cultural influences, as Holton [15] 
illustrates in relation to Einstein’s reading and education before he formulated the theory of 
special relativity. Heisenberg [16] actually argued that science and art are parallel attempts 
to describe the world, and may both be part of a wider cultural picture. Bell [17] then talks of 
‘complex subsystems of cosmic exchange’ which underpin mundane systems of behaviour, 
such as socio‐economic exchange, but are designed to reinforce individual and social exis-
tence within the cosmos.

3. Defining cosmology

The philosopher Terry Eagleton concluded, ‘“Culture” is said to be one of the two or three most 
complex words in the English language’ [18]. A good working definition, though, is offered 
by the anthropologist Clifford Geertz, who argued that culture is ‘an historically transmitted 
pattern of meanings embodied in symbols, a system of inherited conceptions expressed in 
symbolic forms by means of which men communicate, perpetuate and develop their knowl-
edge of and attitudes toward life’ [19]. The influence of cosmology on culture then becomes a 
matter of exploring its impact on political and religious ideas, and its use in the arts, perhaps 
mainly in literature, painting and film. Michael Rowan‐Robinson wrote that ‘the intellectual 
horizon of the human race at any time has always been inextricably bound up with the scale 
of the universe… there can be little doubt that a people’s perceived scale of the universe must 
play a fundamental role in its culture and consciousness’ [20]. He could equally have said 
that culture and consciousness are bound up with conceptions of the universe as a whole. It 
was Einstein himself who made the case for the cosmologist intervening in culture. In 1936 he 
wrote, ‘the physicist cannot simply surrender to the philosopher the critical contemplation of 
the theoretical foundations’ of the universe, and ‘the critical thinking of the physicist cannot 
possibly be restricted to examination of his own field. He cannot proceed without consider-
ing critically a much more difficult problem, the problem of analysing the nature of everyday 
thinking’ [21]. Mostly the cosmologist does not intervene directly in modern culture. Instead 
other people interpret and represent cosmological ideas.

The Importance of Cosmology in Culture: Contexts and Consequences
http://dx.doi.org/10.5772/67976

5



4. Politics

Cosmology has had a substantial impact on political theory and continues to do so. We can 
therefore talk about ‘political cosmology’ [22]. The earliest recorded societies used the stars 
or planets to represent their rulers or guide their actions, functions which tended to overlap 
with religion. The Egyptians and Inca saw their rulers embodied in the Sun, the Chinese in the 
Pole Star, and in Babylon the chief god, Marduk, was represented by Jupiter. On a practical 
level, most pre‐modern cultures structured their religious sanctuaries, and sometimes their 
urban communities, according to their conceptions of the cosmos. Hence we may speak of 
‘cosmopolises’ or ‘cosmograms’. A ‘cosmic state’ is one in which the entire state is organized 
to embody the structure of the cosmos.

The significant step into modelling politics on the cosmos as an organised system was taken 
by the Greek philosopher Plato (ca. 428/7?–348/7). Plato’s cosmos emanated out of a single 
consciousness which existed in a realm of unchanging eternity. The material world was then 
an imperfect representation of the world of Ideas (Plato spoke of the physical world being 
embedded in the world‐soul) and was governed by time, the mathematically regulated, har-
monious rhythms measurable by the motions of the planets. Plato’s mathematical universe 
provides a rationale for scientific speculation to the present day [23, 24].

Plato advocated an education emphasising such subjects as music, mathematics and geom-
etry, and a political system based on rule by philosophers, all designed to harmonise society 
with the cosmos, for the common good. This concept of the perfect society underpins the 
entire history of utopianism down to the present day. There were two main consequences 
of Plato’s system, with consequences down to the present day. First, the perfect ruler was 
envisioned as the Philosopher King, whose right to rule was justified by his wisdom and 
understanding of cosmic principles. Second, the system tended to be authoritarian because, 
being founded on cosmic principle, it could brook no opposition. Plato’s ideas were revived in 
Renaissance Europe and were to become extremely influential. The notion of human history 
as the progressive unfolding of the world soul towards a final, perfect condition was central 
to the ideas of Georg Friedrich Hegel (1770–1831). Hegel’s influence on Karl Marx (1818–1883) 
led the twentieth century philosopher of science, Popper [25], to see Plato’s thought as the 
foundation of modern totalitarianism: where Plato influenced Marx, via Hegel, was in the 
notion that history has an inescapable trajectory, founded in the structure of the cosmos itself. 
For revolutionary Marxists, such as Lenin, Stalin and Mao Tse‐tung, it was then inconceivable 
that anyone could oppose their rule, for to do so was to oppose the cosmos.

Separate to the platonic strand in European political cosmology, the astronomical discoveries 
from Copernicus onwards all helped shape western politics. Copernicus’ argument that the 
Sun, not the Earth, is the centre of the universe (or the solar system as we would now say) was 
attached to the ancient idea that the Sun is associated with kings. It was then used to support 
claims that, just as the entire universe orbits the Sun, so the whole of society orbits the king 
[26]. Propaganda in support of absolute monarchy then reached its height in the iconography 
of the French king Louis XIV. Such authoritarian ideas were directly countered by what I have 
called Political Newtonianism [22]. This held that, just as Newton had argued that one law 
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governed the whole universe, so the same principle must apply to terrestrial affairs and one 
law must govern the whole of human society. In principle, then, all people were equal, and 
there was no justification for monarchy. Such ideas were influential among both the American 
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if the entire universe was a mathematically regulated mechanism, so human society must also 
be governed by the same principle. If planets moved in mathematically determined patterns, 
Comte reasoned, so must people. By collecting and analysing data on human behaviour, 
Comte concluded, the same laws that controlled the wider universe should be discovered in 
human affairs. And in turn the state, governed by experts who were the modern equivalent 
of Plato’s philosophers, could be managed for the good of all. This remains the foundation of 
twenty‐first century sociology.

There have been a few attempts, for example, to identify Einsteinian relativity either as a form 
of political discourse, or to draw political implications from it. As far as the former is con-
cerned, I refer to the French feminist and social theorist Luce Irigaray who has identified the 
theory of relativity as a political rather than scientific formula [29]. Sokal and Bricmont [28], 
meanwhile, noted how the notion of relativity in time and space was used by postmodern 
theorists in order to advocate cultural relativity on the grounds that, if the universe has no 
single centre, neither does culture.

The anthropologist Falzon [30] has defended multi‐sited ethnography against the charge of 
lack of depth by arguing that it takes into account shifting perceptions of space and time. 
The anthropologist Marcus [31] refers to ‘space‐time compression’, in which the essential dif-
ference between space and time contracts in light of the recognition that both are socially 
produced as a result of what Falzon calls ‘a product of interrelations’; Marcus derived his 
understanding from special relativity, and so directly from his understanding of Einstein. 
Elsewhere, Einstein’s call for humanity in general to take on the implications of the new cos-
mology has been used to advocate a collaborative global order in which international prob-
lems are solved thought global institutions rather than war [32].

5. Psychology

The consequences of Newtonianism (the belief that the entire universe is mathematically reg-
ulated) permeate western thought wherever there has been a search for a universal law based 
on supposedly hard data. Psychology is a prime example. When the word ‘psychology’ was 
coined around 1800, it was thought that, since Newtonian science explained everything that 
exists and occurs in the material world, there could and should be just one science explain-
ing what exists and occurs in the psychological world. As Gilbert Ryle wrote, ‘“Psychology” 
was supposed to be the title of the empirical study of “mental phenomena”’, a counterpart 
to Newtonian celestial mechanics [33]. Concepts such as normality and deviation have domi-
nated some of the major schools of western psychology, their roots in Newtonian cosmology’s 
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devotion to predictable order unrecognised and forgotten. The measurement and mathemati-
cal analysis of the human mind then became the basis of much psychiatry and academic 
psychology. Even the notion developed by Sigmund Freud (1856–1939), that psychic—or 
psychological—material can be ‘repressed’, as if by some kind of downward pressure, is 
derived from Newtonian mechanics through the influential German physicist Hermann von 
Helmholtz (1821–1894) [34]. The goal of Freudian psychoanalysis is for the patient to become 
aware of such repressed material through the so‐called talking cure, the conversations which 
take place during sessions with the psychoanalyst, thus releasing in downward pressure.

Freud’s student C.G. Jung opened a radically different strand of thought in modern psychol-
ogy which is highly influential in many schools of psychotherapy and counselling practiced 
in society as a whole, although usually outside the academic system. Jung revived the Platonic 
theory that everything in the world is a manifestation of an original pure idea or archetype. 
Jung’s system, known as analytical psychology, adheres to a kind of archetypal philosophy 
in which all psychological types correspond to an archetype, such as the eternal youth (the 
puer aeternus), anima (female principle) or senex (wise old man), which exist in the collective 
unconscious, Jung’s update of the Platonic world‐soul. The aim of Jung’s therapeutic model is 
for the individual to become truly themselves by recognising the role of the archetypes in their 
lives and, in effect, understanding their true connections to the cosmos. The idea that one can 
become one who truly is also relates back to Aristotelian cosmology in which it was thought 
that the four elements (fire, earth, air and water) all try to find their natural place in the world. 
This, Aristotle thought, was why flames go up to the sky, where fire belongs, and water falls 
to the ground, because that is where it finds its natural home. In Aristotelian politics, kings are 
at the top of society and peasants at the bottom, because that is the natural state of affairs; in 
Aristotelian psychology every individual then has a natural way of being. Jung, though, was 
equally concerned with the latest science, and formed a collaboration and friendship with the 
quantum physicist Wolfgang Pauli (1900–1958) [35]. Together they formulated the concept of 
synchronicity by which meaningful events are connected because they take place at the same 
time, without any causal connection [36]. Newtonian psychology—the belief that all mental 
states can be measured—survives in university departments and psychiatry. But in the wider 
world, where increasing numbers of people seek counselling and psychotherapy, Einstein is 
taken as the inspiration for the argument that therapists and analysts must be ‘less concerned 
with the basic nature of time and more with the human experience of it’ [37].

6. Literature and film

One of the major genres of writing in western culture goes under the name ‘celestial journey 
literature’, derived from ancient texts on the soul’s journey. The soul’s journey was secularised 
in Dante’s (1265–1321) ‘Divine Comedy’ [38]. Inspired by Plato’s myth of Er, Dante is guided by 
the poet Virgil and his love, Beatrice, through the spheres of Hell, Purgatory and Paradise (Hell 
and Purgatory are structured in spheres analogous to the spheres on which the planets and stars 
orbit). The last great example of the celestial journey of the soul or a dream world was Johannes 
Kepler’s ‘Somnium’, an account of lunar astronomy written in 1608 but published in 1634, 
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and sometimes referred to as the first work of science fiction. The genre took a decisive step 
forward in Francis Godwin’s ‘Man in the Moon’ [39], published in 1638. Like Dante, Godwin 
used his story to describe the structure of the cosmos, now, after Johannes Kepler and Galileo, 
rejecting the planetary spheres and challenging the Aristotelian idea that all things have their 
natural place. Godwin departed from the old idea of a journey of the soul or a dream world. 
Instead, his hero, Gonzales, flies to the Moon carried by giant geese. From Godwin onwards 
the celestial journey becomes physical, arriving at the Moon rocket in Jules Verne’s 1865 novel, 
‘From the Earth to the Moon’. Verne’s book was one of the inspirations for what may be the 
first space film, Georges Méliès’ ‘Le Voyage dans la Lune’—in English ‘A Trip to the Moon’—
after which astronomy and cosmology have a regular presence in film culture [40]. In Méliès’ 
film, the astronomers encounter the inhabitants of the Moon, known as Selenites, in what is 
clearly a parable for European colonialism: the film was released midway through the so‐called 
‘Scramble for Africa’, the final face of the European take‐over of Africa from the 1880s to 1914. 
From Méliès on, the major celestial journey novels have often been filmed. Perhaps the most 
famous is Stanley Kubrick’s film of Arthur C. Clarke’s ‘2001: A Space Odyssey’. Clarke’s meta-
physical story is vividly portrayed first through the transition from ape to human, and then, in 
the final scene, the transformation of the dying astronaut into the star child. Accompanied by 
the stirring music of Wagner’s ‘Also sprach Zarathustra’, Kubrick created a vivid evocation of 
both ancient beliefs in the soul’s ascent to the stars and modern ideas that human destiny may 
take us to realms beyond our current imagination.

While celestial journey films can be enjoyed as simple adventures, they often contain deeper 
meanings. The 1951 movie ‘The Day the Earth Stood Still’ exploited the current public inter-
est in Flying Saucers. Released at a time when the Cold War was reaching its height with the 
conflict in Korea, the story featured a wise alien who arrived from space in order to reveal 
to humanity the error of its ways. The rejection of the alien’s words of wisdom presented a 
gloomy view of humanity as incapable of solving its problems. Cosmology, through film, then 
becomes a means of commenting on societal change. ‘Star Trek’, the biggest celestial journey 
TV franchise of them all, was launched in 1966. ‘Star Trek’ was altogether more sophisticated 
than ‘Lost in Space’ and was entirely more optimistic. It is set in a utopian future in which 
there is one world government, collaborating with other worlds through United Federation of 
Planets, and money has been abolished. In the crew’s adventures, the European voyages of the 
fifteenth and sixteenth centuries are replayed in a universe of an infinite number of galaxies, 
except that now alien cultures are to be respected and preserved rather than conquered and 
destroyed. The values espoused by the Federation were American: freedom from tyranny, 
freedom of expression and respect for minorities. Compared to ‘Star Trek’, the blockbuster 
film franchise, ‘Star Wars’, launched in 1976 and still going strong forty years later, projects 
into space a simpler version of the endless struggle for freedom against an evil empire, very 
much an update of anti‐Nazi war films. In all such cases the cosmos is seen as a blank slate, a 
tabula rasa, on which human concerns are imposed.

There is a constant strand of literary comment on cosmology in the nineteenth century. Edgar 
Allan Poe (1809–1849), often known as the author of the first detective novel, wrote a remark-
able work which he called ‘Eureka’ [41], deliberately suggesting an imaginative breakthrough 
in the understanding of the cosmos. Poe realised that in a Newtonian universe the stars are 
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likely to collapse in on each other, and that therefore the universe must be evolving [42]. 
Thomas Hardy (1840–1928) was as fascinated by cosmology as Poe, but unlike him lived to 
see the publication of Darwin’s ‘Origin of Species’ in 1959 (when he was just 19). For Hardy 
evolution was a reality. He combined his encyclopaedic knowledge of myth, astronomy and 
cosmology into a ‘moral astrophysics’ [43] which provided the background for the individual 
conflicts and tragedies in novels such as ‘Far from the Madding Crowd’ (1874) and ‘Tess of 
the d’Urbervilles’ (1891/1892). Virginia Woolf (1882–1941) used Edwin Hubble’s discovery of 
the expanding universe in the 1920s as a metaphor for personal and political insecurity in the 
1930s. In Woolf’s view, as we all live together on the same delicate, vulnerable planet in a vast-
ness of space, it is incumbent upon us to live together rather than fight [44]. The Marxist play-
wright Bertolt Brecht (1898–1956) looked back to an earlier cosmology but equally wanted 
to illustrate a modern point in his 1938 play, ‘Galileo’. His portrayal of Galileo as the heroic 
intellectual defending Copernicus, struggling against an obscurantist Inquisition (inaccurate 
because many in the senior Catholic hierarchy were Copernicans), was an allegory of the 
revolutionary struggles of the 1930s.

One of the other familiar tropes derived from modern cosmology is time travel, a topic rarely 
dealt with in ‘Star Trek’, in spite of the regular use of faster‐than‐light travel. There is now 
a considerable literature which draws on Gerald Feinberg’s 1967 paper ‘Possibility of faster‐
than‐light particles’, which proposed the existence of the tachyon [45]. This hypothetical par-
ticle, the tachyon, might as Martin Rees [46], says alter the order of events, if a signal from a 
tachyon arrived before it was sent. The genre’s earliest notable example was Wells’ novel ‘The 
Time Machine’ (1895) [47]. Wells coined the phrase time machine to describe a time‐travel-
ling vehicle which moved because the fourth dimension was of time rather than space. Wells 
was a utopian socialist and his main preoccupation was to explore varieties of human society, 
considering whether progress inevitably resulted in human improvement: it’s clear that he 
didn’t think that this was the case, and that ignorance and superstition could easily flourish 
in the future. Neither does ‘Dr Who’, the most successful TV time travel franchise, explain 
how it is possible to travel to the distant past or future. The time machine, the TARDIS (short 
for Time and Relative Dimensions in Space), is bigger inside than outside and references 
Einstein by referencing relativity in its name. The Doctor himself is increasingly represented 
as a lonely figure, destined to exist in perpetual sadness caused by the death or departure of 
his companions.

The concept of alienation is developed by Alan Lightman in his ‘Einstein’s Dreams’ [48], 
a journal set in 1905—the ‘annus mirabilis’ when Einstein developed the theory of Special 
Relativity. Lightman’s character experiences the alienation of a world in which any particu-
lar point in space‐time is delicate, temporary and liable to vanish, an ‘exile in time’ [48]. In 
a later entry, Lightman’s diarist writes ‘There is a place where time stands still. Raindrops 
hang motionless in air. Pendulums of clocks float mid‐swing’ [49]. At the centre of space‐time 
nothing moves. The concept that all time exists simultaneously actually has a long lineage. It 
is central to Plato’s cosmology, occurs in the Bible (Ecclesiastes 3.15), and was elaborated by 
St. Augustine (V.9) in the fifth century [50]. He described a universal paradox whereby even 
if a future event in our individual lives already exists, it depends on an act of our free‐will in 
order to take place. T.S. Elliot, impressed by Einstein, combined the lessons of relativity with 
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Plato, Ecclesiastes and Augustine. Following Einstein’s English visit in 1921, the year he won 
the Nobel Prize, Elliot wrote, ‘Einstein the Great has visited England (and) has taken his place 
in the newspapers with the comet, the sunspots, the poisonous xxx‐jellyfish and octopus at 
Margate, and other natural phenomena’ [51].

In two poems composed in the 1930s, and published in 1941–1942, Elliot considered the 
conundrum of time for the human condition. In ‘Burnt Norton’ he wrote that ‘All time is 
unredeemable’, for if the past exists in the future and the future exists in the past, all possibili-
ties are eternally present, and in ‘East Coker’ he wrote the famous line ‘In my beginning is 
my end’ [52]. Elliot’s speculations on time were shared by Priestly in such metaphysical plays 
as ‘Time and the Conways’ (1937) and, perhaps his most famous work, ‘An Inspector Calls’ 
(1947), in which a detective from the future extracts confessions of guilt for a poor girl’s sui-
cide from a comfortable middle class family. Priestley’s immediate inspiration was Dunne’s 
[53] work on time, which drew on Einstein (a cautiously supportive note was included by 
Arthur Eddington in the appendix to the third edition) in order to explain why the future 
could be predicted by precognition.

The popular end of such speculation is best represented by the collected works of Philip 
K. Dick (1928–1982). Like Elliot, Dick was inspired by ancient philosophy and modern sci-
ence, especially the conclusions of quantum mechanics as expressed in Heisenberg’s uncer-
tainty principle and Erwin Schrȍdinger’s famous thought‐experiment with the cat (1935), 
ideas responsible for modern multi‐verse theory. If one cannot tell both where a particle is 
and where it is travelling to, whether it is even a particle at all (or a wave), and how far the 
act of observing it has altered its state, how can one ever trust what appears to be real. For 
example, in the ‘The Cosmic Puppets’ (1957), an ordinary suburban couple return to their 
hometown after a gap of several years to find that everyone and everything has changed, and 
nobody recognises them. The novel then shifts into a traditional religious mode, located in 
the Zoroastrian (Persian) struggle between the good god Ormazd and his evil rival Ahriman. 
Eventually Ormazd triumphs, the illusory world created by Ahriman is removed, and reality 
returns. In Dick’s award‐winning counter‐factual history, ‘The Man in the High Castle’ (1962), 
the ability of the observer to act on—and change—the material world is described via the lead 
characters’ use of the Chinese oracle, the I Ching, to alter the future.

Dick’s intensity is absent from the most whimsical of recent cosmological fiction, that of Italo 
Calvino (1923–1985). Calvino took cosmological ideas and exaggerated them until they were 
absurd. His short story, ‘The Form of Space’ (2002), points out that if one fell in curved space, 
one would logically fall for ever, while ‘the Distance of the Moon’ imagines a time in the dis-
tant past when the Moon was closer to the Earth, close enough for people to jump up to it and 
gather such delicacies as Moon‐milk.

7. The visual arts

Representations of the sky, stars or cosmos in visual form date back to the Stone Age 
and are familiar throughout the ancient world. They may be symbolic, as in Egyptian 
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astronomical‐ceilings, or take on human form, as in Roman images of planetary deities. 
Later they might be decorative, as in Renaissance star maps, or attempt accuracy, as in 
modern star maps, or be entirely abstract, as in twentieth century surrealism. The Sun and 
Moon make regular appearances in western painting, as one would expect. The cosmo-
logical statements, though, are often simple. Often the Sun and Moon are poetic additions, 
symbolising time or heaven in medieval and Renaissance art, casting light or embody-
ing the power of nature, and even serve as political satire in the nineteenth century [54]. 
Cosmological changes encouraged the new spirit: the philosopher Berlin [55] argued that 
the astronomical revolution’s abandonment of the old crystalline planetary spheres in 
favour of a universe without boundaries encouraged the emergence of the chaos and 
adventurism of Romantic art. Painting began the shift towards the abstract with the 
extraordinary work of Joseph Turner, who drew on both esoteric wisdom and the latest 
science in his portrayal of light [56, 57]. Perhaps the most famous example of nineteenth 
century astronomical art is van Gogh’s 1889 masterpiece ‘The Starry Night’, a painting 
partly inspired by the pre‐dawn rising of Venus, but easily interpreted as representing the 
swirling chaos of van Gogh’s inner world.

The relationship between modern art movements and science is complicated by many artists’ 
multiple affiliations. For example, many notable early twentieth century painters were followers 
of Theosophy, a spiritual teaching highly indebted to Plato, Renaissance alchemy and Freudian 
psychoanalysis, all of which could deal with unseen realities and the interdependence of all things 
in the cosmos. It is therefore not easy to distinguish scientific influences on twentieth art from mys-
tical or magic ones and it is up to art historians to interpret [58]. However, it is clear that the new 
physics encouraged the move towards radical, abstract forms of expression. Heisenberg’s uncer-
tainty principle appears to have supported the playful, apparently chaotic, practices of Dada, in 
which nothing is quite as it seems. When Marcel Duchamp (1887–1968) displayed a urinal in 1917 
he was making a radical statement that, if art is not what one imagines it is, neither is anything else.

André Breton (1896–1966), the poet and author of the Surrealist Manifesto, singled out 
Einstein (along with Freud) as significant in 1922. J.W. Dunne’s adaptation of Einstein to pre-
cognition and psychology was popular with the surrealists, as it as with Priestley. That the 
observer stands at the centre of time and space, as popular conceptions of relativity and quan-
tum mechanics assume, underpins the playful juxtaposition of images and ideas, sense and 
nonsense, which runs through the entire history of modern abstract and conceptual art. When 
Joan Miro paints a picture such as ‘Dog barking at the Moon’ (1926), he is alluding to ideas 
that the Moon makes one mad— lunatic—as well as departing significantly from naturalism, 
but also raising a smile.

A separate strand of painting drew on mathematical conceptions of the universe, as did 
Duchamp’s earlier painting ‘Nude Descending a Staircase’ (1912), or Man Ray’s (1890–1976) 
geometrical models, such as ‘Polyèdres’ (1934–1936). The distinctive angular lines of Picasso’s 
painting were also decisively influenced by the idea of multi‐dimensional mathematics as 
explained by Miller [59]. By contrast, the whirling lines in Max Ernst’s ‘…sur le plan de la 
Physique’ (1943) evoke the spinning of atoms. And for Klee [60], writing in 1920, movement 
in painting was essential because everything in the universe is characterised by motion. 
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A separate strand of painting drew on mathematical conceptions of the universe, as did 
Duchamp’s earlier painting ‘Nude Descending a Staircase’ (1912), or Man Ray’s (1890–1976) 
geometrical models, such as ‘Polyèdres’ (1934–1936). The distinctive angular lines of Picasso’s 
painting were also decisively influenced by the idea of multi‐dimensional mathematics as 
explained by Miller [59]. By contrast, the whirling lines in Max Ernst’s ‘…sur le plan de la 
Physique’ (1943) evoke the spinning of atoms. And for Klee [60], writing in 1920, movement 
in painting was essential because everything in the universe is characterised by motion. 
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Perhaps the most famous portrayals of the new physics are Salvador Dali’s (1904–1989) paint-
ings of bent clocks as representations of distorted space‐time, as in ‘The Persistence of the 
Disintegration of Memory’ (1952).

8. Space flight

It is well understood that the photographs of the whole Earth taken by the Apollo astronauts 
encouraged concepts of the global village, a world devoid of racial divisions, religious schism 
and political boundaries [61, 62]. The first major use of the Apollo photographs was on the 
cover of the first Whole Earth Catalogue in 1968, placed there by the editor, political activist 
Stewart Brand. Subsequently, the photographs became an inspiration for the emerging envi-
ronmental movement.

Since 1968/1969 we have been able to look down on our sky from space. The euphoric conse-
quences of this experience, still enjoyed by a few hundred people, was named the ‘Overview 
Effect’ by Frank White in 1987 [63]. Interviewed on BBC Radio 4’s iPM programme on 25 May 
2013, the astronaut Geoff Hoffman described his own experience of the effect [64]. He recalled 
the strange sensation of looking down at the Earth, watching the terrestrial sky from above 
instead of from below, witnessing the flash of lightning storms and streaks of light as meteors 
plunged into the atmosphere. He saw the world as one, drawing salutary ecological lessons 
from the visible deforestation of tropical areas. Inspired by the ethereal nature of the Earth’s 
halo, Hoffman hesitated to use the word ‘spiritual’, put to him by his interviewer in a leading 
question, but was happy to describe the condition he experienced on his mission as being a 
‘state of grace’, words which he said had been suggested to him by a Jesuit priest. Shamans, 
Pharaohs and Platonic souls may have seen the Earth in their imaginations, but astronauts 
experience it physically.

The ‘Overview Effect’ has been institutionalised in the Overview Institute, whose purpose is to 
utilise the Effect for the common good. The Institute’s apocalyptic and utopian agenda draws 
a direct connection between the experience of space travel and the need to save the Earth: ‘We 
live at a critical moment in human history. The challenges of climate change, food, water and 
energy shortages as well as the increasing disparity between the developed and developing 
nations are testing our will to unite, while differences in religions, cultures, and politics con-
tinue to keep us apart. The creation of a ‘global village’ through satellite TV and the Internet is 
still struggling to connect the world into one community. At this critical moment, our greatest 
need is for a global vision of planetary unity and purpose for humanity as a whole’ [65]. In this 
sense, the institute completes the earlier visions of Virginia Woolf and Stewart Brand.

9. Conclusion

Modern scientific cosmology needs to be valued not just for what it tells us about the universe, 
but for how what it tells us informs the ways that people think and behave in wider culture. A 
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number of themes emerge, including the vastness of space as a metaphor for loneliness and inse-
curity, and the new physics as a source of freedom and adventure. Scientific cosmology’s wider 
significance needs to be more widely acknowledged, for modern society still benefits from ‘com-
plex subsystems of cosmic exchange’ between scientists —cosmologists—and the general public.
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Abstract

This chapter aims at reviewing how modeling cold dark matter as weakly interacting
massive particles (WIMPs) gets increasingly constrained as models have to face strin-
gent cosmological and phenomenological experimental results as well as internal theo-
retical requirements like those coming from a renormalization-group analysis. The
review is based on the work done on a two-singlet extension of the Standard Model of
elementary particles. We conclude that the model stays viable in physically meaningful
regions that soon will be probed by direct-detection experiments.

PACS numbers: 95.35.þd; 98.80.�k; 12.15.�y; 11.30.Qc

Keywords: cold dark matter, light WIMP, extension of Standard Model, rare decays,
RGE

1. Introduction

Dark matter accounts for about 26.5% of the total mass-energy density of the Universe [1], but
we still do not know what it is. It is called dark because it is not accounted by the visible
matter, the conventional baryons and leptons, which take about 4.9% of the total mass-energy
density [1]. As it clearly interacts through gravity, some argue that it could still be baryonic, in
the form of massive astrophysical compact halo objects (MACHOs) which emit dim or no
light [2] or some sort of huge gravitational objects like galaxy-sized black holes. Indeed, such
high concentrations of matter would bend passing light, the so-called gravitational lensing
phenomenon, including microlensing, in ways we can detect. But the amount of dark matter
we know of would produce gravitational lensing with a significantly higher number of occur-
rences than what observation accounts for.

Neutrinos have long been thought of composing the dark matter around us. However, Stan-
dard Model neutrinos are light, and so too fast-moving (hot) to compose the (cold) dark matter

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



structures we see. But sterile neutrinos, non-Standard Model particles, can be heavier, and so
could be dark matter candidates. This possibility has been reignited with the recent detection
of an X-ray emission line at an energy of 3:55 keV coming from galaxy clusters, the Androm-
eda galaxy, the Galactic Center and the Draco dwarf spheroidal galaxy. This line is consistent
with the decay of a 7:1 keV sterile neutrino [3].

In fact, there is by now quasi-consensus that dark matter ought to be understood outside the
realm of conventional matter. One other scenario is that of (pseudo)scalar particles of tiny mass
� 10�22 eV, the so-called ultralight axions that could account for the dark matter content of the
Universe. This is supported by high-resolution cosmological simulations [4]. Axions originated
in quantum chromodynamics, the theory of quarks and gluons, in relation to the axial anomaly
in this theory and the strong Charge Conjugation Parity Symmetry Violation (CP violation)
problem. But like anything else related to dark matter, they elude detection. The Axion Dark
Matter Experiment (ADMX) may bring in answers in the near future [5].

But maybe the most popular candidate for dark matter is an electrically neutral and colorless
weakly interactingmassive particle (WIMP). Such a particle originated in supersymmetric (SUSY)
extensionsof theStandardModel. Themost obvious sucha candidate is theneutralino, a neutralR-
odd supersymmetric particle. Indeed, neutralinos are only produced or destroyed in pairs, thus
constituting the lightest SUSYparticles.However, alas, as rich, attractive andbeautiful as SUSYcan
be, supersymmetric particles continue to elude detection at the Large Hadron Collider (LHC), at
least in Run 1 experiments with a center-of-mass energy

ffiffi
s

p ¼ 8 TeV [6]. Run 2 experiments withffiffi
s

p ¼ 13 TeV are currently under way, targeting a final luminosity of about 100 fb�1, and so are
tested inmore involved and less stringent formulations of supersymmetry [7].

It must be stressed that until now, we have not detected dark matter, at least not in a conclusive
manner. Indeed, we know dark matter is there only because of its gravitational interactions,
and this is why and how we believe it contributes about a quarter of the mass energy of the
known Universe. But we still do not know whether dark matter really interacts with ordinary
matter. We believe it does, even if very weakly. We believe these interactions can yield signals
with enough strength so that we can detect dark matter or produce it in collisions of Standard
Model particles [8].

We must also understand that a detection process relies primarily on a theory or a model. A
theory like supersymmetry, which originated in the realm of elementary particle physics, is
devised as an extension to the Standard Model that is based on a yet-to-be-detected symmetry
between fermionic and bosonic states [9]. Its DM connection came only later. In fact, in the
rather long period between the Higgs mechanism proposal [10] and the detection of the Higgs
particle [11], various extensions of the Standard Model were proposed in order to alleviate
some of its shortcomings, the so-called “Beyond the Standard Model” (BSM) Physics [12]. A
number of these BSM models bear in them extra fields, meaning extra particles with specific
properties. Until today, such particles have never been detected. With time and change in
focus, the most stable of these hypothetical particles have then been proposed as candidates
for dark matter, many in the form of WIMPs. The advantage of such a paradigm is clear: the
calculational techniques that built strength in the realm of particle physics were ready at the
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service of dark matter search with little extra effort in development. But the experimental
framework was also ready. Such a state of affairs could partly explain the popularity of WIMP
physics, compared to other possible scenarios for dark matter.

Accordingly, many experiments have been devised specifically to detect dark matter. Each, of
course, must be based on a specific scheme that is based on a specific scenario. There are
experiments that try to detect dark matter directly, through missing energy momentum after
a WIMP collides directly with an ordinary nucleus. The low-background DAMA (NaI) and
then DAMA/LIBRA (NaI[Ti]) experiments at Gran Sasso in Italy [13] add a twist to this by
trying to detect dark matter in the galactic halo via its suggested model-independent flux
annual modulation [14]. The CoGeNT experiment [15] in Soudan (Minnesota, USA) also tries
to detect this annual modulation, but in the region where the WIMP mass is ≲10 GeV. The
CDMS I (Stanford, USA) [16], then CDMS II (Soudan, USA) [17], and now the superCDMS
(Soudan, USA, then SNOLAB, Sudbury, Canada) [18] perform direct detection, measuring
ionization and phonon signals resulting from a WIMP-nucleus collision, sensitive in the low-
mass region. The XENON10 [19], then XENON100 [20], then the coming XENON1t [21], all in
Gran Sasso, Italy, use liquid Xenon as a detecting medium for WIMP-nucleon and WIMP-
electron collisions. There is also the Large Underground Xenon (LUX) experiment (South
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tive, and could not be accounted here due to space constraints.
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excess of gamma rays in the galactic center that cannot be explained by conventional sources
and which is compatible with the presence of dark matter [27]. Fermi-LAT uses what we call
indirect methods, namely, collecting gamma-ray signals and removing from these those emit-
ted by all possible known sources. Another space-borne experiment is the Alpha Magnetic
Spectrometer (AMS) experiment at the international space station [28], collecting and analyz-
ing signals from cosmic rays. In addition, the Payload for Antimatter Matter Exploration and
Light-nuclei Astrophysics (PAMELA) experiment [29] is a particle identifier that uses a perma-
nent magnet spectrometer for space cosmic-ray direct measurements.

A third prong in the dark matter search enterprise is to produce it in particle colliders like the
LHC [8]. There is an added difficulty here, which is that we do not know in which mass range
we should look into. It could well be that the present center-of-mass energy that is available, 13
TeV, may not be sufficient. Nevertheless, the search for dark matter at the LHC is intense. One
reason is that, experimentally, this is feasible now: small amounts of missing energy and
transverse momentum can be detected now. Note that the present detectors are not built to
detect dark matter directly. Rather, the latter would appear as a missing energy or missing
momentum. For example, we now look at events in which a Z boson and a missing transverse
momentum are produced in a proton-proton collision at

ffiffi
s

p ¼ 13 TeV. The Z boson decays
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into two charged leptons, a recognizable signature, and a possible missing transverse momen-
tum, which would indicate the production of dark matter in the process. A similar search,
conducted previously by the CMS Collaboration and based on data collected with

ffiffi
s

p ¼ 8 TeV
(Run 1), found no evidence of new physics and hence set limits on dark matter production. A
recent search performed by the ATLAS Collaboration with

ffiffi
s

p ¼ 13 TeV with an integrated

luminosity of 3:2 fb�1 also reported no evidence [30].

What should be clear by now is that interpreting signals as dark matter necessitates modeling.
On the other hand, any model needs experimental results to restrict the range of its free
parameters, to fine-tune these parameters, and, ultimately, in many cases, to be eliminated.
The aim of this chapter is to shed light on the main steps a phenomenologist takes when
building a model for dark matter, then testing the model against experimental results. It is an
attempt to look into the modeling process itself, from the “cradle to the grave,” so to speak.
The discussion is based on a model proposed in Ref. [31] for cold dark matter, exposed to
particle-physics phenomenology in [32], and further restricted by internal consistency in Ref.
[33]. We will see how gradually the parameters of the model are constrained, and how the
region of viability is reached. To carry out the discussion smoothly, we have chosen a model
which is simple enough to avoid confusion created by the often involved details of the
calculations and could-be-complexity of the model itself, but at the same time rich enough to
be able to accommodate a vast range of experimental results. The material presented in this
chapter is drawn from the works just cited.

This chapter is organized as follows. After this Introduction, Section 2 motivates and then pre-
sents the model based on WIMP physics, namely, a two-singlet extension of the Standard Model
of elementary particles. We will try to avoid lengthy arguments and focus on the essentials.
Section 3 shows how the measured amount of dark matter relic-density constrains the value of
the dark matter annihilation cross-section, a constraint any model has to satisfy. We then discuss
how the two-singlet extension fits into this, and add to it a perturbativity ingredient. Section 4
takes the two-singlet model into the arena of particle phenomenology and sees how it copes with
rare meson decays. Section 5 goes back to the fundamentals and runs a renormalization-group
analysis to inquire into the sustainability of the model. Section 6 puts all these constraints together
and determines the regions of viability of the model. Section 7 is left for concluding remarks.

2. A model for dark matter: motivation and parametrization

As mentioned in the Introduction, the most popular candidate for dark matter is an electrically
neutral colorless weakly interacting massive particle (WIMP), and the neutralino, the lightest
supersymmetric particle, is a robust fit for this role. However, as explained in Ref. [31] and
references therein, it is hard to argue in favor of a neutralino when it comes to light cold dark
matter, say, a WIMP mass of up to 10 GeV. In addition, up to now, we have not detected
supersymmetric signatures at the LHC [34].

Therefore, with no prior hints as to what the internal structure of the WIMP might be, one
adopts a bottom-up approach, in which one extends the Standard Model by adding to it the
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simplest of fields, one real spinless scalar, which will be the WIMP. This field must be a
Standard Model gauge singlet so that we avoid any “direct contact” with any of the Standard
Model particles. It is allowed to interact with visible particles only via the Higgs field. It is
made stable against annihilation by enforcing upon it the simplest of symmetries, a discrete Z2

symmetry that does not break spontaneously. This construction is called the minimal extension
to the Standard Model. In view of its cosmological implication, the minimal extension has first
been proposed in Ref. [35] and has been extensively studied and explored in Ref. [36]. How-
ever, this model is shown in Ref. [37] to be inadequate if we want the WIMP to be light.

In the logic of this bottom-up approach, adding another real scalar seems the natural step
forward. This field will also be endowed with a Z2 symmetry, but this one we will break
spontaneously, and the reason is to open new channels for dark matter annihilation, which
implies an increase in the corresponding annihilation cross-section, which in turn would allow
smaller WIMP masses, something we want to achieve. Needless to say that this auxiliary field
must also be a Standard Model gauge singlet.

Therefore, we extend the Standard Model by adding two real, spinless and Z2-symmetric fields:
the dark matter field S0 for which the Z2 symmetry is unbroken and an auxiliary field for which
it is spontaneously broken. Both fields are StandardModel gauge singlets and hence can interact
with “visible” particles only via the Higgs doublet, taken in the unitary gauge. We must also
assume all processes calculable in perturbation theory. The details of the spontaneous breaking
of the electroweak gauge symmetry and the additional auxiliary Z2 symmetry are left aside [31].

The potential function that involves the physical scalar Higgs field h, the dark matter field S0,
and the physical auxiliary scalar field S1 is as follows:

U ¼ 1
2
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The quantities m0, mh, and m1 are the masses of the corresponding fields S0, h, and S1,
respectively, and all the other parameters are real coupling constants. Also, the part of the
Standard Model Lagrangian that is relevant to Dark matter annihilation is given in terms of the
physical fields h and S1 by the following potential function:
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The coupling constants in the above expression are given by the following relations, in which
the quantities mf , mw, and mz are the masses of the fermion f , the W, and the Z gauge bosons,
respectively:

λhf ¼ �mf

v
cosθ; λ1f ¼

mf

v
sinθ;
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ð3Þ

The angle θ is the mixing angle between the fields h and S1 [31]. The quantities v and v1, both
positive, are the vacuum expectation values of the Higgs and auxiliary fields, respectively.

This model has nine free parameters to start with, three mass parameters and six coupling
constants [31]. As already mentioned, perturbativity is assumed, which means all the original
coupling constants are small. The dark matter self-coupling constant η0 in Eq. (1) will not enter
the lowest-order calculations we will consider, and so this parameter stays free for the time
being and we are left with eight parameters. The spontaneous breaking of the electroweak and
Z2 symmetries for the Higgs and auxiliary fields, respectively, introduces the two vacuum
expectation values v and v1. The value of v is fixed experimentally to be 246 GeV [38] and for
the present discussion, we fix the value of v1 at the order of the electroweak scale, say, 100 GeV.
In addition, the Higgs mass is now known [11], mh ¼ 125 GeV. Hence, five free parameters
remain. Three of these are chosen to be the two physical masses m0 (dark matter) and m1 (S1
field), plus the mixing angle θ between S1 and h. The two last parameters we choose are the

two physical mutual coupling constants λ 4ð Þ
0 (dark matter—Higgs) and η 4ð Þ

01 (dark matter—S1
particle), see Eq. (1).

3. Constraints from cosmology and perturbativity

Any model of dark matter has to comply with astrophysical observations. Indeed, dark matter
is believed to have been produced in the early Universe. A most popular paradigm for this
production is the so-called “freeze-out scenario” by which dark matter, thought of as a set of
elementary particles, interacts with ordinary matter, weakly but with enough strength to
generate common thermal equilibrium at high temperature. However, as the cosmos is cooling
down, at some temperature Tf , the rate of expansion of the Universe becomes higher than the
rate of dark matter particle annihilation, which forces dark matter to decouple from ordinary
matter, and hence a “freeze-out”—Tf is thus called the freeze-out temperature. The DM relic
density ΩDM is essentially the one we measure today [1]:
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ΩDMh
2 ¼ 0:1199� 0:0022 ≈ 0:12; ð4Þ

where h is Hubble constant in units of 100 km� s�1 �Mpc�1.

In a model where dark matter is seen as WIMPs that can annihilate into ordinary elementary
particles, the relic density ΩDM can be related to the annihilation DM cross-section σann.
Indeed, in the framework of the standard cosmological model, one can derive the following
relation [39]:

ΩDMh
2≃

1:07� 109xfffiffiffiffiffig∗p mPl〈σannv〉 GeV
; xf ≃ ln

0:0038mPlm0〈σannv〉ffiffiffiffiffiffiffiffiffig∗xf
p : ð5Þ

The quantity mPl ¼ 1:22� 1019GeV is the Planck mass, m0 is the dark matter mass, xf ¼ m0=Tf ,

and g∗ is the number of relativistic degrees of freedom with a mass less than Tf . The quantity
〈σannv〉 is the thermally averaged annihilation cross-section of a pair of two dark matter
particles multiplied by their relative speed in their center-of-mass reference frame. Solving (4)
with the current value (5) for ΩDM with xf between 19.2 and 21.6 [40], we obtain the following
constraint on the annihilation cross-section:

〈σannv〉≃ 2� 10�9GeV: ð6Þ

This is one major constraint any WIMP model like the one we discuss here has to satisfy.
Indeed, the quantity 〈σannv〉 is calculable in perturbation theory, and so, the implementation
of (6) will induce an admittedly complicated but important relation between the free parame-
ters of the model, hence reducing their space of freedom, reducing their number by one. Also,
the constraint induced by (6) can be used to examine aspects of the theory like perturbativity.
To implement perturbativity in the present two-singlet model, we use (6) to obtain the mutual

coupling constant η 4ð Þ
01 (coupling between the DM field S0 and auxiliary field S1) in terms of the

dark matter mass m0 for given values of λ 4ð Þ
0 (coupling between S0 and Higgs) and study its

behavior to tell which dark matter mass regions are consistent with perturbativity. It should be

mentioned that once the two mutual coupling constants λ 4ð Þ
0 and η 4ð Þ

01 are small, all the other
physical coupling constants will be small.

The quantity 〈σannv〉 is calculated in perturbation theory using all possible annihilation chan-
nels the model allows for [31]. As the model has many parameters, the behavior of the mutual

coupling constant η 4ð Þ
01 is bound to be rich. Sampling is therefore necessary. In this review, we

briefly comment on the behavior of η 4ð Þ
01 for two sets of the parameters (θ, m1,λ

ð4Þ
0 ). A more

substantial discussion can be found in Ref. [31].

The first set of parameters is a small mixing angle θ¼ 10o, a weak mutual S0-Higgs coupling

constant λð4Þ
0 ¼ 0:01, and a S1-massm1 ¼ 10 GeV. The corresponding behavior of ηð4Þ01 versusm0

is shown in Figure 1. The range of m0 displayed is from 0:1 to 200 GeV. In this regime, the first
feature we see is that the relic-density constraint on dark matter annihilation forbids WIMP
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masses m0≲1:3 GeV. Furthermore, just about m0≃1:3 GeV, the c-quark threshold, the S0 � S1
mutual coupling constant ηð4Þ01 starts at about 0:8, a value, while perturbative, that is roughly

80-fold larger than the mutual S0 Higgs coupling constant λð4Þ
0 . Then as the DMmass increases,

ηð4Þ01 decreases, steeply first, more slowly as we cross the τ mass toward the b mass. Just before

m1=2, the coupling ηð4Þ01 hops onto another solution branch that is just emerging from negative
territory, gets back to the first one at precisely m1=2 as this latter carries now smaller values,
and then jumps up again onto the second branch as the first crosses the m0 axis down. It goes
up this branch with a moderate slope until m0 becomes equal to m1, a value at which the S1
annihilation channel opens. Just beyond m1, there is a sudden fall to a value ηð4Þ01 ≃0:0046 that is

about half the value of λð4Þ
0 , and ηð4Þ01 stays flat till m0≃45 GeV where it starts increasing, sharply

after 60 GeV. In the mass interval m0 ≃ 66–79 GeV, there is a “desert” with no positive real
solutions to the relic-density constraint, hence no viable dark matter candidate exists. Beyond

m0≃79 GeV, the mutual coupling constant ηð4Þ01 keeps increasing monotonously, with a small
notch at the W mass and a less noticeable one at the Z mass. As it increases, its values remain
perturbative.

The second set of parameters we feature is still a small Higgs S1 mixing angle θ¼ 10o, an

increased S0-Higgs mutual coupling constant λð4Þ
0 ¼ 0:2, and a moderate S1 massm1 ¼ 20 GeV.

The behavior of the S0 � S1 mutual coupling constant ηð4Þ01 versus the DM mass m0 is displayed

in Figure 2. Here too, no viable DM masses exist below roughly 1:4 GeV, at which value ηð4Þ01

starts at 1:95. It decreases with a sharp change of slope at the b-quark threshold, then makes a
sudden dive at about 5 GeV, a change of branch atm1=2 down till about 12 GeV where it jumps
up back onto the previous branch just before going to cross into negative territory. It drops

Figure 1. ηð4Þ01 versus m1 for very light S1, small mixing, and very small WIMP-Higgs coupling.
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sharply at m0 ¼ m1 and then increases slowly until m0 ≃ 43:3 GeV. Then, no viable WIMP

masses exist, a desert. As we see, for this set of parameters (θ,λð4Þ
0 , m1), the model constrains

the dark matter mass inside the interval 1:6 GeV≲m0 ≲ 43:3 GeV, with perturbative coupling
constants.

With the same mixing angle θ ¼ 10o and mutual coupling constant λð4Þ
0 ¼ 0:2, larger masses m1

yield roughly the same behavior, but with values of ηð4Þ01 that could be nonperturbative. For

example, when m1 ¼ 60 GeV, the mutual coupling ηð4Þ01 starts very high (≃85) at m0 ≃ 1:5 GeV,
and then decreases rapidly. There is a usual change of branches and a desert starting at about
49 GeV, a behavior that is peculiar in a way because the desert starts at a mass m0 < m1, that is,
before the opening of the S1 annihilation channel. In other words, the dark matter is annihilating
into the light fermions only and the model is perturbatively viable in the range of 20–49 GeV.

4. Constraints from direct detection

Perhaps the most known constraints on a WIMP model are those coming from direct-detection
experiments like the many we have cited in the introductory section. In such experiments, the
signal sought for would typically come from the elastic scattering of a WIMP off a nonrelativ-
istic nucleon target. However, as mentioned in the Introduction, until now, none of these
direct-detection experiments have yielded an unambiguous dark matter signal. Rather, with
increasing precision from one generation to the next, these experiments put increasingly
stringent exclusion bounds on the dark matter-nucleon elastic-scattering total cross-section
σdet in terms of the dark matter mass m0, and because of these constraints, many models can
get excluded.

Therefore, a theoretical dark matter model like the two-singlet extension we discuss here has to
satisfy these bounds to remain viable. For this purpose, we calculate σdet as a function of m0 for

different values of the parameters (θ,λð4Þ
0 , m1Þ and compare its behavior against the experi-

mental bounds. The calculation is carried out with sufficient details in Ref. [31], and the total
cross-section for non-relativistic S0-nucleon elastic scattering is given by

Figure 2. ηð4Þ01 versus m0 for small mixing, moderate m1, and WIMP-Higgs coupling.
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σdet ¼
m2

N mN � 7
9
mB

� �2

4π mN þm0ð Þ2v2
λ 3ð Þ
0 cosθ
m2

h
� η 3ð Þ

01 sinθ
m2

1

" #2
: ð7Þ

In this relation, mN is the nucleon mass and mB is the baryon mass in the chiral limit. The

mutual coupling constants λð3Þ
0 and ηð3Þ01 are defined in Eq. (1). The relic-density constraint on

the dark matter annihilation cross-section (6) has to be imposed throughout. In addition, we
require now that the coupling constants be perturbative, and we do this by imposing the

additional requirement 0 ≤ ηð4Þ01 ≤ 1.

Generically, as m0 increases, the detection cross-section σdet starts from high values, slopes
down to minima that depend on the parameters, and then picks up moderately. There are
features and action at the usual mass thresholds, with varying sizes and shapes. Regions
coming from the relic-density constraint and new ones originating from the additional
perturbativity requirement are excluded.

For the purpose of illustration, we choose three indicative sets of values for the parameters
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coupling λð4Þ
0 ¼ 0:01, and an S1 mass m1 ¼ 20 GeV. The behavior of σdet versus m0 is shown in

Figure 3. There, we see that for the two mass intervals 20–65 GeV and 75–100 GeV, plus an
almost singled-out dip at m0 ¼ m1=2, the elastic scattering cross-section is below the sensitivity
of SuperCDMS. However, XENON1T should probe all these masses, except m0 ≃ 58 and
85 GeV.

Increasing m1 has the effect of closing possibilities for very light dark matter and thinning the
intervals as it drives the predicted masses to larger values. Indeed, in Figure 4, where
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m1 ¼ 40 GeV, in addition to the dip at m1=2 that crosses SuperCDMS but not XENON1T, we
see acceptable masses in the ranges of 40–65 GeV and 78 GeV up. The intervals narrow as we
descend, surviving XENON1T only as spiked dips at 62 GeV and around 95 GeV.

