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Preface

Granular materials are a broad category of materials of interest in civil engineering, chemi‐
cal engineering, physics, chemistry, and pharmacy. In engineering, great advances took
place recently by the introduction, both, of experimental and computational methods. X-Ray
tomography revealing the grain material structure and the distinct element computational
method are two of them. The granular materials may behave as fluids or solids or both. The
grain size may span from microscopic to macroscopic scale. From the wet sand effect, Rey‐
nolds inspired in 1885 the notion of granular universe introducing the term "dilatancy." In
his Rede Lecture in Cambridge (1902) entitled On an Inversion of Ideas as to the Structure of
Universe, he presented an explanation of the cause of electromagnetism giving a physical
explanation of the equations linking electricity with magnetism. Later on, Lorentz gave the
relativistic explanation of the electromagnetic waves. In 1930, Casagrande introduced the
concept of critical void ratio to explain the liquefaction phenomenon. Donald Taylor in 1948
used the concept of dilatancy to explain the friction as a result of the interlocking of grains.
Later on (1960s), Cambridge soil mechanics group (Roscoe, Schofield, Wroth, etc.) intro‐
duced the models of Cam-Clay and Granta-Gravel to explain the plastic behavior of soil. On
the other hand, researchers from mathematics and physics like Bak, Tan, and Wisenfeld
(1987, 1988) used the sand pile as a representative model of complex systems. Many re‐
searchers continue developing the concept of self-organized criticality to explain physical
phenomena like earthquakes, landslides, and avalanches.

This volume presents basic notions and fundamental properties of granular materials cov‐
ering a wide spectrum of granular material mechanics. In this collection of chapters, granu‐
lar dynamics, granular flow from dilute to jammed states, dynamics of granular gas in
microgravity, particle jetting induced by impulsive loadings, particle migration phenom‐
ena in embankment dams, and the grading entropy-based criteria of granular materials and
filters are presented.

Dr. Michael Sakellariou
Professor Emeritus,

National Technical University of Athens,
Athens, Greece
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Chapter 1

Introductory Chapter: A Short Survey of Landmarks

Michael G. Sakellariou

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.70337

1. Introduction

Granular materials are a broad category of materials of interest in Civil engineering, Chemical 
engineering, Mining Industry, Physics, Chemistry, Pharmacy and Agriculture. In engineer-
ing, great advances took place recently by the introduction, both, of experimental and compu-
tational methods. X-ray tomography revealing the grain materials structure and the distinct 
elements computational method are two of them. The granular materials may behave as flu-
ids or solids or both. The grains size may span from microscopic to macroscopic scale. From 
the wet sand effect, Reynolds inspired in 1885 [1] the notion of granular universe introducing 
the term “dilatancy.” In his Rede Lecture in Cambridge [2] entitled On an Inversion of Ideas as 
to the Structure of Universe, he presented an explanation of the cause of electromagnetism giv-
ing a physical interpretation of the equations linking electricity with magnetism. In Figure 1, 
the experiment to show the effect of dilatation in the Rede Lecture is presented.

Later on, Lorentz gave the relativistic explanation of the electromagnetic waves. Schofield [3] 
gives a short account of Reynolds’ ideas. In 1930, Casagrande introduced the concept of critical 
voids ratio to explain the liquefaction phenomenon. Donald Taylor in 1948 used the concept of 
dilatancy to explain the friction as result of the interlocking of grains. Later on in 1960, Cambridge 
soil mechanics group [4] introduced the models of Cam-Clay and Granta-Gravel to explain the 
plastic behavior of soil. On the other hand, researchers from Mathematics and Physics like Bak 
et al. [5] and Bak [6] used the sand pile as a representative model of complex systems (Figure 2).

Many researchers continue developing the concept of self-organized criticality to explain 
physical phenomena like earthquakes, landslides and avalanches. Werner [7], using notions 
and principles of Complexity Theory, explains the localization of shear: “…the most rap-
idly changing parts of the system tend to be localized in space. Familiar examples include 
localization of shear into narrow bands in turbulent fluids and in solid deformation or frac-
ture. Patterns inherently involve localization because they can be described with fewer spatial 
dimensions than the space in which they are embedded: lines for two-dimensional patterns 
and surfaces in three-dimensional patterns.”

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



This volume presents basic notions and fundamental properties of granular materials cover-
ing a wide spectrum of granular material mechanics. In this collection of chapters, granular 
dynamics, granular flow from dilute to jammed states, dynamics of granular gas in micro-
gravity, particle jetting induced by impulsive loadings, particle migration phenomena in 
embankment dams and the grading entropy-based criteria of granular materials and filters 
are presented. The scientific areas of the above are very broad, with applications from earth 
dams to space flights.

Figure 1. Experiment presented in Reynolds’ Rede Lecture to show the dilatancy phenomenon. In Fig. 11 of the original 
publication, a bag filled with water is shown. After squeezing the bag, the water rises in the tube. In contrary, in Fig. 12, 
as above, a big filled with small shot and colored water is shown. In this case, the squeezing of the bag caused a drop of 
the water in the tube resulted from the increase of voids in the coarse material.
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In the first chapter, a theoretical framework of granular dynamics using a generalized Lag-
rangian approach is presented, discussing future directions of computational granular 
dynamics. The second chapter focuses on the mechanical responses of a granular material 
describing the mechanical behavior of dissipative, deformable particles in different states, 
from fluid to solid states. The next chapter presents an experimental study of the dynamical 
behavior of a model granular medium. The model has been submitted to external vibrations 
under microgravity, the whole process being recorded using high-speed video camera. The 
fourth chapter is an experimental and numerical study of the particle jetting phenomenon 
observed in the explosive or shock disposal of particle rings, shells or cylinders. Continuum 
approach, for the explosive case, and Distinct Element Method for the shock-induced jetting 

Figure 2. The sand pile as the prototypical example of the self-organized criticality [6].

Introductory Chapter: A Short Survey of Landmarks
http://dx.doi.org/10.5772/intechopen.70337

5



have been adopted. In the following two chapters, important hydraulic properties of earth 
dams are presented, affecting their structural integrity. First, a numerical procedure has been 
developed to simulate particle migration phenomena due to seepage resulting erosion. The 
method has been applied in case studies. The final chapter presents entropy-based criteria to 
control the internal erosion process in earth dams. According to this procedure, the whole 
grading curve is used instead of a limited number of points, as is usually adopted.
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Provisional chapter

Dissipative Dynamics of Granular Materials

Albert S. Kim and Hyeon-Ju Kim

Additional information is available at the end of the chapter

Abstract

Granules are inelastic particles, undergoing dissipative and repulsive forces on contact.
A granular state consists of a conglomeration of discrete, non-Brownian particles in a
combined state of solid, liquid, and gas. Modern theoretical physics lacks general theo-
ries for the granular states. Simulation methods for particle dynamics include molecular
dynamics (MD), Brownian dynamics (BD), Stokesian dynamics (SD), dissipative particle
dynamics (DPD), and dissipative hydrodynamics (DHD). These conventional methods
were originally designed to mimic the small-particle motion being less influenced by the
gravitational force. There are three reasons that a conventional method cannot be
directly applied to investigate granular dynamics. First, volume exclusion forces
between colliding particles are often disregarded due to strong repulsive forces between
negatively charged colloids and nanoparticles. Second, the gravitational force is not
significant as applied to small, light particles, and therefore it is often discarded in
force/torque calculations. Third, energy conservation in an equilibrium state is not
guaranteed for the granular system due to the inelastic and frictional nature of the
granular materials. In this light, this chapter discusses the fundamentals of particle
dynamics methods, formulates a robust theoretical framework for granular dynamics,
and discusses the current applications and future directions of computational granular
dynamics.

Keywords: granular dynamics, least action principle, classical mechanics, Newton’s law
of motion, Hertz’s law, inelasticity, compression, restitution coefficient, parallel particle
dynamics, dissipative hydrodynamics

1. Introduction

1.1. Mechanics

Mechanics is the investigation of physical bodies when they are subjected to forces and torques
in Euclidean three-dimensional spaces. It is often referred to as classical mechanics (in physics),

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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which is closely related to engineering mechanics. Classical mechanics has two branches: statics
and dynamics. Statics is concerned with the equilibrium of a body that is either at rest or moves
with a constant velocity. Dynamics deals with the accelerated motion of a body, classified into
two parts: kinematics, which treats only the geometric aspect of motion, and kinetics, which
analyzes the forces causing the motion. Two representative objects in mechanics are a particle
and a rigid body. A particle is the most basic unit of matter, which contains a mass of a
negligible volume. Since the particle is small enough to be regarded as a point mass, its angular
motion is completely discarded in analyzing its dynamics. The total energy of particles depends
on their velocities and positions as influenced by external and internal forces. The mass of each
particle is assumed invariant and therefore energy conservation is independent of mass conser-
vation in classical mechanics. If particles of interest have sub-atomic sizes (such as hydrogens
and electrons), classical mechanics fails to predict their intrinsic duality behaviors. Quantum
mechanics explains matter’s simultaneous wave-like and particle-like properties, and unifies
matter and energy as they converge at the level of Planck’s constant. A particle’s position and
velocity cannot be measured accurately at a particular moment because if one measures the
position accurately, then the particle’s momentum will be disturbed, and vice versa. This is
called the Heidelberg uncertainty principle. In the macroscopic engineering world, in which
humans observe objects with their naked eyes, quantum phenomena are extremely rare to
observe. Although quantum mechanics includes classical mechanics as a sub-set, most conven-
tional engineering phenomena are macroscopic enough to neglect sub-atomic effects. Based on
the above-mentioned characteristics and classifications of mechanics, the granular dynamics in
this chapter focuses on kinetics and hydrodynamics of multiple non-Brownian particles in
locally confined three-dimensional (3D) spaces, often filled with fluid media.

1.2. Principles in classical mechanics

1.2.1. Governing equations

Classical mechanics in this chapter is narrowly defined as the investigation of the motion of
systems of bodies under the influence of forces and torques. The problem is to determine the
positions of all the particles at an arbitrary time t from their initial state at t = 0. Newton’s laws
for the motion of bodies can be summarized as follows:

1. Newton’s first law states that an object will remain at rest or in linear motion unless acted
upon by an external force. (This first law describes a constant velocity motion in the absence
of an external force, which is a special case of zero acceleration in the second law below.)

2. Newton’s second law states that the net (unbalanced) force F on an object is equal to the
product of the mass m and acceleration a of the object:

F ¼ ma ð1Þ

where the acceleration is defined as the rate of change in velocity with respect to time.
(This law indicates that the net force modifies the object’s velocity with respect to

Granular Materials10
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time. Then, the mass m can be interpreted as the object’s resistance to the velocity
change.)

3. Newton’s third law states that all the forces in the universe occur in equal (in magnitude)
but opposite directions. For example, when one body exerts a force on a second body, the
second body simultaneously exerts a force, on the first body, equal in magnitude and
opposite in direction. These two forces cancel each other, and therefore, the net sum is
always zero, even if particles are inelastic.

As noted above, particle size is neglected in describing its motion. The possibility of doing so
depends on the actual size of the object and/or its distance from the observer. But, when a
group of constrained particles forms a rigid body, its rotational motion is described using an
equation similar to Newton’s second law of force, which is

M ¼ Iα ð2Þ

where M is the torque or moment, I is the mass moment of inertia, and α is the angular
acceleration. A rigid body has six degrees of freedom: three for translation and the other three
for rotation. One can combine Eqs. (1) and (2) to write the governing equation of motion of a
rigid body in a simple matrix form:

F
M

� �
¼ M 0

0 I

� �
a
α

� �
ð3Þ

where the zeros in the off-diagonal terms indicate that the medium in which particles are
moving is not viscous, i.e., conceptually similar to vacuum. The linear and angular accelera-
tions are defined as

a ¼ €r ¼ d2r
dt2

and α ¼ €θ ¼ d2θ
dt2

ð4Þ

respectively, where r and θ are the linear and angular positions of the object, of which time
derivatives are the linear and angular velocities, respectively:

v ¼ _r ¼ dr
dt

and ω ¼ _θ ¼ dθ
dt

ð5Þ

Where a and α have three components each so that [a, α]T in Eq. (3) is a vector of six compo-
nents, where the superscript T indicates a transpose. For mathematical simplicity, a generalized
coordinate q, generalized velocity _q, and generalized forceQ of an object are written as

q ¼ r
θ

� �
, _q ¼ _r

_θ

� �
, and Q ¼ F

M

� �
ð6Þ
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The classical mechanics problems are usually reduced to solve for q(t) and _qðtÞ at time t under
the influence of specified Q, using the initial conditions of q(t = 0) and _qðt ¼ 0Þ.

1.2.2. Total energy sum and difference

Fundamental questions from physicists are “What governs the motion of an object?” and
“How can the motion be described and predicted mathematically?” Then, a fundamental
question that naturally rises is “Is there a more fundamental principle that nature follows other
than Newton’s second law?”

Let’s consider a particle, i.e., a point mass, found at position r(t) with velocity v(t) under the
influence of force f(r), depending on the particle position only. We consider Newton’s second
law in one-dimensional space:

f ðxÞ ¼ m
dv
dt

ð7Þ

Because dx = vdt, we multiply dx with f(x) and vdf with mdv / dt to derive

f ðxÞ dx ¼ mv dv ð8Þ

and integrate each side from state 1 of (x1, v1) to state 2 of (x2, v2) to obtain
ðx2
x1
f ðxÞ dx ¼ m

ðv2
v1
vdv ¼ 1

2
mv22 �

1
2
mv21 ð9Þ

Then, Eq. (9) can be rewritten as

ΔW ¼ T2 � T1 ð10Þ

where ΔW ¼
ðx2
x1
f ðxÞdx is a work done and T ¼ 1

2mv2 is the kinetic energy. Eq (10) indicates that

the work done is equal to the kinetic energy change from states 1 to 2. The integration of force
with respect to x in Eq. (9) can be exact if the force depends on the particle position only. If so,
this force is called conservative and becomes the satisfactory condition for the energy conserva-
tion principle. A conservative f(x) can be expressed as a gradient of a scalar function V:

f ðxÞ ¼ � dVðxÞ
dx

in 1-D ð11Þ

f ¼ �∇VðrÞ in 3-D ð12Þ

where V is called the potential energy function. Then, the force integration is simply
ðx2
x1
f ðxÞ dx ¼ �

ðx2
x1

dV ¼ �Vðx2Þ þ Vðx1Þ ð13Þ

Substitution of Eq. (13) into Eq. (9) gives
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this force is called conservative and becomes the satisfactory condition for the energy conserva-
tion principle. A conservative f(x) can be expressed as a gradient of a scalar function V:

f ðxÞ ¼ � dVðxÞ
dx

in 1-D ð11Þ

f ¼ �∇VðrÞ in 3-D ð12Þ

where V is called the potential energy function. Then, the force integration is simply
ðx2
x1
f ðxÞ dx ¼ �

ðx2
x1

dV ¼ �Vðx2Þ þ Vðx1Þ ð13Þ

Substitution of Eq. (13) into Eq. (9) gives
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T1 þ V1 ¼ T2 þ V2 ð14Þ
E1 ¼ E2 ¼ constant ð15Þ

where total energy E defined as a sum of the potential and kinetic energies, i.e., E = T + V, is
derived as constant regardless of the path the particle takes. The potential energy difference
depends on only the initial and final positions of x1 and x2, respectively. Note that the total
energy is conserved only if the force depends on only particle location. In advanced classical
mechanics, the total energy E is replaced by a Hamiltonian function: H = T + V, and problems
can be solved identically to applying Newton’s second law. Using the Legendre transformation
of the Hamiltonian H, a new function called Lagrangian L is defined as the difference between
the kinetic and potential energies:

L ¼ T � V ð16Þ

Instead of dealing with force vectors in Newton’s second law, Lagrangian mechanics uses the
scalar Lagrangian function, which is assumed to contain all the information of the mechanical
system.

1.2.3. Principle of the least action

The most general formulation of the law governing the motion of mechanical systems is the
principle of least action or Hamilton’s principle [1]. According to this principle, a mechanical system is
characterized using a definite Lagrangian function Lðq1, q2,…, qs, _q1, _q2,…, _qs, tÞ or briefly Lðq, _q, tÞ,
and the motion of the system is such that a certain condition (discussed below) is satisfied.

At time t1 and t2, particle positions are defined by two sets of the generalized coordinates, q(t1)
and q(t2). The condition is that the system moves between these two positions, minimizing the
integral

S ¼
ðt2
t1
Lðq, _q, tÞdt ð17Þ

to the least possible value. The integral of Eq. (17) is called the action. Note that the Lagrangian
contains generalized coordinates and velocities, q and _q only (not the higher derivatives such
as €q), as independent variables.

Let us now derive the differential equations that minimize the action integral of Eq. (17). For
simplicity, the system is assumed to have only one degree of freedom. Let q = q(t) be the function
for which the action S is a minimum. This means that S changes when q(t) is replaced by

qðtÞ þ δqðtÞ ð18Þ

where δq(t), called a variation of q(t), is a function, assumed to be small everywhere in the
interval of time from t1 to t2. Since Eq. (18) must include the values of q(t1) and q(t2), we can
now conclude that
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δqðt1Þ ¼ δqðt2Þ ¼ 0 ð19Þ

In this case, the change in S when q is replaced by q + δq is equal to
ðt2
t1
Lðqþ δq, _q þ δ _q, tÞ �

ðt2
t1
Lðq, _q, tÞ ð20Þ

We expand the difference in powers of δq and δ _q in the integrand and leave only the first-order
terms. Then, the principle of least action may be written in the form

δS ¼ δ
ðt2
t1
Lðq, _q, tÞ ¼ 0 ð21Þ

or equivalently

ðt2
t1

∂L
∂q

δqþ ∂L
∂ _q

δ _q
� �

dt ¼ 0 ð22Þ

Since δ _q ¼ dδq=dt, we integrate the second term of Eq. (22) by parts to obtain

δS ¼ ∂L
∂ _q

δq
� �t2

t1

þ
ðt2
t1

∂L
∂q
� d
dt

∂L
∂ _q

� �
δqdt ð23Þ

The condition of Eq. (19) shows that the integrated term in Eq. (23) is zero:

∂L
∂ _q

δq
� �t2

t1

¼ 0 ð24Þ

and the remaining integral is

ðt2
t1

∂L
∂q
� d
dt

∂L
∂ _q

� �
δqdt ¼ 0, ð25Þ

which must vanish for all values of δq. This can be satisfied if and only if the integrand of
Eq. (25) is zero. Thus, we have

d
dt

∂L
∂ _q

� �
� ∂L

∂q
¼ 0 ð26Þ

When the system has more than one degree of freedom, then Eq. (26) becomes

d
dt

∂L
∂ _qi

� �
� ∂L
∂qi
¼ 0 ði ¼ 1; 2;…, sÞ ð27Þ

where s is the total degrees of freedom of the particles in the system. Eq. (27) is a set of required
differential equations, called in mechanics Lagrange’s equations. If there is no constraint, the
total degrees of freedom of a system containing Np objects, s, is equal to 6Np.
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The zero on the right-hand side of Eq. (27) implies that the total energy is conserved because
particle forces depend on their positions only. There are no forces/torques that dissipate the
energy. If a number of particles are investigated under the influence of dissipative forces, such
as hydrodynamic drag and frictional forces, Eq. (27) should be modified to

d
dt

∂L
∂ _qi

� �
� ∂L
∂qi
¼ Q†

i ði ¼ 1; 2;…, sÞ: ð28Þ

where Q† is the generalized non-conservative force. Therefore, we take Eq. (28) as the general
governing equation of motion for multi-body granular dynamics in the regime of classical
mechanics and microhydrodynamics [2]. It generalizes Newton’s second law and usually pro-
vides great mathematical simplicity by dealing with a scalar function L instead of force vectors.

2. Particle dynamics simulation methods

In science and engineering disciplines, dynamic simulations of particulate materials allow
researchers to investigate microscopic many-body phenomena and further predict macro-
scopic material properties. In a liquid (aqueous) phase, rigorous and accurate simulations of
particle dynamics must consider the repulsive volume-exclusion between polydispersed parti-
cles. Here, we briefly review the historical development of particle dynamics simulation
methods in various scales.

2.1. Molecular dynamics

Conventional molecular dynamics (MD) treats particles (such as ions and molecules) as
interacting point-masses and updates their present positions and velocities (at time t) to those
in the future (at time t + dt) [3]. Basic potential forms include the hard-sphere and Lennard-
Jones potential [4]. A specific analysis of particle trajectories can provide measurable macro-
scopic quantities such as solute diffusivities in an aqueous medium and heat capacities in
various thermal conditions. The choice of time internal dt must be much smaller than the
typical time for a molecule to travel a distance of the same order as its size. One of the most
widely used methods to integrate the governing Eq. (1) is the Verlet algorithm [5], which
provides a direct solution of the second-order ordinary differential equation with errors of δt4

order. The particle position at time t + δt can be expanded at time t using Taylor’s series:

rðtþ δtÞ ¼ rðtÞ þ vðtÞδtþ 1
2
aðtÞδt2 þOðδt3Þ ð29Þ

and by replacing +δt with +δt, one obtains

rðt� δtÞ ¼ rðtÞ � vðtÞδtþ 1
2
aðtÞδt2 �Oðδt3Þ ð30Þ

The position r and velocity v at the future time t + δt can be calculated by adding and
subtracting Eqs. (29) and (30) such as
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rðtþ δtÞ ¼ 2rðtÞ � rðt� δtÞ þ δt2aðtÞ ð31Þ

and

vðtÞ ¼ rðtþ δtÞ � rðt� δtÞ
2δt

ð32Þ

respectively. As the primary objective of MD is to evolve the particle system, one of the
advantages of the Verlet algorithm of Eq. (31) is that the velocity does not need to be calculated
unless needed during simulations. This advantage does not exist if hydrodynamic drag forces
are considered, the magnitude of which increases with respect to the relative velocity of
particles to that of the fluid medium. The particle position at the next time step is calculated
using those of the past and current time steps and the acceleration vector a obtained by the net
force exerted on the particles. Velocity vectors can be additionally calculated during or after
simulations if the kinetic energy needs to be calculated. Advanced integration algorithms over
Verlet’s algorithm include the half-step leap-frog scheme [6] and velocity-Verlet algorithm [7].
Several leading MD simulation packages include assisted model building and energy refine-
ment (AMBER) [8], chemistry at HARvard macromolecular mechanics (CHARMm) [9], Gro-
ningen machine for chemical simulations (GROMACS) [10], and nanoscale molecular
dynamics (NAMD) [11]. The main difference between these MD simulation packages is how
the force fields (functional forms and parameter values) are determined and used as parame-
ters in potential functions. Applications of MD simulations are diverse and can be used in a
wide variety of chemical and environmental applications. The pre-developed time evolution
algorithms can be used in most simulations of particle dynamics, governed by Newton’s
second law. On the other hand, a direct application of MD for granular dynamics simulation
is limited to mimicking granular phenomena and properties because MD was originally
developed for particles treated as point masses.

2.2. Brownian dynamics

Experimental and theoretical studies on Brownian motion were initiated by Brown [12], Ein-
stein [13], Langevin [14], and Chandrasekhar [15, 16]. When solute motion in a solution is of
greater interest, the motion of the tremendous number of ambient solvent molecules cannot be
or does not need to be computed. Therefore, effects of solvent motion are replaced by random,
fluctuating forces acting on solutes. Then, the governing equation is switched from Newton’s
Eq. (1) to Langevin’s equation:

m
dv
dt
¼ �ξvþ fðrÞ þ f 0ðtÞ ð33Þ

where – ξv is the hydrodynamic drag force acting in the opposite direction to the relative
velocity of particle in the fluid medium, ξ is the drag coefficient (to be expanded to a tensor
form), f(r) is the conservative force derived from the potential energy function, and f 0(t) is the
random fluctuation force caused by adjacent, rapidly-moving solvent molecules. It is assumed
that f 0 is a Gaussian process with infinitely small correlation time, which renders the famous
fluctuation-dissipation theorem [17]
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〈 f 0ðt1Þ � f 0ðt2Þ〉 ¼ 2ξkBTδðt1 � t2Þ ð34Þ

〈 f 0ðtÞ〉 ¼ 0 ð35Þ

After a sufficiently long time after the initial state which ensures Eq. (35) is true, one can
approximate Eq. (33) in the absence of f as

dv
dt

� �
≃ � v

m=ξ

� �
≃ � 〈v〉

τ
ð36Þ

where 〈⋯〉 indicates averages over time. Eq. (36) allows us to determine the time scale of the
decelerating motion, the so-called relaxation time, defined as τ = m / ξ. The time step dt in
Brownian dynamics (BD) should be much longer than the particle relaxation time, i.e., dt ≫ τ.
Only for a dilute solution, the drag coefficient ξ can be regarded as a constant. Stokes derived
the drag coefficient of a spherical particle moving in a fluid medium as ξ = 3 πdpμ, where dp is
the (hydrodynamic) radius of the particle and μ is the absolute viscosity of the fluid
medium [18]. In general, Stokes-Einstein diffusivity is defined as

DSE ¼ kBT
ξ
¼ kBT

3πμdp
ð37Þ

Although BD adopts the Oseen tensor, it still treats a particle as a point mass (like MD). From
BD simulations, the hydrodynamic diameter dp can be inversely determined by matching
experimental data and simulation results. As a consequence, the volume-exclusion based on
particle sizes is commonly disregarded in MD as well as BD simulations [19–23]. Specific
features of MD and BD as applied to colloidal systems can be found elsewhere [24].

2.3. Dissipative particle dynamics

The restrictive condition of the time interval (dt ≫ τ) is fundamentally resolved in dissipative
particle dynamics (DPD) for finite-sized particles by incorporating the Fokker-Planck equation
and the Ito-Wiener process [25–31]. The total force on particle i from other particles is written
in the form of:

mai ¼
XNp

j¼1; j 6¼i
ðF P

ij þ F D
ij þ F R

ij Þ ð38Þ

where FP is a conservative inter-particle force, FD is a dissipative force, and FR is a random
fluctuation force. It is required that FD and FR are linear and independent of the momentum,
respectively. A simple form of these force are hypothesized as

F D
ij ¼ �γωDðrijÞðeij � vijÞvij ð39Þ
F R

ij ¼ σωRðrijÞeijζij ð40Þ

where rij = |ri � rj|, vij = vi � vj, eij = (ri � rj)/rij, and σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγ

p
. Importantly, ζij = ζji is a

Gaussian white-noise ther of zero mean and unit variance. The stochastic differential equation
(SDE) of DPD consists of

Dissipative Dynamics of Granular Materials
http://dx.doi.org/10.5772/intechopen.69196

17



dri ¼ vidt ð41Þ

mdvi ¼
X
j

½F P
ij þ FD

ij �dtþ
X
j

σωRðrijÞeijdWij ð42Þ

where dWij (= dWji) is independent increment and of the Wiener process, satisfying

dWijdWkl ¼ ðδikδjl þ δjlδjkÞdt ð43Þ

i.e., dWij(t) is an infinitesimal of order 1/2 (i.e., proportional to
ffiffiffiffi
δt
p

).

In Eq. (42), the momentum changes due to the conservative and dissipative forces are propor-

tional to dt, and due to the random fluctuating, force is linear on
ffiffiffiffi
dt
p

. Hydrodynamic resis-
tances are presumed to be pairwise and described as (intuitively chosen) simple functions of
the inter-particle distance r:

ωD ¼ ω2
R ¼ ð1� r=rcÞ2 for r < rc

0 otherwise

�
ð44Þ

where rc is the cut-off distance. For two particles in close proximity, it was reported that the
pairwise summation of hydrodynamic forces can be erroneous in estimating the many-body
hydrodynamic forces/torques, represented using fourth-order tensors [32]. Interestingly, DPD
was widely used to investigate the motion of macromolecules and polymers, which are soft
and deformable, in liquid phases [25–31, 33–35]. The computational advantages of DPD
include that, first, the tensor-wise hydrodynamic interactions are simplified to pairwise forces
(although this approach has less fundamental rigor); second, the smooth functional form of
Eq. (44) allows multiple soft particles to physically overlap each other, in which repulsive
lubrication forces are disregarded; and third, the fluctuation-dissipation theorem is automati-
cally satisfied [17] so that the thermodynamics of the system are well described.

2.4. Stokesian dynamics

The lubrication tensors in Stokesian dynamics (SD) may mimic the volume exclusion forces,
which is logarithmically proportional to the surface-to-surface distance between two parti-
cles [36]. When two spheres are colliding or in contact with each other, the surface-to-surface
distance converges to zero and the lubrication force diverges to infinity. In SD, a many-body,
far-field, grand mobility matrix M∞ is built using the pairwise superposition of the two-body
mobility matrix. Its product with the hydrodynamic force FH gives the relative velocities of
particles to the fluid flow, ΔU [37–41]:

ΔU ¼ ½M∞� � FH ð45Þ

where the superscript ∞ indicates that the near-field lubrication forces are excluded. The grand
resistance matrix is formed by inverting the grand mobility matrix and correcting the near-
field lubrication such as
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½R� ¼ ½M∞��1 � ½ΔR2B� ð46Þ

where ½ΔR2B� indicates a pairwise addition of the exact two-body resistance matrix Rð2Þi, j

subtracted by the inverse of two-body far-field mobility matrix, Mð2Þ
ij :

½ΔR2B� ¼
X
i, j

�
Rð2Þi, j � ½Mð2Þ

ij ��1
�

ð47Þ

SD provides the many-body diffusion tensor, which has a significantly higher accuracy than
those of BD and DPD. SD is, however, fundamentally limited to rigid particles of no contact.
Similar to BD, SD uses the Langevin equation of the drag force (Eq. (33)) and therefore is
subjected to the intrinsic restriction of the time interval, dt ≫ τ. Most of the SD simulations
often deal with zero-inertia motion so that only drifting motion of particles is investigated with
no-acceleration under conservative and external force fields in a viscous fluid media. To
generally mimic the complex hydrodynamic motion of many particles in a fluid medium, the
zero-force assumption should be relaxed and the time step dt is arbitrarily chosen for compu-
tational efficiency under given physical conditions. Recent studies on SD include fast numeri-
cal inversion of the grand mobility matrix to accelerate the computational time, but the
hydrodynamics is similarly mimicked [42, 43].

2.5. Dissipative hydrodynamics

Dissipative hydrodynamics (DHD) was recently developed to unify the above-mentioned
particle dynamics methods [44]. DHD employed specific advantageous features from various
simulation methods, specifically the many-body hydrodynamic tensors from SD and the
stochastic differential equation from DPD. DHD can mimic the translational as well as rota-
tional motion of Np particles in a viscous fluid of temperature T. Importantly, it is free from the
restriction of the particle relaxation time. The stochastic governing equations of DHD are
represented as

M � du ¼ ½Qp � R � ðu�UÞ�dtþ B � dW ¼ Q dt ð48Þ

whereM is the mass/moment-of-inertia matrix of 6Np� 6Np dimension, u andU are translational/
rotational velocities of particles and the fluid, respectively, Qp is the conservative force/torque
vector,R is the grand resistance matrix, B is the Brownianmatrix of zeromean and finite variance,
i.e., 〈B〉 = 0 and 〈Btr � B〉 = 2kBT, where kB is the Boltzmann constant, and dW is the Ito-Wiener
process of 6Np elements [45, 46]. The generalized force/torque is defined, similar to Eq. (42), as

Q ¼ Qp � R � ðv�UÞ þ B � wdt ð49Þ

where w ¼ dW=
ffiffiffiffi
dt
p

. A simple time integration using an intermediate time step is adopted
from standard DPD algorithms [31]. It is worth noting that the SDE (Eq. (48)) relaxes the
intrinsic time interval restriction of dt ≫ τ, which BD and SD are subjected to. Therefore,
DHD allows mimicking accelerated motion of particles of different sizes. Mathematical details
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of the DHD formalism can be found elsewhere [44]. Applications of DHD and its related work
in environmental engineering include, but are not limited to, aggregate formation [47, 48] and
single collector granular filtration [49]. DHD provides the most fundamental and accurate
simulation algorithms for polydisperse particles from nanometer to millimeter sizes without
arbitrarily turning on or off specific force and torque terms. But, DHD is computationally
intensive to the same degree as SD so that high-performance parallel computation is inevitable
to simulate a reasonably large numbers of particles.

2.6. Discrete element method

In the dynamic motion of granular particles, ballistic collisions are one of the most fundamen-
tal and important interactions. Suppose two (spherical) particles i and j of mass mi and mj,
respectively, undergo an inelastic collision, as shown in Figure 1. The relative velocity of
particles i and j, denoted as gij, at the point of contact is determined by the translational and
rotational particle velocities:

gij ¼ vij � ðaiωi þ ajωjÞ � nij ð50Þ

where vij = vi� vj is the relative velocity of the center of mass of particle i to j of velocity vi and vj,
respectively. In general, particles are polydispersed, and ai and aj are the radii of particles i and j,
respectively. The normal and tangential collision velocities given by the projections of gij are

gnij ¼ ðgij � nijÞnij ð51Þ

and

gtij ¼ �nij � ðnij � gijÞ ð52Þ

respectively. The coefficients of restitution in normal and tangential direction, En and Et, are
defined as

ðgnijÞ0 ¼ �Engnij ð53Þ

ðgtijÞ0 ¼ þEtgtij ð54Þ

where 0 ≤ En ≤ 1 and �1 ≤ Ent ≤ 1. The primed and unprimed variables indicate the pre- and post-
collision quantities, respectively. Then, the velocities of particles i and j after the collision can be
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ω0i ¼ ωi þ
μij

miai

� �
1� Et

1þ~J

� �
nij � gtij ð57Þ

ω0j ¼ ωj þ
μij

mjaj

� �
1� Et

1þ~J

� �
nij � gtij ð58Þ

where for k = i, j. Here, Jk is the mass moment of inertia and ~Jk ¼ Jk=mka2k is its dimensionless
form. A spherical particle has Jk = 2/5. The dimensionless mass moment of inertia for (rigid and
spherical) particle is assumed to be constant. During the collision, the kinetic energy of parti-
cles is lost and transferred into thermal energy of the ambient fluid. At an arbitrary time before
or after the collision, the kinetic energy of particle k is represented as

Tð
0Þ
k ¼

1
2
mkv

ð0Þ
k � vð

0Þ
k þ

1
2
Jkω

ð0Þ
k �ωð

0Þ
k ð59Þ

One can calculate the energy loss of particle k, ΔTk ¼ T0k � Tk, using the pre- and post-collision
velocities of ðvk,ωkÞ and ðv0k,ω0kÞ, respectively. Post-collision velocities of two unequal spheres
are completely solved using Eqs. (55)–(58), but an underlying assumption is that the inelastic
collision is instantaneous without spending any time. In reality, however, any granular colli-
sion takes a finite amount of time, even if it is much shorter than the traveling time of the
particles. This time duration in which two particles are in contact is defined as contact time (or
collision duration). Therefore, it is more accurate to see the collision of two granules as an
impulse event. The collision rule well determines the post-collision states, if the granules are

Figure 1. Collision of sphere i and j.
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in a fluid-like state. But, when densely-packed granules are slowly moving under mechanical
or gravitational compression, the collision rule fails to predict the transient granular states
because it does not take into account the compression and restoration of the inelastic particles.