On the other hand, a larger mutual coupling constant λð4Þ
0 has the general effect of squeezing the

acceptable intervals ofm0 by pushing the values of σdet up, and it may even happen that at some

point, the model has no predictability. This case is shown in Figure 5, where θ¼ 10o,λð4Þ
0 ¼ 0:4,

andm1 ¼ 60 GeV. In this example, the effects of increasing the values of both λð4Þ
0 andm1. As we

see, the model cannot even escape Cryogenic Dark Matter Search II (CDMSII).

Figure 4. Elastic N � S0 scattering cross-section as a function of m0 for moderate m1, small mixing, and small WIMP-
Higgs coupling.

Figure 5. Elastic cross-section σdet versus m0 for heavy S1, small mixing, and relatively large WIMP-Higgs coupling.
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5. Constraints from particle phenomenology

If a dark matter model based on WIMP physics is not killed already by the constraints coming
from cosmology, perturbativity, and direct detection, it has to undergo the tests of particle
phenomenology. To see how this works, we discuss here the constraints on our two-singlet
model that come from a small selection of low-energy processes, namely, the rare decays of ϒ
mesons. The forthcoming discussion is based on work done in Ref. [32]. There, the interested
reader will find a fuller account of this study, together with relation to Higgs phenomenology.
Note that the dark matter relic-density constraint in Eq. (6) and the perturbativity requirement

0 < η 4ð Þ
01 < 1 are implemented systematically. Also, as in Ref. [32], we will restrict the discussion

to light cold dark matter.

We therefore look at the constraints that come from the decay of the meson ϒ in the state nS
(n ¼ 1; 3) into one photon γ and one particle S1. For m1≲8 GeV, the branching ratio for this
process is given by the relation:

Br ϒnS ! γþ S1ð Þ ¼ GFm2
b sin

2θffiffiffi
2

p
πα

xn 1� 4αs

3π
f ðxnÞ

� �
BrðμÞ Θ mϒnS �m1ð Þ: ð8Þ

In the above expression, xn � 1�m2
1=m

2
ϒns

� �
with the mass of ϒ1ð3ÞS given by mϒ1ð3ÞS ¼

9:46ð10:355Þ GeV, the branching ratio BrðμÞ � Br ϒ1ð3ÞS ! μþμ�� � ¼ 2:48ð2:18Þ � 10�2 [41], α is
the QCD coupling constant, αs ¼ 0:184 the QCD coupling constant at the scale mϒnS , the
quantity GF is the Fermi coupling constant, and mb is the b-quark mass [38]. The function f ðxÞ
incorporates the effect of QCD radiative corrections given in [42] and the step function is
denoted by Θ xð Þ. However, a rough estimate of the lifetime of S1 indicates that the latter is
likely to decay inside a typical particle detector, which means we should take into account its
most dominant decay products. We first have a process by which S1 decays into a pair of
pions, with the following decay rate:

Γ S1 ! ππð Þ≃ GFm1

4
ffiffiffi
2

p
π
sin 2θ

m2
1

27
1þ 11m2

π

2m2
1

� �2
"

� 1� 4m2
π

m2
1

� �1
2

Θ m1 � 2mπð Þ 2mK �m1ð Þ
#

þ 3 M2
u þM2

d

� �
1� 4m2

π

m2
1

� �3
2

Θ m1 � 2mKð Þ�:

ð9Þ

Here, mπ is the pion mass and mK is the kaon mass. Also, chiral perturbation theory is used
below the kaon pair production threshold [43, 44], and the spectator-quark model above up to
roughly 3 GeV, with the dressed u and d quark massesMu ¼ Md ≃ 0:05 GeV. Note that this rate
includes all pions, charged and neutral. Above the 2mK threshold, there is the production of
both a pair of kaons and η particles. The decay rate for K production is
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Γ S1 ! KKð Þ≃ 9
13

3GFM2
sm1

4
ffiffiffi
2

p
π

sin 2θ 1� 4m2
K

m2
1

� �3
2

Θ m1 � 2mKð Þ: ð10Þ

In the above rate, Ms ≃ 0:45 GeV is the s-quark mass in the spectator-quark model [45, 46]. For
η production, replace mK by mη and 9=13 by 4=13.

The particle S1 also decays into c and b quarks (mainly c). Including the radiative QCD
corrections, the corresponding decay rates are given by

ΓðS1 ! qqÞ≃ 3GFmq2m1

4
ffiffiffi
2

p
π

sin 2θ
1� 4m2

q

m2
h

 !3
2

1þ 5:67
αs

π

� �
Θ m1 � 2mq
� �

: ð11Þ

The dressed quark mass mq � mqðm1Þ and the running strong coupling constant αs � αsðm1Þ
are defined at the energy scale m1 [47]. There is also a decay into a pair of gluons, with the rate

Γ S1 ! ggð Þ≃ GFm3
1 sin

2θ

12
ffiffiffi
2

p
π

α0
s

π

� �2

6� 2 1� 4m2
π

m2
1

� �3
2

� 1� 4m2
K

m2
1

� �3
2

" #
Θ m1 � 2mKð Þ: ð12Þ

Here, α0
s ¼ 0:47 is the QCD coupling constant at the spectator-quark model scale, between

roughly 1 and 3 GeV.

We then have the decay of S1 into leptons, the corresponding rate given by

Γ S1 ! ℓ
þ
ℓ
�� � ¼ GFm2

ℓ
m1

4
ffiffiffi
2

p
π

sin 2θ 1� 4m2
ℓ

m2
1

� �3
2

Θ m1 � 2mℓð Þ, ð13Þ

where mℓ is the lepton mass. Finally, S1 can decay into a pair of dark matter particles, with a
decay rate:

Γ S1 ! S0S0ð Þ ¼
ηð3Þ01

� �2

32πm1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

0

m2
1

s
Θ m1 � 2m0ð Þ: ð14Þ

The coupling constant ηð3Þ01 is given in Eq. (1). The branching ratio for ϒnS decaying via S1 into a
photon plus X, where X represents any kinematically allowed final state, will be

Br ϒnS ! γþ Xð Þ ¼ Br ϒnS ! γþ S1ð Þ � Br S1 ! Xð Þ: ð15Þ

In particular, X � S0S0 corresponds to a decay into invisible particles.

The best available experimental upper bounds on 1S-state branching ratios are (i)
Br ϒ1S ! γþ ττð Þ < 5� 10�5 for 3:5 GeV < m1 < 9:2 GeV [48]; (ii) Br ϒ1S ! γþ πþπ�ð Þ
< 6:3� 10�5 for 1 GeV < m1 [49]; (iii) Br ϒ1S ! γþ KþK�ð Þ < 1:14� 10�5 for 2 GeV < m1 <

3 GeV [50]. Figure 6 displays the corresponding branching ratios of ϒ1S decays via S1 as
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functions of m1, together with these upper bounds. Also, the best available experimental upper
bounds onϒ3S branching ratios are: (i) Br ϒ3S ! γþ μμ

� �
< 3� 10�6 for 1 GeV < m1 < 10 GeV;

(ii) Br ϒ3S ! γþ invisibleð Þ < 3� 10�6 for 1 GeV < m1 < 7:8 GeV [51]. Typical corresponding
branching ratios are shown in Figure 7.

If we perform a systematic scan of the parameter space, we find that the main effect of the

Higgs-dark matter coupling constant λð4Þ
0 and the dark matter mass m0 is to exclude, via the

relic-density and perturbativity constraints, regions of applicability of the model. This is
shown in Figures 6 and 7, where the region m1 ≲ 1:4 GeV is excluded. Otherwise, these two

Figure 6. Typical branching ratios of ϒ1S decaying into τ’s, charged pions, and charged kaons as functions of m1. The
corresponding experimental upper bounds are shown.

Figure 7. Typical branching ratios of ϒ3S decaying into muons and dark matter as functions of m1. The corresponding
experimental upper bounds are shown.
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parameters have little effect on the shapes of the branching ratios themselves. The onset of the
S0S0 channel for m1 ≥ 2m0 abates sharply the other channels, and this one becomes dominant by
far. The effect of the mixing angle θ is to enhance all branching ratios as it increases, due to the
factor sin 2θ. The dark matter decay channel reaches the invisible upper bound already for
θ≃ 15o, for fairly small m0, say, 0.5 GeV. The other channels find it hard to get to their respective
experimental upper bounds, even for large values of θ. There are further constraints that come
from particle phenomenology tests. The interested reader may refer to [32] for further details.

6. Internal constraints

Further constraints on a field-theory dark matter model come from internal consistencies.
Indeed, one must ask how high in the energy scale the model is computationally reliable. To
answer this question, one investigates the running of the coupling constants as a function of
the scale Λ via the renormalization-group equations (RGE). One-loop calculations are amply
sufficient. A detailed study of the RGE for our two-singlet model was carried out in Ref. [33].
The brief subsequent discussion is drawn from there, and the reader is referred to that article
for more details.

In an RGE study, there are two standard issues to monitor, namely, the perturbativity of the
scalar coupling constants and the vacuum stability of the theory. Imposing these two latter as
conditions on the model will indicate at what scale Λm it is valid. As mentioned in the
Introduction, it has been anticipated that new physics, such as supersymmetry would appear
at the LHC at the scale Λ � 1 TeV. Present results from ATLAS and CMS indicate no such
signs yet. One consequence of this is that the cutoff scale Λm may be higher. In this model, the
RGE study suggests that it can be � 40 TeV. As ever, the DM relic-density constraint is
systematically imposed, together with the somewhat less stringent perturbativity restriction

0 ≤ ηð4Þ01 ≤
ffiffiffiffiffiffi
4π

p
.

Remember that the model is obtained by extending the Standard Model with two real, spinless,
and Z2-symmetric SM-gauge-singlet fields. The potential function of the scalar sector after spon-
taneous breaking of the gauge and one of the Z2 symmetries is given in Eq. (1). The potential
function before symmetry breaking is the one we need in this section. It is given in Eq. [31]:

U ¼ ~m2
0

2 S20 � μ2H†H � μ2
1

2
χ2
1

þ η0
24

S40 þ
λ
6

H†H
� �2 þ η1

24
χ4
1 þ

λ0

2
S20H

†H þ η01
4

S20χ
2
1 þ

λ1

2
H†Hχ2

1:

ð16Þ

The field S0 is still the WIMP with unbroken Z2 symmetry, and χ1 is the auxiliary field before
spontaneously breaking its Z2 symmetry. Both fields interact with the SM particles via the
Higgs doublet H. The masses ~m2

0, μ
2, and μ2

1 as well as all the coupling constants are real
positive numbers.1

1The mutual couplings can be negative as discussed below, see (21).
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A one-loop renormalization-group calculation yields the following β-functions for the above
scalar coupling constants [33]:

βη0 ¼
3

16π2 η20 þ η201 þ 4λ2
0

� �
;

βη1 ¼
3

16π2 η21 þ η201 þ 4λ2
1

� �
;

βλ ¼ 3
16π2

4
3
λ2 þ λ2

0 þ λ2
1 � 48λ4

t þ 8λλ2
t � 3λg2 � λg

0 2 þ 3
2
g2g

0 2 þ 9
4
g4

� �
;

βη01 ¼
1

16π2 4η201 þ η0η01 þ η1η01 þ 4λ0λ1
� �

;

βλ0
¼ 1

16π2 4λ2
0 þ λ0η0 þ 2λ0λþ η01λ1 þ 12λ0λ2

t �
9
2
λ0g2 � 3

2
λ0g

0 2
� �

;

βλ1
¼ 1

16π2 4λ2
1 þ λ1η1 þ 2λ1λþ η01λ0 þ 12λ1λ2

t �
9
2
λ1g2 � 3

2
λ1g

0 2
� �

:

ð17Þ

As usual, by definition βg � dg=dlnΛ, where Λ is the running mass scale, starting from

Λ0 ¼ 100 GeV. Note that the DM self-coupling constant η0 has so far been decoupled from
the other coupling constants, but not anymore in view of Eq. (17) now that the running is the
focus. However, its initial value η0 Λ0ð Þ is arbitrary and its β-function is always positive. This
means η0 Λð Þ will only increase as Λ increases, quickly if starting from a rather large initial
value, slowly if not. Therefore, without losing generality in the subsequent discussion, we fix

η0 Λ0ð Þ ¼ 1. Hence, here too we still effectively have four free parameters: λð4Þ
0 , θ, m0, and m1.

Furthermore, the constants g, g
0
, and gs are the SM and strong gauge couplings, known [52]

and given to one-loop order by the expression:

G Λð Þ ¼ G Λ0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2aG G2 Λ0ð Þ ln Λ

Λ0

� �s , ð18Þ

where aG ¼ �19
96π2 , 41

96π2 , �7
16π2 and G Λ0ð Þ ¼ 0:65, 0:36; 1:2 for G ¼ g, g0, gs, respectively. The cou-

pling constant λt is that between the Higgs field and the top quark. To one-loop order, it runs
according to Ref. [52] the following expression:

βλt
¼ λt

16π2 9λ2
t � 8g2s �

9
4
g2 � 17

12
g02

� �
, ð19Þ

with λt Λ0ð Þ ¼ mt Λ0ð Þ
v ¼ 0:7, where v is the Higgs vacuum expectation value and mt is the top

mass. Note that we are taking into consideration the fact that the top-quark contribution is
dominant over that of the other fermions of the Standard Model.

After the two spontaneous breakings of symmetry, we end up with the two vacuum expecta-
tion values: v ¼ 246GeV for the Higgs field h, and v1 for the auxiliary field S1. In this section,
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we take v1 ¼ 150GeV. Above v, the fields and parameters of the theory are those of (16). Below
v1, the fields and parameters are those of Eq. (1). We take the values of the physical parameters
at the mass scale Λ0 ¼ 100GeV. The initial conditions for the coupling constants in (16) in
terms of these physical free parameters are as follows:

η1 Λ0ð Þ ¼ 3
2v21

m2
1 þm2

h þ jm2
1 �m2

hj cos 2θð Þ þ v
2v1

sin 2θð Þ
� �� �

;

λ Λ0ð Þ ¼ 3
2v2

m2
1 þm2

h � jm2
1 �m2

hj cos 2θð Þ � v1
2v

sin 2θð Þ
� �h i

;

λ1 Λ0ð Þ ¼ sin 2θð Þ
2vv1

jm2
1 �m2

hj;

η01 Λ0ð Þ ¼ 1
cos 2θð Þ ηð4Þ01 cos 2θ� λð4Þ

0 sin 2θ
h i

;

λ0 Λ0ð Þ ¼ 1
cos 2θð Þ λð4Þ

0 cos 2θ� ηð4Þ01 sin 2θ
h i

:

ð20Þ

Note that, normally, as we go down the mass scale, we should seam quantities in steps: at v, v1,
and Λ0. However, the corrections to (20) are of one-loop order times ln v

v1
or ln v1Λ0

, small enough

for our present purposes to neglect. The perturbativity constraint we impose on all dimension-
less scalar coupling constants is G Λð Þ ≤ ffiffiffiffiffiffi

4π
p

. Also, vacuum stability means that G Λð Þ ≥ 0 for the
self-coupling constants η0,λ, and η1, and the conditions:

� 1
6

ffiffiffiffiffiffiffiffi
η0λ

q
≤λ0 ≤

ffiffiffiffiffiffi
4π

p
; � 1

6
ffiffiffiffiffiffiffiffiffi
η0η1

p
≤ η01 ≤

ffiffiffiffiffiffi
4π

p
; � 1

6

ffiffiffiffiffiffiffiffi
η1λ

p
≤λ1 ≤

ffiffiffiffiffiffi
4π

p
ð21Þ

for the mutual couplings λ0, η01, and λ1.

Figure 8 displays the behavior of the self-couplings under RGE for θ¼ 10o,λð4Þ
0 ¼ 0:01;m1 ¼

110 GeV, and m0 ¼ 55 GeV. The dramatic effect is on the Higgs self-coupling constant λ which
quickly gets into negative territory, at about 15 TeV, thus rendering the theoryunstable beyond this
mass scale. This is better displayed in Figure 9, where the RenormalizationGroup (RG) behavior of
λ is shownby itself. Such a negative slope forλ is expected, given thenegative contributions to βλ in
(17). The coupling constant η1 is dominant over the other couplings and controls perturbativity,
leaving its region much later, at about 1600TeV. This seems to be a somewhat general trend: the
non-Higgs SMparticles seem to flatten the runnings of the scalar couplings.

The runnings of the mutual coupling constants for the same set of parameters’ values are
displayed in Figure 10. They also get flattened by the other SM particles, but they stay positive.
They dwell well below the self-couplings. Increasing m0 and m1 will raise the mutual coupling
η01 and not the two others, higher than η1 in some regions.

Raising λð4Þ
0 will also make the self-couplings η1 and η0 run faster while affecting very little λ.

It will also make the mutual coupling η01 starts higher, and so demarked from λ0 and λ1.
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By contrast, the effect of θ is not very dramatic: the self-couplings are not much affected and
the mutuals only evolve differently, without any particular boosting of η01. Details and further
comments are found in [33].

Figure 9. The running of the Higgs self-coupling λ. It becomes negative at about 15 TeV for this set of parameter values.

Figure 8. Running of the self-couplings. η1 controls perturbativity and the Higgs coupling λ becomes negative quickly.
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7. All constraints together: viability regions

The above RGE analysis taught us two lessons: (i) The two couplings η1 and η01 control
perturbativity. (ii) The change of sign of λ controls vacuum stability. Equipped with these
indicators, we can try to systematically locate the regions in parameter space in which the
model is viable. We have by now a number of tools at our disposal. First, the DM relic-density
constraint (6), which has been and will continue to be applied throughout. We have the RGE

analysis of the previous section. We will require both η1 Λð Þ and η01 Λð Þ to be smaller than
ffiffiffiffiffiffi
4π

p
,

and λ Λð Þ to be positive. From the phenomenological implications we deduced in Section 5, we

will retain only two: the mixing angle θ and the physical self-coupling λð4Þ
0 are to be chosen

small. Last, we want the model to comply with the experimental direct-detection upper
bounds. The condition we impose is that σdet of Eq. (7) be within the XENON 100 upper

bounds [20]. We will vary λð4Þ
0 and θ and track the viability regions in the m0, m1ð Þ plane. The

relevant mass range for m0 and m1 is 1–160 GeV. This is because there are no reliable data to
discuss below the GeV and beyond 160 GeV takes us outside the perturbativity region.2

One important issue must be addressed before we proceed: How far do we want the model to
be perturbatively predictive and stable? The maximum value Λm for the mass scale Λ should
not be very high. One reason, more conceptual, is that we want to allow the model to be
intermediary between the current Standard Model and some possible higher structure at
higher energies. Another one, more practical, is that a too high Λm is too restrictive for the

Figure 10. Running of the mutual couplings. The inclusion of the other SM particles flattens the runnings.

2In practice, m0 is taken up to 200 GeV, but there are no additional features to report.
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parameters themselves. From the results of the RGE analysis [33], a reasonable compromise is
to set Λm ≃ 40 TeV.

With all this in mind, Figure 11 displays the regions (blue) for which the model is viable when

λð4Þ
0 ¼ 0:01 and θ¼ 1o. The massm1 is confined to the interval 116–138 GeV while the DMmass

is confined mainly to the region above 118 GeV, the left boundary of which having a positive
slope as m1 increases. In addition, m0 has a small showing in the narrow interval 57–68 GeV.
The effect of increasing the mixing angle θ is to enrich the existing regions without relocating
them. This is displayed in Figure 12 for which θ is increased to 15o. As θ increases, the region
between the narrow band and the larger one to the right gets populated. This means more
viable DM masses above 60 GeV, but m1 stays in the same interval.

By contrast, increasing the Higgs-DM mutual coupling λ 4ð Þ
0 has the opposite effect, that of

shrinking existing viability regions. To see this, compare Figure 13, for which λ 4ð Þ
0 ¼ 0:1 and

θ¼ 15o, with Figure 12. We see indeed shrunk regions, pushed downward by a few GeVs,

which is not a substantial relocation. This effect should be expected because increasing λ 4ð Þ
0

raises η01 Λ0ð Þ, well enough above 1 so that we leave perturbativity sooner. Increasing λ 4ð Þ
0 is

also caught up by the relic-density constraint, which tends to shut down such larger values of

λ 4ð Þ
0 when m0 is large. The direct-detection constraint has also a similar effect. Further com-

ments can be found in [33].

Figure 11. Regions of viability of the two-singlet model (in dark grey). Physical Higgs self-coupling λð4Þ
0 and mixing angle

θ very small.
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Figure 12. The region of viability (dark grey) is even richer for a larger mixing angle θ.

Figure 13. The physical Higgs self-coupling λð4Þ
0 shrinks the viability region (dark grey) as it increases.
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8. Concluding remarks

The purpose of this chapter was to help the reader understand how modeling cold dark matter
evolves from motivating the model itself to constraining the space of its parameters. We took
as prototype a two-singlet extension to the Standard Model of elementary particles within the
paradigm of weakly interacting massive particles.

The first set of constraints the model had to undergo came from cosmology and perturbativity.
The model had to reproduce the known relic density of cold dark matter while being consistent
with perturbation theory. The second set of tests came from direct detection, in the form of the
total elastic cross-section of a WIMP scattering off a non-relativistic nucleon that had to satisfy
bounds set by several direct-detection experiments. We have seen that the model is capable of
satisfying all the existing bounds and will soon be probed by the coming XENON1t experiment.
The third set of constraints came from particle phenomenology. We have seen how ϒ rare decays
constrain the predictions of the model for light cold dark matter. The fourth set of constraints
came from internal consistency of the model, in the form of viability and stability under running
coupling constants via a renormalization-group analysis. We have concluded that the model can
still make sound predictions in important and useful physical regions. We then have investi-
gated the regions in the space of parameters in which the model is viable when all these four sets
of constraints are applied together with a maximum cutoff Λm≃40 TeV, a scale at which heavy

degrees of freedom may start to be relevant. We have deduced that for small λð4Þ
0 and θ, the

auxiliary field mass m1 is confined to the interval 116–138 GeV, while the DM mass m0 is
confined mainly to the region above 118 GeV, with a small showing in the narrow interval 57–
68 GeV. Increasing θ enriches the existing viability regions without relocating them, while

increasing λ 4ð Þ
0 has the opposite effect, that of shrinking them without substantial relocation.

There is one aspect of the studywehave not touchedupon in this review, and that is the connection
with and consequences fromHiggs physics. This has been analyzed in Refs. [32, 33]. This aspect is
important, of course, too important maybe to be just touched upon in this limited space. Such an
analysis also needs to be reactualized in view of themany advancesmade in Higgs physics [53].

Despite all our efforts, dark matter stays elusive. Many models that tried to understand it have
failed. The fate of the two-singlet model may not be different. But this will not be a source of
disappointment. On the contrary, failure will only fuel motivation to try and explore new ideas.
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Abstract

Even though the combined laboratory, astrophysical and cosmological evidence implies
that neutrinos have masses, neutrinos provide only a small cosmic dark matter compo-
nent. The study of solar neutrinos provides important information on nuclear processes
inside the Sun as well as on matter densities. Moreover, supernova neutrinos provide
sensitive probes for studying supernova explosions, neutrino properties and stellar
collapse mechanisms. Neutrino-nucleus reactions at energies below 100MeV play essen-
tial roles in core-collapse supernovae, explosive and r-process nucleosynthesis, as well
as observation of solar and supernova neutrinos by earthbound detectors. On the other
hand, recent experimental data of high-energy extragalactic neutrinos at 1 PeV open a
new window to probe non-standard neutrino properties, such as resonant effects in the
oscillation probability.

Keywords: neutrino physics, neutrino oscillations, charge current neutrino-nucleus
scattering, dark matter, sterile neutrino

1. Introduction

Neutrinos play a fundamental role in cosmology and astrophysics, two rapidly progressing
fields. The origin of neutrino masses and the nature of dark matter (DM) are twomost pressing
open questions in modern astro-particle physics. We know from the observation of neutrino
oscillations that neutrinos have masses [1, 2]. The smallness of neutrino masses relative to
those of the standard model (SM) charged fermions remains a puzzle. The effect of small
neutrino masses may be probed in precision cosmic microwave background (CMB) radiation
observations [3–10] as well as large-scale galaxy surveys [11–13]. The absolute scale of neutrino
mass may also affect the long-standing issue of cosmic structure formation. Furthermore,
neutrinos govern big-bang nucleosynthesis so that neutrino properties can be inferred from
the observed light-element abundances [14–16]. Massive neutrinos may also be responsible to
account for the mystery of the matter to anti-matter asymmetry in the Universe. Finally, core-
collapse supernovae are powerful ‘laboratories’ to probe neutrino properties if in the future
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one were to observe a high-statistics neutrino signal. For example, a stellar core collapse in the
Milky Way satellite galaxies may produce an enormous burst of neutrinos ‘visible’ by terres-
trial detectors. Such an effect will carry important information in astrophysics, cosmology and
particle physics [17, 18]. In addition, dedicated experiments are now planned involving intense
accelerator-produced neutrino beams to study neutrino properties over long baselines. These
will traverse the mantle or/and core of the Earth [19] so that the interpretation of the results
will require geophysical details [20, 21].

Neutrinos could be key particles to unravel the nature of the DM in the Universe. The dark
matter problem has been a long-standing one in physics [22, 23]. Even though we know that it
must exist [24–27], we do not knowmuch about its true nature. It is clear, though, that massive
neutrinos and dark matter are both part of nature and should be incorporated in models of
physics beyond the standard model. It may be that they are related to each other [28] and that,
in addition, both originate from new physics at the TeV scale.

Several studies have noted that the existence of light sterile neutrinos would have important
consequences for darkmatter searches [29]. Moreover, MSW-enhanced transitions between active
and sterile neutrinos would have a substantial impact on searches for neutrinos from darkmatter
annihilation in theSun [30, 31]. Furthermore, if sterile neutrinos in addition to theirmixingwith the
active neutrinos possess some new gauge interactions, they could lead to signals which appear to
favour a dark matter interpretation. These can be used to investigate sterile states and may also
generate strong signals in DM detectors [32–34]. Couplings between neutrino, either active or
sterile, and darkmatter have been studied inmany different contexts [35–46].

Understanding the explosion of supernovae or the physics of the early universe, where neutri-
nos play an essential role, requires a solid theoretical background in astrophysics and cosmol-
ogy and reliable input from nuclear physics. Neutrino-nucleus scattering at energies below 100
MeV plays an essential role in core-collapse supernova simulations in various interactions of
neutrinos with the supernova environment. Based on the improved supernova simulations, it
is found that inelastic neutrino-nucleus reactions will also allow for an additional mode of
energy deposition to the matter ahead of the shock wave in the post-shock explosion phase,
supporting the shock propagation.

A call for reliable neutrino-nucleus cross sections has also been made in the context of explo-
sive nucleosynthesis, occurring when the shock wave passes through the exploding star and
leads to fast nuclear reactions. It has also been pointed out that neutrino-induced reactions in
the outer layers of the star can actually be the major source for the production of certain
nuclides in nature. This is the so-called ν-process. Such ν-process is sensitive to those neutrinos,
which are detectable at the new generation of supernova neutrino detectors. The latter can
distinguish the incoming neutrino types and hence will probe the supernova neutrino distri-
butions. An analysis of the events observed by these detectors requires detailed calculations of
the interaction of neutrinos with the detector material. Such accurate determination of the
neutrino-nucleus cross sections for nuclei, like 12C (KamLAND, Borexino) [47–49], 16O (SNO,
Super-Kamiokande) [50, 51], 40Ar (ICARUS) [52], 208Pb (OMNIS) [53, 54], 56Fe (MINOS) [55],
114,116Cd (COBRA) [56, 57], 132Xe (XENON) [58], will be especially useful for present or near
future experiments.
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Recently, the IceCube Collaboration has reported the detection of ultra-high energy (UHE)
neutrino events coming from extraterrestrial sources, that is, neutrinos with energies in the
range TeV–PeV [59–61]. The most plausible sources that these events are connected are from
unique high-energy cosmic ray accelerators like semi-relativistic hypernova remnants (HNRs)
[62–64], and remnants from gamma ray bursts in star-burst galaxies, which can produce
primary cosmic rays with the required energies and abundance [65]. Neutrino interactions
with DM could have strong implications at cosmological scales, such as reduction of the relic
neutrino density, modification of the CMB spectra [37] or even a connection between the
smallness of neutrino mass and a MeV-mass scalar field DM [66]. Many DM candidates have
been proposed in this context: heavy neutrinos as dark matter, lightest supersymmetric parti-
cles (LSP) and MeV-mass scalar field. Furthermore, sterile neutrinos appear in models
attempting to explain the dark matter problem either as the main component for the dark
matter content or as an additional subleading component of a multiparticle dark matter model.
Those particles interact with matter through mixing with the active neutrino states. If there is a
mixing between active and sterile neutrinos, UHE neutrinos interacting with dark matter may
experience an enhancement in the oscillation probability when they propagate in a DM
medium. This is a mechanism that could be tested from future UHE experimental data.

The chapter has been organized as follows. In Section 2, we outline the basic formalism used in
the evaluation of neutrino-nucleus cross sections. Section 3 presents original cross section
calculations for charged current (CC) neutrino and antineutrino scattering off targets from
12C to 208Pb, at energies below 100 MeV. Illustrative test calculations are performed for CC
(anti)neutrino reactions on 56Fe and 40Ar, and the results are compared with other previous
theoretical studies. Such cross section calculations provide us with significant information
regarding the range of efficiency of these isotopes in low-energy neutrino searches. The event
estimates are made by convolving the calculated cross sections with two different distribu-
tions: the Fermi-Dirac (FD) flux and the Livermore one. In Section 4, results are presented
concerning the interaction potential of extragalactic neutrinos, at ultra-high energies, with dark
matter, which might induce resonant effects in the oscillation survival probability. Finally, in
Section 5, the main conclusions extracted from the present work are summarized.

2. Charge current neutrino-nucleus cross-section formalism

Let us consider a neutrino-nucleus interaction in which a low or intermediate energy neutrino
(or antineutrino) is scattered inelastically from a nucleus (A, Z) being in its ground state.

The standard model effective Hamiltonian in a charge current interaction can be written as:

H ¼ G cosθcffiffiffi
2

p jμðxÞJμðxÞ, ð1Þ

Here, G ¼ 1:1664 · 10�5GeV�2 denotes the Fermi weak coupling constant and θc ≃ 13o is the
Cabibbo angle. According to V-A theory, the leptonic current takes the form:
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jμ ¼ ψνℓ
ðxÞγμð1� γ5Þψνℓ

ðxÞ ; ð2Þ

where, Ψνℓ are the neutrino/antineutrino spinors. The hadronic current of vector, axial-vector
and pseudo-scalar components is written as:

Jμ ¼ ψN F1ðq2Þγμ þ F2ðq2Þ
iσμνqν

2MN
þ FAðq2Þγμγ5 þ FPðq2Þ 1

2MN
qμγ5

� �
ψN ð3Þ

(MN stands for the nucleon mass and ψN denotes the nucleon spinors). By the conservation of
the vector current (CVC), the vector form factors F1;2ðq2Þ can be written in terms of the proton
and neutron electromagnetic form factors [67]. The axial-vector form factor FAðq2Þ is assumed
to be of dipole form [68]:

FA ¼ �gAð1� q2=M2
AÞ�2 ; ð4Þ

where MA ¼ 1:05 GeV is the axial cut-off mass and gA is the static value (at q ¼ 0) of the axial
form factor. Recently, it has been shown in modelling the GT+ and GT� transition strengths that
in both channels the quenching factor 0.8 in the axial vector coupling constant is necessary to
describe the experimentally measured GT strengths. Therefore, in our work, the effective
quenched static value gA = 1.0 is employed [69]. Moreover, the pseudoscalar form factor
FPðq2Þ is obtained from the Goldberger-Treiman relation [70]:

FPðq2Þ ¼ 2MNFAðq2Þ
m2

π � q2
ð5Þ

where mπ ¼ 139:57 MeV represents the mass of the charged pion. The strangeness contribu-
tions are not taken into account since the energy region considered here is below the quasi-
elastic region where the contributions from strangeness can be neglected [71].

In the convention we used in the present work q2, the square of the four-momentum transfer
q � ðq0;qÞ is written as:

q2 ¼ qμqμ ¼ ω2 � q2 ¼ ðεf � εiÞ2 � ðpf � piÞ2 < 0 ; ð6Þ

where ω ¼ �q0 ¼ εi � εf is the excitation energy of the nucleus. εi denotes the energy of the
incoming lepton and εf that of the outgoing lepton. pi and pf are the corresponding 3-momenta
of the incoming and outgoing leptons, respectively.

The neutrino/antineutrino-nucleus differential cross section, after applying a multipole analy-
sis of the weak hadronic current, is written as:

σðεiÞ ¼ 2G2cos2θc

2Ji þ 1

X
f

jpf jεf
Z 1

�1
dð cosθÞFðεf ;Zf Þ

X∞
J¼0

σJCL þ
X∞
J¼1

σJT

 !
ð7Þ

θ denotes the lepton scattering angle. The summations in Eq. (7) contain the contributions σJCL,

for the Coulomb cMJ and longitudinal bLJ, and σJT , for the transverse electric bT el
J and magnetic
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bT mag
J multipole operators [72]. These operators include both polar-vector and axial-vector

weak interaction components.

The contributions of σJCL and σJT are written as:

σJCL ¼ ð1þ a cosθÞ
���〈Jf jjM̂JjjJi〉

���
2
þ ð1þ a cosθ� 2b sin 2θÞ

���〈Jf jjL̂JjjJi〉
���
2

þ εi � εf
q

ð1þ a cosθÞ þ c
� �

2 Re〈Jf jjL̂JjjJi〉〈Jf jjM̂JjjJi〉∗
ð8Þ

σJT ¼ ð1� a cosθþ b sin 2θÞ
����〈Jf jjT̂

mag
J jjJi〉

���
2
þ
���〈Jf jjT̂

el
J jjJi〉

���
2
�

∓
ðεi þ εf Þ

q
1� a cosθð Þ � c

� �
2Re 〈Jf jjT̂

mag
J jjJi〉 〈Jf jjT̂

el
J jjJi〉∗

ð9Þ

where b ¼ εiεf a2=jqj2, a ¼ jpf j=εf and c ¼ ðmf c2Þ2=ðjqjεf Þ. In Eq. (9), the (�) sign corresponds to

neutrino scattering and the (+) sign to antineutrino. The absolute value of the three-momentum
transfer is given by:

jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ 2εf εið1� a cosθÞ � ðmf c2Þ2

q
ð10Þ

For charge current (CC) reactions, the cross section of Eq. (7) must be corrected for the
distortion of the outgoing lepton wave function by the Coulomb field of the daughter nucleus
[73] and references therein.

3. Original cross sections

Development of large mass detectors for low energy neutrinos and dark matter may allow
supernova detection via neutrino-nucleus scattering (elastic or inelastic). An analysis of the
events observed by these detectors requires a detailed calculation of the interaction cross
sections of neutrinos with the detector material. Especially interesting is modelling the reaction
cross sections of neutrinos scattering on nuclei that can be used as targets for SN neutrino
detectors. The target materials include a range of isotopes from 4He to 208Pb. In this chapter,
we report results concerning the cross sections of charge current (CC) (anti)neutrino-nucleus
reactions for some isotopes of astrophysical interest. The results refer to the target isotopes 12C,
16O, 18O, 40Ar, 56Fe, 114Cd, 116Cd, 132Xe and 208Pb. The nuclear matrix elements entering in
Eqs. (8) and (9) have been calculated in the framework of pnQRPA [73–75]. The respective
cross sections are listed in Tables 1 and 2 for various incoming (anti)neutrino energies Eν

below 100 MeV. Cross-section results for 208Pb are taken from Ref. [76]. The reliability of our
calculations is justified from the comparison of the CC neutrino-nucleus cross sections with
other calculations. In Figure 1, we compare our calculated cross sections for the reactions
νe=νe�56Fe and νe=νe�40Ar with those of Refs. [76] and [77], respectively.
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Charge current interactions proceed through interaction of νe and νe with neutrons and protons,
respectively, in nuclei νe þ ðN;ZÞ ! ðN � 1;Zþ 1Þ þ e� and νe þ ðN;ZÞ ! ðN þ 1;Z� 1Þ þ eþ.

The kinematic threshold is Ethres ¼ M2
f þ m2

e þ 2Mfme � M2
i

2Mi eMf �Mi þme, where Mf and Mi are the

initial- and final-state nuclear masses and me is the electron mass. The corresponding thresholds
for CC reactions on the above target isotopes are given in Table 3. Note that at supernova
energies, νμ and ντ are below the CC interaction threshold and thus are kinematically unable to
produce their partner leptons.

An important application of microscopic models of neutrino-nucleus reactions is the calcula-
tion of cross sections for supernova neutrinos. Thus, in order to estimate the response of a
nucleus to a specific source of neutrinos, the calculated cross sections given in Tables 1 and 2
must be folded with a specific supernova neutrino energy distribution. The neutrino spectrum
of a core-collapse supernova is believed to be similar to a Fermi-Dirac (FD) spectrum, with
temperatures in the range 3–8 MeV [78]. The FD energy distribution is given by:

ηFD ¼ N2ðαÞ
T3

E2
ν

1þ exp½ðEν=TÞ � α� ð11Þ

where T is the neutrino temperature and α being a degeneracy parameter. N2(α) denotes the
normalization factor depending on α given from

σtot(10
�42 cm2)

Eνe (MeV) 12C 16O 18O 40Ar 56Fe 114Cd 116Cd 132Xe 208Pb

7.5 2.72(0) 1.29(0) 3.34(�1) 1.73(+1) 3.40(+1) 1.07(0) 2.47(�4)

10.0 5.72(0) 4.59(0) 2.10(0) 6.24(+1) 9.93(+1) 2.09(+1) 8.49(0)

5.0 1.75(+1) 2.25(+1) 2.03(+1) 2.55(+2) 3.32(+2) 1.97(+2) 1.75(+2)

20.0 4.80(�1) 4.48(�2) 3.86(+1) 5.90(+1) 6.23(+1) 5.58(+2) 6.73(+2) 6.27(+2) 8.53(+2)

25.0 2.02(0) 2.95(�1) 7.10(+1) 1.17(+2) 1.28(+2) 9.45(+2) 1.10(+3) 1.30(+3) 2.86(+3)

30.0 5.8(0) 8.91(�1) 1.17(+2) 1.98(+2) 2.18(+2) 1.29(+3) 1.41(+3) 1.82(+3) 4.90(+3)

40.0 2.78(+1) 8.20(0) 2.60(+2) 4.42(+2) 4.74(+2) 1.92(+3) 2.07(+3) 2.76(+3) 7.13(+3)

50.0 7.89(+1) 3.97(+1) 4.88(+2) 8.07(+2) 8.25(+2) 2.65(+3) 2.83(+3) 3.74(+3 1.13(+4)

60.0 1.71(+2) 1.19(+2) 8.29(+2) 1.30(+3) 1.27(+3) 3.43(+3) 3.65(+3) 4.76(+3) 1.63(+4)

70.0 3.07(+2) 2.74(+2) 1.30(+3) 1.89(+3) 1.81(+3) 4.21(+3) 4.46(+3) 5.75(+3) 2.20(+4)

80.0 4.87(+2) 5.33(+2) 1.91(+3) 2.55(+3) 2.42(+3) 4.94(+3) 5.22(+3) 6.63(+3) 2.83(+4)

90.0 7.06(+2) 9.17(+2) 2.65(+3) 3.27(+3) 3.07(+3) 5.65(+3) 5.95(+3) 7.32(+3) 3.50(+4)

100.0 9.95(+2) 1.43(+3) 3.51(+3) 4.03(+3) 3.75(+3) 6.33(+3) 6.65(+3) 7.78(+3) 4.16(+4)

The cross sections are given in units of 10�42 cm2, exponents are given in parentheses.

Table 1. Total cross sections σtot for the indicated neutrino-nucleus charge current reactions as a function of the incoming
neutrino energy.
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NkðαÞ ¼
Z ∞

0

xk

1þ ex�α dx
� ��1

ð12Þ

for k = 2. The degeneracy parameter α is called the chemical potential parameter. Characteristic
of the FD energy distribution is that the peak shifts to higher neutrino energies and the width
increases as the neutrino temperature increases (Figure 2).

Following Ref. [79], the average neutrino energy 〈Eν〉 can be written in terms of the functions of
Eq. (12) as:

〈Eν〉 ¼ N2ðαÞ
N3ðαÞT ð13Þ

Some characteristic values of 〈Eν〉 are listed in Table 4.

For a connection of the present theoretical results with the neutrino experiments and the
neutrino sources, we carry out the folding (convolution) of the calculated cross sections given
in Tables 1 and 2 with the distribution ηFD and estimate the response of the given isotopes to
the corresponding spectrum. These responses (signals to the detector) are evaluated by:

σtot(10
�42 cm2)

Eνe
(MeV) 12C 16O 18O 40Ar 56Fe 114Cd 116Cd 132Xe 208Pb

7.5 1.68(0) 6.30(�1) 1.30(�1) 8.78(�3) 1.37(�6)

10.0 4.07(�1) 6.04(0) 3.37(0) 1.41(0) 1.63(�1) 8.36(�3)

5.0 1.23(�1) 2.26(�2) 1.30(0) 4.62(0) 2.07(+1) 2.19(+1) 1.57(+1) 2.46(0) 2.44(�1)

20.0 8.43(�1) 1.88(�1) 5.66(0) 1.73(+1) 4.48(+1) 5.72(+1) 4.70(+1) 1.75(+1) 1.11(0)

25.0 2.29(0) 6.00(�1) 1.58(+1) 4.10(+1) 7.95(+1) 1.07(+2) 9.38(+1) 4.75(+1) 3.05(0)

30.0 7.77(0) 1.78(0) 3.31(+1) 7.71(+1) 1.24(+2) 1.69(+2) 1.54(+2) 8.69(+1) 1.53(0)

40.0 3.35(+1) 1.23(+1) 9.38(+1) 1.91(+2) 2.40(+2) 3.21(+2) 3.07(+2) 1.77(+2) 5.65(0)

50.0 9.05(+1) 4.23(+1) 1.95(+2) 3.62(+2) 3.80(+2) 4.98(+2) 4.87(+2) 3.93(+2) 3.48(+1)

60.0 1.88(+2) 1.03(+2) 3.45(+2) 5.83(+2) 5.33(+2) 7.93(+2) 6.87(+2) 6.92(+2) 8.29(+1)

70.0 3.28(+2) 2.07(+2) 5.47(+2) 8.42(+2) 6.94(+2) 1.27(+3) 8.96(+2) 9.83(+2) 1.46(+2)

80.0 5.04(+2) 3.62(+2) 8.04(+2) 1.12(+3) 8.64(+2) 1.82(+3) 1.10(+3) 1.24(+3) 2.16(+2)

90.0 7.09(+2) 5.72(+2) 1.11(+3) 1.43(+3) 1.04(+3) 2.42(+3) 1.31(+3) 1.47(+3) 2.91(+2)

100.0 9.34(+2) 8.38(+2) 1.48(+3) 1.76(+3) 1.23(+3) 3.02(+3) 1.50(+3) 1.69(+3) 3.67(+2)

The cross sections are given in units of 10�42 cm2, exponents are given in parentheses

Table 2. Total cross sections σ for the indicated antineutrino-nucleus charge current reactions as a function of the
incoming neutrino energy.
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〈σ〉 ¼
Z ∞

0
σðEνÞηFDðEνÞdEν ð14Þ

In Figure 3, we compare the respective neutrino flux-averaged cross sections for some of target
nuclei given in Table 1.

We close this subsection by exploiting our predictions of total cross sections to estimate the
number of expected electron (anti)neutrino events in a detector. For current detectors [80],
typical event yields are a few hundred events per kt of detector material for a core-collapse
event atD = 10 kpc (3.1 · 1022 cm) away from the Earth. A supernova radiates via neutrinos, an
amount of total energy 3 · 1053 erg in about 10s. Assuming an equal partition of energy among
neutrinos, the supernova radiates Nνe ¼ 3:0 · 1057 electron neutrinos and Nνe

¼ 2:1· 1057 elec-

tron antineutrinos. The neutrino fluence ΦðEνÞ for electron neutrinos/antineutrinos is given by
the relation:
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Figure 1. Cross sections for relevant neutrino (antineutrino) reactions on isotopes 56Fe and 40Ar. The results denoted by
square symbols are taken from Refs. [76] and [77].
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ΦðEνÞ ¼
Nνe=νe

4πD2 ηFDðEνÞ ð15Þ

Two examples of supernova models are used to predict the neutrino flux: (i) the model based on
the FD distribution with a single temperature (3.5 MeV for neutrinos and 5 MeV for
antineutrinos) and zero chemical parameter (α = 0) and (ii) the numerical simulation of supernova
neutrino emission model called Livermore [81], which assumes the FD spectra with α = 0 and
with the average energies indicated as a function of time integrated from 0 to 14 seconds after the
core collapse. The Livermore energy spectrum for the νe and νe flavour components is shown in
Figure 4. The nature of the neutrino spectra and their time evolution depend on mass, oscillation
parameters, such as θ13 and the mass hierarchy. Furthermore, the chance that the supernova
neutrinos will traverse Earth matter on their way to a detector is not negligible [82] and oscilla-
tions in the Earth modulate the supernova neutrino spectrum for either νe or νe [83–85]. In a
single detector, an Earth matter-induced spectral modulation may give information about oscil-
lations, involving probably sterile neutrino states (e.g., [19, 86]).

Interaction Ethres(MeV)

12Cðνe;e�Þ12N 17.34

12Cðνe;eþÞ12B 14.39

16Oðνe;e�Þ16F 15.42

16Oðνe;eþÞ16N 11.42

18Oðνe;e�Þ18F 1.65

18Oðνe;eþÞ18N 14.91

40Arðνe;e�Þ40K 1.50

40Arðνe;eþÞ40Cl 8.50

56Feðνe;e�Þ56Co 4.56

56Feðνe;eþÞ56Mn 4.71

114Cdðνe;e�Þ114In 1.45

114Cdðνe;eþÞ114Ag 6.09

116Cdðνe;e�Þ116In 0.46

116Cdðνe;eþÞ116Ag 7.11

132Xeðνe;e�Þ132Cs 2.12

132Xeðνe;eþÞ132I 4.60

208Pbðνe;e�Þ208Bi 2.90

208Pbðνe;eþÞ208Tl 6.01

Table 3. Thresholds values Ethres (in MeV) for charge current antineutrino-nucleus interactions.
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If the mass of the target material is mt, corresponding to Nat atoms, then the number of expected
events per energy are:

dNevents

dEν
¼ NatΦðEνÞσtotðEνÞ ð16Þ

where σtotðEνÞ is the total cross section (see Tables 1 and 2). Figure 5 shows the event rates in 1
kt of the target material for the Livermore model. The total number of events per kiloton for
each of the two neutrino fluxes are listed in Table 5. The actual detected number of events may
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Figure 2. The normalized unity Fermi-Dirac spectrum for α = 0.

< Eν > (MeV)

α T = 3.5MeV T = 5MeV T = 8MeV

0 11.03 15.76 25.21

0.76 11.46 16.37 26.19

1.52 12.10 17.28 27.65

2.28 12.96 18.52 29.63

3.04 14.03 20.05 32.08

4.56 16.66 23.80 38.09

5.76 19.06 27.23 43.58

Table 4. The average supernova neutrino energies as a function of the parameters α and T.
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Figure 5. Event rates in 1 kt of the target isotope for the Livermore model. The event rates of νe�16O and νe�208Pb, which
are less than 10�2, are not shown.

Channel Nevents Nevents

Fermi-Dirac Livermore

νeþ12C ! e�þ12Nð�Þ 3 2

νeþ12C ! eþþ12Bð�Þ 15 13

νeþ16O ! e�þ16Fð�Þ 1 1

νeþ16O ! eþþ16Nð�Þ 4 4

νeþ40Ar ! e�þ40K� 71 28

νeþ40Ar ! eþþ40Cl� 40 26

νeþ56Fe ! e�þ56Co� 48 20

νeþ56Fe ! eþþ56Mn� 58 31

νeþ114Cd ! e�þ114In� 229 88

νeþ114Cd ! eþþ114Ag� 35 20

νeþ132Xe ! e�þ132Cs� 198 78

νeþ132Xe ! eþþ132I� 12 8

νeþ208Pb ! e�þ208Bi� 219 89

νeþ208Pb ! eþþ208Tl� 0 0

We consider the Fermi-Dirac distribution with temperature T = 3.5 MeV for neutrinos and T = 5 MeV for antineutrinos
(second column) and the Livermore numerical simulation for supernova neutrino emission (third column). No detector
efficiency (detector threshold, energy response, background effects, etc.) is taken into account.

Table 5. Number of supernova events per kt at 10 kpc away from the Earth, on different targets relevant for existing
detector types.
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be significantly fewer, if the detector energy threshold, detector efficiency and other back-
ground contamination effects coming from radioactive isotopes are taken into account. The
results show that there is no considerable variation in the total antineutrino events between the
two supernova models used in the calculation.

4. Interaction of neutrinos with dark matter

Dark matter particles (hereafter generically denoted by χ) may interact with ordinary matter
through Z boson exchanges. Therefore, they have to be heavy, or else they would have been
pair-produced in Z decays. A light dark matter candidate should have no significant direct
coupling to the Z boson, but it could still interact with ordinary matter through the exchanges
of other spin-1 gauge bosons or of spin-0 Higgs bosons.

If there is a mixing between active and sterile neutrinos, high-energy neutrinos interacting
with dark matter may suffer a kind of MSW effect when they propagate in a dark matter
medium. In a simplified model, which includes ordinary and dark matter potentials, the
evolution equation with one sterile νs and an active one να is written as:

i
d
dt

� να
νs

�
¼ ðUH0U† þ VÞ

� να
νs

�
; ð17Þ

with

H0 ¼ 1
2E

diag {0;Δm2
α4} ð18Þ

V ¼ diag {Vνα f þ Vναχ;Vνsχ} ð19Þ

and

U ¼ cosθ0 � sinθ0
sinθ0 cosθ0

� �
; ð20Þ

where E is the neutrino energy, Δm2
α4 ¼ m2

4 �m2
α is the mass-squared splitting and θ0 is the

vacuum mixing angle between the sterile and the active neutrino. The matter potentials are
defined as:

Vνα f ¼
ffiffiffi
2

p
GFðNα �Nn=2Þ ; ð21Þ

Vναχ ¼ εναχGFNχ ; ð22Þ
Vνsχ ¼ ενsχGFNχ ; ð23Þ

where Nα, Nn and Nχ are, respectively, the number density of leptons, neutrons and dark matter
particles interacting with neutrinos. The parameters ενα;sχ account for the coupling strength in

terms of Fermi constantGF ¼ 1:166 · 10�5 GeV�2. A list of values is given in [87]. Considering an
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astrophysical environment where Ne ≈Nn=2 and Nμ ≈Nτ ≈ 0, the contribution, Vνe;μ;τf , from elec-
tron, tau and muon neutrinos is negligible in comparison with the neutrino and dark matter
interactions Vναχ and Vνsχ. The dark matter number density, Nχ, can be written as Nχ ¼ ρχ=mχ,

where mχ being the dark matter particle mass and ρχ the dark matter density. Around our
galactic halo, it is expected that ρχ ¼ 0:3 GeV � cm�3 [88]. Even though there exists firm indirect

evidence for a halo of dark matter in galaxies from the observed rotational curves, see for
example the review [89], it is essential to directly detect such matter. The possibility of such
detection, however, depends on the nature of the dark matter constituents and their interactions.
There are quite a few dark matter candidates such as WIMPs (weakly interacting massive
particles), superWIMPs, light gravitinos, hidden dark matter, sterile neutrinos, Kaluza-Klein
particles and axions. We will pay special attention to WIMPs. WIMPs have masses mχ in the
range of few GeV to few TeV [90–94]. In this context, we take mχ = 20 GeV.