2.7. Overview

Table 1 summarizes specific features of the above-discussed simulation methods. Acceleration
can be included by all methods in principle, but is barely employed in BD and SD. This is
mainly due to the time interval restriction. Instead, the fluctuation-dissipation theorem is
intrinsically embedded and satisfied in BD, SD, DPD, and DHD formalisms. All the simulation
methods can surely include effects of conservative, external force fields. Brownian motion and
multi-body hydrodynamic forces are (most) accurately implemented in SD and DHD, but only
hydrodynamics is important in the many-body motion of non-Brownian granules. The DHD is
the only simulation method that can mimic many-body hydrodynamics without the time
interval restriction. Constraint forces/torques can be easily applied to any dynamics methods
to simulate compound particles or aggregates. SD has the same capability but the collision
rules are not included. Due to typical ranges of particle sizes in the simulation methods, the
inelastic collision (or contact) forces are included only in DEM. Since DPD allows particle
deformation by using the relaxed, pairwise hydrodynamic resistance between two particles,
i.e., ωD and ωR in Eq. (44), employing the collision force of rigid bodies in DPD must be out of
its original scope. The current state-of-the-art DEM algorithms can be further improved to
mimic complex phenomena of dry granules of various shapes [50, 51]. However, in our
opinion, granular motion in a liquid phase can be accurately simulated by only using DHD or
SD. To accurately simulate a large number of granules of various sizes in complex fluid
environments, multi-body hydrodynamics must be rigorously implemented in the current
DEM method.

MD BD SD DPD DHD [44] DEM

Gov. Eq. F = ma Langevin Langevin SDE SDE various

Acceleration Yes Possible Possible Yes Yes Yes

Force Conservative Yes Yes Yes Yes Yes Yes

Brownian No Simple Rigorous Approx. Rigorous No need

Hydrodynamics No Constant Accurate Pairwise Accurate No

Constraint Yes Yes Yes Yes Yes [54] Yes

Collision No No No No (possible) Yes

Time interval dt Any δt ≫ τ δt ≫ τ Any Any Any

Table 1. Comparison of particle dynamics simulation methods. The conservative force includes external forces such as
electromagnetic and gravitational, and inter-particle force such as DLVO [52, 53]. Here, “any” dt indicates that dt can be
arbitrarily determined for accurate and fast calculation regardless of the particle relaxation time τ.
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3. Granular dynamics: theory and simulations

Granular materials consist of a large number of particles whose typical size ranges from
micrometers to centimeters [50, 51]. These particles interact via short-range forces through
only mechanical contacts and (external) long-ranged electromagnetic or gravitational forces.
Granular dynamics mimics dynamic motion of granular particles in a transient state such as
excited or granules in a fluid media. Large-scale phenomena in this category include land
sliding and snow avalanches. Wet granules such as sand in beaches undergo hydrodynamic
forces due to tidal currents. Soil granules in unsaturated sub-surfaces are partially dry or wet.
Interstitial water layers between granules can significantly change inter-granular interactions,
especially when they are in a stationary contact phase. The significance of hydrodynamic
interactions between non-Brownian granules is paid less attention. In this section, we describe
granular dynamics as a microscopic extension of DEM in a shorter time scale by investigating
the collision phenomenon between two (spherical) particles, as shown in Figure 1, during an
impulse event.

3.1. Individual contact forces

3.1.1. Normal and tangential forces

Small particles such as suspended solid, colloids, and nanoparticles are naturally negatively
charged. Their electrostatic repulsive forces decay exponentially with respect to the distance
from their surfaces to the bulk phase. When the surface-to-surface distance between two
particles is much smaller than their average sizes, forces such as electrostatic and Born repul-
sion are strong enough to repel each other. These forces are, however, not dominant for large,
non-Brownian particles such as granules of an order of O(0.1 � 10) mm. The dominant
granular force stems from contact during collisions. In conventional statistical mechanics, a
hard sphere is characterized by the wall potential:

V ¼ 0 r > 2a
∞ r < 2a

�
ð60Þ

where a is the particle radius. The mathematical discontinuity of the wall potential at r = 2a
indicates the infinite force that completely prevents any overlap between particles.

As granules are inelastic, the fundamental wall potential must be modified before it is applied
to a granular system. Two spherical granules are in a mechanical contact if the sum of their
radii exceeds their center-to-center distance, i.e.,

ξij � ai þ aj � jri � rjj > 0 ð61Þ

where ξij is the mutual compression of particles i and j. Note that ξij is positive when two
granules overlap and becomes larger when the granules come closer. Thus, the mutual
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compression can be interpreted as the overlapped surface-to-surface distance. The force acting
on particle i from particle j (conceptually denoted as i j) is described by

Fij ¼ F n
ij þ F t

ij for ξij > 0
0 for ξij ≤ 0

�
ð62Þ

where Fn
ij and Ft

ij are the normal and tangential components of the contact force, respectively.

For simplicity, Eq. (62) can be rewritten as

Fij ¼ ðF n
ij þ F t

ijÞHðξijÞ ð63Þ

where H (x) is the Heaviside step function, defined as

HðxÞ ¼ 1 for x > 0
0 othersies

�
ð64Þ

In three-dimensional space, vector quantities between particles i and j can be decomposed into
the normal and tangential directions. Using the mathematical identity

A� ðB� CÞ ¼ BðA � CÞ � CðA � BÞ ð65Þ

one can replace A and B by n and C by Fij to write

n� ðn� FijÞ ¼ nðn � FijÞ � Fij ð66Þ

Fij ¼ nðn � FijÞ � n� ðn� FijÞ ð67Þ

From Eq. (67), the normal and tangential force components can be expressed as

F n
ij ¼ ðn � FijÞn ð68Þ

F t
ij ¼ ðn� FijÞ � n ð69Þ

The contact force between elastic spheres was originally developed by Hertz [55] and was later
generalized for viscoelastic (damped) particles [56, 57] as

Fn ¼ 2Y
ffiffiffiffiffiffiffi
aeff
p

3ð1� ν2Þ ξ3=2 þ A
ffiffiffi
ξ

p dξ
dt

� �
ð70Þ

where Y and ν are Young’s modulus and Poisson’s ratio, respectively, A is the dissipative
constant being a function of material viscosity, and aeff is the effective radius that can be
interpreted as a harmonic sum ai and aj, i.e., a�1eff ¼ a�1i þ a�1j . Parameter A explains the depen-

dence of the restitution coefficient on the approaching velocity between two spheres. If A = 0,
then Eq. (70) converges to the original Hertz’s equation for elastic granules. Therefore, param-
eter A needs to be inversely calculated using an experimentally observed coefficient of restitu-
tion. If two elastic particles are heterogeneous, then Hertz’s equation may be extended to
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Fnij ¼
4
ffiffiffiffiffiffiffi
aeff
p
3

1� ν2i
Yi
þ
1� ν2j
Yj

 !�1
ξ3=2 ð71Þ

for particles of different Y and ν values. Assuming the dissipative constant A is also particle-
specific and additive, the most general expression of the normal force between two viscoelastic
spheres may be [51]

Fnij ¼
4
ffiffiffiffiffiffiffi
aeff
p
3

1� ν2i
Yi
þ 1� ν2j

Yj

 !�1
ξ3=2 þ Ai þ Aj

2
_ξ
ffiffiffi
ξ

p� �
ð72Þ

as a generalized extension from Eq. (70). Note that this viscoelastic force is finite while two
spheres are being overlapped so that the mutual compression ξ is positive. Let’s define t = 0 as
the moment of the contact of two particles. The compression continues until t = tc, after which
restoration begins. When the relative velocities between the two particles at t = 0 and t = tc are
_ξð0Þ and _ξðtcÞ, respectively, then the normal restitution coefficient can be calculated by mea-

suring velocities _ξð0Þ and _ξðtcÞ, i.e.,
En ¼ _ξðtcÞ= _ξð0Þ ð73Þ

This indicates that En depends on the relative collision velocity, unless A = 0. Theoretically, at
least three experiments are required for collisions between particles i and j for pairs of (i, j), (i,
i), and (j, j). Then, Ai and Aj can be inversely calculated by using the trial-and-error method for
numerical fitting.

The relative velocity of the spheres at the point of contact results from the relative transla-
tional/rotational velocities. The contact-point velocity has the tangential component of

v t
rel ¼ ðvj � viÞ � etij þ aiωi þ ajωj ð74Þ

which provides the tangential force of

Ft ¼ �signðvtrelÞ �minðγtjvtrelj,μjFnjÞ ð75Þ

where γt is a fitting coefficient, proportional to the tangential dissipative force in magnitude. In
Eq. (75), the shear force is limited by Coulomb’s friction law of |Ft| ≤ μ|Fn|, where μ is the
friction coefficient. Although this approach is conceptually straightforward, the level of
approximation is still on the collision rule, as discussed in Section 2.6. Unless Fn is constant,
Eq. (75) provides an inconsistent value of Ft because Fn (if Eq. (72) is used) is a function of not
only the mutual compression, but also the relative velocity. The tangential contact force is
correlated to the normal force [56, 57]:

Ftij ¼ �μFnij
ζij
ζ0
� ζij

ζ0

� �� �
ð76Þ

where ζ is the relative tangential shift, ζ0 is its macroscopic maximum value, and ⌊x⌋ denotes
the integer of x. Typical values of ζ0 / aeff range from 10�7 to 10�3. Similar to Eq. (73), the
tangential coefficient of restitution can be calculated as
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Et ¼ _ζðtcÞ= _ζð0Þ ð77Þ

If the friction coefficient μ is known, experimental measurement of Et allows us to inversely
calculate ζ0. Techniques to determine the coefficients of restitution of colliding viscoelastic
spheres can be found elsewhere [58]. This approach can be readily applied to densely packed
granular medium with small movements or vibrations such as the Brazilian bean problem [59–
64]. However, time integration per collision, consisting of compression and restoration, should
be from 0 to tc, while tc is a negligibly short time in the collision-rule approach. For efficient
computations, regular time-integrations and event-based simulations should be efficiently
combined in order to have variable δt, which should be much smaller than tc in compressing/
restoring phases, and much longer than tc for collision events for fluidized granules of a low
concentration.

3.1.2. Shear stress

Shear thickening: When non-Brownian granules are densely packed, volume fraction is
around 50%, depending on their polydispersity and shape. The granules form a loosely
connected material, which responds to the external shear stresses in an unconventional way.
Depending on the magnitude of the external stress, granules temporarily switch their phases
between the liquid-like and the solid-like states. In a (pure) fluid, viscosity is defined as the
ratio of shear stress to the shear rate during a steady flow, which represents the energy
dissipation rate by the fluid flow. This dissipation rate in some cases decreases with respect to
the shear rate, which is known as shear thinning. It is particularly desirable for paints such that
pigments flow easily when brushed, but does not drip when brushing stops. On the other
hand, shear thickening indicates that the energy dissipation rate increases as the shear rate
increases. In other words, the fluid becomes much more viscous if the external stress is strong
enough. For example, if a large amount of cornstarch or Oobleck is mixed with water in a
(small) swimming pool [65, 66],1 the dense suspension acts like a liquid if it is at rest in the
absence of external stresses applied. But, when the suspension is sheared, the flow resistance
increases dramatically and the fluid becomes locally amorphous for a short amount of time. If
a person is continuously stepping on the dense suspension, the person will be able to dynam-
ically stay on top of the semi-liquid surface. When the person slows down or stops moving,
then he or she will slowly sink into the pool.2 This phenomenon is not only interesting, but also
has practical importance to engineering systems like automobile brakes [67].

Possible mechanisms of this shear-thickening include hydroclustering, order-disorder transition,
and dilatancy. First, in hydroclustering, particles gather together into transient, reversible clusters
under shear flow, and this rearrangement leads to increases in the lubrication drag forces [68, 69].
Local heterogeneity of particle suspension creates regions in which particles undergo less drag
forces and tend to agglomerate. This results in narrow flow channels among the dynamic groups
of particles. Application of Stokesian dynamics to mimic the hydroclustering intrinsically prevents

1A fictional green substance in the Dr. Seuss book Bartholomew and the Oobleck.
2Can You Walk on Water? (Non-Newtonian Fluid Pool) https://youtu.be/D-wxnID2q4A
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particle contacts, followed by inelastic overlaps in a series of collision events. This is because the
lubrication force is logarithmically proportional to the surface-to-surface distance between two
particles and thus it diverges when two particles start inelastically overlapping. Second, the order-
disorder phase transition includes the changes in the flow structure between ordered and disor-
dered phases, which yields increases in the drag force between particles [70]. These ordered states
are different from fixed 3D structures found in solids, but similar to amorphous aggregates. Third,
the dilatancy mechanism describes the shear-thickening such that the effective volume of particle
packing increases under the shear. When particles are confined in local spaces or partially jammed,
the shear force pushes particles toward the containing walls. Additional stress can be developed on
the walls and backward responses may generate extra stress between particles and walls [71] in
contact interfaces. Recently, discontinuous shear thickening (DST) was proposed to explain the
shear thickening experiments [69], of which comprehensive review can be found elsewhere [72, 73].
To the best of our knowledge, the fundamental mechanism of the shear thickening has not been
fully discovered.

Sample simulation: Figure 2 shows results of a sample simulation using the mechanisms
described in Section 3.1.1, which can be further extended to DST simulations. The gray spheres
are loosely packed, ideally forming a body-centered cubic structure. The top layer consists of 5
� 5 = 25 regularly packed spheres, under which 6 � 6 = 36 spheres are located. These spheres

Figure 2. Simulation of granular damping to a sudden impact: an intruder (a) approaches with high speed, (b) collides
with a few granules on the packed surface, and (c) penetrates the loosely packed inelastic (energy absorbing) granules.
Snapshots are visualized using Visual Molecular Dynamics (VMD) [74–76]. Radii of the intruder and packed spheres are
2 and 1 mm, respectively, and their specific gravity values are commonly 2.75. The spheres and the walls have Poisson’s
ratio of 0.4 and 0.6, and Young’s modulus of 4.0� 107 Pa and 1.0 � 109 Pa, respectively. The introduced energy dissipation
rate Awas set at 2.5 � 10�5, for both spheres and walls [56].
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are closely located to each other but not touching, having very small surface-to-surface dis-
tance between the nearest neighbors. The two layers are packed five times vertically, and
therefore the total number of gray particles is 366. This preliminary simulation aims to see the
impact responses of the small packed spheres when hit by a big, fast intruder. The intruder
particle initially moves with the downward velocity of vz = 13.00 � 10�3 m/s and spins with
angular velocity of ωz = 0.56 rad/s.

Due to the loose packing of the small spheres on the bottom of the container, the intruder tends
to penetrate the packed granules. In the initial stage of the penetration, the intruder is
surrounded by small spheres, which bounce away from their initial positions. If the small
spheres are initially touching each other, the force propagation from the top layer to the bottom
layer must be almost instantaneous. The intruder will experience a strong normal force and may
rebound in the opposite direction after an initial penetration of a short depth. As the collective
phenomena of many granules are mostly transient, not only the material properties of the
intruder but also initial and boundary conditions of granules play significant roles in their
macroscopic dynamic behaviors. High dissipation rate of A reduces the impact of the one-to-
many collisions between the intruder and dissipating granules. The intruder’s impact is trans-
mitted through dynamic chains of contacting spheres, but not all of the packed granules partic-
ipate in the force transmission. There are same granules almost free from the intruder’s impact.

Calculation of forces and torques exerted on each particle and their visualization can help
understand the transient behavior and design dynamic granular materials. Granules initially
located near the container walls have much less spaces to move. The kinetic energy of the
intruder is transmitted to these granules at the cul-de-sac and mostly dissipated on the wall
surfaces. Returning force to the intruder is initiated from the boundary. Applications of this
simulation method can be designed to include a large number of real applications for charac-
terization and prediction of transient granular material properties. One important key issue is,
as indicated above, to identify and visualize the transmission chains of force/torque, which
dynamically form and disappear. Figure 3 shows the initial impact event when the intruder
starts penetrating the loose granular packing, visualized using open visualization tool
(OVITO) [77]. The top and bottom rows show the top and side views of the intruder collision.
The left column shows particle positions as well as force vectors, and the right column shows
only particle configurations where color indicates the magnitude of the net force. Impact from
the intruder is somehow irregularly distributed around the top granules. On the left-column
images, arrows and their colors indicate force directions and magnitudes. A number of down-
ward vectors indicate that the gravitational force is dominant for non-touching granules. The
upward arrow in the intruder implies that the contact force to the intruder, which is similar to
the normal force developed on the interface between an object and a wall, exceeds the gravita-
tional force exerted on the intruder. Even though the force direction is temporarily inverted,
the intruder still goes down due to the inertia of the high initial velocity. Figure 3 clearly shows
that only a partial number of granules participate in the force transmission from the intruder to
the packed granules. These force chains are very transient, and more importantly, the magni-
tude of the transmitted force diminishes as time goes by due to the intrinsic inelastic nature of
the granules. For the future, designs of smart damping materials can be achieved not only by
understanding various mechanical properties of the granules, but also by controlling specific
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initial and boundary condition, which leads inelastic many-granule systems to behave as smart
materials.

3.2. Constraint force: holonomic and non-holonomic

3.2.1. Holonomic potential for translational constraints

Irregular-shaped granules can be mimicked as a large collection of polydispersed spherical
particles. For simplicity, we first consider two particles (point masses) moving together as one

Figure 3. Force chain visualization of the intruder using open visualization tool (OVITO).
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body. A constraint embedded between the two particles keeps the inter-particle distance
invariant. A translational constraint between particle i and j is

σij ¼ ðri � rjÞ2 � d2ij ¼ 0 ð78Þ
where dij is the fixed distance between particles i and j, usually an average of two contacting
rigid bodies of diameters di and dj, i.e., dij = (di + dj)/2. This type of geometrical constraint is
called holonomic. To develop an inter-particle interaction to satisfy Eq. (78), one defines the
constraint potential for all Np particles as

Φ ¼ 1
2

XNp

i¼1

XNp

j>i

λjiσij ð79Þ

where λji is a symmetric Lagrange’s multiplier and 1
2 in the front of the summation is by convention.

Exchanging positions of particles i and j (i$ j) should not change the sign and the magnitude ofΦ.
To satisfy this condition, the Lagrange multiplier is symmetric, i.e., λij = λji. The constraint force
exerted on particle j can be derived as a negative derivative of the constraint potential:

F C
j ¼ �∇jΦ ¼

X
i 6¼j

λjiðri � rjÞ ð80Þ

where i runs from 1 to Np except for the case i = j (if so, λii = 0), or simply

F C
j ¼

XNp

i¼1
λjiðri � rjÞð1� δijÞ ð81Þ

where δij is the Kronecker delta symbol, defined as

δij ¼ 1 for i ¼ j
0 otherwise

�
ð82Þ

Among Np � 1 pairs made by particle j (excluding itself), if particle j does not have any
constraint to particle k, then λjk = 0, and symmetrically vice versa. For a two-body case, the
holonomic constraint force acting on j by k is

F C
j k ¼ �∇jΦ ¼ λjkðrj � rkÞ ð83Þ

and, similarly, the same force on k by j is

F C
k j ¼ �∇kΦ ¼ λkjðrk � rjÞ ð84Þ

Since λjk is symmetric (λjk = λkj), one can show that

F C
j k ¼ �FC

k j ð85Þ
which follows Newton’s third law, the action and reaction principle. Summation over all con-
straint particles will give a zero resultant force. This is because the constraint force is an
internal force and the sum of internal forces is zero.
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Evolution of positions: Translational acceleration of particle j can be expressed as

aj ¼ a†j þ aCj ð86Þ

where a†j is the unconstrained acceleration and aCj is the constrained acceleration, represented

as

aCj ¼
1
mj

λjkðrk � rjÞ ð87Þ

Assume particle j evolves from rj(t) at time t to r(t + δt) at time t + δt. Then, the future position at
t + δt can be decomposed into two parts:

rjðtþ δtÞ ¼ r†j ðtþ δtÞ þ 1
2
aCj δt

2 ð88Þ

where

r†j ðtþ δtÞ ¼ rjðtÞ þ vjðtÞδtþ 1
2
a†j δt

2 ð89Þ

is the evolved position at time t + δt in the absence of the constraint force. A similar equation
for particle k can be written easily. Note that Eq. (78) should be valid at all times. Substitution
of Eq. (88) into (78) gives, neglecting terms on the order of (δt4) and higher, the representation
of the Lagrange multiplier:

λijδt2 ¼
½Δr†ijðtþ δtÞ�2 � d2ij

μ�1ij ½Δr†ijðtþ δtÞ� � ½ΔrijðtÞ�
ð90Þ

where

Δr†ijðtþ δtÞ ¼ r†i ðtþ δtÞ � r†j ðtþ δtÞ ð91Þ

ΔrijðtÞ ¼ riðtÞ � rjðtÞ ð92Þ

and

μ�1ij ¼ m�1i þm�1j ð93Þ

is called the reduced mass of particles i and j. In Eq. (90), λij can be determined using an
iterative method.

1. Initially, the unconstrained position r†j ðtþ δtÞ is calculated using Eq. (89).

2. Insert r†ðtþ δtÞ into Eq. (90) to calculate λij.

3. Calculate the constraint acceleration of particle j, aCj , using Eq. (87).
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4. Update the particle position using Eq. (88), which is under the influence of constrained
and unconstrained accelerations. Set this updated position as the unconstrained position
at that time: r†j ðtþ δtÞ  rjðtþ δtÞ.

5. Having the updated r†j , go to step 2, unless λij converges to a finite value. Otherwise, store

information at t + δt, and go to the next time step.

This iterative procedure will continue until the Lagrange multiplier converges within a preset
tolerable error for the position evolution from time t to t + δt. So far, the constraint force
modifies the particle position at time t + δt from its unconstrained position r†j ðtþ δtÞ, but the
velocity after the constrained evolution of position is the same as before the evolution.

Velocity evolution: Differentiation of the holonomic constraint Eq. (78) with respect to time
gives

ðri � rjÞ � ðvi � vjÞ ¼ 0 ð94Þ

valid both at time t and t + δt. Similar to the position evolution, the translational velocity at
time t + δt is represented as

vjðt0Þ ¼ v†j ðt0Þ þ aCj δt ð95Þ

where

v†j ðt0Þ ¼ vjðtÞ þ a†j δt ð96Þ

is the updated velocity from time t without the holonomic constraint. Substitution of Eq. (95)
into Eq. (94) gives

Δrijðtþ δtÞ � Δv†ij ¼ �Δrijðtþ δtÞ � ΔaCijδt ð97Þ

where

ΔaCij ¼
κij

μij
ðrj � riÞ ð98Þ

is the constraint acceleration for velocity correction. Here, κij plays a similar role of λij, but it is
independently determined only to update the velocity, which is calculated as

κijδt ¼
Δrijðtþ δtÞ � Δv†ij

d2ijμ
�1
ij

ð99Þ

To update κij, a similar iteration method can be used:

1. Calculate the unconstrained velocity at the next time step, v† (t + δt) for particles i and j,
and calculate their difference Δv†ij ¼ v†i � v†j at time t + δt.
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2. Calculate κij using Eq. (99) using previously determined ri(t + δt) and rj(t + δt).

3. Update ΔaCij using Eq. (98) and use it to calculate vj (t + δt) of Eq. (95).

4. Replace vj (t + δt) by v†j ðtþ δtÞ and go to step 2 unless κij converges to a constant value

within a tolerable error. Otherwise, store information at t + δt, and go to the next time step.

So far, we first defined the constraint potential using unknown Lagrange’s multipliers, derived
the constraint force and acceleration, and updated iteratively particle positions and velocities
until all the constraints are satisfied. The velocity evolution under this constraint is similarly
done by introducing a new independent Lagrange’s multiplier, which is to satisfy the orthog-
onal relationship between position and velocity variations, in Eq. (94).

Figure 4 shows a simple test of the holonomic constraint between two unequally-sized
spheres. It is clear that the two spheres are in contact with each other during their translational
motion. A camera is moving with the same velocity of their center of mass so that only the
relative motion is shown. Both the particles are non-Brownian, and the red sphere is 1.5 times
bigger than the blue one, while their specific gravity is 2.75. The blue sphere rotates in the
clock-wise direction around the red sphere. This is because the red one is 1.53 = 3.375 times
heavier so that the total center of mass is closer to that of the red particle. Careful observation
indicates that the blue sphere rotates in the clock-wise direction about its center of mass, and
the red sphere rotates in the opposite direction about its center of mass. This relative rotation
stems from the presence of only holonomic (translational) constraints, which allows their
smooth surface-elements to slide relative to each other. This phenomenon must happen if
weakly attractive particles form loose aggregates in a fast viscous flow.

3.2.2. Non-holonomic torque for angular constraints

Dynamics simulations with the holonomic constraints work perfectly within tolerable errors,
especially when the particles sizes are smaller than center-to-center distances. This method
was successfully used for molecules of fixed structures such as water (H2O) and organic
compounds. On the other hand, if two spherical particles (such as colloids) of finite volumes
are attached by sticky surface forces, the translational and rotational motion of these two
spheres are constrained as they move as a single compound body. For simplicity, we will
consider a pair of compounded golf balls. If only the two constraints discussed in Section
3.2.1 are considered regarding the motion of the compounded golf balls, their rotations about
their own centers of mass are still allowed even if surface friction exists. Mathematically, the
two balls, if perfectly glued on their small shared surfaces, should have the same angular
velocity. This type of constraint is based on (angular) velocity so it is called non-holonomic.

Figure 4. A dimer of bi-dispersed spheres of holonomic constraint only.
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Consider a perfectly inelastic collision event between two approaching particles i and j, mov-
ing with translational and rotational velocities of (vi, ωi) and (vj, ωj), respectively, before their
collision. For k = i, j, the linear and angular momenta are

pk ¼ mkvk ð100Þ
Hk ¼ Jkωk ð101Þ

respectively. After the two particles are permanently attached, the total linear momentum is

MaVa ¼ m1v1 þm2v2 ð102Þ

where Ma = m1 + m2 is the total mass of the two-body aggregate and Va is the translational
velocity of the center of mass of the aggregate. The total angular momentum has, however, a
slightly different formulation:

Ha ¼ ðJ1 þm2d21Þω1 þ ðJ2 þm2d22Þω2 ¼ JaΩa ð103Þ

where

Ja ¼ I1 þm1d21 þ I2 þm2d22 ð104Þ

is the mass moment inertia of the aggregate. Here, dk is the shortest distance between the center
of mass of particle k and the rotation axis of the aggregate, passing through the center of mass
of the aggregate, rCM:

dk ¼ ðrk � rCMÞ �Ωa

jΩaj ð105Þ

After the perfectly inelastic collision, two compounded particles will have the same angular
velocity Ωa. The total torque acting on the aggregate is rigorously represented as

M ¼
X
j

ðrj � RCMÞ � ðF Ex
j þ F C

j Þ ð106Þ

and the time evolution equations related to the total angular momentum are

dHa

dt
¼M ð107Þ

Haðtþ δtÞ ¼ HaðtÞ þMδt ð108Þ

Ωaðtþ δtÞ ¼ ΩaðtÞ þ J�1a Mδt ð109Þ

Finally, all associated particles to the aggregate have the same angular velocity Ωa at any time
unless they break apart of slide into each other. It is assumed that the mutual compressions ξ
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between the associated particles are small enough to be neglected in calculating the aggregate’s
mass moment of inertia, Ja.

Figure 5 compares dynamics of a trimmer, i.e., three constrained bodies. The six small black
particles per sphere are imaginary, showing how the particle rotates in its transient motion.
These imaginary markers do not generate any forces or torques. Initially, three spheres associ-
ated with a trimmer make the ideal L-shape. The downward gravitational force causes the
settling of the trimmer. As noted above, the camera is moving with exactly the same velocity of
the trimmer’s center of mass. Therefore, one can observe only relative motion of three identical
spheres with respect to their center of mass. The gap between the two closest spheres is equal
to the diameter of the black marker. In Figure 5(a), three particles undergo only holonomic
constraints such that the center-to-center distances are kept constant. As the outside surfaces of
each particle experience higher hydrodynamic stress, all three particles try to rotate toward the
center, as viewed from the top of the trimmer. On the other hand, Figure 5(b) shows a trimmer
of three rigidly attached (glued) spheres. Relative rotation of a sphere with respect to its
neighbors is prevented. This indicates that all the three spheres in Figure 5(b) have identical
angular velocity, which is equal to that of the whole trimmer as a compounded rigid body. If a
member of an aggregate can freely rotate, then the hydrodynamic stresses exerted on the outer
surface of the compound body must be relaxed, allowing rotation of individual spheres, and
therefore the net shear stress is reduced. If the same shear force is applied to the rigid trimmer,
then the non-holonomic constraint strongly resists the external hydrodynamic stress and
adjusts its position to minimize the external stress. The angles made by connecting three
particle centers in the last snapshots in Figure 5(a) and (b) indicate the different responses of
the settling trimmer to the hydrodynamic drags and stresses. In addition to these hydrody-
namic forces and torques, inelastic properties of granules significantly influence their transient
rotating patterns.

3.3. Parallel algorithms

Granular dynamics simulations in a fluid medium must be an open problem in state-of-the-
art computational research. Since the length scale of the forces acting on touching granules

Figure 5. A spherical trimer of (a) holonomic constraint only and (b) holonomic and non-holonomic constraints. In each
case, the center-to-center distances between three pairs of particles are fixed.
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is much smaller than the granular sizes, simulations seem to be very efficient if parallel
algorithms are adequately used. Domain decomposition scheme is one of the most widely
used parallel algorithms. The system is divided into several small sub-domains, and a
dynamic simulation in a spatial sub-domain is conducted by an individual computing unit,
such as a core. This decomposition method is very efficient if particles are evenly distrib-
uted in space, which is usual in equilibrium simulations of MD and Monte Carlo. As
granules are highly subjected to the gravitational force and hydrodynamic interactions,
spatial biases are almost inevitable in both their transient and stationary states. Granular
dynamics has at least three length scales of different orders of magnitude. The mutual
compression distance, i.e., inter-particle overlap distance, is at least three or four orders of
magnitude smaller than the particle size. In a fluid medium, hydrodynamic interactions are
long-ranged and quite significant when the surface-to-surface distance between nearest
neighbors is about the particle diameter. Motion of heavy granules in a fluid flow may
distort the ambient flow-field as well as the hydrodynamic forces exerted on adjacent
particles. In granular dynamics, when the contact force exerted between two colliding
particles, the force acting on particle i from j has the same magnitude and opposite direction
to that from particle j from particle i. Therefore, the number of contact force calculations can
be reduced to a half, if Newton’s third law is implemented during parallel computing. In
this case, the computational efficiency of granular dynamics simulation can be as much as
doubled.

4. Concluding remarks

In nature, phases of matter have been conventionally believed to be those of gas, liquid, and
solid, in which specific phase transformations are possible between the states. A recent addi-
tion of the plasma state has increased the total number of material states from three to four. It is
questionable to predict that the granular state will be the fifth matter phase.

On the other hand, the granules dynamically change the representative phase based on exter-
nal influences. Stationary and compressed granules behave similar to amorphous solids or gel
materials. Moving like a fluid, mud or sediments create their own pathways by minimizing
hydrodynamic influences. A fast flow with granular materials, such as in streams and ocean,
creates a dense turbidity flow, but a decelerating flow field initiates a granular phase change
from a flowing liquid to a packed solid. Small dry granules behave similar to dust in the wind,
for which standard gas transport theory can predict dynamic behaviors of granular gases. In
our opinion, granules are chameleon materials, transitioning their phases dynamically. No
equilibrium exists in a granular phase so that thermodynamic fluctuation of the granular state
cannot provide material or phase constants. As granular dynamics in transient force/torque
fields significantly removes steady-state behaviors, the initial and boundary conditions
become extraordinarily important in analyzing many-body granular motion. To utilize specific
behavior of granules, granules can be dynamically controlled in vibrating, oscillating, or
swinging phases. The time-correlation scale of dissipating granules is not short enough to use
the Markovian chain concept because granular paths in both the real and phase spaces signif-
icantly influence their fates.
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to that from particle j from particle i. Therefore, the number of contact force calculations can
be reduced to a half, if Newton’s third law is implemented during parallel computing. In
this case, the computational efficiency of granular dynamics simulation can be as much as
doubled.

4. Concluding remarks

In nature, phases of matter have been conventionally believed to be those of gas, liquid, and
solid, in which specific phase transformations are possible between the states. A recent addi-
tion of the plasma state has increased the total number of material states from three to four. It is
questionable to predict that the granular state will be the fifth matter phase.