It is interesting to compute the survival probability Pðνα ! ναÞ for active neutrinos for various
values of sin 2ð2θ0Þ. Figure 6 depicts P(να ! να) as a function of neutrino energy Eν with a
coupling jεχj ¼ jεναχ � ενsχj ¼ 3· 1011. As it is seen, a resonant effect happens at the energy

around 0.4 PeV which corresponds to an oscillation length L ¼ 4πE
sin ð2θ0ÞΔm2 e10

18 Km in accor-

dance with the expected dark matter halo dimension. This suggests that the high-energy
spectrum of extragalactic neutrinos could be affected by the existence of sterile neutrino and
its interaction with dark matter. If the various experiments such as IceCube [59, 60, 95–97]
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Eν(PeV)

P(
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−−
−>
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Figure 6. Survival probability Pðνα ! ναÞ as a function of the neutrino energy Eν, considering the galactic halo average
dark matter density. The (black) dashed line corresponds to sin 2ð2θ0Þ ¼ 0:05, the (red) dotted line to 0.15 while the (blue)
solid line to sin 2ð2θ0Þ ¼ 0:25. The neutrino squared mass difference is taken Δm2 ¼ 7 · 10�13 eV2.
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collect in future sufficient data, it might be possible to observe the MSW mechanism for dark
matter as a distortion in the UHE neutrino spectrum. Resonance enhancement in the oscillation
probability can also be found considering a more realistic halo density profile of the form:

ρðrÞ ¼ ρ0

ðr=RÞδ½1þ ðr=RÞα�ðβ�δÞ=α ; ð24Þ

where the parameters α, β, δ and R (in kpc) depend on the specific model to be considered. A
list of parameters is given in Table 6 for various model density profiles [98–101]. The left panel
of Figure 7 illustrates the four different density profiles, whereas the right one depicts the
corresponding survival probability as a function of neutrino energy for constant density and as
an example of the survival probability corresponding to the density profile [101].

5. Conclusions

The study of neutrino scattering with nuclei provides the most attractive mechanism to detect
or distinguish neutrinos of different flavour and to investigate the basic structure of weak
interactions. Further studies involving neutrino-induced transitions between discrete nuclear

Ref. α β δ R(kpc)

[98] 1 3 1 20

[99] 2 3 0.4 10

[100] 1.5 3 1.5 28

[101] 2 3 0 3.5

Table 6. Model parameters for some known halo density profiles.

0 10 20 30 40 50
10−3

10−2

10−1

100

101

102

103

r(kpc)

ρ/
ρ 0

(a)

100 1010

0.2

0.4

0.6

0.8

1

Eν(PeV)

P(
ν α −

−−
−>

 ν
α)

(b)

Figure 7. Left panel: Dark matter density profiles, Ref. [98] (red) dot-dashed line, Ref. [99] (black) solid line, Ref. [100]
(blue) dashed line, and Ref. [101] (green) dotted line. Right panel: Survival probabilities for constant ρ (blue) solid line and
for the density profile [101] (green) dotted line.
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states may help us to explore the structure of the weak hadronic currents and also constitute
good sources of explanation for neutrino properties.

Neutrino-induced reactions are of particular significance in view of studies on modern detec-
tors, based on neutrino scattering on various isotopes. So far, experimental neutrino cross
sections are not available for modest energies below 100 MeV, with the exception of 12C and,
with large uncertainty, 56Fe. These are rather important for astrophysical and cosmological
applications and must be calculated. In this chapter, we have presented neutrino(antineu-
trino)-nucleus reactions via charge current related to a range of targets from 12C to 208Pb. The
calculated cross sections are tabulated for a set of neutrino energies which are relevant for
supernova neutrinos. The rather low neutrino energies involved introduce, however, some
sensitivity to nuclear structure effects and, in particular, for neutrinos with energies lower than
20 MeV, where state-of-the-art nuclear models must be employed which describe the many-
body correlations in the nucleus accurately. The model of choice is the pnQRPA yielding to
reasonable cross sections in a wide range of nuclear isotopes. The nuclear responses of these
isotopes (used in common detector materials) to supernova neutrinos have been studied for
two neutrino flux models. The two-parameter Fermi-Dirac neutrino energy model with zero
chemical potential and the Livermore model assuming Fermi-Dirac spectra with average
neutrino energies indicated as a function of time integrated over 14 seconds burst. The
expected number of events per kt are predicted for supernova-detector distance 10 kpc. The
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Abstract

In canonical tetrad gravity, it is possible to identify the gauge variables, describing relativ-
istic inertial effects, in Einstein general relativity. One of these is the York time, the trace of
the extrinsic curvature of the instantaneous non-Euclidean 3-spaces (global Euclidean 3-
spaces are forbidden by the equivalence principle). The extrinsic curvature depends both
on gauge variables and on dynamical ones like the gravitational waves after linearization.
The fixation of these gauge variables is done by relativistic metrology with its identifica-
tion of time and space. Till now, the International Celestial Reference Frame ICRF uses
Euclidean 3-spaces outside the Solar System. It is shown that York time and non-Euclidean
3-spaces may explain the main signatures of dark matter in ordinary space-time before
using cosmology. Also dark energy may be connected to these inertial gauge effects,
because both red-shift and luminosity distance depend on them.

Keywords: dark matter

1. Introduction

An extremely important, till now not explicitly clarified, point in Einstein general relativity
(GR) (and in every generally covariant theory of gravity), whose gauge group is the group of
diffeomorphisms of the Lorentzian 4-dimensional space-time,1 is that the fixation of the
gauge freedom is nothing else than the establishment of conventions for relativistic metrology, an
operation performed from atomic physicists, NASA engineers and astronomers [2] with the
introduction of a notion of clock synchronization and with a definition of the axes for the 4-
coordinates in each point, that is, with the identification of a non-inertial frame of the space-
time (global inertial frames are forbidden by the equivalence principle). See Ref. [3, 4] for a
review of the existing conventions in the Solar System.

1See Ref. [1] for theoretical considerations concerning the nature of space and time in GR.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



According with the International Astronomic Union IAU inside the Solar System, the choice of
the 4-coordinates is solved at the experimental level by the choice of a convention for the description of
matter based on special post-Newtonian (PN) solutions of linearized Einstein equations in a
fixed given harmonic gauge [2–4]: (a) for satellites near the Earth (like the GPS ones) one uses
NASA 4-coordinates compatible with the reference frames of the International Terrestrial
Reference System ITRS20032 and of the Geocentric Celestial Reference System GCRS IAU2000;
(b) for planets in the Solar System one uses the frame of the Barycentric Celestial Reference
System BCRS-IAU2000.

These frames are compatible with the usual interpretation as quasi-inertial frames in Minkowski
space-time and are metrology choices like the choice of a certain atomic clock as standard of
time. However, already in the Solar System, the instantaneous 3-spaces are not Euclidean in
the selected solutions, but the existing technology is not yet able to show it, being a property of
order Oð1=c2Þ3

In astronomy, data like luminosity, light spectrum and angles are used to determine the
positions of stars and galaxies and their temporal evolution in a 4-dimensional nearly Galilei
space-time with the International Celestial Reference System ICRS [2, 3], a frame considered as
a “quasi-inertial frame” and with all galactic dynamics described by PN gravity.

This is in accord with the smallness of the intrinsic 3-curvature of the 3-spaces as implied by
the CMB data, a property included in the standard Friedmann-Lemaitre-Robertson-Walker
(FLRW) Λ CDM cosmological model with its isotropy and homogeneity symmetries. How-
ever, to reconcile all the existing data with this 4-dimensional description, one must postulate
the existence of dark matter and dark energy as the dominant components of the classical
universe [6–8] after the recombination 3-surface (before it quantum mechanics is entering in
the description and there is no acceptable description for the transition from quantum to
classical astrophysics) already within galaxies before making the transition to cosmology and
the replacement of ordinary space-time with the standard cosmological FLWR one, whose
points describe a mean over a volume of 100 Mega-parsecs of the ordinary space-time. The
attempts to avoid the appearance of “darkness” have led to many proposals of modifications
of GR like MOND [9], f ðRÞ gravity [10–12] and the ones analyzed in Refs. [6–8].

After a description of ICRS and of the measurements in ordinary astrophysics (not cosmology)
of quantities like luminosity distance, rotation curves of galaxies, gravitational lensing,….
implying “darkness,”we will study canonical ADM tetrad gravity and its gauge freedom after
a suitable but arbitrary 3 þ 1 splitting of the space-time in a family of Einstein space-times able
to include the extension of the models of particle physics to GR. We will identify which are the
gauge variables to be fixed with astrophysical metrology and how the interpretation of “dark

2A relativistic version of ITRS is not yet existing, so that one cannot yet connect the time of the atomic clocks in different
laboratories to the clock on the Space Station with a suitable Lorentz transformations.
3See however the LATOR proposal [5] of measuring the deviation from 2π of the sum of the three angles of a triangle
formed by the Space Station and two spacecrafts behind the Sun. When this non-Euclidean nature will be measured, one
will have to redefine the standard of length measurements [2].
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2A relativistic version of ITRS is not yet existing, so that one cannot yet connect the time of the atomic clocks in different
laboratories to the clock on the Space Station with a suitable Lorentz transformations.
3See however the LATOR proposal [5] of measuring the deviation from 2π of the sum of the three angles of a triangle
formed by the Space Station and two spacecrafts behind the Sun. When this non-Euclidean nature will be measured, one
will have to redefine the standard of length measurements [2].
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matter” and probably also of “dark energy” depends on the fixation of these gauge variables
in a family of gauge-fixings different from the harmonic ones used in the IAU conventions.
Therefore, our suggestion is that “darkness” may be interpreted as a relativistic inertial effect and
that ICRS should be reformulated in a suitable relativistic way.

2. Astrophysical metrology

Reference data for positional astronomy, such as the data in astrometric star catalogs, are
specified in the International Celestial Reference System ICRS [2, 3] with origin in the solar
system barycenter and with kinematically non-rotating spatial axes fixed with respect to space
according to the IAU conventions [2, 3]. It is based on the position of extragalactic radio
sources that are distant enough to be considered stationary, in the limit of today’s capabilities,
and whose position is known with a precision of 0.001arcsec, thanks to the Very Long Baseline
Interferometry technique [13]. These sources are assumed to have no observable intrinsic
angular momentum. The International Celestial Reference Frame ICRF is a realization of ICRS
obtained by supposing that the origin is a quasi-inertial observer and that we have a quasi-
inertial (essentially non-relativistic) reference frame with rectangular 3-coordinates in a nearly
Galilean space-time whose 3-spaces are Euclidean.

However, a number of different categories of astronomical observations are explained in the
usual Euclidean 3-space only in terms of so far undetermined dark matter and dark energy:
rotational curves of galaxies [14–17], gravitational lensing [18–20], application of the virial theo-
rem to galaxy clusters [21–23] and the acceleration of the expansion of the universe [24–29]. This
already happens before the transition from the ordinary space-time to the cosmological one, the
FLWR space-time which is not a Galilean space-time but has nearly internally flat 3-spaces and
uses a theoretical cosmic time. What is still not explored is the possibility that in Einstein GR one
can use non Euclidean 3-spaces with small internal 3-curvature, but with an extrinsic curvature
(as 3-submanifolds of the space-time) depending on the gauge variables, namely on the metrol-
ogy conventions.

In all the astronomical observations, the distance of the objects needs to be known. Measuring
distances in astronomy is a difficult task, especially when dealing with extragalactic objects.
Different methods must be applied at increasing distances, which need to be inter-calibrated
appropriately. To get relevant quantities like distances and absolute luminosity of stars from
the directly measured quantities, that is, apparent luminosity, angles and red-shift, it is impor-
tant to know the geometry of the 3-spaces crossed by the propagating rays of light on null 4-
geodesics of the space-time.

The most important methods rely on the absolute intrinsic luminosity L of a standard candle
compared to the apparent brightness F as measured on Earth. In terms of these quantities, one

defines the luminosity distance [6, 18–20] of a luminous object dL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=4πF

p
, which is the

proper distance of an object at rest with respect to the observer in a Euclidean stationary
universe. In an expanding universe, the luminosity distance is dependent on the red-shift z of
the light arriving on the Earth from the object and to the comoving distance r1. If ao is the scale
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factor, Ho is the Hubble constant, _Ho its time derivative, and if one keeps only the first-order
terms in the expansion, one has

dL ¼ ao r1 ð1þ zÞ ¼ z
Ho

½1þ ð1þ
_Ho

2H2
o
Þ z�; ð1Þ

Also used is the angular diameter distance dA ¼ D=θ, where θ is the angular diameter of the
source as measured by the observer and D is the diameter of well-known close galaxies. Also

the angular diameter distance depends on the red-shift: dA ¼ ao r1
1þz ¼ z

Ho
1� ð1� _Ho

2H2
o
Þ z

h i
.

In both luminosity distance and angular diameter distance, the terms which depart from
Euclidean geometry enter only at higher orders, which depend on the rate of expansion of the
universe and on the curvature parameter. For the galaxies with the most reliable rotation
curves that are within a range of a few tens of Mega-parsec, they can be neglected, and we
can consider the 3-space to be Euclidean. Higher order terms need instead to be considered
when the objects have a distance of hundreds of Mega-parsec or more.

For larger z, one has to take into account a model of cosmology: In a FLWR metric, one has

F ¼ L=½4π ðao r1Þ2 ð1þ zÞ2� with ao ¼ 1=ð1þ zÞ and with r1 depending also on z.

Assuming that all supernovae (SN) Ia have the same intrinsic luminosity, it was found [26–29]
that the SN1a’s at z ≤ 0:5 are about 10 per cent fainter than expected, and this has been
interpreted as evidence of an accelerated expansion of the universe and dark energy has been
invoked to take care of the accelerated expansion.

3. Einstein general relativity

We shall use the formulation of Einstein GR in a 4-dimensional Lorentzian space-time (the one
used in classical astrophysics, not in cosmology, after the recombination surface for the prop-
agation of light) with the Lagrangian description implied by the ADM action principle [30, 31],
because it allows to make the transition to the canonical formalism and to use Dirac theory of
constraints [32], in particular to use the Shanmugadhasan canonical transformation [33, 34] to
find canonical bases adapted to the constraints (see Ref. [35] for reviews). Light and visible
stars and galaxies constitute the matter.

We will restrict ourselves to globally hyperbolic, topologically trivial and asymptotically Minkowskian
space-times, in the absence of Killing symmetries (see Ref. [36] for their inclusion as Dirac
constraints) and with the asymptotic SPI symmetries at spatial infinity of Ref. [37] restricted to
the asymptotic ADM Poincaré group [38] by eliminating the super-translations with suitable
boundary conditions on the 4-metric. This framework is defined in Refs. [39–43], where the
matter consists of electrically charged positive-energy scalar point particles plus the electromag-
netic field. In the limit of vanishing Newton constant (G ¼ 0), the asymptotic Poincare’ group
becomes the Poincare’ group of particle physics, where elementary particles are always consid-
ered as irreducible representations of this group.
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While in the family of spatially compact without spatial boundary space-times4, considered in
loop quantum gravity [44, 45], the Dirac Hamiltonian is a combination of constraints because
the canonical Hamiltonian vanishes, in our space-times there is not a frozen picture, because

the canonical Hamiltonian is the weak ADM energy ÊADM
5 plus a combination of constraints.

In the absence of matter, Christodoulou-Klainermann space-times [46] are compatible with this
description.

In the ADM Lagrangian, the basic variable is the 4-metric 4gμνðxÞ of the space-time (xμ are local

4-coordinates with an arbitrary origin): it determines the dynamical chrono-geometrical struc-
ture of space-time by means of the line element ds2 ¼ 4gμνðxÞ dxμ dxν, and it teaches to massless

particles which are the allowed trajectories in each point.

However, to include the coupling of gravity to the spin of fermions, we must use ADM tetrad
gravity: the 10 components of the 4-metric appearing in the ADM Lagrangian are decomposed

on a set of cotetrads [31] EðαÞ
μ ðxÞ, 4gμνðxÞ ¼ EðαÞ

μ ðxÞ ηðαÞðβÞ EðβÞ
ν ðxÞ.6 This leads to an interpretation

of gravity based on a congruence of time-like observers endowed with orthonormal tetrads

Eμ
ðαÞðxÞ (i.e., the inverse of the cotetrads Eμ

ðαÞðxÞEðβÞ
μ ðxÞ ¼ δðβÞðαÞ): in each point of space-time, the

time-like axis is the unit 4-velocity of a time-like observer, whereas the spatial axes are a
(gauge) convention for the three gyroscopes of the observer.

A. Metrology as the Fixation of the Gauge Freedom of General Relativity

While the ADM action for metric gravity is invariant under space-time diffeomorphisms, the
decomposition of the 4-metric on the cotetrads gives an ADM action [30] invariant not only
under the space-time diffeomorphisms but also on a local O(3,1) Lorentz group describing the
freedom in the orientation and transport of the gyroscopes along the time-like world lines of
observers. Let us remark that the same gauge freedoms are present in all the generally covar-
iant formulations of GR proposed as modifications of Einstein GR.

In electromagnetism and in Yang-Mills theories, the Lagrangian description in terms of poten-
tials implies the presence of a gauge group acting on an internal space and implying the gauge
nature of certain scalar and longitudinal components of the potentials: the gauge fixings imply
the description of physics in terms of electric and magnetic fields or of their non-abelian
analogues. Instead, in the metric formulation of GR, the gauge freedom is connected with the
freedom in the choice of the metrology conventions, described in the previous section, for the
definitions of clocks (i.e., time) and 3-space in each point of the space-time. As we shall see a
metrology convention implies the fixation of 8 of the 10 components of the 4-metric, so that the
remaining two components describe the physical degrees of freedom of the gravitational field

4Therefore, it is not possible to define a Poincare’ group and to find a connection with particle physics.
5It is a volume integral over 3-space of a coordinate-dependent energy density. It is weakly equal to the strong ADM
energy, which is a flux through a 2-surface at spatial infinity.
6ðαÞ are flat indices and ηðαÞðβÞ is the flat 4-metric of Minkowski space-time. The signature of the 4-metrics is E ¼ � so that

ηðαÞðβÞ ¼ E ð1; � 1;� 1;� 1Þ. E ¼ 1 is the convention of particle physics, whereas E ¼ �1 is the convention usually used in

GR
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(the gravitational waves (GW) of its linearization in the case of weak fields). In tetrad gravity,
we have 16 fields, but the extra 6 fields are fixed by metrology conventions on the orientation
of three gyroscopes and on their transport along time-like world lines in each point of the
space-time.

In special relativity, the metrology conventions amount to the choice of a standard atomic clock
and of the instantaneous Euclidean 3-spaces of a global inertial frame, whose extension to global
non-inertial frames was done in Ref. [47] with an application to relativistic atomic physics
described in Ref. [48].

In GR, due to the equivalence principle forbidding the existence of global inertial frames, one has
to use the cited theory of global non-inertial frames in the form of the so-called 3þ1 point of view7:
one gives the world line of a time-like observer and a nice foliation of the space-time whose
leaves are the instantaneous 3-spaces. Instead of standard local 4-coordinates xμ centered in a
point of the observer world line, one uses 4-scalar observer-dependent radar 4-coordinates8

σA ¼ ðτ; σrÞ, where τ is an arbitrary increasing function of the observer proper time and σr is
curvilinear 3-coordinates on the 3-spaces Στ (diffeomorphic to R3) with the observer as origin.

The inverse transformation σA↦xμ ¼ zμðτ; σrÞ defines the embeddings of the 3-spaces Στ into
the space-time and the induced 4-metric is gAB½zðτ; σrÞ� ¼ zμAðτ; σrÞ zνBðτ; σrÞ gμνðzðτ; σrÞÞ, where

zμA ¼ ∂ zμ=∂ σA, while the cotetrads take the form EðαÞ
A ðτ; σrÞ ¼ zμAðτ; σrÞEðαÞ

μ ðzðτ; σrÞÞ. As shown

explicitly in Ref. [51], the use of the 4-scalar radar 4-coordinates implies that the ten components
4gABðτ; σrÞ and the sixteen components EðαÞ

A ðτ; σrÞ are 4-scalars of the space-time. Also, all the
components of radar tensors (i.e., tensors expressed in radar 4-coordinates) are 4-scalars of the
space-time.

While the 4-vectors zμr ðτ; σuÞ are tangent to Στ, so that in each point of the 3-space, the unit

normal lμðτ; σuÞ is proportional to Eμαβγ zα1 ðτ; σrÞ zβ2ðτ; σrÞ zγ3ðτ; σuÞ, we have zμτ ðτ; σrÞ ¼
Nðτ; σrÞ lμðτ; σrÞ þNrðτ; σrÞ zμr ðτ; σrÞ, where Nðτ; σrÞ ¼ E zμτ ðτ; σrÞ lμðτ; σrÞ and Nrðτ; σrÞ ¼ �Egτr
ðτ; σrÞ are the lapse and shift functions of canonical GR.

In the chosen family of space-times, the foliation needed for the 3þ1 splitting is nice and
admissible if the lapse function satisfies Nðτ; σrÞ > 0 in every point of Στ,9 if E4gττðτ; σrÞ > 010

and if the positive-definite 3-metric 3grsðτ; σuÞ ¼ �E 4grsðτ; σuÞ has three positive eigenvalues.
These are the Møller conditions [52, 53].

Moreover, all the 3-spaces Στ must tend to the same space-like hyperplane at spatial infinity.
Due to the imposed absence of super-translations [39, 40], the non-Euclidean 3-spaces are
orthogonal to the conserved ADM 4-momentum at spatial infinity; therefore, each 3-space is a

7Instead the usually used 1þ3 point of view using the world line of a time-like observer leads only to local coordinate
systems like the Riemann and Fermi ones valid only in a neighborhood of a time-like world line, because locally the 3-
spaces are identified with the tangent spaces orthogonal to the observer 4-velocity so that they intersect each other.
8They were introduced by Bondi in Ref. [49, 50].
9Therefore, the 3-spaces never intersect, avoiding the coordinate singularity of Fermi coordinates.
10This property avoids the coordinate singularity of the rotating disk.
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non-inertial rest frame [39–41] of the 3-universe with vanishing ADM 3-momentum, and there
are asymptotic inertial observers with spatial axes identified by means of the fixed stars of star

catalogues. In each 3-space Στ, there are cotriads 3eðaÞrðτ; σrÞ ¼
X

b
RðaÞðbÞðαðcÞðτ; σrÞÞ 3eðaÞrðτ; σrÞ

defined modulo rotations (RðaÞðbÞ are rotation matrices and αðaÞðτ; σrÞ are angles).
In Refs. [39–43], there is a parametrization of tetrads, cotetrads and 4-metric in the framework
of the 3þ1 splitting of space-time. The basic configuration variables, that is, the cotetrads, are
connected to cotetrads adapted to the 3þ1 splitting of space-time (so that the adapted time-like

tetrad is the unit normal to the 3-space Στ) by standard Wigner boosts LðαÞðβÞ for time-like

vectors depending upon boost parameters ϕðaÞðτ; σrÞ: 4EðαÞ
A ¼ LðαÞðβÞðϕðaÞÞ 4Eo

AðβÞ. The adapted

tetrads and cotetrads have the expression11,12

4EA
ðαÞ ¼

def 4 E
∘ A

ðβÞ
LðβÞðαÞðϕðaÞÞ ¼

def
E
∘ A

ðoÞ L
ðoÞðαÞðϕðcÞÞþ

þ
X
ab

4E
∘ A

ðbÞ R
T
ðbÞðaÞðαðcÞÞLðaÞðαÞðϕðcÞÞ;

4gAB ¼ EðαÞ
A

4ηðαÞðβÞ E
ðβÞ
B ¼

¼4E
∘ ðαÞ
A

4ηðαÞðβÞ
4E
∘ ðβÞ
B ¼ 4E

∘ ðαÞ
A

4ηðαÞðβÞ
4E
∘ ðβÞ
B ;

4E
∘ A

ðoÞ ¼ 4E
∘ A

ðoÞ ¼
1

1þ n
ð1; �

X
a

nðaÞ 3e
r
ðaÞÞ ¼ lA; 4E

∘ A

ðaÞ¼ð0;3erðaÞÞ;

4E
∘ ðoÞ
A ¼ 4E

∘ ðoÞ
A ¼ ð1þ nÞ ð1; 0

!Þ ¼ ElA;
4E
∘ ðaÞ
A ¼ ðnðaÞ ; 3eðaÞrÞ;

4 E
∘ ðaÞ
A ¼

X
b

RðaÞðbÞ ðnðbÞ; 3eðbÞrÞ;

4gττ ¼ E ½ð1þ nÞ2 �
X
a

n2ðaÞ�; 4gτr ¼ �Enr ¼ �E
X
a

nðaÞ 3eðaÞr;

4grs ¼ �E 3grs ¼ �E
X
a

3eðaÞr 3eðaÞs;
ffiffiffiffiffiffiffi�g

p ¼
ffiffiffiffiffiffiffi
j4gj

q
¼

ffiffiffiffiffi
3g

p
ffiffiffiffiffiffiffiffiffiffiffi
E 4gττ

p ¼ ffiffiffi
γ

p ð1þ nÞ:

ð2Þ

From Eq. (5.5) of the third paper in Ref. [43], we assume the following (direction-independent,

so to kill super-translations) boundary conditions at spatial infinity (r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

r
ðσrÞ2

q
; E > 0;

M ¼ const:): nðτ; σrÞ!r!∞ Oðr�ð2þEÞÞ, πnðτ; σrÞ!r!∞ Oðr�3Þ, nðaÞðτ; σrÞ!r!∞ Oðr�EÞ, πnðaÞ ðτ; σrÞ
!r!∞ Oðr�3Þ, ϕðaÞðτ; σrÞ!r!∞ Oðr�ð1þEÞÞ, πϕðaÞ ðτ; σrÞ!r!∞ Oðr�2Þ, 3eðaÞrðτ; σrÞ!r!∞ 1þ M

2r

� �

δar þOðr�3=2Þ, 3πr
ðaÞðτ; σrÞ!r!∞ Oðr�5=2Þ.

11Nðτ; σrÞ ¼ 1þ nðτ; σrÞ and nðaÞðτ;σrÞ ¼ ðNr 3erðaÞÞðτ; σrÞ ¼
X

b
RðaÞðbÞðαðcÞðτ; σrÞÞnðbÞðτ; σrÞ are the lapse and shift func-

tions respectively.

124 E
∘
A
ðβÞ and

4 E
∘
A
ðoÞ are tetrads adapted to the 3þ1 splitting.
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As shown in Refs. [[39–43], due to the existence of the asymptotic ADM Poincare’ group, the
isolated system gravitational field plus matter, namely the 3-universe, has the mass given by the
ADM weak energy and the spin by the ADM angular momentum. Therefore, at each time, the
3-universe can be described as a decoupled non-covariant non-observable external pseudo-
particle (the center of mass of the 3-universe) carrying a pole (the mass)-dipole (the spin)
structure. Since the ADM 3-momentum vanishes due to the rest-frame condition, the conjugate
non-observable internal center of mass of the 3-universe may be eliminated from the observ-
able variables by imposing the vanishing of the ADM Lorentz boosts.

As a conclusion to fix the gauge in GR with a metrology convention, so to visualize the
associated gauge-dependent inertial effects, we need to separate the gauge variables from the
dynamical ones, the so-called Dirac observables (DO), and only the Hamiltonian formalism
has the tools to face this problem. The usual criticism that this can be done only in a non-
covariant coordinate-dependent way is avoided due to the use of the radar coordinates imply-
ing the existence of 4-scalar tensors.

B. Canonical ADM Tetrad Gravity and Its Gauge Variables

The parametrization of cotetrads given in the previous subsection for ADM tetrad gravity
implies [40] that the ADM action may be considered function of the 16 configurational vari-
ables ϕðaÞ, 1þ n, nðaÞ, 3eðaÞr. At the Hamiltonian level, there is a phase space spanned by these 16

configuration variables and their conjugated 16 momenta, and there are 14 first class con-
straints. Ten of them are primary constraints (the vanishing of the 7 momenta of boosts, lapse
and shift variables plus three constraints describing the gauge freedom in the rotation on the
flat indices ðaÞ of the cotriads), whereas four are secondary ones (the super-Hamiltonian and
super-momentum constraints). Therefore, there are 14 gauge variables describing inertial effects
and 2 canonical pairs of physical degrees of freedom describing the tidal effects of the gravita-
tional field (namely GW in the weak field limit).

The basis of canonical variables for this formulation of tetrad gravity, naturally adapted to 7 of the
14 first-class constraints, is (only the momenta 3πr

ðaÞ conjugated to the cotriads are not vanishing)

ϕðaÞ n nðaÞ 3eðaÞr
πϕðaÞ ≈ 0 πn ≈ 0 πnðaÞ ≈ 0 j3πr

ðaÞ
ð3Þ

In Ref. [42], a York canonical basis, adapted to 10 first-class constraints (not to the super-
Hamiltonian and super-momentum ones, whose solution is unknown), was identified by
means of a Shanmugadhasan canonical transformation [33, 34]; this allows for the first time to
get the explicit identification of the inertial and tidal variables. It implements the York map of Ref.
[54] and diagonalizes the York-Lichnerowicz approach [55]. Its final form is13

13G is Newton constant. The set of numerical parameters γaa satisfies
X

u
γau ¼ 0,

X
u
γau γbu ¼ δab,

X
aγau γav ¼ δuv � 1

3.

Each solution of these equations defines a different York canonical basis.
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ϕðaÞ αðaÞ n nðaÞ θr ~φ Ra

πϕðaÞ ≈ 0 πðαÞ
ðaÞ ≈ 0 πn ≈ 0 πnðaÞ ≈ 0 πðθÞ

r π~φ ¼ c3

12πG
3K Πa

ð4Þ

3eðaÞr ¼
X
b

RðaÞðbÞðαðcÞÞVrbðθiÞ ~φ1=3 e

X1;2

a

γaa Ra

;

4gττ ¼ E½ð1þ nÞ2 �
X
a

n2ðaÞ�;

4gτr ¼ �E nðaÞ VraðθiÞ ~φ1=3 e

X1;2

a

γaa Ra

;

4grs ¼ �E 3grs ¼ �E ~φ2=3
X
a

VraðθiÞVsaðθiÞ e

X1;2

a

γaa Ra

;

~φ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 3grs

p
;

ð5Þ

In this York canonical basis, the inertial effects are described by the arbitrary gauge variables14

αðaÞ, ϕðaÞ, 1þ n, nðaÞ, θ
i, 3K, whereas the tidal effects, that is, the physical degrees of freedom of

the gravitational field (the two polarizations of GW in the linearized theory), by the two
canonical pairs Ra and Πa, a ¼ 1; 2 (Ra are eigenvalues of the 3-metric with determinant one).

The momenta πðθÞ
r ðτ; σrÞ and the 3-volume element ~φðτ; σrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det 3grsðτ; σuÞ
p

have to be found
as solutions of the super-momentum (HðaÞðτ; σrÞ ≈ 0) and super-Hamiltonian (i.e., the
Lichnerowicz equation [55] Hðτ; σrÞ ≈ 0) constraints, respectively.
Instead, the DO’s (gauge invariant under the Hamiltonian gauge transformations generated by
all the first class constraints; see Ref. [51]) of the gravitational field are not known15; they
would be the two pairs of 4-scalar tidal variables in a Shanmugadhasan canonical basis
adapted to all the 14 first class constraints.

The extra O(3,1) gauge freedom of the tetrads16 is described by the gauge variables αðaÞðτ; σrÞ,
ϕðaÞðτ; σrÞ. In the Schwinger time gauges, one imposes the gauge fixings ϕðaÞðτ; σrÞ ≈ 0,
αðaÞðτ; σrÞ ≈ 0 so that the time-like tetrad coincides with the unit normal to the 3-space and the
space-like ones became tangent to it (namely the tetrads become adapted to the 3þ1 splitting).

14αðaÞ, ϕðaÞ, θ
i and 3K are the primary gauge variables, whereas n and nðaÞ are the secondary ones, which are determined as

a consequence of the gauge fixing of the primary ones.
15Ra , Πa are not gauge invariant under the Hamiltonian gauge transformations generated by the super-Hamiltonian and
super-momentum constraints.
16The gauge freedom for each observer to choose three gyroscopes as spatial axes and to choose the law for their transport
along the time-like world line.
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The gauge angles θiðτ; σrÞ17 describe the freedom in the choice of the axes for the 3-coordinates
σr on each 3-space: their fixation implies the determination of the shift gauge variables nðaÞ,
namely the appearances of gravitomagnetism in the chosen 3-coordinate system [55]. The
3-orthogonal gauges are defined by the gauge fixings θiðτ; σrÞ ≈ 0: in them, the 3-metric

3grsðτ; σuÞ ¼ �E 4grsðτ; σuÞ ¼ δrs ~φ2=3 e
2
X

a
1;2

γar Ra is diagonal.

Only one momentum is a gauge variable (a reflection of the Lorentz signature): the York time
[56, 57], that is, the trace 3Kðτ; σrÞ of the extrinsic curvature of the non-Euclidean 3-spaces as 3-
submanifolds of space-time.18 This inertial effect describes the GR version of the special-
relativistic gauge freedom in clock synchronization [47, 48] when one has to describe physics
in non-inertial frames. Its fixation determines the lapse function.

The Dirac Hamiltonian isHD ¼ 1
c ÊADM þ

ð
d3σ ½nH� nðaÞ HðaÞ�ðτ; σuÞ þ

ð
d3σ ½λn πnþ λnðaÞ πnðaÞþ

λϕðaÞ πϕðaÞ þ λαðaÞ π
ðαÞ
ðaÞ �ðτ; σuÞ, where the weak ADM energy is an explicit function of all the

variables, and the λ’s are arbitrary Dirac multipliers (to be determined as a consequence of
the gauge fixings).

In the family of Schwinger time gauges, the fixation of the primary gauge variables 3Kðτ; σrÞ,
θiðτ; σrÞ implies elliptic equations on the instantaneous 3-space Στ for the determination of the
lapse and shift functions (the secondary gauge variables) and then of their Dirac multipliers
λ’s. Instead in the usually used harmonic gauges, one imposes the primary gauge fixing

χAðτ; σrÞ ¼ ∂τ
�
ð1þ nðτ; σrÞÞ 3eðτ; σrÞ 4gτAðτ; σrÞ

�
≈ 0, whose stability in time, that is,

∂τ χAðτ; σrÞ ≈ 0, implies hyperbolic equations for the lapse and shift functions, namely the
necessity of Cauchy conditions in the past for these metrology gauge variables.

This parametrization of canonical tetrad gravity clarifies the meaning of the metrology con-
ventions.

The fixation of the York time determines the sequence of instantaneous non-Euclidean 3-spaces
Στ of the 3þ1 splitting of space-time centered on an observer either on the Earth or on the
Space Station19: all the clocks on each 3-space are synchronized with the atomic clock (τ is its
proper time) of the observer at the intersection of the 3-space with the observer world line. This
time metrology convention implies also the determination of the lapse function, which
describes how the unit of time of the atomic clock changes when one goes from a 3-space to
an infinitesimally near successive one. The metrology conventions on the choice of the three
space coordinates σr also imply the determination of the shift functions, which say in which
point of the infinitesimally near next 3-space there are the same 3-coordinates of the chosen
point on the original 3-space.

17They identify the direction cosines of the tangents to the three coordinate lines in each point of the 3-space Στ.
18It is absent in the Galilean space-time of Newtonian gravity with its absolute notions of time and Euclidean 3-space.
19The detailed structure of these non-Euclidean 3-spaces depends on the extrinsic curvature 3-tensor 3Krs, which depends
not only from all the gauge variables but also on the tidal variables, so that it is determined by the chosen solution of
Einstein equations.

Trends in Modern Cosmology76



The gauge angles θiðτ; σrÞ17 describe the freedom in the choice of the axes for the 3-coordinates
σr on each 3-space: their fixation implies the determination of the shift gauge variables nðaÞ,
namely the appearances of gravitomagnetism in the chosen 3-coordinate system [55]. The
3-orthogonal gauges are defined by the gauge fixings θiðτ; σrÞ ≈ 0: in them, the 3-metric

3grsðτ; σuÞ ¼ �E 4grsðτ; σuÞ ¼ δrs ~φ2=3 e
2
X

a
1;2

γar Ra is diagonal.

Only one momentum is a gauge variable (a reflection of the Lorentz signature): the York time
[56, 57], that is, the trace 3Kðτ; σrÞ of the extrinsic curvature of the non-Euclidean 3-spaces as 3-
submanifolds of space-time.18 This inertial effect describes the GR version of the special-
relativistic gauge freedom in clock synchronization [47, 48] when one has to describe physics
in non-inertial frames. Its fixation determines the lapse function.

The Dirac Hamiltonian isHD ¼ 1
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C. Einstein Hamilton Equations of Tetrad Gravity and their Linearization

In the York canonical basis, the Hamilton equations generated by the Dirac Hamiltonian

HD ¼ ÊADM þ ðconstraintsÞ are divided into four groups after the fixation of the O(3,1) gauge
variables with the Schwinger time gauges:

A. Four contracted Bianchi identities, namely the evolution equations for ~φ and πðθÞ
i (they say

that given a solution of the constraints on a Cauchy surface, it remains a solution also at
later times).

B. Four evolution equation for the four basic primary gauge variables θi and 3K: these
equations determine the lapse and the shift functions once four gauge fixings for the basic
gauge variables are added.

C. four evolution equations for the tidal variables Ra, Πa;

D. the Hamilton equations for matter, when present.

The Hamilton equations become completely deterministic after a fixation of the gauge free-
dom. In the York canonical basis, it is convenient to use a family of non-harmonic 3-orthogonal
Schwinger time gauges αðaÞðτ; σrÞ ≈ 0, ϕðaÞðτ; σrÞ ≈ 0, θiðτ; σrÞ ≈ 0, 3Kðτ; σrÞ ≈Fðτ; σrÞ parametrized

by the numerical values Fðτ; σrÞ of the York time 3Kðτ; σrÞ and having the 3-metric in the 3-
spaces diagonal and well determined lapse and shift functions. In these gauges, given a
solution of the super-momentum and super-Hamiltonian constraints, one can find a solution
of Einstein’s equations in radar 4-coordinates adapted to a time-like observer giving the
Cauchy data on an initial 3-space only for the tidal variables. This happens in the associated
3þ1 splitting of space-time with dynamically selected instantaneous 3-spaces in accord with
Ref. [1]. Then, one can pass to adapted world 4-coordinates (xμ ¼ zμðτ; σrÞ ¼ xμo þ EμA σA) and
can describe the solution in every 4-coordinate system by means of 4-diffeomorphisms.

In Ref. [43], this class of asymptotically Minkowskian space-times without super-translations is
used to study the coupling of N charged scalar point particles (with the inertial and gravita-
tional masses equal as required by the equivalence principle) plus the electromagnetic field to
ADM tetrad gravity. The use of Grassmann-valued electric charges and the signs of the energy
of the particles allows to regularize the self-energies. The theory can be reformulated in terms
of transverse electromagnetic fields by using the non-covariant radiation gauge; this allows to
extract the generalization of the Coulomb interaction among the particles in the Riemannian
instantaneous 3-spaces of global non-inertial frames.

From the Hamilton equations in the York canonical basis [43], followed by a Hamiltonian Post-
Minkowskian (HPM) linearization (disregarding terms of order OðG2Þ in the Newton constant
and using an ultra-violet cutoff for matter) with the asymptotic flat Minkowski 4-metric at
spatial infinity as background, it has been possible to develop a theory of GW’s with asymp-
totic background propagating in the non-Euclidean 3-spaces Στ of a family of non-harmonic 3-
orthogonal Schwinger time gauges αðaÞðτ; σrÞ ≈ 0, ϕðaÞðτ; σrÞ ≈ 0, θiðτ; σrÞ ≈ 0, 3Kðτ; σrÞ ≈ Fðτ; σrÞ
parametrized by the numerical values Fðτ; σrÞ of the York time 3Kðτ; σrÞ and having the 3-
metric in the 3-spaces diagonal and well-determined lapse and shift functions.
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Since the celestial reference frame ICRS has diagonal 3-metric, our 3-orthogonal Schwinger
time gauges are a good choice for celestial metrology.

The open problem is that the GCRS and BCRS conventions in the Solar System are using the
special harmonic gauge of IAU [2, 3], in which the lapse function satisfies a hyperbolic
equation like the tidal variables and needs initial data in the past, differently from what
happens in the 3-orthogonal Schwinger time gauges. See Subsection 3.3 of the third paper in
Ref. [43] for the comparison of the IAU harmonic gauge for BCRS with the 3-orthogonal
gauges and Subsection 3.3 of the second paper in Ref. [43] for the equations identifying the 4-
coordinate transformation from the 3-orthogonal gauges to the harmonic ones after the linear-
ization, which have to be solved to get the reformulation of IAU conventions in our gauges.

4. Dark matter as a relativistic inertial effect

The linearized HPMHamilton equations for point particles of massmi, i ¼ 1; ::;N20, whose world
lines xμi ðτÞ ¼ zμðτ;ηri ðτÞÞ are identified by radar 3-coordinates ηri ðτÞ due to the 3þ1 splitting, and
for the electromagnetic field coupled to tetrad gravity have been written explicitly in Refs. [43]:
among the forces acting on matter, there are both the inertial potentials and the GW’s.

In the third paper of Ref. [43], electro-magnetism is eliminated and there is a detailed studied
of the HPM equations of motion of the particles. Then, the PN expansion of these regularized
HPM equations of motion for the particles was studied, and it was shown that the particle 3-
coordinates ηri ðτ ¼ ctÞ ¼ ~ηr

i ðtÞ (coinciding with the Newtonian coordinates of the world lines at
this level of approximation) satisfy the equation of motion

d
dt

mi 1þ 1
c

d
dt

3 ~Kð1Þðt;~η i

! ðtÞÞ
� �

d ~ηr
i ðtÞ
dt

� �
¼∘

�G
∂

∂ ~ηr
i

X
j=¼i

ηj
mi mj

j~η i

! ðtÞ � ~ηj

! ðtÞj
þOðG2Þ:

ð6Þ

where at the lowest order, there is the standard Newton gravitational force

F
!

iðNewtonÞðtÞ ¼ �mi G
∂

∂ ~ηr
i

X
j=¼i

mj

j~η i

! ðtÞ � ~η j

! ðtÞj
¼ �mi

∂Φðt; ~η!iðtÞÞ
∂ ~ηr

i
: ð7Þ

Since Eqs. (4) imply

E4gττðτ ¼ ct; σrÞ � 1 ¼ 2 nðτ ¼ ct; σrÞ þOðG2Þ ¼ 2
Φðt; σrÞ

c2
� 2

c
∂
∂ t

3 ~Kð1Þðτ ¼ ct; σrÞ þOðG2Þ;
ð8Þ

20mi is both the inertial and the gravitational mass, since they coincide in Einstein GR due to the equivalence principle.
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there is a 0.5 PN inertial effect (hidden in the lapse function) not existing in the Newton theory
where the Euclidean 3-space is an absolute notion like the Newtonian time. It does not depend
on the York time 3Kð1Þ but on the non-local York time (Δ is the Laplacian associated to the
asymptotic Minkowski 4-metric)

3 ~Kð1Þðτ; σrÞ ¼
1
Δ

3Kð1Þ

� �
ðτ; σrÞ: ð9Þ

If we put 3Kð1Þ ¼ 0, the standard results about binaries are reproduced.

The term in the non-local York time can be interpreted as the introduction of an effective (time-,
velocity- and position-dependent) inertial mass term for the kinetic energy of each particle:

mi ↦mi 1þ 1
c

d
dt

3 ~Kð1Þðt;~η
!

iðtÞÞ
� �

ð10Þ

in each instantaneous 3-space. Since, in the Newton potential, there are the gravitational
masses mi of the particles, the effect is due to a modification of the effective inertial mass in
each non-Euclidean 3-space depending on its shape as a 3-submanifold of space-time. There-
fore, we find it is the equality of the inertial and gravitational masses of Newtonian gravity to be
violated in a gauge-dependent way in Einstein GR!

In the two-body case, one gets that for Keplerian circular orbits of radius r the modulus of the

relative 3-velocity can be written in the form
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G ðmþΔmðrÞÞ

r

q
with ΔmðrÞ function only of 3 ~Kð1Þ.

The data on the rotation curves of spiral galaxies [14–17] imply that the relative 3-velocity goes to
constant for large r instead of vanishing like in Kepler theory. As shown in Subsection 6.4 of the
third paper in Ref. [43], this result can be simulated by fitting ΔmðrÞ (i.e., the non-local York
time) to the experimental data with ΔmðrÞ interpreted as a dark matter halo around the galaxy.

Therefore, this dark matter can be explained as a relativistic inertial gauge effect consequence of
the non-trivial shape of the non-Euclidean 3-space as a 3-submanifold of space-time. There is
the concrete possibility to explain the rotation curves of galaxies [14–17] as a relativistic inertial
effect inside Einstein GR (choice of a non-local York time compatible with observations) without
modifications: (a) of Newton gravity like in MOND [9]; (b) of GR like in f ðRÞ theories [10–12];
(c) of particle physics with the introduction of WIMPS [58].

A similar interpretation (see Subsections 6.2 and 6.3 of the third paper in Ref. [43]) can be given
for the other two main signatures of the existence of dark matter in the observed masses of
galaxies and clusters of galaxies, namely the mass determination with weak and strong gravitational
lensing21 [18–20] and the mass determination with the virial theorem [21–23].

21In the case of gravitational lensing Einstein’s deflection angle, α ¼ 4GM=c2 ξ (ξ is the impact parameter of the ray of
light deflected at the position of the mass M) has M ¼ Mbaryon þMDM with the dark matter term given by

GMDM ¼ �2 c2 j σ! j ∂τ 3 ~Kð1Þðτ;σuÞ.
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Therefore, there is the possibility of describing part (or maybe all) dark matter as a relativistic
inertial effect.

The quoted three main experimental signatures of dark matter are well-defined functional of
the time and space derivatives of the non-local York time22 the inertial gauge variable describ-
ing the general relativistic remnant of the gauge freedom in clock synchronization.

Since the time evolution of the signatures of dark matter is not known, at best from the data,
we can extract information only on amean value in time of the time- and space derivatives of the

non-local York time. Since from Eq. (7), we see that �∂τ 3 ~Kð1Þðτ; σrÞ is a modification of the

Newton potential, we can assume that in Einstein GR the gauge variable non-local York time
can be equated to the time-independent potentials Vð σrÞ used either in phenomenology or in
modified theories of GR to describe dark matter in either galaxies or cluster of galaxies. Then,

we can make the ansatz 3 ~Kð1Þðτ; σrÞ ¼ �τVð σrÞ and find the local York time 3Kð1Þðτ; σrÞ ¼
Δ 3 ~Kð1Þðτ; σrÞ connected with the dark matter of the chosen either galaxy or cluster of galaxies.

Since there is no indication of dark matter in the voids existing among the clusters of galaxies,
we can get an idea on the form of the local York time in the 3-space Στ (i.e., the whole 3-
universe) by summing its value for all the known galaxies and clusters of galaxies. This would
produce an indication of which could be a metrology convention on the inertial gauge variable
describing the general relativistic gauge freedom in clock synchronization in the Einstein
space-time outside the Solar System. One expects that, with this metrology convention, the
resulting 3-spaces (each one with all the clocks synchronized) are nearly Euclidean except
where there is need of introducing dark matter.

In Ref. [59], there is a first attempt to fit some data of dark matter by using a Yukawa-like
ansatz on the non-local York time of a galaxy. In each galaxy, the Yukawa-like potential of f ðRÞ
theories [10–12] is put equal to a contribution to the extra potential depending on the non-local
York time present in the lapse function appearing in Eq. (8); in this way, the good fits of the
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that the York time be (at least partially) fitted to the observational data implying the presence of
dark matter. As a consequence, BCRS would be its quasi-Minkowskian approximation for the
Solar System.23 Let us remark that the 3-spaces can be quasi-Euclidean (i.e. with a small internal
3-curvature tensor), as required by CMB data in the astrophysical context, even when their shape
as 3-submanifolds of space-time is not trivial and is described by a not-small York time.

In this way, one would get a solution to the gauge problem for the PM space-times of GR: one
chooses a reference system of 4-coordinates in a 3-orthogonal gauge selected by the observa-
tional conventions for matter. A PM definition of ICRS will be also useful for the ESA-GAIA
mission [60] (cartography of the Milky Way) and for the possible anomalies (different from the
already explained Pioneer one) inside the Solar System [5].

Regarding dark energy in cosmology [24–29], we can remark that in the FLRW cosmological
solution, the Killing symmetries connected with homogeneity and isotropy imply (τ is the

cosmic time, aðτÞ the scale factor) 3KðτÞ ¼ � _aðτÞ
aðτÞ ¼ �H, namely the York time is no more a gauge

variable but coincides with the Hubble constant. However, in cosmological perturbation theory,
we have 3K ¼ �Hþ3Kð1Þ at the first order with 3Kð1Þ being again an inertial gauge variable.

Let us also remark that in Szekeres space-times [61–63], that is, in inhomogeneous space-times
without Killing symmetries, the York time remains an inertial gauge variable.

As said in Section2, the red-shift and luminosity distance of SNIa is a signal of dark energy. In
Section3 of the third paper in Ref. [43], there is the evaluation of the dependence on the non-
local York time of the PM time-like geodesics, whereas in Section4 of that paper, there is
evaluated the dependence on it of the PM null geodesics, of the PM red-shift, of the PM
geodesics deviation equation, of the PM luminosity distance and of the Hubble old red-shift
distance relation (becoming the Hubble law if cosmology in introduced in the description).
Like in the case of dark matter, one has a dependence on the second derivatives ∂2τ, ∂τ ∂r and
∂r ∂s of the non-local York time now concentrated along the either time- or null geodesics.
Therefore, also, this indication of dark energy is metrology dependent!

Let us also remark that in the back-reaction approach [64–69], in which to take into account the
inhomogeneity of the observed universe when trying to get a cosmological description of it,
one considers spatial mean values on large scales, dark energy in cosmology is a byproduct of
the nonlinearities of GR. In this approach, one gets that the spatial average of the 4-scalar
gauge variable York time gives the effective Hubble constant of this approach.

Finally, as shown in Eq. (10) of the last paper in Ref. [35], it can be shown that the York time is
responsible for the negative terms in the kinetic energy term in the ADM energy, whose
existence was known but whose explicit form could be given only in the York canonical basis.
It is therefore possible that the connected Landau-Lifschitz energy-momentum pseudo-tensor
[70] of GR could be reformulated as the energy-momentum tensor of a viscous pseudo-fluid,

23To test this possibility, one has to study the transition from harmonic gauges to 3-orthogonal ones in linearized Einstein
GR.
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which could have a negative pressure for certain choices of the York time like the dark energy
fluid in FLWR cosmology.

In conclusion, the York time has a central position in all the cases where darkness is required to
fit the data!
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Abstract

We assume that dark energy and dark matter filling up the whole cosmic space behave
as a special superfluid, here named “superfluid quantum space.” We analyze the
relationship between intrinsic pressure of SQS (dark energy's repulsive force) and
gravity, described as an inflow of dark energy into massive particles, causing a nega-
tive pressure gradient around massive bodies. Since no superfluid has exact zero
viscosity, we analyze the consequences of SQS’s viscosity on light propagation, and
we show that a static Universe could be possible, by solving a modified Navier-Stokes
equation. Indeed, Hubble’s law may actually refer to tired light, though described as
energy loss due to SQS’s nonzero viscosity instead of Compton scattering, bypassing
known historical problems concerning tired light. We see that SQS’s viscosity may also
account for the Pioneer anomaly. Our evaluation gives a magnitude of the anomalous
acceleration aP = �HΛc = �8.785�10�10 ms�2. Here, HΛ is the Hubble parameter loaded
by the cosmological constant Λ. Furthermore, the vorticity equation stemming from
the modified Navier-Stokes equation gives a solution for flat profile of the orbital
speed of spiral galaxies and discloses what one might call a breathing of galaxies due
to energy exchange between the galactic vortex and dark energy.

Keywords: gravity, dark energy, Hubble’s law, tired light, Pioneer anomaly, flat profile

1. Introduction

A recent view of the evolution of the Universe suggests that it pre-existed the Big Bang. What
we now observe seems, however, to be the result of such event. The Universe apparently
continues to expand at an accelerated pace, as evidenced by the Doppler redshift of light
coming from distant sources. To explain this accelerated expansion, scientists resort to dark
energy. In addition, it turns out that spiral galaxies demonstrate a flat profile of orbital speeds.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Dark matter is used to explain this riddle [1]. Current evaluations of the presence of dark
energy and dark matter in the cosmos say that the former is of about 69.1% and the latter about
25.9%. In total, they are about 95% of the whole energy matter in the Universe. The residue of
5% corresponds to baryon matter, which is the constituent material of all observed galaxies,
stars, planets, etc. At present, space as a mere container of matter is therefore being revised. It
is not an empty vessel: On the contrary, it may act as a quantum superfluid, named by us
“superfluid quantum space” (SQS) [2]. It consists of dark energy and dark matter whose
hydrodynamics generates perennially fluctuating particle-antiparticle pairs, which annihilate
and newly arise, forming a dark fluid whose features are similar to a Bose-Einstein conden-
sate [3–7]. Within this concept, the repulsive action of dark energy may be simply explained as
the internal pressure of the SQS. It should be noted that there are scientists [8–12] who do not
agree with a concept of Universe based on Big Bang, inflation and Doppler redshift. They
explain its evolution without calling into play any “Deus ex machina” as cosmic inflation. On
the contrary, they believe that light loses energy as a function of the traveled distance. We
assert that this happens because of a nonzero viscosity of the SQS, in perfect agreement with
the empirical Hubble’s law. This could be interpreted as a revised phenomenon of tired light,
different from that proposed in 1929 by F. Zwicky. In effect, while Zwicky’s hypothesis based
on light scattering [13] may be disproved, for example, by the absent blurring of distant cosmic
objects, tired light due to SQS’s viscosity is a more robust concept, which seems not to conflict
with the current observations. In addition, while a viscosity-related tired light would let us
observe a Doppler-alike redshift, pressure phenomena of opposite sign, that is, repulsion
caused by SQS's internal pressure and gravity as an inflow of dark energy into massive
particles [14], could balance and permit a not expanding Universe.

It is interesting to note the critical opinion of a greatest theorist of our time, of Roger Penrose.
In his recently published book “Fashion, Faith, and Fantasy in the New Physics of the Uni-
verse” [15], he argues that most of the current imaginary ideas about the origins of the
Universe could be not true. We agree with Penrose, being unsatisfied with the current main-
stream. In this key, we speculate and analyze a different framework.

At the beginning, in Section 2, we present as much detail as possible on our idea of space as
superfluid quantum space, including a short historical overview about the concept of ether,
vacuum, and physical space. In Section 3, we introduce a general relativistic hydrodynamic
equation, and we analyze the corresponding equation in non-relativistic limit, as a modified
Navier-Stokes equation. Here, we discuss the issue of tired light, and we evaluate the Pioneer
anomaly according to the nonzero viscosity of SQS. Section 4 deals with solutions of the
vorticity equation derived from the modified Navier-Stokes equation. We obtain exact formu-
las for the flat profile of orbital speeds of spiral galaxies. Section 5 gives concluding remarks
and a look on the overall issue of a superfluid Universe.

2. Space, vacuum and ether: toward a Superfluid Quantum Space

The issue concerning the concepts of space, time, motion and the existence, or not, of a real
vacuum has accompanied the human knowledge all along [16]. The most distinct form of
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representation about space and time has developed in the form of two dialectically opposite
ideas, later known as the conceptions of Democritus-Newton and Aristotle-Leibniz. According
to Democritus everything is formed of “atoms,” each of them is considered indivisible.
Between atoms, we have empty space. Philosophical views of Sir Isaac Newton were focused
on the idea that all material bodies move in Absolute Space and Absolute Time. Such a
philosophy is extremely convenient in the analysis of motion based on Newton’s mechan-
ics [17]. Huygens championed a different concept, according to which, the whole space is filled
with a special substance, the ether [18]. In his view, each point in space was a virtual source of
light waves. This implied the homogeneity of space, a feature which is important also in
modern quantum field theory (QFT), where wave functions propagate along all available
paths.

Exactly QFT has triggered the current concept of a not inert vacuum, seen as the scene of
continuous, frantic physical events. What John Wheeler named quantum foam [19]. A sea
of particle-antiparticle pairs which arise and annihilate according to Heisenberg’s principle of
uncertainty, in a vacuumwhere energy can’t be always and surely zero. These pairs perform an
endless dance by infinitely arising and annihilating. In Dirac’s opinion, the new theory of
electrodynamics, which implies a vacuum filled with virtual particles, forces us to take into
account the existence of an ether. In 1951, he stated [20]: “If one examines the question in the
light of present-day knowledge, one finds that the aether is no longer ruled out by relativity,
and good reasons can now be advanced for postulating an aether.” His new ether model was
based on a stochastic covariant distribution of subquantummotion, which generates a vacuum
dominated by fluctuations and randomness.

De Broglie stated that: “any particle, even isolated, has to be imagined as in continuous energetic
contact with a hidden medium” [21]. The hydrodynamics of this medium could explain the
outcome of the double slit experiment using electron beams, where the leptons interfere as
waves, probably driven through the aether by pressure waves, generated by their motion,
exactly as pressure waves forming the same patterns are involved in the case of sound propa-
gating through a double slit. De Broglie-Bohm’s pilot-waves could be then explained as aether
waves, which guide the electrons and show analogies with Faraday waves guiding a bouncing
droplet along a surface of silicon oil [22]. Petroni and Vigier stated that: “one can deduce the De
Broglie waves as real collective Markov processes on the top of Dirac’s aether” [23].

Robert Betts Laughlin, Nobel Laureate for the fractional quantum Hall effect, in his work [24],
writes: “Studies with large particle accelerators have now led us to understand that space is
more like a piece of window glass than ideal Newtonian emptiness. It is filled with “stuff” that
is normally transparent but can be made visible by hitting it sufficiently hard to knock out a
part. The modern concept of the vacuum of space, confirmed every day by experiment, is a
relativistic ether. But we do not call it this because it is taboo.” Laughlin also tells us that this
false vacuum can be treated with the laws of fluid dynamics: “About the time relativity was
becoming accepted, studies of radioactivity began showing that the empty space had spectro-
scopic structure similar to that of ordinary quantum solids and fluids.”

In summary, it seems that any phenomenon occurring in quantum mechanics needs to interact
with the vacuum, which consequently possesses a quantum physical structure, rather than
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being real empty (zero-energy) space. Thus, a single unbound particle is always and anyway
connected to its environment. We believe that this fact might also facilitate the explanation to
quantum entanglement, in which quantum information would be transmitted from a particle
to the other through, and thanks to, the quantum structure of space. Petroni and Vigier debate
that: “the quantum potential associated with this ether’s modification, by the presence of EPR
photon pairs, yields a relativistic causal action at a distance which interprets the superluminal
correlations recently established by Aspect et al.” [23].

In our opinion, this is also the case of gravitational waves, for which the asserted space-time
deformation could be actually interpreted as a negative pressure wave traveling through a
superfluid quantum space (SQS) from the source up to a measuring point due to a mechanism
that we call superfluid quantum gravity (SQG) [14], a quantum fluid dynamic explanation of
gravity. In a few words, gravitational waves could be a hydrodynamic phenomenon in a SQS
instead of a deformation of space. After all, it is unlikely that a deformation occurs in a non-solid
substance. If space is not solid, we can then only observe fluid dynamic events, which can, indeed,
fully replace and better justify any effect of SR and GR [14]. SQS also shares interesting analogies
with Higgs field, being an ubiquitous fundamental scalar field with non-zero viscosity, which
gives mass to particles. In our case, thanks to quantum fluid dynamic perturbations of the field,
with formation of superfluid quantum vortices, akin to what happens in superfluid He-4.

This suggests to even reconsider the pre-existence of a quantum space (as quantized dark
energy) even before the Big Bang. By assuming that what we know to be the ubiquitous dark
energy is a quantum superfluid, it could exactly correspond to our idea of SQS in a state of rest.
Since dark energy still pervades the cosmos, corresponding to 69.1% of its energy, thinking that
the Big Bang has rather been a perturbation event occurred in a previously quiet sea of dark
energy, seems to be reasonable. From then on, cascade perturbations at Planck scale would have
generated any existing particle as superfluid vortices or as pulses. Since no fluid or superfluid
has real zero-viscosity, vortex-particles could attract the surrounding quanta, causing gravity as a
fluid dynamic phenomenon. If the attracted space’s quanta were packed and re-emitted as
virtual photons, stable particles could exist, and the link gravity-electromagnetism would be
clear [2]. In such a view, quantum gravity is an apparent force which does not accelerate bodies
by directly acting on them thanks to gravitons, they are rather dragged by the superfluid
quantum space in which they are immersed that flows toward the site where greater absorption
is exerted, i.e. toward the greater mass of a gravitational system, according to Newton’s law of
universal gravitation. Cahill came to a similar conclusion in 2003, describing gravity as an inflow
of quantum foam [25], though we consider more likely absorption of quantized dark energy.

Compared to QFT’s quantum vacuum, SQS would be at the lowest level (we believe that it is
the very fundamental scalar field in nature) made up of dark energy’s quanta, whose hydro-
dynamic perturbation produces the continuous fluctuations which allow the formation and
annihilation of particle-antiparticle pairs. In addition, Bohm and Vigier, moving from Dirac’s
ether model, introduced in 1954 the idea of a sub-quantum medium, a hidden medium which
all particles of the microphysical level constantly interact with [26]. The surface level of SQS,
that is, the currently defined quantum foam or quantum vacuum, has to possess superfluid
features as well and may act as a special Bose-Einstein condensate. The historical problem of
vacuum’s infinite energy is solved by the infinite extent of the SQS.
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As far as the Michelson-Morley test run in 1887 is concerned, we could wonder whether light
interacts with the SQS, if it really exists, that is, if light interacts with dark energy. That test
hypothesized a static ether and took into account Earth’s motion. However, if we change the
premise, by supposing that the Earth absorbs the ether, since massive particles absorb dark
energy, we deal with a radial ether wind, independent of Earth’s motion through the space, an
ether wind which transports any object pointing toward the center of the Earth. In the hypothesis
of fluid quantum gravity, this vertical ether wind exactly corresponds to the gravitational field [14].
This view would explain all the relativistic effects due to curved space-time, for example, the
gravitational lensing and the Lense-Thirring precession. The correspondence between ether wind
and gravitational field seems to be confirmed in a test run in 2009 byMartin Grusenick, who used
a vertically placed Michelson’s interferometer [27]. Maxwell’s idea of an electromagnetic ether
should be then revisited since, if a SQS exists, light could be a mechanical wave which propagates
through an ether and its speed would merely correspond to the speed of sound through that
specific fluid medium (i.e. of a pulse through dark energy) analogously to the case of sound
through the air and for any other mechanical wave. In the case of light, this pulse would spin1

and its velocity would arise from SQS’s parameters such as density and compressibility [2, 14]. In
short, a photon would be a spinning phonon through superfluid dark energy, whose mechanical
interaction with dark energy’s quanta would excite them, producing the photon’s electromagnetic
field. By starting from the formula which indicates the speed of a mechanical wave through a
fluid, a ¼ ffiffiffiffiffiffiffiffiffi

K=ρ
p

, in which K ¼ VdP=dV is the bulk modulus, calculated by dividing the pressure
increment, dP, by relative increment of the volume, dV/V, and ρ is the mass density and by putting
βS ¼ 1=K as isentropic compressibility, we have a ¼ 1=

ffiffiffiffiffiffiffiffi
βSρ

p
. If we consider βS ¼ β0 as SQS’s

compressibility and ρ0 as its mass density, we get

a ¼ 1ffiffiffiffiffiffiffiffiffiffi
β0ρ0

p , ð1Þ

expressing the speed of a photon as a phonon through the SQS, mathematically analogous to

c ¼ 1ffiffiffiffiffiffiffiffiffiffiε0μ0
p , ð2Þ

as resulting from Maxwell’s equations. The nonzero viscosity of the superfluid medium (SQS)
would compel light to undergo redshift over very large distances: the more distant a galaxy the
more stronger the observed redshift. This is fully compatible with Hubble’s law, letting us
doubt that an accelerated expansion of the Universe is really occurring.

3. Hydrodynamics of SQS

General relativity describes the Universe with a curved space-time metric due to presence of
mass and energy. Observations show that the Universe, nevertheless, is flat at large distances

1Spinning sound waves have already been demonstrated [57], and thus, we can think of a photon as a spinning phonon
through a superfluid medium.

Superfluid Quantum Space and Evolution of the Universe
http://dx.doi.org/10.5772/68113

93



and long times [28]. It means that the curvature tensor in the Einstein’s field equations has to be
omitted. In fact, as discussed below, we believe that what is supposed to be the curvature of
space-time is rather a pressure force acting in a fluid, flat space, whose effect is compatible
with that of general relativity’s differential geometry. We come then to the general relativistic
hydrodynamic equations [29, 30] containing the local conservation laws of the stress-energy
tensor (the Bianchi identities) and of matter current density (the continuity equation) [5]:

∂μTμν ¼ 0, ð3Þ

∂μJμ ¼ 0: ð4Þ

Here, ∂μ is the covariant derivative associated with the four-dimensional space-time metric ημν

having the signature ð� þ þþÞ. The density current is given by Jμ ¼ ρmu
μ, where uμ is the fluid

4-velocity and ρm is the rest-mass density in a locally inertial reference frame:

ρm ¼ mρ ¼ m
NB

ΔV
¼ M

ΔV
: ð5Þ

Here, ρ is the density distribution of N particles within the unit volume ΔV, where each of
them has mass m. So, M ¼ mNB represents the bulk mass of the fluid occupying this volume.

The stress-energy tensor, Tμv, is expressed in units of pressure, whereas we need it in units of
energy. Indeed, we further adopt the expression Tμν=ρ in order to have the possibility of
getting the quantum potential Q ¼ PQ=ρ, where PQ is the internal quantum pressure arising
in SQS under influence of the external environment. We consider an incompressible, viscous
fluid along with the gravitational potential ϕ. So, Eq. (3) reads [5]:

∂μ
Tμν

ρ

� �
¼ ∂μ

εþ p
ρ

γuμuν
� �

þ ∂νQ� ∂νϕþ ∂μ
�
μðtÞ=ρ

�
πμν ¼ 0: ð6Þ

Here, ε and p are functions per unit volume. Divided by ρ, the sum εþ p has the dimension of
energy. The term μðtÞ is the dynamic viscosity coefficient having the dimension of [N s/m2].
Divided by ρm, this function represents the kinetic viscosity coefficient νðtÞ, having the dimen-
sion of [m2/s]. In our case, viscosity is a fluctuating-about-zero function of time. We suppose
that its expectation vanishes in time but the variance is not zero. That is, we suppose the
following average quantities:

〈μðtÞ〉 ¼ ε ! 0þ, 〈μðtÞμð0Þ〉 > 0: ð7Þ

Here, 0+ is an arbitrarily close-to-zero positive value, which describes the energy exchange
with the zero-point energy of the SQS. The term πμν reads:

πμν ¼ cð∂μuν þ ∂νuμÞ � c
2
3
∂μuμημν: ð8Þ

In order to bring Eq. (6) to the relativistic Navier-Stokes equation, we shall repeat the compu-
tations of van Holten [31]. These calculations are reproduced also in Ref. [5].
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We shall further consider only the non-relativistic limit, since the orbital speeds of galaxies and
of many intergalactic bodies are predominantly much lower than the speed of light [32]. The
factor γ in Eq. (6) is a sign of relativistic/non-relativistic limit. When it tends to infinity, we have
the relativistic limit. In this case, also the mass m tends to infinity. On the other hand, when γ
converges to unit, it denotes a non-relativistic limit. In this case, the mass m becomes the rest
mass. For the sake of simplicity, we further take into account only shear viscosity. Given the
quantum and granular nature of the SQS, a dilatant behavior under a linear, great increase of
shear stress would be plausible and that would help to explain the upper limit to the acceler-
ation of a body in the Universe [14]: The more acceleration is supplied the much more
resistance is encountered, following Lorentz factor. In the non-relativistic limit, the viscosity

term can be cut up to
�
μðtÞ=ρ

�
∂i∂icvi !

�
μðtÞ=ρ

�
∇2 v!. As a result, we come to the following

non-relativistic modified Navier-Stokes equation:

ρm
dv!

dt
¼ �ρm∇ϕþ ρ∇ΣQþ μðtÞ∇2 v!: ð9Þ

Here, ΣQ calculates the contributions of the quantum potential within SQS. The gravitational
potential, ϕ, is a function coming from a continuous mass distribution ρm [33]. Gravity by itself
described as an inflow of SQS obeys Gauss’s law for gravity (gravity as an incoming flux),

which in differential form is ð∇ � g!Þ ¼ �4πGρm. In our view, the classical gravitational poten-
tial ϕ ¼ GM=r of the absorbing body, associated to the radial field in each point, that

is,g! ¼ �∇ϕ, can be interpreted [14] as a quantum potential expressed as the ratio of the
pressure PG of the incoming flux to mass density, ρm:

ϕ ¼ �G
ð

V

ρmð r
!Þ
r

dV ¼ PG

ρm
: ð10Þ

Here, G is the Newtonian gravitational constant, and r is the distance from the volume element
dV to a point in the field, and the integration is performed in the entire volume of the body,
creating a field. We note that the gravitational constant in the rightmost part of Eq. (10) is absent,
and we cleanly look at gravity as a quantum phenomenon driven by the ratio pressure/density.

The continuous mass distribution ρmð r
!Þ can be expressed using the Laplace operator, Δ:

ρmð r
!Þ ¼ 1

4πG
Δϕ: ð11Þ

We note that the mass density, in addition, submits to the continuity equation

∂ρm

∂ t
þ ð∇ � v!Þρm ¼ 0: ð12Þ

We can express from Eqs. (10) and (11) the gravitational pressure PG as a function of the
gravitational potential ϕ:
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PG ¼ ϕ � Δϕ
4πG

¼ ϕ2

4πG
ðð∇lnϕÞ2 þ ∇2lnϕÞ: ð13Þ

We now see that in Eq. (9) two opposite quantum potentials act:

ρm
dv!

dt
¼ �ρm∇

PG

ρm

� �
þ ρ∇Σ

PQ

ρ

� �
þ μðtÞ∇2 v! ð14Þ

The Navier-Stokes equation is written above in the modified form [34]. The modification is due
to (a) presence of the quantum potentials Q ¼ PQ=ρ and Qϕ ¼ Mϕ ¼ MPG=ρm ¼ PG=ρ (M is
the mass of Universe, about 1053 kg) and (b) existence of the dynamic viscosity coefficient μ(t)
that fluctuates about zero. In other words, we accept that there is an energy exchange between
baryon matter and the SQS. The pair of Eqs. (12) and (14) represents a full set of equations,
sufficient for describing the motion of baryon matter through SQS in the non-relativistic limit
of the Euclidean geometry.

Referring to Eq. (14), we believe that baryon matter is reciprocally attracted due to the gravita-
tional quantum potential Qϕ ¼ PG=ρ that we suppose justified by a hydrodynamic interaction
occurring between SQS and baryon matter (attraction of dark energy’s quanta toward vortex-
particles, causing decrease of pressure and a consequent apparent attractive force [14]). On the
contrary, the quantum potential Q ¼ PQ=ρ existing in SQS causes reciprocal repulsion of the
baryon matter on large distance.

By omitting from consideration the viscous term in Eq. (14), we assume μ ¼ 0 and we obtain

Newton’s second law describing variations of the acceleration a
! ¼ dv!=dt under the action of

the two opposite quantum forces described above, ∇Qϕ and ∇ΣQ:

ρm
dv!
dt ¼ �ρm∇

PG

ρm

� �
þ ρ∇Σ

PQ

ρ

� �
¼ �ρ∇Qϕ þ ρ∇ΣQ

¼ �∇PG þ ∇PQ þ
�
PG∇lnðρÞ � PQ∇lnðρÞ

�
¼ f QG:

ð15Þ

We generally consider the volume of the whole visible Universe, ΔV ! V, so the rest mass
density ρm ¼ mNB=V ¼ M=V, where M ¼ mNB is the total mass of the Universe (about 1053

kg). Here, f GQ is the force density. It arises from the superposition of two forces within the

considered volume, which are expressed through the gradient of the gravitational potential
and that of the intrinsic quantum potential of SQS. They are represented by a negative pressure
gradient around baryonic bodies, ∇PG (Superfluid Quantum Gravity) [14], and the quantum
pressure gradient acting on SQS, ∇PQ.

The acceleration, a
! ¼ dv!=dt, vanishes if both potentials, Qϕ and Q, are uniformly distributed

across the space. The uniformity of the potentials can be justified according to the reports of the
Planck Observatory [28]. So that E ¼ �Qϕ=mþ ΣQ=m reads

E ¼ G
ð

V

ρmð r
!Þ
r

dV þNDD2 ∇2ρm

ρm
� 1
2
ð∇ρmÞ2
ρ2m

 !
: ð16Þ
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It should be constant at least within the visible Universe. The first term follows from Eq. (10)
that is ϕ ¼ PG=ρm ¼ Qϕ=M and the second term is the intrinsic quantum potential of
SQS [5, 34] divided by mass. The integer multiplier ND is equal to the sum of all the quantum
potentials, which arise from the contribution of all dark energy and dark matter in SQS. This
value is calculated from the fact that about 95% of mass-energy in the Universe accounts for
this dark fluid, respectively, 69.1% dark energy and 25.9% dark matter. So, from here, we find
ND ¼ 95=ð100� 95Þ �NB ¼ 19 �M=m.The number NB ¼ M=m follows from Eq. (5).

As for the mass density distribution ρm under the integral, we permit the existence of a static
spherically symmetric Gaussian density of baryon matter

ρmðrÞ ¼
M

ðσ ffiffiffiffiffiffi
2π

p Þ3 exp � r2

2σ2

� �
: ð17Þ

By accepting this result, Eq. (16) gives the following solution:

ε ¼ GM
r

erf
r

σ
ffiffiffi
2

p
� �

þNDD2 r2

2σ4
� 1
σ2

� �
ð18Þ

The expression of ε reduced to dimensionless form by multiplying by c�2 (c is the speed of
light) is shown as a function of r in Figure 1. We see that there is a flat potential plateau of baryon
matter ranging in the radius of the visible Universe r < σ ≈ 4:5 � 1026m ≈ 14:6 Gpc. The negative
pressure arising among the baryon bodies determines the attraction.

On the other hand, the repulsion is due to the quantum vacuum fluctuations in SQS. This
repulsion is conditioned by the quantum potential Q represented by the second term In
Eq. (18). In this case, the diffusion coefficient D reads

D ¼ ℏ
2m

ð19Þ

In the case of the proton mass, m, that is, about 1:67 � 10�27kg, we haveD ≈ 4:6 � 10�8m2 � s�1.

The term NDD2 in Eq. (18), however, reaches the enormous value of about 1065m4 � s�2.

Figure 1. Function ε reduced to dimensionless form by multiplying by c�2 (c is the speed of light) as a function of r, where
σ is the radius of the visible Universe. A flat plateau ranging from 0 to about 10 Gpc tells us that the expansion of the
Universe is almost absent. Dotted curve outside the chart shows divergence due to the quadratic term r2/2σ4 in the
quantum potential.
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Therefore, the quantum potential outside the visible horizon gives divergence because of the
quadratic term r2=2σ4 in its representation. In Figure 1, this divergence is shown by a dotted
curve.

3.1. Viscosity of SQS: tired-light and the Pioneer anomaly

Let us return to the relativistic hydrodynamic equation [5] by considering the Klein-Gordon
equation, loaded by the viscosity term. The kinetic energy of a relativistic particle, in this case,
can be written as follows:

E ¼ E0 � 2mνðtÞ dlnðρmÞ
dt

¼ E0 � E0
2
c2
νðtÞ dlnðρmÞ

dt
: ð20Þ

Here, νðtÞ ¼ μðtÞ=ρm is the kinematic viscosity coefficient. Its dimension is m2 � s�1. The second
term here describes energy exchange with vacuum fluctuations during a particle’s motion
through SQS. Here, we took into account that E0 ¼ mc2. By adopting E0 ¼ ℏω0, we can write
a suitable wave function for a photon coming from a distant source:

ΨðtÞ ¼ exp �iω 0t 1� 2
t

ðt

0

νðτÞ
c2

dlnðρmÞ
dt

dτ

0
@

1
A

8<
:

9=
;: ð21Þ

We let the integral under the exponent be linked with the expanded Hubble parameter HΛ, as
follows:

HΛ ¼ 2
t2

ðt

0

νðτÞ
c2

dlnðρmÞ
dt

dτ ¼ _a
a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρm

3
� k

c2

a2
þΛ

c2

3

r
: ð22Þ

The rightmost terms under root in (22) result from the first Friedmann equation. Here, Λ is the
cosmological constant (which refers to dark energy, i.e., to the SQS itself, being Λ ¼ κρsqs,

where κ ¼ ð8πGÞ=c2 is Einstein’s constant), a the dimensionless scale factor, and k its Gaussian
curvature. We further consider the case of a flat Universe, k = 0:

HΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þ
Λc2

3

r
, H0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρm

3

r
: ð23Þ

Being Λ omitted, the parameter HΛ degenerates to H0. We may evaluate H0 at the known
critical densityρc ¼ ρm ≈ 10�26 kg∙m–3 and knowing G [33]. We find H0 ≈ 2:36 � 10�18s�1 in SI

unit, while, in units adopted in astrophysics, it is about 73 km �Mpc�1 � s�1. H0 fits well within
the confidence interval estimated by Friedmann and others in [35] (see Figure 2).

We know that, to justify a ratio of the actual density to the critical density corresponding to a
flat Universe, that is, Ω ¼ ρm=ρc ¼ 1, we have to solve the flatness problem (jΩ� 1j < 10�62

at the Planck era [36]). Its solution, as well known, is given by the theory of cosmic inflation, to
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which many of the scientific community resort also to solve the magnetic-monopole problem
and the homogeneity problem. In accordance with what above, we believe that no accelerating
Universe exists, and consequently, the Doppler effect does not influence the observed redshift.
We identify the cause of the redshift in the phenomenon of tired light, which in our case is due
to the weak viscosity of SQS that leads to Eq. (21). The frequency ω shifted with respect to the
initial frequency ω0 after the time t will be [37]:

ω ¼ ω 0e�H0t ð24Þ

Cosmic inflation appears to us as a deus ex machina, which could actually hide the effect of
viscosity on photons traveling through the SQS. As follows from Eq. (22), tired light occurs due
to the existence of a tiny viscosity of SQS, in which photons are subject to by traveling through
the cosmos. Fluctuations of the space-time metric (fluid dynamic fluctuations of dark energy,
in our case) at the Planck scale [38] give a crucial contribution to the viscosity effect.

From Eq. (22), we can evaluate HΛ ≈ 2:93 � 10�18s�1 (about 90 km �Mpc�1 � s�1) at the adopted
value of Λ ¼ 10�52m�2. We observe that this parameter lies far outside the confidence interval,

Figure 2. A Hubble diagram of distance versus velocity for secondary distance indicators, calibrated to Cepheids. Figure
is taken from Ref. [35] and modified by adding the parameter HΛ. Note that H0 belongs to the confidence interval,
whereas HΛ lies beyond it.
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marked in Figure 2. It means that the parameter HΛ, most possibly, plays another role different

from the Hubble constant H0. Let us compute the acceleration of an object, a
! ¼ dv!=dt traveling

through the Universe. It can be found from Eq. (9), by setting ∇ðmϕþ ΣQÞ ¼ 0:

a
! ¼ νðtÞ∇2 v! ¼ �νðtÞ∇ðdlnðρmÞ=dtÞ: ð25Þ

The term ∇v! ¼ �d lnðρmÞ=dt comes from the continuity Eq. (12). Now, by multiplying Eq. (22)
by t2=2 and differentiating it with respect to t, we gain:

νðtÞ
c2

dlnðρmÞ
dt

¼ 1
2
d
dt
t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρm

3
þ Λ

c2

3

r
¼ tHΛ þ t2

4HΛ

8πGρm
3

� �
dlnðρmÞ

dt
: ð26Þ

Then, by multiplying by c2 and by applying the operator ∇, we get

a ¼ � d
dℓ

tc2HΛ � d
dℓ

t2c2

4HΛ
ðH2

0Þ
dlnðρmÞ

dt
: ð27Þ

Here, the operator ∇ ¼ d=dℓ calculates a gradient along the increment dℓ. Let us suppose that
dℓ=dt represents an updated rate for the cosmic microwave background (CMB) fluctuations at
the frequency ΩCMB ¼ ω0, that is, the speed of light dℓ=dt ¼ λCMBΩCMB ¼ c. By substituting c
into Eq. (27) instead of dℓ=dt, we get:

a ¼ �HΛc 1þ H2
0

H2
Λ

� 1
4

t
ρm

dρm
dt

� � !
: ð28Þ

We observe that the first term, HΛc, is equal to 8:785 � 10�10m � s�2. This indicates a good agree-
ment with the acceleration aP ¼ ð8:74 � 1:33Þ � 10�10m � s�2 which became known as the Pioneer
anomaly [39–41]. From this, we have the fact that the term in second brackets vanishes, namely,
dρm=dt ¼ 0, as follows from the continuity Eq. (12). It means that ρm ¼ ρc ¼ const: Eq. (28)
suggests that the Pioneer anomaly is due to the presence of non-zero energy density (dark energy)
of the vacuum, as reflected in the cosmological constant Λ ≈ 10�52m�2 in metric units.

The Hubble parameters,H0 andHΛ, concern different manifestations of SQS. The first parameter
is due to presence of the tiny non-zero, positive viscosity of the SQS, whereby light undergoes
loss of energy (redshift) proportional to the traveled distance. The Hubble diagram in Figure 2
shows in fact the relationship with distance expressed by our hypothesis, in which the role of the
recessional velocity in causing the cosmological redshift has to be however substituted by that of
energy dissipation. Since in our analysis (see Ch.2 and [14]) photons are phonons through the
SQS, i.e. waves carrying a momentum, in agreement with the concept of photon, they lose
energy while traveling huge distances, as no superfluid has perfectly zero viscosity.

As for the parameter HΛ, it results from the trigonometric shear of the Hubble parameter H0 by
adding the contribution of the cosmological constant Λ, see Eq. (23). The calculated accelera-
tion (28), excellently close to the acceleration aP of the Pioneer apparatus, is due to the contri-
bution of the SQS (i.e., of dark energy and of its hydrodynamic perturbations) expressed by the
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νðtÞ
c2

dlnðρmÞ
dt

¼ 1
2
d
dt
t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρm

3
þ Λ

c2

3

r
¼ tHΛ þ t2

4HΛ

8πGρm
3

� �
dlnðρmÞ

dt
: ð26Þ

Then, by multiplying by c2 and by applying the operator ∇, we get

a ¼ � d
dℓ

tc2HΛ � d
dℓ

t2c2

4HΛ
ðH2

0Þ
dlnðρmÞ

dt
: ð27Þ

Here, the operator ∇ ¼ d=dℓ calculates a gradient along the increment dℓ. Let us suppose that
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0

H2
Λ

� 1
4

t
ρm

dρm
dt

� � !
: ð28Þ

We observe that the first term, HΛc, is equal to 8:785 � 10�10m � s�2. This indicates a good agree-
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SQS, i.e. waves carrying a momentum, in agreement with the concept of photon, they lose
energy while traveling huge distances, as no superfluid has perfectly zero viscosity.

As for the parameter HΛ, it results from the trigonometric shear of the Hubble parameter H0 by
adding the contribution of the cosmological constant Λ, see Eq. (23). The calculated accelera-
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cosmological constant [42, 43]. Indeed, we know that the relationship between Λ and the
energy density of free space is Λ ¼ κρ0, where κ ¼ 8πGc�2 is Einstein’s constant and ρ0 is
vacuum’s (i.e., SQS’s) energy density. Thus, by considering the SQS as a ubiquitous sea of
quantized, perturbed dark energy, partially condensed as dark matter (25.9%), we see that its
mass is mdarkenergy ¼ ρ0ðtÞVðtÞ ¼ Edarkenergyc�2 ¼ β0ρ0Edarkenergy. Where V(t) is the volume of the
Universe at an instant t (even in an expanding/shrinking Universe, we have ρ0V ¼ const, so at
any moment dark energy is neither created nor annihilated) and c�2 ¼ β0ρ0 from Eq. (1), where
β0 and ρ0 are physical parameters of dark energy, responsible for a small non-zero, positive
viscosity of free space and, consequently, for the investigated anomalous deceleration.

4. Vorticity equation and solutions for orbital speeds of spiral galaxies

The modified Navier-Stokes Eqs. (9) and (14) can exhibit a manifestation of long-lived vortices
in SQS. The last term in this equation is dissipative due to the presence of a weak viscosity of
the medium fluctuating about zero. If the viscosity coefficient μ is a fluctuating function of
time, we can assume (see Eq. (7)) that (a) time-averaged, the viscosity coefficient vanishes; (b)
its variance is not zero. Therefore, the viscosity coefficient is a function fluctuating about zero.
We suppose that such fluctuations determine energy exchange between the existing baryon
matter and the zero-point fluctuations of the superfluid physical vacuum [44].

Note first that the total derivative of v! with respect to t in the Navier-Stokes equation (9),
rewritten through the partial derivatives reads:

dv!

dt
¼ ∂v!

∂t
þ ðv! � ∇Þv!: ð29Þ

Let us apply now the curl operator to the Navier-Stokes equation. We come to the equation for

vorticity ω! ¼ ½∇� v!� [45]:
∂ω!

∂t
þ ðv! � ∇Þω! ¼ νðtÞ∇2ω!: ð30Þ

Here, νðtÞ ¼ μðtÞ=ρm is the kinematic viscosity coefficient. The vector ω! is directed along the
rotation axis. In order to simplify this task, let us move to the coordinate system in which the
rotation occurs in the plane (x, y) and the z-axis lies along the vorticity, Figure 3.

Under this transformation, the vorticity equation takes a particularly simple form:

∂ω
∂t

¼ νðtÞ ∂2ω
∂r2

þ 1
r
∂ω
∂r

� �
: ð31Þ

A general solution of this equation has the following view [5, 46]:

ωðr, tÞ ¼ Γ
4Σðν, t, σÞ exp � r2

4Σðν, t, σÞ
� �

, ð32Þ
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vðr, tÞ ¼ 1
r

ðr

0

ωðr0, tÞr0dr0 ¼ Γ
2r

1� exp � r2

4Σðν, t, σÞ
� �� �

: ð33Þ

The first function is vorticity; the second is the orbital speed. We do not mark the arrows above
the letters ν and ω since the orbital velocity lies in the (x, y) plane and vorticity lies on z-axis.
The denominator Σðν, t, σÞ in these formulas reads:

Σðν, t, σÞ ¼
ðt

0

νðτÞdτþ σ2: ð34Þ

Here, σ is an arbitrary constant such that the denominator is always positive.

Taking into account 〈νðtÞ〉 ¼ 0þ, see Eq. (7), we can see that the integral in Eq. (34) tends to zero
and solutions of (32) and (33) in the limit of t ! ∞ reduce to

ωGcvcðr, tÞ ¼ Γ
4σ2

exp � r2

4σ2

� �
, ð35Þ

vGcvcðr, tÞ ¼ Γ
2r

1� exp � r2

4σ2

� �� �
: ð36Þ

Figure 3. A simulation of a rotating spiral galaxy: the orbital velocity v! lies in the plane (x, y). The vorticity vector ω! is
oriented perpendicular to this plane.
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That is, vorticity and angular speed are permanent in time. Here, the circulation Γ and the average
radius σ are initially existing. The extra parameter σ comes from the Gaussian coherent vortex
cloud [47]. The subscript Gcvc indicates the Gaussian coherent vortex cloud. The vortex cloud
represents localized concentration of vorticity energy with a lifetime tending to infinity [48]. It
does not significantly interact with any form of matter and exists in itself as long as possible.

4.1. Flat profile of the orbital speed (evaluations)

Solution (36) gives no flat profile. The function monotonically decreases with r ! ∞. This
velocity is shown by curve 1 in Figure 4.

Let us begin to search for a solution of Eq. (31) by perturbing the solution (32) through a function
gðrÞ not equal to one, that is, ωðr, tÞ � gðrÞ. When we substitute this function into Eq. (31), we get:

g
∂ω
∂t

¼ gνðtÞ ∂2ω
∂r2

þ 1
r
∂ω
∂r

� �
þ νðtÞ ω

∂2g
∂r2

þ 2
∂ω
∂r

þ 1
r
ω

� �
∂g
∂r

� �
: ð37Þ

Here, we obtain two independent differential equations. The first one is for the function ωðr, tÞ.
We return to the same solution (32). While the second equation for the function gðrÞ becomes
equal to zero. In this case, we introduce an auxiliary function ϕ ¼ ∂g=∂r for which this equa-
tion takes the form:

∂ϕ
∂r

þ 2
ω
∂ω
∂r

þ 1
r

� �
ϕ ¼ ∂ϕ

∂r
þ � r

Σ
þ 1

r

� �
ϕ ¼ 0: ð38Þ

In the second part instead of ð2=ωÞ � ∂ω=∂r, we put its solution –r=Σ. For the sake of simplicity,
we write Σ instead of Σðν, t, σÞ. The function gðrÞ stemming from the solution of Eq. (38) reads:

gðrÞ ¼
ðr

0

1
ξ
exp

ξ2

2Σ

� �
dξ: ð39Þ

Next, we find the orbital speed

Figure 4. (1, 2, 3) are monotonically decreasing profiles with r ! ∞; 4 is an example of flat profile for large r, but when r
tends to infinity, the curve vanishes.
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v0ðr, tÞ ¼ 1
r

ðr

0

ωðr0, tÞ � gðr0Þ � r0dr0: ð40Þ

This speed is shown as curve 2 in Figure 4. We have to observe, however, that the weight
function gðrÞ can be approximated by the continued fraction [49]

E1ðxÞ ¼ e�x

xþ 1

1þ 1

xþ 2
1þ 2

xþ 3

1þ 3

xþ 4

1þ 4
⋯

:

ð41Þ

In this way, we find an approximated function of the orbital speed

v00ðr, tÞ ¼ 1
r

ðr

0

ωðr0, tÞ � E1
r0

2Σ

� �
� r0dr0: ð42Þ

This speed is shown as curve 3 in Figure 4. One can see that all curves, 1, 2, and 3, accurate to
the scaling, show good accordance with each other.

As for the curve 4 in this figure, it follows from the function

v000ðr, tÞ ¼ Γ
r

XN
n¼1

1
4σ2n

ðr

0

E1
r0

2σn

� �2
 !

� r0dr0: ð43Þ

This function is drawn with linear growth of σn when n goes on, σn ¼ 10 � n. For n large
enough, it shows a good outcome for the flat profile at r≫ 1.

4.2. Flat profile of the orbital speed (a general case)

A rich gallery of galactic rotation curves showing output on a flat profile is presented in [50].

These flat profiles of the orbital speeds are here rearranged, and they are shown in Figure 5.
The curves draw approximations of these profiles.

Equation (43) gives a hint for getting flat profiles of orbital speeds, which are typical for spiral
galaxies. In this section, we present formulas which show the formation of flat profiles evolving
in time. First, we hypothesize that the above-mentioned Gaussian coherent vortex clouds (see
Eqs. (35) and (36)) have a long-termmemory, and they can therefore manifest themselves as dark
matter. As shown in Figure 4 by the curve 4, the clouds can support flat profiles for a long time
through their superposition (see Eq. (43)). For the sake of demonstration, let us set [46]
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νðtÞ ¼ ν
eiΩt þ e�tΩt

2
¼ ν cos ðΩtÞ: ð44Þ

In this case Σðν, t, σÞ ¼ ðν=ΩÞ sin ðΩtÞ þ σ2 ¼ ðν=ΩÞ
�
sin ðΩtÞ þ ζ

�
, σ2 ¼ ðν=ΩÞ � ζ and ζ > 1.

Note first that the Gaussian coherent vortex clouds show self-similarity.

From this view, let us assume that the fluctuating viscosity reads as follows [5]:

νnðtÞ ¼ c2

Ωn
cos ðΩntÞ: ð45Þ

The kinetic viscosity coefficient c2=Ωn has dimension [m2∙s-1]. Here, c is the speed of light, and
Ωn is the angular frequency of a vacuum oscillation. That is, there is a periodic exchange of
energy ℏΩn ¼ n�1 with SQS. The energy tends to zero at n going to infinity, whereas the
viscosity goes to infinity. It can mean that SQS acquires a high viscosity on very small frequen-
cies of the vortex energy exchange. Note, however, that 〈νnðtÞ〉 ¼ 0þ for any n.

Let us compute the flat profile for the orbital speed of a spiral galaxy guided by the rule
formulated above. To see its formation, we perform computations of sets collected from modes

Figure 5. Families F#, U#, and ESO# of the flat profiles of the orbital speeds taken from [50]. The curves approximate these
profiles marked by the black points.
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(45), n ¼ 1, 2,⋯, N. Let us substitute the expression (45) into the integral (34). After computing
it, we get the following view of the denominator Σðν, t, σÞ:

ΣnðtÞ ¼ c2

Ω2
n

�
sin ðΩntÞ þ ζ

�
: ð46Þ

Since Ωn ¼ n�1, the coefficient Σn ¼ c2=Ω2
n tends to infinity as Ωn goes to zero while n

increases. From here, it follows that the expression 1� exp {� r2=4Σn} in Eq. (33) reaches 1
the more slowly with increasing r, the larger is Σn. As a result, the set of coefficients Σn for
n ¼ 1, 2,⋯ can give output to the flat profile of the orbital speed. Let us, therefore, compute a
sum of possible orbital speeds of galaxies for all entangled modes for which baryon matter is
allowed to exchange energy with the SQS. Our statistical sum reads as follows:

Vðr, tÞ ¼ Γ
2r

XN
n¼1

1� exp � r2

4ΣnðtÞ
� �� �

: ð47Þ

The orbital speed Vðr, tÞ versus r and t is shown in Figure 6. Here, for the evaluated calcula-
tions, we used Γ ¼ 3 � 1025m2 � s�1 and the angular frequency Ωn ranges from 10�11 s-1 to
1.667�10�13 s�1 as n runs from 1 to 60. The angular frequencies are extremely small, while the
wavelengths, λn ¼ c=Ωn, are in the range from 0.97 to 58.3 kpc. These oscillating modes cover
areas from the galactic core up to the size of the galaxy itself.

Figure 6. Orbital speed V is a function of the radius r from the galactic center (in kiloparsec) and time t (in light years).
Variations of the orbital speed in time are evident.
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Figure 6 shows that the orbital speed experiences small fluctuations in time, resembling the
breathing of the galaxy. This trembling of galaxies within the 1=f spectrum is caused by the
exchange of vortex energy with the SQS on the ultra-low frequencies Ωn.

De Broglie wavelength, λn ¼ c=Ωn, by changing in the range from about 20 kpc to 2 Mpc
covers all galactic scales. One can evaluate the mass of axion-like particles [51],

m ¼ ℏΩn

c2
: ð48Þ

It ranges from about 10�62 kg to 5�10�66 kg. They are in the range shown in Ref. [52]. These
particles may correspond to dark energy’s quanta and be responsible for exchange phenomena
among baryon objects in the frequency range from Ωn ¼ 10�11s�1 to Ωn ≈ 5 � 10�15s�1. We note
that the frequency Ωc is 2:2 � 10�18s�1. We obtain c=Ωc ≈ 1:36 � 1026m, which is close enough to
the Compton wavelength evaluated for the visible Universe in [53]. This corresponds to the
radius of the Hubble sphere rHS ¼ c=H0, which is about 4 � 103Mpc (at the Hubble constant

H0 ¼ 73 km � ðs �MpcÞ�1). On these cosmological scales, we can evaluate the mass of a graviton
(or more likely of a quantum of dark energy, since we don’t need gravitons in superfluid
quantum gravity [2, 14]), by resorting to a wavelength that is commensurable with the radius of
the Universe stated above. An extrememass of the axion-like particle for the observable Universe
ismg ¼ ℏΩ=c2 ≈ 2:6 � 10�69 kg. This value finds a good agreement with the evaluation that comes
from the holographic screen model to be the boundary of the visible Universe [52]. This evalua-
tion is also in agreement with the graviton mass given in Ref. [54], here interpreted as a quantum
of dark energy. We finally add that ultra-light dark matter particles produced in the vacuum
have been predicted in Ref. [10].

We can continue the calculation of the orbital speed (44) up to the point Ωc ¼ 2:2 � 10�18s�1.
This would allow us to affirm that the observable Universe rotates about some center with an
orbital speed, which has a flat profile through enormous distances. Excepting a central region
where the orbital speed grows from zero to the maximal value corresponding to the profile
level. This rotation possibly takes place around the richest Super Cluster in the Sloan Great
Wall, SCl~126, and especially around its core, resembling a very rich filament [55].

5. Conclusion

We have shown that the fluid dynamics of SQS could explain the astrophysical observations
without resorting to far-fetched auxiliary concepts, such as cosmic inflation and accelerated
expansion.

In general, the fluid dynamics of SQS is described by the conservation equations of energy,
momentum, orbital momentum, etc. In the non-relativistic limit, these equations are reduced
to the modified Navier-Stokes equation and to the continuity equation of mass density. The
modification leads to the emergence of a quantum potential, Q(t), and reduces the viscosity
coefficient, μðtÞ, to a weak term fluctuating about zero, 〈μðtÞ〉 ¼ 0þ, 〈μðtÞμð0Þ〉 > 0. Because
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of that, this term acquires an absolutely different physical meaning. Firstly, an active exchange
of energy between cosmological structures and SQS takes place and extends their lifetime.

We applied the modified Navier-Stokes equation to describe a balance within the visible Universe
between the gravitational potential, ϕ, expressed as the quantum potential Qϕ ¼ PG=ρm and the

intrinsic quantum potential, Q, of SQS. Outside this range, strong repelling forces act (see dotted
curve in Figure 1), probably due to osmotic expansion of dark energy in a really empty space.
Figuratively speaking, baryon matter in the Universe is similar to a hydrophobic droplet floating
in a hydrophilic medium filling the vast space. However, there is a difference between a “droplet
model” and the Universe, since the latter consists of numerous clumps of baryonic matter sepa-
rated by vast voids. These baryonic clumps are concentrated on vortex filaments that permeate
the whole Universe and form an intricate cosmic web [56] with galaxies strung on these filaments.

Since 〈μðtÞ〉 ¼ 0þ (it differs from zero to a tiny value), light coming from distant stars shows a
frequency shift due to a loss of energy when traveling through the SQS. We therefore introduce
an updated concept of tired light without resorting to Compton scattering and overcoming in
this way the known objections to the classical concept of tired light.

The Pioneer anomaly has a lot in common with the revised tired light effect. The same loss of
energy due to motion through the SQS most likely led to a deceleration of the space apparatus.
An essential contribution to the deceleration comes from a non-zero small correction of the
Hubble parameter thanks to the cosmological constant, which refers to dark energy, i.e., to SQS
itself). This correction gives a value of the negative acceleration of the cosmic apparatus

a ¼ �HΛc ¼ �c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þΛc2=3
q

≈ � 8:785 � 10�10m � s�2, which acceptably falls within the mea-

sured anomalous acceleration of the Pioneer probes 10 and 11.

Eventually, the considered superfluid dark medium is capable of explaining the flat profile of
the orbital speed of spiral galaxies, due to their interactions with the SQS. We can observe flat
profile solutions by putting (46) as denominator in Eqs. (30) and (31), with σ0 > 1, where the
set of coefficients Σn for n ¼ 1, 2,⋯ shows the flat profile.

Author details

Valeriy I. Sbitnev1,2* and Marco Fedi3

*Address all correspondence to: valery.sbitnev@gmail.com

1 Petersburg B. P. Konstantinov Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina,
Russia

2 Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA, USA

3 Ministero dell'Istruzione, dell’Università e della Ricerca (MIUR), Italy

Trends in Modern Cosmology108



of that, this term acquires an absolutely different physical meaning. Firstly, an active exchange
of energy between cosmological structures and SQS takes place and extends their lifetime.

We applied the modified Navier-Stokes equation to describe a balance within the visible Universe
between the gravitational potential, ϕ, expressed as the quantum potential Qϕ ¼ PG=ρm and the

intrinsic quantum potential, Q, of SQS. Outside this range, strong repelling forces act (see dotted
curve in Figure 1), probably due to osmotic expansion of dark energy in a really empty space.
Figuratively speaking, baryon matter in the Universe is similar to a hydrophobic droplet floating
in a hydrophilic medium filling the vast space. However, there is a difference between a “droplet
model” and the Universe, since the latter consists of numerous clumps of baryonic matter sepa-
rated by vast voids. These baryonic clumps are concentrated on vortex filaments that permeate
the whole Universe and form an intricate cosmic web [56] with galaxies strung on these filaments.