On the other hand, the granules dynamically change the representative phase based on exter-
nal influences. Stationary and compressed granules behave similar to amorphous solids or gel
materials. Moving like a fluid, mud or sediments create their own pathways by minimizing
hydrodynamic influences. A fast flow with granular materials, such as in streams and ocean,
creates a dense turbidity flow, but a decelerating flow field initiates a granular phase change
from a flowing liquid to a packed solid. Small dry granules behave similar to dust in the wind,
for which standard gas transport theory can predict dynamic behaviors of granular gases. In
our opinion, granules are chameleon materials, transitioning their phases dynamically. No
equilibrium exists in a granular phase so that thermodynamic fluctuation of the granular state
cannot provide material or phase constants. As granular dynamics in transient force/torque
fields significantly removes steady-state behaviors, the initial and boundary conditions
become extraordinarily important in analyzing many-body granular motion. To utilize specific
behavior of granules, granules can be dynamically controlled in vibrating, oscillating, or
swinging phases. The time-correlation scale of dissipating granules is not short enough to use
the Markovian chain concept because granular paths in both the real and phase spaces signif-
icantly influence their fates.
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Abstract

Particulate systems and granular matter display dynamic or static, fluid- or solid-like
states, respectively, or both at the same time. The mystery of bridging the gap between
the particulate, microscopic state and the macroscopic, continuum description is one of
the challenges of modern research. This book chapter gives an overview of recent
progress and some new insights about the collective mechanical behavior of granular,
deformable particles.

Keywords: rheology, solid-fluid granular behavior, micro-macro transition, numerical
simulations

1. Introduction

Dune migration, landslides, avalanches, and silo instability are a few examples of systems
where granular materials play an important role. Furthermore, handling and transport of these
materials are central to many industries such as pharmaceutical, agricultural, mining, and
construction and pose many open questions to the researchers. In spite of their ubiquity,
understanding and predicting the flow behavior of granular materials is still a major challenge
for science and industry. Even in a seemingly simple system such as dry sand, the presence of
large numbers of internal degrees of freedom leads to highly nonlinear effects making it
difficult to relate the microscopic grain-level properties to the macroscopic bulk behavior.

Granular systems can show properties commonly associated with either solid or liquid. They
can behave like a fluid, that is, yielding under an applied shear stress. On the other hand, they

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



can also behave like solids, being able to resist applied stresses without deforming, showing also
interesting anisotropic structure (contact-and force-networks) [1, 2]. Lucretius (ca. 98–55 B.C.)
was among the first ones to recognize this interesting behavior of soil-like materials, when he
wrote “One can scoop up poppy seeds with a ladle as easily as if they were water and, when dipping
the ladle, the seeds flow in a continuous stream” [3].Granular materials exhibit solid-like behavior if
the particles are packed densely enough and a network of persistent contacts develops within the
medium, resulting in a mechanically stable jammed structure of the particles. On the other hand,
when the grains are widely spaced and free to move in any direction, interacting only through
collisions, the medium is unjammed and behaves like a fluid [4].

Due to their microscopic, discrete nature and their interestingmacroscopic, bulk behavior response,
granular materials are studied using both discrete and continuum mechanics frameworks. In the
realm of the discrete approach, several numerical techniques that are able to reproduce the single
particle motions with the given micromechanical properties of the grains have been developed. In
such an approach, the dynamic behavior is studied by integrating the Newton’s equations of
motion for each grain using micromechanical properties and specific interaction law. Following
the pioneer work by Goldhirsch [5, 6], several numerical techniques have been developed to obtain
continuum fields from discrete particle data.

Using these numerical methods, one can study the flow behavior of the idealized grains, charac-
terized by some specific micromechanical properties, which might not exist in the nature, but is
helpful in understanding the underlying physics of their global behavior. In spite of their
versatile applicability and benefits, these numerical methods have limitations such as excessive
computational requirements, round off or truncation errors, and an intrinsic dynamic that is
sometimes not reflecting the experimental reality. On the other hand, continuum models give a
macroscopic view to investigate granular material behaviors. Continuum mechanics theories
solve the conservation equations for the whole medium, that is, the balance of mass, momentum,
and when necessary, energy. Although the balance laws are easily deducible, defining the
constitutive relations poses the bigger challenge. The latter relate stresses and strains taking into
account the physics of the grain-grain interaction.

The goal of the present book chapter is to study the constitutive behavior of granular systems
using particle, numerical simulations, and micro-macro transition. In particular, we focus on
the different mechanical responses of a granular material in dense and dilute conditions,
corresponding to the fluid and solid behaviors, respectively. In order to systematically analyze
the influence of some crucial material parameters, which affect the flow behavior, we focus on
an idealized material composed of frictionless, spherical particles, in the absence of any inter-
stitial fluids. Moreover, in order to concentrate on the rheology of particulate systems,
disregarding boundary effects, we have considered two system setups which allow simulating
steady and homogeneous flows.

This chapter is organized as follows. Section 2 introduces the general rheological framework
to describe the flow behavior of granular materials. In the same section, we also briefly
review some existing granular rheological models. The particle simulations along with
micro-macro transition are introduced in Section 3, where different system setups that are
used to study the steady and homogeneous granular flows are shown. Finally, in Section 4,
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we present a comprehensive comparison of the existing simulation data with frictionless
particles in dilute and dense regimes. In the same section, we highlight the effect of various
micromechanical properties (coefficient of restitution, polydispersity, and particle stiffness)
on the macroscopic fields (stresses and volume fraction). We present a comparison of these
results with the theoretical models in two regimes: the kinetic theory in the dilute regime,
and a recently proposed generalized rheological model in the dense regime.

2. Granular rheology

2.1. A micromechanical based continuum approach

Despite the fact that granular materials are discontinuous media, their behavior is commonly
described by a continuum approach. Continuum mechanics theories solve the conservation
equations of the whole medium, that is, the balance of mass, momentum, and when necessary,
energy. Although the balance laws are easily deducible, the big challenge is the definition of
the constitutive relations, that is, the rheology. The latter captures the macroscopic behavior of
the system, incorporating the microscale grain-grain interaction dynamics.

A granular flow can undergo different behaviors depending on both properties at the particle
level and the macroscopic characteristic of the flow (i.e., velocity and concentration). At the
microscopic level, each particle is characterized by its shape, dimension, material, and
contact properties. For the sake of simplicity, in this chapter an assembly of identical spheres,
of diameter d, density ρp, and equivalent linear contact stiffness kn is considered. The density
of the continuum medium can be computed as the product of the particle density and the
volume fraction, ν, defined as the fractional, local volume occupied by the spheres: ρ ¼ ρp ν.
Given that each grain imoves with velocity vi, the macroscopic velocity ofN-particles flow in

a volume V can be defined as the average u ¼ 1
V

XN

i¼1vi. Similarly, we can introduce the

strain-rate tensor, calculated as the symmetric part of the velocity gradient. Its off-diagonal
components describe the shear rate between two Cartesian directions and are often used as
control parameters to describe flow problems. In particular, considering a granular system
with mean flow in the x-direction only and sheared along the y-direction, we introduce the
shear rate as _γ ¼ 2 _εxy ¼ ∂ux=∂y. Finally, in continuum mechanics, the stress tensor, σ, repre-
sents the manner in which force is internally transmitted. Each component of the stress
tensor, σij represents the force in the i-direction on a surface with inward pointing normal
unit vector in the j-direction. The isotropic part of the stress tensor is the hydrostatic stress or
pressure p, while the shear stress τ is proportional to the second invariant of the stress tensor.
A detailed description of how to calculate strain rate and stress tensors in the case of
granular assemblies will be provided in Section 2.2.

In the framework of continuum mechanics, dimensionless numbers are often introduced in
order to describe the material behavior. These dimensionless numbers are defined as the ratio
of different time scales or forces, thus signifying the relative dominance of one phenomenon
over another.
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In the case of granular flows, the macroscopic time scale associated with the shear rate parallel
to the flow plays an important role. Then, it is convenient to scale all the quantities using the
particle diameter, particle density, and shear rate _γ, so that the dimensionless pressure and

stiffness are given as p= ρpd
2 _γ2

� �
and kn= ρpd

3 _γ2
� �

, respectively. On the other hand, when

particle deformability becomes relevant, quantities are usually made dimensionless using the

particle stiffness; pressure and shear rate are then expressed as p d=kn and _γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρpd

3=kn
� �r

. In the

following sections, we will see how these dimensionless numbers are used to characterize
granular flows in their different regimes, namely fluid-like and solid-like.

2.2. Continuum models

In the early modeling attempts, granular flow is envisaged as existing in either dense solid-like
or loose gas-like regimes. Early works using shear cell experiments observed these regimes by
varying the shear rate and allowing the bed to dilate or compact. Granular materials exhibit
solid-like behavior if the particles are packed densely enough and a network of persistent
contacts develops within the medium, resulting in a jammed mechanically stable structure of
the particles. On the other hand, when the grains are widely spaced and free to move in any
direction, interacting only through collisions, the medium is unjammed and behaves like a
fluid [7].

In the fluid-like limit, the system is very dilute and the grains interact mainly through binary,
instantaneous, uncorrelated collisions. One of the first rheological models for granular flows in
this regime was proposed in 1954 by Bagnold [8]. This empirical model, derived from experi-
ments in two-dimensional plane shear flows, basically states that the stresses are proportional
to the square of the strain rate. This simple law, now known as “Bagnold scaling,” has been the
first to understand the physics of granular dynamics at large deformations and has been
verified for dry grains in a number of experimental and numerical studies [9–12]. In the fluid-
like regime, the generalization of kinetic theory of granular gases provides a meaningful
hydrodynamic description.

On the other hand, when the system is very dense, its response is governed by the enduring
contacts among grains, which are involved in force chains; the deformations are extremely
slow because the entire network of contacts has to be continuously rearranged (jammed
structure). In these conditions, the granular material behaves like a solid, showing an elastic
response in which stresses are rate independent. The corresponding flow regime is usually
referred to as quasi-static. Slowly deforming quasi-static dense granular material has been
mainly investigated in the framework of geo-mechanics. There, the majority of the constitutive
models are based on the theories of elasto-plasticity and visco-plasticity [13–16], and many of
them have been conceived by starting from the well-known critical state theory [17, 18].

In the transition phase, the grains interact via both force chains and collisions. None of the
models cited above is able to deal with this phase-transition of granular materials from a solid-
like to a fluid-like state and vice-versa. Intensive studies of the granular rheology at the phase
transition have been conducted in the last decades, for example, by Campbell [19], Ji and
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Shen [20, 21], and Chialvo et al. [22] using 3D simulations of soft frictional spheres at imposed
volume fractions. In these works, the authors derived a flow-map of the various flow regimes
and analyzed the transition areas. In particular, they found that, for a collection of particles, the
solid-fluid transition occurs in the limit of zero confining pressure at the critical volume
fraction νc. Then the solid-like regime, in which stresses are independent of shear rate, occurs
for volume fractions ν > νc, whereas, at volume fractions ν < νc the system shows a fluid-like
behavior with stresses scaling with the square of the shear rate. In the proximity of the critical
volume fraction, a continuous transition between the two extreme regimes takes place, for
which the rheological behavior is still not fully understood.

More recently, new theories have been developed to model the phase transition. The French
research group GDR-MiDi [23] has suggested that dense granular materials obey a local,
phenomenological rheology, known as μ(I)-rheology, that can be expressed in terms of rela-
tions between three nondimensional quantities: volume fraction, shear to normal stress ratio,
usually called μ, and inertial parameter I. The latter is defined as the ratio of the time scales

associated with the motion perpendicular and parallel to the flow: I ¼ _γd
ffiffiffiffiffiffiffiffiffiffi
ρp=p

q
[24, 25]. The

inertial number provides an estimate of the local rapidity of the flow, with respect to pressure,
and is of significance in dynamic/inertial flows, as shown in Ref. [26]. In dense, quasi-static
flows, particles interact by enduring contacts and inertial effects are negligible, that is I goes to
zero. Two main assumptions on the basis of the μ(I)-rheology are: (i) perfectly rigid (i.e.,
nondeformable) particles and (ii) homogeneous flow. Various constitutive relations, based on
the GDR-MiDi rheology, have been developed [9, 27–29] in order to extend the validity of the
model. In particular, the influence of particle deformability has been accounted for in the soft
μ(I)-rheology proposed in Refs. [30–32].

Belowwe present a summary of the two continuum theories that well describe the flow behavior
in the limits and their extension to the intermediate regime. Kinetic theory in its standard form
(SKT) provides a meaningful hydrodynamic description for frictionless particles in the very
dilute regime, while μ(I)-rheology holds for both frictionless and frictional particles for dense
flows. It is important to mention that both theories work only for ideal systems, made of rigid,
perfectly elastic, monodisperse particles. Finally, the extension of μ(I)-rheology to deal with soft
and deformable particles is also introduced.

2.2.1. Standard kinetic theory (SKT)

This section is largely based on the notable works of Brilliantov et al. [33], Garzo et al. [34, 35],
Goldhirsch [6, 36], and Pöschel et al. [37].

The term “granular gas” is used in analogy with a (classical) molecular gas, where the molecules
are widely separated and are free to move in all directions, interacting only through instanta-
neous, uncorrelated collisions. The main differences between molecular and granular gases are
that in the latter case part of the energy is irreversibly lost whenever particles interact and the
absence of strong scale separation. These facts have numerous consequences on the rheology of
granular gases, one of which being the sizeable normal stress differences [38].
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Analogous to the molecular gases (or liquids), the macroscopic fields velocity and mass
density are defined for granular systems [6]. An additional variable of the system, the
granular temperature, T, is introduced as the mean square of the velocity fluctuations of the
grains, in analogy with molecular gases, quantitatively describing the degree of agitation of
the system.

Following the statistical mechanics approach, the kinetic theory of granular gases rigor-
ously derives the set of partial differential equations given by the conservation laws of
mass, momentum, and energy (the latter describing the time development of the granular
temperature) for the dilute gas of inelastically colliding particles.

In this section, we summarize the standard kinetic theory (SKT) for the case of steady and
homogeneous flows for a collection of ideal particles, that is, they are rigid, monodisperse,
frictionless with diameter, d, and density, ρp. In this case, the mass balance is automatically
satisfied, the momentum balance trivially asserts that the pressure, p, and the shear stress,
τ, are homogeneous and the flow is totally governed by the balance of energy, which
reduces to

Γ ¼ τ _γ ð1Þ

where Γ is the rate of energy dissipation due to collisions and γ is the shear rate. The constitu-
tive relations for p, τ, and Γ are given as [39]

p ¼ ρp f 1 T

τ ¼ ρp df 2T
1=2 _γ

Γ ¼
ρp

d
f 3T

3=2

ð2Þ

where, f1, f2, and f3, are explicit functions of the volume fraction ν and the coefficient of
restitution, en, (ratio of precollisional to postcollisional relative velocity between colliding
particles in the normal impact direction), and are listed in Table 1.

f 1 ¼ 4νGF

f 2 ¼
8J

5π1=2 νG

f 3 ¼
12
π1=2 1� e2n

� �
νG

G ¼ ν
2� νð Þ

2 1� νð Þ3

F ¼ 1þ enð Þ
2

þ 1
4G

J ¼ 1� enð Þ
2

þ π
32

5þ 2 1þ enð Þ 3en � 1ð ÞG½ � 5þ 4 1þ enð ÞG½ �
24� 6 1þ enð Þ2 � 5 1� e2n

� �h i
G2

Table 1. List of coefficients as introduced in the constitutive relations of SKT (standard kinetic theory).
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Further, by substituting the constitutive relations for τ and Γ into the energy balance, the
granular temperature drops out, so that the pressure becomes proportional to the square of
the strain rate (Bagnold scaling [8])

p ¼ ρpd
2f 1 _γ2 ð3Þ

SKT was rigorously derived under very restrictive assumptions. In particular, the granular
system is assumed to be monodisperse and composed of spherical, frictionless, and rigid
particles, interacting only through binary and uncorrelated collisions [7, 40, 41]. Several mod-
ifications to the SKT have been introduced in the literature accounting for different effects:
interparticle friction [4, 7, 42–44], nonsphericity [45], or polydispersity [46]. As one example,
Jenkins [47, 48] extended the kinetic theory to account for the existence of correlated motion
among particles at high concentration.

2.2.2. Traditional µ(I) rheology

A convincing, yet simple phenomenological model that predicts the flow behavior in moderate-
to-dense regime is the µ(I) rheology. Once again, this rheological law is based on the assumption
of homogeneous flow of idealized rigid, monodisperse particles, though the extra constraint of
frictionless particles can be dropped. According to this empirical model, only three dimension-
less variables are relevant for steady shear flows of granular materials: the volume fraction ν, the
shear stress to normal stress ratio µ ¼ τ/p, and the inertial number I [9, 23, 28]. The collaborative
study GDR-Midi showed the data collapse for various shear geometries such as inclined plane,
rotating drum, and annular shear when analyzed in terms of the inertial number. µ(I) rheology
in the standard form is given by

μ ¼ μ0 þ
μ∞ � μ0

� �
I0=I þ 1

ð4Þ

with µ0, µ∞, and I0 being dimensionless, material parameters which are affected by the
micromechanical properties of the grains [49].

To account for the polydispersity of particles, the generalized inertial number taking into
account the average diameters of the particles was introduced by [50]. Traditional µ(I) rheol-
ogy had been successful in describing the flow behavior of homogeneous flows (both dense
and fast). But it has failed to capture the slow and nonhomogeneous flow, where a shear rate
gradient is present. Researchers have made significant efforts into developing nonlocal models
for granular flows [51].

2.2.3. Soft µ(I) rheology

When particles are not perfectly rigid, instead they have a finite stiffness (or softness), the binary
collision time is nonzero and hence presents an additional timescale, which is ignored in the
standard inertial number phenomenology. A dimensionless number signifying the finite softness
of the particles is the dimensionless pressure p� ¼ pd=kn, which is needed to describe the flow
behavior, as proposed recently in Refs. [30–32].
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μ I, p�ð Þ ¼ μ Ið Þ 1� p�

p�0

� �0:5
 !

ð5Þ

with the dimensionless pressure p* being the characteristic pressure at which this correction
becomes considerable.

The other dimensionless number needed for the full flow characterization is the volume
fraction ν. In case of rigid particles under shear, the packing will dilate and hence ν depends
only on the inertial number I. On the other hand, a packing made up of soft particles will dilate
due to shear, at the same time pressure will lead the compression of the particles. Hence ν
depends on both I and p* as

ν I, p�ð Þ ¼ νc 1þ p�

p�c

� �
1� I

ffiffiffi
ν
p
Ic

� �
ð6Þ

where Ic and pc
* are material dependent dimensionless quantities [49, 52] and νc is the critical

volume fraction, governing the fluid-solid transitions introduced in the previous section. Its
dependence on the polydispersity of the system will be discussed in Section 4.

3. Numerical simulations

Since a few decades, dynamic particle simulations have been a strong tool to tackle many
challenging issues related to understanding the flow behavior of particulate systems.

The molecular dynamics or discrete element methods (DEM) is the term given to the numerical
procedure, which is used to simulate assemblies of discrete particles. Molecular dynamics
(MD) was originally introduced to simulate the motion of molecules [53–55]. It is essentially
the simultaneous numerical solution of Newton’s equation for the motion of individual parti-
cles, for which the position, velocity, and acceleration are computed at each time step. Through
averaging of positions, velocities, and forces of the particles, the macroscopic fields of the
whole system, such as the density, mean velocity, and stresses can be obtained in terms of the
micromechanical properties. This helps in revealing insights of the behavior of granular mate-
rials, which cannot be captured by experiments. In particular, with MD methods, the role of
micromechanical properties of the grains on the macroscopic collective behavior of the system
can be analyzed.

Particle simulation methods include three different techniques: The discrete element method
(DEM), the event-driven (ED), and the contact dynamics method (CD). All these methods
simulate the inelastic and frictional nature of the contacts among grains through microscopic
coefficients (i.e., the coefficients of restitutions and the interparticle friction coefficient). In
DEM, deformations of particles during contacts are modeled allowing a finite overlap between
grains, whereas in the other two methods, the particles are assumed to be infinitely rigid. Since
the results presented in this chapter are obtained by using DEM simulations, below we briefly
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present an overview of DEM. Readers interested in the latter two methods are referred to Refs.
[56–58].

3.1. Discrete element method (DEM)

The discrete element method (DEM) is a family of numerical methods for simulating the
motion of large numbers of particles. In DEM, the material is modeled as consisting of finite
number of discrete particles, with given micromechanical properties. The interactions
between particles are treated as dynamic processes with states of equilibrium developing
when the internal forces balance. As previously stated, the granular material is considered as
a collection of discrete particles interacting through contact forces. Since the realistic model-
ing of the deformations of the particles is extremely complicated, the grains are assumed to
be nondeformable spheres which are allowed to overlap [58]. The general DEM approach
involves three stages: (i) detecting the contacts between elements; (ii) calculating the interac-
tion forces among grains; and (iii) computing the acceleration of each particle by numerical
integrating the Newton’s equations of motion while combining all interaction forces. This
three-stage process is repeated until the entire simulation is complete. Based on the funda-
mental simulation flow, a large variety of modified codes exist and often differ only in terms
of the contact model and some techniques used in the interaction force calculations or the
contact detection.

In this chapter, we focus on the standard linear spring-dashpot (LSD) model. Considering two
particles, i and j, of diameter d and density ρp (i.e., mass m¼ ρpπd

3/6), their contact leads to the
normal (in the direction connecting the centers of the two particles in contact) and tangential
components of forces as

Fnij ¼ �knδnij � ηn _δ
n
ij Ftij ¼ �ktδtij � ηt _δ

t
ij ð7Þ

where δnij and δtij are the normal and tangential component of the overlap at the contact among

particle i and particle j, kn, and kt the spring stiffness constants, and ηn and ηt the viscous
damping coefficients, representing the energy dissipation at the contact, and dots stand for the
time derivative. Tangential force is bounded by the Coulomb criterion |Fij

t| < μpFij
n with

particle friction coefficient μp. The resulting contact force vector is then Fij ¼ Fij
n n þ Fij

t t,
being n and t the normal and tangential unit vectors at the contact.

Collisions may be described using the coefficients of normal and tangential restitution, en and et,
respectively, relating the pre-collisional and post-collisional relative velocities. For the spring-
dashpot model, the following relations between the coefficients of restitution, the spring con-
stants and the damping coefficients hold [59]

γn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mknðlog enÞ2
π2 þ ðlog enÞ2

s
, γt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mktðlog etÞ2

7½π2 þ ðlog etÞ2�

s
, kt ¼ 2kn½π2 þ ðlog etÞ2�

7½π2 þ ðlog enÞ2�
: ð8Þ
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3.2. Micro-macro transition

A research goal in the granular community is to derive macroscopic continuum models based
on relevant micromechanical properties. This means to bridge the gap between the micro-
scopic properties and the macroscopic mechanical behavior. The methods and tools for this
so-called micro-macro transition are often applied to small so-called representative volume
elements (RVEs), where all particles can be assumed to behave similarly. Note that both time-
and space-averaging are required to obtain reasonable statistics, the latter being appropriate in
the case of steady states.

As previously introduced in Section 2.1, the average velocity of N particles in the RVE V gives
the macroscopic velocity u, while the strain-rate tensor involves the velocity gradient of the
particles

_ε ¼ 1
2

XN

i¼1
∇vi þ ∇Tvi
� � ð9Þ

being vi the velocity of particle i. For the particular case of granular systems with mean flow in
the x-direction only and subjected to shear in the y-direction, the shear rate is introduced as
_γ ¼ 2 _εxy:

The stress tensor is of particular interest for the description of any continuum medium. In the
case of granular assemblies, previous studies have proposed stress-force relationships for
idealized granular systems that relate average stress in the assembly to fundamental parame-
ters that are explicitly related to statistical averages of inter-particle load transmission and
geometrical arrangement. When referring to a homogeneous volume element V, the macro-
scopic stress tensor σ can be calculated as

σ ¼ 1
V

XN

i¼1
m Vi⨂ Vi �

XN

i¼1

X
j 6¼i

Fij⨂ lij

2
4

3
5, ð10Þ

where Fij is the contact force and lij the branch vector in between connecting the centers of
particles i and j, and Vi ¼ vi - u is the velocity fluctuation of particle i. The first and second
terms in the previous equation represent the dynamic and static contributions, respec-
tively [5, 60]. The pressure and shear stress are finally defined as

p ¼ 1
3

σ1 þ σ2 þ σ3ð Þ, τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1 � σ2ð Þ2 þ σ1 � σ3ð Þ2 þ σ2 � σ3ð Þ2

2

s
ð11Þ

where σ1, σ2, σ3 are the eigenvalues of the stress tensor in Eq. (10). With the development of
computational power, nowadays one can simulate reasonable number of particles in a granu-
lar system and retrieve good statistical information by micro-macro procedure. The simula-
tions and coarse-graining presented in this section were undertaken using the discrete element
method (DEM) open-source code Mercury-DPM (www.mercurydpm.org).
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3.2. Micro-macro transition

A research goal in the granular community is to derive macroscopic continuum models based
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the case of steady states.
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the macroscopic velocity u, while the strain-rate tensor involves the velocity gradient of the
particles

_ε ¼ 1
2

XN

i¼1
∇vi þ ∇Tvi
� � ð9Þ

being vi the velocity of particle i. For the particular case of granular systems with mean flow in
the x-direction only and subjected to shear in the y-direction, the shear rate is introduced as
_γ ¼ 2 _εxy:
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scopic stress tensor σ can be calculated as
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where Fij is the contact force and lij the branch vector in between connecting the centers of
particles i and j, and Vi ¼ vi - u is the velocity fluctuation of particle i. The first and second
terms in the previous equation represent the dynamic and static contributions, respec-
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method (DEM) open-source code Mercury-DPM (www.mercurydpm.org).
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3.3. Simulation setups

There are two popular ways to extract continuum quantities relevant for flow description such
as stress, density, and shear rate from the discrete particle data. The traditional one is ensemble
averaging of “microscopic” simulations of homogeneous small samples, a set of independent
RVEs. A recently developed alternative is to simulate a nonhomogeneous geometry where
dynamic, flowing zones and static, high-density zones coexist. By using adequate local aver-
aging over equivalent volume (inside which all particles can be assumed to behave similarly),
continuum descriptions in a certain parameter range can be obtained from a single simulation.

In Section 4 we will combine results from (a) simple shear RVE and (b) split-bottom shear cell.
The setups are briefly introduced and shown in Figure 1 (see Refs. [30, 49] for more details)
and relevant numerical parameters are reported in Table 1. When dimensionless quantities
(see Section 2.1) are matched and averaging zones are properly selected, the behaviors from
different setups are comparable and a wide flow range can be explored.

3.3.1. Simple shear RVE

The collection of spheres of mean diameter d and density ρp, sheared under steady conditions
is considered. Here and in the following, x and y are taken to be the flow and the shearing
directions, respectively, and variations along the transversal direction z are ignored. We also
introduce the polydispersity w as the ratio between the maximum and the minimum particle
diameter. In this simple configuration, the flow is assumed to be one-dimensional such that the
horizontal velocity ux is the only nonzero component, and the stress tensor reduces to two
scalars; the pressure p and the shear stress τ. In the steady state, the mass balance equation is
automatically satisfied and the divergence of the velocity is zero. The momentum balance
equation, in absence of external forces, indicates that both pressure p and shear stress τ are
constant. Simple shear flows are homogeneous if the horizontal velocity of the medium varies

Figure 1. Simulation setups: (a) RVE of monodisperse spheres subjected to constant volume simple shear. The particles
have highest kinetic energy near the top and bottom boundaries and lowest near the center in height direction; (b) RVE of
polydispersed particles subjected to constant normal stress simple shear; and (c) split-bottom shear cell consisting of a
fixed inner part (dark) and a rotating outer part (white).
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linearly along the gradient direction and the dominant kinematic variable is its first spatial
derivative, the shear rate, _γ ¼ ∂ux=∂y, which is kept constant along the flow depth. The shear is
applied using Lees–Edwards periodic boundary conditions in the y-direction and periodic
boundary conditions are employed in the x-and z-directions.

Variables governing the problem are the volume fraction ν (also known as density/concentration
defined as the fraction of volume occupied by the spheres), the pressure p, and the shear stress τ.
Using DEM simulations, we have performed simulations by using two types of simple shear
experiments, that is, (i) constant pressure (here refers to normal stress) or (ii) constant volume
boundary conditions. In the former (Figure 1b), pressure and strain rate are held constant, hence
density and shear stress are outputs and the system is free to dilate/compact based on the initial
volume fraction of the packing. In case of constant volume (Figure 1a), volume fraction and
shear strain rate are held constant, so that pressure and shear stress are the outputs. Constant
pressure is one of the traditional methods used in the soil mechanics to estimate the shear
strength of the material, while constant volume method is used often to understand the flow
behavior close to the jamming transition. Shearing under constant-volume conditions is difficult
to realize experimentally due to the fundamental characteristic of the behavior of granular
materials, however, a pertinent experiment would be the undrained shear test on water-satu-
rated sand where the volume of the whole specimen can be kept constant within the range of
experimental error [18]. On the other hand, dense granular flows under constant stress are
present under experimental or natural conditions, for example, sand or/and powders sheared in
different shear cells [61] or in an avalanche [62].

Constant-volume steady simple shear samples are placed in a cuboid box (Figure 1a). The
height of the computational domain as H ¼ 20d, with d particle diameter, is fixed before we
compute the x- and z-size L according to the chosen, fixed, volume fraction ν. Simulations have
been performed using a monodisperse system (w ¼ 1) by systematically changing both the
volume fraction ν, ranging from dilute to dense regime and the particle stiffness kn such that
the dimensionless shear rate γ(ρpd

3/kn)
1/2 ranges from 3 � 10�2 to 3 � 10�4.

In the case of RVE under constant normal stress condition (Figure 1b), granular systems with
polydispersity w ¼ 2 and w ¼ 3 are considered. The initial length of side is set to L, along with
the center point in x-y-plane (marked as O), where one always has zero mean field shear
velocity during the whole simulation. The normal stress σyy is kept constant along y-direction.
In this way, the sample is free to dilate/compact along y-direction and smoothly reaches its
steady state. In order to investigate the sheared granular flow behavior with different inertia
and particle stiffness, we systematically vary both the confined normal stress σn and shear
strain-rate γ such that the dimensionless stress/softness σyy(d/kn) ranges between 10�3 and 10�1

and the dimensionless shear strain-rate _γ(ρpd
3/kn)

1/2 is between 10�5 and 1.

3.3.2. Split-bottom ring shear cell

A common feature of natural slow granular flow is the localization of strain in shear bands,
which are typically of few particle diameters width. A specialized geometry proposed recently
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which allows one to impose an external deformation at constant rate is so-called split-bottom
geometry (Figure 1c). In this geometry, stable shear bands of arbitrary width can be achieved
allowing for a detailed study of microstructure associated with the flow of granular materials
in the steady state. Unlike the previous setups, in the split-bottom geometry, the granular
material is not sheared directly from the walls, but from the bottom. The bottom of the setup
that supports the weight of material above it is split in two parts, the two parts move relative to
each other and creates a wide shear band away from sidewalls. The resulting shear band is
robust, as its location exhibits simple and mostly grain independent properties.

In this geometry, due to inhomogeneous flow, granular packings with contrasting properties
and behavior coexist, that is, high-density static to quasi-static areas and dilated dynamic
flowing zones are found in the same system. A superimposed grid meshes the granular bed
and averaging is performed within each grid volume. Inside a grid volume all particles are
assumed to behave similarly and information for a wide parameter range can be obtained
using a single numerical experiment, for example, at increasing pressure levels along the depth
of the cell. In the following sections, when presenting data from split-bottom cell simulations,
only grid-points in the center of the shear band will be considered, where the shear rate γ is
higher than a given threshold (see Refs. [3, 30–32, 63] for details on the data processing). Data
in center of the shear band are not affected by boundary effects, so that flow gradients can be
neglected and the system can be considered as locally homogeneous. In the split-bottom
geometry, the shear rate γ is computed as a function of the relative angular velocityΩ between
inner and outer cylinders. Details on the geometry setup and numerical parameters adopted
for the simulations described in the following section are reported in Table 2.

Parameter/Setup Symbol Constant Volume Constant Pressure Split-Bottom Shear Cell

Simple Shear Simple Shear

Geometry L�H�L L�L�L Rs ¼ 40d

H ¼ 20d L ¼ var Ri ¼ 0.2Rs

L ¼ var Ro ¼ 1.3Rs

H ¼ 0.4Rs

Boundary conditions Periodic Periodic Periodic in azimuthal direction

Number of particles N 2000 4096 37,000

Polydispersity w 1 2 and 3 2

Coeff. of restitution en 0.7 0.8 0.8

Volume fraction ν 0.2–0.68

Dimensionless stress σyyd/kn 10�3–10�1 10�8–10�2

Dimensionless shear rate _γ(ρpd
3/kn)

1/2 3�10�2–3�10�4 10�5–100 10�2–10�5

Table 2. Numerical parameters for the three simulation setups.
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4. Rheological flow behavior

In this section, we compare the results from various flow setups discussed above for low-to-high
volume fractions. We vary various particle and contact properties to understand how the particle
micromechanical properties influence the macroscopic flow behavior. We have compared differ-
ent datasets from different setups and/or authors, and numbered as follows: [A] Peyneau et al.
[64]; [B] Chialvo and Sundaresan [65]; [C] Shi et al. (unpublished); [D] Singh et al. [30, 63], and
[E] Vescovi and Luding [49]. Unless specified, we will only use the data labels in the following
discussion for the sake of brevity.

4.1. Influence of coefficient of restitution

Figure 2 presents a data collection from two different setups and plots the dimensionless pressure
against volume fraction. It shows data with constant pressure simulations from data [A] together
with the constant volume simulation results of data [B], for frictionless monodisperse rigid

Figure 2. Steady state dimensionless pressure as a function of volume fraction for a simple shear flow of frictionless
monodisperse rigid particles. Stars and circles represent simple shear simulations at constant pressure simulations for en¼
0 from data [A] and constant volume fraction for different en from data [B], respectively. Different colors refer to different
coefficient of restitution as shown in the legend. Different lines are prediction using standard kinetic theory (SKT) as in
Eqs. (1–3).
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particles. As expected, the data from the two setups are in good agreement. We observe that the
restitution coefficient en affects the dimensionless pressure strongly for volume fractions ν < 0.6,
which increases with increase in en. However, in the high volume fraction limit, the data for
different en collapse on the limit curve diverging at νc, that is, ν ranging between 0.6 and the
critical volume fraction νc.