Since 〈μðtÞ〉 ¼ 0þ (it differs from zero to a tiny value), light coming from distant stars shows a
frequency shift due to a loss of energy when traveling through the SQS. We therefore introduce
an updated concept of tired light without resorting to Compton scattering and overcoming in
this way the known objections to the classical concept of tired light.

The Pioneer anomaly has a lot in common with the revised tired light effect. The same loss of
energy due to motion through the SQS most likely led to a deceleration of the space apparatus.
An essential contribution to the deceleration comes from a non-zero small correction of the
Hubble parameter thanks to the cosmological constant, which refers to dark energy, i.e., to SQS
itself). This correction gives a value of the negative acceleration of the cosmic apparatus

a ¼ �HΛc ¼ �c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þΛc2=3
q

≈ � 8:785 � 10�10m � s�2, which acceptably falls within the mea-

sured anomalous acceleration of the Pioneer probes 10 and 11.

Eventually, the considered superfluid dark medium is capable of explaining the flat profile of
the orbital speed of spiral galaxies, due to their interactions with the SQS. We can observe flat
profile solutions by putting (46) as denominator in Eqs. (30) and (31), with σ0 > 1, where the
set of coefficients Σn for n ¼ 1, 2,⋯ shows the flat profile.

Author details

Valeriy I. Sbitnev1,2* and Marco Fedi3

*Address all correspondence to: valery.sbitnev@gmail.com

1 Petersburg B. P. Konstantinov Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina,
Russia

2 Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA, USA

3 Ministero dell'Istruzione, dell’Università e della Ricerca (MIUR), Italy

Trends in Modern Cosmology108

References

[1] Rubin VC. A brief history of dark matter. in Livio Mn editor The Dark Universe: Matter,
Energy and Gravity. Cambridge. Cambridge University Press. 2004, pp. 1–13.

[2] Fedi M. Gravity as a fluid dynamic phenomenon in a superfluid quantum space. Fluid
Quantum Gravity and Relativity. 2016. URL: https://hal.archives-ouvertes.fr/hal-01248015

[3] Ardey A. Dark fluid: A complex scalar field to unify dark energy and dark matter. Phys.
Rev. D, 2006; 74: 043516. doi:10.1103/PhysRevD.74.043516

[4] Hajdukovic DS. Quantum vacuum and dark matter. Astrophys. Space Sci. 2011; 337: 9–
14. doi:10.1007/s10509-011-0938-9

[5] Sbitnev VI. Hydrodynamics of the physical vacuum: dark matter is an illusion. Mod.
Phys. Lett. A. 2015; 30: 1550184. doi:10.1142/S0217732315501849

[6] Albareti FD, Cembranos JAR, Maroto AL. Vacuum energy as dark matter. Phys. Rev. D.
2014; 90: 123509. doi:10.1103/PhysRevD.90.123509

[7] Das S, Bhaduri RK. Dark matter and dark energy from Bose-Einstein condensate. Class.
Quant. Grav. 2015; 32: 105003. doi:10.1088/0264-9381/32/10/105003

[8] Baum L, Frampton PH. Entropy of Contracting Universe in Cyclic Cosmology. Mod.
Phys. Lett. A. 2008; 23: 33-36. doi:10.1142/S0217732308026170

[9] Gurzadyan VG, Penrose R. Concentric circles in WMAP data may provide evidence of
violent pre-Big-Bang activity. 2010. URL: http://arxiv.org/abs/1011.3706

[10] Chefranov SG, Novikov EA. Hydrodynamic vacuum sources of dark matter self-
generation in an accelerating universe without a Big Bang. JETP. 2010; 111: 731–743.

[11] Crawford DF. Observational evidence favors a static universe. 2014. URL: http://arxiv.
org/abs/1009.0953

[12] López-Corredoira M, Melia F, Lusso E, Risaliti G. Cosmological test with the QSO Hubble
diagram. Int. J. Mod. Phys. D 2016; 25: 1650060. doi:10.1142/S0218271816500607

[13] Zwicky F. On the Red Shift of Spectral Lines through Interstellar Space. PNAS. 1929; 15:
773–779. doi:10.1073/pnas.15.10.773

[14] Fedi M. Quantum gravity as dark energy inflow, 2016, URL: https://hal.archives-ouvertes.
fr/hal-01423134

[15] Penrose R. Fashion, Faith, and Fantasy in the New Physics of the Universe. Princeton and
Oxford. Princeton University Press. 2016.

[16] Stanford Encyclopedia of Philosophy. Absolute and Relational Theories of Space and
Motion. 2015. URL: http://plato.stanford.edu/entries/spacetime-theories/

[17] Motte A. Axioms or Laws of Motion (translation of Newton's Principia (1687)). Published
by Daniel Adee, 45 Liberty str., N. Y. 1846.

Superfluid Quantum Space and Evolution of the Universe
http://dx.doi.org/10.5772/68113

109



[18] Huygens C. Treatise on light. London. Macmillan and Co. Ltd. 1912.

[19] Wheeler JA, Ford K. Geons, Black Holes, and Quantum Foam. Norton & Co. 1995.

[20] Dirac PAM. Is there an Aether? Nature. 1951; 168; 906–907.

[21] De Broglie L. Interpretation of quantum mechanics by the double solution theory. Annales
de la Fondation Louis de Broglie. 1987; 12; 1–22.

[22] Couder Y, Protiére S, Fort E, Boudaoud A. Dynamical phenomena—walking and orbiting
droplets. Nature. 2005; 473: 208. doi:10.1038/437208a

[23] Petroni NC, Vigier JP. Dirac’s aether in relativistic quantum mechanics. Foundations of
Physics. 1983; 13: 253–286.

[24] Laughlin RB. A Different Universe: Reinventing Physics from the Bottom Down, N. Y.:
Basic Books, 2005.

[25] Cahill RT. Gravity as quantum foam in-flow. 2004. URL: https://arxiv.org/abs/physics/
0307003

[26] Bohm D, Vigier JP. Model of the causal interpretation of quantum theory in terms of a fluid
with irregular fluctuations. Phys. Rev. 1954; 96: 208–216. doi:10.1103/PhysRev.96.208

[27] Grusenick M. Extended Michelson-Morley Interferometer experiment. 2009. URL: https://
www.youtube.com/watch?v=7T0d7o8X2-E

[28] Planck Collaboration: Ade PAR, Aghanim N, et al. (260 co-authors). Planck 2015 results.
XIII. Cosmological parameters. 2015. URL: http://arxiv.org/abs/1502.01589

[29] Font JA. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.
Living Rev. Relat. 2008; 11: 1–131. doi:10.12942/lrr-2008-7

[30] Romatschke P. New Developments in Relativistic Viscous Hydrodynamics. Int. J. Mod.
Phys. E. 2010; 19: 1–53. doi:10.1142/S0218301310014613

[31] Van Holten JW. Relativistic fluid dynamics. NIKHEF. Amsterdam NL. 2006. Available
from: http://www.nikhef.nl/~t32/relhyd.pdf

[32] Parkhomov AG. Dark matter: its role in cosmo-terrestrial interactions. Consciousness and
Physical Reality. 1998; 3: 24–35.

[33] Ryden B. Introduction to Cosmology. The Ohio State University. 2006.

[34] Sbitnev VI. Hydrodynamics of the physical vacuum: I. Scalar quantum sector. Founda-
tions of Physics. 2016; 46: 606–619. doi:10.1007/s10701-015-9980-8

[35] Freedman WL, et al. (14 co-authors). Final Results from the Hubble Space Telescope Key
Project to Measure the Hubble Constant. Astrophys. J. 2001; 553: 47–72. doi:10.1086/320638

[36] Spergel DN, et al. (21 co-authors). Wilkinson Microwave Anisotropy Probe (WMAP)
Three Year Results: Implications for Cosmology. Astrophys. J. Suppl. 2007; 170: 337–408.
doi:10.1086/513700

Trends in Modern Cosmology110



[18] Huygens C. Treatise on light. London. Macmillan and Co. Ltd. 1912.

[19] Wheeler JA, Ford K. Geons, Black Holes, and Quantum Foam. Norton & Co. 1995.

[20] Dirac PAM. Is there an Aether? Nature. 1951; 168; 906–907.

[21] De Broglie L. Interpretation of quantum mechanics by the double solution theory. Annales
de la Fondation Louis de Broglie. 1987; 12; 1–22.

[22] Couder Y, Protiére S, Fort E, Boudaoud A. Dynamical phenomena—walking and orbiting
droplets. Nature. 2005; 473: 208. doi:10.1038/437208a

[23] Petroni NC, Vigier JP. Dirac’s aether in relativistic quantum mechanics. Foundations of
Physics. 1983; 13: 253–286.

[24] Laughlin RB. A Different Universe: Reinventing Physics from the Bottom Down, N. Y.:
Basic Books, 2005.

[25] Cahill RT. Gravity as quantum foam in-flow. 2004. URL: https://arxiv.org/abs/physics/
0307003

[26] Bohm D, Vigier JP. Model of the causal interpretation of quantum theory in terms of a fluid
with irregular fluctuations. Phys. Rev. 1954; 96: 208–216. doi:10.1103/PhysRev.96.208

[27] Grusenick M. Extended Michelson-Morley Interferometer experiment. 2009. URL: https://
www.youtube.com/watch?v=7T0d7o8X2-E

[28] Planck Collaboration: Ade PAR, Aghanim N, et al. (260 co-authors). Planck 2015 results.
XIII. Cosmological parameters. 2015. URL: http://arxiv.org/abs/1502.01589

[29] Font JA. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.
Living Rev. Relat. 2008; 11: 1–131. doi:10.12942/lrr-2008-7

[30] Romatschke P. New Developments in Relativistic Viscous Hydrodynamics. Int. J. Mod.
Phys. E. 2010; 19: 1–53. doi:10.1142/S0218301310014613

[31] Van Holten JW. Relativistic fluid dynamics. NIKHEF. Amsterdam NL. 2006. Available
from: http://www.nikhef.nl/~t32/relhyd.pdf

[32] Parkhomov AG. Dark matter: its role in cosmo-terrestrial interactions. Consciousness and
Physical Reality. 1998; 3: 24–35.

[33] Ryden B. Introduction to Cosmology. The Ohio State University. 2006.

[34] Sbitnev VI. Hydrodynamics of the physical vacuum: I. Scalar quantum sector. Founda-
tions of Physics. 2016; 46: 606–619. doi:10.1007/s10701-015-9980-8

[35] Freedman WL, et al. (14 co-authors). Final Results from the Hubble Space Telescope Key
Project to Measure the Hubble Constant. Astrophys. J. 2001; 553: 47–72. doi:10.1086/320638

[36] Spergel DN, et al. (21 co-authors). Wilkinson Microwave Anisotropy Probe (WMAP)
Three Year Results: Implications for Cosmology. Astrophys. J. Suppl. 2007; 170: 337–408.
doi:10.1086/513700

Trends in Modern Cosmology110

[37] Khaidarov KA. Galilean Interpretation of the Hubble Constant. GALILEAN ELECTRO-
DYNAMICS. 2005; 16: 103–105.

[38] Crowell LB. Quantum fluctuations of spacetime. Singapore. World Scientific. Co. Pte. Ltd.
2005.

[39] Anderson JD, Laing PA, Lau EL, Liu AS, Nieto MM, Turyshev SG. Indication from Pioneer
10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceler-
ation. Phys. Rev. Lett. 1998; 81: 2858–2861. doi:10.1103/PhysRevLett.81.2858

[40] Page GL, Dixon DS, Wallin JF. Can minor planets be used to assess gravity in the outer
solar system? Astrophys. J. 2006; 642: 606–614. doi:10.1086/500796

[41] Turyshev SG, Toth VT, Kinsella G, Lee S-Ch, Lok SM, Ellis J. Support for the thermal origin of
the Pioneer anomaly. Phys. Rev. Lett. 2012; 108: 241101. doi:10.1103/PhysRevLett.108.241101

[42] Mukhopadhyay U. et al. Generalized Model for Λ-Dark Energy. URL: arXiv:0802.1032,
Int. J. Mod. Phys. 2009; D18: 389–396. doi:10.1142/S021827180901456X

[43] Zhao H. An Uneven Vacuum Energy Fluid as Λ, Dark Matter, MOND and Lens. 2008.
URL: arXiv:0802.1775, Mod. Phys. Lett. A23:555–568, 2008. doi:10.1142/S021773230802656X

[44] Sbitnev VI. Dark matter is a manifestation of the vacuum Bose-Einstein condensate. 2016.
URL: http://arxiv.org/abs/1601.04536

[45] Sbitnev VI. Hydrodynamics of the physical vacuum: II. Vorticity dynamics. Found. of
Physics. 2016; 1–15. URL: http://rdcu.be/kdon. doi: 10.1007/s10701-015-9985-3

[46] Sbitnev VI. Physical vacuum is a special superfluid medium. In: Pahlavani MR, editor.
Selected Topics in Applications of Quantum Mechanics. Rijeka: InTech; 2015. pp. 345–
373. doi:10.5772/59040

[47] Kevlahan NK-R, Farge M. Vorticity filaments in two-dimensional turbulence: creation,
stability and effect. J. Fluid Mech. 1997; 346: 49–76. doi:10.1017/S0022112097006113

[48] Provenzale A, Babiano A, Bracco A, Pasquero C, Weiss JB. Coherent vortices and tracer
transport. Lect. Notes Phys. 2008; 744: 101–116. doi:10.1007/978-3-540-75215-8 5

[49] Tseng P-H, Lee T-C. Numerical evaluation of exponential integral: Theis well function
approximation. J. Hydrol. 1998; 205: 38–51. doi:10.1016/S0022-1694(97)00134-0

[50] De Blok WJG, McGaugh SS, Rubin VC. High-resolution rotation curves of low surface
brightness galaxies. II. Mass models. Astron. J. 2001; 122: 2396–2427. doi:10.1086/323450

[51] Mielczarek J, Stachowiak T, Szydlowski M. Vortex in axion condensate as a dark matter
halo. Int. J. Mod. Phys. D. 2010; 19: 1843–1855. doi:10.1142/S0218271810018037

[52] Mureika JR, Mann RB. Does entropic gravity bound the masses of the photon and
graviton? Mod. Phys. Lett. A. 2011; 26: 171–181. doi:10.1142/S0217732311034840

[53] Goldhaber AS, Nieto MM. Photon and graviton mass limits. Rev. Mod. Phys. 2010; 82:
939–979. doi:10.1103/RevModPhys.82.939

Superfluid Quantum Space and Evolution of the Universe
http://dx.doi.org/10.5772/68113

111



[54] Triple S. A simplified treatment of gravitational interaction on galactic scales. JKAS. 2013;
46: 41–47. doi:10.5303/JKAS.2013.46.1.41

[55] Einasto E, et al. (10 co-authors). The Sloan Great Wall. Morphology and galaxy content.
Astrophys. J. 2011; 736: 25 p. doi:10.1088/0004-637X/736/1/51

[56] Laigle C, Pichon C, et al. (10 co-authors). Swirling around filaments: are large-scale
structure vortices spinning up dark haloes? MNRAS. 2013; 446: 2744–2759. doi:10.1093/
mnras/stu2289

[57] Santillán AO, Volke-Sepúlveda K. A demonstration of rotating sound waves in free space
and the transfer of their angular momentum to matter. Am. J. Phys. 2009; 77: 209–215.
doi:10.1119/1.3056580

Trends in Modern Cosmology112



[54] Triple S. A simplified treatment of gravitational interaction on galactic scales. JKAS. 2013;
46: 41–47. doi:10.5303/JKAS.2013.46.1.41

[55] Einasto E, et al. (10 co-authors). The Sloan Great Wall. Morphology and galaxy content.
Astrophys. J. 2011; 736: 25 p. doi:10.1088/0004-637X/736/1/51

[56] Laigle C, Pichon C, et al. (10 co-authors). Swirling around filaments: are large-scale
structure vortices spinning up dark haloes? MNRAS. 2013; 446: 2744–2759. doi:10.1093/
mnras/stu2289

[57] Santillán AO, Volke-Sepúlveda K. A demonstration of rotating sound waves in free space
and the transfer of their angular momentum to matter. Am. J. Phys. 2009; 77: 209–215.
doi:10.1119/1.3056580

Trends in Modern Cosmology112

Section 3

Gravity, Dark Energy and Black Holes





Chapter 6

Modified Gravity Theories: Distinguishing from ΛCDM

Model

Koichi Hirano

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68281

Abstract

The method and probability of distinguishing between the Λ cold dark matter (ΛCDM)
model and modified gravity are studied from future observations for the growth rate of
cosmic structure (Euclid redshift survey). We compare the mock observational data to
the theoretical cosmic growth rate by modified gravity models, including the extended
Dvali–Gabadadze–Porrati (DGP) model, kinetic gravity braiding model, and Galileon
model. In the original DGP model, the growth rate fσ8 is suppressed in comparison with
that in the ΛCDMmodel in the setting of the same value of the today’s energy density of
matter Ωm;0, due to suppression of the effective gravitational constant. In the case of the
kinetic gravity braiding model and the Galileon model, the growth rate fσ8 is enhanced
in comparison with the ΛCDM model in the same value of Ωm;0, due to enhancement of
the effective gravitational constant. For the cosmic growth rate data from the future
observation (Euclid), the compatible value of Ωm;0 differs according to the model. Fur-
thermore, Ωm;0 can be stringently constrained. Thus, we find the ΛCDM model is
distinguishable from modified gravity by combining the growth rate data of Euclid with
other observations.

Keywords: accelerated expansion, gravitational theory, dark energy, observational test,
cosmic growth rate

1. Introduction

Cosmological observations, including type Ia supernovae (SNIa) [1, 2], cosmic microwave
background (CMB) anisotropies, and baryon acoustic oscillations (BAO), indicate that the
universe is undergoing an accelerated phase of expansion. This late-time acceleration is one of
the biggest mysteries in current cosmology. The standard explanation is that this acceleration is

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



caused by dark energy [3–6]. This would mean that a large part of components in the universe
is unknown. The cosmological constant is a candidate of dark energy. To explain the late-time
accelerated expansion of the universe, the cosmological constant must be a very small value.
However, its value is not compatible with a prediction from particle physics, and it has fine-
tuning and coincidence problems.

An alternative explanation for the current acceleration of the universe is to modify general
relativity to be a more general theory of gravity at a long-distance scale. Several modified
gravity theories have been studied, such as f(R) gravity (for reviews, see, e.g., [7]), scalar-tensor
theories [8–10], and the Dvali–Gabadadze–Porrati (DGP) braneworld model [11–13].

Furthermore, as an alternative to general relativity, Galileon gravity models have been pro-
posed [14–22]. These models are built by introducing a scalar field with a self-interaction
whose Lagrangian, which is invariant under Galileon symmetry ∂μφ ! ∂μφþ bμ, keeps the
field equation of motion as a second-order differential equation. This avoids presenting a new
degree of freedom, and perturbation of the theory is free from ghost or instability problems.

The simplest term of the self-interaction is □φð∇φÞ2, which induces decoupling of the Galileon
field from gravity at small scales via the Vainshtein mechanism [23]. Therefore, the Galileon
theory recovers general relativity at scales around the high-density region, as is not inconsis-
tent with solar system experiments.

Galileon theory has been covariantized and studied in curved backgrounds [24, 25]. Although
Galileon symmetry cannot be maintained in the case that the theory is covariantized, it is
possible to preserve the equation of motion at second order, which means that the theory does
not raise ghost-like instabilities. Galileon gravity induces self-accelerated expansion of the
current universe. Thus, inflation models inspired by the Galileon gravity theory have been
studied [26–28]. In Ref. [29], the parameters of the generalized Galileon cosmology were
constrained from the observational data of SNIa, CMB, and BAO. The evolution of matter
density perturbations for Galileon cosmology has also been investigated [16–18, 30, 31].

Almost 40 years ago, Horndeski derived the action of most general scalar-tensor theories with
second-order equations of motion [32]. His theory received much attention as an extension of
covariant Galileons [14, 24, 25, 33]. One can show that the four-dimensional action of general-
ized Galileons derived by Deffayet et al. [34] is equivalent to Horndeski’s action under field
redefinition [35]. Because Horndeski’s theory contains all modified gravity models and single-
field inflation models with one scalar degree of freedom as specific cases, considerable atten-
tion has been paid to various aspects of Horndeski’s theory and its importance in cosmology.

Recently, more general modified gravity theories have been studied, including Gleyzes-
Langlois-Piazza-Vernizzi (GLPV) theories [36, 37] and eXtended Galileon with 3-space covari-
ance (XG3) [38].

In this chapter, the probability of distinguishing between the Λ cold dark matter (ΛCDM) model
and modified gravity is studied by using future observations for the growth rate of cosmic
structure (e.g., Euclid redshift survey [39]). We computed the growth rate of matter density
perturbations in modified gravity and compared it with mock observational data. Whereas the
background expansion history in modified gravity is almost identical to that of dark energy
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models, the evolution of matter density perturbations of modified gravity is different from that
of dark energy models. Thus, it is important to study the growth history of perturbations to
distinguish modified gravity from models based on the cosmological constant or dark energy.

Although past observations of the growth rate of matter density perturbations have been used
to study modified gravity [40], we focus on future observations of the growth rate by Euclid.
We adopt the extended DGP model [41], kinetic gravity braiding model [30], and Galileon
model [16, 17] as modified gravity models. The kinetic gravity braiding model and the
Galileon model are specific aspects of Horndeski’s theory.

This chapter is organized as follows. In the next section, we present the background evolution
and the effective gravitational constant in modified gravity models. In Section 3, we describe
the theoretical computations and the mock observational data of the growth rate of matter
density perturbations. In Section 4, we study the probability of distinguishing between the
ΛCDM model and modified gravity by comparing the predicted cosmic growth rate by
models to the mock observational data. Finally, conclusions are given in Section 5.

2. Modified gravity models

2.1. Extended DGP model

In the DGP model [11], it is assumed that we live on a 4D brane embedded in a 5D Minkowski
bulk. Matter is trapped on the 4D brane, and only gravity experiences the 5D Minkowski bulk.

The action is

S ¼ 1
16π

M3
ð5Þ

ð

bulk
d5x

ffiffiffiffiffiffiffiffiffiffiffi�gð5Þ
p

Rð5Þ þ 1
16π

M2
ð4Þ

ð

brane
d4x

ffiffiffiffiffiffiffiffiffiffiffi�gð4Þ
p ðRð4Þ þ LmÞ, ð1Þ

where quantities of the 4D brane and the 5D Minkowski bulk are represented with subscripts
(4) and (5), respectively. M is the Planck mass, and Lm is the Lagrangian of matter confined on
the 4D brane. The transition between 4D and 5D gravity occurs at the crossover scale rc.

rc ¼
M2

ð4Þ
2M3

ð5Þ
: ð2Þ

At scales larger than rc, gravity appears in 5D. At scales smaller than rc, gravity is effectively
bound to the brane, and 4D Newtonian dynamics is recovered to a good approximation. rc is a
parameter in this model, which has the unit of length [42].

Under spatial homogeneity and isotropy, a Friedmann-like equation is obtained on the brane
[43, 44]:

H2 ¼ 8πG
3

ρþ ε
H
rc
; ð3Þ

where ρ represents the total fluid energy density on the 4D brane. The DGP model has two
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branches (ε = �1). The choice of ε = þ1 is called the self-accelerating branch. In this branch, the
accelerated expansion of the universe is induced without dark energy, since the Hubble
parameter comes close to a constant H = 1/rc as time passes. By contrast, ε = �1 is the normal
branch. In this case, the expansion cannot accelerate without a dark energy component.
Therefore, in the following, we adopt the self-accelerating branch (ε = þ1).

The original DGP model, however, is plagued by the ghost problem [45] and is incompatible
with cosmological observations [46].

Dvali and Turner [41] phenomenologically extended the Friedmann-like equation of the DGP
model (Eq. (3)). This model interpolates between the original DGP model and the ΛCDM
model by adding the parameter α. The modified Friedmann-like equation is

H2 ¼ 8πG
3

ρþ Hα

rc2�α : ð4Þ

For α = 1, this is equivalent to the original DGP Friedmann-like equation, whereas α = 0 leads to
an expansion history identical to ΛCDM cosmology. This is important for distinguishing the
ΛCDM model from the original DGP model between α = 0 and 1. In the extended DGP model,
the crossover scale rc can be expressed as follows:
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α�2H�1
0 : ð5Þ

Thus, the independent parameters of the cosmological model are α and today’s energy density
parameter of matter Ωm;0. The effective gravitational constant of the extended DGP model is
given in order to interpolate between ΛCDM and the original DGP model. The effective
gravitational constant is as follows.

Geff

G
¼ 1þ 1

3β
; ð6Þ

where

β � 1� 2ðrcHÞ2�α

α
1þ 1

3
ð2� αÞ _H

H2

" #
: ð7Þ

Geff / G is the effective gravitational constant normalized to Newton’s gravitational constant,
and an overdot represents differentiation with respect to cosmic time t.

2.2. Kinetic gravity braiding model

The kinetic gravity braiding model [30] is proposed as an alternative to the dark energy model.
One can say that the kinetic gravity braidingmodel is a specific aspect of Horndeski’s theory [32].

The most general four-dimensional scalar-tensor theories keeping the field equations of motion
at second order are described by the Lagrangian [32–35, 47]
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L ¼
X5

i¼2

Li; ð8Þ

where

L2 ¼ Kðφ; XÞ, ð9Þ
L3 ¼ �G3ðφ; XÞ□φ; ð10Þ

L4 ¼ G4ðφ; XÞRþ G4; X½ð□φÞ2 � ð∇μ∇νφÞð∇μ∇νφÞ�, ð11Þ

L5 ¼ G5ðφ; XÞGμνð∇μ∇νφÞ � 1
6
G5; X½ð□φÞ3 � 3ð□φÞð∇μ∇νφÞð∇μ∇νφÞ

þ 2ð∇μ∇αφÞð∇α∇βφÞð∇β∇μφÞ�:
ð12Þ

Here, K and Gi (i = 3, 4, 5) are functions of the scalar field φ and its kinetic energy
X ¼ �∂μφ∂μφ=2 with the partial derivatives Gi;X � ∂Gi=∂X. R is the Ricci scalar, and Gμν is the
Einstein tensor. The above Lagrangian was first derived by Horndeski in a different form Ref.
[32]. This Lagrangian (Eqs. (8)–(12)) is equivalent to that derived by Horndeski [35]. The total
action is then given by

S ¼
ð
d4x

ffiffiffiffiffiffiffi�g
p ðLþ LmÞ, ð13Þ

where g represents a determinant of the metric gμν, and Lm is the Lagrangian of non-relativistic

matter.

Variation with respect to the metric produces the gravity equations, and variation with respect
to the scalar field φ yields the equation of motion. By using the notation K � Kðφ;XÞ,
G � G3ðφ;XÞ, F � 2

M2
pl
G4ðφ;XÞ, and assuming G5ðφ;XÞ ¼ 0 for Friedmann–Robertson–Walker

spacetime, the gravity equations give

3M2
plFH

2 ¼ ρm þ ρr � 3M2
plH _F � K þ 2XK;X þ 6H _φXG;X � 2XG;φ; ð14Þ

�M2
plFð3H2 þ 2 _HÞ ¼ pr þ 2M2

plH _F þM2
pl
€F þ K � 2XG;X €φ � 2XG;φ; ð15Þ

and the equation of motion for the scalar field gives

ðK;X þ 2XK;XX þ 6H _φG;X þ 6H _φXG;XX � 2XG;φX � 2G;φÞ €φ

þð3HK;X þ _φK;φX þ 9H2 _φG;X þ 3 _H _φG;X þ 6HXG;φX � 6HG;φ � G;φφ
_φÞ _φ

�K;φ � 6M2
plH

2F;φ � 3M2
pl

_HF;φ ¼ 0:

ð16Þ

Here, an overdot denotes differentiation with respect to cosmic time t, and H ¼ _a=a is the
Hubble expansion rate. Note that we use the partial derivative notation K;X � ∂K=∂X and
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K;XX � ∂2K=∂X2 and a similar notation for other variables. Also, ρm and ρr are the energy
densities of matter and radiation, respectively, and pr is the pressure of the radiation.

In the kinetic gravity braiding model [30], the functions in Horndeski’s theory are given as
follows:

Kðφ;XÞ ¼ �X; ð17Þ

G3ðφ;XÞ ¼ Mpl
r2c
M2

pl

X

 !n

; ð18Þ

G4ðφ;XÞ ¼
M2

pl

2
; ð19Þ

G5ðφ;XÞ ¼ 0: ð20Þ

Mpl is the reduced Planck mass related to Newton’s gravitational constant by Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
,

and rc is called the crossover scale in the DGP model [42]. The kinetic braiding model we study
is characterized by parameter n in Eq. (18). For n = 1, this corresponds to Deffayet’s Galileon
cosmological model [22]. For n equal to infinity, the background expansion of the universe of
the kinetic braiding model approaches that of the ΛCDM model. This helps distinguish the
kinetic braiding model from the ΛCDM model.

In the case of the kinetic braiding model using the Hubble parameter as the present epoch H0,
the crossover scale rc is given by

rc ¼ 2n�1

3n

� �1=2n
1

6ð1�Ωm;0 �Ωr;0Þ
� �ð2n�1Þ=4n

H�1
0 ; ð21Þ

where Ωr,0 is the density parameter of the radiation at the present time. Thus, the independent
parameters of the cosmological model are n and Ωm,0. The effective gravitational constant
normalized to Newton’s gravitational constant Geff / G of the kinetic braiding model is given by

Geff

G
¼ 2nþ 3nΩm �Ωm

Ωmð5n�ΩmÞ ; ð22Þ

where Ωm is the matter energy density parameter defined as Ωm ¼ ρm=3M
2
plH

2. Here, we used

the attractor condition. Although the background evolution for large n approaches the ΛCDM
model, the growth history of matter density perturbations is different due to the time-
dependent effective gravitational constant.

2.3. Galileon model

The Galileon gravity model is proposed as an alternative to the dark energy model. It is
thought that the Galileon model studied in Refs. [16, 17] is a specific aspect of Horndeski’s
theory [32].
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In the Galileon model [16, 17], the functions in the Lagrangian (Eqs. (8)–(12)) of the Horndeski’s
theory are given as follows:

Kðφ;XÞ ¼ 2
ω
φ
X; ð23Þ

G3ðφ;XÞ ¼ 2ξðφÞX; ð24Þ
G4ðφ;XÞ ¼ φ; ð25Þ
G5ðφ;XÞ ¼ 0; ð26Þ

where ω is the Brans–Dicke parameter and ξðφÞ is a function of φ.

In this case, the Friedmann-like equations, Eqs. (14) and (15), can be written in the following
forms, respectively:

3H2 ¼ 1
M2

pl

ðρm þ ρr þ ρφÞ, ð27Þ

�3H2 � 2 _H ¼ 1
M2

pl

ðpr þ pφÞ, ð28Þ

where the effective dark energy density ρφ is defined as

ρφ ¼ 2φ �3H
_φ
φ
þ ω

2

_φ
φ

 !2

þ φ2ξðφÞ 3H þ
_φ
φ

( )
_φ
φ

 !3
2
4

3
5þ 3H2ðM2

pl � 2φÞ; ð29Þ

and the effective pressure of dark energy pφ is

pφ ¼ 2φ
€φ
φ
þ 2H

_φ
φ
þ ω

2

_φ
φ

 !2

� φ2ξðφÞ
€φ
φ
�

_φ
φ

 !2
8<
:

9=
;

_φ
φ

 !2
2
4

3
5� ð3H2 þ 2 _HÞðM2

pl � 2φÞ: ð30Þ

The equation of motion for the scalar field is given by Eq. (16).

For the numerical analysis, we adopt a specific model in which

ξðφÞ ¼ r2c
φ2 ; ð31Þ

where rc is the crossover scale [15]. This Galileon model extends the Brans–Dicke theory by

adding the self-interaction term, ξðφÞð∇φÞ2□φ. Thus, ω of this model is not exactly the same as
the original Brans–Dicke parameter. The evolution of matter density perturbations of this
model was computed in Refs. [16, 17].
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At early times, we set the initial condition φ≃M2
pl=2 to recover general relativity. Using these

initial conditions reduces the Friedmann equations (Eqs. (27) and (28)) to their usual forms:
3H2 ¼ ðρm þ ρrÞ=M2

pl and �3H2 � 2 _H ¼ pr=M
2
pl. This is the cosmological version of the

Vainshtein effect [23], which is a method to recover general relativity below a certain scale. At
present, to induce cosmic acceleration, the value of rc must be fine tuned.

The energy density parameter of matter at present in this model is defined asΩm;0 ¼ ρm;0=3H
2
0φ0.

Therefore, in the numerical analysis, the value of rc is fine tuned so thatΩm,0 becomes an assumed
value. Thus, the independent parameters of the cosmological model are ω and Ωm,0. For the
Galileon model specified by Eqs. (23)–(26) and (31), the effective gravitational constant is given by

Geff ¼ 1
16πφ

1þ ð1þ ξðφÞ _φ2Þ2
J

" #
; ð32Þ

where

J � 3þ 2ωþ φ2ξðφÞ 4
€φ
φ
� 2

_φ
2

φ2 þ 8H
_φ
φ
� φ2ξðφÞ

_φ
4

φ4

" #
: ð33Þ

The effective gravitational constant Geff is close to Newton’s constant G at early times, but
increases at later times.

3. Cosmic growth rate

3.1. Density perturbations

Under the quasistatic approximation on sub-horizon scales, the evolution equation for cold
dark matter over-density δ in linear theory is given by

€δ þ 2H _δ � 4πGeffρδ≃0; ð34Þ

where Geff represents the effective gravitational constant of the modified gravity models
described in the previous section.

We set the same initial conditions as in the conventional ΛCDM case (δ ≈ a and _δ ≈ _a) because
we trace the difference between the evolution of the matter perturbations in modified gravity
and the evolution in the ΛCDM model. From the evolution equation, we numerically obtain
the growth factor δ / a for modified gravity models. The linear growth rate is written as

f ¼ d lnδ
d lna

: ð35Þ
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where δ is the matter density fluctuations and a is the scale factor. The growth rate can be
parameterized by the growth index γ, defined by

f ¼ Ωγ
m: ð36Þ

Refs. [48, 49] showed that the growth rate f in the Galileon model specified by Eqs. (23)–(26)
and (31) is enhanced compared with the ΛCDM model for the same value of Ωm,0 due to
enhancement of the effective gravitational constant.

3.2. Euclid

Euclid [39] is a European Space Agency mission that is prepared for a launch at the end of
2020. The aim of Euclid is to study the origin of the accelerated expansion of the universe.
Euclid will investigate the distance-redshift relationship and the evolution of cosmic structures
by measuring shapes and redshifts of galaxies and the distribution of clusters of galaxies over a
large part of the sky. Its main subject of research is the nature of dark energy. However, Euclid
will cover topics including cosmology, galaxy evolution, and planetary research.

In this study, Euclid parameters are adopted as the growth rate observations. The growth rate
can be parameterized by using the growth index γ, defined by f ¼ Ωm

γ. Mock data of the
cosmic growth rate are built based on the 1σ marginalized errors of the growth rate by Euclid.
These data are listed in Table 4 in the paper by Amendola et al. [39]. Table 1 shows the 1σ
marginalized errors for the cosmic growth rates with respect to each redshift in accordance
with Table 4 in [39]. In Figure 1, the mock data of the cosmic growth rate used in this study are
plotted.

The mock data are used to compute the statistical χ2 function. The χ2 function for the growth
rate is defined as

χ2
f ¼

X14

i¼1

ðf theoryðziÞ � f obsðziÞÞ2

σf gðziÞ2
ð37Þ

where f obsðziÞ is the future observational (mock) data of the growth rate. The theoretical growth
rate f theoryðziÞ is computed as Eq. (35). In Ref. [50], constraints on neutrino masses are estimated

based on future observations of the growth rate of the cosmic structure from the Euclid
redshift survey.

The estimated errors from the observational technology of Euclid are known, but the center
value of future observations is not known. Therefore, the purpose of this study is not to
validate the ΛCDM model or modified gravity but to find ways and probabilities to distin-
guish between the ΛCDM model and modified gravity.
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Experiment z σf g (ref.)

Euclid [39] 0.7 0.011

0.8 0.010

0.9 0.009

1.0 0.009

1.1 0.009

1.2 0.009

1.3 0.010

1.4 0.010

1.5 0.011

1.6 0.012

1.7 0.014

1.8 0.014

1.9 0.017

2.0 0.023

Here, z represents the redshift and σf g represents the 1σ marginalized errors of the growth rates.

Table 1. 1σmarginalized errors for the growth rates in each redshift bin based on Table 4 in the study by Amendola et al. [39].
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Figure 1. Plot of mock data of the cosmic growth rate.
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4. Comparison with observations

4.1. Extended DGP model

In Figure 2, we plot the probability contours in the (α, σ8)-plane in the extended DGPmodel from
the observational (mock) data of the cosmic growth rate by Euclid. The blue (dark) and light blue
(light) contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits, respectively. Part of α = 0 for
the horizontal axis corresponds to the ΛCDMmodel, and part of α = 1 corresponds to the original
DGPmodel. σ8 is the rootmean square (rms) amplitude of over-density at the comoving 8 h�1Mpc
scale (where h is the normalized Hubble parameter H0 ¼ 100 hkmsec�1Mpc�1). In Figures 3–5,
we demonstrate why σ8 is stringently constrained.

We plot fσ8 (the product of growth rate and σ8) in the extended DGP model as a function of
redshift z for various values of the energy density parameter of matter at the present Ωm,0 in
Figures 3–5. In Figure 3, the parameters are fixed by α = 1, σ8 = 0.6. For the various values
of Ωm,0, the theoretical curves seem to revolve around the dashed circle. Hence, the value of
σ8 = 0.6 is incompatible with the observational (mock) data.

In Figure 4, the parameters are fixed by α = 1, σ8 = 1.0. For the various values of Ωm,0, the
theoretical curves seem to revolve around the dashed circle. Hence, the value of σ8 = 1.0 is
incompatible with the observational (mock) data.

In Figure 5, the parameters are fixed by α = 1, σ8 = 0.855. For the various values of Ωm,0,
although the theoretical curves seem to revolve around the dashed circle, some theoretical
curves are comparatively close to the observational (mock) data. Hence, the value of σ8 = 0.855
is compatible with the observational (mock) data in the original DGP model (α = 1).
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Figure 2. Probability contours in the (α, σ8)-plane for the extended DGP model from the observational (mock) data of the
cosmic growth rate by Euclid. The contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits.
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Figure 3. fσ8 (the product of growth rate and σ8) in the extended DGP model as a function of redshift z for various values
of Ωm,0. The parameters are fixed by α = 1, σ8 = 0.6.
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Figure 4. fσ8 in the extended DGP model as a function of redshift z for various values of Ωm,0. The parameters are fixed
by α = 1, σ8 = 1.0.
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In Figure 6, we plot the probability contours in the (α,Ωm,0)-plane in the extended DGP model
from the observational (mock) data of the cosmic growth rate by Euclid. The red (dark) and
pink (light) contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits, respectively. We
demonstrate why Ωm,0 is positively correlated with α in Figure 7.

We plot fσ8 in the extended DGP model as a function of redshift z in Figure 7. The red (solid)
line is the theoretical curve for the best-fit parameter in the ΛCDM model (α = 0, Ωm,0 = 0.257,
σ8 = 0.803). In the case of changing only α =1, the growth rate fσ8 is suppressed due to
suppression of the effective gravitational constant (green (dashed) line: α = 1, Ωm,0 = 0.257, σ8
= 0.803). For α = 1, by tuning the value of Ωm,0 and σ8, the theoretical curve is compatible with
the observational (mock) data again (blue (dotted) line: α = 1, Ωm,0 = 0.395, σ8 = 0.855).

In Figure 8, we add constraints on Ωm,0 for the extended DGP model from the combination of
CMB, BAO, and SNIa data (black solid lines) [46] to the probability contours in the (α, Ωm,0)-
plane by the growth rate (mock) data by Euclid of Figure 6.

Because Ωm,0 is stringently constrained by the cosmic growth rate data from Euclid, we find
the ΛCDM model is distinguishable from the original DGP model by combining the growth
rate data of Euclid with other observations.

4.2. Kinetic gravity braiding model

In Figure 9, we plot the probability contours in the (n,Ωm,0)-plane in the kinetic gravity braiding
model from the observational (mock) data of the cosmic growth rate by Euclid. The red (dark)
and pink (light) contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits, respectively.
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Figure 6. Probability contours in the (α, Ωm,0)-plane for the extended DGP model from the observational (mock) data of
the cosmic growth rate by Euclid. The contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits.
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Figure 8. Addition of constraints on Ωm,0 for the extended DGP model from CMB, BAO and SNIa data [46] to the data in
Figure 6.
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We plot fσ8 in the kinetic gravity braiding model as a function of redshift z in Figure 10. The red
(solid) line is the theoretical curve for the best-fit parameter in the ΛCDM model (Ωm,0 = 0.257,
σ8 = 0.803). In the case of the kinetic gravity braiding model for n = 1, the growth rate fσ8 is
enhanced due to enhancement of the effective gravitational constant (Green (dashed) line: n = 1,
Ωm,0 = 0.257, σ8 = 0.803). For n = 100, by tuning the value of Ωm,0 and σ8, the theoretical curve is
compatible with the observational (mock) data again (blue (dotted) line: n = 100, Ωm,0 = 0.196,
σ8 = 0.820).

In Figure 11, we add constraints on Ωm,0 for the kinetic gravity braiding model from CMB
(black dashed lines) and from SNIa (black solid lines) [30], respectively, to the probability
contours in the (n, Ωm,0)-plane by the growth rate (mock) data by Euclid of Figure 9.

In the kinetic gravity braiding model, the allowed parameter region obtained by using only the
growth rate data does not overlap with the allowed parameter region obtained from CMB or
from SNIa data.

4.3. Galileon model

In Figure 12, we plot the probability contours in the (ω, Ωm,0)-plane in the Galileon model from
the observational (mock) data of the cosmic growth rate by Euclid. The red (dark) and pink
(light) contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits, respectively. We also plot
the constraints on Ωm,0 for the Galileon model from the combination of CMB, BAO, and SNIa
(black solid lines) [49].
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Figure 10. fσ8 in kinetic gravity braiding model as a function of redshift z. The values of the parameters are as follows.
Red (solid) line: ΛCDM, Ωm,0 = 0.257, σ8 = 0.803. Green (dashed) line: n = 1, Ωm,0 = 0.257, σ8 = 0.803. Blue (dotted) line: n =
100, Ωm,0 = 0.196, σ8 = 0.820.
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Figure 11. Addition of constraints onΩm,0 for the kinetic gravity braiding model from CMB (black dashed lines) and from
SNIa (black solid lines), respectively, [30] to Figure 9.
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Figure 12. Probability contours in the (ω, Ωm,0)-plane for the Galileon model from the observational (mock) data of the
cosmic growth rate by Euclid. The contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits. The added constraints
on Ωm,0 for the Galileon model are from the combination of CMB, BAO, and SNIa (black solid lines) [49].
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In the Galileon model, the allowed parameter region obtained by using only the growth rate
data do not overlap at all with the allowed parameter region obtained from the combination of
CMB, BAO, and SNIa data.

5. Conclusions

The growth rate fσ8 in the original DGP model is suppressed in comparison with that in the
ΛCDM case in the setting of the same value of Ωm,0 due to suppression of the effective
gravitational constant. In the case of the kinetic gravity braiding model and the Galileon
model, the growth rate fσ8 is enhanced in comparison with the ΛCDM case in the same value
of Ωm,0 due to enhancement of the effective gravitational constant. For the cosmic growth rate
data from the future observation, compatible values of Ωm,0 differ according to the model.
Furthermore, values of Ωm,0 can be stringently constrained. Thus, we find the ΛCDM model is
distinguishable from modified gravity by combining the growth rate data of Euclid with other
observations.

The estimated errors from the observational technology of Euclid are known, but the center
value of future observations is not known. If the center value of the cosmic growth rate of
future observations is different from that of this chapter, the valid model can differ from that of
this chapter. However, the methods in this chapter are useful for distinguishing between the
ΛCDM model and modified gravity.

In this chapter, assuming the function G5ðφ; XÞ in Horndeski’s theory G5ðφ; XÞ ¼ 0, we com-
pute the linear matter density perturbations for the growth rate. In future work, we will study
the model having non-zero function G5ðφ; XÞ in Horndeski’s theory and investigate the
nonlinear effect.
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Abstract

Numerical simulations play an important role in current astronomy researches. Previous 
dark-matter-only simulations have represented the large-scale structure of the Universe. 
However, nowadays, hydro-dynamical simulations with baryonic  models, which can 
directly present realistic galaxies, may twist these results from dark-  matter-only  simulations. 
In this chapter, we mainly focus on these three statistical methods: power spectrum, 
 two-point correlation function and halo mass function, which are normally used to 
 characterize the large-scale structure of the Universe. We review how these baryon pro-
cesses influence the cosmology structures from very large scale to  quasi-linear and non-
linear scales by comparing dark-matter-only simulations with their  hydro-dynamical 
counterparts. At last, we make a brief discussion on the impacts coming from different 
baryon models and simulation codes.

Keywords: large-scale structure, simulation, statistical methods, hydro-dynamical 
simulation, baryonic models

1. Introduction

The core of current research foci in cosmology is to interpret the distribution and properties 
of observed galaxies in the sky and to understand their formation and evolution. The  current 
standard cosmology model—lambda-cold-dark-matter (ΛCDM) paradigm—provides a gen-
eral explanation for the galaxy formation and evolution: matter is dominated by the dark 
matter, which only subjects to gravitational interactions; inside dark matter halo that acts as a 
gravitational potential well, baryonic matters go through a series of physical processes, such 
as gas cooling, star forming and death with Supernova feedback.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



From the cosmic micro background (CMB) observation, such as WMAP [1] and Plank [2], 
matters occupy roughly one-fourth of total energy of the Universe. The rest comes from dark 
energy. Dark matter is about 20% of the total energy, while baryons only occupy 5% (see more 
accurate fractions from [3]). At the CMB time (z ~ 1100), matters are distributed nearly ‘homo-
geneous’ in the Universe with little fluctuations at small scales. Started from that time, dark 
matter and baryons are assembled by the gravitational force. They follow a  pattern of hier-
archical structure formation, where the smaller structures form first, then merge to build 
massive ones. At very large scale, this structure formation process can be roughly described 
by the Zel'dovich approximation [4]. However, the formation of structures with gravity is a 
nonlinear process, which cannot be fully described analytically, especially at small scales. 
Therefore, building these structures and tracing their evolutions require numerically solving 
the gravitational equation.

Combining with modern computers, this problem can be solved with numerical methods—
N-body simulations, which boosts a new area of research in astronomy. Initially, differ-
ent numerical methods are developed to simulate only dark matter component, such as 
 particle-mesh (PM), particle-particle/particle-mesh (P3M) and tree-PM algorithms. Dark mat-
ter is described numerically by data points/particles that trace a mass element correspond-
ing to a volume element of the early ’homogeneous’ universe. Those methods successfully 
describe the formation of structures by implementing gravitational interactions. Thus, over 
decades, such simulations have been widely used with little variation in term of physics. 
Combined with ever decreasing limitations of computer resources and vast improvement 
in terms of implementations, larger volumes can be explored with increasing resolution to 
reserve the small-scale information. The properties of cosmology structures (such as cosmic 
web, voids), halos and even subhaloes are well understood.

However, these simulations cannot give any information of galaxies, which are resident inside dark 
matter halos.

To connect these theoretical investigation results with observed galaxies, numerous methods 
are developed. They can be roughly separated into these three approaches:

i. Much simpler approaches are halo occupation distribution (HOD) models, where 
 observed galaxies are assigned to halos by matching both the halo mass and stellar mass 
functions (e.g. [5–10]). Such methods are tuned to directly link the luminosity functions 
with halo mass functions. Thus, they are successful in defining the stellar mass halo 
mass (SMHM) relation. However, this method cannot provide useful individual galaxy 
 information. Furthermore, the scatter in this relation still remains uncertain and difficult 
to interpret. It can be constrained by comparing specific galaxies, their environments, the 
inter galactic medium (IGM) and their full formation history.

ii. Other less computationally intensive methods involve applying sub-grid models on 
the scale of dark matter halos, starting from the accretion of gas by the potential well, 
 following recipes of gas cooling, star forming, supernova (SN) and active galactic nuclei 
(AGN) feedbacks, at last galaxies are formed and evolved under the halo merger tree. 
These semi-analytical models (SAMs) have been successfully applied to halo catalogues 
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extracted from N-body simulations (e.g. [11–17]). Interested readers are encouraging to 
find the differences between these models (including HOD models) in the nIFTy cosmol-
ogy comparison project [18] and their following works. As the formation of halos can be 
traced in the form of halo merger trees, both the formation and interaction of galaxies can 
be explored within the time frame and the mass resolution explored by the simulation. 
Although these methods can provide more physical views of galaxy formation, they are 
still lacking the consistency of co-evolving between baryon and dark matter.

iii. Hydro-dynamical simulations are the only way to overcome the problem faced by SAMs. 
They can directly solve the physical processes of the baryonic component on top of the 
dark matter one, which can provide consistent co-evolution with the same gravitational 
force. These hydro-simulations require complex implementations of baryonic models with 
gas described either as (a) numerical data points with associated density (smooth particles 
hydrodynamics (SPH): [19–22], etc.), (b) grid cells fixed in the volume (cells are refined 
and unrefined as required to explore highest gas density while neglecting  low-density 
regions with nested mesh or adaptive mesh refinement (AMR): [23–25], etc.) or (c) moving 
mesh (the gas element is associated with a numerical point within a  volume defined from 
the distribution of nearby mesh point through Voronoi tessellation) [26]. The key aspect 
is the description of the physical processes within these gas elements. These recipes from 
SAM can be implanted in hydro-dynamical simulations with moderate modifications. 
However, hydro-dynamical simulation is suffered from its time-consuming computation, 
with which the numerous free parameters from these  sub-grid baryonic models cannot be 
easily tuned to represent these observational relations as they are in SAM.