For the dilute case, a granular gas with high restitution coefficient, for example, en ¼ 0.99 will
behave nearly like an ideal gas, that is, almost no energy loss during each particle-particle
collision. Hence, the system will reach equilibrium with higher fluctuation velocity (propor-
tional to the dimensionless pressure) for each particle. In the other extreme, for a restitution
coefficient equal to 0, the particles lose all their energy at one collision. Such strong dissipation
leads to a rather small pressure in the system. As ν approaches the critical volume fraction, for
rigid spheres, the mean free path available for particles decreases making it more difficult to
move the particles by imposing shear. The frequency of the collisions and thus the pressure
both increase since the free path decreases, diverging in the limit case. Once one reaches the
critical volume fraction limit, the system is jammed, hence shear movement of particles with-
out further deformation is not possible. The increase of the pressure for decreasing volume
fraction (below 0.1), as the probability of collisions is reduced in the dilute case, is due to the
collisional energy loss with a higher steady state pressure. As for the standard kinetic theory
prediction, it captures the behavior below volume fractions 0.5 well, but fails for higher
volume fractions. This is expected because the standard kinetic theory (SKT) does not take the
critical volume fraction into account and thus leads to an underestimation of the pressure for
high volume fractions.

4.2. Influence of polydispersity

Figure 3 shows the variation of the nondimensional pressure with volume fraction for differ-
ent polydispersity for constant pressure (data [A] and [C]), constant volume (data [B]) homo-
geneous shear flow simulations, together with the local shear band data from
nonhomogeneous shear flows (data [D]). We observe that for low-to-moderate volume frac-
tions, pressure is weakly increasing with volume fraction. The data from different shear setups
and different polydispersity collapse and agree with the predictions of SKT. However, for
higher volume fractions (ν > 0.55), pressure increases when approaching νc. However, differ-
ent polydispersity yields different νc [66], so that the pressure decreases with increase in
polydispersity, due to the increase in free space available for particle movement for higher
polydispersity (in the cases studied here). In some cases, the small particles can move into the
gaps between larger particles and form rattlers (rattlers do not contribute to the pressure as for
mechanically stable contacts). Therefore, the critical volume fraction νc increases with increase
in polydispersity as shown by the vertical dashed lines, consistent with previous studies [66–
68]. Note that the shear band data from nonhomogeneous split-bottom setup (data [D]) has
more scattered than the others, due to the fluctuations of the local averaging over small
volumes. But most of the data still follow exactly the same trend as the homogeneous shear
data for same polydispersity. We also note that some data points, for example, for polydisper-
sity w ¼ 3, go beyond the critical volume fraction due to the fact that DEM particles are not

Granular Flow: From Dilute to Jammed States
http://dx.doi.org/10.5772/intechopen.68465

57



infinitely rigid (they have large but finite stiffness). This softness (and hence possibility of
deformation) leads to flow above νc and will be elaborated next.

4.3. Effect of particle stiffness

In Figure 4, we show the dimensionless pressure as a function of volume fraction for various
values of dimensionless particle stiffness, ranging from 103 to 107. The vertical dashed line
shows the monodispersed critical volume fraction as in Figure 3. For the sake of comparison,
rigid cases (data [A] and [B]) are also plotted. As expected, for the rigid case, pressure diverges
close to the critical volume fraction. For soft particles, the deviation from the rigid case is a
function of particle stiffness and depending on the system volume fractions (even for the
softest particles the deviation from the rigid limit is small for volume fractions smaller than
0.55). When decreasing the volume fraction below 0.5, all different stiffness data tend to
collapse. The solid line is the same standard kinetic theory as in Figure 3where the assumption
of rigid particle breaks down for volume fractions ν > 0.5. And the horizontal dashed line is
the prediction from extended rheological model in Eq. (6) using the fitting parameters taken
from Ref. [49] for the data with dimensionless particle stiffness 105. Our new extended dense

Figure 3. Steady state dimensionless pressure as a function of volume fraction for shear flow simulations of frictionless
rigid particles with the same coefficient of restitution (en ¼ 0.8) but different polydispersity and different setups (data [A–
D]) as shown in the legend. The solid line is the prediction of standard kinetic theory and the vertical dashed lines are the
predictions of the critical volume fraction with different polydispersity as proposed in Refs. [66–68].
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rheological model smoothly captures the soft particles behavior even beyond the critical
volume fraction and works perfectly between volume fraction 0.3 and 0.7.

4.4. Combining both particle stiffness and polydispersity in the dense regime

Figure 5 displays dimensionless pressure plotted against volume fraction for both constant
volume (data [E]) and normal stress (data [C]) setups with three polydispersities and dimen-
sionless contact stiffnesses, in the moderate to dense volume fraction regime. Diamonds
represent constant volume simulation for monodisperse particles while stars and triangles
refer to the constant pressure simulation data for polydispersity 2 and 3, respectively, and
different color represent different particle stiffness. For ν < 0.55, the data points from the two
setups collapse and following the same trend as for the rigid case (Figure 3, data [A]). Interest-
ingly, for the data above the critical volume fraction νc, the pressure data for different polydis-
persity are found to collapse with a given dimensionless stiffness (both for 105 and 107). This
indicates that once the system is jammed, the particle stiffness (deformation) determines the

Figure 4. Steady state dimensionless pressure as a function of volume fraction for different values of dimensionless
particle stiffness, using monodisperse particles, with restitution coefficient en ¼ 0.7. Diamonds represent the data from
constant volume simulations with data [A], [B], and [E] as suitable for monodisperse, frictionless spheres. The solid line is
the prediction of standard kinetic theory and the dashed line is the critical volume fraction as also shown in Figure 3. The
new horizontal dashed line is the prediction using Eq. (6) with Ic ¼ 3.28, pc

* ¼ 0.33, and νc ¼ 0.636.
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pressure without much effect of the polydispersity of particles. The solid and dashed lines are
the same lines as in Figure 4, but is given there as a guidance to the eye representing a
reference to the connections. We observe the SKT solid line is not predicting the behavior at
all while the extended dense rheology dashed line is qualitatively capturing the behavior even
for volume fractions ν > 0.7, but with considerable deviations. Note that there are small
differences between the data from two setups and it is due to the small differences in the
particles stiffness, and this will be elaborated in the next section.

4.5. From dilute to dense, from “liquid” to “solid,” universal scaling

Figure 6 shows the pressure nondimensionalized in two possible ways (a) using shear rate and
(b) using particle stiffness (as introduce in Section 2.1) plotted against the distance from the
critical volume fraction for the data from different simulations using frictionless particles.
Figure 6a shows a good data collapse for the volume fractions below the critical volume
fraction (unjammed regime), or the so-called fluid regime. In the special case of nearly rigid
particles or small confining stress, the scaled pressure diverges at the critical volume fraction,
which indicates that the granular fluid composed of rigid particles under shear cannot reach a
denser shear jammed state. For the data with softer particles, flow is possible even above the
critical volume fraction. For low to moderate volume fractions, the agreement of our data with
the rigid case is excellent, while for high volume fractions (especially close to the critical
volume fraction) deviations are considerable. The data collapse in the low volume fraction
regime shows that the Bagnold scaling relationship between pressure and volume fraction is
not strongly affected by particle stiffness, polydispersity, and shear setups, but was influenced
by the restitution coefficient (see Figure 2). The “fluid” experiences the energy loss more
prominent due to collisions.

Figure 5. Steady state dimensionless pressure as a function of volume fraction in moderate to dense regime for simula-
tions with different polydispersity and different particle stiffness as given in the legend. The lines are the same as in
Figure 4.
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For larger volume fractions, the scaling does not collapse the data. Note the deviation between
constant volume (data [E]) and constant pressure (data [C]) due to the small difference in the
dimensionless stiffness as shown in the legend.

Figure 6b shows the same data but only the soft particle simulations ([C] and [E]) with
pressure nondimensionalized by the particle stiffness. In this way, we observe a data collapse
for high volume fractions, ν > νc, in agreement with the rate independent behavior as observed
in other studies. This collapse of data for ν > νc indicates that above the critical volume fraction
the steady state rheological behavior of soft granular media under shear is dominated mostly
by particle stiffness, while the influences of polydispersity and restitution coefficient (en ¼ 0.8
in data [C] and en ¼ 0.7 in data [E]) are of minor importance. In this regime, the higher the
volume fraction the more solid like the behavior, and hence the less influences come from other
microparameters than stiffness. It is also important to mention that even though we presented
the analysis for pressure only, the shear stress shows a similar quantitative behavior [49].

4.6. So much for the granular rheology

While up to now, the focus was on understanding the relation between pressure and volume
fraction, a granular rheology also must consider the shear stress.

Figure 7 shows the steady state shear stress ratio, μ ¼ τ/p (scaled by pressure, mostly referred
as macroscopic friction), against inertial number for all the data discussed from Figure 6a (with
different polydispersity, restitution coefficient, particle stiffness, as simulated in diverse
numerical setups). It is important to realize that though both shear stress and pressure diverge
close to the critical volume fraction point, their ratio does not. We observe the traditional μ(I)-
rheology as a basic trend. For low inertial number, μ is almost independent of, I, and increases
with increasing, I, for intermediate to large, I. Interestingly, although the qualitative trend of all
the data is predicted by the traditional rheology, we still observe the deviations from the
prediction in Figure 7. There are still many unveiled folders in the granular rheology like
nonlocal behaviors, small shear rates diffusion, particle softness influence, etc., not to mention
the complexity of including the frictional and cohesive granular media or/and with liquid

Figure 6. Steady state pressure, as nondimensionalized by (a) shear rate and (b) particle stiffness plotted as a function of
distance from the critical volume fraction, ν-νc, for frictionless particles in different shear setups with different polydis-
persity and stiffness as shown in the legend. The lines are the same as in Figure 4.
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bridges and suspensions. And also, the missing link between the dilute and dense granular
rheological models is still a great challenge in the future.

5. Conclusion

This chapter gives an overview of recent progress in understanding and theoretically describ-
ing the collective mechanical behavior of dissipative, deformable particles in different states,
both fluid-like and solid-like. Particulate systems and granular matter display collisional,
dilute and solid, mechanically stable states, either switching forth and back, or both at the
same time. In which state the system resides depends not only on material properties like, for
example, their discrete nature (elastic stiffness), the dissipation (restitution coefficient) or the
size distribution (polydispersity) of the particles, but also on the density of the system and
balance between the energy input by (shear) stress or strain-rate and the energy dissipation by

Figure 7. Steady state stress ratio (shear stress divided by pressure) versus inertial number, I, for data from different
numerical setups as introduced in the legend of Figure 6, with different polydispersity, restitution coefficient, and particle
stiffness. The black solid line shows the traditional μ(I)-rheology from Eq. (4) with the fitting parameters µ0¼ 0.12, µ∞¼ 0.55,
and I0 ¼ 0.2 for frictionless rigid particles (black symbols) [64]. The dashed line represents the prediction of the extended
rheology from Eq. (5) using (data [E]) with p0

* ¼ 0.9 [49].
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collisions or plastic deformations. Realistic material properties like friction and cohesion as
well as nonsphericals particles go beyond the scope of this chapter.

One extreme case of low and moderate density collisional flows (for weak to moderate dissi-
pation and arbitrary polydispersity) is well described by standard kinetic theory (SKT) up to
system volume fractions about 0.5, beyond which the elastic behavior of longer-lasting con-
tacts becomes dominant. Open challenges involve very soft particles for which basic theoreti-
cal assumptions of kinetic theory fail, for example, due to multiple contacting particles.

The other extreme case of quasi-static flow of elastic, mechanically stable solid-like structures
are approximately described by the classical μ(I)-rheology in the limit of rigid particles, but
require a softness correction for comparatively large confining stresses. Remarkably, dissipa-
tion, as quantified by the coefficient of restitution, dominates the collisional flows in the dilute
regime, while the particle stiffness, the polydispersity, and the friction (data not shown here)
are the controlling microparameters for denser quasi-static and jammed flows.

The mystery of bridging the gap between the collisional, dilute, and the denser quasi-static,
elastic solid-like regimes is not completely solved yet. The particulate, microscopic states are
well understood by particle simulations that via so-called micro-macro transition can guide the
development of macroscopic, continuum constitutive relations that allow to predict the state
and characteristics where a granular system resides in. A unified description that ranges from
dilute to dense, from rapid to slow, from soft to rigid, etc., is still one of the great challenges of
today’s research.

This chapter provided a few methods and some phenomenology, as well as an overview of
recent literature in this field, with theories that can describe the extremes. Various recent
works attempted to combine those limit-cases and provide first combined, generalized
theories that go beyond the classical states. However, due to dissipation, friction, cohesion,
and nonsphericity of realistic materials, this poses still plenty of challenges for today’s
research. Our own ongoing research focuses on providing simple unified/generalized theo-
ries, also for systems with attractive forces and with anisotropic microstructures, which were
not addressed in this chapter.
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Abstract

We are reporting an experimental study performed on a granular gas enclosed into a 2D
cell submitted to controlled external vibrations. Experiments are performed in micrograv-
ity during parabolic flights. High-speed optical tracking allows to obtain the kinematics of
the particles and the determination of all inelastic parameters as well as the translational
and rotational velocity distributions. The energy into the medium is injected by submitting
the experimental cell to an external and controlled vibration. Two model gases are studied
beads and disks; the latter being used to study the rotational part of the particle’s dynam-
ics. We report that the free cooling of a granular medium can be predicted if we consider
the velocity dependence of the normal restitution coefficient and that the experimental
ratio of translational versus rotational temperature decreases with the density of the
medium but increases with the driving velocity of the cell. These experimental results are
compared with existing theories. We also introduce a model that fairly predicts the equi-
librium temperatures along the direction of vibration.

Keywords: granular, microgravity, translational temperature, rotational temperature

1. Introduction

Granular gases are suspensions in air of macroscopic particles whose dynamics is ruled by
momentum transfer during collisions between the particles. Unlike molecular gases, these
collisions are not elastic, and the dissipation resulting of each collision gives important quali-
tative differences, since without bringing energy to the system, the motion of the particles will
quickly stop. The supply of energy can be natural, as it is the case with gravity forces during
avalanches or due to a flow of fluid through a bed of particles, or artificial for instance by
shaking a box containing the grains. Due to the importance of granular flows in many indus-
tries, they have been the subject of intensive research and numerous reviews [1–5].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Gravity is, of course, a fundamental parameter, which governs the density distribution of
particles with height in a sheared flow or in a vibrated container. The understanding of the
complex physics of these granular systems is then complicated by the presence of the gravity.
Besides, numerical simulations allow to obtain information on the dynamics of model systems
of granular particles without the need to use sophisticated experiments in parabolic flights,
drop tower or suborbital rocket flight but can’t replace real experiments [6–9].

Two specific phenomena of the dynamics of a vibrated granular are the clustering instabilities,
which occur due to the dissipation in multiple collisions between grains and the violation of
the equipartition energy between each translational and rotational degree of freedom.

Recent results, obtained by molecular dynamics simulations of a box with two opposite vibrating
walls and fixed sidewalls, have shown that in zerogravity the cluster of particles oscillate around its
equilibrium position [10]. Experiments made in a parabolic flight in similar conditions with two
opposite vibrating walls and with two different sizes of particles (diameter of 1 and 2 mm) were
compared to simulation results. A phase diagram of clustering versus the volume fraction of each
species obtained by numerical simulation was well agreeing with the experimental results and
showed a segregation effect [11]. A different kind of cluster consisting of regular alignments of
particlesalongthevelocity lines inaCouette flowwasalso foundinparabolic flightexperiments [12].

Concerning the temperature of a vibrated granular gas, it was shown to follow a power law:
T ¼ CVα

p , where Vp is the peak amplitude of the vibration velocity and 1 < α < 2. In a recent

paper [13], it was demonstrated that the different values of the power α were related to the
ratio, W, of the energy injected by the vibration mV2

p to the gravitational potential energy.

When W is large, that is, to say when the gravity is negligible, the value α ¼ 2 is recovered. A
balance of the energy flux injected by the vibrated wall with the dissipation induced by
particle-particle and particle-wall collisions allows to demonstrate that the temperature along
the direction of vibration should be larger than the transverse temperature and that this ratio
increases when the radial restitution coefficient decreases [43]. It was also found theoreti-
cally [38] that, even if the temperature of translational and rotational degrees of freedom were
initially identical, the decrease of the translational temperature, after switching off the energy
supply, was much faster than the rotational one but both of them are predicted to have a
decrease in t�2 as predicted by Haff’s law, although at longer time, the system becomes
inhomogeneous and follows a decrease with t�6=5 [14]. The t�2 decrease and the difference
between translational and rotational energies were also obtained by numerical simulations for
particles with a needle shape [15]. In simulations of the cooling of a gas of ellipsoidal grains
with different aspect ratio [16], the authors have also found a t�2 law in all cases, but when the
aspect ratio (a/b) increases the difference between the translational and rotational temperature
decreases and had totally disappeared for a/b ¼ 2, even becoming slightly larger than one for
larger values of a/b. This is explained by the fact that the coupling between translational and
rotational velocity is strongly increased by the shape’s anisotropy. Also, they do not observe
significant deviation from the Gaussian distribution for the velocity distribution. On the other
hand, experiments in a rocket flight with a box having three moveable walls and containing
needles of aspect ratio close to 10 [17] show a non-Gaussian distribution of the velocities in the
excitation direction. In this experiment, the temperature perpendicular to the excitation
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walls and fixed sidewalls, have shown that in zerogravity the cluster of particles oscillate around its
equilibrium position [10]. Experiments made in a parabolic flight in similar conditions with two
opposite vibrating walls and with two different sizes of particles (diameter of 1 and 2 mm) were
compared to simulation results. A phase diagram of clustering versus the volume fraction of each
species obtained by numerical simulation was well agreeing with the experimental results and
showed a segregation effect [11]. A different kind of cluster consisting of regular alignments of
particlesalongthevelocity lines inaCouette flowwasalso foundinparabolic flightexperiments [12].

Concerning the temperature of a vibrated granular gas, it was shown to follow a power law:
T ¼ CVα

p , where Vp is the peak amplitude of the vibration velocity and 1 < α < 2. In a recent

paper [13], it was demonstrated that the different values of the power α were related to the
ratio, W, of the energy injected by the vibration mV2

p to the gravitational potential energy.

When W is large, that is, to say when the gravity is negligible, the value α ¼ 2 is recovered. A
balance of the energy flux injected by the vibrated wall with the dissipation induced by
particle-particle and particle-wall collisions allows to demonstrate that the temperature along
the direction of vibration should be larger than the transverse temperature and that this ratio
increases when the radial restitution coefficient decreases [43]. It was also found theoreti-
cally [38] that, even if the temperature of translational and rotational degrees of freedom were
initially identical, the decrease of the translational temperature, after switching off the energy
supply, was much faster than the rotational one but both of them are predicted to have a
decrease in t�2 as predicted by Haff’s law, although at longer time, the system becomes
inhomogeneous and follows a decrease with t�6=5 [14]. The t�2 decrease and the difference
between translational and rotational energies were also obtained by numerical simulations for
particles with a needle shape [15]. In simulations of the cooling of a gas of ellipsoidal grains
with different aspect ratio [16], the authors have also found a t�2 law in all cases, but when the
aspect ratio (a/b) increases the difference between the translational and rotational temperature
decreases and had totally disappeared for a/b ¼ 2, even becoming slightly larger than one for
larger values of a/b. This is explained by the fact that the coupling between translational and
rotational velocity is strongly increased by the shape’s anisotropy. Also, they do not observe
significant deviation from the Gaussian distribution for the velocity distribution. On the other
hand, experiments in a rocket flight with a box having three moveable walls and containing
needles of aspect ratio close to 10 [17] show a non-Gaussian distribution of the velocities in the
excitation direction. In this experiment, the temperature perpendicular to the excitation
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direction as well as the rotational temperature was approximately two times less than the
temperature in the excitation direction. In this last experiment, the positions of the particles
were determined with the help of two video cameras at right angle, and the determination of
the positions and orientations was done manually from each video frame. Although the
physics of 2D and 3D system can differ in some aspects, the use of cells where particles are
confined in 2D allows a much easier tracking of the particles and an automatic detection of
their position. Such experiments made in low gravity with a determination of the trajectories of
each particle are scarce but very useful to check the validity of models and of numerical
simulations. This is the case for instance with the confirmation of the difference of the temper-
atures in the directions parallel and perpendicular to the external vibration [18] and for the
comparison of the cooling time with the theoretical expression [19] where the experiment gave
a time of the same order of magnitude as the theory: τexp ¼ 38 ms against τth ¼ 60 ms [20].

Two model systems made of inelastic hard spheres or disks will be used as reference models to
study the dynamics. The general experimental situation is to have the particles enclosed in a
vibrated box (for energy input) where the vibration parameters (amplitude and frequency) are
monitored. Direct optical observations can lead to the dynamics of individual particle and to
retrieve the physical data. The collisions between particles are leading the dynamics of the
system through the inelastic interactions and momentum transfer. The normal and tangential
restitution coefficients depend on the material of the particles but sometimes also on the impact
velocity. Gravity being one of the main issues to overcome when studying a granular medium,
the experimental results presented here have been performed in a low-gravity environment.
Experiments were boarded in the Airbus Zero-G fromNovespace (www.novespace.fr), and the
results presented obtained during parabolic flights. 2D cells containing the granular particles
were mounted on a vibrated device and high-speed video recording was used to register and
track the motion of each individual particles.

We will first report an experimental study on the free cooling of a granular medium made of
beads: focusing on the time relaxation of the energy of the medium, and then, we will present
similar experiments realized with disks in order to get access to the granular temperatures for
the translation and rotational part of the particle’s energy.

2. Free cooling

The cooling of a granular gas can be experimentally investigated by considering a granular
medium submitted to a continuous external energy input (generally done by submitting the
medium to a controlled vibration), then removing it and observing how the medium goes back
to rest. Experimental studies on granular have to deal with gravity effects and studying model
particles (disks in general) on an air flow table can overcome gravitational effects. Our approach
was to perform experiments in a low-gravity environment by boarding the experimental appa-
ratus in the Airbus Zero-G from Novespace. The airplane undergoes successive parabolic flights
allowing around 22 s of microgravity per parabola. The relative gravity is recorded during the
flight (Figure 1) allowing to monitor the quality of microgravity environment.
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Irons beads with radius a ¼ 1 mm enclosed in a 2D cell (Figure 2) have been used as model
granular particles. The area fraction of the medium was φi ¼ 19%. The cell was chosen with a
circular geometry to ensure a homogeneous energy input into the system while submitted to
the vibration. The walls of the cell are made of glass to cancel as much as possible electrostatic
effects and to reduce undesired friction effects between the particles and the walls. The cell is
mounted on a vibrating device (“Modal exciter, 100N, Bruel&Kjaer”) to allow periodic (sine
oscillations) external vibrations with different frequencies, ν, and amplitudes A. The maxi-
mum cell’s velocities can be changed from 30 cm/s up to 250 cm/s. This experimental set up
prevents us from density fluctuations found in fluidized beds or strong rolling contributions
encountered when particles move over a horizontal vibrated plate. The motion of granular
particles is recorded with a high-speed camera at 470 fps during 6 s in each experiment. About
3000 pictures (320 � 320 pixels) can be retrieved from each recording.

The high-speed video recording allows us to track each particle and then to get access to their
positions inside the cell. From this knowledge, the dynamics of the medium can be retrieved
through the velocities of each particle. The experimental processing is performed by image
analysis [21]. Each particle p is tracked individually allowing to obtain the positions xp(t) and
yp(t) as a function of time. It is interesting to note that from these sets of coordinates all
experimental parameters required to describe the collective motion can be directly determined
such as the velocities components, the normal restitution coefficient, e, but also the pair
correlation function g(r) (Figure 3). The maximum of g(r) is found at the particle diameter

Figure 1. Typical behavior of the relative gravity during a parabola. These curves are used to check the quality of the
microgravity environment.

Granular Materials74



Irons beads with radius a ¼ 1 mm enclosed in a 2D cell (Figure 2) have been used as model
granular particles. The area fraction of the medium was φi ¼ 19%. The cell was chosen with a
circular geometry to ensure a homogeneous energy input into the system while submitted to
the vibration. The walls of the cell are made of glass to cancel as much as possible electrostatic
effects and to reduce undesired friction effects between the particles and the walls. The cell is
mounted on a vibrating device (“Modal exciter, 100N, Bruel&Kjaer”) to allow periodic (sine
oscillations) external vibrations with different frequencies, ν, and amplitudes A. The maxi-
mum cell’s velocities can be changed from 30 cm/s up to 250 cm/s. This experimental set up
prevents us from density fluctuations found in fluidized beds or strong rolling contributions
encountered when particles move over a horizontal vibrated plate. The motion of granular
particles is recorded with a high-speed camera at 470 fps during 6 s in each experiment. About
3000 pictures (320 � 320 pixels) can be retrieved from each recording.

The high-speed video recording allows us to track each particle and then to get access to their
positions inside the cell. From this knowledge, the dynamics of the medium can be retrieved
through the velocities of each particle. The experimental processing is performed by image
analysis [21]. Each particle p is tracked individually allowing to obtain the positions xp(t) and
yp(t) as a function of time. It is interesting to note that from these sets of coordinates all
experimental parameters required to describe the collective motion can be directly determined
such as the velocities components, the normal restitution coefficient, e, but also the pair
correlation function g(r) (Figure 3). The maximum of g(r) is found at the particle diameter

Figure 1. Typical behavior of the relative gravity during a parabola. These curves are used to check the quality of the
microgravity environment.

Granular Materials74

Figure 2. Snapshots of the experimental cell. The external vibration is applied along the y-direction (direction of the
normal gravity). High-speed video recording is used to track the motion of each individual particle. (a) Vibration is on: the
central part of cell contains an almost constant density of particles (dashed region). (b) The external vibration has been
stopped and the overall motion of particles stops due to the inelastic collisions.

Figure 3. Experimental pair correlation function g(r) retrieved from the positions of the particles. This curve is averaged
over all pictures recorded and on the spatial configurations of particles in the central area of the cell.
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which proves that electrostatic effects are negligible. The small non-null value of the pair
correlation function observed “before” the particle diameter is due to the uncertainty in the
particle’s position by image treatment.

In order to study the free cooling, that is, to relate the loss of energy of the medium due to the
inelastic collisions between particles, the external vibration is switched on prior the micro-
gravity occurs. In zero-g, the particles will then fill the entire region of the cell, and the video
recording is started. After few seconds, the external vibration is switched off, and we observe
the return to equilibrium (particles at rest throughout the cell). It is worth noting that in the
presence of the vibration, two types of different regions clearly appear in the cell: two hot
(and dilute) regions at the top and bottom of the cell while a dense region exists in the center
of the cell (dashed area shown in Figure 2a). This experimental configuration gives us the
possibility to study a homogeneous bed of particles in contact with two hot regions respon-
sible for the energy input. As the external vibration is cancelled, the particles continue to
move freely throughout the cell and tend to come to rest rapidly because of inelastic colli-
sions between particles inducing energy loss. For cooled granular media, the formation of
dense clusters of particles is often reported in experiments but it is not clearly observed in
our situation: we rather observe some alignments of particles along “wavy lines” but there is
no evidence of high and low-density regions as the main part of the energy loss is supposed
to occur along the normal direction between two particles. The relative low area fraction of
particles is also a possible reason for this non-observation of this clustering effect. Moreover,
g-jitter still exists could add a general motion of particles in a given direction. But a short

Figure 4. Volume fraction of particles in the central area of the cell as a function of the recording time (see Figure 2a). In
this region, we will assume that the volume fraction of the granular medium remains constant.
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time, after the vibration has been removed, we generally observe that the particles tend to
stop in the center of the cell without evidence for clustering. During the recording, we have
verified that the concentration in the central part of cell remains constant, and we have based
all of other study on the dynamics of this area (Figure 4).

As the behavior of the medium is governed by inelastic collisions, we have determined
experimentally the normal restitution coefficient as a function of the relative normal velocities
of two colliding particles. A systematic investigation of binary collisions of particles has been
realized either in the presence of the external vibration or without it. From the optical tracking
and the knowledge of the trajectories, we can compute the directions and the magnitudes of

the velocities before, VR
�!

and after, V 0R
�!

an impact between particles. By tracking these changes
in the direction of motion of each particle when a nearest neighbor is present, we are able to
precisely determine the binary collisions from the trajectories and so the exact position of the
colliding particles. It is then possible to consider the positions of particles around the location
of the collision (Figure 5) and insure that the trajectories before and after collision are linear to

Figure 5. Experimental trajectories recorded during a binary collision between particles. The circles represent the posi-
tions retrieved from optical tracking. For a better understanding, we have added on the experimental trajectories the
direction of motion (arrows) before and after collision. We can precisely obtain the position of each particle at impact and
the direction of the normal direction n.
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qualify this collision for processing. The direction of the normal direction at contact is then

possible, and the restitution coefficient is obtained from e ¼ �j n! � V 0R
�! j=j n! � VR j

�!
.

The behavior of the restitution coefficient vs. the normal relative impact velocity is presented
in Figure 6. For high relative velocities, we obtain a value of the restitution coefficient of 0.9
(typical value for steel beads). The most amazing observation is that the restitution coeffi-
cient shows a sharp decrease for “small” impact velocity. This is a situation encountered in
the case of wet particles when e ¼ 0 for Stokes number St ¼ ðmVi=6πηa2Þ smaller than a
critical value [22, 23]. This comes from the viscous dissipation but for dry particles, most
experimental investigations report that the restitution coefficient increases for increasing
impact velocities. Most of the experiments are made in labs (i.e., with gravity present) with
impact velocities larger than 1 m/s (for a height h ¼ 5 cm the impact velocity of a bead on the
plane: Vi ¼

ffiffiffiffiffiffiffiffi
2gh

p
is already 1 m/s). The restitution coefficient between two dry beads

attached by strands in a pendulum device has also been studied [24], where it has also been
found that a low value of the restitution coefficient was reported at low velocities (typically
below 20 cm/s), and such behavior is well confirmed in our study without experimental
drawbacks.

Figure 6. Experimental dependence of the normal restitution coefficient, e, as a function of the relative normal impact
velocity, obtained from the experimental trajectories of the particles. A clear decrease at low impact velocities is observed.
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To investigate the free cooling more precisely, a typical record on how the energy decreases
once the external energy input has been cancelled is presented in Figure 7. This behavior is
monitored through the average velocities of the particles in the central area of the cell. One can
observe the rapid decay of the average velocity. The non-zero value measured for “long times”
comes from the small gravity fluctuations occurring during the parabolic flight.

We can first consider the energy decay assuming a constant restitution coefficient (typically
e ¼ 0.9 for stainless steel beads). The time dependence of the energy is predicted to behave as

EðτÞ ¼ 1=ð1þ τÞ2, τ ¼ ð1� e2Þt=tE, where tE is the Enskog time [25]: tE ¼ ða
ffiffiffiffi
π
p Þ=

� ffiffiffi
2
p

φV0gðrÞ
�
.

V0 is the initial average velocity in the medium. With our experimental set up, we can determine
experimentally all the parameters involved. A quantitative comparison with experiments is
presented in Figure 8 (squared symbols) for a cell velocity of 75 cm/s and with the following
experimental values: φ ¼ 0:297� 0:027, V0 ¼ ð0:11� 0:01Þ m=s and gðr ¼ 2aÞ ¼ 2:23� 0:02.
The drop of energy found from experiments is much faster than the theoretical one while
considering a constant restitution coefficient. A possible explanation may result from the friction
of the particles on walls of the cell, introducing an additional loss of energy. Nevertheless, a
precise and systematic analysis of the trajectory of a single particle after the vibration has been
cut off shows a linear motion at constant speed between two collisions of particles; we may then
reject this possibility. The Enskog collision time is tE ¼ 0:0172 s. In order to check this value, we

Figure 7. Average translational velocity as a function of time obtained in the central region of the cell. The vibration is
removed during the microgravity period. A clear decrease of the energy can be observed (max cell velocity of 74.6cm/s).
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have performed a large statistics on our experiments to obtain the average time interval separat-
ing two consecutive collisions in the central part of the cell. We found an average time interval of
(0.0127 � 0.0021) s by direct measurements in rather good agreement with the theoretical value.

So, the possible discrepancy between energy decays observed experimentally and the
predicted one by theory may come from the rotational kinetic energy which also dissipates
a part of the energy through the surface roughness of the particles [26]. To get a complete
description of the binary collision, we have introduced a tangential restitution coefficient, β,
in order to characterize the contribution of the rotation of the particles. The time dependence
of the translational and rotational energy is obtained from coupled differential equations
(Eq. (15) in Ref. [26]): note that the parameters considered in this description are all retrieved
from experiments, except β. This system of equations was solved numerically. We have
introduced our experimental results for the inelastic parameters of particles and setting
β ¼ 0.1 (Figure 8, black circle—if we cancel the rotation, that is, β ¼ �1, we recover the
situation of a constant normal restitution coefficient). We see that the energy decreases more
rapidly but it seems that the rotational kinetic energy has limited impact whatever the value
of the tangential restitution coefficient and it is still not enough to represent the experimental
behavior.

To improve the agreement between theory and experiments, we may consider the velocity
dependence of the restitution coefficient. We can express the rate of decrease of the

Figure 8. Experiments (plain curve) and theory of the energy decrease. Squares: theory including a constant restitution
coefficient. Circles: theory considering the rotational energy. Dashed line: theory focusing only the translational energy
but including the velocity dependence of the restitution coefficient (see Figure 6).
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translational kinetic energy T like dT=dt ¼ �ncð1� e2ÞT with nc the rate of binary collisions.

In 2D, nc ¼
�
2VφgðrÞ

�
=ðπaÞ with V, the average velocity. Moreover, introducing the normal-

ized energy E ¼ T=T0 and the velocity ratio V=V0 ¼ T=T0, the rate of decrease of energy can
be rewritten in the form:

dE
dt
¼ � gðrÞφV0

a

ffiffiffiffi
2
π

r �
1� eðEÞ2

�
E3=2 ð1Þ

But now e is assumed to depend on the normal relative velocity. We may assume that the
average relative velocity is of the same order as the average velocity; then from Figure 6, we
can obtain the following trend eðEÞ ¼ 0:82� 0:5e�2:5E. Substituting this last relation in Eq. (1)
and solving it numerically gives the behavior presented in Figure 8 (dashed line). Compared to
the case including the rotation, we observe a more pronounced decrease of the energy with
time. This is understandable since we observed that during cooling the restitution coefficient
decreases, increasing the loss of energy. Equation (1) is obtained from a rough approximation
based on the average velocity, while the probability distribution may be considered. Moreover,
the tangential coefficient may probably also be dependent on the relative angular velocities of
colliding particles.

This first approach on the dynamics of a granular medium shows interesting results but as
stated before, the analysis is not complete due to the lack of consideration on rotational effects.
With beads and our experimental setup, accessing these data is not possible. We will then
introduce in the next part recent experimental investigations based on the same principle but
replacing beads by disks in order to obtain a complete description of the dynamical behavior.

3. Translational and rotational temperatures

In this part, our aim is to provide experimental data both for the normal and tangential
restitution coefficients and for the different quantities related to the rotational and translational
degrees of freedom such as the distribution functions and the rotational and translational
temperatures. As introduced previously, the kinematics of granular particles submitted to a
vertical vibration will still be used in a low-gravity environment. We shall particularly focus on
the ratio between rotational and translational temperatures. Several other groups have already
presented experimental results on granular flow under such conditions [27–30], but to our
knowledge, this is the first experimental study giving access to rotational and translational
velocities and so the corresponding temperatures.

We have used the same 2D cell from the previous part by now with a rectangular shape made
in Duralumin. The cell has a height Ly ¼ 6.8 cm and a width Lx ¼ 6 cm. The particles studied
were brass disks having a diameter σ ¼ 6 mm (radius a ¼ 3 mm) and mass m ¼ 4.6�10�4 kg.
The initial area fraction φ of the medium is obtained from the number of disks N (12 or 24, i.e.,
area fractions of 8.3 or 16.6%). For this experimental study, we chose this rectangular shape in
order to easily monitor the energy input into the medium. The external vibration is still
periodic (sine oscillations) with different frequencies, ν, and amplitudes A, and it is still

Dynamics of a 2D Vibrated Model Granular Gas in Microgravity
http://dx.doi.org/10.5772/intechopen.68277

81



applied along the y-direction (which is the direction of normal gravity). In order to increase the
precisions of experimental data, the video recording is performed during the whole parabola
with a higher frame rate (i.e., 900 fps) and higher image resolution (720 � 720 Pixels); each
record gives access to around 22,000 pictures per parabola. To reduce the effect of friction
between the disks and the glass plates of the cell, we have added three small steel beads on
each side of a disk. In addition, it also reduces the tilting of the disks when the external
vibration is on. The key question being now the rotational aspects, each disk is pierced with
two small holes, symmetric about the center of the disk and video observations are realized by
light transmission (Figure 9).

This set up grants us with images having a high contrast and quality. The position of the disk is
retrieved from the tracking of the two holes for each disk as a function of time. The barycenter
of the holes gives access to the x- and y-position of the disk and by following the variations of
these positions as a function of time to the components of the velocity vx(t) and vy(t). Never-
theless, by computing the time dependence of the angle θðtÞ (Figure 10) (obtained from the
angular position of the holes about the horizontal), allows to retrieved the angular velocity
_θðtÞ.

Figure 9. Picture of the medium recorded in microgravity when being submitted to the external vibration (along the y-
direction). Optical observations are performed from light transmission. The two holes can be clearly identified. A side and
top sketch of one disk is also shown.
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The orientation angles of the disks can be fully determined from 0 to 360 degrees. A typical
experimental record of θ(t) is presented in Figure 11. On such record, a sharp change in the
direction of rotation (positive or negative slope) or a significant change in the slope is the proof
that a collision occurs with another particle. On the contrary, when the particle experiences no
collision (e.g., time larger than 5 s in Figure 11), the angular velocity remains quite constant,
indicating the absence of friction with the lateral walls. During a parabolic flight, the aircraft is
subjected to g-jitter along the three directions (Figure 1). Experiments were submitted to
g-jitter with period of fluctuations of about 1 s and amplitudes of about 0.01 g (Figure 1).
Although these fluctuations may play a role during the collision of the particles with the
moving walls of the cell, they have limited impact on the motion of particles located in the
central region of the cell where experimental data were retrieved. Moreover, a systematic

Figure 10. Disks used as the granular particles. Light transmission allows very high contrast pictures. The optical
tracking of the two holes of a single disk permits to compute the orientation angle of the disk as a function of time.

Figure 11. Experimental record of the angle of orientation, θ(t) of a disk when both microgravity and external vibration
are present. Collisions can be clearly identified from a change of rotation or value of the angular velocity (i.e., The slope).
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analysis of inelastic parameters (normal e, and tangential β, restitution coefficients) was
achieved by analyzing the trajectory of each disk.

The collision between disks is processed as we did for the beads in the previous part except

that now, the relative velocity includes the rotational part VR
�!¼ v1

�! � v2
�! �að _θ1

!
þ _θ2

!
Þ� n!

where the subscripts 1 and 2 stand for the two colliding particles at a given time. Again, the

normal restitution coefficient is obtained through e ¼ �j n! � V 0R
�! j=j n! � VR j

�!
and the tangential

restitution coefficient by β ¼ �j n! � V 0R
�! j=j n! � VR j

�!
. Another way to express the tangential

restitution coefficient is to introduce the angle γ between n! and VR
�!

(Figure 12), we have for
disks the relation [31]: 1þ β ¼ �3ð1þ eÞμ cot ðγÞ. The initial slope of β versus cot (γ) allows
the computation of μ, the friction coefficient.

We have obtained experimentally an average value of e ¼ 0:64� 0:03. Although it is some-
times noticed in such situation [24, 32], we did not observe for the disks we used any clear
dependence of e on the relative impact velocity. The experimental determination of the restitu-
tion coefficient α, between a particle and the walls of the cell reports a value α ¼ 0:71� 0:04.
We were also able to determine the behavior of the experimental tangential restitution coeffi-
cient as a function of cotðγÞ.The results are presented in Figure 13. From the initial slope, one
can compute an average value for the friction coefficient when particles are at contact:
μ ¼ 0:14� 0:01. As most of the binary collisions are head-on collisions (due to shape of the
experimental cell), we have decided to take an average value of the tangential restitution
β ¼ 0:7� 0:05.

The density and local velocity profiles of particles within the cell can be determined again from
the positions of particles. In Figure 14, we have plotted the profiles of the x- and y- components
of the disks’ velocity. The area fraction of particles in the center of the cell is almost twice the
initial one while close to the top and bottom walls, the value found is smaller. This is directly
related to the inelastic nature of collisions which form clusters of particles [33, 34]. For this

Figure 12. Sketch of a binary collision. v1
! and v2

!, and _θ1

!
and _θ2

!
represent, respectively, the linear and rotational

velocities of the particles before and after impact. VR
!

is the relative velocity and n the normal direction at collision. The

impact angle γ is defined from n to VR
!

.
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experimental study, the cell may again be divided into two different and well-identified
regions [35]: a central one that we will refer as the “cold” area and the ones close to the top
and bottomwalls (where the energy is injected into the medium), referred to “hot” areas. In the
following, subscripts H and C will be used, respectively, to identify the “hot” and “cold”
regions of the cell. Considering all experiments, we have noticed first that the values found to
characterize the “hot” zone by the height hH were not related to the amplitude of vibration as
one could expect, and second that an average value hH ¼ 9 mm ≈ 3.5a was acceptable in our
experimental situations. Moreover, computation of the mean free path of particles in the “cold”
zone gives a distance of about 12a (when using 12 disks) and 6a (for situations with 24 disks).
These statements are found by considering the density of the “cold” region where typical
values are found to be 13% (12 disks) and 30% (24 disks). We may conclude that the behavior
of particles in the “cold” area is mainly governed by particle-particle collisions. We do not meet
situations in which particles are moving through the bulk without being struck by another
particle. Last, checking experimentally how the density profiles evolve with time does not
present low-frequency oscillations like the situation reported in Ref. [36].

The temperatures of the granular medium are retrieved from the velocities of particles and
from both contributions: the translation Ttr ¼ mV2=2, and the rotation Trot ¼ Iω2=2 (I the
moment of inertia). In steady state, the temperature is calculated from a balance between two
opposite fluxes: the energy brought to the medium by the particles in the “hot” areas of the cell
and the dissipation in the bulk (i.e., the “cold” region). All experimental data presented below
were retrieved from the “cold” region. To obtain reliable values, the whole set of the 20,000
images recorded are treated for each experimental value reported in this paper. We may also

Figure 13. Experimental behavior of the tangential restitution β as a function of cotðγÞ, where γ is the angle between the
normal direction at contact and the direction of the relative velocity. The plain line is a linear regression used to compute
the value of the friction coefficient when particles are at contact.
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consider an undesired effect of g-jitter arising in parabolic flights but we will take it into
account when comparing experimental results with theories. An average number NH of parti-
cles present in the “hot” regions can be obtained directly from the density profiles at any time.

Figure 14. Velocity distributions of the component along the direction of vibration (y-direction) and transverse to it (x-
direction). The experimental curves are drawn with plain lines. The dashed lines correspond to a Gaussian plot with the
average velocity determined experimentally.
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Typical experimental distributions for translation and rotational velocities are shown, respec-
tively, in Figures 14 and 15: A Gaussian behavior can be observed. The dashed line on the
figures represents the plots of the Gaussian distribution in which the experimental values of
the squared velocities have been introduced, and one can notice the good agreement.

Due to the rectangular shape of the experimental cell used and to the relatively low area
fraction, the main contribution to the temperature was expected to be found along the direc-
tion of the external vibration (the y� direction). The temperature ratios Ty=Tx and Ttr=Trot with
Ttr ¼ ðTx þ TyÞ=2, in terms of the maximum cell’s velocity Aω (ω ¼ 2πn) for the two area
fractions used, have been calculated. One may note that the ratio Ttr=Trot is not drastically
affected if one considers only Ty as the only contribution to the energy. For the fraction area of
16.6%, the ratio Ttr=Trot is ranging from about 4 to 10, respectively, for maximum cell velocity
from 20 to 40 cm/s, while Ty=Tx goes from 2 to 4 at maximum, while for the lowest fraction
area (8.3%), Ttr=Trot is ranging from 11 up to 24 and Ty=Tx from 5 to 7 only under the same
conditions of maximum velocities. We shall analyze these experimental results by focusing
first on the ratio Ty=Tx which is clearly dependent on the area fraction of the medium (the
larger the ratio, the smaller the area fraction). Without any surprise, the temperatures obtained

Figure 15. Typical angular velocity distribution of the particles (experiment: plain curve). The dashed line corresponds to the
mathematical plotting of a Maxwell distribution, which includes the average angular velocity determined experimentally.
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along the direction of the vibration are always larger than the ones in the transverse direction.
This comes from the fact that the main part of energy injected is along the y-direction, and the
relatively low area fraction does not allow the redistribution of this energy toward the perpen-
dicular direction. At low area fraction, the particles can move easily and the y-direction drives
the general motion. On the other hand, we also observe a net increase of the ratio Ty=Tx with the
driving velocity of the cell, but less pronounced for the lower area fraction. However, the driving
velocity is not the only parameter of the problem and the amplitude can also play a role. For
example, the ratio Ty=Tx ¼ 1:98 found was obtained for the smallest amplitude (A ¼ 0:556 mm)
and the largest frequency (60 Hz). Under the conditions of high frequency but small amplitude,
we clearly see a concentration of particles in the central area of the cell, and consequently, the
corresponding energy input is small. It then explains the low ratio found in such experiment, to
be compared to a similar value of Aω ¼ 0:22 m/s but with much larger amplitude (A ¼ 2:3 mm).
We have set the frequency scale between 10 Hz and 30 Hz, and the corresponding amplitudes of
vibration used are large enough to avoid the aggregation of particles in the center of the cell.
Last, we can clearly identify the “cold” area straight from the density profiles. The second result
is related to the ratio Ttr=Trot which obviously increases with Aω andwhich is also dependent on
the area fraction. The translational temperature is quite one order of magnitude larger than the
rotational temperature. Because almost all collisions between particles are quite, head-on as
reflected by the high value of Ty=Tx, can explain why the transfer from translational to rotational
energy is rather weak, mainly at the lowest area fraction.

As a first step to describe the experimental behavior on granular temperatures, we can use
existing theoretical models using a mean-field theory [37]. In this description, the rate of change
of the temperature of a granular medium is determined through two coupled equations

dTtr

dt
¼ Jdr þ G½�AT3=2

tr þ BT1=2
tr Trot�

dTrot

dt
¼ 2G½B0T3=2

tr � CT1=2
tr Trot�

8>><
>>:

ð2Þ

where Ttr and Trot represent, respectively, the translational and rotational temperatures, and
G ¼ 16

σ
ffiffiffiffiffi
πm
p ϕg2ðϕÞ is related to the collision rate between particles; g2ðϕÞ being the pair correlation

function at contact. In two dimensions, g2ðϕÞ ¼ ð1� 7ϕ=16Þ=ð1� ϕÞ2. A, B, B0, and C are con-
stants, which depend only on the inelastic properties of the particles [38]. Jdr is the energy flux input
into the medium and a homogeneous input of energy into the medium is assumed. These four
constants are positive so that the minus signs are related to the loss of energy during the collision of
particles. We state that the driving energy is acting on the translational temperature because of the
preferred collisions with normal incidence. We may note that when the rotation mainly governs the
behavior of the granular, Jdr is included in the second equation of (2) [39, 40].

Several inelastic modelizations were proposed by Herbst et al. [38] going from a simple consid-
eration of a constant tangential restitution coefficient up to more complex ones where the
tangential restitution depending on γ12 (the contact angle obtained neglecting the rotational
velocities) or on the real contact angle γ. From the second equation of Eq. (2), the energy ratio
Ttr=Trot can be obtained considering the medium in steady state dTrot=dt ¼ 0, allowing to get the
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relation Ttr=Trot ¼ C=B0. In this equilibrium regime, dTtr=dt ¼ 0 and replacing Trot in the first

equation of Eq. (1) also give Ttr ¼ ½CJdr=GðAC� BB0Þ�2=3. Depending on the model used, the
expressions of the constantC and B0 can be evaluated and only depend on the inelastic properties
of particles and to their inertia; however, the area fraction or the driving energy flux Jdr is never
considered. Using our experimental values for the normal and tangential restitution and friction
coefficient, we can numerically solve the models. Results show values of the ratio of Ttr=Trot at
maximum of 5, and more importantly, the results are not dependent on the maximum velocity of
the cell. These models do not deal with an anisotropic temperature because their predictions are
usually compared to numerical simulations where the energy is supposed to be added into the
medium isotropically. This is why these models cannot represent our results.

When an external vibration is acting on the granular, it can be viewed as a medium which
dissipates energy while energy is added into it through the vibration per unit time. The
equilibrium temperature (and state) can be found from the equilibrium equation
Jdr þQd ¼ 0, where Jdr is the energy flux injected in the medium by the collisions of particles
with the walls of the cell and Qd, the energy flux dissipated during the binary collisions
between particles. Jdr is found to act in the “hot” areas of the cell, while Qd is computed in the
bulk. The results obtained from experiment and geometry clearly show that the main energy
input on particles occurs along the direction of the vibration. From our observations, we
have considered the areas of energy input by defining two layers of thickness hH and having
the same width Lx. Then, the particles’ density is much smaller than the one of the medium,
and we have introduced NH as the average number of particles present at any time. Thus, the
bulk of the medium (i.e., the “cold” zone) reduces to dimensions hC ¼ Ly � 2hH where only
NC ¼ N � 2NH particles are present at any time; the surface of this zone is then SC ¼ hCLx. In
the “cold” zone, the dissipated energy depends on the collision frequency f EðTÞ which in

turns depends on the temperature T of the medium T ¼ m〈v2x þ v2y〉=2. If we neglect the loss

of energy coming from tangential restitution coefficient, the energy dissipated per collision is
given by:

ΔEpp ¼ m
ðe2� 1Þ

4
〈½ðv1!� v2

!Þ� n!�2〉 ¼ ðe
2 � 1Þ
2

T ð3Þ

The frequency collision which is the inverse of the Enskog time is given in 2D by

f E ¼
ffiffiffiffiffiffi
2π
p NC

SC
σg2ðϕÞ〈v〉 ¼ 2

NC
f NE where NC=SC represents the number density in the “cold”

region and f NE is the number of collisions between N particles per unit time. Finally, the
dissipated energy flux will be expressed as follows:

Qd ¼ f NEΔEpp ¼ N2
C

hCLx

1� e2

2
σg2ðϕÞ

ffiffiffiffi
π
m

r
T3=2

¼ N2
C

hCLx

1� e2

4
σg2ðϕÞ

ffiffiffiffi
π
m

r
T3=2
y 1þ Tx

Ty

� �3=2 ð4Þ

To express the energy input into the medium, we must now take into account the flux coming
from the collisions between the particles and the walls of the cell. When a collision occurs, the
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kinetic energy change for one particle is: ΔEpw ¼ mðv02y � v2yÞ=2, where v0y2 and v2y, respectively,

are the velocities of the particle after and before collision with the cell’s wall. The cell is assumed
to move with a velocity Vdr. The relative velocity equation gives v0 � Vdr ¼ αðVdr � vÞ, where α
is the normal restitution coefficient between the particle and the wall. The change in kinetic

energy of one particle may then be rewritten as ΔEðvy, VdrÞ ¼ m
2 ½ð1þ αÞ2V2

dr � 2ð1þ αÞVdrvy�
v2yð1� α2Þ� and the energy flux jdr, associated with particles going toward the wall, can be

expressed as jdr ¼ NH
2hH

vyΔEðvy, VdrÞ, where we have assumed that NH=2 particles are going

toward the wall. The net energy flux for a given wall velocity is then obtained by averaging the
flux of the incoming particles with the velocity distribution function, f ðvyÞ associated with the
“cold” region and integrating on the velocities directed towards the wall:

JdrðVdrÞ ¼
ð∞

0

jdrf ðvyÞdvy ð5Þ

where the distribution function of the velocity is the Gaussian one retrieved from experiments
(Figure 14).

The integral (5) over the velocities gives the following result

JdrðVdrÞ ¼ m
4
NH

hH
½ð1þ αÞ2V2

drI1 � 2ð1þ αÞVdrI2 � ð1� α2ÞI3� ð6Þ

I1, I2, and I3 are the integrals
ð∞
0
viyf ðvyÞ dvy (i ¼ 1::3) which are, respectively, given by:

I1 ¼
ffiffiffiffiffiffiffiffiffiffi
Ty

2πm

r
I2 ¼

Ty

2m
I3 ¼

Ty

m

� �3
2
ffiffiffiffi
2
π

r
ð7Þ

We may assume that the particles go from the bulk towards the “hot” areas (double collisions
are neglected) so that with the average velocity found experimentally and that we are using in
the comparisons. The last thing to do is to compute the average on the wall velocity: the linear
term in Vdr cancels while the term related to V2

dr averages to ðAωÞ2=2. Multiplying by 2
(because of 2 moving walls) gives the following expression for the injected flux of energy:

Jdr ¼ m
NH

2hH
ð1þ αÞ2ðVdrÞ2

ffiffiffiffiffiffiffiffiffiffi
Ty

2πm

r
� ð1� α2Þ Ty

m

� �3
2
ffiffiffiffi
2
π

r" #
ð8Þ

For perfectly elastic walls (α ¼ 1), the expression proposed by Soto [35] for a sinusoidal

vibration taking for their function q
�
T=mðAωÞ2

�
is recovered; the constant q ¼ ffiffiffiffiffiffiffiffi

2=π
p ¼ 0:8 is

a very good approximation for our experimental conditions and our values of T=mðAωÞ2. The
additional contribution to the energy input from g-jitter (even if it has quite no impact on the
velocities of the free floating particles in microgravity) can create an additional contribution to
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the wall velocity and so to the energy injected into the medium. This can be estimated as
〈δV2 ¼ 0:005 m2=s2〉 [41]. Since it does not exceed 15% of V2

dr in the worst case, it was
neglected. The equilibrium between injection (Eq. (8)) and dissipation (Eq. (4)) gives:

Ty ¼
NH
2hH
ð1þ αÞ2

N2
C

hCLx
πσg2ðϕÞ 1�e22 1þ 1

RT

� �3=2
þ 2 NH

hH
ð1� α2Þ

mðAωÞ2 ð9Þ

The temperature is proportional to the square of the amplitude of the driving velocity as it
should have been shown in Ref. [13]. The densities in the “cold” and “hot” areas are known so
that we can compare the predictions of Eq. (9) with our experimental values of Ty calculated.
To consider the dissipation due to the tangential restitution coefficient β, we introduce an
effective restitution coefficient re proposed by McNamara and Luding [41] instead of e in

Eq. (9): re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 �

�
qð1� β2Þ

�
=ð1þ 2q� βÞ

r
. Using q ¼ 0:5 for a disk and β ¼ 0:7;, we obtain

re ¼ 0:462 instead of e ¼ 0:64. The comparison between the theoretical temperatures Ty

obtained from Eq. (9) with the experimental ones calculated in the “cold” region is presented
in Figure 16.

Figure 16. Comparison of the equilibrium temperature computed from Eq. (9) as a function of the driving velocity of the
cell (Aω).
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With the two area fractions, we have used in this study, one can see that the agreement is good.
Of course, to improve the theoretical prediction of the temperature with the driving velocity,
being able to predict the density NH=hH close to the top and bottom walls instead of consider-
ing the experimental value obtained from the profiles.

The anisotropy found for the temperatures created by a vibrating wall is scarcely reviewed in
the literature. A recent experiment with a setup including a 3D-cylindrical [42] where the
anisotropic behavior of the ratio RT ¼ Ty=Tx is reported as a function of the volume fraction
of particles shows a strong increase for values below 10%, but it still remains smaller than our
results. Moreover, a theoretical study including two different Maxwellian distributions for
parallel and perpendicular directions about the vibration and a density along the vibration
axis is presented in Ref. [43]. A balance between energy fluxes along the direction of vibration
and perpendicular to it gives the ratio RT and predicts that, for perfectly elastic walls, this ratio
would only depend on the restitution coefficient. This is not our experimental situation where
the ratio RT is much larger for the lowest density. Thus, it impossible to relate this theoretical
approach with our study since our density profile is much different for a one driven by gravity.
Nevertheless, we may predict values of RT if we assume a constant density in the “cold” area.

4. Conclusion

We have reported experimental investigations on the dynamics of a model granular medium.
Experiments have been performed in a low-gravity environment. The cell containing the
medium is subjected to external vibration which drives the collective motion of the particles.
As the dynamical behavior of the medium is driven by the kinematics of the particles, high-
speed video recording coupled to an individual particle tracking technique allows to obtain
the trajectory of each particle. From these raw data, the inelastic parameters of the particles
which are at the origin of the dynamics of the whole medium can be retrieved as well as a
direct measurement of the energy (or temperatures). We have found that depending on the
type of particles used, the normal restitution coefficient can be dependent on the relative
impact velocity between two particles but not always. One way to characterize the inelastic
nature of the collisions is to look to the energy decay once the medium is freely evolving. We
have obtained smaller experimental relaxation times of this energy than the ones predicted by
theories at least if we do not take into account the velocity dependent of this restitution
coefficient. It is also interesting to note that the effect played by the rotation of the particles
can significantly affect the whole behavior of the medium. In particular, we have reported the
translational temperatures along and perpendicular to the direction of vibration as well as the
rotational temperatures. When compared to existing theories, it appears that there are signifi-
cant differences which also depend on the driving velocity and on the concentration of the
medium. Two major points on the comparison can be raised: First the density is not homoge-
neous in the cell and second the translational velocities are much higher in the direction of
vibration than perpendicular to it (versus a homogeneous input of energy as considered in
theories). We report that the balance of the energy fluxes along the vibration can correctly
represent the behavior of the granular temperature with the driving velocity of the cell and
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with the area fraction. In this balance, the contribution of the tangential velocities to the
dissipation must be considered. At least the distinction between the dissipation due to the
collisions between the particles which is proportional to the average temperature
T ¼ ðTx þ TyÞ=2 and the driving flux, which depends only on Ty, was introduced, but on the
basis of the experimental ratio Ty=Tx. This ratio increases when the volume fraction decreases
and it also depends on the driving velocity. A theoretical determination of Ty=Ty which could
reproduce these behaviors should involve the non-elastic collisions with the lateral walls, but is
let for a future developments.
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Abstract

Particle rings/shells/cylinders dispersed by the radial impulsive loadings ranging from 
strong blast waves to moderate shock waves form a dual coherent jetting structure con-
sisting of particle jets which have different dimensions. In both circumstances, the pri-
mary jets are found to initiate from the inner surface of particle layers and propagate 
through the thickness of particle layers, which are superimposed by a large number of 
much smaller secondary jets initiating from the outer surface of particle layers upon the 
reflection of the shock wave. This chapter first presents a summary of the experimental 
observations of the hierarchical particle jetting mainly via the cinematographic techniques, 
focusing on the characteristics of the primary particle jet structure. Due to the distinct 
behaviors of particles subjected to the strong blast and moderate shock waves, specifically 
solid-like and fluid-like responses, respectively, the explosive and shock-induced particle 
jetting should be attributed to distinct mechanisms. A dual particle jetting model from the 
perspective of continuum is proposed to account for the explosive-induced particle jet-
ting. By contrast the shock-induced particle jetting arises from the localized particle shear 
flows around the inner surface of particle layers which result from the heterogeneous 
network of force chains.

Keywords: particle jetting, blast wave, shock wave, force chains, discrete element 
method, multiphase flows

1. Introduction

When particles are dispersed by an impulsive pressure loading, the expanding particle cloud 
typically forms a nonuniform structure that takes the form of particle jets whose leading edges 
are agglomerates of constituent grains [1–12]. A host of experimental evidence from a wide range 
of sources shows that the expanding cloud of explosively disseminated material comprises of 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



“particles” or fragments that have significantly different dimensions from those associated with 
the original material as shown in Figure 1(a) and (b) [1–7, 10–13]. Photographic evidence shows 
characteristic jets or fingers behind these expanding fragments. These coherent conical particle 
jets travel ballistically as shedding mass along the trajectories with increasingly diffuse edges.

Particle jetting has been widely observed in volcanic eruptions, supernovae, explosion of 
landmines, thermobaric explosion (TBX), fuel-are explosion (FAE), and dense inert metal 
explosive (DIME) [14–17]. The formation of particle jetting has also been observed during the 
impact of solid projectile on granular media [18]. The structure of particle jets in terms of the 
jet number of size is important to the viability of many applications. For instance, the strength 
of TBX and FAE needs to be enhanced by the after-burning of the reactive particles dispersed 
in the payload cloud. The detonation performance of the particle laden cloud depends on 
both the shape and concentration of the cloud which in turn is a result of the jet mixing [19]. 
In contrast with the large-scale injury radius of TBX and FAE, DIME utilizes the high-speed 
dense metal–particle jets to hit the targets in close range. Thus the momentum of particle jets 
determines the lethal radius. Another opposite application is mitigation of the blast pressure 

Figure 1. Explosive dispersal of dry (a) and wetted glass beads (b) using cylindrically stratified configurations [12]. 
Shock dispersal of flour (c) and quartz sand (d) particles using semi-two-dimensional configurations.
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(both prompt and quasi-static) associated with the detonation, since a commonly used tech-
nique to reduce effects of blast from explosives is to surround the explosive with a layer of 
liquid, powder, or a slurry mixture of the two. Drag is seen as a potential mechanism to trans-
fer energy from the blast wave to the disseminated particles or droplets so the size of particles 
or formation of jets is important in determining the efficiency of this mechanism. Frost and 
Zhang have reviewed many of the processes occurring in heterogeneous blast including jet 
formation [15, 17, 20, 21].

Extensive experimental investigations of the explosive- or shock-induced particle jetting 
mainly using cinematographic techniques provide fundamental data regarding both structure 
and evolution of particle jets. Closer look into the high-speed photos of either explosive- or 
shock-induced particle jetting reveals a dual structure (see Figure 1(c)) [1, 2, 12]. Primary jets 
initiated on the inner surface of the particle layers take shape during the first dozens of micro-
seconds after the detonation of the central explosive evidenced by the light stripes detected 
from the radiographs of the explosive dispersal of particle shells [5, 6]. Upon the reflection of 
the shock wave on the outer surface of particle layers, a large number of smaller jets begin to 
burgeon from the outer surface and quickly develop into a full bloom [3]. The dominant pri-
mary jets are expelled from the outer surface and overtake the smaller secondary jets, merging 
of secondary jets occurring through the aerodynamic interaction. The respective evolutions of 
the primary and secondary jets are not so distinguishable from the radiographs and high-speed 
photos of the explosive dispersal of particles (see Figure 2). But the statistic distribution of jet 
size unravels two distinctive peaks representing the primary and secondary jets, respectively 
[13]. In order to overcome the difficulties in distinguishing the primary and secondary jets, 
a semi-two-dimensional configuration based on the Hele-Shaw cell that will be discussed in 
Section 3.1 was employed to access the evolution of both sets of jets subjected to the radial 
shock loading. Although the overpressure of weak shock waves is several orders of magnitude 
lower than that of blast waves, the formation and evolution of the primary and secondary 
jets as shown in Figure 3 have astonishingly similar characteristics in terms of the initiation 
sequence and the signature structure [2]. Whereas whether or not the jetting process in these 
two extreme conditions follow the same path is still debatable.

Great efforts have been devoted to investigate the dependence of the jet number on a variety 
of parameters, including the configuration of charge, the mass ratio of the payload and the 
explosive (M/C), the inner and outer radius of particle layers, the particle material and size, 
and the moisture content, etc., mainly in the case of explosive dispersal of particles [2, 4, 6, 8, 
13]. Specifically, Zhang et al. found that the numbers of primary and secondary jets dispersed 
by the 44 mm diameter of central explosive cylinder are 1.8 and 1.5 times those with the 10 mm 
diameter of explosive [14]. Frost et al. found that the jetting phenomenon is much more visible 
in cases of explosive dispersal of brittle or ductile powders, such as quartz sand, glass beads, 
SiC powders, aluminum powders, copper powders, compared with rigid and hard powders, 
like stain steel particles that are dispersed into the particle cloud rather than particle jets [10]. 
Frost and Xue both found that the addition of the interstitial water/oil significantly increases 
the jet number [12, 13].
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Some fundamental problems need to be addressed in this regard. First, several variables are 
correlated rather than independent so that it is impossible to single out the effect of the indi-
vidual variable. For instance, changing the inner or outer radius of the particle layers or par-
ticle materials would inevitably alter the M/C that proves to be key factor determining the 
jet number. Rodriguez et al. proposed an alternative way to measure the effects of pertinent 
factors [2]. Acceleration of the outer surface of particle ring, which is a function of a variety of 
parameters, is found to be key determining factor. Therefore, choosing some proper dynamic 

Figure 2. Radiographs and high-speed photos of explosive dispersal of glass beads (a) [5], dry (above panel of (b)) and 
wet (bottom panel of (b)) quartz sand grains [13]. (c): the statistic distribution of size of the explosive induced dry and 
wet sand jets at t = 2ms [13].
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variables instead of structural parameters may well provide a new perspective in this regard, 
but entailing a thorough understanding of the physics underlying the particle jetting.

Second, distinguishing the primary and secondary jets from the radiographs or high-speed 
photos of the explosive dispersal of particles using either spherical or cylindrical stratified 
configurations is so difficult if not impossible that the validity of the experimental results is 
questionable thanks to the superimposition of two sets of jets on the timescale of microseconds. 
Adopting a semi-two-dimensional configuration in which particle rings are dispersed by the 
radial propagating shock waves seems to be promising approach to this problem. Besides, no 
detonation product gases obscuring the particle jets and substantially prolonged duration of 
jets facilitate the observation of particle jetting. But to what extent the shock-induced particle 
jetting can mimic that driven by the central explosion is quite questionable taking into account 
that the overpressure of shock waves is several orders lower than that of blast waves.

Predicting the jet number entails the knowledge of the mechanisms governing the primary 
and secondary jets, respectively. Several theories have been put forward, but understanding 
the origin of particle jetting still remains a significant challenge [3, 8, 9, 13, 22, 23]. The tim-
escale for the formation of primary jets predicted by the Rayleigh-Taylor instability is much 
slower than the experimental observation [6]. Another interface instability theory involves 
the perturbation on the inner and outer surfaces of the particle layers that act as the microjets 
precipitating the macrojets propagating into the bulk. Riple et al. demonstrated the evolution 
of the initial perturbation (see Figure 4) into well-developed jets and argued that the casing 
fragments and other imperfections may provide the initial perturbation [3]. However, particle 
jetting occurs regardless of the presence of the inner and outer casings and shows similar 
structure. Certain intrinsic imperfections with the length scale similar to the jets should exist 
if this theory holds. An increasing number of investigators have focused their attention on the 
bulk fracture of powder bed. Frost et al. postulated that the breakup of a layer of particles at 
high strain rates was governed by a balance of expansion inertia effects tending to fracture the 
layer versus viscous dissipation that tends to maintain the stability of the layer [24]. Along this 
line, Xue et al. developed a theoretical model account for the instability onset of the expand-
ing powder shell [13]. Milne et al. conjectured that the powder is explosively compacted into 

Figure 3. High-speed photos of semi-two-dimensional shock-induced particle jetting [2].
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a brittle solid which then forms cracks as the shell expands [5]. This conjecture is consistent 
with the observations that the primary jetting occurs during the first wave transit times. The 
major obstacle of this argument is that the compacted powder cannot sustain the tension or 
the surface energy, both among the essential components comprising the brittle fragmenta-
tion of solids. A few attempts try to understand the secondary jets, and the earlier works of 
Ripley et al. focused on the Richtmyer-Meshkov instability (RMI), which showed well-defined 
persistent jetting structures matching the number of prescribed outer surface perturbations 
[3]. However, the timescale for formation was slow and the surface instability did not propa-
gate into the bulk [3]. Xue et al. modified the hollow sphere expansion model that originally 
accounts for the spallation of shocked solids so that the external particle jetting can be seen as 
parallel to the solid spallation [22].