Although hydro-dynamical simulations are the heaviest and most time-consuming tool for 
connecting the dark part with the luminous part in the Universe, they are irreplaceable in 
investigating/understanding galaxy formations in a full picture. Those HOD and SAM models, 
which are used to create mock galaxy catalogues, have been quite successfully in reproducing 
the observational statistical features, such as the two-point correlation functions, luminosity 
functions, colour distributions and star formation rates. Nevertheless, they are based on the 
assumption that baryon processes are independent of dark matter halo formation, which is 
apparently not true [27–29]. As both observation and simulation are becoming more and more 
accurate, the back reaction of baryons to dark matter cannot be ignored. Thanks to the Morse’s 
law, more and more efforts are being put in these areas in recent years, for example, [30, 31], 
the OWLS project [32], the EAGLE project [33], the Illustris project [34] and the Horizon-AGN 
simulation [35] for these cosmological simulations; the NIHAO project [36] and the FIRE proj-
ect [37] for these zoom-in simulations. Interested readers refer to the Aquila project [38], the 
AGORA project [39] and the nIFTy cluster comparison project [40–44] for the comparison of dif-
ferent hydro-dynamical simulation codes. A number of studies based on cosmological hydro-
dynamic simulations have been recently carried out to analyse in detail the effect of baryonic 
processes on different properties of the total mass distribution, such as the power spectrum of 
matter density fluctuations (e.g. [45–48]), the halo correlation functions (e.g. [49, 50]), the halo 
density profiles (e.g. [29, 51–53]), concentration (e.g. [54, 55]) and shape (e.g. [56, 57]) and the 
halo mass function (e.g. [30, 31, 58–61]).
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In this chapter, we will focus on the impacts of baryons through these comparisons between 
hydro-dynamical simulations with dark-matter-only simulations and summarize the results 
in these three aspects: power spectrum, two-point correlation function (2-PCF) and halo mass 
function (HMF).

2. Chapter

In the last decade, dark-matter-only simulations have been vastly used to theoretically 
 investigate the large-scale structure of the Universe. Through different statistical methods, 
such as power spectrum, two-point correlation function, halo mass function and so on, 
the formation and evolution of the large-scale structures have been clearly characterized 
by those cosmological dark-matter-only simulations. However, the observed Universe can 
only show the distribution of baryonic matters at such scales. To connect these theoreti-
cal  understanding with observations of the large-scale structure of the Universe, we need 
hydro-dynamical  simulations, which can provide a consistent evolution driving by the 
gravitational force for both dark matter and baryons. With these hydro-simulations, we can 
directly compare  simulations with observations through mock techniques (e.g. [62–64]); 
explore the galaxy formation process in details; correct and improve our understanding of 
these baryon models, and so on. In this chapter, we only concentrate on one simple ques-
tion: How do the baryon processes react on dark matter? This is a question, which these 
simplified analytical models such as HOD and SAM with ad hoc parameters lack the ability 
to deal with. As baryons occupy only a small fraction of total matter, we are expecting a very 
weak effect on the dark matter structures. Nevertheless, baryons dominate at small scales 
such as in galaxies, where the effect cannot be ignored anymore. Thus, we will address this 
question with different statistical quantities at different scales, which are listed in Sections 
2.1, 2.2 and 2.3.

2.1. Power spectrum

The power spectrum P(k) (here k is the comoving wavenumber corresponding to a  comoving 
spatial scale  λ = 2   π __ k   ) is one of the most powerful and basic statistical measurements that 
describes the distribution of mass in the Universe, and one of the most thoroughly  investigated 
quantities in modelling the structure formation process. Due to the large amount of data 
from both observation and simulation, the power spectra are measured mostly using the fast 
Fourier transform (FFT) technique. Lots of methods are used to improve the accuracy of the 
measurement for power spectrum especially at nonlinear scale, for example [65, 66]. However, 
such algorithm improvements cannot deal with the power spectrum changes caused by the 
physical models.

Using the OWSL simulations, [46] studied the influence of baryonic models on matter 
power spectrum through a comparison between a dark-matter-only (DMONLY) one and 
 hydro-dynamical simulations (REF and AGN). Starting from the same initial condition, these 
simulations from various models are listed in Table 1.
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In Figure 1, they showed the dimensionless matter power spectrum   Δ   2   (  k )    =  k   3  P(k ) / 2  π   2   on the 
upper panel and the relative difference to the DMONLY run on the lower panel. It is clear 
that the contribution of the baryons is significant: they decrease the power by more than 1% 
for k ≈ 0.8–5 h Mpc−1 by comparing the DMONLY simulation with the REF simulation; the 
power is greatly increased at smaller scales < 1 h−1 Mpc (k ≥ 6 h Mpc−1). The decreased power 
is caused by the gas pressure, which smooths the density field relative to that expected from 
dark matter alone. While, the increased power in the REF simulation is because radiative 
cooling enables gas to cluster on smaller scales than the dark matter. These results confirm 
the findings of previous studies, at least qualitatively (e.g. [45, 67, 68]). However, with the 
AGN feedback, which is required to match observations of groups and clusters, its effect on 
the power spectrum is enormous: the power is reduced by ≥10% for k ≥ 1 h Mpc−1. This could 
be caused by that large amounts of gas are moved to large radii due to the AGN feedback (see 
also [43]). Because the AGN normally reside in massive and thus strongly clustered objects, 
the power is suppressed out to scales, where the removed gas can reach.

In Figure 2, they showed power spectra from the REF (left panel) and AGN (right panel) sim-
ulations at z = 0. As indicated on the top left of each panel, different components are shown 
by different colour lines. The power spectrum for DMONLY (dashed black lines) is shown 
as a reference. The power spectra on top row is calculated with   δ  i   ≡  (   ρ  i   −   ̄   ρ  ı    )    /   ̄   ρ  ı    . This definition 
guarantees that all power spectra from component i converge on large scales, thus enabling 
a straightforward comparison of their shapes. The bottom row, on the other hand, shows the 

Simulation Description

REF Reference simulation, includes radiative cooling and 
heating, star forming with the Chabrier (2003) stellar 
initial mass function and SN feedback with wind mass 
loading η = 2 and velocity vw = 600 km s−1

AGN Includes AGN (in addition to SN feedback)

DMONLY No baryons, CDM only

DBLIMFV1618 Top-heavy IMF at high pressure, extra SN energy in 
wind velocity

NOSN No SN energy feedback

NOSN_NOZCOOL No SN energy feedback and cooling assumes primordial 
abundances

NOZCOOL Cooling assumes primordial abundances

WDENS Wind mass loading and velocity depend on gas density 
(SN energy as REF)

WML1V848 Wind mass loading η = 1, velocity vw = 848 km s−1 (SN 
energy as REF)

WML4 Wind mass loading η = 4 (twice the SN energy of REF)

Table 1. Different variations on the reference simulation that are compared in the chapter. Unless noted otherwise, all 
simulations use a set of cosmological parameters derived from the WMAP3 results and use identical initial conditions.
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components to the total matter power spectrum. From the top-left panel, the baryonic compo-
nents trace the dark matter well at the largest scales. However, significant differences exist for 
λ ≤ 10 h−1 Mpc. At scales of several hundred kpc and smaller, the difference between the CDM 
component (also the total component) of the reference simulation and DMONLY exceeds the 
change between the latter and the analytic models. This is caused by the back-reaction of the 
baryons on the dark matter. On the bottom left panel of Figure 2, it is clear that CDM domi-
nates the power spectrum on large scales. While the contribution of baryons is significant for 
λ ≤ 0.1 h−1 kpc and dominates below 0.06 h−1 Mpc. The strong small-scale baryonic clustering 
is a direct consequence of gas cooling and galaxy formation. For the baryonic component, the 
baryonic power spectrum is dominated by gas component on large scales, which has a flatter 
power for λ ≤ 1 h−1 Mpc (corresponding to the virial radii of groups of galaxies) and a slightly 

Figure 1. Upper panel: the total matter power spectra of REF (top solid line with highest value at k ~ 500), AGN (middle 
solid line) and DMONLY (bottom solid line), at redshift z = 0. Lower panel: the power spectrum difference between 
the two hydro runs and the DMONLY one; solid (dashed) curves indicate that the power is higher (lower) than for 
DMONLY. The dotted, horizontal line indicates the 1% level. This figure is from Ref. [46]. (note: Please refer to the online 
publication for a colorful figure).
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steeper power again for λ ≤ 0.1 h−1 Mpc (galaxy scales). While the stellar power spectrum takes 
control for λ ≤ 1 h−1 Mpc. The inclusion of AGN feedback greatly impacts the matter power 
spectrum on a wide range of scales. Comparing the top panels of Figure 2, the power in both 
the gas and stellar components is decreased by AGN feedback for λ ≤ 1 h−1 Mpc. Through 
comparing the two bottom panels, the stellar power spectrum is reduced the most: about an 
order of magnitude on the largest scales; more than two orders of magnitude on the small-
est scales. This is an expected result of the AGN feedback, which suppresses star formation, 
as required to solve the overcooling problem. The gas power spectrum is also dramatically 
dropped as a consequence of the AGN feedback. The suppression of baryonic structure by 
AGN feedback also makes the dominant dark matter component of the power spectrum on 
small scales down.

In addition, different baryonic models investigated in [46] (see more details in their Figure 3) 
showed significant changes of power spectrum at non-linear scale. It means that these bary-
onic models need very subtle tuning of their parameters to represent the observational results.

2.2. Two-point correlation function

The correlation function, ξ(r), through the calculation of the excess probability to a random 
distribution to find the possibility of two objects at a given separation r. It is a very useful 

Figure 2. Decomposing the z = 0 total power spectra into the contributions from different components. The left- and 
right-hand columns show results for REF and AGN. For reference, the power spectrum for DMONLY is shown with 
dashed black lines. This figure is from Ref. [46].
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measure of the clustering of these objects as a function of scale. Comparing power spectrum, 
correlation can provide different views of cosmological structures. Using galaxy as a tracer, it 
can be used to investigate the clustering of dark matter halo, for example, [69, 70].

Following their work on power spectrum [46], they studied the baryon effect on two-point 
correlation functions in [50] with the OWLS simualtions. A parallelized brute force approach 

Figure 3. Upper panel: the subhalo autocorrelation function for the three simulations: DMONLY (solid), REF (dashed) 
and AGN (dot-dashed lines). Different total subhalo masses results are shown with different colours, and the number 
of objects in each bin is indicated in the legend. The median rvir of the subhaloes are indicated by vertical dotted lines. 
Middle panel: the relative difference of subhalo clustering between REF and DMONLY. For radii, may biased due to 
subhalo non-detections, the curves are shown in grey. Bottom: similar to middle panel but for AGN and DMONLY. Both 
REF and AGN show increased clustering with a stronger effect on smaller scales. This figure is from Ref. [50].
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is used to calculate the correlation function. Through simple pair counts, ξ(r) can be easily 
expressed as:

   ε  XY    (  r )    =     
D  D  XY  (r )

 _______ R  R  XY  (r )   − 1.  (1)

Here, X and Y denote two (not necessarily distinct) sets of objects (e.g. subhaloes and particles 
or haloes and haloes), DDXY (r) is the number of unique pairs consisting of an object from set 
X and an object from set Y separated by a distance r, and RRXY (r) is the expected number of 
pairs at this separation if the positions of the objects in these sets were random.

Subhalos from their simulations are identified by the SUBFIND algorithm [71, 72] inside 
Friends-of-Friends haloes. Interested readers refer to Ref. [73] for the comparison of different 
subhalo finding codes, as well as the effect from the included baryonic models. Top panel of 
Figure 3 shows the subhalo autocorrelation function, ξss(r), for three different simulations: 
DMONLY, REF and AGN. Different colours indicate different subsamples, selected by the 
total mass of the subhaloes, Msh,tot. The median virial radii of subhaloes in each mass bin are 
indicated by vertical dotted lines. These radii are similar to the scales at which the subhalo 
correlation functions for DMONLY turn over. It is clear that subhalo clustering in the dark-
matter-only simulation behaves quite differently from that in the baryonic models, especially 
on small scales (r ≤ 1 h−1 Mpc).

The middle and bottom panels show the relative 2-PCF difference between REF (middle)/AGN 
(bottom) and DMONLY simulation. All subhaloes in the baryonic simulations are  typically 
~10% more strongly clustered on large scales than their dark-matter-only  counterparts. This 
difference is due to the reduction of subhalo mass caused by baryonic processes. For the 
larger subhaloes, 1013 < Msh,tot/[M⊙/h] < 1014, this offset is somewhat larger when AGN feedback 
is included, because supernova feedback alone cannot change the subhalo mass by as much as 
it can for lower halo masses [74]. The differences between the baryonic and dark-matter-only 
simulations increase rapidly for r < 2rvir, at least for Msh,tot < 1014 h−1M⊙. Subhaloes from the 
REF simulation show significant larger clustering signal on small scales than from the AGN 
simulation. This seems to contradict to the results from the previous section. This is because 
at fixed mass range, subhaloes from the AGN simulation are less compact compared with 
these from the REF simulation. Due to the additional form of feedback in the AGN run, more 
 material from the centre are pushed into outer radii, which results in a lower concentration. 
Similar to the subhalo 2-PCF, the galaxy 2-PCFs (ξgg(r)) are very similar between REF and 
AGN at smaller galaxy mass bins. However, it is worth to note that there is a significant dif-
ference at the largest halo mass bin, which is shown in [50].

Figure 4 shows the subhalo-mass 2-PCF, ξsm(r) on the upper panel; the fractional difference 
between ξREF

sm(r) and ξDMONLY
sm(r) on the middle panel; the fractional difference between the 

ξAGN
sm(r) and ξDMONLY

sm(r) on the bottom panel. Again, subhaloes are generally more strongly 
clustered with matter in the REF and AGN than in DMONLY for scales r > rvir. There is also a 
constant ~5% difference in favour of both REF and AGN simulations on large scales, regard-
less of subhalo mass. The largest differences can be up to 40% (20% for AGN) higher on inter-
mediate scales for the lowest mass subhaloes. If sufficiently small scales are considered, this 
difference can be much higher for any subhalo mass. The AGN run does show a stronger 
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decrease in clustering up to scales r ~ 0.1 h−1 Mpc. While the ξsm(r) at smaller mass bins from 
REF also show similar decrease. It is worth to note the strongly non-monotonic changes of the 
subhalo-mass 2-PCF between the two baryonic runs and the DMONLY one. This can be caused 
by the interplay between the changes in both the total subhalo mass and its mass profile. On 
the one hand, the lowered halo masses in the baryonic simulations tend to increase cluster-
ing at fixed mass on all scales. On the other hand, galaxy formation dissipates smoothed gas 
component and causes the inner halo profile to steepen ( increasing clustering on small scales); 

Figure 4. As Figure 3, but now for the subhalo-mass cross-correlation function, ξsm(r). This figure is from Ref. [50].
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the associated feedback causes the outer layers of the halo to expand (decreasing clustering on 
intermediate scales). These conclusions are proved in Ref. [50] through the 2-PCF ξsm(r) that 
have been linked between a baryonic simulation and DMONLY which are selected based on 
their mass in the latter. This procedure removes the effects of changes in the subhalo masses, 
leaving only the effect on the mass profiles and the changes in the positions of the subhaloes.

Through these comparisons, the major reason for the increased clustering in the hydro-
dynamical simulations is the lowering of the mass of objects due to galaxy formation with 
strong feedback. However, secondary effects, such as the resulting changes in the dynamics 
and density profiles of haloes, are also expected to be significant. Interestingly, Despali and 
Vegetti [75] find that the presence of baryons reduces the number of subhaloes, especially 
at the low mass end, by different amounts depending on the model. The variations in the 
subhalo mass function are strongly dependent on those in the halo mass function, which is 
shifted by the effect of stellar and AGN feedback. We will investigate these effects on the halo 
mass function in Section 2.3.

2.3. Halo mass function

Different to the power spectrum and 2-PCF, HMF shows another interesting statistic of the 
large-scale structure. Located on the central structure which connects theory with observation, 
HMF provides the statistical view of the halo abundance. The two most common methods 
used for halo identification in simulations are the FoF algorithm (e.g. [76]) and the spherical 
overdensity (SO) algorithm (e.g. [77]). Interested readers refer to Ref. [78] for the comparison 
of different halo finding codes.

A series of three versions of cosmological simulations are used in Ref. [31] for their study. 
Starting from the same initial condition, these simulations share the same number of dark 
matter particles (10243) and gas particles (10243) within a simulation box size of 410 h−1 Mpc. 
A first hydro-dynamical simulation includes radiative cooling, star formation and kinetic 
SN feedback (CSF hereafter), while the second one also includes the effect of AGN feedback 
(AGN1 hereafter). As for the DM simulation, it simply replaces the gas particle by collisionless 
particles, so as to have the same description of the initial density and velocity fields as in the 
hydro-dynamical simulations.

FoF HMFs are compared on the top panel of Figure 5 between the three different versions of 
simulations. While the bottom panel shows the halo number ratio in a mass bin respected to 
the DM simulation. The baryonic effect from the CSF with respect to the DM case has clear 
redshift evolution as well as halo mass dependence. From higher redshift to lower redshift, the 
HMF ratios between the CSF and DM runs decrease from ∼1.6 to ∼1.1, with a weak increasing 
trend along halo mass changes. Quite remarkably, including AGN feedback in the baryonic 
model reduces the difference with respect to the DM-only case: the HMF ratio drops to about 

1Note that this simulation with AGN feedback is also named AGN. It is different in simulation box, resolution and mod-
els from the OWLS AGN simulation shown before.

2https://github.com/ilaudy/PIAO.
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unity for massive haloes with MFoF ≈ 1014 h−1 M⊙, while at smaller halo mass it decreases to ∼0.9 
for MFoF ≈ 1013 h−1 M⊙. Different to the CSF case, there is no clear redshift evolution in these 
ratios from z = 1 to 0. At the highest redshift, z = 2.2, this HMF ratio keeps fluctuating around 
1. This could be a consequence of the limited statistics of haloes due to the finite box size.

Figure 5. Upper panel: FoF HMFs from DM, CSF and AGN. The HMFs from CSF are always higher than the results from 
AGN and DM. Different redshifts are shown with different line styles (see the lower left legend for details). Lower panel: 
relative difference between the HMFs from the hydro-dynamic simulations and from the DM simulation from all four 
redshifts. This figure is from Ref. [31]. (Please refer to the online publication for a colorful figure).
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Using the PIAO2 code [79], the SO haloes are identified with three overdensities Δc = 2500, 500 
and 200. These HMFs are shown in Figure 6 from left to right top panels, respectively. While 
the HMF ratios from the CSF and AGN simulations with respect to the one from DM run are 
shown in lower panels. Baryons show a larger impact on the HMF at the higher overdensity. 
With Δc = 2500, the ratio between the CSF and DM HMFs shows a redshift evolution ranging 
from ∼1.4 at z = 0 to ∼2.5 at z = 2.2, but with no significant dependence on the halo mass. At 
lower overdensities, the redshift evolution becomes weaker and the differences with respect 
to the DM case are also reduced. When AGN feedback is included in the hydro- dynamical 
simulation, the corresponding HMF drops below the HMF from the DM simulation, by an 
amount that decreases for lower Δc values, with no evidence for redshift dependence on 
the HMF difference. Generally speaking, the baryonic effect on the HMF goes in the same 
direction, qualitatively independent of whether FoF or SO halo finders are used. However, 
as expected, quantitative differences between FoF and SO results are found, especially for 
the AGN case. This is rooted in intrinsic algorithm difference of these halo finder methods 
(we refer interested readers to Ref. [78] for details).

The three simulations share the same dark matter particles, which have the same progressive 
identification number (ID). Therefore, we can use the halo from the DM simulation as the 
reference. The halo in the CSF or AGN simulation is defined as the counterpart of the DM 
halo, if it includes the largest number of DM particles belonging to the latter. In their paper, 

Figure 6. Similar to Figure 5 but for the HMFs of SO haloes. Three different overdensities Δc = 2500 (left-hand panel), 500 
(middle panel) and 200 (right-hand panel) are used to identify SO haloes. Again, top panels show the SO HMFs, while 
bottom panels show the HMF difference. This figure is from Ref. [31].
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a matching rate is defined as the ratio of matched to total number of dark matter particles in 
the DM halo. To avoid multiple-to-1 matching from CSF/AGN simulation to the DM one, only 
haloes with matching rate larger than 0.5 are selected.

Figure 7 shows the halo mass ratios between these matched haloes. Red points indicate the 
halo pairs, which are coming from CSF and DM simulations, while green points are for the 
pairs from AGN and DM simulations. The thick lines show the mean value of these data points 
computed within each mass bin (magenta for CSF and blue for AGN, respectively). For the 
CSF-DM halo pairs, the increased halo mass is almost independent of redshift. At each  redshift, 
the ratio shows a weak decrease with halo mass, from ~ 1.1 at M500 = 1012.5 h-1 M⊙ to ~ 1.05 at 
M500 > 1013.5 h-1 M⊙, then becoming constant. However, for the AGN-DM pairs, the strong 
AGN feedback makes the ratio go in the opposite direction (decreased halo masses). Thereby, 
this will result in a decreased HMF, which has been shown in Figure 6. There also shows no 
evidence of redshift evolution for the halo mass ratio, at least below z = 1.0. However, this ratio 

Figure 7. The ratio of masses of matched SO haloes as function of MDM computed for Δc = 500 at four different redshifts. 
Each data point indicates a halo mass ratio between the matched CSF or AGN halo to its corresponding DM one. These 
misty data points above the horizon dashed lines are normally from CSF run, while lower ones are coming from AGN 
run. The mean values of these ratios within each mass bin are shown by thick magenta (CSF) and blue lines (AGN), 
respectively. The solid black lines are the best-fitting results for the mass correction, which are used for the HMF 
correction in Ref. [31]. This figure is from Ref. [31]. (Please refer to the online publication for a colorful figure).
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shows a strong dependence on the halo mass, which increases from ~ 0.8 at M500 = 1012.5 h-1 M⊙ 
to ~ 1 for the most massive haloes found in their simulation box.

2.4. Summary

Stepping from dark-matter-only to hydro-dynamical simulations allows us to view the galaxy 
formation and evolution in the Universe in a self-consistent and realistic way.  Hydro-dynamical 
simulations estimate tight connections between theoretical and  observational researches, 
 therefore providing a perfect test lab for examining theories. Through these compari-
sons between state-of-the-art hydro-dynamical simulations and dark-matter-only ones, we 
 summarized the recent findings of baryonic effects on the large-scale structure of the Universe 
by showing the changes on power spectrum, two-point correlation function and halo mass 
functions:

1. Power spectrum. There is a decreased power (1%) at k ~ 0.8–5 h Mpc−1 (~8–1 h−1 Mpc). 
At smaller scales (<1 h−1 Mpc or k > 6 h Mpc−1), the power rises quickly far above the 
 dark- matter-only simulations because of the baryon processes. However, this increase is 
reduced by >10% when the AGN feedback is switched on. Power spectra for individual 
component reveal at which scales they are responsible for these changes: cold dark matter 
dominates the power spectrum on large scales; gas component contributes mildly over all 
scales; stellar component is the reason for the high power at small scales.

2. Two-point correlation function. The correlation functions for subhalo are typically ~10% 
higher in hydro-dynamical simulations than in dark-matter-only ones. While this change 
is significantly larger at smaller scale. With AGN feedback on, the differences are slightly 
higher at large scale and lower at small scale compared to the reference one without AGN 
feedback. Subhaloes are also strongly clustered with matter in the baryonic simulations 
than in the dark-matter-only ones.

3. Halo mass function. The halo mass functions are also higher from hydro-dynamical simu-
lations than from dark-matter-only simulations. These differences depend on redshifts, 
halo mass ranges and halo finding methods. With AGN feedback, the halo mass functions 
are normally lower than their counterparts from the dark-matter-only simulations. These 
changes are vividly indicated by the variances of the halo masses, which are matched one 
to one between these simulations.

Besides these statistics methods investigated in upper paragraphs, baryonic processes can 
also leave an impact on cosmological structures, such as cosmic webs, sheets and voids. 
Using the EAGLE simulation, Paillas et al. [80] studied the effect of baryons on void statistics. 
They found that the dark-matter-only simulation produces 24% more voids than the hydro-
dynamical one, but this difference comes mainly from voids with radii smaller than 5 Mpc. 
They claimed that there are no significant differences in the density profiles between voids in 
hydro-dynamical and its dark-matter-only counterpart.

However, as we already see, all these results strongly depend on the included baryonic models 
and simulation codes. There is no guarantee of a perfect model yet, especially that most of the 
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implanted baryonic models are based on observational relations. Starting from the same ini-
tial condition of a galaxy cluster, the recent nIFTy project [40–44] has made vast comparisons 
between different simulation codes as well as baryonic models included in them. There is a 
good agreement between these simulation codes for the dark-matter-only runs. A larger dis-
agreement is shown between the classic SPH codes and mesh/modern SPH/moving mesh codes 
for the non-radiative hydro-dynamical runs. In the full physics runs, the largest difference is 
lying between the runs with AGN feedback and the ones without AGN feedback. However, 
even inside both families, there are a lot of variances between different simulation codes.

To simulate the observed Universe, more efforts are needed to understand the sub-grid 
baryonic models, such as their parameter choice, resolution and method dependence. To 
understand and pin down these sub-grid models, we need direct and detailed comparisons 
between the simulation results and observational ones. Thus, a one-to-one comparison is 
much helpful than the statistical relations. These constrained simulation projects aiming to 
represent the observed Universe, the ELUCID project [81–83], the CLUES project [84], [85] 
and the APOSTLE project [86], point to the direction of future simulation studies.
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Abstract

The understanding of several cosmological problems that has been obtained from the 
development of the Generation Model (GM) of particle physics is presented. The GM is 
presented as a viable simpler alternative to the Standard Model (SM). The GM considers 
the elementary particles of the SM to be composite particles and this substructure leads 
to new paradigms for both mass and gravity, which in turn lead to an understanding of 
several cosmological problems: the matter-antimatter asymmetry of the universe, dark 
matter and dark energy. The GM provides a unified origin of mass and the composite 
nature of the leptons and quarks of the GM leads to a solution of the cosmological matter-
antimatter asymmetry problem. The GM also provides a new universal quantum theory 
of gravity in terms of a residual interaction of a strong color-like interaction, analogous to 
quantum chromodynamics (QCD). This very weak residual interaction has two impor-
tant properties: antiscreening and finite range, that provide an understanding of dark 
matter and dark energy, respectively, in the universe.

Keywords: generation model, gravity, dark matter, MOND theory, dark energy, 
antimatter, big bang

1. Introduction

The main purpose of this chapter is to present the contributions to an understanding of sev-
eral cosmological problems that have been obtained from the development of an alterna-
tive to the Standard Model (SM) of particle physics [1]. This alternative model, named the 
Generation Model (GM) [2], not only describes all the transition probabilities for interactions 
involving all the elementary particles of the SM but also provides new paradigms, including 
the origin of both mass [3] and gravity [4].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The GM considers the elementary particles, the six leptons, six quarks and three weak bosons, 
of the SM to be composite particles. Their constituents are called rishons and antirishons. It 
will be demonstrated that this substructure leads to new paradigms for both mass and grav-
ity, which in turn lead to an understanding of several cosmological problems: the matter-
antimatter asymmetry of the universe, dark matter and dark energy.

It will be shown that the GM provides a unified origin of mass in which the mass of a particle 
is described in terms of the energy content of its constituents [5], while in the SM, the elemen-
tary leptons, quarks and weak bosons, are described in terms of the Higgs mechanism [6, 7]. 
It will be demonstrated that the composite nature of the leptons and quarks of the GM leads 
to a solution of the cosmological matter-antimatter asymmetry problem.

In particular, it will be shown that the GM provides a new universal theory of gravity in 
terms of a residual interaction of a strong color-like interaction [4], analogous to quantum 
chromodynamics (QCD) [8], the theory of strong interactions, in the SM. This very weak 
residual interaction has two important properties: asymptotic freedom (antiscreening) [9, 10] 
and finite range [11], that provide an understanding of dark matter [12] and dark energy [13], 
respectively, in the universe.

Section 2 discusses the incompleteness of the SM and examines some basic assumptions upon 
which the SM has been built. Section 3 introduces the GM which replaces several dubious 
assumptions within the SM by different and simpler assumptions, without destroying any 
agreement with experiment. These lead to the notion that the elementary particles, the six 
leptons, six quarks and three weak bosons of the SM are composite particles. Section 4 describes 
the development of a viable composite GM in which the elementary particles of the SM are 
composites of elementary spin-1/2 particles called rishons and antirishons. Section 5 discusses 
a new paradigm provided by the composite GM for all mass, and indicates a qualitative under-
standing of the mass hierarchy of leptons and quarks.

Section 6 presents a solution to the cosmological matter-antimatter asymmetry problem in terms 
of the composite GM. The composite GM also leads to a new paradigm for gravity. This is dis-
cussed in Section 7 in which a quantum theory of gravity is described. This new law of universal 
gravitation is shown to provide an understanding of both dark matter (Section 8) and dark 
energy (Section 9).

Section 10 discusses the possibility that the photon may be considered to be the singlet state 
of the corresponding QCD color octet binding together the constituents of the leptons and 
quarks. Finally, Section 11 gives a brief summary and conclusion.

2. Standard model of particle physics

The current formulation of the Standard Model (SM) of particle physics [1] was essentially 
finalized in the mid-1970s following the experimental confirmation of the existence of quarks 
[14, 15]. However, the model is regarded by most physicists as incomplete since it provides little 
understanding of several empirical observations. First, it does not explain the occurrence of 
three “generations” of the elementary particles of the SM [16]: the first generation  comprising 
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chromodynamics (QCD) [8], the theory of strong interactions, in the SM. This very weak 
residual interaction has two important properties: asymptotic freedom (antiscreening) [9, 10] 
and finite range [11], that provide an understanding of dark matter [12] and dark energy [13], 
respectively, in the universe.

Section 2 discusses the incompleteness of the SM and examines some basic assumptions upon 
which the SM has been built. Section 3 introduces the GM which replaces several dubious 
assumptions within the SM by different and simpler assumptions, without destroying any 
agreement with experiment. These lead to the notion that the elementary particles, the six 
leptons, six quarks and three weak bosons of the SM are composite particles. Section 4 describes 
the development of a viable composite GM in which the elementary particles of the SM are 
composites of elementary spin-1/2 particles called rishons and antirishons. Section 5 discusses 
a new paradigm provided by the composite GM for all mass, and indicates a qualitative under-
standing of the mass hierarchy of leptons and quarks.

Section 6 presents a solution to the cosmological matter-antimatter asymmetry problem in terms 
of the composite GM. The composite GM also leads to a new paradigm for gravity. This is dis-
cussed in Section 7 in which a quantum theory of gravity is described. This new law of universal 
gravitation is shown to provide an understanding of both dark matter (Section 8) and dark 
energy (Section 9).

Section 10 discusses the possibility that the photon may be considered to be the singlet state 
of the corresponding QCD color octet binding together the constituents of the leptons and 
quarks. Finally, Section 11 gives a brief summary and conclusion.

2. Standard model of particle physics

The current formulation of the Standard Model (SM) of particle physics [1] was essentially 
finalized in the mid-1970s following the experimental confirmation of the existence of quarks 
[14, 15]. However, the model is regarded by most physicists as incomplete since it provides little 
understanding of several empirical observations. First, it does not explain the occurrence of 
three “generations” of the elementary particles of the SM [16]: the first generation  comprising 
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the up and down quarks, the electron and its neutrino, the second generation comprising the 
charmed and strange quarks, the muon and its neutrino and the third generation comprising 
the top and bottom quarks, the tau and its neutrino. Each generation behaves similarly except 
for mass. Second, it does not provide a unified description of the origin of mass nor describe 
the mass hierarchy of leptons and quarks. The SM also fails to describe the nature of gravity, 
dark matter, dark energy or the cosmological matter-antimatter asymmetry problem.

Because of the incompleteness of the SM, the basic assumptions upon which the SM has been 
erected have been examined [17]. There are three basic assumptions, which are considered to 
be dubious and also present major stumbling blocks preventing progress beyond the SM. These 
are (i) the assumption of a diverse complicated scheme of additive quantum numbers to clas-
sify its elementary particles; (ii) the assumption of weak isospin doublets in the quark sector to 
accommodate the universality of the charge-changing weak interactions and (iii) the assump-
tion that the weak interactions are fundamental interactions described by a local gauge theory.

The elementary particles of the SM are six leptons: electron (e−), electron neutrino (νe), muon 
(μ−), muon neutrino (νμ), tau (τ−), tau neutrino (ντ) and six quarks: up (u), down (d), charmed 
(c), strange (s), top (t) and bottom (b). These twelve particles all have spin-1/2 and are allotted 
several additive quantum numbers: charge Q, lepton number L, muon lepton number Lμ, tau 
lepton number Lτ, baryon number A, strangeness S, charm C, bottomness B and topness T (see 
Table 1). For each particle additive quantum number N, the corresponding antiparticle has 
the additive quantum number − N.

Table 1 demonstrates that this classification of the elementary particles in the SM is nonunified, 
since, except for charge, the leptons and quarks are allotted different kinds of additive quan-
tum numbers. This diverse complicated scheme of additive quantum numbers for its elemen-
tary particles constitutes a basic problem for the SM, especially if the leptons and quarks are 
not elementary particles (see Section 4).

A second problem with the SM involves the method it uses to accommodate the universality 
of the charge-changing (CC) weak interactions, mediated by the W+ and W− bosons.

In the SM, the mass eigenstate leptons have weak isospin 1/2, whose third component is 
related to both charge and lepton number. Restricting the discussion in this chapter to only 
the first two generations for simplicity means that the two neutrinos interact with their cor-
responding charged leptons with the full strength of the CC weak interaction and do not 
interact at all with the other charged lepton. This is guaranteed by the conservation of lepton 
numbers.

On the other hand the universality of the CC weak interactions in the quark sector is treated 
differently. It is assumed that the u and c quarks form weak isospin doublets with so-called 
weak eigenstate quarks d′ and s′, respectively, where again for simplicity, the small mixing 
with the third generation quark b is neglected:

   d   ′  = d cos θ + s sin θ,  (1)

and

   s   ′  = − d sin θ + s cos θ,  (2)
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and θ is a mixing angle introduced by Cabibbo [18] into the transition amplitudes prior to 
the development of the quark model in 1964. In the quark case the third component of weak 
isospin is related to both charge and baryon number.

The u and c quarks are assumed to interact with the weak eigenstate quarks d′ and s′, respec-
tively, with the full strength of the CC weak interaction. In addition the u and c quarks are 
assumed to not interact at all with the weak eigenstate quarks s′ and d′, respectively. This 
assumption is dubious, since there are no conserved quantum numbers to support this 
assumption.

A third problem with the SM concerns the origin of mass. In the SM, the masses of hadrons 
arise mainly from the energy content of their constituent quarks and gluons, in agreement 
with Einstein's conclusion [5]. On the other hand the masses of the elementary particles, the 
leptons, the quarks and the W and Z bosons are interpreted differently, arising from the exis-
tence of the so-called Higgs field [6, 7]. The Higgs field was introduced mathematically to 
spontaneously break the U(1) × SU(2) local gauge symmetry of the electroweak interaction to 
generate the masses of the W and Z bosons. The Higgs field also cured the associated fermion 
mass problem: by coupling, with appropriate strength, originally massless fermions to the 
scalar Higgs field, it is possible to produce the observed fermion masses and to maintain local 
gauge invariance [19].

Particle Q L Lμ Lτ A S C B T

e− − 1 1 0 0 0 0 0 0 0

νe 0 1 0 0 0 0 0 0 0

μ− − 1 1 1 0 0 0 0 0 0

νμ 0 1 1 0 0 0 0 0 0

τ− − 1 1 0 1 0 0 0 0 0

ντ 0 1 0 1 0 0 0 0 0

u  +  2 __ 3   0 0 0    1 __ 3   0 0 0 0

d  −   1 __ 3   0 0 0    1 __ 3   0 0 0 0

c  +  2 __ 3   0 0 0    1 __ 3   0 1 0 0

s  −   1 __ 3   0 0 0    1 __ 3   − 1 0 0 0

t  +  2 __ 3   0 0 0    1 __ 3   0 0 0 1

b  −   1 __ 3   0 0 0    1 __ 3   0 0 − 1 0

Table 1. SM additive quantum numbers for leptons and quarks.
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There are several problems with the SM’s interpretation of the origin of mass. First, there is no 
clear evidence for the existence of the hypothetical Higgs field. Second, the model provides 
no unified origin of mass. Third, the fermion-Higgs coupling strength is dependent upon the 
mass of the fermion so that a new parameter is introduced into the SM for each fermion mass. 
In fact fourteen new parameters are required, if one includes two more parameters to describe 
the masses of the W boson and the Higgs particle. Fourth, the Higgs mechanism does not pro-
vide any physical explanation for the origin of the masses of the elementary particles.

The assumption that the weak interactions are fundamental interactions arising from a local 
gauge theory, unlike both the electromagnetic and strong colour interactions, is at variance with 
the experimental facts: both the W and Z particles, mediating the weak interactions, are massive, 
and this conflicts with the requirement of a local gauge theory that the mediating particles should 
be massless in order to guarantee the gauge invariance. This assumption is very dubious, espe-
cially since it leads to more problems than it solves. It also leaves several questions unanswered: 
How does the spontaneous symmetry breaking mechanism occur within the electroweak theory? What is 
the principle that determines the large range of fermion masses exhibited by the leptons and quarks?

3. Generation model of particle physics

The GM of particle physics [2, 17] overcomes many of the problems inherent in the SM. In the 
GM the three dubious assumptions of the SM discussed previously are replaced by three dif-
ferent and simpler assumptions. These are (i) the assumption of a simpler unified classification 
of leptons and quarks; (ii) the assumption that the mass eigenstate quarks form weak isospin 
doublets and that hadrons are composed of weak eigenstate quarks and (iii) the assumption that 
the weak interactions are not fundamental interactions.

Table 2 shows the additive quantum numbers allotted to both leptons and quarks in the 
GM. This is a much simpler and unified classification scheme involving only three additive 
quantum numbers: charge Q, particle number p and generation quantum number g. All three 
quantum numbers are conserved in all interactions. In particular the generation quantum 
number g is strictly conserved in weak interactions unlike some of the quantum numbers, e.g. 
strangeness S, of the SM. As for Table 1 the corresponding antiparticles have the opposite sign 
for each particle additive quantum number.

The conservation of the generation quantum number in weak interactions was only achieved 
by making two postulates, which means that the GM differs fundamentally from the SM in 
two more ways [20, 21]. First the GM postulates that it is the mass eigenstate quarks of the 
same generation, which form weak isospin doublets: (u, d) and (c, s). Thus the GM assumes, 
in the two generation approximation, that the u and c quarks interact with d and s, respec-
tively, with the full strength of the CC weak interaction and that the u and c quarks do not 
interact at all with s and d, respectively. This result is a consequence of the conservation of the 
generation quantum number. Second, while the SM assumes that hadrons are composed of 
mass eigenstate quarks such as d and s, the GM postulates that hadrons are composed of the 
corresponding weak eigenstate quarks d′ and s′. These two postulates overcome the second 
dubious assumption of the SM.
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The classification scheme given in Table 2 provides a simpler and unified description of lep-
tons and quarks. It also suggests that leptons and quarks are related and in particular allows 
the development of a composite model of leptons and quarks [4, 22].

The GM assumes that the leptons, quarks and the W and Z bosons are composites. Consequently, 
the weak interactions are not fundamental interactions arising from an SU(2) local gauge the-
ory. They are residual interactions of the strong color interaction binding the constituents of 
the leptons, quarks and the W and Z bosons together. This strong color interaction is com-
pletely analogous to that of QCD in the SM. The composite nature of leptons, quarks and the 
W bosons overcomes the dubious assumption of the SM that the weak interactions are funda-
mental. It should be noted that the treatment of the electromagnetic and weak interactions in 
the SM in terms of a U(1) × SU(2) local gauge theory is replaced in the GM by a U(1) × SU(2) 
global gauge theory [23].

The GM has only the charge Q additive quantum number in common with the SM (see 
Tables 1 and 2). The second additive quantum number of the GM, particle number p, replaces 
both baryon number A and lepton number L of the SM, while the third additive quantum 
number of the GM, generation quantum number g, effectively replaces the remaining additive 
quantum numbers, Lμ, Lτ, S, C, B and T of the SM.

4. Composite generation model

Although there is no direct experimental evidence that leptons and quarks have a substruc-
ture, there is considerable indirect evidence that leptons and quarks are actually composites.

First, the equal magnitude of the electric charges of the electron and proton, indicates that the 
charges of the up and down quarks are related to that of the electron.

Particle Q p g Particle Q p g

νe 0 − 1 0 u  +  2 __ 3      1 __ 3   0

e− − 1 − 1 0 d  −   1 __ 3      1 __ 3   0

νμ 0 − 1 ± 1 c  +  2 __ 3      1 __ 3   ± 1

μ− − 1 − 1 ± 1 s  −   1 __ 3      1 __ 3   ± 1

ντ 0 − 1 0, ± 2 t  +  2 __ 3      1 __ 3   0, ± 2

τ− − 1 − 1 0, ± 2 b  −   1 __ 3      1 __ 3   0, ± 2

Table 2. GM additive quantum numbers for leptons and quarks.
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Second, the leptons and quarks are considered [16] to form three families or generations, con-
taining particles which have similar properties, except for mass. This feature is analogous to 
Mendeleev’s periodic table of the elements, based essentially on elements having similar prop-
erties, except for mass. The existence of three repeating patterns suggests strongly that the 
members of each generation are composites, analogous to the elements of the periodic table.

The nonunified classification scheme of the SM provides a major stumbling block for the 
development of a composite model of leptons and quarks. On the other hand, the unified clas-
sification scheme of the GM (Table 2) makes feasible a composite version of the GM (CGM) 
[22]. Here we shall present the current version [4].

The composite GM is based on the unified classification scheme and also on 1979 composite 
models of Harari [24] and Shupe [25]. The current composite GM was proposed in 2011 and 
is described in detail in Chapter 1 [2] of the book Particle Physics published by InTech and in a 
review paper [17] published in Advances in High Energy Physics.

Both the models of Harari and Shupe are very similar and treat leptons and quarks as com-
posites of two kinds of spin-1/2 particles, which Harari named “rishons” from the Hebrew 
word for primary. The CGM adopts this name for the constituents of both leptons and quarks 
and for consistency the same three additive quantum numbers are assigned to the constitu-
ents as were previously allotted in the GM to leptons and quarks (see Table 2).

In the Harari-Shupe Model (HSM), two kinds of rishons labeled T with charge  Q = +  1 __ 3    and 
V with Q = 0 and their corresponding antiparticles labeled   T ‾‾   with charge  Q = −   1 __ 3    and   V ‾‾   with 
Q = 0, are employed to construct the leptons, quarks and their antiparticles. In the HSM, each 
spin-1/2 lepton or quark is composed of three rishons or three antirishons.

Table 3 shows the proposed HSM structures of the first generation of leptons and quarks. 
Basically the HSM describes only the charge structure of the first generation of leptons and 
quarks and does not provide a satisfactory understanding of the second and third generations.

Particle Structure Q

e+ TTT + 1

u TTV  +  2 __ 3   

  d ‾‾  TVV  +  1 __ 3   

νe VVV 0

   ν ‾‾   e     V ‾‾  V ‾‾  V ‾‾  0

d   T ‾‾  V ‾‾  V ‾‾   −   1 __ 3   

ū   T ‾‾  T ‾‾  V ‾‾   −   2 __ 3   

e−   T ‾‾  T ‾‾  T ‾‾  − 1

Table 3. HSM of first generation of leptons and quarks.
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To overcome some of the deficiencies of the simple HSM, the two-rishon model was extended 
[4, 22], within the framework of the CGM, by the introduction of a third kind of rishon labeled 
U and the allocation of all three additive quantum numbers, Q, p and g to each kind of rishon 
(see Table 4). It should be noted that each rishon additive quantum number N, the corre-
sponding antirishon has the additive quantum number − N.

In the CGM, the substructure of the leptons and quarks is described in terms of massless 
rishons and/or antirishons. Each rishon carries a color charge, red, green or blue, while each 
antirishon carries an anticolor charge, antired, antigreen or antiblue. The constituents of lep-
tons and quarks are bound together by a strong color-type interaction, corresponding to a 
local gauged SU(3) symmetry (analogous to QCD in the SM) mediated by massless hyperglu-
ons (analogous to gluons in the SM).

Table 5 gives the structures of the first generation of leptons and quarks in the CGM. The 
u-quark has  p = +  1 __ 3    since it contains two T-rishons and one   V ‾‾  -antirishon. It is essential that the 
u-quark should contain an   V ‾‾  -antirishon rather than a V-rishon as in the HSM, since its particle 
number is required to agree with its baryon number  A = +  1 __ 3   . It should be noted that leptons 

Rishon Q p g

T  +  1 __ 3    +  1 __ 3   0

V 0  +  1 __ 3   0

U 0  +  1 __ 3   − 1

Table 4. CGM additive quantum numbers for rishons.

Particle Structure Q p g

e+ TTT + 1 + 1 0

u  TT V ‾‾   +  2 __ 3    +  1 __ 3   0

  d ‾‾   T V ‾‾  V ‾‾   +  1 __ 3    −   1 __ 3   0
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   ν ‾‾   e   VVV 0 + 1 0
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ū   T ‾‾  T ‾‾ V  −   2 __ 3    −   1 __ 3   0

e−   T ‾‾  T ‾‾  T ‾‾  − 1 − 1 0

Table 5. CGM of first generation of leptons and quarks.
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are composed of three rishons, while quarks are composed of one rishon and one rishon-
antirishon pair.

Each lepton of the first generation is colorless, composed of three rishons carrying different 
colors. Each quark of the first generation is colored, composed of one rishon and one colorless 
rishon-antirishon pair. The first generation of particles are all built out of T and V rishons 
and their antiparticles so that each particle has g = 0. The second and third generations are 
identical to the first generation plus one and two colorless rishon-antirishon pair(s): ŪV or   V ‾‾ U  
with Q = p = 0 but g = ± 1 so that the second and third generations have g = ± 1 and g = 0, ± 2, 
respectively. This gives three repeating patterns [2].

It should be noted that if each of the three kinds of rishons is conserved then each of the three 
additive quantum numbers, Q, p and g is also conserved in all interactions [22].

5. Mass

Since the mass of a hadron arises mainly from the energy of its constituents [26–28], the CGM 
suggests [3] that the mass of a lepton, quark or weak boson arises from a characteristic energy 
E associated with its constituent rishons and hypergluons, according to m = E/c2. Thus the CGM 
provides a new paradigm and a unified description for the origin of all mass: the mass of a body 
arises from the energy content E of its constituents. The mass is given by m = E/c2 in agreement 
with Einstein’s conclusion [5], so that there is no need for the existence of a Higgs field with 
its accompanying problems. A corollary of this idea is: If a particle has mass, then it is composite.

The CGM suggests that the mass hierarchy of the three generations arises from the substruc-
tures of the leptons and quarks. The mass of each composite particle is expected to be greater 
if the constituents are on average more widely spaced: this is a consequence of the nature 
of the strong color interactions, which are assumed to possess the property of “asymptotic 
freedom” [9, 10], whereby the color interactions become stronger for larger separations of the 
color charges. Particles with two or more like charged rishons will have larger structures due 
to electric repulsion.

Qualitatively, for the same generation, one expects that (i) a charged lepton will have a greater 
mass than the corresponding neutral lepton; (ii) a  Q = +  2 __ 3    quark will have a greater mass than 
the corresponding  Q = −   1 __ 3    quark. These are both generally true: (i) the electron has a larger 
mass than its corresponding neutrino, and (ii) the top quark mass (173 GeV) is > the bottom 
quark mass (4.2 GeV), the charmed quark mass (1.3 GeV) is > the strange quark mass (95 
MeV), although the up quark mass (2 MeV) is < the down quark mass (5 MeV). The first gen-
eration quarks seem to present an anomaly since the proton consists of two up quarks and 
one down quark while the neutron consists of two down quarks and one up quark so that the 
proton is only stable if the down quark ( Q = −   1 __ 3   ) is more massive than the up quark ( Q = +  2 __ 3   ). In 
the CGM, this anomaly is accounted for by the constituents of hadrons being weak-eigenstate 
quarks rather than mass-eigenstate quarks. The proton is stable since the weak eigenstate 
quark d′ has a larger mass than the up quark, containing about 5% of the strange quark mass, 
since sin2θ ≈ 0.05 [29].
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6. Matter-antimatter asymmetry problem

According to the prevailing cosmological model [30] the universe was created in the so-called 
“Big Bang” from pure energy, and is currently composed of about 5% ordinary matter, 27% 
dark matter and 68% dark energy. It is generally assumed that the Big Bang and its aftermath 
produced equal numbers of particles and antiparticles, although the universe today appears to 
consist almost entirely of matter (particles) rather than antimatter (antiparticles). This consti-
tutes the matter-antimatter asymmetry problem: Where have all the antiparticles gone? Currently 
there is no acceptable understanding of this asymmetry problem.

An understanding of the matter-antimatter asymmetry requires a precise definition of both 
matter and antimatter and knowledge of the physical nature of the Big Bang but unfortu-
nately this knowledge is currently far from complete. The prevailing model of the Big Bang 
is based upon the theory of general relativity [31]: extrapolation of the expansion of the uni-
verse backwards in time yields an infinite density and temperature at a finite time in the past 
(approximately 13.8 billion years ago). Thus the “birth” of the universe seems to be associated 
with a “singularity”, which not only signals a breakdown of general relativity but also all the 
laws of physics. This leads to serious impediments to understanding the physical nature of 
the Big Bang and consequently the development of the matter-antimatter asymmetry in the 
aftermath of the Big Bang.

Since the physical nature of the Big Bang is still not understood, it is not possible to discuss the 
matter-antimatter asymmetry problem from the initial singularity. Consequently, the matter-
antimatter (i.e. particle-antiparticle) asymmetry problem will be discussed in terms of the 
observed nature of the universe, ignoring the singularity.

In the SM the universe is made essentially of matter comprising three kinds of elementary 
particles: electrons, up quarks and down quarks. The matter described by the SM refers to the 
5% ordinary matter, which prior to the nucleosynthesis, i.e. the fusion into heavier elements, 
consisted of about 92% hydrogen atoms and 8% helium atoms [32], so that the ordinary mat-
ter of the universe was, and still is, essentially electrically neutral and colorless.

For many decades now the SM has been unable to provide an acceptable understanding of the 
matter-antimatter asymmetry problem. The main reason seems to be that the SM assumes that 
the leptons and quarks are elementary particles. Since this implies no relationship between 
leptons and quarks, as indicated by the different sets of additive quantum numbers employed 
by the SM to describe their interactions, this allows the matter/antimatter nature of leptons 
and quarks to be decided by pure convention. In the SM both leptons and quarks are assumed 
to be matter particles.

In the SM, neglecting the singularity, it is assumed that the Big Bang initially produces numer-
ous elementary particle-antiparticle pairs such as electron-positron pairs and quark-antiquark 
pairs by converting energy into mass according to m = E/c2. Thus the early universe consisted of 
a soup of particle-antiparticle pairs continually being created and annihilated. Later, as the uni-
verse cooled following an inflationary period, the quarks and antiquarks would form protons, 
neutrons, antiprotons, antineutrons, etc., and eventually atoms of hydrogen, antihydrogen, 
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helium and antihelium. These would later annihilate in pairs until only atoms of hydrogen and 
helium prevailed. In this scenario, it seems unlikely that either electrons or positrons would 
prevail so that neither hydrogen atoms nor antihydrogen atoms would prevail. This simply 
reflects that the creation and annihilation of electron-positron pairs constitute a unique pro-
cess, since in the SM both electrons and positrons are elementary particles.