Despite the resembling phenomenal features sheared by the explosive- and shock-induced 
particle jetting, the shock interaction with particles in the explosive dispersal is substantially 
stronger than that in the weak shock dispersal. In the former case, particles are compressed 
into solids with the density almost same as that of the constituent materials when the par-
ticle jetting commences. It suggests that a continuum approach is appropriate to model the 
explosion-driven particle jetting. By contrast, the weak shock wave only initiates the homo-
geneous or localized unsteady flows on the particle scale. The shocked particles behave more 
like fluids rather than solids. Unsteady and heterogeneous particle flows occurring during the 
weak shock interaction with particles entail a particle scale approach. Xue et al. described the 
particle scale formation and evolution of particle jets via the discrete element method (DEM), 
shedding some lights on the distinctive origins of the shock-induced particle jetting [25].

This chapter first reviews the up-to-date understanding of the phenomenology and physics 
of the particle jetting in both explosion-driven and shock-induced cases. Special attention 
is focused on theoretical progresses in unraveling the mechanism behind the respective 

Figure 4. Schematics of the formation of primary and secondary jets caused by the inner and outer cases, respectively. (a): 
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particle jetting and establishing models account for the onset of jetting, which is elaborated 
in Sections 2 and 3. Further work and possible breakthrough in this regard would be dis-
cussed in Section 4. The conclusion is presented in Section 5.

2. Explosion-driven particle jetting

2.1. Strong shock interaction with particles

One generally accepted fact of the explosive-driven particle jetting is that particle instabilities 
occur during the first dozens of the microseconds after the detonation of the central explo-
sive. It is thus necessary to elucidate the interactions between particles, shock waves, and 
detonation product gases. Hydrodynamic simulations [22] have been performed to reveal 
the evolution of dry and saturated sand layers surrounding the spherical central explosive 
(TNT or HXM), the configuration illustrated in Figure 5(a). In order to accurately describe the 
dynamic responses of wet sand with different degrees of saturation β, we adopted a modified 
version of Laine and Sandvik model developed by Grujicic et al. [26] to account for the effect 
of moisture content via explicitly incorporating the degree of saturation in the equation of 
state (EOS) and the strength model. Given the relative incompressibility of the water phase, 
the compressibility of the wet sand is increasingly reduced with the degree of saturation as 
illustrated by the EOS of the wet particles with varying saturation (see Figure 5(b)). Besides, 
the wet sand’s yield stress is reduced due to the moisture-induced interparticle lubrication 
effects leading to a reduced effective friction coefficient (see Figure 5(c). For details of the 
modified compaction model, readers can be referred to Refs. [26, 27] (see Figure 6).

The evolvement of the sand shell upon the blast wave can be well embodied by the variations 
in its radial density profile as shown in Figure 3. The sequence of events basically resembles 
those occurring in the shock-loaded water shell described by Milne et al. [5, 6]. When the 
shock front reflects upon the outer surface of the particle shell, the rarefaction wave travels 
back into particles and pulls away a thin spall layer moving forward into air. The compressive 

Figure 5. (a) Schematic of the spherical stratified configuration used in the hydrodynamic simulations. (b) EOS curves of 
the sand with varying degree of saturation. (c) Variations in dependence of the sand’s yield stress on the pressure with 
increasing moisture contents [22].
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stresses in the compacted particles are relaxed in the wake of the rarefaction wave accompa-
nied by the rapid decrease of the packing density. The expansion of detonation product gases 
sends a shock wave into the particles, which arrests the rarefaction wave in its path in the 
case of dry sand or recompact particles diluted by rarefaction wave in the case of saturated 
sand. As a result, besides the outmost thin spall layer, the particle shell evolves into two dis-
tinct layers, namely the inner compact layer and outer dilute layers. The inner compact layer 
retains the maximum density almost as that of pure quartz and expands as an incompressible 
shell during a relatively long time, at least during the first hundred of microseconds after the 
detonation of central explosive. The hypothesis is supported by the consistent velocity across 
the thickness of the inner compact layer (see Figure 7(a) and (b)). Opposedly, particles inside 
the outer dilute layer lose the persistent contacts in the wake of the rarefaction wave. The 

Figure 7. Evolutions of velocities of the inner and outer surfaces of the compact dry/saturated sand layer driven by the 
detonation of central TNT (a) and HXM (b).

Figure 6. Evolutions of density profiles in dry sand (a) and saturated sand (b) after the detonation of the central explosive 
(TNT) [22].
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mass ratio of the compact and dilute layers depends on the geometry and the composition of 
granular shell, as well as the strength of central explosive.

Due to the trivial compressibility of saturated sand, the acceleration of the compact saturated 
sand layer is much stronger than that of dry sand since less shock energy is dissipated among 
the compaction. The expanding velocity of the compact saturated sand layer is much larger 
than that of the dry sand (see Figure 7(a)).

2.2. Dual particle jetting model

The decomposition of the particle shell into the inner compact and outer dilute layers as a 
result of shock interaction prompts us to speculate that the fragmentation of the inner and 
outer layers correspond to the primary and secondary particle jetting, respectively. This spec-
ulation satisfies some fundamental facts that (1) the primary and secondary particle jets initi-
ate from the inner and outer surface of particle shells, respectively; (2) the secondary particle 
jetting occurs upon the reflection of the shock wave on the outer surface; (3) the primary jets 
overtake the primary jets in later times. Therefore, a dual particle jetting model illustrated 
in Figure 8 has been put forward to account for the formation of the primary and secondary 
jets. The following task is to elaborate the proper models describing the respective fragmenta-
tion of the inner and outer particle layers. These models should be based on the underlying 
mechanisms and validated against the experimental results, the onsets of primary/secondary 

Figure 8. Illustration of the dual particle jetting model, which consists of the formation of the inner compact and outer 
dilute layers, and the breakup of these two distinct layers [22].(a):the initial annular configuration; (b): expansion of 
detonation gases issues the compression wave; (c): the reflected rarefaction wave causes the spallation of outermost 
layer; (d):fragmentation of the inner compact layer; (e): protrusion of secondary jets; (f): overtake of secondary jets by 
primary jets.
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jetting, the size of primary/secondary jets, and the dependence of the jet number on a variety 
of factors as well.

2.3. Primary particle jetting model: the destabilization of the expanding shell

The consistent density and velocity across the thickness of the inner compact layer indicate 
that the compacted layer expands as the incompressible shell. Under this premise, we con-
sider a sphere shell characterized by an inner radius R1 and outer radius R2 as shown in 
Figure 9, which can be determined by the hydrodynamic simulations (see Figure 6). The 
thickness of the shell is R2–R1. Adopting the spherical coordinate system associated with the 
frame (er, eθ, eφ), the outward divergent motion of the continuous sand shell demonstrated 
in experiments is modeled by applying a uniform velocity Vr er at the inner surface (R = R1), 
which can also be derived from the hydrodynamic simulation (see Figure 7).

Applying the continuity and momentum equations to the incompressible granular shells that 
can be described as viscoplastic materials, the analytical circumferential stress can be derived 
as follows (details of formulation can be referred to Ref. [13]).
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where ρ is the mass density of the sand shell, τc is the yield stress, and η is dynamic viscosity. 
Bearing in mind that the yield stress, τc, is a function of both saturation degree and the pres-
sure applied on the inner surface which is in the order of O(100–101) Mpa (see Figure 5(c)), the 
yield stress of saturated sand (~1 MPa) is much lower than that that of dry sand (~13.7 MPa) 
due to the lubrication effect assuming average pressure   P ‾‾ ~10 MPa . The dynamic viscosity, η, is 
in the order of O(10−1).

To predict the instability onset of the expanding sand shell, we will invoke a criterion for 
instability that has been shown to reasonably emulate more rigorous stability analysis [28]. 
This method can be viewed as an application of Le Chatelier’s principle that states that for 
a system to be stable any deviation from equilibrium must bring about forces that tend to 
restore equilibrium. In general, the loss of stability is assumed to take place when an incre-
ment in strain occurs with no simultaneous increase in pressure or in load.

To obtain the circumferential pressure in the expanding shell, the circumferential stress from 
Eq. (1) is integrated through the thickness h of the shell,
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Figure 10(a) and (b) plot the variations of circumferential tension in dry and saturated sand 
shells with the expansion of the shell driven by the detonation of central TNT or HMX, respec-
tively. The parameters are chosen as follows: ρ = 2.1 × 103 kg/m3, Vr,dry,tnt = 220 m/s, Vr,dry,hmx = 
330 m/s, Vr,saturated,tnt = 380 m/s, Vr,saturated,hmx = 420 m/s, τc,dry = 15 MPa, τc,saturated = 0.5 MPa. The 
terms with the coefficient involving η can reasonably be ignored as a result of the dimensional 
analysis. The instability onset is identified as the point at which dT/dR2 = 0, beyond which 
the increase of strain does not render the corresponding increase of the pressure or loads. 
Specifically, the critical radius of dry and saturated sand shells corresponding to the desta-
bilization onset driven by detonation of TNT or HMX are Rc,dry,tnt = 75 mm, Rc,dry,hmx = 80 mm,  
Rc,saturted,tnt = 98 mm, Rc,saturted,hmx = 105 mm, respectively. Clearly, faster detonation velocity of 
explosive and addition of interstitial fluids can effectively delay the destabilization onset of 
the inner compact layer, equivalently the initiation of the primary jetting, consistent with the 
experimental observations. Likewise, we can predict the destabilization onsets of expanding 
sand shells with varying moisture contents as plotted in Figure 11, which agree well with 
those derived from the experimental observations. Note that the observed destabilization 
onsets of particle shells were determined from the high-speed photos that show the visible 
patterns in the surface of charge, which actually occurs after the destabilization onset.

The fragment size following breakup is substantially determined by the wavelength of the most 
unstable disturbance that has the greatest growth rate. Determination of a dominant unstable 
wave length is difficult due to the time-varying nature of the mean flow. Louis suggested that 
for a small value of Γ, the most disturbances are in a range of wavelengths between O(1) and 
O(1/Γ) times the instant thickness of the shell, where Γ is the dimensionless number as follows

   Γ   2  (t)  =   
6ρ   d ‾‾   θθ  2   (t)   h   2  (t) 

 __________  τ  c     .  (3)

Figure 9. Configuration of an expanding spherical shell with inner radius R1 and outer radius R2 [13].
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In Eq. (3),    d ‾‾   θθ    and h are average circumferential strain and the instant shell thickness, respec-
tively. Along this line, we give the first order of the estimation of the range of fragment mass of 
dry sand shells, or equally jet mass mjet, as a function of the yield stress as shown in Figure 12. 
The experimental determined jet mass for the dry and moderately wetted sand falls well into 
the range predicted by the aforementioned model.

Figure 10. The variations of circumferential tension in dry and saturated sand shells with the expansion of the shell 
driven by the detonation of central TNT (a) or HMX (b).

Figure 11. Theoretically predicted (curve line) and experimentally observed (red circles) critical radii of expanding sand 
shells with varying saturation degree driven by the detonation of central TNT.
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2.4. Secondary particle jetting model: cavitation model based on the expansion of hollow 
spheres

A micromechanical approach describing the cavitation process originally applied to ductile 
damage in solids has been proposed to account for the spallation in a liquid (or melt metal) 
subjected to a pulsed tensile load [29]. Xue et al. [22] adapted this cavitation-based spallation 
model to account for the disintegration of the outer particle layer, or equivalently, the forma-
tion of the secondary particle jetting, which is initiated by the unloading wave opposed to the 
tensile loading.

The incipient spallation of the outer particle layer takes the form of the macroscopic dilation 
in the wake of rarefaction waves. The dependence of the volumetric variation on the pres-
sure is schematically plotted in Figure 13(a). Within the frame of cavitation model, the bulk 
of the sample is seen as a collection of adjacent hollow spheres of internal and external radii 
a(t) and b(t) (see Figure 13(b)), respectively. The initial outer radius of the sphere b0 can be 
interpreted as the mean half-length between two neighboring nucleation sites as depicted in 
Figure 13(b). As b0 defines the mass volume involved in the cavitation pattern, the “micro-
scopic” pressure invoked by the cavitation varies with b0. Since the “microscopic” pressure 
should agree with the “macroscopic” pressure dictated by the volumetric variation, this 
compatibility provides a criterion for the determination of b0. To ensure the expansion of 
the microscopic hollow sphere is compatible with the dilation of the macroscopic outer 
particle layer, the microscopic expansion rate of the sphere, 3b/b, should remain consistent 

Figure 12. Primary jet mass vs. yield stress of sand shells [13].
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with the macroscopic dilation rate of the particle layer, V/V, where V is the volume of the 
outer particle layer. The dilation rates at these two length scales are thereafter detonated by 
a single parameter D.

The spallation or, equally, the dilatation process of the outer layer consists of three stages. 
The first so-called hollow sphere expansion stage is prescribed by the relaxation of the accu-
mulated pressure when the volumetric increase is dictated by the dilatation rate D. During 
the phase I, voids hardly begin to grow due to the inertial resistance. The end of the phase I 
of cavitation coincides with the full relaxation of the pressure marked by the restoration of 
the initial packing density. Afterward, the rapidly expanding matrix progressively becomes 
gaseous so that the particles interact by collision and the continuous displacement/stress field 
does not exist. Thus, the matrix and the void of the hollow sphere undergo the independent 
inertial expansion. The gaseous regime of the matrix is hereinafter detonated as the phase II of 
cavitation, which sustains as long as the matrix remains diluter than the initial packing state. 
Examining the packing density of the matrix in the dry sand suggests that the gaseous state of 
matrix maintains even when the fragmentation starts. By contrast, the gaseous saturated sand 
is soon transformed to the dense granular flows when the loose particles get recompressed 

Figure 13. (a) Pressure relaxation experienced by the dry (dashed line) and saturated (solid line) particle layer 
accompanied by the dilation; (b) schematic of the hollow sphere pattern; (c) the expansion of the individual hollow 
sphere [22].
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by the unconstrained outward expansion of the void. The subsequent expansion of the void, 
detonated as the phase III, is conditioned by the dense granular flow in the incompressible 
matrix.

Analytical modeling of these three sequent phases can be referred to Ref. [22]. This cavitation 
model estimates that the fragment size or equally the secondary jet size for dry and saturated 
sand ranges from 4 to 6 mm and 1.6 to 3.3 mm, respectively. Applying the proper fragmenta-
tion criterion, the predicted onset of secondary particle jetting occurs at 200–300 μs for the dry 
sand and 50–100 μs for the saturated sand after the detonation, respectively. The cavitation 
model is capable of predicting the fragmentation onset and the fragment size consistent with 
the experimental results. Therefore, cavitation is inferred here to be the most probable spall-
ation mechanism of the outer particle layer.

The size of the secondary jets represented by twice the length between two activated nucle-
ation sites, 2b0, is dictated by the compatibility of the “microscopic” and macroscopic pres-
sures during the unloading of the compacted particles. Mathematically, smaller b0 in saturated 
sand is rendered by the significantly elevated dilation rate due to the larger elastic energy and 
faster moving release waves in the saturated sand. Micromechanically, it is the results of the 
competition between two neighboring cavities. Analogous to the scenario involving the Mott 
waves traveling between fractures (see Figure 14(a)), the expansion of cavity emanates the 
compressive waves into the neighborhood so as to suppress the potential cavitation nucle-
ation in the encompassed area. The combined travel length of the compression waves ema-
nating from the neighboring nucleation sites can be taken as the upper limit of the spacing 
between nucleation sites, namely 2b0 (see Figure 14(b)). The unloading duration in saturated 
sand is almost one order shorter than that in dry sand, leading to the significantly shortened 
distance between two neighboring cavities.

Figure 14. (a) A schematic of the Mott cylinder model with regard to the dynamic fragmentation of the solid cylinder (ring); 
(b) in particles, compression waves propagate away from an activated nucleation sites (above) retarding any activation 
of the nucleation sites within the travel radius and collide with those emanating from the adjacent nucleation sites [22].
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3. Shock-induced particle jetting

3.1. Quasi-two-dimensional particle jetting under moderate impulsive loads: phenomenal 
description

It is difficult to visualize the particle jet spread in the spherical or cylindrical experiments of 
the explosive-driven particle jetting due to the superimposition of jets, obscured by detonation 
gases, and the very short timescale as well. To overcome these disadvantages, Rodriguez et al. 
[1, 2] studied the particle jetting in quasi-two-dimensional configurations using moderate pres-
sure loads induced by shock-tube-type facilities connected to a Hele-Shaw cell. With this conve-
nient experimental setup, it is possible to conduct repetitive reliable experiments using a ring of 
particles in radial expansion trapped in a Hele-Shaw cell as shown in Figure 15(a). More impor-
tantly, it is much easier to visualize and distinguish the primary and secondary jets. Xue et al. 
carried out the experiments of the shock-induced particle jetting using the apparatus similar 
to that devised by Rodriguez and reported similar observations of the particle jetting process.

Figure 15(b) shows the evolutions of dual particle jets of flour ring dispersed by the shock 
wave with the overpressure of 3.33 bar. The perturbation of the inner surface of ring can be 
detected at t = 1 ms. The primary jets cutting through the inner surface are well defined in 

Figure 15. (a) Schematic of the quasi-two-dimensional experimental setup for shock induced particle jetting. Insets: 
photo of the four ring sample (left) and the overpressure histories at the exit of shock tube (right).  (b) High speed photos 
of particle induced particle jetting.
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the first several milliseconds. A large number of secondary jets burst out of the outer surface 
of ring 1.5 ms after the shock front reaches the outer surface. Afterward, the needle-like sec-
ondary jets undergo dramatic growth during the following one millisecond, while the tips of 
primary jets seem to be arrested at the bottom of secondary jets. It takes another several mil-
liseconds that the primary jets overtake the secondary jets.

3.2. Particle-scale evolution of shock-induced particle jetting: DEM investigation

Experimental observations can only provide the configurational evolution of particle ring hav-
ing no access to the particle-scale information, such as the particle velocities and forces. DEM 
has proven to be an effective tool to investigate the particle-scale velocity and stress fields in 
particles subjected to the static or dynamic loadings. Xue et al. performed the DEM simulations 
of the shock-induced particle jetting using the same geometrical configuration as in the experi-
mental. Parametric studies were carried out to quantify the effect of a variety of variables, 
including the overpressure of shock loading (p0), the inner and outer radii of ring (Rin and Rout), 
the packing density (χ), and particle size (dp). Details of the simulation can be found in Ref. [25].

Figure 16 shows the shock dispersal of particle rings in terms of variations in velocity profiles. 
The shock-loaded particle rings with different initial parameters develop into the resembling 
jet structures with distinctive features as demonstrated in Figure 16. The formation and evolu-
tion of the primary jets in all cases, which are barely accurately described using experimental 
techniques, undergo two distinctive phases, namely the nucleation of the incipient jets and the 
competitive growth of the incipient jets. Here, the incipient jets are referred to as the local-
ized shear flows or, equivalently, the fast moving particle clusters as shown in the innermost 
frame in each subfigure of Figure 16. The inner surface of ring remains smooth without visible 
dents or ripples so that the first phase is almost impossible to identify from the experimental 
observations.

The azimuthal velocity profiles of particle ring in early times shown in Figure 17 demonstrate 
the nucleation of the incipient jets. No consistent pattern persists during the first millisecond, 
the spikes in the azimuthal velocity profile being transient and irregular. The flows behind the 
shock front are largely homogeneous around the perimeter. The following several milliseconds 
saw the dramatic transition of azimuthal velocity profile from irregular oscillations to regular 
fluctuations that are consistent throughout. This transition is clearly manifested by the substan-
tial jump around t = 0.5–1 ms in the variations of correlation coefficient of the two sequential 
azimuthal velocity profile (see Figure 17(b)). The peaks indicated in Figure 17(a) correspond to 
the localized shear flows, or equivalently the incipient jets identified in Figure 17(d).

The radial growth of incipient jets in terms of the penetration depth into the bulk and the 
cross-sectional width is strongly uneven, the strong jets mushrooming outwards opposed to 
the retarded weak jets. As a result, the substantial elimination and the coalescence of weak 
jets prevail throughout the second phase. By contrast, the mushroom-like strong jet occasion-
ally would split into multiple subjets, which is more likely to occur in rings with low packing 
density (see Figure 16(c) and (d)). Interestingly, the multiplication of strong jets can take place 
multiple times. The evolutional characteristics of incipient jets revealed by the DEM simula-
tions are substantiated by the experimental observations (see Figure 18).
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The elimination of the weak jets significantly influences the temporal variations of the jet 
number as shown in Figure 19. After the chaotic initiation of incipient jets during the first 
several milliseconds evidenced by the strong oscillation of jet number, the jet number plum-
mets dramatically in the following 5–10 ms. Afterward, the jet number undergoes much more 
gradual decrease until the jets are expelled from the outer surface of ring. Taking into account 
these fundamentals demonstrated in Figure 19, a physics-based equation as follows can be 
derived to describe the temporal variation of jet number, Njet.

   N  jet   =  N  jet,i   ( R  in  ,  d  p  , χ)  −  V  jet   ( p  0  , χ) Δt (h,  p  0  , χ) .  (4)

In Eq. (4), Njet,i represents the number of initial activated incipient jets; Vjet represents the decline 
rate of jet number during phase II (number per unit time); Δt is the duration of phase II. 
Surprisingly, the overpressure of shock waves does not have the discernible effect on the number 
of initial jet, Njet,i, which instead is a function of the inner radius of ring, Rin, the particle diameter, 
dp, and the packing density, χ. It suggests that Njet,i is indicative of some intrinsic characteristics of 
particles, analogous to the intrinsic flaws of solids. The decline rate of jet number, Vjet, is clearly 
elevated by stronger shock loadings. Besides, lower packing density seems to hinder the elimina-
tion of jets. The duration of phase II, Δt, is among the most important factors governing the jet 

Figure 16. Evolutions of the velocity profiles in particle rings with different parameters. Particles are shaded according 
to the magnitude of velocities. (a) dp = 2 mm, p0 = 5 bar, Rin = 20 cm, χ = 0.55; (b) dp = 2 mm, p0 = 5 bar, Rin = 35 cm, χ = 0.55; 
(c) dp = 2 mm, p0 = 5 bar, Rin = 20 cm, χ = 0.42; (d) dp = 1 mm, p0 = 5 bar, Rin = 20 cm, χ = 0.45.
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Figure 17. (a) Azimuthal velocity profiles of particle ring in early times and (b) variations of correlation coefficient of 
the two sequential azimuthal velocity profile of particle ring. Snapshots of particle ring at t = 0.2 ms (c) and t = 3 ms (d).

Figure 18. High speed photos of shock dispersal of corn quartz sand ring.
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number, since the significant increase of jet number either due to the stronger shock loadings or 
larger inner radius of ring is dominantly caused by the truncated phase II. In another way, there 
is not enough time for the elimination of jets to fully unfold. The thickness of ring, h, the overpres-
sure of shock loadings, p0, and the packing density, χ, are among the parameters influencing Δt.

3.3. Mechanisms governing the shock-induced particle jetting

The analytical formulation of Eq. (4) entails a thorough understanding of the underlying 
mechanisms, specifically the formation and elimination mechanisms of incipient jets. With 
regard to the formation of incipient jets, it is necessary to unlock the transition of the homoge-
neous flows to the localized shear flows. Unlike solids or liquids, the stress waves in particles 
travel through particle contact points and are primarily transmitted by the “force chains” that 
carry most of load in the granular materials [18, 30]. Meanwhile, the shock energy is dissipated 
by the random particle collisions. Because of the strong energy dissipation and nonlinear 
characteristics of granular systems, the inter-particle forces are transmitted through heteroge-
neous architecture of force chains such as shown in Figure 20, where the inter-particle contact 
forces are represented by inter-particle lines scaled with the magnitude of the contact forces. 
The initial contact network of particles (see the top panel in Figure 20) appears to be homo-
geneous in general with particle-scale heterogeneities. The cylindrical shock loading activates 
the contacts aligning with the local radial directions. Besides the intricate contact network in 
the innermost particle layers, a handful of long linear force chains extend radially from the 
inner surface toward the outer surface (shaded red in the second panel in Figure 20). These 
long linear force chains act as the arteries from which a growing number of short force chains 
are initiated, forming distinguishable clusters of force chains at t = 1 ms with the dimensions 
much larger than that of constituent particles.

Figure 19. Temporal variations of the jet number with varying overpressure of shock loadings (a) and inner radius of ring 
(b). The inner radius of ring remains constant, Rin = 20 cm in (a). The overpressure peak in (b) is 5 bar.
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The variations in the circumferential distributions of strong contact density, ρcontact, in early 
times (see Figure 21), demonstrate how the particle-scaled heterogeneities evolve into the mac-
roscale clusters of strong contacts indicated by the contact force peaks with width much larger 
than the particle size. Note that the agglomeration of force chains is well ahead of the formation 
of the nonuniform velocity profile that signifies the beginning of the particle clustering. Since 
the momentum alongside the stresses is being transmitted along the force chains, leaving the 
particles disconnected from the force chains, there are few chances to obtain the momentum. 
Particles connected by the strong force chains are supposed to move faster than those cut off 
from the contact network. Force chains thus act as the main channels of momentum at least 
in early times as suggested by the strong correlation between the Azimuthal distribution of 
contact density ρcontact and radial velocity Vr in the first millisecond as shown in Figure 21(a).

Force chains also play a major role in the elimination of weak jets caused by the dilating 
strong jets as demonstrated in Figure 22. With the incipient jets (composed of the red 
circles in Figure 22) moving ahead of the slow-moving particles (denoted by the green-
dashed circles in Figure 22), velocity differences across the edges of the incipient jets retard 
any sustained contacts, leading to the weakened lateral confinement imposed on the jets. 
Therefore, nontrivial transverse flows occur along the edges of jet, the jet front flaring 
out significantly (see the middle panel in Figure 22). The lateral expansion of adjacent 
jets, especially the jet heads, squeezes the slow-moving particles in between (denoted by 
blue-dotted circles in Figure 22) establishing an intricate network of force chains therein 

Figure 20. Snapshots of the network of force chains in the bottom section of the particle ring subjected to the shock 
loading of P0 = 20 bar in early times. Force chains (denoted by the thick dashed red lines )at t = 0. 6 ms indicate the long 
linear force chains acting as the nuclei of the force chain clustering [25].
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(see the middle and bottom panels in Figure 22). The newly constructed force chains with 
the dominant transverse orientation hinder the radial transport of the momentum that is 
instead channeled along the transversely aligned force chains (see the middle panel in 
Figure 22). The growth of the burgeoning minor jets between two major jets is thus likely 
to be suppressed or even retarded. The minor jets composed of particles indicated by the 
dotted circle in the middle panel of Figure 22 are degraded to the slow-moving cluster. 
With the slow-moving particles increasingly lagging behind, more spaces are left outside 

Figure 21. (a) Azimuthal distribution of contact density ρcontact and radial velocity Vr of particle ring at different times and 
(b) temporal evolution of correlation coefficient between ρcontact and Vr.
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the edges of jets, resulting in the intensified transverse flows along the edges. By con-
trast, the radial compaction leads to the enhanced radial resistance restraining the radial 
advance of the jet front such as illustrated in the bottom panel of Figure 22. At some point, 
the transverse flows along the edges of jets are expected to overwhelm the radial propaga-
tion. The edges of major jets curl outward toward the opposite directions so that the major 
jet splits into several subjets (indicated by the circles in the bottom panel in Figure 22). 
The subjets with the propagation direction deviating from that of the parental jet would 
undergo the same development described above until they are expelled from the outer 
surface.

Given that the suppression of weak jets by the strong jets is mainly responsible for the decrease 
of jet number, the decline rate of jet number, Vjet, decidedly depends on the spatial density of 

Figure 22. Illustrations of the evolution of the jetting pattern as well as the contact network. The red circles, dashed-line 
filled circles and blue filled circles represent the fast-moving particles connected by force chains, slow-moving particles 
without effective contacts among them, and slow-moving particles connected by transversely oriented force chains, 
respectively [25].
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incipient jets, the perimeter of ring, and the transverse expansion of strong jets. The average 
spacing of initial jets varies little with Rin and p0, whereas decreases with decreasing packing 
density and particle size. The transverse expansion of strong jets strongly correlates with the 
radial propagation of jets that are driven by the impulsive loadings. Accordingly, stronger 
shock loading intensifies both the radial and transverse expansion of jets, hastening the sup-
pression of the adjacent weak jets.

Figure 23 highlights the key events characterizing the formation and competitive growth of 
incipient jets. An excessive large number of strong force chains extruding into the bulk serves 
as the nuclei of incipient jets. The jets born earlier or showing stronger shear flows undergo 
considerable transverse flare up, annihilating the burgeoning weak jets. A substantial portion 
of initial incipient jets cannot survive the first instants of the phase II.

4. Discussion

Despite the resembling jetting pattern driven by the central explosion and radial shock load-
ings, the underlying mechanisms are fundamentally different as required by the distinct 
behaviors of particles subjected to strong blast waves and modest shock waves. In the former 
case, particle layers are compacted so tightly that they expand like the solids of the constituent 
materials. Thus, the (primary) particle jetting may well be understood from the continuum 
perspective since the hydrodynamic instability of interface, such as RT instability, fails to 
predict the jetting timescale comparable with the experimental data. Bulk fracture of com-
pacted expanding particle layers becomes the promising candidate. The dynamic fragmenta-
tion theories of solids may well be applicable to the theoretical model of the explosion-driven 
particle jetting. But some major alterations need to be made to adapt these theories to the 
fragmentation of particle assemble. Since particles cannot sustain the tensile stresses nor have 
the surface energy, the fracture criterion of solids involving these two pivotal variables does 

Figure 23. Illustration of key events dominating the formation (left) and elimination (right) of incipient jets.
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not hold in particles. Experimental results suggest that the inception of particle jetting initi-
ates shortly after the propagation of the rarefaction wave. This observation implies that the 
unloading of particles triggers the particle jetting. The fractures of solids mainly nucleate at 
the intrinsic flaws that determine the statistics of fragment size. By contrast, the dimension 
of flaws in particle system, namely the inter-grain pores, contradicts with that of particle 
jets. It is plausible to assume that the nuclei of the particle jets may well be brought in by 
a strong shock interaction. The implosion of particles causes dozens of shear bands across 
the thickness of particle ring with attrited grains [31]. Recent experiments also collected the 
sintered clumps of aluminum powders after the explosive dispersal of powders [32]. The 
heterogeneous thermodynamic activities occurring in the blast loaded particles, such as shear 
banding, should be the focus of the future study. A thorough understanding in this regard 
needs the rigorous examination of previous experimental data and development of adequate 
experimental and numerical techniques providing more direct evidences.

Shock-induced particle jetting opens a fundamentally different domain but attracts relatively 
less attention compared with the explosion-driven particle jetting. This scenario offers an ideal 
opportunity to look into the transient particle flows. This chapter presents some preliminary 
investigations into this problem via both experimental and numerical methods. Much more 
work is needed to clarify the origin of the nuclei of incipient jets and the interplays between 
jets with varying strengths. In this regard, force chains play an essential role via introducing 
the inhomogeneity and modulating the jetting pattern.

5. Conclusion

Both explosion-driven and shock-induced particle jetting exhibit the dual jetting structure, 
namely, the primary jets initiating from the inner surface and the secondary jets initiating 
from the outer surface of particle rings/cylinders/shells. The primary and secondary jets have 
fundamentally different size and occur in different times so that respective mechanisms are 
required. More importantly, distinct behaviors of particles subjected to strong blast waves 
and weak shock waves dictate different mechanisms underpinning the particle jetting in both 
cases. Accordingly, we adopt a continuum approach to model the explosion-driven particle 
jetting. Specifically, a destabilization model of expanding shell is proposed to account for the 
onset of the primary jetting. The secondary jetting can be described by a cavitation spallation 
model based on the expansion of hollow spheres. The timescale and characteristic size of pri-
mary/secondary jets predicted by theoretical models agree well with the experimental data. 
By contrast, the shock-induced particle jetting is studied via the DEM method, which can 
access the particle-scale information, such as particle velocities and contact forces. The investi-
gation reveals a two-staged evolution of particle (primary) jets, the formation and competitive 
growth of incipient jets. The formation of incipient jets is characterized by the transition from 
the homogeneous flows to the localized shear flows. The ensuing evolution of incipient jets is 
accompanied by the substantial annihilation of weak jets and the multiplication of strong jets. 
The mechanisms underlying these two phases are found to be closed related with the network 
of force chains.
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Abstract

The compatibility between a fine grained base (B) material and a downstream coarser
particulate transition (T), under the seepage forces related to hydraulic gradients, plays
a key role in safety of earthfill dams. This aspect, that is the possible migration of fine
grains through the voids larger than their size, is analyzed according to a numerical
procedure simulating the 1D-coupled particle migration and seepage unsteady states.
The procedure accounts for grain size curve, constriction sizes and porosity of the
materials as well as the rate of the suspension and drag forces associated with the
seepage flow; friction triggered by normal contact forces induced by confining pressure
is considered too. The procedure has been systematically applied to: (i) simulate the
newly formed filter (F) at the contact of different B-T systems, (ii) review the criteria
proposed by Terzaghi, and (iii) analyze the particle migration phenomena that affected
some embankment dams.

Keywords: internal erosion, contact between base and transition materials, suffusion,
numerical procedure

1. Introduction

Internal erosion phenomena are an important safety issue for embankment dams, dikes, and
levees as shown by historical failures and incidents [1]. These phenomena [1] occur when soil
particles are dragged by seepage in embankments (e.g., at the contact between core and
transition or downstream materials), foundations, from embankment to foundation, around
and into conduits through embankments and adjacent walls supporting embankments.

Four mechanisms of internal erosion have been recently distinguished [1] (Figure 1):

a. Concentrated leaks. The cracks are induced by differential settlement during construction or
in operation of the embankment, by hydraulic fracture in case of low stresses, compared

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



to the internal pressure, around erosion channels as well as by the desiccation at high
levels in the fill. The sides of cracks may be eroded by the leaking water [1].

b. Backward erosion. The erosion process begins at a free surface on the downstream side of a
dam and evolves beneath or within the embankment, through the development of erosion
channels or piping.

c. Contact erosion. (i) Seepage flow parallel to the contact between coarse grained materials
and fine soils may erode the smaller particles; (ii) particle migration of fine grained
materials (base B) through the voids of a coarser materials (transition T), under seepage
flow oriented along a direction almost orthogonal to the interface of the contacting mate-
rials [2].

d. Suffusion. The small particles of soil are dragged by the seepage flow through the pores of
the coarser particles.