In the GM, neglecting the singularity, it is expected that the Big Bang would initially produce 
numerous elementary rishon-antirishon pairs. Then as the universe cooled following an infla-
tionary period, the rishons and antirishons would form leptons, quarks and their antiparticles 
and eventually atoms of hydrogen, antihydrogen, helium and antihelium. These would later 
annihilate in pairs until only atoms of hydrogen and helium prevailed.

In order to understand this matter-antimatter asymmetry, it is necessary to define the matter/
antimatter nature of composite particles. Historically, the term “particle” defines matter that 
is naturally occurring, i.e. electrons, protons, hydrogen atoms, etc. This is consistent within 
the SM in which the electron and the up and down quarks are elementary particles. However, 
it is not consistent within the GM in which the electron and the up and down quarks are com-
posite particles consisting of elementary particles (rishons) and/or antiparticles (antirishons). 
In the GM, rishons are considered to be matter (particles) while antirishons are considered to 
be antimatter (antiparticles), since rishon-antirishon pairs are considered to be created/anni-
hilated in the standard manner, e.g. in the Big Bang.

In the GM the elementary rishons and antirishons have particle number  p = +  1 __ 3    and  p = −   1 __ 3   , 
respectively. Thus the particle number p allotted to a composite lepton or quark reflects its 
degree of matter or antimatter nature. In the GM the quarks are composed of both rishons and 
antirishons so that they have both a matter and an antimatter nature, although an electron is 
composed of three   T ‾‾  -rishons so that it has p = − 1 and is pure antimatter.

The solution of the matter-antimatter asymmetry problem involves the particle number addi-
tive quantum number p of the GM: in particular the values of p corresponding to a weak 
eigenstate up quark ( p = +  1 __ 3   ), a weak eigenstate down quark ( p = +  1 __ 3   ) and an electron (p = − 1). 
The values of  p = +  1 __ 3    of the quarks, correspond to the values of their baryon number in the SM, 
while the value of p = − 1 of the electron, corresponds to minus the value of the lepton number 
of the electron in the SM. In the GM, the electron consists entirely of antirishons, i.e. antipar-
ticles, while in the SM it is assumed to be a particle, although as we have indicated earlier, 
there is no a priori reason for this assumption. It should be noted that the matter/antimatter 
nature of an electron in the GM is not merely a revised definition of the term “matter” but is 
a requirement for consistency of the nature of the constituents of the electron and the initial 
particle-antiparticle nature of the universe in the Big Bang: the elementary particles in the SM 
(leptons and quarks) and in the GM (rishons) are different.

In the GM the proton is assumed to consist of three weak eigenstate quarks, two up quarks 
and one down quark, so that the proton has particle number p = + 1. Consequently, a hydro-
gen atom, consisting of one proton and one electron has particle number p = 0: the hydrogen 
atom in the GM consists basically of an equal number of rishons and antirishons, so that there 
is no asymmetry of matter and antimatter there.
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In the GM the neutron consists of three weak eigenstate quarks, one up quark and two down 
quarks, so that the neutron also has particle number p = + 1. Consequently, a helium atom, 
consisting of two protons, two neutrons and two electrons has particle number p = + 2: the 
helium atom in the GM consists of six more rishons than antirishons, i.e. more matter than 
antimatter. In the GM it is assumed that during the formation of helium in the aftermath of 
the Big Bang that an equivalent surplus of antimatter was formed as neutrinos, which have 
p = − 1, so that overall equal numbers of rishons and antirishons prevailed. This assumption is 
a consequence of the conservation of p in all interactions in the GM.

Thus the ordinary matter present in the universe, prior to the fusion process into heavier ele-
ments, has particle number p = 0. Since the additive quantum number p is conserved in all 
interactions, this implies that the overall particle number of the universe will remain as p = 0, 
i.e. symmetric in particle and antiparticle matter.

Indeed it should be noted that if the Big Bang produced equal numbers of particles and anti-
particles so that the initial state of the universe had particle number p = 0, then the GM predicts 
that the present state of the universe should also have p = 0, since particle number p is con-
served in all interactions.

To summarize: the ordinary matter present in the universe has an overall particle number 
of p = 0, so that it contains equal numbers of both rishons and antirishons. This implies that 
the original antimatter created in the Big Bang is now contained within the stable com-
posite leptons, i.e. electrons and neutrinos, and the stable composite quarks, i.e. the weak 
eigenstate up and down quarks, which comprise the protons and neutrons. The hydro-
gen, helium and heavier atoms all consist of electrons, protons and neutrons. This explains 
where all the antiparticles have gone. Thus there is no matter-antimatter asymmetry in the 
present universe.

However, the above does not explain why the present universe consists primarily of hydrogen 
atoms and not antihydrogen atoms. In the SM this is considered to be the matter-antimatter 
asymmetry problem, since each of the elementary particles, the electron and both the up and 
down quarks are defined to be matter (particles). In the GM it has been demonstrated that this 
is not so: both hydrogen atoms and antihydrogen atoms have p = 0, consisting of six rishons 
and six antirishons. Indeed an antihydrogen atom consists of the same rishons and antiris-
hons as does a hydrogen atom, although the rishons and antirishons are differently arranged 
in the two systems. A hydrogen atom consists of a proton (six rishons and three antirishons) 
and an electron (three antirishons), while an antihydrogen atom consists of an antiproton 
(three rishons and six antirishons) and a positron (three rishons).

This implies that both hydrogen atoms and antihydrogen atoms should be formed during the 
aftermath of the Big Bang with about the same probability. In fact, estimates from the cosmic 
microwave background data suggest [11] that for every billion hydrogen-antihydrogen pairs 
there was just one extra hydrogen atom. It is suggested that this extremely small difference, 
one extra hydrogen atom in 109 hydrogen-antihydrogen pairs, may arise from statistical fluc-
tuations associated with the complex many-body processes involved in the formation of either 
a hydrogen atom or an antihydrogen atom. The uniformity of the universe [11], in  particular 

Trends in Modern Cosmology170



In the GM the neutron consists of three weak eigenstate quarks, one up quark and two down 
quarks, so that the neutron also has particle number p = + 1. Consequently, a helium atom, 
consisting of two protons, two neutrons and two electrons has particle number p = + 2: the 
helium atom in the GM consists of six more rishons than antirishons, i.e. more matter than 
antimatter. In the GM it is assumed that during the formation of helium in the aftermath of 
the Big Bang that an equivalent surplus of antimatter was formed as neutrinos, which have 
p = − 1, so that overall equal numbers of rishons and antirishons prevailed. This assumption is 
a consequence of the conservation of p in all interactions in the GM.

Thus the ordinary matter present in the universe, prior to the fusion process into heavier ele-
ments, has particle number p = 0. Since the additive quantum number p is conserved in all 
interactions, this implies that the overall particle number of the universe will remain as p = 0, 
i.e. symmetric in particle and antiparticle matter.

Indeed it should be noted that if the Big Bang produced equal numbers of particles and anti-
particles so that the initial state of the universe had particle number p = 0, then the GM predicts 
that the present state of the universe should also have p = 0, since particle number p is con-
served in all interactions.

To summarize: the ordinary matter present in the universe has an overall particle number 
of p = 0, so that it contains equal numbers of both rishons and antirishons. This implies that 
the original antimatter created in the Big Bang is now contained within the stable com-
posite leptons, i.e. electrons and neutrinos, and the stable composite quarks, i.e. the weak 
eigenstate up and down quarks, which comprise the protons and neutrons. The hydro-
gen, helium and heavier atoms all consist of electrons, protons and neutrons. This explains 
where all the antiparticles have gone. Thus there is no matter-antimatter asymmetry in the 
present universe.

However, the above does not explain why the present universe consists primarily of hydrogen 
atoms and not antihydrogen atoms. In the SM this is considered to be the matter-antimatter 
asymmetry problem, since each of the elementary particles, the electron and both the up and 
down quarks are defined to be matter (particles). In the GM it has been demonstrated that this 
is not so: both hydrogen atoms and antihydrogen atoms have p = 0, consisting of six rishons 
and six antirishons. Indeed an antihydrogen atom consists of the same rishons and antiris-
hons as does a hydrogen atom, although the rishons and antirishons are differently arranged 
in the two systems. A hydrogen atom consists of a proton (six rishons and three antirishons) 
and an electron (three antirishons), while an antihydrogen atom consists of an antiproton 
(three rishons and six antirishons) and a positron (three rishons).

This implies that both hydrogen atoms and antihydrogen atoms should be formed during the 
aftermath of the Big Bang with about the same probability. In fact, estimates from the cosmic 
microwave background data suggest [11] that for every billion hydrogen-antihydrogen pairs 
there was just one extra hydrogen atom. It is suggested that this extremely small difference, 
one extra hydrogen atom in 109 hydrogen-antihydrogen pairs, may arise from statistical fluc-
tuations associated with the complex many-body processes involved in the formation of either 
a hydrogen atom or an antihydrogen atom. The uniformity of the universe [11], in  particular 

Trends in Modern Cosmology170

the lack of antihydrogen throughout the universe, indicates that the above statistical fluc-
tuations took place prior to the “inflationary period” [33, 34] associated with the Big Bang 
scenario.

7. Gravity

Let us now consider the nature of gravity within the framework of the GM. It is considered 
that the rishons of each colorless lepton, e.g. an electron, are very strongly localized since 
to date there is no direct experimental evidence for any substructure of these particles. It is 
expected that the product wave function describing the distribution of the constituent rishons 
is significant for only an extremely small volume of space so that the color fields almost can-
cel. It should be noted that the color fields would only cancel completely if each of the rishons 
occupied the same position, but quantum mechanics prevents this. This raises a question: 
What is the residual interaction arising from the incomplete cancellation of the strong interactions?

Between any two colorless leptons (e.g. electrons) there will be a very weak residual interac-
tion, arising from the color interactions acting between the color charges of one lepton and 
the color charges of the other lepton. There will be a similar residual interaction between any 
two colorless hadrons such as neutrons and protons, each containing three differently colored 
quarks.

In two papers [3, 4] it was suggested that this residual interaction, arising from these “inter-
fermion” color interactions, gives rise to the usual gravitational interaction.

The mass of a body of ordinary matter is essentially the total mass of its constituent colorless 
electrons, neutrons and protons. Each of these three composite particles is in a three-color 
antisymmetric state so that its behavior with respect to the color interactions is basically the 
same. This suggests [13] that the residual color interactions between electrons, neutrons and 
protons have several properties associated with the usual gravitational interaction: universal-
ity, very weak strength and attraction.

In the GM gravity essentially arises from the residual color forces between all electrons, 
neutrons and protons. This leads [13] to a new law of gravity: the residual color interactions 
between any two bodies of masses m1 and m2, separated by a distance r, leads to a universal 
law of gravitation, which closely resembles Newton’s original law given by:

   F = H (r)   m  1    m  2   /    r   2  ,   (3)

where Newton’s gravitational constant (G) is replaced by a function of r, H(r).

The new gravitational interaction of the GM is based upon the residual color interactions 
acting between electrons, neutrons and protons. The GM assumes that the color interactions 
acting between rishons have the same characteristics as the color interactions acting between 
quarks in the SM. These color interactions have two important properties that differ from the 
Newtonian interaction: (i) asymptotic freedom [9, 10] and (ii) color confinement [11]. These 
determine the nature of the function H(r).
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In Sections 8 and 9, we shall indicate how these two additional properties of the interfermion 
color interactions provide an understanding of dark matter and dark energy, respectively.

8. Galaxy rotation problem and dark matter

For galaxies there is a major gravitational problem [12], which has been around for about 40 
years. It was found that the rotation curves for galaxies disagreed with Newton’s gravitational 
law for large r: the stars and gas were rotating much faster than expected from Newton’s 
law and their orbital velocities were roughly constant. These observations implied that either 
Newton’s law was incorrect at large distances or some considerable mass was missing.

The rotation curve for a galaxy is the dependence of the orbital velocity of the visible matter in 
the galaxy on its radial distance from the center of the galaxy. What the observations showed 
was that the rotation curves were essentially “flat” at the extremities of the visible matter, i.e. 
at large distances. This implies gross disagreement with Newton’s universal law of gravita-
tion, which predicts a fall-off as   1 /    √ 

_
 r    , as in the solar system.

Two solutions, which have been very successful, are first the dark matter hypothesis, which 
proposes that a galaxy is embedded within a giant halo of dark matter. This matter is consid-
ered to be nonatomic but otherwise its nature is unknown and so far has not been detected. 
The second solution is the Modified Newtonian Dynamics (MOND) hypothesis: Milgrom [35] 
proposed that gravity varies from Newton’s law for low accelerations. This was an empirical 
hypothesis without physical understanding.

It was found that the new law of universal gravitation given by Eq. (3) is essentially equivalent to 
the MOND hypothesis so that the GM gravitational interaction provides a physical basis for 
the MOND hypothesis. The continuing success [36, 37] of the MOND hypothesis is a strong 
argument against the existence of undetected dark matter haloes, consisting of unknown mat-
ter embedding galaxies.

Asymptotic freedom is rather a misnomer. A better term is “antiscreening” as used by Wilczek 
in his 2004 Nobel lecture. The flat galactic rotation curves are described by the property of 
antiscreening provided by the self-interactions of the hypergluons mediating the residual 
color interactions. These antiscreening effects lead to an increase in the strength of the resid-
ual color interactions so that H(r) becomes an increasing function of r. The flat rotation curves 
observed for galaxies indicate that:

  H (r)  = G (1 + kr) ,  (4)

where k is a factor representing the relative strengths of the modified and Newtonian gravi-
tational fields.

In the GM H(r) = G(1 + kr) arises from the self-interactions of the hypergluons mediating the 
gravitational interaction and explains the dark matter problem of the galaxy rotational curves: 
for small r, H(r) is approximately G and gravity is approximately Newtonian; for large r, H(r) 
is approximately Gkr and gravity is approximately 1/r rather than 1/r2, and the 1/r dependence 
gives the flat rotation curves observed.
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9. Dark energy

Color confinement is the phenomenon that color charged particles (e.g. quarks in the SM, 
rishons in the GM) cannot be isolated and consequently form colorless composite particles 
(e.g. mesons and baryons in the SM and also leptons in the GM). Color confinement leads 
to another phenomenon analogous to the “hadronization process” [11], i.e. the formation of 
hadrons out of quarks and gluons in the SM and implies H(r) = 0 for sufficiently large r in the 
GM [13].

In the GM, H(r) = 0 arises if the gravitational field energy is sufficient that it is energetically 
favorable to produce the mass of a particle-antiparticle colorless pair rather than the color 
field to extend further. This implies that gravity ceases to exist for sufficiently large cosmo-
logical distances.

The strong color interaction is known to have a finite range of approximately 10− 15 m. Gravity 
is about 10− 41 times weaker at 10− 15 m [11] than the strong color interaction. This suggests that 
the “hadronization process” for gravity occurs at about 1026 m, i.e. roughly ten billion light 
years.

The new law of gravity implies that gravity ceases to exist for cosmological distances exceed-
ing several billion light years, resulting in less slowing down of galaxies than expected from 
Newton’s law. This result agrees well with observations [38, 39] of distant Type Ia superno-
vae, which indicate the onset of an accelerating expansion of the universe at about six billion 
light years. Thus the new law of gravity suggests that dark energy like dark matter may be 
understood as an effect arising from the nature of the gravitational interaction.

10. Photon

The nature of the photon within the framework of the GM is worthy of consideration. The 
photon has several properties that may be accommodated in the GM: (i) massless; (ii) neutral; 
(iii) colorless; (iv) spin-1; (v) U(1) symmetry and (vi) interacts with matter gravitationally.

It is proposed that the photon may be the singlet state of the corresponding QCD color octet 
binding together the rishons and antirishons of the leptons and quarks. If the photon is the 
standard singlet state of QCD:   [ (r  r ‾‾ )  +  (g g ‾‾ )  +  (b b ‾‾ ) ] /  √ 

__
 3   , containing all three color charges, red (r), 

green (g) and blue (b) and all three anticolor charges, antired (   r ‾‾  ), antigreen (  g ‾‾  ) and antiblue (  b ‾‾  ), 
then it has each of the above six properties possessed by the photon.

In the GM the singlet state is a hypergluon, which is massless, electrically neutral, colorless 
and has spin-1 and U(1) symmetry. Furthermore, in the GM it interacts with matter via the 
new gravitational interaction based upon the residual color interactions. In particular the GM 
predicts that it leads to twice the deflection of Newton's universal theory of gravity in agree-
ment with Einstein's theory of general relativity but without any warping of spacetime. In this 
way the electromagnetic and strong color interactions are unified within a U(3) = U(1) × SU(3) 
symmetry.
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11. Summary and conclusion

The GM considers that the elementary particles of the SM, the leptons, quarks and weak 
bosons are all composite particles. This substructure leads to new paradigms for both mass 
and gravity, which in turn lead to an understanding of several cosmological problems: the 
matter-antimatter asymmetry of the universe, dark matter and dark energy.

The GM provides a unified origin of mass and the composite nature of the leptons and quarks 
leads to a solution of the cosmological matter-antimatter asymmetry problem.

The GM also provides a new universal quantum theory of gravity. In the GM, gravity is a very 
weak residual interaction of a strong color-like interaction, which possesses two important 
properties: antiscreening and finite range that provide an understanding of dark matter and 
dark energy, respectively, in terms of gravitational effects.
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Abstract

It is well known that one way to study canonical quantum cosmology is through the
Wheeler DeWitt (WDW) equation where the quantization is performed on the
minisuperspace variables. The original ideas of a deformed minisuperspace were done
in connection with noncommutative cosmology, by introducing a deformation into the
minisuperspace in order to incorporate an effective noncommutativity. Therefore, study-
ing solutions to Cosmological models through the WDWequation with deformed phase
space could be interpreted as studying quantum effects to Cosmology. In this chapter,
we make an analysis of scalar field cosmology and conclude that under a phase space
transformation and imposed restriction, the effective cosmological constant is positive.
On the other hand, obtaining the wave equation for the noncommutativity Kantowski-
Sachs model, we are able to derive a modified noncommutative version of the entropy.
To that purpose, the Feynman-Hibbs procedure is considered in order to calculate the
partition function of the system.

Keywords: noncommutativity, quantum cosmology, thermodynamics of black holes

1. Introduction

Since the initial use of the Hamiltonian formulation to cosmology, different issues have been
studied. In particular, thermodynamic properties of black holes, classical and quantum cos-
mology, dynamics of cosmological scalar fields, and the problem of cosmological constant
among others. In this chapter, we present some results in deforming the phase space variables,
discussing recent advances on this special topic by presenting three models. In the first model
(Section 2), we analyze the effects of the phase space deformations over different scenarios, we
start with the noncommutative on Λ cosmological and comment on the possibility that the

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



origin of the cosmological constant in the (4 + 1) Kaluza-Klein universe is related to the
deformation parameter associated to the four-dimensional scale factor and the compact extra
dimensions. In Section 3, we study the effects of phase space deformations in late time cosmol-
ogy. To introduce the deformation, we use the approach given in Refs. [1]. We conclude that for
this model an effective cosmological constant Λeff appears.

In Section 4, the thermodynamic formalism for rotating black holes, characterized by
noncommutative and quantum corrections, is constructed. From a fundamental thermodynamic
relation, the equations of state are explicitly given, and the effect of noncommutativity and
quantum correction is discussed; in this sense, the goal of this section is to explore how these
considerations introduced in Bekenstein-Hawking (BH) entropy change the thermodynamic
information contained in this new fundamental relation. Under these considerations, Section 4
examines the different thermodynamic equations of state and their behavior when considering
the aforementioned modifications to entropy.

In this chapter, we mainly pretend to indulge in recollections of different studies on the
noncommutativeproposal that has been put forward in the literature by the authors of this chapter
[2–4]; in this sense, our guideline has been to concentrate on resent results that still seem likely to be
of general interest to those researchers that are interested in this noncommutative subject.

2. Model 1: Kaluza-Klein cosmology with Λ

Let us begin by introducing the model in a classical scenario which is an empty (4+1) theory of
gravity with cosmological constantΛ as shown in Eq. (1). In this setup, the action takes the form:

I ¼
ð ffiffiffiffiffiffiffi�g
p ðR�ΛÞdtd3rdρ; ð1Þ

where ft; rig are the coordinates of the 4-dimensional spacetime and ρ represents the
coordinate of the fifth dimension. We are interested in Kaluza-Klein cosmology, so a
Friedmann-Robertson-Walker (FRW)-type metric is assumed, which is of the form

ds2 ¼ �dt2 þ a2ðtÞdridri
1þ κr2

4

� �2 þ φ2ðtÞdρ2; ð2Þ

where κ ¼ 0;� 1 and a(t), φ(t) are the scale factors of the universe and the compact dimension,
respectively. Substituting this metric into the action Eq. (1) and integrating over the spatial
dimensions, we obtain an effective Lagrangian that only depends on (a, φ):

L ¼ 1
2

aφ _a2 þ a2 _aφ� κaφþ 1
3
Λa3φ

� �
: ð3Þ

For the purposes of simplicity and calculations, we can rewrite this Lagrangian in a more
convenient way:
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L ¼ 1
2

_x2 � ω2x2
� �� _y2 � ω2y2

� �h i
; ð4Þ

where the new variables were defined as

x ¼ 1ffiffiffi
8

p a2 þ aφ� 3κ
Λ

� �
, y ¼ 1ffiffiffi

8
p a2 � aφ� 3κ

Λ

� �
; ð5Þ

and ω ¼ � 2Λ
3 . The Hamiltonian for the model is calculated as usual and reads

H ¼ p2x þ ω2x2
� �� p2y þ ω2y2

� �h i
; ð6Þ

which describes an isotropic oscillator-ghost-oscillator system. A full analysis of the quantum
behavior of this model is presented in Ref. [1].

2.1. Noncommutative model

As is well known, there are different approaches to introduce noncommutativity in gravity [5].
In particular, to study noncommutative cosmology [6, 7], there exist a well-explored path to
introduce noncommutativity into a cosmological setting [6]. In this setup, the noncommu-
tativity is realized in the minisuperspace variables. The deformation of the phase space struc-
ture is achieved through the Moyal brackets, which are based on the Moyal product. However,
a more appropriate way to introduce the deformation is by means of the Poisson brackets
rather than the Moyal ones.

The most conventional way to understand the noncommutativity between the phase space
variables (minisuperspace variables) is by replacing the usual product of two arbitrary func-
tions with the Moyal product (or star product) as

ðf⋆gÞðxÞ ¼ exp
1
2
αab ∂ð1Þa ∂ð2Þb

� �
f ðx1Þgðx2Þjx1¼x2¼x; ð7Þ

such that

αab ¼
θij δij þ σij

�δij � σij βij

� �
; ð8Þ

where the θ and β are 2 · 2 antisymmetric matrices and represent the noncommutativity in
the coordinates and momenta, respectively, and σ ¼ θβ=4. With this product law, a straight-
forward calculation gives

fxi; xjg ¼ θij; fxi; pjg ¼ δij þ σij; fpi; pjg ¼ βij: ð9Þ

The noncommutative deformation has been applied to the minisuperspace variables as well as to
the corresponding canonical momenta; this type of noncommutativity can be motivated by

Deformed Phase Space in Cosmology and Black Holes
http://dx.doi.org/10.5772/intechopen.68282

179



string theory correction to gravity [6, 8]. In the rest of this model, we use for the noncommutative
parameters θij ¼ �θεij and βij ¼ βεij.

If we consider the following change of variables in the classical phase space {x; y; px; py}

ŷ ¼ y� θ
2
px; x̂ ¼ x� θ

2
py

p̂y ¼ py þ
β
2
x; p̂x ¼ px �

β
2
y;

ð10Þ

it can be verified that if {x;y;px;py} obeys the usual Poisson algebra, then

ŷ; x̂f g ¼ θ; x̂; p̂x
� � ¼ ŷ; p̂y

n o
¼ 1þ σ; p̂y; p̂x

n o
¼ β: ð11Þ

Now that we have defined the deformed phase space, we can see the effects on the proposed
cosmological model. From the action Eq. (4), we can obtain the Hamiltonian constraint
Eq. (6); inserting relations Eq. (11), a Wheeler DeWitt (WDW) equation can be constructed
as:

HΨðx̂; ŷÞ ¼
(

p̂x �
2ðβ� θω2Þ
4� ω2θ2 ŷ

� �2

� p̂y þ
2ðβ� θω2Þ
4� ω2θ2 x̂

� �2

þ 4ðβ� θω2Þ2
ð4� ω2θ2Þ2 þ

4ðω2 � β2=4Þ
4� ω2θ2

 !
x̂2 � 4ðβ� θω2Þ2

ð4� ω2θ2Þ2 þ
4ðω2 � β2=4Þ
4� ω2θ2

 !
ŷ2
)
Ψðx̂; ŷÞ ¼ 0;

ð12Þ

By a closer inspection of the equation, it is convenient to make the following definitions:

ω02 � 4ðβ� θω2Þ2
ð4� ω2θ2Þ2 þ

4ðω2 � β2=4Þ
4� ω2θ2 ;

Ax̂ � �2ðβ� θω2Þ
4� ω2θ2 ŷ; Aŷ � 2ðβ� θω2Þ

4� ω2θ2 x̂;

ð13Þ

With these definitions, we can rewrite Eq. (12) in a much simpler and suggestive form:

H ¼ p̂x � Ax̂
� �2

þ ω02x̂2
� �

� p̂y � Aŷ

� �2
þ ω02ŷ2

� �� �
; ð14Þ

which is a two-dimensional anisotropic ghost-oscillator [1]. From Eq. (14), we can see
that the terms ðpi � AiÞ can be associated to a minimal coupling term as is done in

electromagnetic theory. From this vector potential, we find that B ¼ 4ðβ�ω2θÞ
4�ω2θ2 and the vector

potential A can be rewritten as Ax̂ ¼ � B
2 ŷ and Aŷ ¼ B

2 x̂. On the other hand, we already

know from Eq. (11) that p̂y; p̂x
n o

¼ β and if we set θ = 0 in the above equation for B, we

can conclude that the deformation of the momentum plays a role analogous to a mag-
netic field.

Trends in Modern Cosmology180
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2.2. Discussion

We found that ω is defined in terms of the cosmological constant, then modifications to the
oscillator frequencywill implymodifications to the effective cosmological constant. Here,we have
done a deformation of the phase space of the theory by introducing amodification to themomenta
and to the minisuperspace coordinates, this gives two new fundamental constants θ and β. As
expected,we obtain a different functional dependence for the frequencyω and themagneticB field

as functions of β and θ. With this inmind, we can construct a new frequency ~ω in terms ofω02 and
the cyclotron term B2=4:

~ω2 ¼ ω02 � B2

4
¼ 4ðω2 � β2=4Þ

4� ω2θ2 : ð15Þ

This ~ω was obtained by a definition of the effective cosmological constant Λ˜ ef f ¼ � 3
2 ~ω

2 as was

done in Section 2, to finally get a redefinition of the effective cosmological constant due to
noncommutative parameters:

Λ˜ ef f ¼
4ðΛef f þ 3

8 β
2Þ

4� 2
3θ

2jΛef f j
: ð16Þ

Now if we choose the case β = 0, this should be equivalent to the noncommutative minisuperspace
model, hence we get an effective cosmological constant given by:

Λ˜ ef f ¼
4Λef f

ð4� 2
3θ

2jΛef f jÞ
ð17Þ

We can see from Eq. (17) that the noncommutative parameter θ cannot take the place of the
cosmological constant, but depending on the value of θ, the effective cosmological constant
Λ˜ ef f is modified. Equation 17 is in agreement with the results given in Refs. [9, 10].

3. Model 2: Scalar field cosmology

Let us start with a homogeneous and isotropic universe with a flat Friedmann-Robertson-Walker
(FRW) metric:

ds2 ¼ �N2ðtÞdt2 þ a2ðtÞ dr2 þ r2dΩ
� � ð18Þ

Asusual, a(t) is the scale factor andN(t) is the lapse function.Weuse theEinstein-Hilbert actionand
a scalar fieldφ as thematter content for themodel. In units 8πG ¼ 1, the action takes the form:

S ¼
ð
dt � 3a _a2

N
þ a3

_φ
2

2N
�NΛ

 !( )
ð19Þ

Now, we make the following change of variables:
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x ¼ m�1a3=2sinhðmφÞ, y ¼ m�1a3=2coshðmφÞ: ð20Þ

where m�1 ¼ 2
ffiffiffiffiffiffiffiffi
2=3

p
. Then the Hamiltonian is

Hc ¼ N
1
2
P2
x þ

ω2

2
x2

� �
�N

1
2
P2
y þ

ω2

2
y2

� �
; ð21Þ

with ω2 ¼ � 3
4Λ. To find the dynamics, we solve the equations of motion; for this model, it can

easily be integrated [9].

To construct the deformed model, we usually follow the canonical quantum cosmology
approach, where after canonical quantization [11], one formally obtains the WDW equation.
In the deformed phase space approach, the deformation is introduced by the Moyal brackets
to get a deformed Poisson algebra. To construct a deformed Poisson algebra, we use the
approach given in Refs. [1, 9]. We start with the same transformation on the classical phase
space variables {x;y;Px;Py} that satisfy the usual Poisson algebra as shown in Section 2.1,
Eqs. (10) and (11). With this deformed theory in mind, we first calculate the Hamiltonian
which is formally analogous to Eq. (21) but constructed with the variables that obey the
modified algebra Eq. (11)

H ¼ 1
2

P2
x � P2

y

� �
� ω2

1 xPy þ yPx
� �þ ω2

2 x2 � y2
� �h i

: ð22Þ

where we have used the change of variables Eq. (10) and the following definitions:

ω2
1 ¼

β� ω2θ

1� ω2θ2=4
; ω2

2 ¼
ω2 � β2=4
1� ω2θ2=4

: ð23Þ

Written in terms of the original variables, the Hamiltonian explicitly has the effects of the
phase space deformation. These effects are encoded by the parameters θ and β. In Ref. [9],
the late time behavior of this model was studied. From this formulation, two different
physical theories arise, one that considers the variables x and y and a different theory
based on x̂ and ŷ. The first theory is interpreted as a “commutative” theory with a
modified interaction, and this theory is referred as being realized in the commutative
frame “(C-frame)” [12]. The second theory, which privileges the variables x̂ and ŷ, is a
theory with “noncommutative” variables but with the standard interaction and is referred
to as realized in the noncommutative frame “(NC-frame).” In the “C-frame,” our deformed
model has a very nice interpretation that of a ghost-oscillator in the presence of constant
magnetic field and allows us to write the effects of the noncommutative deformation as
minimal coupling on the Hamiltonian and write the Hamiltonian in terms of the magnetic
B-field [9].

To obtain the dynamics for the model, we derive the equations of motion from the Hamilto-
nian Eq. (22). The solutions for the variables x(t) and y(t) in the “C-frame” are:
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. Then the Hamiltonian is

Hc ¼ N
1
2
P2
x þ

ω2

2
x2

� �
�N

1
2
P2
y þ

ω2

2
y2

� �
; ð21Þ

with ω2 ¼ � 3
4Λ. To find the dynamics, we solve the equations of motion; for this model, it can

easily be integrated [9].

To construct the deformed model, we usually follow the canonical quantum cosmology
approach, where after canonical quantization [11], one formally obtains the WDW equation.
In the deformed phase space approach, the deformation is introduced by the Moyal brackets
to get a deformed Poisson algebra. To construct a deformed Poisson algebra, we use the
approach given in Refs. [1, 9]. We start with the same transformation on the classical phase
space variables {x;y;Px;Py} that satisfy the usual Poisson algebra as shown in Section 2.1,
Eqs. (10) and (11). With this deformed theory in mind, we first calculate the Hamiltonian
which is formally analogous to Eq. (21) but constructed with the variables that obey the
modified algebra Eq. (11)

H ¼ 1
2

P2
x � P2

y

� �
� ω2

1 xPy þ yPx
� �þ ω2

2 x2 � y2
� �h i

: ð22Þ

where we have used the change of variables Eq. (10) and the following definitions:

ω2
1 ¼

β� ω2θ

1� ω2θ2=4
; ω2

2 ¼
ω2 � β2=4
1� ω2θ2=4

: ð23Þ

Written in terms of the original variables, the Hamiltonian explicitly has the effects of the
phase space deformation. These effects are encoded by the parameters θ and β. In Ref. [9],
the late time behavior of this model was studied. From this formulation, two different
physical theories arise, one that considers the variables x and y and a different theory
based on x̂ and ŷ. The first theory is interpreted as a “commutative” theory with a
modified interaction, and this theory is referred as being realized in the commutative
frame “(C-frame)” [12]. The second theory, which privileges the variables x̂ and ŷ, is a
theory with “noncommutative” variables but with the standard interaction and is referred
to as realized in the noncommutative frame “(NC-frame).” In the “C-frame,” our deformed
model has a very nice interpretation that of a ghost-oscillator in the presence of constant
magnetic field and allows us to write the effects of the noncommutative deformation as
minimal coupling on the Hamiltonian and write the Hamiltonian in terms of the magnetic
B-field [9].

To obtain the dynamics for the model, we derive the equations of motion from the Hamilto-
nian Eq. (22). The solutions for the variables x(t) and y(t) in the “C-frame” are:
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xðtÞ ¼ η0 e
�ω2

1
2 tcoshðω0tþ δ1Þ � ζ0 e

ω2
1
2 tcoshðω0tþ δ2Þ;

yðtÞ ¼ η0 e
�ω2

1
2 tcoshðω0tþ δ1Þ þ ζ0 e

ω2
1
2 tcoshðω0tþ δ2Þ;

ð24Þ

where ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
β2�4ω2

4�ω2θ2

q
. For ω02 < 0, the hyperbolic functions are replaced by harmonic functions.

There is a different solution for β ¼ 2ω, the solutions in the “C-frame” are:

xðtÞ ¼ ðaþ btÞe
�ω2

1
2 t þ ðcþ dtÞe

ω2
1
2 t;

yðtÞ ¼ ðaþ btÞe
�ω2

1
2 t � ðcþ dtÞe

ω2
1
2 t:

ð25Þ

To compute the volume of the universe in the “C-frame,” we use Eqs. (24) and (20).

a3ðtÞ ¼ V0 cosh2ðω0tÞ; ð26Þ

where we have taken δ1 ¼ δ2 ¼ 0. For the case ω02 < 0, the hyperbolic function is replaced by a
harmonic function. For the case β ¼ 2ω, the volume is given by

a3ðtÞ ¼ V0 þ Atþ Bt2; ð27Þ

where V0;A and B are constructed from the integration constants. To develop the dynamics in
the “NC-frame,” we start from the “C-frame” solutions and use Eq. (10), we get for the volume

â3ðtÞ ¼
V̂ 0 cosh2ðω0tÞ � ω02θ2

ð2� ω2
1θÞ2

sinh2ðω0tÞ
" #

for ω02 > 0;

V̂ 0 þ Btþ Ct2 for ω02 ¼ 0;

V̂ 0 cos 2ðjω0jtÞ � jω0j2θ2

ð2� ω2
1θÞ2

sin 2ðjω0jtÞ
" #

for ω02 < 0;

8>>>>>><
>>>>>>:

ð28Þ

where V̂ 0 is the initial volume in the “NC-frame.” We can see that for θ = 0, the descriptions in
the two frames are the same.

3.1. Discussion

As already discussed, phase space deformation gives two physical descriptions. If we say that
both descriptions should be equal, then comparing the late time behavior for the two frames
with the scale factor of de Sitter cosmology, an effective positive cosmological constant exists
and is given by

Λef f ¼ 1
3

β2 þ 3Λ
1þ 3

16Λθ2

 !
: ð29Þ
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This result is the same as the one obtained from theWDW formalism of Kaluza-Klein cosmology.
Therefore, one can start taking seriously the possibility that noncommutativity can shed light on
the cosmological constant problem.

4. Model 3: Thermodynamics of noncommutative quantum Kerr black hole

Thermodynamics of black holes has a long history, focusing mainly on the problem of thermo-
dynamic stability. It is known for a long time that this problem can be extended beyond the
asymptotically flat spacetimes [13]. For example, in de Sitter spacetimes, thermodynamic
information of black holes exhibit important differences with the previous case [14, 15]. Gib-
bons and Hawking found that, in analogy with the asymptotically flat space case, such black
holes emit radiation with a perfect blackbody spectrum and its temperature is determined by
their surface gravity. However, a feature of de Sitter space is that exists a cosmological event
horizon, emitting particles with a temperature which is proportional to its surface gravity. The
only way to achieve thermal equilibrium is when both surface gravities are equal, which
corresponds to a degenerate case [16, 17].

Regarding AdS manifolds, it was shown that thermodynamic stability of black holes in this
spacetime can be achieved [18]. In this manifold, gravitational potential produces a confine-
ment for particles with nonzero mass, which acts as an effective cavity of finite volume,
containing the black hole. An important feature of black holes in AdS manifolds is that their
heat capacity is positive, opposite to the asymptotically flat case; additionally, this positiveness
allows a canonical description of the system.

It is also known that thermodynamic stability of black holes is related with dynamical stability of
those systems, which brings an additional motivation to study it. For example, in the asymptot-
ically flat spacetime case, it is well known that Schwarzschild black holes are thermodynamically
unstable, although they are dynamically stable [19]. For AdS spacetimes, however, it is known
that both thermodynamic and dynamical stability are closely related [20, 21].

In this study, we study black holes in asymptotically flat spacetime, whereby it seems very
legitimate to ask whether corrections like the above discussed noncommutativity or even
semiclassical ones can modify thermodynamic properties of black holes in order to have
thermodynamic stable systems.

In a number of studies [22–24], black hole entropy proposed by Bekenstein and Hawking is
postulated to be the fundamental thermodynamic relation for black holes, which contains all
thermodynamic information of the system. Under this assumption, corresponding classical
thermodynamic formalism is constructed, finding that its thermodynamic structure resembles
ordinary magnetic systems instead of fluids.

4.1. Schwarzschild and Kerr black holes

As previously discussed, it is well known that for an asymptotically flat spacetime, tempera-
ture of black holes is proportional to its surface gravity κ, as T ¼ κħ=2πkBc, which is commonly
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known as Hawking temperature [25]; this semiclassical result, along with Bekenstein bound
for entropy, leads to the Bekenstein-Hawking entropy,

SBH ¼ c3

4Għ
A: ð30Þ

Where A stands for the area of the event horizon of the black hole. The Kerr metric, which
describes a rotating black hole, can be written as:

ds2 ¼ � 1� 2Mr
Σ

� �
dt2 � 4Mra sin 2θ

Σ
dtdθþ Σ

Δ
dr2 þ Σdθ2 þ B sin 2θ

Σ
dφ2; ð31Þ

where, Σ ¼ r2 þ a2 cos 2θ, Δ ¼ r2 � 2Mrþ a2, B ¼ ðr2 þ a2Þ2 � a2Δ sin 2θ and a ¼ J=Mc. The

area of the event horizon of a black hole is given by A ¼
ð

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detjgμνj

q
ds. Applying for the

elements of the metric tensor given in Eq. (31), the resulting area is:

A ¼ 8πG2M2c�4 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2J2

G2M4

s2
4

3
5: ð32Þ

Assumed thermodynamic fundamental relation for Kerr black holes is found substituting the
above result in Eq. (30); where U = Mc2 is the internal energy of the system and J is its angular
momentum. This relation can be written as [22]:

SBHðU; JÞ ¼ 2πkB
ħc

GU2

c4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2U4

c8
� c2J2

s0
@

1
A; ð33Þ

where the following constants appear: G is the universal gravitational constant, c is the speed
of light, ħ is the reduced Planck constant, and kB is the Boltzmann constant. In recent years, in
the search of suitable candidates of quantum gravity, that is, in the quest to understand
microscopic states of black holes [26, 27], a number of quantum corrections to Bekenstein-
Hawking (BH) entropy SBH have arisen. We are interested not only in the possible thermody-
namic implications of quantum corrections to this entropy but also in the consequences of
introducing noncommutativity as proposed by Obregon et al. [28], considering that coordi-
nates of minisuperspace are noncommutative. From a variety of approaches that have
emerged in recent years to correct SBH, logarithmic ones are a popular choice among those.
These corrections arise from quantum corrections to the string theory partition function [29]
and are related to infrared or low-energy properties of gravity. They are also independent of
high-energy or ultraviolet properties of the theory [26, 29–31]. We will denote the selected
expression for quantum and noncommutative corrected entropy as S*, which is obtained by
following the ideas presented in [28]. The starting point is the diffeomorphism between the
Kantowski-Sachs cosmological model, describing a homogeneous but anisotropic universe
[32], and the Schwarzschild interior solution, whose line element for r < 2M is given by:
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ds2 ¼ � 2M
t

� 1
� ��1

dt2 þ 2M
t

� 1
� �

dr2 þ t2ðdθ2 þ sin 2θdφ2Þ; ð34Þ

where the role of temporal t and the spatial r coordinates is swapped, that is, transformation
t $ r is performed, leading to a change on the causal structure of spacetime; considering the
Misner parametrization of the Kantowski-Sachs metric it follows:

ds2 ¼ �N2dt2 þ eð2
ffiffi
3

p
γÞdr2 þ eð�2

ffiffi
3

p
γÞeð�2

ffiffi
3

p
λÞðdθ2 þ sin 2θdφ2Þ: ð35Þ

Parameters λ and γ play the role of the cartesian coordinates in the Kantowski-Sachsminisuperspace.
If Eqs. (34) and (35) are compared, it is straightforward to notice correspondence between compo-
nents of the metric tensor, which allows us to identify the functionsN, γ, and λ as:

N2 ¼ 2M
t

� 1
� ��1

; eð�2
ffiffi
3

p
γÞ ¼ 2M

t
� 1; eð�2

ffiffi
3

p
γÞeð�2

ffiffi
3

p
λÞ ¼ t2:

Next, the Wheeler DeWitt (WDW) equation for Kantowski-Sachs metric with the above
parametrization of the Schwarzschild interior solution is found, along with the corresponding
Hamiltonian of the system H through the Arnowitt-Deser-Misner (ADM) formalism. This
Hamiltonian is introduced into the quantum wave equation HΨ ¼ 0, where Ψðγ;λÞ is the
wave function. This process leads to the WDW equation whose solution can be found by
separation of variables.

However, we are not interested in the usual case, rather our point of interest is the solution that
can be found when the symplectic structure of minisuperspace is modified by the inclusion of
a noncommutativity parameter between the coordinates λ and γ, that is, the following com-
mutation relation is obeyed: ½λ;γ� ¼ iθ, where θ is the noncommutative parameter; this rela-
tion strongly resembles noncommutative quantum mechanics. It is also possible to introduce
the aforementioned deformation in terms of a Moyal product [7], which modifies the original
phase space, similarly to noncommutative quantum mechanics [33]:

These modifications allow us to redefine the coordinates of minisuperspace in order to obtain a
noncommutative version of the WDWequation:

∂2

∂γ2 �
∂2

∂λ2 þ 48eð�2
ffiffi
3

p
λþ ffiffi

3
p

θPγÞ
� �

Ψðλ;γÞ ¼ 0; ð36Þ

where Pγ is the momentum on coordinate γ. The above equation can be solved by separation
of variables to obtain the corresponding wave function [6]:

Ψðλ;γÞ ¼ ei
ffiffi
3

p
νγKiν½4eð�

ffiffi
3

p ðλþ ffiffi
3

p
νθ=2Þ�; ð37Þ

where ν is the separation constant and Kiν are the modified Bessel functions. We can see in Eq. (37)

that the wave function has the form Ψðλ;γÞ ¼ ei
ffiffi
3

p
νγΦðλÞ; therefore, dependence on the coordi-

nate γ is the one of a plane wave. It is worth mentioning that this contribution vanishes when
thermodynamic observables are calculated.
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With the wave function presented in Eq. (37) for the noncommutative Kantowski-Sachs cos-
mological model, a modified noncommutative version of the entropy can be obtained. In order
to calculate the partition function of the system, the Feynman-Hibbs procedure is considered
[34]. Starting with the separated differential equation for λ:

� d2

dλ2 þ 48e�2
ffiffi
3

p
λþ3νθ

� �
ΦðλÞ ¼ 3ν2ΦðλÞ; ð38Þ

In this equation, the exponential in the potential term VðλÞ ¼ 48 exp ½�2
ffiffiffi
3

p
λþ 3νθ� is

expanded up to second order in λ and if a change of variables is considered, resulting differ-
ential equation can be compared with a one-dimensional quantum harmonic oscillator, which
is a non-degenerate quantum system. In the Feynman-Hibbs procedure, the potential under
study is modified by quantum effects, for the harmonic oscillator is given by:

UðxÞ ¼ VðxÞ þ βħ2

24m
V 0 0ðxÞ;

where x is the mean value of x and V 0 0ðxÞ stands for the second derivative of the potential. For
the considered change of variables, the noncommutative quantum-corrected potential can be
written as:

UðxÞ ¼ 3
4π

Ep

l2p
e3νθ x2 þ βl2pEp

12

" #
: ð39Þ

The above potential allows us to calculate the canonical partition function of the system:

ZðβÞ ¼ C
ð∞
�∞

e�βUðxÞdx; ð40Þ

where β�1 is proportional to the Bekenstein-Hawking temperature and C ¼ 2πl2pEpβ
h i�1=2

is a

constant. Substituting U(x) into Eq. (40) and performing the integral over x, the partition
function is given by:

ZðβÞ ¼
ffiffiffiffiffiffi
2π
3

r
e3νθ=2

Epβ
exp � β2E2

p

16π
e3νθ

" #
; ð41Þ

This partition function allows us to calculate any desired thermodynamic observable by means
of the thermodynamic connection of the Helmholtz free energy A ¼ �kBTlnZðβÞ, with the
internal energy and the Legendre transformation:

〈E〉 ¼ � ∂
∂β

lnZðβÞ; S
kB

¼ lnZðβÞ þ β〈E〉:

With this equation for 〈E〉, the value of β can be determined as a function of the Hawking
temperature βH ¼ 8πMc2=Ep, obtaining:
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β ¼ βHe
�3νθ 1� 1

βHe
�3νθ

1
Mc2

� �
; ð42Þ

With the aid of this relation and the Legendre transformation for Helmholtz free energy presented
above, an expression for the noncommutative quantum-corrected black hole entropy can be found:

S⋆ ¼ SBHe�3νθ � 1
2
kBln

SBH
kB

e�3νθ
� �

þOðS�1
BHe

�3νθÞ: ð43Þ

Functional form of S* is basically the same than quantum-corrected commutative case, besides
the addition of multiplicative factor e�3νθ to Bekenstein-Hawking entropy. From now on, we
will denote the noncommutative term in this expression, for the sake of simplicity, as:

Γ ¼ exp ½�3νθ�:

Likewise, natural units, G ¼ ħ ¼ kB ¼ c ¼ 1, will be considered through the rest of this chapter.
In this section, the previous result found in Eq. (43) for the Schwarzschild noncommutative
black hole is extended to the rotating case, that is, the Kerr black hole. This is not straightfor-
ward as an analog expression for the noncommutative entropy of the rotating black hole is
required, implying the application of a similar procedure to the one presented above: A
diffeomorphism between the Kerr metric and some appropriated cosmological model and the
procedure is presented in Ref. [28]. To our knowledge, the implementation of this procedure
has not been yet reported. However, we are interested to have an expression to study not only
the static case but also the effect of angular momentum over the physical properties of the
system. Our proposal to have an approximated relation for the extended Kerr black hole entropy
starts with the assumption that for entropy found in Eq. (43), Bekenstein-Hawking entropy for
Schwarzschild in this relation SBH can be also substituted for its Kerr counterpart given in
Eq. (33). As the noncommutative relation for quantum Schwarzschild black hole entropy is
correct, it is clear that our proposal to the quantum noncommutative Kerr black hole entropy
will be a good approximation for small values of J when compared to the values of U2,
whatever be the exact expression for the rotating case. For our proposal, in the vicinity of small
values of angular momentum, λ and γ, the coordinates of the minisuperspace are the same
than in the Schwarzschild case. Therefore, the corrected entropy that will be analyzed is:

S⋆ ¼ 2π Γ U2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4 � J2

q� �
� 1
2
ln 2π Γ U2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4 � J2

q� �� �
: ð44Þ

A clarification must be made that Eq. (44) is not a unique valid generalization for the quantum-
corrected noncommutative entropy of a rotating black hole in the neighborhood of small J.
However, we claim that this is the most natural extension from the Schwarzschild case to the
Kerr one. Although, to our knowledge, there is no general argument to support that Eq. (43)
remains valid for any other black hole besides the Schwarzschild one. However, there is some
evidence that for the case of charged black holes, the functional form of Eq. (43) is maintained,
at least partially [35].
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Kerr one. Although, to our knowledge, there is no general argument to support that Eq. (43)
remains valid for any other black hole besides the Schwarzschild one. However, there is some
evidence that for the case of charged black holes, the functional form of Eq. (43) is maintained,
at least partially [35].
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Through the rest of this section, all thermodynamic expressions with superindex ⋆ will stand
for noncommutative quantum-corrected quantities derived from Eq. (44), meanwhile, all ther-
modynamic functions without subindexes or superindexes will represent the corresponding
noncommutative Bekenstein-Hawking counterparts. It is known that noncommutativity
parameter θ in spacetime is small, from observational evidence [36, 37]; although in this study,
noncommutativity on the coordinates of minisuperspace is considered instead, it is expected
such parameter to be also small [38]; nonetheless, its actual bounds are not well known yet. We
will consider that parameter Γ is bounded in the interval 0 < Γ ≤ 1. As previously mentioned
for the non-corrected Kerr black hole, Eq. (44) is now assumed to be a fundamental thermody-
namic relation for the rotating black hole, when noncommutative and quantum corrections are
considered. It is well known from classical thermodynamics that fundamental equations con-
tain all the thermodynamic information of the considered system [39], and, as a consequence,
modifications introduced by corrections to entropy (which imply modifications to thermody-
namic information) are carried through all thermodynamic quantities.

In Figure 1, plots for both Bekenstein-Hawking entropy and its quantum-corrected counter-
part are presented for Γ ¼ 1. Figure 1a shows plots for S ¼ SðUÞ and S⋆ ¼ S⋆ðUÞ; Bekenstein-
Hawking entropy is above the quantum-corrected one, in all its dominion, even in the region
of low masses, where entropy is thermodynamically stable [22, 24]. Figure 1b presents the
same curves as function of angular momentum instead, for U ¼ 1; a similar behavior can be
noticed in this case. If this analysis is performed over the noncommutative relation, it is found
that for small values of θ, differences between both SBH and S* are negligible.