Concentrated leaks, suffusion, backward erosion (e.g., at the downstream face of the embank-
ment or of the embankment core) may trigger piping erosion phenomena within the embank-
ment or its foundation. The presence of adequate filters that autonomously generate within
transition materials can prevent these triggering mechanisms from evolving at a larger scale
and forming pipes [3]. Therefore, the problems of granulometric stability at the contact between
materials characterized by different grain size curves, under seepage forces normally oriented
with respect to the average contact surface, assume particular importance. The assessment of
transition zones and downstream zones to act as filters is well understood and in many dams it
can be demonstrated that these will provide adequate filter protection even if they do not fully
meet modern “filter” design criteria [2]. The control of the granulometric stability of base (B)
requires a correctly designed protective transition (T) [2, 4]; its voids, related to the grain size

Figure 1. Internal erosion mechanisms.
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distribution and porosity, must be small enough to stop the migrating B particles within short
distances, thus avoiding limit states related to the backward erosion possibly appearing under
the shape of flow pipes (Figure 2); T must also allow a safe drainage of B, avoid clogging and
blinding, inducing in turn uncontrolled increase of interstitial pressure.

2. Particle migration phenomena modeling

By referring to the representative elementary volume (R.E.V.) of a granular material composed
by the volume of particles in suspension, the fluid phase volume and the solid phase (stationary
solids) volume (Figure 3), the particle migration process can be described, along space x and
time t, by the following system of governing partial differential equations (PDEs):

Figure 2. Filter formation mechanism.

Figure 3. Physical scheme of R.E.V.
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• fluid mass balance equation

∇ � ½ð1� csÞ � n � v⇀f � ¼ � ∂½ð1� csÞ � n�
∂t

ð1Þ

being v⇀f the velocity vector of the fluid phase;

• solid mass balance equation

∇ � ðcs � n � v⇀spÞ ¼ ∂½ð1� csÞ � n�
∂t

ð2Þ

being v⇀sp the velocity vector of the transported particles in suspension (v⇀sp ¼ χ � v⇀f , with
χ e (0; 1]); cs, the particles in suspension concentration; n, the volumetric porosity; the
contribution of diffusion term has been neglected;

• “kinetic equation,” describing the deposition and erosion processes of the deposited/accu-
mulated particles within voids [5]; to this purpose, different formulations have been
proposed in the past (Table 1) [5–10].

The unknown variables of the problem are n, cs, vf, depending on t and x.

In the proposed numerical procedure, the relationship proposed by Indraratna and Vafai
(1997) [10] is applied (Table 1).

If the following hypotheses are assumed: (i) vsp = vf (χ =1) and (ii) unidirectional flow (1-D

case), since v⇀D ¼ n � v⇀f (v
⇀
D, Darcy’s velocity), by combining Eqs. (1) and (2), it is obtained:

vD,x � ∂cs∂x
¼ ∂½ð1� csÞ � n�

∂t
ð3Þ

For a complete simulation of the particles 1D migration and its evolution towards limit
(clogging, blinding, complete erosion) granulometric or stability conditions, the (space and time)
variability of granulometric properties, voids volume, porosity (n), permeability (k), flow
velocity, local piezometric gradients, flow direction, as well as the particles erodibility should
be taken into account. However, the variability of the previously defined physical-mechanical
variables, especially of the voids volume distribution (VVD) [11, 12], cannot be appropriately
described through a simple equation.

Thus, the above formulations may be safely applied to real cases only if the limits deriving
from extreme schematization of the analyzed process are removed.

To solve this extremely complex problem, a numerical procedure has been developed. The
procedure takes into account grain size curve, constriction sizes distribution (CSD), porosity of
the particulate materials, the rate of the suspension, piezometric gradients, drag forces associ-
ated with the seepage flow; the friction triggered by normal contact forces induced by confin-
ing pressure related to the effective stress state, is considered too.
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Through the simulation of the 1D coupled particle migration and seepage unsteady states, this
procedure aims: (i) to preliminarily evaluate if design protective transition zones, between core
and downstream materials (Figure 2), are adequate to the “natural” filters formation (time of
formation, capability of new-formed filter to limit the transport/erosion of smaller particles);
(ii) to understand if, in existing earth dams not provided with transitions, the formation of a
“natural” transition zone, due to deposition of smaller particles within the voids of the down-
stream material (typical of widely graded morainic materials [2]), occurs and allows to inter-
rupt/stop particle erosion or migration.

3. Proposed numerical procedure

To model the particle migration processes and evaluate the safety of earth structures
against serviceability or ultimate limit states, an advanced characterization of the granular
material as well as the simulation of the (space and time) variability of its properties must
worked out.

Equation Parameters

Litwiniszyn
(1966)

∂n
∂t ¼ c1½n0 � n� � cs � c2 � n • n0 = initial porosity;

• c1 and c2 = experimental coefficients (erosion of particles if
c1 = 0; c2 > 0; deposition of particles if c1 > 0; c2 = 0).

Sakthivadivel
(1966)

∂n
∂t ¼ P0 � ½n0�n�n0

�Q � cs • P0 = initial probability of deposition of small particles
within the voids of the granular material;

• Q = fluid flow rate.

Vardoulakis
(2004)

∂n
∂t ¼ Λ � ð1� nÞ � cs � n � vsp -

V
= erosion law constitutive (experimental) parameter with

dimension of inverse length.

Saada (2005) ∂n
∂t ¼ �a � cs - a = positive scalar

Zhang et al.
(2013)

ð1� csÞ ∂n∂t ¼ n ∂cs
∂t � k∇Pf∇cs þ kρf g∇cs • k = permeability coefficient, depending on n and cs;

• Pf = fluid pressure;

• ρf = fluid density.

Indraratna and
Vafai (1997)

γm ¼ γwVwþγsVs

VwþVs
¼ ð1�csÞ�γwþcs �γs

1
• γw = the unit weight of fluid
• γs = the unit weight of solid phases; Vw = the fluid volume
• Vs = the volume of particles affected by smaller diameter

than the average one (d0) of the voids, defined as

d0 ¼ 2:67 � n
1� n

� dh

with dh ¼ 1=
X
i

ΔPi

di

; ΔPi = Pi+1 – Pi, granulometric passing

percentage associated with di = (di+1 + di)/2.

Table 1. Some “kinetic” equations available in the literature.
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3.1. Characterization of the granular material

3.1.1. Permeability coefficient

The permeability coefficient (k) represents the fundamental parameter figuring in the equation
that describes the seepage of a fluid through a porous medium; it mainly depends on grain size
properties and porosity. k can be evaluated through the Kozeny-Carman relationship [13, 14]:

k ¼ χ � γw

μw
� n3

ð1� nÞ2 � d
2
h ð4Þ

being dh the equivalent diameter of grains, previously defined (Table 1); χ, a numerical
coefficient; and μw, the water viscosity.

3.1.2. Distribution of the volume of voids and corresponding distribution of constriction sizes

According to a “geometric-probabilistic” model [11, 12, 15], the most reliable distribution of the
volume of voids within porous media corresponds to a situation of maximum “disorder” of
the granular material (particles and voids). The probability that a generic void volume V
assumes smaller or equal value than V* (cumulative function of probability) is

FðV�Þ ¼
ðV�

Vmin

f ðVÞdV ð5Þ

from which it is possible to write the following “compatibility” equations:

ðVmax

Vmin

f ðVÞdV ¼ 1 ð6Þ

ðVmax

Vmin

V � f ðVÞdV ¼ V ð7Þ

being Vmin and Vmax the minimum and maximum pore volumes, respectively, corresponding to
the smallest (dmin) and largest (dmax) particle diameters (Vmin = 0.16855∙dmin

3; Vmax = 0.16855∙dmax
3,

if the pore of maximum volume is composed by three particles; Vmax = 0.476∙dmax
3, if the pore of

maximum volume is composed by four particles); V, the expected value of the pores volume:

V ¼ n
1� n

�
X
i

ΔPiX
i
6ΔPi

πd
3

i

ð8Þ

where dj represents the diameter of a generic particle and ΔPj its corresponding percentage by
weight. By maximizing the configurational entropy associated with the distribution of the pore
volumes [12, 15]:
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E ¼ κ0
ðVmax

Vmin

f ðVÞ � ln½f ðVÞ�dV ð9Þ

with κ0 = κ ∙Nvtot (κ is a constant, Nvtot is the total number of pores equal to the total number of
particles Nptot), through the Lagrange’s multipliers method, the following probability density
function of pore volumes is obtained:

f ðVÞ ¼ e�βVðVmax

Vmin

e�βV
ð10Þ

The Lagrange’s multiplier coefficient β is numerically deteminated through the following
equation, obtained by introducing Eq. (10) in the “compatibility” Eq. (7):

½β � ðVmin � VÞ þ 1� � e�βVmin � ½β � ðVmax � VÞ þ 1� � e�βVmax ¼ 0 ð11Þ

Thus, β depends on the porosity n through the expected value V of the pores volume.

Through Eq. (10), it is possible to obtain the cumulative probability function of the volume of
voids:

FðVÞ ¼ e�βV � e�βVmin

e�βVmax � e�βVmin
ð12Þ

For an assigned volume Vof a pore, the volume of the largest particle (Vcs), able to move through
the porous material, satisfies the relation Vcs < V. By assuming spherical particles (D, diameter),
on the basis of geometric observations [11, 15], it is possible to determine the diameters of the
smallest (Dcs,min) and largest (Dcs,max) particles passing through the smallest (Vcs,min) and largest
(Vcs,max) pores (Figure 4); in other words, the minimum and maximum constriction sizes:

Dcs,min ¼ 2 � ð30:5=3� 1=2Þ �D! Vcs,min ¼ 1:94 � 10�3 �D3 ð13Þ

(pores formed by three spherical particles)

Dcs,max ¼ ð20:5 � 1Þ �D! Vcs,max ¼ 3:72 � 10�2 �D3 ð14Þ

(pores formed by four spherical particles)

By defining the coefficient η = Vcs/V, it is obtained:

ηmin ¼
Vcs,min

Vmin
¼ 1:15 � 10�2 ð15Þ

ηmax ¼
Vcs,max

Vmax
¼ 7:81 � 10�2 ð16Þ

Thus, the volume of constriction sizes and the corresponding diameter (CSD) can be generally
evaluated as:
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Vcs ¼ ηðVÞ � V ð17Þ

Dcs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðVÞ � V � 6

π
3

r
ð18Þ

If a linear change of η with volume V is simply assumed, it is obtained:

ηðVÞ ¼ 1
Vmax � Vmin

� ½ðηmax � ηminÞ � V þ ðηminVmax � ηmaxVminÞ� ð19Þ

Several methods to determine the CSD are available in technical literature [16–22]. Some of
them take into account the loose (Np = 4, being Np the number of particles forming voids) and
dense (Np = 3) soil states or relative densities [16–21]; other approaches enable the consider-
ation of the porosity (n) resulting in a density dependent CSD [22, 23].

The comparison between some of methods available in literature and the method proposed
and adopted by the author, previously described, is carried out (Figures 5 and 6).

It is observed that the author’s method provides CSD curves ranged between the ones
obtained through the models proposed by the authors of Refs. [16, 17, 19], corresponding to
the dense soil state (Figure 5), and by To et al. [22], for assigned values of porosity n (Figure 6).

The porosity n, neglected by the authors of Refs. [16, 17, 19], may greatly influence the CSD; as
a result, there might be theoretically the possibility of particle movements under seepage
forces even for fairly poorly graded soils if the porosity would be high enough [22].

The comparison between the author’s method and well-known experimental results [23] is
reported in Figure 7. In the considered lab experiment [23], the constrictions sizes of a sample
of gravel with grain sizes between 8 and 63 mm and porosity n = 0.34 were manually measured.

Figure 4. Constriction size for pores formed by (a) three and (b) four particles.
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Figure 5. Grain size curve [19] and CSD curves obtained by different methods (d and P are the diameter and weight
percentage related to grain size distribution, respectively; Dcs and Fcs are the diameter and weight percentage related to
CSDs).

Figure 6. Grain size curve [22] and CSD curves obtained by different methods (d and P are the diameter and weight
percentage related to grain size distribution, respectively; Dcs and Fcs are the diameter and weight percentage related to
CSDs).
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It is worth observing that the best interpretation of experimental CSD, through the model
proposed by the author, is obtained for the porosity value n = 0.34 characterizing the tested
material.

3.2. Problem’s setting and governing equations

The heterogeneous porous material is decomposed into several elements (Figure 8a), each
characterized by initial grain size curve (Pi,j,0), porosity (ni,0) and permeability (ki,0); i, j, and t
define the system element, materials granular fractions and the elapsed time, respectively [24].
Each element is schematically composed by original material (Vor,i,t), deposited/accumulated
particles (Vacc,i,t; Vacc,i,0 = 0), due to migration phenomena, and water saturating the ith element
(Vw,i,t). According to the Kozeny-Carman Eq. (4), the permeability ki,t is expressed as

ki, t ¼ χ � γw

μw
� n3i, t
ð1� ni, tÞ2

� d2hi, t ð20Þ

The variables Pi,j,t and ni,t (and then ki,t) evolve because of erosion-deposition processes,
associated with particle migration, causing an unsteady seepage flow. The unsteady state is
simply analyzed by considering a sequence of steady states (time interval, Δt; “successive
steady states” method); for each Δt, the continuity equation holds:

Figure 7. Grain size distribution (GSD) [23], experimental CSD curve [23] and CSD curves obtained by the proposed
method (d and P are the diameter and weight percentage related to grain size distribution, respectively; Dcs and Fcs are the
diameter and weight percentage related to CSDs).
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Therefore, the suspension rate Qt through the elements of the section Ω, and the volume of the
suspension Vout,i, composed by the scoured particles dragged by the seeping fluid, Vs,out,i,t,
entered and washed out Vw,out,i,t from each element, is the same during each Δt:

Qt ¼ Ω � ki, t � Δhi, tli
; Vout, t ¼ Qt � Δt ð22Þ

Furthemore, Qf,in = Qt and Qs,in = 0 are assumed: in the first element of the system, during each
Δt, the incoming fluid volume Vw,in,t = Vs,out,1,t. Eq. (3) is thus discretized as

Figure 8. (a) Problem setting. One-dimensional unsteady seepage flow through a heterogeneous base (B)-transition (T)
system; B and T are divided into elements; a constant head difference ΔH is imposed. Forces acting on a migrating
particle: (b) plugged particle (d0); and (c) unplugged particle (d < d0); d, particle diameter; d0, average size of a pore
channel (adapted from Ref. [2]).
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vD, t
cs, iþ1, t � cs, i, t

li
¼

φf , i, tþ1 � φf , i, t

Δt
ð23Þ

with ϕf = (1 - cs)∙n. Eq. (23) can be rewritten as

vD,t �Ω � Δt � ðcs, iþ1, t � cs, i, tÞ ¼ Ω � li � ðφf , i, tþ1 � φf , i, tÞ ð24Þ

Then, it is possible to evaluate the temporal variation of the fluid volume within the elements
which constitute the porous material:

Qt � Δt � ðcs, iþ1, t � cs, i, tÞ ¼ ðVf , i, tþ1 � Vf , i, tÞ ð25Þ

The particles can be scoured if subjected to a flow velocity greater than the local, critical flow
rate (vcr) [14, 25]; the analysis of the actions on a movable particle and the dynamic equilibrium
along the flow direction [2] allow the estimate of vcr.

In some cases, the drag force FD (Stokes law) may overcome the maximum local shear force
related to the effective weight of the particle and the acting confining stresses (FS) (Figure 8b
and c); therefore, the particle can be eroded : α is a coefficient allowing to consider the density
of the granular matrix (0 < α ≤ 4/π); α = 4/π for granular matrix composed by spherical particles
arranged in hexagonal configuration, most dense state [14, 26].

For a horizontal flow path, vcr is expressed as follows:

vcr ¼ n
3μw
� ðγs � γwÞ

d2

6
þ αd

2
ðσ0z þ σ

0
yÞ

� �
tanϕ ð26Þ

(laminar flow)

24μw

ρwdðvcr=nÞ
þ 5:6 ffiffiffiffiffiffiμw

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρwdðvcr=nÞ

p þ 0:25

" #
1
4
ρw

vcr
n

� �2

�ðγs � γwÞ
d
3
ðsin αþ cos α tanϕÞ � λ ðσ01 þ σ

0
2Þ tanϕ

ð26:bisÞ

(turbulent flow)

Eq. (33.bis) (turbulent flow regime) must be numerically solved. The original material is
subjected to strong confining actions (frictional forces, geometric hindrances); high flow veloc-
ities are needed to mobilize the plugged particles. Conversely, the accumulated, unplugged
particles, may be easily scoured during simulation; the corresponding critical flow velocity
assumes small values (Eq. (26)).

The hydraulic conditions allowing the migration of movable particles are first considered; the
analysis of the geometric conditions follows, as long as the previous ones is verified (v > vcr). To
determine the scoured particles (diameter dj) composing the (ith) element, dj is compared with
the constriction sizes of the (i + 1)th element. In particular, for each dj, the percentage Fcs,i,j,t of
smaller constriction sizes of the (i + 1)th element is defined (Figure 9); if the percentage of
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openings through which particles (dj) may pass (100 – Fcs,i,j,t) is null, the considered (dj)
and higher remaining granulometric fractions are not able to cross through the voids of the
(i+1)th element and then deposit; conversely, the smaller granulometric fractions can be
scoured (if v > vcr).

The balance of the eroded and deposited granular fractions allows to redefine the grain
size distribution, the porosity and the permeability of each element and, then, to determine
the piezometric gradients and flow velocity associated with each element of system. Once the
fractions of accumulated (Sacc,i,t) and original eroded (Sor,i,t) material are determinated through
hydraulic and geometric methods, it is possible to evaluate the specific weight of filtering
suspension, by rearranging the equation proposed by Indraratna and Vafai [10]:

γmi,t ¼
Sacci, t
100 Vacci, t þ Sori, t

100 Vori, t

� �
γsi þ Vwi,t � γw

Sacci, t
100 Vacci, t þ Sori, t

100 Vori, t þ Vwi,t

ð27Þ

The material scoured from the ith element, at time t (Vs,out), depends on the specific weight of
the filtering suspension, γm [10]:

Vs,outt, i ¼
γmt, i � γw

γs � γw
� Vout, t ð28Þ

The scoured volume of material is composed both by Vor,out and Vacc,out [27]:

Vs,outt, i ¼ Vor,outt, i þ Vacc,outt, i ; Vacc,outt, i ¼
Vacct, i � Sacci, t

Vacct, i � Sacci, t þ Vort, i � Sort, i
ð29Þ

Vor,out and Vacc,out are decomposed into their granular fractions [10]:

Figure 9. Comparison between particles (diameter dj) and CSD.
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ΔVor,outi, t, j ¼ Vor,outt, i �
Pori, t, j � Pori, t, j�1

Sori, t
; ΔVacc,outi, t, j ¼ Vacc,outt, i �

Pacci, t, j � Pacci, t, j�1

Sacci, t
ð30Þ

The element within which each scoured fraction is deposited may be determined by taking
into account the corresponding length Lmig,j of the migration path; Lmig,j depends on the
probability of a particle not encountering a smaller constriction size. The length covered by an
assigned particle up to its arrest is based on concepts of stereology; it depends on the constric-
tion sizes distribution (CSD) related to the PSD (pores size distribution) as well as on the
thickness of the filter [12, 15]. The length of the migration path is then compared to the length
that the particles can cross during each step Δt: Lmig, j ¼ minðs �mj;Ut � ΔtÞ, mj being the num-
ber of constrictions greater than the particle size encountered by the particle along its path; s is
the unit step assigned to each comparison (Figure 10). At time t + Δt, the accumulated and
original volume fractions within each element become [28]:

ΔVacci, tþ1, j ¼ ΔVacci, t, j þ ΔVaccin i, t, j � ΔVaccouti, t, j; ΔVor i, tþ1, j ¼ ΔVori, t, j � ΔVor,outi, t, j ð31Þ

3.3. Validation

Theoretical analyses have been carried out to validate the proposed numerical procedure by
simulating laboratory tests carried out by different authors on selected materials [2, 24].

3.3.1. Results by Atmazidis

Atmazidis [28] analyzed the particle migration phenomena at the contact between sands (base,
B) and gravels (transition, T), under horizontal seepage flow and constant hydraulic gradient (i
= 0.25) conditions. The amount of sand deposited within the gravel pores was measured after
each test.

The main features of the experiments and the properties of the tested materials (e.g., grain size
curves) are shown in Table 2 and Figure 11.

Figure 12 shows the sand content retained in each gravel T material, migrated from the B
material, at the end of each test, in function of the distance from sand-gravel interface.

Through the proposed numerical procedure, the experimental results [28] have been back
analyzed. The following input parameters have been considered: Tmaterial (gravel) thickness
= 2.5 m (experimental value); number of elements in which T material has been divided = 20
(each 12.5 cm length); number of elements in which B material has been divided = 1 (1 m
length). The B material erosion resistance has been neglected [2].

The results, in terms of particles migration distance, obtained through the proposed procedure,
appreciably approximate the values measured by Atmazidis [28]. Particularly, for “clean”
gravel (Gravel 1, 0% initial sand content), particles migration distances are larger than those
ones obtained for gravels initially containing small sand content (Gravel 2 and Gravel 3)
(Figure 12).
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Furthermore, the numerical procedure allows to simulate the development of a filter at the
sand (B)-gravel (T) interface, able to contrast the sand particle migration: high values of the
sand content in the upstream layer of the gravel (15 ÷ 25% by weight, Figure 12) mean that a
filter is formed [2].

3.3.2. Results by Skempton and Brogan

The effects of an upward seepage flow through a “gap graded” material, under increasing
flow rate (Q) conditions, were measured [29]. The progressive increase of Q was obtained by
increasing the hydraulic head difference between the lower and the upper surface of the
material sample, until the piping process was triggered.

Figure 10. Proposed numerical procedure flowchart.

Test number 5 6 7 8

Grain size curves of coupled sand and gravel A,3 A,2 B,1 A,1

Sand content of gravel before test (% by weight) 8% 4% 0% 0%

Maximum sand migration length (cm) 75 110 125 215

Amount of sand deposited within gravels (kg) at the end of test 3.17 7.88 9.25 14.5

Negligible migration after (hours) 3.25 3.50 3.00 6.50

Table 2. Synopsis of Atmazidis experimental tests (adapted from Ref. [28]).
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Figure 11. Grains size curves of involved materials (transition, T; base, B), adapted from Ref. [2].

Figure 12. Sand content (s.c.) retained in the gravel transition at the end of the filtering process; theoretical vs experimen-
tal results: (a) s.c. after 6.5 hours (Sand A-Gravel 1); (b) s.c. after 3 hours (Sand B-Gravel 1); (c) s.c. after 3.5 hours (Sand A-
Gravel 2); and (d) s.c. after 3.25 h (Sand A-Gravel 3), adapted from Ref. [2].
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The main properties and the grain size curves of the considered tested material samples are
reported in Table 3 and Figure 13, respectively [29].

In all experiments, it is observed an initial linear increase of the average seepage rate (q),
following the rise of the average hydraulic gradient (i), until a critical value is achieved;
afterwards, the ratio q/i progressively grows if i increases; the erosion of fine particles occurs;
while, coarse (gravel) particles are not scoured [24].

To interpret the lab results, each sample (length L = 0.16 m) has been divided in eight elements
(length 0.02 m); piezometric head ΔH = i*L (with i e (0, 0.28) and e (0, 0.37) for sample A and B,
respectively) has been imposed. Under laminar flow condition, the numerical results seem to
well interpret the experimental ones, especially for i < 0.10 (sample A) and i < 0.17 (sample B);
for higher values of i, the numerical values follow a linear trend, underestimating the experi-
mental ones. Under turbulent flow condition, for high values of i, the seepage velocity expo-
nentially increase and the numerical results well fit the experimental ones (Figures 14 and 15).
The difference between two flow regimes (laminar and turbulent) is due to higher drag forces
in the turbulent regime inducing particles migration and, consequentially, the increase of
seepage velocity.

4. Analysis of the empirical Terzaghi’s criteria

Simulations of the erosion process of B material at the interface B-T have been carried out [30]
for two B materials (extended (B1) and homogeneous (B2) grain size distribution GSD). For

Figure 13. Grain size curves: (a) materials used to prepare the samples and (b) tested samples.

Sample k (m/s) N Gravel (%) Sand (%)

A 0.0045 0.34 85 (G) 15 (S1)

B 0.0084 0.37 85 (G) 15 (S1)

Table 3. Main properties of tested materials.
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each B, different transitions T, matching or not the Terzaghi’s criteria [30, 31], have been
considered (Figure 16a and b). Results obtained for some B-T combinations are reported in
Figures 17–21 in terms of evolution of permeability, porosity, average hydraulic gradient, flow
velocity, and flow rate. To better understand the phenomenon, results for the combination B1-
T3 are reported in Figures 22 and 23: the base has been divided into 10 elements; the transition
has been divided in 30 elements. At the end of the analysis (t = 120 hours) particles of the
eighth, ninth, and 10th element of the base are migrated within the first element of the
transition forming the filter.

Figure 14. Numerical results vs experimental values: seepage flow (v) vs i, sample A.

Figure 15. Numerical results vs experimental values: seepage flow (v) vs i, sample B.
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In Figure 22, the CSD (constriction size distribution) of the filter at the interface B1-T3 is
shown. Filter’s voids, related to the GSD of the 10th element of the base, are small enough to
stop the migrating particles, according with Terzaghi’s criteria. Analysis of the results, more-
over, allows to identify areas for grain size distributions of the transitions that show a similar
behaviour (Figure 23a and b). For B1, a first zone which incorporates the permeability ratio
(finer transitions) is identified: the filter developes rapidly, in reason of the GSD similar to the B
material, which minimizes the opening of the voids. The small percentage of fine particles of
the T fosters backward erosion, which developes downstream (no confinement) back to the
interface B-T. The stabilization of the phenomenon, therefore, is not guaranteed. The second
zone has its upper limit in the piping ratio: the GSD of the transitions is different from the B one.
The permeability of T is high while hydraulic gradient is small. The weight increase of the
matrix particles close to the drain and, as a consequence, the increase of the resistance force
opposite to the particles displacemnts strongly reduce the possibility of downstream backward
erosion. The B-F-T system quickly reaches a configuration of granulometric equilibrium. A
third zone, with coarser T, is delimited by a limit T, beyond which it is observed the filter (F) is
not formated at the interface. Migrating particles, in fact, cross the transition to the drain
without being intercepted. For B2, the first zone, with the finer transitions, is located before
the permeability ratio: the filter quickly forms at the interface; however, backward erosion
phenomena downstream are observed because of the small weight of the finer particles of the
transition close to the drain (no confinement). The stabilization of the phenomenon is not
ensured; for high values of ΔH, a rise of the flow rate is observed. The second zone is defined
by the permeability ratio as lower limit and the piping ratio as upper limit. The influence of the
hydraulic load is negligible and no backward erosion downstream is observed. The stabiliza-
tion of migration is ensured. The third zone has features similar to those identified for the base
B1 [32].

Figure 16. Grain size distributions of bases and transitions analyzed: base B1 (a), base B2 (b). Terzaghi’s criteria have been
highlighted (piping ratio D15f/D85b < 4, permeability ratio D15f/D15b > 4), adapted from Ref. [32].
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5. Analysis of cases

5.1. Suorva dam

Sinkholes and leaks occurred through the moraine core of Suorva dam (Sweden) during
periods of floods and high water level in 1983 [33]. In one case, in October 1983, up to 100 l/s
of turbid leakage was seen but reduced after 10 days to about half this amount. Figure 24
shows the dam section and the possible leakage routes. The upper part of the dam was
constituted by a coarse material, unable to contrast the internal erosion. The intermediate parts
were constituted by materials with seal capacity only after an excessive erosion that may
induce damages and sinkholes, as occurred at Suorva. Particularly, the erosion occurred in the
core, through the entire width of the filter. This avoided the free downward drainage in the

Figure 17. Simulation results for B1-T1 system. It is worth observing a downstream backward erosion; stabilization of the
particle migration phenomenon is not attained. Simulations repeated at ΔH = 5 m and ΔH = 20 m showed a remarkable
influence of the hydraulic head, adapted from Ref. [32].
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core, through the entire width of the filter. This avoided the free downward drainage in the

Figure 17. Simulation results for B1-T1 system. It is worth observing a downstream backward erosion; stabilization of the
particle migration phenomenon is not attained. Simulations repeated at ΔH = 5 m and ΔH = 20 m showed a remarkable
influence of the hydraulic head, adapted from Ref. [32].
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filter, maintaining the water level in it to only 2 m below reservoir level for a relatively long
time. The dam was not provided with any drain along the filter or into the downstream
rockfill. In the lower part of the dam, where there was a fine and a coarse filter, the filter was
finer, with a maximum d15 of 1.0 mm, compared to a Sherard recommended size of 0.7 mm.
Such “some-erosion” filters would soon seal if erosion initiated.

There were indications of erosion at the core-foundation interface, but no extensive damage.
The grouting records along the dam at the position where the leaks and sinkholes occurred
show large grout takes at the possible leakage positions high in the core and lower in the core;
and at the base of the core and into the upper parts of the foundation. To protect the dam
against internal erosion and provide it to a drainage system to discharge the leakage flows
caused by future incidents, a rockfill berm was built [33] on the downstream slope.

Figure 18. Simulation results for B1-T5 system. Downstream backward erosion is negligible; stabilization of the particle
migration phenomenon is reached. Simulations repeated at ΔH = 5 m and ΔH = 20 m showed no remarkable influence of
the hydraulic head, adapted from Ref. [32].
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5.2. San Valentino dam

The 32 m high San Valentino “zoned” embankment dam was built in the 1940s in the basin of
Adige river, North Italy, near the small town S.Valentino alla Muta (Bolzano); the dam is 447 m
long and 7 m wide; the maximum reservoir elevation is 1498.10 m a.s.l. (Figure 25a). The dam
project was modified several times to take into account the expected settlements and flow
rates; in 1942, an advanced project was elaborated; the construction works were soon
interrupted during the Second World War; construction ended in 1950 [34, 35].

Fan-outwash materials (moraine debris with minor amounts of sand and silt) mainly affect the
left side of the valley; the subsoil is mainly composed by fine gravel, sand and silt layers, with

Figure 19. Simulation results for B2-T1 system. The downstream backward erosion is appreciable; stabilization of the
particle migration phenomenon is not guaranteed. Simulations repeated at ΔH = 5 m and ΔH = 20 m showed a remarkable
influence of the hydraulic head; if ΔH = 20 m, an uncontrolled increase of flow rate can be observed, adapted from
Ref. [32].
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Figure 20. Simulation results for B2-T3 system. Downstream backward erosion is negligible; stabilization of the particle
migration phenomenon is not attained. Simulations repeated at ΔH = 5 m and ΔH = 20 m showed no remarkable influence
of the hydraulic head. Length of the filter is about 70 cm, adapted from Ref. [32].

Figure 21. Non-dimensional discharge flow Q/Q0 along time t for systems B1-T1, B1-T5, B2-T1 e B2-T3. B1-T1 and B2-T1
systems show the continuous increase of the discharge flow along time; for systems B1-T5 and B2-T3, the flow stabilizes
after a few hours at ≈20–30% of their initial value, adapted from Ref. [32].
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peaty lenses, of alluvial and lacustrine deposition, characterized by significant thickness and
low permeability [35].

On the right side, a fissured bedrock outcrops or lies at shallow depth. In the central part, the
bedrock dips steeply and at the bottom of the valley it disappears under the sediments mantle

Figure 22. Evolution of grain size distribuition in the elements of B1-T3. The CSD of the filter is reported, adapted from
Ref. [32].

Figure 23. Transitions (T)-base (B) systems, with graded (a) or almost uniform (b) grain size curves, adapted from Ref.
[32].
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(Figure 25b). The fan-outwash material was selected for the dam construction. The grain size
of the quarried soils uniformly extends into the range of sand, gravel and silt with negligible
amounts of clay. The core grains had dmax = 50–60 mm; to reduce the core per-meability, a small
amount of bentonite was added, without appreciable effects (Figure 25c). The embankment
material was compacted at wopt = 6.6% (γd = 20.8 kN/m3).

Figure 24. Suorva dam: possible leakage paths during 1983 incident (adapted from Ref. [33]).

Figure 25. San Valentino dam: (a) main cross section (A-A), settlements and piezometric measuring points; (b) longitudi-
nal profile: (cc) concrete cutoff (grey colored), (fb) fissured bedrock, (al) alluvium, (fo) fan-outwash; and (c) grain size of
materials (adapted from Ref. [34]).
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Piezometers and assestimeters were installed during construction and operation. In the central
part of the dam, small and slow increments of the piezometric heads (p.h.) were measured. In
the period 1950–1985, the ratio between the measured maximum value of p.h. and the maxi-
mum reservoir level increased about 15% (sect. A-A, Figure 26). Afterwards, it became almost
constant [35].

Complex FEAs have been deviced to evaluate the properties (geometry, permeability and
stiffness heterogeneity) of foundation soils and dam body materials, concrete cutoff, perme-
ability defects of the drain and of the “nominal core”, unsaturated hydraulic behavior of
materials [34].

Seepage analyses results show that the measured free surface, piezometric heads and leakages
cannot been numerically simulated if a homogeneous dam is considered; it is necessary to
impose a k-zoning of the dam body. Results also show that the current k distribution differs
from the end of construction k distribution (Figure 27), due to suffusion phenomena that
affected the core material, mainly the finer fractions. The interpretation of the piezometric

Figure 26. San Valentino dam: Ratio and difference between the yearly maximum pie-zometric heads Hpz,max (piezome-
ters paAM2 and paAC, Sec. A-A) and the yearly maximum reservoir elevation Hmax (the piezometric heads are referred to
the elevation of the lower point of the valley 1470 m a.s.l.), adapted from Ref. [34].
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heads measured near the cutoff allows to hypothesize a local permeability defect (local increase
of k) immediately above the diaphragm wall, at the contact with the embankment materials.

According to this hypothesis, properly modeled, an appreciable agreement (both max values
and time evolution) among measured and simulated piezometric heads (Figure 28) and leak-
ages values, is obtained [34].