4.2. Equations of state

Working in entropic representation, fundamental Bekenstein-Hawking thermodynamic rela-
tion for a Kerr black hole has the form SBH ¼ SBHðU;JÞ. For these systems, partial derivatives of
SBH T � ð∂SUÞJ and Ω � ð∂JUÞS play the role of thermodynamic equations of state; here, T

(a) (b)

Figure 1. A comparison between Bekenstein-Hawking entropy (solid line) and its quantum-corrected counterpart (dash-
dot line) is presented; both relations exhibit a region where entropy is a concave function, implying the existence of
metastable states. (a) Entropy as a function of internal energy, J = 1. (b) Entropy as a function of angular momentum for U
= 1, S ¼ Sð1; JÞ.
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stands for Hawking temperature and Ω is the angular velocity. In entropic representation,
equations of state are defined by:

1
T
� ∂SBH

∂U

� �

J
;

Ω
T

� � ∂SBH
∂J

� �

U
: ð45Þ

For the entropy of the quantum-corrected entropy S*, the above relations remain valid. In
entropic representation, T and Ω for the noncommutative quantum-corrected entropy are
given by:

1
T⋆ ¼

U 4π Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4 � J2

q
þ 4π ΓU2 � 1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4 � J2

q ; ð46aÞ

Ω⋆

T⋆ ¼ 1
2

J 4π Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4 � J2

q
þ 4π ΓU2 � 1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4 � J2

q
U2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4 � J2

q� � : ð46bÞ

The same relations for noncommutative Bekenstein-Hawking entropy are calculated as:

1
T
¼

4π ΓUðU2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4 � J2

q
Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U4 � J2
q ; ð47aÞ

Ω
T

¼ 2π ΓJffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4 � J2

q : ð47bÞ

When the overall effect over T and T* of noncommutativity was analyzed, different values of
parameter Γ were tested, including Γ ¼ 1 (commutative case). The corresponding curves
present a noticeable effect by the presence of Γ; nonetheless, functional behavior either of T
or T* is not modified. A comparison of the plots of both temperature is presented in Figure 2
for Γ = 1, in order to illustrate how quantum corrections introduced in entropy affect ther-
modynamic properties of black holes. Resulting curves of T and T* are very similar, although
the latter one is slightly higher than TðU;JÞ, an opposite result to the one obtained when
entropy was studied; it indicates that for a given change in its internal energy, variations of
entropy are greater for quantum-corrected entropy when compared to the Bekenstein-
Hawking one.

As previously mentioned, when values in the vicinity of Γ = 1 are considered, temperature is
minimally affected by noncommutativity. We also tested smaller values of noncommu-
tativity parameter, it was found that the maximum values that T and T* are able to reach are
noticeably increased. However, the shape of both curves is not modified by changing the
value of Γ.
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An interesting result is obtained for angular velocityΩ, this property seems to be independent
of both quantum and noncommutative corrections to entropy, namely:

Ω ¼ Ω⋆ ¼ J

2U U2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4 � J2

q� � : ð48Þ

In Figure 3, plots for angular velocity are presented. As this equation of state is not modified
by any of the considered corrections, only one curve per graphic appears; first, in Figure 3a, Ω
as a function of the black hole internal energy is presented, as can be noticed, angular velocity
steadily decreases as black hole mass is increased, asymptotically going to zero. Figure 3b
considers instead the case where the black hole mass is fixed at U ¼ 10, for which Ω grows
until it reaches a maximum value determined by the square root that appears in the denomi-
nator of Eq. (48), beyond this value angular velocity becomes complex.

(a) (b)

Figure 3. Angular velocity for Bekenstein-Hawking entropy and the quantum-corrected version are presented in Eq. (44).
(a) Ω as a function of internal energy considering a fixed value of angular momentum (J = 1). (b) Angular velocity as a
function of angular momentum considering U ¼ 10.

(a) (b)

Figure 2. Temperature in the commutative case Γ = 1 for Bekenstein-Hawking usual entropy and its quantum-corrected
counterpart. (a) Plots of TðU; 1Þ (solid line) versus T⋆ðU; 1Þ (dash-dot line) as a function of internal energy for a fixed value
of angular momentum J = 1. (b) The same curves, considering instead for variations in J at a fixed U ¼ 1.
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5. Conclusions

In section 2, if we turn our attention to the case where there is no deformation on the coordinates.
Taking the noncommutative parameter θ = 0, we have that the frequency and the effective
cosmological constant are given by:

~ω2 ¼ ω2 � β2

4
; and Λ˜ ef f ¼ Λef f þ 3β2

8
: ð49Þ

From the last equation, we get the most interesting result of this section. We can see that
noncommutative parameter β and Λef f compete to give the effective cosmological constant

Λ˜ ef f . If we consider the case of a flat universe with a vanishing Λef f , we see that Λ˜ ef f ¼ 3β2

8 . This

shows the relationship between the cosmological constant and the deformed parameter.
Recently, some evidence on the possibility that the effects of the phase space deformation
could be related to the late time acceleration of the universe as well as to the cosmological
constant were presented [8]. Interestingly, in the particular case of β ¼ ω2θ, we find that

frequency reduces to ~ω2 ¼ ω2 and we have that Λ˜ ef f ¼ Λef f . In this case, even as we have done

a deformation on the minisuperspace of the theory, the effects cancel out and the resulting
theory behaves as in the commutative theory. The results are similar for model 2 (Section 3),
where under a totally classical regime, we find the same functional relationship between the
cosmological constant and the deformation parameter β. Therefore, we conclude that
noncommutative phase space deformations can hold the answer to the cosmological constant
problem.

Then, in Section 4, an analysis on the thermodynamic properties of noncommutative quantum-
corrected Kerr black holes using an approximate relation was presented. Although the
resulting expressions are mathematically more complicated, the thermodynamic properties
still retain the same functional behavior with respect to those calculated through Bekenstein-
Hawking entropy. It can be proved that Kerr black holes do not pass through a first-order
phase transition [4]; since the local criteria to find the critical point are not fulfilled for any
value in the domain, corresponding isotherms do not exhibit van der Waals loops, and the
Maxwell construction cannot be obtained; all of which are characteristic of this kind of transi-
tion. Regarding the effective noncommutativity incorporated in the coordinates of
minisuperspace, outside the vicinity where Γ ≈ 1, changes introduced by this parameter over
the thermodynamic information of the system are relevant. For a complete analysis using this
phase deformations, for example, thermodynamic response functions, thermodynamic stabil-
ity, and phase transitions for Kerr black holes, see Ref. [4].
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Abstract

In this chapter, we discuss an approach to obtaining black hole quasi-normal modes
known as the asymptotic iteration method, which was initially developed in mathemat-
ics as a new way to solve for eigenvalues in differential equations. Furthermore, we
demonstrate that the asymptotic iteration method allows one to also solve for the radial
quasi-normal modes on a variety of black hole spacetimes for a variety of perturbing
fields. A specific example for Dirac fields in a general dimensional Schwarzschild black
hole spacetime is given, as well as for spin-3/2 field quasi-normal modes.

Keywords: extra-dimensions, quasi-normal modes, quantum fields in curved space,
supergravity, blackholes

1. Introduction

Quasi-normal modes (QNMs) are one of the most important theoretical results in modern
cosmology, especially for studying the perturbations from various fields on black hole
spacetimes. In this theory, the behaviour of a particle around a black hole is dominated by the
radial equation, and the evolution of QNMs behaves like damped harmonic oscillators with
specific frequencies. The frequencies are constructed by complex modes, where the real part is
the actual frequency and the imaginary part represents the damping rate due to the gravita-
tional emission. In lay terms, the QNMs are the characteristic sounds of the black hole.

With the recent ground breaking progress into the detection of gravitational wave data, where
it is believed that the last part of the gravitational wave emission, called the ring down phase,

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



is dominated by the QNMs, it is exciting that perturbation theory in curved spacetimes can now
be possibly tested in a real experimental system, and that a large number of scientists from all
over the world are involved in the data analysis. Related issues of the QNMs within the range of
research into cosmology include studying the stability of black holes and probing the dimen-
sionality of spacetime. It is, however, the observable gravitational wave data from the collisions
of binary black hole systems, which indicates how the background spacetime will finally become
a Kerr black hole spacetime through gravitational wave emission. Perturbation theory on a Kerr
black hole spacetime still includes some difficulties in the higher dimensional cases, which will
be a challenge for the theoretical community for some time to come.

Methods that are used to obtain QNMs can be both semi-analytic and numerical methods and
were introduced by Cho et al. [1], the most famous of these is the WKB approximation
methods [2]. Note that, the WKB approximation has been extended to sixth order [3] and is
powerful in many cases, but like all methods have several limitations. A new method has been
developed in recent years called the asymptotic iteration method (AIM), which is more effi-
cient in some cases. This method was used to solve eigenvalue problems for the second-order
homogeneous linear differential equations [4, 5] and also successfully used in calculating
QNMs [6]. Reviewing this AIM and providing the tools “in detail” for studying QNMs in the
higher dimensional spacetimes are the key focus of this chapter.

As such, this chapter is organised as follows: In the next section, we shall review the recent
progress on perturbation theory in curved spacetimes. More precisely, we shall present a
comparison of the spin-3/2 field in general dimensional Schwarzschild spacetimes with other
spin fields, including the spherical harmonics and the radial equations. In Section 3, we shall
review the AIM and present an exercise detailing how the QNMs of Dirac fields are obtained
in general dimensional Schwarzschild spacetimes. Furthermore, we can also compare to spin-
3/2 QNMs results. We shall conclude with a brief summary.

2. Perturbation theory in a general dimensional Schwarzschild spacetime

2.1. Eigenvalue problem on spheres

For perturbation theory in curved spacetimes, separability can always simplify the equations
of motion and plays an important role. For the maximally symmetric spacetime cases, the
eigenmodes on spheres allow us to separate the angular part for various spin fields and
simplify the equations of motion from the general form into a “radial-time” presentation. For
the case of bosonic fields, an earlier study by Rubin and Ordóñez presented a systematic study
[7, 8] as well as in a later work by Higuchi [9]. For the case of fermionic fields, Camporesi and
Higuchi presented the eigenmodes for spinor fields on arbitrary dimensional spheres [10], and
in a recent work by the authors [11], the spinor-vector eigenmodes on arbitrary dimensional
spheres were derived using a similar approach to Camporesi and Higuchi’s methods. In this
section, we review the structure of these eigenmodes, especially for the case of spinor-vector
fields, which shall be presented with the characteristics of both spinor and vector fields.

The metric of the N-sphere is given by
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dΩ2
N ¼ dθ2

N þ sin2θNdΩ2
N�1, ð1Þ

where, in this metric, we restrict the sphere to radius r = 1. When we consider the eigenvalue
problem in this spacetime, the bosonic field and fermionic field shall be studied with different
operators. In the case of bosonic fields, the operator for the eigenvalue equation will be the
Laplacian operator ∇μ∇μ, whereas, in the case of fermionic fields, it will be the Dirac operator
γμ∇μ, where γμ is the Dirac gamma matrices. In Table 1, we present the structure of the
eigenmodes with various spin fields on the sphere and also the conditions on the specific
mode, such as the transverse, traceless and symmetric conditions.

Looking first at the longitudinal and non-transverse modes for bosonic fields, the longitudinal
and non-transverse eigenfunctions for higher spins are the linear combination of the eigen-
functions for the lower spin one. For example, for the vector fields, the longitudinal eigenvec-
tor is the covariant derivative of a scalar eigenfunction. Furthermore, for the symmetric tensor
fields, there are three types of non-transverse eigenfunctions. The first one is the metric
element multiplied by a scalar eigenfunction, the second one is the longitudinal-longitudinal
eigenfunction, which is the linear combination for longitudinal eigenvectors, and the last one is

Fields Eigenfunction Eigenvalue

Scalar T(l) �lðlþN � 1Þ, l ¼ 0; 1; 2;….

Spinor ψðjÞ �i jþ N�1
2

� �
, j ¼ 1=2; 3=2; 5=2;….

Vector Longitudinal eigenvector

LðlÞμ ¼ ∇μTðlÞ �lðlþN � 1Þ þ 1, l ¼ 1; 2; 3;….

Transverse eigenvector

TðlÞ
μ ,∇μTðlÞ

μ ¼ 0 �lðlþN � 1Þ þ ðN � 1Þ, l ¼ 1; 2;….

Spin.- Non-transverse-traceless eigenmode

Vector ψðjÞ
μ ¼ ∇μψðjÞ þ að�Þγμψ

ðjÞ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ ðN � 1Þjþ 1

4 ðN � 5ÞðN � 1Þ
q

Transverse and traceless eigenmode

ψðjÞ
μ ¼ ðψθN

,ψθi
Þ,∇μψμ ¼ γμψμ ¼ 0 �iðjþ N�1

2 Þ, j ¼ 1=2; 3=2…, N ≥ 3

Sym.- gμνT
ðlÞ �lðlþN � 1Þ, l ¼ 0; 1; 2;….

Tensor Longitudinal-longitudinal (traceless) modes

LðlÞLμν ¼ 2∇μ∇νTðlÞ � ð 2NÞgμν∇α∇αTðlÞ �lðlþN � 1Þ þ 2N, l ¼ 2; 3; 4;….

Longitudinal-transverse (traceless) modes

LðlÞTμν ¼ ∇μTðlÞ
ν þ ∇νTðlÞ

μ
�lðlþN � 1Þ þ ðN þ 2Þ, l ¼ 2; 3; 4;….

Transverse-traceless modes

TðlÞ
μν,∇

μTðlÞ
μν ¼ gμνTðlÞ

μν ¼ TðlÞ
½μν� ¼ 0 �lðlþN � 1Þ þ 2, l ¼ 2; 3; 4;….

Table 1. Structure of the eigenvalue problem for various fields on N-sphere.
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the longitudinal-transverse eigenfunction, which is the linear combination of transverse eigen-
vectors. Analogous to the non-transverse-traceless modes for fermionic fields, the non-
transverse-traceless eigenspinor-vector is the linear combination of the eigenspinor. We note
that there are two non-transverse-traceless eigenspinor-vectors, due to the a(+) and a(�) being
different factors where

að�Þ ¼ � i
2

jþN � 1
2

� �
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ ðN � 1Þjþ 1

4
ðN � 5ÞðN � 1Þ

r
: ð2Þ

This indicates a special signature for spinor-vector harmonics that do not have the transverse-
traceless eigenmodes for S2.

Next, we look at the transverse-traceless modes. For the bosonic fields, an unique way to
construct this type of eigenfunction was suggested by Higuchi [9]. Analogous to the fermionic
case, for the transverse-traceless eigenspinor-vector, ψμ ¼ ðψθN

,ψθi
Þ, ψθN

behaves like a spinor

on N – 1 spheres, and ψθi
behaves like a spinor-vector on N – 1 spheres. If we let ψθi

be the

linear combination of the non-transverse-traceless eigenspinor-vector onN – 1 spheres, ψθN
has

to be non-zero to satisfy the transverse and traceless conditions. If we let ψθi
be the linear

combination of the transverse-traceless eigenspinor-vector on N – 1-spheres, ψθN
has to be

zero, because the ψθi
already satisfies the transverse and traceless condition.

On the other hand, we can take a look at the eigenvalue. For the bosonic fields, all of the
eigenvalues contain a similar first term, which is the eigenvalue of the scalar fields; however,
the starting value of the angular momentum quantum number l has to be considered case by
case, as well as the second term for higher spin cases. For the fermionic cases, the eigenvalue of
the non-transverse-traceless eigenspinor-vector has a very different value from the spinor
eigenvalue, though the eigenvalue of the transverse and traceless eigenspinor-vector is exactly
the same as the eigenspinor for the spin-1/2 field.

As a remark on this section, the eigenfunctions and eigenvalues on N-spheres are independent
for bosonic and fermionic fields, even though they have a very similar style of structure, which
indicates that the spherical harmonics for a bosonic field cannot be constructed by the spher-
ical harmonics of a fermionic field, and vice versa. In this section, we presented a review of the
eigenvalue problem for scalar, spinor, vector, spinor-vector, and symmetric tensor fields on
spheres, where further details can be found in the papers referred to in this section.

2.2. Effective potentials

In perturbation theory with various fields in the Schwarzschild black hole spacetime, a radial
equation (Schrödinger-like equation) will be derived from the equations of motion, which shall
be the master equation of this study. In a general way, the studies of perturbation theory in
maximally symmetric spacetimes are well established and include the (A)dS and Reissner-
Nordström spacetimes, but not for the spin-3/2 fields yet. With our recent progress in the study
of spin-3/2 fields, we may now do a comparison of various massless fields in a general
dimensional Schwarzschild black hole spacetime in this section.
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The metric of a general dimensional Schwarzschild spacetime is given by

dS2 ¼ �f ðrÞdt2 þ f�1ðrÞdr2 þ r2dΩ2
D�2, ð3Þ

where f ðrÞ ¼ 1� 2M=rD�3, D is the dimensional factor andM is the mass of the black hole. The
master equation can be obtained from the equations of motion by a change of coordinates to
give the Schrödinger-like equation

d2

dr2�
Ψs þ ðω2 � VsÞΨs ¼ 0; ð4Þ

where the subscript s represents the “spin” and r* represents the “tortoise” coordinate, which
can be defined as follows d

dr�
¼ f ðrÞ d

dr. The mathematical meaning of this coordinate is that a

mapping of the location of the event horizon of the Schwarzschild black hole from r0 (where f
(r0) = 0) is taken to minus infinity.

We shall first look at the four-dimensional cases, where, for the bosonic fields, the radial
equation can be represented with the potential [12]

Vs ¼ f
lðlþ 1Þ

r2
þ ð1� s2Þ 2M

r3

� �
, ð5Þ

where l is an integer, s = 0 represents the effective potential for scalar fields, s = 1 for the
electromagnetic fields, and s = 2 represents the “vector-type” perturbation for gravitational
fields (which is the Regge-Wheeler equation). The “scalar-type” perturbation for the gravita-
tional field in the four-dimensional case is the Zerilli equation, with an effective potential

VZ,s¼2 ¼ 2f
r3

9M3 þ 3λ2Mr2 þ λ2ð1þ λÞr3 þ 9M2λr

ð3Mþ λrÞ2
" #

, ð6Þ

where λ ¼ ðl� 1Þðlþ 2Þ=2.
For the fermionic fields in the four-dimensional Schwarzschild case, the effective potential can
be shown as follows [13, 14]:

Vs ¼ �f
dWs

dr
þW2

s , ð7Þ

where

Ws¼1
2
¼

ffiffiffi
f

p ðjþ 1
2Þ

r
, j ¼ 1

2
,
3
2
;…: ð8Þ

Ws¼3
2
¼

ffiffiffi
f

p ðj� 1
2Þðjþ 1

2Þðjþ 3
2Þ

r ðjþ 1
2Þ2 � f

h i , j ¼ 3
2
,
5
2
;…: ð9Þ
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Note that the “�” represents two isospectral potentials, which were known as the supersym-
metric partner potentials.

For the higher dimensional cases, there are more types of effective potentials, which can be
presented in the four-dimensional case, which indicates that some special cases will not exist in
the four-dimensional cases but will exist in the higher dimensional one. In the following
sections, we shall discuss the higher dimensional effective potentials as presented in Table 2.

Starting with bosonic fields, we have one effective potential for scalar fields in the higher
dimensional Schwarzschild spacetime, and it is necessary to satisfy Eq. (5) when D = 4 and s = 0.
For the case of electromagnetic fields, there are two types of effective potentials, which are the

Fields Vs

Scalar [12]

Vs¼0 ¼ f lðlþD�3Þ
r2 þ D�2

4
D�4
r2 f þ 2f 0

r

� �h i

l ¼ 0; 1; 2;….

Dirac [13]

Vs¼1=2 ¼ �f dWs¼1=2

dr þW2
s¼1=2

where

Ws¼1=2 ¼ f ðjþD�3
2

r Þ, j ¼ 1=2; 3=2; 5=2;….

Electromagnetic [15]

Scalar-type perturbation

VS,s¼1 ¼ f lðlþD�3ÞþðD�2ÞðD�4Þ
4

r2 � ð3D�8ÞðD�4ÞM
2rD�1

� �
.

l ¼ 1; 2; 3;….

Vector-type perturbation

VV,s¼1 ¼ f lðlþD�3ÞþðD�2ÞðD�4Þ
4

r2 � DðD�4ÞM
2rD�1

� �
.

l ¼ 1; 2; 3;….

Rarita-Schwinger [11]

Related to the non-TT eigenmodes

VNTT,s¼3=2 ¼ �f dWNTT,s¼3=2

dr þW2
NTT,s¼3=2

where

WNTT,s¼3=2 ¼
ffiffi
f

p
ðjþD�3

2 Þ
r

ð 2
D�2Þ2ðjþD�3

2 Þ2�1�D�4
D�2ð 2M

rD�3Þ
ð 2
D�2Þ2ðjþD�3

2 Þ2�f

� �
, j ¼ 1=2; 3=2; 5=2….

Related to the TT eigenmodes

VTT,s¼3=2 ¼ �f dWTT,s¼3=2

dr þW2
TT, s¼3=2

where

WTT,s¼3=2 ¼ f ðjþD�3
2

r Þ, j ¼ 1=2; 3=2; 5=2;….
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p
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r
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2 Þ2�1�D�4
D�2ð 2M

rD�3Þ
ð 2
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2 Þ2�f

� �
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“scalar-type perturbation potential” and the “vector-type perturbation potential”. It is acciden-
tal that both of these effective potentials satisfy Eq. (5) when D = 4 and s = 1, but it has been
shown they have different behaviours in the higher dimensional cases. It is believed that these
two types of effective potentials are strongly linked to two types of eigenvectors on spheres,
which are longitudinal and transverse ones. For the case of gravitational fields, the “scalar-
type perturbation potential” becomes the potential for the Zerilli equation, and the “vector
type perturbation potential” becomes the potential for the Regge-Wheeler equation whenD = 4
and s = 2. The “tensor-type perturbation potential”will be present whenD ≥ 5 but absent in the
four-dimensional case.

For the fermionic fields, the “�” still represents two isospectral supersymmetric partner poten-
tials in the higher dimensional cases. We have one set of effective potentials for the Dirac field,
which is strongly related to the eigenspinor on the sphere and reduces to Eq. (8) when D = 4.
For the case of the Rarita-Schwinger field, the potentials related to the non-transverse-traceless
eigenmodes are the leading equation both for the four-dimensional case and the higher dimen-
sional one, which are strongly linked to the “non-transverse-traceless” eigenspinor-vector on
spheres. Another effective potential for the Rarita-Schwinger fields is the one related to the
transverse and traceless eigenmodes; however, this type of eigenspinor-vector was absent on
the 2-sphere, which indicates that the potentials related to the transverse and traceless eigen-
modes exist for the cases whenD ≥ 5. We must note that, in this case, the effective potentials are
exactly the same as the Dirac case.

Lastly, note that, most of the effective potentials in Table 2 are simple barrier like potentials.
Nevertheless, some cases in the higher dimensions, or for the lowest energy state with j = 1/2,
for the potentials related to the non-transverse-traceless eigenmodes exhibit special behaviours
but not a simple barrier potential, which strongly suggests a link with the instabilities of the
black hole [18] and warrants further study.

Fields Vs

Gravitational [16, 17]

Scalar-type perturbation

VS,s¼2 ¼ f H

16r2 mþ1
2NðNþ1Þð1�f Þ½ �2 , N ¼ D� 2

H ¼ N4ðN þ 1Þ2ð1� f Þ3
þNðN þ 1Þ½4ð2N2 � 3N þ 4ÞmþNðN � 2ÞðN � 4ÞðN þ 1Þ�ð1� f Þ2
� 12N½ðN � 4ÞmþNðN þ 1ÞðN � 2Þ�mð1� f Þ þ 16m3 þ 4NðN þ 2Þm2:

m ¼ lðlþN � 1Þ �N, l ¼ 2; 3; 4…:

Vector and tensor type perturbation

VV=T, s¼2 ¼ f
r2 lðlþD� 3Þ þ ðD�2ÞðD�4Þ

4 � μV=T

2
ðD�2Þ2M

rD�3

h i
.

μV ¼ 3;lV ¼ 2; 3; 4… for vector-type perturbation.

μT ¼ �1;lT ¼ 1; 2; 3;… for tensor-type perturbation.

Table 2. The effective potential for various fields in the higher dimensional cases (D ≥ 5).
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To summarise, we have in this section provided a brief review of the effective potentials, which
play an important role in the perturbation theory of various spin fields in the general dimen-
sional Schwarzschild black hole spacetimes.

3. QNM frequencies by AIM

3.1. AIM methods

The AIM is a well-established approach in solving the eigenvalue problem for the second-
order differential equations, for example, Schrödinger-like equations. As mentioned in the
previous section, the radial equations of the perturbation theory with various spin fields in
general dimensional Schwarzschild spacetimes were presented as Schrödinger-like equations.
The QNMs, which are the signature modes in the black hole perturbation theory, can be
obtained naturally by using the AIM. In this subsection, we shall present a brief review of the
AIMs, and in the next subsection, we shall present an example calculation, showing the
methods used to obtain the quasi normal frequencies. We shall start with the second-order
differential equation for the function χðxÞ

χ″ ¼ λ0ðxÞχ0 þ s0ðxÞχ, ð10Þ

where χ0 ¼ dχ=dx. The symmetric structure of the right-hand side of Eq. (10) leads to the
method, where we differentiate on both sides of the equation we find that

χ″ ¼ λ0χ″ þ ðλ0
0 þ s0Þχ0 þ s00χ,

¼ ðλ0
0 þ s0 þ λ2

0Þχ0 þ ðs00 þ s0λ0Þχ,
� λ1χ0 þ s1χ:

ð11Þ

Taking the second derivative of Eq. (10) we have

χð4Þ ¼ λ2χ0 þ s2χ, ð12Þ

where

λ2 ¼ λ0
1 þ s1 þ λ0λ1 ; s2 ¼ s01 þ s0λ1: ð13Þ

Differentiating iteratively to the ðnþ 1Þth and the ðnþ 2Þth order, we have
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where
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n�1 þ sn�1 þ λ0λn�1 ; sn ¼ s0n�1 þ s0λn�1: ð15Þ

In the AIM, we suppose that for sufficiently large n, which represents the iterating number, the
coefficients λn and sn will have the relation
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sn
λn

¼ snþ1

λnþ1
¼ βðxÞ, ð16Þ

where the general solution of Eq. (10) is

χðxÞ ¼ exp
�
�
ðx

βðx0Þdx0
�
½C2 þ C1

ðx
expð

ðx
ðλ0ðx″Þ þ 2βðx″ÞÞdx″Þdx0�: ð17Þ

C1 and C2 are constants determined by the normalisation, and the QNMs (or the energy
eigenstates) can be obtained by the termination condition

snλnþ1 � snþ1λn ¼ 0: ð18Þ

This is the basic idea for the AIM, where to appreciate the effectiveness of this methods, we
refer the reader to Ciftci et al. [4, 5], which presented some studies for the constant coefficient,
harmonic oscillator, and the energy eigenvalue problem for several well-known potentials. For
the study of perturbation theory in curved spacetimes by the AIM, Cho et al. [1] present a
review of the QNMs for the bosonic fields in the four-dimensional maximally symmetric and
the Kerr black hole spacetimes. In the next subsection, as an example, we shall present how to
obtain the QNMs for Dirac fields in the higher dimensional Schwarzschild black hole
spacetimes by the AIM and compare these with other numerical semi-analytic results.

3.2. Example: How to obtain the QNMs for Dirac fields in general dimensional
Schwarzschild black hole spacetimes by the AIM

The QNMs for Dirac particles in the higher dimensional Schwarzschild black hole spacetimes
had been done in the earlier work by some of the authors [13] using the third-order WKB
approximation but not the AIM. With recent progress in spin-3/2 fields [11], we find that these
results greatly overlap with some of the spin-3/2 particles, which are represented by the
relations in the radial equations of the transverse and traceless eigenmodes. In this section, as
an example, we are going to show how to reproduce the results by the AIM.

In Table 2, the effective potential of the radial equation, Eq. (4), for the Dirac particle is as
follows:

Vs¼1=2 ¼ f
dWs¼1=2

dr
þW2

s¼1=2 , Ws¼1=2 ¼ f
jþ D�3

2

r

� �
, j ¼ 1

2
,
3
2
;…: ð19Þ

As we are going to reproduce the results in Ref. [13], a similar choose of f(r) will be

f ðrÞ ¼ 1� rH
r

� �D�3
, rD�3

H ¼ 8πMΓððD� 1Þ=2Þ
πðD�1Þ=2ðD� 2Þ , M � 1; ð20Þ

where rH represents the location of the event horizon and M represents the mass of the black
hole. By making a coordinate transformation

Semi-Analytic Techniques for Solving Quasi-Normal Modes
http://dx.doi.org/10.5772/68114

205



ξ2ðrÞ ¼ 1� rH
r
, ð21Þ

the radial equation becomes

f
dξ
dr

d
dξ

f
dξ
dr

d
dξ

� �
þ ω2 � Vs¼1=2

� �
Ψs¼1=2 ¼ 0: ð22Þ

Simplifying Eq. (22), we have

d2

dξ2
þ f 0

f
þ ξ0 0

ξ0

 !
d
dξ

þ ω2 � Vs¼1=2

f 2ξ02

" #
Ψs¼1=2 ¼ 0; ð23Þ

where

f 0 ¼ d
dξ

f ðξÞ , ξ0 ¼ d
dr

ξðrÞjr¼ rH
1�ξ2

, ξ″ ¼ d
dξ

ξ0: ð24Þ

Next, by setting the boundary behaviour of Ψs¼1=2 ¼ αðξÞχðξÞ and together with Eq. (23), we
have

d2

dξ
χ ¼ � f 0

f
þ ξ″

ξ
þ 2α0

α

� �
d
dξ

χ� ω2 � Vs¼1=2

f 0ξ02
þ α″

α
þ f 0

f
þ ξ″

ξ

� �
α0

α

" #
χ: ð25Þ

This is the second-order differential equation, which is the same as Eq. (10) with

λ0 ¼ � f 0

f
þ ξ″

ξ
þ 2α0

α

� �
, s0 ¼ � ω2 � Vs¼1=2

f 0ξ02
þ α″

α
þ f 0

f
þ ξ″

ξ

� �
α0

α

" #
: ð26Þ

Note that the last parameter we have to define is the asymptotic behaviour function α(ξ), and
we approach this by starting with the asymptotic behaviour of Ψs¼1=2, which can be
represented as an outgoing plane wave

Ψs¼1=2 ~ eiωr� for r ! ∞,
Ψs¼1=2 ~ e�iωr� for r ! �∞, ð27Þ

with r* being the tortoise coordinate, which has the relation with r

d
dr�

¼ f ðrÞ d
dr

: ð28Þ

Solving Eq. (28) in the four-dimensional case, we have

r� ¼ rþ rHln
rH
r
� 1

� �
, ð29Þ

together with Eqs. (21) and (27), we have
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α
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d
dξ
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ξ
þ 2α0

α

� �
, s0 ¼ � ω2 � Vs¼1=2

f 0ξ02
þ α″

α
þ f 0

f
þ ξ″

ξ

� �
α0

α

" #
: ð26Þ

Note that the last parameter we have to define is the asymptotic behaviour function α(ξ), and
we approach this by starting with the asymptotic behaviour of Ψs¼1=2, which can be
represented as an outgoing plane wave

Ψs¼1=2 ~ eiωr� for r ! ∞,
Ψs¼1=2 ~ e�iωr� for r ! �∞, ð27Þ

with r* being the tortoise coordinate, which has the relation with r

d
dr�

¼ f ðrÞ d
dr

: ð28Þ

Solving Eq. (28) in the four-dimensional case, we have

r� ¼ rþ rHln
rH
r
� 1

� �
, ð29Þ

together with Eqs. (21) and (27), we have
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Ψs¼1=2 ~ e
iωrH
1�ξ2ð1� ξ2Þ�iωrHξ2iωrH for ξ ! 1,

Ψs¼1=2 ~ e�
iωrH
1�ξ2ð1� ξ2ÞiωrHξ�2iωrH for ξ ! 0:

ð30Þ

Collecting the leading terms, we can define α(ξ) in the four-dimensional case as follows:

αðξÞ ¼ e
iωrH
1�ξ2 ð1� ξ2Þ�iωrHξ�2iωrH : ð31Þ

If we now consider the higher dimensional cases, Eq. (29) will become more complicated with

r� ¼ rþ
XD�3

a¼1

rHε
D� 3

ln
r

rHε
� 1

� �
, ð32Þ

where ε ¼ e
ia2π
D�3. Eq. (27) in the higher dimensions can be presented in the general form

Ψs¼1=2 ~ e
iωrH
1�ξ2
YD�3

a¼1

�
εð1� ξ2Þ

��iωrH ε
D�3
�
1� εð1� ξ2Þ

�iωrH ε
D�3

for ξ ! 1,

Ψs¼1=2 ~ e�
iωrH
1�ξ2
YD�3

a¼1

�
εð1� ξ2Þ

�iωrHε
D�3
�
1� εð1� ξ2Þ

��iωrHε
D�3

for ξ ! 0:

ð33Þ

Next, we shall consider how to define the asymptotic behaviour function α(ξ) in the higher
dimensional cases, where in our experience, finding the dominant terms in Eq. (33) is helpful to
the AIM calculation. When D = 5, Eq. (33) becomes

Ψs¼1=2 ~ e
iωrH
1�ξ2ðξ2 � 2Þ�

iωrH
2 ðξ2Þ

iωrH
2 for ξ ! 1,

Ψs¼1=2 ~ e�
iωrH
1�ξ2ðξ2 � 2Þ

iωrH
2 ðξ2Þ�

iωrH
2 for ξ ! 0:

ð34Þ

By considering the dominant term for the boundary behaviour, a suitable choice of the asymp-
totic behaviour function is as follows:

αðD¼5ÞðξÞ ¼ e
iωrH
1�ξ2ðξ2Þ�

iωrH
2 : ð35Þ

For D = 6, Eq. (33) becomes

Ψs¼1=2 ~ e
iωrH
1�ξ2 e

i2π
3 ð1� ξ2Þ

� ��iωrHe
i2π
3

3
1� e

i2π
3 ð1� ξ2Þ

� �iωrHe
i2π
3

3
e
i4π
3 ð1� ξ2Þ

� ��iωrHe
i4π
3

3

1� e
i4π
3 ð1� ξ2Þ

� �iωrHe
i4π
3

3 ð1� ξ2Þ�
iωrH
3 ð1� ξ2Þ�

iωrH
3 for ξ ! 1;

Ψs¼1=2 ~ e�
iωrH
1�ξ2 e

i2π
3 ð1� ξ2Þ

� �iωrHe
i2π
3

3
1� e

i2π
3 ð1� ξ2Þ

� ��iωrH e
i2π
3

3
e
i4π
3 ð1� ξ2Þ

� �iωrHe
i4π
3

3

1� e
i4π
3 ð1� ξ2Þ

� ��iωrHe
i4π
3

3 ð1� ξ2Þ�
iωrH
3 ð1� ξ2Þ�

iωrH
3 for ξ ! 0:

ð36Þ
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The dominant term for the boundary behaviour can be chosen as follows:

αðD¼6ÞðξÞ ¼ e
iωrH
1�ξ2ðξ2Þ�

iωrH
3 ð1� ξ2Þ�

iωrH
3 : ð37Þ

For a similar discussion on the higher dimensional cases, we find that α(ξ) can be defined
separately for the odd dimensional and even dimensional cases, where

αðξÞ ¼ e
iωrH
1�ξ2ðξ2Þ�

iωrH
D�3 , D∈ odd;

αðξÞ ¼ e
iωrH
1�ξ2ðξ2Þ�

iωrH
D�3ð1� ξ2Þ�

iωrH
D�3 , D∈ even:

ð38Þ

Substituting Eqs. (19), (20), (21) and (38) into Eq. (26), we find λ1 and s1 by the relation in
Eq. (15). Next, by defining a suitable initial value of ω0, which represents the parameter ω in s0,
with the termination condition Eq. (18), we can solve the parameter ω1, which represents the
parameter ω in s1. This loop iterates, as with ω1 we can solve for ω2 in the next iteration and so
on. For a sufficiently large number of iterations, the ωn-1 and ωn will become stable, and it will
be the quasi normal frequency we are seeking.

The QNM results are obtained with the iteration number = 200 in Table 3, for the D = 5,6
dimensional Schwarzschild spacetimes, and in Table 4, for D = 7,8. The results using the third-
order WKB methods are the same as presented in our previous work [13], where for complete-
ness we also list the sixth-order WKB results.

5 Dimensions

l n Third-order WKB Sixth-order WKB AIM

0 0 0.7247–0.3960 i 0.7823–0.3635 i 0.7252–0.3960 i

1 0 1.3158–0.3839 i 1.3301–0.3852 i 1.3163–0.3839 i

1 1 1.1490–1.2192 i 1.1800–1.2021 i 1.1495–1.2192 i

2 0 1.8754–0.3838 i 1.8801–0.3844 i 1.8802–0.3840 i

2 1 1.7541–1.1818 i 1.7672–1.1791 i 1.7674–1.1779 i

2 2 1.5588–2.0318 i 1.5620–2.0517 i 1.5593–2.0318 i

3 0 2.4251–0.3839 i 2.4271–0.3840 i 2.4256–0.3839 i

3 1 2.3322–1.1686 i 2.3382–1.1674 i 2.3327–1.1686 i

3 2 2.1704–1.9891 i 2.1691–1.9980 i 2.1709–1.9891 i

3 3 1.9611–2.8411 i 1.9385–2.9063 i 1.9616–2.8411 i

4 0 2.9716–0.3839 i 2.9726–0.3839 i 2.9721–0.3839 i

4 1 2.8963–1.1624 i 2.8994–1.1618 i 2.8968–1.1624 i

4 2 2.7596–1.9668 i 2.7574–1.9711 i 2.7601–1.9668 i

4 3 2.5773–2.7984 i 2.5569–2.8330 i 2.5778–2.7984 i

4 4 2.3583–3.6512 i 2.3126–3.7665 i 2.3588–3.6512 i

5 0 3.5166–0.3838 i 3.5171–0.3838 i 3.5171–0.3838 i

5 1 3.4533–1.1591 i 3.4550–1.1588 i 3.4538–1.1591 i

5 2 3.3353–1.9536 i 3.3333–1.956 i 3.3358–1.9536 i

Trends in Modern Cosmology208



The dominant term for the boundary behaviour can be chosen as follows:

αðD¼6ÞðξÞ ¼ e
iωrH
1�ξ2ðξ2Þ�

iωrH
3 ð1� ξ2Þ�

iωrH
3 : ð37Þ

For a similar discussion on the higher dimensional cases, we find that α(ξ) can be defined
separately for the odd dimensional and even dimensional cases, where

αðξÞ ¼ e
iωrH
1�ξ2ðξ2Þ�

iωrH
D�3 , D∈ odd;

αðξÞ ¼ e
iωrH
1�ξ2ðξ2Þ�

iωrH
D�3ð1� ξ2Þ�

iωrH
D�3 , D∈ even:

ð38Þ

Substituting Eqs. (19), (20), (21) and (38) into Eq. (26), we find λ1 and s1 by the relation in
Eq. (15). Next, by defining a suitable initial value of ω0, which represents the parameter ω in s0,
with the termination condition Eq. (18), we can solve the parameter ω1, which represents the
parameter ω in s1. This loop iterates, as with ω1 we can solve for ω2 in the next iteration and so
on. For a sufficiently large number of iterations, the ωn-1 and ωn will become stable, and it will
be the quasi normal frequency we are seeking.

The QNM results are obtained with the iteration number = 200 in Table 3, for the D = 5,6
dimensional Schwarzschild spacetimes, and in Table 4, for D = 7,8. The results using the third-
order WKB methods are the same as presented in our previous work [13], where for complete-
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4 0 2.9716–0.3839 i 2.9726–0.3839 i 2.9721–0.3839 i

4 1 2.8963–1.1624 i 2.8994–1.1618 i 2.8968–1.1624 i

4 2 2.7596–1.9668 i 2.7574–1.9711 i 2.7601–1.9668 i

4 3 2.5773–2.7984 i 2.5569–2.8330 i 2.5778–2.7984 i

4 4 2.3583–3.6512 i 2.3126–3.7665 i 2.3588–3.6512 i

5 0 3.5166–0.3838 i 3.5171–0.3838 i 3.5171–0.3838 i
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5 Dimensions

5 3 3.1741–2.7711 i 3.1580–2.7908 i 3.1746–2.7711 i

5 4 2.9785–3.6089 i 2.9383–3.6779 i 2.9790–3.6089 i

5 5 2.7525–4.4625 i 2.6857–4.6302 i 2.7530–4.4625 i

6 Dimensions

0 0 1.2806–0.6391 i 1.4364–0.5821 i 1.2811–0.6391 i

1 0 2.1006–0.6276 i 2.1350–0.6423 i 2.1011–0.6276 i

1 1 1.7071–2.0417 i 1.8139–1.9981 i 1.7076–2.0417 i

2 0 2.8671–0.6308 i 2.8797–0.6354 i 2.8676–0.6308 i

2 1 2.5777–1.962 i 2.6235–1.9629 i 2.5782–1.962 i

2 2 2.1056–3.4196 i 2.1297–3.4716 i 2.1061–3.4196 i

3 0 3.6132–0.6321 i 3.6194–0.6329 i 3.6196–0.6325 i

3 1 3.3917–1.9342 i 3.4143–1.9318 i 3.4180–1.9342 i

3 2 3.0002–3.3204 i 3.0081–3.3404 i 3.0007–3.3204 i

3 3 2.4883–4.7849 i 2.4206–4.9568 i 2.4888–4.7849 i

4 0 4.3518–0.6324 i 4.3550–0.6325 i 4.3523–0.6324 i

4 1 4.1724–1.9214 i 4.1845–1.9192 i 4.1729–1.9214 i

4 2 3.8423–3.2694 i 3.8437–3.2771 i 3.8428–3.2694 i

4 3 3.3973–4.6831 i 3.3411–4.7697 i 3.3978–4.6831 i

4 4 2.8578–6.1516 i 2.6999–6.4718 i 2.8583–6.1516 i

5 0 5.0872–0.6325 i 5.0890–0.6324 i 5.0877–0.6325 i

5 1 4.9359–1.9143 i 4.9428–1.9128 i 4.9364–1.9143 i

5 2 4.6513–3.2399 i 4.6503–3.2435 i 4.6518–3.2399 i

5 3 4.2586–4.6195 i 4.2147–4.6677 i 4.2591–4.6195 i

5 4 3.7773–6.0494 i 3.6482–6.2378 i 3.7778–6.0494 i

5 5 3.2168–7.5218 i 2.9732–8.0104 i 3.2173–7.5218 i

Table 3. Low-lying (n ≤ l, with l ¼ j� 1=2) spin-1/2 field QNM frequencies using the WKBmethods and the AIMwith D = 5,6.

7 Dimensions

l n Third-order WKB Sixth-order WKB AIM

0 0 1.7861–0.8090 i 2.0640–0.7502 i 1.7866–0.8090 i

1 0 2.7344–0.8066 i 2.7827–0.8558 i 2.7349–0.8066 i

1 1 2.0521–2.6832 i 2.2892–2.6106 i 2.0526–2.6832 i

2 0 3.6130–0.8166 i 3.6327–0.8322 i 3.6135–0.8166 i

2 1 3.1092–2.5590 i 3.2053–2.5943 i 3.1097–2.5590 i

2 2 2.2671–4.5340 i 2.3344–4.6355 i 2.2676–4.5340 i

3 0 4.4610–0.8206 i 4.4730–0.8233 i 4.4615–0.8206 i

3 1 4.0779–2.5187 i 4.1298–2.5218 i 4.0784–2.5187 i
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7 Dimensions

3 2 3.3809–4.3622 i 3.4158–4.4006 i 3.3814–4.3622 i

3 3 2.4624–6.363 i 2.3163–6.6549 i 2.4629–6.363 i

4 0 5.2968–0.8218 i 5.3035–0.8220 i 5.3033–0.8220 i

4 1 4.9878–2.5009 i 5.0176–2.4966 i 4.9883–2.5009 i

4 2 4.4049–4.2771 i 4.4224–4.2810 i 4.4054–4.2772 i

4 3 3.6066–6.1782 i 3.4954–6.3058 i 3.6071–6.1782 i

4 4 2.6393–8.1950 i 2.2624–8.7432 i 2.6398–8.1950 i

5 0 6.1273–0.8221 i 6.1310–0.8219 i 6.1309–0.8221 i

5 1 5.8671–2.4910 i 5.8847–2.4870 i 5.8676–2.4910 i

5 2 5.3673–4.2295 i 5.3756–4.2263 i 5.3678–4.2295 i

5 3 4.6654–6.0660 i 4.5819–6.1252 i 4.6659–6.0660 i

5 4 3.8002–8.0044 i 3.5047–8.3081 i 3.8007–8.0044 i

5 5 2.7964–10.035 i 2.1874–10.910 i 2.7969–10.0348i

8 Dimensions

0 0 2.2437–0.9238 i 2.6486–0.8930 i 2.2442–0.9238 i

1 0 3.2663–0.9359 i 3.3105–1.0469 i 3.2668–0.9359 i

1 1 2.2397–3.1796 i 2.6722–3.0659 i 2.2402–3.1796 i

2 0 4.2077–0.9556 i 4.2279–0.9928 i 4.2082–0.9556 i

2 1 3.4491–3.0091 i 3.6051–3.1428 i 3.4496–3.0091 i

2 2 2.1453–5.4463 i 2.2891–5.5740 i 2.1458–5.4463 i

3 0 5.1097–0.9641 i 5.1285–0.9704 i 5.1102–0.9642 i

3 1 4.5378–2.9607 i 4.6284–2.9895 i 4.5383–2.9607 i

3 2 3.4576–5.1805 i 3.5481–5.2651 i 3.4581–5.1805 i

3 3 2.0383–7.6877 i 1.7944–8.0198 i 2.0388–7.6877 i

4 0 5.9947–0.9669 i 6.0062–0.9669 i 5.9952–0.9669 i

4 1 5.5365–2.9415 i 5.5943–2.9365 i 5.5370–2.9415 i

4 2 4.6421–5.0549 i 4.6967–5.0480 i 4.6426–5.0549 i

4 3 3.4017–7.3877 i 3.2284–7.5066 i 3.4022–7.3877 i

4 4 1.9199–9.9347 i 1.2118–10.564 i 1.9204–9.9347 i

5 0 6.8720–0.9677 i 6.8785–0.9669 i 6.8772–0.9659 i

5 1 6.4875–2.9309 i 6.5231–2.9224 i 6.4880–2.9309 i

5 2 5.7272–4.9883 i 5.7608–4.9630 i 5.7277–4.9883 i

5 3 4.6390–7.2092 i 4.5109–7.2241 i 4.6395–7.2092 i

5 4 3.3023–9.6186 i 2.7516–9.9294 i 3.3028–9.6186 i

5 5 1.7759–12.195 i 0.5680–13.282 i 1.7764–12.1949 i

Table 4. Low-lying (n ≤ l, with l ¼ j� 1=2) spin-1/2 field QNM frequencies using the WKB methods and the AIM with
D = 7,8.
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4. A remark on the spin-3/2 field QNMs

In this section, we are going to present a discussion of our recent work [11] on the spin-3/2
fields in general dimensional Schwarzschild spacetimes. Note that, this section will not go
into as great a detail as the previous one but shall just list some improvements made in light
of recent considerations. Starting with the radial equation related to the “non-TT eigen-
modes”, the radial equation can still be represented as the Schrödinger like one, Eq. (4),
where

VNTT, s¼3=2 ¼ �f
dWNTT,s¼3=2

dr
þW2

NTT, s¼3=2,

WNTT, s¼3=2 ¼
ffiffiffi
f

p ðjþD� 3
2

Þ
r

ð 2
D�2Þ2ðjþ D�3

2 Þ2 � 1�D� 4
D� 2

ð2M
r
ÞD�3

ð 2
D�2Þ2ðjþ D�3

2 Þ2 � f

2
64

3
75,

ð39Þ

and

f ðrÞ ¼ 1� 2M
r

� �D�3

: ð40Þ

Because the general form of the radial equation is the same as the Dirac case, Eqs. (22)–(38) are
still sufficient in this case, but the effective potential will be Eq. (39), not Eq. (19). What we need
to consider here is that the asymptotic behaviour function is simpler than what we had used
previously and successfully generates better results for the QNMs.

In Table 5, for some lower modes in the seven-dimensional spacetime, the new AIM results
(with the current choice of boundary behaviour function, Eq. (38)) are better than the previous

7 Dimensions

l n Third-order WKB Sixth-order WKB AIM (earlier) AIM (new)

0 0 0.7725–0.2978 i 0.7530–0.3037 i 0.7008–0.3036 i 0.7535–0.3036 i

1 0 1.1441–0.2893 i 1.1415–0.2831 i 1.1231–0.2976 i 1.142–0.2831 i

1 1 0.9465–0.9065 i 0.9267–0.8783 i 0.9266–0.8782 i 0.9271–0.8782 i

… … … … … …

8 Dimensions

… … … … … …

4 4 1.0674–3.5290 i 0.7606–3.5381 i 1.0674–3.5290 i 1.0679–3.5291 i

5 4 1.5711–3.4654 i 1.3755–3.4609 i 1.5711–3.4653 i 1.5716–3.4654 i

5 5 1.0321–4.3822 i 0.5837–4.5299 i 1.0321–4.3822 i 1.0326–4.3822 i

… … … … … …

Table 5. Selected QNM frequencies of low-lying (n ≤ l, with l ¼ j� 3=2) for spin-3/2 field related to the non-TT
eigenmodes by using the WKB methods and the AIM.
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results for the first few modes. This is why we believe Eq. (38) is a suitable choice of the
boundary behaviour function for the AIM methods in the higher dimensional spacetimes.

5. Summary

In this chapter, we presented a brief review of recent progress on perturbation theory with
various fields in curved spacetimes, especially for a systematic comparison to the fermionic
and bosonic fields. Generally, the first step in this topic is the obtaining of the radial equations
as discussed in Section 2. There are then various methods, but no unique approach for consid-
ering a specific field on a specific spacetime, where we strongly suggest the reader follow the
references provided to develop a step-by-step approach. On the other hand, the process for
obtaining the radial equations always relates to the separability of a spacetime, this being the
main reason that we still have difficulties for perturbation theory in the higher dimensional
Kerr spacetimes. As such we mentioned in the introduction section that for the gravitational
wave experiments, the QNMs in the higher dimensional Kerr spacetimes are definitely an
interesting next stage of study for this area, and it shall be interesting seeing further progress
in this direction.

In Section 3, we presented the AIM, giving an in detail example to study the perturbation
theory in the higher dimensional spacetimes and also presented a remark for our recent work
on the spin-3/2 fields. Since there are several numerical methods for obtaining the QNMs, we
believe that the AIM is a straightforward way to study the QNMs due to its simple mathemat-
ical structure.
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