5.3. Results

Migration phenomena regarding the moraine materials of the S. Valentino and Suorva
dams [2, 27] have been simulated through the proposed numerical procedure (Table 4). The
following input parameters are assigned: total length of the B-T systems = 3 m (for B, 1 m; for T,
2 m); number of elements dividing the B-T system = 60 (each 5 cm length); piezometric head
difference H = 6 m [27]. To favor their migration, B material particles are considered unplugged
(i.e., confining stresses are neglected). Numerical results point out that the finer fractions
(d ≈ 0.002 mm) of the analyzed core materials are eroded [27]. The ratio Qt/Q0 versus time t is

Figure 27. San Valentino dam: permeabilities k (m/s) of dam materials and foundation soils, (AC) after construction and
(A) current (adapted from Ref. [34]).
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shown in Figure 29 for the three analyzed case; Q0 is the initial value of the suspension flow
rate: Qt/Q0 rapidly increases if the Suorva core material is protected by the coarser transition,
due to the intense erosion of the finer fractions of B and the corresponding increase of perme-
ability [27].

After 12 hours,Qt/Q0 still increases: both granulometric and hydraulic stabilizations are not yet
occurred. If the Suorva core material is protected by the finer transition, after 4 hours Qt/Q0

slowly reduces: the erosion of B particles is not still completed; the clogging of the voids of T
progressively occurs and the phenomenon seems to achieve a stable state [2]. In San Valentino
dam, the washout of the finer particles of B is controlled by the finer protective transition; Qt

Figure 28. San Valentino dam: measured and theoretical p.h., in 2011 (adapted from Ref. [34]).

Materials k0 (m/s) n0 ϕ (�) c’ (kPa)

San Valentino (Base) 1 � 10�6 0.3 25 0

San Valentino (Transition) 1 � 10�6 0.3 25 0

Sourva (Base) 1 � 10�6 0.3 25 0

Sourva (Finer Transition) 2.5�10�6 0.3 25 0

Sourva (Coarser Transition) 5 � 10�6 0.3 25 0

Table 4. Physical and mechanical parameters characterizing the analyzed materials.
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slightly increases compared with the Suorva considered cases. Stabilization occurs after 6
hours and Qt becomes only 1.2 times greater than Q0.

Very different values of the lengths of the path crossed by the scoured particles, through the
analyzed granular transitions (T), are observed (Figure 30). Within the T material of the S.
Valentino dam, the particles mainly deposit and accumulate just a few cm, after the B-T
interface. In the finer T material of Suorva dam, the particles mainly accumulate at about 70
cm after the B-T interface; while, in the coarser transition material of Suorva dam, at about 150
cm after the B-T interface [2].

Figure 29. Ratio Qt/Q0 vs time t (hours) ; Q0, initial value of the suspension flow rate Qt (adapted from Ref. [2]).

Figure 30. Particles accumulation in the protective transitions (d = 0.002 mm) (adapted from Ref. [2]).
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6. Concluding remarks

An original numerical procedure to simulate the particle migration phenomena in granular
media due to seepage flows has been developed. The procedure takes into account voids,
constriction sizes, and porosities of the particulate materials (geometric-probabilistic models)
as well as the rate of the seeping suspension and piezometric gradients (hydraulic models).
The continuous variations (in the space, 1D, and along time, t) of the physical (porosity n) and
hydraulic (permeability k) properties of the granular medium, during the coupled seepage
flow, deposition and scouring particles processes, are simulated. First, validation of the pro-
posed method has been carried out by simulating selected experimental tests, referred to
materials whose diameters range from clay to sand (base materials, B) and sand to gravel
(granular transition, T). Then, the proposed numerical procedure has been applied to interpret
the empirical Terzaghi’s criteria. Finally, the analysis of the granulometric stability of cohesion-
less moraine materials, constituting the core of earth dams, has been carried out. Through the
proposed numerical procedure, the particle migration phenomena occurring at the interface of
the contact core–protective transition has been simulated. Results show that the proposed
procedure is able to simulate the analyzed deposition–erosion processes; particularly, “not
negligible” erosion phenomena, involving the finer fractions of these materials, may cause
anomalies and malfunctions in dams whose core is constituted by broadly graded cohesionless
materials protected by coarse granular transitions.
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Abstract

Some rules for particle migration, filtering, and segregation were elaborated on the basis
of some simple laboratory tests and data of well-designed, artificial mixtures of natural
sand grains. Use was made of the knowledge available in the field and two pairs of
grading entropy parameters. These parameters incorporate all information of the grad-
ing curve and are pseudo-metrics in the “space of the possible grading curves.”

Keywords: grading entropy, internal erosion, suffosion, filtering, segregation, piping

1. Introduction

The internal stability of compacted earth dam materials, granular filters, and soils on natural
slopes is essential. The internal erosion involves loss of particles under seepage flow; the
matrix of coarse soil particles may or may not be unstable [1–3]. The term “suffosion” is
Russian in origin and is used to describe the process of removal and transport of small soil
particles through pores [4, 5].

It is desirable that adjacent materials in earth dams or rockfill dams should act as filters for
each other and the material should not segregate [6–14]. Broadly graded materials may
segregate during the construction process where the particles are able to flow freely, such as
tipping and spilling. The likelihood of backward erosion is greater for segregated soil than
for non-segregated soil [7, 8].

The inherent stability or proneness to segregation is usually specified in terms of particular
diameters Dx (or dx), which represent the particle diameter for which x% of grains (by weight)

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



are smaller. The susceptibility to suffosion is assessed by the graphical approach [5], where a
grain size distribution is compared with empirical upper- and lower-bound thresholds; the
method is not valid for gap-graded grading. The filter rules—the compacted earth dam or core
material should obey when associated with each other and with the dam base—are formulated
in terms of pairs of grading curve points [9–15], which is “too simple” in case of broadly
graded soils.

This chapter summarizes three grading entropy-based rules, on the basis of the original work
of Lőrincz and some applications [15–22]. The suggested rules differ from most existing rules
in that the whole grading curve is used instead of some limited number of grading curve
points, without any constraint on the shape of the grading curve. They were elaborated on
the basis of the knowledge available, the measured data available in the literature, and data
measured for well-designed sand mixtures by Lőrincz. The rules were verified by the exam-
ined cases [19–22], an example included.

2. Grading curve characterization

The grading curve is a statistical distribution of logarithm of the diameter with respect to the
dry weight. It is a discrete distribution curve with a non-uniform cell system in arithmetic
scale. To characterize it, first of all, the statistical cell system—the so-called abstract fraction
system—is defined and the space of the grading curve is introduced.

Then the two grading entropy parameter pairs are introduced. The first pair is related to the
expected (log diameter) value of the grain size distribution, in non-normalized and normalized
forms. The normalized version has a shift symmetry on the log d axis.

The second pair is the entropy arisen from the mixing of the fractions, in non-normalized and
normalized forms. Its maximum for a fixed value of the first coordinate is related to a single
grading curve with finite fractal distribution. The grading curves can be represented in terms
of the two parameters in the entropy diagram.

2.1. The fractions

The fraction system is defined on the pattern of the classical sieve hole diameters (where
measurements are made), by successive multiplication with a factor of 2, as follows. The
diameter range for fraction j (j = 1, 2…, see Table 1):

2jd0 ≥ d > 2 j�1d0, ð1Þ

or the upper diameter range for fraction j:

dj ¼ 2dj�1 ð2Þ

Using log2 form results in an integer increment by each multiplication and fraction as follows:
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log2dj ¼ 1þ log2dj�1 ð3Þ

The variable d0 is the arbitrary smallest diameter, and assumingly a 2-power, d0 = 2�k. Its
possible value is equal to the height of the SiO4 tetrahedron (d0 = 2�22 mm).

log2d1 ¼ 1þ�22 ð4Þ

The fraction serial number variable can be expressed by the diameter:

j ¼ kþ log2dj ð5Þ

The integer j/j � 1 is a so-called abstract upper/lower diameter limit (log2 dj shifted by k).

2.2. The grading curve space

By the measurements of the fractions during sieving, the relative frequencies of the fractions xj
(j = 1, 2, 3…N) can be determined. These fulfill the following equation of each grading curve:

X∞

j ¼ 1

xj ¼ 1, xj ≥ 0 ð6Þ

which can be rewritten as follows:

XN

i¼1
xi ¼ 1; xi ≥ 0; N ≥ 1: ð7Þ

where i is a rescaled fraction serial number being equal to 1 at the finest non-zero fraction with
original serial number jmin (see Table 1), the integer variable N is the number of the fractions
between the finest jmin and coarsest jmax non-zero fractions:

N ¼ jmax � jmin þ 1: ð8Þ

The space of the grading curves with N fractions can be identified with the N � 1-dimensional,
closed simplex (which is the N � 1-dimensional analogy of the triangle or tetrahedron, the
two- and three-dimensional instances, Figure 1) as follows. Each grading curve is related to a
simplex point, the relative frequencies xi can be identified with the barycentric coordinates of
the points of the N � 1-dimensional closed simplex.

Fraction number j 1 … 23 24 …

d [–] d0 to 2 d0 … 222 d0 to 223 d0 223 d0 to 224 d0 …

d [mm] 2�22 to 2�21 … 1–2 2–4 …

S0j [–] 1 … 23 24

Table 1. Definitions of fractions, based on the smallest particles likely to occur in nature.
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2.3. The grading entropy coordinates of the grading curve

The grading entropy concept is an application of the statistical entropy to the grading curve [15, 23],
by introducing a uniform cell system for the derivation besides the fractions. It condenses the
information of the whole grading curve into two pairs of parameters. The grading entropy S is the
sum of two “means” [15]:

S ¼ S0 þ ΔS ð9Þ

which are called as base entropy S0 and entropy increment ΔS. The base entropy S0 is a
weighted mean or expected value of the fraction serial number:

S0 ¼
Ximax

i¼imin

xiS0i ð10Þ

which depends linearly on the log2 diameter d (see Eq. (5)), S0i is the grading entropy of the ith
fraction, being identical to the fraction serial number (see Table 1):

S0i ¼ i ð11Þ

Any decrease in the base entropy S0 can be explained by the decrease of the mean grain
diameter, for example, due to breakage. Any increase in the base entropy S0 can be explained
by the increase of the mean grain diameter, for example, due to suffosion or segregation.

The relative base entropy A is defined as follows:

A ¼ S0 � S0min

S0max � S0min
ð12Þ

where S0max and S0min are the entropies of the largest and the smallest fractions in the mixture,
respectively.

Figure 1. (a) Standard simplex images with dimension less than 4. (b) The lattice of the continuous sub-simplexes of the
six-dimensional simplex.
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The relative base entropy A varies between 0 and 1, its value is equal to 0.5 if all relative
frequencies of the fractions xj (j = 1, 2, 3,…, N) are equal. It measures the distance of the mean
log2 diameter and the smallest log2 diameter. Geometrically, the grading curves with the
same A have the same sub-graph area. Since A is linear, the A = constant condition in
addition means parallel hyperplanes in the N � 1-dimensional space generated by the
simplex (Figure 2(a) and (b)).

The entropy increment ΔS is the logarithm of the weighted generalized geometric mean of the
relative frequencies of the fractions xj (j = 1, 2, 3,…, N):

ΔS ¼ � 1
ln 2

X
xi6¼0

xi ln xi: ð13Þ

The entropy increment ΔS measures how much the soil behavior is really influenced by all of
its N fractions. For those grading curves, in which all N fractions are well represented, the
entropy increment is typically close to ln N/ln 2. The normalized entropy increment B is
defined as follows:

B ¼ ΔS
lnN

ð14Þ

Being a strictly concave function, the normalized entropy increment B has a unique maximum
for each A = constant value, which is the following grading curve with finite fractal distribution
(see the definition in [24]):

x1 ¼ 1
XN

j¼1
aj�1
¼ 1� a

1� aN
, ð15Þ

xj ¼ x1 aj�1 ð16Þ

Figure 2. The constant A sections of the simplex and the optimal line (a) for a two-dimensional simplex and (b) for a
three-dimensional simplex [16].
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where parameter a is the root of the following equation:

y ¼
XN

j¼1
aj�1½j� 1� AðN � 1Þ� ¼ 0: ð17Þ

As A varies between 0 and 1 (the extreme values represent the extreme fractions 1 and N), the
positive root a varies between 0 and ∞ in the function of N. The optimal grading curve has
finite fractal distribution with fractal dimension n given by:

a ¼ 2ð3�nÞ ð18Þ

The optimal grading curve is concave if A < 0.5, linear if A = 0.5, convex if A > 0.5 (see Figure 3).
Having no inflexion points, the optimal grading curve has the shortest curve length out of the
possible grading curves with a specified A. The optimal points of the simplex constitute a
continuous line called optimal line which can be seen in Figure 2.

In the linear case, it has a unique maximum, being equal to 1/ln 2, in the center of the simplex
where each relative frequencies xi are the same, in this case the “disorder” is maximal in the
system. The disorder originated from mixing of the fractions can be measured by the entropy
increment ΔS, which is the entropy of the fractions neglecting the fact that the width of the
statistical cells in arithmetic scale is different

2.4. The entropy diagram

Four kinds of maps can be defined between the N � 1-dimensional simplex with fixed N,
with fixed smallest fraction serial number imin and the two-dimensional space of the entropy
coordinates: entropy map with coordinates [So, ΔS], the normalized entropy map with
coordinates [A, B] and the two partly normalized entropy maps with a mixture of normal-
ized and non-normalized coordinates, that is, [So, B] or [A, ΔS]. The optimal line of the
simplex—between vertices 1 and N�

Figure 3. Optimal grading curves with finite fractal distribution, (a) N = 7. A varies. (b) A = 2/3, N varies.
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These maps are continuous on the closed simplex for fixed N. The image of the simplex—the
entropy diagram—has a maximum and a minimum value for every possible value of A or So.
The optimal line of the simplex maps into the maximum line, the map along the optimal line—
maximum B line is one to one (see Figure 4(c) and (d)). The simplex edges and vertices map
into the minimum line. The minimum and maximum diagram lines—illustrated in Figures 4
and 5—differ in scaling.

In terms of the original entropy coordinates, the map is continuous if N is changing, and in
terms of the normalized entropy coordinates, the map is not continuous if N is changing. The
normalization with respect to a coordinate results in the range being fixed in that direction.
The maximum B point is equal to l/ln 2 = 1.44 for any N, the maximum of the entropy
increment ΔS is equal to ln N/ln 2.

The images of the optimal lines—the maximum B lines—will nearly coincide for any number
of the fractions N (Figure 5(b)) in the normalized diagram but will separate in terms of the
non-normalized coordinates [So, ΔS], reflecting the structure of the continuous sub-simplexes
of a simplex. This is illustrated in Figures 1(b) and 5(a) for soils with up to seven fractions.

The inverse image of a regular normalized entropy diagram point [A,B] in the simplex is situated
on the A = constant, N � 2-dimensional, affine hyperplane, with shape of an N � 3-dimensional

Figure 4. The normalized entropy map and the inverse image for N = 3. (a) The two-dimensional simplex and its A = 0.5
hyperplane section. (b) The image of the simplex in the entropy diagram. (c) and (d) The inverse image of pointsA = 0.5, B = 1,
1.4 and Bmax = 1.44 in the simplex and in the space of the grading curves, respectively.
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“sphere,” centered to the optimal point, its “radius” depends on Bmax � B. The related grading
curves have the same sub-graph area and the deviation from the optimal grading curve depends
on Bmax � B.

3. The construction of the grading entropy-based rules

3.1. The methods

The particle migration (or internal stability) rule, the filter rule, and the segregation rule were
constructed as follows. For each rule, simple soil testing programs were designed and executed
by using artificial mixtures of natural sand grains [15]. Two variables were carefully constructed
using the grading entropy concept [15] for each rule separately.

The entropy variables were used such that the experimental data were plotted on diagrams,
differentiating points which exhibited different physical behavior so that domains of particular
behaviors could be defined. In addition, some other information and existing data (e.g. the data
base related to Ref. [7]) were used.

The additional information was as follows: one piece of information used was that there could be
nomore than two empty particle size fractions between the filter and the base soil, before the base
soil cannot be retained by the filter [21]. This can be derived using Pure Geometry Theorems [21]
and also by using the Terzaghi filter criterion (i.e., the finer is to be protected) as follows:

1 ≤
D
d
≤ 4 ð19Þ

whereD and d are the diameter of the filter and the base soil. Another piece of information was
that the data of suffosion tests could be used for the filter rules, and vice versa, based on the
following consideration which comes from the self-filtering theory of Kézdi [25, 26]. If the
gap-graded grading curve (see eg. Figure 6) is cut into two parts, with the coarser part

Figure 5. Diagrams of simplexes with various N, the image of the optimal lines (“maximum lines”) and the image of the
edges 1 – N, N = 2–7 (i.e., “minimum lines”). (a) The non-normalized diagram. (b) The normalized diagram.
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considered as the filter and the finer part as the base soil, and the base soil part being filtered,
then there will be no suffosion within the soil.

3.2. Particle migration rule

For the particle migration (internal stability-suffosion) rule, simple vertical flow tests were
designed and executed using artificial mixtures of natural sand grains. The dimensions of the
permeameter were 20 cm in height and 10 cm in diameter. It was closed at the bottom by a sieve
which was permeable of grains smaller than 1.2 mm but which retained grains larger than 1.2 mm.

Figure 6. (a–h) Some grading curves of samples used by Lőrincz [15, 21] for suffosion tests. The inset shows the
permeameter test arrangement used in the tests.
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The downward hydraulic gradient [i] was between four and five. The two parts of the
permeameter were separated after the test, and the grading curves were determined. The grain
movements were detected.

The results of the vertical water flow (suffosion) test were represented in the partly normalized
entropy diagram, in terms of the relative base entropy and the entropy increment coordinates A
and ΔS, as shown in Figure 7(a) and the rule was separately set up for each specified N value.
The part of the diagram where the gap-graded grading curves resulted in self-suffosion was
indicated by letter b. The simplified normalized diagram version is shown in Figure 7(b).

If A < 2/3 (zone I), the soil was internally unstable; if A = 2/3 and A < 2/3 (zones II, III), the soil
was internally stable. In zone II, there were no particle movements: the larger particles retained
the smaller particles and the smaller particles supported the larger ones. In zone III, the fines
may have migrated in the presence of seepage flow (“suffosion”).

The internal stability zone III was separated by the 2/3 vertical line. The division curve between
zones II and III connects the maximum entropy points of the mixtures with fraction number
less than N, the shape of the curve between II and III is approximate in Figure 7(b).

The rule can be interpreted such that, in zone I (where A < 2/3), no structure of the larger grains
is present, the coarse particles “float” in the matrix of the fines and become destabilized when
the fines are removed by piping. In the zone where A = 2/3 and A > 2/3 the coarse particles
form a skeleton and total erosion cannot occur. In zone III, the structure of larger particles is
inherently stable, the smaller particles may move by suffosion.

3.3. Filter rule

The filter rule was developed using three series of tests: the filter tests of Sherard [7], the filter
tests of Lőrincz [15], and the suffosion tests of Lőrincz [15]. The grading of the soils tested by

Figure 7. (a) Particle migration zones in half of the partly normalized entropy diagram for mixtures with N = 6 fractions,
the three digit numbers are related to the grading curves shown in Figure 6. (b) Particle migration zones in the simplified,
normalized entropy diagram [21].

Granular Materials170



The downward hydraulic gradient [i] was between four and five. The two parts of the
permeameter were separated after the test, and the grading curves were determined. The grain
movements were detected.

The results of the vertical water flow (suffosion) test were represented in the partly normalized
entropy diagram, in terms of the relative base entropy and the entropy increment coordinates A
and ΔS, as shown in Figure 7(a) and the rule was separately set up for each specified N value.
The part of the diagram where the gap-graded grading curves resulted in self-suffosion was
indicated by letter b. The simplified normalized diagram version is shown in Figure 7(b).

If A < 2/3 (zone I), the soil was internally unstable; if A = 2/3 and A < 2/3 (zones II, III), the soil
was internally stable. In zone II, there were no particle movements: the larger particles retained
the smaller particles and the smaller particles supported the larger ones. In zone III, the fines
may have migrated in the presence of seepage flow (“suffosion”).

The internal stability zone III was separated by the 2/3 vertical line. The division curve between
zones II and III connects the maximum entropy points of the mixtures with fraction number
less than N, the shape of the curve between II and III is approximate in Figure 7(b).

The rule can be interpreted such that, in zone I (where A < 2/3), no structure of the larger grains
is present, the coarse particles “float” in the matrix of the fines and become destabilized when
the fines are removed by piping. In the zone where A = 2/3 and A > 2/3 the coarse particles
form a skeleton and total erosion cannot occur. In zone III, the structure of larger particles is
inherently stable, the smaller particles may move by suffosion.

3.3. Filter rule

The filter rule was developed using three series of tests: the filter tests of Sherard [7], the filter
tests of Lőrincz [15], and the suffosion tests of Lőrincz [15]. The grading of the soils tested by

Figure 7. (a) Particle migration zones in half of the partly normalized entropy diagram for mixtures with N = 6 fractions,
the three digit numbers are related to the grading curves shown in Figure 6. (b) Particle migration zones in the simplified,
normalized entropy diagram [21].

Granular Materials170

Sherard is shown in Figure 8 and the grading of the soils tested by Lőrincz is shown in
Figures 6 and 9. In the filtering test, the filter and base soils are placed into the permeameter
(20 cm in height and 10 cm in diameter) in series separated by a sieve. The downward
hydraulic gradient [i] is between four and five. The suffosion tests of Lőrincz [15] were
reanalyzed as follows. The gap-graded grading curves shown in Figure 6 were cut into two
parts at the gap and one part was considered as the filter and the other part as the base soil. If
suffosion occurred, then the filter was unsafe.

Two pseudo-metrics were constructed from the grading entropy parameters. The logarithm of
the difference between base entropies of the filter and base soils, log(S0f � S0b) described the
distance between the mean log2 diameters of the filter and base soils. The sum of filter and base
soil entropy increments ΔSf + ΔSb expressed the sum of the two “effective” fraction number or
N values (i.e., the total number of important fractions in the two grading curves).

Plotting the test results in terms of the foregoing variables, the safe and unsafe areas were
separated by a straight line: a layer acts as a filter for an adjacent layer (for the base soil) on
the condition that:

ΔSf þ ΔSb ≥ 4 lnðS0f � S0bÞ � 4:39 ð20Þ

where index f and b denote the filtering layer and the material being filtered (base soil),
respectively. The domains defined by the Eq. (20) are shown in Figure 10. The point where

Figure 8. (a) Filter test apparatus in [7, 21]; (b) and (c) Sherard-filter soils [7, 21]; (d) Sherard-base soils [7, 21].
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ΔSf + ΔSb = 0 was defined on the basis of the assumption that in the limit state two empty size
fractions do exist between the filtering fraction and the filtered fraction.

3.4. Segregation rule

For the segregation rule, the simple emax test was used in a modified form. In the emax tests, the
soil is poured into a funnel and flow is allowed from the funnel into a cylinder (10 cm in height
and 10 cm in diameter). The segregation test was made with about double the quantity that
expectedly filled the 10 cm diameter, 10 cm high cylinder. The funnel is just rising above the
soil surface.

Figure 9. Some grading curves of soils used in the filter tests of Lőrincz [15, 21]. Note that the filters are identified by
characters, and the base soils by numbers.

Figure 10. The filter rule with the safe and unsafe areas. The soils are shown in Figures 8 and 9 [15, 21].
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Figure 9. Some grading curves of soils used in the filter tests of Lőrincz [15, 21]. Note that the filters are identified by
characters, and the base soils by numbers.

Figure 10. The filter rule with the safe and unsafe areas. The soils are shown in Figures 8 and 9 [15, 21].
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The artificial mixtures of natural sand grains used for the segregation rule were partly contin-
uous mixtures (A, B), partly gap-graded mixtures (C, D, E), as shown in Ref. [21]. The results
are shown in Figure 11. The difference in the initial and the poured base entropy S0, entropy
increment ΔS, and grading entropy S was represented in the function of the relative base
entropy A. According to the results, some segregation was always measured, but it was with
minor significance if the relative base entropy of the soil was within the following limits:

0:4 ≤A ≤ 0:7 ð21Þ

The results showed that the base entropy difference S0 was negative and the entropy increment
difference ΔSwas positive above the lower limit A = 0.4. Physically, the proportion of the large
grains and the mean log2 diameter is larger if the base entropy difference S0 is larger and vice
versa. The value of ΔS is larger if the mixture is more uniform in terms of fraction relative
frequencies.

3.5. Applications

3.5.1. Non-segregating mixtures

Minimal segregation occurs, and relatively uniformly textured body of soil is achieved for
laboratory testing of granular materials or for the earth works, if a non-segregating mixture
with 0.4 < A < 0.7 is used.

To construct continuous, non-segregating mixtures, some optimal limit curves can be deter-
mined. The optimal mixtures computed by a simple algorithm fulfilling Eqs. (15)–(17) for fixed
N = 5 (where B is a maximum for a given A are for five fractions) are shown in Figure 12 and
Table 2. Similar limit curves can be reproduced for any fraction number.

Figure 11. Results of the segregation test, mixtures A–E are shown in [21].
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However, it can be noted that soils with gap-graded grading curves can be non-segregating
also. For example, in case of a two-fraction soil with gap-graded grading curve, the segregation
is minimal if the quantity of the larger fraction varies between 0.4 and 0.7.

3.5.2. Testing the filter rules

The grading entropy-based filter law was compared with the existing filtering rules available
in the literature. Summaries of well-known filter rules [7, 9–15] for uniformly graded filters
and broadly graded filters are presented in Appendix A. These different filtering rules were
tested by generating soils with the special-shaped grading curves [21] shown in Figure 13 and
parameterized in Table 3.

The 13 combinations listed in Table 3 were represented for the different filtering rules of the
literature, some results are shown in Figure 14. If the rule from the literature predicted a
successful filtering (i.e., safe behavior), it was plotted with an open circle; where it predicted a
failure to filter (i.e., unsafe behavior), it was plotted with a full circle.

The results indicated that (i) the Terzaghi’s filter rule is too conservative, (ii) the Bertram rule is
conservative for mixed filters and not acceptable for uniform soils, (iii) the rule of United States
Bureau of Reclamation (USBR) for uniform filters is acceptable, and (iv) for mixed filters is not
acceptable.

Figure 12. Limit curves for non-segregating optimal 5-fraction mixtures [21].

A [–] a [–] x1 [–] ΔS/ln N [–]

0.50 1.00 0.20 1.44

0.56 1.13 0.15 1.43

0.60 1.23 0.13 1.41

2/3 1.42 0.09 1.34

0.70 1.54 0.07 1.29

Table 2. Some non-segregating optimal 5-fraction mixtures.
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Figure 13. The theoretical grading curves used in the testing of existing filtering laws. (a) Mixtures for the Terzaghi’s
criterion-T. (b) US Bureau simple filters-U. (c) US Bureau mixed filters-UM. (d) Mixtures for Bertram’s criterion-B.

D50/d50 D15/d85 D10/d60 D15/d15 S0b S0f ΔSb ΔSf

1 B1-1I 7 4.58 6.5 7.86 13 16 0 0

2 B1-1II 14 5.67 22.5 9.71 13 17 0 1.585

3 T1-1I 10.00 4.17 4.44 7.14 13 16.35 0 1.44

4 T1-1II 4 2.42 3.1 4.14 13 15 0 0

5 T1-1III 6.89 4.17 3.1 7.14 13 15.85 0 0.61

6 T1-1Iv 11.11 5.17 6.3 8.86 13 16.5 0 1

7 UM1-1I 13.9 7.3 0.8 12 13 16.8 0 0.722

8 UM1-1II 58 7.3 0.8 12 13 18.51 0 2.07

9 UM1-1III 58 25.5 2.6 40 13 19. 0 1.585

10 U1-1I 5.55 3.02 3.13 4.57 13 15.5 0 1

11 U1-1II 7.78 5.19 5.42 7.86 13 16 0 0

12 U1-1III 11.1 5.85 6.25 8.86 13 16.5 0 1

13 U1-1Iv 15.5 10.19 10.63 15.43 13 17 0 0

Table 3. The data of the theoretical grading curves used in evaluating the filtration rules, generated for this purpose [15]
to four existing filter rules, as shown in Figure 13.
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4. Case study

Several applications of the entropy-based rules, by examining the reason of piping, softening,
dispersive soil behavior, and the goodness of a leachate collection system, were previously
presented [19–22]. Here, a dam failure case study is summarized.

The 71 m high, Gouhou rockfill dam was founded on a sandy gravel base layer (Figure 15). The
dam body consisted of the following parts: the upstream face was a thin layer of material with a
design particle diameter of 100 mm, zone I was a transition zone with the maximum diameter of
400 mm, zones II and III were the main rockfill with maximum diameters d of 600 and 800 mm.

The dam failed [22, 27, 28], killing 288 people, immediately after the first rising water level, and
infiltrating the water into the dam body causing internal erosion, piping, and washout of
material (see 1–6, Figure 15).

Figure 14. Testing some filtering rules, using the theoretical grading curves of Figure 13 and Table 3. (a) The filter rule of
USBR for uniform filters [12] is acceptable. (b) The filter rule of Terzaghi [11] is conservative.

Figure 15. The Gouhou dam failure. Cross section and failure mechanism.
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The relative base entropies of the soils in zones I, II, and III were 0.42, 0.55, 0.58, respectively, all
less than 2/3 and non-segregating. This result explains why the rockfill material was incapable of
forming a stable skeleton of coarse fragments. It follows that the grading entropy-based soil
behavior rules would have been capable of predicting piping failure in the Gouhou dam.

5. Discussion and conclusion

5.1. Some comments on the entropy parameters

The grading entropy parameters are some kind of integrals of the whole grading curve. The
same shaped grading curve has the same A, ΔS, or B value independent of the value of the
minimum grain size. Therefore, these are well-defined parameters and have some physical
contents, as follows.

The relative base entropy parameter A has a potential to be a grain structure stability measure
possibly based on the simple physical fact that if enough large grains are present in a mixture,
then these will form a skeleton.

The entropy increment ΔS measures how much the soil behavior is really influenced by all of
its N fractions. For those grading curves, in which all N fractions are well represented, the
entropy increment is typically close to ln N/ln 2.

The entropy parameters are pseudo-metrics. The difference between base entropies of the filter
and base soils, S0f � S0b describes the distance between the mean diameters. The sum of filter
and base soil entropy increments ΔSf + ΔSb expresses the sum of the two “effective” N values
(i.e., the total number of important fractions in the two grading curves).

5.2. Some comments on the rules

The overall soil stability—according to the experimental results—is described by the criterion
that A > 2/3. In soils which meet this criterion, the matrix of coarser soil particles is stable and
able to form a resistant skeleton, even though suffosion may occur.

Some questions arise, for example, in regard to the stability of a single fraction which does not
lie in a unique position on the entropy diagram. Since the change due to degradation is the
appearance of smalls, which causes an increase in the A value [29], the one fraction case is
likely on the safe side.

Another question is related to the probability that an arbitraryN-fraction soil is stable. This can
be characterized by the relative size of the grading curve space separated with the A = 2/3
hyperplane on condition that the probability is the same in the whole simplex. This number is
decreasing with the fraction number (e.g., for N = 2, the 1/3 part of the grading curve space is
safe, for N = 3, the 2/9 part of the possible grading curves are safe, for N =18, less than the 0.01
part of the possible grading curves are safe).

Significant segregation is unlikely to occur, if the relative base entropy A is between the
limits of 0.4 and 0.7. It is important to note that the same parameter—the relative base
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entropy A—is responsible for overall soil stability. Soils which meet both criteria may consti-
tute very small part of the grading curve space and may need careful design in case of
broadly graded soils.

The filtration problems are safely solved in the literature for uniform filters and bases (i.e., soils
to be protected by the filters). The suggested filter rule can be used to design broadly graded
filters (e.g., for clay cores or for leachate collection systems). However, the rule was estimated
on the basis of one data point only at the range of very large N and ΔS values.

The testing of the existing rules known from the literature was possible on the basis of the
suggested filter rule and using some theoretical grading curves. According to the results, the
Terzaghi filter rule is too conservative. The filtering rule of USBR for uniform filters is accept-
able. The mixed filter rule of the USBR is not conservative and is not acceptable. The Bertram
rule is be conservative for mixed filters and not acceptable for uniform soil.

5.3. The importance, use, and implementation of the rules

Applications of the derived entropy-based rules were presented by examining the reason of a
dam piping failure, dike piping, dispersive soils, leachate collection system case studies [19–
22], a dam example is presented here only. On the basis of the case study, it is apparent that the
grading entropy-based soil behavior rules would have been capable of predicting piping
failure in the Gouhou dam.

The grading entropy-based criteria can easily be implemented into any laboratory test evalu-
ation software. A basic requirement for the use is that the grading curve information is reliable.
The simple soil tests presented here were made on coarse material and the rules apply for soils
where the solid fraction is composed of non-clay minerals.

For clay minerals, the same criteria may be valid if the grading curve information is reliable
and the appropriate degree of particle agglomeration is reflected in the measurements [30–33].
The first results indicate that the same criteria may be valid for silty soils if the grading curve
information is reliable (see e.g., the dispersive soil case studies [20]).

Appendix A

Rules for uniform filters

U.S. Bureau of Reclamation [12]:

D50

d50
¼ 5� 10 ð22Þ

Sichard [9]:

D50

d50
¼ 3� 4:5 ð23Þ
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Sherard et al. [7]:

D15

d85
< 9 ð24Þ

where D and d denote the filter and the base soil, respectively.

Rules for broadly graded soils

Terzaghi’s [10, 11]:

D15

d85
≤ 4;

D15

d15
≥ 4 ð25Þ

US Bureau of Reclamation [12]:

D50

d50
¼ 12� 58,

D15

d15
¼ 12� 4 ð26Þ

Bertram [13]:

D15

d85
≤ 5;

D15

d15
¼ 5� 9 ð27Þ

Cistin [14]:

D10

d60
< 5, UD ¼ D60

D10
< 5 ð28Þ

where D and d are diameters of the filter soil and the base soil.
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